]> gcc.gnu.org Git - gcc.git/blame - gcc/ada/sem_eval.adb
errout.adb (Set_Msg_Insertion_Warning): Correct typo causing tests to fail if inserti...
[gcc.git] / gcc / ada / sem_eval.adb
CommitLineData
fbf5a39b 1------------------------------------------------------------------------------
996ae0b0
RK
2-- --
3-- GNAT COMPILER COMPONENTS --
4-- --
5-- S E M _ E V A L --
6-- --
7-- B o d y --
8-- --
011f9d5d 9-- Copyright (C) 1992-2012, Free Software Foundation, Inc. --
996ae0b0
RK
10-- --
11-- GNAT is free software; you can redistribute it and/or modify it under --
12-- terms of the GNU General Public License as published by the Free Soft- --
b5c84c3c 13-- ware Foundation; either version 3, or (at your option) any later ver- --
996ae0b0
RK
14-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16-- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17-- for more details. You should have received a copy of the GNU General --
b5c84c3c
RD
18-- Public License distributed with GNAT; see file COPYING3. If not, go to --
19-- http://www.gnu.org/licenses for a complete copy of the license. --
996ae0b0
RK
20-- --
21-- GNAT was originally developed by the GNAT team at New York University. --
71ff80dc 22-- Extensive contributions were provided by Ada Core Technologies Inc. --
996ae0b0
RK
23-- --
24------------------------------------------------------------------------------
25
26with Atree; use Atree;
27with Checks; use Checks;
28with Debug; use Debug;
29with Einfo; use Einfo;
30with Elists; use Elists;
31with Errout; use Errout;
32with Eval_Fat; use Eval_Fat;
8cbb664e 33with Exp_Util; use Exp_Util;
d7567964 34with Freeze; use Freeze;
0356699b 35with Lib; use Lib;
13f34a3f 36with Namet; use Namet;
996ae0b0
RK
37with Nmake; use Nmake;
38with Nlists; use Nlists;
39with Opt; use Opt;
65f7ed64 40with Rtsfind; use Rtsfind;
996ae0b0 41with Sem; use Sem;
a4100e55 42with Sem_Aux; use Sem_Aux;
996ae0b0 43with Sem_Cat; use Sem_Cat;
b5bd964f 44with Sem_Ch6; use Sem_Ch6;
996ae0b0
RK
45with Sem_Ch8; use Sem_Ch8;
46with Sem_Res; use Sem_Res;
47with Sem_Util; use Sem_Util;
48with Sem_Type; use Sem_Type;
49with Sem_Warn; use Sem_Warn;
50with Sinfo; use Sinfo;
51with Snames; use Snames;
52with Stand; use Stand;
53with Stringt; use Stringt;
07fc65c4 54with Tbuild; use Tbuild;
996ae0b0
RK
55
56package body Sem_Eval is
57
58 -----------------------------------------
59 -- Handling of Compile Time Evaluation --
60 -----------------------------------------
61
62 -- The compile time evaluation of expressions is distributed over several
f3d57416 63 -- Eval_xxx procedures. These procedures are called immediately after
996ae0b0
RK
64 -- a subexpression is resolved and is therefore accomplished in a bottom
65 -- up fashion. The flags are synthesized using the following approach.
66
67 -- Is_Static_Expression is determined by following the detailed rules
68 -- in RM 4.9(4-14). This involves testing the Is_Static_Expression
69 -- flag of the operands in many cases.
70
71 -- Raises_Constraint_Error is set if any of the operands have the flag
72 -- set or if an attempt to compute the value of the current expression
73 -- results in detection of a runtime constraint error.
74
75 -- As described in the spec, the requirement is that Is_Static_Expression
76 -- be accurately set, and in addition for nodes for which this flag is set,
77 -- Raises_Constraint_Error must also be set. Furthermore a node which has
78 -- Is_Static_Expression set, and Raises_Constraint_Error clear, then the
79 -- requirement is that the expression value must be precomputed, and the
80 -- node is either a literal, or the name of a constant entity whose value
81 -- is a static expression.
82
83 -- The general approach is as follows. First compute Is_Static_Expression.
84 -- If the node is not static, then the flag is left off in the node and
85 -- we are all done. Otherwise for a static node, we test if any of the
86 -- operands will raise constraint error, and if so, propagate the flag
87 -- Raises_Constraint_Error to the result node and we are done (since the
88 -- error was already posted at a lower level).
89
90 -- For the case of a static node whose operands do not raise constraint
91 -- error, we attempt to evaluate the node. If this evaluation succeeds,
92 -- then the node is replaced by the result of this computation. If the
93 -- evaluation raises constraint error, then we rewrite the node with
94 -- Apply_Compile_Time_Constraint_Error to raise the exception and also
95 -- to post appropriate error messages.
96
97 ----------------
98 -- Local Data --
99 ----------------
100
101 type Bits is array (Nat range <>) of Boolean;
102 -- Used to convert unsigned (modular) values for folding logical ops
103
07fc65c4
GB
104 -- The following definitions are used to maintain a cache of nodes that
105 -- have compile time known values. The cache is maintained only for
106 -- discrete types (the most common case), and is populated by calls to
107 -- Compile_Time_Known_Value and Expr_Value, but only used by Expr_Value
108 -- since it is possible for the status to change (in particular it is
109 -- possible for a node to get replaced by a constraint error node).
110
111 CV_Bits : constant := 5;
112 -- Number of low order bits of Node_Id value used to reference entries
113 -- in the cache table.
114
115 CV_Cache_Size : constant Nat := 2 ** CV_Bits;
116 -- Size of cache for compile time values
117
118 subtype CV_Range is Nat range 0 .. CV_Cache_Size;
119
120 type CV_Entry is record
121 N : Node_Id;
122 V : Uint;
123 end record;
124
125 type CV_Cache_Array is array (CV_Range) of CV_Entry;
126
127 CV_Cache : CV_Cache_Array := (others => (Node_High_Bound, Uint_0));
128 -- This is the actual cache, with entries consisting of node/value pairs,
129 -- and the impossible value Node_High_Bound used for unset entries.
130
305caf42
AC
131 type Range_Membership is (In_Range, Out_Of_Range, Unknown);
132 -- Range membership may either be statically known to be in range or out
133 -- of range, or not statically known. Used for Test_In_Range below.
134
996ae0b0
RK
135 -----------------------
136 -- Local Subprograms --
137 -----------------------
138
996ae0b0
RK
139 function From_Bits (B : Bits; T : Entity_Id) return Uint;
140 -- Converts a bit string of length B'Length to a Uint value to be used
141 -- for a target of type T, which is a modular type. This procedure
142 -- includes the necessary reduction by the modulus in the case of a
143 -- non-binary modulus (for a binary modulus, the bit string is the
144 -- right length any way so all is well).
145
146 function Get_String_Val (N : Node_Id) return Node_Id;
147 -- Given a tree node for a folded string or character value, returns
148 -- the corresponding string literal or character literal (one of the
149 -- two must be available, or the operand would not have been marked
150 -- as foldable in the earlier analysis of the operation).
151
07fc65c4
GB
152 function OK_Bits (N : Node_Id; Bits : Uint) return Boolean;
153 -- Bits represents the number of bits in an integer value to be computed
154 -- (but the value has not been computed yet). If this value in Bits is
155 -- reasonable, a result of True is returned, with the implication that
156 -- the caller should go ahead and complete the calculation. If the value
157 -- in Bits is unreasonably large, then an error is posted on node N, and
158 -- False is returned (and the caller skips the proposed calculation).
159
996ae0b0
RK
160 procedure Out_Of_Range (N : Node_Id);
161 -- This procedure is called if it is determined that node N, which
162 -- appears in a non-static context, is a compile time known value
163 -- which is outside its range, i.e. the range of Etype. This is used
164 -- in contexts where this is an illegality if N is static, and should
165 -- generate a warning otherwise.
166
167 procedure Rewrite_In_Raise_CE (N : Node_Id; Exp : Node_Id);
168 -- N and Exp are nodes representing an expression, Exp is known
169 -- to raise CE. N is rewritten in term of Exp in the optimal way.
170
171 function String_Type_Len (Stype : Entity_Id) return Uint;
172 -- Given a string type, determines the length of the index type, or,
173 -- if this index type is non-static, the length of the base type of
174 -- this index type. Note that if the string type is itself static,
175 -- then the index type is static, so the second case applies only
176 -- if the string type passed is non-static.
177
178 function Test (Cond : Boolean) return Uint;
179 pragma Inline (Test);
180 -- This function simply returns the appropriate Boolean'Pos value
181 -- corresponding to the value of Cond as a universal integer. It is
182 -- used for producing the result of the static evaluation of the
183 -- logical operators
184
d7567964 185 function Find_Universal_Operator_Type (N : Node_Id) return Entity_Id;
602a7ec0
AC
186 -- Check whether an arithmetic operation with universal operands which
187 -- is a rewritten function call with an explicit scope indication is
ae77c68b 188 -- ambiguous: P."+" (1, 2) will be ambiguous if there is more than one
602a7ec0
AC
189 -- visible numeric type declared in P and the context does not impose a
190 -- type on the result (e.g. in the expression of a type conversion).
d7567964
TQ
191 -- If ambiguous, emit an error and return Empty, else return the result
192 -- type of the operator.
602a7ec0 193
996ae0b0
RK
194 procedure Test_Expression_Is_Foldable
195 (N : Node_Id;
196 Op1 : Node_Id;
197 Stat : out Boolean;
198 Fold : out Boolean);
199 -- Tests to see if expression N whose single operand is Op1 is foldable,
200 -- i.e. the operand value is known at compile time. If the operation is
201 -- foldable, then Fold is True on return, and Stat indicates whether
9479ded4 202 -- the result is static (i.e. the operand was static). Note that it
996ae0b0
RK
203 -- is quite possible for Fold to be True, and Stat to be False, since
204 -- there are cases in which we know the value of an operand even though
205 -- it is not technically static (e.g. the static lower bound of a range
206 -- whose upper bound is non-static).
207 --
3d5952be 208 -- If Stat is set False on return, then Test_Expression_Is_Foldable makes a
996ae0b0
RK
209 -- call to Check_Non_Static_Context on the operand. If Fold is False on
210 -- return, then all processing is complete, and the caller should
211 -- return, since there is nothing else to do.
93c3fca7
AC
212 --
213 -- If Stat is set True on return, then Is_Static_Expression is also set
214 -- true in node N. There are some cases where this is over-enthusiastic,
308e6f3a 215 -- e.g. in the two operand case below, for string comparison, the result
93c3fca7
AC
216 -- is not static even though the two operands are static. In such cases,
217 -- the caller must reset the Is_Static_Expression flag in N.
5df1266a
AC
218 --
219 -- If Fold and Stat are both set to False then this routine performs also
220 -- the following extra actions:
221 --
70805b88
AC
222 -- If either operand is Any_Type then propagate it to result to
223 -- prevent cascaded errors.
5df1266a 224 --
70805b88
AC
225 -- If some operand raises constraint error, then replace the node N
226 -- with the raise constraint error node. This replacement inherits the
227 -- Is_Static_Expression flag from the operands.
996ae0b0
RK
228
229 procedure Test_Expression_Is_Foldable
230 (N : Node_Id;
231 Op1 : Node_Id;
232 Op2 : Node_Id;
233 Stat : out Boolean;
234 Fold : out Boolean);
235 -- Same processing, except applies to an expression N with two operands
9479ded4 236 -- Op1 and Op2. The result is static only if both operands are static.
996ae0b0 237
305caf42
AC
238 function Test_In_Range
239 (N : Node_Id;
240 Typ : Entity_Id;
241 Assume_Valid : Boolean;
242 Fixed_Int : Boolean;
243 Int_Real : Boolean) return Range_Membership;
9479ded4
AC
244 -- Common processing for Is_In_Range and Is_Out_Of_Range: Returns In_Range
245 -- or Out_Of_Range if it can be guaranteed at compile time that expression
246 -- N is known to be in or out of range of the subtype Typ. If not compile
247 -- time known, Unknown is returned. See documentation of Is_In_Range for
248 -- complete description of parameters.
305caf42 249
996ae0b0
RK
250 procedure To_Bits (U : Uint; B : out Bits);
251 -- Converts a Uint value to a bit string of length B'Length
252
253 ------------------------------
254 -- Check_Non_Static_Context --
255 ------------------------------
256
257 procedure Check_Non_Static_Context (N : Node_Id) is
fbf5a39b
AC
258 T : constant Entity_Id := Etype (N);
259 Checks_On : constant Boolean :=
996ae0b0
RK
260 not Index_Checks_Suppressed (T)
261 and not Range_Checks_Suppressed (T);
262
263 begin
86f0e17a
AC
264 -- Ignore cases of non-scalar types, error types, or universal real
265 -- types that have no usable bounds.
996ae0b0 266
86f0e17a
AC
267 if T = Any_Type
268 or else not Is_Scalar_Type (T)
269 or else T = Universal_Fixed
270 or else T = Universal_Real
271 then
996ae0b0 272 return;
fbf5a39b 273 end if;
996ae0b0 274
86f0e17a
AC
275 -- At this stage we have a scalar type. If we have an expression that
276 -- raises CE, then we already issued a warning or error msg so there
277 -- is nothing more to be done in this routine.
fbf5a39b
AC
278
279 if Raises_Constraint_Error (N) then
280 return;
281 end if;
282
86f0e17a
AC
283 -- Now we have a scalar type which is not marked as raising a constraint
284 -- error exception. The main purpose of this routine is to deal with
285 -- static expressions appearing in a non-static context. That means
286 -- that if we do not have a static expression then there is not much
287 -- to do. The one case that we deal with here is that if we have a
288 -- floating-point value that is out of range, then we post a warning
289 -- that an infinity will result.
fbf5a39b
AC
290
291 if not Is_Static_Expression (N) then
292 if Is_Floating_Point_Type (T)
c800f862 293 and then Is_Out_Of_Range (N, Base_Type (T), Assume_Valid => True)
fbf5a39b
AC
294 then
295 Error_Msg_N
296 ("?float value out of range, infinity will be generated", N);
297 end if;
996ae0b0 298
996ae0b0
RK
299 return;
300 end if;
301
86f0e17a
AC
302 -- Here we have the case of outer level static expression of scalar
303 -- type, where the processing of this procedure is needed.
996ae0b0
RK
304
305 -- For real types, this is where we convert the value to a machine
86f0e17a
AC
306 -- number (see RM 4.9(38)). Also see ACVC test C490001. We should only
307 -- need to do this if the parent is a constant declaration, since in
308 -- other cases, gigi should do the necessary conversion correctly, but
309 -- experimentation shows that this is not the case on all machines, in
310 -- particular if we do not convert all literals to machine values in
311 -- non-static contexts, then ACVC test C490001 fails on Sparc/Solaris
312 -- and SGI/Irix.
996ae0b0
RK
313
314 if Nkind (N) = N_Real_Literal
315 and then not Is_Machine_Number (N)
316 and then not Is_Generic_Type (Etype (N))
317 and then Etype (N) /= Universal_Real
996ae0b0
RK
318 then
319 -- Check that value is in bounds before converting to machine
320 -- number, so as not to lose case where value overflows in the
321 -- least significant bit or less. See B490001.
322
c800f862 323 if Is_Out_Of_Range (N, Base_Type (T), Assume_Valid => True) then
996ae0b0
RK
324 Out_Of_Range (N);
325 return;
326 end if;
327
328 -- Note: we have to copy the node, to avoid problems with conformance
329 -- of very similar numbers (see ACVC tests B4A010C and B63103A).
330
331 Rewrite (N, New_Copy (N));
332
333 if not Is_Floating_Point_Type (T) then
334 Set_Realval
335 (N, Corresponding_Integer_Value (N) * Small_Value (T));
336
337 elsif not UR_Is_Zero (Realval (N)) then
996ae0b0 338
86f0e17a
AC
339 -- Note: even though RM 4.9(38) specifies biased rounding, this
340 -- has been modified by AI-100 in order to prevent confusing
341 -- differences in rounding between static and non-static
342 -- expressions. AI-100 specifies that the effect of such rounding
343 -- is implementation dependent, and in GNAT we round to nearest
344 -- even to match the run-time behavior.
996ae0b0 345
fbf5a39b
AC
346 Set_Realval
347 (N, Machine (Base_Type (T), Realval (N), Round_Even, N));
996ae0b0
RK
348 end if;
349
350 Set_Is_Machine_Number (N);
351 end if;
352
353 -- Check for out of range universal integer. This is a non-static
354 -- context, so the integer value must be in range of the runtime
355 -- representation of universal integers.
356
357 -- We do this only within an expression, because that is the only
358 -- case in which non-static universal integer values can occur, and
359 -- furthermore, Check_Non_Static_Context is currently (incorrectly???)
360 -- called in contexts like the expression of a number declaration where
361 -- we certainly want to allow out of range values.
362
363 if Etype (N) = Universal_Integer
364 and then Nkind (N) = N_Integer_Literal
365 and then Nkind (Parent (N)) in N_Subexpr
366 and then
367 (Intval (N) < Expr_Value (Type_Low_Bound (Universal_Integer))
368 or else
369 Intval (N) > Expr_Value (Type_High_Bound (Universal_Integer)))
370 then
371 Apply_Compile_Time_Constraint_Error
07fc65c4
GB
372 (N, "non-static universal integer value out of range?",
373 CE_Range_Check_Failed);
996ae0b0
RK
374
375 -- Check out of range of base type
376
c800f862 377 elsif Is_Out_Of_Range (N, Base_Type (T), Assume_Valid => True) then
996ae0b0
RK
378 Out_Of_Range (N);
379
c800f862
RD
380 -- Give warning if outside subtype (where one or both of the bounds of
381 -- the subtype is static). This warning is omitted if the expression
382 -- appears in a range that could be null (warnings are handled elsewhere
383 -- for this case).
996ae0b0
RK
384
385 elsif T /= Base_Type (T)
386 and then Nkind (Parent (N)) /= N_Range
387 then
c800f862 388 if Is_In_Range (N, T, Assume_Valid => True) then
996ae0b0
RK
389 null;
390
c800f862 391 elsif Is_Out_Of_Range (N, T, Assume_Valid => True) then
996ae0b0 392 Apply_Compile_Time_Constraint_Error
07fc65c4 393 (N, "value not in range of}?", CE_Range_Check_Failed);
996ae0b0
RK
394
395 elsif Checks_On then
396 Enable_Range_Check (N);
397
398 else
399 Set_Do_Range_Check (N, False);
400 end if;
401 end if;
402 end Check_Non_Static_Context;
403
404 ---------------------------------
405 -- Check_String_Literal_Length --
406 ---------------------------------
407
408 procedure Check_String_Literal_Length (N : Node_Id; Ttype : Entity_Id) is
409 begin
410 if not Raises_Constraint_Error (N)
411 and then Is_Constrained (Ttype)
412 then
413 if
414 UI_From_Int (String_Length (Strval (N))) /= String_Type_Len (Ttype)
415 then
416 Apply_Compile_Time_Constraint_Error
417 (N, "string length wrong for}?",
07fc65c4 418 CE_Length_Check_Failed,
996ae0b0
RK
419 Ent => Ttype,
420 Typ => Ttype);
421 end if;
422 end if;
423 end Check_String_Literal_Length;
424
425 --------------------------
426 -- Compile_Time_Compare --
427 --------------------------
428
fbf5a39b 429 function Compile_Time_Compare
1c7717c3 430 (L, R : Node_Id;
af02a866
RD
431 Assume_Valid : Boolean) return Compare_Result
432 is
433 Discard : aliased Uint;
434 begin
435 return Compile_Time_Compare (L, R, Discard'Access, Assume_Valid);
436 end Compile_Time_Compare;
437
438 function Compile_Time_Compare
439 (L, R : Node_Id;
440 Diff : access Uint;
1c7717c3
AC
441 Assume_Valid : Boolean;
442 Rec : Boolean := False) return Compare_Result
fbf5a39b 443 is
93c3fca7
AC
444 Ltyp : Entity_Id := Underlying_Type (Etype (L));
445 Rtyp : Entity_Id := Underlying_Type (Etype (R));
1c7717c3
AC
446 -- These get reset to the base type for the case of entities where
447 -- Is_Known_Valid is not set. This takes care of handling possible
448 -- invalid representations using the value of the base type, in
449 -- accordance with RM 13.9.1(10).
996ae0b0 450
af02a866
RD
451 Discard : aliased Uint;
452
996ae0b0
RK
453 procedure Compare_Decompose
454 (N : Node_Id;
455 R : out Node_Id;
456 V : out Uint);
b49365b2
RD
457 -- This procedure decomposes the node N into an expression node and a
458 -- signed offset, so that the value of N is equal to the value of R plus
459 -- the value V (which may be negative). If no such decomposition is
460 -- possible, then on return R is a copy of N, and V is set to zero.
996ae0b0
RK
461
462 function Compare_Fixup (N : Node_Id) return Node_Id;
b49365b2
RD
463 -- This function deals with replacing 'Last and 'First references with
464 -- their corresponding type bounds, which we then can compare. The
465 -- argument is the original node, the result is the identity, unless we
466 -- have a 'Last/'First reference in which case the value returned is the
467 -- appropriate type bound.
996ae0b0 468
57036dcc
ES
469 function Is_Known_Valid_Operand (Opnd : Node_Id) return Boolean;
470 -- Even if the context does not assume that values are valid, some
471 -- simple cases can be recognized.
472
996ae0b0 473 function Is_Same_Value (L, R : Node_Id) return Boolean;
86f0e17a
AC
474 -- Returns True iff L and R represent expressions that definitely have
475 -- identical (but not necessarily compile time known) values Indeed the
476 -- caller is expected to have already dealt with the cases of compile
477 -- time known values, so these are not tested here.
996ae0b0
RK
478
479 -----------------------
480 -- Compare_Decompose --
481 -----------------------
482
483 procedure Compare_Decompose
484 (N : Node_Id;
485 R : out Node_Id;
486 V : out Uint)
487 is
488 begin
489 if Nkind (N) = N_Op_Add
490 and then Nkind (Right_Opnd (N)) = N_Integer_Literal
491 then
492 R := Left_Opnd (N);
493 V := Intval (Right_Opnd (N));
494 return;
495
496 elsif Nkind (N) = N_Op_Subtract
497 and then Nkind (Right_Opnd (N)) = N_Integer_Literal
498 then
499 R := Left_Opnd (N);
500 V := UI_Negate (Intval (Right_Opnd (N)));
501 return;
502
503 elsif Nkind (N) = N_Attribute_Reference then
996ae0b0
RK
504 if Attribute_Name (N) = Name_Succ then
505 R := First (Expressions (N));
506 V := Uint_1;
507 return;
508
509 elsif Attribute_Name (N) = Name_Pred then
510 R := First (Expressions (N));
511 V := Uint_Minus_1;
512 return;
513 end if;
514 end if;
515
516 R := N;
517 V := Uint_0;
518 end Compare_Decompose;
519
520 -------------------
521 -- Compare_Fixup --
522 -------------------
523
524 function Compare_Fixup (N : Node_Id) return Node_Id is
525 Indx : Node_Id;
526 Xtyp : Entity_Id;
527 Subs : Nat;
528
529 begin
7a6de2e2
AC
530 -- Fixup only required for First/Last attribute reference
531
996ae0b0
RK
532 if Nkind (N) = N_Attribute_Reference
533 and then (Attribute_Name (N) = Name_First
534 or else
535 Attribute_Name (N) = Name_Last)
536 then
537 Xtyp := Etype (Prefix (N));
538
539 -- If we have no type, then just abandon the attempt to do
540 -- a fixup, this is probably the result of some other error.
541
542 if No (Xtyp) then
543 return N;
544 end if;
545
546 -- Dereference an access type
547
548 if Is_Access_Type (Xtyp) then
549 Xtyp := Designated_Type (Xtyp);
550 end if;
551
552 -- If we don't have an array type at this stage, something
553 -- is peculiar, e.g. another error, and we abandon the attempt
554 -- at a fixup.
555
556 if not Is_Array_Type (Xtyp) then
557 return N;
558 end if;
559
560 -- Ignore unconstrained array, since bounds are not meaningful
561
562 if not Is_Constrained (Xtyp) then
563 return N;
564 end if;
565
c3de5c4c
ES
566 if Ekind (Xtyp) = E_String_Literal_Subtype then
567 if Attribute_Name (N) = Name_First then
568 return String_Literal_Low_Bound (Xtyp);
569
5f44f0d4 570 else
c3de5c4c
ES
571 return Make_Integer_Literal (Sloc (N),
572 Intval => Intval (String_Literal_Low_Bound (Xtyp))
57036dcc 573 + String_Literal_Length (Xtyp));
c3de5c4c
ES
574 end if;
575 end if;
576
996ae0b0
RK
577 -- Find correct index type
578
579 Indx := First_Index (Xtyp);
580
581 if Present (Expressions (N)) then
582 Subs := UI_To_Int (Expr_Value (First (Expressions (N))));
583
584 for J in 2 .. Subs loop
585 Indx := Next_Index (Indx);
586 end loop;
587 end if;
588
589 Xtyp := Etype (Indx);
590
591 if Attribute_Name (N) = Name_First then
592 return Type_Low_Bound (Xtyp);
7a6de2e2 593 else
996ae0b0
RK
594 return Type_High_Bound (Xtyp);
595 end if;
596 end if;
597
598 return N;
599 end Compare_Fixup;
600
57036dcc
ES
601 ----------------------------
602 -- Is_Known_Valid_Operand --
603 ----------------------------
604
605 function Is_Known_Valid_Operand (Opnd : Node_Id) return Boolean is
606 begin
607 return (Is_Entity_Name (Opnd)
608 and then
609 (Is_Known_Valid (Entity (Opnd))
610 or else Ekind (Entity (Opnd)) = E_In_Parameter
611 or else
612 (Ekind (Entity (Opnd)) in Object_Kind
613 and then Present (Current_Value (Entity (Opnd))))))
614 or else Is_OK_Static_Expression (Opnd);
615 end Is_Known_Valid_Operand;
616
996ae0b0
RK
617 -------------------
618 -- Is_Same_Value --
619 -------------------
620
621 function Is_Same_Value (L, R : Node_Id) return Boolean is
622 Lf : constant Node_Id := Compare_Fixup (L);
623 Rf : constant Node_Id := Compare_Fixup (R);
624
fbf5a39b 625 function Is_Same_Subscript (L, R : List_Id) return Boolean;
57036dcc
ES
626 -- L, R are the Expressions values from two attribute nodes for First
627 -- or Last attributes. Either may be set to No_List if no expressions
628 -- are present (indicating subscript 1). The result is True if both
629 -- expressions represent the same subscript (note one case is where
630 -- one subscript is missing and the other is explicitly set to 1).
fbf5a39b
AC
631
632 -----------------------
633 -- Is_Same_Subscript --
634 -----------------------
635
636 function Is_Same_Subscript (L, R : List_Id) return Boolean is
637 begin
638 if L = No_List then
639 if R = No_List then
640 return True;
641 else
642 return Expr_Value (First (R)) = Uint_1;
643 end if;
644
645 else
646 if R = No_List then
647 return Expr_Value (First (L)) = Uint_1;
648 else
649 return Expr_Value (First (L)) = Expr_Value (First (R));
650 end if;
651 end if;
652 end Is_Same_Subscript;
653
654 -- Start of processing for Is_Same_Value
655
996ae0b0 656 begin
b49365b2 657 -- Values are the same if they refer to the same entity and the
c800f862
RD
658 -- entity is non-volatile. This does not however apply to Float
659 -- types, since we may have two NaN values and they should never
660 -- compare equal.
996ae0b0 661
f08b2371
RD
662 -- If the entity is a discriminant, the two expressions may be bounds
663 -- of components of objects of the same discriminated type. The
664 -- values of the discriminants are not static, and therefore the
665 -- result is unknown.
666
667 -- It would be better to comment individual branches of this test ???
4fb0b3f0 668
b49365b2
RD
669 if Nkind_In (Lf, N_Identifier, N_Expanded_Name)
670 and then Nkind_In (Rf, N_Identifier, N_Expanded_Name)
996ae0b0 671 and then Entity (Lf) = Entity (Rf)
4fb0b3f0 672 and then Ekind (Entity (Lf)) /= E_Discriminant
b49365b2 673 and then Present (Entity (Lf))
fbf5a39b 674 and then not Is_Floating_Point_Type (Etype (L))
c800f862
RD
675 and then not Is_Volatile_Reference (L)
676 and then not Is_Volatile_Reference (R)
996ae0b0
RK
677 then
678 return True;
679
680 -- Or if they are compile time known and identical
681
682 elsif Compile_Time_Known_Value (Lf)
683 and then
684 Compile_Time_Known_Value (Rf)
685 and then Expr_Value (Lf) = Expr_Value (Rf)
686 then
687 return True;
688
b49365b2
RD
689 -- False if Nkind of the two nodes is different for remaining cases
690
691 elsif Nkind (Lf) /= Nkind (Rf) then
692 return False;
693
694 -- True if both 'First or 'Last values applying to the same entity
695 -- (first and last don't change even if value does). Note that we
696 -- need this even with the calls to Compare_Fixup, to handle the
697 -- case of unconstrained array attributes where Compare_Fixup
698 -- cannot find useful bounds.
996ae0b0
RK
699
700 elsif Nkind (Lf) = N_Attribute_Reference
996ae0b0
RK
701 and then Attribute_Name (Lf) = Attribute_Name (Rf)
702 and then (Attribute_Name (Lf) = Name_First
703 or else
704 Attribute_Name (Lf) = Name_Last)
b49365b2
RD
705 and then Nkind_In (Prefix (Lf), N_Identifier, N_Expanded_Name)
706 and then Nkind_In (Prefix (Rf), N_Identifier, N_Expanded_Name)
996ae0b0 707 and then Entity (Prefix (Lf)) = Entity (Prefix (Rf))
fbf5a39b 708 and then Is_Same_Subscript (Expressions (Lf), Expressions (Rf))
996ae0b0
RK
709 then
710 return True;
711
b49365b2
RD
712 -- True if the same selected component from the same record
713
714 elsif Nkind (Lf) = N_Selected_Component
715 and then Selector_Name (Lf) = Selector_Name (Rf)
716 and then Is_Same_Value (Prefix (Lf), Prefix (Rf))
717 then
718 return True;
719
720 -- True if the same unary operator applied to the same operand
721
722 elsif Nkind (Lf) in N_Unary_Op
723 and then Is_Same_Value (Right_Opnd (Lf), Right_Opnd (Rf))
724 then
725 return True;
726
8682d22c 727 -- True if the same binary operator applied to the same operands
b49365b2
RD
728
729 elsif Nkind (Lf) in N_Binary_Op
730 and then Is_Same_Value (Left_Opnd (Lf), Left_Opnd (Rf))
731 and then Is_Same_Value (Right_Opnd (Lf), Right_Opnd (Rf))
732 then
733 return True;
734
8682d22c 735 -- All other cases, we can't tell, so return False
996ae0b0
RK
736
737 else
738 return False;
739 end if;
740 end Is_Same_Value;
741
742 -- Start of processing for Compile_Time_Compare
743
744 begin
af02a866
RD
745 Diff.all := No_Uint;
746
37c1f923
AC
747 -- In preanalysis mode, always return Unknown unless the expression
748 -- is static. It is too early to be thinking we know the result of a
749 -- comparison, save that judgment for the full analysis. This is
750 -- particularly important in the case of pre and postconditions, which
751 -- otherwise can be prematurely collapsed into having True or False
752 -- conditions when this is inappropriate.
753
754 if not (Full_Analysis
db318f46
AC
755 or else (Is_Static_Expression (L)
756 and then
757 Is_Static_Expression (R)))
37c1f923 758 then
05b34c18
AC
759 return Unknown;
760 end if;
761
07fc65c4
GB
762 -- If either operand could raise constraint error, then we cannot
763 -- know the result at compile time (since CE may be raised!)
764
765 if not (Cannot_Raise_Constraint_Error (L)
766 and then
767 Cannot_Raise_Constraint_Error (R))
768 then
769 return Unknown;
770 end if;
771
772 -- Identical operands are most certainly equal
773
996ae0b0
RK
774 if L = R then
775 return EQ;
776
93c3fca7
AC
777 -- If expressions have no types, then do not attempt to determine if
778 -- they are the same, since something funny is going on. One case in
779 -- which this happens is during generic template analysis, when bounds
780 -- are not fully analyzed.
996ae0b0
RK
781
782 elsif No (Ltyp) or else No (Rtyp) then
783 return Unknown;
784
93c3fca7
AC
785 -- We do not attempt comparisons for packed arrays arrays represented as
786 -- modular types, where the semantics of comparison is quite different.
996ae0b0 787
93c3fca7
AC
788 elsif Is_Packed_Array_Type (Ltyp)
789 and then Is_Modular_Integer_Type (Ltyp)
996ae0b0
RK
790 then
791 return Unknown;
792
93c3fca7 793 -- For access types, the only time we know the result at compile time
f61580d4 794 -- (apart from identical operands, which we handled already) is if we
93c3fca7
AC
795 -- know one operand is null and the other is not, or both operands are
796 -- known null.
797
798 elsif Is_Access_Type (Ltyp) then
799 if Known_Null (L) then
800 if Known_Null (R) then
801 return EQ;
802 elsif Known_Non_Null (R) then
803 return NE;
804 else
805 return Unknown;
806 end if;
807
f61580d4 808 elsif Known_Non_Null (L) and then Known_Null (R) then
93c3fca7
AC
809 return NE;
810
811 else
812 return Unknown;
813 end if;
814
996ae0b0
RK
815 -- Case where comparison involves two compile time known values
816
817 elsif Compile_Time_Known_Value (L)
818 and then Compile_Time_Known_Value (R)
819 then
820 -- For the floating-point case, we have to be a little careful, since
821 -- at compile time we are dealing with universal exact values, but at
822 -- runtime, these will be in non-exact target form. That's why the
823 -- returned results are LE and GE below instead of LT and GT.
824
825 if Is_Floating_Point_Type (Ltyp)
826 or else
827 Is_Floating_Point_Type (Rtyp)
828 then
829 declare
830 Lo : constant Ureal := Expr_Value_R (L);
831 Hi : constant Ureal := Expr_Value_R (R);
832
833 begin
834 if Lo < Hi then
835 return LE;
836 elsif Lo = Hi then
837 return EQ;
838 else
839 return GE;
840 end if;
841 end;
842
93c3fca7
AC
843 -- For string types, we have two string literals and we proceed to
844 -- compare them using the Ada style dictionary string comparison.
845
846 elsif not Is_Scalar_Type (Ltyp) then
847 declare
848 Lstring : constant String_Id := Strval (Expr_Value_S (L));
849 Rstring : constant String_Id := Strval (Expr_Value_S (R));
850 Llen : constant Nat := String_Length (Lstring);
851 Rlen : constant Nat := String_Length (Rstring);
852
853 begin
854 for J in 1 .. Nat'Min (Llen, Rlen) loop
855 declare
856 LC : constant Char_Code := Get_String_Char (Lstring, J);
857 RC : constant Char_Code := Get_String_Char (Rstring, J);
858 begin
859 if LC < RC then
860 return LT;
861 elsif LC > RC then
862 return GT;
863 end if;
864 end;
865 end loop;
866
867 if Llen < Rlen then
868 return LT;
869 elsif Llen > Rlen then
870 return GT;
871 else
872 return EQ;
873 end if;
874 end;
875
876 -- For remaining scalar cases we know exactly (note that this does
877 -- include the fixed-point case, where we know the run time integer
f61580d4 878 -- values now).
996ae0b0
RK
879
880 else
881 declare
882 Lo : constant Uint := Expr_Value (L);
883 Hi : constant Uint := Expr_Value (R);
884
885 begin
886 if Lo < Hi then
af02a866 887 Diff.all := Hi - Lo;
996ae0b0 888 return LT;
af02a866 889
996ae0b0
RK
890 elsif Lo = Hi then
891 return EQ;
af02a866 892
996ae0b0 893 else
af02a866 894 Diff.all := Lo - Hi;
996ae0b0
RK
895 return GT;
896 end if;
897 end;
898 end if;
899
900 -- Cases where at least one operand is not known at compile time
901
902 else
93c3fca7 903 -- Remaining checks apply only for discrete types
29797f34
RD
904
905 if not Is_Discrete_Type (Ltyp)
906 or else not Is_Discrete_Type (Rtyp)
93c3fca7
AC
907 then
908 return Unknown;
909 end if;
910
911 -- Defend against generic types, or actually any expressions that
912 -- contain a reference to a generic type from within a generic
913 -- template. We don't want to do any range analysis of such
914 -- expressions for two reasons. First, the bounds of a generic type
915 -- itself are junk and cannot be used for any kind of analysis.
916 -- Second, we may have a case where the range at run time is indeed
917 -- known, but we don't want to do compile time analysis in the
918 -- template based on that range since in an instance the value may be
919 -- static, and able to be elaborated without reference to the bounds
920 -- of types involved. As an example, consider:
921
922 -- (F'Pos (F'Last) + 1) > Integer'Last
923
924 -- The expression on the left side of > is Universal_Integer and thus
925 -- acquires the type Integer for evaluation at run time, and at run
926 -- time it is true that this condition is always False, but within
927 -- an instance F may be a type with a static range greater than the
928 -- range of Integer, and the expression statically evaluates to True.
929
930 if References_Generic_Formal_Type (L)
931 or else
932 References_Generic_Formal_Type (R)
29797f34
RD
933 then
934 return Unknown;
935 end if;
936
1c7717c3
AC
937 -- Replace types by base types for the case of entities which are
938 -- not known to have valid representations. This takes care of
939 -- properly dealing with invalid representations.
940
c800f862 941 if not Assume_Valid and then not Assume_No_Invalid_Values then
1c7717c3 942 if Is_Entity_Name (L) and then not Is_Known_Valid (Entity (L)) then
93c3fca7 943 Ltyp := Underlying_Type (Base_Type (Ltyp));
1c7717c3
AC
944 end if;
945
946 if Is_Entity_Name (R) and then not Is_Known_Valid (Entity (R)) then
93c3fca7 947 Rtyp := Underlying_Type (Base_Type (Rtyp));
1c7717c3
AC
948 end if;
949 end if;
950
a40ada7e
RD
951 -- First attempt is to decompose the expressions to extract a
952 -- constant offset resulting from the use of any of the forms:
953
954 -- expr + literal
955 -- expr - literal
956 -- typ'Succ (expr)
957 -- typ'Pred (expr)
958
959 -- Then we see if the two expressions are the same value, and if so
960 -- the result is obtained by comparing the offsets.
961
962 -- Note: the reason we do this test first is that it returns only
963 -- decisive results (with diff set), where other tests, like the
964 -- range test, may not be as so decisive. Consider for example
965 -- J .. J + 1. This code can conclude LT with a difference of 1,
966 -- even if the range of J is not known.
967
968 declare
969 Lnode : Node_Id;
970 Loffs : Uint;
971 Rnode : Node_Id;
972 Roffs : Uint;
973
974 begin
975 Compare_Decompose (L, Lnode, Loffs);
976 Compare_Decompose (R, Rnode, Roffs);
977
978 if Is_Same_Value (Lnode, Rnode) then
979 if Loffs = Roffs then
980 return EQ;
981
982 elsif Loffs < Roffs then
983 Diff.all := Roffs - Loffs;
984 return LT;
985
986 else
987 Diff.all := Loffs - Roffs;
988 return GT;
989 end if;
990 end if;
991 end;
992
993 -- Next, try range analysis and see if operand ranges are disjoint
c800f862
RD
994
995 declare
996 LOK, ROK : Boolean;
997 LLo, LHi : Uint;
998 RLo, RHi : Uint;
999
b6b5cca8
AC
1000 Single : Boolean;
1001 -- True if each range is a single point
1002
c800f862
RD
1003 begin
1004 Determine_Range (L, LOK, LLo, LHi, Assume_Valid);
1005 Determine_Range (R, ROK, RLo, RHi, Assume_Valid);
1006
1007 if LOK and ROK then
b6b5cca8
AC
1008 Single := (LLo = LHi) and then (RLo = RHi);
1009
c800f862 1010 if LHi < RLo then
b6b5cca8
AC
1011 if Single and Assume_Valid then
1012 Diff.all := RLo - LLo;
1013 end if;
1014
c800f862
RD
1015 return LT;
1016
1017 elsif RHi < LLo then
b6b5cca8
AC
1018 if Single and Assume_Valid then
1019 Diff.all := LLo - RLo;
1020 end if;
1021
c800f862
RD
1022 return GT;
1023
b6b5cca8 1024 elsif Single and then LLo = RLo then
e27b834b 1025
75ba322d
AC
1026 -- If the range includes a single literal and we can assume
1027 -- validity then the result is known even if an operand is
1028 -- not static.
e27b834b
AC
1029
1030 if Assume_Valid then
1031 return EQ;
e27b834b
AC
1032 else
1033 return Unknown;
1034 end if;
c800f862
RD
1035
1036 elsif LHi = RLo then
1037 return LE;
1038
1039 elsif RHi = LLo then
1040 return GE;
57036dcc
ES
1041
1042 elsif not Is_Known_Valid_Operand (L)
1043 and then not Assume_Valid
1044 then
1045 if Is_Same_Value (L, R) then
1046 return EQ;
1047 else
1048 return Unknown;
1049 end if;
c800f862 1050 end if;
f9ad6b62 1051
2c1b72d7
AC
1052 -- If the range of either operand cannot be determined, nothing
1053 -- further can be inferred.
f9ad6b62 1054
2c1b72d7 1055 else
f9ad6b62 1056 return Unknown;
c800f862
RD
1057 end if;
1058 end;
1059
996ae0b0
RK
1060 -- Here is where we check for comparisons against maximum bounds of
1061 -- types, where we know that no value can be outside the bounds of
1062 -- the subtype. Note that this routine is allowed to assume that all
1063 -- expressions are within their subtype bounds. Callers wishing to
1064 -- deal with possibly invalid values must in any case take special
1065 -- steps (e.g. conversions to larger types) to avoid this kind of
1066 -- optimization, which is always considered to be valid. We do not
1067 -- attempt this optimization with generic types, since the type
1068 -- bounds may not be meaningful in this case.
1069
93c3fca7 1070 -- We are in danger of an infinite recursion here. It does not seem
fbf5a39b
AC
1071 -- useful to go more than one level deep, so the parameter Rec is
1072 -- used to protect ourselves against this infinite recursion.
1073
29797f34
RD
1074 if not Rec then
1075
fbf5a39b
AC
1076 -- See if we can get a decisive check against one operand and
1077 -- a bound of the other operand (four possible tests here).
93c3fca7
AC
1078 -- Note that we avoid testing junk bounds of a generic type.
1079
1080 if not Is_Generic_Type (Rtyp) then
1081 case Compile_Time_Compare (L, Type_Low_Bound (Rtyp),
1082 Discard'Access,
1083 Assume_Valid, Rec => True)
1084 is
1085 when LT => return LT;
1086 when LE => return LE;
1087 when EQ => return LE;
1088 when others => null;
1089 end case;
fbf5a39b 1090
93c3fca7
AC
1091 case Compile_Time_Compare (L, Type_High_Bound (Rtyp),
1092 Discard'Access,
1093 Assume_Valid, Rec => True)
1094 is
1095 when GT => return GT;
1096 when GE => return GE;
1097 when EQ => return GE;
1098 when others => null;
1099 end case;
1100 end if;
996ae0b0 1101
93c3fca7
AC
1102 if not Is_Generic_Type (Ltyp) then
1103 case Compile_Time_Compare (Type_Low_Bound (Ltyp), R,
1104 Discard'Access,
1105 Assume_Valid, Rec => True)
1106 is
1107 when GT => return GT;
1108 when GE => return GE;
1109 when EQ => return GE;
1110 when others => null;
1111 end case;
996ae0b0 1112
93c3fca7
AC
1113 case Compile_Time_Compare (Type_High_Bound (Ltyp), R,
1114 Discard'Access,
1115 Assume_Valid, Rec => True)
1116 is
1117 when LT => return LT;
1118 when LE => return LE;
1119 when EQ => return LE;
1120 when others => null;
1121 end case;
1122 end if;
996ae0b0
RK
1123 end if;
1124
29797f34
RD
1125 -- Next attempt is to see if we have an entity compared with a
1126 -- compile time known value, where there is a current value
1127 -- conditional for the entity which can tell us the result.
1128
1129 declare
1130 Var : Node_Id;
1131 -- Entity variable (left operand)
1132
1133 Val : Uint;
1134 -- Value (right operand)
1135
1136 Inv : Boolean;
1137 -- If False, we have reversed the operands
1138
1139 Op : Node_Kind;
1140 -- Comparison operator kind from Get_Current_Value_Condition call
996ae0b0 1141
29797f34
RD
1142 Opn : Node_Id;
1143 -- Value from Get_Current_Value_Condition call
1144
1145 Opv : Uint;
1146 -- Value of Opn
1147
1148 Result : Compare_Result;
1149 -- Known result before inversion
1150
1151 begin
1152 if Is_Entity_Name (L)
1153 and then Compile_Time_Known_Value (R)
1154 then
1155 Var := L;
1156 Val := Expr_Value (R);
1157 Inv := False;
1158
1159 elsif Is_Entity_Name (R)
1160 and then Compile_Time_Known_Value (L)
1161 then
1162 Var := R;
1163 Val := Expr_Value (L);
1164 Inv := True;
1165
1166 -- That was the last chance at finding a compile time result
996ae0b0
RK
1167
1168 else
1169 return Unknown;
1170 end if;
29797f34
RD
1171
1172 Get_Current_Value_Condition (Var, Op, Opn);
1173
1174 -- That was the last chance, so if we got nothing return
1175
1176 if No (Opn) then
1177 return Unknown;
1178 end if;
1179
1180 Opv := Expr_Value (Opn);
1181
1182 -- We got a comparison, so we might have something interesting
1183
1184 -- Convert LE to LT and GE to GT, just so we have fewer cases
1185
1186 if Op = N_Op_Le then
1187 Op := N_Op_Lt;
1188 Opv := Opv + 1;
af02a866 1189
29797f34
RD
1190 elsif Op = N_Op_Ge then
1191 Op := N_Op_Gt;
1192 Opv := Opv - 1;
1193 end if;
1194
1195 -- Deal with equality case
1196
1197 if Op = N_Op_Eq then
1198 if Val = Opv then
1199 Result := EQ;
1200 elsif Opv < Val then
1201 Result := LT;
1202 else
1203 Result := GT;
1204 end if;
1205
1206 -- Deal with inequality case
1207
1208 elsif Op = N_Op_Ne then
1209 if Val = Opv then
1210 Result := NE;
1211 else
1212 return Unknown;
1213 end if;
1214
1215 -- Deal with greater than case
1216
1217 elsif Op = N_Op_Gt then
1218 if Opv >= Val then
1219 Result := GT;
1220 elsif Opv = Val - 1 then
1221 Result := GE;
1222 else
1223 return Unknown;
1224 end if;
1225
1226 -- Deal with less than case
1227
1228 else pragma Assert (Op = N_Op_Lt);
1229 if Opv <= Val then
1230 Result := LT;
1231 elsif Opv = Val + 1 then
1232 Result := LE;
1233 else
1234 return Unknown;
1235 end if;
1236 end if;
1237
1238 -- Deal with inverting result
1239
1240 if Inv then
1241 case Result is
1242 when GT => return LT;
1243 when GE => return LE;
1244 when LT => return GT;
1245 when LE => return GE;
1246 when others => return Result;
1247 end case;
1248 end if;
1249
1250 return Result;
996ae0b0
RK
1251 end;
1252 end if;
1253 end Compile_Time_Compare;
1254
f44fe430
RD
1255 -------------------------------
1256 -- Compile_Time_Known_Bounds --
1257 -------------------------------
1258
1259 function Compile_Time_Known_Bounds (T : Entity_Id) return Boolean is
1260 Indx : Node_Id;
1261 Typ : Entity_Id;
1262
1263 begin
1264 if not Is_Array_Type (T) then
1265 return False;
1266 end if;
1267
1268 Indx := First_Index (T);
1269 while Present (Indx) loop
1270 Typ := Underlying_Type (Etype (Indx));
93c3fca7
AC
1271
1272 -- Never look at junk bounds of a generic type
1273
1274 if Is_Generic_Type (Typ) then
1275 return False;
1276 end if;
1277
1278 -- Otherwise check bounds for compile time known
1279
f44fe430
RD
1280 if not Compile_Time_Known_Value (Type_Low_Bound (Typ)) then
1281 return False;
1282 elsif not Compile_Time_Known_Value (Type_High_Bound (Typ)) then
1283 return False;
1284 else
1285 Next_Index (Indx);
1286 end if;
1287 end loop;
1288
1289 return True;
1290 end Compile_Time_Known_Bounds;
1291
996ae0b0
RK
1292 ------------------------------
1293 -- Compile_Time_Known_Value --
1294 ------------------------------
1295
1296 function Compile_Time_Known_Value (Op : Node_Id) return Boolean is
07fc65c4
GB
1297 K : constant Node_Kind := Nkind (Op);
1298 CV_Ent : CV_Entry renames CV_Cache (Nat (Op) mod CV_Cache_Size);
996ae0b0
RK
1299
1300 begin
1301 -- Never known at compile time if bad type or raises constraint error
ee2ba856 1302 -- or empty (latter case occurs only as a result of a previous error).
996ae0b0 1303
ee2ba856
AC
1304 if No (Op) then
1305 Check_Error_Detected;
1306 return False;
1307
1308 elsif Op = Error
996ae0b0
RK
1309 or else Etype (Op) = Any_Type
1310 or else Raises_Constraint_Error (Op)
1311 then
1312 return False;
1313 end if;
1314
597d7158
GD
1315 -- If this is not a static expression or a null literal, and we are in
1316 -- configurable run-time mode, then we consider it not known at compile
1317 -- time. This avoids anomalies where whether something is allowed with a
1318 -- given configurable run-time library depends on how good the compiler
1319 -- is at optimizing and knowing that things are constant when they are
1320 -- nonstatic.
1321
1322 if Configurable_Run_Time_Mode
1323 and then K /= N_Null
1324 and then not Is_Static_Expression (Op)
1325 then
b9daa96e
AC
1326 -- We make an exception for expressions that evaluate to True/False,
1327 -- to suppress spurious checks in ZFP mode. So far we have not seen
1328 -- any negative consequences of this exception.
1329
570104df
AC
1330 if Is_Entity_Name (Op)
1331 and then Ekind (Entity (Op)) = E_Enumeration_Literal
1332 and then Etype (Entity (Op)) = Standard_Boolean
1333 then
1334 null;
1335
1336 else
1337 return False;
1338 end if;
fbf5a39b
AC
1339 end if;
1340
996ae0b0
RK
1341 -- If we have an entity name, then see if it is the name of a constant
1342 -- and if so, test the corresponding constant value, or the name of
1343 -- an enumeration literal, which is always a constant.
1344
1345 if Present (Etype (Op)) and then Is_Entity_Name (Op) then
1346 declare
1347 E : constant Entity_Id := Entity (Op);
1348 V : Node_Id;
1349
1350 begin
1351 -- Never known at compile time if it is a packed array value.
1352 -- We might want to try to evaluate these at compile time one
1353 -- day, but we do not make that attempt now.
1354
1355 if Is_Packed_Array_Type (Etype (Op)) then
1356 return False;
1357 end if;
1358
1359 if Ekind (E) = E_Enumeration_Literal then
1360 return True;
1361
db664118
AC
1362 -- In Alfa mode, the value of deferred constants should be ignored
1363 -- outside the scope of their full view. This allows parameterized
1364 -- formal verification, in which a deferred constant value if not
1365 -- known from client units.
1366
1367 elsif Ekind (E) = E_Constant
1368 and then not (Alfa_Mode
1369 and then Present (Full_View (E))
1370 and then not In_Open_Scopes (Scope (E)))
1371 then
996ae0b0
RK
1372 V := Constant_Value (E);
1373 return Present (V) and then Compile_Time_Known_Value (V);
1374 end if;
1375 end;
1376
1377 -- We have a value, see if it is compile time known
1378
1379 else
07fc65c4 1380 -- Integer literals are worth storing in the cache
996ae0b0 1381
07fc65c4
GB
1382 if K = N_Integer_Literal then
1383 CV_Ent.N := Op;
1384 CV_Ent.V := Intval (Op);
1385 return True;
1386
1387 -- Other literals and NULL are known at compile time
1388
1389 elsif
996ae0b0
RK
1390 K = N_Character_Literal
1391 or else
1392 K = N_Real_Literal
1393 or else
1394 K = N_String_Literal
1395 or else
1396 K = N_Null
1397 then
1398 return True;
1399
1400 -- Any reference to Null_Parameter is known at compile time. No
1401 -- other attribute references (that have not already been folded)
1402 -- are known at compile time.
1403
1404 elsif K = N_Attribute_Reference then
1405 return Attribute_Name (Op) = Name_Null_Parameter;
07fc65c4 1406 end if;
996ae0b0 1407 end if;
07fc65c4
GB
1408
1409 -- If we fall through, not known at compile time
1410
1411 return False;
1412
1413 -- If we get an exception while trying to do this test, then some error
1414 -- has occurred, and we simply say that the value is not known after all
1415
1416 exception
1417 when others =>
1418 return False;
996ae0b0
RK
1419 end Compile_Time_Known_Value;
1420
1421 --------------------------------------
1422 -- Compile_Time_Known_Value_Or_Aggr --
1423 --------------------------------------
1424
1425 function Compile_Time_Known_Value_Or_Aggr (Op : Node_Id) return Boolean is
1426 begin
1427 -- If we have an entity name, then see if it is the name of a constant
1428 -- and if so, test the corresponding constant value, or the name of
1429 -- an enumeration literal, which is always a constant.
1430
1431 if Is_Entity_Name (Op) then
1432 declare
1433 E : constant Entity_Id := Entity (Op);
1434 V : Node_Id;
1435
1436 begin
1437 if Ekind (E) = E_Enumeration_Literal then
1438 return True;
1439
1440 elsif Ekind (E) /= E_Constant then
1441 return False;
1442
1443 else
1444 V := Constant_Value (E);
1445 return Present (V)
1446 and then Compile_Time_Known_Value_Or_Aggr (V);
1447 end if;
1448 end;
1449
1450 -- We have a value, see if it is compile time known
1451
1452 else
1453 if Compile_Time_Known_Value (Op) then
1454 return True;
1455
1456 elsif Nkind (Op) = N_Aggregate then
1457
1458 if Present (Expressions (Op)) then
1459 declare
1460 Expr : Node_Id;
1461
1462 begin
1463 Expr := First (Expressions (Op));
1464 while Present (Expr) loop
1465 if not Compile_Time_Known_Value_Or_Aggr (Expr) then
1466 return False;
1467 end if;
1468
1469 Next (Expr);
1470 end loop;
1471 end;
1472 end if;
1473
1474 if Present (Component_Associations (Op)) then
1475 declare
1476 Cass : Node_Id;
1477
1478 begin
1479 Cass := First (Component_Associations (Op));
1480 while Present (Cass) loop
1481 if not
1482 Compile_Time_Known_Value_Or_Aggr (Expression (Cass))
1483 then
1484 return False;
1485 end if;
1486
1487 Next (Cass);
1488 end loop;
1489 end;
1490 end if;
1491
1492 return True;
1493
1494 -- All other types of values are not known at compile time
1495
1496 else
1497 return False;
1498 end if;
1499
1500 end if;
1501 end Compile_Time_Known_Value_Or_Aggr;
1502
1503 -----------------
1504 -- Eval_Actual --
1505 -----------------
1506
1507 -- This is only called for actuals of functions that are not predefined
1508 -- operators (which have already been rewritten as operators at this
1509 -- stage), so the call can never be folded, and all that needs doing for
1510 -- the actual is to do the check for a non-static context.
1511
1512 procedure Eval_Actual (N : Node_Id) is
1513 begin
1514 Check_Non_Static_Context (N);
1515 end Eval_Actual;
1516
1517 --------------------
1518 -- Eval_Allocator --
1519 --------------------
1520
1521 -- Allocators are never static, so all we have to do is to do the
1522 -- check for a non-static context if an expression is present.
1523
1524 procedure Eval_Allocator (N : Node_Id) is
1525 Expr : constant Node_Id := Expression (N);
1526
1527 begin
1528 if Nkind (Expr) = N_Qualified_Expression then
1529 Check_Non_Static_Context (Expression (Expr));
1530 end if;
1531 end Eval_Allocator;
1532
1533 ------------------------
1534 -- Eval_Arithmetic_Op --
1535 ------------------------
1536
1537 -- Arithmetic operations are static functions, so the result is static
1538 -- if both operands are static (RM 4.9(7), 4.9(20)).
1539
1540 procedure Eval_Arithmetic_Op (N : Node_Id) is
1541 Left : constant Node_Id := Left_Opnd (N);
1542 Right : constant Node_Id := Right_Opnd (N);
1543 Ltype : constant Entity_Id := Etype (Left);
1544 Rtype : constant Entity_Id := Etype (Right);
d7567964 1545 Otype : Entity_Id := Empty;
996ae0b0
RK
1546 Stat : Boolean;
1547 Fold : Boolean;
1548
1549 begin
1550 -- If not foldable we are done
1551
1552 Test_Expression_Is_Foldable (N, Left, Right, Stat, Fold);
1553
1554 if not Fold then
1555 return;
1556 end if;
1557
d7567964
TQ
1558 if Is_Universal_Numeric_Type (Etype (Left))
1559 and then
1560 Is_Universal_Numeric_Type (Etype (Right))
602a7ec0 1561 then
d7567964 1562 Otype := Find_Universal_Operator_Type (N);
602a7ec0
AC
1563 end if;
1564
996ae0b0
RK
1565 -- Fold for cases where both operands are of integer type
1566
1567 if Is_Integer_Type (Ltype) and then Is_Integer_Type (Rtype) then
1568 declare
1569 Left_Int : constant Uint := Expr_Value (Left);
1570 Right_Int : constant Uint := Expr_Value (Right);
1571 Result : Uint;
1572
1573 begin
1574 case Nkind (N) is
1575
1576 when N_Op_Add =>
1577 Result := Left_Int + Right_Int;
1578
1579 when N_Op_Subtract =>
1580 Result := Left_Int - Right_Int;
1581
1582 when N_Op_Multiply =>
1583 if OK_Bits
1584 (N, UI_From_Int
1585 (Num_Bits (Left_Int) + Num_Bits (Right_Int)))
1586 then
1587 Result := Left_Int * Right_Int;
1588 else
1589 Result := Left_Int;
1590 end if;
1591
1592 when N_Op_Divide =>
1593
1594 -- The exception Constraint_Error is raised by integer
1595 -- division, rem and mod if the right operand is zero.
1596
1597 if Right_Int = 0 then
1598 Apply_Compile_Time_Constraint_Error
fbf5a39b
AC
1599 (N, "division by zero",
1600 CE_Divide_By_Zero,
1601 Warn => not Stat);
996ae0b0 1602 return;
fbf5a39b 1603
996ae0b0
RK
1604 else
1605 Result := Left_Int / Right_Int;
1606 end if;
1607
1608 when N_Op_Mod =>
1609
1610 -- The exception Constraint_Error is raised by integer
1611 -- division, rem and mod if the right operand is zero.
1612
1613 if Right_Int = 0 then
1614 Apply_Compile_Time_Constraint_Error
fbf5a39b
AC
1615 (N, "mod with zero divisor",
1616 CE_Divide_By_Zero,
1617 Warn => not Stat);
996ae0b0
RK
1618 return;
1619 else
1620 Result := Left_Int mod Right_Int;
1621 end if;
1622
1623 when N_Op_Rem =>
1624
1625 -- The exception Constraint_Error is raised by integer
1626 -- division, rem and mod if the right operand is zero.
1627
1628 if Right_Int = 0 then
1629 Apply_Compile_Time_Constraint_Error
fbf5a39b
AC
1630 (N, "rem with zero divisor",
1631 CE_Divide_By_Zero,
1632 Warn => not Stat);
996ae0b0 1633 return;
fbf5a39b 1634
996ae0b0
RK
1635 else
1636 Result := Left_Int rem Right_Int;
1637 end if;
1638
1639 when others =>
1640 raise Program_Error;
1641 end case;
1642
1643 -- Adjust the result by the modulus if the type is a modular type
1644
1645 if Is_Modular_Integer_Type (Ltype) then
1646 Result := Result mod Modulus (Ltype);
82c80734
RD
1647
1648 -- For a signed integer type, check non-static overflow
1649
1650 elsif (not Stat) and then Is_Signed_Integer_Type (Ltype) then
1651 declare
1652 BT : constant Entity_Id := Base_Type (Ltype);
1653 Lo : constant Uint := Expr_Value (Type_Low_Bound (BT));
1654 Hi : constant Uint := Expr_Value (Type_High_Bound (BT));
1655 begin
1656 if Result < Lo or else Result > Hi then
1657 Apply_Compile_Time_Constraint_Error
1658 (N, "value not in range of }?",
1659 CE_Overflow_Check_Failed,
1660 Ent => BT);
1661 return;
1662 end if;
1663 end;
996ae0b0
RK
1664 end if;
1665
82c80734
RD
1666 -- If we get here we can fold the result
1667
fbf5a39b 1668 Fold_Uint (N, Result, Stat);
996ae0b0
RK
1669 end;
1670
d7567964
TQ
1671 -- Cases where at least one operand is a real. We handle the cases of
1672 -- both reals, or mixed/real integer cases (the latter happen only for
1673 -- divide and multiply, and the result is always real).
996ae0b0
RK
1674
1675 elsif Is_Real_Type (Ltype) or else Is_Real_Type (Rtype) then
1676 declare
1677 Left_Real : Ureal;
1678 Right_Real : Ureal;
1679 Result : Ureal;
1680
1681 begin
1682 if Is_Real_Type (Ltype) then
1683 Left_Real := Expr_Value_R (Left);
1684 else
1685 Left_Real := UR_From_Uint (Expr_Value (Left));
1686 end if;
1687
1688 if Is_Real_Type (Rtype) then
1689 Right_Real := Expr_Value_R (Right);
1690 else
1691 Right_Real := UR_From_Uint (Expr_Value (Right));
1692 end if;
1693
1694 if Nkind (N) = N_Op_Add then
1695 Result := Left_Real + Right_Real;
1696
1697 elsif Nkind (N) = N_Op_Subtract then
1698 Result := Left_Real - Right_Real;
1699
1700 elsif Nkind (N) = N_Op_Multiply then
1701 Result := Left_Real * Right_Real;
1702
1703 else pragma Assert (Nkind (N) = N_Op_Divide);
1704 if UR_Is_Zero (Right_Real) then
1705 Apply_Compile_Time_Constraint_Error
07fc65c4 1706 (N, "division by zero", CE_Divide_By_Zero);
996ae0b0
RK
1707 return;
1708 end if;
1709
1710 Result := Left_Real / Right_Real;
1711 end if;
1712
fbf5a39b 1713 Fold_Ureal (N, Result, Stat);
996ae0b0
RK
1714 end;
1715 end if;
d7567964
TQ
1716
1717 -- If the operator was resolved to a specific type, make sure that type
1718 -- is frozen even if the expression is folded into a literal (which has
1719 -- a universal type).
1720
1721 if Present (Otype) then
1722 Freeze_Before (N, Otype);
1723 end if;
996ae0b0
RK
1724 end Eval_Arithmetic_Op;
1725
1726 ----------------------------
1727 -- Eval_Character_Literal --
1728 ----------------------------
1729
1730 -- Nothing to be done!
1731
1732 procedure Eval_Character_Literal (N : Node_Id) is
07fc65c4 1733 pragma Warnings (Off, N);
996ae0b0
RK
1734 begin
1735 null;
1736 end Eval_Character_Literal;
1737
c01a9391
AC
1738 ---------------
1739 -- Eval_Call --
1740 ---------------
1741
1742 -- Static function calls are either calls to predefined operators
1743 -- with static arguments, or calls to functions that rename a literal.
1744 -- Only the latter case is handled here, predefined operators are
1745 -- constant-folded elsewhere.
29797f34 1746
c01a9391
AC
1747 -- If the function is itself inherited (see 7423-001) the literal of
1748 -- the parent type must be explicitly converted to the return type
1749 -- of the function.
1750
1751 procedure Eval_Call (N : Node_Id) is
1752 Loc : constant Source_Ptr := Sloc (N);
1753 Typ : constant Entity_Id := Etype (N);
1754 Lit : Entity_Id;
1755
1756 begin
1757 if Nkind (N) = N_Function_Call
1758 and then No (Parameter_Associations (N))
1759 and then Is_Entity_Name (Name (N))
1760 and then Present (Alias (Entity (Name (N))))
1761 and then Is_Enumeration_Type (Base_Type (Typ))
1762 then
b81a5940 1763 Lit := Ultimate_Alias (Entity (Name (N)));
c01a9391
AC
1764
1765 if Ekind (Lit) = E_Enumeration_Literal then
1766 if Base_Type (Etype (Lit)) /= Base_Type (Typ) then
1767 Rewrite
1768 (N, Convert_To (Typ, New_Occurrence_Of (Lit, Loc)));
1769 else
1770 Rewrite (N, New_Occurrence_Of (Lit, Loc));
1771 end if;
1772
1773 Resolve (N, Typ);
1774 end if;
1775 end if;
1776 end Eval_Call;
1777
19d846a0
RD
1778 --------------------------
1779 -- Eval_Case_Expression --
1780 --------------------------
1781
ed7b9d6e
AC
1782 -- A conditional expression is static if all its conditions and dependent
1783 -- expressions are static.
19d846a0
RD
1784
1785 procedure Eval_Case_Expression (N : Node_Id) is
ed7b9d6e
AC
1786 Alt : Node_Id;
1787 Choice : Node_Id;
1788 Is_Static : Boolean;
1789 Result : Node_Id;
1790 Val : Uint;
19d846a0
RD
1791
1792 begin
ed7b9d6e
AC
1793 Result := Empty;
1794 Is_Static := True;
1795
1796 if Is_Static_Expression (Expression (N)) then
1797 Val := Expr_Value (Expression (N));
1798
1799 else
1800 Check_Non_Static_Context (Expression (N));
1801 Is_Static := False;
1802 end if;
19d846a0
RD
1803
1804 Alt := First (Alternatives (N));
ed7b9d6e
AC
1805
1806 Search : while Present (Alt) loop
1807 if not Is_Static
1808 or else not Is_Static_Expression (Expression (Alt))
1809 then
1810 Check_Non_Static_Context (Expression (Alt));
1811 Is_Static := False;
1812
1813 else
1814 Choice := First (Discrete_Choices (Alt));
1815 while Present (Choice) loop
1816 if Nkind (Choice) = N_Others_Choice then
1817 Result := Expression (Alt);
1818 exit Search;
1819
1820 elsif Expr_Value (Choice) = Val then
1821 Result := Expression (Alt);
1822 exit Search;
1823
1824 else
1825 Next (Choice);
1826 end if;
1827 end loop;
1828 end if;
1829
19d846a0 1830 Next (Alt);
ed7b9d6e
AC
1831 end loop Search;
1832
1833 if Is_Static then
1834 Rewrite (N, Relocate_Node (Result));
1835
1836 else
1837 Set_Is_Static_Expression (N, False);
1838 end if;
19d846a0
RD
1839 end Eval_Case_Expression;
1840
996ae0b0
RK
1841 ------------------------
1842 -- Eval_Concatenation --
1843 ------------------------
1844
3996951a
TQ
1845 -- Concatenation is a static function, so the result is static if both
1846 -- operands are static (RM 4.9(7), 4.9(21)).
996ae0b0
RK
1847
1848 procedure Eval_Concatenation (N : Node_Id) is
f91b40db
GB
1849 Left : constant Node_Id := Left_Opnd (N);
1850 Right : constant Node_Id := Right_Opnd (N);
1851 C_Typ : constant Entity_Id := Root_Type (Component_Type (Etype (N)));
996ae0b0
RK
1852 Stat : Boolean;
1853 Fold : Boolean;
996ae0b0
RK
1854
1855 begin
3996951a
TQ
1856 -- Concatenation is never static in Ada 83, so if Ada 83 check operand
1857 -- non-static context.
996ae0b0 1858
0ab80019 1859 if Ada_Version = Ada_83
996ae0b0
RK
1860 and then Comes_From_Source (N)
1861 then
1862 Check_Non_Static_Context (Left);
1863 Check_Non_Static_Context (Right);
1864 return;
1865 end if;
1866
1867 -- If not foldable we are done. In principle concatenation that yields
1868 -- any string type is static (i.e. an array type of character types).
1869 -- However, character types can include enumeration literals, and
1870 -- concatenation in that case cannot be described by a literal, so we
1871 -- only consider the operation static if the result is an array of
1872 -- (a descendant of) a predefined character type.
1873
1874 Test_Expression_Is_Foldable (N, Left, Right, Stat, Fold);
1875
3996951a 1876 if not (Is_Standard_Character_Type (C_Typ) and then Fold) then
996ae0b0
RK
1877 Set_Is_Static_Expression (N, False);
1878 return;
1879 end if;
1880
82c80734 1881 -- Compile time string concatenation
996ae0b0 1882
3996951a
TQ
1883 -- ??? Note that operands that are aggregates can be marked as static,
1884 -- so we should attempt at a later stage to fold concatenations with
1885 -- such aggregates.
996ae0b0
RK
1886
1887 declare
b54ddf5a
BD
1888 Left_Str : constant Node_Id := Get_String_Val (Left);
1889 Left_Len : Nat;
1890 Right_Str : constant Node_Id := Get_String_Val (Right);
1891 Folded_Val : String_Id;
996ae0b0
RK
1892
1893 begin
1894 -- Establish new string literal, and store left operand. We make
1895 -- sure to use the special Start_String that takes an operand if
1896 -- the left operand is a string literal. Since this is optimized
1897 -- in the case where that is the most recently created string
1898 -- literal, we ensure efficient time/space behavior for the
1899 -- case of a concatenation of a series of string literals.
1900
1901 if Nkind (Left_Str) = N_String_Literal then
f91b40db 1902 Left_Len := String_Length (Strval (Left_Str));
b54ddf5a
BD
1903
1904 -- If the left operand is the empty string, and the right operand
1905 -- is a string literal (the case of "" & "..."), the result is the
1906 -- value of the right operand. This optimization is important when
1907 -- Is_Folded_In_Parser, to avoid copying an enormous right
1908 -- operand.
1909
1910 if Left_Len = 0 and then Nkind (Right_Str) = N_String_Literal then
1911 Folded_Val := Strval (Right_Str);
1912 else
1913 Start_String (Strval (Left_Str));
1914 end if;
1915
996ae0b0
RK
1916 else
1917 Start_String;
82c80734 1918 Store_String_Char (UI_To_CC (Char_Literal_Value (Left_Str)));
f91b40db 1919 Left_Len := 1;
996ae0b0
RK
1920 end if;
1921
b54ddf5a
BD
1922 -- Now append the characters of the right operand, unless we
1923 -- optimized the "" & "..." case above.
996ae0b0
RK
1924
1925 if Nkind (Right_Str) = N_String_Literal then
b54ddf5a
BD
1926 if Left_Len /= 0 then
1927 Store_String_Chars (Strval (Right_Str));
1928 Folded_Val := End_String;
1929 end if;
996ae0b0 1930 else
82c80734 1931 Store_String_Char (UI_To_CC (Char_Literal_Value (Right_Str)));
b54ddf5a 1932 Folded_Val := End_String;
996ae0b0
RK
1933 end if;
1934
1935 Set_Is_Static_Expression (N, Stat);
1936
1937 if Stat then
f91b40db
GB
1938
1939 -- If left operand is the empty string, the result is the
1940 -- right operand, including its bounds if anomalous.
1941
1942 if Left_Len = 0
1943 and then Is_Array_Type (Etype (Right))
1944 and then Etype (Right) /= Any_String
1945 then
1946 Set_Etype (N, Etype (Right));
1947 end if;
1948
b54ddf5a 1949 Fold_Str (N, Folded_Val, Static => True);
996ae0b0
RK
1950 end if;
1951 end;
1952 end Eval_Concatenation;
1953
9b16cb57
RD
1954 ----------------------
1955 -- Eval_Entity_Name --
1956 ----------------------
1957
1958 -- This procedure is used for identifiers and expanded names other than
1959 -- named numbers (see Eval_Named_Integer, Eval_Named_Real. These are
1960 -- static if they denote a static constant (RM 4.9(6)) or if the name
1961 -- denotes an enumeration literal (RM 4.9(22)).
1962
1963 procedure Eval_Entity_Name (N : Node_Id) is
1964 Def_Id : constant Entity_Id := Entity (N);
1965 Val : Node_Id;
1966
1967 begin
1968 -- Enumeration literals are always considered to be constants
1969 -- and cannot raise constraint error (RM 4.9(22)).
1970
1971 if Ekind (Def_Id) = E_Enumeration_Literal then
1972 Set_Is_Static_Expression (N);
1973 return;
1974
1975 -- A name is static if it denotes a static constant (RM 4.9(5)), and
1976 -- we also copy Raise_Constraint_Error. Notice that even if non-static,
1977 -- it does not violate 10.2.1(8) here, since this is not a variable.
1978
1979 elsif Ekind (Def_Id) = E_Constant then
1980
1981 -- Deferred constants must always be treated as nonstatic
1982 -- outside the scope of their full view.
1983
1984 if Present (Full_View (Def_Id))
1985 and then not In_Open_Scopes (Scope (Def_Id))
1986 then
1987 Val := Empty;
1988 else
1989 Val := Constant_Value (Def_Id);
1990 end if;
1991
1992 if Present (Val) then
1993 Set_Is_Static_Expression
1994 (N, Is_Static_Expression (Val)
1995 and then Is_Static_Subtype (Etype (Def_Id)));
1996 Set_Raises_Constraint_Error (N, Raises_Constraint_Error (Val));
1997
1998 if not Is_Static_Expression (N)
1999 and then not Is_Generic_Type (Etype (N))
2000 then
2001 Validate_Static_Object_Name (N);
2002 end if;
2003
2004 return;
2005 end if;
2006 end if;
2007
2008 -- Fall through if the name is not static
2009
2010 Validate_Static_Object_Name (N);
2011 end Eval_Entity_Name;
2012
2013 ------------------------
2014 -- Eval_If_Expression --
2015 ------------------------
996ae0b0 2016
9b16cb57 2017 -- We can fold to a static expression if the condition and both dependent
1cf3727f 2018 -- expressions are static. Otherwise, the only required processing is to do
4d777a71 2019 -- the check for non-static context for the then and else expressions.
996ae0b0 2020
9b16cb57 2021 procedure Eval_If_Expression (N : Node_Id) is
4d777a71
AC
2022 Condition : constant Node_Id := First (Expressions (N));
2023 Then_Expr : constant Node_Id := Next (Condition);
2024 Else_Expr : constant Node_Id := Next (Then_Expr);
2025 Result : Node_Id;
2026 Non_Result : Node_Id;
2027
2028 Rstat : constant Boolean :=
2029 Is_Static_Expression (Condition)
2030 and then
2031 Is_Static_Expression (Then_Expr)
2032 and then
2033 Is_Static_Expression (Else_Expr);
2034
996ae0b0 2035 begin
4d777a71
AC
2036 -- If any operand is Any_Type, just propagate to result and do not try
2037 -- to fold, this prevents cascaded errors.
2038
2039 if Etype (Condition) = Any_Type or else
2040 Etype (Then_Expr) = Any_Type or else
2041 Etype (Else_Expr) = Any_Type
2042 then
2043 Set_Etype (N, Any_Type);
2044 Set_Is_Static_Expression (N, False);
2045 return;
2046
2047 -- Static case where we can fold. Note that we don't try to fold cases
2048 -- where the condition is known at compile time, but the result is
2049 -- non-static. This avoids possible cases of infinite recursion where
2050 -- the expander puts in a redundant test and we remove it. Instead we
2051 -- deal with these cases in the expander.
2052
2053 elsif Rstat then
2054
2055 -- Select result operand
2056
2057 if Is_True (Expr_Value (Condition)) then
2058 Result := Then_Expr;
2059 Non_Result := Else_Expr;
2060 else
2061 Result := Else_Expr;
2062 Non_Result := Then_Expr;
2063 end if;
2064
2065 -- Note that it does not matter if the non-result operand raises a
2066 -- Constraint_Error, but if the result raises constraint error then
2067 -- we replace the node with a raise constraint error. This will
2068 -- properly propagate Raises_Constraint_Error since this flag is
2069 -- set in Result.
2070
2071 if Raises_Constraint_Error (Result) then
2072 Rewrite_In_Raise_CE (N, Result);
2073 Check_Non_Static_Context (Non_Result);
2074
2075 -- Otherwise the result operand replaces the original node
2076
2077 else
2078 Rewrite (N, Relocate_Node (Result));
2079 end if;
2080
2081 -- Case of condition not known at compile time
2082
2083 else
2084 Check_Non_Static_Context (Condition);
2085 Check_Non_Static_Context (Then_Expr);
2086 Check_Non_Static_Context (Else_Expr);
2087 end if;
2088
2089 Set_Is_Static_Expression (N, Rstat);
9b16cb57 2090 end Eval_If_Expression;
996ae0b0
RK
2091
2092 ----------------------------
2093 -- Eval_Indexed_Component --
2094 ----------------------------
2095
8cbb664e
MG
2096 -- Indexed components are never static, so we need to perform the check
2097 -- for non-static context on the index values. Then, we check if the
2098 -- value can be obtained at compile time, even though it is non-static.
996ae0b0
RK
2099
2100 procedure Eval_Indexed_Component (N : Node_Id) is
2101 Expr : Node_Id;
2102
2103 begin
fbf5a39b
AC
2104 -- Check for non-static context on index values
2105
996ae0b0
RK
2106 Expr := First (Expressions (N));
2107 while Present (Expr) loop
2108 Check_Non_Static_Context (Expr);
2109 Next (Expr);
2110 end loop;
2111
fbf5a39b
AC
2112 -- If the indexed component appears in an object renaming declaration
2113 -- then we do not want to try to evaluate it, since in this case we
2114 -- need the identity of the array element.
2115
2116 if Nkind (Parent (N)) = N_Object_Renaming_Declaration then
2117 return;
2118
2119 -- Similarly if the indexed component appears as the prefix of an
2120 -- attribute we don't want to evaluate it, because at least for
2121 -- some cases of attributes we need the identify (e.g. Access, Size)
2122
2123 elsif Nkind (Parent (N)) = N_Attribute_Reference then
2124 return;
2125 end if;
2126
2127 -- Note: there are other cases, such as the left side of an assignment,
2128 -- or an OUT parameter for a call, where the replacement results in the
2129 -- illegal use of a constant, But these cases are illegal in the first
2130 -- place, so the replacement, though silly, is harmless.
2131
2132 -- Now see if this is a constant array reference
8cbb664e
MG
2133
2134 if List_Length (Expressions (N)) = 1
2135 and then Is_Entity_Name (Prefix (N))
2136 and then Ekind (Entity (Prefix (N))) = E_Constant
2137 and then Present (Constant_Value (Entity (Prefix (N))))
2138 then
2139 declare
2140 Loc : constant Source_Ptr := Sloc (N);
2141 Arr : constant Node_Id := Constant_Value (Entity (Prefix (N)));
2142 Sub : constant Node_Id := First (Expressions (N));
2143
2144 Atyp : Entity_Id;
2145 -- Type of array
2146
2147 Lin : Nat;
2148 -- Linear one's origin subscript value for array reference
2149
2150 Lbd : Node_Id;
2151 -- Lower bound of the first array index
2152
2153 Elm : Node_Id;
2154 -- Value from constant array
2155
2156 begin
2157 Atyp := Etype (Arr);
2158
2159 if Is_Access_Type (Atyp) then
2160 Atyp := Designated_Type (Atyp);
2161 end if;
2162
9dbf1c3e
RD
2163 -- If we have an array type (we should have but perhaps there are
2164 -- error cases where this is not the case), then see if we can do
2165 -- a constant evaluation of the array reference.
8cbb664e 2166
ebd34478 2167 if Is_Array_Type (Atyp) and then Atyp /= Any_Composite then
8cbb664e
MG
2168 if Ekind (Atyp) = E_String_Literal_Subtype then
2169 Lbd := String_Literal_Low_Bound (Atyp);
2170 else
2171 Lbd := Type_Low_Bound (Etype (First_Index (Atyp)));
2172 end if;
2173
2174 if Compile_Time_Known_Value (Sub)
2175 and then Nkind (Arr) = N_Aggregate
2176 and then Compile_Time_Known_Value (Lbd)
2177 and then Is_Discrete_Type (Component_Type (Atyp))
2178 then
2179 Lin := UI_To_Int (Expr_Value (Sub) - Expr_Value (Lbd)) + 1;
2180
2181 if List_Length (Expressions (Arr)) >= Lin then
2182 Elm := Pick (Expressions (Arr), Lin);
2183
2184 -- If the resulting expression is compile time known,
2185 -- then we can rewrite the indexed component with this
2186 -- value, being sure to mark the result as non-static.
2187 -- We also reset the Sloc, in case this generates an
2188 -- error later on (e.g. 136'Access).
2189
2190 if Compile_Time_Known_Value (Elm) then
2191 Rewrite (N, Duplicate_Subexpr_No_Checks (Elm));
2192 Set_Is_Static_Expression (N, False);
2193 Set_Sloc (N, Loc);
2194 end if;
2195 end if;
9fbb3ae6
AC
2196
2197 -- We can also constant-fold if the prefix is a string literal.
2198 -- This will be useful in an instantiation or an inlining.
2199
2200 elsif Compile_Time_Known_Value (Sub)
2201 and then Nkind (Arr) = N_String_Literal
2202 and then Compile_Time_Known_Value (Lbd)
2203 and then Expr_Value (Lbd) = 1
2204 and then Expr_Value (Sub) <=
2205 String_Literal_Length (Etype (Arr))
2206 then
2207 declare
2208 C : constant Char_Code :=
2209 Get_String_Char (Strval (Arr),
2210 UI_To_Int (Expr_Value (Sub)));
2211 begin
2212 Set_Character_Literal_Name (C);
2213
2214 Elm :=
2215 Make_Character_Literal (Loc,
2216 Chars => Name_Find,
2217 Char_Literal_Value => UI_From_CC (C));
2218 Set_Etype (Elm, Component_Type (Atyp));
2219 Rewrite (N, Duplicate_Subexpr_No_Checks (Elm));
2220 Set_Is_Static_Expression (N, False);
2221 end;
8cbb664e
MG
2222 end if;
2223 end if;
2224 end;
2225 end if;
996ae0b0
RK
2226 end Eval_Indexed_Component;
2227
2228 --------------------------
2229 -- Eval_Integer_Literal --
2230 --------------------------
2231
2232 -- Numeric literals are static (RM 4.9(1)), and have already been marked
2233 -- as static by the analyzer. The reason we did it that early is to allow
2234 -- the possibility of turning off the Is_Static_Expression flag after
9dbf1c3e
RD
2235 -- analysis, but before resolution, when integer literals are generated in
2236 -- the expander that do not correspond to static expressions.
996ae0b0
RK
2237
2238 procedure Eval_Integer_Literal (N : Node_Id) is
2239 T : constant Entity_Id := Etype (N);
2240
5d09245e 2241 function In_Any_Integer_Context return Boolean;
1d1bd8ad
AC
2242 -- If the literal is resolved with a specific type in a context where
2243 -- the expected type is Any_Integer, there are no range checks on the
2244 -- literal. By the time the literal is evaluated, it carries the type
2245 -- imposed by the enclosing expression, and we must recover the context
2246 -- to determine that Any_Integer is meant.
5d09245e
AC
2247
2248 ----------------------------
09494c32 2249 -- In_Any_Integer_Context --
5d09245e
AC
2250 ----------------------------
2251
2252 function In_Any_Integer_Context return Boolean is
2253 Par : constant Node_Id := Parent (N);
2254 K : constant Node_Kind := Nkind (Par);
2255
2256 begin
2257 -- Any_Integer also appears in digits specifications for real types,
1d1bd8ad
AC
2258 -- but those have bounds smaller that those of any integer base type,
2259 -- so we can safely ignore these cases.
5d09245e
AC
2260
2261 return K = N_Number_Declaration
2262 or else K = N_Attribute_Reference
2263 or else K = N_Attribute_Definition_Clause
2264 or else K = N_Modular_Type_Definition
2265 or else K = N_Signed_Integer_Type_Definition;
2266 end In_Any_Integer_Context;
2267
2268 -- Start of processing for Eval_Integer_Literal
2269
996ae0b0 2270 begin
5d09245e 2271
996ae0b0 2272 -- If the literal appears in a non-expression context, then it is
1d1bd8ad
AC
2273 -- certainly appearing in a non-static context, so check it. This is
2274 -- actually a redundant check, since Check_Non_Static_Context would
2275 -- check it, but it seems worth while avoiding the call.
996ae0b0 2276
5d09245e
AC
2277 if Nkind (Parent (N)) not in N_Subexpr
2278 and then not In_Any_Integer_Context
2279 then
996ae0b0
RK
2280 Check_Non_Static_Context (N);
2281 end if;
2282
2283 -- Modular integer literals must be in their base range
2284
2285 if Is_Modular_Integer_Type (T)
c800f862 2286 and then Is_Out_Of_Range (N, Base_Type (T), Assume_Valid => True)
996ae0b0
RK
2287 then
2288 Out_Of_Range (N);
2289 end if;
2290 end Eval_Integer_Literal;
2291
2292 ---------------------
2293 -- Eval_Logical_Op --
2294 ---------------------
2295
2296 -- Logical operations are static functions, so the result is potentially
2297 -- static if both operands are potentially static (RM 4.9(7), 4.9(20)).
2298
2299 procedure Eval_Logical_Op (N : Node_Id) is
2300 Left : constant Node_Id := Left_Opnd (N);
2301 Right : constant Node_Id := Right_Opnd (N);
2302 Stat : Boolean;
2303 Fold : Boolean;
2304
2305 begin
2306 -- If not foldable we are done
2307
2308 Test_Expression_Is_Foldable (N, Left, Right, Stat, Fold);
2309
2310 if not Fold then
2311 return;
2312 end if;
2313
2314 -- Compile time evaluation of logical operation
2315
2316 declare
2317 Left_Int : constant Uint := Expr_Value (Left);
2318 Right_Int : constant Uint := Expr_Value (Right);
2319
2320 begin
22cb89b5 2321 -- VMS includes bitwise operations on signed types
001c7783
AC
2322
2323 if Is_Modular_Integer_Type (Etype (N))
2324 or else Is_VMS_Operator (Entity (N))
2325 then
996ae0b0
RK
2326 declare
2327 Left_Bits : Bits (0 .. UI_To_Int (Esize (Etype (N))) - 1);
2328 Right_Bits : Bits (0 .. UI_To_Int (Esize (Etype (N))) - 1);
2329
2330 begin
2331 To_Bits (Left_Int, Left_Bits);
2332 To_Bits (Right_Int, Right_Bits);
2333
2334 -- Note: should really be able to use array ops instead of
2335 -- these loops, but they weren't working at the time ???
2336
2337 if Nkind (N) = N_Op_And then
2338 for J in Left_Bits'Range loop
2339 Left_Bits (J) := Left_Bits (J) and Right_Bits (J);
2340 end loop;
2341
2342 elsif Nkind (N) = N_Op_Or then
2343 for J in Left_Bits'Range loop
2344 Left_Bits (J) := Left_Bits (J) or Right_Bits (J);
2345 end loop;
2346
2347 else
2348 pragma Assert (Nkind (N) = N_Op_Xor);
2349
2350 for J in Left_Bits'Range loop
2351 Left_Bits (J) := Left_Bits (J) xor Right_Bits (J);
2352 end loop;
2353 end if;
2354
fbf5a39b 2355 Fold_Uint (N, From_Bits (Left_Bits, Etype (N)), Stat);
996ae0b0
RK
2356 end;
2357
2358 else
2359 pragma Assert (Is_Boolean_Type (Etype (N)));
2360
2361 if Nkind (N) = N_Op_And then
2362 Fold_Uint (N,
fbf5a39b 2363 Test (Is_True (Left_Int) and then Is_True (Right_Int)), Stat);
996ae0b0
RK
2364
2365 elsif Nkind (N) = N_Op_Or then
2366 Fold_Uint (N,
fbf5a39b 2367 Test (Is_True (Left_Int) or else Is_True (Right_Int)), Stat);
996ae0b0
RK
2368
2369 else
2370 pragma Assert (Nkind (N) = N_Op_Xor);
2371 Fold_Uint (N,
fbf5a39b 2372 Test (Is_True (Left_Int) xor Is_True (Right_Int)), Stat);
996ae0b0
RK
2373 end if;
2374 end if;
996ae0b0
RK
2375 end;
2376 end Eval_Logical_Op;
2377
2378 ------------------------
2379 -- Eval_Membership_Op --
2380 ------------------------
2381
1d1bd8ad
AC
2382 -- A membership test is potentially static if the expression is static, and
2383 -- the range is a potentially static range, or is a subtype mark denoting a
2384 -- static subtype (RM 4.9(12)).
996ae0b0
RK
2385
2386 procedure Eval_Membership_Op (N : Node_Id) is
2387 Left : constant Node_Id := Left_Opnd (N);
2388 Right : constant Node_Id := Right_Opnd (N);
2389 Def_Id : Entity_Id;
2390 Lo : Node_Id;
2391 Hi : Node_Id;
2392 Result : Boolean;
2393 Stat : Boolean;
2394 Fold : Boolean;
2395
2396 begin
1d1bd8ad
AC
2397 -- Ignore if error in either operand, except to make sure that Any_Type
2398 -- is properly propagated to avoid junk cascaded errors.
996ae0b0 2399
22cb89b5 2400 if Etype (Left) = Any_Type or else Etype (Right) = Any_Type then
996ae0b0
RK
2401 Set_Etype (N, Any_Type);
2402 return;
2403 end if;
2404
4818e7b9
RD
2405 -- Ignore if types involved have predicates
2406
2407 if Present (Predicate_Function (Etype (Left)))
2408 or else
2409 Present (Predicate_Function (Etype (Right)))
2410 then
2411 return;
2412 end if;
2413
996ae0b0
RK
2414 -- Case of right operand is a subtype name
2415
2416 if Is_Entity_Name (Right) then
2417 Def_Id := Entity (Right);
2418
2419 if (Is_Scalar_Type (Def_Id) or else Is_String_Type (Def_Id))
2420 and then Is_OK_Static_Subtype (Def_Id)
2421 then
2422 Test_Expression_Is_Foldable (N, Left, Stat, Fold);
2423
2424 if not Fold or else not Stat then
2425 return;
2426 end if;
2427 else
2428 Check_Non_Static_Context (Left);
2429 return;
2430 end if;
2431
1d1bd8ad 2432 -- For string membership tests we will check the length further on
996ae0b0
RK
2433
2434 if not Is_String_Type (Def_Id) then
2435 Lo := Type_Low_Bound (Def_Id);
2436 Hi := Type_High_Bound (Def_Id);
2437
2438 else
2439 Lo := Empty;
2440 Hi := Empty;
2441 end if;
2442
2443 -- Case of right operand is a range
2444
2445 else
2446 if Is_Static_Range (Right) then
2447 Test_Expression_Is_Foldable (N, Left, Stat, Fold);
2448
2449 if not Fold or else not Stat then
2450 return;
2451
2452 -- If one bound of range raises CE, then don't try to fold
2453
2454 elsif not Is_OK_Static_Range (Right) then
2455 Check_Non_Static_Context (Left);
2456 return;
2457 end if;
2458
2459 else
2460 Check_Non_Static_Context (Left);
2461 return;
2462 end if;
2463
2464 -- Here we know range is an OK static range
2465
2466 Lo := Low_Bound (Right);
2467 Hi := High_Bound (Right);
2468 end if;
2469
2470 -- For strings we check that the length of the string expression is
2471 -- compatible with the string subtype if the subtype is constrained,
2472 -- or if unconstrained then the test is always true.
2473
2474 if Is_String_Type (Etype (Right)) then
2475 if not Is_Constrained (Etype (Right)) then
2476 Result := True;
2477
2478 else
2479 declare
2480 Typlen : constant Uint := String_Type_Len (Etype (Right));
2481 Strlen : constant Uint :=
22cb89b5
AC
2482 UI_From_Int
2483 (String_Length (Strval (Get_String_Val (Left))));
996ae0b0
RK
2484 begin
2485 Result := (Typlen = Strlen);
2486 end;
2487 end if;
2488
1d1bd8ad
AC
2489 -- Fold the membership test. We know we have a static range and Lo and
2490 -- Hi are set to the expressions for the end points of this range.
996ae0b0
RK
2491
2492 elsif Is_Real_Type (Etype (Right)) then
2493 declare
2494 Leftval : constant Ureal := Expr_Value_R (Left);
2495
2496 begin
2497 Result := Expr_Value_R (Lo) <= Leftval
2498 and then Leftval <= Expr_Value_R (Hi);
2499 end;
2500
2501 else
2502 declare
2503 Leftval : constant Uint := Expr_Value (Left);
2504
2505 begin
2506 Result := Expr_Value (Lo) <= Leftval
2507 and then Leftval <= Expr_Value (Hi);
2508 end;
2509 end if;
2510
2511 if Nkind (N) = N_Not_In then
2512 Result := not Result;
2513 end if;
2514
fbf5a39b 2515 Fold_Uint (N, Test (Result), True);
d7567964 2516
996ae0b0 2517 Warn_On_Known_Condition (N);
996ae0b0
RK
2518 end Eval_Membership_Op;
2519
2520 ------------------------
2521 -- Eval_Named_Integer --
2522 ------------------------
2523
2524 procedure Eval_Named_Integer (N : Node_Id) is
2525 begin
2526 Fold_Uint (N,
fbf5a39b 2527 Expr_Value (Expression (Declaration_Node (Entity (N)))), True);
996ae0b0
RK
2528 end Eval_Named_Integer;
2529
2530 ---------------------
2531 -- Eval_Named_Real --
2532 ---------------------
2533
2534 procedure Eval_Named_Real (N : Node_Id) is
2535 begin
2536 Fold_Ureal (N,
fbf5a39b 2537 Expr_Value_R (Expression (Declaration_Node (Entity (N)))), True);
996ae0b0
RK
2538 end Eval_Named_Real;
2539
2540 -------------------
2541 -- Eval_Op_Expon --
2542 -------------------
2543
2544 -- Exponentiation is a static functions, so the result is potentially
2545 -- static if both operands are potentially static (RM 4.9(7), 4.9(20)).
2546
2547 procedure Eval_Op_Expon (N : Node_Id) is
2548 Left : constant Node_Id := Left_Opnd (N);
2549 Right : constant Node_Id := Right_Opnd (N);
2550 Stat : Boolean;
2551 Fold : Boolean;
2552
2553 begin
2554 -- If not foldable we are done
2555
2556 Test_Expression_Is_Foldable (N, Left, Right, Stat, Fold);
2557
2558 if not Fold then
2559 return;
2560 end if;
2561
2562 -- Fold exponentiation operation
2563
2564 declare
2565 Right_Int : constant Uint := Expr_Value (Right);
2566
2567 begin
2568 -- Integer case
2569
2570 if Is_Integer_Type (Etype (Left)) then
2571 declare
2572 Left_Int : constant Uint := Expr_Value (Left);
2573 Result : Uint;
2574
2575 begin
22cb89b5
AC
2576 -- Exponentiation of an integer raises Constraint_Error for a
2577 -- negative exponent (RM 4.5.6).
996ae0b0
RK
2578
2579 if Right_Int < 0 then
2580 Apply_Compile_Time_Constraint_Error
fbf5a39b
AC
2581 (N, "integer exponent negative",
2582 CE_Range_Check_Failed,
2583 Warn => not Stat);
996ae0b0
RK
2584 return;
2585
2586 else
2587 if OK_Bits (N, Num_Bits (Left_Int) * Right_Int) then
2588 Result := Left_Int ** Right_Int;
2589 else
2590 Result := Left_Int;
2591 end if;
2592
2593 if Is_Modular_Integer_Type (Etype (N)) then
2594 Result := Result mod Modulus (Etype (N));
2595 end if;
2596
fbf5a39b 2597 Fold_Uint (N, Result, Stat);
996ae0b0
RK
2598 end if;
2599 end;
2600
2601 -- Real case
2602
2603 else
2604 declare
2605 Left_Real : constant Ureal := Expr_Value_R (Left);
2606
2607 begin
2608 -- Cannot have a zero base with a negative exponent
2609
2610 if UR_Is_Zero (Left_Real) then
2611
2612 if Right_Int < 0 then
2613 Apply_Compile_Time_Constraint_Error
fbf5a39b
AC
2614 (N, "zero ** negative integer",
2615 CE_Range_Check_Failed,
2616 Warn => not Stat);
996ae0b0
RK
2617 return;
2618 else
fbf5a39b 2619 Fold_Ureal (N, Ureal_0, Stat);
996ae0b0
RK
2620 end if;
2621
2622 else
fbf5a39b 2623 Fold_Ureal (N, Left_Real ** Right_Int, Stat);
996ae0b0
RK
2624 end if;
2625 end;
2626 end if;
996ae0b0
RK
2627 end;
2628 end Eval_Op_Expon;
2629
2630 -----------------
2631 -- Eval_Op_Not --
2632 -----------------
2633
2634 -- The not operation is a static functions, so the result is potentially
2635 -- static if the operand is potentially static (RM 4.9(7), 4.9(20)).
2636
2637 procedure Eval_Op_Not (N : Node_Id) is
2638 Right : constant Node_Id := Right_Opnd (N);
2639 Stat : Boolean;
2640 Fold : Boolean;
2641
2642 begin
2643 -- If not foldable we are done
2644
2645 Test_Expression_Is_Foldable (N, Right, Stat, Fold);
2646
2647 if not Fold then
2648 return;
2649 end if;
2650
2651 -- Fold not operation
2652
2653 declare
2654 Rint : constant Uint := Expr_Value (Right);
2655 Typ : constant Entity_Id := Etype (N);
2656
2657 begin
1d1bd8ad
AC
2658 -- Negation is equivalent to subtracting from the modulus minus one.
2659 -- For a binary modulus this is equivalent to the ones-complement of
2660 -- the original value. For non-binary modulus this is an arbitrary
2661 -- but consistent definition.
996ae0b0
RK
2662
2663 if Is_Modular_Integer_Type (Typ) then
fbf5a39b 2664 Fold_Uint (N, Modulus (Typ) - 1 - Rint, Stat);
996ae0b0
RK
2665
2666 else
2667 pragma Assert (Is_Boolean_Type (Typ));
fbf5a39b 2668 Fold_Uint (N, Test (not Is_True (Rint)), Stat);
996ae0b0
RK
2669 end if;
2670
2671 Set_Is_Static_Expression (N, Stat);
2672 end;
2673 end Eval_Op_Not;
2674
2675 -------------------------------
2676 -- Eval_Qualified_Expression --
2677 -------------------------------
2678
2679 -- A qualified expression is potentially static if its subtype mark denotes
2680 -- a static subtype and its expression is potentially static (RM 4.9 (11)).
2681
2682 procedure Eval_Qualified_Expression (N : Node_Id) is
2683 Operand : constant Node_Id := Expression (N);
2684 Target_Type : constant Entity_Id := Entity (Subtype_Mark (N));
2685
07fc65c4
GB
2686 Stat : Boolean;
2687 Fold : Boolean;
2688 Hex : Boolean;
996ae0b0
RK
2689
2690 begin
1d1bd8ad 2691 -- Can only fold if target is string or scalar and subtype is static.
22cb89b5
AC
2692 -- Also, do not fold if our parent is an allocator (this is because the
2693 -- qualified expression is really part of the syntactic structure of an
2694 -- allocator, and we do not want to end up with something that
996ae0b0
RK
2695 -- corresponds to "new 1" where the 1 is the result of folding a
2696 -- qualified expression).
2697
2698 if not Is_Static_Subtype (Target_Type)
2699 or else Nkind (Parent (N)) = N_Allocator
2700 then
2701 Check_Non_Static_Context (Operand);
af152989 2702
1d1bd8ad
AC
2703 -- If operand is known to raise constraint_error, set the flag on the
2704 -- expression so it does not get optimized away.
af152989
AC
2705
2706 if Nkind (Operand) = N_Raise_Constraint_Error then
2707 Set_Raises_Constraint_Error (N);
2708 end if;
7324bf49 2709
996ae0b0
RK
2710 return;
2711 end if;
2712
2713 -- If not foldable we are done
2714
2715 Test_Expression_Is_Foldable (N, Operand, Stat, Fold);
2716
2717 if not Fold then
2718 return;
2719
2720 -- Don't try fold if target type has constraint error bounds
2721
2722 elsif not Is_OK_Static_Subtype (Target_Type) then
2723 Set_Raises_Constraint_Error (N);
2724 return;
2725 end if;
2726
07fc65c4
GB
2727 -- Here we will fold, save Print_In_Hex indication
2728
2729 Hex := Nkind (Operand) = N_Integer_Literal
2730 and then Print_In_Hex (Operand);
2731
996ae0b0
RK
2732 -- Fold the result of qualification
2733
2734 if Is_Discrete_Type (Target_Type) then
fbf5a39b 2735 Fold_Uint (N, Expr_Value (Operand), Stat);
996ae0b0 2736
07fc65c4
GB
2737 -- Preserve Print_In_Hex indication
2738
2739 if Hex and then Nkind (N) = N_Integer_Literal then
2740 Set_Print_In_Hex (N);
2741 end if;
2742
996ae0b0 2743 elsif Is_Real_Type (Target_Type) then
fbf5a39b 2744 Fold_Ureal (N, Expr_Value_R (Operand), Stat);
996ae0b0
RK
2745
2746 else
fbf5a39b 2747 Fold_Str (N, Strval (Get_String_Val (Operand)), Stat);
996ae0b0
RK
2748
2749 if not Stat then
2750 Set_Is_Static_Expression (N, False);
2751 else
2752 Check_String_Literal_Length (N, Target_Type);
2753 end if;
2754
2755 return;
2756 end if;
2757
fbf5a39b
AC
2758 -- The expression may be foldable but not static
2759
2760 Set_Is_Static_Expression (N, Stat);
2761
c800f862 2762 if Is_Out_Of_Range (N, Etype (N), Assume_Valid => True) then
996ae0b0
RK
2763 Out_Of_Range (N);
2764 end if;
996ae0b0
RK
2765 end Eval_Qualified_Expression;
2766
2767 -----------------------
2768 -- Eval_Real_Literal --
2769 -----------------------
2770
2771 -- Numeric literals are static (RM 4.9(1)), and have already been marked
2772 -- as static by the analyzer. The reason we did it that early is to allow
2773 -- the possibility of turning off the Is_Static_Expression flag after
2774 -- analysis, but before resolution, when integer literals are generated
2775 -- in the expander that do not correspond to static expressions.
2776
2777 procedure Eval_Real_Literal (N : Node_Id) is
a1980be8
GB
2778 PK : constant Node_Kind := Nkind (Parent (N));
2779
996ae0b0 2780 begin
1d1bd8ad
AC
2781 -- If the literal appears in a non-expression context and not as part of
2782 -- a number declaration, then it is appearing in a non-static context,
2783 -- so check it.
996ae0b0 2784
a1980be8 2785 if PK not in N_Subexpr and then PK /= N_Number_Declaration then
996ae0b0
RK
2786 Check_Non_Static_Context (N);
2787 end if;
996ae0b0
RK
2788 end Eval_Real_Literal;
2789
2790 ------------------------
2791 -- Eval_Relational_Op --
2792 ------------------------
2793
8a95f4e8
RD
2794 -- Relational operations are static functions, so the result is static if
2795 -- both operands are static (RM 4.9(7), 4.9(20)), except that for strings,
2796 -- the result is never static, even if the operands are.
996ae0b0
RK
2797
2798 procedure Eval_Relational_Op (N : Node_Id) is
2799 Left : constant Node_Id := Left_Opnd (N);
2800 Right : constant Node_Id := Right_Opnd (N);
2801 Typ : constant Entity_Id := Etype (Left);
d7567964 2802 Otype : Entity_Id := Empty;
996ae0b0 2803 Result : Boolean;
996ae0b0
RK
2804
2805 begin
45fc7ddb
HK
2806 -- One special case to deal with first. If we can tell that the result
2807 -- will be false because the lengths of one or more index subtypes are
2808 -- compile time known and different, then we can replace the entire
2809 -- result by False. We only do this for one dimensional arrays, because
2810 -- the case of multi-dimensional arrays is rare and too much trouble! If
2811 -- one of the operands is an illegal aggregate, its type might still be
2812 -- an arbitrary composite type, so nothing to do.
996ae0b0
RK
2813
2814 if Is_Array_Type (Typ)
13f34a3f 2815 and then Typ /= Any_Composite
996ae0b0 2816 and then Number_Dimensions (Typ) = 1
13f34a3f 2817 and then (Nkind (N) = N_Op_Eq or else Nkind (N) = N_Op_Ne)
996ae0b0
RK
2818 then
2819 if Raises_Constraint_Error (Left)
2820 or else Raises_Constraint_Error (Right)
2821 then
2822 return;
2823 end if;
2824
45fc7ddb
HK
2825 -- OK, we have the case where we may be able to do this fold
2826
2827 Length_Mismatch : declare
996ae0b0 2828 procedure Get_Static_Length (Op : Node_Id; Len : out Uint);
1d1bd8ad
AC
2829 -- If Op is an expression for a constrained array with a known at
2830 -- compile time length, then Len is set to this (non-negative
13f34a3f 2831 -- length). Otherwise Len is set to minus 1.
996ae0b0 2832
fbf5a39b
AC
2833 -----------------------
2834 -- Get_Static_Length --
2835 -----------------------
2836
996ae0b0
RK
2837 procedure Get_Static_Length (Op : Node_Id; Len : out Uint) is
2838 T : Entity_Id;
2839
2840 begin
45fc7ddb
HK
2841 -- First easy case string literal
2842
996ae0b0
RK
2843 if Nkind (Op) = N_String_Literal then
2844 Len := UI_From_Int (String_Length (Strval (Op)));
45fc7ddb
HK
2845 return;
2846 end if;
2847
2848 -- Second easy case, not constrained subtype, so no length
996ae0b0 2849
45fc7ddb 2850 if not Is_Constrained (Etype (Op)) then
996ae0b0 2851 Len := Uint_Minus_1;
45fc7ddb
HK
2852 return;
2853 end if;
996ae0b0 2854
45fc7ddb
HK
2855 -- General case
2856
5f44f0d4 2857 T := Etype (First_Index (Etype (Op)));
45fc7ddb
HK
2858
2859 -- The simple case, both bounds are known at compile time
2860
2861 if Is_Discrete_Type (T)
2862 and then
2863 Compile_Time_Known_Value (Type_Low_Bound (T))
2864 and then
2865 Compile_Time_Known_Value (Type_High_Bound (T))
2866 then
2867 Len := UI_Max (Uint_0,
2868 Expr_Value (Type_High_Bound (T)) -
2869 Expr_Value (Type_Low_Bound (T)) + 1);
2870 return;
2871 end if;
2872
2873 -- A more complex case, where the bounds are of the form
2874 -- X [+/- K1] .. X [+/- K2]), where X is an expression that is
2875 -- either A'First or A'Last (with A an entity name), or X is an
2876 -- entity name, and the two X's are the same and K1 and K2 are
2877 -- known at compile time, in this case, the length can also be
2878 -- computed at compile time, even though the bounds are not
22cb89b5 2879 -- known. A common case of this is e.g. (X'First .. X'First+5).
45fc7ddb
HK
2880
2881 Extract_Length : declare
2882 procedure Decompose_Expr
2883 (Expr : Node_Id;
2884 Ent : out Entity_Id;
2885 Kind : out Character;
2886 Cons : out Uint);
2887 -- Given an expression, see if is of the form above,
2888 -- X [+/- K]. If so Ent is set to the entity in X,
2889 -- Kind is 'F','L','E' for 'First/'Last/simple entity,
2890 -- and Cons is the value of K. If the expression is
2891 -- not of the required form, Ent is set to Empty.
2892
2893 --------------------
2894 -- Decompose_Expr --
2895 --------------------
2896
2897 procedure Decompose_Expr
2898 (Expr : Node_Id;
2899 Ent : out Entity_Id;
2900 Kind : out Character;
2901 Cons : out Uint)
2902 is
2903 Exp : Node_Id;
2904
2905 begin
2906 if Nkind (Expr) = N_Op_Add
2907 and then Compile_Time_Known_Value (Right_Opnd (Expr))
2908 then
8a95f4e8 2909 Exp := Left_Opnd (Expr);
45fc7ddb
HK
2910 Cons := Expr_Value (Right_Opnd (Expr));
2911
2912 elsif Nkind (Expr) = N_Op_Subtract
2913 and then Compile_Time_Known_Value (Right_Opnd (Expr))
2914 then
8a95f4e8 2915 Exp := Left_Opnd (Expr);
45fc7ddb 2916 Cons := -Expr_Value (Right_Opnd (Expr));
996ae0b0 2917
8a95f4e8
RD
2918 -- If the bound is a constant created to remove side
2919 -- effects, recover original expression to see if it has
2920 -- one of the recognizable forms.
2921
2922 elsif Nkind (Expr) = N_Identifier
2923 and then not Comes_From_Source (Entity (Expr))
2924 and then Ekind (Entity (Expr)) = E_Constant
2925 and then
2926 Nkind (Parent (Entity (Expr))) = N_Object_Declaration
2927 then
2928 Exp := Expression (Parent (Entity (Expr)));
2929 Decompose_Expr (Exp, Ent, Kind, Cons);
2930
2931 -- If original expression includes an entity, create a
2932 -- reference to it for use below.
2933
2934 if Present (Ent) then
2935 Exp := New_Occurrence_Of (Ent, Sloc (Ent));
2936 end if;
2937
45fc7ddb 2938 else
8a95f4e8 2939 Exp := Expr;
45fc7ddb
HK
2940 Cons := Uint_0;
2941 end if;
2942
2943 -- At this stage Exp is set to the potential X
2944
2945 if Nkind (Exp) = N_Attribute_Reference then
2946 if Attribute_Name (Exp) = Name_First then
2947 Kind := 'F';
8a95f4e8 2948
45fc7ddb
HK
2949 elsif Attribute_Name (Exp) = Name_Last then
2950 Kind := 'L';
8a95f4e8 2951
45fc7ddb
HK
2952 else
2953 Ent := Empty;
2954 return;
2955 end if;
2956
2957 Exp := Prefix (Exp);
2958
2959 else
2960 Kind := 'E';
2961 end if;
2962
2963 if Is_Entity_Name (Exp)
2964 and then Present (Entity (Exp))
2965 then
2966 Ent := Entity (Exp);
2967 else
2968 Ent := Empty;
2969 end if;
2970 end Decompose_Expr;
2971
2972 -- Local Variables
2973
2974 Ent1, Ent2 : Entity_Id;
2975 Kind1, Kind2 : Character;
2976 Cons1, Cons2 : Uint;
2977
2978 -- Start of processing for Extract_Length
2979
2980 begin
bafc9e1d
AC
2981 Decompose_Expr
2982 (Original_Node (Type_Low_Bound (T)), Ent1, Kind1, Cons1);
2983 Decompose_Expr
2984 (Original_Node (Type_High_Bound (T)), Ent2, Kind2, Cons2);
45fc7ddb
HK
2985
2986 if Present (Ent1)
2987 and then Kind1 = Kind2
2988 and then Ent1 = Ent2
996ae0b0 2989 then
45fc7ddb 2990 Len := Cons2 - Cons1 + 1;
996ae0b0
RK
2991 else
2992 Len := Uint_Minus_1;
2993 end if;
45fc7ddb 2994 end Extract_Length;
996ae0b0
RK
2995 end Get_Static_Length;
2996
45fc7ddb
HK
2997 -- Local Variables
2998
996ae0b0
RK
2999 Len_L : Uint;
3000 Len_R : Uint;
3001
45fc7ddb
HK
3002 -- Start of processing for Length_Mismatch
3003
996ae0b0
RK
3004 begin
3005 Get_Static_Length (Left, Len_L);
3006 Get_Static_Length (Right, Len_R);
3007
3008 if Len_L /= Uint_Minus_1
3009 and then Len_R /= Uint_Minus_1
3010 and then Len_L /= Len_R
3011 then
fbf5a39b 3012 Fold_Uint (N, Test (Nkind (N) = N_Op_Ne), False);
996ae0b0
RK
3013 Warn_On_Known_Condition (N);
3014 return;
3015 end if;
45fc7ddb
HK
3016 end Length_Mismatch;
3017 end if;
6eaf4095 3018
5df1266a
AC
3019 declare
3020 Is_Static_Expression : Boolean;
3021 Is_Foldable : Boolean;
3022 pragma Unreferenced (Is_Foldable);
996ae0b0 3023
5df1266a
AC
3024 begin
3025 -- Initialize the value of Is_Static_Expression. The value of
3026 -- Is_Foldable returned by Test_Expression_Is_Foldable is not needed
3027 -- since, even when some operand is a variable, we can still perform
3028 -- the static evaluation of the expression in some cases (for
3029 -- example, for a variable of a subtype of Integer we statically
3030 -- know that any value stored in such variable is smaller than
3031 -- Integer'Last).
3032
3033 Test_Expression_Is_Foldable
3034 (N, Left, Right, Is_Static_Expression, Is_Foldable);
3035
3036 -- Only comparisons of scalars can give static results. In
3037 -- particular, comparisons of strings never yield a static
3038 -- result, even if both operands are static strings.
3039
3040 if not Is_Scalar_Type (Typ) then
3041 Is_Static_Expression := False;
3042 Set_Is_Static_Expression (N, False);
3043 end if;
d7567964 3044
5df1266a
AC
3045 -- For operators on universal numeric types called as functions with
3046 -- an explicit scope, determine appropriate specific numeric type,
3047 -- and diagnose possible ambiguity.
d7567964 3048
5df1266a
AC
3049 if Is_Universal_Numeric_Type (Etype (Left))
3050 and then
3051 Is_Universal_Numeric_Type (Etype (Right))
3052 then
3053 Otype := Find_Universal_Operator_Type (N);
3054 end if;
996ae0b0 3055
5df1266a
AC
3056 -- For static real type expressions, we cannot use
3057 -- Compile_Time_Compare since it worries about run-time
3058 -- results which are not exact.
996ae0b0 3059
5df1266a
AC
3060 if Is_Static_Expression and then Is_Real_Type (Typ) then
3061 declare
3062 Left_Real : constant Ureal := Expr_Value_R (Left);
3063 Right_Real : constant Ureal := Expr_Value_R (Right);
996ae0b0 3064
5df1266a
AC
3065 begin
3066 case Nkind (N) is
3067 when N_Op_Eq => Result := (Left_Real = Right_Real);
3068 when N_Op_Ne => Result := (Left_Real /= Right_Real);
3069 when N_Op_Lt => Result := (Left_Real < Right_Real);
3070 when N_Op_Le => Result := (Left_Real <= Right_Real);
3071 when N_Op_Gt => Result := (Left_Real > Right_Real);
3072 when N_Op_Ge => Result := (Left_Real >= Right_Real);
3073
3074 when others =>
3075 raise Program_Error;
3076 end case;
996ae0b0 3077
5df1266a
AC
3078 Fold_Uint (N, Test (Result), True);
3079 end;
996ae0b0 3080
5df1266a 3081 -- For all other cases, we use Compile_Time_Compare to do the compare
996ae0b0 3082
5df1266a
AC
3083 else
3084 declare
3085 CR : constant Compare_Result :=
3086 Compile_Time_Compare
3087 (Left, Right, Assume_Valid => False);
996ae0b0 3088
5df1266a
AC
3089 begin
3090 if CR = Unknown then
3091 return;
3092 end if;
93c3fca7 3093
5df1266a
AC
3094 case Nkind (N) is
3095 when N_Op_Eq =>
3096 if CR = EQ then
3097 Result := True;
3098 elsif CR = NE or else CR = GT or else CR = LT then
3099 Result := False;
3100 else
3101 return;
3102 end if;
93c3fca7 3103
5df1266a
AC
3104 when N_Op_Ne =>
3105 if CR = NE or else CR = GT or else CR = LT then
3106 Result := True;
3107 elsif CR = EQ then
3108 Result := False;
3109 else
3110 return;
3111 end if;
93c3fca7 3112
5df1266a
AC
3113 when N_Op_Lt =>
3114 if CR = LT then
3115 Result := True;
3116 elsif CR = EQ or else CR = GT or else CR = GE then
3117 Result := False;
3118 else
3119 return;
3120 end if;
93c3fca7 3121
5df1266a
AC
3122 when N_Op_Le =>
3123 if CR = LT or else CR = EQ or else CR = LE then
3124 Result := True;
3125 elsif CR = GT then
3126 Result := False;
3127 else
3128 return;
3129 end if;
93c3fca7 3130
5df1266a
AC
3131 when N_Op_Gt =>
3132 if CR = GT then
3133 Result := True;
3134 elsif CR = EQ or else CR = LT or else CR = LE then
3135 Result := False;
3136 else
3137 return;
3138 end if;
93c3fca7 3139
5df1266a
AC
3140 when N_Op_Ge =>
3141 if CR = GT or else CR = EQ or else CR = GE then
3142 Result := True;
3143 elsif CR = LT then
3144 Result := False;
3145 else
3146 return;
3147 end if;
996ae0b0 3148
5df1266a
AC
3149 when others =>
3150 raise Program_Error;
3151 end case;
3152 end;
93c3fca7 3153
5df1266a
AC
3154 Fold_Uint (N, Test (Result), Is_Static_Expression);
3155 end if;
3156 end;
996ae0b0 3157
d7567964
TQ
3158 -- For the case of a folded relational operator on a specific numeric
3159 -- type, freeze operand type now.
3160
3161 if Present (Otype) then
3162 Freeze_Before (N, Otype);
3163 end if;
3164
996ae0b0
RK
3165 Warn_On_Known_Condition (N);
3166 end Eval_Relational_Op;
3167
3168 ----------------
3169 -- Eval_Shift --
3170 ----------------
3171
22cb89b5
AC
3172 -- Shift operations are intrinsic operations that can never be static, so
3173 -- the only processing required is to perform the required check for a non
3174 -- static context for the two operands.
996ae0b0
RK
3175
3176 -- Actually we could do some compile time evaluation here some time ???
3177
3178 procedure Eval_Shift (N : Node_Id) is
3179 begin
3180 Check_Non_Static_Context (Left_Opnd (N));
3181 Check_Non_Static_Context (Right_Opnd (N));
3182 end Eval_Shift;
3183
3184 ------------------------
3185 -- Eval_Short_Circuit --
3186 ------------------------
3187
22cb89b5
AC
3188 -- A short circuit operation is potentially static if both operands are
3189 -- potentially static (RM 4.9 (13)).
996ae0b0
RK
3190
3191 procedure Eval_Short_Circuit (N : Node_Id) is
3192 Kind : constant Node_Kind := Nkind (N);
3193 Left : constant Node_Id := Left_Opnd (N);
3194 Right : constant Node_Id := Right_Opnd (N);
3195 Left_Int : Uint;
4d777a71
AC
3196
3197 Rstat : constant Boolean :=
3198 Is_Static_Expression (Left)
3199 and then
3200 Is_Static_Expression (Right);
996ae0b0
RK
3201
3202 begin
3203 -- Short circuit operations are never static in Ada 83
3204
22cb89b5 3205 if Ada_Version = Ada_83 and then Comes_From_Source (N) then
996ae0b0
RK
3206 Check_Non_Static_Context (Left);
3207 Check_Non_Static_Context (Right);
3208 return;
3209 end if;
3210
3211 -- Now look at the operands, we can't quite use the normal call to
3212 -- Test_Expression_Is_Foldable here because short circuit operations
3213 -- are a special case, they can still be foldable, even if the right
3214 -- operand raises constraint error.
3215
22cb89b5
AC
3216 -- If either operand is Any_Type, just propagate to result and do not
3217 -- try to fold, this prevents cascaded errors.
996ae0b0
RK
3218
3219 if Etype (Left) = Any_Type or else Etype (Right) = Any_Type then
3220 Set_Etype (N, Any_Type);
3221 return;
3222
3223 -- If left operand raises constraint error, then replace node N with
3224 -- the raise constraint error node, and we are obviously not foldable.
3225 -- Is_Static_Expression is set from the two operands in the normal way,
3226 -- and we check the right operand if it is in a non-static context.
3227
3228 elsif Raises_Constraint_Error (Left) then
3229 if not Rstat then
3230 Check_Non_Static_Context (Right);
3231 end if;
3232
3233 Rewrite_In_Raise_CE (N, Left);
3234 Set_Is_Static_Expression (N, Rstat);
3235 return;
3236
3237 -- If the result is not static, then we won't in any case fold
3238
3239 elsif not Rstat then
3240 Check_Non_Static_Context (Left);
3241 Check_Non_Static_Context (Right);
3242 return;
3243 end if;
3244
3245 -- Here the result is static, note that, unlike the normal processing
3246 -- in Test_Expression_Is_Foldable, we did *not* check above to see if
3247 -- the right operand raises constraint error, that's because it is not
3248 -- significant if the left operand is decisive.
3249
3250 Set_Is_Static_Expression (N);
3251
3252 -- It does not matter if the right operand raises constraint error if
3253 -- it will not be evaluated. So deal specially with the cases where
3254 -- the right operand is not evaluated. Note that we will fold these
3255 -- cases even if the right operand is non-static, which is fine, but
3256 -- of course in these cases the result is not potentially static.
3257
3258 Left_Int := Expr_Value (Left);
3259
3260 if (Kind = N_And_Then and then Is_False (Left_Int))
db318f46 3261 or else
4d777a71 3262 (Kind = N_Or_Else and then Is_True (Left_Int))
996ae0b0 3263 then
fbf5a39b 3264 Fold_Uint (N, Left_Int, Rstat);
996ae0b0
RK
3265 return;
3266 end if;
3267
3268 -- If first operand not decisive, then it does matter if the right
3269 -- operand raises constraint error, since it will be evaluated, so
3270 -- we simply replace the node with the right operand. Note that this
3271 -- properly propagates Is_Static_Expression and Raises_Constraint_Error
3272 -- (both are set to True in Right).
3273
3274 if Raises_Constraint_Error (Right) then
3275 Rewrite_In_Raise_CE (N, Right);
3276 Check_Non_Static_Context (Left);
3277 return;
3278 end if;
3279
3280 -- Otherwise the result depends on the right operand
3281
fbf5a39b 3282 Fold_Uint (N, Expr_Value (Right), Rstat);
996ae0b0 3283 return;
996ae0b0
RK
3284 end Eval_Short_Circuit;
3285
3286 ----------------
3287 -- Eval_Slice --
3288 ----------------
3289
22cb89b5
AC
3290 -- Slices can never be static, so the only processing required is to check
3291 -- for non-static context if an explicit range is given.
996ae0b0
RK
3292
3293 procedure Eval_Slice (N : Node_Id) is
3294 Drange : constant Node_Id := Discrete_Range (N);
996ae0b0
RK
3295 begin
3296 if Nkind (Drange) = N_Range then
3297 Check_Non_Static_Context (Low_Bound (Drange));
3298 Check_Non_Static_Context (High_Bound (Drange));
3299 end if;
cd2fb920 3300
22cb89b5 3301 -- A slice of the form A (subtype), when the subtype is the index of
cd2fb920
ES
3302 -- the type of A, is redundant, the slice can be replaced with A, and
3303 -- this is worth a warning.
3304
3305 if Is_Entity_Name (Prefix (N)) then
3306 declare
3307 E : constant Entity_Id := Entity (Prefix (N));
3308 T : constant Entity_Id := Etype (E);
3309 begin
3310 if Ekind (E) = E_Constant
3311 and then Is_Array_Type (T)
3312 and then Is_Entity_Name (Drange)
3313 then
3314 if Is_Entity_Name (Original_Node (First_Index (T)))
3315 and then Entity (Original_Node (First_Index (T)))
3316 = Entity (Drange)
3317 then
3318 if Warn_On_Redundant_Constructs then
ed2233dc 3319 Error_Msg_N ("redundant slice denotes whole array?", N);
cd2fb920
ES
3320 end if;
3321
22cb89b5 3322 -- The following might be a useful optimization????
cd2fb920
ES
3323
3324 -- Rewrite (N, New_Occurrence_Of (E, Sloc (N)));
3325 end if;
3326 end if;
3327 end;
3328 end if;
996ae0b0
RK
3329 end Eval_Slice;
3330
804fc056
AC
3331 ---------------------------------
3332 -- Eval_Static_Predicate_Check --
3333 ---------------------------------
3334
3335 function Eval_Static_Predicate_Check
3336 (N : Node_Id;
3337 Typ : Entity_Id) return Boolean
3338 is
3339 Loc : constant Source_Ptr := Sloc (N);
3340 Pred : constant List_Id := Static_Predicate (Typ);
3341 Test : Node_Id;
c7e152b5 3342
804fc056
AC
3343 begin
3344 if No (Pred) then
3345 return True;
3346 end if;
3347
3348 -- The static predicate is a list of alternatives in the proper format
3349 -- for an Ada 2012 membership test. If the argument is a literal, the
3350 -- membership test can be evaluated statically. The caller transforms
3351 -- a result of False into a static contraint error.
3352
3353 Test := Make_In (Loc,
3354 Left_Opnd => New_Copy_Tree (N),
3355 Right_Opnd => Empty,
3356 Alternatives => Pred);
3357 Analyze_And_Resolve (Test, Standard_Boolean);
3358
3359 return Nkind (Test) = N_Identifier
3360 and then Entity (Test) = Standard_True;
3361 end Eval_Static_Predicate_Check;
3362
996ae0b0
RK
3363 -------------------------
3364 -- Eval_String_Literal --
3365 -------------------------
3366
3367 procedure Eval_String_Literal (N : Node_Id) is
91b1417d
AC
3368 Typ : constant Entity_Id := Etype (N);
3369 Bas : constant Entity_Id := Base_Type (Typ);
3370 Xtp : Entity_Id;
3371 Len : Nat;
3372 Lo : Node_Id;
996ae0b0
RK
3373
3374 begin
3375 -- Nothing to do if error type (handles cases like default expressions
22cb89b5 3376 -- or generics where we have not yet fully resolved the type).
996ae0b0 3377
91b1417d 3378 if Bas = Any_Type or else Bas = Any_String then
996ae0b0 3379 return;
91b1417d 3380 end if;
996ae0b0
RK
3381
3382 -- String literals are static if the subtype is static (RM 4.9(2)), so
3383 -- reset the static expression flag (it was set unconditionally in
3384 -- Analyze_String_Literal) if the subtype is non-static. We tell if
3385 -- the subtype is static by looking at the lower bound.
3386
91b1417d
AC
3387 if Ekind (Typ) = E_String_Literal_Subtype then
3388 if not Is_OK_Static_Expression (String_Literal_Low_Bound (Typ)) then
3389 Set_Is_Static_Expression (N, False);
3390 return;
3391 end if;
3392
3393 -- Here if Etype of string literal is normal Etype (not yet possible,
22cb89b5 3394 -- but may be possible in future).
91b1417d
AC
3395
3396 elsif not Is_OK_Static_Expression
3397 (Type_Low_Bound (Etype (First_Index (Typ))))
3398 then
996ae0b0 3399 Set_Is_Static_Expression (N, False);
91b1417d
AC
3400 return;
3401 end if;
996ae0b0 3402
91b1417d
AC
3403 -- If original node was a type conversion, then result if non-static
3404
3405 if Nkind (Original_Node (N)) = N_Type_Conversion then
996ae0b0 3406 Set_Is_Static_Expression (N, False);
91b1417d
AC
3407 return;
3408 end if;
996ae0b0 3409
22cb89b5
AC
3410 -- Test for illegal Ada 95 cases. A string literal is illegal in Ada 95
3411 -- if its bounds are outside the index base type and this index type is
3412 -- static. This can happen in only two ways. Either the string literal
3413 -- is too long, or it is null, and the lower bound is type'First. In
3414 -- either case it is the upper bound that is out of range of the index
3415 -- type.
996ae0b0 3416
0ab80019 3417 if Ada_Version >= Ada_95 then
91b1417d
AC
3418 if Root_Type (Bas) = Standard_String
3419 or else
3420 Root_Type (Bas) = Standard_Wide_String
996ae0b0 3421 then
91b1417d 3422 Xtp := Standard_Positive;
996ae0b0 3423 else
91b1417d 3424 Xtp := Etype (First_Index (Bas));
996ae0b0
RK
3425 end if;
3426
91b1417d
AC
3427 if Ekind (Typ) = E_String_Literal_Subtype then
3428 Lo := String_Literal_Low_Bound (Typ);
3429 else
3430 Lo := Type_Low_Bound (Etype (First_Index (Typ)));
3431 end if;
3432
3433 Len := String_Length (Strval (N));
3434
3435 if UI_From_Int (Len) > String_Type_Len (Bas) then
996ae0b0 3436 Apply_Compile_Time_Constraint_Error
07fc65c4 3437 (N, "string literal too long for}", CE_Length_Check_Failed,
91b1417d
AC
3438 Ent => Bas,
3439 Typ => First_Subtype (Bas));
996ae0b0 3440
91b1417d
AC
3441 elsif Len = 0
3442 and then not Is_Generic_Type (Xtp)
3443 and then
3444 Expr_Value (Lo) = Expr_Value (Type_Low_Bound (Base_Type (Xtp)))
996ae0b0
RK
3445 then
3446 Apply_Compile_Time_Constraint_Error
3447 (N, "null string literal not allowed for}",
07fc65c4 3448 CE_Length_Check_Failed,
91b1417d
AC
3449 Ent => Bas,
3450 Typ => First_Subtype (Bas));
996ae0b0
RK
3451 end if;
3452 end if;
996ae0b0
RK
3453 end Eval_String_Literal;
3454
3455 --------------------------
3456 -- Eval_Type_Conversion --
3457 --------------------------
3458
3459 -- A type conversion is potentially static if its subtype mark is for a
3460 -- static scalar subtype, and its operand expression is potentially static
22cb89b5 3461 -- (RM 4.9(10)).
996ae0b0
RK
3462
3463 procedure Eval_Type_Conversion (N : Node_Id) is
3464 Operand : constant Node_Id := Expression (N);
3465 Source_Type : constant Entity_Id := Etype (Operand);
3466 Target_Type : constant Entity_Id := Etype (N);
3467
3468 Stat : Boolean;
3469 Fold : Boolean;
3470
3471 function To_Be_Treated_As_Integer (T : Entity_Id) return Boolean;
22cb89b5
AC
3472 -- Returns true if type T is an integer type, or if it is a fixed-point
3473 -- type to be treated as an integer (i.e. the flag Conversion_OK is set
3474 -- on the conversion node).
996ae0b0
RK
3475
3476 function To_Be_Treated_As_Real (T : Entity_Id) return Boolean;
3477 -- Returns true if type T is a floating-point type, or if it is a
3478 -- fixed-point type that is not to be treated as an integer (i.e. the
3479 -- flag Conversion_OK is not set on the conversion node).
3480
fbf5a39b
AC
3481 ------------------------------
3482 -- To_Be_Treated_As_Integer --
3483 ------------------------------
3484
996ae0b0
RK
3485 function To_Be_Treated_As_Integer (T : Entity_Id) return Boolean is
3486 begin
3487 return
3488 Is_Integer_Type (T)
3489 or else (Is_Fixed_Point_Type (T) and then Conversion_OK (N));
3490 end To_Be_Treated_As_Integer;
3491
fbf5a39b
AC
3492 ---------------------------
3493 -- To_Be_Treated_As_Real --
3494 ---------------------------
3495
996ae0b0
RK
3496 function To_Be_Treated_As_Real (T : Entity_Id) return Boolean is
3497 begin
3498 return
3499 Is_Floating_Point_Type (T)
3500 or else (Is_Fixed_Point_Type (T) and then not Conversion_OK (N));
3501 end To_Be_Treated_As_Real;
3502
3503 -- Start of processing for Eval_Type_Conversion
3504
3505 begin
82c80734 3506 -- Cannot fold if target type is non-static or if semantic error
996ae0b0
RK
3507
3508 if not Is_Static_Subtype (Target_Type) then
3509 Check_Non_Static_Context (Operand);
3510 return;
3511
3512 elsif Error_Posted (N) then
3513 return;
3514 end if;
3515
3516 -- If not foldable we are done
3517
3518 Test_Expression_Is_Foldable (N, Operand, Stat, Fold);
3519
3520 if not Fold then
3521 return;
3522
3523 -- Don't try fold if target type has constraint error bounds
3524
3525 elsif not Is_OK_Static_Subtype (Target_Type) then
3526 Set_Raises_Constraint_Error (N);
3527 return;
3528 end if;
3529
3530 -- Remaining processing depends on operand types. Note that in the
3531 -- following type test, fixed-point counts as real unless the flag
3532 -- Conversion_OK is set, in which case it counts as integer.
3533
82c80734 3534 -- Fold conversion, case of string type. The result is not static
996ae0b0
RK
3535
3536 if Is_String_Type (Target_Type) then
b11e8d6f 3537 Fold_Str (N, Strval (Get_String_Val (Operand)), Static => False);
996ae0b0
RK
3538
3539 return;
3540
3541 -- Fold conversion, case of integer target type
3542
3543 elsif To_Be_Treated_As_Integer (Target_Type) then
3544 declare
3545 Result : Uint;
3546
3547 begin
3548 -- Integer to integer conversion
3549
3550 if To_Be_Treated_As_Integer (Source_Type) then
3551 Result := Expr_Value (Operand);
3552
3553 -- Real to integer conversion
3554
3555 else
3556 Result := UR_To_Uint (Expr_Value_R (Operand));
3557 end if;
3558
3559 -- If fixed-point type (Conversion_OK must be set), then the
3560 -- result is logically an integer, but we must replace the
3561 -- conversion with the corresponding real literal, since the
3562 -- type from a semantic point of view is still fixed-point.
3563
3564 if Is_Fixed_Point_Type (Target_Type) then
3565 Fold_Ureal
fbf5a39b 3566 (N, UR_From_Uint (Result) * Small_Value (Target_Type), Stat);
996ae0b0
RK
3567
3568 -- Otherwise result is integer literal
3569
3570 else
fbf5a39b 3571 Fold_Uint (N, Result, Stat);
996ae0b0
RK
3572 end if;
3573 end;
3574
3575 -- Fold conversion, case of real target type
3576
3577 elsif To_Be_Treated_As_Real (Target_Type) then
3578 declare
3579 Result : Ureal;
3580
3581 begin
3582 if To_Be_Treated_As_Real (Source_Type) then
3583 Result := Expr_Value_R (Operand);
3584 else
3585 Result := UR_From_Uint (Expr_Value (Operand));
3586 end if;
3587
fbf5a39b 3588 Fold_Ureal (N, Result, Stat);
996ae0b0
RK
3589 end;
3590
3591 -- Enumeration types
3592
3593 else
fbf5a39b 3594 Fold_Uint (N, Expr_Value (Operand), Stat);
996ae0b0
RK
3595 end if;
3596
c800f862 3597 if Is_Out_Of_Range (N, Etype (N), Assume_Valid => True) then
996ae0b0
RK
3598 Out_Of_Range (N);
3599 end if;
3600
3601 end Eval_Type_Conversion;
3602
3603 -------------------
3604 -- Eval_Unary_Op --
3605 -------------------
3606
3607 -- Predefined unary operators are static functions (RM 4.9(20)) and thus
22cb89b5 3608 -- are potentially static if the operand is potentially static (RM 4.9(7)).
996ae0b0
RK
3609
3610 procedure Eval_Unary_Op (N : Node_Id) is
3611 Right : constant Node_Id := Right_Opnd (N);
d7567964 3612 Otype : Entity_Id := Empty;
996ae0b0
RK
3613 Stat : Boolean;
3614 Fold : Boolean;
3615
3616 begin
3617 -- If not foldable we are done
3618
3619 Test_Expression_Is_Foldable (N, Right, Stat, Fold);
3620
3621 if not Fold then
3622 return;
3623 end if;
3624
602a7ec0 3625 if Etype (Right) = Universal_Integer
ae77c68b
AC
3626 or else
3627 Etype (Right) = Universal_Real
602a7ec0 3628 then
d7567964 3629 Otype := Find_Universal_Operator_Type (N);
602a7ec0
AC
3630 end if;
3631
996ae0b0
RK
3632 -- Fold for integer case
3633
3634 if Is_Integer_Type (Etype (N)) then
3635 declare
3636 Rint : constant Uint := Expr_Value (Right);
3637 Result : Uint;
3638
3639 begin
3640 -- In the case of modular unary plus and abs there is no need
3641 -- to adjust the result of the operation since if the original
3642 -- operand was in bounds the result will be in the bounds of the
3643 -- modular type. However, in the case of modular unary minus the
3644 -- result may go out of the bounds of the modular type and needs
3645 -- adjustment.
3646
3647 if Nkind (N) = N_Op_Plus then
3648 Result := Rint;
3649
3650 elsif Nkind (N) = N_Op_Minus then
3651 if Is_Modular_Integer_Type (Etype (N)) then
3652 Result := (-Rint) mod Modulus (Etype (N));
3653 else
3654 Result := (-Rint);
3655 end if;
3656
3657 else
3658 pragma Assert (Nkind (N) = N_Op_Abs);
3659 Result := abs Rint;
3660 end if;
3661
fbf5a39b 3662 Fold_Uint (N, Result, Stat);
996ae0b0
RK
3663 end;
3664
3665 -- Fold for real case
3666
3667 elsif Is_Real_Type (Etype (N)) then
3668 declare
3669 Rreal : constant Ureal := Expr_Value_R (Right);
3670 Result : Ureal;
3671
3672 begin
3673 if Nkind (N) = N_Op_Plus then
3674 Result := Rreal;
3675
3676 elsif Nkind (N) = N_Op_Minus then
3677 Result := UR_Negate (Rreal);
3678
3679 else
3680 pragma Assert (Nkind (N) = N_Op_Abs);
3681 Result := abs Rreal;
3682 end if;
3683
fbf5a39b 3684 Fold_Ureal (N, Result, Stat);
996ae0b0
RK
3685 end;
3686 end if;
d7567964
TQ
3687
3688 -- If the operator was resolved to a specific type, make sure that type
3689 -- is frozen even if the expression is folded into a literal (which has
3690 -- a universal type).
3691
3692 if Present (Otype) then
3693 Freeze_Before (N, Otype);
3694 end if;
996ae0b0
RK
3695 end Eval_Unary_Op;
3696
3697 -------------------------------
3698 -- Eval_Unchecked_Conversion --
3699 -------------------------------
3700
3701 -- Unchecked conversions can never be static, so the only required
3702 -- processing is to check for a non-static context for the operand.
3703
3704 procedure Eval_Unchecked_Conversion (N : Node_Id) is
3705 begin
3706 Check_Non_Static_Context (Expression (N));
3707 end Eval_Unchecked_Conversion;
3708
3709 --------------------
3710 -- Expr_Rep_Value --
3711 --------------------
3712
3713 function Expr_Rep_Value (N : Node_Id) return Uint is
07fc65c4
GB
3714 Kind : constant Node_Kind := Nkind (N);
3715 Ent : Entity_Id;
996ae0b0
RK
3716
3717 begin
3718 if Is_Entity_Name (N) then
3719 Ent := Entity (N);
3720
22cb89b5
AC
3721 -- An enumeration literal that was either in the source or created
3722 -- as a result of static evaluation.
996ae0b0
RK
3723
3724 if Ekind (Ent) = E_Enumeration_Literal then
3725 return Enumeration_Rep (Ent);
3726
3727 -- A user defined static constant
3728
3729 else
3730 pragma Assert (Ekind (Ent) = E_Constant);
3731 return Expr_Rep_Value (Constant_Value (Ent));
3732 end if;
3733
22cb89b5
AC
3734 -- An integer literal that was either in the source or created as a
3735 -- result of static evaluation.
996ae0b0
RK
3736
3737 elsif Kind = N_Integer_Literal then
3738 return Intval (N);
3739
3740 -- A real literal for a fixed-point type. This must be the fixed-point
3741 -- case, either the literal is of a fixed-point type, or it is a bound
3742 -- of a fixed-point type, with type universal real. In either case we
3743 -- obtain the desired value from Corresponding_Integer_Value.
3744
3745 elsif Kind = N_Real_Literal then
996ae0b0
RK
3746 pragma Assert (Is_Fixed_Point_Type (Underlying_Type (Etype (N))));
3747 return Corresponding_Integer_Value (N);
3748
07fc65c4
GB
3749 -- Peculiar VMS case, if we have xxx'Null_Parameter, return zero
3750
3751 elsif Kind = N_Attribute_Reference
3752 and then Attribute_Name (N) = Name_Null_Parameter
3753 then
3754 return Uint_0;
3755
07fc65c4 3756 -- Otherwise must be character literal
8cbb664e 3757
996ae0b0
RK
3758 else
3759 pragma Assert (Kind = N_Character_Literal);
3760 Ent := Entity (N);
3761
22cb89b5
AC
3762 -- Since Character literals of type Standard.Character don't have any
3763 -- defining character literals built for them, they do not have their
3764 -- Entity set, so just use their Char code. Otherwise for user-
3765 -- defined character literals use their Pos value as usual which is
3766 -- the same as the Rep value.
996ae0b0
RK
3767
3768 if No (Ent) then
82c80734 3769 return Char_Literal_Value (N);
996ae0b0
RK
3770 else
3771 return Enumeration_Rep (Ent);
3772 end if;
3773 end if;
3774 end Expr_Rep_Value;
3775
3776 ----------------
3777 -- Expr_Value --
3778 ----------------
3779
3780 function Expr_Value (N : Node_Id) return Uint is
07fc65c4
GB
3781 Kind : constant Node_Kind := Nkind (N);
3782 CV_Ent : CV_Entry renames CV_Cache (Nat (N) mod CV_Cache_Size);
3783 Ent : Entity_Id;
3784 Val : Uint;
996ae0b0
RK
3785
3786 begin
13f34a3f
RD
3787 -- If already in cache, then we know it's compile time known and we can
3788 -- return the value that was previously stored in the cache since
3789 -- compile time known values cannot change.
07fc65c4
GB
3790
3791 if CV_Ent.N = N then
3792 return CV_Ent.V;
3793 end if;
3794
3795 -- Otherwise proceed to test value
3796
996ae0b0
RK
3797 if Is_Entity_Name (N) then
3798 Ent := Entity (N);
3799
22cb89b5
AC
3800 -- An enumeration literal that was either in the source or created as
3801 -- a result of static evaluation.
996ae0b0
RK
3802
3803 if Ekind (Ent) = E_Enumeration_Literal then
07fc65c4 3804 Val := Enumeration_Pos (Ent);
996ae0b0
RK
3805
3806 -- A user defined static constant
3807
3808 else
3809 pragma Assert (Ekind (Ent) = E_Constant);
07fc65c4 3810 Val := Expr_Value (Constant_Value (Ent));
996ae0b0
RK
3811 end if;
3812
22cb89b5
AC
3813 -- An integer literal that was either in the source or created as a
3814 -- result of static evaluation.
996ae0b0
RK
3815
3816 elsif Kind = N_Integer_Literal then
07fc65c4 3817 Val := Intval (N);
996ae0b0
RK
3818
3819 -- A real literal for a fixed-point type. This must be the fixed-point
3820 -- case, either the literal is of a fixed-point type, or it is a bound
3821 -- of a fixed-point type, with type universal real. In either case we
3822 -- obtain the desired value from Corresponding_Integer_Value.
3823
3824 elsif Kind = N_Real_Literal then
3825
996ae0b0 3826 pragma Assert (Is_Fixed_Point_Type (Underlying_Type (Etype (N))));
07fc65c4 3827 Val := Corresponding_Integer_Value (N);
996ae0b0
RK
3828
3829 -- Peculiar VMS case, if we have xxx'Null_Parameter, return zero
3830
3831 elsif Kind = N_Attribute_Reference
3832 and then Attribute_Name (N) = Name_Null_Parameter
3833 then
07fc65c4
GB
3834 Val := Uint_0;
3835
996ae0b0
RK
3836 -- Otherwise must be character literal
3837
3838 else
3839 pragma Assert (Kind = N_Character_Literal);
3840 Ent := Entity (N);
3841
3842 -- Since Character literals of type Standard.Character don't
3843 -- have any defining character literals built for them, they
3844 -- do not have their Entity set, so just use their Char
3845 -- code. Otherwise for user-defined character literals use
3846 -- their Pos value as usual.
3847
3848 if No (Ent) then
82c80734 3849 Val := Char_Literal_Value (N);
996ae0b0 3850 else
07fc65c4 3851 Val := Enumeration_Pos (Ent);
996ae0b0
RK
3852 end if;
3853 end if;
3854
07fc65c4
GB
3855 -- Come here with Val set to value to be returned, set cache
3856
3857 CV_Ent.N := N;
3858 CV_Ent.V := Val;
3859 return Val;
996ae0b0
RK
3860 end Expr_Value;
3861
3862 ------------------
3863 -- Expr_Value_E --
3864 ------------------
3865
3866 function Expr_Value_E (N : Node_Id) return Entity_Id is
3867 Ent : constant Entity_Id := Entity (N);
3868
3869 begin
3870 if Ekind (Ent) = E_Enumeration_Literal then
3871 return Ent;
3872 else
3873 pragma Assert (Ekind (Ent) = E_Constant);
3874 return Expr_Value_E (Constant_Value (Ent));
3875 end if;
3876 end Expr_Value_E;
3877
3878 ------------------
3879 -- Expr_Value_R --
3880 ------------------
3881
3882 function Expr_Value_R (N : Node_Id) return Ureal is
3883 Kind : constant Node_Kind := Nkind (N);
3884 Ent : Entity_Id;
996ae0b0
RK
3885
3886 begin
3887 if Kind = N_Real_Literal then
3888 return Realval (N);
3889
3890 elsif Kind = N_Identifier or else Kind = N_Expanded_Name then
3891 Ent := Entity (N);
3892 pragma Assert (Ekind (Ent) = E_Constant);
3893 return Expr_Value_R (Constant_Value (Ent));
3894
3895 elsif Kind = N_Integer_Literal then
3896 return UR_From_Uint (Expr_Value (N));
3897
996ae0b0
RK
3898 -- Peculiar VMS case, if we have xxx'Null_Parameter, return 0.0
3899
3900 elsif Kind = N_Attribute_Reference
3901 and then Attribute_Name (N) = Name_Null_Parameter
3902 then
3903 return Ureal_0;
3904 end if;
3905
22cb89b5
AC
3906 -- If we fall through, we have a node that cannot be interpreted as a
3907 -- compile time constant. That is definitely an error.
996ae0b0
RK
3908
3909 raise Program_Error;
3910 end Expr_Value_R;
3911
3912 ------------------
3913 -- Expr_Value_S --
3914 ------------------
3915
3916 function Expr_Value_S (N : Node_Id) return Node_Id is
3917 begin
3918 if Nkind (N) = N_String_Literal then
3919 return N;
3920 else
3921 pragma Assert (Ekind (Entity (N)) = E_Constant);
3922 return Expr_Value_S (Constant_Value (Entity (N)));
3923 end if;
3924 end Expr_Value_S;
3925
74e7891f
RD
3926 ----------------------------------
3927 -- Find_Universal_Operator_Type --
3928 ----------------------------------
3929
3930 function Find_Universal_Operator_Type (N : Node_Id) return Entity_Id is
3931 PN : constant Node_Id := Parent (N);
3932 Call : constant Node_Id := Original_Node (N);
3933 Is_Int : constant Boolean := Is_Integer_Type (Etype (N));
3934
3935 Is_Fix : constant Boolean :=
3936 Nkind (N) in N_Binary_Op
3937 and then Nkind (Right_Opnd (N)) /= Nkind (Left_Opnd (N));
3938 -- A mixed-mode operation in this context indicates the presence of
3939 -- fixed-point type in the designated package.
3940
3941 Is_Relational : constant Boolean := Etype (N) = Standard_Boolean;
3942 -- Case where N is a relational (or membership) operator (else it is an
3943 -- arithmetic one).
3944
3945 In_Membership : constant Boolean :=
3946 Nkind (PN) in N_Membership_Test
3947 and then
3948 Nkind (Right_Opnd (PN)) = N_Range
3949 and then
3950 Is_Universal_Numeric_Type (Etype (Left_Opnd (PN)))
3951 and then
3952 Is_Universal_Numeric_Type
3953 (Etype (Low_Bound (Right_Opnd (PN))))
3954 and then
3955 Is_Universal_Numeric_Type
3956 (Etype (High_Bound (Right_Opnd (PN))));
3957 -- Case where N is part of a membership test with a universal range
3958
3959 E : Entity_Id;
3960 Pack : Entity_Id;
3961 Typ1 : Entity_Id := Empty;
3962 Priv_E : Entity_Id;
3963
3964 function Is_Mixed_Mode_Operand (Op : Node_Id) return Boolean;
7ec8363d
RD
3965 -- Check whether one operand is a mixed-mode operation that requires the
3966 -- presence of a fixed-point type. Given that all operands are universal
3967 -- and have been constant-folded, retrieve the original function call.
74e7891f
RD
3968
3969 ---------------------------
3970 -- Is_Mixed_Mode_Operand --
3971 ---------------------------
3972
3973 function Is_Mixed_Mode_Operand (Op : Node_Id) return Boolean is
7ec8363d 3974 Onod : constant Node_Id := Original_Node (Op);
74e7891f 3975 begin
7ec8363d
RD
3976 return Nkind (Onod) = N_Function_Call
3977 and then Present (Next_Actual (First_Actual (Onod)))
3978 and then Etype (First_Actual (Onod)) /=
3979 Etype (Next_Actual (First_Actual (Onod)));
74e7891f
RD
3980 end Is_Mixed_Mode_Operand;
3981
7ec8363d
RD
3982 -- Start of processing for Find_Universal_Operator_Type
3983
74e7891f
RD
3984 begin
3985 if Nkind (Call) /= N_Function_Call
3986 or else Nkind (Name (Call)) /= N_Expanded_Name
3987 then
3988 return Empty;
3989
946db1e2
AC
3990 -- There are several cases where the context does not imply the type of
3991 -- the operands:
3992 -- - the universal expression appears in a type conversion;
3993 -- - the expression is a relational operator applied to universal
3994 -- operands;
3995 -- - the expression is a membership test with a universal operand
3996 -- and a range with universal bounds.
74e7891f
RD
3997
3998 elsif Nkind (Parent (N)) = N_Type_Conversion
7ec8363d
RD
3999 or else Is_Relational
4000 or else In_Membership
74e7891f
RD
4001 then
4002 Pack := Entity (Prefix (Name (Call)));
4003
7ec8363d
RD
4004 -- If the prefix is a package declared elsewhere, iterate over its
4005 -- visible entities, otherwise iterate over all declarations in the
4006 -- designated scope.
74e7891f
RD
4007
4008 if Ekind (Pack) = E_Package
4009 and then not In_Open_Scopes (Pack)
4010 then
4011 Priv_E := First_Private_Entity (Pack);
4012 else
4013 Priv_E := Empty;
4014 end if;
4015
4016 Typ1 := Empty;
4017 E := First_Entity (Pack);
4018 while Present (E) and then E /= Priv_E loop
4019 if Is_Numeric_Type (E)
4020 and then Nkind (Parent (E)) /= N_Subtype_Declaration
4021 and then Comes_From_Source (E)
4022 and then Is_Integer_Type (E) = Is_Int
4023 and then
4024 (Nkind (N) in N_Unary_Op
4025 or else Is_Relational
4026 or else Is_Fixed_Point_Type (E) = Is_Fix)
4027 then
4028 if No (Typ1) then
4029 Typ1 := E;
4030
676e8420
AC
4031 -- Before emitting an error, check for the presence of a
4032 -- mixed-mode operation that specifies a fixed point type.
74e7891f
RD
4033
4034 elsif Is_Relational
4035 and then
4036 (Is_Mixed_Mode_Operand (Left_Opnd (N))
676e8420 4037 or else Is_Mixed_Mode_Operand (Right_Opnd (N)))
74e7891f
RD
4038 and then Is_Fixed_Point_Type (E) /= Is_Fixed_Point_Type (Typ1)
4039
4040 then
4041 if Is_Fixed_Point_Type (E) then
4042 Typ1 := E;
4043 end if;
4044
4045 else
4046 -- More than one type of the proper class declared in P
4047
4048 Error_Msg_N ("ambiguous operation", N);
4049 Error_Msg_Sloc := Sloc (Typ1);
4050 Error_Msg_N ("\possible interpretation (inherited)#", N);
4051 Error_Msg_Sloc := Sloc (E);
4052 Error_Msg_N ("\possible interpretation (inherited)#", N);
4053 return Empty;
4054 end if;
4055 end if;
4056
4057 Next_Entity (E);
4058 end loop;
4059 end if;
4060
4061 return Typ1;
4062 end Find_Universal_Operator_Type;
4063
fbf5a39b
AC
4064 --------------------------
4065 -- Flag_Non_Static_Expr --
4066 --------------------------
4067
4068 procedure Flag_Non_Static_Expr (Msg : String; Expr : Node_Id) is
4069 begin
4070 if Error_Posted (Expr) and then not All_Errors_Mode then
4071 return;
4072 else
4073 Error_Msg_F (Msg, Expr);
4074 Why_Not_Static (Expr);
4075 end if;
4076 end Flag_Non_Static_Expr;
4077
996ae0b0
RK
4078 --------------
4079 -- Fold_Str --
4080 --------------
4081
fbf5a39b 4082 procedure Fold_Str (N : Node_Id; Val : String_Id; Static : Boolean) is
996ae0b0
RK
4083 Loc : constant Source_Ptr := Sloc (N);
4084 Typ : constant Entity_Id := Etype (N);
4085
4086 begin
4087 Rewrite (N, Make_String_Literal (Loc, Strval => Val));
fbf5a39b
AC
4088
4089 -- We now have the literal with the right value, both the actual type
4090 -- and the expected type of this literal are taken from the expression
9479ded4
AC
4091 -- that was evaluated. So now we do the Analyze and Resolve.
4092
4093 -- Note that we have to reset Is_Static_Expression both after the
4094 -- analyze step (because Resolve will evaluate the literal, which
4095 -- will cause semantic errors if it is marked as static), and after
4096 -- the Resolve step (since Resolve in some cases sets this flag).
fbf5a39b
AC
4097
4098 Analyze (N);
4099 Set_Is_Static_Expression (N, Static);
4100 Set_Etype (N, Typ);
4101 Resolve (N);
9479ded4 4102 Set_Is_Static_Expression (N, Static);
996ae0b0
RK
4103 end Fold_Str;
4104
4105 ---------------
4106 -- Fold_Uint --
4107 ---------------
4108
fbf5a39b 4109 procedure Fold_Uint (N : Node_Id; Val : Uint; Static : Boolean) is
996ae0b0 4110 Loc : constant Source_Ptr := Sloc (N);
fbf5a39b
AC
4111 Typ : Entity_Id := Etype (N);
4112 Ent : Entity_Id;
996ae0b0
RK
4113
4114 begin
22cb89b5
AC
4115 -- If we are folding a named number, retain the entity in the literal,
4116 -- for ASIS use.
fbf5a39b
AC
4117
4118 if Is_Entity_Name (N)
4119 and then Ekind (Entity (N)) = E_Named_Integer
4120 then
4121 Ent := Entity (N);
4122 else
4123 Ent := Empty;
4124 end if;
4125
4126 if Is_Private_Type (Typ) then
4127 Typ := Full_View (Typ);
4128 end if;
4129
f3d57416 4130 -- For a result of type integer, substitute an N_Integer_Literal node
996ae0b0 4131 -- for the result of the compile time evaluation of the expression.
cd2fb920
ES
4132 -- For ASIS use, set a link to the original named number when not in
4133 -- a generic context.
996ae0b0 4134
fbf5a39b 4135 if Is_Integer_Type (Typ) then
996ae0b0 4136 Rewrite (N, Make_Integer_Literal (Loc, Val));
cd2fb920 4137
fbf5a39b 4138 Set_Original_Entity (N, Ent);
996ae0b0
RK
4139
4140 -- Otherwise we have an enumeration type, and we substitute either
4141 -- an N_Identifier or N_Character_Literal to represent the enumeration
4142 -- literal corresponding to the given value, which must always be in
4143 -- range, because appropriate tests have already been made for this.
4144
fbf5a39b 4145 else pragma Assert (Is_Enumeration_Type (Typ));
996ae0b0
RK
4146 Rewrite (N, Get_Enum_Lit_From_Pos (Etype (N), Val, Loc));
4147 end if;
4148
4149 -- We now have the literal with the right value, both the actual type
4150 -- and the expected type of this literal are taken from the expression
9479ded4
AC
4151 -- that was evaluated. So now we do the Analyze and Resolve.
4152
4153 -- Note that we have to reset Is_Static_Expression both after the
4154 -- analyze step (because Resolve will evaluate the literal, which
4155 -- will cause semantic errors if it is marked as static), and after
4156 -- the Resolve step (since Resolve in some cases sets this flag).
996ae0b0
RK
4157
4158 Analyze (N);
fbf5a39b 4159 Set_Is_Static_Expression (N, Static);
996ae0b0 4160 Set_Etype (N, Typ);
fbf5a39b 4161 Resolve (N);
9479ded4 4162 Set_Is_Static_Expression (N, Static);
996ae0b0
RK
4163 end Fold_Uint;
4164
4165 ----------------
4166 -- Fold_Ureal --
4167 ----------------
4168
fbf5a39b 4169 procedure Fold_Ureal (N : Node_Id; Val : Ureal; Static : Boolean) is
996ae0b0
RK
4170 Loc : constant Source_Ptr := Sloc (N);
4171 Typ : constant Entity_Id := Etype (N);
fbf5a39b 4172 Ent : Entity_Id;
996ae0b0
RK
4173
4174 begin
22cb89b5
AC
4175 -- If we are folding a named number, retain the entity in the literal,
4176 -- for ASIS use.
fbf5a39b
AC
4177
4178 if Is_Entity_Name (N)
4179 and then Ekind (Entity (N)) = E_Named_Real
4180 then
4181 Ent := Entity (N);
4182 else
4183 Ent := Empty;
4184 end if;
4185
996ae0b0 4186 Rewrite (N, Make_Real_Literal (Loc, Realval => Val));
cd2fb920 4187
5a30024a 4188 -- Set link to original named number, for ASIS use
cd2fb920 4189
fbf5a39b 4190 Set_Original_Entity (N, Ent);
996ae0b0 4191
9479ded4
AC
4192 -- We now have the literal with the right value, both the actual type
4193 -- and the expected type of this literal are taken from the expression
4194 -- that was evaluated. So now we do the Analyze and Resolve.
4195
4196 -- Note that we have to reset Is_Static_Expression both after the
4197 -- analyze step (because Resolve will evaluate the literal, which
4198 -- will cause semantic errors if it is marked as static), and after
4199 -- the Resolve step (since Resolve in some cases sets this flag).
996ae0b0 4200
fbf5a39b
AC
4201 Analyze (N);
4202 Set_Is_Static_Expression (N, Static);
996ae0b0 4203 Set_Etype (N, Typ);
fbf5a39b 4204 Resolve (N);
9479ded4 4205 Set_Is_Static_Expression (N, Static);
996ae0b0
RK
4206 end Fold_Ureal;
4207
4208 ---------------
4209 -- From_Bits --
4210 ---------------
4211
4212 function From_Bits (B : Bits; T : Entity_Id) return Uint is
4213 V : Uint := Uint_0;
4214
4215 begin
4216 for J in 0 .. B'Last loop
4217 if B (J) then
4218 V := V + 2 ** J;
4219 end if;
4220 end loop;
4221
4222 if Non_Binary_Modulus (T) then
4223 V := V mod Modulus (T);
4224 end if;
4225
4226 return V;
4227 end From_Bits;
4228
4229 --------------------
4230 -- Get_String_Val --
4231 --------------------
4232
4233 function Get_String_Val (N : Node_Id) return Node_Id is
4234 begin
4235 if Nkind (N) = N_String_Literal then
4236 return N;
4237
4238 elsif Nkind (N) = N_Character_Literal then
4239 return N;
4240
4241 else
4242 pragma Assert (Is_Entity_Name (N));
4243 return Get_String_Val (Constant_Value (Entity (N)));
4244 end if;
4245 end Get_String_Val;
4246
fbf5a39b
AC
4247 ----------------
4248 -- Initialize --
4249 ----------------
4250
4251 procedure Initialize is
4252 begin
4253 CV_Cache := (others => (Node_High_Bound, Uint_0));
4254 end Initialize;
4255
996ae0b0
RK
4256 --------------------
4257 -- In_Subrange_Of --
4258 --------------------
4259
4260 function In_Subrange_Of
c27f2f15
RD
4261 (T1 : Entity_Id;
4262 T2 : Entity_Id;
4263 Fixed_Int : Boolean := False) return Boolean
996ae0b0
RK
4264 is
4265 L1 : Node_Id;
4266 H1 : Node_Id;
4267
4268 L2 : Node_Id;
4269 H2 : Node_Id;
4270
4271 begin
4272 if T1 = T2 or else Is_Subtype_Of (T1, T2) then
4273 return True;
4274
4275 -- Never in range if both types are not scalar. Don't know if this can
4276 -- actually happen, but just in case.
4277
9d08a38d 4278 elsif not Is_Scalar_Type (T1) or else not Is_Scalar_Type (T2) then
996ae0b0
RK
4279 return False;
4280
d79e621a
GD
4281 -- If T1 has infinities but T2 doesn't have infinities, then T1 is
4282 -- definitely not compatible with T2.
4283
4284 elsif Is_Floating_Point_Type (T1)
4285 and then Has_Infinities (T1)
4286 and then Is_Floating_Point_Type (T2)
4287 and then not Has_Infinities (T2)
4288 then
4289 return False;
4290
996ae0b0
RK
4291 else
4292 L1 := Type_Low_Bound (T1);
4293 H1 := Type_High_Bound (T1);
4294
4295 L2 := Type_Low_Bound (T2);
4296 H2 := Type_High_Bound (T2);
4297
4298 -- Check bounds to see if comparison possible at compile time
4299
c27f2f15 4300 if Compile_Time_Compare (L1, L2, Assume_Valid => True) in Compare_GE
996ae0b0 4301 and then
c27f2f15 4302 Compile_Time_Compare (H1, H2, Assume_Valid => True) in Compare_LE
996ae0b0
RK
4303 then
4304 return True;
4305 end if;
4306
4307 -- If bounds not comparable at compile time, then the bounds of T2
4308 -- must be compile time known or we cannot answer the query.
4309
4310 if not Compile_Time_Known_Value (L2)
4311 or else not Compile_Time_Known_Value (H2)
4312 then
4313 return False;
4314 end if;
4315
4316 -- If the bounds of T1 are know at compile time then use these
4317 -- ones, otherwise use the bounds of the base type (which are of
4318 -- course always static).
4319
4320 if not Compile_Time_Known_Value (L1) then
4321 L1 := Type_Low_Bound (Base_Type (T1));
4322 end if;
4323
4324 if not Compile_Time_Known_Value (H1) then
4325 H1 := Type_High_Bound (Base_Type (T1));
4326 end if;
4327
4328 -- Fixed point types should be considered as such only if
4329 -- flag Fixed_Int is set to False.
4330
4331 if Is_Floating_Point_Type (T1) or else Is_Floating_Point_Type (T2)
4332 or else (Is_Fixed_Point_Type (T1) and then not Fixed_Int)
4333 or else (Is_Fixed_Point_Type (T2) and then not Fixed_Int)
4334 then
4335 return
4336 Expr_Value_R (L2) <= Expr_Value_R (L1)
4337 and then
4338 Expr_Value_R (H2) >= Expr_Value_R (H1);
4339
4340 else
4341 return
4342 Expr_Value (L2) <= Expr_Value (L1)
4343 and then
4344 Expr_Value (H2) >= Expr_Value (H1);
4345
4346 end if;
4347 end if;
4348
4349 -- If any exception occurs, it means that we have some bug in the compiler
f3d57416 4350 -- possibly triggered by a previous error, or by some unforeseen peculiar
996ae0b0
RK
4351 -- occurrence. However, this is only an optimization attempt, so there is
4352 -- really no point in crashing the compiler. Instead we just decide, too
4353 -- bad, we can't figure out the answer in this case after all.
4354
4355 exception
4356 when others =>
4357
4358 -- Debug flag K disables this behavior (useful for debugging)
4359
4360 if Debug_Flag_K then
4361 raise;
4362 else
4363 return False;
4364 end if;
4365 end In_Subrange_Of;
4366
4367 -----------------
4368 -- Is_In_Range --
4369 -----------------
4370
4371 function Is_In_Range
c800f862
RD
4372 (N : Node_Id;
4373 Typ : Entity_Id;
4374 Assume_Valid : Boolean := False;
4375 Fixed_Int : Boolean := False;
4376 Int_Real : Boolean := False) return Boolean
996ae0b0 4377 is
996ae0b0 4378 begin
305caf42
AC
4379 return Test_In_Range (N, Typ, Assume_Valid, Fixed_Int, Int_Real)
4380 = In_Range;
996ae0b0
RK
4381 end Is_In_Range;
4382
4383 -------------------
4384 -- Is_Null_Range --
4385 -------------------
4386
4387 function Is_Null_Range (Lo : Node_Id; Hi : Node_Id) return Boolean is
4388 Typ : constant Entity_Id := Etype (Lo);
4389
4390 begin
4391 if not Compile_Time_Known_Value (Lo)
4392 or else not Compile_Time_Known_Value (Hi)
4393 then
4394 return False;
4395 end if;
4396
4397 if Is_Discrete_Type (Typ) then
4398 return Expr_Value (Lo) > Expr_Value (Hi);
4399
4400 else
4401 pragma Assert (Is_Real_Type (Typ));
4402 return Expr_Value_R (Lo) > Expr_Value_R (Hi);
4403 end if;
4404 end Is_Null_Range;
4405
4406 -----------------------------
4407 -- Is_OK_Static_Expression --
4408 -----------------------------
4409
4410 function Is_OK_Static_Expression (N : Node_Id) return Boolean is
4411 begin
4412 return Is_Static_Expression (N)
4413 and then not Raises_Constraint_Error (N);
4414 end Is_OK_Static_Expression;
4415
4416 ------------------------
4417 -- Is_OK_Static_Range --
4418 ------------------------
4419
4420 -- A static range is a range whose bounds are static expressions, or a
4421 -- Range_Attribute_Reference equivalent to such a range (RM 4.9(26)).
4422 -- We have already converted range attribute references, so we get the
4423 -- "or" part of this rule without needing a special test.
4424
4425 function Is_OK_Static_Range (N : Node_Id) return Boolean is
4426 begin
4427 return Is_OK_Static_Expression (Low_Bound (N))
4428 and then Is_OK_Static_Expression (High_Bound (N));
4429 end Is_OK_Static_Range;
4430
4431 --------------------------
4432 -- Is_OK_Static_Subtype --
4433 --------------------------
4434
22cb89b5
AC
4435 -- Determines if Typ is a static subtype as defined in (RM 4.9(26)) where
4436 -- neither bound raises constraint error when evaluated.
996ae0b0
RK
4437
4438 function Is_OK_Static_Subtype (Typ : Entity_Id) return Boolean is
4439 Base_T : constant Entity_Id := Base_Type (Typ);
4440 Anc_Subt : Entity_Id;
4441
4442 begin
4443 -- First a quick check on the non static subtype flag. As described
4444 -- in further detail in Einfo, this flag is not decisive in all cases,
4445 -- but if it is set, then the subtype is definitely non-static.
4446
4447 if Is_Non_Static_Subtype (Typ) then
4448 return False;
4449 end if;
4450
4451 Anc_Subt := Ancestor_Subtype (Typ);
4452
4453 if Anc_Subt = Empty then
4454 Anc_Subt := Base_T;
4455 end if;
4456
4457 if Is_Generic_Type (Root_Type (Base_T))
4458 or else Is_Generic_Actual_Type (Base_T)
4459 then
4460 return False;
4461
4462 -- String types
4463
4464 elsif Is_String_Type (Typ) then
4465 return
4466 Ekind (Typ) = E_String_Literal_Subtype
4467 or else
011f9d5d
AC
4468 (Is_OK_Static_Subtype (Component_Type (Typ))
4469 and then Is_OK_Static_Subtype (Etype (First_Index (Typ))));
996ae0b0
RK
4470
4471 -- Scalar types
4472
4473 elsif Is_Scalar_Type (Typ) then
4474 if Base_T = Typ then
4475 return True;
4476
4477 else
22cb89b5
AC
4478 -- Scalar_Range (Typ) might be an N_Subtype_Indication, so use
4479 -- Get_Type_{Low,High}_Bound.
996ae0b0
RK
4480
4481 return Is_OK_Static_Subtype (Anc_Subt)
4482 and then Is_OK_Static_Expression (Type_Low_Bound (Typ))
4483 and then Is_OK_Static_Expression (Type_High_Bound (Typ));
4484 end if;
4485
4486 -- Types other than string and scalar types are never static
4487
4488 else
4489 return False;
4490 end if;
4491 end Is_OK_Static_Subtype;
4492
4493 ---------------------
4494 -- Is_Out_Of_Range --
4495 ---------------------
4496
4497 function Is_Out_Of_Range
1c7717c3
AC
4498 (N : Node_Id;
4499 Typ : Entity_Id;
c800f862 4500 Assume_Valid : Boolean := False;
1c7717c3
AC
4501 Fixed_Int : Boolean := False;
4502 Int_Real : Boolean := False) return Boolean
996ae0b0 4503 is
996ae0b0 4504 begin
305caf42
AC
4505 return Test_In_Range (N, Typ, Assume_Valid, Fixed_Int, Int_Real)
4506 = Out_Of_Range;
996ae0b0
RK
4507 end Is_Out_Of_Range;
4508
4509 ---------------------
4510 -- Is_Static_Range --
4511 ---------------------
4512
4513 -- A static range is a range whose bounds are static expressions, or a
4514 -- Range_Attribute_Reference equivalent to such a range (RM 4.9(26)).
4515 -- We have already converted range attribute references, so we get the
4516 -- "or" part of this rule without needing a special test.
4517
4518 function Is_Static_Range (N : Node_Id) return Boolean is
4519 begin
4520 return Is_Static_Expression (Low_Bound (N))
4521 and then Is_Static_Expression (High_Bound (N));
4522 end Is_Static_Range;
4523
4524 -----------------------
4525 -- Is_Static_Subtype --
4526 -----------------------
4527
82c80734 4528 -- Determines if Typ is a static subtype as defined in (RM 4.9(26))
996ae0b0
RK
4529
4530 function Is_Static_Subtype (Typ : Entity_Id) return Boolean is
4531 Base_T : constant Entity_Id := Base_Type (Typ);
4532 Anc_Subt : Entity_Id;
4533
4534 begin
4535 -- First a quick check on the non static subtype flag. As described
4536 -- in further detail in Einfo, this flag is not decisive in all cases,
4537 -- but if it is set, then the subtype is definitely non-static.
4538
4539 if Is_Non_Static_Subtype (Typ) then
4540 return False;
4541 end if;
4542
4543 Anc_Subt := Ancestor_Subtype (Typ);
4544
4545 if Anc_Subt = Empty then
4546 Anc_Subt := Base_T;
4547 end if;
4548
4549 if Is_Generic_Type (Root_Type (Base_T))
4550 or else Is_Generic_Actual_Type (Base_T)
4551 then
4552 return False;
4553
4554 -- String types
4555
4556 elsif Is_String_Type (Typ) then
4557 return
4558 Ekind (Typ) = E_String_Literal_Subtype
011f9d5d
AC
4559 or else (Is_Static_Subtype (Component_Type (Typ))
4560 and then Is_Static_Subtype (Etype (First_Index (Typ))));
996ae0b0
RK
4561
4562 -- Scalar types
4563
4564 elsif Is_Scalar_Type (Typ) then
4565 if Base_T = Typ then
4566 return True;
4567
4568 else
4569 return Is_Static_Subtype (Anc_Subt)
4570 and then Is_Static_Expression (Type_Low_Bound (Typ))
4571 and then Is_Static_Expression (Type_High_Bound (Typ));
4572 end if;
4573
4574 -- Types other than string and scalar types are never static
4575
4576 else
4577 return False;
4578 end if;
4579 end Is_Static_Subtype;
4580
4581 --------------------
4582 -- Not_Null_Range --
4583 --------------------
4584
4585 function Not_Null_Range (Lo : Node_Id; Hi : Node_Id) return Boolean is
4586 Typ : constant Entity_Id := Etype (Lo);
4587
4588 begin
4589 if not Compile_Time_Known_Value (Lo)
4590 or else not Compile_Time_Known_Value (Hi)
4591 then
4592 return False;
4593 end if;
4594
4595 if Is_Discrete_Type (Typ) then
4596 return Expr_Value (Lo) <= Expr_Value (Hi);
4597
4598 else
4599 pragma Assert (Is_Real_Type (Typ));
4600
4601 return Expr_Value_R (Lo) <= Expr_Value_R (Hi);
4602 end if;
4603 end Not_Null_Range;
4604
4605 -------------
4606 -- OK_Bits --
4607 -------------
4608
4609 function OK_Bits (N : Node_Id; Bits : Uint) return Boolean is
4610 begin
4611 -- We allow a maximum of 500,000 bits which seems a reasonable limit
4612
4613 if Bits < 500_000 then
4614 return True;
4615
4616 else
4617 Error_Msg_N ("static value too large, capacity exceeded", N);
4618 return False;
4619 end if;
4620 end OK_Bits;
4621
4622 ------------------
4623 -- Out_Of_Range --
4624 ------------------
4625
4626 procedure Out_Of_Range (N : Node_Id) is
4627 begin
4628 -- If we have the static expression case, then this is an illegality
4629 -- in Ada 95 mode, except that in an instance, we never generate an
22cb89b5
AC
4630 -- error (if the error is legitimate, it was already diagnosed in the
4631 -- template). The expression to compute the length of a packed array is
4632 -- attached to the array type itself, and deserves a separate message.
996ae0b0
RK
4633
4634 if Is_Static_Expression (N)
4635 and then not In_Instance
fbf5a39b 4636 and then not In_Inlined_Body
0ab80019 4637 and then Ada_Version >= Ada_95
996ae0b0 4638 then
996ae0b0
RK
4639 if Nkind (Parent (N)) = N_Defining_Identifier
4640 and then Is_Array_Type (Parent (N))
4641 and then Present (Packed_Array_Type (Parent (N)))
4642 and then Present (First_Rep_Item (Parent (N)))
4643 then
4644 Error_Msg_N
4645 ("length of packed array must not exceed Integer''Last",
4646 First_Rep_Item (Parent (N)));
4647 Rewrite (N, Make_Integer_Literal (Sloc (N), Uint_1));
4648
4649 else
4650 Apply_Compile_Time_Constraint_Error
07fc65c4 4651 (N, "value not in range of}", CE_Range_Check_Failed);
996ae0b0
RK
4652 end if;
4653
22cb89b5
AC
4654 -- Here we generate a warning for the Ada 83 case, or when we are in an
4655 -- instance, or when we have a non-static expression case.
996ae0b0
RK
4656
4657 else
996ae0b0 4658 Apply_Compile_Time_Constraint_Error
07fc65c4 4659 (N, "value not in range of}?", CE_Range_Check_Failed);
996ae0b0
RK
4660 end if;
4661 end Out_Of_Range;
4662
4663 -------------------------
4664 -- Rewrite_In_Raise_CE --
4665 -------------------------
4666
4667 procedure Rewrite_In_Raise_CE (N : Node_Id; Exp : Node_Id) is
4668 Typ : constant Entity_Id := Etype (N);
4669
4670 begin
22cb89b5
AC
4671 -- If we want to raise CE in the condition of a N_Raise_CE node
4672 -- we may as well get rid of the condition.
996ae0b0
RK
4673
4674 if Present (Parent (N))
4675 and then Nkind (Parent (N)) = N_Raise_Constraint_Error
4676 then
4677 Set_Condition (Parent (N), Empty);
4678
22cb89b5
AC
4679 -- If the expression raising CE is a N_Raise_CE node, we can use that
4680 -- one. We just preserve the type of the context.
996ae0b0
RK
4681
4682 elsif Nkind (Exp) = N_Raise_Constraint_Error then
4683 Rewrite (N, Exp);
4684 Set_Etype (N, Typ);
4685
22cb89b5 4686 -- Else build an explcit N_Raise_CE
996ae0b0
RK
4687
4688 else
07fc65c4
GB
4689 Rewrite (N,
4690 Make_Raise_Constraint_Error (Sloc (Exp),
4691 Reason => CE_Range_Check_Failed));
996ae0b0
RK
4692 Set_Raises_Constraint_Error (N);
4693 Set_Etype (N, Typ);
4694 end if;
4695 end Rewrite_In_Raise_CE;
4696
4697 ---------------------
4698 -- String_Type_Len --
4699 ---------------------
4700
4701 function String_Type_Len (Stype : Entity_Id) return Uint is
4702 NT : constant Entity_Id := Etype (First_Index (Stype));
4703 T : Entity_Id;
4704
4705 begin
4706 if Is_OK_Static_Subtype (NT) then
4707 T := NT;
4708 else
4709 T := Base_Type (NT);
4710 end if;
4711
4712 return Expr_Value (Type_High_Bound (T)) -
4713 Expr_Value (Type_Low_Bound (T)) + 1;
4714 end String_Type_Len;
4715
4716 ------------------------------------
4717 -- Subtypes_Statically_Compatible --
4718 ------------------------------------
4719
4720 function Subtypes_Statically_Compatible
f44fe430
RD
4721 (T1 : Entity_Id;
4722 T2 : Entity_Id) return Boolean
996ae0b0
RK
4723 is
4724 begin
437f8c1e
AC
4725 -- Scalar types
4726
996ae0b0
RK
4727 if Is_Scalar_Type (T1) then
4728
4729 -- Definitely compatible if we match
4730
4731 if Subtypes_Statically_Match (T1, T2) then
4732 return True;
4733
4734 -- If either subtype is nonstatic then they're not compatible
4735
4736 elsif not Is_Static_Subtype (T1)
4737 or else not Is_Static_Subtype (T2)
4738 then
4739 return False;
4740
4741 -- If either type has constraint error bounds, then consider that
4742 -- they match to avoid junk cascaded errors here.
4743
4744 elsif not Is_OK_Static_Subtype (T1)
4745 or else not Is_OK_Static_Subtype (T2)
4746 then
4747 return True;
4748
26df19ce
AC
4749 -- Base types must match, but we don't check that (should we???) but
4750 -- we do at least check that both types are real, or both types are
4751 -- not real.
996ae0b0 4752
fbf5a39b 4753 elsif Is_Real_Type (T1) /= Is_Real_Type (T2) then
996ae0b0
RK
4754 return False;
4755
4756 -- Here we check the bounds
4757
4758 else
4759 declare
4760 LB1 : constant Node_Id := Type_Low_Bound (T1);
4761 HB1 : constant Node_Id := Type_High_Bound (T1);
4762 LB2 : constant Node_Id := Type_Low_Bound (T2);
4763 HB2 : constant Node_Id := Type_High_Bound (T2);
4764
4765 begin
4766 if Is_Real_Type (T1) then
4767 return
4768 (Expr_Value_R (LB1) > Expr_Value_R (HB1))
4769 or else
4770 (Expr_Value_R (LB2) <= Expr_Value_R (LB1)
4771 and then
4772 Expr_Value_R (HB1) <= Expr_Value_R (HB2));
4773
4774 else
4775 return
4776 (Expr_Value (LB1) > Expr_Value (HB1))
4777 or else
4778 (Expr_Value (LB2) <= Expr_Value (LB1)
4779 and then
4780 Expr_Value (HB1) <= Expr_Value (HB2));
4781 end if;
4782 end;
4783 end if;
4784
437f8c1e
AC
4785 -- Access types
4786
996ae0b0 4787 elsif Is_Access_Type (T1) then
26df19ce
AC
4788 return (not Is_Constrained (T2)
4789 or else (Subtypes_Statically_Match
4790 (Designated_Type (T1), Designated_Type (T2))))
4791 and then not (Can_Never_Be_Null (T2)
4792 and then not Can_Never_Be_Null (T1));
437f8c1e
AC
4793
4794 -- All other cases
996ae0b0
RK
4795
4796 else
4797 return (Is_Composite_Type (T1) and then not Is_Constrained (T2))
4798 or else Subtypes_Statically_Match (T1, T2);
4799 end if;
4800 end Subtypes_Statically_Compatible;
4801
4802 -------------------------------
4803 -- Subtypes_Statically_Match --
4804 -------------------------------
4805
4806 -- Subtypes statically match if they have statically matching constraints
4807 -- (RM 4.9.1(2)). Constraints statically match if there are none, or if
4808 -- they are the same identical constraint, or if they are static and the
4809 -- values match (RM 4.9.1(1)).
4810
4811 function Subtypes_Statically_Match (T1, T2 : Entity_Id) return Boolean is
bb9c600b
AC
4812
4813 function Predicates_Match return Boolean;
4814 -- In Ada 2012, subtypes statically match if their static predicates
4815 -- match as well.
4816
6eaa926a
RD
4817 ----------------------
4818 -- Predicates_Match --
4819 ----------------------
4820
bb9c600b
AC
4821 function Predicates_Match return Boolean is
4822 Pred1 : Node_Id;
4823 Pred2 : Node_Id;
4824
4825 begin
4826 if Ada_Version < Ada_2012 then
4827 return True;
4828
4829 elsif Has_Predicates (T1) /= Has_Predicates (T2) then
4830 return False;
4831
4832 else
34f3a701
VP
4833 Pred1 :=
4834 Get_Rep_Item
4835 (T1, Name_Static_Predicate, Check_Parents => False);
4836 Pred2 :=
4837 Get_Rep_Item
4838 (T2, Name_Static_Predicate, Check_Parents => False);
bb9c600b
AC
4839
4840 -- Subtypes statically match if the predicate comes from the
4841 -- same declaration, which can only happen if one is a subtype
4842 -- of the other and has no explicit predicate.
4843
4844 -- Suppress warnings on order of actuals, which is otherwise
4845 -- triggered by one of the two calls below.
4846
4847 pragma Warnings (Off);
4848 return Pred1 = Pred2
4849 or else (No (Pred1) and then Is_Subtype_Of (T1, T2))
4850 or else (No (Pred2) and then Is_Subtype_Of (T2, T1));
4851 pragma Warnings (On);
4852 end if;
4853 end Predicates_Match;
4854
6eaa926a
RD
4855 -- Start of processing for Subtypes_Statically_Match
4856
996ae0b0
RK
4857 begin
4858 -- A type always statically matches itself
4859
4860 if T1 = T2 then
4861 return True;
4862
4863 -- Scalar types
4864
4865 elsif Is_Scalar_Type (T1) then
4866
4867 -- Base types must be the same
4868
4869 if Base_Type (T1) /= Base_Type (T2) then
4870 return False;
4871 end if;
4872
4873 -- A constrained numeric subtype never matches an unconstrained
4874 -- subtype, i.e. both types must be constrained or unconstrained.
4875
305caf42
AC
4876 -- To understand the requirement for this test, see RM 4.9.1(1).
4877 -- As is made clear in RM 3.5.4(11), type Integer, for example is
4878 -- a constrained subtype with constraint bounds matching the bounds
4879 -- of its corresponding unconstrained base type. In this situation,
4880 -- Integer and Integer'Base do not statically match, even though
4881 -- they have the same bounds.
996ae0b0 4882
22cb89b5
AC
4883 -- We only apply this test to types in Standard and types that appear
4884 -- in user programs. That way, we do not have to be too careful about
4885 -- setting Is_Constrained right for Itypes.
996ae0b0
RK
4886
4887 if Is_Numeric_Type (T1)
4888 and then (Is_Constrained (T1) /= Is_Constrained (T2))
4889 and then (Scope (T1) = Standard_Standard
4890 or else Comes_From_Source (T1))
4891 and then (Scope (T2) = Standard_Standard
4892 or else Comes_From_Source (T2))
4893 then
4894 return False;
82c80734 4895
22cb89b5
AC
4896 -- A generic scalar type does not statically match its base type
4897 -- (AI-311). In this case we make sure that the formals, which are
4898 -- first subtypes of their bases, are constrained.
82c80734
RD
4899
4900 elsif Is_Generic_Type (T1)
4901 and then Is_Generic_Type (T2)
4902 and then (Is_Constrained (T1) /= Is_Constrained (T2))
4903 then
4904 return False;
996ae0b0
RK
4905 end if;
4906
22cb89b5
AC
4907 -- If there was an error in either range, then just assume the types
4908 -- statically match to avoid further junk errors.
996ae0b0 4909
199c6a10
AC
4910 if No (Scalar_Range (T1)) or else No (Scalar_Range (T2))
4911 or else Error_Posted (Scalar_Range (T1))
4912 or else Error_Posted (Scalar_Range (T2))
996ae0b0
RK
4913 then
4914 return True;
4915 end if;
4916
4917 -- Otherwise both types have bound that can be compared
4918
4919 declare
4920 LB1 : constant Node_Id := Type_Low_Bound (T1);
4921 HB1 : constant Node_Id := Type_High_Bound (T1);
4922 LB2 : constant Node_Id := Type_Low_Bound (T2);
4923 HB2 : constant Node_Id := Type_High_Bound (T2);
4924
4925 begin
6eaa926a
RD
4926 -- If the bounds are the same tree node, then match if and only
4927 -- if any predicates present also match.
996ae0b0
RK
4928
4929 if LB1 = LB2 and then HB1 = HB2 then
bb9c600b 4930 return Predicates_Match;
996ae0b0
RK
4931
4932 -- Otherwise bounds must be static and identical value
4933
4934 else
4935 if not Is_Static_Subtype (T1)
4936 or else not Is_Static_Subtype (T2)
4937 then
4938 return False;
4939
22cb89b5
AC
4940 -- If either type has constraint error bounds, then say that
4941 -- they match to avoid junk cascaded errors here.
996ae0b0
RK
4942
4943 elsif not Is_OK_Static_Subtype (T1)
4944 or else not Is_OK_Static_Subtype (T2)
4945 then
4946 return True;
4947
4948 elsif Is_Real_Type (T1) then
4949 return
4950 (Expr_Value_R (LB1) = Expr_Value_R (LB2))
4951 and then
4952 (Expr_Value_R (HB1) = Expr_Value_R (HB2));
4953
4954 else
4955 return
4956 Expr_Value (LB1) = Expr_Value (LB2)
4957 and then
4958 Expr_Value (HB1) = Expr_Value (HB2);
4959 end if;
4960 end if;
4961 end;
4962
4963 -- Type with discriminants
4964
4965 elsif Has_Discriminants (T1) or else Has_Discriminants (T2) then
6eaf4095 4966
c2bf339e
GD
4967 -- Because of view exchanges in multiple instantiations, conformance
4968 -- checking might try to match a partial view of a type with no
4969 -- discriminants with a full view that has defaulted discriminants.
4970 -- In such a case, use the discriminant constraint of the full view,
4971 -- which must exist because we know that the two subtypes have the
4972 -- same base type.
6eaf4095 4973
996ae0b0 4974 if Has_Discriminants (T1) /= Has_Discriminants (T2) then
c2bf339e
GD
4975 if In_Instance then
4976 if Is_Private_Type (T2)
4977 and then Present (Full_View (T2))
4978 and then Has_Discriminants (Full_View (T2))
4979 then
4980 return Subtypes_Statically_Match (T1, Full_View (T2));
4981
4982 elsif Is_Private_Type (T1)
4983 and then Present (Full_View (T1))
4984 and then Has_Discriminants (Full_View (T1))
4985 then
4986 return Subtypes_Statically_Match (Full_View (T1), T2);
4987
4988 else
4989 return False;
4990 end if;
6eaf4095
ES
4991 else
4992 return False;
4993 end if;
996ae0b0
RK
4994 end if;
4995
4996 declare
4997 DL1 : constant Elist_Id := Discriminant_Constraint (T1);
4998 DL2 : constant Elist_Id := Discriminant_Constraint (T2);
4999
13f34a3f
RD
5000 DA1 : Elmt_Id;
5001 DA2 : Elmt_Id;
996ae0b0
RK
5002
5003 begin
5004 if DL1 = DL2 then
5005 return True;
996ae0b0
RK
5006 elsif Is_Constrained (T1) /= Is_Constrained (T2) then
5007 return False;
5008 end if;
5009
13f34a3f 5010 -- Now loop through the discriminant constraints
996ae0b0 5011
13f34a3f
RD
5012 -- Note: the guard here seems necessary, since it is possible at
5013 -- least for DL1 to be No_Elist. Not clear this is reasonable ???
996ae0b0 5014
13f34a3f
RD
5015 if Present (DL1) and then Present (DL2) then
5016 DA1 := First_Elmt (DL1);
5017 DA2 := First_Elmt (DL2);
5018 while Present (DA1) loop
5019 declare
5020 Expr1 : constant Node_Id := Node (DA1);
5021 Expr2 : constant Node_Id := Node (DA2);
996ae0b0 5022
13f34a3f
RD
5023 begin
5024 if not Is_Static_Expression (Expr1)
5025 or else not Is_Static_Expression (Expr2)
5026 then
5027 return False;
996ae0b0 5028
13f34a3f
RD
5029 -- If either expression raised a constraint error,
5030 -- consider the expressions as matching, since this
5031 -- helps to prevent cascading errors.
5032
5033 elsif Raises_Constraint_Error (Expr1)
5034 or else Raises_Constraint_Error (Expr2)
5035 then
5036 null;
5037
5038 elsif Expr_Value (Expr1) /= Expr_Value (Expr2) then
5039 return False;
5040 end if;
5041 end;
996ae0b0 5042
13f34a3f
RD
5043 Next_Elmt (DA1);
5044 Next_Elmt (DA2);
5045 end loop;
5046 end if;
996ae0b0
RK
5047 end;
5048
5049 return True;
5050
22cb89b5 5051 -- A definite type does not match an indefinite or classwide type.
0356699b
RD
5052 -- However, a generic type with unknown discriminants may be
5053 -- instantiated with a type with no discriminants, and conformance
22cb89b5
AC
5054 -- checking on an inherited operation may compare the actual with the
5055 -- subtype that renames it in the instance.
996ae0b0
RK
5056
5057 elsif
5058 Has_Unknown_Discriminants (T1) /= Has_Unknown_Discriminants (T2)
5059 then
7a3f77d2
AC
5060 return
5061 Is_Generic_Actual_Type (T1) or else Is_Generic_Actual_Type (T2);
996ae0b0
RK
5062
5063 -- Array type
5064
5065 elsif Is_Array_Type (T1) then
5066
22cb89b5 5067 -- If either subtype is unconstrained then both must be, and if both
308e6f3a 5068 -- are unconstrained then no further checking is needed.
996ae0b0
RK
5069
5070 if not Is_Constrained (T1) or else not Is_Constrained (T2) then
5071 return not (Is_Constrained (T1) or else Is_Constrained (T2));
5072 end if;
5073
22cb89b5
AC
5074 -- Both subtypes are constrained, so check that the index subtypes
5075 -- statically match.
996ae0b0
RK
5076
5077 declare
5078 Index1 : Node_Id := First_Index (T1);
5079 Index2 : Node_Id := First_Index (T2);
5080
5081 begin
5082 while Present (Index1) loop
5083 if not
5084 Subtypes_Statically_Match (Etype (Index1), Etype (Index2))
5085 then
5086 return False;
5087 end if;
5088
5089 Next_Index (Index1);
5090 Next_Index (Index2);
5091 end loop;
5092
5093 return True;
5094 end;
5095
5096 elsif Is_Access_Type (T1) then
b5bd964f
ES
5097 if Can_Never_Be_Null (T1) /= Can_Never_Be_Null (T2) then
5098 return False;
5099
e1b871e9
AC
5100 elsif Ekind_In (T1, E_Access_Subprogram_Type,
5101 E_Anonymous_Access_Subprogram_Type)
7a3f77d2 5102 then
b5bd964f
ES
5103 return
5104 Subtype_Conformant
5105 (Designated_Type (T1),
bb98fe75 5106 Designated_Type (T2));
b5bd964f
ES
5107 else
5108 return
5109 Subtypes_Statically_Match
5110 (Designated_Type (T1),
5111 Designated_Type (T2))
5112 and then Is_Access_Constant (T1) = Is_Access_Constant (T2);
5113 end if;
996ae0b0
RK
5114
5115 -- All other types definitely match
5116
5117 else
5118 return True;
5119 end if;
5120 end Subtypes_Statically_Match;
5121
5122 ----------
5123 -- Test --
5124 ----------
5125
5126 function Test (Cond : Boolean) return Uint is
5127 begin
5128 if Cond then
5129 return Uint_1;
5130 else
5131 return Uint_0;
5132 end if;
5133 end Test;
5134
5135 ---------------------------------
5136 -- Test_Expression_Is_Foldable --
5137 ---------------------------------
5138
5139 -- One operand case
5140
5141 procedure Test_Expression_Is_Foldable
5142 (N : Node_Id;
5143 Op1 : Node_Id;
5144 Stat : out Boolean;
5145 Fold : out Boolean)
5146 is
5147 begin
5148 Stat := False;
0356699b
RD
5149 Fold := False;
5150
5151 if Debug_Flag_Dot_F and then In_Extended_Main_Source_Unit (N) then
5152 return;
5153 end if;
996ae0b0
RK
5154
5155 -- If operand is Any_Type, just propagate to result and do not
5156 -- try to fold, this prevents cascaded errors.
5157
5158 if Etype (Op1) = Any_Type then
5159 Set_Etype (N, Any_Type);
996ae0b0
RK
5160 return;
5161
5162 -- If operand raises constraint error, then replace node N with the
5163 -- raise constraint error node, and we are obviously not foldable.
5164 -- Note that this replacement inherits the Is_Static_Expression flag
5165 -- from the operand.
5166
5167 elsif Raises_Constraint_Error (Op1) then
5168 Rewrite_In_Raise_CE (N, Op1);
996ae0b0
RK
5169 return;
5170
5171 -- If the operand is not static, then the result is not static, and
5172 -- all we have to do is to check the operand since it is now known
5173 -- to appear in a non-static context.
5174
5175 elsif not Is_Static_Expression (Op1) then
5176 Check_Non_Static_Context (Op1);
5177 Fold := Compile_Time_Known_Value (Op1);
5178 return;
5179
5180 -- An expression of a formal modular type is not foldable because
5181 -- the modulus is unknown.
5182
5183 elsif Is_Modular_Integer_Type (Etype (Op1))
5184 and then Is_Generic_Type (Etype (Op1))
5185 then
5186 Check_Non_Static_Context (Op1);
996ae0b0
RK
5187 return;
5188
5189 -- Here we have the case of an operand whose type is OK, which is
5190 -- static, and which does not raise constraint error, we can fold.
5191
5192 else
5193 Set_Is_Static_Expression (N);
5194 Fold := True;
5195 Stat := True;
5196 end if;
5197 end Test_Expression_Is_Foldable;
5198
5199 -- Two operand case
5200
5201 procedure Test_Expression_Is_Foldable
5202 (N : Node_Id;
5203 Op1 : Node_Id;
5204 Op2 : Node_Id;
5205 Stat : out Boolean;
5206 Fold : out Boolean)
5207 is
5208 Rstat : constant Boolean := Is_Static_Expression (Op1)
5209 and then Is_Static_Expression (Op2);
5210
5211 begin
5212 Stat := False;
0356699b
RD
5213 Fold := False;
5214
5215 if Debug_Flag_Dot_F and then In_Extended_Main_Source_Unit (N) then
5216 return;
5217 end if;
996ae0b0
RK
5218
5219 -- If either operand is Any_Type, just propagate to result and
5220 -- do not try to fold, this prevents cascaded errors.
5221
5222 if Etype (Op1) = Any_Type or else Etype (Op2) = Any_Type then
5223 Set_Etype (N, Any_Type);
996ae0b0
RK
5224 return;
5225
22cb89b5
AC
5226 -- If left operand raises constraint error, then replace node N with the
5227 -- Raise_Constraint_Error node, and we are obviously not foldable.
996ae0b0
RK
5228 -- Is_Static_Expression is set from the two operands in the normal way,
5229 -- and we check the right operand if it is in a non-static context.
5230
5231 elsif Raises_Constraint_Error (Op1) then
5232 if not Rstat then
5233 Check_Non_Static_Context (Op2);
5234 end if;
5235
5236 Rewrite_In_Raise_CE (N, Op1);
5237 Set_Is_Static_Expression (N, Rstat);
996ae0b0
RK
5238 return;
5239
22cb89b5
AC
5240 -- Similar processing for the case of the right operand. Note that we
5241 -- don't use this routine for the short-circuit case, so we do not have
5242 -- to worry about that special case here.
996ae0b0
RK
5243
5244 elsif Raises_Constraint_Error (Op2) then
5245 if not Rstat then
5246 Check_Non_Static_Context (Op1);
5247 end if;
5248
5249 Rewrite_In_Raise_CE (N, Op2);
5250 Set_Is_Static_Expression (N, Rstat);
996ae0b0
RK
5251 return;
5252
82c80734 5253 -- Exclude expressions of a generic modular type, as above
996ae0b0
RK
5254
5255 elsif Is_Modular_Integer_Type (Etype (Op1))
5256 and then Is_Generic_Type (Etype (Op1))
5257 then
5258 Check_Non_Static_Context (Op1);
996ae0b0
RK
5259 return;
5260
5261 -- If result is not static, then check non-static contexts on operands
22cb89b5 5262 -- since one of them may be static and the other one may not be static.
996ae0b0
RK
5263
5264 elsif not Rstat then
5265 Check_Non_Static_Context (Op1);
5266 Check_Non_Static_Context (Op2);
5267 Fold := Compile_Time_Known_Value (Op1)
5268 and then Compile_Time_Known_Value (Op2);
5269 return;
5270
22cb89b5
AC
5271 -- Else result is static and foldable. Both operands are static, and
5272 -- neither raises constraint error, so we can definitely fold.
996ae0b0
RK
5273
5274 else
5275 Set_Is_Static_Expression (N);
5276 Fold := True;
5277 Stat := True;
5278 return;
5279 end if;
5280 end Test_Expression_Is_Foldable;
5281
305caf42
AC
5282 -------------------
5283 -- Test_In_Range --
5284 -------------------
5285
5286 function Test_In_Range
5287 (N : Node_Id;
5288 Typ : Entity_Id;
5289 Assume_Valid : Boolean;
5290 Fixed_Int : Boolean;
5291 Int_Real : Boolean) return Range_Membership
5292 is
5293 Val : Uint;
5294 Valr : Ureal;
5295
5296 pragma Warnings (Off, Assume_Valid);
5297 -- For now Assume_Valid is unreferenced since the current implementation
5298 -- always returns Unknown if N is not a compile time known value, but we
5299 -- keep the parameter to allow for future enhancements in which we try
5300 -- to get the information in the variable case as well.
5301
5302 begin
5303 -- Universal types have no range limits, so always in range
5304
5305 if Typ = Universal_Integer or else Typ = Universal_Real then
5306 return In_Range;
5307
5308 -- Never known if not scalar type. Don't know if this can actually
5309 -- happen, but our spec allows it, so we must check!
5310
5311 elsif not Is_Scalar_Type (Typ) then
5312 return Unknown;
5313
5314 -- Never known if this is a generic type, since the bounds of generic
5315 -- types are junk. Note that if we only checked for static expressions
5316 -- (instead of compile time known values) below, we would not need this
5317 -- check, because values of a generic type can never be static, but they
5318 -- can be known at compile time.
5319
5320 elsif Is_Generic_Type (Typ) then
5321 return Unknown;
5322
5323 -- Never known unless we have a compile time known value
5324
5325 elsif not Compile_Time_Known_Value (N) then
5326 return Unknown;
5327
5328 -- General processing with a known compile time value
5329
5330 else
5331 declare
5332 Lo : Node_Id;
5333 Hi : Node_Id;
5334
5335 LB_Known : Boolean;
5336 HB_Known : Boolean;
5337
5338 begin
5339 Lo := Type_Low_Bound (Typ);
5340 Hi := Type_High_Bound (Typ);
5341
5342 LB_Known := Compile_Time_Known_Value (Lo);
5343 HB_Known := Compile_Time_Known_Value (Hi);
5344
5345 -- Fixed point types should be considered as such only if flag
5346 -- Fixed_Int is set to False.
5347
5348 if Is_Floating_Point_Type (Typ)
5349 or else (Is_Fixed_Point_Type (Typ) and then not Fixed_Int)
5350 or else Int_Real
5351 then
5352 Valr := Expr_Value_R (N);
5353
5354 if LB_Known and HB_Known then
5355 if Valr >= Expr_Value_R (Lo)
5356 and then
5357 Valr <= Expr_Value_R (Hi)
5358 then
5359 return In_Range;
5360 else
5361 return Out_Of_Range;
5362 end if;
5363
5364 elsif (LB_Known and then Valr < Expr_Value_R (Lo))
5365 or else
5366 (HB_Known and then Valr > Expr_Value_R (Hi))
5367 then
5368 return Out_Of_Range;
5369
5370 else
5371 return Unknown;
5372 end if;
5373
5374 else
5375 Val := Expr_Value (N);
5376
5377 if LB_Known and HB_Known then
5378 if Val >= Expr_Value (Lo)
5379 and then
5380 Val <= Expr_Value (Hi)
5381 then
5382 return In_Range;
5383 else
5384 return Out_Of_Range;
5385 end if;
5386
5387 elsif (LB_Known and then Val < Expr_Value (Lo))
5388 or else
5389 (HB_Known and then Val > Expr_Value (Hi))
5390 then
5391 return Out_Of_Range;
5392
5393 else
5394 return Unknown;
5395 end if;
5396 end if;
5397 end;
5398 end if;
5399 end Test_In_Range;
5400
996ae0b0
RK
5401 --------------
5402 -- To_Bits --
5403 --------------
5404
5405 procedure To_Bits (U : Uint; B : out Bits) is
5406 begin
5407 for J in 0 .. B'Last loop
5408 B (J) := (U / (2 ** J)) mod 2 /= 0;
5409 end loop;
5410 end To_Bits;
5411
fbf5a39b
AC
5412 --------------------
5413 -- Why_Not_Static --
5414 --------------------
5415
5416 procedure Why_Not_Static (Expr : Node_Id) is
5417 N : constant Node_Id := Original_Node (Expr);
5418 Typ : Entity_Id;
5419 E : Entity_Id;
5420
5421 procedure Why_Not_Static_List (L : List_Id);
22cb89b5
AC
5422 -- A version that can be called on a list of expressions. Finds all
5423 -- non-static violations in any element of the list.
fbf5a39b
AC
5424
5425 -------------------------
5426 -- Why_Not_Static_List --
5427 -------------------------
5428
5429 procedure Why_Not_Static_List (L : List_Id) is
5430 N : Node_Id;
5431
5432 begin
5433 if Is_Non_Empty_List (L) then
5434 N := First (L);
5435 while Present (N) loop
5436 Why_Not_Static (N);
5437 Next (N);
5438 end loop;
5439 end if;
5440 end Why_Not_Static_List;
5441
5442 -- Start of processing for Why_Not_Static
5443
5444 begin
22cb89b5
AC
5445 -- If in ACATS mode (debug flag 2), then suppress all these messages,
5446 -- this avoids massive updates to the ACATS base line.
fbf5a39b
AC
5447
5448 if Debug_Flag_2 then
5449 return;
5450 end if;
5451
5452 -- Ignore call on error or empty node
5453
5454 if No (Expr) or else Nkind (Expr) = N_Error then
5455 return;
5456 end if;
5457
5458 -- Preprocessing for sub expressions
5459
5460 if Nkind (Expr) in N_Subexpr then
5461
5462 -- Nothing to do if expression is static
5463
5464 if Is_OK_Static_Expression (Expr) then
5465 return;
5466 end if;
5467
5468 -- Test for constraint error raised
5469
5470 if Raises_Constraint_Error (Expr) then
5471 Error_Msg_N
5472 ("expression raises exception, cannot be static " &
b11e8d6f 5473 "(RM 4.9(34))!", N);
fbf5a39b
AC
5474 return;
5475 end if;
5476
5477 -- If no type, then something is pretty wrong, so ignore
5478
5479 Typ := Etype (Expr);
5480
5481 if No (Typ) then
5482 return;
5483 end if;
5484
65f7ed64
AC
5485 -- Type must be scalar or string type (but allow Bignum, since this
5486 -- is really a scalar type from our point of view in this diagnosis).
fbf5a39b
AC
5487
5488 if not Is_Scalar_Type (Typ)
5489 and then not Is_String_Type (Typ)
65f7ed64 5490 and then not Is_RTE (Typ, RE_Bignum)
fbf5a39b
AC
5491 then
5492 Error_Msg_N
5493 ("static expression must have scalar or string type " &
b11e8d6f 5494 "(RM 4.9(2))!", N);
fbf5a39b
AC
5495 return;
5496 end if;
5497 end if;
5498
5499 -- If we got through those checks, test particular node kind
5500
5501 case Nkind (N) is
5502 when N_Expanded_Name | N_Identifier | N_Operator_Symbol =>
5503 E := Entity (N);
5504
5505 if Is_Named_Number (E) then
5506 null;
5507
5508 elsif Ekind (E) = E_Constant then
5509 if not Is_Static_Expression (Constant_Value (E)) then
5510 Error_Msg_NE
b11e8d6f 5511 ("& is not a static constant (RM 4.9(5))!", N, E);
fbf5a39b
AC
5512 end if;
5513
5514 else
5515 Error_Msg_NE
5516 ("& is not static constant or named number " &
b11e8d6f 5517 "(RM 4.9(5))!", N, E);
fbf5a39b
AC
5518 end if;
5519
514d0fc5 5520 when N_Binary_Op | N_Short_Circuit | N_Membership_Test =>
fbf5a39b
AC
5521 if Nkind (N) in N_Op_Shift then
5522 Error_Msg_N
b11e8d6f 5523 ("shift functions are never static (RM 4.9(6,18))!", N);
fbf5a39b
AC
5524
5525 else
5526 Why_Not_Static (Left_Opnd (N));
5527 Why_Not_Static (Right_Opnd (N));
5528 end if;
5529
5530 when N_Unary_Op =>
5531 Why_Not_Static (Right_Opnd (N));
5532
5533 when N_Attribute_Reference =>
5534 Why_Not_Static_List (Expressions (N));
5535
5536 E := Etype (Prefix (N));
5537
5538 if E = Standard_Void_Type then
5539 return;
5540 end if;
5541
5542 -- Special case non-scalar'Size since this is a common error
5543
5544 if Attribute_Name (N) = Name_Size then
5545 Error_Msg_N
fdfea49e 5546 ("size attribute is only static for static scalar type " &
b11e8d6f 5547 "(RM 4.9(7,8))", N);
fbf5a39b
AC
5548
5549 -- Flag array cases
5550
5551 elsif Is_Array_Type (E) then
5552 if Attribute_Name (N) /= Name_First
5553 and then
5554 Attribute_Name (N) /= Name_Last
5555 and then
5556 Attribute_Name (N) /= Name_Length
5557 then
5558 Error_Msg_N
5559 ("static array attribute must be Length, First, or Last " &
b11e8d6f 5560 "(RM 4.9(8))!", N);
fbf5a39b
AC
5561
5562 -- Since we know the expression is not-static (we already
5563 -- tested for this, must mean array is not static).
5564
5565 else
5566 Error_Msg_N
b11e8d6f 5567 ("prefix is non-static array (RM 4.9(8))!", Prefix (N));
fbf5a39b
AC
5568 end if;
5569
5570 return;
5571
22cb89b5
AC
5572 -- Special case generic types, since again this is a common source
5573 -- of confusion.
fbf5a39b
AC
5574
5575 elsif Is_Generic_Actual_Type (E)
5576 or else
5577 Is_Generic_Type (E)
5578 then
5579 Error_Msg_N
5580 ("attribute of generic type is never static " &
b11e8d6f 5581 "(RM 4.9(7,8))!", N);
fbf5a39b
AC
5582
5583 elsif Is_Static_Subtype (E) then
5584 null;
5585
5586 elsif Is_Scalar_Type (E) then
5587 Error_Msg_N
5588 ("prefix type for attribute is not static scalar subtype " &
b11e8d6f 5589 "(RM 4.9(7))!", N);
fbf5a39b
AC
5590
5591 else
5592 Error_Msg_N
5593 ("static attribute must apply to array/scalar type " &
b11e8d6f 5594 "(RM 4.9(7,8))!", N);
fbf5a39b
AC
5595 end if;
5596
5597 when N_String_Literal =>
5598 Error_Msg_N
b11e8d6f 5599 ("subtype of string literal is non-static (RM 4.9(4))!", N);
fbf5a39b
AC
5600
5601 when N_Explicit_Dereference =>
5602 Error_Msg_N
b11e8d6f 5603 ("explicit dereference is never static (RM 4.9)!", N);
fbf5a39b
AC
5604
5605 when N_Function_Call =>
5606 Why_Not_Static_List (Parameter_Associations (N));
65f7ed64
AC
5607
5608 -- Complain about non-static function call unless we have Bignum
5609 -- which means that the underlying expression is really some
5610 -- scalar arithmetic operation.
5611
5612 if not Is_RTE (Typ, RE_Bignum) then
5613 Error_Msg_N ("non-static function call (RM 4.9(6,18))!", N);
5614 end if;
fbf5a39b
AC
5615
5616 when N_Parameter_Association =>
5617 Why_Not_Static (Explicit_Actual_Parameter (N));
5618
5619 when N_Indexed_Component =>
5620 Error_Msg_N
b11e8d6f 5621 ("indexed component is never static (RM 4.9)!", N);
fbf5a39b
AC
5622
5623 when N_Procedure_Call_Statement =>
5624 Error_Msg_N
b11e8d6f 5625 ("procedure call is never static (RM 4.9)!", N);
fbf5a39b
AC
5626
5627 when N_Qualified_Expression =>
5628 Why_Not_Static (Expression (N));
5629
5630 when N_Aggregate | N_Extension_Aggregate =>
5631 Error_Msg_N
b11e8d6f 5632 ("an aggregate is never static (RM 4.9)!", N);
fbf5a39b
AC
5633
5634 when N_Range =>
5635 Why_Not_Static (Low_Bound (N));
5636 Why_Not_Static (High_Bound (N));
5637
5638 when N_Range_Constraint =>
5639 Why_Not_Static (Range_Expression (N));
5640
5641 when N_Subtype_Indication =>
5642 Why_Not_Static (Constraint (N));
5643
5644 when N_Selected_Component =>
5645 Error_Msg_N
b11e8d6f 5646 ("selected component is never static (RM 4.9)!", N);
fbf5a39b
AC
5647
5648 when N_Slice =>
5649 Error_Msg_N
b11e8d6f 5650 ("slice is never static (RM 4.9)!", N);
fbf5a39b
AC
5651
5652 when N_Type_Conversion =>
5653 Why_Not_Static (Expression (N));
5654
23b86353
AC
5655 if not Is_Scalar_Type (Entity (Subtype_Mark (N)))
5656 or else not Is_Static_Subtype (Entity (Subtype_Mark (N)))
fbf5a39b
AC
5657 then
5658 Error_Msg_N
5659 ("static conversion requires static scalar subtype result " &
b11e8d6f 5660 "(RM 4.9(9))!", N);
fbf5a39b
AC
5661 end if;
5662
5663 when N_Unchecked_Type_Conversion =>
5664 Error_Msg_N
b11e8d6f 5665 ("unchecked type conversion is never static (RM 4.9)!", N);
fbf5a39b
AC
5666
5667 when others =>
5668 null;
5669
5670 end case;
5671 end Why_Not_Static;
5672
996ae0b0 5673end Sem_Eval;
This page took 4.144317 seconds and 5 git commands to generate.