]> gcc.gnu.org Git - gcc.git/blame - gcc/ada/sem_eval.adb
[Ada] Fix internal error on multiple nested instantiations
[gcc.git] / gcc / ada / sem_eval.adb
CommitLineData
fbf5a39b 1------------------------------------------------------------------------------
996ae0b0
RK
2-- --
3-- GNAT COMPILER COMPONENTS --
4-- --
5-- S E M _ E V A L --
6-- --
7-- B o d y --
8-- --
4b490c1e 9-- Copyright (C) 1992-2020, Free Software Foundation, Inc. --
996ae0b0
RK
10-- --
11-- GNAT is free software; you can redistribute it and/or modify it under --
12-- terms of the GNU General Public License as published by the Free Soft- --
b5c84c3c 13-- ware Foundation; either version 3, or (at your option) any later ver- --
996ae0b0
RK
14-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16-- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17-- for more details. You should have received a copy of the GNU General --
b5c84c3c
RD
18-- Public License distributed with GNAT; see file COPYING3. If not, go to --
19-- http://www.gnu.org/licenses for a complete copy of the license. --
996ae0b0
RK
20-- --
21-- GNAT was originally developed by the GNAT team at New York University. --
71ff80dc 22-- Extensive contributions were provided by Ada Core Technologies Inc. --
996ae0b0
RK
23-- --
24------------------------------------------------------------------------------
25
ca0eb951 26with Aspects; use Aspects;
996ae0b0
RK
27with Atree; use Atree;
28with Checks; use Checks;
29with Debug; use Debug;
30with Einfo; use Einfo;
31with Elists; use Elists;
32with Errout; use Errout;
33with Eval_Fat; use Eval_Fat;
8cbb664e 34with Exp_Util; use Exp_Util;
d7567964 35with Freeze; use Freeze;
0356699b 36with Lib; use Lib;
13f34a3f 37with Namet; use Namet;
996ae0b0
RK
38with Nmake; use Nmake;
39with Nlists; use Nlists;
40with Opt; use Opt;
e03f7ccf 41with Par_SCO; use Par_SCO;
65f7ed64 42with Rtsfind; use Rtsfind;
996ae0b0 43with Sem; use Sem;
a4100e55 44with Sem_Aux; use Sem_Aux;
996ae0b0 45with Sem_Cat; use Sem_Cat;
b5bd964f 46with Sem_Ch6; use Sem_Ch6;
996ae0b0 47with Sem_Ch8; use Sem_Ch8;
8cd5951d 48with Sem_Elab; use Sem_Elab;
996ae0b0
RK
49with Sem_Res; use Sem_Res;
50with Sem_Util; use Sem_Util;
51with Sem_Type; use Sem_Type;
52with Sem_Warn; use Sem_Warn;
53with Sinfo; use Sinfo;
54with Snames; use Snames;
55with Stand; use Stand;
56with Stringt; use Stringt;
07fc65c4 57with Tbuild; use Tbuild;
996ae0b0
RK
58
59package body Sem_Eval is
60
61 -----------------------------------------
62 -- Handling of Compile Time Evaluation --
63 -----------------------------------------
64
65 -- The compile time evaluation of expressions is distributed over several
f3d57416 66 -- Eval_xxx procedures. These procedures are called immediately after
996ae0b0
RK
67 -- a subexpression is resolved and is therefore accomplished in a bottom
68 -- up fashion. The flags are synthesized using the following approach.
69
1e3c434f
BD
70 -- Is_Static_Expression is determined by following the rules in
71 -- RM-4.9. This involves testing the Is_Static_Expression flag of
72 -- the operands in many cases.
73
74 -- Raises_Constraint_Error is usually set if any of the operands have
75 -- the flag set or if an attempt to compute the value of the current
76 -- expression results in Constraint_Error.
996ae0b0
RK
77
78 -- The general approach is as follows. First compute Is_Static_Expression.
79 -- If the node is not static, then the flag is left off in the node and
80 -- we are all done. Otherwise for a static node, we test if any of the
1e3c434f 81 -- operands will raise Constraint_Error, and if so, propagate the flag
996ae0b0
RK
82 -- Raises_Constraint_Error to the result node and we are done (since the
83 -- error was already posted at a lower level).
84
85 -- For the case of a static node whose operands do not raise constraint
86 -- error, we attempt to evaluate the node. If this evaluation succeeds,
87 -- then the node is replaced by the result of this computation. If the
1e3c434f 88 -- evaluation raises Constraint_Error, then we rewrite the node with
996ae0b0
RK
89 -- Apply_Compile_Time_Constraint_Error to raise the exception and also
90 -- to post appropriate error messages.
91
92 ----------------
93 -- Local Data --
94 ----------------
95
96 type Bits is array (Nat range <>) of Boolean;
97 -- Used to convert unsigned (modular) values for folding logical ops
98
80298c3b 99 -- The following declarations are used to maintain a cache of nodes that
d3bbfc59 100 -- have compile-time-known values. The cache is maintained only for
07fc65c4
GB
101 -- discrete types (the most common case), and is populated by calls to
102 -- Compile_Time_Known_Value and Expr_Value, but only used by Expr_Value
103 -- since it is possible for the status to change (in particular it is
1e3c434f 104 -- possible for a node to get replaced by a Constraint_Error node).
07fc65c4
GB
105
106 CV_Bits : constant := 5;
107 -- Number of low order bits of Node_Id value used to reference entries
108 -- in the cache table.
109
110 CV_Cache_Size : constant Nat := 2 ** CV_Bits;
111 -- Size of cache for compile time values
112
113 subtype CV_Range is Nat range 0 .. CV_Cache_Size;
114
115 type CV_Entry is record
116 N : Node_Id;
117 V : Uint;
118 end record;
119
edab6088
RD
120 type Match_Result is (Match, No_Match, Non_Static);
121 -- Result returned from functions that test for a matching result. If the
122 -- operands are not OK_Static then Non_Static will be returned. Otherwise
123 -- Match/No_Match is returned depending on whether the match succeeds.
124
07fc65c4
GB
125 type CV_Cache_Array is array (CV_Range) of CV_Entry;
126
127 CV_Cache : CV_Cache_Array := (others => (Node_High_Bound, Uint_0));
128 -- This is the actual cache, with entries consisting of node/value pairs,
129 -- and the impossible value Node_High_Bound used for unset entries.
130
305caf42
AC
131 type Range_Membership is (In_Range, Out_Of_Range, Unknown);
132 -- Range membership may either be statically known to be in range or out
133 -- of range, or not statically known. Used for Test_In_Range below.
134
bbab2db3
GD
135 Checking_For_Potentially_Static_Expression : Boolean := False;
136 -- Global flag that is set True during Analyze_Static_Expression_Function
137 -- in order to verify that the result expression of a static expression
138 -- function is a potentially static function (see RM202x 6.8(5.3)).
139
996ae0b0
RK
140 -----------------------
141 -- Local Subprograms --
142 -----------------------
143
edab6088
RD
144 function Choice_Matches
145 (Expr : Node_Id;
146 Choice : Node_Id) return Match_Result;
147 -- Determines whether given value Expr matches the given Choice. The Expr
148 -- can be of discrete, real, or string type and must be a compile time
149 -- known value (it is an error to make the call if these conditions are
150 -- not met). The choice can be a range, subtype name, subtype indication,
151 -- or expression. The returned result is Non_Static if Choice is not
152 -- OK_Static, otherwise either Match or No_Match is returned depending
153 -- on whether Choice matches Expr. This is used for case expression
154 -- alternatives, and also for membership tests. In each case, more
155 -- possibilities are tested than the syntax allows (e.g. membership allows
156 -- subtype indications and non-discrete types, and case allows an OTHERS
157 -- choice), but it does not matter, since we have already done a full
158 -- semantic and syntax check of the construct, so the extra possibilities
159 -- just will not arise for correct expressions.
160 --
161 -- Note: if Choice_Matches finds that a choice raises Constraint_Error, e.g
162 -- a reference to a type, one of whose bounds raises Constraint_Error, then
163 -- it also sets the Raises_Constraint_Error flag on the Choice itself.
164
165 function Choices_Match
166 (Expr : Node_Id;
167 Choices : List_Id) return Match_Result;
168 -- This function applies Choice_Matches to each element of Choices. If the
169 -- result is No_Match, then it continues and checks the next element. If
170 -- the result is Match or Non_Static, this result is immediately given
171 -- as the result without checking the rest of the list. Expr can be of
d3bbfc59 172 -- discrete, real, or string type and must be a compile-time-known value
edab6088
RD
173 -- (it is an error to make the call if these conditions are not met).
174
8cd5951d
AC
175 procedure Eval_Intrinsic_Call (N : Node_Id; E : Entity_Id);
176 -- Evaluate a call N to an intrinsic subprogram E.
177
87feba05
AC
178 function Find_Universal_Operator_Type (N : Node_Id) return Entity_Id;
179 -- Check whether an arithmetic operation with universal operands which is a
180 -- rewritten function call with an explicit scope indication is ambiguous:
181 -- P."+" (1, 2) will be ambiguous if there is more than one visible numeric
182 -- type declared in P and the context does not impose a type on the result
183 -- (e.g. in the expression of a type conversion). If ambiguous, emit an
184 -- error and return Empty, else return the result type of the operator.
185
8cd5951d
AC
186 procedure Fold_Dummy (N : Node_Id; Typ : Entity_Id);
187 -- Rewrite N as a constant dummy value in the relevant type if possible.
188
189 procedure Fold_Shift
190 (N : Node_Id;
191 Left : Node_Id;
192 Right : Node_Id;
193 Op : Node_Kind;
194 Static : Boolean := False;
195 Check_Elab : Boolean := False);
196 -- Rewrite N as the result of evaluating Left <shift op> Right if possible.
197 -- Op represents the shift operation.
198 -- Static indicates whether the resulting node should be marked static.
199 -- Check_Elab indicates whether checks for elaboration calls should be
200 -- inserted when relevant.
201
996ae0b0 202 function From_Bits (B : Bits; T : Entity_Id) return Uint;
80298c3b
AC
203 -- Converts a bit string of length B'Length to a Uint value to be used for
204 -- a target of type T, which is a modular type. This procedure includes the
a95f708e 205 -- necessary reduction by the modulus in the case of a nonbinary modulus
80298c3b
AC
206 -- (for a binary modulus, the bit string is the right length any way so all
207 -- is well).
996ae0b0 208
87feba05
AC
209 function Get_String_Val (N : Node_Id) return Node_Id;
210 -- Given a tree node for a folded string or character value, returns the
211 -- corresponding string literal or character literal (one of the two must
212 -- be available, or the operand would not have been marked as foldable in
213 -- the earlier analysis of the operation).
edab6088
RD
214
215 function Is_OK_Static_Choice (Choice : Node_Id) return Boolean;
216 -- Given a choice (from a case expression or membership test), returns
217 -- True if the choice is static and does not raise a Constraint_Error.
218
219 function Is_OK_Static_Choice_List (Choices : List_Id) return Boolean;
220 -- Given a choice list (from a case expression or membership test), return
221 -- True if all choices are static in the sense of Is_OK_Static_Choice.
222
87feba05
AC
223 function Is_Static_Choice (Choice : Node_Id) return Boolean;
224 -- Given a choice (from a case expression or membership test), returns
225 -- True if the choice is static. No test is made for raising of constraint
226 -- error, so this function is used only for legality tests.
227
228 function Is_Static_Choice_List (Choices : List_Id) return Boolean;
229 -- Given a choice list (from a case expression or membership test), return
230 -- True if all choices are static in the sense of Is_Static_Choice.
231
edab6088
RD
232 function Is_Static_Range (N : Node_Id) return Boolean;
233 -- Determine if range is static, as defined in RM 4.9(26). The only allowed
234 -- argument is an N_Range node (but note that the semantic analysis of
235 -- equivalent range attribute references already turned them into the
236 -- equivalent range). This differs from Is_OK_Static_Range (which is what
237 -- must be used by clients) in that it does not care whether the bounds
238 -- raise Constraint_Error or not. Used for checking whether expressions are
239 -- static in the 4.9 sense (without worrying about exceptions).
240
07fc65c4
GB
241 function OK_Bits (N : Node_Id; Bits : Uint) return Boolean;
242 -- Bits represents the number of bits in an integer value to be computed
243 -- (but the value has not been computed yet). If this value in Bits is
80298c3b
AC
244 -- reasonable, a result of True is returned, with the implication that the
245 -- caller should go ahead and complete the calculation. If the value in
246 -- Bits is unreasonably large, then an error is posted on node N, and
07fc65c4
GB
247 -- False is returned (and the caller skips the proposed calculation).
248
996ae0b0 249 procedure Out_Of_Range (N : Node_Id);
80298c3b 250 -- This procedure is called if it is determined that node N, which appears
d3bbfc59 251 -- in a non-static context, is a compile-time-known value which is outside
80298c3b
AC
252 -- its range, i.e. the range of Etype. This is used in contexts where
253 -- this is an illegality if N is static, and should generate a warning
254 -- otherwise.
996ae0b0 255
fc3a3f3b
RD
256 function Real_Or_String_Static_Predicate_Matches
257 (Val : Node_Id;
258 Typ : Entity_Id) return Boolean;
259 -- This is the function used to evaluate real or string static predicates.
260 -- Val is an unanalyzed N_Real_Literal or N_String_Literal node, which
261 -- represents the value to be tested against the predicate. Typ is the
262 -- type with the predicate, from which the predicate expression can be
263 -- extracted. The result returned is True if the given value satisfies
264 -- the predicate.
265
996ae0b0 266 procedure Rewrite_In_Raise_CE (N : Node_Id; Exp : Node_Id);
80298c3b
AC
267 -- N and Exp are nodes representing an expression, Exp is known to raise
268 -- CE. N is rewritten in term of Exp in the optimal way.
996ae0b0
RK
269
270 function String_Type_Len (Stype : Entity_Id) return Uint;
80298c3b
AC
271 -- Given a string type, determines the length of the index type, or, if
272 -- this index type is non-static, the length of the base type of this index
273 -- type. Note that if the string type is itself static, then the index type
274 -- is static, so the second case applies only if the string type passed is
275 -- non-static.
996ae0b0
RK
276
277 function Test (Cond : Boolean) return Uint;
278 pragma Inline (Test);
279 -- This function simply returns the appropriate Boolean'Pos value
280 -- corresponding to the value of Cond as a universal integer. It is
281 -- used for producing the result of the static evaluation of the
282 -- logical operators
283
284 procedure Test_Expression_Is_Foldable
285 (N : Node_Id;
286 Op1 : Node_Id;
287 Stat : out Boolean;
288 Fold : out Boolean);
289 -- Tests to see if expression N whose single operand is Op1 is foldable,
290 -- i.e. the operand value is known at compile time. If the operation is
80298c3b
AC
291 -- foldable, then Fold is True on return, and Stat indicates whether the
292 -- result is static (i.e. the operand was static). Note that it is quite
293 -- possible for Fold to be True, and Stat to be False, since there are
294 -- cases in which we know the value of an operand even though it is not
295 -- technically static (e.g. the static lower bound of a range whose upper
296 -- bound is non-static).
996ae0b0 297 --
80298c3b
AC
298 -- If Stat is set False on return, then Test_Expression_Is_Foldable makes
299 -- a call to Check_Non_Static_Context on the operand. If Fold is False on
300 -- return, then all processing is complete, and the caller should return,
301 -- since there is nothing else to do.
93c3fca7
AC
302 --
303 -- If Stat is set True on return, then Is_Static_Expression is also set
304 -- true in node N. There are some cases where this is over-enthusiastic,
80298c3b
AC
305 -- e.g. in the two operand case below, for string comparison, the result is
306 -- not static even though the two operands are static. In such cases, the
307 -- caller must reset the Is_Static_Expression flag in N.
5df1266a
AC
308 --
309 -- If Fold and Stat are both set to False then this routine performs also
310 -- the following extra actions:
311 --
80298c3b
AC
312 -- If either operand is Any_Type then propagate it to result to prevent
313 -- cascaded errors.
5df1266a 314 --
1e3c434f
BD
315 -- If some operand raises Constraint_Error, then replace the node N
316 -- with the raise Constraint_Error node. This replacement inherits the
70805b88 317 -- Is_Static_Expression flag from the operands.
996ae0b0
RK
318
319 procedure Test_Expression_Is_Foldable
6c3c671e
AC
320 (N : Node_Id;
321 Op1 : Node_Id;
322 Op2 : Node_Id;
323 Stat : out Boolean;
324 Fold : out Boolean;
325 CRT_Safe : Boolean := False);
996ae0b0 326 -- Same processing, except applies to an expression N with two operands
6c3c671e
AC
327 -- Op1 and Op2. The result is static only if both operands are static. If
328 -- CRT_Safe is set True, then CRT_Safe_Compile_Time_Known_Value is used
329 -- for the tests that the two operands are known at compile time. See
330 -- spec of this routine for further details.
996ae0b0 331
305caf42
AC
332 function Test_In_Range
333 (N : Node_Id;
334 Typ : Entity_Id;
335 Assume_Valid : Boolean;
336 Fixed_Int : Boolean;
337 Int_Real : Boolean) return Range_Membership;
9479ded4
AC
338 -- Common processing for Is_In_Range and Is_Out_Of_Range: Returns In_Range
339 -- or Out_Of_Range if it can be guaranteed at compile time that expression
340 -- N is known to be in or out of range of the subtype Typ. If not compile
341 -- time known, Unknown is returned. See documentation of Is_In_Range for
342 -- complete description of parameters.
305caf42 343
996ae0b0
RK
344 procedure To_Bits (U : Uint; B : out Bits);
345 -- Converts a Uint value to a bit string of length B'Length
346
edab6088
RD
347 -----------------------------------------------
348 -- Check_Expression_Against_Static_Predicate --
349 -----------------------------------------------
350
351 procedure Check_Expression_Against_Static_Predicate
24eda9e7
GD
352 (Expr : Node_Id;
353 Typ : Entity_Id;
354 Static_Failure_Is_Error : Boolean := False)
edab6088
RD
355 is
356 begin
357 -- Nothing to do if expression is not known at compile time, or the
358 -- type has no static predicate set (will be the case for all non-scalar
359 -- types, so no need to make a special test for that).
360
361 if not (Has_Static_Predicate (Typ)
60f908dd 362 and then Compile_Time_Known_Value (Expr))
edab6088
RD
363 then
364 return;
365 end if;
366
367 -- Here we have a static predicate (note that it could have arisen from
368 -- an explicitly specified Dynamic_Predicate whose expression met the
d9c59db4
AC
369 -- rules for being predicate-static). If the expression is known at
370 -- compile time and obeys the predicate, then it is static and must be
371 -- labeled as such, which matters e.g. for case statements. The original
372 -- expression may be a type conversion of a variable with a known value,
373 -- which might otherwise not be marked static.
edab6088 374
fc3a3f3b 375 -- Case of real static predicate
edab6088 376
fc3a3f3b
RD
377 if Is_Real_Type (Typ) then
378 if Real_Or_String_Static_Predicate_Matches
379 (Val => Make_Real_Literal (Sloc (Expr), Expr_Value_R (Expr)),
380 Typ => Typ)
381 then
d9c59db4 382 Set_Is_Static_Expression (Expr);
fc3a3f3b
RD
383 return;
384 end if;
edab6088 385
fc3a3f3b 386 -- Case of string static predicate
edab6088 387
fc3a3f3b
RD
388 elsif Is_String_Type (Typ) then
389 if Real_Or_String_Static_Predicate_Matches
f9e333ab 390 (Val => Expr_Value_S (Expr), Typ => Typ)
fc3a3f3b 391 then
d9c59db4 392 Set_Is_Static_Expression (Expr);
fc3a3f3b
RD
393 return;
394 end if;
edab6088 395
fc3a3f3b 396 -- Case of discrete static predicate
edab6088 397
fc3a3f3b
RD
398 else
399 pragma Assert (Is_Discrete_Type (Typ));
400
401 -- If static predicate matches, nothing to do
402
403 if Choices_Match (Expr, Static_Discrete_Predicate (Typ)) = Match then
d9c59db4 404 Set_Is_Static_Expression (Expr);
fc3a3f3b
RD
405 return;
406 end if;
edab6088
RD
407 end if;
408
409 -- Here we know that the predicate will fail
410
411 -- Special case of static expression failing a predicate (other than one
24eda9e7
GD
412 -- that was explicitly specified with a Dynamic_Predicate aspect). If
413 -- the expression comes from a qualified_expression or type_conversion
414 -- this is an error (Static_Failure_Is_Error); otherwise we only issue
415 -- a warning and the expression is no longer considered static.
edab6088
RD
416
417 if Is_Static_Expression (Expr)
418 and then not Has_Dynamic_Predicate_Aspect (Typ)
419 then
24eda9e7
GD
420 if Static_Failure_Is_Error then
421 Error_Msg_NE
422 ("static expression fails static predicate check on &",
423 Expr, Typ);
424
425 else
426 Error_Msg_NE
427 ("??static expression fails static predicate check on &",
428 Expr, Typ);
429 Error_Msg_N
430 ("\??expression is no longer considered static", Expr);
431
432 Set_Is_Static_Expression (Expr, False);
433 end if;
edab6088
RD
434
435 -- In all other cases, this is just a warning that a test will fail.
436 -- It does not matter if the expression is static or not, or if the
437 -- predicate comes from a dynamic predicate aspect or not.
438
439 else
440 Error_Msg_NE
441 ("??expression fails predicate check on &", Expr, Typ);
24eda9e7
GD
442
443 -- Force a check here, which is potentially a redundant check, but
444 -- this ensures a check will be done in cases where the expression
445 -- is folded, and since this is definitely a failure, extra checks
446 -- are OK.
447
8861bdd5
SB
448 if Predicate_Enabled (Typ) then
449 Insert_Action (Expr,
450 Make_Predicate_Check
451 (Typ, Duplicate_Subexpr (Expr)), Suppress => All_Checks);
452 end if;
edab6088
RD
453 end if;
454 end Check_Expression_Against_Static_Predicate;
60f908dd 455
996ae0b0
RK
456 ------------------------------
457 -- Check_Non_Static_Context --
458 ------------------------------
459
460 procedure Check_Non_Static_Context (N : Node_Id) is
fbf5a39b
AC
461 T : constant Entity_Id := Etype (N);
462 Checks_On : constant Boolean :=
996ae0b0
RK
463 not Index_Checks_Suppressed (T)
464 and not Range_Checks_Suppressed (T);
465
466 begin
86f0e17a
AC
467 -- Ignore cases of non-scalar types, error types, or universal real
468 -- types that have no usable bounds.
996ae0b0 469
86f0e17a
AC
470 if T = Any_Type
471 or else not Is_Scalar_Type (T)
472 or else T = Universal_Fixed
473 or else T = Universal_Real
474 then
996ae0b0 475 return;
fbf5a39b 476 end if;
996ae0b0 477
86f0e17a 478 -- At this stage we have a scalar type. If we have an expression that
80298c3b
AC
479 -- raises CE, then we already issued a warning or error msg so there is
480 -- nothing more to be done in this routine.
fbf5a39b
AC
481
482 if Raises_Constraint_Error (N) then
483 return;
484 end if;
485
86f0e17a
AC
486 -- Now we have a scalar type which is not marked as raising a constraint
487 -- error exception. The main purpose of this routine is to deal with
488 -- static expressions appearing in a non-static context. That means
489 -- that if we do not have a static expression then there is not much
490 -- to do. The one case that we deal with here is that if we have a
491 -- floating-point value that is out of range, then we post a warning
492 -- that an infinity will result.
fbf5a39b
AC
493
494 if not Is_Static_Expression (N) then
d030f3a4
AC
495 if Is_Floating_Point_Type (T) then
496 if Is_Out_Of_Range (N, Base_Type (T), Assume_Valid => True) then
497 Error_Msg_N
498 ("??float value out of range, infinity will be generated", N);
499
500 -- The literal may be the result of constant-folding of a non-
501 -- static subexpression of a larger expression (e.g. a conversion
502 -- of a non-static variable whose value happens to be known). At
503 -- this point we must reduce the value of the subexpression to a
504 -- machine number (RM 4.9 (38/2)).
505
506 elsif Nkind (N) = N_Real_Literal
507 and then Nkind (Parent (N)) in N_Subexpr
508 then
509 Rewrite (N, New_Copy (N));
510 Set_Realval
511 (N, Machine (Base_Type (T), Realval (N), Round_Even, N));
512 end if;
fbf5a39b 513 end if;
996ae0b0 514
996ae0b0
RK
515 return;
516 end if;
517
86f0e17a
AC
518 -- Here we have the case of outer level static expression of scalar
519 -- type, where the processing of this procedure is needed.
996ae0b0
RK
520
521 -- For real types, this is where we convert the value to a machine
86f0e17a
AC
522 -- number (see RM 4.9(38)). Also see ACVC test C490001. We should only
523 -- need to do this if the parent is a constant declaration, since in
524 -- other cases, gigi should do the necessary conversion correctly, but
525 -- experimentation shows that this is not the case on all machines, in
526 -- particular if we do not convert all literals to machine values in
527 -- non-static contexts, then ACVC test C490001 fails on Sparc/Solaris
528 -- and SGI/Irix.
996ae0b0 529
9d4f9832
AC
530 -- This conversion is always done by GNATprove on real literals in
531 -- non-static expressions, by calling Check_Non_Static_Context from
532 -- gnat2why, as GNATprove cannot do the conversion later contrary
533 -- to gigi. The frontend computes the information about which
534 -- expressions are static, which is used by gnat2why to call
535 -- Check_Non_Static_Context on exactly those real literals that are
2da8c8e2 536 -- not subexpressions of static expressions.
9d4f9832 537
996ae0b0
RK
538 if Nkind (N) = N_Real_Literal
539 and then not Is_Machine_Number (N)
540 and then not Is_Generic_Type (Etype (N))
541 and then Etype (N) /= Universal_Real
996ae0b0
RK
542 then
543 -- Check that value is in bounds before converting to machine
544 -- number, so as not to lose case where value overflows in the
545 -- least significant bit or less. See B490001.
546
c800f862 547 if Is_Out_Of_Range (N, Base_Type (T), Assume_Valid => True) then
996ae0b0
RK
548 Out_Of_Range (N);
549 return;
550 end if;
551
552 -- Note: we have to copy the node, to avoid problems with conformance
553 -- of very similar numbers (see ACVC tests B4A010C and B63103A).
554
555 Rewrite (N, New_Copy (N));
556
557 if not Is_Floating_Point_Type (T) then
558 Set_Realval
559 (N, Corresponding_Integer_Value (N) * Small_Value (T));
560
561 elsif not UR_Is_Zero (Realval (N)) then
996ae0b0 562
86f0e17a
AC
563 -- Note: even though RM 4.9(38) specifies biased rounding, this
564 -- has been modified by AI-100 in order to prevent confusing
565 -- differences in rounding between static and non-static
566 -- expressions. AI-100 specifies that the effect of such rounding
567 -- is implementation dependent, and in GNAT we round to nearest
ad075b50
AC
568 -- even to match the run-time behavior. Note that this applies
569 -- to floating point literals, not fixed points ones, even though
570 -- their compiler representation is also as a universal real.
996ae0b0 571
fbf5a39b
AC
572 Set_Realval
573 (N, Machine (Base_Type (T), Realval (N), Round_Even, N));
ad075b50 574 Set_Is_Machine_Number (N);
996ae0b0
RK
575 end if;
576
996ae0b0
RK
577 end if;
578
579 -- Check for out of range universal integer. This is a non-static
580 -- context, so the integer value must be in range of the runtime
581 -- representation of universal integers.
582
583 -- We do this only within an expression, because that is the only
584 -- case in which non-static universal integer values can occur, and
585 -- furthermore, Check_Non_Static_Context is currently (incorrectly???)
586 -- called in contexts like the expression of a number declaration where
587 -- we certainly want to allow out of range values.
588
c4a2e585
ES
589 -- We inhibit the warning when expansion is disabled, because the
590 -- preanalysis of a range of a 64-bit modular type may appear to
591 -- violate the constraint on non-static Universal_Integer. If there
592 -- is a true overflow it will be diagnosed during full analysis.
593
996ae0b0
RK
594 if Etype (N) = Universal_Integer
595 and then Nkind (N) = N_Integer_Literal
596 and then Nkind (Parent (N)) in N_Subexpr
c4a2e585 597 and then Expander_Active
996ae0b0
RK
598 and then
599 (Intval (N) < Expr_Value (Type_Low_Bound (Universal_Integer))
80298c3b 600 or else
996ae0b0
RK
601 Intval (N) > Expr_Value (Type_High_Bound (Universal_Integer)))
602 then
603 Apply_Compile_Time_Constraint_Error
4a28b181 604 (N, "non-static universal integer value out of range<<",
07fc65c4 605 CE_Range_Check_Failed);
996ae0b0
RK
606
607 -- Check out of range of base type
608
c800f862 609 elsif Is_Out_Of_Range (N, Base_Type (T), Assume_Valid => True) then
996ae0b0
RK
610 Out_Of_Range (N);
611
31fde973
GD
612 -- Give a warning or error on the value outside the subtype. A warning
613 -- is omitted if the expression appears in a range that could be null
614 -- (warnings are handled elsewhere for this case).
996ae0b0 615
80298c3b 616 elsif T /= Base_Type (T) and then Nkind (Parent (N)) /= N_Range then
c800f862 617 if Is_In_Range (N, T, Assume_Valid => True) then
996ae0b0
RK
618 null;
619
c800f862 620 elsif Is_Out_Of_Range (N, T, Assume_Valid => True) then
88ad52c9
AC
621 -- Ignore out of range values for System.Priority in CodePeer
622 -- mode since the actual target compiler may provide a wider
623 -- range.
624
0f7b6a2e 625 if CodePeer_Mode and then Is_RTE (T, RE_Priority) then
88ad52c9 626 Set_Do_Range_Check (N, False);
33defa7c 627
31fde973
GD
628 -- Determine if the out-of-range violation constitutes a warning
629 -- or an error based on context, according to RM 4.9 (34/3).
33defa7c 630
4a08c95c
AC
631 elsif Nkind (Original_Node (N)) in
632 N_Type_Conversion | N_Qualified_Expression
33defa7c
JS
633 and then Comes_From_Source (Original_Node (N))
634 then
635 Apply_Compile_Time_Constraint_Error
636 (N, "value not in range of}", CE_Range_Check_Failed);
88ad52c9
AC
637 else
638 Apply_Compile_Time_Constraint_Error
639 (N, "value not in range of}<<", CE_Range_Check_Failed);
640 end if;
996ae0b0
RK
641
642 elsif Checks_On then
643 Enable_Range_Check (N);
644
645 else
646 Set_Do_Range_Check (N, False);
647 end if;
648 end if;
649 end Check_Non_Static_Context;
650
651 ---------------------------------
652 -- Check_String_Literal_Length --
653 ---------------------------------
654
655 procedure Check_String_Literal_Length (N : Node_Id; Ttype : Entity_Id) is
656 begin
324ac540 657 if not Raises_Constraint_Error (N) and then Is_Constrained (Ttype) then
80298c3b 658 if UI_From_Int (String_Length (Strval (N))) /= String_Type_Len (Ttype)
996ae0b0
RK
659 then
660 Apply_Compile_Time_Constraint_Error
324ac540 661 (N, "string length wrong for}??",
07fc65c4 662 CE_Length_Check_Failed,
996ae0b0
RK
663 Ent => Ttype,
664 Typ => Ttype);
665 end if;
666 end if;
667 end Check_String_Literal_Length;
668
bbab2db3
GD
669 --------------------------------------------
670 -- Checking_Potentially_Static_Expression --
671 --------------------------------------------
672
673 function Checking_Potentially_Static_Expression return Boolean is
674 begin
675 return Checking_For_Potentially_Static_Expression;
676 end Checking_Potentially_Static_Expression;
677
edab6088
RD
678 --------------------
679 -- Choice_Matches --
680 --------------------
681
682 function Choice_Matches
683 (Expr : Node_Id;
684 Choice : Node_Id) return Match_Result
685 is
686 Etyp : constant Entity_Id := Etype (Expr);
687 Val : Uint;
688 ValR : Ureal;
689 ValS : Node_Id;
690
691 begin
692 pragma Assert (Compile_Time_Known_Value (Expr));
693 pragma Assert (Is_Scalar_Type (Etyp) or else Is_String_Type (Etyp));
694
695 if not Is_OK_Static_Choice (Choice) then
696 Set_Raises_Constraint_Error (Choice);
697 return Non_Static;
698
87feba05 699 -- When the choice denotes a subtype with a static predictate, check the
bb9e2aa2
AC
700 -- expression against the predicate values. Different procedures apply
701 -- to discrete and non-discrete types.
87feba05
AC
702
703 elsif (Nkind (Choice) = N_Subtype_Indication
b63d61f7
AC
704 or else (Is_Entity_Name (Choice)
705 and then Is_Type (Entity (Choice))))
87feba05
AC
706 and then Has_Predicates (Etype (Choice))
707 and then Has_Static_Predicate (Etype (Choice))
708 then
bb9e2aa2 709 if Is_Discrete_Type (Etype (Choice)) then
b63d61f7
AC
710 return
711 Choices_Match
712 (Expr, Static_Discrete_Predicate (Etype (Choice)));
87feba05 713
b63d61f7 714 elsif Real_Or_String_Static_Predicate_Matches (Expr, Etype (Choice))
bb9e2aa2
AC
715 then
716 return Match;
717
718 else
719 return No_Match;
720 end if;
721
722 -- Discrete type case only
edab6088 723
87feba05 724 elsif Is_Discrete_Type (Etyp) then
edab6088
RD
725 Val := Expr_Value (Expr);
726
727 if Nkind (Choice) = N_Range then
728 if Val >= Expr_Value (Low_Bound (Choice))
729 and then
730 Val <= Expr_Value (High_Bound (Choice))
731 then
732 return Match;
733 else
734 return No_Match;
735 end if;
736
737 elsif Nkind (Choice) = N_Subtype_Indication
87feba05 738 or else (Is_Entity_Name (Choice) and then Is_Type (Entity (Choice)))
edab6088
RD
739 then
740 if Val >= Expr_Value (Type_Low_Bound (Etype (Choice)))
741 and then
742 Val <= Expr_Value (Type_High_Bound (Etype (Choice)))
743 then
744 return Match;
745 else
746 return No_Match;
747 end if;
748
749 elsif Nkind (Choice) = N_Others_Choice then
750 return Match;
751
752 else
753 if Val = Expr_Value (Choice) then
754 return Match;
755 else
756 return No_Match;
757 end if;
758 end if;
759
87feba05 760 -- Real type case
edab6088 761
87feba05 762 elsif Is_Real_Type (Etyp) then
edab6088
RD
763 ValR := Expr_Value_R (Expr);
764
765 if Nkind (Choice) = N_Range then
766 if ValR >= Expr_Value_R (Low_Bound (Choice))
767 and then
768 ValR <= Expr_Value_R (High_Bound (Choice))
769 then
770 return Match;
771 else
772 return No_Match;
773 end if;
774
775 elsif Nkind (Choice) = N_Subtype_Indication
87feba05 776 or else (Is_Entity_Name (Choice) and then Is_Type (Entity (Choice)))
edab6088
RD
777 then
778 if ValR >= Expr_Value_R (Type_Low_Bound (Etype (Choice)))
779 and then
780 ValR <= Expr_Value_R (Type_High_Bound (Etype (Choice)))
781 then
782 return Match;
783 else
784 return No_Match;
785 end if;
786
787 else
788 if ValR = Expr_Value_R (Choice) then
789 return Match;
790 else
791 return No_Match;
792 end if;
793 end if;
794
87feba05 795 -- String type cases
edab6088
RD
796
797 else
87feba05 798 pragma Assert (Is_String_Type (Etyp));
edab6088
RD
799 ValS := Expr_Value_S (Expr);
800
801 if Nkind (Choice) = N_Subtype_Indication
87feba05 802 or else (Is_Entity_Name (Choice) and then Is_Type (Entity (Choice)))
edab6088
RD
803 then
804 if not Is_Constrained (Etype (Choice)) then
805 return Match;
806
807 else
808 declare
809 Typlen : constant Uint :=
810 String_Type_Len (Etype (Choice));
811 Strlen : constant Uint :=
812 UI_From_Int (String_Length (Strval (ValS)));
813 begin
814 if Typlen = Strlen then
815 return Match;
816 else
817 return No_Match;
818 end if;
819 end;
820 end if;
821
822 else
823 if String_Equal (Strval (ValS), Strval (Expr_Value_S (Choice)))
824 then
825 return Match;
826 else
827 return No_Match;
828 end if;
829 end if;
830 end if;
831 end Choice_Matches;
832
833 -------------------
834 -- Choices_Match --
835 -------------------
836
837 function Choices_Match
838 (Expr : Node_Id;
839 Choices : List_Id) return Match_Result
840 is
841 Choice : Node_Id;
842 Result : Match_Result;
843
844 begin
845 Choice := First (Choices);
846 while Present (Choice) loop
847 Result := Choice_Matches (Expr, Choice);
848
849 if Result /= No_Match then
850 return Result;
851 end if;
852
853 Next (Choice);
854 end loop;
855
856 return No_Match;
857 end Choices_Match;
858
996ae0b0
RK
859 --------------------------
860 -- Compile_Time_Compare --
861 --------------------------
862
fbf5a39b 863 function Compile_Time_Compare
1c7717c3 864 (L, R : Node_Id;
af02a866
RD
865 Assume_Valid : Boolean) return Compare_Result
866 is
867 Discard : aliased Uint;
868 begin
869 return Compile_Time_Compare (L, R, Discard'Access, Assume_Valid);
870 end Compile_Time_Compare;
871
872 function Compile_Time_Compare
873 (L, R : Node_Id;
874 Diff : access Uint;
1c7717c3
AC
875 Assume_Valid : Boolean;
876 Rec : Boolean := False) return Compare_Result
fbf5a39b 877 is
08f52d9f
AC
878 Ltyp : Entity_Id := Etype (L);
879 Rtyp : Entity_Id := Etype (R);
996ae0b0 880
af02a866
RD
881 Discard : aliased Uint;
882
996ae0b0
RK
883 procedure Compare_Decompose
884 (N : Node_Id;
885 R : out Node_Id;
886 V : out Uint);
b49365b2
RD
887 -- This procedure decomposes the node N into an expression node and a
888 -- signed offset, so that the value of N is equal to the value of R plus
889 -- the value V (which may be negative). If no such decomposition is
890 -- possible, then on return R is a copy of N, and V is set to zero.
996ae0b0
RK
891
892 function Compare_Fixup (N : Node_Id) return Node_Id;
b49365b2
RD
893 -- This function deals with replacing 'Last and 'First references with
894 -- their corresponding type bounds, which we then can compare. The
895 -- argument is the original node, the result is the identity, unless we
896 -- have a 'Last/'First reference in which case the value returned is the
897 -- appropriate type bound.
996ae0b0 898
57036dcc
ES
899 function Is_Known_Valid_Operand (Opnd : Node_Id) return Boolean;
900 -- Even if the context does not assume that values are valid, some
901 -- simple cases can be recognized.
902
996ae0b0 903 function Is_Same_Value (L, R : Node_Id) return Boolean;
86f0e17a 904 -- Returns True iff L and R represent expressions that definitely have
d3bbfc59 905 -- identical (but not necessarily compile-time-known) values Indeed the
86f0e17a
AC
906 -- caller is expected to have already dealt with the cases of compile
907 -- time known values, so these are not tested here.
996ae0b0
RK
908
909 -----------------------
910 -- Compare_Decompose --
911 -----------------------
912
913 procedure Compare_Decompose
914 (N : Node_Id;
915 R : out Node_Id;
916 V : out Uint)
917 is
918 begin
919 if Nkind (N) = N_Op_Add
920 and then Nkind (Right_Opnd (N)) = N_Integer_Literal
921 then
922 R := Left_Opnd (N);
923 V := Intval (Right_Opnd (N));
924 return;
925
926 elsif Nkind (N) = N_Op_Subtract
927 and then Nkind (Right_Opnd (N)) = N_Integer_Literal
928 then
929 R := Left_Opnd (N);
930 V := UI_Negate (Intval (Right_Opnd (N)));
931 return;
932
21d7ef70 933 elsif Nkind (N) = N_Attribute_Reference then
996ae0b0
RK
934 if Attribute_Name (N) = Name_Succ then
935 R := First (Expressions (N));
936 V := Uint_1;
937 return;
938
939 elsif Attribute_Name (N) = Name_Pred then
940 R := First (Expressions (N));
941 V := Uint_Minus_1;
942 return;
943 end if;
944 end if;
945
946 R := N;
947 V := Uint_0;
948 end Compare_Decompose;
949
950 -------------------
951 -- Compare_Fixup --
952 -------------------
953
954 function Compare_Fixup (N : Node_Id) return Node_Id is
955 Indx : Node_Id;
956 Xtyp : Entity_Id;
957 Subs : Nat;
958
959 begin
7a6de2e2
AC
960 -- Fixup only required for First/Last attribute reference
961
996ae0b0 962 if Nkind (N) = N_Attribute_Reference
4a08c95c 963 and then Attribute_Name (N) in Name_First | Name_Last
996ae0b0
RK
964 then
965 Xtyp := Etype (Prefix (N));
966
967 -- If we have no type, then just abandon the attempt to do
968 -- a fixup, this is probably the result of some other error.
969
970 if No (Xtyp) then
971 return N;
972 end if;
973
974 -- Dereference an access type
975
976 if Is_Access_Type (Xtyp) then
977 Xtyp := Designated_Type (Xtyp);
978 end if;
979
80298c3b
AC
980 -- If we don't have an array type at this stage, something is
981 -- peculiar, e.g. another error, and we abandon the attempt at
982 -- a fixup.
996ae0b0
RK
983
984 if not Is_Array_Type (Xtyp) then
985 return N;
986 end if;
987
988 -- Ignore unconstrained array, since bounds are not meaningful
989
990 if not Is_Constrained (Xtyp) then
991 return N;
992 end if;
993
c3de5c4c
ES
994 if Ekind (Xtyp) = E_String_Literal_Subtype then
995 if Attribute_Name (N) = Name_First then
996 return String_Literal_Low_Bound (Xtyp);
5f44f0d4 997 else
80298c3b
AC
998 return
999 Make_Integer_Literal (Sloc (N),
1000 Intval => Intval (String_Literal_Low_Bound (Xtyp)) +
1001 String_Literal_Length (Xtyp));
c3de5c4c
ES
1002 end if;
1003 end if;
1004
996ae0b0
RK
1005 -- Find correct index type
1006
1007 Indx := First_Index (Xtyp);
1008
1009 if Present (Expressions (N)) then
1010 Subs := UI_To_Int (Expr_Value (First (Expressions (N))));
1011
1012 for J in 2 .. Subs loop
99859ea7 1013 Next_Index (Indx);
996ae0b0
RK
1014 end loop;
1015 end if;
1016
1017 Xtyp := Etype (Indx);
1018
1019 if Attribute_Name (N) = Name_First then
1020 return Type_Low_Bound (Xtyp);
7a6de2e2 1021 else
996ae0b0
RK
1022 return Type_High_Bound (Xtyp);
1023 end if;
1024 end if;
1025
1026 return N;
1027 end Compare_Fixup;
1028
57036dcc
ES
1029 ----------------------------
1030 -- Is_Known_Valid_Operand --
1031 ----------------------------
1032
1033 function Is_Known_Valid_Operand (Opnd : Node_Id) return Boolean is
1034 begin
1035 return (Is_Entity_Name (Opnd)
1036 and then
1037 (Is_Known_Valid (Entity (Opnd))
1038 or else Ekind (Entity (Opnd)) = E_In_Parameter
1039 or else
a1447c2a 1040 (Is_Object (Entity (Opnd))
80298c3b 1041 and then Present (Current_Value (Entity (Opnd))))))
57036dcc
ES
1042 or else Is_OK_Static_Expression (Opnd);
1043 end Is_Known_Valid_Operand;
1044
996ae0b0
RK
1045 -------------------
1046 -- Is_Same_Value --
1047 -------------------
1048
1049 function Is_Same_Value (L, R : Node_Id) return Boolean is
1050 Lf : constant Node_Id := Compare_Fixup (L);
1051 Rf : constant Node_Id := Compare_Fixup (R);
1052
708fb956
YM
1053 function Is_Rewritten_Loop_Entry (N : Node_Id) return Boolean;
1054 -- An attribute reference to Loop_Entry may have been rewritten into
1055 -- its prefix as a way to avoid generating a constant for that
1056 -- attribute when the corresponding pragma is ignored. These nodes
1057 -- should be ignored when deciding if they can be equal to one
1058 -- another.
1059
fbf5a39b 1060 function Is_Same_Subscript (L, R : List_Id) return Boolean;
57036dcc
ES
1061 -- L, R are the Expressions values from two attribute nodes for First
1062 -- or Last attributes. Either may be set to No_List if no expressions
1063 -- are present (indicating subscript 1). The result is True if both
1064 -- expressions represent the same subscript (note one case is where
1065 -- one subscript is missing and the other is explicitly set to 1).
fbf5a39b 1066
708fb956
YM
1067 -----------------------------
1068 -- Is_Rewritten_Loop_Entry --
1069 -----------------------------
1070
1071 function Is_Rewritten_Loop_Entry (N : Node_Id) return Boolean is
1072 Orig_N : constant Node_Id := Original_Node (N);
1073 begin
1074 return Orig_N /= N
1075 and then Nkind (Orig_N) = N_Attribute_Reference
1076 and then Get_Attribute_Id (Attribute_Name (Orig_N)) =
1077 Attribute_Loop_Entry;
1078 end Is_Rewritten_Loop_Entry;
1079
fbf5a39b
AC
1080 -----------------------
1081 -- Is_Same_Subscript --
1082 -----------------------
1083
1084 function Is_Same_Subscript (L, R : List_Id) return Boolean is
1085 begin
1086 if L = No_List then
1087 if R = No_List then
1088 return True;
1089 else
1090 return Expr_Value (First (R)) = Uint_1;
1091 end if;
1092
1093 else
1094 if R = No_List then
1095 return Expr_Value (First (L)) = Uint_1;
1096 else
1097 return Expr_Value (First (L)) = Expr_Value (First (R));
1098 end if;
1099 end if;
1100 end Is_Same_Subscript;
1101
1102 -- Start of processing for Is_Same_Value
1103
996ae0b0 1104 begin
708fb956
YM
1105 -- Loop_Entry nodes rewritten into their prefix inside ignored
1106 -- pragmas should never lead to a decision of equality.
996ae0b0 1107
708fb956
YM
1108 if Is_Rewritten_Loop_Entry (Lf)
1109 or else Is_Rewritten_Loop_Entry (Rf)
1110 then
1111 return False;
f08b2371 1112
708fb956
YM
1113 -- Values are the same if they refer to the same entity and the
1114 -- entity is nonvolatile.
4fb0b3f0 1115
4a08c95c
AC
1116 elsif Nkind (Lf) in N_Identifier | N_Expanded_Name
1117 and then Nkind (Rf) in N_Identifier | N_Expanded_Name
996ae0b0 1118 and then Entity (Lf) = Entity (Rf)
708fb956
YM
1119
1120 -- If the entity is a discriminant, the two expressions may be
1121 -- bounds of components of objects of the same discriminated type.
1122 -- The values of the discriminants are not static, and therefore
1123 -- the result is unknown.
1124
4fb0b3f0 1125 and then Ekind (Entity (Lf)) /= E_Discriminant
b49365b2 1126 and then Present (Entity (Lf))
708fb956
YM
1127
1128 -- This does not however apply to Float types, since we may have
1129 -- two NaN values and they should never compare equal.
1130
fbf5a39b 1131 and then not Is_Floating_Point_Type (Etype (L))
c800f862
RD
1132 and then not Is_Volatile_Reference (L)
1133 and then not Is_Volatile_Reference (R)
996ae0b0
RK
1134 then
1135 return True;
1136
d3bbfc59 1137 -- Or if they are compile-time-known and identical
996ae0b0
RK
1138
1139 elsif Compile_Time_Known_Value (Lf)
1140 and then
1141 Compile_Time_Known_Value (Rf)
1142 and then Expr_Value (Lf) = Expr_Value (Rf)
1143 then
1144 return True;
1145
b49365b2
RD
1146 -- False if Nkind of the two nodes is different for remaining cases
1147
1148 elsif Nkind (Lf) /= Nkind (Rf) then
1149 return False;
1150
1151 -- True if both 'First or 'Last values applying to the same entity
1152 -- (first and last don't change even if value does). Note that we
1153 -- need this even with the calls to Compare_Fixup, to handle the
1154 -- case of unconstrained array attributes where Compare_Fixup
1155 -- cannot find useful bounds.
996ae0b0
RK
1156
1157 elsif Nkind (Lf) = N_Attribute_Reference
996ae0b0 1158 and then Attribute_Name (Lf) = Attribute_Name (Rf)
4a08c95c
AC
1159 and then Attribute_Name (Lf) in Name_First | Name_Last
1160 and then Nkind (Prefix (Lf)) in N_Identifier | N_Expanded_Name
1161 and then Nkind (Prefix (Rf)) in N_Identifier | N_Expanded_Name
996ae0b0 1162 and then Entity (Prefix (Lf)) = Entity (Prefix (Rf))
fbf5a39b 1163 and then Is_Same_Subscript (Expressions (Lf), Expressions (Rf))
996ae0b0
RK
1164 then
1165 return True;
1166
b49365b2
RD
1167 -- True if the same selected component from the same record
1168
1169 elsif Nkind (Lf) = N_Selected_Component
1170 and then Selector_Name (Lf) = Selector_Name (Rf)
1171 and then Is_Same_Value (Prefix (Lf), Prefix (Rf))
1172 then
1173 return True;
1174
1175 -- True if the same unary operator applied to the same operand
1176
1177 elsif Nkind (Lf) in N_Unary_Op
1178 and then Is_Same_Value (Right_Opnd (Lf), Right_Opnd (Rf))
1179 then
1180 return True;
1181
8682d22c 1182 -- True if the same binary operator applied to the same operands
b49365b2
RD
1183
1184 elsif Nkind (Lf) in N_Binary_Op
1185 and then Is_Same_Value (Left_Opnd (Lf), Left_Opnd (Rf))
1186 and then Is_Same_Value (Right_Opnd (Lf), Right_Opnd (Rf))
1187 then
1188 return True;
1189
8682d22c 1190 -- All other cases, we can't tell, so return False
996ae0b0
RK
1191
1192 else
1193 return False;
1194 end if;
1195 end Is_Same_Value;
1196
1197 -- Start of processing for Compile_Time_Compare
1198
1199 begin
af02a866
RD
1200 Diff.all := No_Uint;
1201
37c1f923
AC
1202 -- In preanalysis mode, always return Unknown unless the expression
1203 -- is static. It is too early to be thinking we know the result of a
1204 -- comparison, save that judgment for the full analysis. This is
1205 -- particularly important in the case of pre and postconditions, which
1206 -- otherwise can be prematurely collapsed into having True or False
1207 -- conditions when this is inappropriate.
1208
1209 if not (Full_Analysis
edab6088 1210 or else (Is_OK_Static_Expression (L)
db318f46 1211 and then
edab6088 1212 Is_OK_Static_Expression (R)))
37c1f923 1213 then
05b34c18
AC
1214 return Unknown;
1215 end if;
1216
1e3c434f 1217 -- If either operand could raise Constraint_Error, then we cannot
a90bd866 1218 -- know the result at compile time (since CE may be raised).
07fc65c4
GB
1219
1220 if not (Cannot_Raise_Constraint_Error (L)
1221 and then
1222 Cannot_Raise_Constraint_Error (R))
1223 then
1224 return Unknown;
1225 end if;
1226
1227 -- Identical operands are most certainly equal
1228
996ae0b0
RK
1229 if L = R then
1230 return EQ;
08f52d9f 1231 end if;
996ae0b0 1232
93c3fca7
AC
1233 -- If expressions have no types, then do not attempt to determine if
1234 -- they are the same, since something funny is going on. One case in
1235 -- which this happens is during generic template analysis, when bounds
1236 -- are not fully analyzed.
996ae0b0 1237
08f52d9f
AC
1238 if No (Ltyp) or else No (Rtyp) then
1239 return Unknown;
1240 end if;
1241
1242 -- These get reset to the base type for the case of entities where
1243 -- Is_Known_Valid is not set. This takes care of handling possible
1244 -- invalid representations using the value of the base type, in
1245 -- accordance with RM 13.9.1(10).
1246
1247 Ltyp := Underlying_Type (Ltyp);
1248 Rtyp := Underlying_Type (Rtyp);
1249
1250 -- Same rationale as above, but for Underlying_Type instead of Etype
1251
1252 if No (Ltyp) or else No (Rtyp) then
996ae0b0 1253 return Unknown;
08f52d9f 1254 end if;
996ae0b0 1255
0a3ec628 1256 -- We do not attempt comparisons for packed arrays represented as
93c3fca7 1257 -- modular types, where the semantics of comparison is quite different.
996ae0b0 1258
08f52d9f 1259 if Is_Packed_Array_Impl_Type (Ltyp)
93c3fca7 1260 and then Is_Modular_Integer_Type (Ltyp)
996ae0b0
RK
1261 then
1262 return Unknown;
1263
93c3fca7 1264 -- For access types, the only time we know the result at compile time
f61580d4 1265 -- (apart from identical operands, which we handled already) is if we
93c3fca7
AC
1266 -- know one operand is null and the other is not, or both operands are
1267 -- known null.
1268
1269 elsif Is_Access_Type (Ltyp) then
1270 if Known_Null (L) then
1271 if Known_Null (R) then
1272 return EQ;
1273 elsif Known_Non_Null (R) then
1274 return NE;
1275 else
1276 return Unknown;
1277 end if;
1278
f61580d4 1279 elsif Known_Non_Null (L) and then Known_Null (R) then
93c3fca7
AC
1280 return NE;
1281
1282 else
1283 return Unknown;
1284 end if;
1285
d3bbfc59 1286 -- Case where comparison involves two compile-time-known values
996ae0b0
RK
1287
1288 elsif Compile_Time_Known_Value (L)
80298c3b
AC
1289 and then
1290 Compile_Time_Known_Value (R)
996ae0b0
RK
1291 then
1292 -- For the floating-point case, we have to be a little careful, since
1293 -- at compile time we are dealing with universal exact values, but at
1294 -- runtime, these will be in non-exact target form. That's why the
1295 -- returned results are LE and GE below instead of LT and GT.
1296
1297 if Is_Floating_Point_Type (Ltyp)
1298 or else
1299 Is_Floating_Point_Type (Rtyp)
1300 then
1301 declare
1302 Lo : constant Ureal := Expr_Value_R (L);
1303 Hi : constant Ureal := Expr_Value_R (R);
996ae0b0
RK
1304 begin
1305 if Lo < Hi then
1306 return LE;
1307 elsif Lo = Hi then
1308 return EQ;
1309 else
1310 return GE;
1311 end if;
1312 end;
1313
93c3fca7
AC
1314 -- For string types, we have two string literals and we proceed to
1315 -- compare them using the Ada style dictionary string comparison.
1316
1317 elsif not Is_Scalar_Type (Ltyp) then
1318 declare
1319 Lstring : constant String_Id := Strval (Expr_Value_S (L));
1320 Rstring : constant String_Id := Strval (Expr_Value_S (R));
1321 Llen : constant Nat := String_Length (Lstring);
1322 Rlen : constant Nat := String_Length (Rstring);
1323
1324 begin
1325 for J in 1 .. Nat'Min (Llen, Rlen) loop
1326 declare
1327 LC : constant Char_Code := Get_String_Char (Lstring, J);
1328 RC : constant Char_Code := Get_String_Char (Rstring, J);
1329 begin
1330 if LC < RC then
1331 return LT;
1332 elsif LC > RC then
1333 return GT;
1334 end if;
1335 end;
1336 end loop;
1337
1338 if Llen < Rlen then
1339 return LT;
1340 elsif Llen > Rlen then
1341 return GT;
1342 else
1343 return EQ;
1344 end if;
1345 end;
1346
1347 -- For remaining scalar cases we know exactly (note that this does
1348 -- include the fixed-point case, where we know the run time integer
f61580d4 1349 -- values now).
996ae0b0
RK
1350
1351 else
1352 declare
1353 Lo : constant Uint := Expr_Value (L);
1354 Hi : constant Uint := Expr_Value (R);
996ae0b0
RK
1355 begin
1356 if Lo < Hi then
af02a866 1357 Diff.all := Hi - Lo;
996ae0b0
RK
1358 return LT;
1359 elsif Lo = Hi then
1360 return EQ;
1361 else
af02a866 1362 Diff.all := Lo - Hi;
996ae0b0
RK
1363 return GT;
1364 end if;
1365 end;
1366 end if;
1367
1368 -- Cases where at least one operand is not known at compile time
1369
1370 else
93c3fca7 1371 -- Remaining checks apply only for discrete types
29797f34
RD
1372
1373 if not Is_Discrete_Type (Ltyp)
80298c3b
AC
1374 or else
1375 not Is_Discrete_Type (Rtyp)
93c3fca7
AC
1376 then
1377 return Unknown;
1378 end if;
1379
1380 -- Defend against generic types, or actually any expressions that
1381 -- contain a reference to a generic type from within a generic
1382 -- template. We don't want to do any range analysis of such
1383 -- expressions for two reasons. First, the bounds of a generic type
1384 -- itself are junk and cannot be used for any kind of analysis.
1385 -- Second, we may have a case where the range at run time is indeed
1386 -- known, but we don't want to do compile time analysis in the
1387 -- template based on that range since in an instance the value may be
1388 -- static, and able to be elaborated without reference to the bounds
1389 -- of types involved. As an example, consider:
1390
1391 -- (F'Pos (F'Last) + 1) > Integer'Last
1392
1393 -- The expression on the left side of > is Universal_Integer and thus
1394 -- acquires the type Integer for evaluation at run time, and at run
1395 -- time it is true that this condition is always False, but within
1396 -- an instance F may be a type with a static range greater than the
1397 -- range of Integer, and the expression statically evaluates to True.
1398
1399 if References_Generic_Formal_Type (L)
1400 or else
1401 References_Generic_Formal_Type (R)
29797f34
RD
1402 then
1403 return Unknown;
1404 end if;
1405
41a58113 1406 -- Replace types by base types for the case of values which are not
80298c3b
AC
1407 -- known to have valid representations. This takes care of properly
1408 -- dealing with invalid representations.
1c7717c3 1409
41a58113
RD
1410 if not Assume_Valid then
1411 if not (Is_Entity_Name (L)
1412 and then (Is_Known_Valid (Entity (L))
1413 or else Assume_No_Invalid_Values))
1414 then
93c3fca7 1415 Ltyp := Underlying_Type (Base_Type (Ltyp));
1c7717c3
AC
1416 end if;
1417
41a58113
RD
1418 if not (Is_Entity_Name (R)
1419 and then (Is_Known_Valid (Entity (R))
1420 or else Assume_No_Invalid_Values))
1421 then
93c3fca7 1422 Rtyp := Underlying_Type (Base_Type (Rtyp));
1c7717c3
AC
1423 end if;
1424 end if;
1425
a40ada7e
RD
1426 -- First attempt is to decompose the expressions to extract a
1427 -- constant offset resulting from the use of any of the forms:
1428
1429 -- expr + literal
1430 -- expr - literal
1431 -- typ'Succ (expr)
1432 -- typ'Pred (expr)
1433
1434 -- Then we see if the two expressions are the same value, and if so
1435 -- the result is obtained by comparing the offsets.
1436
1437 -- Note: the reason we do this test first is that it returns only
1438 -- decisive results (with diff set), where other tests, like the
1439 -- range test, may not be as so decisive. Consider for example
1440 -- J .. J + 1. This code can conclude LT with a difference of 1,
1441 -- even if the range of J is not known.
1442
22564ca9
EB
1443 declare
1444 Lnode : Node_Id;
1445 Loffs : Uint;
1446 Rnode : Node_Id;
1447 Roffs : Uint;
a40ada7e 1448
22564ca9
EB
1449 begin
1450 Compare_Decompose (L, Lnode, Loffs);
1451 Compare_Decompose (R, Rnode, Roffs);
a40ada7e 1452
22564ca9
EB
1453 if Is_Same_Value (Lnode, Rnode) then
1454 if Loffs = Roffs then
1455 return EQ;
1456 end if;
1457
1458 -- When the offsets are not equal, we can go farther only if
1459 -- the types are not modular (e.g. X < X + 1 is False if X is
1460 -- the largest number).
0a3ec628 1461
22564ca9
EB
1462 if not Is_Modular_Integer_Type (Ltyp)
1463 and then not Is_Modular_Integer_Type (Rtyp)
1464 then
1465 if Loffs < Roffs then
0a3ec628
AC
1466 Diff.all := Roffs - Loffs;
1467 return LT;
1468 else
1469 Diff.all := Loffs - Roffs;
1470 return GT;
1471 end if;
a40ada7e 1472 end if;
22564ca9
EB
1473 end if;
1474 end;
a40ada7e
RD
1475
1476 -- Next, try range analysis and see if operand ranges are disjoint
c800f862
RD
1477
1478 declare
1479 LOK, ROK : Boolean;
1480 LLo, LHi : Uint;
1481 RLo, RHi : Uint;
1482
b6b5cca8
AC
1483 Single : Boolean;
1484 -- True if each range is a single point
1485
c800f862
RD
1486 begin
1487 Determine_Range (L, LOK, LLo, LHi, Assume_Valid);
1488 Determine_Range (R, ROK, RLo, RHi, Assume_Valid);
1489
1490 if LOK and ROK then
b6b5cca8
AC
1491 Single := (LLo = LHi) and then (RLo = RHi);
1492
c800f862 1493 if LHi < RLo then
b6b5cca8
AC
1494 if Single and Assume_Valid then
1495 Diff.all := RLo - LLo;
1496 end if;
1497
c800f862
RD
1498 return LT;
1499
1500 elsif RHi < LLo then
b6b5cca8
AC
1501 if Single and Assume_Valid then
1502 Diff.all := LLo - RLo;
1503 end if;
1504
c800f862
RD
1505 return GT;
1506
b6b5cca8 1507 elsif Single and then LLo = RLo then
e27b834b 1508
75ba322d
AC
1509 -- If the range includes a single literal and we can assume
1510 -- validity then the result is known even if an operand is
1511 -- not static.
e27b834b
AC
1512
1513 if Assume_Valid then
1514 return EQ;
e27b834b
AC
1515 else
1516 return Unknown;
1517 end if;
c800f862
RD
1518
1519 elsif LHi = RLo then
1520 return LE;
1521
1522 elsif RHi = LLo then
1523 return GE;
57036dcc
ES
1524
1525 elsif not Is_Known_Valid_Operand (L)
1526 and then not Assume_Valid
1527 then
1528 if Is_Same_Value (L, R) then
1529 return EQ;
1530 else
1531 return Unknown;
1532 end if;
c800f862 1533 end if;
f9ad6b62 1534
2c1b72d7
AC
1535 -- If the range of either operand cannot be determined, nothing
1536 -- further can be inferred.
f9ad6b62 1537
2c1b72d7 1538 else
f9ad6b62 1539 return Unknown;
c800f862
RD
1540 end if;
1541 end;
1542
996ae0b0
RK
1543 -- Here is where we check for comparisons against maximum bounds of
1544 -- types, where we know that no value can be outside the bounds of
1545 -- the subtype. Note that this routine is allowed to assume that all
1546 -- expressions are within their subtype bounds. Callers wishing to
1547 -- deal with possibly invalid values must in any case take special
1548 -- steps (e.g. conversions to larger types) to avoid this kind of
1549 -- optimization, which is always considered to be valid. We do not
1550 -- attempt this optimization with generic types, since the type
1551 -- bounds may not be meaningful in this case.
1552
93c3fca7 1553 -- We are in danger of an infinite recursion here. It does not seem
fbf5a39b
AC
1554 -- useful to go more than one level deep, so the parameter Rec is
1555 -- used to protect ourselves against this infinite recursion.
1556
29797f34
RD
1557 if not Rec then
1558
80298c3b
AC
1559 -- See if we can get a decisive check against one operand and a
1560 -- bound of the other operand (four possible tests here). Note
1561 -- that we avoid testing junk bounds of a generic type.
93c3fca7
AC
1562
1563 if not Is_Generic_Type (Rtyp) then
1564 case Compile_Time_Compare (L, Type_Low_Bound (Rtyp),
1565 Discard'Access,
1566 Assume_Valid, Rec => True)
1567 is
1568 when LT => return LT;
1569 when LE => return LE;
1570 when EQ => return LE;
1571 when others => null;
1572 end case;
fbf5a39b 1573
93c3fca7
AC
1574 case Compile_Time_Compare (L, Type_High_Bound (Rtyp),
1575 Discard'Access,
1576 Assume_Valid, Rec => True)
1577 is
1578 when GT => return GT;
1579 when GE => return GE;
1580 when EQ => return GE;
1581 when others => null;
1582 end case;
1583 end if;
996ae0b0 1584
93c3fca7
AC
1585 if not Is_Generic_Type (Ltyp) then
1586 case Compile_Time_Compare (Type_Low_Bound (Ltyp), R,
1587 Discard'Access,
1588 Assume_Valid, Rec => True)
1589 is
1590 when GT => return GT;
1591 when GE => return GE;
1592 when EQ => return GE;
1593 when others => null;
1594 end case;
996ae0b0 1595
93c3fca7
AC
1596 case Compile_Time_Compare (Type_High_Bound (Ltyp), R,
1597 Discard'Access,
1598 Assume_Valid, Rec => True)
1599 is
1600 when LT => return LT;
1601 when LE => return LE;
1602 when EQ => return LE;
1603 when others => null;
1604 end case;
1605 end if;
996ae0b0
RK
1606 end if;
1607
29797f34 1608 -- Next attempt is to see if we have an entity compared with a
d3bbfc59 1609 -- compile-time-known value, where there is a current value
29797f34
RD
1610 -- conditional for the entity which can tell us the result.
1611
1612 declare
1613 Var : Node_Id;
1614 -- Entity variable (left operand)
1615
1616 Val : Uint;
1617 -- Value (right operand)
1618
1619 Inv : Boolean;
1620 -- If False, we have reversed the operands
1621
1622 Op : Node_Kind;
1623 -- Comparison operator kind from Get_Current_Value_Condition call
996ae0b0 1624
29797f34
RD
1625 Opn : Node_Id;
1626 -- Value from Get_Current_Value_Condition call
1627
1628 Opv : Uint;
1629 -- Value of Opn
1630
1631 Result : Compare_Result;
1632 -- Known result before inversion
1633
1634 begin
1635 if Is_Entity_Name (L)
1636 and then Compile_Time_Known_Value (R)
1637 then
1638 Var := L;
1639 Val := Expr_Value (R);
1640 Inv := False;
1641
1642 elsif Is_Entity_Name (R)
1643 and then Compile_Time_Known_Value (L)
1644 then
1645 Var := R;
1646 Val := Expr_Value (L);
1647 Inv := True;
1648
1649 -- That was the last chance at finding a compile time result
996ae0b0
RK
1650
1651 else
1652 return Unknown;
1653 end if;
29797f34
RD
1654
1655 Get_Current_Value_Condition (Var, Op, Opn);
1656
1657 -- That was the last chance, so if we got nothing return
1658
1659 if No (Opn) then
1660 return Unknown;
1661 end if;
1662
1663 Opv := Expr_Value (Opn);
1664
1665 -- We got a comparison, so we might have something interesting
1666
1667 -- Convert LE to LT and GE to GT, just so we have fewer cases
1668
1669 if Op = N_Op_Le then
1670 Op := N_Op_Lt;
1671 Opv := Opv + 1;
af02a866 1672
29797f34
RD
1673 elsif Op = N_Op_Ge then
1674 Op := N_Op_Gt;
1675 Opv := Opv - 1;
1676 end if;
1677
1678 -- Deal with equality case
1679
1680 if Op = N_Op_Eq then
1681 if Val = Opv then
1682 Result := EQ;
1683 elsif Opv < Val then
1684 Result := LT;
1685 else
1686 Result := GT;
1687 end if;
1688
1689 -- Deal with inequality case
1690
1691 elsif Op = N_Op_Ne then
1692 if Val = Opv then
1693 Result := NE;
1694 else
1695 return Unknown;
1696 end if;
1697
1698 -- Deal with greater than case
1699
1700 elsif Op = N_Op_Gt then
1701 if Opv >= Val then
1702 Result := GT;
1703 elsif Opv = Val - 1 then
1704 Result := GE;
1705 else
1706 return Unknown;
1707 end if;
1708
1709 -- Deal with less than case
1710
1711 else pragma Assert (Op = N_Op_Lt);
1712 if Opv <= Val then
1713 Result := LT;
1714 elsif Opv = Val + 1 then
1715 Result := LE;
1716 else
1717 return Unknown;
1718 end if;
1719 end if;
1720
1721 -- Deal with inverting result
1722
1723 if Inv then
1724 case Result is
1725 when GT => return LT;
1726 when GE => return LE;
1727 when LT => return GT;
1728 when LE => return GE;
1729 when others => return Result;
1730 end case;
1731 end if;
1732
1733 return Result;
996ae0b0
RK
1734 end;
1735 end if;
1736 end Compile_Time_Compare;
1737
f44fe430
RD
1738 -------------------------------
1739 -- Compile_Time_Known_Bounds --
1740 -------------------------------
1741
1742 function Compile_Time_Known_Bounds (T : Entity_Id) return Boolean is
1743 Indx : Node_Id;
1744 Typ : Entity_Id;
1745
1746 begin
f5f6d8d7 1747 if T = Any_Composite or else not Is_Array_Type (T) then
f44fe430
RD
1748 return False;
1749 end if;
1750
1751 Indx := First_Index (T);
1752 while Present (Indx) loop
1753 Typ := Underlying_Type (Etype (Indx));
93c3fca7
AC
1754
1755 -- Never look at junk bounds of a generic type
1756
1757 if Is_Generic_Type (Typ) then
1758 return False;
1759 end if;
1760
d3bbfc59 1761 -- Otherwise check bounds for compile-time-known
93c3fca7 1762
f44fe430
RD
1763 if not Compile_Time_Known_Value (Type_Low_Bound (Typ)) then
1764 return False;
1765 elsif not Compile_Time_Known_Value (Type_High_Bound (Typ)) then
1766 return False;
1767 else
1768 Next_Index (Indx);
1769 end if;
1770 end loop;
1771
1772 return True;
1773 end Compile_Time_Known_Bounds;
1774
996ae0b0
RK
1775 ------------------------------
1776 -- Compile_Time_Known_Value --
1777 ------------------------------
1778
6c3c671e 1779 function Compile_Time_Known_Value (Op : Node_Id) return Boolean is
07fc65c4
GB
1780 K : constant Node_Kind := Nkind (Op);
1781 CV_Ent : CV_Entry renames CV_Cache (Nat (Op) mod CV_Cache_Size);
996ae0b0
RK
1782
1783 begin
1e3c434f 1784 -- Never known at compile time if bad type or raises Constraint_Error
ee2ba856 1785 -- or empty (latter case occurs only as a result of a previous error).
996ae0b0 1786
ee2ba856
AC
1787 if No (Op) then
1788 Check_Error_Detected;
1789 return False;
1790
1791 elsif Op = Error
996ae0b0
RK
1792 or else Etype (Op) = Any_Type
1793 or else Raises_Constraint_Error (Op)
1794 then
1795 return False;
1796 end if;
1797
1798 -- If we have an entity name, then see if it is the name of a constant
705bcbfe
HK
1799 -- and if so, test the corresponding constant value, or the name of an
1800 -- enumeration literal, which is always a constant.
996ae0b0
RK
1801
1802 if Present (Etype (Op)) and then Is_Entity_Name (Op) then
1803 declare
705bcbfe
HK
1804 Ent : constant Entity_Id := Entity (Op);
1805 Val : Node_Id;
996ae0b0
RK
1806
1807 begin
705bcbfe
HK
1808 -- Never known at compile time if it is a packed array value. We
1809 -- might want to try to evaluate these at compile time one day,
1810 -- but we do not make that attempt now.
996ae0b0 1811
8ca597af 1812 if Is_Packed_Array_Impl_Type (Etype (Op)) then
996ae0b0 1813 return False;
996ae0b0 1814
705bcbfe 1815 elsif Ekind (Ent) = E_Enumeration_Literal then
996ae0b0
RK
1816 return True;
1817
705bcbfe
HK
1818 elsif Ekind (Ent) = E_Constant then
1819 Val := Constant_Value (Ent);
1820
1821 if Present (Val) then
1822
1823 -- Guard against an illegal deferred constant whose full
1824 -- view is initialized with a reference to itself. Treat
d3bbfc59 1825 -- this case as a value not known at compile time.
705bcbfe
HK
1826
1827 if Is_Entity_Name (Val) and then Entity (Val) = Ent then
1828 return False;
1829 else
1830 return Compile_Time_Known_Value (Val);
1831 end if;
1832
d3bbfc59 1833 -- Otherwise, the constant does not have a compile-time-known
705bcbfe
HK
1834 -- value.
1835
1836 else
1837 return False;
1838 end if;
996ae0b0
RK
1839 end if;
1840 end;
1841
d3bbfc59 1842 -- We have a value, see if it is compile-time-known
996ae0b0
RK
1843
1844 else
07fc65c4 1845 -- Integer literals are worth storing in the cache
996ae0b0 1846
07fc65c4
GB
1847 if K = N_Integer_Literal then
1848 CV_Ent.N := Op;
1849 CV_Ent.V := Intval (Op);
1850 return True;
1851
1852 -- Other literals and NULL are known at compile time
1853
4a08c95c
AC
1854 elsif K in
1855 N_Character_Literal | N_Real_Literal | N_String_Literal | N_Null
996ae0b0
RK
1856 then
1857 return True;
07fc65c4 1858 end if;
996ae0b0 1859 end if;
07fc65c4
GB
1860
1861 -- If we fall through, not known at compile time
1862
1863 return False;
1864
1865 -- If we get an exception while trying to do this test, then some error
1866 -- has occurred, and we simply say that the value is not known after all
1867
1868 exception
1869 when others =>
a34da56b
PT
1870 -- With debug flag K we will get an exception unless an error has
1871 -- already occurred (useful for debugging).
1872
1873 if Debug_Flag_K then
1874 Check_Error_Detected;
1875 end if;
1876
07fc65c4 1877 return False;
996ae0b0
RK
1878 end Compile_Time_Known_Value;
1879
1880 --------------------------------------
1881 -- Compile_Time_Known_Value_Or_Aggr --
1882 --------------------------------------
1883
1884 function Compile_Time_Known_Value_Or_Aggr (Op : Node_Id) return Boolean is
1885 begin
1886 -- If we have an entity name, then see if it is the name of a constant
1887 -- and if so, test the corresponding constant value, or the name of
1888 -- an enumeration literal, which is always a constant.
1889
1890 if Is_Entity_Name (Op) then
1891 declare
1892 E : constant Entity_Id := Entity (Op);
1893 V : Node_Id;
1894
1895 begin
1896 if Ekind (E) = E_Enumeration_Literal then
1897 return True;
1898
1899 elsif Ekind (E) /= E_Constant then
1900 return False;
1901
1902 else
1903 V := Constant_Value (E);
1904 return Present (V)
1905 and then Compile_Time_Known_Value_Or_Aggr (V);
1906 end if;
1907 end;
1908
d3bbfc59 1909 -- We have a value, see if it is compile-time-known
996ae0b0
RK
1910
1911 else
1912 if Compile_Time_Known_Value (Op) then
1913 return True;
1914
1915 elsif Nkind (Op) = N_Aggregate then
1916
1917 if Present (Expressions (Op)) then
1918 declare
1919 Expr : Node_Id;
996ae0b0
RK
1920 begin
1921 Expr := First (Expressions (Op));
1922 while Present (Expr) loop
1923 if not Compile_Time_Known_Value_Or_Aggr (Expr) then
1924 return False;
80298c3b
AC
1925 else
1926 Next (Expr);
996ae0b0 1927 end if;
996ae0b0
RK
1928 end loop;
1929 end;
1930 end if;
1931
1932 if Present (Component_Associations (Op)) then
1933 declare
1934 Cass : Node_Id;
1935
1936 begin
1937 Cass := First (Component_Associations (Op));
1938 while Present (Cass) loop
1939 if not
1940 Compile_Time_Known_Value_Or_Aggr (Expression (Cass))
1941 then
1942 return False;
1943 end if;
1944
1945 Next (Cass);
1946 end loop;
1947 end;
1948 end if;
1949
1950 return True;
1951
5e9cb404
AC
1952 elsif Nkind (Op) = N_Qualified_Expression then
1953 return Compile_Time_Known_Value_Or_Aggr (Expression (Op));
1954
996ae0b0
RK
1955 -- All other types of values are not known at compile time
1956
1957 else
1958 return False;
1959 end if;
1960
1961 end if;
1962 end Compile_Time_Known_Value_Or_Aggr;
1963
6c3c671e
AC
1964 ---------------------------------------
1965 -- CRT_Safe_Compile_Time_Known_Value --
1966 ---------------------------------------
1967
1968 function CRT_Safe_Compile_Time_Known_Value (Op : Node_Id) return Boolean is
1969 begin
1970 if (Configurable_Run_Time_Mode or No_Run_Time_Mode)
1971 and then not Is_OK_Static_Expression (Op)
1972 then
1973 return False;
1974 else
1975 return Compile_Time_Known_Value (Op);
1976 end if;
1977 end CRT_Safe_Compile_Time_Known_Value;
1978
996ae0b0
RK
1979 -----------------
1980 -- Eval_Actual --
1981 -----------------
1982
1983 -- This is only called for actuals of functions that are not predefined
1984 -- operators (which have already been rewritten as operators at this
1985 -- stage), so the call can never be folded, and all that needs doing for
1986 -- the actual is to do the check for a non-static context.
1987
1988 procedure Eval_Actual (N : Node_Id) is
1989 begin
1990 Check_Non_Static_Context (N);
1991 end Eval_Actual;
1992
1993 --------------------
1994 -- Eval_Allocator --
1995 --------------------
1996
1997 -- Allocators are never static, so all we have to do is to do the
1998 -- check for a non-static context if an expression is present.
1999
2000 procedure Eval_Allocator (N : Node_Id) is
2001 Expr : constant Node_Id := Expression (N);
996ae0b0
RK
2002 begin
2003 if Nkind (Expr) = N_Qualified_Expression then
2004 Check_Non_Static_Context (Expression (Expr));
2005 end if;
2006 end Eval_Allocator;
2007
2008 ------------------------
2009 -- Eval_Arithmetic_Op --
2010 ------------------------
2011
2012 -- Arithmetic operations are static functions, so the result is static
2013 -- if both operands are static (RM 4.9(7), 4.9(20)).
2014
2015 procedure Eval_Arithmetic_Op (N : Node_Id) is
2016 Left : constant Node_Id := Left_Opnd (N);
2017 Right : constant Node_Id := Right_Opnd (N);
2018 Ltype : constant Entity_Id := Etype (Left);
2019 Rtype : constant Entity_Id := Etype (Right);
d7567964 2020 Otype : Entity_Id := Empty;
996ae0b0
RK
2021 Stat : Boolean;
2022 Fold : Boolean;
2023
2024 begin
2025 -- If not foldable we are done
2026
2027 Test_Expression_Is_Foldable (N, Left, Right, Stat, Fold);
2028
2029 if not Fold then
2030 return;
2031 end if;
2032
6c3c671e
AC
2033 -- Otherwise attempt to fold
2034
d7567964
TQ
2035 if Is_Universal_Numeric_Type (Etype (Left))
2036 and then
2037 Is_Universal_Numeric_Type (Etype (Right))
602a7ec0 2038 then
d7567964 2039 Otype := Find_Universal_Operator_Type (N);
602a7ec0
AC
2040 end if;
2041
996ae0b0
RK
2042 -- Fold for cases where both operands are of integer type
2043
2044 if Is_Integer_Type (Ltype) and then Is_Integer_Type (Rtype) then
2045 declare
2046 Left_Int : constant Uint := Expr_Value (Left);
2047 Right_Int : constant Uint := Expr_Value (Right);
2048 Result : Uint;
2049
2050 begin
2051 case Nkind (N) is
996ae0b0
RK
2052 when N_Op_Add =>
2053 Result := Left_Int + Right_Int;
2054
2055 when N_Op_Subtract =>
2056 Result := Left_Int - Right_Int;
2057
2058 when N_Op_Multiply =>
2059 if OK_Bits
2060 (N, UI_From_Int
2061 (Num_Bits (Left_Int) + Num_Bits (Right_Int)))
2062 then
2063 Result := Left_Int * Right_Int;
2064 else
2065 Result := Left_Int;
2066 end if;
2067
2068 when N_Op_Divide =>
2069
2070 -- The exception Constraint_Error is raised by integer
2071 -- division, rem and mod if the right operand is zero.
2072
2073 if Right_Int = 0 then
520c0201
AC
2074
2075 -- When SPARK_Mode is On, force a warning instead of
2076 -- an error in that case, as this likely corresponds
2077 -- to deactivated code.
2078
996ae0b0 2079 Apply_Compile_Time_Constraint_Error
80298c3b 2080 (N, "division by zero", CE_Divide_By_Zero,
520c0201 2081 Warn => not Stat or SPARK_Mode = On);
edab6088 2082 Set_Raises_Constraint_Error (N);
996ae0b0 2083 return;
fbf5a39b 2084
edab6088
RD
2085 -- Otherwise we can do the division
2086
996ae0b0
RK
2087 else
2088 Result := Left_Int / Right_Int;
2089 end if;
2090
2091 when N_Op_Mod =>
2092
2093 -- The exception Constraint_Error is raised by integer
2094 -- division, rem and mod if the right operand is zero.
2095
2096 if Right_Int = 0 then
520c0201
AC
2097
2098 -- When SPARK_Mode is On, force a warning instead of
2099 -- an error in that case, as this likely corresponds
2100 -- to deactivated code.
2101
996ae0b0 2102 Apply_Compile_Time_Constraint_Error
80298c3b 2103 (N, "mod with zero divisor", CE_Divide_By_Zero,
520c0201 2104 Warn => not Stat or SPARK_Mode = On);
996ae0b0 2105 return;
520c0201 2106
996ae0b0
RK
2107 else
2108 Result := Left_Int mod Right_Int;
2109 end if;
2110
2111 when N_Op_Rem =>
2112
2113 -- The exception Constraint_Error is raised by integer
2114 -- division, rem and mod if the right operand is zero.
2115
2116 if Right_Int = 0 then
520c0201
AC
2117
2118 -- When SPARK_Mode is On, force a warning instead of
2119 -- an error in that case, as this likely corresponds
2120 -- to deactivated code.
2121
996ae0b0 2122 Apply_Compile_Time_Constraint_Error
80298c3b 2123 (N, "rem with zero divisor", CE_Divide_By_Zero,
520c0201 2124 Warn => not Stat or SPARK_Mode = On);
996ae0b0 2125 return;
fbf5a39b 2126
996ae0b0
RK
2127 else
2128 Result := Left_Int rem Right_Int;
2129 end if;
2130
2131 when others =>
2132 raise Program_Error;
2133 end case;
2134
2135 -- Adjust the result by the modulus if the type is a modular type
2136
2137 if Is_Modular_Integer_Type (Ltype) then
2138 Result := Result mod Modulus (Ltype);
82c80734
RD
2139
2140 -- For a signed integer type, check non-static overflow
2141
2142 elsif (not Stat) and then Is_Signed_Integer_Type (Ltype) then
2143 declare
2144 BT : constant Entity_Id := Base_Type (Ltype);
2145 Lo : constant Uint := Expr_Value (Type_Low_Bound (BT));
2146 Hi : constant Uint := Expr_Value (Type_High_Bound (BT));
2147 begin
2148 if Result < Lo or else Result > Hi then
2149 Apply_Compile_Time_Constraint_Error
324ac540 2150 (N, "value not in range of }??",
82c80734
RD
2151 CE_Overflow_Check_Failed,
2152 Ent => BT);
2153 return;
2154 end if;
2155 end;
996ae0b0
RK
2156 end if;
2157
82c80734
RD
2158 -- If we get here we can fold the result
2159
fbf5a39b 2160 Fold_Uint (N, Result, Stat);
996ae0b0
RK
2161 end;
2162
d7567964
TQ
2163 -- Cases where at least one operand is a real. We handle the cases of
2164 -- both reals, or mixed/real integer cases (the latter happen only for
2165 -- divide and multiply, and the result is always real).
996ae0b0
RK
2166
2167 elsif Is_Real_Type (Ltype) or else Is_Real_Type (Rtype) then
2168 declare
2169 Left_Real : Ureal;
2170 Right_Real : Ureal;
2171 Result : Ureal;
2172
2173 begin
2174 if Is_Real_Type (Ltype) then
2175 Left_Real := Expr_Value_R (Left);
2176 else
2177 Left_Real := UR_From_Uint (Expr_Value (Left));
2178 end if;
2179
2180 if Is_Real_Type (Rtype) then
2181 Right_Real := Expr_Value_R (Right);
2182 else
2183 Right_Real := UR_From_Uint (Expr_Value (Right));
2184 end if;
2185
2186 if Nkind (N) = N_Op_Add then
2187 Result := Left_Real + Right_Real;
2188
2189 elsif Nkind (N) = N_Op_Subtract then
2190 Result := Left_Real - Right_Real;
2191
2192 elsif Nkind (N) = N_Op_Multiply then
2193 Result := Left_Real * Right_Real;
2194
2195 else pragma Assert (Nkind (N) = N_Op_Divide);
2196 if UR_Is_Zero (Right_Real) then
2197 Apply_Compile_Time_Constraint_Error
07fc65c4 2198 (N, "division by zero", CE_Divide_By_Zero);
996ae0b0
RK
2199 return;
2200 end if;
2201
2202 Result := Left_Real / Right_Real;
2203 end if;
2204
fbf5a39b 2205 Fold_Ureal (N, Result, Stat);
996ae0b0
RK
2206 end;
2207 end if;
d7567964
TQ
2208
2209 -- If the operator was resolved to a specific type, make sure that type
2210 -- is frozen even if the expression is folded into a literal (which has
2211 -- a universal type).
2212
2213 if Present (Otype) then
2214 Freeze_Before (N, Otype);
2215 end if;
996ae0b0
RK
2216 end Eval_Arithmetic_Op;
2217
2218 ----------------------------
2219 -- Eval_Character_Literal --
2220 ----------------------------
2221
a90bd866 2222 -- Nothing to be done
996ae0b0
RK
2223
2224 procedure Eval_Character_Literal (N : Node_Id) is
07fc65c4 2225 pragma Warnings (Off, N);
996ae0b0
RK
2226 begin
2227 null;
2228 end Eval_Character_Literal;
2229
c01a9391
AC
2230 ---------------
2231 -- Eval_Call --
2232 ---------------
2233
2234 -- Static function calls are either calls to predefined operators
2235 -- with static arguments, or calls to functions that rename a literal.
2236 -- Only the latter case is handled here, predefined operators are
2237 -- constant-folded elsewhere.
29797f34 2238
8cd5951d
AC
2239 -- If the function is itself inherited the literal of the parent type must
2240 -- be explicitly converted to the return type of the function.
c01a9391
AC
2241
2242 procedure Eval_Call (N : Node_Id) is
2243 Loc : constant Source_Ptr := Sloc (N);
2244 Typ : constant Entity_Id := Etype (N);
2245 Lit : Entity_Id;
2246
2247 begin
2248 if Nkind (N) = N_Function_Call
2249 and then No (Parameter_Associations (N))
2250 and then Is_Entity_Name (Name (N))
2251 and then Present (Alias (Entity (Name (N))))
2252 and then Is_Enumeration_Type (Base_Type (Typ))
2253 then
b81a5940 2254 Lit := Ultimate_Alias (Entity (Name (N)));
c01a9391
AC
2255
2256 if Ekind (Lit) = E_Enumeration_Literal then
2257 if Base_Type (Etype (Lit)) /= Base_Type (Typ) then
2258 Rewrite
2259 (N, Convert_To (Typ, New_Occurrence_Of (Lit, Loc)));
2260 else
2261 Rewrite (N, New_Occurrence_Of (Lit, Loc));
2262 end if;
2263
2264 Resolve (N, Typ);
2265 end if;
bbab2db3 2266
8cd5951d
AC
2267 elsif Nkind (N) = N_Function_Call
2268 and then Is_Entity_Name (Name (N))
2269 and then Is_Intrinsic_Subprogram (Entity (Name (N)))
2270 then
2271 Eval_Intrinsic_Call (N, Entity (Name (N)));
2272
bbab2db3 2273 -- Ada 202x (AI12-0075): If checking for potentially static expressions
8cd5951d
AC
2274 -- is enabled and we have a call to a static function, substitute a
2275 -- static value for the call, to allow folding the expression. This
2276 -- supports checking the requirement of RM 6.8(5.3/5) in
2277 -- Analyze_Expression_Function.
bbab2db3
GD
2278
2279 elsif Checking_Potentially_Static_Expression
8cd5951d 2280 and then Is_Static_Function_Call (N)
bbab2db3 2281 then
8cd5951d 2282 Fold_Dummy (N, Typ);
c01a9391
AC
2283 end if;
2284 end Eval_Call;
2285
19d846a0
RD
2286 --------------------------
2287 -- Eval_Case_Expression --
2288 --------------------------
2289
ed7b9d6e 2290 -- A conditional expression is static if all its conditions and dependent
edab6088
RD
2291 -- expressions are static. Note that we do not care if the dependent
2292 -- expressions raise CE, except for the one that will be selected.
19d846a0
RD
2293
2294 procedure Eval_Case_Expression (N : Node_Id) is
edab6088
RD
2295 Alt : Node_Id;
2296 Choice : Node_Id;
19d846a0
RD
2297
2298 begin
edab6088 2299 Set_Is_Static_Expression (N, False);
ed7b9d6e 2300
a6354842
AC
2301 if Error_Posted (Expression (N))
2302 or else not Is_Static_Expression (Expression (N))
2303 then
ed7b9d6e 2304 Check_Non_Static_Context (Expression (N));
edab6088 2305 return;
ed7b9d6e 2306 end if;
19d846a0 2307
edab6088 2308 -- First loop, make sure all the alternatives are static expressions
1e3c434f 2309 -- none of which raise Constraint_Error. We make the Constraint_Error
edab6088
RD
2310 -- check because part of the legality condition for a correct static
2311 -- case expression is that the cases are covered, like any other case
2312 -- expression. And we can't do that if any of the conditions raise an
2313 -- exception, so we don't even try to evaluate if that is the case.
2314
19d846a0 2315 Alt := First (Alternatives (N));
edab6088 2316 while Present (Alt) loop
ed7b9d6e 2317
edab6088
RD
2318 -- The expression must be static, but we don't care at this stage
2319 -- if it raises Constraint_Error (the alternative might not match,
2320 -- in which case the expression is statically unevaluated anyway).
ed7b9d6e 2321
edab6088
RD
2322 if not Is_Static_Expression (Expression (Alt)) then
2323 Check_Non_Static_Context (Expression (Alt));
2324 return;
2325 end if;
ed7b9d6e 2326
edab6088
RD
2327 -- The choices of a case always have to be static, and cannot raise
2328 -- an exception. If this condition is not met, then the expression
2329 -- is plain illegal, so just abandon evaluation attempts. No need
2330 -- to check non-static context when we have something illegal anyway.
ed7b9d6e 2331
edab6088
RD
2332 if not Is_OK_Static_Choice_List (Discrete_Choices (Alt)) then
2333 return;
ed7b9d6e
AC
2334 end if;
2335
19d846a0 2336 Next (Alt);
edab6088 2337 end loop;
ed7b9d6e 2338
edab6088
RD
2339 -- OK, if the above loop gets through it means that all choices are OK
2340 -- static (don't raise exceptions), so the whole case is static, and we
2341 -- can find the matching alternative.
2342
2343 Set_Is_Static_Expression (N);
2344
1e3c434f 2345 -- Now to deal with propagating a possible Constraint_Error
edab6088
RD
2346
2347 -- If the selecting expression raises CE, propagate and we are done
2348
2349 if Raises_Constraint_Error (Expression (N)) then
2350 Set_Raises_Constraint_Error (N);
2351
2352 -- Otherwise we need to check the alternatives to find the matching
2353 -- one. CE's in other than the matching one are not relevant. But we
2354 -- do need to check the matching one. Unlike the first loop, we do not
2355 -- have to go all the way through, when we find the matching one, quit.
ed7b9d6e
AC
2356
2357 else
edab6088
RD
2358 Alt := First (Alternatives (N));
2359 Search : loop
2360
4bd4bb7f 2361 -- We must find a match among the alternatives. If not, this must
edab6088
RD
2362 -- be due to other errors, so just ignore, leaving as non-static.
2363
2364 if No (Alt) then
2365 Set_Is_Static_Expression (N, False);
2366 return;
2367 end if;
2368
2369 -- Otherwise loop through choices of this alternative
2370
2371 Choice := First (Discrete_Choices (Alt));
2372 while Present (Choice) loop
2373
2374 -- If we find a matching choice, then the Expression of this
2375 -- alternative replaces N (Raises_Constraint_Error flag is
2376 -- included, so we don't have to special case that).
2377
2378 if Choice_Matches (Expression (N), Choice) = Match then
2379 Rewrite (N, Relocate_Node (Expression (Alt)));
2380 return;
2381 end if;
2382
2383 Next (Choice);
2384 end loop;
2385
2386 Next (Alt);
2387 end loop Search;
ed7b9d6e 2388 end if;
19d846a0
RD
2389 end Eval_Case_Expression;
2390
996ae0b0
RK
2391 ------------------------
2392 -- Eval_Concatenation --
2393 ------------------------
2394
3996951a
TQ
2395 -- Concatenation is a static function, so the result is static if both
2396 -- operands are static (RM 4.9(7), 4.9(21)).
996ae0b0
RK
2397
2398 procedure Eval_Concatenation (N : Node_Id) is
f91b40db
GB
2399 Left : constant Node_Id := Left_Opnd (N);
2400 Right : constant Node_Id := Right_Opnd (N);
2401 C_Typ : constant Entity_Id := Root_Type (Component_Type (Etype (N)));
996ae0b0
RK
2402 Stat : Boolean;
2403 Fold : Boolean;
996ae0b0
RK
2404
2405 begin
3996951a
TQ
2406 -- Concatenation is never static in Ada 83, so if Ada 83 check operand
2407 -- non-static context.
996ae0b0 2408
0ab80019 2409 if Ada_Version = Ada_83
996ae0b0
RK
2410 and then Comes_From_Source (N)
2411 then
2412 Check_Non_Static_Context (Left);
2413 Check_Non_Static_Context (Right);
2414 return;
2415 end if;
2416
2417 -- If not foldable we are done. In principle concatenation that yields
2418 -- any string type is static (i.e. an array type of character types).
2419 -- However, character types can include enumeration literals, and
2420 -- concatenation in that case cannot be described by a literal, so we
2421 -- only consider the operation static if the result is an array of
2422 -- (a descendant of) a predefined character type.
2423
2424 Test_Expression_Is_Foldable (N, Left, Right, Stat, Fold);
2425
3996951a 2426 if not (Is_Standard_Character_Type (C_Typ) and then Fold) then
996ae0b0
RK
2427 Set_Is_Static_Expression (N, False);
2428 return;
2429 end if;
2430
82c80734 2431 -- Compile time string concatenation
996ae0b0 2432
3996951a
TQ
2433 -- ??? Note that operands that are aggregates can be marked as static,
2434 -- so we should attempt at a later stage to fold concatenations with
2435 -- such aggregates.
996ae0b0
RK
2436
2437 declare
b54ddf5a
BD
2438 Left_Str : constant Node_Id := Get_String_Val (Left);
2439 Left_Len : Nat;
2440 Right_Str : constant Node_Id := Get_String_Val (Right);
dcd5fd67 2441 Folded_Val : String_Id := No_String;
996ae0b0
RK
2442
2443 begin
2444 -- Establish new string literal, and store left operand. We make
2445 -- sure to use the special Start_String that takes an operand if
2446 -- the left operand is a string literal. Since this is optimized
2447 -- in the case where that is the most recently created string
2448 -- literal, we ensure efficient time/space behavior for the
2449 -- case of a concatenation of a series of string literals.
2450
2451 if Nkind (Left_Str) = N_String_Literal then
c8307596 2452 Left_Len := String_Length (Strval (Left_Str));
b54ddf5a
BD
2453
2454 -- If the left operand is the empty string, and the right operand
2455 -- is a string literal (the case of "" & "..."), the result is the
2456 -- value of the right operand. This optimization is important when
2457 -- Is_Folded_In_Parser, to avoid copying an enormous right
2458 -- operand.
2459
2460 if Left_Len = 0 and then Nkind (Right_Str) = N_String_Literal then
2461 Folded_Val := Strval (Right_Str);
2462 else
2463 Start_String (Strval (Left_Str));
2464 end if;
2465
996ae0b0
RK
2466 else
2467 Start_String;
82c80734 2468 Store_String_Char (UI_To_CC (Char_Literal_Value (Left_Str)));
f91b40db 2469 Left_Len := 1;
996ae0b0
RK
2470 end if;
2471
b54ddf5a
BD
2472 -- Now append the characters of the right operand, unless we
2473 -- optimized the "" & "..." case above.
996ae0b0
RK
2474
2475 if Nkind (Right_Str) = N_String_Literal then
b54ddf5a
BD
2476 if Left_Len /= 0 then
2477 Store_String_Chars (Strval (Right_Str));
2478 Folded_Val := End_String;
2479 end if;
996ae0b0 2480 else
82c80734 2481 Store_String_Char (UI_To_CC (Char_Literal_Value (Right_Str)));
b54ddf5a 2482 Folded_Val := End_String;
996ae0b0
RK
2483 end if;
2484
2485 Set_Is_Static_Expression (N, Stat);
2486
354c3840
AC
2487 -- If left operand is the empty string, the result is the
2488 -- right operand, including its bounds if anomalous.
f91b40db 2489
354c3840
AC
2490 if Left_Len = 0
2491 and then Is_Array_Type (Etype (Right))
2492 and then Etype (Right) /= Any_String
2493 then
2494 Set_Etype (N, Etype (Right));
996ae0b0 2495 end if;
354c3840
AC
2496
2497 Fold_Str (N, Folded_Val, Static => Stat);
996ae0b0
RK
2498 end;
2499 end Eval_Concatenation;
2500
9b16cb57
RD
2501 ----------------------
2502 -- Eval_Entity_Name --
2503 ----------------------
2504
2505 -- This procedure is used for identifiers and expanded names other than
2506 -- named numbers (see Eval_Named_Integer, Eval_Named_Real. These are
2507 -- static if they denote a static constant (RM 4.9(6)) or if the name
2508 -- denotes an enumeration literal (RM 4.9(22)).
2509
2510 procedure Eval_Entity_Name (N : Node_Id) is
2511 Def_Id : constant Entity_Id := Entity (N);
2512 Val : Node_Id;
2513
2514 begin
2515 -- Enumeration literals are always considered to be constants
1e3c434f 2516 -- and cannot raise Constraint_Error (RM 4.9(22)).
9b16cb57
RD
2517
2518 if Ekind (Def_Id) = E_Enumeration_Literal then
2519 Set_Is_Static_Expression (N);
2520 return;
2521
2522 -- A name is static if it denotes a static constant (RM 4.9(5)), and
2523 -- we also copy Raise_Constraint_Error. Notice that even if non-static,
2524 -- it does not violate 10.2.1(8) here, since this is not a variable.
2525
2526 elsif Ekind (Def_Id) = E_Constant then
2527
e03f7ccf
AC
2528 -- Deferred constants must always be treated as nonstatic outside the
2529 -- scope of their full view.
9b16cb57
RD
2530
2531 if Present (Full_View (Def_Id))
2532 and then not In_Open_Scopes (Scope (Def_Id))
2533 then
2534 Val := Empty;
2535 else
2536 Val := Constant_Value (Def_Id);
2537 end if;
2538
2539 if Present (Val) then
2540 Set_Is_Static_Expression
2541 (N, Is_Static_Expression (Val)
2542 and then Is_Static_Subtype (Etype (Def_Id)));
2543 Set_Raises_Constraint_Error (N, Raises_Constraint_Error (Val));
2544
2545 if not Is_Static_Expression (N)
2546 and then not Is_Generic_Type (Etype (N))
2547 then
2548 Validate_Static_Object_Name (N);
2549 end if;
2550
e03f7ccf
AC
2551 -- Mark constant condition in SCOs
2552
2553 if Generate_SCO
2554 and then Comes_From_Source (N)
2555 and then Is_Boolean_Type (Etype (Def_Id))
2556 and then Compile_Time_Known_Value (N)
2557 then
2558 Set_SCO_Condition (N, Expr_Value_E (N) = Standard_True);
2559 end if;
2560
9b16cb57
RD
2561 return;
2562 end if;
bbab2db3
GD
2563
2564 -- Ada 202x (AI12-0075): If checking for potentially static expressions
2565 -- is enabled and we have a reference to a formal parameter of mode in,
2566 -- substitute a static value for the reference, to allow folding the
2567 -- expression. This supports checking the requirement of RM 6.8(5.3/5)
2568 -- in Analyze_Expression_Function.
2569
2570 elsif Ekind (Def_Id) = E_In_Parameter
2571 and then Checking_Potentially_Static_Expression
8cd5951d 2572 and then Is_Static_Function (Scope (Def_Id))
bbab2db3 2573 then
8cd5951d 2574 Fold_Dummy (N, Etype (Def_Id));
9b16cb57
RD
2575 end if;
2576
2577 -- Fall through if the name is not static
2578
2579 Validate_Static_Object_Name (N);
2580 end Eval_Entity_Name;
2581
2582 ------------------------
2583 -- Eval_If_Expression --
2584 ------------------------
996ae0b0 2585
9b16cb57 2586 -- We can fold to a static expression if the condition and both dependent
1cf3727f 2587 -- expressions are static. Otherwise, the only required processing is to do
4d777a71 2588 -- the check for non-static context for the then and else expressions.
996ae0b0 2589
9b16cb57 2590 procedure Eval_If_Expression (N : Node_Id) is
4d777a71
AC
2591 Condition : constant Node_Id := First (Expressions (N));
2592 Then_Expr : constant Node_Id := Next (Condition);
2593 Else_Expr : constant Node_Id := Next (Then_Expr);
2594 Result : Node_Id;
2595 Non_Result : Node_Id;
2596
2597 Rstat : constant Boolean :=
2598 Is_Static_Expression (Condition)
2599 and then
2600 Is_Static_Expression (Then_Expr)
2601 and then
2602 Is_Static_Expression (Else_Expr);
edab6088 2603 -- True if result is static
4d777a71 2604
996ae0b0 2605 begin
edab6088
RD
2606 -- If result not static, nothing to do, otherwise set static result
2607
2608 if not Rstat then
2609 return;
2610 else
2611 Set_Is_Static_Expression (N);
2612 end if;
2613
4d777a71
AC
2614 -- If any operand is Any_Type, just propagate to result and do not try
2615 -- to fold, this prevents cascaded errors.
2616
2617 if Etype (Condition) = Any_Type or else
2618 Etype (Then_Expr) = Any_Type or else
2619 Etype (Else_Expr) = Any_Type
2620 then
2621 Set_Etype (N, Any_Type);
2622 Set_Is_Static_Expression (N, False);
2623 return;
edab6088
RD
2624 end if;
2625
1e3c434f 2626 -- If condition raises Constraint_Error then we have already signaled
edab6088
RD
2627 -- an error, and we just propagate to the result and do not fold.
2628
2629 if Raises_Constraint_Error (Condition) then
2630 Set_Raises_Constraint_Error (N);
2631 return;
2632 end if;
4d777a71
AC
2633
2634 -- Static case where we can fold. Note that we don't try to fold cases
2635 -- where the condition is known at compile time, but the result is
2636 -- non-static. This avoids possible cases of infinite recursion where
2637 -- the expander puts in a redundant test and we remove it. Instead we
2638 -- deal with these cases in the expander.
2639
edab6088 2640 -- Select result operand
4d777a71 2641
edab6088
RD
2642 if Is_True (Expr_Value (Condition)) then
2643 Result := Then_Expr;
2644 Non_Result := Else_Expr;
2645 else
2646 Result := Else_Expr;
2647 Non_Result := Then_Expr;
2648 end if;
4d777a71 2649
edab6088 2650 -- Note that it does not matter if the non-result operand raises a
1e3c434f
BD
2651 -- Constraint_Error, but if the result raises Constraint_Error then we
2652 -- replace the node with a raise Constraint_Error. This will properly
edab6088 2653 -- propagate Raises_Constraint_Error since this flag is set in Result.
4d777a71 2654
edab6088
RD
2655 if Raises_Constraint_Error (Result) then
2656 Rewrite_In_Raise_CE (N, Result);
2657 Check_Non_Static_Context (Non_Result);
4d777a71 2658
edab6088 2659 -- Otherwise the result operand replaces the original node
4d777a71
AC
2660
2661 else
edab6088
RD
2662 Rewrite (N, Relocate_Node (Result));
2663 Set_Is_Static_Expression (N);
4d777a71 2664 end if;
9b16cb57 2665 end Eval_If_Expression;
996ae0b0
RK
2666
2667 ----------------------------
2668 -- Eval_Indexed_Component --
2669 ----------------------------
2670
8cbb664e
MG
2671 -- Indexed components are never static, so we need to perform the check
2672 -- for non-static context on the index values. Then, we check if the
2673 -- value can be obtained at compile time, even though it is non-static.
996ae0b0
RK
2674
2675 procedure Eval_Indexed_Component (N : Node_Id) is
2676 Expr : Node_Id;
2677
2678 begin
fbf5a39b
AC
2679 -- Check for non-static context on index values
2680
996ae0b0
RK
2681 Expr := First (Expressions (N));
2682 while Present (Expr) loop
2683 Check_Non_Static_Context (Expr);
2684 Next (Expr);
2685 end loop;
2686
fbf5a39b
AC
2687 -- If the indexed component appears in an object renaming declaration
2688 -- then we do not want to try to evaluate it, since in this case we
2689 -- need the identity of the array element.
2690
2691 if Nkind (Parent (N)) = N_Object_Renaming_Declaration then
2692 return;
2693
2694 -- Similarly if the indexed component appears as the prefix of an
2695 -- attribute we don't want to evaluate it, because at least for
c94bbfbe 2696 -- some cases of attributes we need the identify (e.g. Access, Size).
fbf5a39b
AC
2697
2698 elsif Nkind (Parent (N)) = N_Attribute_Reference then
2699 return;
2700 end if;
2701
2702 -- Note: there are other cases, such as the left side of an assignment,
2703 -- or an OUT parameter for a call, where the replacement results in the
2704 -- illegal use of a constant, But these cases are illegal in the first
2705 -- place, so the replacement, though silly, is harmless.
2706
2707 -- Now see if this is a constant array reference
8cbb664e
MG
2708
2709 if List_Length (Expressions (N)) = 1
2710 and then Is_Entity_Name (Prefix (N))
2711 and then Ekind (Entity (Prefix (N))) = E_Constant
2712 and then Present (Constant_Value (Entity (Prefix (N))))
2713 then
2714 declare
2715 Loc : constant Source_Ptr := Sloc (N);
2716 Arr : constant Node_Id := Constant_Value (Entity (Prefix (N)));
2717 Sub : constant Node_Id := First (Expressions (N));
2718
2719 Atyp : Entity_Id;
2720 -- Type of array
2721
2722 Lin : Nat;
2723 -- Linear one's origin subscript value for array reference
2724
2725 Lbd : Node_Id;
2726 -- Lower bound of the first array index
2727
2728 Elm : Node_Id;
2729 -- Value from constant array
2730
2731 begin
2732 Atyp := Etype (Arr);
2733
2734 if Is_Access_Type (Atyp) then
2735 Atyp := Designated_Type (Atyp);
2736 end if;
2737
9dbf1c3e
RD
2738 -- If we have an array type (we should have but perhaps there are
2739 -- error cases where this is not the case), then see if we can do
2740 -- a constant evaluation of the array reference.
8cbb664e 2741
ebd34478 2742 if Is_Array_Type (Atyp) and then Atyp /= Any_Composite then
8cbb664e
MG
2743 if Ekind (Atyp) = E_String_Literal_Subtype then
2744 Lbd := String_Literal_Low_Bound (Atyp);
2745 else
2746 Lbd := Type_Low_Bound (Etype (First_Index (Atyp)));
2747 end if;
2748
2749 if Compile_Time_Known_Value (Sub)
2750 and then Nkind (Arr) = N_Aggregate
2751 and then Compile_Time_Known_Value (Lbd)
2752 and then Is_Discrete_Type (Component_Type (Atyp))
2753 then
2754 Lin := UI_To_Int (Expr_Value (Sub) - Expr_Value (Lbd)) + 1;
2755
2756 if List_Length (Expressions (Arr)) >= Lin then
2757 Elm := Pick (Expressions (Arr), Lin);
2758
d3bbfc59 2759 -- If the resulting expression is compile-time-known,
8cbb664e
MG
2760 -- then we can rewrite the indexed component with this
2761 -- value, being sure to mark the result as non-static.
2762 -- We also reset the Sloc, in case this generates an
2763 -- error later on (e.g. 136'Access).
2764
2765 if Compile_Time_Known_Value (Elm) then
2766 Rewrite (N, Duplicate_Subexpr_No_Checks (Elm));
2767 Set_Is_Static_Expression (N, False);
2768 Set_Sloc (N, Loc);
2769 end if;
2770 end if;
9fbb3ae6
AC
2771
2772 -- We can also constant-fold if the prefix is a string literal.
2773 -- This will be useful in an instantiation or an inlining.
2774
2775 elsif Compile_Time_Known_Value (Sub)
2776 and then Nkind (Arr) = N_String_Literal
2777 and then Compile_Time_Known_Value (Lbd)
2778 and then Expr_Value (Lbd) = 1
2779 and then Expr_Value (Sub) <=
2780 String_Literal_Length (Etype (Arr))
2781 then
2782 declare
2783 C : constant Char_Code :=
2784 Get_String_Char (Strval (Arr),
2785 UI_To_Int (Expr_Value (Sub)));
2786 begin
2787 Set_Character_Literal_Name (C);
2788
2789 Elm :=
2790 Make_Character_Literal (Loc,
2791 Chars => Name_Find,
2792 Char_Literal_Value => UI_From_CC (C));
2793 Set_Etype (Elm, Component_Type (Atyp));
2794 Rewrite (N, Duplicate_Subexpr_No_Checks (Elm));
2795 Set_Is_Static_Expression (N, False);
2796 end;
8cbb664e
MG
2797 end if;
2798 end if;
2799 end;
2800 end if;
996ae0b0
RK
2801 end Eval_Indexed_Component;
2802
2803 --------------------------
2804 -- Eval_Integer_Literal --
2805 --------------------------
2806
2807 -- Numeric literals are static (RM 4.9(1)), and have already been marked
2808 -- as static by the analyzer. The reason we did it that early is to allow
2809 -- the possibility of turning off the Is_Static_Expression flag after
9dbf1c3e
RD
2810 -- analysis, but before resolution, when integer literals are generated in
2811 -- the expander that do not correspond to static expressions.
996ae0b0
RK
2812
2813 procedure Eval_Integer_Literal (N : Node_Id) is
400ad4e9 2814 function In_Any_Integer_Context (Context : Node_Id) return Boolean;
1d1bd8ad
AC
2815 -- If the literal is resolved with a specific type in a context where
2816 -- the expected type is Any_Integer, there are no range checks on the
2817 -- literal. By the time the literal is evaluated, it carries the type
2818 -- imposed by the enclosing expression, and we must recover the context
2819 -- to determine that Any_Integer is meant.
5d09245e
AC
2820
2821 ----------------------------
09494c32 2822 -- In_Any_Integer_Context --
5d09245e
AC
2823 ----------------------------
2824
400ad4e9 2825 function In_Any_Integer_Context (Context : Node_Id) return Boolean is
5d09245e
AC
2826 begin
2827 -- Any_Integer also appears in digits specifications for real types,
1d1bd8ad
AC
2828 -- but those have bounds smaller that those of any integer base type,
2829 -- so we can safely ignore these cases.
5d09245e 2830
400ad4e9 2831 return
4a08c95c
AC
2832 Nkind (Context) in N_Attribute_Definition_Clause
2833 | N_Attribute_Reference
2834 | N_Modular_Type_Definition
2835 | N_Number_Declaration
2836 | N_Signed_Integer_Type_Definition;
5d09245e
AC
2837 end In_Any_Integer_Context;
2838
400ad4e9
HK
2839 -- Local variables
2840
2841 Par : constant Node_Id := Parent (N);
2842 Typ : constant Entity_Id := Etype (N);
2843
5d09245e
AC
2844 -- Start of processing for Eval_Integer_Literal
2845
996ae0b0
RK
2846 begin
2847 -- If the literal appears in a non-expression context, then it is
1d1bd8ad
AC
2848 -- certainly appearing in a non-static context, so check it. This is
2849 -- actually a redundant check, since Check_Non_Static_Context would
42f9f0fc 2850 -- check it, but it seems worthwhile to optimize out the call.
996ae0b0 2851
721500ab
JS
2852 -- Additionally, when the literal appears within an if or case
2853 -- expression it must be checked as well. However, due to the literal
2854 -- appearing within a conditional statement, expansion greatly changes
2855 -- the nature of its context and performing some of the checks within
2856 -- Check_Non_Static_Context on an expanded literal may lead to spurious
2857 -- and misleading warnings.
a51368fa 2858
4a08c95c 2859 if (Nkind (Par) in N_Case_Expression_Alternative | N_If_Expression
c94bbfbe 2860 or else Nkind (Par) not in N_Subexpr)
4a08c95c
AC
2861 and then (Nkind (Par) not in N_Case_Expression_Alternative
2862 | N_If_Expression
721500ab 2863 or else Comes_From_Source (N))
400ad4e9 2864 and then not In_Any_Integer_Context (Par)
5d09245e 2865 then
996ae0b0
RK
2866 Check_Non_Static_Context (N);
2867 end if;
2868
2869 -- Modular integer literals must be in their base range
2870
400ad4e9
HK
2871 if Is_Modular_Integer_Type (Typ)
2872 and then Is_Out_Of_Range (N, Base_Type (Typ), Assume_Valid => True)
996ae0b0
RK
2873 then
2874 Out_Of_Range (N);
2875 end if;
2876 end Eval_Integer_Literal;
2877
8cd5951d
AC
2878 -------------------------
2879 -- Eval_Intrinsic_Call --
2880 -------------------------
2881
2882 procedure Eval_Intrinsic_Call (N : Node_Id; E : Entity_Id) is
2883
2884 procedure Eval_Shift (N : Node_Id; E : Entity_Id; Op : Node_Kind);
2885 -- Evaluate an intrinsic shift call N on the given subprogram E.
2886 -- Op is the kind for the shift node.
2887
2888 ----------------
2889 -- Eval_Shift --
2890 ----------------
2891
2892 procedure Eval_Shift (N : Node_Id; E : Entity_Id; Op : Node_Kind) is
2893 Left : constant Node_Id := First_Actual (N);
2894 Right : constant Node_Id := Next_Actual (Left);
2895 Static : constant Boolean := Is_Static_Function (E);
2896
2897 begin
2898 if Static then
2899 if Checking_Potentially_Static_Expression then
2900 Fold_Dummy (N, Etype (N));
2901 return;
2902 end if;
2903 end if;
2904
2905 Fold_Shift
2906 (N, Left, Right, Op, Static => Static, Check_Elab => not Static);
2907 end Eval_Shift;
2908
2909 Nam : Name_Id;
2910
2911 begin
2912 -- Nothing to do if the intrinsic is handled by the back end.
2913
2914 if Present (Interface_Name (E)) then
2915 return;
2916 end if;
2917
2918 -- Intrinsic calls as part of a static function is a language extension.
2919
2920 if Checking_Potentially_Static_Expression
2921 and then not Extensions_Allowed
2922 then
2923 return;
2924 end if;
2925
2926 -- If we have a renaming, expand the call to the original operation,
2927 -- which must itself be intrinsic, since renaming requires matching
2928 -- conventions and this has already been checked.
2929
2930 if Present (Alias (E)) then
2931 Eval_Intrinsic_Call (N, Alias (E));
2932 return;
2933 end if;
2934
2935 -- If the intrinsic subprogram is generic, gets its original name
2936
2937 if Present (Parent (E))
2938 and then Present (Generic_Parent (Parent (E)))
2939 then
2940 Nam := Chars (Generic_Parent (Parent (E)));
2941 else
2942 Nam := Chars (E);
2943 end if;
2944
2945 case Nam is
8ad6af8f
AC
2946 when Name_Shift_Left =>
2947 Eval_Shift (N, E, N_Op_Shift_Left);
2948 when Name_Shift_Right =>
2949 Eval_Shift (N, E, N_Op_Shift_Right);
2950 when Name_Shift_Right_Arithmetic =>
2951 Eval_Shift (N, E, N_Op_Shift_Right_Arithmetic);
2952 when others =>
2953 null;
8cd5951d
AC
2954 end case;
2955 end Eval_Intrinsic_Call;
2956
996ae0b0
RK
2957 ---------------------
2958 -- Eval_Logical_Op --
2959 ---------------------
2960
2961 -- Logical operations are static functions, so the result is potentially
2962 -- static if both operands are potentially static (RM 4.9(7), 4.9(20)).
2963
2964 procedure Eval_Logical_Op (N : Node_Id) is
2965 Left : constant Node_Id := Left_Opnd (N);
2966 Right : constant Node_Id := Right_Opnd (N);
2967 Stat : Boolean;
2968 Fold : Boolean;
2969
2970 begin
2971 -- If not foldable we are done
2972
2973 Test_Expression_Is_Foldable (N, Left, Right, Stat, Fold);
2974
2975 if not Fold then
2976 return;
2977 end if;
2978
2979 -- Compile time evaluation of logical operation
2980
2981 declare
2982 Left_Int : constant Uint := Expr_Value (Left);
2983 Right_Int : constant Uint := Expr_Value (Right);
2984
2985 begin
7a5b62b0 2986 if Is_Modular_Integer_Type (Etype (N)) then
996ae0b0
RK
2987 declare
2988 Left_Bits : Bits (0 .. UI_To_Int (Esize (Etype (N))) - 1);
2989 Right_Bits : Bits (0 .. UI_To_Int (Esize (Etype (N))) - 1);
2990
2991 begin
2992 To_Bits (Left_Int, Left_Bits);
2993 To_Bits (Right_Int, Right_Bits);
2994
2995 -- Note: should really be able to use array ops instead of
8cd5951d
AC
2996 -- these loops, but they break the build with a cryptic error
2997 -- during the bind of gnat1 likely due to a wrong computation
2998 -- of a date or checksum.
996ae0b0
RK
2999
3000 if Nkind (N) = N_Op_And then
3001 for J in Left_Bits'Range loop
3002 Left_Bits (J) := Left_Bits (J) and Right_Bits (J);
3003 end loop;
3004
3005 elsif Nkind (N) = N_Op_Or then
3006 for J in Left_Bits'Range loop
3007 Left_Bits (J) := Left_Bits (J) or Right_Bits (J);
3008 end loop;
3009
3010 else
3011 pragma Assert (Nkind (N) = N_Op_Xor);
3012
3013 for J in Left_Bits'Range loop
3014 Left_Bits (J) := Left_Bits (J) xor Right_Bits (J);
3015 end loop;
3016 end if;
3017
fbf5a39b 3018 Fold_Uint (N, From_Bits (Left_Bits, Etype (N)), Stat);
996ae0b0
RK
3019 end;
3020
3021 else
3022 pragma Assert (Is_Boolean_Type (Etype (N)));
3023
3024 if Nkind (N) = N_Op_And then
3025 Fold_Uint (N,
fbf5a39b 3026 Test (Is_True (Left_Int) and then Is_True (Right_Int)), Stat);
996ae0b0
RK
3027
3028 elsif Nkind (N) = N_Op_Or then
3029 Fold_Uint (N,
fbf5a39b 3030 Test (Is_True (Left_Int) or else Is_True (Right_Int)), Stat);
996ae0b0
RK
3031
3032 else
3033 pragma Assert (Nkind (N) = N_Op_Xor);
3034 Fold_Uint (N,
fbf5a39b 3035 Test (Is_True (Left_Int) xor Is_True (Right_Int)), Stat);
996ae0b0
RK
3036 end if;
3037 end if;
996ae0b0
RK
3038 end;
3039 end Eval_Logical_Op;
3040
3041 ------------------------
3042 -- Eval_Membership_Op --
3043 ------------------------
3044
1d1bd8ad
AC
3045 -- A membership test is potentially static if the expression is static, and
3046 -- the range is a potentially static range, or is a subtype mark denoting a
3047 -- static subtype (RM 4.9(12)).
996ae0b0
RK
3048
3049 procedure Eval_Membership_Op (N : Node_Id) is
edab6088 3050 Alts : constant List_Id := Alternatives (N);
87feba05
AC
3051 Choice : constant Node_Id := Right_Opnd (N);
3052 Expr : constant Node_Id := Left_Opnd (N);
edab6088 3053 Result : Match_Result;
996ae0b0
RK
3054
3055 begin
1d1bd8ad
AC
3056 -- Ignore if error in either operand, except to make sure that Any_Type
3057 -- is properly propagated to avoid junk cascaded errors.
996ae0b0 3058
87feba05
AC
3059 if Etype (Expr) = Any_Type
3060 or else (Present (Choice) and then Etype (Choice) = Any_Type)
edab6088 3061 then
996ae0b0
RK
3062 Set_Etype (N, Any_Type);
3063 return;
3064 end if;
3065
edab6088 3066 -- If left operand non-static, then nothing to do
996ae0b0 3067
87feba05 3068 if not Is_Static_Expression (Expr) then
edab6088
RD
3069 return;
3070 end if;
996ae0b0 3071
edab6088 3072 -- If choice is non-static, left operand is in non-static context
996ae0b0 3073
87feba05 3074 if (Present (Choice) and then not Is_Static_Choice (Choice))
edab6088
RD
3075 or else (Present (Alts) and then not Is_Static_Choice_List (Alts))
3076 then
87feba05 3077 Check_Non_Static_Context (Expr);
edab6088
RD
3078 return;
3079 end if;
996ae0b0 3080
edab6088 3081 -- Otherwise we definitely have a static expression
996ae0b0 3082
edab6088 3083 Set_Is_Static_Expression (N);
996ae0b0 3084
1e3c434f 3085 -- If left operand raises Constraint_Error, propagate and we are done
996ae0b0 3086
87feba05 3087 if Raises_Constraint_Error (Expr) then
edab6088 3088 Set_Raises_Constraint_Error (N, True);
996ae0b0 3089
edab6088 3090 -- See if we match
996ae0b0 3091
edab6088 3092 else
87feba05
AC
3093 if Present (Choice) then
3094 Result := Choice_Matches (Expr, Choice);
996ae0b0 3095 else
87feba05 3096 Result := Choices_Match (Expr, Alts);
996ae0b0
RK
3097 end if;
3098
edab6088
RD
3099 -- If result is Non_Static, it means that we raise Constraint_Error,
3100 -- since we already tested that the operands were themselves static.
996ae0b0 3101
edab6088
RD
3102 if Result = Non_Static then
3103 Set_Raises_Constraint_Error (N);
996ae0b0 3104
edab6088 3105 -- Otherwise we have our result (flipped if NOT IN case)
996ae0b0
RK
3106
3107 else
edab6088
RD
3108 Fold_Uint
3109 (N, Test ((Result = Match) xor (Nkind (N) = N_Not_In)), True);
3110 Warn_On_Known_Condition (N);
996ae0b0 3111 end if;
996ae0b0 3112 end if;
996ae0b0
RK
3113 end Eval_Membership_Op;
3114
3115 ------------------------
3116 -- Eval_Named_Integer --
3117 ------------------------
3118
3119 procedure Eval_Named_Integer (N : Node_Id) is
3120 begin
3121 Fold_Uint (N,
fbf5a39b 3122 Expr_Value (Expression (Declaration_Node (Entity (N)))), True);
996ae0b0
RK
3123 end Eval_Named_Integer;
3124
3125 ---------------------
3126 -- Eval_Named_Real --
3127 ---------------------
3128
3129 procedure Eval_Named_Real (N : Node_Id) is
3130 begin
3131 Fold_Ureal (N,
fbf5a39b 3132 Expr_Value_R (Expression (Declaration_Node (Entity (N)))), True);
996ae0b0
RK
3133 end Eval_Named_Real;
3134
3135 -------------------
3136 -- Eval_Op_Expon --
3137 -------------------
3138
3139 -- Exponentiation is a static functions, so the result is potentially
3140 -- static if both operands are potentially static (RM 4.9(7), 4.9(20)).
3141
3142 procedure Eval_Op_Expon (N : Node_Id) is
3143 Left : constant Node_Id := Left_Opnd (N);
3144 Right : constant Node_Id := Right_Opnd (N);
3145 Stat : Boolean;
3146 Fold : Boolean;
3147
3148 begin
3149 -- If not foldable we are done
3150
6c3c671e
AC
3151 Test_Expression_Is_Foldable
3152 (N, Left, Right, Stat, Fold, CRT_Safe => True);
3153
3154 -- Return if not foldable
996ae0b0
RK
3155
3156 if not Fold then
3157 return;
3158 end if;
3159
6c3c671e
AC
3160 if Configurable_Run_Time_Mode and not Stat then
3161 return;
3162 end if;
3163
996ae0b0
RK
3164 -- Fold exponentiation operation
3165
3166 declare
3167 Right_Int : constant Uint := Expr_Value (Right);
3168
3169 begin
3170 -- Integer case
3171
3172 if Is_Integer_Type (Etype (Left)) then
3173 declare
3174 Left_Int : constant Uint := Expr_Value (Left);
3175 Result : Uint;
3176
3177 begin
22cb89b5
AC
3178 -- Exponentiation of an integer raises Constraint_Error for a
3179 -- negative exponent (RM 4.5.6).
996ae0b0
RK
3180
3181 if Right_Int < 0 then
3182 Apply_Compile_Time_Constraint_Error
80298c3b 3183 (N, "integer exponent negative", CE_Range_Check_Failed,
fbf5a39b 3184 Warn => not Stat);
996ae0b0
RK
3185 return;
3186
3187 else
3188 if OK_Bits (N, Num_Bits (Left_Int) * Right_Int) then
3189 Result := Left_Int ** Right_Int;
3190 else
3191 Result := Left_Int;
3192 end if;
3193
3194 if Is_Modular_Integer_Type (Etype (N)) then
3195 Result := Result mod Modulus (Etype (N));
3196 end if;
3197
fbf5a39b 3198 Fold_Uint (N, Result, Stat);
996ae0b0
RK
3199 end if;
3200 end;
3201
3202 -- Real case
3203
3204 else
3205 declare
3206 Left_Real : constant Ureal := Expr_Value_R (Left);
3207
3208 begin
3209 -- Cannot have a zero base with a negative exponent
3210
3211 if UR_Is_Zero (Left_Real) then
3212
3213 if Right_Int < 0 then
3214 Apply_Compile_Time_Constraint_Error
80298c3b 3215 (N, "zero ** negative integer", CE_Range_Check_Failed,
fbf5a39b 3216 Warn => not Stat);
996ae0b0
RK
3217 return;
3218 else
fbf5a39b 3219 Fold_Ureal (N, Ureal_0, Stat);
996ae0b0
RK
3220 end if;
3221
3222 else
fbf5a39b 3223 Fold_Ureal (N, Left_Real ** Right_Int, Stat);
996ae0b0
RK
3224 end if;
3225 end;
3226 end if;
996ae0b0
RK
3227 end;
3228 end Eval_Op_Expon;
3229
3230 -----------------
3231 -- Eval_Op_Not --
3232 -----------------
3233
23a9215f 3234 -- The not operation is a static function, so the result is potentially
996ae0b0
RK
3235 -- static if the operand is potentially static (RM 4.9(7), 4.9(20)).
3236
3237 procedure Eval_Op_Not (N : Node_Id) is
3238 Right : constant Node_Id := Right_Opnd (N);
3239 Stat : Boolean;
3240 Fold : Boolean;
3241
3242 begin
3243 -- If not foldable we are done
3244
3245 Test_Expression_Is_Foldable (N, Right, Stat, Fold);
3246
3247 if not Fold then
3248 return;
3249 end if;
3250
3251 -- Fold not operation
3252
3253 declare
3254 Rint : constant Uint := Expr_Value (Right);
3255 Typ : constant Entity_Id := Etype (N);
3256
3257 begin
1d1bd8ad
AC
3258 -- Negation is equivalent to subtracting from the modulus minus one.
3259 -- For a binary modulus this is equivalent to the ones-complement of
a95f708e 3260 -- the original value. For a nonbinary modulus this is an arbitrary
1d1bd8ad 3261 -- but consistent definition.
996ae0b0
RK
3262
3263 if Is_Modular_Integer_Type (Typ) then
fbf5a39b 3264 Fold_Uint (N, Modulus (Typ) - 1 - Rint, Stat);
80298c3b 3265 else pragma Assert (Is_Boolean_Type (Typ));
fbf5a39b 3266 Fold_Uint (N, Test (not Is_True (Rint)), Stat);
996ae0b0
RK
3267 end if;
3268
3269 Set_Is_Static_Expression (N, Stat);
3270 end;
3271 end Eval_Op_Not;
3272
3273 -------------------------------
3274 -- Eval_Qualified_Expression --
3275 -------------------------------
3276
3277 -- A qualified expression is potentially static if its subtype mark denotes
c94bbfbe 3278 -- a static subtype and its expression is potentially static (RM 4.9 (10)).
996ae0b0
RK
3279
3280 procedure Eval_Qualified_Expression (N : Node_Id) is
3281 Operand : constant Node_Id := Expression (N);
3282 Target_Type : constant Entity_Id := Entity (Subtype_Mark (N));
3283
07fc65c4
GB
3284 Stat : Boolean;
3285 Fold : Boolean;
3286 Hex : Boolean;
996ae0b0
RK
3287
3288 begin
1d1bd8ad 3289 -- Can only fold if target is string or scalar and subtype is static.
22cb89b5
AC
3290 -- Also, do not fold if our parent is an allocator (this is because the
3291 -- qualified expression is really part of the syntactic structure of an
3292 -- allocator, and we do not want to end up with something that
996ae0b0
RK
3293 -- corresponds to "new 1" where the 1 is the result of folding a
3294 -- qualified expression).
3295
3296 if not Is_Static_Subtype (Target_Type)
3297 or else Nkind (Parent (N)) = N_Allocator
3298 then
3299 Check_Non_Static_Context (Operand);
af152989 3300
c94bbfbe 3301 -- If operand is known to raise Constraint_Error, set the flag on the
1d1bd8ad 3302 -- expression so it does not get optimized away.
af152989
AC
3303
3304 if Nkind (Operand) = N_Raise_Constraint_Error then
3305 Set_Raises_Constraint_Error (N);
3306 end if;
7324bf49 3307
996ae0b0 3308 return;
85f6d7e2
GD
3309
3310 -- Also return if a semantic error has been posted on the node, as we
3311 -- don't want to fold in that case (for GNATprove, the node might lead
3312 -- to Constraint_Error but won't have been replaced with a raise node
3313 -- or marked as raising CE).
3314
3315 elsif Error_Posted (N) then
3316 return;
996ae0b0
RK
3317 end if;
3318
3319 -- If not foldable we are done
3320
3321 Test_Expression_Is_Foldable (N, Operand, Stat, Fold);
3322
3323 if not Fold then
3324 return;
3325
1e3c434f 3326 -- Don't try fold if target type has Constraint_Error bounds
996ae0b0
RK
3327
3328 elsif not Is_OK_Static_Subtype (Target_Type) then
3329 Set_Raises_Constraint_Error (N);
3330 return;
3331 end if;
3332
3333 -- Fold the result of qualification
3334
3335 if Is_Discrete_Type (Target_Type) then
c94bbfbe
PT
3336
3337 -- Save Print_In_Hex indication
3338
3339 Hex := Nkind (Operand) = N_Integer_Literal
3340 and then Print_In_Hex (Operand);
3341
fbf5a39b 3342 Fold_Uint (N, Expr_Value (Operand), Stat);
996ae0b0 3343
07fc65c4
GB
3344 -- Preserve Print_In_Hex indication
3345
3346 if Hex and then Nkind (N) = N_Integer_Literal then
3347 Set_Print_In_Hex (N);
3348 end if;
3349
996ae0b0 3350 elsif Is_Real_Type (Target_Type) then
fbf5a39b 3351 Fold_Ureal (N, Expr_Value_R (Operand), Stat);
996ae0b0
RK
3352
3353 else
fbf5a39b 3354 Fold_Str (N, Strval (Get_String_Val (Operand)), Stat);
996ae0b0
RK
3355
3356 if not Stat then
3357 Set_Is_Static_Expression (N, False);
3358 else
3359 Check_String_Literal_Length (N, Target_Type);
3360 end if;
3361
3362 return;
3363 end if;
3364
fbf5a39b
AC
3365 -- The expression may be foldable but not static
3366
3367 Set_Is_Static_Expression (N, Stat);
3368
c800f862 3369 if Is_Out_Of_Range (N, Etype (N), Assume_Valid => True) then
996ae0b0
RK
3370 Out_Of_Range (N);
3371 end if;
996ae0b0
RK
3372 end Eval_Qualified_Expression;
3373
3374 -----------------------
3375 -- Eval_Real_Literal --
3376 -----------------------
3377
3378 -- Numeric literals are static (RM 4.9(1)), and have already been marked
3379 -- as static by the analyzer. The reason we did it that early is to allow
3380 -- the possibility of turning off the Is_Static_Expression flag after
3381 -- analysis, but before resolution, when integer literals are generated
3382 -- in the expander that do not correspond to static expressions.
3383
3384 procedure Eval_Real_Literal (N : Node_Id) is
a1980be8
GB
3385 PK : constant Node_Kind := Nkind (Parent (N));
3386
996ae0b0 3387 begin
1d1bd8ad
AC
3388 -- If the literal appears in a non-expression context and not as part of
3389 -- a number declaration, then it is appearing in a non-static context,
3390 -- so check it.
996ae0b0 3391
a1980be8 3392 if PK not in N_Subexpr and then PK /= N_Number_Declaration then
996ae0b0
RK
3393 Check_Non_Static_Context (N);
3394 end if;
996ae0b0
RK
3395 end Eval_Real_Literal;
3396
3397 ------------------------
3398 -- Eval_Relational_Op --
3399 ------------------------
3400
8a95f4e8 3401 -- Relational operations are static functions, so the result is static if
3795dac6
AC
3402 -- both operands are static (RM 4.9(7), 4.9(20)), except that up to Ada
3403 -- 2012, for strings the result is never static, even if the operands are.
3404 -- The string case was relaxed in Ada 2020, see AI12-0201.
996ae0b0 3405
fc3a3f3b
RD
3406 -- However, for internally generated nodes, we allow string equality and
3407 -- inequality to be static. This is because we rewrite A in "ABC" as an
3408 -- equality test A = "ABC", and the former is definitely static.
3409
996ae0b0 3410 procedure Eval_Relational_Op (N : Node_Id) is
634a926b
AC
3411 Left : constant Node_Id := Left_Opnd (N);
3412 Right : constant Node_Id := Right_Opnd (N);
996ae0b0 3413
634a926b
AC
3414 procedure Decompose_Expr
3415 (Expr : Node_Id;
3416 Ent : out Entity_Id;
3417 Kind : out Character;
3418 Cons : out Uint;
3419 Orig : Boolean := True);
3420 -- Given expression Expr, see if it is of the form X [+/- K]. If so, Ent
3421 -- is set to the entity in X, Kind is 'F','L','E' for 'First or 'Last or
3422 -- simple entity, and Cons is the value of K. If the expression is not
3423 -- of the required form, Ent is set to Empty.
3424 --
3425 -- Orig indicates whether Expr is the original expression to consider,
2da8c8e2 3426 -- or if we are handling a subexpression (e.g. recursive call to
634a926b
AC
3427 -- Decompose_Expr).
3428
3429 procedure Fold_General_Op (Is_Static : Boolean);
3430 -- Attempt to fold arbitrary relational operator N. Flag Is_Static must
3431 -- be set when the operator denotes a static expression.
3432
3433 procedure Fold_Static_Real_Op;
3434 -- Attempt to fold static real type relational operator N
3435
3436 function Static_Length (Expr : Node_Id) return Uint;
3437 -- If Expr is an expression for a constrained array whose length is
3438 -- known at compile time, return the non-negative length, otherwise
3439 -- return -1.
3440
3441 --------------------
3442 -- Decompose_Expr --
3443 --------------------
3444
3445 procedure Decompose_Expr
3446 (Expr : Node_Id;
3447 Ent : out Entity_Id;
3448 Kind : out Character;
3449 Cons : out Uint;
3450 Orig : Boolean := True)
3451 is
3452 Exp : Node_Id;
996ae0b0 3453
634a926b
AC
3454 begin
3455 -- Assume that the expression does not meet the expected form
3456
3457 Cons := No_Uint;
3458 Ent := Empty;
3459 Kind := '?';
3460
3461 if Nkind (Expr) = N_Op_Add
3462 and then Compile_Time_Known_Value (Right_Opnd (Expr))
996ae0b0 3463 then
634a926b
AC
3464 Exp := Left_Opnd (Expr);
3465 Cons := Expr_Value (Right_Opnd (Expr));
3466
3467 elsif Nkind (Expr) = N_Op_Subtract
3468 and then Compile_Time_Known_Value (Right_Opnd (Expr))
3469 then
3470 Exp := Left_Opnd (Expr);
3471 Cons := -Expr_Value (Right_Opnd (Expr));
3472
3473 -- If the bound is a constant created to remove side effects, recover
3474 -- the original expression to see if it has one of the recognizable
3475 -- forms.
3476
3477 elsif Nkind (Expr) = N_Identifier
3478 and then not Comes_From_Source (Entity (Expr))
3479 and then Ekind (Entity (Expr)) = E_Constant
3480 and then Nkind (Parent (Entity (Expr))) = N_Object_Declaration
3481 then
3482 Exp := Expression (Parent (Entity (Expr)));
3483 Decompose_Expr (Exp, Ent, Kind, Cons, Orig => False);
3484
3485 -- If original expression includes an entity, create a reference
3486 -- to it for use below.
3487
3488 if Present (Ent) then
3489 Exp := New_Occurrence_Of (Ent, Sloc (Ent));
3490 else
3491 return;
3492 end if;
3493
3494 else
3495 -- Only consider the case of X + 0 for a full expression, and
3496 -- not when recursing, otherwise we may end up with evaluating
3497 -- expressions not known at compile time to 0.
3498
3499 if Orig then
3500 Exp := Expr;
3501 Cons := Uint_0;
3502 else
3503 return;
3504 end if;
996ae0b0
RK
3505 end if;
3506
634a926b 3507 -- At this stage Exp is set to the potential X
45fc7ddb 3508
634a926b
AC
3509 if Nkind (Exp) = N_Attribute_Reference then
3510 if Attribute_Name (Exp) = Name_First then
3511 Kind := 'F';
3512 elsif Attribute_Name (Exp) = Name_Last then
3513 Kind := 'L';
3514 else
3515 return;
3516 end if;
996ae0b0 3517
634a926b 3518 Exp := Prefix (Exp);
fbf5a39b 3519
634a926b
AC
3520 else
3521 Kind := 'E';
3522 end if;
996ae0b0 3523
634a926b
AC
3524 if Is_Entity_Name (Exp) and then Present (Entity (Exp)) then
3525 Ent := Entity (Exp);
3526 end if;
3527 end Decompose_Expr;
3528
3529 ---------------------
3530 -- Fold_General_Op --
3531 ---------------------
3532
3533 procedure Fold_General_Op (Is_Static : Boolean) is
3534 CR : constant Compare_Result :=
3535 Compile_Time_Compare (Left, Right, Assume_Valid => False);
45fc7ddb 3536
634a926b
AC
3537 Result : Boolean;
3538
3539 begin
3540 if CR = Unknown then
3541 return;
3542 end if;
3543
3544 case Nkind (N) is
3545 when N_Op_Eq =>
3546 if CR = EQ then
3547 Result := True;
3548 elsif CR = NE or else CR = GT or else CR = LT then
3549 Result := False;
3550 else
45fc7ddb
HK
3551 return;
3552 end if;
3553
634a926b
AC
3554 when N_Op_Ge =>
3555 if CR = GT or else CR = EQ or else CR = GE then
3556 Result := True;
3557 elsif CR = LT then
3558 Result := False;
3559 else
45fc7ddb
HK
3560 return;
3561 end if;
996ae0b0 3562
634a926b
AC
3563 when N_Op_Gt =>
3564 if CR = GT then
3565 Result := True;
3566 elsif CR = EQ or else CR = LT or else CR = LE then
3567 Result := False;
3568 else
3569 return;
3570 end if;
45fc7ddb 3571
634a926b
AC
3572 when N_Op_Le =>
3573 if CR = LT or else CR = EQ or else CR = LE then
3574 Result := True;
3575 elsif CR = GT then
3576 Result := False;
3577 else
3578 return;
3579 end if;
45fc7ddb 3580
634a926b
AC
3581 when N_Op_Lt =>
3582 if CR = LT then
3583 Result := True;
3584 elsif CR = EQ or else CR = GT or else CR = GE then
3585 Result := False;
3586 else
3587 return;
3588 end if;
45fc7ddb 3589
634a926b
AC
3590 when N_Op_Ne =>
3591 if CR = NE or else CR = GT or else CR = LT then
3592 Result := True;
3593 elsif CR = EQ then
3594 Result := False;
3595 else
45fc7ddb
HK
3596 return;
3597 end if;
3598
634a926b
AC
3599 when others =>
3600 raise Program_Error;
3601 end case;
45fc7ddb 3602
634a926b
AC
3603 -- Determine the potential outcome of the relation assuming the
3604 -- operands are valid and emit a warning when the relation yields
3605 -- True or False only in the presence of invalid values.
3fbbbd1e 3606
634a926b 3607 Warn_On_Constant_Valid_Condition (N);
e49de265 3608
634a926b
AC
3609 Fold_Uint (N, Test (Result), Is_Static);
3610 end Fold_General_Op;
e49de265 3611
634a926b
AC
3612 -------------------------
3613 -- Fold_Static_Real_Op --
3614 -------------------------
45fc7ddb 3615
634a926b
AC
3616 procedure Fold_Static_Real_Op is
3617 Left_Real : constant Ureal := Expr_Value_R (Left);
3618 Right_Real : constant Ureal := Expr_Value_R (Right);
3619 Result : Boolean;
996ae0b0 3620
634a926b
AC
3621 begin
3622 case Nkind (N) is
3623 when N_Op_Eq => Result := (Left_Real = Right_Real);
3624 when N_Op_Ge => Result := (Left_Real >= Right_Real);
3625 when N_Op_Gt => Result := (Left_Real > Right_Real);
3626 when N_Op_Le => Result := (Left_Real <= Right_Real);
3627 when N_Op_Lt => Result := (Left_Real < Right_Real);
3628 when N_Op_Ne => Result := (Left_Real /= Right_Real);
3629 when others => raise Program_Error;
3630 end case;
3631
3632 Fold_Uint (N, Test (Result), True);
3633 end Fold_Static_Real_Op;
8a95f4e8 3634
634a926b
AC
3635 -------------------
3636 -- Static_Length --
3637 -------------------
8a95f4e8 3638
634a926b
AC
3639 function Static_Length (Expr : Node_Id) return Uint is
3640 Cons1 : Uint;
3641 Cons2 : Uint;
3642 Ent1 : Entity_Id;
3643 Ent2 : Entity_Id;
3644 Kind1 : Character;
3645 Kind2 : Character;
3646 Typ : Entity_Id;
8a95f4e8 3647
634a926b
AC
3648 begin
3649 -- First easy case string literal
8a95f4e8 3650
634a926b
AC
3651 if Nkind (Expr) = N_String_Literal then
3652 return UI_From_Int (String_Length (Strval (Expr)));
45fc7ddb 3653
fe44c442
YM
3654 -- With frontend inlining as performed in GNATprove mode, a variable
3655 -- may be inserted that has a string literal subtype. Deal with this
3656 -- specially as for the previous case.
3657
3658 elsif Ekind (Etype (Expr)) = E_String_Literal_Subtype then
3659 return String_Literal_Length (Etype (Expr));
3660
634a926b 3661 -- Second easy case, not constrained subtype, so no length
45fc7ddb 3662
634a926b
AC
3663 elsif not Is_Constrained (Etype (Expr)) then
3664 return Uint_Minus_1;
3665 end if;
45fc7ddb 3666
634a926b 3667 -- General case
45fc7ddb 3668
634a926b 3669 Typ := Etype (First_Index (Etype (Expr)));
45fc7ddb 3670
634a926b 3671 -- The simple case, both bounds are known at compile time
45fc7ddb 3672
634a926b
AC
3673 if Is_Discrete_Type (Typ)
3674 and then Compile_Time_Known_Value (Type_Low_Bound (Typ))
3675 and then Compile_Time_Known_Value (Type_High_Bound (Typ))
3676 then
3677 return
3678 UI_Max (Uint_0, Expr_Value (Type_High_Bound (Typ)) -
3679 Expr_Value (Type_Low_Bound (Typ)) + 1);
3680 end if;
45fc7ddb 3681
634a926b
AC
3682 -- A more complex case, where the bounds are of the form X [+/- K1]
3683 -- .. X [+/- K2]), where X is an expression that is either A'First or
3684 -- A'Last (with A an entity name), or X is an entity name, and the
3685 -- two X's are the same and K1 and K2 are known at compile time, in
3686 -- this case, the length can also be computed at compile time, even
3687 -- though the bounds are not known. A common case of this is e.g.
3688 -- (X'First .. X'First+5).
3689
3690 Decompose_Expr
3691 (Original_Node (Type_Low_Bound (Typ)), Ent1, Kind1, Cons1);
3692 Decompose_Expr
3693 (Original_Node (Type_High_Bound (Typ)), Ent2, Kind2, Cons2);
3694
3695 if Present (Ent1) and then Ent1 = Ent2 and then Kind1 = Kind2 then
3696 return Cons2 - Cons1 + 1;
3697 else
3698 return Uint_Minus_1;
3699 end if;
3700 end Static_Length;
45fc7ddb 3701
634a926b 3702 -- Local variables
45fc7ddb 3703
634a926b
AC
3704 Left_Typ : constant Entity_Id := Etype (Left);
3705 Right_Typ : constant Entity_Id := Etype (Right);
3706 Fold : Boolean;
3707 Left_Len : Uint;
3708 Op_Typ : Entity_Id := Empty;
3709 Right_Len : Uint;
996ae0b0 3710
634a926b 3711 Is_Static_Expression : Boolean;
45fc7ddb 3712
634a926b 3713 -- Start of processing for Eval_Relational_Op
996ae0b0 3714
634a926b
AC
3715 begin
3716 -- One special case to deal with first. If we can tell that the result
3717 -- will be false because the lengths of one or more index subtypes are
2da8c8e2
GD
3718 -- compile-time known and different, then we can replace the entire
3719 -- result by False. We only do this for one-dimensional arrays, because
3720 -- the case of multidimensional arrays is rare and too much trouble. If
634a926b
AC
3721 -- one of the operands is an illegal aggregate, its type might still be
3722 -- an arbitrary composite type, so nothing to do.
45fc7ddb 3723
634a926b
AC
3724 if Is_Array_Type (Left_Typ)
3725 and then Left_Typ /= Any_Composite
3726 and then Number_Dimensions (Left_Typ) = 1
4a08c95c 3727 and then Nkind (N) in N_Op_Eq | N_Op_Ne
634a926b
AC
3728 then
3729 if Raises_Constraint_Error (Left)
3730 or else
3731 Raises_Constraint_Error (Right)
3732 then
3733 return;
996ae0b0 3734
634a926b
AC
3735 -- OK, we have the case where we may be able to do this fold
3736
3737 else
3738 Left_Len := Static_Length (Left);
3739 Right_Len := Static_Length (Right);
3740
3741 if Left_Len /= Uint_Minus_1
3742 and then Right_Len /= Uint_Minus_1
3743 and then Left_Len /= Right_Len
996ae0b0 3744 then
3795dac6
AC
3745 -- AI12-0201: comparison of string is static in Ada 202x
3746
3747 Fold_Uint
3748 (N,
3749 Test (Nkind (N) = N_Op_Ne),
3750 Static => Ada_Version >= Ada_2020
3751 and then Is_String_Type (Left_Typ));
996ae0b0
RK
3752 Warn_On_Known_Condition (N);
3753 return;
3754 end if;
634a926b 3755 end if;
80298c3b 3756
634a926b 3757 -- General case
996ae0b0 3758
634a926b
AC
3759 else
3760 -- Initialize the value of Is_Static_Expression. The value of Fold
3761 -- returned by Test_Expression_Is_Foldable is not needed since, even
3762 -- when some operand is a variable, we can still perform the static
3763 -- evaluation of the expression in some cases (for example, for a
3764 -- variable of a subtype of Integer we statically know that any value
3765 -- stored in such variable is smaller than Integer'Last).
5df1266a
AC
3766
3767 Test_Expression_Is_Foldable
634a926b 3768 (N, Left, Right, Is_Static_Expression, Fold);
5df1266a 3769
3795dac6
AC
3770 -- Comparisons of scalars can give static results.
3771 -- In addition starting with Ada 202x (AI12-0201), comparison of
3772 -- strings can also give static results, and as noted above, we also
3773 -- allow for earlier Ada versions internally generated equality and
634a926b 3774 -- inequality for strings.
3795dac6
AC
3775 -- ??? The Comes_From_Source test below isn't correct and will accept
3776 -- some cases that are illegal in Ada 2012. and before. Now that
3777 -- Ada 202x has relaxed the rules, this doesn't really matter.
3778
3779 if Is_String_Type (Left_Typ) then
3780 if Ada_Version < Ada_2020
3781 and then (Comes_From_Source (N)
4a08c95c 3782 or else Nkind (N) not in N_Op_Eq | N_Op_Ne)
3795dac6
AC
3783 then
3784 Is_Static_Expression := False;
3785 Set_Is_Static_Expression (N, False);
3786 end if;
5df1266a 3787
634a926b 3788 elsif not Is_Scalar_Type (Left_Typ) then
5df1266a
AC
3789 Is_Static_Expression := False;
3790 Set_Is_Static_Expression (N, False);
3791 end if;
d7567964 3792
5df1266a
AC
3793 -- For operators on universal numeric types called as functions with
3794 -- an explicit scope, determine appropriate specific numeric type,
3795 -- and diagnose possible ambiguity.
d7567964 3796
634a926b 3797 if Is_Universal_Numeric_Type (Left_Typ)
5df1266a 3798 and then
634a926b 3799 Is_Universal_Numeric_Type (Right_Typ)
5df1266a 3800 then
634a926b 3801 Op_Typ := Find_Universal_Operator_Type (N);
5df1266a 3802 end if;
996ae0b0 3803
634a926b 3804 -- Attempt to fold the relational operator
996ae0b0 3805
634a926b
AC
3806 if Is_Static_Expression and then Is_Real_Type (Left_Typ) then
3807 Fold_Static_Real_Op;
5df1266a 3808 else
634a926b 3809 Fold_General_Op (Is_Static_Expression);
5df1266a 3810 end if;
634a926b 3811 end if;
996ae0b0 3812
d7567964 3813 -- For the case of a folded relational operator on a specific numeric
634a926b 3814 -- type, freeze the operand type now.
d7567964 3815
634a926b
AC
3816 if Present (Op_Typ) then
3817 Freeze_Before (N, Op_Typ);
d7567964
TQ
3818 end if;
3819
996ae0b0
RK
3820 Warn_On_Known_Condition (N);
3821 end Eval_Relational_Op;
3822
3823 ----------------
3824 -- Eval_Shift --
3825 ----------------
3826
996ae0b0
RK
3827 procedure Eval_Shift (N : Node_Id) is
3828 begin
8cd5951d
AC
3829 -- This procedure is only called for compiler generated code (e.g.
3830 -- packed arrays), so there is nothing to do except attempting to fold
3831 -- the expression.
3832
3833 Fold_Shift (N, Left_Opnd (N), Right_Opnd (N), Nkind (N));
996ae0b0
RK
3834 end Eval_Shift;
3835
3836 ------------------------
3837 -- Eval_Short_Circuit --
3838 ------------------------
3839
22cb89b5
AC
3840 -- A short circuit operation is potentially static if both operands are
3841 -- potentially static (RM 4.9 (13)).
996ae0b0
RK
3842
3843 procedure Eval_Short_Circuit (N : Node_Id) is
3844 Kind : constant Node_Kind := Nkind (N);
3845 Left : constant Node_Id := Left_Opnd (N);
3846 Right : constant Node_Id := Right_Opnd (N);
3847 Left_Int : Uint;
4d777a71
AC
3848
3849 Rstat : constant Boolean :=
3850 Is_Static_Expression (Left)
3851 and then
3852 Is_Static_Expression (Right);
996ae0b0
RK
3853
3854 begin
3855 -- Short circuit operations are never static in Ada 83
3856
22cb89b5 3857 if Ada_Version = Ada_83 and then Comes_From_Source (N) then
996ae0b0
RK
3858 Check_Non_Static_Context (Left);
3859 Check_Non_Static_Context (Right);
3860 return;
3861 end if;
3862
3863 -- Now look at the operands, we can't quite use the normal call to
3864 -- Test_Expression_Is_Foldable here because short circuit operations
3865 -- are a special case, they can still be foldable, even if the right
1e3c434f 3866 -- operand raises Constraint_Error.
996ae0b0 3867
22cb89b5
AC
3868 -- If either operand is Any_Type, just propagate to result and do not
3869 -- try to fold, this prevents cascaded errors.
996ae0b0
RK
3870
3871 if Etype (Left) = Any_Type or else Etype (Right) = Any_Type then
3872 Set_Etype (N, Any_Type);
3873 return;
3874
1e3c434f
BD
3875 -- If left operand raises Constraint_Error, then replace node N with
3876 -- the raise Constraint_Error node, and we are obviously not foldable.
996ae0b0
RK
3877 -- Is_Static_Expression is set from the two operands in the normal way,
3878 -- and we check the right operand if it is in a non-static context.
3879
3880 elsif Raises_Constraint_Error (Left) then
3881 if not Rstat then
3882 Check_Non_Static_Context (Right);
3883 end if;
3884
3885 Rewrite_In_Raise_CE (N, Left);
3886 Set_Is_Static_Expression (N, Rstat);
3887 return;
3888
3889 -- If the result is not static, then we won't in any case fold
3890
3891 elsif not Rstat then
3892 Check_Non_Static_Context (Left);
3893 Check_Non_Static_Context (Right);
3894 return;
3895 end if;
3896
3897 -- Here the result is static, note that, unlike the normal processing
3898 -- in Test_Expression_Is_Foldable, we did *not* check above to see if
1e3c434f 3899 -- the right operand raises Constraint_Error, that's because it is not
996ae0b0
RK
3900 -- significant if the left operand is decisive.
3901
3902 Set_Is_Static_Expression (N);
3903
1e3c434f 3904 -- It does not matter if the right operand raises Constraint_Error if
996ae0b0
RK
3905 -- it will not be evaluated. So deal specially with the cases where
3906 -- the right operand is not evaluated. Note that we will fold these
3907 -- cases even if the right operand is non-static, which is fine, but
3908 -- of course in these cases the result is not potentially static.
3909
3910 Left_Int := Expr_Value (Left);
3911
3912 if (Kind = N_And_Then and then Is_False (Left_Int))
db318f46 3913 or else
4d777a71 3914 (Kind = N_Or_Else and then Is_True (Left_Int))
996ae0b0 3915 then
fbf5a39b 3916 Fold_Uint (N, Left_Int, Rstat);
996ae0b0
RK
3917 return;
3918 end if;
3919
3920 -- If first operand not decisive, then it does matter if the right
1e3c434f 3921 -- operand raises Constraint_Error, since it will be evaluated, so
996ae0b0
RK
3922 -- we simply replace the node with the right operand. Note that this
3923 -- properly propagates Is_Static_Expression and Raises_Constraint_Error
3924 -- (both are set to True in Right).
3925
3926 if Raises_Constraint_Error (Right) then
3927 Rewrite_In_Raise_CE (N, Right);
3928 Check_Non_Static_Context (Left);
3929 return;
3930 end if;
3931
3932 -- Otherwise the result depends on the right operand
3933
fbf5a39b 3934 Fold_Uint (N, Expr_Value (Right), Rstat);
996ae0b0 3935 return;
996ae0b0
RK
3936 end Eval_Short_Circuit;
3937
3938 ----------------
3939 -- Eval_Slice --
3940 ----------------
3941
22cb89b5
AC
3942 -- Slices can never be static, so the only processing required is to check
3943 -- for non-static context if an explicit range is given.
996ae0b0
RK
3944
3945 procedure Eval_Slice (N : Node_Id) is
3946 Drange : constant Node_Id := Discrete_Range (N);
80298c3b 3947
996ae0b0
RK
3948 begin
3949 if Nkind (Drange) = N_Range then
3950 Check_Non_Static_Context (Low_Bound (Drange));
3951 Check_Non_Static_Context (High_Bound (Drange));
3952 end if;
cd2fb920 3953
22cb89b5 3954 -- A slice of the form A (subtype), when the subtype is the index of
cd2fb920
ES
3955 -- the type of A, is redundant, the slice can be replaced with A, and
3956 -- this is worth a warning.
3957
3958 if Is_Entity_Name (Prefix (N)) then
3959 declare
3960 E : constant Entity_Id := Entity (Prefix (N));
3961 T : constant Entity_Id := Etype (E);
80298c3b 3962
cd2fb920
ES
3963 begin
3964 if Ekind (E) = E_Constant
3965 and then Is_Array_Type (T)
3966 and then Is_Entity_Name (Drange)
3967 then
3968 if Is_Entity_Name (Original_Node (First_Index (T)))
3969 and then Entity (Original_Node (First_Index (T)))
3970 = Entity (Drange)
3971 then
3972 if Warn_On_Redundant_Constructs then
324ac540 3973 Error_Msg_N ("redundant slice denotes whole array?r?", N);
cd2fb920
ES
3974 end if;
3975
324ac540 3976 -- The following might be a useful optimization???
cd2fb920
ES
3977
3978 -- Rewrite (N, New_Occurrence_Of (E, Sloc (N)));
3979 end if;
3980 end if;
3981 end;
3982 end if;
996ae0b0
RK
3983 end Eval_Slice;
3984
3985 -------------------------
3986 -- Eval_String_Literal --
3987 -------------------------
3988
3989 procedure Eval_String_Literal (N : Node_Id) is
91b1417d
AC
3990 Typ : constant Entity_Id := Etype (N);
3991 Bas : constant Entity_Id := Base_Type (Typ);
3992 Xtp : Entity_Id;
3993 Len : Nat;
3994 Lo : Node_Id;
996ae0b0
RK
3995
3996 begin
3997 -- Nothing to do if error type (handles cases like default expressions
22cb89b5 3998 -- or generics where we have not yet fully resolved the type).
996ae0b0 3999
91b1417d 4000 if Bas = Any_Type or else Bas = Any_String then
996ae0b0 4001 return;
91b1417d 4002 end if;
996ae0b0
RK
4003
4004 -- String literals are static if the subtype is static (RM 4.9(2)), so
4005 -- reset the static expression flag (it was set unconditionally in
4006 -- Analyze_String_Literal) if the subtype is non-static. We tell if
4007 -- the subtype is static by looking at the lower bound.
4008
91b1417d
AC
4009 if Ekind (Typ) = E_String_Literal_Subtype then
4010 if not Is_OK_Static_Expression (String_Literal_Low_Bound (Typ)) then
4011 Set_Is_Static_Expression (N, False);
4012 return;
4013 end if;
4014
4015 -- Here if Etype of string literal is normal Etype (not yet possible,
22cb89b5 4016 -- but may be possible in future).
91b1417d
AC
4017
4018 elsif not Is_OK_Static_Expression
80298c3b 4019 (Type_Low_Bound (Etype (First_Index (Typ))))
91b1417d 4020 then
996ae0b0 4021 Set_Is_Static_Expression (N, False);
91b1417d
AC
4022 return;
4023 end if;
996ae0b0 4024
91b1417d 4025 -- If original node was a type conversion, then result if non-static
3795dac6 4026 -- up to Ada 2012. AI12-0201 changes that with Ada 202x.
91b1417d 4027
3795dac6
AC
4028 if Nkind (Original_Node (N)) = N_Type_Conversion
4029 and then Ada_Version <= Ada_2012
4030 then
996ae0b0 4031 Set_Is_Static_Expression (N, False);
91b1417d
AC
4032 return;
4033 end if;
996ae0b0 4034
22cb89b5
AC
4035 -- Test for illegal Ada 95 cases. A string literal is illegal in Ada 95
4036 -- if its bounds are outside the index base type and this index type is
4037 -- static. This can happen in only two ways. Either the string literal
bc3c2eca
AC
4038 -- is too long, or it is null, and the lower bound is type'First. Either
4039 -- way it is the upper bound that is out of range of the index type.
4040
0ab80019 4041 if Ada_Version >= Ada_95 then
bc3c2eca 4042 if Is_Standard_String_Type (Bas) then
91b1417d 4043 Xtp := Standard_Positive;
996ae0b0 4044 else
91b1417d 4045 Xtp := Etype (First_Index (Bas));
996ae0b0
RK
4046 end if;
4047
91b1417d
AC
4048 if Ekind (Typ) = E_String_Literal_Subtype then
4049 Lo := String_Literal_Low_Bound (Typ);
4050 else
4051 Lo := Type_Low_Bound (Etype (First_Index (Typ)));
4052 end if;
4053
354c3840
AC
4054 -- Check for string too long
4055
91b1417d
AC
4056 Len := String_Length (Strval (N));
4057
4058 if UI_From_Int (Len) > String_Type_Len (Bas) then
354c3840
AC
4059
4060 -- Issue message. Note that this message is a warning if the
4061 -- string literal is not marked as static (happens in some cases
4062 -- of folding strings known at compile time, but not static).
4063 -- Furthermore in such cases, we reword the message, since there
a90bd866 4064 -- is no string literal in the source program.
354c3840
AC
4065
4066 if Is_Static_Expression (N) then
4067 Apply_Compile_Time_Constraint_Error
4068 (N, "string literal too long for}", CE_Length_Check_Failed,
4069 Ent => Bas,
4070 Typ => First_Subtype (Bas));
4071 else
4072 Apply_Compile_Time_Constraint_Error
4073 (N, "string value too long for}", CE_Length_Check_Failed,
4074 Ent => Bas,
4075 Typ => First_Subtype (Bas),
4076 Warn => True);
4077 end if;
4078
4079 -- Test for null string not allowed
996ae0b0 4080
91b1417d
AC
4081 elsif Len = 0
4082 and then not Is_Generic_Type (Xtp)
4083 and then
4084 Expr_Value (Lo) = Expr_Value (Type_Low_Bound (Base_Type (Xtp)))
996ae0b0 4085 then
354c3840
AC
4086 -- Same specialization of message
4087
4088 if Is_Static_Expression (N) then
4089 Apply_Compile_Time_Constraint_Error
4090 (N, "null string literal not allowed for}",
4091 CE_Length_Check_Failed,
4092 Ent => Bas,
4093 Typ => First_Subtype (Bas));
4094 else
4095 Apply_Compile_Time_Constraint_Error
4096 (N, "null string value not allowed for}",
4097 CE_Length_Check_Failed,
4098 Ent => Bas,
4099 Typ => First_Subtype (Bas),
4100 Warn => True);
4101 end if;
996ae0b0
RK
4102 end if;
4103 end if;
996ae0b0
RK
4104 end Eval_String_Literal;
4105
4106 --------------------------
4107 -- Eval_Type_Conversion --
4108 --------------------------
4109
4110 -- A type conversion is potentially static if its subtype mark is for a
4111 -- static scalar subtype, and its operand expression is potentially static
22cb89b5 4112 -- (RM 4.9(10)).
3795dac6 4113 -- Also add support for static string types.
996ae0b0
RK
4114
4115 procedure Eval_Type_Conversion (N : Node_Id) is
4116 Operand : constant Node_Id := Expression (N);
4117 Source_Type : constant Entity_Id := Etype (Operand);
4118 Target_Type : constant Entity_Id := Etype (N);
4119
996ae0b0 4120 function To_Be_Treated_As_Integer (T : Entity_Id) return Boolean;
22cb89b5
AC
4121 -- Returns true if type T is an integer type, or if it is a fixed-point
4122 -- type to be treated as an integer (i.e. the flag Conversion_OK is set
4123 -- on the conversion node).
996ae0b0
RK
4124
4125 function To_Be_Treated_As_Real (T : Entity_Id) return Boolean;
4126 -- Returns true if type T is a floating-point type, or if it is a
4127 -- fixed-point type that is not to be treated as an integer (i.e. the
4128 -- flag Conversion_OK is not set on the conversion node).
4129
fbf5a39b
AC
4130 ------------------------------
4131 -- To_Be_Treated_As_Integer --
4132 ------------------------------
4133
996ae0b0
RK
4134 function To_Be_Treated_As_Integer (T : Entity_Id) return Boolean is
4135 begin
4136 return
4137 Is_Integer_Type (T)
4138 or else (Is_Fixed_Point_Type (T) and then Conversion_OK (N));
4139 end To_Be_Treated_As_Integer;
4140
fbf5a39b
AC
4141 ---------------------------
4142 -- To_Be_Treated_As_Real --
4143 ---------------------------
4144
996ae0b0
RK
4145 function To_Be_Treated_As_Real (T : Entity_Id) return Boolean is
4146 begin
4147 return
4148 Is_Floating_Point_Type (T)
4149 or else (Is_Fixed_Point_Type (T) and then not Conversion_OK (N));
4150 end To_Be_Treated_As_Real;
4151
48bb06a7
AC
4152 -- Local variables
4153
4154 Fold : Boolean;
4155 Stat : Boolean;
4156
996ae0b0
RK
4157 -- Start of processing for Eval_Type_Conversion
4158
4159 begin
82c80734 4160 -- Cannot fold if target type is non-static or if semantic error
996ae0b0
RK
4161
4162 if not Is_Static_Subtype (Target_Type) then
4163 Check_Non_Static_Context (Operand);
4164 return;
996ae0b0
RK
4165 elsif Error_Posted (N) then
4166 return;
4167 end if;
4168
4169 -- If not foldable we are done
4170
4171 Test_Expression_Is_Foldable (N, Operand, Stat, Fold);
4172
4173 if not Fold then
4174 return;
4175
1e3c434f 4176 -- Don't try fold if target type has Constraint_Error bounds
996ae0b0
RK
4177
4178 elsif not Is_OK_Static_Subtype (Target_Type) then
4179 Set_Raises_Constraint_Error (N);
4180 return;
4181 end if;
4182
4183 -- Remaining processing depends on operand types. Note that in the
4184 -- following type test, fixed-point counts as real unless the flag
4185 -- Conversion_OK is set, in which case it counts as integer.
4186
3795dac6
AC
4187 -- Fold conversion, case of string type. The result is static starting
4188 -- with Ada 202x (AI12-0201).
996ae0b0
RK
4189
4190 if Is_String_Type (Target_Type) then
3795dac6
AC
4191 Fold_Str
4192 (N,
4193 Strval (Get_String_Val (Operand)),
4194 Static => Ada_Version >= Ada_2020);
996ae0b0
RK
4195 return;
4196
4197 -- Fold conversion, case of integer target type
4198
4199 elsif To_Be_Treated_As_Integer (Target_Type) then
4200 declare
4201 Result : Uint;
4202
4203 begin
4204 -- Integer to integer conversion
4205
4206 if To_Be_Treated_As_Integer (Source_Type) then
4207 Result := Expr_Value (Operand);
4208
4209 -- Real to integer conversion
4210
8eda13a4 4211 elsif To_Be_Treated_As_Real (Source_Type) then
996ae0b0 4212 Result := UR_To_Uint (Expr_Value_R (Operand));
8eda13a4
AC
4213
4214 -- Enumeration to integer conversion, aka 'Enum_Rep
4215
4216 else
4217 Result := Expr_Rep_Value (Operand);
996ae0b0
RK
4218 end if;
4219
4220 -- If fixed-point type (Conversion_OK must be set), then the
4221 -- result is logically an integer, but we must replace the
4222 -- conversion with the corresponding real literal, since the
4223 -- type from a semantic point of view is still fixed-point.
4224
4225 if Is_Fixed_Point_Type (Target_Type) then
4226 Fold_Ureal
fbf5a39b 4227 (N, UR_From_Uint (Result) * Small_Value (Target_Type), Stat);
996ae0b0
RK
4228
4229 -- Otherwise result is integer literal
4230
4231 else
fbf5a39b 4232 Fold_Uint (N, Result, Stat);
996ae0b0
RK
4233 end if;
4234 end;
4235
4236 -- Fold conversion, case of real target type
4237
4238 elsif To_Be_Treated_As_Real (Target_Type) then
4239 declare
4240 Result : Ureal;
4241
4242 begin
4243 if To_Be_Treated_As_Real (Source_Type) then
4244 Result := Expr_Value_R (Operand);
4245 else
4246 Result := UR_From_Uint (Expr_Value (Operand));
4247 end if;
4248
fbf5a39b 4249 Fold_Ureal (N, Result, Stat);
996ae0b0
RK
4250 end;
4251
4252 -- Enumeration types
4253
4254 else
fbf5a39b 4255 Fold_Uint (N, Expr_Value (Operand), Stat);
996ae0b0
RK
4256 end if;
4257
c800f862 4258 if Is_Out_Of_Range (N, Etype (N), Assume_Valid => True) then
996ae0b0
RK
4259 Out_Of_Range (N);
4260 end if;
996ae0b0
RK
4261 end Eval_Type_Conversion;
4262
4263 -------------------
4264 -- Eval_Unary_Op --
4265 -------------------
4266
4267 -- Predefined unary operators are static functions (RM 4.9(20)) and thus
22cb89b5 4268 -- are potentially static if the operand is potentially static (RM 4.9(7)).
996ae0b0
RK
4269
4270 procedure Eval_Unary_Op (N : Node_Id) is
4271 Right : constant Node_Id := Right_Opnd (N);
d7567964 4272 Otype : Entity_Id := Empty;
996ae0b0
RK
4273 Stat : Boolean;
4274 Fold : Boolean;
4275
4276 begin
4277 -- If not foldable we are done
4278
4279 Test_Expression_Is_Foldable (N, Right, Stat, Fold);
4280
4281 if not Fold then
4282 return;
4283 end if;
4284
602a7ec0 4285 if Etype (Right) = Universal_Integer
ae77c68b
AC
4286 or else
4287 Etype (Right) = Universal_Real
602a7ec0 4288 then
d7567964 4289 Otype := Find_Universal_Operator_Type (N);
602a7ec0
AC
4290 end if;
4291
996ae0b0
RK
4292 -- Fold for integer case
4293
4294 if Is_Integer_Type (Etype (N)) then
4295 declare
4296 Rint : constant Uint := Expr_Value (Right);
4297 Result : Uint;
4298
4299 begin
4300 -- In the case of modular unary plus and abs there is no need
4301 -- to adjust the result of the operation since if the original
4302 -- operand was in bounds the result will be in the bounds of the
4303 -- modular type. However, in the case of modular unary minus the
4304 -- result may go out of the bounds of the modular type and needs
4305 -- adjustment.
4306
4307 if Nkind (N) = N_Op_Plus then
4308 Result := Rint;
4309
4310 elsif Nkind (N) = N_Op_Minus then
4311 if Is_Modular_Integer_Type (Etype (N)) then
4312 Result := (-Rint) mod Modulus (Etype (N));
4313 else
4314 Result := (-Rint);
4315 end if;
4316
4317 else
4318 pragma Assert (Nkind (N) = N_Op_Abs);
4319 Result := abs Rint;
4320 end if;
4321
fbf5a39b 4322 Fold_Uint (N, Result, Stat);
996ae0b0
RK
4323 end;
4324
4325 -- Fold for real case
4326
4327 elsif Is_Real_Type (Etype (N)) then
4328 declare
4329 Rreal : constant Ureal := Expr_Value_R (Right);
4330 Result : Ureal;
4331
4332 begin
4333 if Nkind (N) = N_Op_Plus then
4334 Result := Rreal;
996ae0b0
RK
4335 elsif Nkind (N) = N_Op_Minus then
4336 Result := UR_Negate (Rreal);
996ae0b0
RK
4337 else
4338 pragma Assert (Nkind (N) = N_Op_Abs);
4339 Result := abs Rreal;
4340 end if;
4341
fbf5a39b 4342 Fold_Ureal (N, Result, Stat);
996ae0b0
RK
4343 end;
4344 end if;
d7567964
TQ
4345
4346 -- If the operator was resolved to a specific type, make sure that type
4347 -- is frozen even if the expression is folded into a literal (which has
4348 -- a universal type).
4349
4350 if Present (Otype) then
4351 Freeze_Before (N, Otype);
4352 end if;
996ae0b0
RK
4353 end Eval_Unary_Op;
4354
4355 -------------------------------
4356 -- Eval_Unchecked_Conversion --
4357 -------------------------------
4358
4359 -- Unchecked conversions can never be static, so the only required
4360 -- processing is to check for a non-static context for the operand.
4361
4362 procedure Eval_Unchecked_Conversion (N : Node_Id) is
4363 begin
4364 Check_Non_Static_Context (Expression (N));
4365 end Eval_Unchecked_Conversion;
4366
4367 --------------------
4368 -- Expr_Rep_Value --
4369 --------------------
4370
4371 function Expr_Rep_Value (N : Node_Id) return Uint is
07fc65c4
GB
4372 Kind : constant Node_Kind := Nkind (N);
4373 Ent : Entity_Id;
996ae0b0
RK
4374
4375 begin
4376 if Is_Entity_Name (N) then
4377 Ent := Entity (N);
4378
22cb89b5
AC
4379 -- An enumeration literal that was either in the source or created
4380 -- as a result of static evaluation.
996ae0b0
RK
4381
4382 if Ekind (Ent) = E_Enumeration_Literal then
4383 return Enumeration_Rep (Ent);
4384
4385 -- A user defined static constant
4386
4387 else
4388 pragma Assert (Ekind (Ent) = E_Constant);
4389 return Expr_Rep_Value (Constant_Value (Ent));
4390 end if;
4391
22cb89b5
AC
4392 -- An integer literal that was either in the source or created as a
4393 -- result of static evaluation.
996ae0b0
RK
4394
4395 elsif Kind = N_Integer_Literal then
4396 return Intval (N);
4397
4398 -- A real literal for a fixed-point type. This must be the fixed-point
4399 -- case, either the literal is of a fixed-point type, or it is a bound
4400 -- of a fixed-point type, with type universal real. In either case we
4401 -- obtain the desired value from Corresponding_Integer_Value.
4402
4403 elsif Kind = N_Real_Literal then
996ae0b0
RK
4404 pragma Assert (Is_Fixed_Point_Type (Underlying_Type (Etype (N))));
4405 return Corresponding_Integer_Value (N);
4406
c7d19317 4407 -- The NULL access value
8cbb664e 4408
c7d19317
EB
4409 elsif Kind = N_Null then
4410 pragma Assert (Is_Access_Type (Underlying_Type (Etype (N)))
4411 or else Error_Posted (N));
4412 return Uint_0;
4413
4414 -- Character literal
4415
4416 elsif Kind = N_Character_Literal then
996ae0b0
RK
4417 Ent := Entity (N);
4418
22cb89b5
AC
4419 -- Since Character literals of type Standard.Character don't have any
4420 -- defining character literals built for them, they do not have their
4421 -- Entity set, so just use their Char code. Otherwise for user-
4422 -- defined character literals use their Pos value as usual which is
4423 -- the same as the Rep value.
996ae0b0
RK
4424
4425 if No (Ent) then
82c80734 4426 return Char_Literal_Value (N);
996ae0b0
RK
4427 else
4428 return Enumeration_Rep (Ent);
4429 end if;
c7d19317
EB
4430
4431 -- Unchecked conversion, which can come from System'To_Address (X)
4432 -- where X is a static integer expression. Recursively evaluate X.
4433
4434 elsif Kind = N_Unchecked_Type_Conversion then
4435 return Expr_Rep_Value (Expression (N));
4436
4437 else
4438 raise Program_Error;
996ae0b0
RK
4439 end if;
4440 end Expr_Rep_Value;
4441
4442 ----------------
4443 -- Expr_Value --
4444 ----------------
4445
4446 function Expr_Value (N : Node_Id) return Uint is
07fc65c4
GB
4447 Kind : constant Node_Kind := Nkind (N);
4448 CV_Ent : CV_Entry renames CV_Cache (Nat (N) mod CV_Cache_Size);
4449 Ent : Entity_Id;
4450 Val : Uint;
996ae0b0
RK
4451
4452 begin
d3bbfc59 4453 -- If already in cache, then we know it's compile-time-known and we can
13f34a3f 4454 -- return the value that was previously stored in the cache since
d3bbfc59 4455 -- compile-time-known values cannot change.
07fc65c4
GB
4456
4457 if CV_Ent.N = N then
4458 return CV_Ent.V;
4459 end if;
4460
4461 -- Otherwise proceed to test value
4462
996ae0b0
RK
4463 if Is_Entity_Name (N) then
4464 Ent := Entity (N);
4465
22cb89b5
AC
4466 -- An enumeration literal that was either in the source or created as
4467 -- a result of static evaluation.
996ae0b0
RK
4468
4469 if Ekind (Ent) = E_Enumeration_Literal then
07fc65c4 4470 Val := Enumeration_Pos (Ent);
996ae0b0
RK
4471
4472 -- A user defined static constant
4473
4474 else
4475 pragma Assert (Ekind (Ent) = E_Constant);
07fc65c4 4476 Val := Expr_Value (Constant_Value (Ent));
996ae0b0
RK
4477 end if;
4478
22cb89b5
AC
4479 -- An integer literal that was either in the source or created as a
4480 -- result of static evaluation.
996ae0b0
RK
4481
4482 elsif Kind = N_Integer_Literal then
07fc65c4 4483 Val := Intval (N);
996ae0b0
RK
4484
4485 -- A real literal for a fixed-point type. This must be the fixed-point
4486 -- case, either the literal is of a fixed-point type, or it is a bound
4487 -- of a fixed-point type, with type universal real. In either case we
4488 -- obtain the desired value from Corresponding_Integer_Value.
4489
4490 elsif Kind = N_Real_Literal then
996ae0b0 4491 pragma Assert (Is_Fixed_Point_Type (Underlying_Type (Etype (N))));
07fc65c4 4492 Val := Corresponding_Integer_Value (N);
996ae0b0 4493
333e4f86
AC
4494 -- The NULL access value
4495
4496 elsif Kind = N_Null then
50a73953
SB
4497 pragma Assert (Is_Access_Type (Underlying_Type (Etype (N)))
4498 or else Error_Posted (N));
333e4f86
AC
4499 Val := Uint_0;
4500
f2a35a2f 4501 -- Character literal
996ae0b0 4502
f2a35a2f 4503 elsif Kind = N_Character_Literal then
996ae0b0
RK
4504 Ent := Entity (N);
4505
4506 -- Since Character literals of type Standard.Character don't
4507 -- have any defining character literals built for them, they
4508 -- do not have their Entity set, so just use their Char
4509 -- code. Otherwise for user-defined character literals use
4510 -- their Pos value as usual.
4511
4512 if No (Ent) then
82c80734 4513 Val := Char_Literal_Value (N);
996ae0b0 4514 else
07fc65c4 4515 Val := Enumeration_Pos (Ent);
996ae0b0 4516 end if;
f2a35a2f
BD
4517
4518 -- Unchecked conversion, which can come from System'To_Address (X)
4519 -- where X is a static integer expression. Recursively evaluate X.
4520
4521 elsif Kind = N_Unchecked_Type_Conversion then
4522 Val := Expr_Value (Expression (N));
4523
4524 else
4525 raise Program_Error;
996ae0b0
RK
4526 end if;
4527
07fc65c4
GB
4528 -- Come here with Val set to value to be returned, set cache
4529
4530 CV_Ent.N := N;
4531 CV_Ent.V := Val;
4532 return Val;
996ae0b0
RK
4533 end Expr_Value;
4534
4535 ------------------
4536 -- Expr_Value_E --
4537 ------------------
4538
4539 function Expr_Value_E (N : Node_Id) return Entity_Id is
4540 Ent : constant Entity_Id := Entity (N);
996ae0b0
RK
4541 begin
4542 if Ekind (Ent) = E_Enumeration_Literal then
4543 return Ent;
4544 else
4545 pragma Assert (Ekind (Ent) = E_Constant);
924e3532
JS
4546
4547 -- We may be dealing with a enumerated character type constant, so
4548 -- handle that case here.
4549
4550 if Nkind (Constant_Value (Ent)) = N_Character_Literal then
4551 return Ent;
4552 else
4553 return Expr_Value_E (Constant_Value (Ent));
4554 end if;
996ae0b0
RK
4555 end if;
4556 end Expr_Value_E;
4557
4558 ------------------
4559 -- Expr_Value_R --
4560 ------------------
4561
4562 function Expr_Value_R (N : Node_Id) return Ureal is
4563 Kind : constant Node_Kind := Nkind (N);
4564 Ent : Entity_Id;
996ae0b0
RK
4565
4566 begin
4567 if Kind = N_Real_Literal then
4568 return Realval (N);
4569
4570 elsif Kind = N_Identifier or else Kind = N_Expanded_Name then
4571 Ent := Entity (N);
4572 pragma Assert (Ekind (Ent) = E_Constant);
4573 return Expr_Value_R (Constant_Value (Ent));
4574
4575 elsif Kind = N_Integer_Literal then
4576 return UR_From_Uint (Expr_Value (N));
4577
7a5b62b0
AC
4578 -- Here, we have a node that cannot be interpreted as a compile time
4579 -- constant. That is definitely an error.
996ae0b0 4580
7a5b62b0
AC
4581 else
4582 raise Program_Error;
996ae0b0 4583 end if;
996ae0b0
RK
4584 end Expr_Value_R;
4585
4586 ------------------
4587 -- Expr_Value_S --
4588 ------------------
4589
4590 function Expr_Value_S (N : Node_Id) return Node_Id is
4591 begin
4592 if Nkind (N) = N_String_Literal then
4593 return N;
4594 else
4595 pragma Assert (Ekind (Entity (N)) = E_Constant);
4596 return Expr_Value_S (Constant_Value (Entity (N)));
4597 end if;
4598 end Expr_Value_S;
4599
74e7891f
RD
4600 ----------------------------------
4601 -- Find_Universal_Operator_Type --
4602 ----------------------------------
4603
4604 function Find_Universal_Operator_Type (N : Node_Id) return Entity_Id is
4605 PN : constant Node_Id := Parent (N);
4606 Call : constant Node_Id := Original_Node (N);
4607 Is_Int : constant Boolean := Is_Integer_Type (Etype (N));
4608
4609 Is_Fix : constant Boolean :=
4610 Nkind (N) in N_Binary_Op
4611 and then Nkind (Right_Opnd (N)) /= Nkind (Left_Opnd (N));
4612 -- A mixed-mode operation in this context indicates the presence of
4613 -- fixed-point type in the designated package.
4614
4615 Is_Relational : constant Boolean := Etype (N) = Standard_Boolean;
4616 -- Case where N is a relational (or membership) operator (else it is an
4617 -- arithmetic one).
4618
4619 In_Membership : constant Boolean :=
4620 Nkind (PN) in N_Membership_Test
4621 and then
4622 Nkind (Right_Opnd (PN)) = N_Range
4623 and then
4624 Is_Universal_Numeric_Type (Etype (Left_Opnd (PN)))
4625 and then
4626 Is_Universal_Numeric_Type
4627 (Etype (Low_Bound (Right_Opnd (PN))))
4628 and then
4629 Is_Universal_Numeric_Type
4630 (Etype (High_Bound (Right_Opnd (PN))));
4631 -- Case where N is part of a membership test with a universal range
4632
4633 E : Entity_Id;
4634 Pack : Entity_Id;
4635 Typ1 : Entity_Id := Empty;
4636 Priv_E : Entity_Id;
4637
4638 function Is_Mixed_Mode_Operand (Op : Node_Id) return Boolean;
7ec8363d
RD
4639 -- Check whether one operand is a mixed-mode operation that requires the
4640 -- presence of a fixed-point type. Given that all operands are universal
4641 -- and have been constant-folded, retrieve the original function call.
74e7891f
RD
4642
4643 ---------------------------
4644 -- Is_Mixed_Mode_Operand --
4645 ---------------------------
4646
4647 function Is_Mixed_Mode_Operand (Op : Node_Id) return Boolean is
7ec8363d 4648 Onod : constant Node_Id := Original_Node (Op);
74e7891f 4649 begin
7ec8363d
RD
4650 return Nkind (Onod) = N_Function_Call
4651 and then Present (Next_Actual (First_Actual (Onod)))
4652 and then Etype (First_Actual (Onod)) /=
4653 Etype (Next_Actual (First_Actual (Onod)));
74e7891f
RD
4654 end Is_Mixed_Mode_Operand;
4655
7ec8363d
RD
4656 -- Start of processing for Find_Universal_Operator_Type
4657
74e7891f
RD
4658 begin
4659 if Nkind (Call) /= N_Function_Call
4660 or else Nkind (Name (Call)) /= N_Expanded_Name
4661 then
4662 return Empty;
4663
946db1e2
AC
4664 -- There are several cases where the context does not imply the type of
4665 -- the operands:
4666 -- - the universal expression appears in a type conversion;
4667 -- - the expression is a relational operator applied to universal
4668 -- operands;
4669 -- - the expression is a membership test with a universal operand
4670 -- and a range with universal bounds.
74e7891f
RD
4671
4672 elsif Nkind (Parent (N)) = N_Type_Conversion
7ec8363d
RD
4673 or else Is_Relational
4674 or else In_Membership
74e7891f
RD
4675 then
4676 Pack := Entity (Prefix (Name (Call)));
4677
7ec8363d
RD
4678 -- If the prefix is a package declared elsewhere, iterate over its
4679 -- visible entities, otherwise iterate over all declarations in the
4680 -- designated scope.
74e7891f
RD
4681
4682 if Ekind (Pack) = E_Package
4683 and then not In_Open_Scopes (Pack)
4684 then
4685 Priv_E := First_Private_Entity (Pack);
4686 else
4687 Priv_E := Empty;
4688 end if;
4689
4690 Typ1 := Empty;
4691 E := First_Entity (Pack);
4692 while Present (E) and then E /= Priv_E loop
4693 if Is_Numeric_Type (E)
4694 and then Nkind (Parent (E)) /= N_Subtype_Declaration
4695 and then Comes_From_Source (E)
4696 and then Is_Integer_Type (E) = Is_Int
80298c3b
AC
4697 and then (Nkind (N) in N_Unary_Op
4698 or else Is_Relational
4699 or else Is_Fixed_Point_Type (E) = Is_Fix)
74e7891f
RD
4700 then
4701 if No (Typ1) then
4702 Typ1 := E;
4703
676e8420
AC
4704 -- Before emitting an error, check for the presence of a
4705 -- mixed-mode operation that specifies a fixed point type.
74e7891f
RD
4706
4707 elsif Is_Relational
4708 and then
4709 (Is_Mixed_Mode_Operand (Left_Opnd (N))
676e8420 4710 or else Is_Mixed_Mode_Operand (Right_Opnd (N)))
74e7891f
RD
4711 and then Is_Fixed_Point_Type (E) /= Is_Fixed_Point_Type (Typ1)
4712
4713 then
4714 if Is_Fixed_Point_Type (E) then
4715 Typ1 := E;
4716 end if;
4717
4718 else
4719 -- More than one type of the proper class declared in P
4720
4721 Error_Msg_N ("ambiguous operation", N);
4722 Error_Msg_Sloc := Sloc (Typ1);
4723 Error_Msg_N ("\possible interpretation (inherited)#", N);
4724 Error_Msg_Sloc := Sloc (E);
4725 Error_Msg_N ("\possible interpretation (inherited)#", N);
4726 return Empty;
4727 end if;
4728 end if;
4729
4730 Next_Entity (E);
4731 end loop;
4732 end if;
4733
4734 return Typ1;
4735 end Find_Universal_Operator_Type;
4736
fbf5a39b
AC
4737 --------------------------
4738 -- Flag_Non_Static_Expr --
4739 --------------------------
4740
4741 procedure Flag_Non_Static_Expr (Msg : String; Expr : Node_Id) is
4742 begin
4743 if Error_Posted (Expr) and then not All_Errors_Mode then
4744 return;
4745 else
4746 Error_Msg_F (Msg, Expr);
4747 Why_Not_Static (Expr);
4748 end if;
4749 end Flag_Non_Static_Expr;
4750
8cd5951d
AC
4751 ----------------
4752 -- Fold_Dummy --
4753 ----------------
4754
4755 procedure Fold_Dummy (N : Node_Id; Typ : Entity_Id) is
4756 begin
4757 if Is_Integer_Type (Typ) then
4758 Fold_Uint (N, Uint_1, Static => True);
4759
4760 elsif Is_Real_Type (Typ) then
4761 Fold_Ureal (N, Ureal_1, Static => True);
4762
4763 elsif Is_Enumeration_Type (Typ) then
4764 Fold_Uint
4765 (N,
4766 Expr_Value (Type_Low_Bound (Base_Type (Typ))),
4767 Static => True);
4768
4769 elsif Is_String_Type (Typ) then
4770 Fold_Str
4771 (N,
4772 Strval (Make_String_Literal (Sloc (N), "")),
4773 Static => True);
4774 end if;
4775 end Fold_Dummy;
4776
4777 ----------------
4778 -- Fold_Shift --
4779 ----------------
4780
4781 procedure Fold_Shift
4782 (N : Node_Id;
4783 Left : Node_Id;
4784 Right : Node_Id;
4785 Op : Node_Kind;
4786 Static : Boolean := False;
4787 Check_Elab : Boolean := False)
4788 is
4789 Typ : constant Entity_Id := Etype (Left);
4790
4791 procedure Check_Elab_Call;
4792 -- Add checks related to calls in elaboration code
4793
4794 ---------------------
4795 -- Check_Elab_Call --
4796 ---------------------
4797
4798 procedure Check_Elab_Call is
4799 begin
4800 if Check_Elab then
4801 if Legacy_Elaboration_Checks then
4802 Check_Elab_Call (N);
4803 end if;
4804
4805 Build_Call_Marker (N);
4806 end if;
4807 end Check_Elab_Call;
4808
4809 begin
8ad6af8f 4810 if Compile_Time_Known_Value (Left)
8cd5951d
AC
4811 and then Compile_Time_Known_Value (Right)
4812 then
8ad6af8f
AC
4813 pragma Assert (not Non_Binary_Modulus (Typ));
4814
8cd5951d
AC
4815 if Op = N_Op_Shift_Left then
4816 Check_Elab_Call;
4817
4818 -- Fold Shift_Left (X, Y) by computing (X * 2**Y) rem modulus
4819
4820 Fold_Uint
4821 (N,
4822 (Expr_Value (Left) * (Uint_2 ** Expr_Value (Right)))
4823 rem Modulus (Typ),
4824 Static => Static);
4825
4826 elsif Op = N_Op_Shift_Right then
4827 Check_Elab_Call;
4828
8ad6af8f 4829 -- Fold Shift_Right (X, Y) by computing abs X / 2**Y
8cd5951d
AC
4830
4831 Fold_Uint
4832 (N,
8ad6af8f 4833 abs Expr_Value (Left) / (Uint_2 ** Expr_Value (Right)),
8cd5951d 4834 Static => Static);
8ad6af8f
AC
4835
4836 elsif Op = N_Op_Shift_Right_Arithmetic then
4837 Check_Elab_Call;
4838
4839 declare
4840 Two_Y : constant Uint := Uint_2 ** Expr_Value (Right);
4841 Modulus : Uint;
4842 begin
4843 if Is_Modular_Integer_Type (Typ) then
4844 Modulus := Einfo.Modulus (Typ);
4845 else
4846 Modulus := Uint_2 ** RM_Size (Typ);
4847 end if;
4848
4849 -- X / 2**Y if X if positive or a small enough modular integer
4850
4851 if (Is_Modular_Integer_Type (Typ)
4852 and then Expr_Value (Left) < Modulus / Uint_2)
4853 or else
4854 (not Is_Modular_Integer_Type (Typ)
4855 and then Expr_Value (Left) >= 0)
4856 then
4857 Fold_Uint (N, Expr_Value (Left) / Two_Y, Static => Static);
4858
4859 -- -1 (aka all 1's) if Y is larger than the number of bits
4860 -- available or if X = -1.
4861
4862 elsif Two_Y > Modulus
4863 or else Expr_Value (Left) = Uint_Minus_1
4864 then
4865 if Is_Modular_Integer_Type (Typ) then
4866 Fold_Uint (N, Modulus - Uint_1, Static => Static);
4867 else
4868 Fold_Uint (N, Uint_Minus_1, Static => Static);
4869 end if;
4870
4871 -- Large modular integer, compute via multiply/divide the
4872 -- following: X >> Y + (1 << Y - 1) << (RM_Size - Y)
4873
4874 elsif Is_Modular_Integer_Type (Typ) then
4875 Fold_Uint
4876 (N,
4877 (Expr_Value (Left)) / Two_Y
4878 + (Two_Y - Uint_1)
4879 * Uint_2 ** (RM_Size (Typ) - Expr_Value (Right)),
4880 Static => Static);
4881
4882 -- Negative signed integer, compute via multiple/divide the
4883 -- following:
4884 -- (Modulus + X) >> Y + (1 << Y - 1) << (RM_Size - Y) - Modulus
4885
4886 else
4887 Fold_Uint
4888 (N,
4889 (Modulus + Expr_Value (Left)) / Two_Y
4890 + (Two_Y - Uint_1)
4891 * Uint_2 ** (RM_Size (Typ) - Expr_Value (Right))
4892 - Modulus,
4893 Static => Static);
4894 end if;
4895 end;
8cd5951d
AC
4896 end if;
4897 end if;
4898 end Fold_Shift;
4899
996ae0b0
RK
4900 --------------
4901 -- Fold_Str --
4902 --------------
4903
fbf5a39b 4904 procedure Fold_Str (N : Node_Id; Val : String_Id; Static : Boolean) is
996ae0b0
RK
4905 Loc : constant Source_Ptr := Sloc (N);
4906 Typ : constant Entity_Id := Etype (N);
4907
4908 begin
edab6088
RD
4909 if Raises_Constraint_Error (N) then
4910 Set_Is_Static_Expression (N, Static);
4911 return;
4912 end if;
4913
996ae0b0 4914 Rewrite (N, Make_String_Literal (Loc, Strval => Val));
fbf5a39b
AC
4915
4916 -- We now have the literal with the right value, both the actual type
4917 -- and the expected type of this literal are taken from the expression
9479ded4
AC
4918 -- that was evaluated. So now we do the Analyze and Resolve.
4919
4920 -- Note that we have to reset Is_Static_Expression both after the
4921 -- analyze step (because Resolve will evaluate the literal, which
4922 -- will cause semantic errors if it is marked as static), and after
354c3840 4923 -- the Resolve step (since Resolve in some cases resets this flag).
fbf5a39b
AC
4924
4925 Analyze (N);
4926 Set_Is_Static_Expression (N, Static);
4927 Set_Etype (N, Typ);
4928 Resolve (N);
9479ded4 4929 Set_Is_Static_Expression (N, Static);
996ae0b0
RK
4930 end Fold_Str;
4931
4932 ---------------
4933 -- Fold_Uint --
4934 ---------------
4935
fbf5a39b 4936 procedure Fold_Uint (N : Node_Id; Val : Uint; Static : Boolean) is
996ae0b0 4937 Loc : constant Source_Ptr := Sloc (N);
fbf5a39b
AC
4938 Typ : Entity_Id := Etype (N);
4939 Ent : Entity_Id;
996ae0b0
RK
4940
4941 begin
edab6088
RD
4942 if Raises_Constraint_Error (N) then
4943 Set_Is_Static_Expression (N, Static);
4944 return;
4945 end if;
4946
3aeb5ebe
AC
4947 -- If we are folding a named number, retain the entity in the literal
4948 -- in the original tree.
fbf5a39b 4949
80298c3b 4950 if Is_Entity_Name (N) and then Ekind (Entity (N)) = E_Named_Integer then
fbf5a39b
AC
4951 Ent := Entity (N);
4952 else
4953 Ent := Empty;
4954 end if;
4955
4956 if Is_Private_Type (Typ) then
4957 Typ := Full_View (Typ);
4958 end if;
4959
f3d57416 4960 -- For a result of type integer, substitute an N_Integer_Literal node
996ae0b0 4961 -- for the result of the compile time evaluation of the expression.
3aeb5ebe
AC
4962 -- Set a link to the original named number when not in a generic context
4963 -- for reference in the original tree.
996ae0b0 4964
fbf5a39b 4965 if Is_Integer_Type (Typ) then
996ae0b0 4966 Rewrite (N, Make_Integer_Literal (Loc, Val));
fbf5a39b 4967 Set_Original_Entity (N, Ent);
996ae0b0
RK
4968
4969 -- Otherwise we have an enumeration type, and we substitute either
4970 -- an N_Identifier or N_Character_Literal to represent the enumeration
4971 -- literal corresponding to the given value, which must always be in
4972 -- range, because appropriate tests have already been made for this.
4973
fbf5a39b 4974 else pragma Assert (Is_Enumeration_Type (Typ));
996ae0b0
RK
4975 Rewrite (N, Get_Enum_Lit_From_Pos (Etype (N), Val, Loc));
4976 end if;
4977
4978 -- We now have the literal with the right value, both the actual type
4979 -- and the expected type of this literal are taken from the expression
9479ded4
AC
4980 -- that was evaluated. So now we do the Analyze and Resolve.
4981
4982 -- Note that we have to reset Is_Static_Expression both after the
4983 -- analyze step (because Resolve will evaluate the literal, which
4984 -- will cause semantic errors if it is marked as static), and after
4985 -- the Resolve step (since Resolve in some cases sets this flag).
996ae0b0
RK
4986
4987 Analyze (N);
fbf5a39b 4988 Set_Is_Static_Expression (N, Static);
996ae0b0 4989 Set_Etype (N, Typ);
fbf5a39b 4990 Resolve (N);
9479ded4 4991 Set_Is_Static_Expression (N, Static);
996ae0b0
RK
4992 end Fold_Uint;
4993
4994 ----------------
4995 -- Fold_Ureal --
4996 ----------------
4997
fbf5a39b 4998 procedure Fold_Ureal (N : Node_Id; Val : Ureal; Static : Boolean) is
996ae0b0
RK
4999 Loc : constant Source_Ptr := Sloc (N);
5000 Typ : constant Entity_Id := Etype (N);
fbf5a39b 5001 Ent : Entity_Id;
996ae0b0
RK
5002
5003 begin
edab6088
RD
5004 if Raises_Constraint_Error (N) then
5005 Set_Is_Static_Expression (N, Static);
5006 return;
5007 end if;
5008
3aeb5ebe
AC
5009 -- If we are folding a named number, retain the entity in the literal
5010 -- in the original tree.
fbf5a39b 5011
80298c3b 5012 if Is_Entity_Name (N) and then Ekind (Entity (N)) = E_Named_Real then
fbf5a39b
AC
5013 Ent := Entity (N);
5014 else
5015 Ent := Empty;
5016 end if;
5017
996ae0b0 5018 Rewrite (N, Make_Real_Literal (Loc, Realval => Val));
cd2fb920 5019
3aeb5ebe 5020 -- Set link to original named number
cd2fb920 5021
fbf5a39b 5022 Set_Original_Entity (N, Ent);
996ae0b0 5023
9479ded4
AC
5024 -- We now have the literal with the right value, both the actual type
5025 -- and the expected type of this literal are taken from the expression
5026 -- that was evaluated. So now we do the Analyze and Resolve.
5027
5028 -- Note that we have to reset Is_Static_Expression both after the
5029 -- analyze step (because Resolve will evaluate the literal, which
5030 -- will cause semantic errors if it is marked as static), and after
5031 -- the Resolve step (since Resolve in some cases sets this flag).
996ae0b0 5032
7800a8fb
YM
5033 -- We mark the node as analyzed so that its type is not erased by
5034 -- calling Analyze_Real_Literal.
5035
fbf5a39b
AC
5036 Analyze (N);
5037 Set_Is_Static_Expression (N, Static);
996ae0b0 5038 Set_Etype (N, Typ);
fbf5a39b 5039 Resolve (N);
7800a8fb 5040 Set_Analyzed (N);
9479ded4 5041 Set_Is_Static_Expression (N, Static);
996ae0b0
RK
5042 end Fold_Ureal;
5043
5044 ---------------
5045 -- From_Bits --
5046 ---------------
5047
5048 function From_Bits (B : Bits; T : Entity_Id) return Uint is
5049 V : Uint := Uint_0;
5050
5051 begin
5052 for J in 0 .. B'Last loop
5053 if B (J) then
5054 V := V + 2 ** J;
5055 end if;
5056 end loop;
5057
5058 if Non_Binary_Modulus (T) then
5059 V := V mod Modulus (T);
5060 end if;
5061
5062 return V;
5063 end From_Bits;
5064
5065 --------------------
5066 -- Get_String_Val --
5067 --------------------
5068
5069 function Get_String_Val (N : Node_Id) return Node_Id is
5070 begin
4a08c95c 5071 if Nkind (N) in N_String_Literal | N_Character_Literal then
996ae0b0 5072 return N;
996ae0b0
RK
5073 else
5074 pragma Assert (Is_Entity_Name (N));
5075 return Get_String_Val (Constant_Value (Entity (N)));
5076 end if;
5077 end Get_String_Val;
5078
fbf5a39b
AC
5079 ----------------
5080 -- Initialize --
5081 ----------------
5082
5083 procedure Initialize is
5084 begin
5085 CV_Cache := (others => (Node_High_Bound, Uint_0));
5086 end Initialize;
5087
996ae0b0
RK
5088 --------------------
5089 -- In_Subrange_Of --
5090 --------------------
5091
5092 function In_Subrange_Of
c27f2f15
RD
5093 (T1 : Entity_Id;
5094 T2 : Entity_Id;
5095 Fixed_Int : Boolean := False) return Boolean
996ae0b0
RK
5096 is
5097 L1 : Node_Id;
5098 H1 : Node_Id;
5099
5100 L2 : Node_Id;
5101 H2 : Node_Id;
5102
5103 begin
5104 if T1 = T2 or else Is_Subtype_Of (T1, T2) then
5105 return True;
5106
5107 -- Never in range if both types are not scalar. Don't know if this can
5108 -- actually happen, but just in case.
5109
9d08a38d 5110 elsif not Is_Scalar_Type (T1) or else not Is_Scalar_Type (T2) then
996ae0b0
RK
5111 return False;
5112
d79e621a
GD
5113 -- If T1 has infinities but T2 doesn't have infinities, then T1 is
5114 -- definitely not compatible with T2.
5115
5116 elsif Is_Floating_Point_Type (T1)
5117 and then Has_Infinities (T1)
5118 and then Is_Floating_Point_Type (T2)
5119 and then not Has_Infinities (T2)
5120 then
5121 return False;
5122
996ae0b0
RK
5123 else
5124 L1 := Type_Low_Bound (T1);
5125 H1 := Type_High_Bound (T1);
5126
5127 L2 := Type_Low_Bound (T2);
5128 H2 := Type_High_Bound (T2);
5129
5130 -- Check bounds to see if comparison possible at compile time
5131
c27f2f15 5132 if Compile_Time_Compare (L1, L2, Assume_Valid => True) in Compare_GE
996ae0b0 5133 and then
c27f2f15 5134 Compile_Time_Compare (H1, H2, Assume_Valid => True) in Compare_LE
996ae0b0
RK
5135 then
5136 return True;
5137 end if;
5138
5139 -- If bounds not comparable at compile time, then the bounds of T2
d3bbfc59 5140 -- must be compile-time-known or we cannot answer the query.
996ae0b0
RK
5141
5142 if not Compile_Time_Known_Value (L2)
5143 or else not Compile_Time_Known_Value (H2)
5144 then
5145 return False;
5146 end if;
5147
5148 -- If the bounds of T1 are know at compile time then use these
5149 -- ones, otherwise use the bounds of the base type (which are of
5150 -- course always static).
5151
5152 if not Compile_Time_Known_Value (L1) then
5153 L1 := Type_Low_Bound (Base_Type (T1));
5154 end if;
5155
5156 if not Compile_Time_Known_Value (H1) then
5157 H1 := Type_High_Bound (Base_Type (T1));
5158 end if;
5159
5160 -- Fixed point types should be considered as such only if
5161 -- flag Fixed_Int is set to False.
5162
5163 if Is_Floating_Point_Type (T1) or else Is_Floating_Point_Type (T2)
5164 or else (Is_Fixed_Point_Type (T1) and then not Fixed_Int)
5165 or else (Is_Fixed_Point_Type (T2) and then not Fixed_Int)
5166 then
5167 return
5168 Expr_Value_R (L2) <= Expr_Value_R (L1)
5169 and then
5170 Expr_Value_R (H2) >= Expr_Value_R (H1);
5171
5172 else
5173 return
5174 Expr_Value (L2) <= Expr_Value (L1)
5175 and then
5176 Expr_Value (H2) >= Expr_Value (H1);
5177
5178 end if;
5179 end if;
5180
5181 -- If any exception occurs, it means that we have some bug in the compiler
f3d57416 5182 -- possibly triggered by a previous error, or by some unforeseen peculiar
996ae0b0
RK
5183 -- occurrence. However, this is only an optimization attempt, so there is
5184 -- really no point in crashing the compiler. Instead we just decide, too
5185 -- bad, we can't figure out the answer in this case after all.
5186
5187 exception
5188 when others =>
a34da56b
PT
5189 -- With debug flag K we will get an exception unless an error has
5190 -- already occurred (useful for debugging).
996ae0b0
RK
5191
5192 if Debug_Flag_K then
a34da56b 5193 Check_Error_Detected;
996ae0b0 5194 end if;
a34da56b
PT
5195
5196 return False;
996ae0b0
RK
5197 end In_Subrange_Of;
5198
5199 -----------------
5200 -- Is_In_Range --
5201 -----------------
5202
5203 function Is_In_Range
c800f862
RD
5204 (N : Node_Id;
5205 Typ : Entity_Id;
5206 Assume_Valid : Boolean := False;
5207 Fixed_Int : Boolean := False;
5208 Int_Real : Boolean := False) return Boolean
996ae0b0 5209 is
996ae0b0 5210 begin
80298c3b
AC
5211 return
5212 Test_In_Range (N, Typ, Assume_Valid, Fixed_Int, Int_Real) = In_Range;
996ae0b0
RK
5213 end Is_In_Range;
5214
5215 -------------------
5216 -- Is_Null_Range --
5217 -------------------
5218
5219 function Is_Null_Range (Lo : Node_Id; Hi : Node_Id) return Boolean is
996ae0b0 5220 begin
791f2d03
PT
5221 if Compile_Time_Known_Value (Lo)
5222 and then Compile_Time_Known_Value (Hi)
996ae0b0 5223 then
791f2d03 5224 declare
a2fcf1e0 5225 Typ : Entity_Id := Etype (Lo);
791f2d03
PT
5226 begin
5227 -- When called from the frontend, as part of the analysis of
5228 -- potentially static expressions, Typ will be the full view of a
5229 -- type with all the info needed to answer this query. When called
5230 -- from the backend, for example to know whether a range of a loop
5231 -- is null, Typ might be a private type and we need to explicitly
5232 -- switch to its corresponding full view to access the same info.
5233
a2fcf1e0
PT
5234 if Is_Incomplete_Or_Private_Type (Typ)
5235 and then Present (Full_View (Typ))
5236 then
5237 Typ := Full_View (Typ);
791f2d03 5238 end if;
996ae0b0 5239
791f2d03
PT
5240 if Is_Discrete_Type (Typ) then
5241 return Expr_Value (Lo) > Expr_Value (Hi);
5242 else pragma Assert (Is_Real_Type (Typ));
5243 return Expr_Value_R (Lo) > Expr_Value_R (Hi);
5244 end if;
5245 end;
5246 else
5247 return False;
996ae0b0
RK
5248 end if;
5249 end Is_Null_Range;
5250
edab6088
RD
5251 -------------------------
5252 -- Is_OK_Static_Choice --
5253 -------------------------
5254
5255 function Is_OK_Static_Choice (Choice : Node_Id) return Boolean is
5256 begin
5257 -- Check various possibilities for choice
5258
5259 -- Note: for membership tests, we test more cases than are possible
5260 -- (in particular subtype indication), but it doesn't matter because
5261 -- it just won't occur (we have already done a syntax check).
5262
5263 if Nkind (Choice) = N_Others_Choice then
5264 return True;
5265
5266 elsif Nkind (Choice) = N_Range then
5267 return Is_OK_Static_Range (Choice);
5268
5269 elsif Nkind (Choice) = N_Subtype_Indication
87feba05 5270 or else (Is_Entity_Name (Choice) and then Is_Type (Entity (Choice)))
edab6088
RD
5271 then
5272 return Is_OK_Static_Subtype (Etype (Choice));
5273
5274 else
5275 return Is_OK_Static_Expression (Choice);
5276 end if;
5277 end Is_OK_Static_Choice;
5278
5279 ------------------------------
5280 -- Is_OK_Static_Choice_List --
5281 ------------------------------
5282
5283 function Is_OK_Static_Choice_List (Choices : List_Id) return Boolean is
5284 Choice : Node_Id;
5285
5286 begin
5287 if not Is_Static_Choice_List (Choices) then
5288 return False;
5289 end if;
5290
5291 Choice := First (Choices);
5292 while Present (Choice) loop
5293 if not Is_OK_Static_Choice (Choice) then
5294 Set_Raises_Constraint_Error (Choice);
5295 return False;
5296 end if;
5297
5298 Next (Choice);
5299 end loop;
5300
5301 return True;
5302 end Is_OK_Static_Choice_List;
5303
996ae0b0
RK
5304 -----------------------------
5305 -- Is_OK_Static_Expression --
5306 -----------------------------
5307
5308 function Is_OK_Static_Expression (N : Node_Id) return Boolean is
5309 begin
80298c3b 5310 return Is_Static_Expression (N) and then not Raises_Constraint_Error (N);
996ae0b0
RK
5311 end Is_OK_Static_Expression;
5312
5313 ------------------------
5314 -- Is_OK_Static_Range --
5315 ------------------------
5316
5317 -- A static range is a range whose bounds are static expressions, or a
5318 -- Range_Attribute_Reference equivalent to such a range (RM 4.9(26)).
5319 -- We have already converted range attribute references, so we get the
5320 -- "or" part of this rule without needing a special test.
5321
5322 function Is_OK_Static_Range (N : Node_Id) return Boolean is
5323 begin
5324 return Is_OK_Static_Expression (Low_Bound (N))
5325 and then Is_OK_Static_Expression (High_Bound (N));
5326 end Is_OK_Static_Range;
5327
5328 --------------------------
5329 -- Is_OK_Static_Subtype --
5330 --------------------------
5331
22cb89b5 5332 -- Determines if Typ is a static subtype as defined in (RM 4.9(26)) where
1e3c434f 5333 -- neither bound raises Constraint_Error when evaluated.
996ae0b0
RK
5334
5335 function Is_OK_Static_Subtype (Typ : Entity_Id) return Boolean is
5336 Base_T : constant Entity_Id := Base_Type (Typ);
5337 Anc_Subt : Entity_Id;
5338
5339 begin
5340 -- First a quick check on the non static subtype flag. As described
5341 -- in further detail in Einfo, this flag is not decisive in all cases,
5342 -- but if it is set, then the subtype is definitely non-static.
5343
5344 if Is_Non_Static_Subtype (Typ) then
5345 return False;
5346 end if;
5347
5348 Anc_Subt := Ancestor_Subtype (Typ);
5349
5350 if Anc_Subt = Empty then
5351 Anc_Subt := Base_T;
5352 end if;
5353
5354 if Is_Generic_Type (Root_Type (Base_T))
5355 or else Is_Generic_Actual_Type (Base_T)
5356 then
5357 return False;
5358
87feba05
AC
5359 elsif Has_Dynamic_Predicate_Aspect (Typ) then
5360 return False;
5361
996ae0b0
RK
5362 -- String types
5363
5364 elsif Is_String_Type (Typ) then
5365 return
5366 Ekind (Typ) = E_String_Literal_Subtype
5367 or else
011f9d5d
AC
5368 (Is_OK_Static_Subtype (Component_Type (Typ))
5369 and then Is_OK_Static_Subtype (Etype (First_Index (Typ))));
996ae0b0
RK
5370
5371 -- Scalar types
5372
5373 elsif Is_Scalar_Type (Typ) then
5374 if Base_T = Typ then
5375 return True;
5376
5377 else
22cb89b5
AC
5378 -- Scalar_Range (Typ) might be an N_Subtype_Indication, so use
5379 -- Get_Type_{Low,High}_Bound.
996ae0b0
RK
5380
5381 return Is_OK_Static_Subtype (Anc_Subt)
5382 and then Is_OK_Static_Expression (Type_Low_Bound (Typ))
5383 and then Is_OK_Static_Expression (Type_High_Bound (Typ));
5384 end if;
5385
5386 -- Types other than string and scalar types are never static
5387
5388 else
5389 return False;
5390 end if;
5391 end Is_OK_Static_Subtype;
5392
5393 ---------------------
5394 -- Is_Out_Of_Range --
5395 ---------------------
5396
5397 function Is_Out_Of_Range
1c7717c3
AC
5398 (N : Node_Id;
5399 Typ : Entity_Id;
c800f862 5400 Assume_Valid : Boolean := False;
1c7717c3
AC
5401 Fixed_Int : Boolean := False;
5402 Int_Real : Boolean := False) return Boolean
996ae0b0 5403 is
996ae0b0 5404 begin
80298c3b
AC
5405 return Test_In_Range (N, Typ, Assume_Valid, Fixed_Int, Int_Real) =
5406 Out_Of_Range;
996ae0b0
RK
5407 end Is_Out_Of_Range;
5408
edab6088
RD
5409 ----------------------
5410 -- Is_Static_Choice --
5411 ----------------------
5412
5413 function Is_Static_Choice (Choice : Node_Id) return Boolean is
5414 begin
5415 -- Check various possibilities for choice
5416
5417 -- Note: for membership tests, we test more cases than are possible
5418 -- (in particular subtype indication), but it doesn't matter because
5419 -- it just won't occur (we have already done a syntax check).
5420
5421 if Nkind (Choice) = N_Others_Choice then
5422 return True;
5423
5424 elsif Nkind (Choice) = N_Range then
5425 return Is_Static_Range (Choice);
5426
5427 elsif Nkind (Choice) = N_Subtype_Indication
87feba05 5428 or else (Is_Entity_Name (Choice) and then Is_Type (Entity (Choice)))
edab6088
RD
5429 then
5430 return Is_Static_Subtype (Etype (Choice));
5431
5432 else
5433 return Is_Static_Expression (Choice);
5434 end if;
5435 end Is_Static_Choice;
5436
5437 ---------------------------
5438 -- Is_Static_Choice_List --
5439 ---------------------------
5440
5441 function Is_Static_Choice_List (Choices : List_Id) return Boolean is
5442 Choice : Node_Id;
5443
5444 begin
5445 Choice := First (Choices);
5446 while Present (Choice) loop
5447 if not Is_Static_Choice (Choice) then
5448 return False;
5449 end if;
5450
5451 Next (Choice);
5452 end loop;
5453
5454 return True;
5455 end Is_Static_Choice_List;
5456
87feba05 5457 ---------------------
996ae0b0
RK
5458 -- Is_Static_Range --
5459 ---------------------
5460
5461 -- A static range is a range whose bounds are static expressions, or a
5462 -- Range_Attribute_Reference equivalent to such a range (RM 4.9(26)).
5463 -- We have already converted range attribute references, so we get the
5464 -- "or" part of this rule without needing a special test.
5465
5466 function Is_Static_Range (N : Node_Id) return Boolean is
5467 begin
edab6088 5468 return Is_Static_Expression (Low_Bound (N))
80298c3b
AC
5469 and then
5470 Is_Static_Expression (High_Bound (N));
996ae0b0
RK
5471 end Is_Static_Range;
5472
5473 -----------------------
5474 -- Is_Static_Subtype --
5475 -----------------------
5476
82c80734 5477 -- Determines if Typ is a static subtype as defined in (RM 4.9(26))
996ae0b0
RK
5478
5479 function Is_Static_Subtype (Typ : Entity_Id) return Boolean is
5480 Base_T : constant Entity_Id := Base_Type (Typ);
5481 Anc_Subt : Entity_Id;
5482
5483 begin
5484 -- First a quick check on the non static subtype flag. As described
5485 -- in further detail in Einfo, this flag is not decisive in all cases,
5486 -- but if it is set, then the subtype is definitely non-static.
5487
5488 if Is_Non_Static_Subtype (Typ) then
5489 return False;
5490 end if;
5491
5492 Anc_Subt := Ancestor_Subtype (Typ);
5493
5494 if Anc_Subt = Empty then
5495 Anc_Subt := Base_T;
5496 end if;
5497
5498 if Is_Generic_Type (Root_Type (Base_T))
5499 or else Is_Generic_Actual_Type (Base_T)
5500 then
5501 return False;
5502
ca0eb951
AC
5503 -- If there is a dynamic predicate for the type (declared or inherited)
5504 -- the expression is not static.
5505
5506 elsif Has_Dynamic_Predicate_Aspect (Typ)
5507 or else (Is_Derived_Type (Typ)
5508 and then Has_Aspect (Typ, Aspect_Dynamic_Predicate))
5509 then
87feba05
AC
5510 return False;
5511
996ae0b0
RK
5512 -- String types
5513
5514 elsif Is_String_Type (Typ) then
5515 return
5516 Ekind (Typ) = E_String_Literal_Subtype
011f9d5d
AC
5517 or else (Is_Static_Subtype (Component_Type (Typ))
5518 and then Is_Static_Subtype (Etype (First_Index (Typ))));
996ae0b0
RK
5519
5520 -- Scalar types
5521
5522 elsif Is_Scalar_Type (Typ) then
5523 if Base_T = Typ then
5524 return True;
5525
5526 else
5527 return Is_Static_Subtype (Anc_Subt)
5528 and then Is_Static_Expression (Type_Low_Bound (Typ))
5529 and then Is_Static_Expression (Type_High_Bound (Typ));
5530 end if;
5531
5532 -- Types other than string and scalar types are never static
5533
5534 else
5535 return False;
5536 end if;
5537 end Is_Static_Subtype;
5538
edab6088
RD
5539 -------------------------------
5540 -- Is_Statically_Unevaluated --
5541 -------------------------------
5542
5543 function Is_Statically_Unevaluated (Expr : Node_Id) return Boolean is
5544 function Check_Case_Expr_Alternative
5545 (CEA : Node_Id) return Match_Result;
5546 -- We have a message emanating from the Expression of a case expression
5547 -- alternative. We examine this alternative, as follows:
5548 --
5549 -- If the selecting expression of the parent case is non-static, or
5550 -- if any of the discrete choices of the given case alternative are
5551 -- non-static or raise Constraint_Error, return Non_Static.
5552 --
5553 -- Otherwise check if the selecting expression matches any of the given
4bd4bb7f
AC
5554 -- discrete choices. If so, the alternative is executed and we return
5555 -- Match, otherwise, the alternative can never be executed, and so we
5556 -- return No_Match.
edab6088
RD
5557
5558 ---------------------------------
5559 -- Check_Case_Expr_Alternative --
5560 ---------------------------------
5561
5562 function Check_Case_Expr_Alternative
5563 (CEA : Node_Id) return Match_Result
5564 is
5565 Case_Exp : constant Node_Id := Parent (CEA);
5566 Choice : Node_Id;
5567 Prev_CEA : Node_Id;
5568
5569 begin
5570 pragma Assert (Nkind (Case_Exp) = N_Case_Expression);
5571
4bd4bb7f 5572 -- Check that selecting expression is static
edab6088
RD
5573
5574 if not Is_OK_Static_Expression (Expression (Case_Exp)) then
5575 return Non_Static;
5576 end if;
5577
5578 if not Is_OK_Static_Choice_List (Discrete_Choices (CEA)) then
5579 return Non_Static;
5580 end if;
5581
5582 -- All choices are now known to be static. Now see if alternative
5583 -- matches one of the choices.
5584
5585 Choice := First (Discrete_Choices (CEA));
5586 while Present (Choice) loop
5587
4bd4bb7f 5588 -- Check various possibilities for choice, returning Match if we
edab6088
RD
5589 -- find the selecting value matches any of the choices. Note that
5590 -- we know we are the last choice, so we don't have to keep going.
5591
5592 if Nkind (Choice) = N_Others_Choice then
5593
5594 -- Others choice is a bit annoying, it matches if none of the
5595 -- previous alternatives matches (note that we know we are the
5596 -- last alternative in this case, so we can just go backwards
5597 -- from us to see if any previous one matches).
5598
5599 Prev_CEA := Prev (CEA);
5600 while Present (Prev_CEA) loop
5601 if Check_Case_Expr_Alternative (Prev_CEA) = Match then
5602 return No_Match;
5603 end if;
5604
5605 Prev (Prev_CEA);
5606 end loop;
5607
5608 return Match;
5609
5610 -- Else we have a normal static choice
5611
5612 elsif Choice_Matches (Expression (Case_Exp), Choice) = Match then
5613 return Match;
5614 end if;
5615
5616 -- If we fall through, it means that the discrete choice did not
5617 -- match the selecting expression, so continue.
5618
5619 Next (Choice);
5620 end loop;
5621
4bd4bb7f
AC
5622 -- If we get through that loop then all choices were static, and none
5623 -- of them matched the selecting expression. So return No_Match.
edab6088
RD
5624
5625 return No_Match;
5626 end Check_Case_Expr_Alternative;
5627
5628 -- Local variables
5629
5630 P : Node_Id;
5631 OldP : Node_Id;
5632 Choice : Node_Id;
5633
5634 -- Start of processing for Is_Statically_Unevaluated
5635
5636 begin
5637 -- The (32.x) references here are from RM section 4.9
5638
5639 -- (32.1) An expression is statically unevaluated if it is part of ...
5640
5641 -- This means we have to climb the tree looking for one of the cases
5642
5643 P := Expr;
5644 loop
5645 OldP := P;
5646 P := Parent (P);
5647
5648 -- (32.2) The right operand of a static short-circuit control form
5649 -- whose value is determined by its left operand.
5650
5651 -- AND THEN with False as left operand
5652
5653 if Nkind (P) = N_And_Then
5654 and then Compile_Time_Known_Value (Left_Opnd (P))
5655 and then Is_False (Expr_Value (Left_Opnd (P)))
5656 then
5657 return True;
5658
5659 -- OR ELSE with True as left operand
5660
5661 elsif Nkind (P) = N_Or_Else
5662 and then Compile_Time_Known_Value (Left_Opnd (P))
5663 and then Is_True (Expr_Value (Left_Opnd (P)))
5664 then
5665 return True;
5666
5667 -- (32.3) A dependent_expression of an if_expression whose associated
5668 -- condition is static and equals False.
5669
5670 elsif Nkind (P) = N_If_Expression then
5671 declare
5672 Cond : constant Node_Id := First (Expressions (P));
5673 Texp : constant Node_Id := Next (Cond);
5674 Fexp : constant Node_Id := Next (Texp);
5675
5676 begin
5677 if Compile_Time_Known_Value (Cond) then
5678
5679 -- Condition is True and we are in the right operand
5680
5681 if Is_True (Expr_Value (Cond)) and then OldP = Fexp then
5682 return True;
5683
5684 -- Condition is False and we are in the left operand
5685
5686 elsif Is_False (Expr_Value (Cond)) and then OldP = Texp then
5687 return True;
5688 end if;
5689 end if;
5690 end;
5691
5692 -- (32.4) A condition or dependent_expression of an if_expression
5693 -- where the condition corresponding to at least one preceding
5694 -- dependent_expression of the if_expression is static and equals
5695 -- True.
5696
5697 -- This refers to cases like
5698
4bd4bb7f 5699 -- (if True then 1 elsif 1/0=2 then 2 else 3)
edab6088
RD
5700
5701 -- But we expand elsif's out anyway, so the above looks like:
5702
4bd4bb7f 5703 -- (if True then 1 else (if 1/0=2 then 2 else 3))
edab6088
RD
5704
5705 -- So for us this is caught by the above check for the 32.3 case.
5706
5707 -- (32.5) A dependent_expression of a case_expression whose
5708 -- selecting_expression is static and whose value is not covered
5709 -- by the corresponding discrete_choice_list.
5710
5711 elsif Nkind (P) = N_Case_Expression_Alternative then
5712
5713 -- First, we have to be in the expression to suppress messages.
5714 -- If we are within one of the choices, we want the message.
5715
5716 if OldP = Expression (P) then
5717
5718 -- Statically unevaluated if alternative does not match
5719
5720 if Check_Case_Expr_Alternative (P) = No_Match then
5721 return True;
5722 end if;
5723 end if;
5724
5725 -- (32.6) A choice_expression (or a simple_expression of a range
5726 -- that occurs as a membership_choice of a membership_choice_list)
5727 -- of a static membership test that is preceded in the enclosing
5728 -- membership_choice_list by another item whose individual
5729 -- membership test (see (RM 4.5.2)) statically yields True.
5730
5731 elsif Nkind (P) in N_Membership_Test then
5732
5733 -- Only possibly unevaluated if simple expression is static
5734
5735 if not Is_OK_Static_Expression (Left_Opnd (P)) then
5736 null;
5737
5738 -- All members of the choice list must be static
5739
5740 elsif (Present (Right_Opnd (P))
5741 and then not Is_OK_Static_Choice (Right_Opnd (P)))
5742 or else (Present (Alternatives (P))
5743 and then
5744 not Is_OK_Static_Choice_List (Alternatives (P)))
5745 then
5746 null;
5747
5748 -- If expression is the one and only alternative, then it is
5749 -- definitely not statically unevaluated, so we only have to
5750 -- test the case where there are alternatives present.
5751
5752 elsif Present (Alternatives (P)) then
5753
5754 -- Look for previous matching Choice
5755
5756 Choice := First (Alternatives (P));
5757 while Present (Choice) loop
5758
5759 -- If we reached us and no previous choices matched, this
5760 -- is not the case where we are statically unevaluated.
5761
5762 exit when OldP = Choice;
5763
5764 -- If a previous choice matches, then that is the case where
5765 -- we know our choice is statically unevaluated.
5766
5767 if Choice_Matches (Left_Opnd (P), Choice) = Match then
5768 return True;
5769 end if;
5770
5771 Next (Choice);
5772 end loop;
5773
5774 -- If we fall through the loop, we were not one of the choices,
5775 -- we must have been the expression, so that is not covered by
5776 -- this rule, and we keep going.
5777
5778 null;
5779 end if;
5780 end if;
5781
5782 -- OK, not statically unevaluated at this level, see if we should
5783 -- keep climbing to look for a higher level reason.
5784
5785 -- Special case for component association in aggregates, where
5786 -- we want to keep climbing up to the parent aggregate.
5787
5788 if Nkind (P) = N_Component_Association
5789 and then Nkind (Parent (P)) = N_Aggregate
5790 then
5791 null;
5792
5793 -- All done if not still within subexpression
5794
5795 else
5796 exit when Nkind (P) not in N_Subexpr;
5797 end if;
5798 end loop;
5799
5800 -- If we fall through the loop, not one of the cases covered!
5801
5802 return False;
5803 end Is_Statically_Unevaluated;
5804
996ae0b0
RK
5805 --------------------
5806 -- Not_Null_Range --
5807 --------------------
5808
5809 function Not_Null_Range (Lo : Node_Id; Hi : Node_Id) return Boolean is
996ae0b0 5810 begin
791f2d03
PT
5811 if Compile_Time_Known_Value (Lo)
5812 and then Compile_Time_Known_Value (Hi)
996ae0b0 5813 then
791f2d03 5814 declare
a2fcf1e0 5815 Typ : Entity_Id := Etype (Lo);
791f2d03
PT
5816 begin
5817 -- When called from the frontend, as part of the analysis of
5818 -- potentially static expressions, Typ will be the full view of a
5819 -- type with all the info needed to answer this query. When called
5820 -- from the backend, for example to know whether a range of a loop
5821 -- is null, Typ might be a private type and we need to explicitly
5822 -- switch to its corresponding full view to access the same info.
5823
a2fcf1e0
PT
5824 if Is_Incomplete_Or_Private_Type (Typ)
5825 and then Present (Full_View (Typ))
5826 then
5827 Typ := Full_View (Typ);
791f2d03
PT
5828 end if;
5829
5830 if Is_Discrete_Type (Typ) then
5831 return Expr_Value (Lo) <= Expr_Value (Hi);
5832 else pragma Assert (Is_Real_Type (Typ));
5833 return Expr_Value_R (Lo) <= Expr_Value_R (Hi);
5834 end if;
5835 end;
5836 else
996ae0b0
RK
5837 return False;
5838 end if;
5839
996ae0b0
RK
5840 end Not_Null_Range;
5841
5842 -------------
5843 -- OK_Bits --
5844 -------------
5845
5846 function OK_Bits (N : Node_Id; Bits : Uint) return Boolean is
5847 begin
5848 -- We allow a maximum of 500,000 bits which seems a reasonable limit
5849
5850 if Bits < 500_000 then
5851 return True;
5852
80298c3b
AC
5853 -- Error if this maximum is exceeded
5854
996ae0b0
RK
5855 else
5856 Error_Msg_N ("static value too large, capacity exceeded", N);
5857 return False;
5858 end if;
5859 end OK_Bits;
5860
5861 ------------------
5862 -- Out_Of_Range --
5863 ------------------
5864
5865 procedure Out_Of_Range (N : Node_Id) is
5866 begin
5867 -- If we have the static expression case, then this is an illegality
5868 -- in Ada 95 mode, except that in an instance, we never generate an
22cb89b5 5869 -- error (if the error is legitimate, it was already diagnosed in the
ac072cb2 5870 -- template).
996ae0b0
RK
5871
5872 if Is_Static_Expression (N)
5873 and then not In_Instance
fbf5a39b 5874 and then not In_Inlined_Body
0ab80019 5875 and then Ada_Version >= Ada_95
996ae0b0 5876 then
4bd4bb7f 5877 -- No message if we are statically unevaluated
ac072cb2
AC
5878
5879 if Is_Statically_Unevaluated (N) then
5880 null;
5881
5882 -- The expression to compute the length of a packed array is attached
5883 -- to the array type itself, and deserves a separate message.
5884
5885 elsif Nkind (Parent (N)) = N_Defining_Identifier
996ae0b0 5886 and then Is_Array_Type (Parent (N))
8ca597af 5887 and then Present (Packed_Array_Impl_Type (Parent (N)))
996ae0b0
RK
5888 and then Present (First_Rep_Item (Parent (N)))
5889 then
5890 Error_Msg_N
5891 ("length of packed array must not exceed Integer''Last",
5892 First_Rep_Item (Parent (N)));
5893 Rewrite (N, Make_Integer_Literal (Sloc (N), Uint_1));
5894
88ad52c9
AC
5895 -- All cases except the special array case.
5896 -- No message if we are dealing with System.Priority values in
5897 -- CodePeer mode where the target runtime may have more priorities.
ac072cb2 5898
88ad52c9 5899 elsif not CodePeer_Mode or else Etype (N) /= RTE (RE_Priority) then
31fde973
GD
5900 -- Determine if the out-of-range violation constitutes a warning
5901 -- or an error based on context, according to RM 4.9 (34/3).
33defa7c
JS
5902
5903 if Nkind (Original_Node (N)) = N_Type_Conversion
5904 and then not Comes_From_Source (Original_Node (N))
5905 then
5906 Apply_Compile_Time_Constraint_Error
5907 (N, "value not in range of}??", CE_Range_Check_Failed);
5908 else
5909 Apply_Compile_Time_Constraint_Error
5910 (N, "value not in range of}", CE_Range_Check_Failed);
5911 end if;
996ae0b0
RK
5912 end if;
5913
22cb89b5
AC
5914 -- Here we generate a warning for the Ada 83 case, or when we are in an
5915 -- instance, or when we have a non-static expression case.
996ae0b0
RK
5916
5917 else
996ae0b0 5918 Apply_Compile_Time_Constraint_Error
324ac540 5919 (N, "value not in range of}??", CE_Range_Check_Failed);
996ae0b0
RK
5920 end if;
5921 end Out_Of_Range;
5922
0faf0503
EB
5923 ---------------------------
5924 -- Predicates_Compatible --
5925 ---------------------------
5926
5927 function Predicates_Compatible (T1, T2 : Entity_Id) return Boolean is
5928
5929 function T2_Rep_Item_Applies_To_T1 (Nam : Name_Id) return Boolean;
5930 -- Return True if the rep item for Nam is either absent on T2 or also
5931 -- applies to T1.
5932
5933 -------------------------------
5934 -- T2_Rep_Item_Applies_To_T1 --
5935 -------------------------------
5936
5937 function T2_Rep_Item_Applies_To_T1 (Nam : Name_Id) return Boolean is
5938 Rep_Item : constant Node_Id := Get_Rep_Item (T2, Nam);
5939
5940 begin
5941 return No (Rep_Item) or else Get_Rep_Item (T1, Nam) = Rep_Item;
5942 end T2_Rep_Item_Applies_To_T1;
5943
5944 -- Start of processing for Predicates_Compatible
5945
5946 begin
5947 if Ada_Version < Ada_2012 then
5948 return True;
5949
5950 -- If T2 has no predicates, there is no compatibility issue
5951
5952 elsif not Has_Predicates (T2) then
5953 return True;
5954
5955 -- T2 has predicates, if T1 has none then we defer to the static check
5956
5957 elsif not Has_Predicates (T1) then
5958 null;
5959
5960 -- Both T2 and T1 have predicates, check that all predicates that apply
5961 -- to T2 apply also to T1 (RM 4.9.1(9/3)).
5962
5963 elsif T2_Rep_Item_Applies_To_T1 (Name_Static_Predicate)
5964 and then T2_Rep_Item_Applies_To_T1 (Name_Dynamic_Predicate)
5965 and then T2_Rep_Item_Applies_To_T1 (Name_Predicate)
5966 then
5967 return True;
5968 end if;
5969
5970 -- Implement the static check prescribed by RM 4.9.1(10/3)
5971
5972 if Is_Static_Subtype (T1) and then Is_Static_Subtype (T2) then
5973 -- We just need to query Interval_Lists for discrete types
5974
5975 if Is_Discrete_Type (T1) and then Is_Discrete_Type (T2) then
5976 declare
5977 Interval_List1 : constant Interval_Lists.Discrete_Interval_List
5978 := Interval_Lists.Type_Intervals (T1);
5979 Interval_List2 : constant Interval_Lists.Discrete_Interval_List
5980 := Interval_Lists.Type_Intervals (T2);
5981 begin
5982 return Interval_Lists.Is_Subset (Interval_List1, Interval_List2)
5983 and then not (Has_Predicates (T1)
5984 and then not Predicate_Checks_Suppressed (T2)
5985 and then Predicate_Checks_Suppressed (T1));
5986 end;
5987
5988 else
5989 -- TBD: Implement Interval_Lists for real types
5990
5991 return False;
5992 end if;
5993
5994 -- If either subtype is not static, the predicates are not compatible
5995
5996 else
5997 return False;
5998 end if;
5999 end Predicates_Compatible;
6000
7f568bfa
AC
6001 ----------------------
6002 -- Predicates_Match --
6003 ----------------------
6004
6005 function Predicates_Match (T1, T2 : Entity_Id) return Boolean is
4331490b
EB
6006
6007 function Have_Same_Rep_Item (Nam : Name_Id) return Boolean;
6008 -- Return True if T1 and T2 have the same rep item for Nam
6009
6010 ------------------------
6011 -- Have_Same_Rep_Item --
6012 ------------------------
6013
6014 function Have_Same_Rep_Item (Nam : Name_Id) return Boolean is
6015 begin
6016 return Get_Rep_Item (T1, Nam) = Get_Rep_Item (T2, Nam);
6017 end Have_Same_Rep_Item;
6018
6019 -- Start of processing for Predicates_Match
7f568bfa
AC
6020
6021 begin
6022 if Ada_Version < Ada_2012 then
6023 return True;
6024
4331490b
EB
6025 -- If T2 has no predicates, match if and only if T1 has none
6026
6027 elsif not Has_Predicates (T2) then
6028 return not Has_Predicates (T1);
6029
6030 -- T2 has predicates, no match if T1 has none
7f568bfa 6031
4331490b 6032 elsif not Has_Predicates (T1) then
7f568bfa
AC
6033 return False;
6034
4331490b
EB
6035 -- Both T2 and T1 have predicates, check that they all come
6036 -- from the same declarations.
7f568bfa
AC
6037
6038 else
4331490b
EB
6039 return Have_Same_Rep_Item (Name_Static_Predicate)
6040 and then Have_Same_Rep_Item (Name_Dynamic_Predicate)
6041 and then Have_Same_Rep_Item (Name_Predicate);
7f568bfa
AC
6042 end if;
6043 end Predicates_Match;
6044
fc3a3f3b
RD
6045 ---------------------------------------------
6046 -- Real_Or_String_Static_Predicate_Matches --
6047 ---------------------------------------------
6048
6049 function Real_Or_String_Static_Predicate_Matches
6050 (Val : Node_Id;
6051 Typ : Entity_Id) return Boolean
6052 is
6053 Expr : constant Node_Id := Static_Real_Or_String_Predicate (Typ);
6054 -- The predicate expression from the type
6055
6056 Pfun : constant Entity_Id := Predicate_Function (Typ);
6057 -- The entity for the predicate function
6058
6059 Ent_Name : constant Name_Id := Chars (First_Formal (Pfun));
6060 -- The name of the formal of the predicate function. Occurrences of the
6061 -- type name in Expr have been rewritten as references to this formal,
6062 -- and it has a unique name, so we can identify references by this name.
6063
6064 Copy : Node_Id;
6065 -- Copy of the predicate function tree
6066
6067 function Process (N : Node_Id) return Traverse_Result;
6068 -- Function used to process nodes during the traversal in which we will
6069 -- find occurrences of the entity name, and replace such occurrences
6070 -- by a real literal with the value to be tested.
6071
6072 procedure Traverse is new Traverse_Proc (Process);
6073 -- The actual traversal procedure
6074
6075 -------------
6076 -- Process --
6077 -------------
6078
6079 function Process (N : Node_Id) return Traverse_Result is
6080 begin
6081 if Nkind (N) = N_Identifier and then Chars (N) = Ent_Name then
6082 declare
6083 Nod : constant Node_Id := New_Copy (Val);
6084 begin
6085 Set_Sloc (Nod, Sloc (N));
6086 Rewrite (N, Nod);
6087 return Skip;
6088 end;
6089
e4d04166
AC
6090 -- The predicate function may contain string-comparison operations
6091 -- that have been converted into calls to run-time array-comparison
6092 -- routines. To evaluate the predicate statically, we recover the
6093 -- original comparison operation and replace the occurrence of the
6094 -- formal by the static string value. The actuals of the generated
6095 -- call are of the form X'Address.
6096
6097 elsif Nkind (N) in N_Op_Compare
6098 and then Nkind (Left_Opnd (N)) = N_Function_Call
6099 then
6100 declare
6101 C : constant Node_Id := Left_Opnd (N);
6102 F : constant Node_Id := First (Parameter_Associations (C));
6103 L : constant Node_Id := Prefix (F);
6104 R : constant Node_Id := Prefix (Next (F));
6105
6106 begin
6107 -- If an operand is an entity name, it is the formal of the
6108 -- predicate function, so replace it with the string value.
6109 -- It may be either operand in the call. The other operand
6110 -- is a static string from the original predicate.
6111
6112 if Is_Entity_Name (L) then
6113 Rewrite (Left_Opnd (N), New_Copy (Val));
6114 Rewrite (Right_Opnd (N), New_Copy (R));
6115
6116 else
6117 Rewrite (Left_Opnd (N), New_Copy (L));
6118 Rewrite (Right_Opnd (N), New_Copy (Val));
6119 end if;
6120
6121 return Skip;
6122 end;
6123
fc3a3f3b
RD
6124 else
6125 return OK;
6126 end if;
6127 end Process;
6128
6129 -- Start of processing for Real_Or_String_Static_Predicate_Matches
6130
6131 begin
6132 -- First deal with special case of inherited predicate, where the
6133 -- predicate expression looks like:
6134
9bdc432a 6135 -- xxPredicate (typ (Ent)) and then Expr
fc3a3f3b
RD
6136
6137 -- where Expr is the predicate expression for this level, and the
9bdc432a 6138 -- left operand is the call to evaluate the inherited predicate.
fc3a3f3b
RD
6139
6140 if Nkind (Expr) = N_And_Then
9bdc432a
AC
6141 and then Nkind (Left_Opnd (Expr)) = N_Function_Call
6142 and then Is_Predicate_Function (Entity (Name (Left_Opnd (Expr))))
fc3a3f3b
RD
6143 then
6144 -- OK we have the inherited case, so make a call to evaluate the
6145 -- inherited predicate. If that fails, so do we!
6146
6147 if not
6148 Real_Or_String_Static_Predicate_Matches
6149 (Val => Val,
9bdc432a 6150 Typ => Etype (First_Formal (Entity (Name (Left_Opnd (Expr))))))
fc3a3f3b
RD
6151 then
6152 return False;
6153 end if;
6154
9bdc432a 6155 -- Use the right operand for the continued processing
fc3a3f3b 6156
9bdc432a 6157 Copy := Copy_Separate_Tree (Right_Opnd (Expr));
fc3a3f3b 6158
622599c6
RD
6159 -- Case where call to predicate function appears on its own (this means
6160 -- that the predicate at this level is just inherited from the parent).
fc3a3f3b 6161
1b1d88b1 6162 elsif Nkind (Expr) = N_Function_Call then
622599c6
RD
6163 declare
6164 Typ : constant Entity_Id :=
6165 Etype (First_Formal (Entity (Name (Expr))));
fc3a3f3b 6166
622599c6
RD
6167 begin
6168 -- If the inherited predicate is dynamic, just ignore it. We can't
6169 -- go trying to evaluate a dynamic predicate as a static one!
fc3a3f3b 6170
622599c6
RD
6171 if Has_Dynamic_Predicate_Aspect (Typ) then
6172 return True;
6173
6174 -- Otherwise inherited predicate is static, check for match
6175
6176 else
6177 return Real_Or_String_Static_Predicate_Matches (Val, Typ);
6178 end if;
6179 end;
fc3a3f3b 6180
622599c6 6181 -- If not just an inherited predicate, copy whole expression
fc3a3f3b
RD
6182
6183 else
6184 Copy := Copy_Separate_Tree (Expr);
6185 end if;
6186
6187 -- Now we replace occurrences of the entity by the value
6188
6189 Traverse (Copy);
6190
6191 -- And analyze the resulting static expression to see if it is True
6192
6193 Analyze_And_Resolve (Copy, Standard_Boolean);
6194 return Is_True (Expr_Value (Copy));
6195 end Real_Or_String_Static_Predicate_Matches;
6196
996ae0b0
RK
6197 -------------------------
6198 -- Rewrite_In_Raise_CE --
6199 -------------------------
6200
6201 procedure Rewrite_In_Raise_CE (N : Node_Id; Exp : Node_Id) is
edab6088 6202 Stat : constant Boolean := Is_Static_Expression (N);
61770974 6203 Typ : constant Entity_Id := Etype (N);
996ae0b0
RK
6204
6205 begin
edab6088
RD
6206 -- If we want to raise CE in the condition of a N_Raise_CE node, we
6207 -- can just clear the condition if the reason is appropriate. We do
6208 -- not do this operation if the parent has a reason other than range
6209 -- check failed, because otherwise we would change the reason.
996ae0b0
RK
6210
6211 if Present (Parent (N))
6212 and then Nkind (Parent (N)) = N_Raise_Constraint_Error
edab6088
RD
6213 and then Reason (Parent (N)) =
6214 UI_From_Int (RT_Exception_Code'Pos (CE_Range_Check_Failed))
996ae0b0
RK
6215 then
6216 Set_Condition (Parent (N), Empty);
6217
edab6088 6218 -- Else build an explicit N_Raise_CE
996ae0b0
RK
6219
6220 else
5b4f211d
AC
6221 if Nkind (Exp) = N_Raise_Constraint_Error then
6222 Rewrite (N,
6223 Make_Raise_Constraint_Error (Sloc (Exp),
6224 Reason => Reason (Exp)));
6225 else
6226 Rewrite (N,
6227 Make_Raise_Constraint_Error (Sloc (Exp),
6228 Reason => CE_Range_Check_Failed));
6229 end if;
6230
996ae0b0
RK
6231 Set_Raises_Constraint_Error (N);
6232 Set_Etype (N, Typ);
6233 end if;
edab6088
RD
6234
6235 -- Set proper flags in result
6236
6237 Set_Raises_Constraint_Error (N, True);
6238 Set_Is_Static_Expression (N, Stat);
996ae0b0
RK
6239 end Rewrite_In_Raise_CE;
6240
bbab2db3
GD
6241 ------------------------------------------------
6242 -- Set_Checking_Potentially_Static_Expression --
6243 ------------------------------------------------
6244
6245 procedure Set_Checking_Potentially_Static_Expression (Value : Boolean) is
6246 begin
6247 -- Verify that we're not currently checking for a potentially static
6248 -- expression unless we're disabling such checking.
6249
6250 pragma Assert
6251 (not Checking_For_Potentially_Static_Expression or else not Value);
6252
6253 Checking_For_Potentially_Static_Expression := Value;
6254 end Set_Checking_Potentially_Static_Expression;
6255
996ae0b0
RK
6256 ---------------------
6257 -- String_Type_Len --
6258 ---------------------
6259
6260 function String_Type_Len (Stype : Entity_Id) return Uint is
6261 NT : constant Entity_Id := Etype (First_Index (Stype));
6262 T : Entity_Id;
6263
6264 begin
6265 if Is_OK_Static_Subtype (NT) then
6266 T := NT;
6267 else
6268 T := Base_Type (NT);
6269 end if;
6270
6271 return Expr_Value (Type_High_Bound (T)) -
6272 Expr_Value (Type_Low_Bound (T)) + 1;
6273 end String_Type_Len;
6274
6275 ------------------------------------
6276 -- Subtypes_Statically_Compatible --
6277 ------------------------------------
6278
6279 function Subtypes_Statically_Compatible
c97d7285
AC
6280 (T1 : Entity_Id;
6281 T2 : Entity_Id;
6282 Formal_Derived_Matching : Boolean := False) return Boolean
996ae0b0
RK
6283 is
6284 begin
0faf0503
EB
6285 -- A type is always statically compatible with itself
6286
6287 if T1 = T2 then
6288 return True;
6289
6290 -- Not compatible if predicates are not compatible
6291
6292 elsif not Predicates_Compatible (T1, T2) then
6293 return False;
6294
437f8c1e
AC
6295 -- Scalar types
6296
0faf0503 6297 elsif Is_Scalar_Type (T1) then
996ae0b0
RK
6298
6299 -- Definitely compatible if we match
6300
6301 if Subtypes_Statically_Match (T1, T2) then
6302 return True;
6303
6304 -- If either subtype is nonstatic then they're not compatible
6305
edab6088 6306 elsif not Is_OK_Static_Subtype (T1)
ebb6b0bd 6307 or else
edab6088 6308 not Is_OK_Static_Subtype (T2)
996ae0b0
RK
6309 then
6310 return False;
6311
26df19ce
AC
6312 -- Base types must match, but we don't check that (should we???) but
6313 -- we do at least check that both types are real, or both types are
6314 -- not real.
996ae0b0 6315
fbf5a39b 6316 elsif Is_Real_Type (T1) /= Is_Real_Type (T2) then
996ae0b0
RK
6317 return False;
6318
6319 -- Here we check the bounds
6320
6321 else
6322 declare
6323 LB1 : constant Node_Id := Type_Low_Bound (T1);
6324 HB1 : constant Node_Id := Type_High_Bound (T1);
6325 LB2 : constant Node_Id := Type_Low_Bound (T2);
6326 HB2 : constant Node_Id := Type_High_Bound (T2);
6327
6328 begin
6329 if Is_Real_Type (T1) then
6330 return
304757d2 6331 Expr_Value_R (LB1) > Expr_Value_R (HB1)
996ae0b0 6332 or else
304757d2
AC
6333 (Expr_Value_R (LB2) <= Expr_Value_R (LB1)
6334 and then Expr_Value_R (HB1) <= Expr_Value_R (HB2));
996ae0b0
RK
6335
6336 else
6337 return
304757d2 6338 Expr_Value (LB1) > Expr_Value (HB1)
996ae0b0 6339 or else
304757d2
AC
6340 (Expr_Value (LB2) <= Expr_Value (LB1)
6341 and then Expr_Value (HB1) <= Expr_Value (HB2));
996ae0b0
RK
6342 end if;
6343 end;
6344 end if;
6345
437f8c1e
AC
6346 -- Access types
6347
996ae0b0 6348 elsif Is_Access_Type (T1) then
304757d2
AC
6349 return
6350 (not Is_Constrained (T2)
6351 or else Subtypes_Statically_Match
6352 (Designated_Type (T1), Designated_Type (T2)))
26df19ce
AC
6353 and then not (Can_Never_Be_Null (T2)
6354 and then not Can_Never_Be_Null (T1));
437f8c1e
AC
6355
6356 -- All other cases
996ae0b0
RK
6357
6358 else
304757d2
AC
6359 return
6360 (Is_Composite_Type (T1) and then not Is_Constrained (T2))
6361 or else Subtypes_Statically_Match
6362 (T1, T2, Formal_Derived_Matching);
996ae0b0
RK
6363 end if;
6364 end Subtypes_Statically_Compatible;
6365
6366 -------------------------------
6367 -- Subtypes_Statically_Match --
6368 -------------------------------
6369
6370 -- Subtypes statically match if they have statically matching constraints
6371 -- (RM 4.9.1(2)). Constraints statically match if there are none, or if
6372 -- they are the same identical constraint, or if they are static and the
6373 -- values match (RM 4.9.1(1)).
6374
a0367005 6375 -- In addition, in GNAT, the object size (Esize) values of the types must
c97d7285
AC
6376 -- match if they are set (unless checking an actual for a formal derived
6377 -- type). The use of 'Object_Size can cause this to be false even if the
c846eedd
EB
6378 -- types would otherwise match in the Ada 95 RM sense, but this deviation
6379 -- is adopted by AI12-059 which introduces Object_Size in Ada 2020.
c97d7285
AC
6380
6381 function Subtypes_Statically_Match
6382 (T1 : Entity_Id;
6383 T2 : Entity_Id;
6384 Formal_Derived_Matching : Boolean := False) return Boolean
6385 is
996ae0b0
RK
6386 begin
6387 -- A type always statically matches itself
6388
6389 if T1 = T2 then
6390 return True;
6391
c97d7285
AC
6392 -- No match if sizes different (from use of 'Object_Size). This test
6393 -- is excluded if Formal_Derived_Matching is True, as the base types
f8f50235 6394 -- can be different in that case and typically have different sizes.
a0367005 6395
c97d7285 6396 elsif not Formal_Derived_Matching
ebb6b0bd
AC
6397 and then Known_Static_Esize (T1)
6398 and then Known_Static_Esize (T2)
a0367005
RD
6399 and then Esize (T1) /= Esize (T2)
6400 then
6401 return False;
6402
308aab0b
AC
6403 -- No match if predicates do not match
6404
7f568bfa 6405 elsif not Predicates_Match (T1, T2) then
308aab0b
AC
6406 return False;
6407
996ae0b0
RK
6408 -- Scalar types
6409
6410 elsif Is_Scalar_Type (T1) then
6411
6412 -- Base types must be the same
6413
6414 if Base_Type (T1) /= Base_Type (T2) then
6415 return False;
6416 end if;
6417
6418 -- A constrained numeric subtype never matches an unconstrained
6419 -- subtype, i.e. both types must be constrained or unconstrained.
6420
305caf42
AC
6421 -- To understand the requirement for this test, see RM 4.9.1(1).
6422 -- As is made clear in RM 3.5.4(11), type Integer, for example is
6423 -- a constrained subtype with constraint bounds matching the bounds
6424 -- of its corresponding unconstrained base type. In this situation,
6425 -- Integer and Integer'Base do not statically match, even though
6426 -- they have the same bounds.
996ae0b0 6427
22cb89b5
AC
6428 -- We only apply this test to types in Standard and types that appear
6429 -- in user programs. That way, we do not have to be too careful about
6430 -- setting Is_Constrained right for Itypes.
996ae0b0
RK
6431
6432 if Is_Numeric_Type (T1)
6433 and then (Is_Constrained (T1) /= Is_Constrained (T2))
6434 and then (Scope (T1) = Standard_Standard
6435 or else Comes_From_Source (T1))
6436 and then (Scope (T2) = Standard_Standard
6437 or else Comes_From_Source (T2))
6438 then
6439 return False;
82c80734 6440
22cb89b5
AC
6441 -- A generic scalar type does not statically match its base type
6442 -- (AI-311). In this case we make sure that the formals, which are
6443 -- first subtypes of their bases, are constrained.
82c80734
RD
6444
6445 elsif Is_Generic_Type (T1)
6446 and then Is_Generic_Type (T2)
6447 and then (Is_Constrained (T1) /= Is_Constrained (T2))
6448 then
6449 return False;
996ae0b0
RK
6450 end if;
6451
22cb89b5
AC
6452 -- If there was an error in either range, then just assume the types
6453 -- statically match to avoid further junk errors.
996ae0b0 6454
199c6a10
AC
6455 if No (Scalar_Range (T1)) or else No (Scalar_Range (T2))
6456 or else Error_Posted (Scalar_Range (T1))
6457 or else Error_Posted (Scalar_Range (T2))
996ae0b0
RK
6458 then
6459 return True;
6460 end if;
6461
308aab0b 6462 -- Otherwise both types have bounds that can be compared
996ae0b0
RK
6463
6464 declare
6465 LB1 : constant Node_Id := Type_Low_Bound (T1);
6466 HB1 : constant Node_Id := Type_High_Bound (T1);
6467 LB2 : constant Node_Id := Type_Low_Bound (T2);
6468 HB2 : constant Node_Id := Type_High_Bound (T2);
6469
6470 begin
308aab0b 6471 -- If the bounds are the same tree node, then match (common case)
996ae0b0
RK
6472
6473 if LB1 = LB2 and then HB1 = HB2 then
308aab0b 6474 return True;
996ae0b0
RK
6475
6476 -- Otherwise bounds must be static and identical value
6477
6478 else
edab6088 6479 if not Is_OK_Static_Subtype (T1)
304757d2
AC
6480 or else
6481 not Is_OK_Static_Subtype (T2)
996ae0b0
RK
6482 then
6483 return False;
6484
996ae0b0
RK
6485 elsif Is_Real_Type (T1) then
6486 return
304757d2 6487 Expr_Value_R (LB1) = Expr_Value_R (LB2)
996ae0b0 6488 and then
304757d2 6489 Expr_Value_R (HB1) = Expr_Value_R (HB2);
996ae0b0
RK
6490
6491 else
6492 return
6493 Expr_Value (LB1) = Expr_Value (LB2)
6494 and then
6495 Expr_Value (HB1) = Expr_Value (HB2);
6496 end if;
6497 end if;
6498 end;
6499
6500 -- Type with discriminants
6501
6502 elsif Has_Discriminants (T1) or else Has_Discriminants (T2) then
6eaf4095 6503
009668e3
JM
6504 -- Handle derivations of private subtypes. For example S1 statically
6505 -- matches the full view of T1 in the following example:
6506
6507 -- type T1(<>) is new Root with private;
6508 -- subtype S1 is new T1;
6509 -- overriding proc P1 (P : S1);
6510 -- private
6511 -- type T1 (D : Disc) is new Root with ...
6512
6513 if Ekind (T2) = E_Record_Subtype_With_Private
6514 and then not Has_Discriminants (T2)
6515 and then Partial_View_Has_Unknown_Discr (T1)
6516 and then Etype (T2) = T1
6517 then
6518 return True;
6519
6520 elsif Ekind (T1) = E_Record_Subtype_With_Private
6521 and then not Has_Discriminants (T1)
6522 and then Partial_View_Has_Unknown_Discr (T2)
6523 and then Etype (T1) = T2
6524 then
6525 return True;
6526
c2bf339e
GD
6527 -- Because of view exchanges in multiple instantiations, conformance
6528 -- checking might try to match a partial view of a type with no
6529 -- discriminants with a full view that has defaulted discriminants.
6530 -- In such a case, use the discriminant constraint of the full view,
6531 -- which must exist because we know that the two subtypes have the
6532 -- same base type.
6eaf4095 6533
009668e3 6534 elsif Has_Discriminants (T1) /= Has_Discriminants (T2) then
7f078d5b 6535 if In_Instance then
c2bf339e
GD
6536 if Is_Private_Type (T2)
6537 and then Present (Full_View (T2))
6538 and then Has_Discriminants (Full_View (T2))
6539 then
6540 return Subtypes_Statically_Match (T1, Full_View (T2));
6541
6542 elsif Is_Private_Type (T1)
6543 and then Present (Full_View (T1))
6544 and then Has_Discriminants (Full_View (T1))
6545 then
6546 return Subtypes_Statically_Match (Full_View (T1), T2);
6547
6548 else
6549 return False;
6550 end if;
6eaf4095
ES
6551 else
6552 return False;
6553 end if;
996ae0b0
RK
6554 end if;
6555
6556 declare
f6fd9533
GD
6557
6558 function Original_Discriminant_Constraint
6559 (Typ : Entity_Id) return Elist_Id;
6560 -- Returns Typ's discriminant constraint, or if the constraint
6561 -- is inherited from an ancestor type, then climbs the parent
6562 -- types to locate and return the constraint farthest up the
6563 -- parent chain that Typ's constraint is ultimately inherited
6564 -- from (stopping before a parent that doesn't impose a constraint
6565 -- or a parent that has new discriminants). This ensures a proper
6566 -- result from the equality comparison of Elist_Ids below (as
6567 -- otherwise, derived types that inherit constraints may appear
6568 -- to be unequal, because each level of derivation can have its
6569 -- own copy of the constraint).
6570
6571 function Original_Discriminant_Constraint
6572 (Typ : Entity_Id) return Elist_Id
6573 is
6574 begin
6575 if not Has_Discriminants (Typ) then
6576 return No_Elist;
6577
6578 -- If Typ is not a derived type, then directly return the
6579 -- its constraint.
6580
6581 elsif not Is_Derived_Type (Typ) then
6582 return Discriminant_Constraint (Typ);
6583
6584 -- If the parent type doesn't have discriminants, doesn't
6585 -- have a constraint, or has new discriminants, then stop
6586 -- and return Typ's constraint.
6587
6588 elsif not Has_Discriminants (Etype (Typ))
6589
6590 -- No constraint on the parent type
6591
6592 or else not Present (Discriminant_Constraint (Etype (Typ)))
6593 or else Is_Empty_Elmt_List
6594 (Discriminant_Constraint (Etype (Typ)))
6595
6596 -- The parent type defines new discriminants
6597
6598 or else
6599 (Is_Base_Type (Etype (Typ))
6600 and then Present (Discriminant_Specifications
6601 (Parent (Etype (Typ)))))
6602 then
6603 return Discriminant_Constraint (Typ);
6604
6605 -- Otherwise, make a recursive call on the parent type
6606
6607 else
6608 return Original_Discriminant_Constraint (Etype (Typ));
6609 end if;
6610 end Original_Discriminant_Constraint;
6611
6612 -- Local variables
6613
6614 DL1 : constant Elist_Id := Original_Discriminant_Constraint (T1);
6615 DL2 : constant Elist_Id := Original_Discriminant_Constraint (T2);
996ae0b0 6616
13f34a3f
RD
6617 DA1 : Elmt_Id;
6618 DA2 : Elmt_Id;
996ae0b0
RK
6619
6620 begin
6621 if DL1 = DL2 then
6622 return True;
996ae0b0
RK
6623 elsif Is_Constrained (T1) /= Is_Constrained (T2) then
6624 return False;
6625 end if;
6626
13f34a3f 6627 -- Now loop through the discriminant constraints
996ae0b0 6628
13f34a3f
RD
6629 -- Note: the guard here seems necessary, since it is possible at
6630 -- least for DL1 to be No_Elist. Not clear this is reasonable ???
996ae0b0 6631
13f34a3f
RD
6632 if Present (DL1) and then Present (DL2) then
6633 DA1 := First_Elmt (DL1);
6634 DA2 := First_Elmt (DL2);
6635 while Present (DA1) loop
6636 declare
6637 Expr1 : constant Node_Id := Node (DA1);
6638 Expr2 : constant Node_Id := Node (DA2);
996ae0b0 6639
13f34a3f 6640 begin
edab6088
RD
6641 if not Is_OK_Static_Expression (Expr1)
6642 or else not Is_OK_Static_Expression (Expr2)
13f34a3f
RD
6643 then
6644 return False;
996ae0b0 6645
1e3c434f 6646 -- If either expression raised a Constraint_Error,
13f34a3f
RD
6647 -- consider the expressions as matching, since this
6648 -- helps to prevent cascading errors.
6649
6650 elsif Raises_Constraint_Error (Expr1)
6651 or else Raises_Constraint_Error (Expr2)
6652 then
6653 null;
6654
6655 elsif Expr_Value (Expr1) /= Expr_Value (Expr2) then
6656 return False;
6657 end if;
6658 end;
996ae0b0 6659
13f34a3f
RD
6660 Next_Elmt (DA1);
6661 Next_Elmt (DA2);
6662 end loop;
6663 end if;
996ae0b0
RK
6664 end;
6665
6666 return True;
6667
22cb89b5 6668 -- A definite type does not match an indefinite or classwide type.
0356699b
RD
6669 -- However, a generic type with unknown discriminants may be
6670 -- instantiated with a type with no discriminants, and conformance
22cb89b5
AC
6671 -- checking on an inherited operation may compare the actual with the
6672 -- subtype that renames it in the instance.
996ae0b0 6673
80298c3b 6674 elsif Has_Unknown_Discriminants (T1) /= Has_Unknown_Discriminants (T2)
996ae0b0 6675 then
7a3f77d2
AC
6676 return
6677 Is_Generic_Actual_Type (T1) or else Is_Generic_Actual_Type (T2);
996ae0b0
RK
6678
6679 -- Array type
6680
6681 elsif Is_Array_Type (T1) then
6682
22cb89b5 6683 -- If either subtype is unconstrained then both must be, and if both
308e6f3a 6684 -- are unconstrained then no further checking is needed.
996ae0b0
RK
6685
6686 if not Is_Constrained (T1) or else not Is_Constrained (T2) then
6687 return not (Is_Constrained (T1) or else Is_Constrained (T2));
6688 end if;
6689
22cb89b5
AC
6690 -- Both subtypes are constrained, so check that the index subtypes
6691 -- statically match.
996ae0b0
RK
6692
6693 declare
6694 Index1 : Node_Id := First_Index (T1);
6695 Index2 : Node_Id := First_Index (T2);
6696
6697 begin
6698 while Present (Index1) loop
6699 if not
6700 Subtypes_Statically_Match (Etype (Index1), Etype (Index2))
6701 then
6702 return False;
6703 end if;
6704
6705 Next_Index (Index1);
6706 Next_Index (Index2);
6707 end loop;
6708
6709 return True;
6710 end;
6711
6712 elsif Is_Access_Type (T1) then
b5bd964f
ES
6713 if Can_Never_Be_Null (T1) /= Can_Never_Be_Null (T2) then
6714 return False;
6715
4a08c95c
AC
6716 elsif Ekind (T1) in E_Access_Subprogram_Type
6717 | E_Anonymous_Access_Subprogram_Type
7a3f77d2 6718 then
b5bd964f
ES
6719 return
6720 Subtype_Conformant
6721 (Designated_Type (T1),
bb98fe75 6722 Designated_Type (T2));
b5bd964f
ES
6723 else
6724 return
6725 Subtypes_Statically_Match
6726 (Designated_Type (T1),
6727 Designated_Type (T2))
6728 and then Is_Access_Constant (T1) = Is_Access_Constant (T2);
6729 end if;
996ae0b0
RK
6730
6731 -- All other types definitely match
6732
6733 else
6734 return True;
6735 end if;
6736 end Subtypes_Statically_Match;
6737
6738 ----------
6739 -- Test --
6740 ----------
6741
6742 function Test (Cond : Boolean) return Uint is
6743 begin
6744 if Cond then
6745 return Uint_1;
6746 else
6747 return Uint_0;
6748 end if;
6749 end Test;
6750
634a926b
AC
6751 ---------------------
6752 -- Test_Comparison --
6753 ---------------------
6754
6755 procedure Test_Comparison
6756 (Op : Node_Id;
6757 Assume_Valid : Boolean;
6758 True_Result : out Boolean;
6759 False_Result : out Boolean)
6760 is
6761 Left : constant Node_Id := Left_Opnd (Op);
6762 Left_Typ : constant Entity_Id := Etype (Left);
6763 Orig_Op : constant Node_Id := Original_Node (Op);
6764
6765 procedure Replacement_Warning (Msg : String);
2da8c8e2 6766 -- Emit a warning on a comparison that can be replaced by '='
634a926b
AC
6767
6768 -------------------------
6769 -- Replacement_Warning --
6770 -------------------------
6771
6772 procedure Replacement_Warning (Msg : String) is
6773 begin
6774 if Constant_Condition_Warnings
6775 and then Comes_From_Source (Orig_Op)
6776 and then Is_Integer_Type (Left_Typ)
6777 and then not Error_Posted (Op)
6778 and then not Has_Warnings_Off (Left_Typ)
6779 and then not In_Instance
6780 then
6781 Error_Msg_N (Msg, Op);
6782 end if;
6783 end Replacement_Warning;
6784
6785 -- Local variables
6786
6787 Res : constant Compare_Result :=
6788 Compile_Time_Compare (Left, Right_Opnd (Op), Assume_Valid);
6789
6790 -- Start of processing for Test_Comparison
6791
6792 begin
6793 case N_Op_Compare (Nkind (Op)) is
6794 when N_Op_Eq =>
6795 True_Result := Res = EQ;
6796 False_Result := Res = LT or else Res = GT or else Res = NE;
6797
6798 when N_Op_Ge =>
6799 True_Result := Res in Compare_GE;
6800 False_Result := Res = LT;
6801
6802 if Res = LE and then Nkind (Orig_Op) = N_Op_Ge then
6803 Replacement_Warning
6804 ("can never be greater than, could replace by ""'=""?c?");
6805 end if;
6806
6807 when N_Op_Gt =>
6808 True_Result := Res = GT;
6809 False_Result := Res in Compare_LE;
6810
6811 when N_Op_Le =>
6812 True_Result := Res in Compare_LE;
6813 False_Result := Res = GT;
6814
6815 if Res = GE and then Nkind (Orig_Op) = N_Op_Le then
6816 Replacement_Warning
6817 ("can never be less than, could replace by ""'=""?c?");
6818 end if;
6819
6820 when N_Op_Lt =>
6821 True_Result := Res = LT;
6822 False_Result := Res in Compare_GE;
6823
6824 when N_Op_Ne =>
6825 True_Result := Res = NE or else Res = GT or else Res = LT;
6826 False_Result := Res = EQ;
6827 end case;
6828 end Test_Comparison;
6829
996ae0b0
RK
6830 ---------------------------------
6831 -- Test_Expression_Is_Foldable --
6832 ---------------------------------
6833
6834 -- One operand case
6835
6836 procedure Test_Expression_Is_Foldable
6837 (N : Node_Id;
6838 Op1 : Node_Id;
6839 Stat : out Boolean;
6840 Fold : out Boolean)
6841 is
6842 begin
6843 Stat := False;
0356699b
RD
6844 Fold := False;
6845
6846 if Debug_Flag_Dot_F and then In_Extended_Main_Source_Unit (N) then
6847 return;
6848 end if;
996ae0b0
RK
6849
6850 -- If operand is Any_Type, just propagate to result and do not
6851 -- try to fold, this prevents cascaded errors.
6852
6853 if Etype (Op1) = Any_Type then
6854 Set_Etype (N, Any_Type);
996ae0b0
RK
6855 return;
6856
1e3c434f
BD
6857 -- If operand raises Constraint_Error, then replace node N with the
6858 -- raise Constraint_Error node, and we are obviously not foldable.
996ae0b0
RK
6859 -- Note that this replacement inherits the Is_Static_Expression flag
6860 -- from the operand.
6861
6862 elsif Raises_Constraint_Error (Op1) then
6863 Rewrite_In_Raise_CE (N, Op1);
996ae0b0
RK
6864 return;
6865
6866 -- If the operand is not static, then the result is not static, and
6867 -- all we have to do is to check the operand since it is now known
6868 -- to appear in a non-static context.
6869
6870 elsif not Is_Static_Expression (Op1) then
6871 Check_Non_Static_Context (Op1);
6872 Fold := Compile_Time_Known_Value (Op1);
6873 return;
6874
6875 -- An expression of a formal modular type is not foldable because
6876 -- the modulus is unknown.
6877
6878 elsif Is_Modular_Integer_Type (Etype (Op1))
6879 and then Is_Generic_Type (Etype (Op1))
6880 then
6881 Check_Non_Static_Context (Op1);
996ae0b0
RK
6882 return;
6883
6884 -- Here we have the case of an operand whose type is OK, which is
1e3c434f 6885 -- static, and which does not raise Constraint_Error, we can fold.
996ae0b0
RK
6886
6887 else
6888 Set_Is_Static_Expression (N);
6889 Fold := True;
6890 Stat := True;
6891 end if;
6892 end Test_Expression_Is_Foldable;
6893
6894 -- Two operand case
6895
6896 procedure Test_Expression_Is_Foldable
6c3c671e
AC
6897 (N : Node_Id;
6898 Op1 : Node_Id;
6899 Op2 : Node_Id;
6900 Stat : out Boolean;
6901 Fold : out Boolean;
6902 CRT_Safe : Boolean := False)
996ae0b0
RK
6903 is
6904 Rstat : constant Boolean := Is_Static_Expression (Op1)
80298c3b
AC
6905 and then
6906 Is_Static_Expression (Op2);
996ae0b0
RK
6907
6908 begin
6909 Stat := False;
0356699b
RD
6910 Fold := False;
6911
4a28b181
AC
6912 -- Inhibit folding if -gnatd.f flag set
6913
0356699b
RD
6914 if Debug_Flag_Dot_F and then In_Extended_Main_Source_Unit (N) then
6915 return;
6916 end if;
996ae0b0
RK
6917
6918 -- If either operand is Any_Type, just propagate to result and
6919 -- do not try to fold, this prevents cascaded errors.
6920
6921 if Etype (Op1) = Any_Type or else Etype (Op2) = Any_Type then
6922 Set_Etype (N, Any_Type);
996ae0b0
RK
6923 return;
6924
1e3c434f 6925 -- If left operand raises Constraint_Error, then replace node N with the
22cb89b5 6926 -- Raise_Constraint_Error node, and we are obviously not foldable.
996ae0b0
RK
6927 -- Is_Static_Expression is set from the two operands in the normal way,
6928 -- and we check the right operand if it is in a non-static context.
6929
6930 elsif Raises_Constraint_Error (Op1) then
6931 if not Rstat then
6932 Check_Non_Static_Context (Op2);
6933 end if;
6934
6935 Rewrite_In_Raise_CE (N, Op1);
6936 Set_Is_Static_Expression (N, Rstat);
996ae0b0
RK
6937 return;
6938
22cb89b5
AC
6939 -- Similar processing for the case of the right operand. Note that we
6940 -- don't use this routine for the short-circuit case, so we do not have
6941 -- to worry about that special case here.
996ae0b0
RK
6942
6943 elsif Raises_Constraint_Error (Op2) then
6944 if not Rstat then
6945 Check_Non_Static_Context (Op1);
6946 end if;
6947
6948 Rewrite_In_Raise_CE (N, Op2);
6949 Set_Is_Static_Expression (N, Rstat);
996ae0b0
RK
6950 return;
6951
82c80734 6952 -- Exclude expressions of a generic modular type, as above
996ae0b0
RK
6953
6954 elsif Is_Modular_Integer_Type (Etype (Op1))
6955 and then Is_Generic_Type (Etype (Op1))
6956 then
6957 Check_Non_Static_Context (Op1);
996ae0b0
RK
6958 return;
6959
6960 -- If result is not static, then check non-static contexts on operands
22cb89b5 6961 -- since one of them may be static and the other one may not be static.
996ae0b0
RK
6962
6963 elsif not Rstat then
6964 Check_Non_Static_Context (Op1);
6965 Check_Non_Static_Context (Op2);
6c3c671e
AC
6966
6967 if CRT_Safe then
6968 Fold := CRT_Safe_Compile_Time_Known_Value (Op1)
6969 and then CRT_Safe_Compile_Time_Known_Value (Op2);
6970 else
6971 Fold := Compile_Time_Known_Value (Op1)
6972 and then Compile_Time_Known_Value (Op2);
6973 end if;
6974
996ae0b0
RK
6975 return;
6976
22cb89b5 6977 -- Else result is static and foldable. Both operands are static, and
1e3c434f 6978 -- neither raises Constraint_Error, so we can definitely fold.
996ae0b0
RK
6979
6980 else
6981 Set_Is_Static_Expression (N);
6982 Fold := True;
6983 Stat := True;
6984 return;
6985 end if;
6986 end Test_Expression_Is_Foldable;
6987
305caf42
AC
6988 -------------------
6989 -- Test_In_Range --
6990 -------------------
6991
6992 function Test_In_Range
6993 (N : Node_Id;
6994 Typ : Entity_Id;
6995 Assume_Valid : Boolean;
6996 Fixed_Int : Boolean;
6997 Int_Real : Boolean) return Range_Membership
6998 is
6999 Val : Uint;
7000 Valr : Ureal;
7001
7002 pragma Warnings (Off, Assume_Valid);
7003 -- For now Assume_Valid is unreferenced since the current implementation
d3bbfc59 7004 -- always returns Unknown if N is not a compile-time-known value, but we
305caf42
AC
7005 -- keep the parameter to allow for future enhancements in which we try
7006 -- to get the information in the variable case as well.
7007
7008 begin
8bef7ba9
AC
7009 -- If an error was posted on expression, then return Unknown, we do not
7010 -- want cascaded errors based on some false analysis of a junk node.
7011
7012 if Error_Posted (N) then
7013 return Unknown;
7014
1e3c434f 7015 -- Expression that raises Constraint_Error is an odd case. We certainly
7b536495
AC
7016 -- do not want to consider it to be in range. It might make sense to
7017 -- consider it always out of range, but this causes incorrect error
7018 -- messages about static expressions out of range. So we just return
7019 -- Unknown, which is always safe.
7020
8bef7ba9 7021 elsif Raises_Constraint_Error (N) then
7b536495
AC
7022 return Unknown;
7023
305caf42
AC
7024 -- Universal types have no range limits, so always in range
7025
7b536495 7026 elsif Typ = Universal_Integer or else Typ = Universal_Real then
305caf42
AC
7027 return In_Range;
7028
7029 -- Never known if not scalar type. Don't know if this can actually
a90bd866 7030 -- happen, but our spec allows it, so we must check.
305caf42
AC
7031
7032 elsif not Is_Scalar_Type (Typ) then
7033 return Unknown;
7034
7035 -- Never known if this is a generic type, since the bounds of generic
7036 -- types are junk. Note that if we only checked for static expressions
d3bbfc59 7037 -- (instead of compile-time-known values) below, we would not need this
305caf42
AC
7038 -- check, because values of a generic type can never be static, but they
7039 -- can be known at compile time.
7040
7041 elsif Is_Generic_Type (Typ) then
7042 return Unknown;
7043
7b536495
AC
7044 -- Case of a known compile time value, where we can check if it is in
7045 -- the bounds of the given type.
305caf42 7046
7b536495 7047 elsif Compile_Time_Known_Value (N) then
305caf42
AC
7048 declare
7049 Lo : Node_Id;
7050 Hi : Node_Id;
7051
7052 LB_Known : Boolean;
7053 HB_Known : Boolean;
7054
7055 begin
7056 Lo := Type_Low_Bound (Typ);
7057 Hi := Type_High_Bound (Typ);
7058
7059 LB_Known := Compile_Time_Known_Value (Lo);
7060 HB_Known := Compile_Time_Known_Value (Hi);
7061
7062 -- Fixed point types should be considered as such only if flag
7063 -- Fixed_Int is set to False.
7064
7065 if Is_Floating_Point_Type (Typ)
7066 or else (Is_Fixed_Point_Type (Typ) and then not Fixed_Int)
7067 or else Int_Real
7068 then
7069 Valr := Expr_Value_R (N);
7070
7071 if LB_Known and HB_Known then
7072 if Valr >= Expr_Value_R (Lo)
7073 and then
7074 Valr <= Expr_Value_R (Hi)
7075 then
7076 return In_Range;
7077 else
7078 return Out_Of_Range;
7079 end if;
7080
7081 elsif (LB_Known and then Valr < Expr_Value_R (Lo))
7082 or else
7083 (HB_Known and then Valr > Expr_Value_R (Hi))
7084 then
7085 return Out_Of_Range;
7086
7087 else
7088 return Unknown;
7089 end if;
7090
7091 else
7092 Val := Expr_Value (N);
7093
7094 if LB_Known and HB_Known then
80298c3b 7095 if Val >= Expr_Value (Lo) and then Val <= Expr_Value (Hi)
305caf42
AC
7096 then
7097 return In_Range;
7098 else
7099 return Out_Of_Range;
7100 end if;
7101
7102 elsif (LB_Known and then Val < Expr_Value (Lo))
7103 or else
7104 (HB_Known and then Val > Expr_Value (Hi))
7105 then
7106 return Out_Of_Range;
7107
7108 else
7109 return Unknown;
7110 end if;
7111 end if;
7112 end;
7b536495
AC
7113
7114 -- Here for value not known at compile time. Case of expression subtype
7115 -- is Typ or is a subtype of Typ, and we can assume expression is valid.
7116 -- In this case we know it is in range without knowing its value.
7117
7118 elsif Assume_Valid
7119 and then (Etype (N) = Typ or else Is_Subtype_Of (Etype (N), Typ))
7120 then
7121 return In_Range;
7122
6c56d9b8
AC
7123 -- Another special case. For signed integer types, if the target type
7124 -- has Is_Known_Valid set, and the source type does not have a larger
7125 -- size, then the source value must be in range. We exclude biased
7126 -- types, because they bizarrely can generate out of range values.
7127
7128 elsif Is_Signed_Integer_Type (Etype (N))
7129 and then Is_Known_Valid (Typ)
7130 and then Esize (Etype (N)) <= Esize (Typ)
7131 and then not Has_Biased_Representation (Etype (N))
7132 then
7133 return In_Range;
7134
7b536495
AC
7135 -- For all other cases, result is unknown
7136
7137 else
7138 return Unknown;
305caf42
AC
7139 end if;
7140 end Test_In_Range;
7141
996ae0b0
RK
7142 --------------
7143 -- To_Bits --
7144 --------------
7145
7146 procedure To_Bits (U : Uint; B : out Bits) is
7147 begin
7148 for J in 0 .. B'Last loop
7149 B (J) := (U / (2 ** J)) mod 2 /= 0;
7150 end loop;
7151 end To_Bits;
7152
fbf5a39b
AC
7153 --------------------
7154 -- Why_Not_Static --
7155 --------------------
7156
7157 procedure Why_Not_Static (Expr : Node_Id) is
66c19cd4
AC
7158 N : constant Node_Id := Original_Node (Expr);
7159 Typ : Entity_Id := Empty;
fbf5a39b 7160 E : Entity_Id;
edab6088
RD
7161 Alt : Node_Id;
7162 Exp : Node_Id;
fbf5a39b
AC
7163
7164 procedure Why_Not_Static_List (L : List_Id);
22cb89b5
AC
7165 -- A version that can be called on a list of expressions. Finds all
7166 -- non-static violations in any element of the list.
fbf5a39b
AC
7167
7168 -------------------------
7169 -- Why_Not_Static_List --
7170 -------------------------
7171
7172 procedure Why_Not_Static_List (L : List_Id) is
7173 N : Node_Id;
fbf5a39b
AC
7174 begin
7175 if Is_Non_Empty_List (L) then
7176 N := First (L);
7177 while Present (N) loop
7178 Why_Not_Static (N);
7179 Next (N);
7180 end loop;
7181 end if;
7182 end Why_Not_Static_List;
7183
7184 -- Start of processing for Why_Not_Static
7185
7186 begin
fbf5a39b
AC
7187 -- Ignore call on error or empty node
7188
7189 if No (Expr) or else Nkind (Expr) = N_Error then
7190 return;
7191 end if;
7192
7193 -- Preprocessing for sub expressions
7194
7195 if Nkind (Expr) in N_Subexpr then
7196
7197 -- Nothing to do if expression is static
7198
7199 if Is_OK_Static_Expression (Expr) then
7200 return;
7201 end if;
7202
1e3c434f 7203 -- Test for Constraint_Error raised
fbf5a39b
AC
7204
7205 if Raises_Constraint_Error (Expr) then
edab6088
RD
7206
7207 -- Special case membership to find out which piece to flag
7208
7209 if Nkind (N) in N_Membership_Test then
7210 if Raises_Constraint_Error (Left_Opnd (N)) then
7211 Why_Not_Static (Left_Opnd (N));
7212 return;
7213
7214 elsif Present (Right_Opnd (N))
7215 and then Raises_Constraint_Error (Right_Opnd (N))
7216 then
7217 Why_Not_Static (Right_Opnd (N));
7218 return;
7219
7220 else
7221 pragma Assert (Present (Alternatives (N)));
7222
7223 Alt := First (Alternatives (N));
7224 while Present (Alt) loop
7225 if Raises_Constraint_Error (Alt) then
7226 Why_Not_Static (Alt);
7227 return;
7228 else
7229 Next (Alt);
7230 end if;
7231 end loop;
7232 end if;
7233
7234 -- Special case a range to find out which bound to flag
7235
7236 elsif Nkind (N) = N_Range then
7237 if Raises_Constraint_Error (Low_Bound (N)) then
7238 Why_Not_Static (Low_Bound (N));
7239 return;
7240
7241 elsif Raises_Constraint_Error (High_Bound (N)) then
7242 Why_Not_Static (High_Bound (N));
7243 return;
7244 end if;
7245
7246 -- Special case attribute to see which part to flag
7247
7248 elsif Nkind (N) = N_Attribute_Reference then
7249 if Raises_Constraint_Error (Prefix (N)) then
7250 Why_Not_Static (Prefix (N));
7251 return;
7252 end if;
7253
7254 if Present (Expressions (N)) then
7255 Exp := First (Expressions (N));
7256 while Present (Exp) loop
7257 if Raises_Constraint_Error (Exp) then
7258 Why_Not_Static (Exp);
7259 return;
7260 end if;
7261
7262 Next (Exp);
7263 end loop;
7264 end if;
7265
7266 -- Special case a subtype name
7267
7268 elsif Is_Entity_Name (Expr) and then Is_Type (Entity (Expr)) then
7269 Error_Msg_NE
7270 ("!& is not a static subtype (RM 4.9(26))", N, Entity (Expr));
7271 return;
7272 end if;
7273
7274 -- End of special cases
7275
fbf5a39b 7276 Error_Msg_N
80298c3b
AC
7277 ("!expression raises exception, cannot be static (RM 4.9(34))",
7278 N);
fbf5a39b
AC
7279 return;
7280 end if;
7281
7282 -- If no type, then something is pretty wrong, so ignore
7283
7284 Typ := Etype (Expr);
7285
7286 if No (Typ) then
7287 return;
7288 end if;
7289
65f7ed64
AC
7290 -- Type must be scalar or string type (but allow Bignum, since this
7291 -- is really a scalar type from our point of view in this diagnosis).
fbf5a39b
AC
7292
7293 if not Is_Scalar_Type (Typ)
7294 and then not Is_String_Type (Typ)
65f7ed64 7295 and then not Is_RTE (Typ, RE_Bignum)
fbf5a39b
AC
7296 then
7297 Error_Msg_N
c8a3028c 7298 ("!static expression must have scalar or string type " &
8fde064e 7299 "(RM 4.9(2))", N);
fbf5a39b
AC
7300 return;
7301 end if;
7302 end if;
7303
7304 -- If we got through those checks, test particular node kind
7305
7306 case Nkind (N) is
8fde064e
AC
7307
7308 -- Entity name
7309
d8f43ee6
HK
7310 when N_Expanded_Name
7311 | N_Identifier
7312 | N_Operator_Symbol
7313 =>
fbf5a39b
AC
7314 E := Entity (N);
7315
7316 if Is_Named_Number (E) then
7317 null;
7318
7319 elsif Ekind (E) = E_Constant then
8fde064e
AC
7320
7321 -- One case we can give a metter message is when we have a
7322 -- string literal created by concatenating an aggregate with
7323 -- an others expression.
7324
7325 Entity_Case : declare
7326 CV : constant Node_Id := Constant_Value (E);
7327 CO : constant Node_Id := Original_Node (CV);
7328
7329 function Is_Aggregate (N : Node_Id) return Boolean;
7330 -- See if node N came from an others aggregate, if so
7331 -- return True and set Error_Msg_Sloc to aggregate.
7332
7333 ------------------
7334 -- Is_Aggregate --
7335 ------------------
7336
7337 function Is_Aggregate (N : Node_Id) return Boolean is
7338 begin
7339 if Nkind (Original_Node (N)) = N_Aggregate then
7340 Error_Msg_Sloc := Sloc (Original_Node (N));
7341 return True;
80298c3b 7342
8fde064e
AC
7343 elsif Is_Entity_Name (N)
7344 and then Ekind (Entity (N)) = E_Constant
7345 and then
7346 Nkind (Original_Node (Constant_Value (Entity (N)))) =
7347 N_Aggregate
7348 then
7349 Error_Msg_Sloc :=
7350 Sloc (Original_Node (Constant_Value (Entity (N))));
7351 return True;
80298c3b 7352
8fde064e
AC
7353 else
7354 return False;
7355 end if;
7356 end Is_Aggregate;
7357
7358 -- Start of processing for Entity_Case
7359
7360 begin
7361 if Is_Aggregate (CV)
7362 or else (Nkind (CO) = N_Op_Concat
7363 and then (Is_Aggregate (Left_Opnd (CO))
7364 or else
7365 Is_Aggregate (Right_Opnd (CO))))
7366 then
c8a3028c 7367 Error_Msg_N ("!aggregate (#) is never static", N);
8fde064e 7368
aa500b7a 7369 elsif No (CV) or else not Is_Static_Expression (CV) then
8fde064e 7370 Error_Msg_NE
c8a3028c 7371 ("!& is not a static constant (RM 4.9(5))", N, E);
8fde064e
AC
7372 end if;
7373 end Entity_Case;
fbf5a39b 7374
edab6088
RD
7375 elsif Is_Type (E) then
7376 Error_Msg_NE
7377 ("!& is not a static subtype (RM 4.9(26))", N, E);
7378
fbf5a39b
AC
7379 else
7380 Error_Msg_NE
c8a3028c 7381 ("!& is not static constant or named number "
8fde064e 7382 & "(RM 4.9(5))", N, E);
fbf5a39b
AC
7383 end if;
7384
8fde064e
AC
7385 -- Binary operator
7386
d8f43ee6
HK
7387 when N_Binary_Op
7388 | N_Membership_Test
7389 | N_Short_Circuit
7390 =>
fbf5a39b
AC
7391 if Nkind (N) in N_Op_Shift then
7392 Error_Msg_N
d8f43ee6 7393 ("!shift functions are never static (RM 4.9(6,18))", N);
fbf5a39b
AC
7394 else
7395 Why_Not_Static (Left_Opnd (N));
7396 Why_Not_Static (Right_Opnd (N));
7397 end if;
7398
8fde064e
AC
7399 -- Unary operator
7400
fbf5a39b
AC
7401 when N_Unary_Op =>
7402 Why_Not_Static (Right_Opnd (N));
7403
8fde064e
AC
7404 -- Attribute reference
7405
fbf5a39b
AC
7406 when N_Attribute_Reference =>
7407 Why_Not_Static_List (Expressions (N));
7408
7409 E := Etype (Prefix (N));
7410
7411 if E = Standard_Void_Type then
7412 return;
7413 end if;
7414
7415 -- Special case non-scalar'Size since this is a common error
7416
7417 if Attribute_Name (N) = Name_Size then
7418 Error_Msg_N
c8a3028c 7419 ("!size attribute is only static for static scalar type "
8fde064e 7420 & "(RM 4.9(7,8))", N);
fbf5a39b
AC
7421
7422 -- Flag array cases
7423
7424 elsif Is_Array_Type (E) then
4a08c95c
AC
7425 if Attribute_Name (N)
7426 not in Name_First | Name_Last | Name_Length
fbf5a39b
AC
7427 then
7428 Error_Msg_N
c8a3028c 7429 ("!static array attribute must be Length, First, or Last "
8fde064e 7430 & "(RM 4.9(8))", N);
fbf5a39b
AC
7431
7432 -- Since we know the expression is not-static (we already
7433 -- tested for this, must mean array is not static).
7434
7435 else
7436 Error_Msg_N
c8a3028c 7437 ("!prefix is non-static array (RM 4.9(8))", Prefix (N));
fbf5a39b
AC
7438 end if;
7439
7440 return;
7441
22cb89b5
AC
7442 -- Special case generic types, since again this is a common source
7443 -- of confusion.
fbf5a39b 7444
80298c3b 7445 elsif Is_Generic_Actual_Type (E) or else Is_Generic_Type (E) then
fbf5a39b 7446 Error_Msg_N
c8a3028c 7447 ("!attribute of generic type is never static "
8fde064e 7448 & "(RM 4.9(7,8))", N);
fbf5a39b 7449
edab6088 7450 elsif Is_OK_Static_Subtype (E) then
fbf5a39b
AC
7451 null;
7452
7453 elsif Is_Scalar_Type (E) then
7454 Error_Msg_N
c8a3028c 7455 ("!prefix type for attribute is not static scalar subtype "
8fde064e 7456 & "(RM 4.9(7))", N);
fbf5a39b
AC
7457
7458 else
7459 Error_Msg_N
c8a3028c 7460 ("!static attribute must apply to array/scalar type "
8fde064e 7461 & "(RM 4.9(7,8))", N);
fbf5a39b
AC
7462 end if;
7463
8fde064e
AC
7464 -- String literal
7465
fbf5a39b
AC
7466 when N_String_Literal =>
7467 Error_Msg_N
c8a3028c 7468 ("!subtype of string literal is non-static (RM 4.9(4))", N);
8fde064e
AC
7469
7470 -- Explicit dereference
fbf5a39b
AC
7471
7472 when N_Explicit_Dereference =>
7473 Error_Msg_N
c8a3028c 7474 ("!explicit dereference is never static (RM 4.9)", N);
8fde064e
AC
7475
7476 -- Function call
fbf5a39b
AC
7477
7478 when N_Function_Call =>
7479 Why_Not_Static_List (Parameter_Associations (N));
65f7ed64
AC
7480
7481 -- Complain about non-static function call unless we have Bignum
7482 -- which means that the underlying expression is really some
7483 -- scalar arithmetic operation.
7484
7485 if not Is_RTE (Typ, RE_Bignum) then
c8a3028c 7486 Error_Msg_N ("!non-static function call (RM 4.9(6,18))", N);
65f7ed64 7487 end if;
fbf5a39b 7488
8fde064e
AC
7489 -- Parameter assocation (test actual parameter)
7490
fbf5a39b
AC
7491 when N_Parameter_Association =>
7492 Why_Not_Static (Explicit_Actual_Parameter (N));
7493
8fde064e
AC
7494 -- Indexed component
7495
fbf5a39b 7496 when N_Indexed_Component =>
c8a3028c 7497 Error_Msg_N ("!indexed component is never static (RM 4.9)", N);
8fde064e
AC
7498
7499 -- Procedure call
fbf5a39b
AC
7500
7501 when N_Procedure_Call_Statement =>
c8a3028c 7502 Error_Msg_N ("!procedure call is never static (RM 4.9)", N);
8fde064e
AC
7503
7504 -- Qualified expression (test expression)
fbf5a39b
AC
7505
7506 when N_Qualified_Expression =>
7507 Why_Not_Static (Expression (N));
7508
8fde064e
AC
7509 -- Aggregate
7510
d8f43ee6
HK
7511 when N_Aggregate
7512 | N_Extension_Aggregate
7513 =>
c8a3028c 7514 Error_Msg_N ("!an aggregate is never static (RM 4.9)", N);
8fde064e
AC
7515
7516 -- Range
fbf5a39b
AC
7517
7518 when N_Range =>
7519 Why_Not_Static (Low_Bound (N));
7520 Why_Not_Static (High_Bound (N));
7521
8fde064e
AC
7522 -- Range constraint, test range expression
7523
fbf5a39b
AC
7524 when N_Range_Constraint =>
7525 Why_Not_Static (Range_Expression (N));
7526
8fde064e
AC
7527 -- Subtype indication, test constraint
7528
fbf5a39b
AC
7529 when N_Subtype_Indication =>
7530 Why_Not_Static (Constraint (N));
7531
8fde064e
AC
7532 -- Selected component
7533
fbf5a39b 7534 when N_Selected_Component =>
c8a3028c 7535 Error_Msg_N ("!selected component is never static (RM 4.9)", N);
8fde064e
AC
7536
7537 -- Slice
fbf5a39b
AC
7538
7539 when N_Slice =>
c8a3028c 7540 Error_Msg_N ("!slice is never static (RM 4.9)", N);
fbf5a39b
AC
7541
7542 when N_Type_Conversion =>
7543 Why_Not_Static (Expression (N));
7544
23b86353 7545 if not Is_Scalar_Type (Entity (Subtype_Mark (N)))
edab6088 7546 or else not Is_OK_Static_Subtype (Entity (Subtype_Mark (N)))
fbf5a39b
AC
7547 then
7548 Error_Msg_N
c8a3028c 7549 ("!static conversion requires static scalar subtype result "
8fde064e 7550 & "(RM 4.9(9))", N);
fbf5a39b
AC
7551 end if;
7552
8fde064e
AC
7553 -- Unchecked type conversion
7554
fbf5a39b
AC
7555 when N_Unchecked_Type_Conversion =>
7556 Error_Msg_N
c8a3028c 7557 ("!unchecked type conversion is never static (RM 4.9)", N);
8fde064e
AC
7558
7559 -- All other cases, no reason to give
fbf5a39b
AC
7560
7561 when others =>
7562 null;
fbf5a39b
AC
7563 end case;
7564 end Why_Not_Static;
7565
996ae0b0 7566end Sem_Eval;
This page took 8.072367 seconds and 5 git commands to generate.