]> gcc.gnu.org Git - gcc.git/blame - gcc/ada/sem_res.adb
[multiple changes]
[gcc.git] / gcc / ada / sem_res.adb
CommitLineData
996ae0b0
RK
1------------------------------------------------------------------------------
2-- --
3-- GNAT COMPILER COMPONENTS --
4-- --
5-- S E M _ R E S --
6-- --
7-- B o d y --
8-- --
c28408b7 9-- Copyright (C) 1992-2010, Free Software Foundation, Inc. --
996ae0b0
RK
10-- --
11-- GNAT is free software; you can redistribute it and/or modify it under --
12-- terms of the GNU General Public License as published by the Free Soft- --
b5c84c3c 13-- ware Foundation; either version 3, or (at your option) any later ver- --
996ae0b0
RK
14-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16-- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17-- for more details. You should have received a copy of the GNU General --
b5c84c3c
RD
18-- Public License distributed with GNAT; see file COPYING3. If not, go to --
19-- http://www.gnu.org/licenses for a complete copy of the license. --
996ae0b0
RK
20-- --
21-- GNAT was originally developed by the GNAT team at New York University. --
71ff80dc 22-- Extensive contributions were provided by Ada Core Technologies Inc. --
996ae0b0
RK
23-- --
24------------------------------------------------------------------------------
25
26with Atree; use Atree;
27with Checks; use Checks;
28with Debug; use Debug;
29with Debug_A; use Debug_A;
30with Einfo; use Einfo;
b7d1f17f 31with Elists; use Elists;
996ae0b0
RK
32with Errout; use Errout;
33with Expander; use Expander;
758c442c 34with Exp_Disp; use Exp_Disp;
0669bebe 35with Exp_Ch6; use Exp_Ch6;
996ae0b0 36with Exp_Ch7; use Exp_Ch7;
fbf5a39b 37with Exp_Tss; use Exp_Tss;
996ae0b0 38with Exp_Util; use Exp_Util;
dae2b8ea 39with Fname; use Fname;
996ae0b0
RK
40with Freeze; use Freeze;
41with Itypes; use Itypes;
42with Lib; use Lib;
43with Lib.Xref; use Lib.Xref;
44with Namet; use Namet;
45with Nmake; use Nmake;
46with Nlists; use Nlists;
47with Opt; use Opt;
48with Output; use Output;
49with Restrict; use Restrict;
6e937c1c 50with Rident; use Rident;
996ae0b0
RK
51with Rtsfind; use Rtsfind;
52with Sem; use Sem;
a4100e55 53with Sem_Aux; use Sem_Aux;
996ae0b0
RK
54with Sem_Aggr; use Sem_Aggr;
55with Sem_Attr; use Sem_Attr;
56with Sem_Cat; use Sem_Cat;
57with Sem_Ch4; use Sem_Ch4;
58with Sem_Ch6; use Sem_Ch6;
59with Sem_Ch8; use Sem_Ch8;
4b92fd3c 60with Sem_Ch13; use Sem_Ch13;
996ae0b0
RK
61with Sem_Disp; use Sem_Disp;
62with Sem_Dist; use Sem_Dist;
16212e89 63with Sem_Elim; use Sem_Elim;
996ae0b0
RK
64with Sem_Elab; use Sem_Elab;
65with Sem_Eval; use Sem_Eval;
66with Sem_Intr; use Sem_Intr;
67with Sem_Util; use Sem_Util;
68with Sem_Type; use Sem_Type;
69with Sem_Warn; use Sem_Warn;
70with Sinfo; use Sinfo;
f4b049db 71with Sinfo.CN; use Sinfo.CN;
fbf5a39b 72with Snames; use Snames;
996ae0b0
RK
73with Stand; use Stand;
74with Stringt; use Stringt;
45fc7ddb 75with Style; use Style;
996ae0b0
RK
76with Tbuild; use Tbuild;
77with Uintp; use Uintp;
78with Urealp; use Urealp;
79
80package body Sem_Res is
81
82 -----------------------
83 -- Local Subprograms --
84 -----------------------
85
86 -- Second pass (top-down) type checking and overload resolution procedures
87 -- Typ is the type required by context. These procedures propagate the
88 -- type information recursively to the descendants of N. If the node
89 -- is not overloaded, its Etype is established in the first pass. If
90 -- overloaded, the Resolve routines set the correct type. For arith.
91 -- operators, the Etype is the base type of the context.
92
93 -- Note that Resolve_Attribute is separated off in Sem_Attr
94
bd29d519
AC
95 function Bad_Unordered_Enumeration_Reference
96 (N : Node_Id;
97 T : Entity_Id) return Boolean;
98 -- Node N contains a potentially dubious reference to type T, either an
99 -- explicit comparison, or an explicit range. This function returns True
100 -- if the type T is an enumeration type for which No pragma Order has been
101 -- given, and the reference N is not in the same extended source unit as
102 -- the declaration of T.
103
996ae0b0
RK
104 procedure Check_Discriminant_Use (N : Node_Id);
105 -- Enforce the restrictions on the use of discriminants when constraining
106 -- a component of a discriminated type (record or concurrent type).
107
108 procedure Check_For_Visible_Operator (N : Node_Id; T : Entity_Id);
109 -- Given a node for an operator associated with type T, check that
110 -- the operator is visible. Operators all of whose operands are
111 -- universal must be checked for visibility during resolution
112 -- because their type is not determinable based on their operands.
113
c8ef728f
ES
114 procedure Check_Fully_Declared_Prefix
115 (Typ : Entity_Id;
116 Pref : Node_Id);
117 -- Check that the type of the prefix of a dereference is not incomplete
118
996ae0b0
RK
119 function Check_Infinite_Recursion (N : Node_Id) return Boolean;
120 -- Given a call node, N, which is known to occur immediately within the
121 -- subprogram being called, determines whether it is a detectable case of
122 -- an infinite recursion, and if so, outputs appropriate messages. Returns
123 -- True if an infinite recursion is detected, and False otherwise.
124
125 procedure Check_Initialization_Call (N : Entity_Id; Nam : Entity_Id);
126 -- If the type of the object being initialized uses the secondary stack
127 -- directly or indirectly, create a transient scope for the call to the
fbf5a39b
AC
128 -- init proc. This is because we do not create transient scopes for the
129 -- initialization of individual components within the init proc itself.
996ae0b0
RK
130 -- Could be optimized away perhaps?
131
f61580d4 132 procedure Check_No_Direct_Boolean_Operators (N : Node_Id);
6fb4cdde
AC
133 -- N is the node for a logical operator. If the operator is predefined, and
134 -- the root type of the operands is Standard.Boolean, then a check is made
a36c1c3e
RD
135 -- for restriction No_Direct_Boolean_Operators. This procedure also handles
136 -- the style check for Style_Check_Boolean_And_Or.
f61580d4 137
67ce0d7e
RD
138 function Is_Definite_Access_Type (E : Entity_Id) return Boolean;
139 -- Determine whether E is an access type declared by an access
140 -- declaration, and not an (anonymous) allocator type.
141
996ae0b0 142 function Is_Predefined_Op (Nam : Entity_Id) return Boolean;
6a497607
AC
143 -- Utility to check whether the entity for an operator is a predefined
144 -- operator, in which case the expression is left as an operator in the
145 -- tree (else it is rewritten into a call). An instance of an intrinsic
146 -- conversion operation may be given an operator name, but is not treated
147 -- like an operator. Note that an operator that is an imported back-end
148 -- builtin has convention Intrinsic, but is expected to be rewritten into
149 -- a call, so such an operator is not treated as predefined by this
150 -- predicate.
996ae0b0
RK
151
152 procedure Replace_Actual_Discriminants (N : Node_Id; Default : Node_Id);
153 -- If a default expression in entry call N depends on the discriminants
154 -- of the task, it must be replaced with a reference to the discriminant
155 -- of the task being called.
156
10303118
BD
157 procedure Resolve_Op_Concat_Arg
158 (N : Node_Id;
159 Arg : Node_Id;
160 Typ : Entity_Id;
161 Is_Comp : Boolean);
162 -- Internal procedure for Resolve_Op_Concat to resolve one operand of
163 -- concatenation operator. The operand is either of the array type or of
164 -- the component type. If the operand is an aggregate, and the component
165 -- type is composite, this is ambiguous if component type has aggregates.
166
167 procedure Resolve_Op_Concat_First (N : Node_Id; Typ : Entity_Id);
168 -- Does the first part of the work of Resolve_Op_Concat
169
170 procedure Resolve_Op_Concat_Rest (N : Node_Id; Typ : Entity_Id);
171 -- Does the "rest" of the work of Resolve_Op_Concat, after the left operand
172 -- has been resolved. See Resolve_Op_Concat for details.
173
996ae0b0
RK
174 procedure Resolve_Allocator (N : Node_Id; Typ : Entity_Id);
175 procedure Resolve_Arithmetic_Op (N : Node_Id; Typ : Entity_Id);
176 procedure Resolve_Call (N : Node_Id; Typ : Entity_Id);
19d846a0 177 procedure Resolve_Case_Expression (N : Node_Id; Typ : Entity_Id);
996ae0b0
RK
178 procedure Resolve_Character_Literal (N : Node_Id; Typ : Entity_Id);
179 procedure Resolve_Comparison_Op (N : Node_Id; Typ : Entity_Id);
180 procedure Resolve_Conditional_Expression (N : Node_Id; Typ : Entity_Id);
955871d3 181 procedure Resolve_Entity_Name (N : Node_Id; Typ : Entity_Id);
996ae0b0
RK
182 procedure Resolve_Equality_Op (N : Node_Id; Typ : Entity_Id);
183 procedure Resolve_Explicit_Dereference (N : Node_Id; Typ : Entity_Id);
955871d3 184 procedure Resolve_Expression_With_Actions (N : Node_Id; Typ : Entity_Id);
996ae0b0
RK
185 procedure Resolve_Indexed_Component (N : Node_Id; Typ : Entity_Id);
186 procedure Resolve_Integer_Literal (N : Node_Id; Typ : Entity_Id);
187 procedure Resolve_Logical_Op (N : Node_Id; Typ : Entity_Id);
188 procedure Resolve_Membership_Op (N : Node_Id; Typ : Entity_Id);
189 procedure Resolve_Null (N : Node_Id; Typ : Entity_Id);
190 procedure Resolve_Operator_Symbol (N : Node_Id; Typ : Entity_Id);
191 procedure Resolve_Op_Concat (N : Node_Id; Typ : Entity_Id);
192 procedure Resolve_Op_Expon (N : Node_Id; Typ : Entity_Id);
193 procedure Resolve_Op_Not (N : Node_Id; Typ : Entity_Id);
194 procedure Resolve_Qualified_Expression (N : Node_Id; Typ : Entity_Id);
195 procedure Resolve_Range (N : Node_Id; Typ : Entity_Id);
196 procedure Resolve_Real_Literal (N : Node_Id; Typ : Entity_Id);
197 procedure Resolve_Reference (N : Node_Id; Typ : Entity_Id);
198 procedure Resolve_Selected_Component (N : Node_Id; Typ : Entity_Id);
199 procedure Resolve_Shift (N : Node_Id; Typ : Entity_Id);
200 procedure Resolve_Short_Circuit (N : Node_Id; Typ : Entity_Id);
201 procedure Resolve_Slice (N : Node_Id; Typ : Entity_Id);
202 procedure Resolve_String_Literal (N : Node_Id; Typ : Entity_Id);
203 procedure Resolve_Subprogram_Info (N : Node_Id; Typ : Entity_Id);
204 procedure Resolve_Type_Conversion (N : Node_Id; Typ : Entity_Id);
205 procedure Resolve_Unary_Op (N : Node_Id; Typ : Entity_Id);
206 procedure Resolve_Unchecked_Expression (N : Node_Id; Typ : Entity_Id);
207 procedure Resolve_Unchecked_Type_Conversion (N : Node_Id; Typ : Entity_Id);
208
209 function Operator_Kind
210 (Op_Name : Name_Id;
0ab80019 211 Is_Binary : Boolean) return Node_Kind;
996ae0b0
RK
212 -- Utility to map the name of an operator into the corresponding Node. Used
213 -- by other node rewriting procedures.
214
215 procedure Resolve_Actuals (N : Node_Id; Nam : Entity_Id);
bc5f3720
RD
216 -- Resolve actuals of call, and add default expressions for missing ones.
217 -- N is the Node_Id for the subprogram call, and Nam is the entity of the
218 -- called subprogram.
996ae0b0
RK
219
220 procedure Resolve_Entry_Call (N : Node_Id; Typ : Entity_Id);
221 -- Called from Resolve_Call, when the prefix denotes an entry or element
222 -- of entry family. Actuals are resolved as for subprograms, and the node
223 -- is rebuilt as an entry call. Also called for protected operations. Typ
224 -- is the context type, which is used when the operation is a protected
225 -- function with no arguments, and the return value is indexed.
226
227 procedure Resolve_Intrinsic_Operator (N : Node_Id; Typ : Entity_Id);
228 -- A call to a user-defined intrinsic operator is rewritten as a call
229 -- to the corresponding predefined operator, with suitable conversions.
6a497607 230 -- Note that this applies only for intrinsic operators that denote
841dd0f5 231 -- predefined operators, not operators that are intrinsic imports of
6a497607 232 -- back-end builtins.
996ae0b0 233
fbf5a39b 234 procedure Resolve_Intrinsic_Unary_Operator (N : Node_Id; Typ : Entity_Id);
305caf42
AC
235 -- Ditto, for unary operators (arithmetic ones and "not" on signed
236 -- integer types for VMS).
fbf5a39b 237
996ae0b0
RK
238 procedure Rewrite_Operator_As_Call (N : Node_Id; Nam : Entity_Id);
239 -- If an operator node resolves to a call to a user-defined operator,
240 -- rewrite the node as a function call.
241
242 procedure Make_Call_Into_Operator
243 (N : Node_Id;
244 Typ : Entity_Id;
245 Op_Id : Entity_Id);
246 -- Inverse transformation: if an operator is given in functional notation,
247 -- then after resolving the node, transform into an operator node, so
248 -- that operands are resolved properly. Recall that predefined operators
249 -- do not have a full signature and special resolution rules apply.
250
0ab80019
AC
251 procedure Rewrite_Renamed_Operator
252 (N : Node_Id;
253 Op : Entity_Id;
254 Typ : Entity_Id);
996ae0b0 255 -- An operator can rename another, e.g. in an instantiation. In that
0ab80019 256 -- case, the proper operator node must be constructed and resolved.
996ae0b0
RK
257
258 procedure Set_String_Literal_Subtype (N : Node_Id; Typ : Entity_Id);
259 -- The String_Literal_Subtype is built for all strings that are not
07fc65c4
GB
260 -- operands of a static concatenation operation. If the argument is
261 -- not a N_String_Literal node, then the call has no effect.
996ae0b0
RK
262
263 procedure Set_Slice_Subtype (N : Node_Id);
fbf5a39b 264 -- Build subtype of array type, with the range specified by the slice
996ae0b0 265
0669bebe
GB
266 procedure Simplify_Type_Conversion (N : Node_Id);
267 -- Called after N has been resolved and evaluated, but before range checks
268 -- have been applied. Currently simplifies a combination of floating-point
269 -- to integer conversion and Truncation attribute.
270
996ae0b0 271 function Unique_Fixed_Point_Type (N : Node_Id) return Entity_Id;
07fc65c4
GB
272 -- A universal_fixed expression in an universal context is unambiguous
273 -- if there is only one applicable fixed point type. Determining whether
996ae0b0
RK
274 -- there is only one requires a search over all visible entities, and
275 -- happens only in very pathological cases (see 6115-006).
276
277 function Valid_Conversion
278 (N : Node_Id;
279 Target : Entity_Id;
0ab80019 280 Operand : Node_Id) return Boolean;
996ae0b0
RK
281 -- Verify legality rules given in 4.6 (8-23). Target is the target
282 -- type of the conversion, which may be an implicit conversion of
283 -- an actual parameter to an anonymous access type (in which case
284 -- N denotes the actual parameter and N = Operand).
285
286 -------------------------
287 -- Ambiguous_Character --
288 -------------------------
289
290 procedure Ambiguous_Character (C : Node_Id) is
291 E : Entity_Id;
292
293 begin
294 if Nkind (C) = N_Character_Literal then
ed2233dc 295 Error_Msg_N ("ambiguous character literal", C);
b7d1f17f
HK
296
297 -- First the ones in Standard
298
ed2233dc
AC
299 Error_Msg_N ("\\possible interpretation: Character!", C);
300 Error_Msg_N ("\\possible interpretation: Wide_Character!", C);
b7d1f17f
HK
301
302 -- Include Wide_Wide_Character in Ada 2005 mode
303
304 if Ada_Version >= Ada_05 then
ed2233dc 305 Error_Msg_N ("\\possible interpretation: Wide_Wide_Character!", C);
b7d1f17f
HK
306 end if;
307
308 -- Now any other types that match
996ae0b0
RK
309
310 E := Current_Entity (C);
1420b484 311 while Present (E) loop
ed2233dc 312 Error_Msg_NE ("\\possible interpretation:}!", C, Etype (E));
1420b484
JM
313 E := Homonym (E);
314 end loop;
996ae0b0
RK
315 end if;
316 end Ambiguous_Character;
317
318 -------------------------
319 -- Analyze_And_Resolve --
320 -------------------------
321
322 procedure Analyze_And_Resolve (N : Node_Id) is
323 begin
324 Analyze (N);
fbf5a39b 325 Resolve (N);
996ae0b0
RK
326 end Analyze_And_Resolve;
327
328 procedure Analyze_And_Resolve (N : Node_Id; Typ : Entity_Id) is
329 begin
330 Analyze (N);
331 Resolve (N, Typ);
332 end Analyze_And_Resolve;
333
334 -- Version withs check(s) suppressed
335
336 procedure Analyze_And_Resolve
337 (N : Node_Id;
338 Typ : Entity_Id;
339 Suppress : Check_Id)
340 is
fbf5a39b 341 Scop : constant Entity_Id := Current_Scope;
996ae0b0
RK
342
343 begin
344 if Suppress = All_Checks then
345 declare
fbf5a39b 346 Svg : constant Suppress_Array := Scope_Suppress;
996ae0b0
RK
347 begin
348 Scope_Suppress := (others => True);
349 Analyze_And_Resolve (N, Typ);
350 Scope_Suppress := Svg;
351 end;
352
353 else
354 declare
fbf5a39b 355 Svg : constant Boolean := Scope_Suppress (Suppress);
996ae0b0
RK
356
357 begin
fbf5a39b 358 Scope_Suppress (Suppress) := True;
996ae0b0 359 Analyze_And_Resolve (N, Typ);
fbf5a39b 360 Scope_Suppress (Suppress) := Svg;
996ae0b0
RK
361 end;
362 end if;
363
364 if Current_Scope /= Scop
365 and then Scope_Is_Transient
366 then
367 -- This can only happen if a transient scope was created
368 -- for an inner expression, which will be removed upon
369 -- completion of the analysis of an enclosing construct.
370 -- The transient scope must have the suppress status of
371 -- the enclosing environment, not of this Analyze call.
372
373 Scope_Stack.Table (Scope_Stack.Last).Save_Scope_Suppress :=
374 Scope_Suppress;
375 end if;
376 end Analyze_And_Resolve;
377
378 procedure Analyze_And_Resolve
379 (N : Node_Id;
380 Suppress : Check_Id)
381 is
fbf5a39b 382 Scop : constant Entity_Id := Current_Scope;
996ae0b0
RK
383
384 begin
385 if Suppress = All_Checks then
386 declare
fbf5a39b 387 Svg : constant Suppress_Array := Scope_Suppress;
996ae0b0
RK
388 begin
389 Scope_Suppress := (others => True);
390 Analyze_And_Resolve (N);
391 Scope_Suppress := Svg;
392 end;
393
394 else
395 declare
fbf5a39b 396 Svg : constant Boolean := Scope_Suppress (Suppress);
996ae0b0
RK
397
398 begin
fbf5a39b 399 Scope_Suppress (Suppress) := True;
996ae0b0 400 Analyze_And_Resolve (N);
fbf5a39b 401 Scope_Suppress (Suppress) := Svg;
996ae0b0
RK
402 end;
403 end if;
404
405 if Current_Scope /= Scop
406 and then Scope_Is_Transient
407 then
408 Scope_Stack.Table (Scope_Stack.Last).Save_Scope_Suppress :=
409 Scope_Suppress;
410 end if;
411 end Analyze_And_Resolve;
412
bd29d519
AC
413 ----------------------------------------
414 -- Bad_Unordered_Enumeration_Reference --
415 ----------------------------------------
416
417 function Bad_Unordered_Enumeration_Reference
418 (N : Node_Id;
419 T : Entity_Id) return Boolean
420 is
421 begin
422 return Is_Enumeration_Type (T)
423 and then Comes_From_Source (N)
424 and then Warn_On_Unordered_Enumeration_Type
425 and then not Has_Pragma_Ordered (T)
426 and then not In_Same_Extended_Unit (N, T);
427 end Bad_Unordered_Enumeration_Reference;
428
996ae0b0
RK
429 ----------------------------
430 -- Check_Discriminant_Use --
431 ----------------------------
432
433 procedure Check_Discriminant_Use (N : Node_Id) is
434 PN : constant Node_Id := Parent (N);
435 Disc : constant Entity_Id := Entity (N);
436 P : Node_Id;
437 D : Node_Id;
438
439 begin
f3d0f304 440 -- Any use in a spec-expression is legal
996ae0b0 441
45fc7ddb 442 if In_Spec_Expression then
996ae0b0
RK
443 null;
444
445 elsif Nkind (PN) = N_Range then
446
a77842bd 447 -- Discriminant cannot be used to constrain a scalar type
996ae0b0
RK
448
449 P := Parent (PN);
450
451 if Nkind (P) = N_Range_Constraint
452 and then Nkind (Parent (P)) = N_Subtype_Indication
a397db96 453 and then Nkind (Parent (Parent (P))) = N_Component_Definition
996ae0b0
RK
454 then
455 Error_Msg_N ("discriminant cannot constrain scalar type", N);
456
457 elsif Nkind (P) = N_Index_Or_Discriminant_Constraint then
458
459 -- The following check catches the unusual case where
460 -- a discriminant appears within an index constraint
461 -- that is part of a larger expression within a constraint
462 -- on a component, e.g. "C : Int range 1 .. F (new A(1 .. D))".
463 -- For now we only check case of record components, and
464 -- note that a similar check should also apply in the
465 -- case of discriminant constraints below. ???
466
467 -- Note that the check for N_Subtype_Declaration below is to
468 -- detect the valid use of discriminants in the constraints of a
469 -- subtype declaration when this subtype declaration appears
470 -- inside the scope of a record type (which is syntactically
471 -- illegal, but which may be created as part of derived type
472 -- processing for records). See Sem_Ch3.Build_Derived_Record_Type
473 -- for more info.
474
475 if Ekind (Current_Scope) = E_Record_Type
476 and then Scope (Disc) = Current_Scope
477 and then not
478 (Nkind (Parent (P)) = N_Subtype_Indication
45fc7ddb
HK
479 and then
480 Nkind_In (Parent (Parent (P)), N_Component_Definition,
481 N_Subtype_Declaration)
996ae0b0
RK
482 and then Paren_Count (N) = 0)
483 then
484 Error_Msg_N
485 ("discriminant must appear alone in component constraint", N);
486 return;
487 end if;
488
a0ac3932 489 -- Detect a common error:
9bc43c53 490
996ae0b0 491 -- type R (D : Positive := 100) is record
9bc43c53 492 -- Name : String (1 .. D);
996ae0b0
RK
493 -- end record;
494
a0ac3932
RD
495 -- The default value causes an object of type R to be allocated
496 -- with room for Positive'Last characters. The RM does not mandate
497 -- the allocation of the maximum size, but that is what GNAT does
498 -- so we should warn the programmer that there is a problem.
996ae0b0 499
a0ac3932 500 Check_Large : declare
996ae0b0
RK
501 SI : Node_Id;
502 T : Entity_Id;
503 TB : Node_Id;
504 CB : Entity_Id;
505
506 function Large_Storage_Type (T : Entity_Id) return Boolean;
507 -- Return True if type T has a large enough range that
508 -- any array whose index type covered the whole range of
509 -- the type would likely raise Storage_Error.
510
fbf5a39b
AC
511 ------------------------
512 -- Large_Storage_Type --
513 ------------------------
514
996ae0b0
RK
515 function Large_Storage_Type (T : Entity_Id) return Boolean is
516 begin
4b92fd3c
ST
517 -- The type is considered large if its bounds are known at
518 -- compile time and if it requires at least as many bits as
519 -- a Positive to store the possible values.
520
521 return Compile_Time_Known_Value (Type_Low_Bound (T))
522 and then Compile_Time_Known_Value (Type_High_Bound (T))
523 and then
524 Minimum_Size (T, Biased => True) >=
a0ac3932 525 RM_Size (Standard_Positive);
996ae0b0
RK
526 end Large_Storage_Type;
527
a0ac3932
RD
528 -- Start of processing for Check_Large
529
996ae0b0
RK
530 begin
531 -- Check that the Disc has a large range
532
533 if not Large_Storage_Type (Etype (Disc)) then
534 goto No_Danger;
535 end if;
536
537 -- If the enclosing type is limited, we allocate only the
538 -- default value, not the maximum, and there is no need for
539 -- a warning.
540
541 if Is_Limited_Type (Scope (Disc)) then
542 goto No_Danger;
543 end if;
544
545 -- Check that it is the high bound
546
547 if N /= High_Bound (PN)
c8ef728f 548 or else No (Discriminant_Default_Value (Disc))
996ae0b0
RK
549 then
550 goto No_Danger;
551 end if;
552
553 -- Check the array allows a large range at this bound.
554 -- First find the array
555
556 SI := Parent (P);
557
558 if Nkind (SI) /= N_Subtype_Indication then
559 goto No_Danger;
560 end if;
561
562 T := Entity (Subtype_Mark (SI));
563
564 if not Is_Array_Type (T) then
565 goto No_Danger;
566 end if;
567
568 -- Next, find the dimension
569
570 TB := First_Index (T);
571 CB := First (Constraints (P));
572 while True
573 and then Present (TB)
574 and then Present (CB)
575 and then CB /= PN
576 loop
577 Next_Index (TB);
578 Next (CB);
579 end loop;
580
581 if CB /= PN then
582 goto No_Danger;
583 end if;
584
585 -- Now, check the dimension has a large range
586
587 if not Large_Storage_Type (Etype (TB)) then
588 goto No_Danger;
589 end if;
590
591 -- Warn about the danger
592
593 Error_Msg_N
aa5147f0 594 ("?creation of & object may raise Storage_Error!",
fbf5a39b 595 Scope (Disc));
996ae0b0
RK
596
597 <<No_Danger>>
598 null;
599
a0ac3932 600 end Check_Large;
996ae0b0
RK
601 end if;
602
603 -- Legal case is in index or discriminant constraint
604
45fc7ddb
HK
605 elsif Nkind_In (PN, N_Index_Or_Discriminant_Constraint,
606 N_Discriminant_Association)
996ae0b0
RK
607 then
608 if Paren_Count (N) > 0 then
609 Error_Msg_N
610 ("discriminant in constraint must appear alone", N);
758c442c
GD
611
612 elsif Nkind (N) = N_Expanded_Name
613 and then Comes_From_Source (N)
614 then
615 Error_Msg_N
616 ("discriminant must appear alone as a direct name", N);
996ae0b0
RK
617 end if;
618
619 return;
620
621 -- Otherwise, context is an expression. It should not be within
622 -- (i.e. a subexpression of) a constraint for a component.
623
624 else
625 D := PN;
626 P := Parent (PN);
45fc7ddb
HK
627 while not Nkind_In (P, N_Component_Declaration,
628 N_Subtype_Indication,
629 N_Entry_Declaration)
996ae0b0
RK
630 loop
631 D := P;
632 P := Parent (P);
633 exit when No (P);
634 end loop;
635
636 -- If the discriminant is used in an expression that is a bound
637 -- of a scalar type, an Itype is created and the bounds are attached
638 -- to its range, not to the original subtype indication. Such use
639 -- is of course a double fault.
640
641 if (Nkind (P) = N_Subtype_Indication
45fc7ddb
HK
642 and then Nkind_In (Parent (P), N_Component_Definition,
643 N_Derived_Type_Definition)
996ae0b0
RK
644 and then D = Constraint (P))
645
646 -- The constraint itself may be given by a subtype indication,
647 -- rather than by a more common discrete range.
648
649 or else (Nkind (P) = N_Subtype_Indication
fbf5a39b
AC
650 and then
651 Nkind (Parent (P)) = N_Index_Or_Discriminant_Constraint)
996ae0b0
RK
652 or else Nkind (P) = N_Entry_Declaration
653 or else Nkind (D) = N_Defining_Identifier
654 then
655 Error_Msg_N
656 ("discriminant in constraint must appear alone", N);
657 end if;
658 end if;
659 end Check_Discriminant_Use;
660
661 --------------------------------
662 -- Check_For_Visible_Operator --
663 --------------------------------
664
665 procedure Check_For_Visible_Operator (N : Node_Id; T : Entity_Id) is
996ae0b0 666 begin
fbf5a39b 667 if Is_Invisible_Operator (N, T) then
305caf42 668 Error_Msg_NE -- CODEFIX
996ae0b0 669 ("operator for} is not directly visible!", N, First_Subtype (T));
305caf42
AC
670 Error_Msg_N -- CODEFIX
671 ("use clause would make operation legal!", N);
996ae0b0
RK
672 end if;
673 end Check_For_Visible_Operator;
674
c8ef728f
ES
675 ----------------------------------
676 -- Check_Fully_Declared_Prefix --
677 ----------------------------------
678
679 procedure Check_Fully_Declared_Prefix
680 (Typ : Entity_Id;
681 Pref : Node_Id)
682 is
683 begin
684 -- Check that the designated type of the prefix of a dereference is
685 -- not an incomplete type. This cannot be done unconditionally, because
686 -- dereferences of private types are legal in default expressions. This
687 -- case is taken care of in Check_Fully_Declared, called below. There
688 -- are also 2005 cases where it is legal for the prefix to be unfrozen.
689
690 -- This consideration also applies to similar checks for allocators,
691 -- qualified expressions, and type conversions.
692
693 -- An additional exception concerns other per-object expressions that
694 -- are not directly related to component declarations, in particular
695 -- representation pragmas for tasks. These will be per-object
696 -- expressions if they depend on discriminants or some global entity.
697 -- If the task has access discriminants, the designated type may be
698 -- incomplete at the point the expression is resolved. This resolution
699 -- takes place within the body of the initialization procedure, where
700 -- the discriminant is replaced by its discriminal.
701
702 if Is_Entity_Name (Pref)
703 and then Ekind (Entity (Pref)) = E_In_Parameter
704 then
705 null;
706
707 -- Ada 2005 (AI-326): Tagged incomplete types allowed. The wrong usages
708 -- are handled by Analyze_Access_Attribute, Analyze_Assignment,
709 -- Analyze_Object_Renaming, and Freeze_Entity.
710
711 elsif Ada_Version >= Ada_05
712 and then Is_Entity_Name (Pref)
811c6a85 713 and then Is_Access_Type (Etype (Pref))
c8ef728f
ES
714 and then Ekind (Directly_Designated_Type (Etype (Pref))) =
715 E_Incomplete_Type
716 and then Is_Tagged_Type (Directly_Designated_Type (Etype (Pref)))
717 then
718 null;
719 else
720 Check_Fully_Declared (Typ, Parent (Pref));
721 end if;
722 end Check_Fully_Declared_Prefix;
723
996ae0b0
RK
724 ------------------------------
725 -- Check_Infinite_Recursion --
726 ------------------------------
727
728 function Check_Infinite_Recursion (N : Node_Id) return Boolean is
729 P : Node_Id;
730 C : Node_Id;
731
07fc65c4
GB
732 function Same_Argument_List return Boolean;
733 -- Check whether list of actuals is identical to list of formals
734 -- of called function (which is also the enclosing scope).
735
736 ------------------------
737 -- Same_Argument_List --
738 ------------------------
739
740 function Same_Argument_List return Boolean is
741 A : Node_Id;
742 F : Entity_Id;
743 Subp : Entity_Id;
744
745 begin
746 if not Is_Entity_Name (Name (N)) then
747 return False;
748 else
749 Subp := Entity (Name (N));
750 end if;
751
752 F := First_Formal (Subp);
753 A := First_Actual (N);
07fc65c4
GB
754 while Present (F) and then Present (A) loop
755 if not Is_Entity_Name (A)
756 or else Entity (A) /= F
757 then
758 return False;
759 end if;
760
761 Next_Actual (A);
762 Next_Formal (F);
763 end loop;
764
765 return True;
766 end Same_Argument_List;
767
768 -- Start of processing for Check_Infinite_Recursion
769
996ae0b0 770 begin
26570b21
RD
771 -- Special case, if this is a procedure call and is a call to the
772 -- current procedure with the same argument list, then this is for
773 -- sure an infinite recursion and we insert a call to raise SE.
774
775 if Is_List_Member (N)
776 and then List_Length (List_Containing (N)) = 1
777 and then Same_Argument_List
778 then
779 declare
780 P : constant Node_Id := Parent (N);
781 begin
782 if Nkind (P) = N_Handled_Sequence_Of_Statements
783 and then Nkind (Parent (P)) = N_Subprogram_Body
784 and then Is_Empty_List (Declarations (Parent (P)))
785 then
786 Error_Msg_N ("!?infinite recursion", N);
787 Error_Msg_N ("\!?Storage_Error will be raised at run time", N);
788 Insert_Action (N,
789 Make_Raise_Storage_Error (Sloc (N),
790 Reason => SE_Infinite_Recursion));
791 return True;
792 end if;
793 end;
794 end if;
795
796 -- If not that special case, search up tree, quitting if we reach a
797 -- construct (e.g. a conditional) that tells us that this is not a
798 -- case for an infinite recursion warning.
996ae0b0
RK
799
800 C := N;
801 loop
802 P := Parent (C);
9a7da240
RD
803
804 -- If no parent, then we were not inside a subprogram, this can for
805 -- example happen when processing certain pragmas in a spec. Just
806 -- return False in this case.
807
808 if No (P) then
809 return False;
810 end if;
811
812 -- Done if we get to subprogram body, this is definitely an infinite
813 -- recursion case if we did not find anything to stop us.
814
996ae0b0 815 exit when Nkind (P) = N_Subprogram_Body;
9a7da240
RD
816
817 -- If appearing in conditional, result is false
818
45fc7ddb
HK
819 if Nkind_In (P, N_Or_Else,
820 N_And_Then,
821 N_If_Statement,
822 N_Case_Statement)
996ae0b0
RK
823 then
824 return False;
825
826 elsif Nkind (P) = N_Handled_Sequence_Of_Statements
827 and then C /= First (Statements (P))
828 then
26570b21
RD
829 -- If the call is the expression of a return statement and the
830 -- actuals are identical to the formals, it's worth a warning.
831 -- However, we skip this if there is an immediately preceding
832 -- raise statement, since the call is never executed.
07fc65c4
GB
833
834 -- Furthermore, this corresponds to a common idiom:
835
836 -- function F (L : Thing) return Boolean is
837 -- begin
838 -- raise Program_Error;
839 -- return F (L);
840 -- end F;
841
842 -- for generating a stub function
843
aa5147f0 844 if Nkind (Parent (N)) = N_Simple_Return_Statement
07fc65c4
GB
845 and then Same_Argument_List
846 then
9ebe3743
HK
847 exit when not Is_List_Member (Parent (N));
848
849 -- OK, return statement is in a statement list, look for raise
850
851 declare
852 Nod : Node_Id;
853
854 begin
855 -- Skip past N_Freeze_Entity nodes generated by expansion
856
857 Nod := Prev (Parent (N));
858 while Present (Nod)
859 and then Nkind (Nod) = N_Freeze_Entity
860 loop
861 Prev (Nod);
862 end loop;
863
864 -- If no raise statement, give warning
865
866 exit when Nkind (Nod) /= N_Raise_Statement
867 and then
868 (Nkind (Nod) not in N_Raise_xxx_Error
869 or else Present (Condition (Nod)));
870 end;
07fc65c4
GB
871 end if;
872
996ae0b0
RK
873 return False;
874
875 else
876 C := P;
877 end if;
878 end loop;
879
aa5147f0
ES
880 Error_Msg_N ("!?possible infinite recursion", N);
881 Error_Msg_N ("\!?Storage_Error may be raised at run time", N);
996ae0b0
RK
882
883 return True;
884 end Check_Infinite_Recursion;
885
886 -------------------------------
887 -- Check_Initialization_Call --
888 -------------------------------
889
890 procedure Check_Initialization_Call (N : Entity_Id; Nam : Entity_Id) is
fbf5a39b 891 Typ : constant Entity_Id := Etype (First_Formal (Nam));
996ae0b0
RK
892
893 function Uses_SS (T : Entity_Id) return Boolean;
07fc65c4
GB
894 -- Check whether the creation of an object of the type will involve
895 -- use of the secondary stack. If T is a record type, this is true
f3d57416 896 -- if the expression for some component uses the secondary stack, e.g.
07fc65c4
GB
897 -- through a call to a function that returns an unconstrained value.
898 -- False if T is controlled, because cleanups occur elsewhere.
899
900 -------------
901 -- Uses_SS --
902 -------------
996ae0b0
RK
903
904 function Uses_SS (T : Entity_Id) return Boolean is
aa5147f0
ES
905 Comp : Entity_Id;
906 Expr : Node_Id;
907 Full_Type : Entity_Id := Underlying_Type (T);
996ae0b0
RK
908
909 begin
aa5147f0
ES
910 -- Normally we want to use the underlying type, but if it's not set
911 -- then continue with T.
912
913 if not Present (Full_Type) then
914 Full_Type := T;
915 end if;
916
917 if Is_Controlled (Full_Type) then
996ae0b0
RK
918 return False;
919
aa5147f0
ES
920 elsif Is_Array_Type (Full_Type) then
921 return Uses_SS (Component_Type (Full_Type));
996ae0b0 922
aa5147f0
ES
923 elsif Is_Record_Type (Full_Type) then
924 Comp := First_Component (Full_Type);
996ae0b0 925 while Present (Comp) loop
996ae0b0
RK
926 if Ekind (Comp) = E_Component
927 and then Nkind (Parent (Comp)) = N_Component_Declaration
928 then
aa5147f0
ES
929 -- The expression for a dynamic component may be rewritten
930 -- as a dereference, so retrieve original node.
931
932 Expr := Original_Node (Expression (Parent (Comp)));
996ae0b0 933
aa5147f0 934 -- Return True if the expression is a call to a function
1d57c04f
AC
935 -- (including an attribute function such as Image, or a
936 -- user-defined operator) with a result that requires a
937 -- transient scope.
fbf5a39b 938
aa5147f0 939 if (Nkind (Expr) = N_Function_Call
1d57c04f 940 or else Nkind (Expr) in N_Op
aa5147f0
ES
941 or else (Nkind (Expr) = N_Attribute_Reference
942 and then Present (Expressions (Expr))))
996ae0b0
RK
943 and then Requires_Transient_Scope (Etype (Expr))
944 then
945 return True;
946
947 elsif Uses_SS (Etype (Comp)) then
948 return True;
949 end if;
950 end if;
951
952 Next_Component (Comp);
953 end loop;
954
955 return False;
956
957 else
958 return False;
959 end if;
960 end Uses_SS;
961
07fc65c4
GB
962 -- Start of processing for Check_Initialization_Call
963
996ae0b0 964 begin
0669bebe 965 -- Establish a transient scope if the type needs it
07fc65c4 966
0669bebe 967 if Uses_SS (Typ) then
996ae0b0
RK
968 Establish_Transient_Scope (First_Actual (N), Sec_Stack => True);
969 end if;
970 end Check_Initialization_Call;
971
f61580d4
AC
972 ---------------------------------------
973 -- Check_No_Direct_Boolean_Operators --
974 ---------------------------------------
975
976 procedure Check_No_Direct_Boolean_Operators (N : Node_Id) is
977 begin
978 if Scope (Entity (N)) = Standard_Standard
979 and then Root_Type (Etype (Left_Opnd (N))) = Standard_Boolean
980 then
6fb4cdde 981 -- Restriction only applies to original source code
f61580d4 982
6fb4cdde 983 if Comes_From_Source (N) then
f61580d4
AC
984 Check_Restriction (No_Direct_Boolean_Operators, N);
985 end if;
986 end if;
a36c1c3e
RD
987
988 if Style_Check then
989 Check_Boolean_Operator (N);
990 end if;
f61580d4
AC
991 end Check_No_Direct_Boolean_Operators;
992
996ae0b0
RK
993 ------------------------------
994 -- Check_Parameterless_Call --
995 ------------------------------
996
997 procedure Check_Parameterless_Call (N : Node_Id) is
998 Nam : Node_Id;
999
bc5f3720
RD
1000 function Prefix_Is_Access_Subp return Boolean;
1001 -- If the prefix is of an access_to_subprogram type, the node must be
1002 -- rewritten as a call. Ditto if the prefix is overloaded and all its
1003 -- interpretations are access to subprograms.
1004
1005 ---------------------------
1006 -- Prefix_Is_Access_Subp --
1007 ---------------------------
1008
1009 function Prefix_Is_Access_Subp return Boolean is
1010 I : Interp_Index;
1011 It : Interp;
1012
1013 begin
22b77f68 1014 -- If the context is an attribute reference that can apply to
b4a4936b 1015 -- functions, this is never a parameterless call (RM 4.1.4(6)).
96d2756f
AC
1016
1017 if Nkind (Parent (N)) = N_Attribute_Reference
1018 and then (Attribute_Name (Parent (N)) = Name_Address
1019 or else Attribute_Name (Parent (N)) = Name_Code_Address
1020 or else Attribute_Name (Parent (N)) = Name_Access)
1021 then
1022 return False;
1023 end if;
1024
bc5f3720
RD
1025 if not Is_Overloaded (N) then
1026 return
1027 Ekind (Etype (N)) = E_Subprogram_Type
1028 and then Base_Type (Etype (Etype (N))) /= Standard_Void_Type;
1029 else
1030 Get_First_Interp (N, I, It);
1031 while Present (It.Typ) loop
1032 if Ekind (It.Typ) /= E_Subprogram_Type
1033 or else Base_Type (Etype (It.Typ)) = Standard_Void_Type
1034 then
1035 return False;
1036 end if;
1037
1038 Get_Next_Interp (I, It);
1039 end loop;
1040
1041 return True;
1042 end if;
1043 end Prefix_Is_Access_Subp;
1044
1045 -- Start of processing for Check_Parameterless_Call
1046
996ae0b0 1047 begin
07fc65c4
GB
1048 -- Defend against junk stuff if errors already detected
1049
1050 if Total_Errors_Detected /= 0 then
1051 if Nkind (N) in N_Has_Etype and then Etype (N) = Any_Type then
1052 return;
1053 elsif Nkind (N) in N_Has_Chars
1054 and then Chars (N) in Error_Name_Or_No_Name
1055 then
1056 return;
1057 end if;
fbf5a39b
AC
1058
1059 Require_Entity (N);
996ae0b0
RK
1060 end if;
1061
45fc7ddb
HK
1062 -- If the context expects a value, and the name is a procedure, this is
1063 -- most likely a missing 'Access. Don't try to resolve the parameterless
1064 -- call, error will be caught when the outer call is analyzed.
18c0ecbe
AC
1065
1066 if Is_Entity_Name (N)
1067 and then Ekind (Entity (N)) = E_Procedure
1068 and then not Is_Overloaded (N)
1069 and then
45fc7ddb
HK
1070 Nkind_In (Parent (N), N_Parameter_Association,
1071 N_Function_Call,
1072 N_Procedure_Call_Statement)
18c0ecbe
AC
1073 then
1074 return;
1075 end if;
1076
45fc7ddb
HK
1077 -- Rewrite as call if overloadable entity that is (or could be, in the
1078 -- overloaded case) a function call. If we know for sure that the entity
1079 -- is an enumeration literal, we do not rewrite it.
f4b049db 1080
e1d9659d
AC
1081 -- If the entity is the name of an operator, it cannot be a call because
1082 -- operators cannot have default parameters. In this case, this must be
1083 -- a string whose contents coincide with an operator name. Set the kind
96d2756f 1084 -- of the node appropriately.
996ae0b0
RK
1085
1086 if (Is_Entity_Name (N)
e1d9659d 1087 and then Nkind (N) /= N_Operator_Symbol
996ae0b0
RK
1088 and then Is_Overloadable (Entity (N))
1089 and then (Ekind (Entity (N)) /= E_Enumeration_Literal
964f13da 1090 or else Is_Overloaded (N)))
996ae0b0 1091
09494c32 1092 -- Rewrite as call if it is an explicit dereference of an expression of
f3d57416 1093 -- a subprogram access type, and the subprogram type is not that of a
996ae0b0
RK
1094 -- procedure or entry.
1095
1096 or else
bc5f3720 1097 (Nkind (N) = N_Explicit_Dereference and then Prefix_Is_Access_Subp)
996ae0b0
RK
1098
1099 -- Rewrite as call if it is a selected component which is a function,
1100 -- this is the case of a call to a protected function (which may be
1101 -- overloaded with other protected operations).
1102
1103 or else
1104 (Nkind (N) = N_Selected_Component
1105 and then (Ekind (Entity (Selector_Name (N))) = E_Function
964f13da
RD
1106 or else
1107 (Ekind_In (Entity (Selector_Name (N)), E_Entry,
1108 E_Procedure)
1109 and then Is_Overloaded (Selector_Name (N)))))
996ae0b0
RK
1110
1111 -- If one of the above three conditions is met, rewrite as call.
1112 -- Apply the rewriting only once.
1113
1114 then
1115 if Nkind (Parent (N)) /= N_Function_Call
1116 or else N /= Name (Parent (N))
1117 then
1118 Nam := New_Copy (N);
1119
bc5f3720 1120 -- If overloaded, overload set belongs to new copy
996ae0b0
RK
1121
1122 Save_Interps (N, Nam);
1123
1124 -- Change node to parameterless function call (note that the
1125 -- Parameter_Associations associations field is left set to Empty,
1126 -- its normal default value since there are no parameters)
1127
1128 Change_Node (N, N_Function_Call);
1129 Set_Name (N, Nam);
1130 Set_Sloc (N, Sloc (Nam));
1131 Analyze_Call (N);
1132 end if;
1133
1134 elsif Nkind (N) = N_Parameter_Association then
1135 Check_Parameterless_Call (Explicit_Actual_Parameter (N));
e1d9659d
AC
1136
1137 elsif Nkind (N) = N_Operator_Symbol then
1138 Change_Operator_Symbol_To_String_Literal (N);
1139 Set_Is_Overloaded (N, False);
1140 Set_Etype (N, Any_String);
996ae0b0
RK
1141 end if;
1142 end Check_Parameterless_Call;
1143
67ce0d7e
RD
1144 -----------------------------
1145 -- Is_Definite_Access_Type --
1146 -----------------------------
1147
1148 function Is_Definite_Access_Type (E : Entity_Id) return Boolean is
1149 Btyp : constant Entity_Id := Base_Type (E);
1150 begin
1151 return Ekind (Btyp) = E_Access_Type
1152 or else (Ekind (Btyp) = E_Access_Subprogram_Type
b4a4936b 1153 and then Comes_From_Source (Btyp));
67ce0d7e
RD
1154 end Is_Definite_Access_Type;
1155
996ae0b0
RK
1156 ----------------------
1157 -- Is_Predefined_Op --
1158 ----------------------
1159
1160 function Is_Predefined_Op (Nam : Entity_Id) return Boolean is
1161 begin
6a497607
AC
1162 -- Predefined operators are intrinsic subprograms
1163
1164 if not Is_Intrinsic_Subprogram (Nam) then
1165 return False;
1166 end if;
1167
1168 -- A call to a back-end builtin is never a predefined operator
1169
1170 if Is_Imported (Nam) and then Present (Interface_Name (Nam)) then
1171 return False;
1172 end if;
1173
1174 return not Is_Generic_Instance (Nam)
996ae0b0 1175 and then Chars (Nam) in Any_Operator_Name
6a497607 1176 and then (No (Alias (Nam)) or else Is_Predefined_Op (Alias (Nam)));
996ae0b0
RK
1177 end Is_Predefined_Op;
1178
1179 -----------------------------
1180 -- Make_Call_Into_Operator --
1181 -----------------------------
1182
1183 procedure Make_Call_Into_Operator
1184 (N : Node_Id;
1185 Typ : Entity_Id;
1186 Op_Id : Entity_Id)
1187 is
1188 Op_Name : constant Name_Id := Chars (Op_Id);
1189 Act1 : Node_Id := First_Actual (N);
1190 Act2 : Node_Id := Next_Actual (Act1);
1191 Error : Boolean := False;
2820d220
AC
1192 Func : constant Entity_Id := Entity (Name (N));
1193 Is_Binary : constant Boolean := Present (Act2);
996ae0b0
RK
1194 Op_Node : Node_Id;
1195 Opnd_Type : Entity_Id;
1196 Orig_Type : Entity_Id := Empty;
1197 Pack : Entity_Id;
1198
1199 type Kind_Test is access function (E : Entity_Id) return Boolean;
1200
996ae0b0 1201 function Operand_Type_In_Scope (S : Entity_Id) return Boolean;
b4a4936b
AC
1202 -- If the operand is not universal, and the operator is given by an
1203 -- expanded name, verify that the operand has an interpretation with a
1204 -- type defined in the given scope of the operator.
996ae0b0
RK
1205
1206 function Type_In_P (Test : Kind_Test) return Entity_Id;
b4a4936b
AC
1207 -- Find a type of the given class in package Pack that contains the
1208 -- operator.
996ae0b0 1209
996ae0b0
RK
1210 ---------------------------
1211 -- Operand_Type_In_Scope --
1212 ---------------------------
1213
1214 function Operand_Type_In_Scope (S : Entity_Id) return Boolean is
1215 Nod : constant Node_Id := Right_Opnd (Op_Node);
1216 I : Interp_Index;
1217 It : Interp;
1218
1219 begin
1220 if not Is_Overloaded (Nod) then
1221 return Scope (Base_Type (Etype (Nod))) = S;
1222
1223 else
1224 Get_First_Interp (Nod, I, It);
996ae0b0 1225 while Present (It.Typ) loop
996ae0b0
RK
1226 if Scope (Base_Type (It.Typ)) = S then
1227 return True;
1228 end if;
1229
1230 Get_Next_Interp (I, It);
1231 end loop;
1232
1233 return False;
1234 end if;
1235 end Operand_Type_In_Scope;
1236
1237 ---------------
1238 -- Type_In_P --
1239 ---------------
1240
1241 function Type_In_P (Test : Kind_Test) return Entity_Id is
1242 E : Entity_Id;
1243
1244 function In_Decl return Boolean;
1245 -- Verify that node is not part of the type declaration for the
1246 -- candidate type, which would otherwise be invisible.
1247
1248 -------------
1249 -- In_Decl --
1250 -------------
1251
1252 function In_Decl return Boolean is
1253 Decl_Node : constant Node_Id := Parent (E);
1254 N2 : Node_Id;
1255
1256 begin
1257 N2 := N;
1258
1259 if Etype (E) = Any_Type then
1260 return True;
1261
1262 elsif No (Decl_Node) then
1263 return False;
1264
1265 else
1266 while Present (N2)
1267 and then Nkind (N2) /= N_Compilation_Unit
1268 loop
1269 if N2 = Decl_Node then
1270 return True;
1271 else
1272 N2 := Parent (N2);
1273 end if;
1274 end loop;
1275
1276 return False;
1277 end if;
1278 end In_Decl;
1279
1280 -- Start of processing for Type_In_P
1281
1282 begin
b4a4936b
AC
1283 -- If the context type is declared in the prefix package, this is the
1284 -- desired base type.
996ae0b0 1285
b4a4936b 1286 if Scope (Base_Type (Typ)) = Pack and then Test (Typ) then
996ae0b0
RK
1287 return Base_Type (Typ);
1288
1289 else
1290 E := First_Entity (Pack);
996ae0b0 1291 while Present (E) loop
996ae0b0
RK
1292 if Test (E)
1293 and then not In_Decl
1294 then
1295 return E;
1296 end if;
1297
1298 Next_Entity (E);
1299 end loop;
1300
1301 return Empty;
1302 end if;
1303 end Type_In_P;
1304
996ae0b0
RK
1305 -- Start of processing for Make_Call_Into_Operator
1306
1307 begin
1308 Op_Node := New_Node (Operator_Kind (Op_Name, Is_Binary), Sloc (N));
1309
1310 -- Binary operator
1311
1312 if Is_Binary then
1313 Set_Left_Opnd (Op_Node, Relocate_Node (Act1));
1314 Set_Right_Opnd (Op_Node, Relocate_Node (Act2));
1315 Save_Interps (Act1, Left_Opnd (Op_Node));
1316 Save_Interps (Act2, Right_Opnd (Op_Node));
1317 Act1 := Left_Opnd (Op_Node);
1318 Act2 := Right_Opnd (Op_Node);
1319
1320 -- Unary operator
1321
1322 else
1323 Set_Right_Opnd (Op_Node, Relocate_Node (Act1));
1324 Save_Interps (Act1, Right_Opnd (Op_Node));
1325 Act1 := Right_Opnd (Op_Node);
1326 end if;
1327
1328 -- If the operator is denoted by an expanded name, and the prefix is
1329 -- not Standard, but the operator is a predefined one whose scope is
1330 -- Standard, then this is an implicit_operator, inserted as an
1331 -- interpretation by the procedure of the same name. This procedure
1332 -- overestimates the presence of implicit operators, because it does
1333 -- not examine the type of the operands. Verify now that the operand
1334 -- type appears in the given scope. If right operand is universal,
1335 -- check the other operand. In the case of concatenation, either
1336 -- argument can be the component type, so check the type of the result.
1337 -- If both arguments are literals, look for a type of the right kind
1338 -- defined in the given scope. This elaborate nonsense is brought to
1339 -- you courtesy of b33302a. The type itself must be frozen, so we must
1340 -- find the type of the proper class in the given scope.
1341
06f2efd7
TQ
1342 -- A final wrinkle is the multiplication operator for fixed point types,
1343 -- which is defined in Standard only, and not in the scope of the
b4a4936b 1344 -- fixed point type itself.
996ae0b0
RK
1345
1346 if Nkind (Name (N)) = N_Expanded_Name then
1347 Pack := Entity (Prefix (Name (N)));
1348
06f2efd7
TQ
1349 -- If the entity being called is defined in the given package, it is
1350 -- a renaming of a predefined operator, and known to be legal.
996ae0b0
RK
1351
1352 if Scope (Entity (Name (N))) = Pack
1353 and then Pack /= Standard_Standard
1354 then
1355 null;
1356
9ebe3743
HK
1357 -- Visibility does not need to be checked in an instance: if the
1358 -- operator was not visible in the generic it has been diagnosed
1359 -- already, else there is an implicit copy of it in the instance.
1360
1361 elsif In_Instance then
1362 null;
1363
12577815 1364 elsif (Op_Name = Name_Op_Multiply or else Op_Name = Name_Op_Divide)
996ae0b0
RK
1365 and then Is_Fixed_Point_Type (Etype (Left_Opnd (Op_Node)))
1366 and then Is_Fixed_Point_Type (Etype (Right_Opnd (Op_Node)))
1367 then
1368 if Pack /= Standard_Standard then
1369 Error := True;
1370 end if;
1371
b4a4936b 1372 -- Ada 2005 AI-420: Predefined equality on Universal_Access is
06f2efd7 1373 -- available.
c8ef728f
ES
1374
1375 elsif Ada_Version >= Ada_05
1376 and then (Op_Name = Name_Op_Eq or else Op_Name = Name_Op_Ne)
1377 and then Ekind (Etype (Act1)) = E_Anonymous_Access_Type
1378 then
1379 null;
1380
996ae0b0
RK
1381 else
1382 Opnd_Type := Base_Type (Etype (Right_Opnd (Op_Node)));
1383
1384 if Op_Name = Name_Op_Concat then
1385 Opnd_Type := Base_Type (Typ);
1386
1387 elsif (Scope (Opnd_Type) = Standard_Standard
1388 and then Is_Binary)
1389 or else (Nkind (Right_Opnd (Op_Node)) = N_Attribute_Reference
1390 and then Is_Binary
1391 and then not Comes_From_Source (Opnd_Type))
1392 then
1393 Opnd_Type := Base_Type (Etype (Left_Opnd (Op_Node)));
1394 end if;
1395
1396 if Scope (Opnd_Type) = Standard_Standard then
1397
1398 -- Verify that the scope contains a type that corresponds to
1399 -- the given literal. Optimize the case where Pack is Standard.
1400
1401 if Pack /= Standard_Standard then
1402
1403 if Opnd_Type = Universal_Integer then
06f2efd7 1404 Orig_Type := Type_In_P (Is_Integer_Type'Access);
996ae0b0
RK
1405
1406 elsif Opnd_Type = Universal_Real then
1407 Orig_Type := Type_In_P (Is_Real_Type'Access);
1408
1409 elsif Opnd_Type = Any_String then
1410 Orig_Type := Type_In_P (Is_String_Type'Access);
1411
1412 elsif Opnd_Type = Any_Access then
06f2efd7 1413 Orig_Type := Type_In_P (Is_Definite_Access_Type'Access);
996ae0b0
RK
1414
1415 elsif Opnd_Type = Any_Composite then
1416 Orig_Type := Type_In_P (Is_Composite_Type'Access);
1417
1418 if Present (Orig_Type) then
1419 if Has_Private_Component (Orig_Type) then
1420 Orig_Type := Empty;
1421 else
1422 Set_Etype (Act1, Orig_Type);
1423
1424 if Is_Binary then
1425 Set_Etype (Act2, Orig_Type);
1426 end if;
1427 end if;
1428 end if;
1429
1430 else
1431 Orig_Type := Empty;
1432 end if;
1433
1434 Error := No (Orig_Type);
1435 end if;
1436
1437 elsif Ekind (Opnd_Type) = E_Allocator_Type
1438 and then No (Type_In_P (Is_Definite_Access_Type'Access))
1439 then
1440 Error := True;
1441
1442 -- If the type is defined elsewhere, and the operator is not
1443 -- defined in the given scope (by a renaming declaration, e.g.)
1444 -- then this is an error as well. If an extension of System is
1445 -- present, and the type may be defined there, Pack must be
1446 -- System itself.
1447
1448 elsif Scope (Opnd_Type) /= Pack
1449 and then Scope (Op_Id) /= Pack
1450 and then (No (System_Aux_Id)
1451 or else Scope (Opnd_Type) /= System_Aux_Id
1452 or else Pack /= Scope (System_Aux_Id))
1453 then
244e5a2c
AC
1454 if not Is_Overloaded (Right_Opnd (Op_Node)) then
1455 Error := True;
1456 else
1457 Error := not Operand_Type_In_Scope (Pack);
1458 end if;
996ae0b0
RK
1459
1460 elsif Pack = Standard_Standard
1461 and then not Operand_Type_In_Scope (Standard_Standard)
1462 then
1463 Error := True;
1464 end if;
1465 end if;
1466
1467 if Error then
1468 Error_Msg_Node_2 := Pack;
1469 Error_Msg_NE
1470 ("& not declared in&", N, Selector_Name (Name (N)));
1471 Set_Etype (N, Any_Type);
1472 return;
88b17d45
AC
1473
1474 -- Detect a mismatch between the context type and the result type
1475 -- in the named package, which is otherwise not detected if the
1476 -- operands are universal. Check is only needed if source entity is
1477 -- an operator, not a function that renames an operator.
1478
1479 elsif Nkind (Parent (N)) /= N_Type_Conversion
1480 and then Ekind (Entity (Name (N))) = E_Operator
1481 and then Is_Numeric_Type (Typ)
1482 and then not Is_Universal_Numeric_Type (Typ)
1483 and then Scope (Base_Type (Typ)) /= Pack
1484 and then not In_Instance
1485 then
1486 if Is_Fixed_Point_Type (Typ)
1487 and then (Op_Name = Name_Op_Multiply
1488 or else
1489 Op_Name = Name_Op_Divide)
1490 then
1491 -- Already checked above
1492
1493 null;
1494
e86a3a7e 1495 -- Operator may be defined in an extension of System
80c3be7a
AC
1496
1497 elsif Present (System_Aux_Id)
1498 and then Scope (Opnd_Type) = System_Aux_Id
1499 then
1500 null;
1501
88b17d45 1502 else
be5a1b93
TQ
1503 -- Could we use Wrong_Type here??? (this would require setting
1504 -- Etype (N) to the actual type found where Typ was expected).
1505
e86a3a7e 1506 Error_Msg_NE ("expect }", N, Typ);
88b17d45 1507 end if;
996ae0b0
RK
1508 end if;
1509 end if;
1510
1511 Set_Chars (Op_Node, Op_Name);
fbf5a39b
AC
1512
1513 if not Is_Private_Type (Etype (N)) then
1514 Set_Etype (Op_Node, Base_Type (Etype (N)));
1515 else
1516 Set_Etype (Op_Node, Etype (N));
1517 end if;
1518
2820d220
AC
1519 -- If this is a call to a function that renames a predefined equality,
1520 -- the renaming declaration provides a type that must be used to
1521 -- resolve the operands. This must be done now because resolution of
1522 -- the equality node will not resolve any remaining ambiguity, and it
1523 -- assumes that the first operand is not overloaded.
1524
1525 if (Op_Name = Name_Op_Eq or else Op_Name = Name_Op_Ne)
1526 and then Ekind (Func) = E_Function
1527 and then Is_Overloaded (Act1)
1528 then
1529 Resolve (Act1, Base_Type (Etype (First_Formal (Func))));
1530 Resolve (Act2, Base_Type (Etype (First_Formal (Func))));
1531 end if;
1532
996ae0b0
RK
1533 Set_Entity (Op_Node, Op_Id);
1534 Generate_Reference (Op_Id, N, ' ');
45fc7ddb
HK
1535
1536 -- Do rewrite setting Comes_From_Source on the result if the original
1537 -- call came from source. Although it is not strictly the case that the
1538 -- operator as such comes from the source, logically it corresponds
1539 -- exactly to the function call in the source, so it should be marked
1540 -- this way (e.g. to make sure that validity checks work fine).
1541
1542 declare
1543 CS : constant Boolean := Comes_From_Source (N);
1544 begin
1545 Rewrite (N, Op_Node);
1546 Set_Comes_From_Source (N, CS);
1547 end;
fbf5a39b
AC
1548
1549 -- If this is an arithmetic operator and the result type is private,
1550 -- the operands and the result must be wrapped in conversion to
1551 -- expose the underlying numeric type and expand the proper checks,
1552 -- e.g. on division.
1553
1554 if Is_Private_Type (Typ) then
1555 case Nkind (N) is
1556 when N_Op_Add | N_Op_Subtract | N_Op_Multiply | N_Op_Divide |
1557 N_Op_Expon | N_Op_Mod | N_Op_Rem =>
1558 Resolve_Intrinsic_Operator (N, Typ);
1559
1560 when N_Op_Plus | N_Op_Minus | N_Op_Abs =>
1561 Resolve_Intrinsic_Unary_Operator (N, Typ);
1562
1563 when others =>
1564 Resolve (N, Typ);
1565 end case;
1566 else
1567 Resolve (N, Typ);
1568 end if;
996ae0b0
RK
1569 end Make_Call_Into_Operator;
1570
1571 -------------------
1572 -- Operator_Kind --
1573 -------------------
1574
1575 function Operator_Kind
1576 (Op_Name : Name_Id;
0ab80019 1577 Is_Binary : Boolean) return Node_Kind
996ae0b0
RK
1578 is
1579 Kind : Node_Kind;
1580
1581 begin
1582 if Is_Binary then
aa5147f0
ES
1583 if Op_Name = Name_Op_And then
1584 Kind := N_Op_And;
1585 elsif Op_Name = Name_Op_Or then
1586 Kind := N_Op_Or;
1587 elsif Op_Name = Name_Op_Xor then
1588 Kind := N_Op_Xor;
1589 elsif Op_Name = Name_Op_Eq then
1590 Kind := N_Op_Eq;
1591 elsif Op_Name = Name_Op_Ne then
1592 Kind := N_Op_Ne;
1593 elsif Op_Name = Name_Op_Lt then
1594 Kind := N_Op_Lt;
1595 elsif Op_Name = Name_Op_Le then
1596 Kind := N_Op_Le;
1597 elsif Op_Name = Name_Op_Gt then
1598 Kind := N_Op_Gt;
1599 elsif Op_Name = Name_Op_Ge then
1600 Kind := N_Op_Ge;
1601 elsif Op_Name = Name_Op_Add then
1602 Kind := N_Op_Add;
1603 elsif Op_Name = Name_Op_Subtract then
1604 Kind := N_Op_Subtract;
1605 elsif Op_Name = Name_Op_Concat then
1606 Kind := N_Op_Concat;
1607 elsif Op_Name = Name_Op_Multiply then
1608 Kind := N_Op_Multiply;
1609 elsif Op_Name = Name_Op_Divide then
1610 Kind := N_Op_Divide;
1611 elsif Op_Name = Name_Op_Mod then
1612 Kind := N_Op_Mod;
1613 elsif Op_Name = Name_Op_Rem then
1614 Kind := N_Op_Rem;
1615 elsif Op_Name = Name_Op_Expon then
1616 Kind := N_Op_Expon;
996ae0b0
RK
1617 else
1618 raise Program_Error;
1619 end if;
1620
1621 -- Unary operators
1622
1623 else
aa5147f0
ES
1624 if Op_Name = Name_Op_Add then
1625 Kind := N_Op_Plus;
1626 elsif Op_Name = Name_Op_Subtract then
1627 Kind := N_Op_Minus;
1628 elsif Op_Name = Name_Op_Abs then
1629 Kind := N_Op_Abs;
1630 elsif Op_Name = Name_Op_Not then
1631 Kind := N_Op_Not;
996ae0b0
RK
1632 else
1633 raise Program_Error;
1634 end if;
1635 end if;
1636
1637 return Kind;
1638 end Operator_Kind;
1639
45fc7ddb
HK
1640 ----------------------------
1641 -- Preanalyze_And_Resolve --
1642 ----------------------------
996ae0b0 1643
45fc7ddb 1644 procedure Preanalyze_And_Resolve (N : Node_Id; T : Entity_Id) is
996ae0b0
RK
1645 Save_Full_Analysis : constant Boolean := Full_Analysis;
1646
1647 begin
1648 Full_Analysis := False;
1649 Expander_Mode_Save_And_Set (False);
1650
1651 -- We suppress all checks for this analysis, since the checks will
1652 -- be applied properly, and in the right location, when the default
1653 -- expression is reanalyzed and reexpanded later on.
1654
1655 Analyze_And_Resolve (N, T, Suppress => All_Checks);
1656
1657 Expander_Mode_Restore;
1658 Full_Analysis := Save_Full_Analysis;
45fc7ddb 1659 end Preanalyze_And_Resolve;
996ae0b0 1660
a77842bd 1661 -- Version without context type
996ae0b0 1662
45fc7ddb 1663 procedure Preanalyze_And_Resolve (N : Node_Id) is
996ae0b0
RK
1664 Save_Full_Analysis : constant Boolean := Full_Analysis;
1665
1666 begin
1667 Full_Analysis := False;
1668 Expander_Mode_Save_And_Set (False);
1669
1670 Analyze (N);
1671 Resolve (N, Etype (N), Suppress => All_Checks);
1672
1673 Expander_Mode_Restore;
1674 Full_Analysis := Save_Full_Analysis;
45fc7ddb 1675 end Preanalyze_And_Resolve;
996ae0b0
RK
1676
1677 ----------------------------------
1678 -- Replace_Actual_Discriminants --
1679 ----------------------------------
1680
1681 procedure Replace_Actual_Discriminants (N : Node_Id; Default : Node_Id) is
1682 Loc : constant Source_Ptr := Sloc (N);
1683 Tsk : Node_Id := Empty;
1684
1685 function Process_Discr (Nod : Node_Id) return Traverse_Result;
1686
1687 -------------------
1688 -- Process_Discr --
1689 -------------------
1690
1691 function Process_Discr (Nod : Node_Id) return Traverse_Result is
1692 Ent : Entity_Id;
1693
1694 begin
1695 if Nkind (Nod) = N_Identifier then
1696 Ent := Entity (Nod);
1697
1698 if Present (Ent)
1699 and then Ekind (Ent) = E_Discriminant
1700 then
1701 Rewrite (Nod,
1702 Make_Selected_Component (Loc,
1703 Prefix => New_Copy_Tree (Tsk, New_Sloc => Loc),
1704 Selector_Name => Make_Identifier (Loc, Chars (Ent))));
1705
1706 Set_Etype (Nod, Etype (Ent));
1707 end if;
1708
1709 end if;
1710
1711 return OK;
1712 end Process_Discr;
1713
1714 procedure Replace_Discrs is new Traverse_Proc (Process_Discr);
1715
1716 -- Start of processing for Replace_Actual_Discriminants
1717
1718 begin
1719 if not Expander_Active then
1720 return;
1721 end if;
1722
1723 if Nkind (Name (N)) = N_Selected_Component then
1724 Tsk := Prefix (Name (N));
1725
1726 elsif Nkind (Name (N)) = N_Indexed_Component then
1727 Tsk := Prefix (Prefix (Name (N)));
1728 end if;
1729
1730 if No (Tsk) then
1731 return;
1732 else
1733 Replace_Discrs (Default);
1734 end if;
1735 end Replace_Actual_Discriminants;
1736
1737 -------------
1738 -- Resolve --
1739 -------------
1740
1741 procedure Resolve (N : Node_Id; Typ : Entity_Id) is
dae2b8ea
HK
1742 Ambiguous : Boolean := False;
1743 Ctx_Type : Entity_Id := Typ;
1744 Expr_Type : Entity_Id := Empty; -- prevent junk warning
1745 Err_Type : Entity_Id := Empty;
1746 Found : Boolean := False;
1747 From_Lib : Boolean;
996ae0b0 1748 I : Interp_Index;
dae2b8ea 1749 I1 : Interp_Index := 0; -- prevent junk warning
996ae0b0
RK
1750 It : Interp;
1751 It1 : Interp;
996ae0b0 1752 Seen : Entity_Id := Empty; -- prevent junk warning
dae2b8ea
HK
1753
1754 function Comes_From_Predefined_Lib_Unit (Nod : Node_Id) return Boolean;
1755 -- Determine whether a node comes from a predefined library unit or
1756 -- Standard.
996ae0b0
RK
1757
1758 procedure Patch_Up_Value (N : Node_Id; Typ : Entity_Id);
1759 -- Try and fix up a literal so that it matches its expected type. New
1760 -- literals are manufactured if necessary to avoid cascaded errors.
1761
7415029d
AC
1762 procedure Report_Ambiguous_Argument;
1763 -- Additional diagnostics when an ambiguous call has an ambiguous
1764 -- argument (typically a controlling actual).
1765
996ae0b0
RK
1766 procedure Resolution_Failed;
1767 -- Called when attempt at resolving current expression fails
1768
dae2b8ea
HK
1769 ------------------------------------
1770 -- Comes_From_Predefined_Lib_Unit --
1771 -------------------------------------
1772
1773 function Comes_From_Predefined_Lib_Unit (Nod : Node_Id) return Boolean is
1774 begin
1775 return
1776 Sloc (Nod) = Standard_Location
1777 or else Is_Predefined_File_Name (Unit_File_Name (
1778 Get_Source_Unit (Sloc (Nod))));
1779 end Comes_From_Predefined_Lib_Unit;
1780
996ae0b0
RK
1781 --------------------
1782 -- Patch_Up_Value --
1783 --------------------
1784
1785 procedure Patch_Up_Value (N : Node_Id; Typ : Entity_Id) is
1786 begin
1787 if Nkind (N) = N_Integer_Literal
1788 and then Is_Real_Type (Typ)
1789 then
1790 Rewrite (N,
1791 Make_Real_Literal (Sloc (N),
1792 Realval => UR_From_Uint (Intval (N))));
1793 Set_Etype (N, Universal_Real);
1794 Set_Is_Static_Expression (N);
1795
1796 elsif Nkind (N) = N_Real_Literal
1797 and then Is_Integer_Type (Typ)
1798 then
1799 Rewrite (N,
1800 Make_Integer_Literal (Sloc (N),
1801 Intval => UR_To_Uint (Realval (N))));
1802 Set_Etype (N, Universal_Integer);
1803 Set_Is_Static_Expression (N);
45fc7ddb 1804
996ae0b0
RK
1805 elsif Nkind (N) = N_String_Literal
1806 and then Is_Character_Type (Typ)
1807 then
1808 Set_Character_Literal_Name (Char_Code (Character'Pos ('A')));
1809 Rewrite (N,
1810 Make_Character_Literal (Sloc (N),
1811 Chars => Name_Find,
82c80734
RD
1812 Char_Literal_Value =>
1813 UI_From_Int (Character'Pos ('A'))));
996ae0b0
RK
1814 Set_Etype (N, Any_Character);
1815 Set_Is_Static_Expression (N);
1816
1817 elsif Nkind (N) /= N_String_Literal
1818 and then Is_String_Type (Typ)
1819 then
1820 Rewrite (N,
1821 Make_String_Literal (Sloc (N),
1822 Strval => End_String));
1823
1824 elsif Nkind (N) = N_Range then
1825 Patch_Up_Value (Low_Bound (N), Typ);
1826 Patch_Up_Value (High_Bound (N), Typ);
1827 end if;
1828 end Patch_Up_Value;
1829
7415029d
AC
1830 -------------------------------
1831 -- Report_Ambiguous_Argument --
1832 -------------------------------
1833
1834 procedure Report_Ambiguous_Argument is
1835 Arg : constant Node_Id := First (Parameter_Associations (N));
1836 I : Interp_Index;
1837 It : Interp;
1838
1839 begin
1840 if Nkind (Arg) = N_Function_Call
1841 and then Is_Entity_Name (Name (Arg))
1842 and then Is_Overloaded (Name (Arg))
1843 then
ed2233dc 1844 Error_Msg_NE ("ambiguous call to&", Arg, Name (Arg));
7415029d 1845
bfc07071
AC
1846 -- Could use comments on what is going on here ???
1847
7415029d
AC
1848 Get_First_Interp (Name (Arg), I, It);
1849 while Present (It.Nam) loop
1850 Error_Msg_Sloc := Sloc (It.Nam);
1851
1852 if Nkind (Parent (It.Nam)) = N_Full_Type_Declaration then
ed2233dc 1853 Error_Msg_N ("interpretation (inherited) #!", Arg);
7415029d 1854 else
ed2233dc 1855 Error_Msg_N ("interpretation #!", Arg);
7415029d
AC
1856 end if;
1857
1858 Get_Next_Interp (I, It);
1859 end loop;
1860 end if;
1861 end Report_Ambiguous_Argument;
1862
996ae0b0
RK
1863 -----------------------
1864 -- Resolution_Failed --
1865 -----------------------
1866
1867 procedure Resolution_Failed is
1868 begin
1869 Patch_Up_Value (N, Typ);
1870 Set_Etype (N, Typ);
1871 Debug_A_Exit ("resolving ", N, " (done, resolution failed)");
1872 Set_Is_Overloaded (N, False);
1873
1874 -- The caller will return without calling the expander, so we need
1875 -- to set the analyzed flag. Note that it is fine to set Analyzed
1876 -- to True even if we are in the middle of a shallow analysis,
1877 -- (see the spec of sem for more details) since this is an error
1878 -- situation anyway, and there is no point in repeating the
1879 -- analysis later (indeed it won't work to repeat it later, since
1880 -- we haven't got a clear resolution of which entity is being
1881 -- referenced.)
1882
1883 Set_Analyzed (N, True);
1884 return;
1885 end Resolution_Failed;
1886
1887 -- Start of processing for Resolve
1888
1889 begin
5c736541
RD
1890 if N = Error then
1891 return;
1892 end if;
1893
996ae0b0
RK
1894 -- Access attribute on remote subprogram cannot be used for
1895 -- a non-remote access-to-subprogram type.
1896
1897 if Nkind (N) = N_Attribute_Reference
1898 and then (Attribute_Name (N) = Name_Access
ea985d95
RD
1899 or else Attribute_Name (N) = Name_Unrestricted_Access
1900 or else Attribute_Name (N) = Name_Unchecked_Access)
996ae0b0
RK
1901 and then Comes_From_Source (N)
1902 and then Is_Entity_Name (Prefix (N))
1903 and then Is_Subprogram (Entity (Prefix (N)))
1904 and then Is_Remote_Call_Interface (Entity (Prefix (N)))
1905 and then not Is_Remote_Access_To_Subprogram_Type (Typ)
1906 then
1907 Error_Msg_N
1908 ("prefix must statically denote a non-remote subprogram", N);
1909 end if;
1910
dae2b8ea
HK
1911 From_Lib := Comes_From_Predefined_Lib_Unit (N);
1912
996ae0b0
RK
1913 -- If the context is a Remote_Access_To_Subprogram, access attributes
1914 -- must be resolved with the corresponding fat pointer. There is no need
1915 -- to check for the attribute name since the return type of an
1916 -- attribute is never a remote type.
1917
1918 if Nkind (N) = N_Attribute_Reference
1919 and then Comes_From_Source (N)
1920 and then (Is_Remote_Call_Interface (Typ)
1921 or else Is_Remote_Types (Typ))
1922 then
1923 declare
1924 Attr : constant Attribute_Id :=
1925 Get_Attribute_Id (Attribute_Name (N));
1926 Pref : constant Node_Id := Prefix (N);
1927 Decl : Node_Id;
1928 Spec : Node_Id;
1929 Is_Remote : Boolean := True;
1930
1931 begin
a77842bd 1932 -- Check that Typ is a remote access-to-subprogram type
996ae0b0 1933
a77842bd 1934 if Is_Remote_Access_To_Subprogram_Type (Typ) then
955871d3 1935
996ae0b0
RK
1936 -- Prefix (N) must statically denote a remote subprogram
1937 -- declared in a package specification.
1938
1939 if Attr = Attribute_Access then
1940 Decl := Unit_Declaration_Node (Entity (Pref));
1941
1942 if Nkind (Decl) = N_Subprogram_Body then
1943 Spec := Corresponding_Spec (Decl);
1944
1945 if not No (Spec) then
1946 Decl := Unit_Declaration_Node (Spec);
1947 end if;
1948 end if;
1949
1950 Spec := Parent (Decl);
1951
1952 if not Is_Entity_Name (Prefix (N))
1953 or else Nkind (Spec) /= N_Package_Specification
1954 or else
1955 not Is_Remote_Call_Interface (Defining_Entity (Spec))
1956 then
1957 Is_Remote := False;
1958 Error_Msg_N
1959 ("prefix must statically denote a remote subprogram ",
1960 N);
1961 end if;
1962 end if;
1963
fbf5a39b
AC
1964 -- If we are generating code for a distributed program.
1965 -- perform semantic checks against the corresponding
1966 -- remote entities.
1967
1968 if (Attr = Attribute_Access
1969 or else Attr = Attribute_Unchecked_Access
1970 or else Attr = Attribute_Unrestricted_Access)
1971 and then Expander_Active
a77842bd 1972 and then Get_PCS_Name /= Name_No_DSA
996ae0b0
RK
1973 then
1974 Check_Subtype_Conformant
1975 (New_Id => Entity (Prefix (N)),
1976 Old_Id => Designated_Type
1977 (Corresponding_Remote_Type (Typ)),
1978 Err_Loc => N);
b7d1f17f 1979
996ae0b0
RK
1980 if Is_Remote then
1981 Process_Remote_AST_Attribute (N, Typ);
1982 end if;
1983 end if;
1984 end if;
1985 end;
1986 end if;
1987
1988 Debug_A_Entry ("resolving ", N);
1989
07fc65c4
GB
1990 if Comes_From_Source (N) then
1991 if Is_Fixed_Point_Type (Typ) then
1992 Check_Restriction (No_Fixed_Point, N);
996ae0b0 1993
07fc65c4
GB
1994 elsif Is_Floating_Point_Type (Typ)
1995 and then Typ /= Universal_Real
1996 and then Typ /= Any_Real
1997 then
1998 Check_Restriction (No_Floating_Point, N);
1999 end if;
996ae0b0
RK
2000 end if;
2001
2002 -- Return if already analyzed
2003
2004 if Analyzed (N) then
2005 Debug_A_Exit ("resolving ", N, " (done, already analyzed)");
2006 return;
2007
2008 -- Return if type = Any_Type (previous error encountered)
2009
2010 elsif Etype (N) = Any_Type then
2011 Debug_A_Exit ("resolving ", N, " (done, Etype = Any_Type)");
2012 return;
2013 end if;
2014
2015 Check_Parameterless_Call (N);
2016
2017 -- If not overloaded, then we know the type, and all that needs doing
2018 -- is to check that this type is compatible with the context.
2019
2020 if not Is_Overloaded (N) then
2021 Found := Covers (Typ, Etype (N));
2022 Expr_Type := Etype (N);
2023
2024 -- In the overloaded case, we must select the interpretation that
2025 -- is compatible with the context (i.e. the type passed to Resolve)
2026
2027 else
996ae0b0
RK
2028 -- Loop through possible interpretations
2029
1420b484 2030 Get_First_Interp (N, I, It);
996ae0b0
RK
2031 Interp_Loop : while Present (It.Typ) loop
2032
2033 -- We are only interested in interpretations that are compatible
aa5147f0 2034 -- with the expected type, any other interpretations are ignored.
996ae0b0 2035
fbf5a39b
AC
2036 if not Covers (Typ, It.Typ) then
2037 if Debug_Flag_V then
2038 Write_Str (" interpretation incompatible with context");
2039 Write_Eol;
2040 end if;
996ae0b0 2041
fbf5a39b 2042 else
aa5147f0
ES
2043 -- Skip the current interpretation if it is disabled by an
2044 -- abstract operator. This action is performed only when the
2045 -- type against which we are resolving is the same as the
2046 -- type of the interpretation.
2047
2048 if Ada_Version >= Ada_05
2049 and then It.Typ = Typ
2050 and then Typ /= Universal_Integer
2051 and then Typ /= Universal_Real
2052 and then Present (It.Abstract_Op)
2053 then
2054 goto Continue;
2055 end if;
2056
996ae0b0
RK
2057 -- First matching interpretation
2058
2059 if not Found then
2060 Found := True;
2061 I1 := I;
2062 Seen := It.Nam;
2063 Expr_Type := It.Typ;
2064
fbf5a39b 2065 -- Matching interpretation that is not the first, maybe an
996ae0b0
RK
2066 -- error, but there are some cases where preference rules are
2067 -- used to choose between the two possibilities. These and
2068 -- some more obscure cases are handled in Disambiguate.
2069
2070 else
dae2b8ea
HK
2071 -- If the current statement is part of a predefined library
2072 -- unit, then all interpretations which come from user level
2073 -- packages should not be considered.
2074
2075 if From_Lib
2076 and then not Comes_From_Predefined_Lib_Unit (It.Nam)
2077 then
2078 goto Continue;
2079 end if;
2080
996ae0b0
RK
2081 Error_Msg_Sloc := Sloc (Seen);
2082 It1 := Disambiguate (N, I1, I, Typ);
2083
fbf5a39b
AC
2084 -- Disambiguation has succeeded. Skip the remaining
2085 -- interpretations.
996ae0b0 2086
fbf5a39b
AC
2087 if It1 /= No_Interp then
2088 Seen := It1.Nam;
2089 Expr_Type := It1.Typ;
2090
2091 while Present (It.Typ) loop
2092 Get_Next_Interp (I, It);
2093 end loop;
2094
2095 else
996ae0b0
RK
2096 -- Before we issue an ambiguity complaint, check for
2097 -- the case of a subprogram call where at least one
2098 -- of the arguments is Any_Type, and if so, suppress
2099 -- the message, since it is a cascaded error.
2100
45fc7ddb
HK
2101 if Nkind_In (N, N_Function_Call,
2102 N_Procedure_Call_Statement)
996ae0b0
RK
2103 then
2104 declare
1420b484 2105 A : Node_Id;
996ae0b0
RK
2106 E : Node_Id;
2107
2108 begin
1420b484 2109 A := First_Actual (N);
996ae0b0
RK
2110 while Present (A) loop
2111 E := A;
2112
2113 if Nkind (E) = N_Parameter_Association then
2114 E := Explicit_Actual_Parameter (E);
2115 end if;
2116
2117 if Etype (E) = Any_Type then
2118 if Debug_Flag_V then
2119 Write_Str ("Any_Type in call");
2120 Write_Eol;
2121 end if;
2122
2123 exit Interp_Loop;
2124 end if;
2125
2126 Next_Actual (A);
2127 end loop;
2128 end;
2129
aa5147f0 2130 elsif Nkind (N) in N_Binary_Op
996ae0b0
RK
2131 and then (Etype (Left_Opnd (N)) = Any_Type
2132 or else Etype (Right_Opnd (N)) = Any_Type)
2133 then
2134 exit Interp_Loop;
2135
2136 elsif Nkind (N) in N_Unary_Op
2137 and then Etype (Right_Opnd (N)) = Any_Type
2138 then
2139 exit Interp_Loop;
2140 end if;
2141
2142 -- Not that special case, so issue message using the
2143 -- flag Ambiguous to control printing of the header
2144 -- message only at the start of an ambiguous set.
2145
2146 if not Ambiguous then
aa180613
RD
2147 if Nkind (N) = N_Function_Call
2148 and then Nkind (Name (N)) = N_Explicit_Dereference
2149 then
ed2233dc 2150 Error_Msg_N
aa180613
RD
2151 ("ambiguous expression "
2152 & "(cannot resolve indirect call)!", N);
2153 else
483c78cb 2154 Error_Msg_NE -- CODEFIX
aa180613
RD
2155 ("ambiguous expression (cannot resolve&)!",
2156 N, It.Nam);
2157 end if;
fbf5a39b 2158
996ae0b0 2159 Ambiguous := True;
0669bebe
GB
2160
2161 if Nkind (Parent (Seen)) = N_Full_Type_Declaration then
ed2233dc 2162 Error_Msg_N
0669bebe
GB
2163 ("\\possible interpretation (inherited)#!", N);
2164 else
4e7a4f6e
AC
2165 Error_Msg_N -- CODEFIX
2166 ("\\possible interpretation#!", N);
0669bebe 2167 end if;
7415029d
AC
2168
2169 if Nkind_In
4519314c 2170 (N, N_Procedure_Call_Statement, N_Function_Call)
7415029d
AC
2171 and then Present (Parameter_Associations (N))
2172 then
2173 Report_Ambiguous_Argument;
2174 end if;
996ae0b0
RK
2175 end if;
2176
2177 Error_Msg_Sloc := Sloc (It.Nam);
996ae0b0 2178
fbf5a39b 2179 -- By default, the error message refers to the candidate
0669bebe
GB
2180 -- interpretation. But if it is a predefined operator, it
2181 -- is implicitly declared at the declaration of the type
2182 -- of the operand. Recover the sloc of that declaration
2183 -- for the error message.
fbf5a39b
AC
2184
2185 if Nkind (N) in N_Op
2186 and then Scope (It.Nam) = Standard_Standard
2187 and then not Is_Overloaded (Right_Opnd (N))
0669bebe
GB
2188 and then Scope (Base_Type (Etype (Right_Opnd (N)))) /=
2189 Standard_Standard
fbf5a39b
AC
2190 then
2191 Err_Type := First_Subtype (Etype (Right_Opnd (N)));
2192
2193 if Comes_From_Source (Err_Type)
2194 and then Present (Parent (Err_Type))
2195 then
2196 Error_Msg_Sloc := Sloc (Parent (Err_Type));
2197 end if;
2198
2199 elsif Nkind (N) in N_Binary_Op
2200 and then Scope (It.Nam) = Standard_Standard
2201 and then not Is_Overloaded (Left_Opnd (N))
0669bebe
GB
2202 and then Scope (Base_Type (Etype (Left_Opnd (N)))) /=
2203 Standard_Standard
fbf5a39b
AC
2204 then
2205 Err_Type := First_Subtype (Etype (Left_Opnd (N)));
2206
2207 if Comes_From_Source (Err_Type)
2208 and then Present (Parent (Err_Type))
2209 then
2210 Error_Msg_Sloc := Sloc (Parent (Err_Type));
2211 end if;
aa180613
RD
2212
2213 -- If this is an indirect call, use the subprogram_type
2214 -- in the message, to have a meaningful location.
4519314c 2215 -- Also indicate if this is an inherited operation,
aa180613
RD
2216 -- created by a type declaration.
2217
2218 elsif Nkind (N) = N_Function_Call
2219 and then Nkind (Name (N)) = N_Explicit_Dereference
2220 and then Is_Type (It.Nam)
2221 then
2222 Err_Type := It.Nam;
2223 Error_Msg_Sloc :=
2224 Sloc (Associated_Node_For_Itype (Err_Type));
fbf5a39b
AC
2225 else
2226 Err_Type := Empty;
2227 end if;
2228
2229 if Nkind (N) in N_Op
2230 and then Scope (It.Nam) = Standard_Standard
2231 and then Present (Err_Type)
2232 then
aa5147f0
ES
2233 -- Special-case the message for universal_fixed
2234 -- operators, which are not declared with the type
2235 -- of the operand, but appear forever in Standard.
2236
2237 if It.Typ = Universal_Fixed
2238 and then Scope (It.Nam) = Standard_Standard
2239 then
ed2233dc 2240 Error_Msg_N
aa5147f0
ES
2241 ("\\possible interpretation as " &
2242 "universal_fixed operation " &
2243 "(RM 4.5.5 (19))", N);
2244 else
ed2233dc 2245 Error_Msg_N
aa5147f0
ES
2246 ("\\possible interpretation (predefined)#!", N);
2247 end if;
aa180613
RD
2248
2249 elsif
2250 Nkind (Parent (It.Nam)) = N_Full_Type_Declaration
2251 then
ed2233dc 2252 Error_Msg_N
aa180613 2253 ("\\possible interpretation (inherited)#!", N);
fbf5a39b 2254 else
4e7a4f6e
AC
2255 Error_Msg_N -- CODEFIX
2256 ("\\possible interpretation#!", N);
fbf5a39b 2257 end if;
996ae0b0 2258
996ae0b0
RK
2259 end if;
2260 end if;
2261
0669bebe
GB
2262 -- We have a matching interpretation, Expr_Type is the type
2263 -- from this interpretation, and Seen is the entity.
996ae0b0 2264
0669bebe
GB
2265 -- For an operator, just set the entity name. The type will be
2266 -- set by the specific operator resolution routine.
996ae0b0
RK
2267
2268 if Nkind (N) in N_Op then
2269 Set_Entity (N, Seen);
2270 Generate_Reference (Seen, N);
2271
19d846a0
RD
2272 elsif Nkind (N) = N_Case_Expression then
2273 Set_Etype (N, Expr_Type);
2274
996ae0b0
RK
2275 elsif Nkind (N) = N_Character_Literal then
2276 Set_Etype (N, Expr_Type);
2277
e0ba1bfd
ES
2278 elsif Nkind (N) = N_Conditional_Expression then
2279 Set_Etype (N, Expr_Type);
2280
996ae0b0 2281 -- For an explicit dereference, attribute reference, range,
0669bebe
GB
2282 -- short-circuit form (which is not an operator node), or call
2283 -- with a name that is an explicit dereference, there is
2284 -- nothing to be done at this point.
996ae0b0 2285
45fc7ddb
HK
2286 elsif Nkind_In (N, N_Explicit_Dereference,
2287 N_Attribute_Reference,
2288 N_And_Then,
2289 N_Indexed_Component,
2290 N_Or_Else,
2291 N_Range,
2292 N_Selected_Component,
2293 N_Slice)
996ae0b0
RK
2294 or else Nkind (Name (N)) = N_Explicit_Dereference
2295 then
2296 null;
2297
0669bebe 2298 -- For procedure or function calls, set the type of the name,
4519314c 2299 -- and also the entity pointer for the prefix.
996ae0b0 2300
45fc7ddb 2301 elsif Nkind_In (N, N_Procedure_Call_Statement, N_Function_Call)
a3f2babd 2302 and then Is_Entity_Name (Name (N))
996ae0b0
RK
2303 then
2304 Set_Etype (Name (N), Expr_Type);
2305 Set_Entity (Name (N), Seen);
2306 Generate_Reference (Seen, Name (N));
2307
2308 elsif Nkind (N) = N_Function_Call
2309 and then Nkind (Name (N)) = N_Selected_Component
2310 then
2311 Set_Etype (Name (N), Expr_Type);
2312 Set_Entity (Selector_Name (Name (N)), Seen);
2313 Generate_Reference (Seen, Selector_Name (Name (N)));
2314
2315 -- For all other cases, just set the type of the Name
2316
2317 else
2318 Set_Etype (Name (N), Expr_Type);
2319 end if;
2320
996ae0b0
RK
2321 end if;
2322
aa5147f0
ES
2323 <<Continue>>
2324
996ae0b0
RK
2325 -- Move to next interpretation
2326
c8ef728f 2327 exit Interp_Loop when No (It.Typ);
996ae0b0
RK
2328
2329 Get_Next_Interp (I, It);
2330 end loop Interp_Loop;
2331 end if;
2332
2333 -- At this stage Found indicates whether or not an acceptable
4519314c
AC
2334 -- interpretation exists. If not, then we have an error, except that if
2335 -- the context is Any_Type as a result of some other error, then we
2336 -- suppress the error report.
996ae0b0
RK
2337
2338 if not Found then
2339 if Typ /= Any_Type then
2340
0669bebe
GB
2341 -- If type we are looking for is Void, then this is the procedure
2342 -- call case, and the error is simply that what we gave is not a
2343 -- procedure name (we think of procedure calls as expressions with
2344 -- types internally, but the user doesn't think of them this way!)
996ae0b0
RK
2345
2346 if Typ = Standard_Void_Type then
91b1417d
AC
2347
2348 -- Special case message if function used as a procedure
2349
2350 if Nkind (N) = N_Procedure_Call_Statement
2351 and then Is_Entity_Name (Name (N))
2352 and then Ekind (Entity (Name (N))) = E_Function
2353 then
2354 Error_Msg_NE
2355 ("cannot use function & in a procedure call",
2356 Name (N), Entity (Name (N)));
2357
0669bebe
GB
2358 -- Otherwise give general message (not clear what cases this
2359 -- covers, but no harm in providing for them!)
91b1417d
AC
2360
2361 else
2362 Error_Msg_N ("expect procedure name in procedure call", N);
2363 end if;
2364
996ae0b0
RK
2365 Found := True;
2366
2367 -- Otherwise we do have a subexpression with the wrong type
2368
0669bebe
GB
2369 -- Check for the case of an allocator which uses an access type
2370 -- instead of the designated type. This is a common error and we
2371 -- specialize the message, posting an error on the operand of the
2372 -- allocator, complaining that we expected the designated type of
2373 -- the allocator.
996ae0b0
RK
2374
2375 elsif Nkind (N) = N_Allocator
2376 and then Ekind (Typ) in Access_Kind
2377 and then Ekind (Etype (N)) in Access_Kind
2378 and then Designated_Type (Etype (N)) = Typ
2379 then
2380 Wrong_Type (Expression (N), Designated_Type (Typ));
2381 Found := True;
2382
0669bebe
GB
2383 -- Check for view mismatch on Null in instances, for which the
2384 -- view-swapping mechanism has no identifier.
17be0cdf
ES
2385
2386 elsif (In_Instance or else In_Inlined_Body)
2387 and then (Nkind (N) = N_Null)
2388 and then Is_Private_Type (Typ)
2389 and then Is_Access_Type (Full_View (Typ))
2390 then
2391 Resolve (N, Full_View (Typ));
2392 Set_Etype (N, Typ);
2393 return;
2394
aa180613
RD
2395 -- Check for an aggregate. Sometimes we can get bogus aggregates
2396 -- from misuse of parentheses, and we are about to complain about
2397 -- the aggregate without even looking inside it.
996ae0b0 2398
aa180613
RD
2399 -- Instead, if we have an aggregate of type Any_Composite, then
2400 -- analyze and resolve the component fields, and then only issue
2401 -- another message if we get no errors doing this (otherwise
2402 -- assume that the errors in the aggregate caused the problem).
996ae0b0
RK
2403
2404 elsif Nkind (N) = N_Aggregate
2405 and then Etype (N) = Any_Composite
2406 then
996ae0b0
RK
2407 -- Disable expansion in any case. If there is a type mismatch
2408 -- it may be fatal to try to expand the aggregate. The flag
2409 -- would otherwise be set to false when the error is posted.
2410
2411 Expander_Active := False;
2412
2413 declare
2414 procedure Check_Aggr (Aggr : Node_Id);
aa180613
RD
2415 -- Check one aggregate, and set Found to True if we have a
2416 -- definite error in any of its elements
996ae0b0
RK
2417
2418 procedure Check_Elmt (Aelmt : Node_Id);
aa180613
RD
2419 -- Check one element of aggregate and set Found to True if
2420 -- we definitely have an error in the element.
2421
2422 ----------------
2423 -- Check_Aggr --
2424 ----------------
996ae0b0
RK
2425
2426 procedure Check_Aggr (Aggr : Node_Id) is
2427 Elmt : Node_Id;
2428
2429 begin
2430 if Present (Expressions (Aggr)) then
2431 Elmt := First (Expressions (Aggr));
2432 while Present (Elmt) loop
2433 Check_Elmt (Elmt);
2434 Next (Elmt);
2435 end loop;
2436 end if;
2437
2438 if Present (Component_Associations (Aggr)) then
2439 Elmt := First (Component_Associations (Aggr));
2440 while Present (Elmt) loop
aa180613 2441
0669bebe
GB
2442 -- If this is a default-initialized component, then
2443 -- there is nothing to check. The box will be
2444 -- replaced by the appropriate call during late
2445 -- expansion.
aa180613
RD
2446
2447 if not Box_Present (Elmt) then
2448 Check_Elmt (Expression (Elmt));
2449 end if;
2450
996ae0b0
RK
2451 Next (Elmt);
2452 end loop;
2453 end if;
2454 end Check_Aggr;
2455
fbf5a39b
AC
2456 ----------------
2457 -- Check_Elmt --
2458 ----------------
2459
996ae0b0
RK
2460 procedure Check_Elmt (Aelmt : Node_Id) is
2461 begin
2462 -- If we have a nested aggregate, go inside it (to
2463 -- attempt a naked analyze-resolve of the aggregate
2464 -- can cause undesirable cascaded errors). Do not
2465 -- resolve expression if it needs a type from context,
2466 -- as for integer * fixed expression.
2467
2468 if Nkind (Aelmt) = N_Aggregate then
2469 Check_Aggr (Aelmt);
2470
2471 else
2472 Analyze (Aelmt);
2473
2474 if not Is_Overloaded (Aelmt)
2475 and then Etype (Aelmt) /= Any_Fixed
2476 then
fbf5a39b 2477 Resolve (Aelmt);
996ae0b0
RK
2478 end if;
2479
2480 if Etype (Aelmt) = Any_Type then
2481 Found := True;
2482 end if;
2483 end if;
2484 end Check_Elmt;
2485
2486 begin
2487 Check_Aggr (N);
2488 end;
2489 end if;
2490
2491 -- If an error message was issued already, Found got reset
2492 -- to True, so if it is still False, issue the standard
2493 -- Wrong_Type message.
2494
2495 if not Found then
2496 if Is_Overloaded (N)
2497 and then Nkind (N) = N_Function_Call
2498 then
65356e64
AC
2499 declare
2500 Subp_Name : Node_Id;
2501 begin
2502 if Is_Entity_Name (Name (N)) then
2503 Subp_Name := Name (N);
2504
2505 elsif Nkind (Name (N)) = N_Selected_Component then
2506
a77842bd 2507 -- Protected operation: retrieve operation name
65356e64
AC
2508
2509 Subp_Name := Selector_Name (Name (N));
2510 else
2511 raise Program_Error;
2512 end if;
2513
2514 Error_Msg_Node_2 := Typ;
2515 Error_Msg_NE ("no visible interpretation of&" &
2516 " matches expected type&", N, Subp_Name);
2517 end;
996ae0b0
RK
2518
2519 if All_Errors_Mode then
2520 declare
2521 Index : Interp_Index;
2522 It : Interp;
2523
2524 begin
aa180613 2525 Error_Msg_N ("\\possible interpretations:", N);
996ae0b0 2526
1420b484 2527 Get_First_Interp (Name (N), Index, It);
996ae0b0 2528 while Present (It.Nam) loop
ea985d95 2529 Error_Msg_Sloc := Sloc (It.Nam);
aa5147f0
ES
2530 Error_Msg_Node_2 := It.Nam;
2531 Error_Msg_NE
2532 ("\\ type& for & declared#", N, It.Typ);
996ae0b0
RK
2533 Get_Next_Interp (Index, It);
2534 end loop;
2535 end;
aa5147f0 2536
996ae0b0
RK
2537 else
2538 Error_Msg_N ("\use -gnatf for details", N);
2539 end if;
2540 else
2541 Wrong_Type (N, Typ);
2542 end if;
2543 end if;
2544 end if;
2545
2546 Resolution_Failed;
2547 return;
2548
2549 -- Test if we have more than one interpretation for the context
2550
2551 elsif Ambiguous then
2552 Resolution_Failed;
2553 return;
2554
2555 -- Here we have an acceptable interpretation for the context
2556
2557 else
996ae0b0
RK
2558 -- Propagate type information and normalize tree for various
2559 -- predefined operations. If the context only imposes a class of
2560 -- types, rather than a specific type, propagate the actual type
2561 -- downward.
2562
2563 if Typ = Any_Integer
2564 or else Typ = Any_Boolean
2565 or else Typ = Any_Modular
2566 or else Typ = Any_Real
2567 or else Typ = Any_Discrete
2568 then
2569 Ctx_Type := Expr_Type;
2570
2571 -- Any_Fixed is legal in a real context only if a specific
2572 -- fixed point type is imposed. If Norman Cohen can be
2573 -- confused by this, it deserves a separate message.
2574
2575 if Typ = Any_Real
2576 and then Expr_Type = Any_Fixed
2577 then
758c442c 2578 Error_Msg_N ("illegal context for mixed mode operation", N);
996ae0b0
RK
2579 Set_Etype (N, Universal_Real);
2580 Ctx_Type := Universal_Real;
2581 end if;
2582 end if;
2583
f3d57416 2584 -- A user-defined operator is transformed into a function call at
0ab80019
AC
2585 -- this point, so that further processing knows that operators are
2586 -- really operators (i.e. are predefined operators). User-defined
2587 -- operators that are intrinsic are just renamings of the predefined
2588 -- ones, and need not be turned into calls either, but if they rename
2589 -- a different operator, we must transform the node accordingly.
2590 -- Instantiations of Unchecked_Conversion are intrinsic but are
2591 -- treated as functions, even if given an operator designator.
2592
2593 if Nkind (N) in N_Op
2594 and then Present (Entity (N))
2595 and then Ekind (Entity (N)) /= E_Operator
2596 then
2597
2598 if not Is_Predefined_Op (Entity (N)) then
2599 Rewrite_Operator_As_Call (N, Entity (N));
2600
615cbd95
AC
2601 elsif Present (Alias (Entity (N)))
2602 and then
45fc7ddb
HK
2603 Nkind (Parent (Parent (Entity (N)))) =
2604 N_Subprogram_Renaming_Declaration
615cbd95 2605 then
0ab80019
AC
2606 Rewrite_Renamed_Operator (N, Alias (Entity (N)), Typ);
2607
2608 -- If the node is rewritten, it will be fully resolved in
2609 -- Rewrite_Renamed_Operator.
2610
2611 if Analyzed (N) then
2612 return;
2613 end if;
2614 end if;
2615 end if;
2616
996ae0b0
RK
2617 case N_Subexpr'(Nkind (N)) is
2618
2619 when N_Aggregate => Resolve_Aggregate (N, Ctx_Type);
2620
2621 when N_Allocator => Resolve_Allocator (N, Ctx_Type);
2622
514d0fc5 2623 when N_Short_Circuit
996ae0b0
RK
2624 => Resolve_Short_Circuit (N, Ctx_Type);
2625
2626 when N_Attribute_Reference
2627 => Resolve_Attribute (N, Ctx_Type);
2628
19d846a0
RD
2629 when N_Case_Expression
2630 => Resolve_Case_Expression (N, Ctx_Type);
2631
996ae0b0
RK
2632 when N_Character_Literal
2633 => Resolve_Character_Literal (N, Ctx_Type);
2634
2635 when N_Conditional_Expression
2636 => Resolve_Conditional_Expression (N, Ctx_Type);
2637
2638 when N_Expanded_Name
2639 => Resolve_Entity_Name (N, Ctx_Type);
2640
996ae0b0
RK
2641 when N_Explicit_Dereference
2642 => Resolve_Explicit_Dereference (N, Ctx_Type);
2643
955871d3
AC
2644 when N_Expression_With_Actions
2645 => Resolve_Expression_With_Actions (N, Ctx_Type);
2646
2647 when N_Extension_Aggregate
2648 => Resolve_Extension_Aggregate (N, Ctx_Type);
2649
996ae0b0
RK
2650 when N_Function_Call
2651 => Resolve_Call (N, Ctx_Type);
2652
2653 when N_Identifier
2654 => Resolve_Entity_Name (N, Ctx_Type);
2655
996ae0b0
RK
2656 when N_Indexed_Component
2657 => Resolve_Indexed_Component (N, Ctx_Type);
2658
2659 when N_Integer_Literal
2660 => Resolve_Integer_Literal (N, Ctx_Type);
2661
0669bebe
GB
2662 when N_Membership_Test
2663 => Resolve_Membership_Op (N, Ctx_Type);
2664
996ae0b0
RK
2665 when N_Null => Resolve_Null (N, Ctx_Type);
2666
2667 when N_Op_And | N_Op_Or | N_Op_Xor
2668 => Resolve_Logical_Op (N, Ctx_Type);
2669
2670 when N_Op_Eq | N_Op_Ne
2671 => Resolve_Equality_Op (N, Ctx_Type);
2672
2673 when N_Op_Lt | N_Op_Le | N_Op_Gt | N_Op_Ge
2674 => Resolve_Comparison_Op (N, Ctx_Type);
2675
2676 when N_Op_Not => Resolve_Op_Not (N, Ctx_Type);
2677
2678 when N_Op_Add | N_Op_Subtract | N_Op_Multiply |
2679 N_Op_Divide | N_Op_Mod | N_Op_Rem
2680
2681 => Resolve_Arithmetic_Op (N, Ctx_Type);
2682
2683 when N_Op_Concat => Resolve_Op_Concat (N, Ctx_Type);
2684
2685 when N_Op_Expon => Resolve_Op_Expon (N, Ctx_Type);
2686
2687 when N_Op_Plus | N_Op_Minus | N_Op_Abs
2688 => Resolve_Unary_Op (N, Ctx_Type);
2689
2690 when N_Op_Shift => Resolve_Shift (N, Ctx_Type);
2691
2692 when N_Procedure_Call_Statement
2693 => Resolve_Call (N, Ctx_Type);
2694
2695 when N_Operator_Symbol
2696 => Resolve_Operator_Symbol (N, Ctx_Type);
2697
2698 when N_Qualified_Expression
2699 => Resolve_Qualified_Expression (N, Ctx_Type);
2700
2701 when N_Raise_xxx_Error
2702 => Set_Etype (N, Ctx_Type);
2703
2704 when N_Range => Resolve_Range (N, Ctx_Type);
2705
2706 when N_Real_Literal
2707 => Resolve_Real_Literal (N, Ctx_Type);
2708
2709 when N_Reference => Resolve_Reference (N, Ctx_Type);
2710
2711 when N_Selected_Component
2712 => Resolve_Selected_Component (N, Ctx_Type);
2713
2714 when N_Slice => Resolve_Slice (N, Ctx_Type);
2715
2716 when N_String_Literal
2717 => Resolve_String_Literal (N, Ctx_Type);
2718
2719 when N_Subprogram_Info
2720 => Resolve_Subprogram_Info (N, Ctx_Type);
2721
2722 when N_Type_Conversion
2723 => Resolve_Type_Conversion (N, Ctx_Type);
2724
2725 when N_Unchecked_Expression =>
2726 Resolve_Unchecked_Expression (N, Ctx_Type);
2727
2728 when N_Unchecked_Type_Conversion =>
2729 Resolve_Unchecked_Type_Conversion (N, Ctx_Type);
996ae0b0
RK
2730 end case;
2731
2732 -- If the subexpression was replaced by a non-subexpression, then
2733 -- all we do is to expand it. The only legitimate case we know of
2734 -- is converting procedure call statement to entry call statements,
2735 -- but there may be others, so we are making this test general.
2736
2737 if Nkind (N) not in N_Subexpr then
2738 Debug_A_Exit ("resolving ", N, " (done)");
2739 Expand (N);
2740 return;
2741 end if;
2742
2743 -- The expression is definitely NOT overloaded at this point, so
2744 -- we reset the Is_Overloaded flag to avoid any confusion when
2745 -- reanalyzing the node.
2746
2747 Set_Is_Overloaded (N, False);
2748
2749 -- Freeze expression type, entity if it is a name, and designated
fbf5a39b 2750 -- type if it is an allocator (RM 13.14(10,11,13)).
996ae0b0
RK
2751
2752 -- Now that the resolution of the type of the node is complete,
2753 -- and we did not detect an error, we can expand this node. We
2754 -- skip the expand call if we are in a default expression, see
2755 -- section "Handling of Default Expressions" in Sem spec.
2756
2757 Debug_A_Exit ("resolving ", N, " (done)");
2758
2759 -- We unconditionally freeze the expression, even if we are in
2760 -- default expression mode (the Freeze_Expression routine tests
2761 -- this flag and only freezes static types if it is set).
2762
2763 Freeze_Expression (N);
2764
2765 -- Now we can do the expansion
2766
2767 Expand (N);
2768 end if;
996ae0b0
RK
2769 end Resolve;
2770
fbf5a39b
AC
2771 -------------
2772 -- Resolve --
2773 -------------
2774
996ae0b0
RK
2775 -- Version with check(s) suppressed
2776
2777 procedure Resolve (N : Node_Id; Typ : Entity_Id; Suppress : Check_Id) is
2778 begin
2779 if Suppress = All_Checks then
2780 declare
fbf5a39b 2781 Svg : constant Suppress_Array := Scope_Suppress;
996ae0b0
RK
2782 begin
2783 Scope_Suppress := (others => True);
2784 Resolve (N, Typ);
2785 Scope_Suppress := Svg;
2786 end;
2787
2788 else
2789 declare
fbf5a39b 2790 Svg : constant Boolean := Scope_Suppress (Suppress);
996ae0b0 2791 begin
fbf5a39b 2792 Scope_Suppress (Suppress) := True;
996ae0b0 2793 Resolve (N, Typ);
fbf5a39b 2794 Scope_Suppress (Suppress) := Svg;
996ae0b0
RK
2795 end;
2796 end if;
2797 end Resolve;
2798
fbf5a39b
AC
2799 -------------
2800 -- Resolve --
2801 -------------
2802
2803 -- Version with implicit type
2804
2805 procedure Resolve (N : Node_Id) is
2806 begin
2807 Resolve (N, Etype (N));
2808 end Resolve;
2809
996ae0b0
RK
2810 ---------------------
2811 -- Resolve_Actuals --
2812 ---------------------
2813
2814 procedure Resolve_Actuals (N : Node_Id; Nam : Entity_Id) is
2815 Loc : constant Source_Ptr := Sloc (N);
2816 A : Node_Id;
2817 F : Entity_Id;
2818 A_Typ : Entity_Id;
2819 F_Typ : Entity_Id;
2820 Prev : Node_Id := Empty;
67ce0d7e 2821 Orig_A : Node_Id;
996ae0b0 2822
45fc7ddb
HK
2823 procedure Check_Argument_Order;
2824 -- Performs a check for the case where the actuals are all simple
2825 -- identifiers that correspond to the formal names, but in the wrong
2826 -- order, which is considered suspicious and cause for a warning.
2827
b7d1f17f
HK
2828 procedure Check_Prefixed_Call;
2829 -- If the original node is an overloaded call in prefix notation,
2830 -- insert an 'Access or a dereference as needed over the first actual.
2831 -- Try_Object_Operation has already verified that there is a valid
2832 -- interpretation, but the form of the actual can only be determined
2833 -- once the primitive operation is identified.
2834
996ae0b0
RK
2835 procedure Insert_Default;
2836 -- If the actual is missing in a call, insert in the actuals list
2837 -- an instance of the default expression. The insertion is always
2838 -- a named association.
2839
fbf5a39b
AC
2840 function Same_Ancestor (T1, T2 : Entity_Id) return Boolean;
2841 -- Check whether T1 and T2, or their full views, are derived from a
2842 -- common type. Used to enforce the restrictions on array conversions
2843 -- of AI95-00246.
2844
a7a3cf5c
AC
2845 function Static_Concatenation (N : Node_Id) return Boolean;
2846 -- Predicate to determine whether an actual that is a concatenation
2847 -- will be evaluated statically and does not need a transient scope.
2848 -- This must be determined before the actual is resolved and expanded
2849 -- because if needed the transient scope must be introduced earlier.
2850
45fc7ddb
HK
2851 --------------------------
2852 -- Check_Argument_Order --
2853 --------------------------
2854
2855 procedure Check_Argument_Order is
2856 begin
2857 -- Nothing to do if no parameters, or original node is neither a
2858 -- function call nor a procedure call statement (happens in the
2859 -- operator-transformed-to-function call case), or the call does
2860 -- not come from source, or this warning is off.
2861
2862 if not Warn_On_Parameter_Order
2863 or else
2864 No (Parameter_Associations (N))
2865 or else
2866 not Nkind_In (Original_Node (N), N_Procedure_Call_Statement,
2867 N_Function_Call)
2868 or else
2869 not Comes_From_Source (N)
2870 then
2871 return;
2872 end if;
2873
2874 declare
2875 Nargs : constant Nat := List_Length (Parameter_Associations (N));
2876
2877 begin
2878 -- Nothing to do if only one parameter
2879
2880 if Nargs < 2 then
2881 return;
2882 end if;
2883
2884 -- Here if at least two arguments
2885
2886 declare
2887 Actuals : array (1 .. Nargs) of Node_Id;
2888 Actual : Node_Id;
2889 Formal : Node_Id;
2890
2891 Wrong_Order : Boolean := False;
2892 -- Set True if an out of order case is found
2893
2894 begin
2895 -- Collect identifier names of actuals, fail if any actual is
2896 -- not a simple identifier, and record max length of name.
2897
2898 Actual := First (Parameter_Associations (N));
2899 for J in Actuals'Range loop
2900 if Nkind (Actual) /= N_Identifier then
2901 return;
2902 else
2903 Actuals (J) := Actual;
2904 Next (Actual);
2905 end if;
2906 end loop;
2907
2908 -- If we got this far, all actuals are identifiers and the list
2909 -- of their names is stored in the Actuals array.
2910
2911 Formal := First_Formal (Nam);
2912 for J in Actuals'Range loop
2913
2914 -- If we ran out of formals, that's odd, probably an error
2915 -- which will be detected elsewhere, but abandon the search.
2916
2917 if No (Formal) then
2918 return;
2919 end if;
2920
2921 -- If name matches and is in order OK
2922
2923 if Chars (Formal) = Chars (Actuals (J)) then
2924 null;
2925
2926 else
2927 -- If no match, see if it is elsewhere in list and if so
2928 -- flag potential wrong order if type is compatible.
2929
2930 for K in Actuals'Range loop
2931 if Chars (Formal) = Chars (Actuals (K))
2932 and then
2933 Has_Compatible_Type (Actuals (K), Etype (Formal))
2934 then
2935 Wrong_Order := True;
2936 goto Continue;
2937 end if;
2938 end loop;
2939
2940 -- No match
2941
2942 return;
2943 end if;
2944
2945 <<Continue>> Next_Formal (Formal);
2946 end loop;
2947
2948 -- If Formals left over, also probably an error, skip warning
2949
2950 if Present (Formal) then
2951 return;
2952 end if;
2953
2954 -- Here we give the warning if something was out of order
2955
2956 if Wrong_Order then
2957 Error_Msg_N
2958 ("actuals for this call may be in wrong order?", N);
2959 end if;
2960 end;
2961 end;
2962 end Check_Argument_Order;
2963
b7d1f17f
HK
2964 -------------------------
2965 -- Check_Prefixed_Call --
2966 -------------------------
2967
2968 procedure Check_Prefixed_Call is
2969 Act : constant Node_Id := First_Actual (N);
2970 A_Type : constant Entity_Id := Etype (Act);
2971 F_Type : constant Entity_Id := Etype (First_Formal (Nam));
2972 Orig : constant Node_Id := Original_Node (N);
2973 New_A : Node_Id;
2974
2975 begin
2976 -- Check whether the call is a prefixed call, with or without
2977 -- additional actuals.
2978
2979 if Nkind (Orig) = N_Selected_Component
2980 or else
2981 (Nkind (Orig) = N_Indexed_Component
2982 and then Nkind (Prefix (Orig)) = N_Selected_Component
2983 and then Is_Entity_Name (Prefix (Prefix (Orig)))
2984 and then Is_Entity_Name (Act)
2985 and then Chars (Act) = Chars (Prefix (Prefix (Orig))))
2986 then
2987 if Is_Access_Type (A_Type)
2988 and then not Is_Access_Type (F_Type)
2989 then
2990 -- Introduce dereference on object in prefix
2991
2992 New_A :=
2993 Make_Explicit_Dereference (Sloc (Act),
2994 Prefix => Relocate_Node (Act));
2995 Rewrite (Act, New_A);
2996 Analyze (Act);
2997
2998 elsif Is_Access_Type (F_Type)
2999 and then not Is_Access_Type (A_Type)
3000 then
3001 -- Introduce an implicit 'Access in prefix
3002
3003 if not Is_Aliased_View (Act) then
ed2233dc 3004 Error_Msg_NE
b7d1f17f 3005 ("object in prefixed call to& must be aliased"
aa5147f0 3006 & " (RM-2005 4.3.1 (13))",
b7d1f17f
HK
3007 Prefix (Act), Nam);
3008 end if;
3009
3010 Rewrite (Act,
3011 Make_Attribute_Reference (Loc,
3012 Attribute_Name => Name_Access,
3013 Prefix => Relocate_Node (Act)));
3014 end if;
3015
3016 Analyze (Act);
3017 end if;
3018 end Check_Prefixed_Call;
3019
996ae0b0
RK
3020 --------------------
3021 -- Insert_Default --
3022 --------------------
3023
3024 procedure Insert_Default is
3025 Actval : Node_Id;
3026 Assoc : Node_Id;
3027
3028 begin
fbf5a39b 3029 -- Missing argument in call, nothing to insert
996ae0b0 3030
fbf5a39b
AC
3031 if No (Default_Value (F)) then
3032 return;
3033
3034 else
3035 -- Note that we do a full New_Copy_Tree, so that any associated
3036 -- Itypes are properly copied. This may not be needed any more,
3037 -- but it does no harm as a safety measure! Defaults of a generic
3038 -- formal may be out of bounds of the corresponding actual (see
3039 -- cc1311b) and an additional check may be required.
996ae0b0 3040
b7d1f17f
HK
3041 Actval :=
3042 New_Copy_Tree
3043 (Default_Value (F),
3044 New_Scope => Current_Scope,
3045 New_Sloc => Loc);
996ae0b0
RK
3046
3047 if Is_Concurrent_Type (Scope (Nam))
3048 and then Has_Discriminants (Scope (Nam))
3049 then
3050 Replace_Actual_Discriminants (N, Actval);
3051 end if;
3052
3053 if Is_Overloadable (Nam)
3054 and then Present (Alias (Nam))
3055 then
3056 if Base_Type (Etype (F)) /= Base_Type (Etype (Actval))
3057 and then not Is_Tagged_Type (Etype (F))
3058 then
3059 -- If default is a real literal, do not introduce a
3060 -- conversion whose effect may depend on the run-time
3061 -- size of universal real.
3062
3063 if Nkind (Actval) = N_Real_Literal then
3064 Set_Etype (Actval, Base_Type (Etype (F)));
3065 else
3066 Actval := Unchecked_Convert_To (Etype (F), Actval);
3067 end if;
3068 end if;
3069
3070 if Is_Scalar_Type (Etype (F)) then
3071 Enable_Range_Check (Actval);
3072 end if;
3073
996ae0b0
RK
3074 Set_Parent (Actval, N);
3075
3076 -- Resolve aggregates with their base type, to avoid scope
f3d57416 3077 -- anomalies: the subtype was first built in the subprogram
996ae0b0
RK
3078 -- declaration, and the current call may be nested.
3079
76b84bf0
AC
3080 if Nkind (Actval) = N_Aggregate then
3081 Analyze_And_Resolve (Actval, Etype (F));
996ae0b0
RK
3082 else
3083 Analyze_And_Resolve (Actval, Etype (Actval));
3084 end if;
fbf5a39b
AC
3085
3086 else
3087 Set_Parent (Actval, N);
3088
a77842bd 3089 -- See note above concerning aggregates
fbf5a39b
AC
3090
3091 if Nkind (Actval) = N_Aggregate
3092 and then Has_Discriminants (Etype (Actval))
3093 then
3094 Analyze_And_Resolve (Actval, Base_Type (Etype (Actval)));
3095
3096 -- Resolve entities with their own type, which may differ
3097 -- from the type of a reference in a generic context (the
3098 -- view swapping mechanism did not anticipate the re-analysis
3099 -- of default values in calls).
3100
3101 elsif Is_Entity_Name (Actval) then
3102 Analyze_And_Resolve (Actval, Etype (Entity (Actval)));
3103
3104 else
3105 Analyze_And_Resolve (Actval, Etype (Actval));
3106 end if;
996ae0b0
RK
3107 end if;
3108
3109 -- If default is a tag indeterminate function call, propagate
3110 -- tag to obtain proper dispatching.
3111
3112 if Is_Controlling_Formal (F)
3113 and then Nkind (Default_Value (F)) = N_Function_Call
3114 then
3115 Set_Is_Controlling_Actual (Actval);
3116 end if;
3117
996ae0b0
RK
3118 end if;
3119
3120 -- If the default expression raises constraint error, then just
3121 -- silently replace it with an N_Raise_Constraint_Error node,
3122 -- since we already gave the warning on the subprogram spec.
3123
3124 if Raises_Constraint_Error (Actval) then
3125 Rewrite (Actval,
07fc65c4
GB
3126 Make_Raise_Constraint_Error (Loc,
3127 Reason => CE_Range_Check_Failed));
996ae0b0
RK
3128 Set_Raises_Constraint_Error (Actval);
3129 Set_Etype (Actval, Etype (F));
3130 end if;
3131
3132 Assoc :=
3133 Make_Parameter_Association (Loc,
3134 Explicit_Actual_Parameter => Actval,
3135 Selector_Name => Make_Identifier (Loc, Chars (F)));
3136
3137 -- Case of insertion is first named actual
3138
3139 if No (Prev) or else
3140 Nkind (Parent (Prev)) /= N_Parameter_Association
3141 then
3142 Set_Next_Named_Actual (Assoc, First_Named_Actual (N));
3143 Set_First_Named_Actual (N, Actval);
3144
3145 if No (Prev) then
c8ef728f 3146 if No (Parameter_Associations (N)) then
996ae0b0
RK
3147 Set_Parameter_Associations (N, New_List (Assoc));
3148 else
3149 Append (Assoc, Parameter_Associations (N));
3150 end if;
3151
3152 else
3153 Insert_After (Prev, Assoc);
3154 end if;
3155
3156 -- Case of insertion is not first named actual
3157
3158 else
3159 Set_Next_Named_Actual
3160 (Assoc, Next_Named_Actual (Parent (Prev)));
3161 Set_Next_Named_Actual (Parent (Prev), Actval);
3162 Append (Assoc, Parameter_Associations (N));
3163 end if;
3164
3165 Mark_Rewrite_Insertion (Assoc);
3166 Mark_Rewrite_Insertion (Actval);
3167
3168 Prev := Actval;
3169 end Insert_Default;
3170
fbf5a39b
AC
3171 -------------------
3172 -- Same_Ancestor --
3173 -------------------
3174
3175 function Same_Ancestor (T1, T2 : Entity_Id) return Boolean is
3176 FT1 : Entity_Id := T1;
3177 FT2 : Entity_Id := T2;
3178
3179 begin
3180 if Is_Private_Type (T1)
3181 and then Present (Full_View (T1))
3182 then
3183 FT1 := Full_View (T1);
3184 end if;
3185
3186 if Is_Private_Type (T2)
3187 and then Present (Full_View (T2))
3188 then
3189 FT2 := Full_View (T2);
3190 end if;
3191
3192 return Root_Type (Base_Type (FT1)) = Root_Type (Base_Type (FT2));
3193 end Same_Ancestor;
3194
a7a3cf5c
AC
3195 --------------------------
3196 -- Static_Concatenation --
3197 --------------------------
3198
3199 function Static_Concatenation (N : Node_Id) return Boolean is
3200 begin
c72a85f2
TQ
3201 case Nkind (N) is
3202 when N_String_Literal =>
3203 return True;
a7a3cf5c 3204
d81b4bfe
TQ
3205 when N_Op_Concat =>
3206
4342eda9
TQ
3207 -- Concatenation is static when both operands are static
3208 -- and the concatenation operator is a predefined one.
3209
3210 return Scope (Entity (N)) = Standard_Standard
3211 and then
3212 Static_Concatenation (Left_Opnd (N))
c72a85f2
TQ
3213 and then
3214 Static_Concatenation (Right_Opnd (N));
3215
3216 when others =>
3217 if Is_Entity_Name (N) then
3218 declare
3219 Ent : constant Entity_Id := Entity (N);
3220 begin
3221 return Ekind (Ent) = E_Constant
3222 and then Present (Constant_Value (Ent))
d81b4bfe
TQ
3223 and then
3224 Is_Static_Expression (Constant_Value (Ent));
c72a85f2 3225 end;
a7a3cf5c 3226
a7a3cf5c
AC
3227 else
3228 return False;
3229 end if;
c72a85f2 3230 end case;
a7a3cf5c
AC
3231 end Static_Concatenation;
3232
996ae0b0
RK
3233 -- Start of processing for Resolve_Actuals
3234
3235 begin
45fc7ddb
HK
3236 Check_Argument_Order;
3237
b7d1f17f
HK
3238 if Present (First_Actual (N)) then
3239 Check_Prefixed_Call;
3240 end if;
3241
996ae0b0
RK
3242 A := First_Actual (N);
3243 F := First_Formal (Nam);
996ae0b0 3244 while Present (F) loop
fbf5a39b
AC
3245 if No (A) and then Needs_No_Actuals (Nam) then
3246 null;
996ae0b0 3247
d81b4bfe
TQ
3248 -- If we have an error in any actual or formal, indicated by a type
3249 -- of Any_Type, then abandon resolution attempt, and set result type
3250 -- to Any_Type.
07fc65c4 3251
fbf5a39b
AC
3252 elsif (Present (A) and then Etype (A) = Any_Type)
3253 or else Etype (F) = Any_Type
07fc65c4
GB
3254 then
3255 Set_Etype (N, Any_Type);
3256 return;
3257 end if;
3258
e65f50ec
ES
3259 -- Case where actual is present
3260
45fc7ddb 3261 -- If the actual is an entity, generate a reference to it now. We
36fcf362
RD
3262 -- do this before the actual is resolved, because a formal of some
3263 -- protected subprogram, or a task discriminant, will be rewritten
3264 -- during expansion, and the reference to the source entity may
3265 -- be lost.
3266
3267 if Present (A)
3268 and then Is_Entity_Name (A)
3269 and then Comes_From_Source (N)
3270 then
3271 Orig_A := Entity (A);
3272
3273 if Present (Orig_A) then
3274 if Is_Formal (Orig_A)
3275 and then Ekind (F) /= E_In_Parameter
3276 then
3277 Generate_Reference (Orig_A, A, 'm');
36fcf362
RD
3278 elsif not Is_Overloaded (A) then
3279 Generate_Reference (Orig_A, A);
3280 end if;
3281 end if;
3282 end if;
3283
996ae0b0
RK
3284 if Present (A)
3285 and then (Nkind (Parent (A)) /= N_Parameter_Association
3286 or else
3287 Chars (Selector_Name (Parent (A))) = Chars (F))
3288 then
45fc7ddb
HK
3289 -- If style checking mode on, check match of formal name
3290
3291 if Style_Check then
3292 if Nkind (Parent (A)) = N_Parameter_Association then
3293 Check_Identifier (Selector_Name (Parent (A)), F);
3294 end if;
3295 end if;
3296
996ae0b0
RK
3297 -- If the formal is Out or In_Out, do not resolve and expand the
3298 -- conversion, because it is subsequently expanded into explicit
3299 -- temporaries and assignments. However, the object of the
ea985d95
RD
3300 -- conversion can be resolved. An exception is the case of tagged
3301 -- type conversion with a class-wide actual. In that case we want
3302 -- the tag check to occur and no temporary will be needed (no
3303 -- representation change can occur) and the parameter is passed by
3304 -- reference, so we go ahead and resolve the type conversion.
c8ef728f 3305 -- Another exception is the case of reference to component or
ea985d95
RD
3306 -- subcomponent of a bit-packed array, in which case we want to
3307 -- defer expansion to the point the in and out assignments are
3308 -- performed.
996ae0b0
RK
3309
3310 if Ekind (F) /= E_In_Parameter
3311 and then Nkind (A) = N_Type_Conversion
3312 and then not Is_Class_Wide_Type (Etype (Expression (A)))
3313 then
07fc65c4
GB
3314 if Ekind (F) = E_In_Out_Parameter
3315 and then Is_Array_Type (Etype (F))
07fc65c4 3316 then
fbf5a39b
AC
3317 if Has_Aliased_Components (Etype (Expression (A)))
3318 /= Has_Aliased_Components (Etype (F))
3319 then
758c442c 3320
45fc7ddb
HK
3321 -- In a view conversion, the conversion must be legal in
3322 -- both directions, and thus both component types must be
3323 -- aliased, or neither (4.6 (8)).
758c442c 3324
45fc7ddb 3325 -- The additional rule 4.6 (24.9.2) seems unduly
d81b4bfe
TQ
3326 -- restrictive: the privacy requirement should not apply
3327 -- to generic types, and should be checked in an
3328 -- instance. ARG query is in order ???
45fc7ddb
HK
3329
3330 Error_Msg_N
3331 ("both component types in a view conversion must be"
3332 & " aliased, or neither", A);
3333
3334 elsif
3335 not Same_Ancestor (Etype (F), Etype (Expression (A)))
3336 then
3337 if Is_By_Reference_Type (Etype (F))
3338 or else Is_By_Reference_Type (Etype (Expression (A)))
758c442c
GD
3339 then
3340 Error_Msg_N
45fc7ddb
HK
3341 ("view conversion between unrelated by reference " &
3342 "array types not allowed (\'A'I-00246)", A);
3343 else
3344 declare
3345 Comp_Type : constant Entity_Id :=
3346 Component_Type
3347 (Etype (Expression (A)));
3348 begin
3349 if Comes_From_Source (A)
3350 and then Ada_Version >= Ada_05
3351 and then
3352 ((Is_Private_Type (Comp_Type)
3353 and then not Is_Generic_Type (Comp_Type))
3354 or else Is_Tagged_Type (Comp_Type)
3355 or else Is_Volatile (Comp_Type))
3356 then
3357 Error_Msg_N
3358 ("component type of a view conversion cannot"
3359 & " be private, tagged, or volatile"
3360 & " (RM 4.6 (24))",
3361 Expression (A));
3362 end if;
3363 end;
758c442c 3364 end if;
fbf5a39b 3365 end if;
07fc65c4
GB
3366 end if;
3367
16397eff
TQ
3368 if (Conversion_OK (A)
3369 or else Valid_Conversion (A, Etype (A), Expression (A)))
3370 and then not Is_Ref_To_Bit_Packed_Array (Expression (A))
996ae0b0 3371 then
fbf5a39b 3372 Resolve (Expression (A));
996ae0b0
RK
3373 end if;
3374
b7d1f17f
HK
3375 -- If the actual is a function call that returns a limited
3376 -- unconstrained object that needs finalization, create a
3377 -- transient scope for it, so that it can receive the proper
3378 -- finalization list.
3379
3380 elsif Nkind (A) = N_Function_Call
3381 and then Is_Limited_Record (Etype (F))
3382 and then not Is_Constrained (Etype (F))
3383 and then Expander_Active
3384 and then
3385 (Is_Controlled (Etype (F)) or else Has_Task (Etype (F)))
3386 then
3387 Establish_Transient_Scope (A, False);
3388
a52fefe6
AC
3389 -- A small optimization: if one of the actuals is a concatenation
3390 -- create a block around a procedure call to recover stack space.
3391 -- This alleviates stack usage when several procedure calls in
76e776e5
AC
3392 -- the same statement list use concatenation. We do not perform
3393 -- this wrapping for code statements, where the argument is a
3394 -- static string, and we want to preserve warnings involving
3395 -- sequences of such statements.
a52fefe6
AC
3396
3397 elsif Nkind (A) = N_Op_Concat
3398 and then Nkind (N) = N_Procedure_Call_Statement
3399 and then Expander_Active
76e776e5
AC
3400 and then
3401 not (Is_Intrinsic_Subprogram (Nam)
3402 and then Chars (Nam) = Name_Asm)
a7a3cf5c 3403 and then not Static_Concatenation (A)
a52fefe6
AC
3404 then
3405 Establish_Transient_Scope (A, False);
3406 Resolve (A, Etype (F));
3407
996ae0b0 3408 else
fbf5a39b
AC
3409 if Nkind (A) = N_Type_Conversion
3410 and then Is_Array_Type (Etype (F))
3411 and then not Same_Ancestor (Etype (F), Etype (Expression (A)))
3412 and then
3413 (Is_Limited_Type (Etype (F))
3414 or else Is_Limited_Type (Etype (Expression (A))))
3415 then
3416 Error_Msg_N
758c442c
GD
3417 ("conversion between unrelated limited array types " &
3418 "not allowed (\A\I-00246)", A);
fbf5a39b 3419
758c442c
GD
3420 if Is_Limited_Type (Etype (F)) then
3421 Explain_Limited_Type (Etype (F), A);
3422 end if;
fbf5a39b 3423
758c442c
GD
3424 if Is_Limited_Type (Etype (Expression (A))) then
3425 Explain_Limited_Type (Etype (Expression (A)), A);
3426 end if;
fbf5a39b
AC
3427 end if;
3428
c8ef728f
ES
3429 -- (Ada 2005: AI-251): If the actual is an allocator whose
3430 -- directly designated type is a class-wide interface, we build
3431 -- an anonymous access type to use it as the type of the
3432 -- allocator. Later, when the subprogram call is expanded, if
3433 -- the interface has a secondary dispatch table the expander
3434 -- will add a type conversion to force the correct displacement
3435 -- of the pointer.
3436
3437 if Nkind (A) = N_Allocator then
3438 declare
3439 DDT : constant Entity_Id :=
3440 Directly_Designated_Type (Base_Type (Etype (F)));
45fc7ddb 3441
c8ef728f 3442 New_Itype : Entity_Id;
45fc7ddb 3443
c8ef728f
ES
3444 begin
3445 if Is_Class_Wide_Type (DDT)
3446 and then Is_Interface (DDT)
3447 then
3448 New_Itype := Create_Itype (E_Anonymous_Access_Type, A);
45fc7ddb 3449 Set_Etype (New_Itype, Etype (A));
c8ef728f
ES
3450 Set_Directly_Designated_Type (New_Itype,
3451 Directly_Designated_Type (Etype (A)));
3452 Set_Etype (A, New_Itype);
3453 end if;
0669bebe
GB
3454
3455 -- Ada 2005, AI-162:If the actual is an allocator, the
3456 -- innermost enclosing statement is the master of the
b7d1f17f
HK
3457 -- created object. This needs to be done with expansion
3458 -- enabled only, otherwise the transient scope will not
3459 -- be removed in the expansion of the wrapped construct.
0669bebe 3460
45fc7ddb 3461 if (Is_Controlled (DDT) or else Has_Task (DDT))
b7d1f17f 3462 and then Expander_Active
0669bebe
GB
3463 then
3464 Establish_Transient_Scope (A, False);
3465 end if;
c8ef728f
ES
3466 end;
3467 end if;
3468
b7d1f17f
HK
3469 -- (Ada 2005): The call may be to a primitive operation of
3470 -- a tagged synchronized type, declared outside of the type.
3471 -- In this case the controlling actual must be converted to
3472 -- its corresponding record type, which is the formal type.
45fc7ddb
HK
3473 -- The actual may be a subtype, either because of a constraint
3474 -- or because it is a generic actual, so use base type to
3475 -- locate concurrent type.
b7d1f17f 3476
15e4986c
JM
3477 A_Typ := Base_Type (Etype (A));
3478 F_Typ := Base_Type (Etype (F));
3479
3480 declare
3481 Full_A_Typ : Entity_Id;
3482
3483 begin
3484 if Present (Full_View (A_Typ)) then
3485 Full_A_Typ := Base_Type (Full_View (A_Typ));
3486 else
3487 Full_A_Typ := A_Typ;
3488 end if;
b7d1f17f 3489
15e4986c
JM
3490 -- Tagged synchronized type (case 1): the actual is a
3491 -- concurrent type
3492
3493 if Is_Concurrent_Type (A_Typ)
3494 and then Corresponding_Record_Type (A_Typ) = F_Typ
3495 then
3496 Rewrite (A,
3497 Unchecked_Convert_To
3498 (Corresponding_Record_Type (A_Typ), A));
3499 Resolve (A, Etype (F));
3500
3501 -- Tagged synchronized type (case 2): the formal is a
3502 -- concurrent type
3503
3504 elsif Ekind (Full_A_Typ) = E_Record_Type
3505 and then Present
3506 (Corresponding_Concurrent_Type (Full_A_Typ))
3507 and then Is_Concurrent_Type (F_Typ)
3508 and then Present (Corresponding_Record_Type (F_Typ))
3509 and then Full_A_Typ = Corresponding_Record_Type (F_Typ)
3510 then
3511 Resolve (A, Corresponding_Record_Type (F_Typ));
3512
3513 -- Common case
3514
3515 else
3516 Resolve (A, Etype (F));
3517 end if;
3518 end;
996ae0b0
RK
3519 end if;
3520
3521 A_Typ := Etype (A);
3522 F_Typ := Etype (F);
3523
bb481772
AC
3524 -- Save actual for subsequent check on order dependence,
3525 -- and indicate whether actual is modifiable. For AI05-0144
3526
3527 -- Save_Actual (A,
3528 -- Ekind (F) /= E_In_Parameter or else Is_Access_Type (F_Typ));
87dc09cb 3529 -- Why is this code commented out ???
bb481772 3530
26570b21
RD
3531 -- For mode IN, if actual is an entity, and the type of the formal
3532 -- has warnings suppressed, then we reset Never_Set_In_Source for
3533 -- the calling entity. The reason for this is to catch cases like
3534 -- GNAT.Spitbol.Patterns.Vstring_Var where the called subprogram
3535 -- uses trickery to modify an IN parameter.
3536
3537 if Ekind (F) = E_In_Parameter
3538 and then Is_Entity_Name (A)
3539 and then Present (Entity (A))
3540 and then Ekind (Entity (A)) = E_Variable
3541 and then Has_Warnings_Off (F_Typ)
3542 then
3543 Set_Never_Set_In_Source (Entity (A), False);
3544 end if;
3545
fbf5a39b
AC
3546 -- Perform error checks for IN and IN OUT parameters
3547
3548 if Ekind (F) /= E_Out_Parameter then
3549
3550 -- Check unset reference. For scalar parameters, it is clearly
3551 -- wrong to pass an uninitialized value as either an IN or
3552 -- IN-OUT parameter. For composites, it is also clearly an
3553 -- error to pass a completely uninitialized value as an IN
3554 -- parameter, but the case of IN OUT is trickier. We prefer
3555 -- not to give a warning here. For example, suppose there is
3556 -- a routine that sets some component of a record to False.
3557 -- It is perfectly reasonable to make this IN-OUT and allow
3558 -- either initialized or uninitialized records to be passed
3559 -- in this case.
3560
3561 -- For partially initialized composite values, we also avoid
3562 -- warnings, since it is quite likely that we are passing a
3563 -- partially initialized value and only the initialized fields
3564 -- will in fact be read in the subprogram.
3565
3566 if Is_Scalar_Type (A_Typ)
3567 or else (Ekind (F) = E_In_Parameter
3568 and then not Is_Partially_Initialized_Type (A_Typ))
996ae0b0 3569 then
fbf5a39b 3570 Check_Unset_Reference (A);
996ae0b0 3571 end if;
996ae0b0 3572
758c442c
GD
3573 -- In Ada 83 we cannot pass an OUT parameter as an IN or IN OUT
3574 -- actual to a nested call, since this is case of reading an
3575 -- out parameter, which is not allowed.
996ae0b0 3576
0ab80019 3577 if Ada_Version = Ada_83
996ae0b0
RK
3578 and then Is_Entity_Name (A)
3579 and then Ekind (Entity (A)) = E_Out_Parameter
3580 then
3581 Error_Msg_N ("(Ada 83) illegal reading of out parameter", A);
3582 end if;
3583 end if;
3584
67ce0d7e
RD
3585 -- Case of OUT or IN OUT parameter
3586
36fcf362 3587 if Ekind (F) /= E_In_Parameter then
67ce0d7e
RD
3588
3589 -- For an Out parameter, check for useless assignment. Note
45fc7ddb
HK
3590 -- that we can't set Last_Assignment this early, because we may
3591 -- kill current values in Resolve_Call, and that call would
3592 -- clobber the Last_Assignment field.
67ce0d7e 3593
45fc7ddb
HK
3594 -- Note: call Warn_On_Useless_Assignment before doing the check
3595 -- below for Is_OK_Variable_For_Out_Formal so that the setting
3596 -- of Referenced_As_LHS/Referenced_As_Out_Formal properly
3597 -- reflects the last assignment, not this one!
36fcf362 3598
67ce0d7e 3599 if Ekind (F) = E_Out_Parameter then
36fcf362 3600 if Warn_On_Modified_As_Out_Parameter (F)
67ce0d7e
RD
3601 and then Is_Entity_Name (A)
3602 and then Present (Entity (A))
36fcf362 3603 and then Comes_From_Source (N)
67ce0d7e 3604 then
36fcf362 3605 Warn_On_Useless_Assignment (Entity (A), A);
67ce0d7e
RD
3606 end if;
3607 end if;
3608
36fcf362
RD
3609 -- Validate the form of the actual. Note that the call to
3610 -- Is_OK_Variable_For_Out_Formal generates the required
3611 -- reference in this case.
3612
3613 if not Is_OK_Variable_For_Out_Formal (A) then
3614 Error_Msg_NE ("actual for& must be a variable", A, F);
3615 end if;
3616
67ce0d7e 3617 -- What's the following about???
fbf5a39b
AC
3618
3619 if Is_Entity_Name (A) then
3620 Kill_Checks (Entity (A));
3621 else
3622 Kill_All_Checks;
3623 end if;
3624 end if;
3625
3626 if Etype (A) = Any_Type then
3627 Set_Etype (N, Any_Type);
3628 return;
3629 end if;
3630
996ae0b0
RK
3631 -- Apply appropriate range checks for in, out, and in-out
3632 -- parameters. Out and in-out parameters also need a separate
3633 -- check, if there is a type conversion, to make sure the return
3634 -- value meets the constraints of the variable before the
3635 -- conversion.
3636
3637 -- Gigi looks at the check flag and uses the appropriate types.
3638 -- For now since one flag is used there is an optimization which
3639 -- might not be done in the In Out case since Gigi does not do
3640 -- any analysis. More thought required about this ???
3641
8a95f4e8 3642 if Ekind_In (F, E_In_Parameter, E_In_Out_Parameter) then
996ae0b0
RK
3643 if Is_Scalar_Type (Etype (A)) then
3644 Apply_Scalar_Range_Check (A, F_Typ);
3645
3646 elsif Is_Array_Type (Etype (A)) then
3647 Apply_Length_Check (A, F_Typ);
3648
3649 elsif Is_Record_Type (F_Typ)
3650 and then Has_Discriminants (F_Typ)
3651 and then Is_Constrained (F_Typ)
3652 and then (not Is_Derived_Type (F_Typ)
3653 or else Comes_From_Source (Nam))
3654 then
3655 Apply_Discriminant_Check (A, F_Typ);
3656
3657 elsif Is_Access_Type (F_Typ)
3658 and then Is_Array_Type (Designated_Type (F_Typ))
3659 and then Is_Constrained (Designated_Type (F_Typ))
3660 then
3661 Apply_Length_Check (A, F_Typ);
3662
3663 elsif Is_Access_Type (F_Typ)
3664 and then Has_Discriminants (Designated_Type (F_Typ))
3665 and then Is_Constrained (Designated_Type (F_Typ))
3666 then
3667 Apply_Discriminant_Check (A, F_Typ);
3668
3669 else
3670 Apply_Range_Check (A, F_Typ);
3671 end if;
2820d220 3672
0ab80019 3673 -- Ada 2005 (AI-231)
2820d220 3674
0ab80019 3675 if Ada_Version >= Ada_05
2820d220 3676 and then Is_Access_Type (F_Typ)
1420b484 3677 and then Can_Never_Be_Null (F_Typ)
aa5147f0 3678 and then Known_Null (A)
2820d220 3679 then
1420b484
JM
3680 Apply_Compile_Time_Constraint_Error
3681 (N => A,
aa5147f0 3682 Msg => "(Ada 2005) null not allowed in "
1420b484
JM
3683 & "null-excluding formal?",
3684 Reason => CE_Null_Not_Allowed);
2820d220 3685 end if;
996ae0b0
RK
3686 end if;
3687
8a95f4e8 3688 if Ekind_In (F, E_Out_Parameter, E_In_Out_Parameter) then
996ae0b0
RK
3689 if Nkind (A) = N_Type_Conversion then
3690 if Is_Scalar_Type (A_Typ) then
3691 Apply_Scalar_Range_Check
3692 (Expression (A), Etype (Expression (A)), A_Typ);
3693 else
3694 Apply_Range_Check
3695 (Expression (A), Etype (Expression (A)), A_Typ);
3696 end if;
3697
3698 else
3699 if Is_Scalar_Type (F_Typ) then
3700 Apply_Scalar_Range_Check (A, A_Typ, F_Typ);
3701
3702 elsif Is_Array_Type (F_Typ)
3703 and then Ekind (F) = E_Out_Parameter
3704 then
3705 Apply_Length_Check (A, F_Typ);
3706
3707 else
3708 Apply_Range_Check (A, A_Typ, F_Typ);
3709 end if;
3710 end if;
3711 end if;
3712
3713 -- An actual associated with an access parameter is implicitly
45fc7ddb
HK
3714 -- converted to the anonymous access type of the formal and must
3715 -- satisfy the legality checks for access conversions.
996ae0b0
RK
3716
3717 if Ekind (F_Typ) = E_Anonymous_Access_Type then
3718 if not Valid_Conversion (A, F_Typ, A) then
3719 Error_Msg_N
3720 ("invalid implicit conversion for access parameter", A);
3721 end if;
3722 end if;
3723
3724 -- Check bad case of atomic/volatile argument (RM C.6(12))
3725
3726 if Is_By_Reference_Type (Etype (F))
3727 and then Comes_From_Source (N)
3728 then
3729 if Is_Atomic_Object (A)
3730 and then not Is_Atomic (Etype (F))
3731 then
3732 Error_Msg_N
3733 ("cannot pass atomic argument to non-atomic formal",
3734 N);
3735
3736 elsif Is_Volatile_Object (A)
3737 and then not Is_Volatile (Etype (F))
3738 then
3739 Error_Msg_N
3740 ("cannot pass volatile argument to non-volatile formal",
3741 N);
3742 end if;
3743 end if;
3744
3745 -- Check that subprograms don't have improper controlling
d81b4bfe 3746 -- arguments (RM 3.9.2 (9)).
996ae0b0 3747
0669bebe
GB
3748 -- A primitive operation may have an access parameter of an
3749 -- incomplete tagged type, but a dispatching call is illegal
3750 -- if the type is still incomplete.
3751
996ae0b0
RK
3752 if Is_Controlling_Formal (F) then
3753 Set_Is_Controlling_Actual (A);
0669bebe
GB
3754
3755 if Ekind (Etype (F)) = E_Anonymous_Access_Type then
3756 declare
3757 Desig : constant Entity_Id := Designated_Type (Etype (F));
3758 begin
3759 if Ekind (Desig) = E_Incomplete_Type
3760 and then No (Full_View (Desig))
3761 and then No (Non_Limited_View (Desig))
3762 then
3763 Error_Msg_NE
3764 ("premature use of incomplete type& " &
3765 "in dispatching call", A, Desig);
3766 end if;
3767 end;
3768 end if;
3769
996ae0b0
RK
3770 elsif Nkind (A) = N_Explicit_Dereference then
3771 Validate_Remote_Access_To_Class_Wide_Type (A);
3772 end if;
3773
3774 if (Is_Class_Wide_Type (A_Typ) or else Is_Dynamically_Tagged (A))
3775 and then not Is_Class_Wide_Type (F_Typ)
3776 and then not Is_Controlling_Formal (F)
3777 then
3778 Error_Msg_N ("class-wide argument not allowed here!", A);
07fc65c4
GB
3779
3780 if Is_Subprogram (Nam)
3781 and then Comes_From_Source (Nam)
3782 then
996ae0b0
RK
3783 Error_Msg_Node_2 := F_Typ;
3784 Error_Msg_NE
82c80734 3785 ("& is not a dispatching operation of &!", A, Nam);
996ae0b0
RK
3786 end if;
3787
3788 elsif Is_Access_Type (A_Typ)
3789 and then Is_Access_Type (F_Typ)
3790 and then Ekind (F_Typ) /= E_Access_Subprogram_Type
aa5147f0 3791 and then Ekind (F_Typ) /= E_Anonymous_Access_Subprogram_Type
996ae0b0 3792 and then (Is_Class_Wide_Type (Designated_Type (A_Typ))
07fc65c4
GB
3793 or else (Nkind (A) = N_Attribute_Reference
3794 and then
46fe0142 3795 Is_Class_Wide_Type (Etype (Prefix (A)))))
996ae0b0
RK
3796 and then not Is_Class_Wide_Type (Designated_Type (F_Typ))
3797 and then not Is_Controlling_Formal (F)
ae65d635 3798
46fe0142 3799 -- Disable these checks for call to imported C++ subprograms
ae65d635 3800
46fe0142
AC
3801 and then not
3802 (Is_Entity_Name (Name (N))
3803 and then Is_Imported (Entity (Name (N)))
3804 and then Convention (Entity (Name (N))) = Convention_CPP)
996ae0b0
RK
3805 then
3806 Error_Msg_N
3807 ("access to class-wide argument not allowed here!", A);
07fc65c4
GB
3808
3809 if Is_Subprogram (Nam)
3810 and then Comes_From_Source (Nam)
3811 then
996ae0b0
RK
3812 Error_Msg_Node_2 := Designated_Type (F_Typ);
3813 Error_Msg_NE
82c80734 3814 ("& is not a dispatching operation of &!", A, Nam);
996ae0b0
RK
3815 end if;
3816 end if;
3817
3818 Eval_Actual (A);
3819
3820 -- If it is a named association, treat the selector_name as
3821 -- a proper identifier, and mark the corresponding entity.
3822
3823 if Nkind (Parent (A)) = N_Parameter_Association then
3824 Set_Entity (Selector_Name (Parent (A)), F);
3825 Generate_Reference (F, Selector_Name (Parent (A)));
3826 Set_Etype (Selector_Name (Parent (A)), F_Typ);
3827 Generate_Reference (F_Typ, N, ' ');
3828 end if;
3829
3830 Prev := A;
fbf5a39b
AC
3831
3832 if Ekind (F) /= E_Out_Parameter then
3833 Check_Unset_Reference (A);
3834 end if;
3835
996ae0b0
RK
3836 Next_Actual (A);
3837
fbf5a39b
AC
3838 -- Case where actual is not present
3839
996ae0b0
RK
3840 else
3841 Insert_Default;
3842 end if;
3843
3844 Next_Formal (F);
3845 end loop;
996ae0b0
RK
3846 end Resolve_Actuals;
3847
3848 -----------------------
3849 -- Resolve_Allocator --
3850 -----------------------
3851
3852 procedure Resolve_Allocator (N : Node_Id; Typ : Entity_Id) is
3853 E : constant Node_Id := Expression (N);
3854 Subtyp : Entity_Id;
3855 Discrim : Entity_Id;
3856 Constr : Node_Id;
b7d1f17f
HK
3857 Aggr : Node_Id;
3858 Assoc : Node_Id := Empty;
996ae0b0
RK
3859 Disc_Exp : Node_Id;
3860
b7d1f17f
HK
3861 procedure Check_Allocator_Discrim_Accessibility
3862 (Disc_Exp : Node_Id;
3863 Alloc_Typ : Entity_Id);
3864 -- Check that accessibility level associated with an access discriminant
3865 -- initialized in an allocator by the expression Disc_Exp is not deeper
3866 -- than the level of the allocator type Alloc_Typ. An error message is
3867 -- issued if this condition is violated. Specialized checks are done for
3868 -- the cases of a constraint expression which is an access attribute or
3869 -- an access discriminant.
3870
07fc65c4 3871 function In_Dispatching_Context return Boolean;
b7d1f17f
HK
3872 -- If the allocator is an actual in a call, it is allowed to be class-
3873 -- wide when the context is not because it is a controlling actual.
3874
3875 procedure Propagate_Coextensions (Root : Node_Id);
3876 -- Propagate all nested coextensions which are located one nesting
3877 -- level down the tree to the node Root. Example:
3878 --
3879 -- Top_Record
3880 -- Level_1_Coextension
3881 -- Level_2_Coextension
3882 --
3883 -- The algorithm is paired with delay actions done by the Expander. In
3884 -- the above example, assume all coextensions are controlled types.
3885 -- The cycle of analysis, resolution and expansion will yield:
3886 --
3887 -- 1) Analyze Top_Record
3888 -- 2) Analyze Level_1_Coextension
3889 -- 3) Analyze Level_2_Coextension
f3d57416 3890 -- 4) Resolve Level_2_Coextension. The allocator is marked as a
b7d1f17f
HK
3891 -- coextension.
3892 -- 5) Expand Level_2_Coextension. A temporary variable Temp_1 is
3893 -- generated to capture the allocated object. Temp_1 is attached
3894 -- to the coextension chain of Level_2_Coextension.
3895 -- 6) Resolve Level_1_Coextension. The allocator is marked as a
3896 -- coextension. A forward tree traversal is performed which finds
3897 -- Level_2_Coextension's list and copies its contents into its
3898 -- own list.
3899 -- 7) Expand Level_1_Coextension. A temporary variable Temp_2 is
3900 -- generated to capture the allocated object. Temp_2 is attached
3901 -- to the coextension chain of Level_1_Coextension. Currently, the
3902 -- contents of the list are [Temp_2, Temp_1].
3903 -- 8) Resolve Top_Record. A forward tree traversal is performed which
3904 -- finds Level_1_Coextension's list and copies its contents into
3905 -- its own list.
3906 -- 9) Expand Top_Record. Generate finalization calls for Temp_1 and
3907 -- Temp_2 and attach them to Top_Record's finalization list.
3908
3909 -------------------------------------------
3910 -- Check_Allocator_Discrim_Accessibility --
3911 -------------------------------------------
3912
3913 procedure Check_Allocator_Discrim_Accessibility
3914 (Disc_Exp : Node_Id;
3915 Alloc_Typ : Entity_Id)
3916 is
3917 begin
3918 if Type_Access_Level (Etype (Disc_Exp)) >
3919 Type_Access_Level (Alloc_Typ)
3920 then
3921 Error_Msg_N
3922 ("operand type has deeper level than allocator type", Disc_Exp);
3923
3924 -- When the expression is an Access attribute the level of the prefix
3925 -- object must not be deeper than that of the allocator's type.
3926
3927 elsif Nkind (Disc_Exp) = N_Attribute_Reference
3928 and then Get_Attribute_Id (Attribute_Name (Disc_Exp))
3929 = Attribute_Access
3930 and then Object_Access_Level (Prefix (Disc_Exp))
3931 > Type_Access_Level (Alloc_Typ)
3932 then
3933 Error_Msg_N
3934 ("prefix of attribute has deeper level than allocator type",
3935 Disc_Exp);
3936
3937 -- When the expression is an access discriminant the check is against
3938 -- the level of the prefix object.
3939
3940 elsif Ekind (Etype (Disc_Exp)) = E_Anonymous_Access_Type
3941 and then Nkind (Disc_Exp) = N_Selected_Component
3942 and then Object_Access_Level (Prefix (Disc_Exp))
3943 > Type_Access_Level (Alloc_Typ)
3944 then
3945 Error_Msg_N
3946 ("access discriminant has deeper level than allocator type",
3947 Disc_Exp);
3948
3949 -- All other cases are legal
3950
3951 else
3952 null;
3953 end if;
3954 end Check_Allocator_Discrim_Accessibility;
07fc65c4
GB
3955
3956 ----------------------------
3957 -- In_Dispatching_Context --
3958 ----------------------------
3959
3960 function In_Dispatching_Context return Boolean is
3961 Par : constant Node_Id := Parent (N);
07fc65c4 3962 begin
45fc7ddb 3963 return Nkind_In (Par, N_Function_Call, N_Procedure_Call_Statement)
07fc65c4
GB
3964 and then Is_Entity_Name (Name (Par))
3965 and then Is_Dispatching_Operation (Entity (Name (Par)));
3966 end In_Dispatching_Context;
3967
b7d1f17f
HK
3968 ----------------------------
3969 -- Propagate_Coextensions --
3970 ----------------------------
3971
3972 procedure Propagate_Coextensions (Root : Node_Id) is
3973
3974 procedure Copy_List (From : Elist_Id; To : Elist_Id);
3975 -- Copy the contents of list From into list To, preserving the
3976 -- order of elements.
3977
3978 function Process_Allocator (Nod : Node_Id) return Traverse_Result;
3979 -- Recognize an allocator or a rewritten allocator node and add it
f3d57416 3980 -- along with its nested coextensions to the list of Root.
b7d1f17f
HK
3981
3982 ---------------
3983 -- Copy_List --
3984 ---------------
3985
3986 procedure Copy_List (From : Elist_Id; To : Elist_Id) is
3987 From_Elmt : Elmt_Id;
3988 begin
3989 From_Elmt := First_Elmt (From);
3990 while Present (From_Elmt) loop
3991 Append_Elmt (Node (From_Elmt), To);
3992 Next_Elmt (From_Elmt);
3993 end loop;
3994 end Copy_List;
3995
3996 -----------------------
3997 -- Process_Allocator --
3998 -----------------------
3999
4000 function Process_Allocator (Nod : Node_Id) return Traverse_Result is
4001 Orig_Nod : Node_Id := Nod;
4002
4003 begin
4004 -- This is a possible rewritten subtype indication allocator. Any
4005 -- nested coextensions will appear as discriminant constraints.
4006
4007 if Nkind (Nod) = N_Identifier
4008 and then Present (Original_Node (Nod))
4009 and then Nkind (Original_Node (Nod)) = N_Subtype_Indication
4010 then
4011 declare
4012 Discr : Node_Id;
4013 Discr_Elmt : Elmt_Id;
4014
4015 begin
4016 if Is_Record_Type (Entity (Nod)) then
4017 Discr_Elmt :=
4018 First_Elmt (Discriminant_Constraint (Entity (Nod)));
4019 while Present (Discr_Elmt) loop
4020 Discr := Node (Discr_Elmt);
4021
4022 if Nkind (Discr) = N_Identifier
4023 and then Present (Original_Node (Discr))
4024 and then Nkind (Original_Node (Discr)) = N_Allocator
4025 and then Present (Coextensions (
4026 Original_Node (Discr)))
4027 then
4028 if No (Coextensions (Root)) then
4029 Set_Coextensions (Root, New_Elmt_List);
4030 end if;
4031
4032 Copy_List
4033 (From => Coextensions (Original_Node (Discr)),
4034 To => Coextensions (Root));
4035 end if;
4036
4037 Next_Elmt (Discr_Elmt);
4038 end loop;
4039
4040 -- There is no need to continue the traversal of this
4041 -- subtree since all the information has already been
4042 -- propagated.
4043
4044 return Skip;
4045 end if;
4046 end;
4047
4048 -- Case of either a stand alone allocator or a rewritten allocator
4049 -- with an aggregate.
4050
4051 else
4052 if Present (Original_Node (Nod)) then
4053 Orig_Nod := Original_Node (Nod);
4054 end if;
4055
4056 if Nkind (Orig_Nod) = N_Allocator then
4057
4058 -- Propagate the list of nested coextensions to the Root
4059 -- allocator. This is done through list copy since a single
4060 -- allocator may have multiple coextensions. Do not touch
4061 -- coextensions roots.
4062
4063 if not Is_Coextension_Root (Orig_Nod)
4064 and then Present (Coextensions (Orig_Nod))
4065 then
4066 if No (Coextensions (Root)) then
4067 Set_Coextensions (Root, New_Elmt_List);
4068 end if;
4069
4070 Copy_List
4071 (From => Coextensions (Orig_Nod),
4072 To => Coextensions (Root));
4073 end if;
4074
4075 -- There is no need to continue the traversal of this
4076 -- subtree since all the information has already been
4077 -- propagated.
4078
4079 return Skip;
4080 end if;
4081 end if;
4082
4083 -- Keep on traversing, looking for the next allocator
4084
4085 return OK;
4086 end Process_Allocator;
4087
4088 procedure Process_Allocators is
4089 new Traverse_Proc (Process_Allocator);
4090
4091 -- Start of processing for Propagate_Coextensions
4092
4093 begin
4094 Process_Allocators (Expression (Root));
4095 end Propagate_Coextensions;
4096
07fc65c4
GB
4097 -- Start of processing for Resolve_Allocator
4098
996ae0b0
RK
4099 begin
4100 -- Replace general access with specific type
4101
4102 if Ekind (Etype (N)) = E_Allocator_Type then
4103 Set_Etype (N, Base_Type (Typ));
4104 end if;
4105
0669bebe 4106 if Is_Abstract_Type (Typ) then
996ae0b0
RK
4107 Error_Msg_N ("type of allocator cannot be abstract", N);
4108 end if;
4109
4110 -- For qualified expression, resolve the expression using the
4111 -- given subtype (nothing to do for type mark, subtype indication)
4112
4113 if Nkind (E) = N_Qualified_Expression then
4114 if Is_Class_Wide_Type (Etype (E))
4115 and then not Is_Class_Wide_Type (Designated_Type (Typ))
07fc65c4 4116 and then not In_Dispatching_Context
996ae0b0
RK
4117 then
4118 Error_Msg_N
4119 ("class-wide allocator not allowed for this access type", N);
4120 end if;
4121
4122 Resolve (Expression (E), Etype (E));
4123 Check_Unset_Reference (Expression (E));
4124
fbf5a39b 4125 -- A qualified expression requires an exact match of the type,
7b4db06c 4126 -- class-wide matching is not allowed.
fbf5a39b 4127
7b4db06c 4128 if (Is_Class_Wide_Type (Etype (Expression (E)))
b46be8a2 4129 or else Is_Class_Wide_Type (Etype (E)))
fbf5a39b
AC
4130 and then Base_Type (Etype (Expression (E))) /= Base_Type (Etype (E))
4131 then
4132 Wrong_Type (Expression (E), Etype (E));
4133 end if;
4134
b7d1f17f
HK
4135 -- A special accessibility check is needed for allocators that
4136 -- constrain access discriminants. The level of the type of the
4137 -- expression used to constrain an access discriminant cannot be
f3d57416 4138 -- deeper than the type of the allocator (in contrast to access
b7d1f17f
HK
4139 -- parameters, where the level of the actual can be arbitrary).
4140
4141 -- We can't use Valid_Conversion to perform this check because
4142 -- in general the type of the allocator is unrelated to the type
4143 -- of the access discriminant.
4144
4145 if Ekind (Typ) /= E_Anonymous_Access_Type
4146 or else Is_Local_Anonymous_Access (Typ)
4147 then
4148 Subtyp := Entity (Subtype_Mark (E));
4149
4150 Aggr := Original_Node (Expression (E));
4151
4152 if Has_Discriminants (Subtyp)
45fc7ddb 4153 and then Nkind_In (Aggr, N_Aggregate, N_Extension_Aggregate)
b7d1f17f
HK
4154 then
4155 Discrim := First_Discriminant (Base_Type (Subtyp));
4156
4157 -- Get the first component expression of the aggregate
4158
4159 if Present (Expressions (Aggr)) then
4160 Disc_Exp := First (Expressions (Aggr));
4161
4162 elsif Present (Component_Associations (Aggr)) then
4163 Assoc := First (Component_Associations (Aggr));
4164
4165 if Present (Assoc) then
4166 Disc_Exp := Expression (Assoc);
4167 else
4168 Disc_Exp := Empty;
4169 end if;
4170
4171 else
4172 Disc_Exp := Empty;
4173 end if;
4174
4175 while Present (Discrim) and then Present (Disc_Exp) loop
4176 if Ekind (Etype (Discrim)) = E_Anonymous_Access_Type then
4177 Check_Allocator_Discrim_Accessibility (Disc_Exp, Typ);
4178 end if;
4179
4180 Next_Discriminant (Discrim);
4181
4182 if Present (Discrim) then
4183 if Present (Assoc) then
4184 Next (Assoc);
4185 Disc_Exp := Expression (Assoc);
4186
4187 elsif Present (Next (Disc_Exp)) then
4188 Next (Disc_Exp);
4189
4190 else
4191 Assoc := First (Component_Associations (Aggr));
4192
4193 if Present (Assoc) then
4194 Disc_Exp := Expression (Assoc);
4195 else
4196 Disc_Exp := Empty;
4197 end if;
4198 end if;
4199 end if;
4200 end loop;
4201 end if;
4202 end if;
4203
996ae0b0
RK
4204 -- For a subtype mark or subtype indication, freeze the subtype
4205
4206 else
4207 Freeze_Expression (E);
4208
4209 if Is_Access_Constant (Typ) and then not No_Initialization (N) then
4210 Error_Msg_N
4211 ("initialization required for access-to-constant allocator", N);
4212 end if;
4213
4214 -- A special accessibility check is needed for allocators that
4215 -- constrain access discriminants. The level of the type of the
b7d1f17f 4216 -- expression used to constrain an access discriminant cannot be
f3d57416 4217 -- deeper than the type of the allocator (in contrast to access
996ae0b0
RK
4218 -- parameters, where the level of the actual can be arbitrary).
4219 -- We can't use Valid_Conversion to perform this check because
4220 -- in general the type of the allocator is unrelated to the type
b7d1f17f 4221 -- of the access discriminant.
996ae0b0
RK
4222
4223 if Nkind (Original_Node (E)) = N_Subtype_Indication
b7d1f17f
HK
4224 and then (Ekind (Typ) /= E_Anonymous_Access_Type
4225 or else Is_Local_Anonymous_Access (Typ))
996ae0b0
RK
4226 then
4227 Subtyp := Entity (Subtype_Mark (Original_Node (E)));
4228
4229 if Has_Discriminants (Subtyp) then
4230 Discrim := First_Discriminant (Base_Type (Subtyp));
4231 Constr := First (Constraints (Constraint (Original_Node (E))));
996ae0b0
RK
4232 while Present (Discrim) and then Present (Constr) loop
4233 if Ekind (Etype (Discrim)) = E_Anonymous_Access_Type then
4234 if Nkind (Constr) = N_Discriminant_Association then
4235 Disc_Exp := Original_Node (Expression (Constr));
4236 else
4237 Disc_Exp := Original_Node (Constr);
4238 end if;
4239
b7d1f17f 4240 Check_Allocator_Discrim_Accessibility (Disc_Exp, Typ);
996ae0b0 4241 end if;
b7d1f17f 4242
996ae0b0
RK
4243 Next_Discriminant (Discrim);
4244 Next (Constr);
4245 end loop;
4246 end if;
4247 end if;
4248 end if;
4249
758c442c
GD
4250 -- Ada 2005 (AI-344): A class-wide allocator requires an accessibility
4251 -- check that the level of the type of the created object is not deeper
4252 -- than the level of the allocator's access type, since extensions can
4253 -- now occur at deeper levels than their ancestor types. This is a
4254 -- static accessibility level check; a run-time check is also needed in
4255 -- the case of an initialized allocator with a class-wide argument (see
4256 -- Expand_Allocator_Expression).
4257
4258 if Ada_Version >= Ada_05
4259 and then Is_Class_Wide_Type (Designated_Type (Typ))
4260 then
4261 declare
b7d1f17f 4262 Exp_Typ : Entity_Id;
758c442c
GD
4263
4264 begin
4265 if Nkind (E) = N_Qualified_Expression then
4266 Exp_Typ := Etype (E);
4267 elsif Nkind (E) = N_Subtype_Indication then
4268 Exp_Typ := Entity (Subtype_Mark (Original_Node (E)));
4269 else
4270 Exp_Typ := Entity (E);
4271 end if;
4272
4273 if Type_Access_Level (Exp_Typ) > Type_Access_Level (Typ) then
4274 if In_Instance_Body then
4275 Error_Msg_N ("?type in allocator has deeper level than" &
4276 " designated class-wide type", E);
c8ef728f
ES
4277 Error_Msg_N ("\?Program_Error will be raised at run time",
4278 E);
758c442c
GD
4279 Rewrite (N,
4280 Make_Raise_Program_Error (Sloc (N),
4281 Reason => PE_Accessibility_Check_Failed));
4282 Set_Etype (N, Typ);
aa180613
RD
4283
4284 -- Do not apply Ada 2005 accessibility checks on a class-wide
4285 -- allocator if the type given in the allocator is a formal
4286 -- type. A run-time check will be performed in the instance.
4287
4288 elsif not Is_Generic_Type (Exp_Typ) then
758c442c
GD
4289 Error_Msg_N ("type in allocator has deeper level than" &
4290 " designated class-wide type", E);
4291 end if;
4292 end if;
4293 end;
4294 end if;
4295
996ae0b0
RK
4296 -- Check for allocation from an empty storage pool
4297
4298 if No_Pool_Assigned (Typ) then
4299 declare
4300 Loc : constant Source_Ptr := Sloc (N);
996ae0b0 4301 begin
ed2233dc 4302 Error_Msg_N ("?allocation from empty storage pool!", N);
aa5147f0 4303 Error_Msg_N ("\?Storage_Error will be raised at run time!", N);
996ae0b0 4304 Insert_Action (N,
07fc65c4
GB
4305 Make_Raise_Storage_Error (Loc,
4306 Reason => SE_Empty_Storage_Pool));
996ae0b0 4307 end;
1420b484
JM
4308
4309 -- If the context is an unchecked conversion, as may happen within
4310 -- an inlined subprogram, the allocator is being resolved with its
4311 -- own anonymous type. In that case, if the target type has a specific
4312 -- storage pool, it must be inherited explicitly by the allocator type.
4313
4314 elsif Nkind (Parent (N)) = N_Unchecked_Type_Conversion
4315 and then No (Associated_Storage_Pool (Typ))
4316 then
4317 Set_Associated_Storage_Pool
4318 (Typ, Associated_Storage_Pool (Etype (Parent (N))));
996ae0b0 4319 end if;
b7d1f17f
HK
4320
4321 -- An erroneous allocator may be rewritten as a raise Program_Error
4322 -- statement.
4323
4324 if Nkind (N) = N_Allocator then
4325
4326 -- An anonymous access discriminant is the definition of a
aa5147f0 4327 -- coextension.
b7d1f17f
HK
4328
4329 if Ekind (Typ) = E_Anonymous_Access_Type
4330 and then Nkind (Associated_Node_For_Itype (Typ)) =
4331 N_Discriminant_Specification
4332 then
4333 -- Avoid marking an allocator as a dynamic coextension if it is
aa5147f0 4334 -- within a static construct.
b7d1f17f
HK
4335
4336 if not Is_Static_Coextension (N) then
aa5147f0 4337 Set_Is_Dynamic_Coextension (N);
b7d1f17f
HK
4338 end if;
4339
4340 -- Cleanup for potential static coextensions
4341
4342 else
aa5147f0
ES
4343 Set_Is_Dynamic_Coextension (N, False);
4344 Set_Is_Static_Coextension (N, False);
b7d1f17f
HK
4345 end if;
4346
aa5147f0
ES
4347 -- There is no need to propagate any nested coextensions if they
4348 -- are marked as static since they will be rewritten on the spot.
4349
4350 if not Is_Static_Coextension (N) then
4351 Propagate_Coextensions (N);
4352 end if;
b7d1f17f 4353 end if;
996ae0b0
RK
4354 end Resolve_Allocator;
4355
4356 ---------------------------
4357 -- Resolve_Arithmetic_Op --
4358 ---------------------------
4359
4360 -- Used for resolving all arithmetic operators except exponentiation
4361
4362 procedure Resolve_Arithmetic_Op (N : Node_Id; Typ : Entity_Id) is
fbf5a39b
AC
4363 L : constant Node_Id := Left_Opnd (N);
4364 R : constant Node_Id := Right_Opnd (N);
4365 TL : constant Entity_Id := Base_Type (Etype (L));
4366 TR : constant Entity_Id := Base_Type (Etype (R));
4367 T : Entity_Id;
4368 Rop : Node_Id;
996ae0b0
RK
4369
4370 B_Typ : constant Entity_Id := Base_Type (Typ);
4371 -- We do the resolution using the base type, because intermediate values
4372 -- in expressions always are of the base type, not a subtype of it.
4373
aa180613
RD
4374 function Expected_Type_Is_Any_Real (N : Node_Id) return Boolean;
4375 -- Returns True if N is in a context that expects "any real type"
4376
996ae0b0
RK
4377 function Is_Integer_Or_Universal (N : Node_Id) return Boolean;
4378 -- Return True iff given type is Integer or universal real/integer
4379
4380 procedure Set_Mixed_Mode_Operand (N : Node_Id; T : Entity_Id);
4381 -- Choose type of integer literal in fixed-point operation to conform
4382 -- to available fixed-point type. T is the type of the other operand,
4383 -- which is needed to determine the expected type of N.
4384
4385 procedure Set_Operand_Type (N : Node_Id);
4386 -- Set operand type to T if universal
4387
aa180613
RD
4388 -------------------------------
4389 -- Expected_Type_Is_Any_Real --
4390 -------------------------------
4391
4392 function Expected_Type_Is_Any_Real (N : Node_Id) return Boolean is
4393 begin
4394 -- N is the expression after "delta" in a fixed_point_definition;
4395 -- see RM-3.5.9(6):
4396
45fc7ddb
HK
4397 return Nkind_In (Parent (N), N_Ordinary_Fixed_Point_Definition,
4398 N_Decimal_Fixed_Point_Definition,
aa180613
RD
4399
4400 -- N is one of the bounds in a real_range_specification;
4401 -- see RM-3.5.7(5):
4402
45fc7ddb 4403 N_Real_Range_Specification,
aa180613
RD
4404
4405 -- N is the expression of a delta_constraint;
4406 -- see RM-J.3(3):
4407
45fc7ddb 4408 N_Delta_Constraint);
aa180613
RD
4409 end Expected_Type_Is_Any_Real;
4410
996ae0b0
RK
4411 -----------------------------
4412 -- Is_Integer_Or_Universal --
4413 -----------------------------
4414
4415 function Is_Integer_Or_Universal (N : Node_Id) return Boolean is
4416 T : Entity_Id;
4417 Index : Interp_Index;
4418 It : Interp;
4419
4420 begin
4421 if not Is_Overloaded (N) then
4422 T := Etype (N);
4423 return Base_Type (T) = Base_Type (Standard_Integer)
4424 or else T = Universal_Integer
4425 or else T = Universal_Real;
4426 else
4427 Get_First_Interp (N, Index, It);
996ae0b0 4428 while Present (It.Typ) loop
996ae0b0
RK
4429 if Base_Type (It.Typ) = Base_Type (Standard_Integer)
4430 or else It.Typ = Universal_Integer
4431 or else It.Typ = Universal_Real
4432 then
4433 return True;
4434 end if;
4435
4436 Get_Next_Interp (Index, It);
4437 end loop;
4438 end if;
4439
4440 return False;
4441 end Is_Integer_Or_Universal;
4442
4443 ----------------------------
4444 -- Set_Mixed_Mode_Operand --
4445 ----------------------------
4446
4447 procedure Set_Mixed_Mode_Operand (N : Node_Id; T : Entity_Id) is
4448 Index : Interp_Index;
4449 It : Interp;
4450
4451 begin
4452 if Universal_Interpretation (N) = Universal_Integer then
4453
4454 -- A universal integer literal is resolved as standard integer
758c442c
GD
4455 -- except in the case of a fixed-point result, where we leave it
4456 -- as universal (to be handled by Exp_Fixd later on)
996ae0b0
RK
4457
4458 if Is_Fixed_Point_Type (T) then
4459 Resolve (N, Universal_Integer);
4460 else
4461 Resolve (N, Standard_Integer);
4462 end if;
4463
4464 elsif Universal_Interpretation (N) = Universal_Real
4465 and then (T = Base_Type (Standard_Integer)
4466 or else T = Universal_Integer
4467 or else T = Universal_Real)
4468 then
4469 -- A universal real can appear in a fixed-type context. We resolve
4470 -- the literal with that context, even though this might raise an
4471 -- exception prematurely (the other operand may be zero).
4472
4473 Resolve (N, B_Typ);
4474
4475 elsif Etype (N) = Base_Type (Standard_Integer)
4476 and then T = Universal_Real
4477 and then Is_Overloaded (N)
4478 then
4479 -- Integer arg in mixed-mode operation. Resolve with universal
4480 -- type, in case preference rule must be applied.
4481
4482 Resolve (N, Universal_Integer);
4483
4484 elsif Etype (N) = T
4485 and then B_Typ /= Universal_Fixed
4486 then
a77842bd 4487 -- Not a mixed-mode operation, resolve with context
996ae0b0
RK
4488
4489 Resolve (N, B_Typ);
4490
4491 elsif Etype (N) = Any_Fixed then
4492
a77842bd 4493 -- N may itself be a mixed-mode operation, so use context type
996ae0b0
RK
4494
4495 Resolve (N, B_Typ);
4496
4497 elsif Is_Fixed_Point_Type (T)
4498 and then B_Typ = Universal_Fixed
4499 and then Is_Overloaded (N)
4500 then
4501 -- Must be (fixed * fixed) operation, operand must have one
4502 -- compatible interpretation.
4503
4504 Resolve (N, Any_Fixed);
4505
4506 elsif Is_Fixed_Point_Type (B_Typ)
4507 and then (T = Universal_Real
4508 or else Is_Fixed_Point_Type (T))
4509 and then Is_Overloaded (N)
4510 then
4511 -- C * F(X) in a fixed context, where C is a real literal or a
4512 -- fixed-point expression. F must have either a fixed type
4513 -- interpretation or an integer interpretation, but not both.
4514
4515 Get_First_Interp (N, Index, It);
996ae0b0 4516 while Present (It.Typ) loop
996ae0b0
RK
4517 if Base_Type (It.Typ) = Base_Type (Standard_Integer) then
4518
4519 if Analyzed (N) then
4520 Error_Msg_N ("ambiguous operand in fixed operation", N);
4521 else
4522 Resolve (N, Standard_Integer);
4523 end if;
4524
4525 elsif Is_Fixed_Point_Type (It.Typ) then
4526
4527 if Analyzed (N) then
4528 Error_Msg_N ("ambiguous operand in fixed operation", N);
4529 else
4530 Resolve (N, It.Typ);
4531 end if;
4532 end if;
4533
4534 Get_Next_Interp (Index, It);
4535 end loop;
4536
758c442c
GD
4537 -- Reanalyze the literal with the fixed type of the context. If
4538 -- context is Universal_Fixed, we are within a conversion, leave
4539 -- the literal as a universal real because there is no usable
4540 -- fixed type, and the target of the conversion plays no role in
4541 -- the resolution.
996ae0b0 4542
0ab80019
AC
4543 declare
4544 Op2 : Node_Id;
4545 T2 : Entity_Id;
4546
4547 begin
4548 if N = L then
4549 Op2 := R;
4550 else
4551 Op2 := L;
4552 end if;
4553
4554 if B_Typ = Universal_Fixed
4555 and then Nkind (Op2) = N_Real_Literal
4556 then
4557 T2 := Universal_Real;
4558 else
4559 T2 := B_Typ;
4560 end if;
4561
4562 Set_Analyzed (Op2, False);
4563 Resolve (Op2, T2);
4564 end;
996ae0b0
RK
4565
4566 else
fbf5a39b 4567 Resolve (N);
996ae0b0
RK
4568 end if;
4569 end Set_Mixed_Mode_Operand;
4570
4571 ----------------------
4572 -- Set_Operand_Type --
4573 ----------------------
4574
4575 procedure Set_Operand_Type (N : Node_Id) is
4576 begin
4577 if Etype (N) = Universal_Integer
4578 or else Etype (N) = Universal_Real
4579 then
4580 Set_Etype (N, T);
4581 end if;
4582 end Set_Operand_Type;
4583
996ae0b0
RK
4584 -- Start of processing for Resolve_Arithmetic_Op
4585
4586 begin
4587 if Comes_From_Source (N)
4588 and then Ekind (Entity (N)) = E_Function
4589 and then Is_Imported (Entity (N))
fbf5a39b 4590 and then Is_Intrinsic_Subprogram (Entity (N))
996ae0b0
RK
4591 then
4592 Resolve_Intrinsic_Operator (N, Typ);
4593 return;
4594
4595 -- Special-case for mixed-mode universal expressions or fixed point
4596 -- type operation: each argument is resolved separately. The same
4597 -- treatment is required if one of the operands of a fixed point
4598 -- operation is universal real, since in this case we don't do a
4599 -- conversion to a specific fixed-point type (instead the expander
4600 -- takes care of the case).
4601
45fc7ddb 4602 elsif (B_Typ = Universal_Integer or else B_Typ = Universal_Real)
996ae0b0
RK
4603 and then Present (Universal_Interpretation (L))
4604 and then Present (Universal_Interpretation (R))
4605 then
4606 Resolve (L, Universal_Interpretation (L));
4607 Resolve (R, Universal_Interpretation (R));
4608 Set_Etype (N, B_Typ);
4609
4610 elsif (B_Typ = Universal_Real
45fc7ddb
HK
4611 or else Etype (N) = Universal_Fixed
4612 or else (Etype (N) = Any_Fixed
4613 and then Is_Fixed_Point_Type (B_Typ))
4614 or else (Is_Fixed_Point_Type (B_Typ)
4615 and then (Is_Integer_Or_Universal (L)
4616 or else
4617 Is_Integer_Or_Universal (R))))
4618 and then Nkind_In (N, N_Op_Multiply, N_Op_Divide)
996ae0b0
RK
4619 then
4620 if TL = Universal_Integer or else TR = Universal_Integer then
4621 Check_For_Visible_Operator (N, B_Typ);
4622 end if;
4623
4624 -- If context is a fixed type and one operand is integer, the
4625 -- other is resolved with the type of the context.
4626
4627 if Is_Fixed_Point_Type (B_Typ)
4628 and then (Base_Type (TL) = Base_Type (Standard_Integer)
4629 or else TL = Universal_Integer)
4630 then
4631 Resolve (R, B_Typ);
4632 Resolve (L, TL);
4633
4634 elsif Is_Fixed_Point_Type (B_Typ)
4635 and then (Base_Type (TR) = Base_Type (Standard_Integer)
4636 or else TR = Universal_Integer)
4637 then
4638 Resolve (L, B_Typ);
4639 Resolve (R, TR);
4640
4641 else
4642 Set_Mixed_Mode_Operand (L, TR);
4643 Set_Mixed_Mode_Operand (R, TL);
4644 end if;
4645
45fc7ddb
HK
4646 -- Check the rule in RM05-4.5.5(19.1/2) disallowing universal_fixed
4647 -- multiplying operators from being used when the expected type is
4648 -- also universal_fixed. Note that B_Typ will be Universal_Fixed in
4649 -- some cases where the expected type is actually Any_Real;
4650 -- Expected_Type_Is_Any_Real takes care of that case.
aa180613 4651
996ae0b0
RK
4652 if Etype (N) = Universal_Fixed
4653 or else Etype (N) = Any_Fixed
4654 then
4655 if B_Typ = Universal_Fixed
aa180613 4656 and then not Expected_Type_Is_Any_Real (N)
45fc7ddb
HK
4657 and then not Nkind_In (Parent (N), N_Type_Conversion,
4658 N_Unchecked_Type_Conversion)
996ae0b0 4659 then
45fc7ddb
HK
4660 Error_Msg_N ("type cannot be determined from context!", N);
4661 Error_Msg_N ("\explicit conversion to result type required", N);
996ae0b0
RK
4662
4663 Set_Etype (L, Any_Type);
4664 Set_Etype (R, Any_Type);
4665
4666 else
0ab80019 4667 if Ada_Version = Ada_83
45fc7ddb
HK
4668 and then Etype (N) = Universal_Fixed
4669 and then not
4670 Nkind_In (Parent (N), N_Type_Conversion,
4671 N_Unchecked_Type_Conversion)
996ae0b0
RK
4672 then
4673 Error_Msg_N
45fc7ddb
HK
4674 ("(Ada 83) fixed-point operation "
4675 & "needs explicit conversion", N);
996ae0b0
RK
4676 end if;
4677
aa180613
RD
4678 -- The expected type is "any real type" in contexts like
4679 -- type T is delta <universal_fixed-expression> ...
4680 -- in which case we need to set the type to Universal_Real
4681 -- so that static expression evaluation will work properly.
4682
4683 if Expected_Type_Is_Any_Real (N) then
4684 Set_Etype (N, Universal_Real);
4685 else
4686 Set_Etype (N, B_Typ);
4687 end if;
996ae0b0
RK
4688 end if;
4689
4690 elsif Is_Fixed_Point_Type (B_Typ)
4691 and then (Is_Integer_Or_Universal (L)
4692 or else Nkind (L) = N_Real_Literal
4693 or else Nkind (R) = N_Real_Literal
45fc7ddb 4694 or else Is_Integer_Or_Universal (R))
996ae0b0
RK
4695 then
4696 Set_Etype (N, B_Typ);
4697
4698 elsif Etype (N) = Any_Fixed then
4699
4700 -- If no previous errors, this is only possible if one operand
4701 -- is overloaded and the context is universal. Resolve as such.
4702
4703 Set_Etype (N, B_Typ);
4704 end if;
4705
4706 else
4707 if (TL = Universal_Integer or else TL = Universal_Real)
45fc7ddb
HK
4708 and then
4709 (TR = Universal_Integer or else TR = Universal_Real)
996ae0b0
RK
4710 then
4711 Check_For_Visible_Operator (N, B_Typ);
4712 end if;
4713
4714 -- If the context is Universal_Fixed and the operands are also
4715 -- universal fixed, this is an error, unless there is only one
841dd0f5 4716 -- applicable fixed_point type (usually Duration).
996ae0b0 4717
45fc7ddb 4718 if B_Typ = Universal_Fixed and then Etype (L) = Universal_Fixed then
996ae0b0
RK
4719 T := Unique_Fixed_Point_Type (N);
4720
4721 if T = Any_Type then
4722 Set_Etype (N, T);
4723 return;
4724 else
4725 Resolve (L, T);
4726 Resolve (R, T);
4727 end if;
4728
4729 else
4730 Resolve (L, B_Typ);
4731 Resolve (R, B_Typ);
4732 end if;
4733
4734 -- If one of the arguments was resolved to a non-universal type.
4735 -- label the result of the operation itself with the same type.
4736 -- Do the same for the universal argument, if any.
4737
4738 T := Intersect_Types (L, R);
4739 Set_Etype (N, Base_Type (T));
4740 Set_Operand_Type (L);
4741 Set_Operand_Type (R);
4742 end if;
4743
fbf5a39b 4744 Generate_Operator_Reference (N, Typ);
996ae0b0
RK
4745 Eval_Arithmetic_Op (N);
4746
4747 -- Set overflow and division checking bit. Much cleverer code needed
4748 -- here eventually and perhaps the Resolve routines should be separated
4749 -- for the various arithmetic operations, since they will need
4750 -- different processing. ???
4751
4752 if Nkind (N) in N_Op then
4753 if not Overflow_Checks_Suppressed (Etype (N)) then
fbf5a39b 4754 Enable_Overflow_Check (N);
996ae0b0
RK
4755 end if;
4756
fbf5a39b
AC
4757 -- Give warning if explicit division by zero
4758
45fc7ddb 4759 if Nkind_In (N, N_Op_Divide, N_Op_Rem, N_Op_Mod)
996ae0b0
RK
4760 and then not Division_Checks_Suppressed (Etype (N))
4761 then
fbf5a39b
AC
4762 Rop := Right_Opnd (N);
4763
4764 if Compile_Time_Known_Value (Rop)
4765 and then ((Is_Integer_Type (Etype (Rop))
45fc7ddb 4766 and then Expr_Value (Rop) = Uint_0)
fbf5a39b
AC
4767 or else
4768 (Is_Real_Type (Etype (Rop))
45fc7ddb 4769 and then Expr_Value_R (Rop) = Ureal_0))
fbf5a39b 4770 then
aa180613
RD
4771 -- Specialize the warning message according to the operation
4772
4773 case Nkind (N) is
4774 when N_Op_Divide =>
4775 Apply_Compile_Time_Constraint_Error
4776 (N, "division by zero?", CE_Divide_By_Zero,
4777 Loc => Sloc (Right_Opnd (N)));
4778
4779 when N_Op_Rem =>
4780 Apply_Compile_Time_Constraint_Error
4781 (N, "rem with zero divisor?", CE_Divide_By_Zero,
4782 Loc => Sloc (Right_Opnd (N)));
4783
4784 when N_Op_Mod =>
4785 Apply_Compile_Time_Constraint_Error
4786 (N, "mod with zero divisor?", CE_Divide_By_Zero,
4787 Loc => Sloc (Right_Opnd (N)));
4788
4789 -- Division by zero can only happen with division, rem,
4790 -- and mod operations.
4791
4792 when others =>
4793 raise Program_Error;
4794 end case;
fbf5a39b
AC
4795
4796 -- Otherwise just set the flag to check at run time
4797
4798 else
b7d1f17f 4799 Activate_Division_Check (N);
fbf5a39b 4800 end if;
996ae0b0 4801 end if;
45fc7ddb
HK
4802
4803 -- If Restriction No_Implicit_Conditionals is active, then it is
4804 -- violated if either operand can be negative for mod, or for rem
4805 -- if both operands can be negative.
4806
7a963087 4807 if Restriction_Check_Required (No_Implicit_Conditionals)
45fc7ddb
HK
4808 and then Nkind_In (N, N_Op_Rem, N_Op_Mod)
4809 then
4810 declare
4811 Lo : Uint;
4812 Hi : Uint;
4813 OK : Boolean;
4814
4815 LNeg : Boolean;
4816 RNeg : Boolean;
4817 -- Set if corresponding operand might be negative
4818
4819 begin
5d5e9775
AC
4820 Determine_Range
4821 (Left_Opnd (N), OK, Lo, Hi, Assume_Valid => True);
45fc7ddb
HK
4822 LNeg := (not OK) or else Lo < 0;
4823
5d5e9775
AC
4824 Determine_Range
4825 (Right_Opnd (N), OK, Lo, Hi, Assume_Valid => True);
45fc7ddb
HK
4826 RNeg := (not OK) or else Lo < 0;
4827
5d5e9775
AC
4828 -- Check if we will be generating conditionals. There are two
4829 -- cases where that can happen, first for REM, the only case
4830 -- is largest negative integer mod -1, where the division can
4831 -- overflow, but we still have to give the right result. The
4832 -- front end generates a test for this annoying case. Here we
4833 -- just test if both operands can be negative (that's what the
4834 -- expander does, so we match its logic here).
4835
4836 -- The second case is mod where either operand can be negative.
4837 -- In this case, the back end has to generate additonal tests.
4838
45fc7ddb
HK
4839 if (Nkind (N) = N_Op_Rem and then (LNeg and RNeg))
4840 or else
4841 (Nkind (N) = N_Op_Mod and then (LNeg or RNeg))
4842 then
4843 Check_Restriction (No_Implicit_Conditionals, N);
4844 end if;
4845 end;
4846 end if;
996ae0b0
RK
4847 end if;
4848
4849 Check_Unset_Reference (L);
4850 Check_Unset_Reference (R);
996ae0b0
RK
4851 end Resolve_Arithmetic_Op;
4852
4853 ------------------
4854 -- Resolve_Call --
4855 ------------------
4856
4857 procedure Resolve_Call (N : Node_Id; Typ : Entity_Id) is
4858 Loc : constant Source_Ptr := Sloc (N);
4859 Subp : constant Node_Id := Name (N);
4860 Nam : Entity_Id;
4861 I : Interp_Index;
4862 It : Interp;
4863 Norm_OK : Boolean;
4864 Scop : Entity_Id;
aa180613 4865 Rtype : Entity_Id;
996ae0b0 4866
ee81cbe9
AC
4867 function Same_Or_Aliased_Subprograms
4868 (S : Entity_Id;
4869 E : Entity_Id) return Boolean;
4870 -- Returns True if the subprogram entity S is the same as E or else
4871 -- S is an alias of E.
4872
001c7783
AC
4873 ---------------------------------
4874 -- Same_Or_Aliased_Subprograms --
4875 ---------------------------------
4876
ee81cbe9
AC
4877 function Same_Or_Aliased_Subprograms
4878 (S : Entity_Id;
4879 E : Entity_Id) return Boolean
4880 is
4881 Subp_Alias : constant Entity_Id := Alias (S);
ee81cbe9
AC
4882 begin
4883 return S = E
4884 or else (Present (Subp_Alias) and then Subp_Alias = E);
4885 end Same_Or_Aliased_Subprograms;
4886
4887 -- Start of processing for Resolve_Call
4888
996ae0b0 4889 begin
758c442c
GD
4890 -- The context imposes a unique interpretation with type Typ on a
4891 -- procedure or function call. Find the entity of the subprogram that
4892 -- yields the expected type, and propagate the corresponding formal
4893 -- constraints on the actuals. The caller has established that an
4894 -- interpretation exists, and emitted an error if not unique.
996ae0b0
RK
4895
4896 -- First deal with the case of a call to an access-to-subprogram,
4897 -- dereference made explicit in Analyze_Call.
4898
4899 if Ekind (Etype (Subp)) = E_Subprogram_Type then
996ae0b0
RK
4900 if not Is_Overloaded (Subp) then
4901 Nam := Etype (Subp);
4902
4903 else
758c442c
GD
4904 -- Find the interpretation whose type (a subprogram type) has a
4905 -- return type that is compatible with the context. Analysis of
4906 -- the node has established that one exists.
996ae0b0 4907
996ae0b0
RK
4908 Nam := Empty;
4909
1420b484 4910 Get_First_Interp (Subp, I, It);
996ae0b0 4911 while Present (It.Typ) loop
996ae0b0
RK
4912 if Covers (Typ, Etype (It.Typ)) then
4913 Nam := It.Typ;
4914 exit;
4915 end if;
4916
4917 Get_Next_Interp (I, It);
4918 end loop;
4919
4920 if No (Nam) then
4921 raise Program_Error;
4922 end if;
4923 end if;
4924
4925 -- If the prefix is not an entity, then resolve it
4926
4927 if not Is_Entity_Name (Subp) then
4928 Resolve (Subp, Nam);
4929 end if;
4930
758c442c
GD
4931 -- For an indirect call, we always invalidate checks, since we do not
4932 -- know whether the subprogram is local or global. Yes we could do
4933 -- better here, e.g. by knowing that there are no local subprograms,
aa180613 4934 -- but it does not seem worth the effort. Similarly, we kill all
758c442c 4935 -- knowledge of current constant values.
fbf5a39b
AC
4936
4937 Kill_Current_Values;
4938
b7d1f17f
HK
4939 -- If this is a procedure call which is really an entry call, do
4940 -- the conversion of the procedure call to an entry call. Protected
4941 -- operations use the same circuitry because the name in the call
4942 -- can be an arbitrary expression with special resolution rules.
996ae0b0 4943
45fc7ddb 4944 elsif Nkind_In (Subp, N_Selected_Component, N_Indexed_Component)
996ae0b0
RK
4945 or else (Is_Entity_Name (Subp)
4946 and then Ekind (Entity (Subp)) = E_Entry)
4947 then
4948 Resolve_Entry_Call (N, Typ);
4949 Check_Elab_Call (N);
fbf5a39b
AC
4950
4951 -- Kill checks and constant values, as above for indirect case
4952 -- Who knows what happens when another task is activated?
4953
4954 Kill_Current_Values;
996ae0b0
RK
4955 return;
4956
4957 -- Normal subprogram call with name established in Resolve
4958
4959 elsif not (Is_Type (Entity (Subp))) then
4960 Nam := Entity (Subp);
4961 Set_Entity_With_Style_Check (Subp, Nam);
996ae0b0
RK
4962
4963 -- Otherwise we must have the case of an overloaded call
4964
4965 else
4966 pragma Assert (Is_Overloaded (Subp));
d81b4bfe
TQ
4967
4968 -- Initialize Nam to prevent warning (we know it will be assigned
4969 -- in the loop below, but the compiler does not know that).
4970
4971 Nam := Empty;
996ae0b0
RK
4972
4973 Get_First_Interp (Subp, I, It);
996ae0b0
RK
4974 while Present (It.Typ) loop
4975 if Covers (Typ, It.Typ) then
4976 Nam := It.Nam;
4977 Set_Entity_With_Style_Check (Subp, Nam);
996ae0b0
RK
4978 exit;
4979 end if;
4980
4981 Get_Next_Interp (I, It);
4982 end loop;
4983 end if;
4984
c9b99571
ES
4985 if Is_Access_Subprogram_Type (Base_Type (Etype (Nam)))
4986 and then not Is_Access_Subprogram_Type (Base_Type (Typ))
53cf4600
ES
4987 and then Nkind (Subp) /= N_Explicit_Dereference
4988 and then Present (Parameter_Associations (N))
4989 then
66aa7643
TQ
4990 -- The prefix is a parameterless function call that returns an access
4991 -- to subprogram. If parameters are present in the current call, add
4992 -- add an explicit dereference. We use the base type here because
4993 -- within an instance these may be subtypes.
53cf4600
ES
4994
4995 -- The dereference is added either in Analyze_Call or here. Should
4996 -- be consolidated ???
4997
4998 Set_Is_Overloaded (Subp, False);
4999 Set_Etype (Subp, Etype (Nam));
5000 Insert_Explicit_Dereference (Subp);
5001 Nam := Designated_Type (Etype (Nam));
5002 Resolve (Subp, Nam);
5003 end if;
5004
996ae0b0
RK
5005 -- Check that a call to Current_Task does not occur in an entry body
5006
5007 if Is_RTE (Nam, RE_Current_Task) then
5008 declare
5009 P : Node_Id;
5010
5011 begin
5012 P := N;
5013 loop
5014 P := Parent (P);
45fc7ddb
HK
5015
5016 -- Exclude calls that occur within the default of a formal
5017 -- parameter of the entry, since those are evaluated outside
5018 -- of the body.
5019
5020 exit when No (P) or else Nkind (P) = N_Parameter_Specification;
996ae0b0 5021
aa180613
RD
5022 if Nkind (P) = N_Entry_Body
5023 or else (Nkind (P) = N_Subprogram_Body
45fc7ddb 5024 and then Is_Entry_Barrier_Function (P))
aa180613
RD
5025 then
5026 Rtype := Etype (N);
996ae0b0 5027 Error_Msg_NE
aa5147f0 5028 ("?& should not be used in entry body (RM C.7(17))",
996ae0b0 5029 N, Nam);
aa180613
RD
5030 Error_Msg_NE
5031 ("\Program_Error will be raised at run time?", N, Nam);
5032 Rewrite (N,
5033 Make_Raise_Program_Error (Loc,
5034 Reason => PE_Current_Task_In_Entry_Body));
5035 Set_Etype (N, Rtype);
e65f50ec 5036 return;
996ae0b0
RK
5037 end if;
5038 end loop;
5039 end;
5040 end if;
5041
758c442c
GD
5042 -- Check that a procedure call does not occur in the context of the
5043 -- entry call statement of a conditional or timed entry call. Note that
5044 -- the case of a call to a subprogram renaming of an entry will also be
5045 -- rejected. The test for N not being an N_Entry_Call_Statement is
5046 -- defensive, covering the possibility that the processing of entry
5047 -- calls might reach this point due to later modifications of the code
5048 -- above.
996ae0b0
RK
5049
5050 if Nkind (Parent (N)) = N_Entry_Call_Alternative
5051 and then Nkind (N) /= N_Entry_Call_Statement
5052 and then Entry_Call_Statement (Parent (N)) = N
5053 then
1420b484
JM
5054 if Ada_Version < Ada_05 then
5055 Error_Msg_N ("entry call required in select statement", N);
5056
5057 -- Ada 2005 (AI-345): If a procedure_call_statement is used
66aa7643
TQ
5058 -- for a procedure_or_entry_call, the procedure_name or
5059 -- procedure_prefix of the procedure_call_statement shall denote
1420b484
JM
5060 -- an entry renamed by a procedure, or (a view of) a primitive
5061 -- subprogram of a limited interface whose first parameter is
5062 -- a controlling parameter.
5063
5064 elsif Nkind (N) = N_Procedure_Call_Statement
5065 and then not Is_Renamed_Entry (Nam)
5066 and then not Is_Controlling_Limited_Procedure (Nam)
5067 then
5068 Error_Msg_N
c8ef728f 5069 ("entry call or dispatching primitive of interface required", N);
1420b484 5070 end if;
996ae0b0
RK
5071 end if;
5072
66aa7643
TQ
5073 -- Check that this is not a call to a protected procedure or entry from
5074 -- within a protected function.
fbf5a39b
AC
5075
5076 if Ekind (Current_Scope) = E_Function
5077 and then Ekind (Scope (Current_Scope)) = E_Protected_Type
5078 and then Ekind (Nam) /= E_Function
5079 and then Scope (Nam) = Scope (Current_Scope)
5080 then
5081 Error_Msg_N ("within protected function, protected " &
5082 "object is constant", N);
5083 Error_Msg_N ("\cannot call operation that may modify it", N);
5084 end if;
5085
45fc7ddb 5086 -- Freeze the subprogram name if not in a spec-expression. Note that we
758c442c
GD
5087 -- freeze procedure calls as well as function calls. Procedure calls are
5088 -- not frozen according to the rules (RM 13.14(14)) because it is
5089 -- impossible to have a procedure call to a non-frozen procedure in pure
5090 -- Ada, but in the code that we generate in the expander, this rule
5091 -- needs extending because we can generate procedure calls that need
5092 -- freezing.
996ae0b0 5093
45fc7ddb 5094 if Is_Entity_Name (Subp) and then not In_Spec_Expression then
996ae0b0
RK
5095 Freeze_Expression (Subp);
5096 end if;
5097
758c442c
GD
5098 -- For a predefined operator, the type of the result is the type imposed
5099 -- by context, except for a predefined operation on universal fixed.
5100 -- Otherwise The type of the call is the type returned by the subprogram
5101 -- being called.
996ae0b0
RK
5102
5103 if Is_Predefined_Op (Nam) then
996ae0b0
RK
5104 if Etype (N) /= Universal_Fixed then
5105 Set_Etype (N, Typ);
5106 end if;
5107
758c442c
GD
5108 -- If the subprogram returns an array type, and the context requires the
5109 -- component type of that array type, the node is really an indexing of
5110 -- the parameterless call. Resolve as such. A pathological case occurs
5111 -- when the type of the component is an access to the array type. In
5112 -- this case the call is truly ambiguous.
996ae0b0 5113
0669bebe 5114 elsif (Needs_No_Actuals (Nam) or else Needs_One_Actual (Nam))
996ae0b0
RK
5115 and then
5116 ((Is_Array_Type (Etype (Nam))
5117 and then Covers (Typ, Component_Type (Etype (Nam))))
5118 or else (Is_Access_Type (Etype (Nam))
5119 and then Is_Array_Type (Designated_Type (Etype (Nam)))
5120 and then
5121 Covers (Typ,
5122 Component_Type (Designated_Type (Etype (Nam))))))
5123 then
5124 declare
5125 Index_Node : Node_Id;
fbf5a39b
AC
5126 New_Subp : Node_Id;
5127 Ret_Type : constant Entity_Id := Etype (Nam);
996ae0b0
RK
5128
5129 begin
fbf5a39b
AC
5130 if Is_Access_Type (Ret_Type)
5131 and then Ret_Type = Component_Type (Designated_Type (Ret_Type))
5132 then
5133 Error_Msg_N
5134 ("cannot disambiguate function call and indexing", N);
5135 else
5136 New_Subp := Relocate_Node (Subp);
5137 Set_Entity (Subp, Nam);
5138
7205254b 5139 if (Is_Array_Type (Ret_Type)
5d5e9775 5140 and then Component_Type (Ret_Type) /= Any_Type)
7205254b
JM
5141 or else
5142 (Is_Access_Type (Ret_Type)
5d5e9775
AC
5143 and then
5144 Component_Type (Designated_Type (Ret_Type)) /= Any_Type)
7205254b 5145 then
0669bebe
GB
5146 if Needs_No_Actuals (Nam) then
5147
5148 -- Indexed call to a parameterless function
5149
5150 Index_Node :=
5151 Make_Indexed_Component (Loc,
5152 Prefix =>
5153 Make_Function_Call (Loc,
5154 Name => New_Subp),
5155 Expressions => Parameter_Associations (N));
5156 else
5157 -- An Ada 2005 prefixed call to a primitive operation
5158 -- whose first parameter is the prefix. This prefix was
5159 -- prepended to the parameter list, which is actually a
5160 -- list of indices. Remove the prefix in order to build
5161 -- the proper indexed component.
5162
5163 Index_Node :=
5164 Make_Indexed_Component (Loc,
5165 Prefix =>
5166 Make_Function_Call (Loc,
5167 Name => New_Subp,
5168 Parameter_Associations =>
5169 New_List
5170 (Remove_Head (Parameter_Associations (N)))),
5171 Expressions => Parameter_Associations (N));
5172 end if;
fbf5a39b 5173
74e7891f
RD
5174 -- Preserve the parenthesis count of the node
5175
5176 Set_Paren_Count (Index_Node, Paren_Count (N));
5177
fbf5a39b
AC
5178 -- Since we are correcting a node classification error made
5179 -- by the parser, we call Replace rather than Rewrite.
5180
5181 Replace (N, Index_Node);
74e7891f 5182
fbf5a39b
AC
5183 Set_Etype (Prefix (N), Ret_Type);
5184 Set_Etype (N, Typ);
5185 Resolve_Indexed_Component (N, Typ);
5186 Check_Elab_Call (Prefix (N));
5187 end if;
996ae0b0
RK
5188 end if;
5189
5190 return;
5191 end;
5192
5193 else
5194 Set_Etype (N, Etype (Nam));
5195 end if;
5196
5197 -- In the case where the call is to an overloaded subprogram, Analyze
5198 -- calls Normalize_Actuals once per overloaded subprogram. Therefore in
5199 -- such a case Normalize_Actuals needs to be called once more to order
5200 -- the actuals correctly. Otherwise the call will have the ordering
5201 -- given by the last overloaded subprogram whether this is the correct
5202 -- one being called or not.
5203
5204 if Is_Overloaded (Subp) then
5205 Normalize_Actuals (N, Nam, False, Norm_OK);
5206 pragma Assert (Norm_OK);
5207 end if;
5208
5209 -- In any case, call is fully resolved now. Reset Overload flag, to
5210 -- prevent subsequent overload resolution if node is analyzed again
5211
5212 Set_Is_Overloaded (Subp, False);
5213 Set_Is_Overloaded (N, False);
5214
758c442c
GD
5215 -- If we are calling the current subprogram from immediately within its
5216 -- body, then that is the case where we can sometimes detect cases of
5217 -- infinite recursion statically. Do not try this in case restriction
b7d1f17f 5218 -- No_Recursion is in effect anyway, and do it only for source calls.
996ae0b0 5219
b7d1f17f
HK
5220 if Comes_From_Source (N) then
5221 Scop := Current_Scope;
996ae0b0 5222
26570b21
RD
5223 -- Issue warning for possible infinite recursion in the absence
5224 -- of the No_Recursion restriction.
5225
ee81cbe9 5226 if Same_Or_Aliased_Subprograms (Nam, Scop)
b7d1f17f
HK
5227 and then not Restriction_Active (No_Recursion)
5228 and then Check_Infinite_Recursion (N)
5229 then
5230 -- Here we detected and flagged an infinite recursion, so we do
26570b21
RD
5231 -- not need to test the case below for further warnings. Also if
5232 -- we now have a raise SE node, we are all done.
996ae0b0 5233
26570b21
RD
5234 if Nkind (N) = N_Raise_Storage_Error then
5235 return;
5236 end if;
996ae0b0 5237
26570b21
RD
5238 -- If call is to immediately containing subprogram, then check for
5239 -- the case of a possible run-time detectable infinite recursion.
996ae0b0 5240
b7d1f17f
HK
5241 else
5242 Scope_Loop : while Scop /= Standard_Standard loop
ee81cbe9 5243 if Same_Or_Aliased_Subprograms (Nam, Scop) then
b7d1f17f
HK
5244
5245 -- Although in general case, recursion is not statically
5246 -- checkable, the case of calling an immediately containing
5247 -- subprogram is easy to catch.
5248
5249 Check_Restriction (No_Recursion, N);
5250
5251 -- If the recursive call is to a parameterless subprogram,
5252 -- then even if we can't statically detect infinite
5253 -- recursion, this is pretty suspicious, and we output a
5254 -- warning. Furthermore, we will try later to detect some
5255 -- cases here at run time by expanding checking code (see
5256 -- Detect_Infinite_Recursion in package Exp_Ch6).
5257
5258 -- If the recursive call is within a handler, do not emit a
5259 -- warning, because this is a common idiom: loop until input
5260 -- is correct, catch illegal input in handler and restart.
5261
5262 if No (First_Formal (Nam))
5263 and then Etype (Nam) = Standard_Void_Type
5264 and then not Error_Posted (N)
5265 and then Nkind (Parent (N)) /= N_Exception_Handler
aa180613 5266 then
b7d1f17f
HK
5267 -- For the case of a procedure call. We give the message
5268 -- only if the call is the first statement in a sequence
5269 -- of statements, or if all previous statements are
5270 -- simple assignments. This is simply a heuristic to
5271 -- decrease false positives, without losing too many good
5272 -- warnings. The idea is that these previous statements
5273 -- may affect global variables the procedure depends on.
5274
5275 if Nkind (N) = N_Procedure_Call_Statement
5276 and then Is_List_Member (N)
5277 then
5278 declare
5279 P : Node_Id;
5280 begin
5281 P := Prev (N);
5282 while Present (P) loop
5283 if Nkind (P) /= N_Assignment_Statement then
5284 exit Scope_Loop;
5285 end if;
5286
5287 Prev (P);
5288 end loop;
5289 end;
5290 end if;
5291
5292 -- Do not give warning if we are in a conditional context
5293
aa180613 5294 declare
b7d1f17f 5295 K : constant Node_Kind := Nkind (Parent (N));
aa180613 5296 begin
b7d1f17f 5297 if (K = N_Loop_Statement
b5c739f9 5298 and then Present (Iteration_Scheme (Parent (N))))
b7d1f17f
HK
5299 or else K = N_If_Statement
5300 or else K = N_Elsif_Part
5301 or else K = N_Case_Statement_Alternative
5302 then
5303 exit Scope_Loop;
5304 end if;
aa180613 5305 end;
aa180613 5306
b7d1f17f 5307 -- Here warning is to be issued
aa180613 5308
b7d1f17f
HK
5309 Set_Has_Recursive_Call (Nam);
5310 Error_Msg_N
aa5147f0 5311 ("?possible infinite recursion!", N);
b7d1f17f 5312 Error_Msg_N
aa5147f0 5313 ("\?Storage_Error may be raised at run time!", N);
b7d1f17f 5314 end if;
aa180613 5315
b7d1f17f 5316 exit Scope_Loop;
996ae0b0
RK
5317 end if;
5318
b7d1f17f
HK
5319 Scop := Scope (Scop);
5320 end loop Scope_Loop;
5321 end if;
996ae0b0
RK
5322 end if;
5323
b5c739f9
RD
5324 -- Check obsolescent reference to Ada.Characters.Handling subprogram
5325
5326 Check_Obsolescent_2005_Entity (Nam, Subp);
5327
996ae0b0
RK
5328 -- If subprogram name is a predefined operator, it was given in
5329 -- functional notation. Replace call node with operator node, so
5330 -- that actuals can be resolved appropriately.
5331
5332 if Is_Predefined_Op (Nam) or else Ekind (Nam) = E_Operator then
5333 Make_Call_Into_Operator (N, Typ, Entity (Name (N)));
5334 return;
5335
5336 elsif Present (Alias (Nam))
5337 and then Is_Predefined_Op (Alias (Nam))
5338 then
5339 Resolve_Actuals (N, Nam);
5340 Make_Call_Into_Operator (N, Typ, Alias (Nam));
5341 return;
5342 end if;
5343
fbf5a39b
AC
5344 -- Create a transient scope if the resulting type requires it
5345
4017021b
AC
5346 -- There are several notable exceptions:
5347
4d2907fd 5348 -- a) In init procs, the transient scope overhead is not needed, and is
4017021b
AC
5349 -- even incorrect when the call is a nested initialization call for a
5350 -- component whose expansion may generate adjust calls. However, if the
5351 -- call is some other procedure call within an initialization procedure
5352 -- (for example a call to Create_Task in the init_proc of the task
5353 -- run-time record) a transient scope must be created around this call.
5354
4d2907fd 5355 -- b) Enumeration literal pseudo-calls need no transient scope
4017021b 5356
4d2907fd 5357 -- c) Intrinsic subprograms (Unchecked_Conversion and source info
4017021b 5358 -- functions) do not use the secondary stack even though the return
4d2907fd 5359 -- type may be unconstrained.
4017021b 5360
4d2907fd 5361 -- d) Calls to a build-in-place function, since such functions may
4017021b
AC
5362 -- allocate their result directly in a target object, and cases where
5363 -- the result does get allocated in the secondary stack are checked for
5364 -- within the specialized Exp_Ch6 procedures for expanding those
5365 -- build-in-place calls.
5366
5367 -- e) If the subprogram is marked Inline_Always, then even if it returns
c8ef728f 5368 -- an unconstrained type the call does not require use of the secondary
45fc7ddb
HK
5369 -- stack. However, inlining will only take place if the body to inline
5370 -- is already present. It may not be available if e.g. the subprogram is
5371 -- declared in a child instance.
c8ef728f 5372
4017021b
AC
5373 -- If this is an initialization call for a type whose construction
5374 -- uses the secondary stack, and it is not a nested call to initialize
5375 -- a component, we do need to create a transient scope for it. We
5376 -- check for this by traversing the type in Check_Initialization_Call.
5377
c8ef728f 5378 if Is_Inlined (Nam)
45fc7ddb
HK
5379 and then Has_Pragma_Inline_Always (Nam)
5380 and then Nkind (Unit_Declaration_Node (Nam)) = N_Subprogram_Declaration
5381 and then Present (Body_To_Inline (Unit_Declaration_Node (Nam)))
c8ef728f
ES
5382 then
5383 null;
5384
4017021b
AC
5385 elsif Ekind (Nam) = E_Enumeration_Literal
5386 or else Is_Build_In_Place_Function (Nam)
5387 or else Is_Intrinsic_Subprogram (Nam)
5388 then
5389 null;
5390
c8ef728f 5391 elsif Expander_Active
996ae0b0
RK
5392 and then Is_Type (Etype (Nam))
5393 and then Requires_Transient_Scope (Etype (Nam))
4017021b
AC
5394 and then
5395 (not Within_Init_Proc
5396 or else
5397 (not Is_Init_Proc (Nam) and then Ekind (Nam) /= E_Function))
996ae0b0 5398 then
0669bebe 5399 Establish_Transient_Scope (N, Sec_Stack => True);
996ae0b0 5400
a9f4e3d2
AC
5401 -- If the call appears within the bounds of a loop, it will
5402 -- be rewritten and reanalyzed, nothing left to do here.
5403
5404 if Nkind (N) /= N_Function_Call then
5405 return;
5406 end if;
5407
fbf5a39b 5408 elsif Is_Init_Proc (Nam)
996ae0b0
RK
5409 and then not Within_Init_Proc
5410 then
5411 Check_Initialization_Call (N, Nam);
5412 end if;
5413
5414 -- A protected function cannot be called within the definition of the
5415 -- enclosing protected type.
5416
5417 if Is_Protected_Type (Scope (Nam))
5418 and then In_Open_Scopes (Scope (Nam))
5419 and then not Has_Completion (Scope (Nam))
5420 then
5421 Error_Msg_NE
5422 ("& cannot be called before end of protected definition", N, Nam);
5423 end if;
5424
5425 -- Propagate interpretation to actuals, and add default expressions
5426 -- where needed.
5427
5428 if Present (First_Formal (Nam)) then
5429 Resolve_Actuals (N, Nam);
5430
d81b4bfe
TQ
5431 -- Overloaded literals are rewritten as function calls, for purpose of
5432 -- resolution. After resolution, we can replace the call with the
5433 -- literal itself.
996ae0b0
RK
5434
5435 elsif Ekind (Nam) = E_Enumeration_Literal then
5436 Copy_Node (Subp, N);
5437 Resolve_Entity_Name (N, Typ);
5438
fbf5a39b 5439 -- Avoid validation, since it is a static function call
996ae0b0 5440
e65f50ec 5441 Generate_Reference (Nam, Subp);
996ae0b0
RK
5442 return;
5443 end if;
5444
b7d1f17f
HK
5445 -- If the subprogram is not global, then kill all saved values and
5446 -- checks. This is a bit conservative, since in many cases we could do
5447 -- better, but it is not worth the effort. Similarly, we kill constant
5448 -- values. However we do not need to do this for internal entities
5449 -- (unless they are inherited user-defined subprograms), since they
5450 -- are not in the business of molesting local values.
5451
5452 -- If the flag Suppress_Value_Tracking_On_Calls is set, then we also
5453 -- kill all checks and values for calls to global subprograms. This
5454 -- takes care of the case where an access to a local subprogram is
5455 -- taken, and could be passed directly or indirectly and then called
5456 -- from almost any context.
aa180613
RD
5457
5458 -- Note: we do not do this step till after resolving the actuals. That
5459 -- way we still take advantage of the current value information while
5460 -- scanning the actuals.
5461
45fc7ddb
HK
5462 -- We suppress killing values if we are processing the nodes associated
5463 -- with N_Freeze_Entity nodes. Otherwise the declaration of a tagged
5464 -- type kills all the values as part of analyzing the code that
5465 -- initializes the dispatch tables.
5466
5467 if Inside_Freezing_Actions = 0
5468 and then (not Is_Library_Level_Entity (Nam)
24357840
RD
5469 or else Suppress_Value_Tracking_On_Call
5470 (Nearest_Dynamic_Scope (Current_Scope)))
aa180613
RD
5471 and then (Comes_From_Source (Nam)
5472 or else (Present (Alias (Nam))
5473 and then Comes_From_Source (Alias (Nam))))
5474 then
5475 Kill_Current_Values;
5476 end if;
5477
36fcf362
RD
5478 -- If we are warning about unread OUT parameters, this is the place to
5479 -- set Last_Assignment for OUT and IN OUT parameters. We have to do this
5480 -- after the above call to Kill_Current_Values (since that call clears
5481 -- the Last_Assignment field of all local variables).
67ce0d7e 5482
36fcf362 5483 if (Warn_On_Modified_Unread or Warn_On_All_Unread_Out_Parameters)
67ce0d7e
RD
5484 and then Comes_From_Source (N)
5485 and then In_Extended_Main_Source_Unit (N)
5486 then
5487 declare
5488 F : Entity_Id;
5489 A : Node_Id;
5490
5491 begin
5492 F := First_Formal (Nam);
5493 A := First_Actual (N);
5494 while Present (F) and then Present (A) loop
964f13da 5495 if Ekind_In (F, E_Out_Parameter, E_In_Out_Parameter)
36fcf362 5496 and then Warn_On_Modified_As_Out_Parameter (F)
67ce0d7e
RD
5497 and then Is_Entity_Name (A)
5498 and then Present (Entity (A))
36fcf362 5499 and then Comes_From_Source (N)
67ce0d7e
RD
5500 and then Safe_To_Capture_Value (N, Entity (A))
5501 then
5502 Set_Last_Assignment (Entity (A), A);
5503 end if;
5504
5505 Next_Formal (F);
5506 Next_Actual (A);
5507 end loop;
5508 end;
5509 end if;
5510
996ae0b0
RK
5511 -- If the subprogram is a primitive operation, check whether or not
5512 -- it is a correct dispatching call.
5513
5514 if Is_Overloadable (Nam)
5515 and then Is_Dispatching_Operation (Nam)
5516 then
5517 Check_Dispatching_Call (N);
5518
0669bebe
GB
5519 elsif Ekind (Nam) /= E_Subprogram_Type
5520 and then Is_Abstract_Subprogram (Nam)
996ae0b0
RK
5521 and then not In_Instance
5522 then
5523 Error_Msg_NE ("cannot call abstract subprogram &!", N, Nam);
5524 end if;
5525
e65f50ec
ES
5526 -- If this is a dispatching call, generate the appropriate reference,
5527 -- for better source navigation in GPS.
5528
5529 if Is_Overloadable (Nam)
5530 and then Present (Controlling_Argument (N))
5531 then
5532 Generate_Reference (Nam, Subp, 'R');
c5d91669
AC
5533
5534 -- Normal case, not a dispatching call
5535
e65f50ec
ES
5536 else
5537 Generate_Reference (Nam, Subp);
5538 end if;
5539
996ae0b0
RK
5540 if Is_Intrinsic_Subprogram (Nam) then
5541 Check_Intrinsic_Call (N);
5542 end if;
5543
5b2217f8 5544 -- Check for violation of restriction No_Specific_Termination_Handlers
dce86910 5545 -- and warn on a potentially blocking call to Abort_Task.
5b2217f8
RD
5546
5547 if Is_RTE (Nam, RE_Set_Specific_Handler)
5548 or else
5549 Is_RTE (Nam, RE_Specific_Handler)
5550 then
5551 Check_Restriction (No_Specific_Termination_Handlers, N);
dce86910
AC
5552
5553 elsif Is_RTE (Nam, RE_Abort_Task) then
5554 Check_Potentially_Blocking_Operation (N);
5b2217f8
RD
5555 end if;
5556
9cbfc269
AC
5557 -- Issue an error for a call to an eliminated subprogram. We skip this
5558 -- in a spec expression, e.g. a call in a default parameter value, since
5559 -- we are not really doing a call at this time. That's important because
5560 -- the spec expression may itself belong to an eliminated subprogram.
16212e89 5561
9cbfc269
AC
5562 if not In_Spec_Expression then
5563 Check_For_Eliminated_Subprogram (Subp, Nam);
5564 end if;
16212e89 5565
67ce0d7e
RD
5566 -- All done, evaluate call and deal with elaboration issues
5567
c01a9391 5568 Eval_Call (N);
996ae0b0 5569 Check_Elab_Call (N);
76b84bf0 5570 Warn_On_Overlapping_Actuals (Nam, N);
996ae0b0
RK
5571 end Resolve_Call;
5572
19d846a0
RD
5573 -----------------------------
5574 -- Resolve_Case_Expression --
5575 -----------------------------
5576
5577 procedure Resolve_Case_Expression (N : Node_Id; Typ : Entity_Id) is
5578 Alt : Node_Id;
5579
5580 begin
5581 Alt := First (Alternatives (N));
5582 while Present (Alt) loop
5583 Resolve (Expression (Alt), Typ);
5584 Next (Alt);
5585 end loop;
5586
5587 Set_Etype (N, Typ);
5588 Eval_Case_Expression (N);
5589 end Resolve_Case_Expression;
5590
996ae0b0
RK
5591 -------------------------------
5592 -- Resolve_Character_Literal --
5593 -------------------------------
5594
5595 procedure Resolve_Character_Literal (N : Node_Id; Typ : Entity_Id) is
5596 B_Typ : constant Entity_Id := Base_Type (Typ);
5597 C : Entity_Id;
5598
5599 begin
5600 -- Verify that the character does belong to the type of the context
5601
5602 Set_Etype (N, B_Typ);
5603 Eval_Character_Literal (N);
5604
82c80734
RD
5605 -- Wide_Wide_Character literals must always be defined, since the set
5606 -- of wide wide character literals is complete, i.e. if a character
5607 -- literal is accepted by the parser, then it is OK for wide wide
5608 -- character (out of range character literals are rejected).
996ae0b0 5609
82c80734 5610 if Root_Type (B_Typ) = Standard_Wide_Wide_Character then
996ae0b0
RK
5611 return;
5612
5613 -- Always accept character literal for type Any_Character, which
5614 -- occurs in error situations and in comparisons of literals, both
5615 -- of which should accept all literals.
5616
5617 elsif B_Typ = Any_Character then
5618 return;
5619
5620 -- For Standard.Character or a type derived from it, check that
5621 -- the literal is in range
5622
5623 elsif Root_Type (B_Typ) = Standard_Character then
82c80734
RD
5624 if In_Character_Range (UI_To_CC (Char_Literal_Value (N))) then
5625 return;
5626 end if;
5627
5628 -- For Standard.Wide_Character or a type derived from it, check
5629 -- that the literal is in range
5630
5631 elsif Root_Type (B_Typ) = Standard_Wide_Character then
5632 if In_Wide_Character_Range (UI_To_CC (Char_Literal_Value (N))) then
996ae0b0
RK
5633 return;
5634 end if;
5635
82c80734
RD
5636 -- For Standard.Wide_Wide_Character or a type derived from it, we
5637 -- know the literal is in range, since the parser checked!
5638
5639 elsif Root_Type (B_Typ) = Standard_Wide_Wide_Character then
5640 return;
5641
d81b4bfe
TQ
5642 -- If the entity is already set, this has already been resolved in a
5643 -- generic context, or comes from expansion. Nothing else to do.
996ae0b0
RK
5644
5645 elsif Present (Entity (N)) then
5646 return;
5647
d81b4bfe
TQ
5648 -- Otherwise we have a user defined character type, and we can use the
5649 -- standard visibility mechanisms to locate the referenced entity.
996ae0b0
RK
5650
5651 else
5652 C := Current_Entity (N);
996ae0b0
RK
5653 while Present (C) loop
5654 if Etype (C) = B_Typ then
5655 Set_Entity_With_Style_Check (N, C);
5656 Generate_Reference (C, N);
5657 return;
5658 end if;
5659
5660 C := Homonym (C);
5661 end loop;
5662 end if;
5663
5664 -- If we fall through, then the literal does not match any of the
5665 -- entries of the enumeration type. This isn't just a constraint
5666 -- error situation, it is an illegality (see RM 4.2).
5667
5668 Error_Msg_NE
5669 ("character not defined for }", N, First_Subtype (B_Typ));
996ae0b0
RK
5670 end Resolve_Character_Literal;
5671
5672 ---------------------------
5673 -- Resolve_Comparison_Op --
5674 ---------------------------
5675
5676 -- Context requires a boolean type, and plays no role in resolution.
fbf5a39b
AC
5677 -- Processing identical to that for equality operators. The result
5678 -- type is the base type, which matters when pathological subtypes of
5679 -- booleans with limited ranges are used.
996ae0b0
RK
5680
5681 procedure Resolve_Comparison_Op (N : Node_Id; Typ : Entity_Id) is
5682 L : constant Node_Id := Left_Opnd (N);
5683 R : constant Node_Id := Right_Opnd (N);
5684 T : Entity_Id;
5685
5686 begin
d81b4bfe
TQ
5687 -- If this is an intrinsic operation which is not predefined, use the
5688 -- types of its declared arguments to resolve the possibly overloaded
5689 -- operands. Otherwise the operands are unambiguous and specify the
5690 -- expected type.
996ae0b0
RK
5691
5692 if Scope (Entity (N)) /= Standard_Standard then
5693 T := Etype (First_Entity (Entity (N)));
1420b484 5694
996ae0b0
RK
5695 else
5696 T := Find_Unique_Type (L, R);
5697
5698 if T = Any_Fixed then
5699 T := Unique_Fixed_Point_Type (L);
5700 end if;
5701 end if;
5702
fbf5a39b 5703 Set_Etype (N, Base_Type (Typ));
996ae0b0
RK
5704 Generate_Reference (T, N, ' ');
5705
bd29d519 5706 -- Skip remaining processing if already set to Any_Type
996ae0b0 5707
bd29d519
AC
5708 if T = Any_Type then
5709 return;
5710 end if;
5711
5712 -- Deal with other error cases
996ae0b0 5713
bd29d519
AC
5714 if T = Any_String or else
5715 T = Any_Composite or else
5716 T = Any_Character
5717 then
5718 if T = Any_Character then
5719 Ambiguous_Character (L);
996ae0b0 5720 else
bd29d519 5721 Error_Msg_N ("ambiguous operands for comparison", N);
996ae0b0 5722 end if;
bd29d519
AC
5723
5724 Set_Etype (N, Any_Type);
5725 return;
996ae0b0 5726 end if;
bd29d519
AC
5727
5728 -- Resolve the operands if types OK
5729
5730 Resolve (L, T);
5731 Resolve (R, T);
5732 Check_Unset_Reference (L);
5733 Check_Unset_Reference (R);
5734 Generate_Operator_Reference (N, T);
5735 Check_Low_Bound_Tested (N);
5736
5737 -- Check comparison on unordered enumeration
5738
5739 if Comes_From_Source (N)
5740 and then Bad_Unordered_Enumeration_Reference (N, Etype (L))
5741 then
5742 Error_Msg_N ("comparison on unordered enumeration type?", N);
5743 end if;
5744
5745 -- Evaluate the relation (note we do this after the above check
5746 -- since this Eval call may change N to True/False.
5747
5748 Eval_Relational_Op (N);
996ae0b0
RK
5749 end Resolve_Comparison_Op;
5750
5751 ------------------------------------
5752 -- Resolve_Conditional_Expression --
5753 ------------------------------------
5754
5755 procedure Resolve_Conditional_Expression (N : Node_Id; Typ : Entity_Id) is
5756 Condition : constant Node_Id := First (Expressions (N));
5757 Then_Expr : constant Node_Id := Next (Condition);
b46be8a2
RD
5758 Else_Expr : Node_Id := Next (Then_Expr);
5759
996ae0b0 5760 begin
b46be8a2 5761 Resolve (Condition, Any_Boolean);
996ae0b0 5762 Resolve (Then_Expr, Typ);
b46be8a2
RD
5763
5764 -- If ELSE expression present, just resolve using the determined type
5765
5766 if Present (Else_Expr) then
5767 Resolve (Else_Expr, Typ);
5768
5769 -- If no ELSE expression is present, root type must be Standard.Boolean
5770 -- and we provide a Standard.True result converted to the appropriate
5771 -- Boolean type (in case it is a derived boolean type).
5772
5773 elsif Root_Type (Typ) = Standard_Boolean then
5774 Else_Expr :=
5775 Convert_To (Typ, New_Occurrence_Of (Standard_True, Sloc (N)));
5776 Analyze_And_Resolve (Else_Expr, Typ);
5777 Append_To (Expressions (N), Else_Expr);
5778
5779 else
5780 Error_Msg_N ("can only omit ELSE expression in Boolean case", N);
5781 Append_To (Expressions (N), Error);
5782 end if;
5783
996ae0b0
RK
5784 Set_Etype (N, Typ);
5785 Eval_Conditional_Expression (N);
5786 end Resolve_Conditional_Expression;
5787
5788 -----------------------------------------
5789 -- Resolve_Discrete_Subtype_Indication --
5790 -----------------------------------------
5791
5792 procedure Resolve_Discrete_Subtype_Indication
5793 (N : Node_Id;
5794 Typ : Entity_Id)
5795 is
5796 R : Node_Id;
5797 S : Entity_Id;
5798
5799 begin
5800 Analyze (Subtype_Mark (N));
5801 S := Entity (Subtype_Mark (N));
5802
5803 if Nkind (Constraint (N)) /= N_Range_Constraint then
5804 Error_Msg_N ("expect range constraint for discrete type", N);
5805 Set_Etype (N, Any_Type);
5806
5807 else
5808 R := Range_Expression (Constraint (N));
5c736541
RD
5809
5810 if R = Error then
5811 return;
5812 end if;
5813
996ae0b0
RK
5814 Analyze (R);
5815
5816 if Base_Type (S) /= Base_Type (Typ) then
5817 Error_Msg_NE
5818 ("expect subtype of }", N, First_Subtype (Typ));
5819
5820 -- Rewrite the constraint as a range of Typ
5821 -- to allow compilation to proceed further.
5822
5823 Set_Etype (N, Typ);
5824 Rewrite (Low_Bound (R),
5825 Make_Attribute_Reference (Sloc (Low_Bound (R)),
5826 Prefix => New_Occurrence_Of (Typ, Sloc (R)),
5827 Attribute_Name => Name_First));
5828 Rewrite (High_Bound (R),
5829 Make_Attribute_Reference (Sloc (High_Bound (R)),
5830 Prefix => New_Occurrence_Of (Typ, Sloc (R)),
5831 Attribute_Name => Name_First));
5832
5833 else
5834 Resolve (R, Typ);
5835 Set_Etype (N, Etype (R));
5836
5837 -- Additionally, we must check that the bounds are compatible
5838 -- with the given subtype, which might be different from the
5839 -- type of the context.
5840
5841 Apply_Range_Check (R, S);
5842
5843 -- ??? If the above check statically detects a Constraint_Error
5844 -- it replaces the offending bound(s) of the range R with a
5845 -- Constraint_Error node. When the itype which uses these bounds
5846 -- is frozen the resulting call to Duplicate_Subexpr generates
5847 -- a new temporary for the bounds.
5848
5849 -- Unfortunately there are other itypes that are also made depend
5850 -- on these bounds, so when Duplicate_Subexpr is called they get
5851 -- a forward reference to the newly created temporaries and Gigi
5852 -- aborts on such forward references. This is probably sign of a
5853 -- more fundamental problem somewhere else in either the order of
5854 -- itype freezing or the way certain itypes are constructed.
5855
5856 -- To get around this problem we call Remove_Side_Effects right
5857 -- away if either bounds of R are a Constraint_Error.
5858
5859 declare
fbf5a39b
AC
5860 L : constant Node_Id := Low_Bound (R);
5861 H : constant Node_Id := High_Bound (R);
996ae0b0
RK
5862
5863 begin
5864 if Nkind (L) = N_Raise_Constraint_Error then
5865 Remove_Side_Effects (L);
5866 end if;
5867
5868 if Nkind (H) = N_Raise_Constraint_Error then
5869 Remove_Side_Effects (H);
5870 end if;
5871 end;
5872
5873 Check_Unset_Reference (Low_Bound (R));
5874 Check_Unset_Reference (High_Bound (R));
5875 end if;
5876 end if;
5877 end Resolve_Discrete_Subtype_Indication;
5878
5879 -------------------------
5880 -- Resolve_Entity_Name --
5881 -------------------------
5882
5883 -- Used to resolve identifiers and expanded names
5884
5885 procedure Resolve_Entity_Name (N : Node_Id; Typ : Entity_Id) is
5886 E : constant Entity_Id := Entity (N);
5887
5888 begin
07fc65c4
GB
5889 -- If garbage from errors, set to Any_Type and return
5890
5891 if No (E) and then Total_Errors_Detected /= 0 then
5892 Set_Etype (N, Any_Type);
5893 return;
5894 end if;
5895
996ae0b0
RK
5896 -- Replace named numbers by corresponding literals. Note that this is
5897 -- the one case where Resolve_Entity_Name must reset the Etype, since
5898 -- it is currently marked as universal.
5899
5900 if Ekind (E) = E_Named_Integer then
5901 Set_Etype (N, Typ);
5902 Eval_Named_Integer (N);
5903
5904 elsif Ekind (E) = E_Named_Real then
5905 Set_Etype (N, Typ);
5906 Eval_Named_Real (N);
5907
6989bc1f
AC
5908 -- For enumeration literals, we need to make sure that a proper style
5909 -- check is done, since such literals are overloaded, and thus we did
5910 -- not do a style check during the first phase of analysis.
5911
5912 elsif Ekind (E) = E_Enumeration_Literal then
5913 Set_Entity_With_Style_Check (N, E);
5914 Eval_Entity_Name (N);
5915
996ae0b0 5916 -- Allow use of subtype only if it is a concurrent type where we are
d81b4bfe
TQ
5917 -- currently inside the body. This will eventually be expanded into a
5918 -- call to Self (for tasks) or _object (for protected objects). Any
5919 -- other use of a subtype is invalid.
996ae0b0
RK
5920
5921 elsif Is_Type (E) then
5922 if Is_Concurrent_Type (E)
5923 and then In_Open_Scopes (E)
5924 then
5925 null;
5926 else
5927 Error_Msg_N
758c442c 5928 ("invalid use of subtype mark in expression or call", N);
996ae0b0
RK
5929 end if;
5930
5931 -- Check discriminant use if entity is discriminant in current scope,
5932 -- i.e. discriminant of record or concurrent type currently being
5933 -- analyzed. Uses in corresponding body are unrestricted.
5934
5935 elsif Ekind (E) = E_Discriminant
5936 and then Scope (E) = Current_Scope
5937 and then not Has_Completion (Current_Scope)
5938 then
5939 Check_Discriminant_Use (N);
5940
5941 -- A parameterless generic function cannot appear in a context that
5942 -- requires resolution.
5943
5944 elsif Ekind (E) = E_Generic_Function then
5945 Error_Msg_N ("illegal use of generic function", N);
5946
5947 elsif Ekind (E) = E_Out_Parameter
0ab80019 5948 and then Ada_Version = Ada_83
996ae0b0
RK
5949 and then (Nkind (Parent (N)) in N_Op
5950 or else (Nkind (Parent (N)) = N_Assignment_Statement
5951 and then N = Expression (Parent (N)))
5952 or else Nkind (Parent (N)) = N_Explicit_Dereference)
5953 then
5954 Error_Msg_N ("(Ada 83) illegal reading of out parameter", N);
5955
5956 -- In all other cases, just do the possible static evaluation
5957
5958 else
d81b4bfe
TQ
5959 -- A deferred constant that appears in an expression must have a
5960 -- completion, unless it has been removed by in-place expansion of
5961 -- an aggregate.
996ae0b0
RK
5962
5963 if Ekind (E) = E_Constant
5964 and then Comes_From_Source (E)
5965 and then No (Constant_Value (E))
5966 and then Is_Frozen (Etype (E))
45fc7ddb 5967 and then not In_Spec_Expression
996ae0b0
RK
5968 and then not Is_Imported (E)
5969 then
996ae0b0
RK
5970 if No_Initialization (Parent (E))
5971 or else (Present (Full_View (E))
5972 and then No_Initialization (Parent (Full_View (E))))
5973 then
5974 null;
5975 else
5976 Error_Msg_N (
5977 "deferred constant is frozen before completion", N);
5978 end if;
5979 end if;
5980
5981 Eval_Entity_Name (N);
5982 end if;
5983 end Resolve_Entity_Name;
5984
5985 -------------------
5986 -- Resolve_Entry --
5987 -------------------
5988
5989 procedure Resolve_Entry (Entry_Name : Node_Id) is
5990 Loc : constant Source_Ptr := Sloc (Entry_Name);
5991 Nam : Entity_Id;
5992 New_N : Node_Id;
5993 S : Entity_Id;
5994 Tsk : Entity_Id;
5995 E_Name : Node_Id;
5996 Index : Node_Id;
5997
5998 function Actual_Index_Type (E : Entity_Id) return Entity_Id;
5999 -- If the bounds of the entry family being called depend on task
6000 -- discriminants, build a new index subtype where a discriminant is
6001 -- replaced with the value of the discriminant of the target task.
6002 -- The target task is the prefix of the entry name in the call.
6003
6004 -----------------------
6005 -- Actual_Index_Type --
6006 -----------------------
6007
6008 function Actual_Index_Type (E : Entity_Id) return Entity_Id is
fbf5a39b
AC
6009 Typ : constant Entity_Id := Entry_Index_Type (E);
6010 Tsk : constant Entity_Id := Scope (E);
6011 Lo : constant Node_Id := Type_Low_Bound (Typ);
6012 Hi : constant Node_Id := Type_High_Bound (Typ);
996ae0b0
RK
6013 New_T : Entity_Id;
6014
6015 function Actual_Discriminant_Ref (Bound : Node_Id) return Node_Id;
6016 -- If the bound is given by a discriminant, replace with a reference
d81b4bfe
TQ
6017 -- to the discriminant of the same name in the target task. If the
6018 -- entry name is the target of a requeue statement and the entry is
6019 -- in the current protected object, the bound to be used is the
008f6fd3 6020 -- discriminal of the object (see Apply_Range_Checks for details of
d81b4bfe 6021 -- the transformation).
996ae0b0
RK
6022
6023 -----------------------------
6024 -- Actual_Discriminant_Ref --
6025 -----------------------------
6026
6027 function Actual_Discriminant_Ref (Bound : Node_Id) return Node_Id is
fbf5a39b 6028 Typ : constant Entity_Id := Etype (Bound);
996ae0b0
RK
6029 Ref : Node_Id;
6030
6031 begin
6032 Remove_Side_Effects (Bound);
6033
6034 if not Is_Entity_Name (Bound)
6035 or else Ekind (Entity (Bound)) /= E_Discriminant
6036 then
6037 return Bound;
6038
6039 elsif Is_Protected_Type (Tsk)
6040 and then In_Open_Scopes (Tsk)
6041 and then Nkind (Parent (Entry_Name)) = N_Requeue_Statement
6042 then
6ca9ec9c
AC
6043 -- Note: here Bound denotes a discriminant of the corresponding
6044 -- record type tskV, whose discriminal is a formal of the
6045 -- init-proc tskVIP. What we want is the body discriminal,
6046 -- which is associated to the discriminant of the original
6047 -- concurrent type tsk.
6048
5a153b27
AC
6049 return New_Occurrence_Of
6050 (Find_Body_Discriminal (Entity (Bound)), Loc);
996ae0b0
RK
6051
6052 else
6053 Ref :=
6054 Make_Selected_Component (Loc,
6055 Prefix => New_Copy_Tree (Prefix (Prefix (Entry_Name))),
6056 Selector_Name => New_Occurrence_Of (Entity (Bound), Loc));
6057 Analyze (Ref);
6058 Resolve (Ref, Typ);
6059 return Ref;
6060 end if;
6061 end Actual_Discriminant_Ref;
6062
6063 -- Start of processing for Actual_Index_Type
6064
6065 begin
6066 if not Has_Discriminants (Tsk)
6067 or else (not Is_Entity_Name (Lo)
d81b4bfe
TQ
6068 and then
6069 not Is_Entity_Name (Hi))
996ae0b0
RK
6070 then
6071 return Entry_Index_Type (E);
6072
6073 else
6074 New_T := Create_Itype (Ekind (Typ), Parent (Entry_Name));
6075 Set_Etype (New_T, Base_Type (Typ));
6076 Set_Size_Info (New_T, Typ);
6077 Set_RM_Size (New_T, RM_Size (Typ));
6078 Set_Scalar_Range (New_T,
6079 Make_Range (Sloc (Entry_Name),
6080 Low_Bound => Actual_Discriminant_Ref (Lo),
6081 High_Bound => Actual_Discriminant_Ref (Hi)));
6082
6083 return New_T;
6084 end if;
6085 end Actual_Index_Type;
6086
6087 -- Start of processing of Resolve_Entry
6088
6089 begin
6090 -- Find name of entry being called, and resolve prefix of name
6091 -- with its own type. The prefix can be overloaded, and the name
6092 -- and signature of the entry must be taken into account.
6093
6094 if Nkind (Entry_Name) = N_Indexed_Component then
6095
6096 -- Case of dealing with entry family within the current tasks
6097
6098 E_Name := Prefix (Entry_Name);
6099
6100 else
6101 E_Name := Entry_Name;
6102 end if;
6103
6104 if Is_Entity_Name (E_Name) then
996ae0b0 6105
d81b4bfe
TQ
6106 -- Entry call to an entry (or entry family) in the current task. This
6107 -- is legal even though the task will deadlock. Rewrite as call to
6108 -- current task.
996ae0b0 6109
d81b4bfe
TQ
6110 -- This can also be a call to an entry in an enclosing task. If this
6111 -- is a single task, we have to retrieve its name, because the scope
6112 -- of the entry is the task type, not the object. If the enclosing
6113 -- task is a task type, the identity of the task is given by its own
6114 -- self variable.
6115
6116 -- Finally this can be a requeue on an entry of the same task or
6117 -- protected object.
996ae0b0
RK
6118
6119 S := Scope (Entity (E_Name));
6120
6121 for J in reverse 0 .. Scope_Stack.Last loop
996ae0b0
RK
6122 if Is_Task_Type (Scope_Stack.Table (J).Entity)
6123 and then not Comes_From_Source (S)
6124 then
6125 -- S is an enclosing task or protected object. The concurrent
6126 -- declaration has been converted into a type declaration, and
6127 -- the object itself has an object declaration that follows
6128 -- the type in the same declarative part.
6129
6130 Tsk := Next_Entity (S);
996ae0b0
RK
6131 while Etype (Tsk) /= S loop
6132 Next_Entity (Tsk);
6133 end loop;
6134
6135 S := Tsk;
6136 exit;
6137
6138 elsif S = Scope_Stack.Table (J).Entity then
6139
6140 -- Call to current task. Will be transformed into call to Self
6141
6142 exit;
6143
6144 end if;
6145 end loop;
6146
6147 New_N :=
6148 Make_Selected_Component (Loc,
6149 Prefix => New_Occurrence_Of (S, Loc),
6150 Selector_Name =>
6151 New_Occurrence_Of (Entity (E_Name), Loc));
6152 Rewrite (E_Name, New_N);
6153 Analyze (E_Name);
6154
6155 elsif Nkind (Entry_Name) = N_Selected_Component
6156 and then Is_Overloaded (Prefix (Entry_Name))
6157 then
d81b4bfe
TQ
6158 -- Use the entry name (which must be unique at this point) to find
6159 -- the prefix that returns the corresponding task type or protected
6160 -- type.
996ae0b0
RK
6161
6162 declare
fbf5a39b
AC
6163 Pref : constant Node_Id := Prefix (Entry_Name);
6164 Ent : constant Entity_Id := Entity (Selector_Name (Entry_Name));
996ae0b0
RK
6165 I : Interp_Index;
6166 It : Interp;
996ae0b0
RK
6167
6168 begin
6169 Get_First_Interp (Pref, I, It);
996ae0b0 6170 while Present (It.Typ) loop
996ae0b0
RK
6171 if Scope (Ent) = It.Typ then
6172 Set_Etype (Pref, It.Typ);
6173 exit;
6174 end if;
6175
6176 Get_Next_Interp (I, It);
6177 end loop;
6178 end;
6179 end if;
6180
6181 if Nkind (Entry_Name) = N_Selected_Component then
fbf5a39b 6182 Resolve (Prefix (Entry_Name));
996ae0b0
RK
6183
6184 else pragma Assert (Nkind (Entry_Name) = N_Indexed_Component);
6185 Nam := Entity (Selector_Name (Prefix (Entry_Name)));
fbf5a39b 6186 Resolve (Prefix (Prefix (Entry_Name)));
996ae0b0
RK
6187 Index := First (Expressions (Entry_Name));
6188 Resolve (Index, Entry_Index_Type (Nam));
6189
d81b4bfe
TQ
6190 -- Up to this point the expression could have been the actual in a
6191 -- simple entry call, and be given by a named association.
996ae0b0
RK
6192
6193 if Nkind (Index) = N_Parameter_Association then
6194 Error_Msg_N ("expect expression for entry index", Index);
6195 else
6196 Apply_Range_Check (Index, Actual_Index_Type (Nam));
6197 end if;
6198 end if;
996ae0b0
RK
6199 end Resolve_Entry;
6200
6201 ------------------------
6202 -- Resolve_Entry_Call --
6203 ------------------------
6204
6205 procedure Resolve_Entry_Call (N : Node_Id; Typ : Entity_Id) is
6206 Entry_Name : constant Node_Id := Name (N);
6207 Loc : constant Source_Ptr := Sloc (Entry_Name);
6208 Actuals : List_Id;
6209 First_Named : Node_Id;
6210 Nam : Entity_Id;
6211 Norm_OK : Boolean;
6212 Obj : Node_Id;
6213 Was_Over : Boolean;
6214
6215 begin
d81b4bfe
TQ
6216 -- We kill all checks here, because it does not seem worth the effort to
6217 -- do anything better, an entry call is a big operation.
fbf5a39b
AC
6218
6219 Kill_All_Checks;
6220
996ae0b0
RK
6221 -- Processing of the name is similar for entry calls and protected
6222 -- operation calls. Once the entity is determined, we can complete
6223 -- the resolution of the actuals.
6224
6225 -- The selector may be overloaded, in the case of a protected object
6226 -- with overloaded functions. The type of the context is used for
6227 -- resolution.
6228
6229 if Nkind (Entry_Name) = N_Selected_Component
6230 and then Is_Overloaded (Selector_Name (Entry_Name))
6231 and then Typ /= Standard_Void_Type
6232 then
6233 declare
6234 I : Interp_Index;
6235 It : Interp;
6236
6237 begin
6238 Get_First_Interp (Selector_Name (Entry_Name), I, It);
996ae0b0 6239 while Present (It.Typ) loop
996ae0b0
RK
6240 if Covers (Typ, It.Typ) then
6241 Set_Entity (Selector_Name (Entry_Name), It.Nam);
6242 Set_Etype (Entry_Name, It.Typ);
6243
6244 Generate_Reference (It.Typ, N, ' ');
6245 end if;
6246
6247 Get_Next_Interp (I, It);
6248 end loop;
6249 end;
6250 end if;
6251
6252 Resolve_Entry (Entry_Name);
6253
6254 if Nkind (Entry_Name) = N_Selected_Component then
6255
a77842bd 6256 -- Simple entry call
996ae0b0
RK
6257
6258 Nam := Entity (Selector_Name (Entry_Name));
6259 Obj := Prefix (Entry_Name);
6260 Was_Over := Is_Overloaded (Selector_Name (Entry_Name));
6261
6262 else pragma Assert (Nkind (Entry_Name) = N_Indexed_Component);
6263
a77842bd 6264 -- Call to member of entry family
996ae0b0
RK
6265
6266 Nam := Entity (Selector_Name (Prefix (Entry_Name)));
6267 Obj := Prefix (Prefix (Entry_Name));
6268 Was_Over := Is_Overloaded (Selector_Name (Prefix (Entry_Name)));
6269 end if;
6270
fbf5a39b
AC
6271 -- We cannot in general check the maximum depth of protected entry
6272 -- calls at compile time. But we can tell that any protected entry
6273 -- call at all violates a specified nesting depth of zero.
6274
6275 if Is_Protected_Type (Scope (Nam)) then
9f4fd324 6276 Check_Restriction (Max_Entry_Queue_Length, N);
fbf5a39b
AC
6277 end if;
6278
996ae0b0
RK
6279 -- Use context type to disambiguate a protected function that can be
6280 -- called without actuals and that returns an array type, and where
6281 -- the argument list may be an indexing of the returned value.
6282
6283 if Ekind (Nam) = E_Function
6284 and then Needs_No_Actuals (Nam)
6285 and then Present (Parameter_Associations (N))
6286 and then
6287 ((Is_Array_Type (Etype (Nam))
6288 and then Covers (Typ, Component_Type (Etype (Nam))))
6289
6290 or else (Is_Access_Type (Etype (Nam))
6291 and then Is_Array_Type (Designated_Type (Etype (Nam)))
6292 and then Covers (Typ,
6293 Component_Type (Designated_Type (Etype (Nam))))))
6294 then
6295 declare
6296 Index_Node : Node_Id;
6297
6298 begin
6299 Index_Node :=
6300 Make_Indexed_Component (Loc,
6301 Prefix =>
6302 Make_Function_Call (Loc,
6303 Name => Relocate_Node (Entry_Name)),
6304 Expressions => Parameter_Associations (N));
6305
6306 -- Since we are correcting a node classification error made by
6307 -- the parser, we call Replace rather than Rewrite.
6308
6309 Replace (N, Index_Node);
6310 Set_Etype (Prefix (N), Etype (Nam));
6311 Set_Etype (N, Typ);
6312 Resolve_Indexed_Component (N, Typ);
6313 return;
6314 end;
6315 end if;
6316
6317 -- The operation name may have been overloaded. Order the actuals
fbf5a39b
AC
6318 -- according to the formals of the resolved entity, and set the
6319 -- return type to that of the operation.
996ae0b0
RK
6320
6321 if Was_Over then
6322 Normalize_Actuals (N, Nam, False, Norm_OK);
6323 pragma Assert (Norm_OK);
fbf5a39b 6324 Set_Etype (N, Etype (Nam));
996ae0b0
RK
6325 end if;
6326
6327 Resolve_Actuals (N, Nam);
6328 Generate_Reference (Nam, Entry_Name);
6329
8a95f4e8 6330 if Ekind_In (Nam, E_Entry, E_Entry_Family) then
996ae0b0
RK
6331 Check_Potentially_Blocking_Operation (N);
6332 end if;
6333
6334 -- Verify that a procedure call cannot masquerade as an entry
6335 -- call where an entry call is expected.
6336
6337 if Ekind (Nam) = E_Procedure then
996ae0b0
RK
6338 if Nkind (Parent (N)) = N_Entry_Call_Alternative
6339 and then N = Entry_Call_Statement (Parent (N))
6340 then
6341 Error_Msg_N ("entry call required in select statement", N);
6342
6343 elsif Nkind (Parent (N)) = N_Triggering_Alternative
6344 and then N = Triggering_Statement (Parent (N))
6345 then
6346 Error_Msg_N ("triggering statement cannot be procedure call", N);
6347
6348 elsif Ekind (Scope (Nam)) = E_Task_Type
6349 and then not In_Open_Scopes (Scope (Nam))
6350 then
758c442c 6351 Error_Msg_N ("task has no entry with this name", Entry_Name);
996ae0b0
RK
6352 end if;
6353 end if;
6354
d81b4bfe
TQ
6355 -- After resolution, entry calls and protected procedure calls are
6356 -- changed into entry calls, for expansion. The structure of the node
6357 -- does not change, so it can safely be done in place. Protected
6358 -- function calls must keep their structure because they are
6359 -- subexpressions.
996ae0b0
RK
6360
6361 if Ekind (Nam) /= E_Function then
6362
6363 -- A protected operation that is not a function may modify the
d81b4bfe
TQ
6364 -- corresponding object, and cannot apply to a constant. If this
6365 -- is an internal call, the prefix is the type itself.
996ae0b0
RK
6366
6367 if Is_Protected_Type (Scope (Nam))
6368 and then not Is_Variable (Obj)
6369 and then (not Is_Entity_Name (Obj)
6370 or else not Is_Type (Entity (Obj)))
6371 then
6372 Error_Msg_N
6373 ("prefix of protected procedure or entry call must be variable",
6374 Entry_Name);
6375 end if;
6376
6377 Actuals := Parameter_Associations (N);
6378 First_Named := First_Named_Actual (N);
6379
6380 Rewrite (N,
6381 Make_Entry_Call_Statement (Loc,
6382 Name => Entry_Name,
6383 Parameter_Associations => Actuals));
6384
6385 Set_First_Named_Actual (N, First_Named);
6386 Set_Analyzed (N, True);
6387
6388 -- Protected functions can return on the secondary stack, in which
1420b484 6389 -- case we must trigger the transient scope mechanism.
996ae0b0
RK
6390
6391 elsif Expander_Active
6392 and then Requires_Transient_Scope (Etype (Nam))
6393 then
0669bebe 6394 Establish_Transient_Scope (N, Sec_Stack => True);
996ae0b0 6395 end if;
996ae0b0
RK
6396 end Resolve_Entry_Call;
6397
6398 -------------------------
6399 -- Resolve_Equality_Op --
6400 -------------------------
6401
d81b4bfe
TQ
6402 -- Both arguments must have the same type, and the boolean context does
6403 -- not participate in the resolution. The first pass verifies that the
6404 -- interpretation is not ambiguous, and the type of the left argument is
6405 -- correctly set, or is Any_Type in case of ambiguity. If both arguments
6406 -- are strings or aggregates, allocators, or Null, they are ambiguous even
6407 -- though they carry a single (universal) type. Diagnose this case here.
996ae0b0
RK
6408
6409 procedure Resolve_Equality_Op (N : Node_Id; Typ : Entity_Id) is
6410 L : constant Node_Id := Left_Opnd (N);
6411 R : constant Node_Id := Right_Opnd (N);
6412 T : Entity_Id := Find_Unique_Type (L, R);
6413
a8930b80
AC
6414 procedure Check_Conditional_Expression (Cond : Node_Id);
6415 -- The resolution rule for conditional expressions requires that each
6416 -- such must have a unique type. This means that if several dependent
6417 -- expressions are of a non-null anonymous access type, and the context
6418 -- does not impose an expected type (as can be the case in an equality
6419 -- operation) the expression must be rejected.
6420
996ae0b0
RK
6421 function Find_Unique_Access_Type return Entity_Id;
6422 -- In the case of allocators, make a last-ditch attempt to find a single
6423 -- access type with the right designated type. This is semantically
6424 -- dubious, and of no interest to any real code, but c48008a makes it
6425 -- all worthwhile.
6426
a8930b80
AC
6427 ----------------------------------
6428 -- Check_Conditional_Expression --
6429 ----------------------------------
6430
6431 procedure Check_Conditional_Expression (Cond : Node_Id) is
6432 Then_Expr : Node_Id;
6433 Else_Expr : Node_Id;
6434
6435 begin
6436 if Nkind (Cond) = N_Conditional_Expression then
6437 Then_Expr := Next (First (Expressions (Cond)));
6438 Else_Expr := Next (Then_Expr);
6439
6440 if Nkind (Then_Expr) /= N_Null
6441 and then Nkind (Else_Expr) /= N_Null
6442 then
6443 Error_Msg_N
6444 ("cannot determine type of conditional expression", Cond);
6445 end if;
6446 end if;
6447 end Check_Conditional_Expression;
6448
996ae0b0
RK
6449 -----------------------------
6450 -- Find_Unique_Access_Type --
6451 -----------------------------
6452
6453 function Find_Unique_Access_Type return Entity_Id is
6454 Acc : Entity_Id;
6455 E : Entity_Id;
1420b484 6456 S : Entity_Id;
996ae0b0
RK
6457
6458 begin
6459 if Ekind (Etype (R)) = E_Allocator_Type then
6460 Acc := Designated_Type (Etype (R));
996ae0b0
RK
6461 elsif Ekind (Etype (L)) = E_Allocator_Type then
6462 Acc := Designated_Type (Etype (L));
996ae0b0
RK
6463 else
6464 return Empty;
6465 end if;
6466
1420b484 6467 S := Current_Scope;
996ae0b0
RK
6468 while S /= Standard_Standard loop
6469 E := First_Entity (S);
996ae0b0 6470 while Present (E) loop
996ae0b0
RK
6471 if Is_Type (E)
6472 and then Is_Access_Type (E)
6473 and then Ekind (E) /= E_Allocator_Type
6474 and then Designated_Type (E) = Base_Type (Acc)
6475 then
6476 return E;
6477 end if;
6478
6479 Next_Entity (E);
6480 end loop;
6481
6482 S := Scope (S);
6483 end loop;
6484
6485 return Empty;
6486 end Find_Unique_Access_Type;
6487
6488 -- Start of processing for Resolve_Equality_Op
6489
6490 begin
6491 Set_Etype (N, Base_Type (Typ));
6492 Generate_Reference (T, N, ' ');
6493
6494 if T = Any_Fixed then
6495 T := Unique_Fixed_Point_Type (L);
6496 end if;
6497
6498 if T /= Any_Type then
996ae0b0
RK
6499 if T = Any_String
6500 or else T = Any_Composite
6501 or else T = Any_Character
6502 then
996ae0b0
RK
6503 if T = Any_Character then
6504 Ambiguous_Character (L);
6505 else
6506 Error_Msg_N ("ambiguous operands for equality", N);
6507 end if;
6508
6509 Set_Etype (N, Any_Type);
6510 return;
6511
6512 elsif T = Any_Access
964f13da 6513 or else Ekind_In (T, E_Allocator_Type, E_Access_Attribute_Type)
996ae0b0
RK
6514 then
6515 T := Find_Unique_Access_Type;
6516
6517 if No (T) then
6518 Error_Msg_N ("ambiguous operands for equality", N);
6519 Set_Etype (N, Any_Type);
6520 return;
6521 end if;
a8930b80
AC
6522
6523 -- Conditional expressions must have a single type, and if the
6524 -- context does not impose one the dependent expressions cannot
6525 -- be anonymous access types.
6526
6527 elsif Ada_Version >= Ada_2012
ae2aa109
AC
6528 and then Ekind_In (Etype (L), E_Anonymous_Access_Type,
6529 E_Anonymous_Access_Subprogram_Type)
6530 and then Ekind_In (Etype (R), E_Anonymous_Access_Type,
6531 E_Anonymous_Access_Subprogram_Type)
a8930b80
AC
6532 then
6533 Check_Conditional_Expression (L);
6534 Check_Conditional_Expression (R);
996ae0b0
RK
6535 end if;
6536
996ae0b0
RK
6537 Resolve (L, T);
6538 Resolve (R, T);
fbf5a39b 6539
0669bebe
GB
6540 -- If the unique type is a class-wide type then it will be expanded
6541 -- into a dispatching call to the predefined primitive. Therefore we
6542 -- check here for potential violation of such restriction.
6543
6544 if Is_Class_Wide_Type (T) then
6545 Check_Restriction (No_Dispatching_Calls, N);
6546 end if;
6547
fbf5a39b
AC
6548 if Warn_On_Redundant_Constructs
6549 and then Comes_From_Source (N)
6550 and then Is_Entity_Name (R)
6551 and then Entity (R) = Standard_True
6552 and then Comes_From_Source (R)
6553 then
305caf42
AC
6554 Error_Msg_N -- CODEFIX
6555 ("?comparison with True is redundant!", R);
fbf5a39b
AC
6556 end if;
6557
996ae0b0
RK
6558 Check_Unset_Reference (L);
6559 Check_Unset_Reference (R);
fbf5a39b 6560 Generate_Operator_Reference (N, T);
fad0600d 6561 Check_Low_Bound_Tested (N);
996ae0b0
RK
6562
6563 -- If this is an inequality, it may be the implicit inequality
6564 -- created for a user-defined operation, in which case the corres-
6565 -- ponding equality operation is not intrinsic, and the operation
6566 -- cannot be constant-folded. Else fold.
6567
6568 if Nkind (N) = N_Op_Eq
6569 or else Comes_From_Source (Entity (N))
6570 or else Ekind (Entity (N)) = E_Operator
6571 or else Is_Intrinsic_Subprogram
6572 (Corresponding_Equality (Entity (N)))
6573 then
6574 Eval_Relational_Op (N);
45fc7ddb 6575
996ae0b0 6576 elsif Nkind (N) = N_Op_Ne
0669bebe 6577 and then Is_Abstract_Subprogram (Entity (N))
996ae0b0
RK
6578 then
6579 Error_Msg_NE ("cannot call abstract subprogram &!", N, Entity (N));
6580 end if;
758c442c 6581
d81b4bfe
TQ
6582 -- Ada 2005: If one operand is an anonymous access type, convert the
6583 -- other operand to it, to ensure that the underlying types match in
6584 -- the back-end. Same for access_to_subprogram, and the conversion
6585 -- verifies that the types are subtype conformant.
b7d1f17f 6586
d81b4bfe
TQ
6587 -- We apply the same conversion in the case one of the operands is a
6588 -- private subtype of the type of the other.
c8ef728f 6589
b7d1f17f
HK
6590 -- Why the Expander_Active test here ???
6591
4197ae1e 6592 if Expander_Active
b7d1f17f 6593 and then
964f13da
RD
6594 (Ekind_In (T, E_Anonymous_Access_Type,
6595 E_Anonymous_Access_Subprogram_Type)
b7d1f17f 6596 or else Is_Private_Type (T))
c8ef728f
ES
6597 then
6598 if Etype (L) /= T then
6599 Rewrite (L,
6600 Make_Unchecked_Type_Conversion (Sloc (L),
6601 Subtype_Mark => New_Occurrence_Of (T, Sloc (L)),
6602 Expression => Relocate_Node (L)));
6603 Analyze_And_Resolve (L, T);
6604 end if;
6605
6606 if (Etype (R)) /= T then
6607 Rewrite (R,
6608 Make_Unchecked_Type_Conversion (Sloc (R),
6609 Subtype_Mark => New_Occurrence_Of (Etype (L), Sloc (R)),
6610 Expression => Relocate_Node (R)));
6611 Analyze_And_Resolve (R, T);
6612 end if;
6613 end if;
996ae0b0
RK
6614 end if;
6615 end Resolve_Equality_Op;
6616
6617 ----------------------------------
6618 -- Resolve_Explicit_Dereference --
6619 ----------------------------------
6620
6621 procedure Resolve_Explicit_Dereference (N : Node_Id; Typ : Entity_Id) is
bc5f3720
RD
6622 Loc : constant Source_Ptr := Sloc (N);
6623 New_N : Node_Id;
6624 P : constant Node_Id := Prefix (N);
6625 I : Interp_Index;
6626 It : Interp;
996ae0b0
RK
6627
6628 begin
c8ef728f 6629 Check_Fully_Declared_Prefix (Typ, P);
996ae0b0
RK
6630
6631 if Is_Overloaded (P) then
6632
758c442c
GD
6633 -- Use the context type to select the prefix that has the correct
6634 -- designated type.
996ae0b0
RK
6635
6636 Get_First_Interp (P, I, It);
6637 while Present (It.Typ) loop
6638 exit when Is_Access_Type (It.Typ)
6639 and then Covers (Typ, Designated_Type (It.Typ));
996ae0b0
RK
6640 Get_Next_Interp (I, It);
6641 end loop;
6642
bc5f3720
RD
6643 if Present (It.Typ) then
6644 Resolve (P, It.Typ);
6645 else
758c442c
GD
6646 -- If no interpretation covers the designated type of the prefix,
6647 -- this is the pathological case where not all implementations of
6648 -- the prefix allow the interpretation of the node as a call. Now
6649 -- that the expected type is known, Remove other interpretations
6650 -- from prefix, rewrite it as a call, and resolve again, so that
6651 -- the proper call node is generated.
bc5f3720
RD
6652
6653 Get_First_Interp (P, I, It);
6654 while Present (It.Typ) loop
6655 if Ekind (It.Typ) /= E_Access_Subprogram_Type then
6656 Remove_Interp (I);
6657 end if;
6658
6659 Get_Next_Interp (I, It);
6660 end loop;
6661
6662 New_N :=
6663 Make_Function_Call (Loc,
6664 Name =>
6665 Make_Explicit_Dereference (Loc,
6666 Prefix => P),
6667 Parameter_Associations => New_List);
6668
6669 Save_Interps (N, New_N);
6670 Rewrite (N, New_N);
6671 Analyze_And_Resolve (N, Typ);
6672 return;
6673 end if;
6674
996ae0b0
RK
6675 Set_Etype (N, Designated_Type (It.Typ));
6676
6677 else
fbf5a39b 6678 Resolve (P);
996ae0b0
RK
6679 end if;
6680
6681 if Is_Access_Type (Etype (P)) then
6682 Apply_Access_Check (N);
6683 end if;
6684
758c442c
GD
6685 -- If the designated type is a packed unconstrained array type, and the
6686 -- explicit dereference is not in the context of an attribute reference,
6687 -- then we must compute and set the actual subtype, since it is needed
6688 -- by Gigi. The reason we exclude the attribute case is that this is
6689 -- handled fine by Gigi, and in fact we use such attributes to build the
6690 -- actual subtype. We also exclude generated code (which builds actual
6691 -- subtypes directly if they are needed).
996ae0b0
RK
6692
6693 if Is_Array_Type (Etype (N))
6694 and then Is_Packed (Etype (N))
6695 and then not Is_Constrained (Etype (N))
6696 and then Nkind (Parent (N)) /= N_Attribute_Reference
6697 and then Comes_From_Source (N)
6698 then
6699 Set_Etype (N, Get_Actual_Subtype (N));
6700 end if;
6701
09494c32
AC
6702 -- Note: No Eval processing is required for an explicit dereference,
6703 -- because such a name can never be static.
996ae0b0
RK
6704
6705 end Resolve_Explicit_Dereference;
6706
955871d3
AC
6707 -------------------------------------
6708 -- Resolve_Expression_With_Actions --
6709 -------------------------------------
6710
6711 procedure Resolve_Expression_With_Actions (N : Node_Id; Typ : Entity_Id) is
6712 begin
6713 Set_Etype (N, Typ);
6714 end Resolve_Expression_With_Actions;
6715
996ae0b0
RK
6716 -------------------------------
6717 -- Resolve_Indexed_Component --
6718 -------------------------------
6719
6720 procedure Resolve_Indexed_Component (N : Node_Id; Typ : Entity_Id) is
6721 Name : constant Node_Id := Prefix (N);
6722 Expr : Node_Id;
6723 Array_Type : Entity_Id := Empty; -- to prevent junk warning
6724 Index : Node_Id;
6725
6726 begin
6727 if Is_Overloaded (Name) then
6728
758c442c
GD
6729 -- Use the context type to select the prefix that yields the correct
6730 -- component type.
996ae0b0
RK
6731
6732 declare
6733 I : Interp_Index;
6734 It : Interp;
6735 I1 : Interp_Index := 0;
6736 P : constant Node_Id := Prefix (N);
6737 Found : Boolean := False;
6738
6739 begin
6740 Get_First_Interp (P, I, It);
996ae0b0 6741 while Present (It.Typ) loop
996ae0b0
RK
6742 if (Is_Array_Type (It.Typ)
6743 and then Covers (Typ, Component_Type (It.Typ)))
6744 or else (Is_Access_Type (It.Typ)
6745 and then Is_Array_Type (Designated_Type (It.Typ))
6746 and then Covers
6747 (Typ, Component_Type (Designated_Type (It.Typ))))
6748 then
6749 if Found then
6750 It := Disambiguate (P, I1, I, Any_Type);
6751
6752 if It = No_Interp then
6753 Error_Msg_N ("ambiguous prefix for indexing", N);
6754 Set_Etype (N, Typ);
6755 return;
6756
6757 else
6758 Found := True;
6759 Array_Type := It.Typ;
6760 I1 := I;
6761 end if;
6762
6763 else
6764 Found := True;
6765 Array_Type := It.Typ;
6766 I1 := I;
6767 end if;
6768 end if;
6769
6770 Get_Next_Interp (I, It);
6771 end loop;
6772 end;
6773
6774 else
6775 Array_Type := Etype (Name);
6776 end if;
6777
6778 Resolve (Name, Array_Type);
6779 Array_Type := Get_Actual_Subtype_If_Available (Name);
6780
6781 -- If prefix is access type, dereference to get real array type.
6782 -- Note: we do not apply an access check because the expander always
6783 -- introduces an explicit dereference, and the check will happen there.
6784
6785 if Is_Access_Type (Array_Type) then
6786 Array_Type := Designated_Type (Array_Type);
6787 end if;
6788
a77842bd 6789 -- If name was overloaded, set component type correctly now
f3d57416 6790 -- If a misplaced call to an entry family (which has no index types)
b7d1f17f 6791 -- return. Error will be diagnosed from calling context.
996ae0b0 6792
b7d1f17f
HK
6793 if Is_Array_Type (Array_Type) then
6794 Set_Etype (N, Component_Type (Array_Type));
6795 else
6796 return;
6797 end if;
996ae0b0
RK
6798
6799 Index := First_Index (Array_Type);
6800 Expr := First (Expressions (N));
6801
758c442c
GD
6802 -- The prefix may have resolved to a string literal, in which case its
6803 -- etype has a special representation. This is only possible currently
6804 -- if the prefix is a static concatenation, written in functional
6805 -- notation.
996ae0b0
RK
6806
6807 if Ekind (Array_Type) = E_String_Literal_Subtype then
6808 Resolve (Expr, Standard_Positive);
6809
6810 else
6811 while Present (Index) and Present (Expr) loop
6812 Resolve (Expr, Etype (Index));
6813 Check_Unset_Reference (Expr);
6814
6815 if Is_Scalar_Type (Etype (Expr)) then
6816 Apply_Scalar_Range_Check (Expr, Etype (Index));
6817 else
6818 Apply_Range_Check (Expr, Get_Actual_Subtype (Index));
6819 end if;
6820
6821 Next_Index (Index);
6822 Next (Expr);
6823 end loop;
6824 end if;
6825
0669bebe
GB
6826 -- Do not generate the warning on suspicious index if we are analyzing
6827 -- package Ada.Tags; otherwise we will report the warning with the
6828 -- Prims_Ptr field of the dispatch table.
6829
6830 if Scope (Etype (Prefix (N))) = Standard_Standard
6831 or else not
6832 Is_RTU (Cunit_Entity (Get_Source_Unit (Etype (Prefix (N)))),
6833 Ada_Tags)
6834 then
6835 Warn_On_Suspicious_Index (Name, First (Expressions (N)));
6836 Eval_Indexed_Component (N);
6837 end if;
c28408b7
RD
6838
6839 -- If the array type is atomic, and is packed, and we are in a left side
6840 -- context, then this is worth a warning, since we have a situation
6841 -- where the access to the component may cause extra read/writes of
6842 -- the atomic array object, which could be considered unexpected.
6843
6844 if Nkind (N) = N_Indexed_Component
6845 and then (Is_Atomic (Array_Type)
6846 or else (Is_Entity_Name (Prefix (N))
6847 and then Is_Atomic (Entity (Prefix (N)))))
6848 and then Is_Bit_Packed_Array (Array_Type)
6849 and then Is_LHS (N)
6850 then
6851 Error_Msg_N ("?assignment to component of packed atomic array",
6852 Prefix (N));
6853 Error_Msg_N ("?\may cause unexpected accesses to atomic object",
6854 Prefix (N));
6855 end if;
996ae0b0
RK
6856 end Resolve_Indexed_Component;
6857
6858 -----------------------------
6859 -- Resolve_Integer_Literal --
6860 -----------------------------
6861
6862 procedure Resolve_Integer_Literal (N : Node_Id; Typ : Entity_Id) is
6863 begin
6864 Set_Etype (N, Typ);
6865 Eval_Integer_Literal (N);
6866 end Resolve_Integer_Literal;
6867
15ce9ca2
AC
6868 --------------------------------
6869 -- Resolve_Intrinsic_Operator --
6870 --------------------------------
996ae0b0
RK
6871
6872 procedure Resolve_Intrinsic_Operator (N : Node_Id; Typ : Entity_Id) is
bb481772
AC
6873 Btyp : constant Entity_Id := Base_Type (Underlying_Type (Typ));
6874 Op : Entity_Id;
6875 Orig_Op : constant Entity_Id := Entity (N);
6876 Arg1 : Node_Id;
6877 Arg2 : Node_Id;
996ae0b0
RK
6878
6879 begin
305caf42
AC
6880 -- We must preserve the original entity in a generic setting, so that
6881 -- the legality of the operation can be verified in an instance.
6882
6883 if not Expander_Active then
6884 return;
6885 end if;
6886
996ae0b0 6887 Op := Entity (N);
996ae0b0
RK
6888 while Scope (Op) /= Standard_Standard loop
6889 Op := Homonym (Op);
6890 pragma Assert (Present (Op));
6891 end loop;
6892
6893 Set_Entity (N, Op);
af152989 6894 Set_Is_Overloaded (N, False);
996ae0b0 6895
758c442c
GD
6896 -- If the operand type is private, rewrite with suitable conversions on
6897 -- the operands and the result, to expose the proper underlying numeric
6898 -- type.
996ae0b0 6899
fbf5a39b
AC
6900 if Is_Private_Type (Typ) then
6901 Arg1 := Unchecked_Convert_To (Btyp, Left_Opnd (N));
6902
6903 if Nkind (N) = N_Op_Expon then
6904 Arg2 := Unchecked_Convert_To (Standard_Integer, Right_Opnd (N));
6905 else
6906 Arg2 := Unchecked_Convert_To (Btyp, Right_Opnd (N));
6907 end if;
6908
bb481772
AC
6909 if Nkind (Arg1) = N_Type_Conversion then
6910 Save_Interps (Left_Opnd (N), Expression (Arg1));
6911 end if;
6912
6913 if Nkind (Arg2) = N_Type_Conversion then
6914 Save_Interps (Right_Opnd (N), Expression (Arg2));
6915 end if;
996ae0b0 6916
fbf5a39b
AC
6917 Set_Left_Opnd (N, Arg1);
6918 Set_Right_Opnd (N, Arg2);
6919
6920 Set_Etype (N, Btyp);
6921 Rewrite (N, Unchecked_Convert_To (Typ, N));
6922 Resolve (N, Typ);
6923
6924 elsif Typ /= Etype (Left_Opnd (N))
6925 or else Typ /= Etype (Right_Opnd (N))
6926 then
d81b4bfe 6927 -- Add explicit conversion where needed, and save interpretations in
bb481772
AC
6928 -- case operands are overloaded. If the context is a VMS operation,
6929 -- assert that the conversion is legal (the operands have the proper
6930 -- types to select the VMS intrinsic). Note that in rare cases the
6931 -- VMS operators may be visible, but the default System is being used
6932 -- and Address is a private type.
fbf5a39b 6933
af152989 6934 Arg1 := Convert_To (Typ, Left_Opnd (N));
fbf5a39b
AC
6935 Arg2 := Convert_To (Typ, Right_Opnd (N));
6936
6937 if Nkind (Arg1) = N_Type_Conversion then
6938 Save_Interps (Left_Opnd (N), Expression (Arg1));
bb481772
AC
6939
6940 if Is_VMS_Operator (Orig_Op) then
6941 Set_Conversion_OK (Arg1);
6942 end if;
af152989
AC
6943 else
6944 Save_Interps (Left_Opnd (N), Arg1);
fbf5a39b
AC
6945 end if;
6946
6947 if Nkind (Arg2) = N_Type_Conversion then
6948 Save_Interps (Right_Opnd (N), Expression (Arg2));
bb481772
AC
6949
6950 if Is_VMS_Operator (Orig_Op) then
6951 Set_Conversion_OK (Arg2);
6952 end if;
af152989 6953 else
0ab80019 6954 Save_Interps (Right_Opnd (N), Arg2);
fbf5a39b
AC
6955 end if;
6956
6957 Rewrite (Left_Opnd (N), Arg1);
6958 Rewrite (Right_Opnd (N), Arg2);
6959 Analyze (Arg1);
6960 Analyze (Arg2);
6961 Resolve_Arithmetic_Op (N, Typ);
6962
6963 else
6964 Resolve_Arithmetic_Op (N, Typ);
6965 end if;
996ae0b0
RK
6966 end Resolve_Intrinsic_Operator;
6967
fbf5a39b
AC
6968 --------------------------------------
6969 -- Resolve_Intrinsic_Unary_Operator --
6970 --------------------------------------
6971
6972 procedure Resolve_Intrinsic_Unary_Operator
6973 (N : Node_Id;
6974 Typ : Entity_Id)
6975 is
6976 Btyp : constant Entity_Id := Base_Type (Underlying_Type (Typ));
6977 Op : Entity_Id;
6978 Arg2 : Node_Id;
6979
6980 begin
6981 Op := Entity (N);
fbf5a39b
AC
6982 while Scope (Op) /= Standard_Standard loop
6983 Op := Homonym (Op);
6984 pragma Assert (Present (Op));
6985 end loop;
6986
6987 Set_Entity (N, Op);
6988
6989 if Is_Private_Type (Typ) then
6990 Arg2 := Unchecked_Convert_To (Btyp, Right_Opnd (N));
6991 Save_Interps (Right_Opnd (N), Expression (Arg2));
6992
6993 Set_Right_Opnd (N, Arg2);
6994
6995 Set_Etype (N, Btyp);
6996 Rewrite (N, Unchecked_Convert_To (Typ, N));
6997 Resolve (N, Typ);
6998
6999 else
7000 Resolve_Unary_Op (N, Typ);
7001 end if;
7002 end Resolve_Intrinsic_Unary_Operator;
7003
996ae0b0
RK
7004 ------------------------
7005 -- Resolve_Logical_Op --
7006 ------------------------
7007
7008 procedure Resolve_Logical_Op (N : Node_Id; Typ : Entity_Id) is
7009 B_Typ : Entity_Id;
7010
7011 begin
f61580d4
AC
7012 Check_No_Direct_Boolean_Operators (N);
7013
758c442c
GD
7014 -- Predefined operations on scalar types yield the base type. On the
7015 -- other hand, logical operations on arrays yield the type of the
7016 -- arguments (and the context).
996ae0b0
RK
7017
7018 if Is_Array_Type (Typ) then
7019 B_Typ := Typ;
7020 else
7021 B_Typ := Base_Type (Typ);
7022 end if;
7023
001c7783
AC
7024 -- OK if this is a VMS-specific intrinsic operation
7025
7026 if Is_VMS_Operator (Entity (N)) then
7027 null;
7028
996ae0b0
RK
7029 -- The following test is required because the operands of the operation
7030 -- may be literals, in which case the resulting type appears to be
7031 -- compatible with a signed integer type, when in fact it is compatible
7032 -- only with modular types. If the context itself is universal, the
7033 -- operation is illegal.
7034
001c7783 7035 elsif not Valid_Boolean_Arg (Typ) then
996ae0b0
RK
7036 Error_Msg_N ("invalid context for logical operation", N);
7037 Set_Etype (N, Any_Type);
7038 return;
7039
7040 elsif Typ = Any_Modular then
7041 Error_Msg_N
7042 ("no modular type available in this context", N);
7043 Set_Etype (N, Any_Type);
7044 return;
07fc65c4
GB
7045 elsif Is_Modular_Integer_Type (Typ)
7046 and then Etype (Left_Opnd (N)) = Universal_Integer
7047 and then Etype (Right_Opnd (N)) = Universal_Integer
7048 then
7049 Check_For_Visible_Operator (N, B_Typ);
996ae0b0
RK
7050 end if;
7051
7052 Resolve (Left_Opnd (N), B_Typ);
7053 Resolve (Right_Opnd (N), B_Typ);
7054
7055 Check_Unset_Reference (Left_Opnd (N));
7056 Check_Unset_Reference (Right_Opnd (N));
7057
7058 Set_Etype (N, B_Typ);
fbf5a39b 7059 Generate_Operator_Reference (N, B_Typ);
996ae0b0
RK
7060 Eval_Logical_Op (N);
7061 end Resolve_Logical_Op;
7062
7063 ---------------------------
7064 -- Resolve_Membership_Op --
7065 ---------------------------
7066
7067 -- The context can only be a boolean type, and does not determine
7068 -- the arguments. Arguments should be unambiguous, but the preference
7069 -- rule for universal types applies.
7070
7071 procedure Resolve_Membership_Op (N : Node_Id; Typ : Entity_Id) is
07fc65c4
GB
7072 pragma Warnings (Off, Typ);
7073
197e4514 7074 L : constant Node_Id := Left_Opnd (N);
b1c11e0e 7075 R : constant Node_Id := Right_Opnd (N);
996ae0b0
RK
7076 T : Entity_Id;
7077
197e4514
AC
7078 procedure Resolve_Set_Membership;
7079 -- Analysis has determined a unique type for the left operand.
7080 -- Use it to resolve the disjuncts.
7081
7082 ----------------------------
7083 -- Resolve_Set_Membership --
7084 ----------------------------
7085
7086 procedure Resolve_Set_Membership is
7087 Alt : Node_Id;
7088
7089 begin
7090 Resolve (L, Etype (L));
7091
7092 Alt := First (Alternatives (N));
7093 while Present (Alt) loop
7094
7095 -- Alternative is an expression, a range
7096 -- or a subtype mark.
7097
7098 if not Is_Entity_Name (Alt)
7099 or else not Is_Type (Entity (Alt))
7100 then
7101 Resolve (Alt, Etype (L));
7102 end if;
7103
7104 Next (Alt);
7105 end loop;
7106 end Resolve_Set_Membership;
7107
442c0581 7108 -- Start of processing for Resolve_Membership_Op
197e4514 7109
996ae0b0
RK
7110 begin
7111 if L = Error or else R = Error then
7112 return;
7113 end if;
7114
197e4514
AC
7115 if Present (Alternatives (N)) then
7116 Resolve_Set_Membership;
7117 return;
7118
7119 elsif not Is_Overloaded (R)
996ae0b0
RK
7120 and then
7121 (Etype (R) = Universal_Integer or else
7122 Etype (R) = Universal_Real)
7123 and then Is_Overloaded (L)
7124 then
7125 T := Etype (R);
1420b484 7126
d81b4bfe 7127 -- Ada 2005 (AI-251): Support the following case:
1420b484
JM
7128
7129 -- type I is interface;
7130 -- type T is tagged ...
7131
c8ef728f 7132 -- function Test (O : I'Class) is
1420b484
JM
7133 -- begin
7134 -- return O in T'Class.
7135 -- end Test;
7136
d81b4bfe 7137 -- In this case we have nothing else to do. The membership test will be
e7c0dd39 7138 -- done at run time.
1420b484
JM
7139
7140 elsif Ada_Version >= Ada_05
7141 and then Is_Class_Wide_Type (Etype (L))
7142 and then Is_Interface (Etype (L))
7143 and then Is_Class_Wide_Type (Etype (R))
7144 and then not Is_Interface (Etype (R))
7145 then
7146 return;
7147
996ae0b0
RK
7148 else
7149 T := Intersect_Types (L, R);
7150 end if;
7151
9a0ddeee
AC
7152 -- If mixed-mode operations are present and operands are all literal,
7153 -- the only interpretation involves Duration, which is probably not
7154 -- the intention of the programmer.
7155
7156 if T = Any_Fixed then
7157 T := Unique_Fixed_Point_Type (N);
7158
7159 if T = Any_Type then
7160 return;
7161 end if;
7162 end if;
7163
996ae0b0
RK
7164 Resolve (L, T);
7165 Check_Unset_Reference (L);
7166
7167 if Nkind (R) = N_Range
7168 and then not Is_Scalar_Type (T)
7169 then
7170 Error_Msg_N ("scalar type required for range", R);
7171 end if;
7172
7173 if Is_Entity_Name (R) then
7174 Freeze_Expression (R);
7175 else
7176 Resolve (R, T);
7177 Check_Unset_Reference (R);
7178 end if;
7179
7180 Eval_Membership_Op (N);
7181 end Resolve_Membership_Op;
7182
7183 ------------------
7184 -- Resolve_Null --
7185 ------------------
7186
7187 procedure Resolve_Null (N : Node_Id; Typ : Entity_Id) is
b1c11e0e
JM
7188 Loc : constant Source_Ptr := Sloc (N);
7189
996ae0b0 7190 begin
758c442c 7191 -- Handle restriction against anonymous null access values This
6ba6b1e3 7192 -- restriction can be turned off using -gnatdj.
996ae0b0 7193
0ab80019 7194 -- Ada 2005 (AI-231): Remove restriction
2820d220 7195
0ab80019 7196 if Ada_Version < Ada_05
2820d220 7197 and then not Debug_Flag_J
996ae0b0
RK
7198 and then Ekind (Typ) = E_Anonymous_Access_Type
7199 and then Comes_From_Source (N)
7200 then
d81b4bfe
TQ
7201 -- In the common case of a call which uses an explicitly null value
7202 -- for an access parameter, give specialized error message.
996ae0b0 7203
45fc7ddb
HK
7204 if Nkind_In (Parent (N), N_Procedure_Call_Statement,
7205 N_Function_Call)
996ae0b0
RK
7206 then
7207 Error_Msg_N
7208 ("null is not allowed as argument for an access parameter", N);
7209
7210 -- Standard message for all other cases (are there any?)
7211
7212 else
7213 Error_Msg_N
7214 ("null cannot be of an anonymous access type", N);
7215 end if;
7216 end if;
7217
b1c11e0e
JM
7218 -- Ada 2005 (AI-231): Generate the null-excluding check in case of
7219 -- assignment to a null-excluding object
7220
7221 if Ada_Version >= Ada_05
7222 and then Can_Never_Be_Null (Typ)
7223 and then Nkind (Parent (N)) = N_Assignment_Statement
7224 then
7225 if not Inside_Init_Proc then
7226 Insert_Action
7227 (Compile_Time_Constraint_Error (N,
7228 "(Ada 2005) null not allowed in null-excluding objects?"),
7229 Make_Raise_Constraint_Error (Loc,
7230 Reason => CE_Access_Check_Failed));
7231 else
7232 Insert_Action (N,
7233 Make_Raise_Constraint_Error (Loc,
7234 Reason => CE_Access_Check_Failed));
7235 end if;
7236 end if;
7237
d81b4bfe
TQ
7238 -- In a distributed context, null for a remote access to subprogram may
7239 -- need to be replaced with a special record aggregate. In this case,
7240 -- return after having done the transformation.
996ae0b0
RK
7241
7242 if (Ekind (Typ) = E_Record_Type
7243 or else Is_Remote_Access_To_Subprogram_Type (Typ))
7244 and then Remote_AST_Null_Value (N, Typ)
7245 then
7246 return;
7247 end if;
7248
a77842bd 7249 -- The null literal takes its type from the context
996ae0b0
RK
7250
7251 Set_Etype (N, Typ);
7252 end Resolve_Null;
7253
7254 -----------------------
7255 -- Resolve_Op_Concat --
7256 -----------------------
7257
7258 procedure Resolve_Op_Concat (N : Node_Id; Typ : Entity_Id) is
996ae0b0 7259
10303118
BD
7260 -- We wish to avoid deep recursion, because concatenations are often
7261 -- deeply nested, as in A&B&...&Z. Therefore, we walk down the left
7262 -- operands nonrecursively until we find something that is not a simple
7263 -- concatenation (A in this case). We resolve that, and then walk back
7264 -- up the tree following Parent pointers, calling Resolve_Op_Concat_Rest
7265 -- to do the rest of the work at each level. The Parent pointers allow
7266 -- us to avoid recursion, and thus avoid running out of memory. See also
d81b4bfe 7267 -- Sem_Ch4.Analyze_Concatenation, where a similar approach is used.
996ae0b0 7268
10303118
BD
7269 NN : Node_Id := N;
7270 Op1 : Node_Id;
996ae0b0 7271
10303118
BD
7272 begin
7273 -- The following code is equivalent to:
996ae0b0 7274
10303118
BD
7275 -- Resolve_Op_Concat_First (NN, Typ);
7276 -- Resolve_Op_Concat_Arg (N, ...);
7277 -- Resolve_Op_Concat_Rest (N, Typ);
996ae0b0 7278
10303118
BD
7279 -- where the Resolve_Op_Concat_Arg call recurses back here if the left
7280 -- operand is a concatenation.
996ae0b0 7281
10303118 7282 -- Walk down left operands
996ae0b0 7283
10303118
BD
7284 loop
7285 Resolve_Op_Concat_First (NN, Typ);
7286 Op1 := Left_Opnd (NN);
7287 exit when not (Nkind (Op1) = N_Op_Concat
7288 and then not Is_Array_Type (Component_Type (Typ))
7289 and then Entity (Op1) = Entity (NN));
7290 NN := Op1;
7291 end loop;
996ae0b0 7292
10303118 7293 -- Now (given the above example) NN is A&B and Op1 is A
996ae0b0 7294
10303118 7295 -- First resolve Op1 ...
9ebe3743 7296
10303118 7297 Resolve_Op_Concat_Arg (NN, Op1, Typ, Is_Component_Left_Opnd (NN));
9ebe3743 7298
10303118
BD
7299 -- ... then walk NN back up until we reach N (where we started), calling
7300 -- Resolve_Op_Concat_Rest along the way.
9ebe3743 7301
10303118
BD
7302 loop
7303 Resolve_Op_Concat_Rest (NN, Typ);
7304 exit when NN = N;
7305 NN := Parent (NN);
7306 end loop;
7307 end Resolve_Op_Concat;
9ebe3743 7308
10303118
BD
7309 ---------------------------
7310 -- Resolve_Op_Concat_Arg --
7311 ---------------------------
996ae0b0 7312
10303118
BD
7313 procedure Resolve_Op_Concat_Arg
7314 (N : Node_Id;
7315 Arg : Node_Id;
7316 Typ : Entity_Id;
7317 Is_Comp : Boolean)
7318 is
7319 Btyp : constant Entity_Id := Base_Type (Typ);
996ae0b0 7320
10303118
BD
7321 begin
7322 if In_Instance then
7323 if Is_Comp
7324 or else (not Is_Overloaded (Arg)
7325 and then Etype (Arg) /= Any_Composite
7326 and then Covers (Component_Type (Typ), Etype (Arg)))
7327 then
7328 Resolve (Arg, Component_Type (Typ));
7329 else
7330 Resolve (Arg, Btyp);
7331 end if;
fbf5a39b 7332
10303118
BD
7333 elsif Has_Compatible_Type (Arg, Component_Type (Typ)) then
7334 if Nkind (Arg) = N_Aggregate
7335 and then Is_Composite_Type (Component_Type (Typ))
7336 then
7337 if Is_Private_Type (Component_Type (Typ)) then
7338 Resolve (Arg, Btyp);
7339 else
7340 Error_Msg_N ("ambiguous aggregate must be qualified", Arg);
7341 Set_Etype (Arg, Any_Type);
996ae0b0
RK
7342 end if;
7343
7344 else
10303118
BD
7345 if Is_Overloaded (Arg)
7346 and then Has_Compatible_Type (Arg, Typ)
7347 and then Etype (Arg) /= Any_Type
7348 then
7349 declare
7350 I : Interp_Index;
7351 It : Interp;
7352 Func : Entity_Id;
7353
7354 begin
7355 Get_First_Interp (Arg, I, It);
7356 Func := It.Nam;
7357 Get_Next_Interp (I, It);
7358
7359 -- Special-case the error message when the overloading is
7360 -- caused by a function that yields an array and can be
7361 -- called without parameters.
7362
7363 if It.Nam = Func then
7364 Error_Msg_Sloc := Sloc (Func);
7365 Error_Msg_N ("ambiguous call to function#", Arg);
7366 Error_Msg_NE
7367 ("\\interpretation as call yields&", Arg, Typ);
7368 Error_Msg_NE
7369 ("\\interpretation as indexing of call yields&",
7370 Arg, Component_Type (Typ));
7371
7372 else
7373 Error_Msg_N
7374 ("ambiguous operand for concatenation!", Arg);
7375 Get_First_Interp (Arg, I, It);
7376 while Present (It.Nam) loop
7377 Error_Msg_Sloc := Sloc (It.Nam);
7378
7379 if Base_Type (It.Typ) = Base_Type (Typ)
7380 or else Base_Type (It.Typ) =
7381 Base_Type (Component_Type (Typ))
7382 then
4e7a4f6e
AC
7383 Error_Msg_N -- CODEFIX
7384 ("\\possible interpretation#", Arg);
10303118
BD
7385 end if;
7386
7387 Get_Next_Interp (I, It);
7388 end loop;
7389 end if;
7390 end;
7391 end if;
7392
7393 Resolve (Arg, Component_Type (Typ));
7394
7395 if Nkind (Arg) = N_String_Literal then
7396 Set_Etype (Arg, Component_Type (Typ));
7397 end if;
7398
7399 if Arg = Left_Opnd (N) then
7400 Set_Is_Component_Left_Opnd (N);
7401 else
7402 Set_Is_Component_Right_Opnd (N);
7403 end if;
996ae0b0
RK
7404 end if;
7405
10303118
BD
7406 else
7407 Resolve (Arg, Btyp);
7408 end if;
7409
7410 Check_Unset_Reference (Arg);
7411 end Resolve_Op_Concat_Arg;
996ae0b0 7412
10303118
BD
7413 -----------------------------
7414 -- Resolve_Op_Concat_First --
7415 -----------------------------
7416
7417 procedure Resolve_Op_Concat_First (N : Node_Id; Typ : Entity_Id) is
7418 Btyp : constant Entity_Id := Base_Type (Typ);
7419 Op1 : constant Node_Id := Left_Opnd (N);
7420 Op2 : constant Node_Id := Right_Opnd (N);
996ae0b0
RK
7421
7422 begin
dae2b8ea
HK
7423 -- The parser folds an enormous sequence of concatenations of string
7424 -- literals into "" & "...", where the Is_Folded_In_Parser flag is set
4fc26524 7425 -- in the right operand. If the expression resolves to a predefined "&"
dae2b8ea
HK
7426 -- operator, all is well. Otherwise, the parser's folding is wrong, so
7427 -- we give an error. See P_Simple_Expression in Par.Ch4.
7428
7429 if Nkind (Op2) = N_String_Literal
7430 and then Is_Folded_In_Parser (Op2)
7431 and then Ekind (Entity (N)) = E_Function
7432 then
7433 pragma Assert (Nkind (Op1) = N_String_Literal -- should be ""
7434 and then String_Length (Strval (Op1)) = 0);
7435 Error_Msg_N ("too many user-defined concatenations", N);
7436 return;
7437 end if;
7438
996ae0b0
RK
7439 Set_Etype (N, Btyp);
7440
7441 if Is_Limited_Composite (Btyp) then
7442 Error_Msg_N ("concatenation not available for limited array", N);
fbf5a39b 7443 Explain_Limited_Type (Btyp, N);
996ae0b0 7444 end if;
10303118 7445 end Resolve_Op_Concat_First;
996ae0b0 7446
10303118
BD
7447 ----------------------------
7448 -- Resolve_Op_Concat_Rest --
7449 ----------------------------
996ae0b0 7450
10303118
BD
7451 procedure Resolve_Op_Concat_Rest (N : Node_Id; Typ : Entity_Id) is
7452 Op1 : constant Node_Id := Left_Opnd (N);
7453 Op2 : constant Node_Id := Right_Opnd (N);
996ae0b0 7454
10303118
BD
7455 begin
7456 Resolve_Op_Concat_Arg (N, Op2, Typ, Is_Component_Right_Opnd (N));
996ae0b0 7457
fbf5a39b 7458 Generate_Operator_Reference (N, Typ);
996ae0b0
RK
7459
7460 if Is_String_Type (Typ) then
7461 Eval_Concatenation (N);
7462 end if;
7463
d81b4bfe
TQ
7464 -- If this is not a static concatenation, but the result is a string
7465 -- type (and not an array of strings) ensure that static string operands
7466 -- have their subtypes properly constructed.
996ae0b0
RK
7467
7468 if Nkind (N) /= N_String_Literal
7469 and then Is_Character_Type (Component_Type (Typ))
7470 then
7471 Set_String_Literal_Subtype (Op1, Typ);
7472 Set_String_Literal_Subtype (Op2, Typ);
7473 end if;
10303118 7474 end Resolve_Op_Concat_Rest;
996ae0b0
RK
7475
7476 ----------------------
7477 -- Resolve_Op_Expon --
7478 ----------------------
7479
7480 procedure Resolve_Op_Expon (N : Node_Id; Typ : Entity_Id) is
7481 B_Typ : constant Entity_Id := Base_Type (Typ);
7482
7483 begin
f3d57416 7484 -- Catch attempts to do fixed-point exponentiation with universal
758c442c
GD
7485 -- operands, which is a case where the illegality is not caught during
7486 -- normal operator analysis.
996ae0b0
RK
7487
7488 if Is_Fixed_Point_Type (Typ) and then Comes_From_Source (N) then
7489 Error_Msg_N ("exponentiation not available for fixed point", N);
7490 return;
7491 end if;
7492
fbf5a39b
AC
7493 if Comes_From_Source (N)
7494 and then Ekind (Entity (N)) = E_Function
7495 and then Is_Imported (Entity (N))
7496 and then Is_Intrinsic_Subprogram (Entity (N))
7497 then
7498 Resolve_Intrinsic_Operator (N, Typ);
7499 return;
7500 end if;
7501
996ae0b0
RK
7502 if Etype (Left_Opnd (N)) = Universal_Integer
7503 or else Etype (Left_Opnd (N)) = Universal_Real
7504 then
7505 Check_For_Visible_Operator (N, B_Typ);
7506 end if;
7507
7508 -- We do the resolution using the base type, because intermediate values
7509 -- in expressions always are of the base type, not a subtype of it.
7510
7511 Resolve (Left_Opnd (N), B_Typ);
7512 Resolve (Right_Opnd (N), Standard_Integer);
7513
7514 Check_Unset_Reference (Left_Opnd (N));
7515 Check_Unset_Reference (Right_Opnd (N));
7516
7517 Set_Etype (N, B_Typ);
fbf5a39b 7518 Generate_Operator_Reference (N, B_Typ);
996ae0b0
RK
7519 Eval_Op_Expon (N);
7520
7521 -- Set overflow checking bit. Much cleverer code needed here eventually
7522 -- and perhaps the Resolve routines should be separated for the various
7523 -- arithmetic operations, since they will need different processing. ???
7524
7525 if Nkind (N) in N_Op then
7526 if not Overflow_Checks_Suppressed (Etype (N)) then
fbf5a39b 7527 Enable_Overflow_Check (N);
996ae0b0
RK
7528 end if;
7529 end if;
996ae0b0
RK
7530 end Resolve_Op_Expon;
7531
7532 --------------------
7533 -- Resolve_Op_Not --
7534 --------------------
7535
7536 procedure Resolve_Op_Not (N : Node_Id; Typ : Entity_Id) is
7537 B_Typ : Entity_Id;
7538
7539 function Parent_Is_Boolean return Boolean;
7540 -- This function determines if the parent node is a boolean operator
7541 -- or operation (comparison op, membership test, or short circuit form)
7542 -- and the not in question is the left operand of this operation.
7543 -- Note that if the not is in parens, then false is returned.
7544
aa180613
RD
7545 -----------------------
7546 -- Parent_Is_Boolean --
7547 -----------------------
7548
996ae0b0
RK
7549 function Parent_Is_Boolean return Boolean is
7550 begin
7551 if Paren_Count (N) /= 0 then
7552 return False;
7553
7554 else
7555 case Nkind (Parent (N)) is
7556 when N_Op_And |
7557 N_Op_Eq |
7558 N_Op_Ge |
7559 N_Op_Gt |
7560 N_Op_Le |
7561 N_Op_Lt |
7562 N_Op_Ne |
7563 N_Op_Or |
7564 N_Op_Xor |
7565 N_In |
7566 N_Not_In |
7567 N_And_Then |
aa180613 7568 N_Or_Else =>
996ae0b0
RK
7569
7570 return Left_Opnd (Parent (N)) = N;
7571
7572 when others =>
7573 return False;
7574 end case;
7575 end if;
7576 end Parent_Is_Boolean;
7577
7578 -- Start of processing for Resolve_Op_Not
7579
7580 begin
758c442c
GD
7581 -- Predefined operations on scalar types yield the base type. On the
7582 -- other hand, logical operations on arrays yield the type of the
7583 -- arguments (and the context).
996ae0b0
RK
7584
7585 if Is_Array_Type (Typ) then
7586 B_Typ := Typ;
7587 else
7588 B_Typ := Base_Type (Typ);
7589 end if;
7590
001c7783
AC
7591 if Is_VMS_Operator (Entity (N)) then
7592 null;
7593
f3d57416 7594 -- Straightforward case of incorrect arguments
aa180613 7595
001c7783 7596 elsif not Valid_Boolean_Arg (Typ) then
996ae0b0
RK
7597 Error_Msg_N ("invalid operand type for operator&", N);
7598 Set_Etype (N, Any_Type);
7599 return;
7600
aa180613
RD
7601 -- Special case of probable missing parens
7602
fbf5a39b 7603 elsif Typ = Universal_Integer or else Typ = Any_Modular then
996ae0b0 7604 if Parent_Is_Boolean then
ed2233dc 7605 Error_Msg_N
996ae0b0
RK
7606 ("operand of not must be enclosed in parentheses",
7607 Right_Opnd (N));
7608 else
7609 Error_Msg_N
7610 ("no modular type available in this context", N);
7611 end if;
7612
7613 Set_Etype (N, Any_Type);
7614 return;
7615
aa180613
RD
7616 -- OK resolution of not
7617
996ae0b0 7618 else
aa180613
RD
7619 -- Warn if non-boolean types involved. This is a case like not a < b
7620 -- where a and b are modular, where we will get (not a) < b and most
7621 -- likely not (a < b) was intended.
7622
7623 if Warn_On_Questionable_Missing_Parens
7624 and then not Is_Boolean_Type (Typ)
996ae0b0
RK
7625 and then Parent_Is_Boolean
7626 then
ed2233dc 7627 Error_Msg_N ("?not expression should be parenthesized here!", N);
996ae0b0
RK
7628 end if;
7629
09bc9ab6
RD
7630 -- Warn on double negation if checking redundant constructs
7631
7632 if Warn_On_Redundant_Constructs
7633 and then Comes_From_Source (N)
7634 and then Comes_From_Source (Right_Opnd (N))
7635 and then Root_Type (Typ) = Standard_Boolean
7636 and then Nkind (Right_Opnd (N)) = N_Op_Not
7637 then
ed2233dc 7638 Error_Msg_N ("redundant double negation?", N);
09bc9ab6
RD
7639 end if;
7640
7641 -- Complete resolution and evaluation of NOT
7642
996ae0b0
RK
7643 Resolve (Right_Opnd (N), B_Typ);
7644 Check_Unset_Reference (Right_Opnd (N));
7645 Set_Etype (N, B_Typ);
fbf5a39b 7646 Generate_Operator_Reference (N, B_Typ);
996ae0b0
RK
7647 Eval_Op_Not (N);
7648 end if;
7649 end Resolve_Op_Not;
7650
7651 -----------------------------
7652 -- Resolve_Operator_Symbol --
7653 -----------------------------
7654
7655 -- Nothing to be done, all resolved already
7656
7657 procedure Resolve_Operator_Symbol (N : Node_Id; Typ : Entity_Id) is
07fc65c4
GB
7658 pragma Warnings (Off, N);
7659 pragma Warnings (Off, Typ);
7660
996ae0b0
RK
7661 begin
7662 null;
7663 end Resolve_Operator_Symbol;
7664
7665 ----------------------------------
7666 -- Resolve_Qualified_Expression --
7667 ----------------------------------
7668
7669 procedure Resolve_Qualified_Expression (N : Node_Id; Typ : Entity_Id) is
07fc65c4
GB
7670 pragma Warnings (Off, Typ);
7671
996ae0b0
RK
7672 Target_Typ : constant Entity_Id := Entity (Subtype_Mark (N));
7673 Expr : constant Node_Id := Expression (N);
7674
7675 begin
7676 Resolve (Expr, Target_Typ);
7677
7678 -- A qualified expression requires an exact match of the type,
1420b484
JM
7679 -- class-wide matching is not allowed. However, if the qualifying
7680 -- type is specific and the expression has a class-wide type, it
7681 -- may still be okay, since it can be the result of the expansion
7682 -- of a call to a dispatching function, so we also have to check
7683 -- class-wideness of the type of the expression's original node.
7684
7685 if (Is_Class_Wide_Type (Target_Typ)
7686 or else
7687 (Is_Class_Wide_Type (Etype (Expr))
7688 and then Is_Class_Wide_Type (Etype (Original_Node (Expr)))))
996ae0b0
RK
7689 and then Base_Type (Etype (Expr)) /= Base_Type (Target_Typ)
7690 then
7691 Wrong_Type (Expr, Target_Typ);
7692 end if;
7693
7694 -- If the target type is unconstrained, then we reset the type of
7695 -- the result from the type of the expression. For other cases, the
7696 -- actual subtype of the expression is the target type.
7697
7698 if Is_Composite_Type (Target_Typ)
7699 and then not Is_Constrained (Target_Typ)
7700 then
7701 Set_Etype (N, Etype (Expr));
7702 end if;
7703
7704 Eval_Qualified_Expression (N);
7705 end Resolve_Qualified_Expression;
7706
7707 -------------------
7708 -- Resolve_Range --
7709 -------------------
7710
7711 procedure Resolve_Range (N : Node_Id; Typ : Entity_Id) is
7712 L : constant Node_Id := Low_Bound (N);
7713 H : constant Node_Id := High_Bound (N);
7714
bd29d519
AC
7715 function First_Last_Ref return Boolean;
7716 -- Returns True if N is of the form X'First .. X'Last where X is the
7717 -- same entity for both attributes.
7718
7719 --------------------
7720 -- First_Last_Ref --
7721 --------------------
7722
7723 function First_Last_Ref return Boolean is
7724 Lorig : constant Node_Id := Original_Node (L);
7725 Horig : constant Node_Id := Original_Node (H);
7726
7727 begin
7728 if Nkind (Lorig) = N_Attribute_Reference
7729 and then Nkind (Horig) = N_Attribute_Reference
7730 and then Attribute_Name (Lorig) = Name_First
7731 and then Attribute_Name (Horig) = Name_Last
7732 then
7733 declare
7734 PL : constant Node_Id := Prefix (Lorig);
7735 PH : constant Node_Id := Prefix (Horig);
7736 begin
7737 if Is_Entity_Name (PL)
7738 and then Is_Entity_Name (PH)
7739 and then Entity (PL) = Entity (PH)
7740 then
7741 return True;
7742 end if;
7743 end;
7744 end if;
7745
7746 return False;
7747 end First_Last_Ref;
7748
7749 -- Start of processing for Resolve_Range
7750
996ae0b0
RK
7751 begin
7752 Set_Etype (N, Typ);
7753 Resolve (L, Typ);
7754 Resolve (H, Typ);
7755
bd29d519
AC
7756 -- Check for inappropriate range on unordered enumeration type
7757
7758 if Bad_Unordered_Enumeration_Reference (N, Typ)
7759
7760 -- Exclude X'First .. X'Last if X is the same entity for both
7761
7762 and then not First_Last_Ref
7763 then
7764 Error_Msg ("subrange of unordered enumeration type?", Sloc (N));
498d1b80
AC
7765 end if;
7766
996ae0b0
RK
7767 Check_Unset_Reference (L);
7768 Check_Unset_Reference (H);
7769
7770 -- We have to check the bounds for being within the base range as
758c442c
GD
7771 -- required for a non-static context. Normally this is automatic and
7772 -- done as part of evaluating expressions, but the N_Range node is an
7773 -- exception, since in GNAT we consider this node to be a subexpression,
7774 -- even though in Ada it is not. The circuit in Sem_Eval could check for
7775 -- this, but that would put the test on the main evaluation path for
7776 -- expressions.
996ae0b0
RK
7777
7778 Check_Non_Static_Context (L);
7779 Check_Non_Static_Context (H);
7780
b7d1f17f
HK
7781 -- Check for an ambiguous range over character literals. This will
7782 -- happen with a membership test involving only literals.
7783
7784 if Typ = Any_Character then
7785 Ambiguous_Character (L);
7786 Set_Etype (N, Any_Type);
7787 return;
7788 end if;
7789
fbf5a39b
AC
7790 -- If bounds are static, constant-fold them, so size computations
7791 -- are identical between front-end and back-end. Do not perform this
7792 -- transformation while analyzing generic units, as type information
7793 -- would then be lost when reanalyzing the constant node in the
7794 -- instance.
7795
7796 if Is_Discrete_Type (Typ) and then Expander_Active then
7797 if Is_OK_Static_Expression (L) then
7798 Fold_Uint (L, Expr_Value (L), Is_Static_Expression (L));
7799 end if;
7800
7801 if Is_OK_Static_Expression (H) then
7802 Fold_Uint (H, Expr_Value (H), Is_Static_Expression (H));
7803 end if;
7804 end if;
996ae0b0
RK
7805 end Resolve_Range;
7806
7807 --------------------------
7808 -- Resolve_Real_Literal --
7809 --------------------------
7810
7811 procedure Resolve_Real_Literal (N : Node_Id; Typ : Entity_Id) is
7812 Actual_Typ : constant Entity_Id := Etype (N);
7813
7814 begin
7815 -- Special processing for fixed-point literals to make sure that the
7816 -- value is an exact multiple of small where this is required. We
7817 -- skip this for the universal real case, and also for generic types.
7818
7819 if Is_Fixed_Point_Type (Typ)
7820 and then Typ /= Universal_Fixed
7821 and then Typ /= Any_Fixed
7822 and then not Is_Generic_Type (Typ)
7823 then
7824 declare
7825 Val : constant Ureal := Realval (N);
7826 Cintr : constant Ureal := Val / Small_Value (Typ);
7827 Cint : constant Uint := UR_Trunc (Cintr);
7828 Den : constant Uint := Norm_Den (Cintr);
7829 Stat : Boolean;
7830
7831 begin
7832 -- Case of literal is not an exact multiple of the Small
7833
7834 if Den /= 1 then
7835
7836 -- For a source program literal for a decimal fixed-point
7837 -- type, this is statically illegal (RM 4.9(36)).
7838
7839 if Is_Decimal_Fixed_Point_Type (Typ)
7840 and then Actual_Typ = Universal_Real
7841 and then Comes_From_Source (N)
7842 then
7843 Error_Msg_N ("value has extraneous low order digits", N);
7844 end if;
7845
bc5f3720
RD
7846 -- Generate a warning if literal from source
7847
7848 if Is_Static_Expression (N)
7849 and then Warn_On_Bad_Fixed_Value
7850 then
7851 Error_Msg_N
aa5147f0 7852 ("?static fixed-point value is not a multiple of Small!",
bc5f3720
RD
7853 N);
7854 end if;
7855
996ae0b0
RK
7856 -- Replace literal by a value that is the exact representation
7857 -- of a value of the type, i.e. a multiple of the small value,
7858 -- by truncation, since Machine_Rounds is false for all GNAT
7859 -- fixed-point types (RM 4.9(38)).
7860
7861 Stat := Is_Static_Expression (N);
7862 Rewrite (N,
7863 Make_Real_Literal (Sloc (N),
7864 Realval => Small_Value (Typ) * Cint));
7865
7866 Set_Is_Static_Expression (N, Stat);
7867 end if;
7868
7869 -- In all cases, set the corresponding integer field
7870
7871 Set_Corresponding_Integer_Value (N, Cint);
7872 end;
7873 end if;
7874
7875 -- Now replace the actual type by the expected type as usual
7876
7877 Set_Etype (N, Typ);
7878 Eval_Real_Literal (N);
7879 end Resolve_Real_Literal;
7880
7881 -----------------------
7882 -- Resolve_Reference --
7883 -----------------------
7884
7885 procedure Resolve_Reference (N : Node_Id; Typ : Entity_Id) is
7886 P : constant Node_Id := Prefix (N);
7887
7888 begin
7889 -- Replace general access with specific type
7890
7891 if Ekind (Etype (N)) = E_Allocator_Type then
7892 Set_Etype (N, Base_Type (Typ));
7893 end if;
7894
7895 Resolve (P, Designated_Type (Etype (N)));
7896
7897 -- If we are taking the reference of a volatile entity, then treat
7898 -- it as a potential modification of this entity. This is much too
638e383e 7899 -- conservative, but is necessary because remove side effects can
996ae0b0
RK
7900 -- result in transformations of normal assignments into reference
7901 -- sequences that otherwise fail to notice the modification.
7902
fbf5a39b 7903 if Is_Entity_Name (P) and then Treat_As_Volatile (Entity (P)) then
45fc7ddb 7904 Note_Possible_Modification (P, Sure => False);
996ae0b0
RK
7905 end if;
7906 end Resolve_Reference;
7907
7908 --------------------------------
7909 -- Resolve_Selected_Component --
7910 --------------------------------
7911
7912 procedure Resolve_Selected_Component (N : Node_Id; Typ : Entity_Id) is
7913 Comp : Entity_Id;
7914 Comp1 : Entity_Id := Empty; -- prevent junk warning
7915 P : constant Node_Id := Prefix (N);
7916 S : constant Node_Id := Selector_Name (N);
7917 T : Entity_Id := Etype (P);
7918 I : Interp_Index;
7919 I1 : Interp_Index := 0; -- prevent junk warning
7920 It : Interp;
7921 It1 : Interp;
7922 Found : Boolean;
7923
6510f4c9
GB
7924 function Init_Component return Boolean;
7925 -- Check whether this is the initialization of a component within an
fbf5a39b 7926 -- init proc (by assignment or call to another init proc). If true,
6510f4c9
GB
7927 -- there is no need for a discriminant check.
7928
7929 --------------------
7930 -- Init_Component --
7931 --------------------
7932
7933 function Init_Component return Boolean is
7934 begin
7935 return Inside_Init_Proc
7936 and then Nkind (Prefix (N)) = N_Identifier
7937 and then Chars (Prefix (N)) = Name_uInit
7938 and then Nkind (Parent (Parent (N))) = N_Case_Statement_Alternative;
7939 end Init_Component;
7940
7941 -- Start of processing for Resolve_Selected_Component
7942
996ae0b0
RK
7943 begin
7944 if Is_Overloaded (P) then
7945
7946 -- Use the context type to select the prefix that has a selector
7947 -- of the correct name and type.
7948
7949 Found := False;
7950 Get_First_Interp (P, I, It);
7951
7952 Search : while Present (It.Typ) loop
7953 if Is_Access_Type (It.Typ) then
7954 T := Designated_Type (It.Typ);
7955 else
7956 T := It.Typ;
7957 end if;
7958
7959 if Is_Record_Type (T) then
36fcf362
RD
7960
7961 -- The visible components of a class-wide type are those of
7962 -- the root type.
7963
7964 if Is_Class_Wide_Type (T) then
7965 T := Etype (T);
7966 end if;
7967
996ae0b0 7968 Comp := First_Entity (T);
996ae0b0 7969 while Present (Comp) loop
996ae0b0
RK
7970 if Chars (Comp) = Chars (S)
7971 and then Covers (Etype (Comp), Typ)
7972 then
7973 if not Found then
7974 Found := True;
7975 I1 := I;
7976 It1 := It;
7977 Comp1 := Comp;
7978
7979 else
7980 It := Disambiguate (P, I1, I, Any_Type);
7981
7982 if It = No_Interp then
7983 Error_Msg_N
7984 ("ambiguous prefix for selected component", N);
7985 Set_Etype (N, Typ);
7986 return;
7987
7988 else
7989 It1 := It;
7990
c8ef728f
ES
7991 -- There may be an implicit dereference. Retrieve
7992 -- designated record type.
7993
7994 if Is_Access_Type (It1.Typ) then
7995 T := Designated_Type (It1.Typ);
7996 else
7997 T := It1.Typ;
7998 end if;
7999
8000 if Scope (Comp1) /= T then
996ae0b0
RK
8001
8002 -- Resolution chooses the new interpretation.
8003 -- Find the component with the right name.
8004
c8ef728f 8005 Comp1 := First_Entity (T);
996ae0b0
RK
8006 while Present (Comp1)
8007 and then Chars (Comp1) /= Chars (S)
8008 loop
8009 Comp1 := Next_Entity (Comp1);
8010 end loop;
8011 end if;
8012
8013 exit Search;
8014 end if;
8015 end if;
8016 end if;
8017
8018 Comp := Next_Entity (Comp);
8019 end loop;
996ae0b0
RK
8020 end if;
8021
8022 Get_Next_Interp (I, It);
996ae0b0
RK
8023 end loop Search;
8024
8025 Resolve (P, It1.Typ);
8026 Set_Etype (N, Typ);
aa180613 8027 Set_Entity_With_Style_Check (S, Comp1);
996ae0b0
RK
8028
8029 else
fbf5a39b 8030 -- Resolve prefix with its type
996ae0b0
RK
8031
8032 Resolve (P, T);
8033 end if;
8034
aa180613
RD
8035 -- Generate cross-reference. We needed to wait until full overloading
8036 -- resolution was complete to do this, since otherwise we can't tell if
01e17342 8037 -- we are an lvalue or not.
aa180613
RD
8038
8039 if May_Be_Lvalue (N) then
8040 Generate_Reference (Entity (S), S, 'm');
8041 else
8042 Generate_Reference (Entity (S), S, 'r');
8043 end if;
8044
c8ef728f
ES
8045 -- If prefix is an access type, the node will be transformed into an
8046 -- explicit dereference during expansion. The type of the node is the
8047 -- designated type of that of the prefix.
996ae0b0
RK
8048
8049 if Is_Access_Type (Etype (P)) then
996ae0b0 8050 T := Designated_Type (Etype (P));
c8ef728f 8051 Check_Fully_Declared_Prefix (T, P);
996ae0b0
RK
8052 else
8053 T := Etype (P);
8054 end if;
8055
8056 if Has_Discriminants (T)
964f13da 8057 and then Ekind_In (Entity (S), E_Component, E_Discriminant)
996ae0b0
RK
8058 and then Present (Original_Record_Component (Entity (S)))
8059 and then Ekind (Original_Record_Component (Entity (S))) = E_Component
8060 and then Present (Discriminant_Checking_Func
8061 (Original_Record_Component (Entity (S))))
8062 and then not Discriminant_Checks_Suppressed (T)
6510f4c9 8063 and then not Init_Component
996ae0b0
RK
8064 then
8065 Set_Do_Discriminant_Check (N);
8066 end if;
8067
8068 if Ekind (Entity (S)) = E_Void then
8069 Error_Msg_N ("premature use of component", S);
8070 end if;
8071
8072 -- If the prefix is a record conversion, this may be a renamed
8073 -- discriminant whose bounds differ from those of the original
8074 -- one, so we must ensure that a range check is performed.
8075
8076 if Nkind (P) = N_Type_Conversion
8077 and then Ekind (Entity (S)) = E_Discriminant
fbf5a39b 8078 and then Is_Discrete_Type (Typ)
996ae0b0
RK
8079 then
8080 Set_Etype (N, Base_Type (Typ));
8081 end if;
8082
8083 -- Note: No Eval processing is required, because the prefix is of a
8084 -- record type, or protected type, and neither can possibly be static.
8085
c28408b7
RD
8086 -- If the array type is atomic, and is packed, and we are in a left side
8087 -- context, then this is worth a warning, since we have a situation
8088 -- where the access to the component may cause extra read/writes of
8089 -- the atomic array object, which could be considered unexpected.
8090
8091 if Nkind (N) = N_Selected_Component
8092 and then (Is_Atomic (T)
8093 or else (Is_Entity_Name (Prefix (N))
8094 and then Is_Atomic (Entity (Prefix (N)))))
8095 and then Is_Packed (T)
8096 and then Is_LHS (N)
8097 then
8098 Error_Msg_N ("?assignment to component of packed atomic record",
8099 Prefix (N));
8100 Error_Msg_N ("?\may cause unexpected accesses to atomic object",
8101 Prefix (N));
8102 end if;
996ae0b0
RK
8103 end Resolve_Selected_Component;
8104
8105 -------------------
8106 -- Resolve_Shift --
8107 -------------------
8108
8109 procedure Resolve_Shift (N : Node_Id; Typ : Entity_Id) is
8110 B_Typ : constant Entity_Id := Base_Type (Typ);
8111 L : constant Node_Id := Left_Opnd (N);
8112 R : constant Node_Id := Right_Opnd (N);
8113
8114 begin
8115 -- We do the resolution using the base type, because intermediate values
8116 -- in expressions always are of the base type, not a subtype of it.
8117
8118 Resolve (L, B_Typ);
8119 Resolve (R, Standard_Natural);
8120
8121 Check_Unset_Reference (L);
8122 Check_Unset_Reference (R);
8123
8124 Set_Etype (N, B_Typ);
fbf5a39b 8125 Generate_Operator_Reference (N, B_Typ);
996ae0b0
RK
8126 Eval_Shift (N);
8127 end Resolve_Shift;
8128
8129 ---------------------------
8130 -- Resolve_Short_Circuit --
8131 ---------------------------
8132
8133 procedure Resolve_Short_Circuit (N : Node_Id; Typ : Entity_Id) is
8134 B_Typ : constant Entity_Id := Base_Type (Typ);
8135 L : constant Node_Id := Left_Opnd (N);
8136 R : constant Node_Id := Right_Opnd (N);
8137
8138 begin
87dc09cb 8139 -- Why are the calls to Check_Order_Dependence commented out ???
996ae0b0 8140 Resolve (L, B_Typ);
bb481772 8141 -- Check_Order_Dependence; -- For AI05-0144
996ae0b0 8142 Resolve (R, B_Typ);
bb481772 8143 -- Check_Order_Dependence; -- For AI05-0144
996ae0b0 8144
45fc7ddb
HK
8145 -- Check for issuing warning for always False assert/check, this happens
8146 -- when assertions are turned off, in which case the pragma Assert/Check
36fcf362
RD
8147 -- was transformed into:
8148
8149 -- if False and then <condition> then ...
8150
8151 -- and we detect this pattern
8152
8153 if Warn_On_Assertion_Failure
8154 and then Is_Entity_Name (R)
8155 and then Entity (R) = Standard_False
8156 and then Nkind (Parent (N)) = N_If_Statement
8157 and then Nkind (N) = N_And_Then
8158 and then Is_Entity_Name (L)
8159 and then Entity (L) = Standard_False
8160 then
8161 declare
8162 Orig : constant Node_Id := Original_Node (Parent (N));
45fc7ddb 8163
36fcf362
RD
8164 begin
8165 if Nkind (Orig) = N_Pragma
26570b21 8166 and then Pragma_Name (Orig) = Name_Assert
36fcf362
RD
8167 then
8168 -- Don't want to warn if original condition is explicit False
8169
8170 declare
8171 Expr : constant Node_Id :=
8172 Original_Node
8173 (Expression
8174 (First (Pragma_Argument_Associations (Orig))));
8175 begin
8176 if Is_Entity_Name (Expr)
8177 and then Entity (Expr) = Standard_False
8178 then
8179 null;
8180 else
51bf9bdf
AC
8181 -- Issue warning. We do not want the deletion of the
8182 -- IF/AND-THEN to take this message with it. We achieve
8183 -- this by making sure that the expanded code points to
8184 -- the Sloc of the expression, not the original pragma.
8185
8186 Error_Msg_N
e7c0dd39 8187 ("?assertion would fail at run time!",
51bf9bdf
AC
8188 Expression
8189 (First (Pragma_Argument_Associations (Orig))));
36fcf362
RD
8190 end if;
8191 end;
45fc7ddb
HK
8192
8193 -- Similar processing for Check pragma
8194
8195 elsif Nkind (Orig) = N_Pragma
8196 and then Pragma_Name (Orig) = Name_Check
8197 then
8198 -- Don't want to warn if original condition is explicit False
8199
8200 declare
8201 Expr : constant Node_Id :=
8202 Original_Node
8203 (Expression
8204 (Next (First
8205 (Pragma_Argument_Associations (Orig)))));
8206 begin
8207 if Is_Entity_Name (Expr)
8208 and then Entity (Expr) = Standard_False
8209 then
8210 null;
8211 else
51bf9bdf 8212 Error_Msg_N
e7c0dd39 8213 ("?check would fail at run time!",
51bf9bdf
AC
8214 Expression
8215 (Last (Pragma_Argument_Associations (Orig))));
45fc7ddb
HK
8216 end if;
8217 end;
36fcf362
RD
8218 end if;
8219 end;
8220 end if;
8221
8222 -- Continue with processing of short circuit
8223
996ae0b0
RK
8224 Check_Unset_Reference (L);
8225 Check_Unset_Reference (R);
8226
8227 Set_Etype (N, B_Typ);
8228 Eval_Short_Circuit (N);
8229 end Resolve_Short_Circuit;
8230
8231 -------------------
8232 -- Resolve_Slice --
8233 -------------------
8234
8235 procedure Resolve_Slice (N : Node_Id; Typ : Entity_Id) is
8236 Name : constant Node_Id := Prefix (N);
8237 Drange : constant Node_Id := Discrete_Range (N);
8238 Array_Type : Entity_Id := Empty;
8239 Index : Node_Id;
8240
8241 begin
8242 if Is_Overloaded (Name) then
8243
d81b4bfe
TQ
8244 -- Use the context type to select the prefix that yields the correct
8245 -- array type.
996ae0b0
RK
8246
8247 declare
8248 I : Interp_Index;
8249 I1 : Interp_Index := 0;
8250 It : Interp;
8251 P : constant Node_Id := Prefix (N);
8252 Found : Boolean := False;
8253
8254 begin
8255 Get_First_Interp (P, I, It);
996ae0b0 8256 while Present (It.Typ) loop
996ae0b0
RK
8257 if (Is_Array_Type (It.Typ)
8258 and then Covers (Typ, It.Typ))
8259 or else (Is_Access_Type (It.Typ)
8260 and then Is_Array_Type (Designated_Type (It.Typ))
8261 and then Covers (Typ, Designated_Type (It.Typ)))
8262 then
8263 if Found then
8264 It := Disambiguate (P, I1, I, Any_Type);
8265
8266 if It = No_Interp then
8267 Error_Msg_N ("ambiguous prefix for slicing", N);
8268 Set_Etype (N, Typ);
8269 return;
8270 else
8271 Found := True;
8272 Array_Type := It.Typ;
8273 I1 := I;
8274 end if;
8275 else
8276 Found := True;
8277 Array_Type := It.Typ;
8278 I1 := I;
8279 end if;
8280 end if;
8281
8282 Get_Next_Interp (I, It);
8283 end loop;
8284 end;
8285
8286 else
8287 Array_Type := Etype (Name);
8288 end if;
8289
8290 Resolve (Name, Array_Type);
8291
8292 if Is_Access_Type (Array_Type) then
8293 Apply_Access_Check (N);
8294 Array_Type := Designated_Type (Array_Type);
8295
c8ef728f
ES
8296 -- If the prefix is an access to an unconstrained array, we must use
8297 -- the actual subtype of the object to perform the index checks. The
8298 -- object denoted by the prefix is implicit in the node, so we build
8299 -- an explicit representation for it in order to compute the actual
8300 -- subtype.
82c80734
RD
8301
8302 if not Is_Constrained (Array_Type) then
8303 Remove_Side_Effects (Prefix (N));
8304
8305 declare
8306 Obj : constant Node_Id :=
8307 Make_Explicit_Dereference (Sloc (N),
8308 Prefix => New_Copy_Tree (Prefix (N)));
8309 begin
8310 Set_Etype (Obj, Array_Type);
8311 Set_Parent (Obj, Parent (N));
8312 Array_Type := Get_Actual_Subtype (Obj);
8313 end;
8314 end if;
8315
996ae0b0 8316 elsif Is_Entity_Name (Name)
6c994759 8317 or else Nkind (Name) = N_Explicit_Dereference
996ae0b0
RK
8318 or else (Nkind (Name) = N_Function_Call
8319 and then not Is_Constrained (Etype (Name)))
8320 then
8321 Array_Type := Get_Actual_Subtype (Name);
aa5147f0
ES
8322
8323 -- If the name is a selected component that depends on discriminants,
8324 -- build an actual subtype for it. This can happen only when the name
8325 -- itself is overloaded; otherwise the actual subtype is created when
8326 -- the selected component is analyzed.
8327
8328 elsif Nkind (Name) = N_Selected_Component
8329 and then Full_Analysis
8330 and then Depends_On_Discriminant (First_Index (Array_Type))
8331 then
8332 declare
8333 Act_Decl : constant Node_Id :=
8334 Build_Actual_Subtype_Of_Component (Array_Type, Name);
8335 begin
8336 Insert_Action (N, Act_Decl);
8337 Array_Type := Defining_Identifier (Act_Decl);
8338 end;
d79e621a
GD
8339
8340 -- Maybe this should just be "else", instead of checking for the
8341 -- specific case of slice??? This is needed for the case where
8342 -- the prefix is an Image attribute, which gets expanded to a
8343 -- slice, and so has a constrained subtype which we want to use
8344 -- for the slice range check applied below (the range check won't
8345 -- get done if the unconstrained subtype of the 'Image is used).
8346
8347 elsif Nkind (Name) = N_Slice then
8348 Array_Type := Etype (Name);
996ae0b0
RK
8349 end if;
8350
8351 -- If name was overloaded, set slice type correctly now
8352
8353 Set_Etype (N, Array_Type);
8354
c8ef728f
ES
8355 -- If the range is specified by a subtype mark, no resolution is
8356 -- necessary. Else resolve the bounds, and apply needed checks.
996ae0b0
RK
8357
8358 if not Is_Entity_Name (Drange) then
8359 Index := First_Index (Array_Type);
8360 Resolve (Drange, Base_Type (Etype (Index)));
8361
0669bebe
GB
8362 if Nkind (Drange) = N_Range
8363
8364 -- Do not apply the range check to nodes associated with the
8365 -- frontend expansion of the dispatch table. We first check
8366 -- if Ada.Tags is already loaded to void the addition of an
8367 -- undesired dependence on such run-time unit.
8368
b7d1f17f 8369 and then
1f110335
AC
8370 (not Tagged_Type_Expansion
8371 or else not
8372 (RTU_Loaded (Ada_Tags)
8373 and then Nkind (Prefix (N)) = N_Selected_Component
8374 and then Present (Entity (Selector_Name (Prefix (N))))
8375 and then Entity (Selector_Name (Prefix (N))) =
8376 RTE_Record_Component (RE_Prims_Ptr)))
0669bebe 8377 then
996ae0b0
RK
8378 Apply_Range_Check (Drange, Etype (Index));
8379 end if;
8380 end if;
8381
8382 Set_Slice_Subtype (N);
aa180613
RD
8383
8384 if Nkind (Drange) = N_Range then
8385 Warn_On_Suspicious_Index (Name, Low_Bound (Drange));
8386 Warn_On_Suspicious_Index (Name, High_Bound (Drange));
8387 end if;
8388
996ae0b0 8389 Eval_Slice (N);
996ae0b0
RK
8390 end Resolve_Slice;
8391
8392 ----------------------------
8393 -- Resolve_String_Literal --
8394 ----------------------------
8395
8396 procedure Resolve_String_Literal (N : Node_Id; Typ : Entity_Id) is
8397 C_Typ : constant Entity_Id := Component_Type (Typ);
8398 R_Typ : constant Entity_Id := Root_Type (C_Typ);
8399 Loc : constant Source_Ptr := Sloc (N);
8400 Str : constant String_Id := Strval (N);
8401 Strlen : constant Nat := String_Length (Str);
8402 Subtype_Id : Entity_Id;
8403 Need_Check : Boolean;
8404
8405 begin
8406 -- For a string appearing in a concatenation, defer creation of the
8407 -- string_literal_subtype until the end of the resolution of the
c8ef728f
ES
8408 -- concatenation, because the literal may be constant-folded away. This
8409 -- is a useful optimization for long concatenation expressions.
996ae0b0 8410
c8ef728f 8411 -- If the string is an aggregate built for a single character (which
996ae0b0 8412 -- happens in a non-static context) or a is null string to which special
c8ef728f
ES
8413 -- checks may apply, we build the subtype. Wide strings must also get a
8414 -- string subtype if they come from a one character aggregate. Strings
996ae0b0
RK
8415 -- generated by attributes might be static, but it is often hard to
8416 -- determine whether the enclosing context is static, so we generate
8417 -- subtypes for them as well, thus losing some rarer optimizations ???
8418 -- Same for strings that come from a static conversion.
8419
8420 Need_Check :=
8421 (Strlen = 0 and then Typ /= Standard_String)
8422 or else Nkind (Parent (N)) /= N_Op_Concat
8423 or else (N /= Left_Opnd (Parent (N))
8424 and then N /= Right_Opnd (Parent (N)))
82c80734
RD
8425 or else ((Typ = Standard_Wide_String
8426 or else Typ = Standard_Wide_Wide_String)
996ae0b0
RK
8427 and then Nkind (Original_Node (N)) /= N_String_Literal);
8428
d81b4bfe
TQ
8429 -- If the resolving type is itself a string literal subtype, we can just
8430 -- reuse it, since there is no point in creating another.
996ae0b0
RK
8431
8432 if Ekind (Typ) = E_String_Literal_Subtype then
8433 Subtype_Id := Typ;
8434
8435 elsif Nkind (Parent (N)) = N_Op_Concat
8436 and then not Need_Check
45fc7ddb
HK
8437 and then not Nkind_In (Original_Node (N), N_Character_Literal,
8438 N_Attribute_Reference,
8439 N_Qualified_Expression,
8440 N_Type_Conversion)
996ae0b0
RK
8441 then
8442 Subtype_Id := Typ;
8443
8444 -- Otherwise we must create a string literal subtype. Note that the
8445 -- whole idea of string literal subtypes is simply to avoid the need
8446 -- for building a full fledged array subtype for each literal.
45fc7ddb 8447
996ae0b0
RK
8448 else
8449 Set_String_Literal_Subtype (N, Typ);
8450 Subtype_Id := Etype (N);
8451 end if;
8452
8453 if Nkind (Parent (N)) /= N_Op_Concat
8454 or else Need_Check
8455 then
8456 Set_Etype (N, Subtype_Id);
8457 Eval_String_Literal (N);
8458 end if;
8459
8460 if Is_Limited_Composite (Typ)
8461 or else Is_Private_Composite (Typ)
8462 then
8463 Error_Msg_N ("string literal not available for private array", N);
8464 Set_Etype (N, Any_Type);
8465 return;
8466 end if;
8467
d81b4bfe
TQ
8468 -- The validity of a null string has been checked in the call to
8469 -- Eval_String_Literal.
996ae0b0
RK
8470
8471 if Strlen = 0 then
8472 return;
8473
c8ef728f
ES
8474 -- Always accept string literal with component type Any_Character, which
8475 -- occurs in error situations and in comparisons of literals, both of
8476 -- which should accept all literals.
996ae0b0
RK
8477
8478 elsif R_Typ = Any_Character then
8479 return;
8480
f3d57416
RW
8481 -- If the type is bit-packed, then we always transform the string
8482 -- literal into a full fledged aggregate.
996ae0b0
RK
8483
8484 elsif Is_Bit_Packed_Array (Typ) then
8485 null;
8486
82c80734 8487 -- Deal with cases of Wide_Wide_String, Wide_String, and String
996ae0b0
RK
8488
8489 else
82c80734
RD
8490 -- For Standard.Wide_Wide_String, or any other type whose component
8491 -- type is Standard.Wide_Wide_Character, we know that all the
996ae0b0
RK
8492 -- characters in the string must be acceptable, since the parser
8493 -- accepted the characters as valid character literals.
8494
82c80734 8495 if R_Typ = Standard_Wide_Wide_Character then
996ae0b0
RK
8496 null;
8497
c8ef728f
ES
8498 -- For the case of Standard.String, or any other type whose component
8499 -- type is Standard.Character, we must make sure that there are no
8500 -- wide characters in the string, i.e. that it is entirely composed
8501 -- of characters in range of type Character.
996ae0b0 8502
c8ef728f
ES
8503 -- If the string literal is the result of a static concatenation, the
8504 -- test has already been performed on the components, and need not be
8505 -- repeated.
996ae0b0
RK
8506
8507 elsif R_Typ = Standard_Character
8508 and then Nkind (Original_Node (N)) /= N_Op_Concat
8509 then
8510 for J in 1 .. Strlen loop
8511 if not In_Character_Range (Get_String_Char (Str, J)) then
8512
8513 -- If we are out of range, post error. This is one of the
8514 -- very few places that we place the flag in the middle of
d81b4bfe
TQ
8515 -- a token, right under the offending wide character. Not
8516 -- quite clear if this is right wrt wide character encoding
8517 -- sequences, but it's only an error message!
996ae0b0
RK
8518
8519 Error_Msg
82c80734
RD
8520 ("literal out of range of type Standard.Character",
8521 Source_Ptr (Int (Loc) + J));
8522 return;
8523 end if;
8524 end loop;
8525
8526 -- For the case of Standard.Wide_String, or any other type whose
8527 -- component type is Standard.Wide_Character, we must make sure that
8528 -- there are no wide characters in the string, i.e. that it is
8529 -- entirely composed of characters in range of type Wide_Character.
8530
8531 -- If the string literal is the result of a static concatenation,
8532 -- the test has already been performed on the components, and need
8533 -- not be repeated.
8534
8535 elsif R_Typ = Standard_Wide_Character
8536 and then Nkind (Original_Node (N)) /= N_Op_Concat
8537 then
8538 for J in 1 .. Strlen loop
8539 if not In_Wide_Character_Range (Get_String_Char (Str, J)) then
8540
8541 -- If we are out of range, post error. This is one of the
8542 -- very few places that we place the flag in the middle of
8543 -- a token, right under the offending wide character.
8544
8545 -- This is not quite right, because characters in general
8546 -- will take more than one character position ???
8547
8548 Error_Msg
8549 ("literal out of range of type Standard.Wide_Character",
996ae0b0
RK
8550 Source_Ptr (Int (Loc) + J));
8551 return;
8552 end if;
8553 end loop;
8554
8555 -- If the root type is not a standard character, then we will convert
8556 -- the string into an aggregate and will let the aggregate code do
82c80734 8557 -- the checking. Standard Wide_Wide_Character is also OK here.
996ae0b0
RK
8558
8559 else
8560 null;
996ae0b0
RK
8561 end if;
8562
c8ef728f
ES
8563 -- See if the component type of the array corresponding to the string
8564 -- has compile time known bounds. If yes we can directly check
8565 -- whether the evaluation of the string will raise constraint error.
8566 -- Otherwise we need to transform the string literal into the
8567 -- corresponding character aggregate and let the aggregate
996ae0b0
RK
8568 -- code do the checking.
8569
45fc7ddb
HK
8570 if Is_Standard_Character_Type (R_Typ) then
8571
996ae0b0
RK
8572 -- Check for the case of full range, where we are definitely OK
8573
8574 if Component_Type (Typ) = Base_Type (Component_Type (Typ)) then
8575 return;
8576 end if;
8577
8578 -- Here the range is not the complete base type range, so check
8579
8580 declare
8581 Comp_Typ_Lo : constant Node_Id :=
8582 Type_Low_Bound (Component_Type (Typ));
8583 Comp_Typ_Hi : constant Node_Id :=
8584 Type_High_Bound (Component_Type (Typ));
8585
8586 Char_Val : Uint;
8587
8588 begin
8589 if Compile_Time_Known_Value (Comp_Typ_Lo)
8590 and then Compile_Time_Known_Value (Comp_Typ_Hi)
8591 then
8592 for J in 1 .. Strlen loop
8593 Char_Val := UI_From_Int (Int (Get_String_Char (Str, J)));
8594
8595 if Char_Val < Expr_Value (Comp_Typ_Lo)
8596 or else Char_Val > Expr_Value (Comp_Typ_Hi)
8597 then
8598 Apply_Compile_Time_Constraint_Error
07fc65c4 8599 (N, "character out of range?", CE_Range_Check_Failed,
996ae0b0
RK
8600 Loc => Source_Ptr (Int (Loc) + J));
8601 end if;
8602 end loop;
8603
8604 return;
8605 end if;
8606 end;
8607 end if;
8608 end if;
8609
8610 -- If we got here we meed to transform the string literal into the
8611 -- equivalent qualified positional array aggregate. This is rather
8612 -- heavy artillery for this situation, but it is hard work to avoid.
8613
8614 declare
fbf5a39b 8615 Lits : constant List_Id := New_List;
996ae0b0
RK
8616 P : Source_Ptr := Loc + 1;
8617 C : Char_Code;
8618
8619 begin
c8ef728f
ES
8620 -- Build the character literals, we give them source locations that
8621 -- correspond to the string positions, which is a bit tricky given
8622 -- the possible presence of wide character escape sequences.
996ae0b0
RK
8623
8624 for J in 1 .. Strlen loop
8625 C := Get_String_Char (Str, J);
8626 Set_Character_Literal_Name (C);
8627
8628 Append_To (Lits,
82c80734
RD
8629 Make_Character_Literal (P,
8630 Chars => Name_Find,
8631 Char_Literal_Value => UI_From_CC (C)));
996ae0b0
RK
8632
8633 if In_Character_Range (C) then
8634 P := P + 1;
8635
8636 -- Should we have a call to Skip_Wide here ???
8637 -- ??? else
8638 -- Skip_Wide (P);
8639
8640 end if;
8641 end loop;
8642
8643 Rewrite (N,
8644 Make_Qualified_Expression (Loc,
8645 Subtype_Mark => New_Reference_To (Typ, Loc),
8646 Expression =>
8647 Make_Aggregate (Loc, Expressions => Lits)));
8648
8649 Analyze_And_Resolve (N, Typ);
8650 end;
8651 end Resolve_String_Literal;
8652
8653 -----------------------------
8654 -- Resolve_Subprogram_Info --
8655 -----------------------------
8656
8657 procedure Resolve_Subprogram_Info (N : Node_Id; Typ : Entity_Id) is
8658 begin
8659 Set_Etype (N, Typ);
8660 end Resolve_Subprogram_Info;
8661
8662 -----------------------------
8663 -- Resolve_Type_Conversion --
8664 -----------------------------
8665
8666 procedure Resolve_Type_Conversion (N : Node_Id; Typ : Entity_Id) is
4b2d2c13
AC
8667 Conv_OK : constant Boolean := Conversion_OK (N);
8668 Operand : constant Node_Id := Expression (N);
b7d1f17f
HK
8669 Operand_Typ : constant Entity_Id := Etype (Operand);
8670 Target_Typ : constant Entity_Id := Etype (N);
996ae0b0 8671 Rop : Node_Id;
fbf5a39b
AC
8672 Orig_N : Node_Id;
8673 Orig_T : Node_Id;
996ae0b0 8674
ae2aa109
AC
8675 Test_Redundant : Boolean := Warn_On_Redundant_Constructs;
8676 -- Set to False to suppress cases where we want to suppress the test
8677 -- for redundancy to avoid possible false positives on this warning.
8678
996ae0b0 8679 begin
996ae0b0 8680 if not Conv_OK
b7d1f17f 8681 and then not Valid_Conversion (N, Target_Typ, Operand)
996ae0b0
RK
8682 then
8683 return;
8684 end if;
8685
ae2aa109
AC
8686 -- If the Operand Etype is Universal_Fixed, then the conversion is
8687 -- never redundant. We need this check because by the time we have
8688 -- finished the rather complex transformation, the conversion looks
8689 -- redundant when it is not.
8690
8691 if Operand_Typ = Universal_Fixed then
8692 Test_Redundant := False;
8693
8694 -- If the operand is marked as Any_Fixed, then special processing is
8695 -- required. This is also a case where we suppress the test for a
8696 -- redundant conversion, since most certainly it is not redundant.
8697
8698 elsif Operand_Typ = Any_Fixed then
8699 Test_Redundant := False;
996ae0b0
RK
8700
8701 -- Mixed-mode operation involving a literal. Context must be a fixed
8702 -- type which is applied to the literal subsequently.
8703
8704 if Is_Fixed_Point_Type (Typ) then
8705 Set_Etype (Operand, Universal_Real);
8706
8707 elsif Is_Numeric_Type (Typ)
45fc7ddb 8708 and then Nkind_In (Operand, N_Op_Multiply, N_Op_Divide)
996ae0b0 8709 and then (Etype (Right_Opnd (Operand)) = Universal_Real
45fc7ddb
HK
8710 or else
8711 Etype (Left_Opnd (Operand)) = Universal_Real)
996ae0b0 8712 then
a77842bd
TQ
8713 -- Return if expression is ambiguous
8714
996ae0b0 8715 if Unique_Fixed_Point_Type (N) = Any_Type then
a77842bd 8716 return;
82c80734 8717
a77842bd
TQ
8718 -- If nothing else, the available fixed type is Duration
8719
8720 else
996ae0b0
RK
8721 Set_Etype (Operand, Standard_Duration);
8722 end if;
8723
bc5f3720 8724 -- Resolve the real operand with largest available precision
9ebe3743 8725
996ae0b0
RK
8726 if Etype (Right_Opnd (Operand)) = Universal_Real then
8727 Rop := New_Copy_Tree (Right_Opnd (Operand));
8728 else
8729 Rop := New_Copy_Tree (Left_Opnd (Operand));
8730 end if;
8731
9ebe3743 8732 Resolve (Rop, Universal_Real);
996ae0b0 8733
82c80734
RD
8734 -- If the operand is a literal (it could be a non-static and
8735 -- illegal exponentiation) check whether the use of Duration
8736 -- is potentially inaccurate.
8737
8738 if Nkind (Rop) = N_Real_Literal
8739 and then Realval (Rop) /= Ureal_0
996ae0b0
RK
8740 and then abs (Realval (Rop)) < Delta_Value (Standard_Duration)
8741 then
aa180613 8742 Error_Msg_N
aa5147f0
ES
8743 ("?universal real operand can only " &
8744 "be interpreted as Duration!",
aa180613
RD
8745 Rop);
8746 Error_Msg_N
aa5147f0 8747 ("\?precision will be lost in the conversion!", Rop);
996ae0b0
RK
8748 end if;
8749
891a6e79
AC
8750 elsif Is_Numeric_Type (Typ)
8751 and then Nkind (Operand) in N_Op
8752 and then Unique_Fixed_Point_Type (N) /= Any_Type
8753 then
8754 Set_Etype (Operand, Standard_Duration);
8755
996ae0b0
RK
8756 else
8757 Error_Msg_N ("invalid context for mixed mode operation", N);
8758 Set_Etype (Operand, Any_Type);
8759 return;
8760 end if;
8761 end if;
8762
fbf5a39b 8763 Resolve (Operand);
996ae0b0
RK
8764
8765 -- Note: we do the Eval_Type_Conversion call before applying the
d81b4bfe
TQ
8766 -- required checks for a subtype conversion. This is important, since
8767 -- both are prepared under certain circumstances to change the type
8768 -- conversion to a constraint error node, but in the case of
8769 -- Eval_Type_Conversion this may reflect an illegality in the static
8770 -- case, and we would miss the illegality (getting only a warning
8771 -- message), if we applied the type conversion checks first.
996ae0b0
RK
8772
8773 Eval_Type_Conversion (N);
8774
d81b4bfe
TQ
8775 -- Even when evaluation is not possible, we may be able to simplify the
8776 -- conversion or its expression. This needs to be done before applying
8777 -- checks, since otherwise the checks may use the original expression
8778 -- and defeat the simplifications. This is specifically the case for
8779 -- elimination of the floating-point Truncation attribute in
8780 -- float-to-int conversions.
0669bebe
GB
8781
8782 Simplify_Type_Conversion (N);
8783
d81b4bfe
TQ
8784 -- If after evaluation we still have a type conversion, then we may need
8785 -- to apply checks required for a subtype conversion.
996ae0b0
RK
8786
8787 -- Skip these type conversion checks if universal fixed operands
8788 -- operands involved, since range checks are handled separately for
8789 -- these cases (in the appropriate Expand routines in unit Exp_Fixd).
8790
8791 if Nkind (N) = N_Type_Conversion
b7d1f17f
HK
8792 and then not Is_Generic_Type (Root_Type (Target_Typ))
8793 and then Target_Typ /= Universal_Fixed
8794 and then Operand_Typ /= Universal_Fixed
996ae0b0
RK
8795 then
8796 Apply_Type_Conversion_Checks (N);
8797 end if;
8798
d81b4bfe
TQ
8799 -- Issue warning for conversion of simple object to its own type. We
8800 -- have to test the original nodes, since they may have been rewritten
8801 -- by various optimizations.
fbf5a39b
AC
8802
8803 Orig_N := Original_Node (N);
996ae0b0 8804
ae2aa109
AC
8805 -- Here we test for a redundant conversion if the warning mode is
8806 -- active (and was not locally reset), and we have a type conversion
8807 -- from source not appearing in a generic instance.
8808
8809 if Test_Redundant
fbf5a39b 8810 and then Nkind (Orig_N) = N_Type_Conversion
ae2aa109 8811 and then Comes_From_Source (Orig_N)
5453d5bd 8812 and then not In_Instance
996ae0b0 8813 then
fbf5a39b 8814 Orig_N := Original_Node (Expression (Orig_N));
b7d1f17f 8815 Orig_T := Target_Typ;
fbf5a39b
AC
8816
8817 -- If the node is part of a larger expression, the Target_Type
8818 -- may not be the original type of the node if the context is a
8819 -- condition. Recover original type to see if conversion is needed.
8820
8821 if Is_Boolean_Type (Orig_T)
8822 and then Nkind (Parent (N)) in N_Op
8823 then
8824 Orig_T := Etype (Parent (N));
8825 end if;
8826
ae2aa109
AC
8827 -- if we have an entity name, then give the warning if the entity
8828 -- is the right type, or if it is a loop parameter covered by the
8829 -- original type (that's needed because loop parameters have an
8830 -- odd subtype coming from the bounds).
8831
8832 if (Is_Entity_Name (Orig_N)
8833 and then
8834 (Etype (Entity (Orig_N)) = Orig_T
8835 or else
8836 (Ekind (Entity (Orig_N)) = E_Loop_Parameter
477bd732 8837 and then Covers (Orig_T, Etype (Entity (Orig_N))))))
ae2aa109 8838
477bd732 8839 -- If not an entity, then type of expression must match
ae2aa109
AC
8840
8841 or else Etype (Orig_N) = Orig_T
fbf5a39b 8842 then
4b2d2c13
AC
8843 -- One more check, do not give warning if the analyzed conversion
8844 -- has an expression with non-static bounds, and the bounds of the
8845 -- target are static. This avoids junk warnings in cases where the
8846 -- conversion is necessary to establish staticness, for example in
8847 -- a case statement.
8848
8849 if not Is_OK_Static_Subtype (Operand_Typ)
8850 and then Is_OK_Static_Subtype (Target_Typ)
8851 then
8852 null;
8853
9db0b232
AC
8854 -- Finally, if this type conversion occurs in a context that
8855 -- requires a prefix, and the expression is a qualified
8856 -- expression, then the type conversion is not redundant,
8857 -- because a qualified expression is not a prefix, whereas a
8858 -- type conversion is. For example, "X := T'(Funx(...)).Y;" is
8859 -- illegal. because a selected component requires a prefix, but
8860 -- a type conversion makes it legal: "X := T(T'(Funx(...))).Y;"
8861 -- In Ada 2012, a qualified expression is a name, so this idiom is
8862 -- no longer needed, but we still suppress the warning because it
8863 -- seems unfriendly for warnings to pop up when you switch to the
8864 -- newer language version.
be257e99
AC
8865
8866 elsif Nkind (Orig_N) = N_Qualified_Expression
f5d96d00
AC
8867 and then Nkind_In (Parent (N), N_Attribute_Reference,
8868 N_Indexed_Component,
8869 N_Selected_Component,
8870 N_Slice,
8871 N_Explicit_Dereference)
be257e99
AC
8872 then
8873 null;
8874
ae2aa109
AC
8875 -- Here we give the redundant conversion warning. If it is an
8876 -- entity, give the name of the entity in the message. If not,
8877 -- just mention the expression.
4b2d2c13
AC
8878
8879 else
ae2aa109
AC
8880 if Is_Entity_Name (Orig_N) then
8881 Error_Msg_Node_2 := Orig_T;
8882 Error_Msg_NE -- CODEFIX
8883 ("?redundant conversion, & is of type &!",
8884 N, Entity (Orig_N));
8885 else
8886 Error_Msg_NE
8887 ("?redundant conversion, expression is of type&!",
8888 N, Orig_T);
8889 end if;
4b2d2c13 8890 end if;
fbf5a39b 8891 end if;
996ae0b0 8892 end if;
758c442c 8893
b7d1f17f 8894 -- Ada 2005 (AI-251): Handle class-wide interface type conversions.
0669bebe
GB
8895 -- No need to perform any interface conversion if the type of the
8896 -- expression coincides with the target type.
758c442c 8897
0669bebe
GB
8898 if Ada_Version >= Ada_05
8899 and then Expander_Active
b7d1f17f 8900 and then Operand_Typ /= Target_Typ
0669bebe 8901 then
b7d1f17f
HK
8902 declare
8903 Opnd : Entity_Id := Operand_Typ;
8904 Target : Entity_Id := Target_Typ;
758c442c 8905
b7d1f17f
HK
8906 begin
8907 if Is_Access_Type (Opnd) then
841dd0f5 8908 Opnd := Designated_Type (Opnd);
1420b484
JM
8909 end if;
8910
b7d1f17f 8911 if Is_Access_Type (Target_Typ) then
841dd0f5 8912 Target := Designated_Type (Target);
4197ae1e 8913 end if;
c8ef728f 8914
b7d1f17f
HK
8915 if Opnd = Target then
8916 null;
c8ef728f 8917
b7d1f17f 8918 -- Conversion from interface type
ea985d95 8919
b7d1f17f 8920 elsif Is_Interface (Opnd) then
ea985d95 8921
b7d1f17f 8922 -- Ada 2005 (AI-217): Handle entities from limited views
aa180613 8923
b7d1f17f
HK
8924 if From_With_Type (Opnd) then
8925 Error_Msg_Qual_Level := 99;
305caf42
AC
8926 Error_Msg_NE -- CODEFIX
8927 ("missing WITH clause on package &", N,
b7d1f17f
HK
8928 Cunit_Entity (Get_Source_Unit (Base_Type (Opnd))));
8929 Error_Msg_N
8930 ("type conversions require visibility of the full view",
8931 N);
aa180613 8932
aa5147f0
ES
8933 elsif From_With_Type (Target)
8934 and then not
8935 (Is_Access_Type (Target_Typ)
8936 and then Present (Non_Limited_View (Etype (Target))))
8937 then
b7d1f17f 8938 Error_Msg_Qual_Level := 99;
305caf42
AC
8939 Error_Msg_NE -- CODEFIX
8940 ("missing WITH clause on package &", N,
b7d1f17f
HK
8941 Cunit_Entity (Get_Source_Unit (Base_Type (Target))));
8942 Error_Msg_N
8943 ("type conversions require visibility of the full view",
8944 N);
aa180613 8945
b7d1f17f
HK
8946 else
8947 Expand_Interface_Conversion (N, Is_Static => False);
8948 end if;
8949
8950 -- Conversion to interface type
8951
8952 elsif Is_Interface (Target) then
8953
8954 -- Handle subtypes
8955
8a95f4e8 8956 if Ekind_In (Opnd, E_Protected_Subtype, E_Task_Subtype) then
b7d1f17f
HK
8957 Opnd := Etype (Opnd);
8958 end if;
8959
8960 if not Interface_Present_In_Ancestor
8961 (Typ => Opnd,
8962 Iface => Target)
8963 then
8964 if Is_Class_Wide_Type (Opnd) then
8965
8966 -- The static analysis is not enough to know if the
8967 -- interface is implemented or not. Hence we must pass
8968 -- the work to the expander to generate code to evaluate
e7c0dd39 8969 -- the conversion at run time.
b7d1f17f
HK
8970
8971 Expand_Interface_Conversion (N, Is_Static => False);
8972
8973 else
8974 Error_Msg_Name_1 := Chars (Etype (Target));
8975 Error_Msg_Name_2 := Chars (Opnd);
8976 Error_Msg_N
8977 ("wrong interface conversion (% is not a progenitor " &
8978 "of %)", N);
8979 end if;
8980
8981 else
8982 Expand_Interface_Conversion (N);
8983 end if;
8984 end if;
8985 end;
758c442c 8986 end if;
996ae0b0
RK
8987 end Resolve_Type_Conversion;
8988
8989 ----------------------
8990 -- Resolve_Unary_Op --
8991 ----------------------
8992
8993 procedure Resolve_Unary_Op (N : Node_Id; Typ : Entity_Id) is
fbf5a39b
AC
8994 B_Typ : constant Entity_Id := Base_Type (Typ);
8995 R : constant Node_Id := Right_Opnd (N);
8996 OK : Boolean;
8997 Lo : Uint;
8998 Hi : Uint;
996ae0b0
RK
8999
9000 begin
b7d1f17f 9001 -- Deal with intrinsic unary operators
996ae0b0 9002
fbf5a39b
AC
9003 if Comes_From_Source (N)
9004 and then Ekind (Entity (N)) = E_Function
9005 and then Is_Imported (Entity (N))
9006 and then Is_Intrinsic_Subprogram (Entity (N))
9007 then
9008 Resolve_Intrinsic_Unary_Operator (N, Typ);
9009 return;
9010 end if;
9011
0669bebe
GB
9012 -- Deal with universal cases
9013
996ae0b0 9014 if Etype (R) = Universal_Integer
0669bebe
GB
9015 or else
9016 Etype (R) = Universal_Real
996ae0b0
RK
9017 then
9018 Check_For_Visible_Operator (N, B_Typ);
9019 end if;
9020
9021 Set_Etype (N, B_Typ);
9022 Resolve (R, B_Typ);
fbf5a39b 9023
9ebe3743
HK
9024 -- Generate warning for expressions like abs (x mod 2)
9025
9026 if Warn_On_Redundant_Constructs
9027 and then Nkind (N) = N_Op_Abs
9028 then
9029 Determine_Range (Right_Opnd (N), OK, Lo, Hi);
9030
9031 if OK and then Hi >= Lo and then Lo >= 0 then
305caf42 9032 Error_Msg_N -- CODEFIX
9ebe3743
HK
9033 ("?abs applied to known non-negative value has no effect", N);
9034 end if;
9035 end if;
9036
0669bebe
GB
9037 -- Deal with reference generation
9038
996ae0b0 9039 Check_Unset_Reference (R);
fbf5a39b 9040 Generate_Operator_Reference (N, B_Typ);
996ae0b0
RK
9041 Eval_Unary_Op (N);
9042
9043 -- Set overflow checking bit. Much cleverer code needed here eventually
9044 -- and perhaps the Resolve routines should be separated for the various
9045 -- arithmetic operations, since they will need different processing ???
9046
9047 if Nkind (N) in N_Op then
9048 if not Overflow_Checks_Suppressed (Etype (N)) then
fbf5a39b 9049 Enable_Overflow_Check (N);
996ae0b0
RK
9050 end if;
9051 end if;
0669bebe 9052
d81b4bfe
TQ
9053 -- Generate warning for expressions like -5 mod 3 for integers. No need
9054 -- to worry in the floating-point case, since parens do not affect the
9055 -- result so there is no point in giving in a warning.
0669bebe
GB
9056
9057 declare
9058 Norig : constant Node_Id := Original_Node (N);
9059 Rorig : Node_Id;
9060 Val : Uint;
9061 HB : Uint;
9062 LB : Uint;
9063 Lval : Uint;
9064 Opnd : Node_Id;
9065
9066 begin
9067 if Warn_On_Questionable_Missing_Parens
9068 and then Comes_From_Source (Norig)
9069 and then Is_Integer_Type (Typ)
9070 and then Nkind (Norig) = N_Op_Minus
9071 then
9072 Rorig := Original_Node (Right_Opnd (Norig));
9073
9074 -- We are looking for cases where the right operand is not
f3d57416 9075 -- parenthesized, and is a binary operator, multiply, divide, or
0669bebe
GB
9076 -- mod. These are the cases where the grouping can affect results.
9077
9078 if Paren_Count (Rorig) = 0
45fc7ddb 9079 and then Nkind_In (Rorig, N_Op_Mod, N_Op_Multiply, N_Op_Divide)
0669bebe
GB
9080 then
9081 -- For mod, we always give the warning, since the value is
9082 -- affected by the parenthesization (e.g. (-5) mod 315 /=
d81b4bfe 9083 -- -(5 mod 315)). But for the other cases, the only concern is
0669bebe
GB
9084 -- overflow, e.g. for the case of 8 big signed (-(2 * 64)
9085 -- overflows, but (-2) * 64 does not). So we try to give the
9086 -- message only when overflow is possible.
9087
9088 if Nkind (Rorig) /= N_Op_Mod
9089 and then Compile_Time_Known_Value (R)
9090 then
9091 Val := Expr_Value (R);
9092
9093 if Compile_Time_Known_Value (Type_High_Bound (Typ)) then
9094 HB := Expr_Value (Type_High_Bound (Typ));
9095 else
9096 HB := Expr_Value (Type_High_Bound (Base_Type (Typ)));
9097 end if;
9098
9099 if Compile_Time_Known_Value (Type_Low_Bound (Typ)) then
9100 LB := Expr_Value (Type_Low_Bound (Typ));
9101 else
9102 LB := Expr_Value (Type_Low_Bound (Base_Type (Typ)));
9103 end if;
9104
d81b4bfe
TQ
9105 -- Note that the test below is deliberately excluding the
9106 -- largest negative number, since that is a potentially
0669bebe
GB
9107 -- troublesome case (e.g. -2 * x, where the result is the
9108 -- largest negative integer has an overflow with 2 * x).
9109
9110 if Val > LB and then Val <= HB then
9111 return;
9112 end if;
9113 end if;
9114
9115 -- For the multiplication case, the only case we have to worry
9116 -- about is when (-a)*b is exactly the largest negative number
9117 -- so that -(a*b) can cause overflow. This can only happen if
9118 -- a is a power of 2, and more generally if any operand is a
9119 -- constant that is not a power of 2, then the parentheses
9120 -- cannot affect whether overflow occurs. We only bother to
9121 -- test the left most operand
9122
9123 -- Loop looking at left operands for one that has known value
9124
9125 Opnd := Rorig;
9126 Opnd_Loop : while Nkind (Opnd) = N_Op_Multiply loop
9127 if Compile_Time_Known_Value (Left_Opnd (Opnd)) then
9128 Lval := UI_Abs (Expr_Value (Left_Opnd (Opnd)));
9129
9130 -- Operand value of 0 or 1 skips warning
9131
9132 if Lval <= 1 then
9133 return;
9134
9135 -- Otherwise check power of 2, if power of 2, warn, if
9136 -- anything else, skip warning.
9137
9138 else
9139 while Lval /= 2 loop
9140 if Lval mod 2 = 1 then
9141 return;
9142 else
9143 Lval := Lval / 2;
9144 end if;
9145 end loop;
9146
9147 exit Opnd_Loop;
9148 end if;
9149 end if;
9150
9151 -- Keep looking at left operands
9152
9153 Opnd := Left_Opnd (Opnd);
9154 end loop Opnd_Loop;
9155
9156 -- For rem or "/" we can only have a problematic situation
9157 -- if the divisor has a value of minus one or one. Otherwise
9158 -- overflow is impossible (divisor > 1) or we have a case of
9159 -- division by zero in any case.
9160
45fc7ddb 9161 if Nkind_In (Rorig, N_Op_Divide, N_Op_Rem)
0669bebe
GB
9162 and then Compile_Time_Known_Value (Right_Opnd (Rorig))
9163 and then UI_Abs (Expr_Value (Right_Opnd (Rorig))) /= 1
9164 then
9165 return;
9166 end if;
9167
9168 -- If we fall through warning should be issued
9169
ed2233dc 9170 Error_Msg_N
aa5147f0 9171 ("?unary minus expression should be parenthesized here!", N);
0669bebe
GB
9172 end if;
9173 end if;
9174 end;
996ae0b0
RK
9175 end Resolve_Unary_Op;
9176
9177 ----------------------------------
9178 -- Resolve_Unchecked_Expression --
9179 ----------------------------------
9180
9181 procedure Resolve_Unchecked_Expression
9182 (N : Node_Id;
9183 Typ : Entity_Id)
9184 is
9185 begin
9186 Resolve (Expression (N), Typ, Suppress => All_Checks);
9187 Set_Etype (N, Typ);
9188 end Resolve_Unchecked_Expression;
9189
9190 ---------------------------------------
9191 -- Resolve_Unchecked_Type_Conversion --
9192 ---------------------------------------
9193
9194 procedure Resolve_Unchecked_Type_Conversion
9195 (N : Node_Id;
9196 Typ : Entity_Id)
9197 is
07fc65c4
GB
9198 pragma Warnings (Off, Typ);
9199
996ae0b0
RK
9200 Operand : constant Node_Id := Expression (N);
9201 Opnd_Type : constant Entity_Id := Etype (Operand);
9202
9203 begin
a77842bd 9204 -- Resolve operand using its own type
996ae0b0
RK
9205
9206 Resolve (Operand, Opnd_Type);
9207 Eval_Unchecked_Conversion (N);
996ae0b0
RK
9208 end Resolve_Unchecked_Type_Conversion;
9209
9210 ------------------------------
9211 -- Rewrite_Operator_As_Call --
9212 ------------------------------
9213
9214 procedure Rewrite_Operator_As_Call (N : Node_Id; Nam : Entity_Id) is
fbf5a39b
AC
9215 Loc : constant Source_Ptr := Sloc (N);
9216 Actuals : constant List_Id := New_List;
996ae0b0
RK
9217 New_N : Node_Id;
9218
9219 begin
9220 if Nkind (N) in N_Binary_Op then
9221 Append (Left_Opnd (N), Actuals);
9222 end if;
9223
9224 Append (Right_Opnd (N), Actuals);
9225
9226 New_N :=
9227 Make_Function_Call (Sloc => Loc,
9228 Name => New_Occurrence_Of (Nam, Loc),
9229 Parameter_Associations => Actuals);
9230
9231 Preserve_Comes_From_Source (New_N, N);
9232 Preserve_Comes_From_Source (Name (New_N), N);
9233 Rewrite (N, New_N);
9234 Set_Etype (N, Etype (Nam));
9235 end Rewrite_Operator_As_Call;
9236
9237 ------------------------------
9238 -- Rewrite_Renamed_Operator --
9239 ------------------------------
9240
0ab80019
AC
9241 procedure Rewrite_Renamed_Operator
9242 (N : Node_Id;
9243 Op : Entity_Id;
9244 Typ : Entity_Id)
9245 is
996ae0b0
RK
9246 Nam : constant Name_Id := Chars (Op);
9247 Is_Binary : constant Boolean := Nkind (N) in N_Binary_Op;
9248 Op_Node : Node_Id;
9249
9250 begin
d81b4bfe
TQ
9251 -- Rewrite the operator node using the real operator, not its renaming.
9252 -- Exclude user-defined intrinsic operations of the same name, which are
9253 -- treated separately and rewritten as calls.
996ae0b0 9254
964f13da 9255 if Ekind (Op) /= E_Function or else Chars (N) /= Nam then
996ae0b0
RK
9256 Op_Node := New_Node (Operator_Kind (Nam, Is_Binary), Sloc (N));
9257 Set_Chars (Op_Node, Nam);
9258 Set_Etype (Op_Node, Etype (N));
9259 Set_Entity (Op_Node, Op);
9260 Set_Right_Opnd (Op_Node, Right_Opnd (N));
9261
b7d1f17f
HK
9262 -- Indicate that both the original entity and its renaming are
9263 -- referenced at this point.
fbf5a39b
AC
9264
9265 Generate_Reference (Entity (N), N);
996ae0b0
RK
9266 Generate_Reference (Op, N);
9267
9268 if Is_Binary then
9269 Set_Left_Opnd (Op_Node, Left_Opnd (N));
9270 end if;
9271
9272 Rewrite (N, Op_Node);
0ab80019 9273
1366997b
AC
9274 -- If the context type is private, add the appropriate conversions so
9275 -- that the operator is applied to the full view. This is done in the
9276 -- routines that resolve intrinsic operators.
0ab80019
AC
9277
9278 if Is_Intrinsic_Subprogram (Op)
9279 and then Is_Private_Type (Typ)
9280 then
9281 case Nkind (N) is
9282 when N_Op_Add | N_Op_Subtract | N_Op_Multiply | N_Op_Divide |
9283 N_Op_Expon | N_Op_Mod | N_Op_Rem =>
9284 Resolve_Intrinsic_Operator (N, Typ);
9285
d81b4bfe 9286 when N_Op_Plus | N_Op_Minus | N_Op_Abs =>
0ab80019
AC
9287 Resolve_Intrinsic_Unary_Operator (N, Typ);
9288
9289 when others =>
9290 Resolve (N, Typ);
9291 end case;
9292 end if;
9293
964f13da
RD
9294 elsif Ekind (Op) = E_Function and then Is_Intrinsic_Subprogram (Op) then
9295
1366997b
AC
9296 -- Operator renames a user-defined operator of the same name. Use the
9297 -- original operator in the node, which is the one Gigi knows about.
0ab80019
AC
9298
9299 Set_Entity (N, Op);
9300 Set_Is_Overloaded (N, False);
996ae0b0
RK
9301 end if;
9302 end Rewrite_Renamed_Operator;
9303
9304 -----------------------
9305 -- Set_Slice_Subtype --
9306 -----------------------
9307
1366997b
AC
9308 -- Build an implicit subtype declaration to represent the type delivered by
9309 -- the slice. This is an abbreviated version of an array subtype. We define
9310 -- an index subtype for the slice, using either the subtype name or the
9311 -- discrete range of the slice. To be consistent with index usage elsewhere
9312 -- we create a list header to hold the single index. This list is not
9313 -- otherwise attached to the syntax tree.
996ae0b0
RK
9314
9315 procedure Set_Slice_Subtype (N : Node_Id) is
9316 Loc : constant Source_Ptr := Sloc (N);
fbf5a39b 9317 Index_List : constant List_Id := New_List;
996ae0b0 9318 Index : Node_Id;
996ae0b0
RK
9319 Index_Subtype : Entity_Id;
9320 Index_Type : Entity_Id;
9321 Slice_Subtype : Entity_Id;
9322 Drange : constant Node_Id := Discrete_Range (N);
9323
9324 begin
9325 if Is_Entity_Name (Drange) then
9326 Index_Subtype := Entity (Drange);
9327
9328 else
9329 -- We force the evaluation of a range. This is definitely needed in
9330 -- the renamed case, and seems safer to do unconditionally. Note in
9331 -- any case that since we will create and insert an Itype referring
9332 -- to this range, we must make sure any side effect removal actions
9333 -- are inserted before the Itype definition.
9334
9335 if Nkind (Drange) = N_Range then
9336 Force_Evaluation (Low_Bound (Drange));
9337 Force_Evaluation (High_Bound (Drange));
9338 end if;
9339
9340 Index_Type := Base_Type (Etype (Drange));
9341
9342 Index_Subtype := Create_Itype (Subtype_Kind (Ekind (Index_Type)), N);
9343
8a95f4e8 9344 -- Take a new copy of Drange (where bounds have been rewritten to
3c1ecd7e
AC
9345 -- reference side-effect-free names). Using a separate tree ensures
9346 -- that further expansion (e.g. while rewriting a slice assignment
8a95f4e8
RD
9347 -- into a FOR loop) does not attempt to remove side effects on the
9348 -- bounds again (which would cause the bounds in the index subtype
9349 -- definition to refer to temporaries before they are defined) (the
9350 -- reason is that some names are considered side effect free here
9351 -- for the subtype, but not in the context of a loop iteration
9352 -- scheme).
9353
9354 Set_Scalar_Range (Index_Subtype, New_Copy_Tree (Drange));
996ae0b0
RK
9355 Set_Etype (Index_Subtype, Index_Type);
9356 Set_Size_Info (Index_Subtype, Index_Type);
9357 Set_RM_Size (Index_Subtype, RM_Size (Index_Type));
9358 end if;
9359
9360 Slice_Subtype := Create_Itype (E_Array_Subtype, N);
9361
9362 Index := New_Occurrence_Of (Index_Subtype, Loc);
9363 Set_Etype (Index, Index_Subtype);
9364 Append (Index, Index_List);
9365
996ae0b0
RK
9366 Set_First_Index (Slice_Subtype, Index);
9367 Set_Etype (Slice_Subtype, Base_Type (Etype (N)));
9368 Set_Is_Constrained (Slice_Subtype, True);
996ae0b0 9369
8a95f4e8
RD
9370 Check_Compile_Time_Size (Slice_Subtype);
9371
b7d1f17f
HK
9372 -- The Etype of the existing Slice node is reset to this slice subtype.
9373 -- Its bounds are obtained from its first index.
996ae0b0
RK
9374
9375 Set_Etype (N, Slice_Subtype);
9376
cfab0c49
AC
9377 -- For packed slice subtypes, freeze immediately (except in the
9378 -- case of being in a "spec expression" where we never freeze
9379 -- when we first see the expression).
8a95f4e8
RD
9380
9381 if Is_Packed (Slice_Subtype) and not In_Spec_Expression then
9382 Freeze_Itype (Slice_Subtype, N);
996ae0b0 9383
cfab0c49
AC
9384 -- For all other cases insert an itype reference in the slice's actions
9385 -- so that the itype is frozen at the proper place in the tree (i.e. at
9386 -- the point where actions for the slice are analyzed). Note that this
9387 -- is different from freezing the itype immediately, which might be
9388 -- premature (e.g. if the slice is within a transient scope).
9389
8a95f4e8
RD
9390 else
9391 Ensure_Defined (Typ => Slice_Subtype, N => N);
9392 end if;
996ae0b0
RK
9393 end Set_Slice_Subtype;
9394
9395 --------------------------------
9396 -- Set_String_Literal_Subtype --
9397 --------------------------------
9398
9399 procedure Set_String_Literal_Subtype (N : Node_Id; Typ : Entity_Id) is
c8ef728f
ES
9400 Loc : constant Source_Ptr := Sloc (N);
9401 Low_Bound : constant Node_Id :=
d81b4bfe 9402 Type_Low_Bound (Etype (First_Index (Typ)));
996ae0b0
RK
9403 Subtype_Id : Entity_Id;
9404
9405 begin
9406 if Nkind (N) /= N_String_Literal then
9407 return;
996ae0b0
RK
9408 end if;
9409
c8ef728f 9410 Subtype_Id := Create_Itype (E_String_Literal_Subtype, N);
91b1417d
AC
9411 Set_String_Literal_Length (Subtype_Id, UI_From_Int
9412 (String_Length (Strval (N))));
c8ef728f
ES
9413 Set_Etype (Subtype_Id, Base_Type (Typ));
9414 Set_Is_Constrained (Subtype_Id);
9415 Set_Etype (N, Subtype_Id);
9416
9417 if Is_OK_Static_Expression (Low_Bound) then
996ae0b0 9418
1366997b
AC
9419 -- The low bound is set from the low bound of the corresponding index
9420 -- type. Note that we do not store the high bound in the string literal
9421 -- subtype, but it can be deduced if necessary from the length and the
9422 -- low bound.
996ae0b0 9423
c8ef728f 9424 Set_String_Literal_Low_Bound (Subtype_Id, Low_Bound);
996ae0b0 9425
c8ef728f
ES
9426 else
9427 Set_String_Literal_Low_Bound
9428 (Subtype_Id, Make_Integer_Literal (Loc, 1));
9429 Set_Etype (String_Literal_Low_Bound (Subtype_Id), Standard_Positive);
9430
b7d1f17f
HK
9431 -- Build bona fide subtype for the string, and wrap it in an
9432 -- unchecked conversion, because the backend expects the
c8ef728f
ES
9433 -- String_Literal_Subtype to have a static lower bound.
9434
9435 declare
9436 Index_List : constant List_Id := New_List;
9437 Index_Type : constant Entity_Id := Etype (First_Index (Typ));
9438 High_Bound : constant Node_Id :=
9439 Make_Op_Add (Loc,
9440 Left_Opnd => New_Copy_Tree (Low_Bound),
9441 Right_Opnd =>
9442 Make_Integer_Literal (Loc,
9443 String_Length (Strval (N)) - 1));
9444 Array_Subtype : Entity_Id;
9445 Index_Subtype : Entity_Id;
9446 Drange : Node_Id;
9447 Index : Node_Id;
9448
9449 begin
9450 Index_Subtype :=
9451 Create_Itype (Subtype_Kind (Ekind (Index_Type)), N);
0669bebe 9452 Drange := Make_Range (Loc, New_Copy_Tree (Low_Bound), High_Bound);
c8ef728f
ES
9453 Set_Scalar_Range (Index_Subtype, Drange);
9454 Set_Parent (Drange, N);
9455 Analyze_And_Resolve (Drange, Index_Type);
9456
36fcf362
RD
9457 -- In the context, the Index_Type may already have a constraint,
9458 -- so use common base type on string subtype. The base type may
9459 -- be used when generating attributes of the string, for example
9460 -- in the context of a slice assignment.
9461
9462 Set_Etype (Index_Subtype, Base_Type (Index_Type));
c8ef728f
ES
9463 Set_Size_Info (Index_Subtype, Index_Type);
9464 Set_RM_Size (Index_Subtype, RM_Size (Index_Type));
9465
9466 Array_Subtype := Create_Itype (E_Array_Subtype, N);
9467
9468 Index := New_Occurrence_Of (Index_Subtype, Loc);
9469 Set_Etype (Index, Index_Subtype);
9470 Append (Index, Index_List);
9471
9472 Set_First_Index (Array_Subtype, Index);
9473 Set_Etype (Array_Subtype, Base_Type (Typ));
9474 Set_Is_Constrained (Array_Subtype, True);
c8ef728f
ES
9475
9476 Rewrite (N,
9477 Make_Unchecked_Type_Conversion (Loc,
9478 Subtype_Mark => New_Occurrence_Of (Array_Subtype, Loc),
9479 Expression => Relocate_Node (N)));
9480 Set_Etype (N, Array_Subtype);
9481 end;
9482 end if;
996ae0b0
RK
9483 end Set_String_Literal_Subtype;
9484
0669bebe
GB
9485 ------------------------------
9486 -- Simplify_Type_Conversion --
9487 ------------------------------
9488
9489 procedure Simplify_Type_Conversion (N : Node_Id) is
9490 begin
9491 if Nkind (N) = N_Type_Conversion then
9492 declare
9493 Operand : constant Node_Id := Expression (N);
9494 Target_Typ : constant Entity_Id := Etype (N);
9495 Opnd_Typ : constant Entity_Id := Etype (Operand);
9496
9497 begin
9498 if Is_Floating_Point_Type (Opnd_Typ)
9499 and then
9500 (Is_Integer_Type (Target_Typ)
9501 or else (Is_Fixed_Point_Type (Target_Typ)
9502 and then Conversion_OK (N)))
9503 and then Nkind (Operand) = N_Attribute_Reference
9504 and then Attribute_Name (Operand) = Name_Truncation
9505
9506 -- Special processing required if the conversion is the expression
9507 -- of a Truncation attribute reference. In this case we replace:
9508
9509 -- ityp (ftyp'Truncation (x))
9510
9511 -- by
9512
9513 -- ityp (x)
9514
9515 -- with the Float_Truncate flag set, which is more efficient
9516
9517 then
9518 Rewrite (Operand,
9519 Relocate_Node (First (Expressions (Operand))));
9520 Set_Float_Truncate (N, True);
9521 end if;
9522 end;
9523 end if;
9524 end Simplify_Type_Conversion;
9525
996ae0b0
RK
9526 -----------------------------
9527 -- Unique_Fixed_Point_Type --
9528 -----------------------------
9529
9530 function Unique_Fixed_Point_Type (N : Node_Id) return Entity_Id is
9531 T1 : Entity_Id := Empty;
9532 T2 : Entity_Id;
9533 Item : Node_Id;
9534 Scop : Entity_Id;
9535
9536 procedure Fixed_Point_Error;
d81b4bfe
TQ
9537 -- Give error messages for true ambiguity. Messages are posted on node
9538 -- N, and entities T1, T2 are the possible interpretations.
a77842bd
TQ
9539
9540 -----------------------
9541 -- Fixed_Point_Error --
9542 -----------------------
996ae0b0
RK
9543
9544 procedure Fixed_Point_Error is
9545 begin
ed2233dc
AC
9546 Error_Msg_N ("ambiguous universal_fixed_expression", N);
9547 Error_Msg_NE ("\\possible interpretation as}", N, T1);
9548 Error_Msg_NE ("\\possible interpretation as}", N, T2);
996ae0b0
RK
9549 end Fixed_Point_Error;
9550
a77842bd
TQ
9551 -- Start of processing for Unique_Fixed_Point_Type
9552
996ae0b0
RK
9553 begin
9554 -- The operations on Duration are visible, so Duration is always a
9555 -- possible interpretation.
9556
9557 T1 := Standard_Duration;
9558
bc5f3720 9559 -- Look for fixed-point types in enclosing scopes
996ae0b0 9560
fbf5a39b 9561 Scop := Current_Scope;
996ae0b0
RK
9562 while Scop /= Standard_Standard loop
9563 T2 := First_Entity (Scop);
996ae0b0
RK
9564 while Present (T2) loop
9565 if Is_Fixed_Point_Type (T2)
9566 and then Current_Entity (T2) = T2
9567 and then Scope (Base_Type (T2)) = Scop
9568 then
9569 if Present (T1) then
9570 Fixed_Point_Error;
9571 return Any_Type;
9572 else
9573 T1 := T2;
9574 end if;
9575 end if;
9576
9577 Next_Entity (T2);
9578 end loop;
9579
9580 Scop := Scope (Scop);
9581 end loop;
9582
a77842bd 9583 -- Look for visible fixed type declarations in the context
996ae0b0
RK
9584
9585 Item := First (Context_Items (Cunit (Current_Sem_Unit)));
996ae0b0 9586 while Present (Item) loop
996ae0b0
RK
9587 if Nkind (Item) = N_With_Clause then
9588 Scop := Entity (Name (Item));
9589 T2 := First_Entity (Scop);
996ae0b0
RK
9590 while Present (T2) loop
9591 if Is_Fixed_Point_Type (T2)
9592 and then Scope (Base_Type (T2)) = Scop
9593 and then (Is_Potentially_Use_Visible (T2)
9594 or else In_Use (T2))
9595 then
9596 if Present (T1) then
9597 Fixed_Point_Error;
9598 return Any_Type;
9599 else
9600 T1 := T2;
9601 end if;
9602 end if;
9603
9604 Next_Entity (T2);
9605 end loop;
9606 end if;
9607
9608 Next (Item);
9609 end loop;
9610
9611 if Nkind (N) = N_Real_Literal then
aa5147f0 9612 Error_Msg_NE ("?real literal interpreted as }!", N, T1);
996ae0b0 9613 else
aa5147f0 9614 Error_Msg_NE ("?universal_fixed expression interpreted as }!", N, T1);
996ae0b0
RK
9615 end if;
9616
9617 return T1;
9618 end Unique_Fixed_Point_Type;
9619
9620 ----------------------
9621 -- Valid_Conversion --
9622 ----------------------
9623
9624 function Valid_Conversion
9625 (N : Node_Id;
9626 Target : Entity_Id;
0ab80019 9627 Operand : Node_Id) return Boolean
996ae0b0 9628 is
fbf5a39b 9629 Target_Type : constant Entity_Id := Base_Type (Target);
996ae0b0
RK
9630 Opnd_Type : Entity_Id := Etype (Operand);
9631
9632 function Conversion_Check
9633 (Valid : Boolean;
0ab80019 9634 Msg : String) return Boolean;
996ae0b0
RK
9635 -- Little routine to post Msg if Valid is False, returns Valid value
9636
9637 function Valid_Tagged_Conversion
9638 (Target_Type : Entity_Id;
0ab80019 9639 Opnd_Type : Entity_Id) return Boolean;
996ae0b0
RK
9640 -- Specifically test for validity of tagged conversions
9641
aa180613
RD
9642 function Valid_Array_Conversion return Boolean;
9643 -- Check index and component conformance, and accessibility levels
9644 -- if the component types are anonymous access types (Ada 2005)
9645
996ae0b0
RK
9646 ----------------------
9647 -- Conversion_Check --
9648 ----------------------
9649
9650 function Conversion_Check
9651 (Valid : Boolean;
0ab80019 9652 Msg : String) return Boolean
996ae0b0
RK
9653 is
9654 begin
9655 if not Valid then
9656 Error_Msg_N (Msg, Operand);
9657 end if;
9658
9659 return Valid;
9660 end Conversion_Check;
9661
aa180613
RD
9662 ----------------------------
9663 -- Valid_Array_Conversion --
9664 ----------------------------
9665
9666 function Valid_Array_Conversion return Boolean
9667 is
9668 Opnd_Comp_Type : constant Entity_Id := Component_Type (Opnd_Type);
9669 Opnd_Comp_Base : constant Entity_Id := Base_Type (Opnd_Comp_Type);
9670
9671 Opnd_Index : Node_Id;
9672 Opnd_Index_Type : Entity_Id;
9673
9674 Target_Comp_Type : constant Entity_Id :=
9675 Component_Type (Target_Type);
9676 Target_Comp_Base : constant Entity_Id :=
9677 Base_Type (Target_Comp_Type);
9678
9679 Target_Index : Node_Id;
9680 Target_Index_Type : Entity_Id;
9681
9682 begin
9683 -- Error if wrong number of dimensions
9684
9685 if
9686 Number_Dimensions (Target_Type) /= Number_Dimensions (Opnd_Type)
9687 then
9688 Error_Msg_N
9689 ("incompatible number of dimensions for conversion", Operand);
9690 return False;
9691
9692 -- Number of dimensions matches
9693
9694 else
9695 -- Loop through indexes of the two arrays
9696
9697 Target_Index := First_Index (Target_Type);
9698 Opnd_Index := First_Index (Opnd_Type);
9699 while Present (Target_Index) and then Present (Opnd_Index) loop
9700 Target_Index_Type := Etype (Target_Index);
9701 Opnd_Index_Type := Etype (Opnd_Index);
9702
9703 -- Error if index types are incompatible
9704
9705 if not (Is_Integer_Type (Target_Index_Type)
9706 and then Is_Integer_Type (Opnd_Index_Type))
9707 and then (Root_Type (Target_Index_Type)
9708 /= Root_Type (Opnd_Index_Type))
9709 then
9710 Error_Msg_N
9711 ("incompatible index types for array conversion",
9712 Operand);
9713 return False;
9714 end if;
9715
9716 Next_Index (Target_Index);
9717 Next_Index (Opnd_Index);
9718 end loop;
9719
9720 -- If component types have same base type, all set
9721
9722 if Target_Comp_Base = Opnd_Comp_Base then
9723 null;
9724
9725 -- Here if base types of components are not the same. The only
9726 -- time this is allowed is if we have anonymous access types.
9727
9728 -- The conversion of arrays of anonymous access types can lead
9729 -- to dangling pointers. AI-392 formalizes the accessibility
9730 -- checks that must be applied to such conversions to prevent
9731 -- out-of-scope references.
9732
9733 elsif
964f13da
RD
9734 Ekind_In (Target_Comp_Base, E_Anonymous_Access_Type,
9735 E_Anonymous_Access_Subprogram_Type)
aa180613
RD
9736 and then Ekind (Opnd_Comp_Base) = Ekind (Target_Comp_Base)
9737 and then
9738 Subtypes_Statically_Match (Target_Comp_Type, Opnd_Comp_Type)
9739 then
9740 if Type_Access_Level (Target_Type) <
9741 Type_Access_Level (Opnd_Type)
9742 then
9743 if In_Instance_Body then
9744 Error_Msg_N ("?source array type " &
9745 "has deeper accessibility level than target", Operand);
9746 Error_Msg_N ("\?Program_Error will be raised at run time",
9747 Operand);
9748 Rewrite (N,
9749 Make_Raise_Program_Error (Sloc (N),
9750 Reason => PE_Accessibility_Check_Failed));
9751 Set_Etype (N, Target_Type);
9752 return False;
9753
9754 -- Conversion not allowed because of accessibility levels
9755
9756 else
9757 Error_Msg_N ("source array type " &
9758 "has deeper accessibility level than target", Operand);
9759 return False;
9760 end if;
9761 else
9762 null;
9763 end if;
9764
9765 -- All other cases where component base types do not match
9766
9767 else
9768 Error_Msg_N
9769 ("incompatible component types for array conversion",
9770 Operand);
9771 return False;
9772 end if;
9773
45fc7ddb
HK
9774 -- Check that component subtypes statically match. For numeric
9775 -- types this means that both must be either constrained or
9776 -- unconstrained. For enumeration types the bounds must match.
9777 -- All of this is checked in Subtypes_Statically_Match.
aa180613 9778
45fc7ddb 9779 if not Subtypes_Statically_Match
aa180613
RD
9780 (Target_Comp_Type, Opnd_Comp_Type)
9781 then
9782 Error_Msg_N
9783 ("component subtypes must statically match", Operand);
9784 return False;
9785 end if;
9786 end if;
9787
9788 return True;
9789 end Valid_Array_Conversion;
9790
996ae0b0
RK
9791 -----------------------------
9792 -- Valid_Tagged_Conversion --
9793 -----------------------------
9794
9795 function Valid_Tagged_Conversion
9796 (Target_Type : Entity_Id;
0ab80019 9797 Opnd_Type : Entity_Id) return Boolean
996ae0b0
RK
9798 is
9799 begin
a77842bd 9800 -- Upward conversions are allowed (RM 4.6(22))
996ae0b0
RK
9801
9802 if Covers (Target_Type, Opnd_Type)
9803 or else Is_Ancestor (Target_Type, Opnd_Type)
9804 then
9805 return True;
9806
a77842bd
TQ
9807 -- Downward conversion are allowed if the operand is class-wide
9808 -- (RM 4.6(23)).
996ae0b0
RK
9809
9810 elsif Is_Class_Wide_Type (Opnd_Type)
b7d1f17f 9811 and then Covers (Opnd_Type, Target_Type)
996ae0b0
RK
9812 then
9813 return True;
9814
9815 elsif Covers (Opnd_Type, Target_Type)
9816 or else Is_Ancestor (Opnd_Type, Target_Type)
9817 then
9818 return
9819 Conversion_Check (False,
9820 "downward conversion of tagged objects not allowed");
758c442c 9821
0669bebe
GB
9822 -- Ada 2005 (AI-251): The conversion to/from interface types is
9823 -- always valid
758c442c 9824
0669bebe 9825 elsif Is_Interface (Target_Type) or else Is_Interface (Opnd_Type) then
758c442c
GD
9826 return True;
9827
b7d1f17f
HK
9828 -- If the operand is a class-wide type obtained through a limited_
9829 -- with clause, and the context includes the non-limited view, use
9830 -- it to determine whether the conversion is legal.
9831
9832 elsif Is_Class_Wide_Type (Opnd_Type)
9833 and then From_With_Type (Opnd_Type)
9834 and then Present (Non_Limited_View (Etype (Opnd_Type)))
9835 and then Is_Interface (Non_Limited_View (Etype (Opnd_Type)))
9836 then
9837 return True;
9838
aa180613
RD
9839 elsif Is_Access_Type (Opnd_Type)
9840 and then Is_Interface (Directly_Designated_Type (Opnd_Type))
9841 then
9842 return True;
9843
996ae0b0
RK
9844 else
9845 Error_Msg_NE
9846 ("invalid tagged conversion, not compatible with}",
9847 N, First_Subtype (Opnd_Type));
9848 return False;
9849 end if;
9850 end Valid_Tagged_Conversion;
9851
9852 -- Start of processing for Valid_Conversion
9853
9854 begin
9855 Check_Parameterless_Call (Operand);
9856
9857 if Is_Overloaded (Operand) then
9858 declare
9859 I : Interp_Index;
9860 I1 : Interp_Index;
9861 It : Interp;
9862 It1 : Interp;
9863 N1 : Entity_Id;
f0d10385 9864 T1 : Entity_Id;
996ae0b0
RK
9865
9866 begin
d81b4bfe
TQ
9867 -- Remove procedure calls, which syntactically cannot appear in
9868 -- this context, but which cannot be removed by type checking,
996ae0b0
RK
9869 -- because the context does not impose a type.
9870
1420b484
JM
9871 -- When compiling for VMS, spurious ambiguities can be produced
9872 -- when arithmetic operations have a literal operand and return
9873 -- System.Address or a descendant of it. These ambiguities are
9874 -- otherwise resolved by the context, but for conversions there
9875 -- is no context type and the removal of the spurious operations
9876 -- must be done explicitly here.
9877
9ebe3743
HK
9878 -- The node may be labelled overloaded, but still contain only
9879 -- one interpretation because others were discarded in previous
9880 -- filters. If this is the case, retain the single interpretation
9881 -- if legal.
9882
996ae0b0 9883 Get_First_Interp (Operand, I, It);
9ebe3743
HK
9884 Opnd_Type := It.Typ;
9885 Get_Next_Interp (I, It);
996ae0b0 9886
9ebe3743
HK
9887 if Present (It.Typ)
9888 and then Opnd_Type /= Standard_Void_Type
9889 then
9890 -- More than one candidate interpretation is available
996ae0b0 9891
9ebe3743
HK
9892 Get_First_Interp (Operand, I, It);
9893 while Present (It.Typ) loop
9894 if It.Typ = Standard_Void_Type then
9895 Remove_Interp (I);
9896 end if;
1420b484 9897
9ebe3743
HK
9898 if Present (System_Aux_Id)
9899 and then Is_Descendent_Of_Address (It.Typ)
9900 then
9901 Remove_Interp (I);
9902 end if;
9903
9904 Get_Next_Interp (I, It);
9905 end loop;
9906 end if;
996ae0b0
RK
9907
9908 Get_First_Interp (Operand, I, It);
9909 I1 := I;
9910 It1 := It;
9911
9912 if No (It.Typ) then
9913 Error_Msg_N ("illegal operand in conversion", Operand);
9914 return False;
9915 end if;
9916
9917 Get_Next_Interp (I, It);
9918
9919 if Present (It.Typ) then
9920 N1 := It1.Nam;
f0d10385 9921 T1 := It1.Typ;
996ae0b0
RK
9922 It1 := Disambiguate (Operand, I1, I, Any_Type);
9923
9924 if It1 = No_Interp then
9925 Error_Msg_N ("ambiguous operand in conversion", Operand);
9926
f0d10385
AC
9927 -- If the interpretation involves a standard operator, use
9928 -- the location of the type, which may be user-defined.
9929
9930 if Sloc (It.Nam) = Standard_Location then
9931 Error_Msg_Sloc := Sloc (It.Typ);
9932 else
9933 Error_Msg_Sloc := Sloc (It.Nam);
9934 end if;
9935
4e7a4f6e
AC
9936 Error_Msg_N -- CODEFIX
9937 ("\\possible interpretation#!", Operand);
996ae0b0 9938
f0d10385
AC
9939 if Sloc (N1) = Standard_Location then
9940 Error_Msg_Sloc := Sloc (T1);
9941 else
9942 Error_Msg_Sloc := Sloc (N1);
9943 end if;
9944
4e7a4f6e
AC
9945 Error_Msg_N -- CODEFIX
9946 ("\\possible interpretation#!", Operand);
996ae0b0
RK
9947
9948 return False;
9949 end if;
9950 end if;
9951
9952 Set_Etype (Operand, It1.Typ);
9953 Opnd_Type := It1.Typ;
9954 end;
9955 end if;
9956
aa180613 9957 -- Numeric types
996ae0b0 9958
aa180613 9959 if Is_Numeric_Type (Target_Type) then
996ae0b0 9960
aa180613 9961 -- A universal fixed expression can be converted to any numeric type
996ae0b0 9962
996ae0b0
RK
9963 if Opnd_Type = Universal_Fixed then
9964 return True;
7324bf49 9965
aa180613
RD
9966 -- Also no need to check when in an instance or inlined body, because
9967 -- the legality has been established when the template was analyzed.
9968 -- Furthermore, numeric conversions may occur where only a private
f3d57416 9969 -- view of the operand type is visible at the instantiation point.
aa180613
RD
9970 -- This results in a spurious error if we check that the operand type
9971 -- is a numeric type.
9972
9973 -- Note: in a previous version of this unit, the following tests were
9974 -- applied only for generated code (Comes_From_Source set to False),
9975 -- but in fact the test is required for source code as well, since
9976 -- this situation can arise in source code.
9977
9978 elsif In_Instance or else In_Inlined_Body then
9979 return True;
9980
9981 -- Otherwise we need the conversion check
7324bf49 9982
996ae0b0 9983 else
aa180613
RD
9984 return Conversion_Check
9985 (Is_Numeric_Type (Opnd_Type),
9986 "illegal operand for numeric conversion");
996ae0b0
RK
9987 end if;
9988
aa180613
RD
9989 -- Array types
9990
996ae0b0
RK
9991 elsif Is_Array_Type (Target_Type) then
9992 if not Is_Array_Type (Opnd_Type)
9993 or else Opnd_Type = Any_Composite
9994 or else Opnd_Type = Any_String
9995 then
9996 Error_Msg_N
9997 ("illegal operand for array conversion", Operand);
9998 return False;
996ae0b0 9999 else
aa180613 10000 return Valid_Array_Conversion;
996ae0b0
RK
10001 end if;
10002
e65f50ec
ES
10003 -- Ada 2005 (AI-251): Anonymous access types where target references an
10004 -- interface type.
758c442c 10005
964f13da
RD
10006 elsif Ekind_In (Target_Type, E_General_Access_Type,
10007 E_Anonymous_Access_Type)
758c442c
GD
10008 and then Is_Interface (Directly_Designated_Type (Target_Type))
10009 then
10010 -- Check the static accessibility rule of 4.6(17). Note that the
d81b4bfe
TQ
10011 -- check is not enforced when within an instance body, since the
10012 -- RM requires such cases to be caught at run time.
758c442c
GD
10013
10014 if Ekind (Target_Type) /= E_Anonymous_Access_Type then
10015 if Type_Access_Level (Opnd_Type) >
10016 Type_Access_Level (Target_Type)
10017 then
10018 -- In an instance, this is a run-time check, but one we know
10019 -- will fail, so generate an appropriate warning. The raise
10020 -- will be generated by Expand_N_Type_Conversion.
10021
10022 if In_Instance_Body then
10023 Error_Msg_N
10024 ("?cannot convert local pointer to non-local access type",
10025 Operand);
10026 Error_Msg_N
c8ef728f 10027 ("\?Program_Error will be raised at run time", Operand);
758c442c
GD
10028 else
10029 Error_Msg_N
10030 ("cannot convert local pointer to non-local access type",
10031 Operand);
10032 return False;
10033 end if;
10034
10035 -- Special accessibility checks are needed in the case of access
10036 -- discriminants declared for a limited type.
10037
10038 elsif Ekind (Opnd_Type) = E_Anonymous_Access_Type
10039 and then not Is_Local_Anonymous_Access (Opnd_Type)
10040 then
10041 -- When the operand is a selected access discriminant the check
10042 -- needs to be made against the level of the object denoted by
d81b4bfe
TQ
10043 -- the prefix of the selected name (Object_Access_Level handles
10044 -- checking the prefix of the operand for this case).
758c442c
GD
10045
10046 if Nkind (Operand) = N_Selected_Component
c8ef728f 10047 and then Object_Access_Level (Operand) >
45fc7ddb 10048 Type_Access_Level (Target_Type)
758c442c 10049 then
d81b4bfe
TQ
10050 -- In an instance, this is a run-time check, but one we know
10051 -- will fail, so generate an appropriate warning. The raise
10052 -- will be generated by Expand_N_Type_Conversion.
758c442c
GD
10053
10054 if In_Instance_Body then
10055 Error_Msg_N
10056 ("?cannot convert access discriminant to non-local" &
10057 " access type", Operand);
10058 Error_Msg_N
c8ef728f 10059 ("\?Program_Error will be raised at run time", Operand);
758c442c
GD
10060 else
10061 Error_Msg_N
10062 ("cannot convert access discriminant to non-local" &
10063 " access type", Operand);
10064 return False;
10065 end if;
10066 end if;
10067
10068 -- The case of a reference to an access discriminant from
10069 -- within a limited type declaration (which will appear as
10070 -- a discriminal) is always illegal because the level of the
f3d57416 10071 -- discriminant is considered to be deeper than any (nameable)
758c442c
GD
10072 -- access type.
10073
10074 if Is_Entity_Name (Operand)
10075 and then not Is_Local_Anonymous_Access (Opnd_Type)
964f13da
RD
10076 and then
10077 Ekind_In (Entity (Operand), E_In_Parameter, E_Constant)
758c442c
GD
10078 and then Present (Discriminal_Link (Entity (Operand)))
10079 then
10080 Error_Msg_N
10081 ("discriminant has deeper accessibility level than target",
10082 Operand);
10083 return False;
10084 end if;
10085 end if;
10086 end if;
10087
10088 return True;
10089
aa180613
RD
10090 -- General and anonymous access types
10091
964f13da
RD
10092 elsif Ekind_In (Target_Type, E_General_Access_Type,
10093 E_Anonymous_Access_Type)
996ae0b0
RK
10094 and then
10095 Conversion_Check
10096 (Is_Access_Type (Opnd_Type)
964f13da
RD
10097 and then not
10098 Ekind_In (Opnd_Type, E_Access_Subprogram_Type,
10099 E_Access_Protected_Subprogram_Type),
996ae0b0
RK
10100 "must be an access-to-object type")
10101 then
10102 if Is_Access_Constant (Opnd_Type)
10103 and then not Is_Access_Constant (Target_Type)
10104 then
10105 Error_Msg_N
10106 ("access-to-constant operand type not allowed", Operand);
10107 return False;
10108 end if;
10109
758c442c
GD
10110 -- Check the static accessibility rule of 4.6(17). Note that the
10111 -- check is not enforced when within an instance body, since the RM
10112 -- requires such cases to be caught at run time.
996ae0b0 10113
758c442c
GD
10114 if Ekind (Target_Type) /= E_Anonymous_Access_Type
10115 or else Is_Local_Anonymous_Access (Target_Type)
10116 then
996ae0b0
RK
10117 if Type_Access_Level (Opnd_Type)
10118 > Type_Access_Level (Target_Type)
10119 then
d81b4bfe
TQ
10120 -- In an instance, this is a run-time check, but one we know
10121 -- will fail, so generate an appropriate warning. The raise
10122 -- will be generated by Expand_N_Type_Conversion.
996ae0b0
RK
10123
10124 if In_Instance_Body then
10125 Error_Msg_N
10126 ("?cannot convert local pointer to non-local access type",
10127 Operand);
10128 Error_Msg_N
c8ef728f 10129 ("\?Program_Error will be raised at run time", Operand);
996ae0b0
RK
10130
10131 else
b90cfacd
HK
10132 -- Avoid generation of spurious error message
10133
10134 if not Error_Posted (N) then
10135 Error_Msg_N
10136 ("cannot convert local pointer to non-local access type",
10137 Operand);
10138 end if;
10139
996ae0b0
RK
10140 return False;
10141 end if;
10142
758c442c
GD
10143 -- Special accessibility checks are needed in the case of access
10144 -- discriminants declared for a limited type.
10145
10146 elsif Ekind (Opnd_Type) = E_Anonymous_Access_Type
10147 and then not Is_Local_Anonymous_Access (Opnd_Type)
10148 then
758c442c
GD
10149 -- When the operand is a selected access discriminant the check
10150 -- needs to be made against the level of the object denoted by
d81b4bfe
TQ
10151 -- the prefix of the selected name (Object_Access_Level handles
10152 -- checking the prefix of the operand for this case).
996ae0b0
RK
10153
10154 if Nkind (Operand) = N_Selected_Component
45fc7ddb
HK
10155 and then Object_Access_Level (Operand) >
10156 Type_Access_Level (Target_Type)
996ae0b0 10157 then
d81b4bfe
TQ
10158 -- In an instance, this is a run-time check, but one we know
10159 -- will fail, so generate an appropriate warning. The raise
10160 -- will be generated by Expand_N_Type_Conversion.
996ae0b0
RK
10161
10162 if In_Instance_Body then
10163 Error_Msg_N
10164 ("?cannot convert access discriminant to non-local" &
10165 " access type", Operand);
10166 Error_Msg_N
c8ef728f
ES
10167 ("\?Program_Error will be raised at run time",
10168 Operand);
996ae0b0
RK
10169
10170 else
10171 Error_Msg_N
10172 ("cannot convert access discriminant to non-local" &
10173 " access type", Operand);
10174 return False;
10175 end if;
10176 end if;
10177
758c442c
GD
10178 -- The case of a reference to an access discriminant from
10179 -- within a limited type declaration (which will appear as
10180 -- a discriminal) is always illegal because the level of the
f3d57416 10181 -- discriminant is considered to be deeper than any (nameable)
758c442c 10182 -- access type.
996ae0b0
RK
10183
10184 if Is_Entity_Name (Operand)
964f13da
RD
10185 and then
10186 Ekind_In (Entity (Operand), E_In_Parameter, E_Constant)
996ae0b0
RK
10187 and then Present (Discriminal_Link (Entity (Operand)))
10188 then
10189 Error_Msg_N
10190 ("discriminant has deeper accessibility level than target",
10191 Operand);
10192 return False;
10193 end if;
10194 end if;
10195 end if;
10196
14e33999
AC
10197 -- In the presence of limited_with clauses we have to use non-limited
10198 -- views, if available.
d81b4bfe 10199
14e33999 10200 Check_Limited : declare
0669bebe
GB
10201 function Full_Designated_Type (T : Entity_Id) return Entity_Id;
10202 -- Helper function to handle limited views
10203
10204 --------------------------
10205 -- Full_Designated_Type --
10206 --------------------------
10207
10208 function Full_Designated_Type (T : Entity_Id) return Entity_Id is
950d217a 10209 Desig : constant Entity_Id := Designated_Type (T);
c0985d4e 10210
0669bebe 10211 begin
950d217a
AC
10212 -- Handle the limited view of a type
10213
c0985d4e
HK
10214 if Is_Incomplete_Type (Desig)
10215 and then From_With_Type (Desig)
0669bebe
GB
10216 and then Present (Non_Limited_View (Desig))
10217 then
950d217a
AC
10218 return Available_View (Desig);
10219 else
10220 return Desig;
0669bebe
GB
10221 end if;
10222 end Full_Designated_Type;
10223
d81b4bfe
TQ
10224 -- Local Declarations
10225
0669bebe
GB
10226 Target : constant Entity_Id := Full_Designated_Type (Target_Type);
10227 Opnd : constant Entity_Id := Full_Designated_Type (Opnd_Type);
10228
10229 Same_Base : constant Boolean :=
10230 Base_Type (Target) = Base_Type (Opnd);
996ae0b0 10231
14e33999 10232 -- Start of processing for Check_Limited
d81b4bfe 10233
996ae0b0
RK
10234 begin
10235 if Is_Tagged_Type (Target) then
10236 return Valid_Tagged_Conversion (Target, Opnd);
10237
10238 else
0669bebe 10239 if not Same_Base then
996ae0b0
RK
10240 Error_Msg_NE
10241 ("target designated type not compatible with }",
10242 N, Base_Type (Opnd));
10243 return False;
10244
da709d08
AC
10245 -- Ada 2005 AI-384: legality rule is symmetric in both
10246 -- designated types. The conversion is legal (with possible
10247 -- constraint check) if either designated type is
10248 -- unconstrained.
10249
10250 elsif Subtypes_Statically_Match (Target, Opnd)
10251 or else
10252 (Has_Discriminants (Target)
10253 and then
10254 (not Is_Constrained (Opnd)
10255 or else not Is_Constrained (Target)))
996ae0b0 10256 then
9fa33291
RD
10257 -- Special case, if Value_Size has been used to make the
10258 -- sizes different, the conversion is not allowed even
10259 -- though the subtypes statically match.
10260
10261 if Known_Static_RM_Size (Target)
10262 and then Known_Static_RM_Size (Opnd)
10263 and then RM_Size (Target) /= RM_Size (Opnd)
10264 then
10265 Error_Msg_NE
10266 ("target designated subtype not compatible with }",
10267 N, Opnd);
10268 Error_Msg_NE
10269 ("\because sizes of the two designated subtypes differ",
10270 N, Opnd);
10271 return False;
10272
10273 -- Normal case where conversion is allowed
10274
10275 else
10276 return True;
10277 end if;
da709d08
AC
10278
10279 else
996ae0b0
RK
10280 Error_Msg_NE
10281 ("target designated subtype not compatible with }",
10282 N, Opnd);
10283 return False;
996ae0b0
RK
10284 end if;
10285 end if;
14e33999 10286 end Check_Limited;
996ae0b0 10287
cdbf04c0 10288 -- Access to subprogram types. If the operand is an access parameter,
c147ac26 10289 -- the type has a deeper accessibility that any master, and cannot
53cf4600
ES
10290 -- be assigned. We must make an exception if the conversion is part
10291 -- of an assignment and the target is the return object of an extended
10292 -- return statement, because in that case the accessibility check
10293 -- takes place after the return.
aa180613 10294
dce86910 10295 elsif Is_Access_Subprogram_Type (Target_Type)
bc5f3720 10296 and then No (Corresponding_Remote_Type (Opnd_Type))
996ae0b0 10297 then
cdbf04c0
AC
10298 if Ekind (Base_Type (Opnd_Type)) = E_Anonymous_Access_Subprogram_Type
10299 and then Is_Entity_Name (Operand)
10300 and then Ekind (Entity (Operand)) = E_In_Parameter
53cf4600
ES
10301 and then
10302 (Nkind (Parent (N)) /= N_Assignment_Statement
10303 or else not Is_Entity_Name (Name (Parent (N)))
10304 or else not Is_Return_Object (Entity (Name (Parent (N)))))
0669bebe
GB
10305 then
10306 Error_Msg_N
10307 ("illegal attempt to store anonymous access to subprogram",
10308 Operand);
10309 Error_Msg_N
10310 ("\value has deeper accessibility than any master " &
aa5147f0 10311 "(RM 3.10.2 (13))",
0669bebe
GB
10312 Operand);
10313
c147ac26
ES
10314 Error_Msg_NE
10315 ("\use named access type for& instead of access parameter",
10316 Operand, Entity (Operand));
0669bebe
GB
10317 end if;
10318
996ae0b0
RK
10319 -- Check that the designated types are subtype conformant
10320
bc5f3720
RD
10321 Check_Subtype_Conformant (New_Id => Designated_Type (Target_Type),
10322 Old_Id => Designated_Type (Opnd_Type),
10323 Err_Loc => N);
996ae0b0
RK
10324
10325 -- Check the static accessibility rule of 4.6(20)
10326
10327 if Type_Access_Level (Opnd_Type) >
10328 Type_Access_Level (Target_Type)
10329 then
10330 Error_Msg_N
10331 ("operand type has deeper accessibility level than target",
10332 Operand);
10333
10334 -- Check that if the operand type is declared in a generic body,
10335 -- then the target type must be declared within that same body
10336 -- (enforces last sentence of 4.6(20)).
10337
10338 elsif Present (Enclosing_Generic_Body (Opnd_Type)) then
10339 declare
10340 O_Gen : constant Node_Id :=
10341 Enclosing_Generic_Body (Opnd_Type);
10342
1420b484 10343 T_Gen : Node_Id;
996ae0b0
RK
10344
10345 begin
1420b484 10346 T_Gen := Enclosing_Generic_Body (Target_Type);
996ae0b0
RK
10347 while Present (T_Gen) and then T_Gen /= O_Gen loop
10348 T_Gen := Enclosing_Generic_Body (T_Gen);
10349 end loop;
10350
10351 if T_Gen /= O_Gen then
10352 Error_Msg_N
10353 ("target type must be declared in same generic body"
10354 & " as operand type", N);
10355 end if;
10356 end;
10357 end if;
10358
10359 return True;
10360
aa180613
RD
10361 -- Remote subprogram access types
10362
996ae0b0
RK
10363 elsif Is_Remote_Access_To_Subprogram_Type (Target_Type)
10364 and then Is_Remote_Access_To_Subprogram_Type (Opnd_Type)
10365 then
10366 -- It is valid to convert from one RAS type to another provided
10367 -- that their specification statically match.
10368
10369 Check_Subtype_Conformant
10370 (New_Id =>
10371 Designated_Type (Corresponding_Remote_Type (Target_Type)),
10372 Old_Id =>
10373 Designated_Type (Corresponding_Remote_Type (Opnd_Type)),
10374 Err_Loc =>
10375 N);
10376 return True;
aa180613 10377
e65f50ec 10378 -- If both are tagged types, check legality of view conversions
996ae0b0 10379
e65f50ec
ES
10380 elsif Is_Tagged_Type (Target_Type)
10381 and then Is_Tagged_Type (Opnd_Type)
10382 then
996ae0b0
RK
10383 return Valid_Tagged_Conversion (Target_Type, Opnd_Type);
10384
a77842bd 10385 -- Types derived from the same root type are convertible
996ae0b0
RK
10386
10387 elsif Root_Type (Target_Type) = Root_Type (Opnd_Type) then
10388 return True;
10389
aa5147f0
ES
10390 -- In an instance or an inlined body, there may be inconsistent
10391 -- views of the same type, or of types derived from a common root.
996ae0b0 10392
aa5147f0
ES
10393 elsif (In_Instance or In_Inlined_Body)
10394 and then
d81b4bfe
TQ
10395 Root_Type (Underlying_Type (Target_Type)) =
10396 Root_Type (Underlying_Type (Opnd_Type))
996ae0b0
RK
10397 then
10398 return True;
10399
10400 -- Special check for common access type error case
10401
10402 elsif Ekind (Target_Type) = E_Access_Type
10403 and then Is_Access_Type (Opnd_Type)
10404 then
10405 Error_Msg_N ("target type must be general access type!", N);
305caf42
AC
10406 Error_Msg_NE -- CODEFIX
10407 ("add ALL to }!", N, Target_Type);
996ae0b0
RK
10408 return False;
10409
10410 else
10411 Error_Msg_NE ("invalid conversion, not compatible with }",
10412 N, Opnd_Type);
996ae0b0
RK
10413 return False;
10414 end if;
10415 end Valid_Conversion;
10416
10417end Sem_Res;
This page took 4.443088 seconds and 5 git commands to generate.