]> gcc.gnu.org Git - gcc.git/blame - gcc/ada/sem_eval.adb
restrict.adb, [...]: Remove redundant type conversion.
[gcc.git] / gcc / ada / sem_eval.adb
CommitLineData
fbf5a39b 1------------------------------------------------------------------------------
996ae0b0
RK
2-- --
3-- GNAT COMPILER COMPONENTS --
4-- --
5-- S E M _ E V A L --
6-- --
7-- B o d y --
8-- --
13f34a3f 9-- Copyright (C) 1992-2007, Free Software Foundation, Inc. --
996ae0b0
RK
10-- --
11-- GNAT is free software; you can redistribute it and/or modify it under --
12-- terms of the GNU General Public License as published by the Free Soft- --
13-- ware Foundation; either version 2, or (at your option) any later ver- --
14-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16-- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17-- for more details. You should have received a copy of the GNU General --
18-- Public License distributed with GNAT; see file COPYING. If not, write --
cb5fee25
KC
19-- to the Free Software Foundation, 51 Franklin Street, Fifth Floor, --
20-- Boston, MA 02110-1301, USA. --
996ae0b0
RK
21-- --
22-- GNAT was originally developed by the GNAT team at New York University. --
71ff80dc 23-- Extensive contributions were provided by Ada Core Technologies Inc. --
996ae0b0
RK
24-- --
25------------------------------------------------------------------------------
26
27with Atree; use Atree;
28with Checks; use Checks;
29with Debug; use Debug;
30with Einfo; use Einfo;
31with Elists; use Elists;
32with Errout; use Errout;
33with Eval_Fat; use Eval_Fat;
8cbb664e 34with Exp_Util; use Exp_Util;
0356699b 35with Lib; use Lib;
13f34a3f 36with Namet; use Namet;
996ae0b0
RK
37with Nmake; use Nmake;
38with Nlists; use Nlists;
39with Opt; use Opt;
40with Sem; use Sem;
41with Sem_Cat; use Sem_Cat;
b5bd964f 42with Sem_Ch6; use Sem_Ch6;
996ae0b0
RK
43with Sem_Ch8; use Sem_Ch8;
44with Sem_Res; use Sem_Res;
45with Sem_Util; use Sem_Util;
46with Sem_Type; use Sem_Type;
47with Sem_Warn; use Sem_Warn;
48with Sinfo; use Sinfo;
49with Snames; use Snames;
50with Stand; use Stand;
51with Stringt; use Stringt;
07fc65c4 52with Tbuild; use Tbuild;
996ae0b0
RK
53
54package body Sem_Eval is
55
56 -----------------------------------------
57 -- Handling of Compile Time Evaluation --
58 -----------------------------------------
59
60 -- The compile time evaluation of expressions is distributed over several
61 -- Eval_xxx procedures. These procedures are called immediatedly after
62 -- a subexpression is resolved and is therefore accomplished in a bottom
63 -- up fashion. The flags are synthesized using the following approach.
64
65 -- Is_Static_Expression is determined by following the detailed rules
66 -- in RM 4.9(4-14). This involves testing the Is_Static_Expression
67 -- flag of the operands in many cases.
68
69 -- Raises_Constraint_Error is set if any of the operands have the flag
70 -- set or if an attempt to compute the value of the current expression
71 -- results in detection of a runtime constraint error.
72
73 -- As described in the spec, the requirement is that Is_Static_Expression
74 -- be accurately set, and in addition for nodes for which this flag is set,
75 -- Raises_Constraint_Error must also be set. Furthermore a node which has
76 -- Is_Static_Expression set, and Raises_Constraint_Error clear, then the
77 -- requirement is that the expression value must be precomputed, and the
78 -- node is either a literal, or the name of a constant entity whose value
79 -- is a static expression.
80
81 -- The general approach is as follows. First compute Is_Static_Expression.
82 -- If the node is not static, then the flag is left off in the node and
83 -- we are all done. Otherwise for a static node, we test if any of the
84 -- operands will raise constraint error, and if so, propagate the flag
85 -- Raises_Constraint_Error to the result node and we are done (since the
86 -- error was already posted at a lower level).
87
88 -- For the case of a static node whose operands do not raise constraint
89 -- error, we attempt to evaluate the node. If this evaluation succeeds,
90 -- then the node is replaced by the result of this computation. If the
91 -- evaluation raises constraint error, then we rewrite the node with
92 -- Apply_Compile_Time_Constraint_Error to raise the exception and also
93 -- to post appropriate error messages.
94
95 ----------------
96 -- Local Data --
97 ----------------
98
99 type Bits is array (Nat range <>) of Boolean;
100 -- Used to convert unsigned (modular) values for folding logical ops
101
07fc65c4
GB
102 -- The following definitions are used to maintain a cache of nodes that
103 -- have compile time known values. The cache is maintained only for
104 -- discrete types (the most common case), and is populated by calls to
105 -- Compile_Time_Known_Value and Expr_Value, but only used by Expr_Value
106 -- since it is possible for the status to change (in particular it is
107 -- possible for a node to get replaced by a constraint error node).
108
109 CV_Bits : constant := 5;
110 -- Number of low order bits of Node_Id value used to reference entries
111 -- in the cache table.
112
113 CV_Cache_Size : constant Nat := 2 ** CV_Bits;
114 -- Size of cache for compile time values
115
116 subtype CV_Range is Nat range 0 .. CV_Cache_Size;
117
118 type CV_Entry is record
119 N : Node_Id;
120 V : Uint;
121 end record;
122
123 type CV_Cache_Array is array (CV_Range) of CV_Entry;
124
125 CV_Cache : CV_Cache_Array := (others => (Node_High_Bound, Uint_0));
126 -- This is the actual cache, with entries consisting of node/value pairs,
127 -- and the impossible value Node_High_Bound used for unset entries.
128
996ae0b0
RK
129 -----------------------
130 -- Local Subprograms --
131 -----------------------
132
996ae0b0
RK
133 function From_Bits (B : Bits; T : Entity_Id) return Uint;
134 -- Converts a bit string of length B'Length to a Uint value to be used
135 -- for a target of type T, which is a modular type. This procedure
136 -- includes the necessary reduction by the modulus in the case of a
137 -- non-binary modulus (for a binary modulus, the bit string is the
138 -- right length any way so all is well).
139
140 function Get_String_Val (N : Node_Id) return Node_Id;
141 -- Given a tree node for a folded string or character value, returns
142 -- the corresponding string literal or character literal (one of the
143 -- two must be available, or the operand would not have been marked
144 -- as foldable in the earlier analysis of the operation).
145
07fc65c4
GB
146 function OK_Bits (N : Node_Id; Bits : Uint) return Boolean;
147 -- Bits represents the number of bits in an integer value to be computed
148 -- (but the value has not been computed yet). If this value in Bits is
149 -- reasonable, a result of True is returned, with the implication that
150 -- the caller should go ahead and complete the calculation. If the value
151 -- in Bits is unreasonably large, then an error is posted on node N, and
152 -- False is returned (and the caller skips the proposed calculation).
153
996ae0b0
RK
154 procedure Out_Of_Range (N : Node_Id);
155 -- This procedure is called if it is determined that node N, which
156 -- appears in a non-static context, is a compile time known value
157 -- which is outside its range, i.e. the range of Etype. This is used
158 -- in contexts where this is an illegality if N is static, and should
159 -- generate a warning otherwise.
160
161 procedure Rewrite_In_Raise_CE (N : Node_Id; Exp : Node_Id);
162 -- N and Exp are nodes representing an expression, Exp is known
163 -- to raise CE. N is rewritten in term of Exp in the optimal way.
164
165 function String_Type_Len (Stype : Entity_Id) return Uint;
166 -- Given a string type, determines the length of the index type, or,
167 -- if this index type is non-static, the length of the base type of
168 -- this index type. Note that if the string type is itself static,
169 -- then the index type is static, so the second case applies only
170 -- if the string type passed is non-static.
171
172 function Test (Cond : Boolean) return Uint;
173 pragma Inline (Test);
174 -- This function simply returns the appropriate Boolean'Pos value
175 -- corresponding to the value of Cond as a universal integer. It is
176 -- used for producing the result of the static evaluation of the
177 -- logical operators
178
179 procedure Test_Expression_Is_Foldable
180 (N : Node_Id;
181 Op1 : Node_Id;
182 Stat : out Boolean;
183 Fold : out Boolean);
184 -- Tests to see if expression N whose single operand is Op1 is foldable,
185 -- i.e. the operand value is known at compile time. If the operation is
186 -- foldable, then Fold is True on return, and Stat indicates whether
187 -- the result is static (i.e. both operands were static). Note that it
188 -- is quite possible for Fold to be True, and Stat to be False, since
189 -- there are cases in which we know the value of an operand even though
190 -- it is not technically static (e.g. the static lower bound of a range
191 -- whose upper bound is non-static).
192 --
193 -- If Stat is set False on return, then Expression_Is_Foldable makes a
194 -- call to Check_Non_Static_Context on the operand. If Fold is False on
195 -- return, then all processing is complete, and the caller should
196 -- return, since there is nothing else to do.
197
198 procedure Test_Expression_Is_Foldable
199 (N : Node_Id;
200 Op1 : Node_Id;
201 Op2 : Node_Id;
202 Stat : out Boolean;
203 Fold : out Boolean);
204 -- Same processing, except applies to an expression N with two operands
205 -- Op1 and Op2.
206
207 procedure To_Bits (U : Uint; B : out Bits);
208 -- Converts a Uint value to a bit string of length B'Length
209
210 ------------------------------
211 -- Check_Non_Static_Context --
212 ------------------------------
213
214 procedure Check_Non_Static_Context (N : Node_Id) is
fbf5a39b
AC
215 T : constant Entity_Id := Etype (N);
216 Checks_On : constant Boolean :=
996ae0b0
RK
217 not Index_Checks_Suppressed (T)
218 and not Range_Checks_Suppressed (T);
219
220 begin
fbf5a39b 221 -- Ignore cases of non-scalar types or error types
996ae0b0 222
fbf5a39b 223 if T = Any_Type or else not Is_Scalar_Type (T) then
996ae0b0 224 return;
fbf5a39b 225 end if;
996ae0b0 226
fbf5a39b
AC
227 -- At this stage we have a scalar type. If we have an expression
228 -- that raises CE, then we already issued a warning or error msg
229 -- so there is nothing more to be done in this routine.
230
231 if Raises_Constraint_Error (N) then
232 return;
233 end if;
234
235 -- Now we have a scalar type which is not marked as raising a
236 -- constraint error exception. The main purpose of this routine
237 -- is to deal with static expressions appearing in a non-static
238 -- context. That means that if we do not have a static expression
239 -- then there is not much to do. The one case that we deal with
240 -- here is that if we have a floating-point value that is out of
241 -- range, then we post a warning that an infinity will result.
242
243 if not Is_Static_Expression (N) then
244 if Is_Floating_Point_Type (T)
245 and then Is_Out_Of_Range (N, Base_Type (T))
246 then
247 Error_Msg_N
248 ("?float value out of range, infinity will be generated", N);
249 end if;
996ae0b0 250
996ae0b0
RK
251 return;
252 end if;
253
254 -- Here we have the case of outer level static expression of
255 -- scalar type, where the processing of this procedure is needed.
256
257 -- For real types, this is where we convert the value to a machine
258 -- number (see RM 4.9(38)). Also see ACVC test C490001. We should
259 -- only need to do this if the parent is a constant declaration,
260 -- since in other cases, gigi should do the necessary conversion
261 -- correctly, but experimentation shows that this is not the case
262 -- on all machines, in particular if we do not convert all literals
263 -- to machine values in non-static contexts, then ACVC test C490001
264 -- fails on Sparc/Solaris and SGI/Irix.
265
266 if Nkind (N) = N_Real_Literal
267 and then not Is_Machine_Number (N)
268 and then not Is_Generic_Type (Etype (N))
269 and then Etype (N) /= Universal_Real
996ae0b0
RK
270 then
271 -- Check that value is in bounds before converting to machine
272 -- number, so as not to lose case where value overflows in the
273 -- least significant bit or less. See B490001.
274
275 if Is_Out_Of_Range (N, Base_Type (T)) then
276 Out_Of_Range (N);
277 return;
278 end if;
279
280 -- Note: we have to copy the node, to avoid problems with conformance
281 -- of very similar numbers (see ACVC tests B4A010C and B63103A).
282
283 Rewrite (N, New_Copy (N));
284
285 if not Is_Floating_Point_Type (T) then
286 Set_Realval
287 (N, Corresponding_Integer_Value (N) * Small_Value (T));
288
289 elsif not UR_Is_Zero (Realval (N)) then
996ae0b0 290
fbf5a39b
AC
291 -- Note: even though RM 4.9(38) specifies biased rounding,
292 -- this has been modified by AI-100 in order to prevent
293 -- confusing differences in rounding between static and
294 -- non-static expressions. AI-100 specifies that the effect
295 -- of such rounding is implementation dependent, and in GNAT
296 -- we round to nearest even to match the run-time behavior.
996ae0b0 297
fbf5a39b
AC
298 Set_Realval
299 (N, Machine (Base_Type (T), Realval (N), Round_Even, N));
996ae0b0
RK
300 end if;
301
302 Set_Is_Machine_Number (N);
303 end if;
304
305 -- Check for out of range universal integer. This is a non-static
306 -- context, so the integer value must be in range of the runtime
307 -- representation of universal integers.
308
309 -- We do this only within an expression, because that is the only
310 -- case in which non-static universal integer values can occur, and
311 -- furthermore, Check_Non_Static_Context is currently (incorrectly???)
312 -- called in contexts like the expression of a number declaration where
313 -- we certainly want to allow out of range values.
314
315 if Etype (N) = Universal_Integer
316 and then Nkind (N) = N_Integer_Literal
317 and then Nkind (Parent (N)) in N_Subexpr
318 and then
319 (Intval (N) < Expr_Value (Type_Low_Bound (Universal_Integer))
320 or else
321 Intval (N) > Expr_Value (Type_High_Bound (Universal_Integer)))
322 then
323 Apply_Compile_Time_Constraint_Error
07fc65c4
GB
324 (N, "non-static universal integer value out of range?",
325 CE_Range_Check_Failed);
996ae0b0
RK
326
327 -- Check out of range of base type
328
329 elsif Is_Out_Of_Range (N, Base_Type (T)) then
330 Out_Of_Range (N);
331
332 -- Give warning if outside subtype (where one or both of the
333 -- bounds of the subtype is static). This warning is omitted
334 -- if the expression appears in a range that could be null
335 -- (warnings are handled elsewhere for this case).
336
337 elsif T /= Base_Type (T)
338 and then Nkind (Parent (N)) /= N_Range
339 then
340 if Is_In_Range (N, T) then
341 null;
342
343 elsif Is_Out_Of_Range (N, T) then
344 Apply_Compile_Time_Constraint_Error
07fc65c4 345 (N, "value not in range of}?", CE_Range_Check_Failed);
996ae0b0
RK
346
347 elsif Checks_On then
348 Enable_Range_Check (N);
349
350 else
351 Set_Do_Range_Check (N, False);
352 end if;
353 end if;
354 end Check_Non_Static_Context;
355
356 ---------------------------------
357 -- Check_String_Literal_Length --
358 ---------------------------------
359
360 procedure Check_String_Literal_Length (N : Node_Id; Ttype : Entity_Id) is
361 begin
362 if not Raises_Constraint_Error (N)
363 and then Is_Constrained (Ttype)
364 then
365 if
366 UI_From_Int (String_Length (Strval (N))) /= String_Type_Len (Ttype)
367 then
368 Apply_Compile_Time_Constraint_Error
369 (N, "string length wrong for}?",
07fc65c4 370 CE_Length_Check_Failed,
996ae0b0
RK
371 Ent => Ttype,
372 Typ => Ttype);
373 end if;
374 end if;
375 end Check_String_Literal_Length;
376
377 --------------------------
378 -- Compile_Time_Compare --
379 --------------------------
380
fbf5a39b
AC
381 function Compile_Time_Compare
382 (L, R : Node_Id;
f44fe430 383 Rec : Boolean := False) return Compare_Result
fbf5a39b 384 is
996ae0b0
RK
385 Ltyp : constant Entity_Id := Etype (L);
386 Rtyp : constant Entity_Id := Etype (R);
387
388 procedure Compare_Decompose
389 (N : Node_Id;
390 R : out Node_Id;
391 V : out Uint);
392 -- This procedure decomposes the node N into an expression node
393 -- and a signed offset, so that the value of N is equal to the
394 -- value of R plus the value V (which may be negative). If no
395 -- such decomposition is possible, then on return R is a copy
396 -- of N, and V is set to zero.
397
398 function Compare_Fixup (N : Node_Id) return Node_Id;
399 -- This function deals with replacing 'Last and 'First references
400 -- with their corresponding type bounds, which we then can compare.
401 -- The argument is the original node, the result is the identity,
402 -- unless we have a 'Last/'First reference in which case the value
403 -- returned is the appropriate type bound.
404
405 function Is_Same_Value (L, R : Node_Id) return Boolean;
406 -- Returns True iff L and R represent expressions that definitely
407 -- have identical (but not necessarily compile time known) values
408 -- Indeed the caller is expected to have already dealt with the
409 -- cases of compile time known values, so these are not tested here.
410
411 -----------------------
412 -- Compare_Decompose --
413 -----------------------
414
415 procedure Compare_Decompose
416 (N : Node_Id;
417 R : out Node_Id;
418 V : out Uint)
419 is
420 begin
421 if Nkind (N) = N_Op_Add
422 and then Nkind (Right_Opnd (N)) = N_Integer_Literal
423 then
424 R := Left_Opnd (N);
425 V := Intval (Right_Opnd (N));
426 return;
427
428 elsif Nkind (N) = N_Op_Subtract
429 and then Nkind (Right_Opnd (N)) = N_Integer_Literal
430 then
431 R := Left_Opnd (N);
432 V := UI_Negate (Intval (Right_Opnd (N)));
433 return;
434
435 elsif Nkind (N) = N_Attribute_Reference then
436
437 if Attribute_Name (N) = Name_Succ then
438 R := First (Expressions (N));
439 V := Uint_1;
440 return;
441
442 elsif Attribute_Name (N) = Name_Pred then
443 R := First (Expressions (N));
444 V := Uint_Minus_1;
445 return;
446 end if;
447 end if;
448
449 R := N;
450 V := Uint_0;
451 end Compare_Decompose;
452
453 -------------------
454 -- Compare_Fixup --
455 -------------------
456
457 function Compare_Fixup (N : Node_Id) return Node_Id is
458 Indx : Node_Id;
459 Xtyp : Entity_Id;
460 Subs : Nat;
461
462 begin
463 if Nkind (N) = N_Attribute_Reference
464 and then (Attribute_Name (N) = Name_First
465 or else
466 Attribute_Name (N) = Name_Last)
467 then
468 Xtyp := Etype (Prefix (N));
469
470 -- If we have no type, then just abandon the attempt to do
471 -- a fixup, this is probably the result of some other error.
472
473 if No (Xtyp) then
474 return N;
475 end if;
476
477 -- Dereference an access type
478
479 if Is_Access_Type (Xtyp) then
480 Xtyp := Designated_Type (Xtyp);
481 end if;
482
483 -- If we don't have an array type at this stage, something
484 -- is peculiar, e.g. another error, and we abandon the attempt
485 -- at a fixup.
486
487 if not Is_Array_Type (Xtyp) then
488 return N;
489 end if;
490
491 -- Ignore unconstrained array, since bounds are not meaningful
492
493 if not Is_Constrained (Xtyp) then
494 return N;
495 end if;
496
c3de5c4c
ES
497 if Ekind (Xtyp) = E_String_Literal_Subtype then
498 if Attribute_Name (N) = Name_First then
499 return String_Literal_Low_Bound (Xtyp);
500
501 else -- Attribute_Name (N) = Name_Last
502 return Make_Integer_Literal (Sloc (N),
503 Intval => Intval (String_Literal_Low_Bound (Xtyp))
504 + String_Literal_Length (Xtyp));
505 end if;
506 end if;
507
996ae0b0
RK
508 -- Find correct index type
509
510 Indx := First_Index (Xtyp);
511
512 if Present (Expressions (N)) then
513 Subs := UI_To_Int (Expr_Value (First (Expressions (N))));
514
515 for J in 2 .. Subs loop
516 Indx := Next_Index (Indx);
517 end loop;
518 end if;
519
520 Xtyp := Etype (Indx);
521
522 if Attribute_Name (N) = Name_First then
523 return Type_Low_Bound (Xtyp);
524
525 else -- Attribute_Name (N) = Name_Last
526 return Type_High_Bound (Xtyp);
527 end if;
528 end if;
529
530 return N;
531 end Compare_Fixup;
532
533 -------------------
534 -- Is_Same_Value --
535 -------------------
536
537 function Is_Same_Value (L, R : Node_Id) return Boolean is
538 Lf : constant Node_Id := Compare_Fixup (L);
539 Rf : constant Node_Id := Compare_Fixup (R);
540
fbf5a39b
AC
541 function Is_Same_Subscript (L, R : List_Id) return Boolean;
542 -- L, R are the Expressions values from two attribute nodes
543 -- for First or Last attributes. Either may be set to No_List
544 -- if no expressions are present (indicating subscript 1).
545 -- The result is True if both expressions represent the same
546 -- subscript (note that one case is where one subscript is
547 -- missing and the other is explicitly set to 1).
548
549 -----------------------
550 -- Is_Same_Subscript --
551 -----------------------
552
553 function Is_Same_Subscript (L, R : List_Id) return Boolean is
554 begin
555 if L = No_List then
556 if R = No_List then
557 return True;
558 else
559 return Expr_Value (First (R)) = Uint_1;
560 end if;
561
562 else
563 if R = No_List then
564 return Expr_Value (First (L)) = Uint_1;
565 else
566 return Expr_Value (First (L)) = Expr_Value (First (R));
567 end if;
568 end if;
569 end Is_Same_Subscript;
570
571 -- Start of processing for Is_Same_Value
572
996ae0b0
RK
573 begin
574 -- Values are the same if they are the same identifier and the
fbf5a39b
AC
575 -- identifier refers to a constant object (E_Constant). This
576 -- does not however apply to Float types, since we may have two
577 -- NaN values and they should never compare equal.
996ae0b0
RK
578
579 if Nkind (Lf) = N_Identifier and then Nkind (Rf) = N_Identifier
580 and then Entity (Lf) = Entity (Rf)
fbf5a39b 581 and then not Is_Floating_Point_Type (Etype (L))
996ae0b0
RK
582 and then (Ekind (Entity (Lf)) = E_Constant or else
583 Ekind (Entity (Lf)) = E_In_Parameter or else
584 Ekind (Entity (Lf)) = E_Loop_Parameter)
585 then
586 return True;
587
588 -- Or if they are compile time known and identical
589
590 elsif Compile_Time_Known_Value (Lf)
591 and then
592 Compile_Time_Known_Value (Rf)
593 and then Expr_Value (Lf) = Expr_Value (Rf)
594 then
595 return True;
596
597 -- Or if they are both 'First or 'Last values applying to the
598 -- same entity (first and last don't change even if value does)
599
600 elsif Nkind (Lf) = N_Attribute_Reference
601 and then
602 Nkind (Rf) = N_Attribute_Reference
603 and then Attribute_Name (Lf) = Attribute_Name (Rf)
604 and then (Attribute_Name (Lf) = Name_First
605 or else
606 Attribute_Name (Lf) = Name_Last)
607 and then Is_Entity_Name (Prefix (Lf))
608 and then Is_Entity_Name (Prefix (Rf))
609 and then Entity (Prefix (Lf)) = Entity (Prefix (Rf))
fbf5a39b 610 and then Is_Same_Subscript (Expressions (Lf), Expressions (Rf))
996ae0b0
RK
611 then
612 return True;
613
614 -- All other cases, we can't tell
615
616 else
617 return False;
618 end if;
619 end Is_Same_Value;
620
621 -- Start of processing for Compile_Time_Compare
622
623 begin
07fc65c4
GB
624 -- If either operand could raise constraint error, then we cannot
625 -- know the result at compile time (since CE may be raised!)
626
627 if not (Cannot_Raise_Constraint_Error (L)
628 and then
629 Cannot_Raise_Constraint_Error (R))
630 then
631 return Unknown;
632 end if;
633
634 -- Identical operands are most certainly equal
635
996ae0b0
RK
636 if L = R then
637 return EQ;
638
639 -- If expressions have no types, then do not attempt to determine
640 -- if they are the same, since something funny is going on. One
641 -- case in which this happens is during generic template analysis,
642 -- when bounds are not fully analyzed.
643
644 elsif No (Ltyp) or else No (Rtyp) then
645 return Unknown;
646
fbf5a39b
AC
647 -- We only attempt compile time analysis for scalar values, and
648 -- not for packed arrays represented as modular types, where the
649 -- semantics of comparison is quite different.
996ae0b0
RK
650
651 elsif not Is_Scalar_Type (Ltyp)
652 or else Is_Packed_Array_Type (Ltyp)
653 then
654 return Unknown;
655
656 -- Case where comparison involves two compile time known values
657
658 elsif Compile_Time_Known_Value (L)
659 and then Compile_Time_Known_Value (R)
660 then
661 -- For the floating-point case, we have to be a little careful, since
662 -- at compile time we are dealing with universal exact values, but at
663 -- runtime, these will be in non-exact target form. That's why the
664 -- returned results are LE and GE below instead of LT and GT.
665
666 if Is_Floating_Point_Type (Ltyp)
667 or else
668 Is_Floating_Point_Type (Rtyp)
669 then
670 declare
671 Lo : constant Ureal := Expr_Value_R (L);
672 Hi : constant Ureal := Expr_Value_R (R);
673
674 begin
675 if Lo < Hi then
676 return LE;
677 elsif Lo = Hi then
678 return EQ;
679 else
680 return GE;
681 end if;
682 end;
683
684 -- For the integer case we know exactly (note that this includes the
685 -- fixed-point case, where we know the run time integer values now)
686
687 else
688 declare
689 Lo : constant Uint := Expr_Value (L);
690 Hi : constant Uint := Expr_Value (R);
691
692 begin
693 if Lo < Hi then
694 return LT;
695 elsif Lo = Hi then
696 return EQ;
697 else
698 return GT;
699 end if;
700 end;
701 end if;
702
703 -- Cases where at least one operand is not known at compile time
704
705 else
29797f34
RD
706 -- Remaining checks apply only for non-generic discrete types
707
708 if not Is_Discrete_Type (Ltyp)
709 or else not Is_Discrete_Type (Rtyp)
710 or else Is_Generic_Type (Ltyp)
711 or else Is_Generic_Type (Rtyp)
712 then
713 return Unknown;
714 end if;
715
996ae0b0
RK
716 -- Here is where we check for comparisons against maximum bounds of
717 -- types, where we know that no value can be outside the bounds of
718 -- the subtype. Note that this routine is allowed to assume that all
719 -- expressions are within their subtype bounds. Callers wishing to
720 -- deal with possibly invalid values must in any case take special
721 -- steps (e.g. conversions to larger types) to avoid this kind of
722 -- optimization, which is always considered to be valid. We do not
723 -- attempt this optimization with generic types, since the type
724 -- bounds may not be meaningful in this case.
725
29797f34 726 -- We are in danger of an infinite recursion here. It does not seem
fbf5a39b
AC
727 -- useful to go more than one level deep, so the parameter Rec is
728 -- used to protect ourselves against this infinite recursion.
729
29797f34
RD
730 if not Rec then
731
fbf5a39b
AC
732 -- See if we can get a decisive check against one operand and
733 -- a bound of the other operand (four possible tests here).
734
735 case Compile_Time_Compare (L, Type_Low_Bound (Rtyp), True) is
736 when LT => return LT;
737 when LE => return LE;
738 when EQ => return LE;
739 when others => null;
740 end case;
996ae0b0 741
fbf5a39b
AC
742 case Compile_Time_Compare (L, Type_High_Bound (Rtyp), True) is
743 when GT => return GT;
744 when GE => return GE;
745 when EQ => return GE;
746 when others => null;
747 end case;
996ae0b0 748
fbf5a39b
AC
749 case Compile_Time_Compare (Type_Low_Bound (Ltyp), R, True) is
750 when GT => return GT;
751 when GE => return GE;
752 when EQ => return GE;
753 when others => null;
754 end case;
996ae0b0 755
fbf5a39b
AC
756 case Compile_Time_Compare (Type_High_Bound (Ltyp), R, True) is
757 when LT => return LT;
758 when LE => return LE;
759 when EQ => return LE;
760 when others => null;
761 end case;
996ae0b0
RK
762 end if;
763
764 -- Next attempt is to decompose the expressions to extract
765 -- a constant offset resulting from the use of any of the forms:
766
767 -- expr + literal
768 -- expr - literal
769 -- typ'Succ (expr)
770 -- typ'Pred (expr)
771
772 -- Then we see if the two expressions are the same value, and if so
773 -- the result is obtained by comparing the offsets.
774
775 declare
776 Lnode : Node_Id;
777 Loffs : Uint;
778 Rnode : Node_Id;
779 Roffs : Uint;
780
781 begin
782 Compare_Decompose (L, Lnode, Loffs);
783 Compare_Decompose (R, Rnode, Roffs);
784
785 if Is_Same_Value (Lnode, Rnode) then
786 if Loffs = Roffs then
787 return EQ;
788
789 elsif Loffs < Roffs then
790 return LT;
791
792 else
793 return GT;
794 end if;
29797f34
RD
795 end if;
796 end;
797
798 -- Next attempt is to see if we have an entity compared with a
799 -- compile time known value, where there is a current value
800 -- conditional for the entity which can tell us the result.
801
802 declare
803 Var : Node_Id;
804 -- Entity variable (left operand)
805
806 Val : Uint;
807 -- Value (right operand)
808
809 Inv : Boolean;
810 -- If False, we have reversed the operands
811
812 Op : Node_Kind;
813 -- Comparison operator kind from Get_Current_Value_Condition call
996ae0b0 814
29797f34
RD
815 Opn : Node_Id;
816 -- Value from Get_Current_Value_Condition call
817
818 Opv : Uint;
819 -- Value of Opn
820
821 Result : Compare_Result;
822 -- Known result before inversion
823
824 begin
825 if Is_Entity_Name (L)
826 and then Compile_Time_Known_Value (R)
827 then
828 Var := L;
829 Val := Expr_Value (R);
830 Inv := False;
831
832 elsif Is_Entity_Name (R)
833 and then Compile_Time_Known_Value (L)
834 then
835 Var := R;
836 Val := Expr_Value (L);
837 Inv := True;
838
839 -- That was the last chance at finding a compile time result
996ae0b0
RK
840
841 else
842 return Unknown;
843 end if;
29797f34
RD
844
845 Get_Current_Value_Condition (Var, Op, Opn);
846
847 -- That was the last chance, so if we got nothing return
848
849 if No (Opn) then
850 return Unknown;
851 end if;
852
853 Opv := Expr_Value (Opn);
854
855 -- We got a comparison, so we might have something interesting
856
857 -- Convert LE to LT and GE to GT, just so we have fewer cases
858
859 if Op = N_Op_Le then
860 Op := N_Op_Lt;
861 Opv := Opv + 1;
862 elsif Op = N_Op_Ge then
863 Op := N_Op_Gt;
864 Opv := Opv - 1;
865 end if;
866
867 -- Deal with equality case
868
869 if Op = N_Op_Eq then
870 if Val = Opv then
871 Result := EQ;
872 elsif Opv < Val then
873 Result := LT;
874 else
875 Result := GT;
876 end if;
877
878 -- Deal with inequality case
879
880 elsif Op = N_Op_Ne then
881 if Val = Opv then
882 Result := NE;
883 else
884 return Unknown;
885 end if;
886
887 -- Deal with greater than case
888
889 elsif Op = N_Op_Gt then
890 if Opv >= Val then
891 Result := GT;
892 elsif Opv = Val - 1 then
893 Result := GE;
894 else
895 return Unknown;
896 end if;
897
898 -- Deal with less than case
899
900 else pragma Assert (Op = N_Op_Lt);
901 if Opv <= Val then
902 Result := LT;
903 elsif Opv = Val + 1 then
904 Result := LE;
905 else
906 return Unknown;
907 end if;
908 end if;
909
910 -- Deal with inverting result
911
912 if Inv then
913 case Result is
914 when GT => return LT;
915 when GE => return LE;
916 when LT => return GT;
917 when LE => return GE;
918 when others => return Result;
919 end case;
920 end if;
921
922 return Result;
996ae0b0
RK
923 end;
924 end if;
925 end Compile_Time_Compare;
926
f44fe430
RD
927 -------------------------------
928 -- Compile_Time_Known_Bounds --
929 -------------------------------
930
931 function Compile_Time_Known_Bounds (T : Entity_Id) return Boolean is
932 Indx : Node_Id;
933 Typ : Entity_Id;
934
935 begin
936 if not Is_Array_Type (T) then
937 return False;
938 end if;
939
940 Indx := First_Index (T);
941 while Present (Indx) loop
942 Typ := Underlying_Type (Etype (Indx));
943 if not Compile_Time_Known_Value (Type_Low_Bound (Typ)) then
944 return False;
945 elsif not Compile_Time_Known_Value (Type_High_Bound (Typ)) then
946 return False;
947 else
948 Next_Index (Indx);
949 end if;
950 end loop;
951
952 return True;
953 end Compile_Time_Known_Bounds;
954
996ae0b0
RK
955 ------------------------------
956 -- Compile_Time_Known_Value --
957 ------------------------------
958
959 function Compile_Time_Known_Value (Op : Node_Id) return Boolean is
07fc65c4
GB
960 K : constant Node_Kind := Nkind (Op);
961 CV_Ent : CV_Entry renames CV_Cache (Nat (Op) mod CV_Cache_Size);
996ae0b0
RK
962
963 begin
964 -- Never known at compile time if bad type or raises constraint error
965 -- or empty (latter case occurs only as a result of a previous error)
966
967 if No (Op)
968 or else Op = Error
969 or else Etype (Op) = Any_Type
970 or else Raises_Constraint_Error (Op)
971 then
972 return False;
973 end if;
974
fbf5a39b
AC
975 -- If this is not a static expression and we are in configurable run
976 -- time mode, then we consider it not known at compile time. This
977 -- avoids anomalies where whether something is permitted with a given
978 -- configurable run-time library depends on how good the compiler is
979 -- at optimizing and knowing that things are constant when they
980 -- are non-static.
981
982 if Configurable_Run_Time_Mode and then not Is_Static_Expression (Op) then
983 return False;
984 end if;
985
996ae0b0
RK
986 -- If we have an entity name, then see if it is the name of a constant
987 -- and if so, test the corresponding constant value, or the name of
988 -- an enumeration literal, which is always a constant.
989
990 if Present (Etype (Op)) and then Is_Entity_Name (Op) then
991 declare
992 E : constant Entity_Id := Entity (Op);
993 V : Node_Id;
994
995 begin
996 -- Never known at compile time if it is a packed array value.
997 -- We might want to try to evaluate these at compile time one
998 -- day, but we do not make that attempt now.
999
1000 if Is_Packed_Array_Type (Etype (Op)) then
1001 return False;
1002 end if;
1003
1004 if Ekind (E) = E_Enumeration_Literal then
1005 return True;
1006
07fc65c4 1007 elsif Ekind (E) = E_Constant then
996ae0b0
RK
1008 V := Constant_Value (E);
1009 return Present (V) and then Compile_Time_Known_Value (V);
1010 end if;
1011 end;
1012
1013 -- We have a value, see if it is compile time known
1014
1015 else
07fc65c4 1016 -- Integer literals are worth storing in the cache
996ae0b0 1017
07fc65c4
GB
1018 if K = N_Integer_Literal then
1019 CV_Ent.N := Op;
1020 CV_Ent.V := Intval (Op);
1021 return True;
1022
1023 -- Other literals and NULL are known at compile time
1024
1025 elsif
996ae0b0
RK
1026 K = N_Character_Literal
1027 or else
1028 K = N_Real_Literal
1029 or else
1030 K = N_String_Literal
1031 or else
1032 K = N_Null
1033 then
1034 return True;
1035
1036 -- Any reference to Null_Parameter is known at compile time. No
1037 -- other attribute references (that have not already been folded)
1038 -- are known at compile time.
1039
1040 elsif K = N_Attribute_Reference then
1041 return Attribute_Name (Op) = Name_Null_Parameter;
07fc65c4 1042 end if;
996ae0b0 1043 end if;
07fc65c4
GB
1044
1045 -- If we fall through, not known at compile time
1046
1047 return False;
1048
1049 -- If we get an exception while trying to do this test, then some error
1050 -- has occurred, and we simply say that the value is not known after all
1051
1052 exception
1053 when others =>
1054 return False;
996ae0b0
RK
1055 end Compile_Time_Known_Value;
1056
1057 --------------------------------------
1058 -- Compile_Time_Known_Value_Or_Aggr --
1059 --------------------------------------
1060
1061 function Compile_Time_Known_Value_Or_Aggr (Op : Node_Id) return Boolean is
1062 begin
1063 -- If we have an entity name, then see if it is the name of a constant
1064 -- and if so, test the corresponding constant value, or the name of
1065 -- an enumeration literal, which is always a constant.
1066
1067 if Is_Entity_Name (Op) then
1068 declare
1069 E : constant Entity_Id := Entity (Op);
1070 V : Node_Id;
1071
1072 begin
1073 if Ekind (E) = E_Enumeration_Literal then
1074 return True;
1075
1076 elsif Ekind (E) /= E_Constant then
1077 return False;
1078
1079 else
1080 V := Constant_Value (E);
1081 return Present (V)
1082 and then Compile_Time_Known_Value_Or_Aggr (V);
1083 end if;
1084 end;
1085
1086 -- We have a value, see if it is compile time known
1087
1088 else
1089 if Compile_Time_Known_Value (Op) then
1090 return True;
1091
1092 elsif Nkind (Op) = N_Aggregate then
1093
1094 if Present (Expressions (Op)) then
1095 declare
1096 Expr : Node_Id;
1097
1098 begin
1099 Expr := First (Expressions (Op));
1100 while Present (Expr) loop
1101 if not Compile_Time_Known_Value_Or_Aggr (Expr) then
1102 return False;
1103 end if;
1104
1105 Next (Expr);
1106 end loop;
1107 end;
1108 end if;
1109
1110 if Present (Component_Associations (Op)) then
1111 declare
1112 Cass : Node_Id;
1113
1114 begin
1115 Cass := First (Component_Associations (Op));
1116 while Present (Cass) loop
1117 if not
1118 Compile_Time_Known_Value_Or_Aggr (Expression (Cass))
1119 then
1120 return False;
1121 end if;
1122
1123 Next (Cass);
1124 end loop;
1125 end;
1126 end if;
1127
1128 return True;
1129
1130 -- All other types of values are not known at compile time
1131
1132 else
1133 return False;
1134 end if;
1135
1136 end if;
1137 end Compile_Time_Known_Value_Or_Aggr;
1138
1139 -----------------
1140 -- Eval_Actual --
1141 -----------------
1142
1143 -- This is only called for actuals of functions that are not predefined
1144 -- operators (which have already been rewritten as operators at this
1145 -- stage), so the call can never be folded, and all that needs doing for
1146 -- the actual is to do the check for a non-static context.
1147
1148 procedure Eval_Actual (N : Node_Id) is
1149 begin
1150 Check_Non_Static_Context (N);
1151 end Eval_Actual;
1152
1153 --------------------
1154 -- Eval_Allocator --
1155 --------------------
1156
1157 -- Allocators are never static, so all we have to do is to do the
1158 -- check for a non-static context if an expression is present.
1159
1160 procedure Eval_Allocator (N : Node_Id) is
1161 Expr : constant Node_Id := Expression (N);
1162
1163 begin
1164 if Nkind (Expr) = N_Qualified_Expression then
1165 Check_Non_Static_Context (Expression (Expr));
1166 end if;
1167 end Eval_Allocator;
1168
1169 ------------------------
1170 -- Eval_Arithmetic_Op --
1171 ------------------------
1172
1173 -- Arithmetic operations are static functions, so the result is static
1174 -- if both operands are static (RM 4.9(7), 4.9(20)).
1175
1176 procedure Eval_Arithmetic_Op (N : Node_Id) is
1177 Left : constant Node_Id := Left_Opnd (N);
1178 Right : constant Node_Id := Right_Opnd (N);
1179 Ltype : constant Entity_Id := Etype (Left);
1180 Rtype : constant Entity_Id := Etype (Right);
1181 Stat : Boolean;
1182 Fold : Boolean;
1183
1184 begin
1185 -- If not foldable we are done
1186
1187 Test_Expression_Is_Foldable (N, Left, Right, Stat, Fold);
1188
1189 if not Fold then
1190 return;
1191 end if;
1192
1193 -- Fold for cases where both operands are of integer type
1194
1195 if Is_Integer_Type (Ltype) and then Is_Integer_Type (Rtype) then
1196 declare
1197 Left_Int : constant Uint := Expr_Value (Left);
1198 Right_Int : constant Uint := Expr_Value (Right);
1199 Result : Uint;
1200
1201 begin
1202 case Nkind (N) is
1203
1204 when N_Op_Add =>
1205 Result := Left_Int + Right_Int;
1206
1207 when N_Op_Subtract =>
1208 Result := Left_Int - Right_Int;
1209
1210 when N_Op_Multiply =>
1211 if OK_Bits
1212 (N, UI_From_Int
1213 (Num_Bits (Left_Int) + Num_Bits (Right_Int)))
1214 then
1215 Result := Left_Int * Right_Int;
1216 else
1217 Result := Left_Int;
1218 end if;
1219
1220 when N_Op_Divide =>
1221
1222 -- The exception Constraint_Error is raised by integer
1223 -- division, rem and mod if the right operand is zero.
1224
1225 if Right_Int = 0 then
1226 Apply_Compile_Time_Constraint_Error
fbf5a39b
AC
1227 (N, "division by zero",
1228 CE_Divide_By_Zero,
1229 Warn => not Stat);
996ae0b0 1230 return;
fbf5a39b 1231
996ae0b0
RK
1232 else
1233 Result := Left_Int / Right_Int;
1234 end if;
1235
1236 when N_Op_Mod =>
1237
1238 -- The exception Constraint_Error is raised by integer
1239 -- division, rem and mod if the right operand is zero.
1240
1241 if Right_Int = 0 then
1242 Apply_Compile_Time_Constraint_Error
fbf5a39b
AC
1243 (N, "mod with zero divisor",
1244 CE_Divide_By_Zero,
1245 Warn => not Stat);
996ae0b0
RK
1246 return;
1247 else
1248 Result := Left_Int mod Right_Int;
1249 end if;
1250
1251 when N_Op_Rem =>
1252
1253 -- The exception Constraint_Error is raised by integer
1254 -- division, rem and mod if the right operand is zero.
1255
1256 if Right_Int = 0 then
1257 Apply_Compile_Time_Constraint_Error
fbf5a39b
AC
1258 (N, "rem with zero divisor",
1259 CE_Divide_By_Zero,
1260 Warn => not Stat);
996ae0b0 1261 return;
fbf5a39b 1262
996ae0b0
RK
1263 else
1264 Result := Left_Int rem Right_Int;
1265 end if;
1266
1267 when others =>
1268 raise Program_Error;
1269 end case;
1270
1271 -- Adjust the result by the modulus if the type is a modular type
1272
1273 if Is_Modular_Integer_Type (Ltype) then
1274 Result := Result mod Modulus (Ltype);
82c80734
RD
1275
1276 -- For a signed integer type, check non-static overflow
1277
1278 elsif (not Stat) and then Is_Signed_Integer_Type (Ltype) then
1279 declare
1280 BT : constant Entity_Id := Base_Type (Ltype);
1281 Lo : constant Uint := Expr_Value (Type_Low_Bound (BT));
1282 Hi : constant Uint := Expr_Value (Type_High_Bound (BT));
1283 begin
1284 if Result < Lo or else Result > Hi then
1285 Apply_Compile_Time_Constraint_Error
1286 (N, "value not in range of }?",
1287 CE_Overflow_Check_Failed,
1288 Ent => BT);
1289 return;
1290 end if;
1291 end;
996ae0b0
RK
1292 end if;
1293
82c80734
RD
1294 -- If we get here we can fold the result
1295
fbf5a39b 1296 Fold_Uint (N, Result, Stat);
996ae0b0
RK
1297 end;
1298
1299 -- Cases where at least one operand is a real. We handle the cases
1300 -- of both reals, or mixed/real integer cases (the latter happen
1301 -- only for divide and multiply, and the result is always real).
1302
1303 elsif Is_Real_Type (Ltype) or else Is_Real_Type (Rtype) then
1304 declare
1305 Left_Real : Ureal;
1306 Right_Real : Ureal;
1307 Result : Ureal;
1308
1309 begin
1310 if Is_Real_Type (Ltype) then
1311 Left_Real := Expr_Value_R (Left);
1312 else
1313 Left_Real := UR_From_Uint (Expr_Value (Left));
1314 end if;
1315
1316 if Is_Real_Type (Rtype) then
1317 Right_Real := Expr_Value_R (Right);
1318 else
1319 Right_Real := UR_From_Uint (Expr_Value (Right));
1320 end if;
1321
1322 if Nkind (N) = N_Op_Add then
1323 Result := Left_Real + Right_Real;
1324
1325 elsif Nkind (N) = N_Op_Subtract then
1326 Result := Left_Real - Right_Real;
1327
1328 elsif Nkind (N) = N_Op_Multiply then
1329 Result := Left_Real * Right_Real;
1330
1331 else pragma Assert (Nkind (N) = N_Op_Divide);
1332 if UR_Is_Zero (Right_Real) then
1333 Apply_Compile_Time_Constraint_Error
07fc65c4 1334 (N, "division by zero", CE_Divide_By_Zero);
996ae0b0
RK
1335 return;
1336 end if;
1337
1338 Result := Left_Real / Right_Real;
1339 end if;
1340
fbf5a39b 1341 Fold_Ureal (N, Result, Stat);
996ae0b0
RK
1342 end;
1343 end if;
996ae0b0
RK
1344 end Eval_Arithmetic_Op;
1345
1346 ----------------------------
1347 -- Eval_Character_Literal --
1348 ----------------------------
1349
1350 -- Nothing to be done!
1351
1352 procedure Eval_Character_Literal (N : Node_Id) is
07fc65c4 1353 pragma Warnings (Off, N);
996ae0b0
RK
1354 begin
1355 null;
1356 end Eval_Character_Literal;
1357
c01a9391
AC
1358 ---------------
1359 -- Eval_Call --
1360 ---------------
1361
1362 -- Static function calls are either calls to predefined operators
1363 -- with static arguments, or calls to functions that rename a literal.
1364 -- Only the latter case is handled here, predefined operators are
1365 -- constant-folded elsewhere.
29797f34 1366
c01a9391
AC
1367 -- If the function is itself inherited (see 7423-001) the literal of
1368 -- the parent type must be explicitly converted to the return type
1369 -- of the function.
1370
1371 procedure Eval_Call (N : Node_Id) is
1372 Loc : constant Source_Ptr := Sloc (N);
1373 Typ : constant Entity_Id := Etype (N);
1374 Lit : Entity_Id;
1375
1376 begin
1377 if Nkind (N) = N_Function_Call
1378 and then No (Parameter_Associations (N))
1379 and then Is_Entity_Name (Name (N))
1380 and then Present (Alias (Entity (Name (N))))
1381 and then Is_Enumeration_Type (Base_Type (Typ))
1382 then
1383 Lit := Alias (Entity (Name (N)));
c01a9391
AC
1384 while Present (Alias (Lit)) loop
1385 Lit := Alias (Lit);
1386 end loop;
1387
1388 if Ekind (Lit) = E_Enumeration_Literal then
1389 if Base_Type (Etype (Lit)) /= Base_Type (Typ) then
1390 Rewrite
1391 (N, Convert_To (Typ, New_Occurrence_Of (Lit, Loc)));
1392 else
1393 Rewrite (N, New_Occurrence_Of (Lit, Loc));
1394 end if;
1395
1396 Resolve (N, Typ);
1397 end if;
1398 end if;
1399 end Eval_Call;
1400
996ae0b0
RK
1401 ------------------------
1402 -- Eval_Concatenation --
1403 ------------------------
1404
1405 -- Concatenation is a static function, so the result is static if
1406 -- both operands are static (RM 4.9(7), 4.9(21)).
1407
1408 procedure Eval_Concatenation (N : Node_Id) is
f91b40db
GB
1409 Left : constant Node_Id := Left_Opnd (N);
1410 Right : constant Node_Id := Right_Opnd (N);
1411 C_Typ : constant Entity_Id := Root_Type (Component_Type (Etype (N)));
996ae0b0
RK
1412 Stat : Boolean;
1413 Fold : Boolean;
996ae0b0
RK
1414
1415 begin
1416 -- Concatenation is never static in Ada 83, so if Ada 83
1417 -- check operand non-static context
1418
0ab80019 1419 if Ada_Version = Ada_83
996ae0b0
RK
1420 and then Comes_From_Source (N)
1421 then
1422 Check_Non_Static_Context (Left);
1423 Check_Non_Static_Context (Right);
1424 return;
1425 end if;
1426
1427 -- If not foldable we are done. In principle concatenation that yields
1428 -- any string type is static (i.e. an array type of character types).
1429 -- However, character types can include enumeration literals, and
1430 -- concatenation in that case cannot be described by a literal, so we
1431 -- only consider the operation static if the result is an array of
1432 -- (a descendant of) a predefined character type.
1433
1434 Test_Expression_Is_Foldable (N, Left, Right, Stat, Fold);
1435
1436 if (C_Typ = Standard_Character
82c80734
RD
1437 or else C_Typ = Standard_Wide_Character
1438 or else C_Typ = Standard_Wide_Wide_Character)
996ae0b0
RK
1439 and then Fold
1440 then
1441 null;
1442 else
1443 Set_Is_Static_Expression (N, False);
1444 return;
1445 end if;
1446
82c80734 1447 -- Compile time string concatenation
996ae0b0
RK
1448
1449 -- ??? Note that operands that are aggregates can be marked as
1450 -- static, so we should attempt at a later stage to fold
1451 -- concatenations with such aggregates.
1452
1453 declare
1454 Left_Str : constant Node_Id := Get_String_Val (Left);
f91b40db 1455 Left_Len : Nat;
996ae0b0
RK
1456 Right_Str : constant Node_Id := Get_String_Val (Right);
1457
1458 begin
1459 -- Establish new string literal, and store left operand. We make
1460 -- sure to use the special Start_String that takes an operand if
1461 -- the left operand is a string literal. Since this is optimized
1462 -- in the case where that is the most recently created string
1463 -- literal, we ensure efficient time/space behavior for the
1464 -- case of a concatenation of a series of string literals.
1465
1466 if Nkind (Left_Str) = N_String_Literal then
f91b40db 1467 Left_Len := String_Length (Strval (Left_Str));
996ae0b0
RK
1468 Start_String (Strval (Left_Str));
1469 else
1470 Start_String;
82c80734 1471 Store_String_Char (UI_To_CC (Char_Literal_Value (Left_Str)));
f91b40db 1472 Left_Len := 1;
996ae0b0
RK
1473 end if;
1474
1475 -- Now append the characters of the right operand
1476
1477 if Nkind (Right_Str) = N_String_Literal then
1478 declare
1479 S : constant String_Id := Strval (Right_Str);
1480
1481 begin
1482 for J in 1 .. String_Length (S) loop
1483 Store_String_Char (Get_String_Char (S, J));
1484 end loop;
1485 end;
1486 else
82c80734 1487 Store_String_Char (UI_To_CC (Char_Literal_Value (Right_Str)));
996ae0b0
RK
1488 end if;
1489
1490 Set_Is_Static_Expression (N, Stat);
1491
1492 if Stat then
f91b40db
GB
1493
1494 -- If left operand is the empty string, the result is the
1495 -- right operand, including its bounds if anomalous.
1496
1497 if Left_Len = 0
1498 and then Is_Array_Type (Etype (Right))
1499 and then Etype (Right) /= Any_String
1500 then
1501 Set_Etype (N, Etype (Right));
1502 end if;
1503
b11e8d6f 1504 Fold_Str (N, End_String, Static => True);
996ae0b0
RK
1505 end if;
1506 end;
1507 end Eval_Concatenation;
1508
1509 ---------------------------------
1510 -- Eval_Conditional_Expression --
1511 ---------------------------------
1512
1513 -- This GNAT internal construct can never be statically folded, so the
1514 -- only required processing is to do the check for non-static context
1515 -- for the two expression operands.
1516
1517 procedure Eval_Conditional_Expression (N : Node_Id) is
1518 Condition : constant Node_Id := First (Expressions (N));
1519 Then_Expr : constant Node_Id := Next (Condition);
1520 Else_Expr : constant Node_Id := Next (Then_Expr);
1521
1522 begin
1523 Check_Non_Static_Context (Then_Expr);
1524 Check_Non_Static_Context (Else_Expr);
1525 end Eval_Conditional_Expression;
1526
1527 ----------------------
1528 -- Eval_Entity_Name --
1529 ----------------------
1530
1531 -- This procedure is used for identifiers and expanded names other than
1532 -- named numbers (see Eval_Named_Integer, Eval_Named_Real. These are
1533 -- static if they denote a static constant (RM 4.9(6)) or if the name
1534 -- denotes an enumeration literal (RM 4.9(22)).
1535
1536 procedure Eval_Entity_Name (N : Node_Id) is
1537 Def_Id : constant Entity_Id := Entity (N);
1538 Val : Node_Id;
1539
1540 begin
1541 -- Enumeration literals are always considered to be constants
1542 -- and cannot raise constraint error (RM 4.9(22)).
1543
1544 if Ekind (Def_Id) = E_Enumeration_Literal then
1545 Set_Is_Static_Expression (N);
1546 return;
1547
1548 -- A name is static if it denotes a static constant (RM 4.9(5)), and
1549 -- we also copy Raise_Constraint_Error. Notice that even if non-static,
1550 -- it does not violate 10.2.1(8) here, since this is not a variable.
1551
1552 elsif Ekind (Def_Id) = E_Constant then
1553
1554 -- Deferred constants must always be treated as nonstatic
1555 -- outside the scope of their full view.
1556
1557 if Present (Full_View (Def_Id))
1558 and then not In_Open_Scopes (Scope (Def_Id))
1559 then
1560 Val := Empty;
1561 else
1562 Val := Constant_Value (Def_Id);
1563 end if;
1564
1565 if Present (Val) then
1566 Set_Is_Static_Expression
1567 (N, Is_Static_Expression (Val)
1568 and then Is_Static_Subtype (Etype (Def_Id)));
1569 Set_Raises_Constraint_Error (N, Raises_Constraint_Error (Val));
1570
1571 if not Is_Static_Expression (N)
1572 and then not Is_Generic_Type (Etype (N))
1573 then
1574 Validate_Static_Object_Name (N);
1575 end if;
1576
1577 return;
1578 end if;
1579 end if;
1580
82c80734 1581 -- Fall through if the name is not static
996ae0b0
RK
1582
1583 Validate_Static_Object_Name (N);
1584 end Eval_Entity_Name;
1585
1586 ----------------------------
1587 -- Eval_Indexed_Component --
1588 ----------------------------
1589
8cbb664e
MG
1590 -- Indexed components are never static, so we need to perform the check
1591 -- for non-static context on the index values. Then, we check if the
1592 -- value can be obtained at compile time, even though it is non-static.
996ae0b0
RK
1593
1594 procedure Eval_Indexed_Component (N : Node_Id) is
1595 Expr : Node_Id;
1596
1597 begin
fbf5a39b
AC
1598 -- Check for non-static context on index values
1599
996ae0b0
RK
1600 Expr := First (Expressions (N));
1601 while Present (Expr) loop
1602 Check_Non_Static_Context (Expr);
1603 Next (Expr);
1604 end loop;
1605
fbf5a39b
AC
1606 -- If the indexed component appears in an object renaming declaration
1607 -- then we do not want to try to evaluate it, since in this case we
1608 -- need the identity of the array element.
1609
1610 if Nkind (Parent (N)) = N_Object_Renaming_Declaration then
1611 return;
1612
1613 -- Similarly if the indexed component appears as the prefix of an
1614 -- attribute we don't want to evaluate it, because at least for
1615 -- some cases of attributes we need the identify (e.g. Access, Size)
1616
1617 elsif Nkind (Parent (N)) = N_Attribute_Reference then
1618 return;
1619 end if;
1620
1621 -- Note: there are other cases, such as the left side of an assignment,
1622 -- or an OUT parameter for a call, where the replacement results in the
1623 -- illegal use of a constant, But these cases are illegal in the first
1624 -- place, so the replacement, though silly, is harmless.
1625
1626 -- Now see if this is a constant array reference
8cbb664e
MG
1627
1628 if List_Length (Expressions (N)) = 1
1629 and then Is_Entity_Name (Prefix (N))
1630 and then Ekind (Entity (Prefix (N))) = E_Constant
1631 and then Present (Constant_Value (Entity (Prefix (N))))
1632 then
1633 declare
1634 Loc : constant Source_Ptr := Sloc (N);
1635 Arr : constant Node_Id := Constant_Value (Entity (Prefix (N)));
1636 Sub : constant Node_Id := First (Expressions (N));
1637
1638 Atyp : Entity_Id;
1639 -- Type of array
1640
1641 Lin : Nat;
1642 -- Linear one's origin subscript value for array reference
1643
1644 Lbd : Node_Id;
1645 -- Lower bound of the first array index
1646
1647 Elm : Node_Id;
1648 -- Value from constant array
1649
1650 begin
1651 Atyp := Etype (Arr);
1652
1653 if Is_Access_Type (Atyp) then
1654 Atyp := Designated_Type (Atyp);
1655 end if;
1656
1657 -- If we have an array type (we should have but perhaps there
1658 -- are error cases where this is not the case), then see if we
1659 -- can do a constant evaluation of the array reference.
1660
1661 if Is_Array_Type (Atyp) then
1662 if Ekind (Atyp) = E_String_Literal_Subtype then
1663 Lbd := String_Literal_Low_Bound (Atyp);
1664 else
1665 Lbd := Type_Low_Bound (Etype (First_Index (Atyp)));
1666 end if;
1667
1668 if Compile_Time_Known_Value (Sub)
1669 and then Nkind (Arr) = N_Aggregate
1670 and then Compile_Time_Known_Value (Lbd)
1671 and then Is_Discrete_Type (Component_Type (Atyp))
1672 then
1673 Lin := UI_To_Int (Expr_Value (Sub) - Expr_Value (Lbd)) + 1;
1674
1675 if List_Length (Expressions (Arr)) >= Lin then
1676 Elm := Pick (Expressions (Arr), Lin);
1677
1678 -- If the resulting expression is compile time known,
1679 -- then we can rewrite the indexed component with this
1680 -- value, being sure to mark the result as non-static.
1681 -- We also reset the Sloc, in case this generates an
1682 -- error later on (e.g. 136'Access).
1683
1684 if Compile_Time_Known_Value (Elm) then
1685 Rewrite (N, Duplicate_Subexpr_No_Checks (Elm));
1686 Set_Is_Static_Expression (N, False);
1687 Set_Sloc (N, Loc);
1688 end if;
1689 end if;
1690 end if;
1691 end if;
1692 end;
1693 end if;
996ae0b0
RK
1694 end Eval_Indexed_Component;
1695
1696 --------------------------
1697 -- Eval_Integer_Literal --
1698 --------------------------
1699
1700 -- Numeric literals are static (RM 4.9(1)), and have already been marked
1701 -- as static by the analyzer. The reason we did it that early is to allow
1702 -- the possibility of turning off the Is_Static_Expression flag after
1703 -- analysis, but before resolution, when integer literals are generated
1704 -- in the expander that do not correspond to static expressions.
1705
1706 procedure Eval_Integer_Literal (N : Node_Id) is
1707 T : constant Entity_Id := Etype (N);
1708
5d09245e
AC
1709 function In_Any_Integer_Context return Boolean;
1710 -- If the literal is resolved with a specific type in a context
1711 -- where the expected type is Any_Integer, there are no range checks
1712 -- on the literal. By the time the literal is evaluated, it carries
1713 -- the type imposed by the enclosing expression, and we must recover
1714 -- the context to determine that Any_Integer is meant.
1715
1716 ----------------------------
1717 -- To_Any_Integer_Context --
1718 ----------------------------
1719
1720 function In_Any_Integer_Context return Boolean is
1721 Par : constant Node_Id := Parent (N);
1722 K : constant Node_Kind := Nkind (Par);
1723
1724 begin
1725 -- Any_Integer also appears in digits specifications for real types,
1726 -- but those have bounds smaller that those of any integer base
1727 -- type, so we can safely ignore these cases.
1728
1729 return K = N_Number_Declaration
1730 or else K = N_Attribute_Reference
1731 or else K = N_Attribute_Definition_Clause
1732 or else K = N_Modular_Type_Definition
1733 or else K = N_Signed_Integer_Type_Definition;
1734 end In_Any_Integer_Context;
1735
1736 -- Start of processing for Eval_Integer_Literal
1737
996ae0b0 1738 begin
5d09245e 1739
996ae0b0
RK
1740 -- If the literal appears in a non-expression context, then it is
1741 -- certainly appearing in a non-static context, so check it. This
1742 -- is actually a redundant check, since Check_Non_Static_Context
1743 -- would check it, but it seems worth while avoiding the call.
1744
5d09245e
AC
1745 if Nkind (Parent (N)) not in N_Subexpr
1746 and then not In_Any_Integer_Context
1747 then
996ae0b0
RK
1748 Check_Non_Static_Context (N);
1749 end if;
1750
1751 -- Modular integer literals must be in their base range
1752
1753 if Is_Modular_Integer_Type (T)
1754 and then Is_Out_Of_Range (N, Base_Type (T))
1755 then
1756 Out_Of_Range (N);
1757 end if;
1758 end Eval_Integer_Literal;
1759
1760 ---------------------
1761 -- Eval_Logical_Op --
1762 ---------------------
1763
1764 -- Logical operations are static functions, so the result is potentially
1765 -- static if both operands are potentially static (RM 4.9(7), 4.9(20)).
1766
1767 procedure Eval_Logical_Op (N : Node_Id) is
1768 Left : constant Node_Id := Left_Opnd (N);
1769 Right : constant Node_Id := Right_Opnd (N);
1770 Stat : Boolean;
1771 Fold : Boolean;
1772
1773 begin
1774 -- If not foldable we are done
1775
1776 Test_Expression_Is_Foldable (N, Left, Right, Stat, Fold);
1777
1778 if not Fold then
1779 return;
1780 end if;
1781
1782 -- Compile time evaluation of logical operation
1783
1784 declare
1785 Left_Int : constant Uint := Expr_Value (Left);
1786 Right_Int : constant Uint := Expr_Value (Right);
1787
1788 begin
1789 if Is_Modular_Integer_Type (Etype (N)) then
1790 declare
1791 Left_Bits : Bits (0 .. UI_To_Int (Esize (Etype (N))) - 1);
1792 Right_Bits : Bits (0 .. UI_To_Int (Esize (Etype (N))) - 1);
1793
1794 begin
1795 To_Bits (Left_Int, Left_Bits);
1796 To_Bits (Right_Int, Right_Bits);
1797
1798 -- Note: should really be able to use array ops instead of
1799 -- these loops, but they weren't working at the time ???
1800
1801 if Nkind (N) = N_Op_And then
1802 for J in Left_Bits'Range loop
1803 Left_Bits (J) := Left_Bits (J) and Right_Bits (J);
1804 end loop;
1805
1806 elsif Nkind (N) = N_Op_Or then
1807 for J in Left_Bits'Range loop
1808 Left_Bits (J) := Left_Bits (J) or Right_Bits (J);
1809 end loop;
1810
1811 else
1812 pragma Assert (Nkind (N) = N_Op_Xor);
1813
1814 for J in Left_Bits'Range loop
1815 Left_Bits (J) := Left_Bits (J) xor Right_Bits (J);
1816 end loop;
1817 end if;
1818
fbf5a39b 1819 Fold_Uint (N, From_Bits (Left_Bits, Etype (N)), Stat);
996ae0b0
RK
1820 end;
1821
1822 else
1823 pragma Assert (Is_Boolean_Type (Etype (N)));
1824
1825 if Nkind (N) = N_Op_And then
1826 Fold_Uint (N,
fbf5a39b 1827 Test (Is_True (Left_Int) and then Is_True (Right_Int)), Stat);
996ae0b0
RK
1828
1829 elsif Nkind (N) = N_Op_Or then
1830 Fold_Uint (N,
fbf5a39b 1831 Test (Is_True (Left_Int) or else Is_True (Right_Int)), Stat);
996ae0b0
RK
1832
1833 else
1834 pragma Assert (Nkind (N) = N_Op_Xor);
1835 Fold_Uint (N,
fbf5a39b 1836 Test (Is_True (Left_Int) xor Is_True (Right_Int)), Stat);
996ae0b0
RK
1837 end if;
1838 end if;
996ae0b0
RK
1839 end;
1840 end Eval_Logical_Op;
1841
1842 ------------------------
1843 -- Eval_Membership_Op --
1844 ------------------------
1845
1846 -- A membership test is potentially static if the expression is static,
1847 -- and the range is a potentially static range, or is a subtype mark
1848 -- denoting a static subtype (RM 4.9(12)).
1849
1850 procedure Eval_Membership_Op (N : Node_Id) is
1851 Left : constant Node_Id := Left_Opnd (N);
1852 Right : constant Node_Id := Right_Opnd (N);
1853 Def_Id : Entity_Id;
1854 Lo : Node_Id;
1855 Hi : Node_Id;
1856 Result : Boolean;
1857 Stat : Boolean;
1858 Fold : Boolean;
1859
1860 begin
1861 -- Ignore if error in either operand, except to make sure that
1862 -- Any_Type is properly propagated to avoid junk cascaded errors.
1863
1864 if Etype (Left) = Any_Type
1865 or else Etype (Right) = Any_Type
1866 then
1867 Set_Etype (N, Any_Type);
1868 return;
1869 end if;
1870
1871 -- Case of right operand is a subtype name
1872
1873 if Is_Entity_Name (Right) then
1874 Def_Id := Entity (Right);
1875
1876 if (Is_Scalar_Type (Def_Id) or else Is_String_Type (Def_Id))
1877 and then Is_OK_Static_Subtype (Def_Id)
1878 then
1879 Test_Expression_Is_Foldable (N, Left, Stat, Fold);
1880
1881 if not Fold or else not Stat then
1882 return;
1883 end if;
1884 else
1885 Check_Non_Static_Context (Left);
1886 return;
1887 end if;
1888
1889 -- For string membership tests we will check the length
1890 -- further below.
1891
1892 if not Is_String_Type (Def_Id) then
1893 Lo := Type_Low_Bound (Def_Id);
1894 Hi := Type_High_Bound (Def_Id);
1895
1896 else
1897 Lo := Empty;
1898 Hi := Empty;
1899 end if;
1900
1901 -- Case of right operand is a range
1902
1903 else
1904 if Is_Static_Range (Right) then
1905 Test_Expression_Is_Foldable (N, Left, Stat, Fold);
1906
1907 if not Fold or else not Stat then
1908 return;
1909
1910 -- If one bound of range raises CE, then don't try to fold
1911
1912 elsif not Is_OK_Static_Range (Right) then
1913 Check_Non_Static_Context (Left);
1914 return;
1915 end if;
1916
1917 else
1918 Check_Non_Static_Context (Left);
1919 return;
1920 end if;
1921
1922 -- Here we know range is an OK static range
1923
1924 Lo := Low_Bound (Right);
1925 Hi := High_Bound (Right);
1926 end if;
1927
1928 -- For strings we check that the length of the string expression is
1929 -- compatible with the string subtype if the subtype is constrained,
1930 -- or if unconstrained then the test is always true.
1931
1932 if Is_String_Type (Etype (Right)) then
1933 if not Is_Constrained (Etype (Right)) then
1934 Result := True;
1935
1936 else
1937 declare
1938 Typlen : constant Uint := String_Type_Len (Etype (Right));
1939 Strlen : constant Uint :=
1940 UI_From_Int (String_Length (Strval (Get_String_Val (Left))));
1941 begin
1942 Result := (Typlen = Strlen);
1943 end;
1944 end if;
1945
1946 -- Fold the membership test. We know we have a static range and Lo
1947 -- and Hi are set to the expressions for the end points of this range.
1948
1949 elsif Is_Real_Type (Etype (Right)) then
1950 declare
1951 Leftval : constant Ureal := Expr_Value_R (Left);
1952
1953 begin
1954 Result := Expr_Value_R (Lo) <= Leftval
1955 and then Leftval <= Expr_Value_R (Hi);
1956 end;
1957
1958 else
1959 declare
1960 Leftval : constant Uint := Expr_Value (Left);
1961
1962 begin
1963 Result := Expr_Value (Lo) <= Leftval
1964 and then Leftval <= Expr_Value (Hi);
1965 end;
1966 end if;
1967
1968 if Nkind (N) = N_Not_In then
1969 Result := not Result;
1970 end if;
1971
fbf5a39b 1972 Fold_Uint (N, Test (Result), True);
996ae0b0 1973 Warn_On_Known_Condition (N);
996ae0b0
RK
1974 end Eval_Membership_Op;
1975
1976 ------------------------
1977 -- Eval_Named_Integer --
1978 ------------------------
1979
1980 procedure Eval_Named_Integer (N : Node_Id) is
1981 begin
1982 Fold_Uint (N,
fbf5a39b 1983 Expr_Value (Expression (Declaration_Node (Entity (N)))), True);
996ae0b0
RK
1984 end Eval_Named_Integer;
1985
1986 ---------------------
1987 -- Eval_Named_Real --
1988 ---------------------
1989
1990 procedure Eval_Named_Real (N : Node_Id) is
1991 begin
1992 Fold_Ureal (N,
fbf5a39b 1993 Expr_Value_R (Expression (Declaration_Node (Entity (N)))), True);
996ae0b0
RK
1994 end Eval_Named_Real;
1995
1996 -------------------
1997 -- Eval_Op_Expon --
1998 -------------------
1999
2000 -- Exponentiation is a static functions, so the result is potentially
2001 -- static if both operands are potentially static (RM 4.9(7), 4.9(20)).
2002
2003 procedure Eval_Op_Expon (N : Node_Id) is
2004 Left : constant Node_Id := Left_Opnd (N);
2005 Right : constant Node_Id := Right_Opnd (N);
2006 Stat : Boolean;
2007 Fold : Boolean;
2008
2009 begin
2010 -- If not foldable we are done
2011
2012 Test_Expression_Is_Foldable (N, Left, Right, Stat, Fold);
2013
2014 if not Fold then
2015 return;
2016 end if;
2017
2018 -- Fold exponentiation operation
2019
2020 declare
2021 Right_Int : constant Uint := Expr_Value (Right);
2022
2023 begin
2024 -- Integer case
2025
2026 if Is_Integer_Type (Etype (Left)) then
2027 declare
2028 Left_Int : constant Uint := Expr_Value (Left);
2029 Result : Uint;
2030
2031 begin
2032 -- Exponentiation of an integer raises the exception
2033 -- Constraint_Error for a negative exponent (RM 4.5.6)
2034
2035 if Right_Int < 0 then
2036 Apply_Compile_Time_Constraint_Error
fbf5a39b
AC
2037 (N, "integer exponent negative",
2038 CE_Range_Check_Failed,
2039 Warn => not Stat);
996ae0b0
RK
2040 return;
2041
2042 else
2043 if OK_Bits (N, Num_Bits (Left_Int) * Right_Int) then
2044 Result := Left_Int ** Right_Int;
2045 else
2046 Result := Left_Int;
2047 end if;
2048
2049 if Is_Modular_Integer_Type (Etype (N)) then
2050 Result := Result mod Modulus (Etype (N));
2051 end if;
2052
fbf5a39b 2053 Fold_Uint (N, Result, Stat);
996ae0b0
RK
2054 end if;
2055 end;
2056
2057 -- Real case
2058
2059 else
2060 declare
2061 Left_Real : constant Ureal := Expr_Value_R (Left);
2062
2063 begin
2064 -- Cannot have a zero base with a negative exponent
2065
2066 if UR_Is_Zero (Left_Real) then
2067
2068 if Right_Int < 0 then
2069 Apply_Compile_Time_Constraint_Error
fbf5a39b
AC
2070 (N, "zero ** negative integer",
2071 CE_Range_Check_Failed,
2072 Warn => not Stat);
996ae0b0
RK
2073 return;
2074 else
fbf5a39b 2075 Fold_Ureal (N, Ureal_0, Stat);
996ae0b0
RK
2076 end if;
2077
2078 else
fbf5a39b 2079 Fold_Ureal (N, Left_Real ** Right_Int, Stat);
996ae0b0
RK
2080 end if;
2081 end;
2082 end if;
996ae0b0
RK
2083 end;
2084 end Eval_Op_Expon;
2085
2086 -----------------
2087 -- Eval_Op_Not --
2088 -----------------
2089
2090 -- The not operation is a static functions, so the result is potentially
2091 -- static if the operand is potentially static (RM 4.9(7), 4.9(20)).
2092
2093 procedure Eval_Op_Not (N : Node_Id) is
2094 Right : constant Node_Id := Right_Opnd (N);
2095 Stat : Boolean;
2096 Fold : Boolean;
2097
2098 begin
2099 -- If not foldable we are done
2100
2101 Test_Expression_Is_Foldable (N, Right, Stat, Fold);
2102
2103 if not Fold then
2104 return;
2105 end if;
2106
2107 -- Fold not operation
2108
2109 declare
2110 Rint : constant Uint := Expr_Value (Right);
2111 Typ : constant Entity_Id := Etype (N);
2112
2113 begin
2114 -- Negation is equivalent to subtracting from the modulus minus
2115 -- one. For a binary modulus this is equivalent to the ones-
2116 -- component of the original value. For non-binary modulus this
2117 -- is an arbitrary but consistent definition.
2118
2119 if Is_Modular_Integer_Type (Typ) then
fbf5a39b 2120 Fold_Uint (N, Modulus (Typ) - 1 - Rint, Stat);
996ae0b0
RK
2121
2122 else
2123 pragma Assert (Is_Boolean_Type (Typ));
fbf5a39b 2124 Fold_Uint (N, Test (not Is_True (Rint)), Stat);
996ae0b0
RK
2125 end if;
2126
2127 Set_Is_Static_Expression (N, Stat);
2128 end;
2129 end Eval_Op_Not;
2130
2131 -------------------------------
2132 -- Eval_Qualified_Expression --
2133 -------------------------------
2134
2135 -- A qualified expression is potentially static if its subtype mark denotes
2136 -- a static subtype and its expression is potentially static (RM 4.9 (11)).
2137
2138 procedure Eval_Qualified_Expression (N : Node_Id) is
2139 Operand : constant Node_Id := Expression (N);
2140 Target_Type : constant Entity_Id := Entity (Subtype_Mark (N));
2141
07fc65c4
GB
2142 Stat : Boolean;
2143 Fold : Boolean;
2144 Hex : Boolean;
996ae0b0
RK
2145
2146 begin
2147 -- Can only fold if target is string or scalar and subtype is static
2148 -- Also, do not fold if our parent is an allocator (this is because
2149 -- the qualified expression is really part of the syntactic structure
2150 -- of an allocator, and we do not want to end up with something that
2151 -- corresponds to "new 1" where the 1 is the result of folding a
2152 -- qualified expression).
2153
2154 if not Is_Static_Subtype (Target_Type)
2155 or else Nkind (Parent (N)) = N_Allocator
2156 then
2157 Check_Non_Static_Context (Operand);
af152989
AC
2158
2159 -- If operand is known to raise constraint_error, set the
2160 -- flag on the expression so it does not get optimized away.
2161
2162 if Nkind (Operand) = N_Raise_Constraint_Error then
2163 Set_Raises_Constraint_Error (N);
2164 end if;
7324bf49 2165
996ae0b0
RK
2166 return;
2167 end if;
2168
2169 -- If not foldable we are done
2170
2171 Test_Expression_Is_Foldable (N, Operand, Stat, Fold);
2172
2173 if not Fold then
2174 return;
2175
2176 -- Don't try fold if target type has constraint error bounds
2177
2178 elsif not Is_OK_Static_Subtype (Target_Type) then
2179 Set_Raises_Constraint_Error (N);
2180 return;
2181 end if;
2182
07fc65c4
GB
2183 -- Here we will fold, save Print_In_Hex indication
2184
2185 Hex := Nkind (Operand) = N_Integer_Literal
2186 and then Print_In_Hex (Operand);
2187
996ae0b0
RK
2188 -- Fold the result of qualification
2189
2190 if Is_Discrete_Type (Target_Type) then
fbf5a39b 2191 Fold_Uint (N, Expr_Value (Operand), Stat);
996ae0b0 2192
07fc65c4
GB
2193 -- Preserve Print_In_Hex indication
2194
2195 if Hex and then Nkind (N) = N_Integer_Literal then
2196 Set_Print_In_Hex (N);
2197 end if;
2198
996ae0b0 2199 elsif Is_Real_Type (Target_Type) then
fbf5a39b 2200 Fold_Ureal (N, Expr_Value_R (Operand), Stat);
996ae0b0
RK
2201
2202 else
fbf5a39b 2203 Fold_Str (N, Strval (Get_String_Val (Operand)), Stat);
996ae0b0
RK
2204
2205 if not Stat then
2206 Set_Is_Static_Expression (N, False);
2207 else
2208 Check_String_Literal_Length (N, Target_Type);
2209 end if;
2210
2211 return;
2212 end if;
2213
fbf5a39b
AC
2214 -- The expression may be foldable but not static
2215
2216 Set_Is_Static_Expression (N, Stat);
2217
996ae0b0
RK
2218 if Is_Out_Of_Range (N, Etype (N)) then
2219 Out_Of_Range (N);
2220 end if;
996ae0b0
RK
2221 end Eval_Qualified_Expression;
2222
2223 -----------------------
2224 -- Eval_Real_Literal --
2225 -----------------------
2226
2227 -- Numeric literals are static (RM 4.9(1)), and have already been marked
2228 -- as static by the analyzer. The reason we did it that early is to allow
2229 -- the possibility of turning off the Is_Static_Expression flag after
2230 -- analysis, but before resolution, when integer literals are generated
2231 -- in the expander that do not correspond to static expressions.
2232
2233 procedure Eval_Real_Literal (N : Node_Id) is
2234 begin
2235 -- If the literal appears in a non-expression context, then it is
2236 -- certainly appearing in a non-static context, so check it.
2237
2238 if Nkind (Parent (N)) not in N_Subexpr then
2239 Check_Non_Static_Context (N);
2240 end if;
2241
2242 end Eval_Real_Literal;
2243
2244 ------------------------
2245 -- Eval_Relational_Op --
2246 ------------------------
2247
2248 -- Relational operations are static functions, so the result is static
2249 -- if both operands are static (RM 4.9(7), 4.9(20)).
2250
2251 procedure Eval_Relational_Op (N : Node_Id) is
2252 Left : constant Node_Id := Left_Opnd (N);
2253 Right : constant Node_Id := Right_Opnd (N);
2254 Typ : constant Entity_Id := Etype (Left);
2255 Result : Boolean;
2256 Stat : Boolean;
2257 Fold : Boolean;
2258
2259 begin
2260 -- One special case to deal with first. If we can tell that
2261 -- the result will be false because the lengths of one or
2262 -- more index subtypes are compile time known and different,
2263 -- then we can replace the entire result by False. We only
2264 -- do this for one dimensional arrays, because the case of
2265 -- multi-dimensional arrays is rare and too much trouble!
13f34a3f
RD
2266 -- If one of the operands is an illegal aggregate, its type
2267 -- might still be an arbitrary composite type, so nothing to do.
996ae0b0
RK
2268
2269 if Is_Array_Type (Typ)
13f34a3f 2270 and then Typ /= Any_Composite
996ae0b0 2271 and then Number_Dimensions (Typ) = 1
13f34a3f 2272 and then (Nkind (N) = N_Op_Eq or else Nkind (N) = N_Op_Ne)
996ae0b0
RK
2273 then
2274 if Raises_Constraint_Error (Left)
2275 or else Raises_Constraint_Error (Right)
2276 then
2277 return;
2278 end if;
2279
2280 declare
2281 procedure Get_Static_Length (Op : Node_Id; Len : out Uint);
13f34a3f
RD
2282 -- If Op is an expression for a constrained array with a known
2283 -- at compile time length, then Len is set to this (non-negative
2284 -- length). Otherwise Len is set to minus 1.
996ae0b0 2285
fbf5a39b
AC
2286 -----------------------
2287 -- Get_Static_Length --
2288 -----------------------
2289
996ae0b0
RK
2290 procedure Get_Static_Length (Op : Node_Id; Len : out Uint) is
2291 T : Entity_Id;
2292
2293 begin
2294 if Nkind (Op) = N_String_Literal then
2295 Len := UI_From_Int (String_Length (Strval (Op)));
2296
2297 elsif not Is_Constrained (Etype (Op)) then
2298 Len := Uint_Minus_1;
2299
2300 else
2301 T := Etype (First_Index (Etype (Op)));
2302
2303 if Is_Discrete_Type (T)
2304 and then
2305 Compile_Time_Known_Value (Type_Low_Bound (T))
2306 and then
2307 Compile_Time_Known_Value (Type_High_Bound (T))
2308 then
2309 Len := UI_Max (Uint_0,
2310 Expr_Value (Type_High_Bound (T)) -
2311 Expr_Value (Type_Low_Bound (T)) + 1);
2312 else
2313 Len := Uint_Minus_1;
2314 end if;
2315 end if;
2316 end Get_Static_Length;
2317
2318 Len_L : Uint;
2319 Len_R : Uint;
2320
2321 begin
2322 Get_Static_Length (Left, Len_L);
2323 Get_Static_Length (Right, Len_R);
2324
2325 if Len_L /= Uint_Minus_1
2326 and then Len_R /= Uint_Minus_1
2327 and then Len_L /= Len_R
2328 then
fbf5a39b 2329 Fold_Uint (N, Test (Nkind (N) = N_Op_Ne), False);
996ae0b0
RK
2330 Warn_On_Known_Condition (N);
2331 return;
2332 end if;
2333 end;
6eaf4095 2334
7a3f77d2
AC
2335 -- Another special case: comparisons of access types, where one or both
2336 -- operands are known to be null, so the result can be determined.
6eaf4095 2337
7a3f77d2
AC
2338 elsif Is_Access_Type (Typ) then
2339 if Known_Null (Left) then
2340 if Known_Null (Right) then
2341 Fold_Uint (N, Test (Nkind (N) = N_Op_Eq), False);
2342 Warn_On_Known_Condition (N);
2343 return;
2344
2345 elsif Known_Non_Null (Right) then
2346 Fold_Uint (N, Test (Nkind (N) = N_Op_Ne), False);
2347 Warn_On_Known_Condition (N);
2348 return;
2349 end if;
2350
2351 elsif Known_Non_Null (Left) then
2352 if Known_Null (Right) then
2353 Fold_Uint (N, Test (Nkind (N) = N_Op_Ne), False);
2354 Warn_On_Known_Condition (N);
2355 return;
2356 end if;
2357 end if;
996ae0b0
RK
2358 end if;
2359
2360 -- Can only fold if type is scalar (don't fold string ops)
2361
2362 if not Is_Scalar_Type (Typ) then
2363 Check_Non_Static_Context (Left);
2364 Check_Non_Static_Context (Right);
2365 return;
2366 end if;
2367
2368 -- If not foldable we are done
2369
2370 Test_Expression_Is_Foldable (N, Left, Right, Stat, Fold);
2371
2372 if not Fold then
2373 return;
2374 end if;
2375
2376 -- Integer and Enumeration (discrete) type cases
2377
2378 if Is_Discrete_Type (Typ) then
2379 declare
2380 Left_Int : constant Uint := Expr_Value (Left);
2381 Right_Int : constant Uint := Expr_Value (Right);
2382
2383 begin
2384 case Nkind (N) is
2385 when N_Op_Eq => Result := Left_Int = Right_Int;
2386 when N_Op_Ne => Result := Left_Int /= Right_Int;
2387 when N_Op_Lt => Result := Left_Int < Right_Int;
2388 when N_Op_Le => Result := Left_Int <= Right_Int;
2389 when N_Op_Gt => Result := Left_Int > Right_Int;
2390 when N_Op_Ge => Result := Left_Int >= Right_Int;
2391
2392 when others =>
2393 raise Program_Error;
2394 end case;
2395
fbf5a39b 2396 Fold_Uint (N, Test (Result), Stat);
996ae0b0
RK
2397 end;
2398
2399 -- Real type case
2400
2401 else
2402 pragma Assert (Is_Real_Type (Typ));
2403
2404 declare
2405 Left_Real : constant Ureal := Expr_Value_R (Left);
2406 Right_Real : constant Ureal := Expr_Value_R (Right);
2407
2408 begin
2409 case Nkind (N) is
2410 when N_Op_Eq => Result := (Left_Real = Right_Real);
2411 when N_Op_Ne => Result := (Left_Real /= Right_Real);
2412 when N_Op_Lt => Result := (Left_Real < Right_Real);
2413 when N_Op_Le => Result := (Left_Real <= Right_Real);
2414 when N_Op_Gt => Result := (Left_Real > Right_Real);
2415 when N_Op_Ge => Result := (Left_Real >= Right_Real);
2416
2417 when others =>
2418 raise Program_Error;
2419 end case;
2420
fbf5a39b 2421 Fold_Uint (N, Test (Result), Stat);
996ae0b0
RK
2422 end;
2423 end if;
2424
996ae0b0
RK
2425 Warn_On_Known_Condition (N);
2426 end Eval_Relational_Op;
2427
2428 ----------------
2429 -- Eval_Shift --
2430 ----------------
2431
2432 -- Shift operations are intrinsic operations that can never be static,
2433 -- so the only processing required is to perform the required check for
2434 -- a non static context for the two operands.
2435
2436 -- Actually we could do some compile time evaluation here some time ???
2437
2438 procedure Eval_Shift (N : Node_Id) is
2439 begin
2440 Check_Non_Static_Context (Left_Opnd (N));
2441 Check_Non_Static_Context (Right_Opnd (N));
2442 end Eval_Shift;
2443
2444 ------------------------
2445 -- Eval_Short_Circuit --
2446 ------------------------
2447
2448 -- A short circuit operation is potentially static if both operands
2449 -- are potentially static (RM 4.9 (13))
2450
2451 procedure Eval_Short_Circuit (N : Node_Id) is
2452 Kind : constant Node_Kind := Nkind (N);
2453 Left : constant Node_Id := Left_Opnd (N);
2454 Right : constant Node_Id := Right_Opnd (N);
2455 Left_Int : Uint;
2456 Rstat : constant Boolean :=
2457 Is_Static_Expression (Left)
2458 and then Is_Static_Expression (Right);
2459
2460 begin
2461 -- Short circuit operations are never static in Ada 83
2462
0ab80019 2463 if Ada_Version = Ada_83
996ae0b0
RK
2464 and then Comes_From_Source (N)
2465 then
2466 Check_Non_Static_Context (Left);
2467 Check_Non_Static_Context (Right);
2468 return;
2469 end if;
2470
2471 -- Now look at the operands, we can't quite use the normal call to
2472 -- Test_Expression_Is_Foldable here because short circuit operations
2473 -- are a special case, they can still be foldable, even if the right
2474 -- operand raises constraint error.
2475
2476 -- If either operand is Any_Type, just propagate to result and
2477 -- do not try to fold, this prevents cascaded errors.
2478
2479 if Etype (Left) = Any_Type or else Etype (Right) = Any_Type then
2480 Set_Etype (N, Any_Type);
2481 return;
2482
2483 -- If left operand raises constraint error, then replace node N with
2484 -- the raise constraint error node, and we are obviously not foldable.
2485 -- Is_Static_Expression is set from the two operands in the normal way,
2486 -- and we check the right operand if it is in a non-static context.
2487
2488 elsif Raises_Constraint_Error (Left) then
2489 if not Rstat then
2490 Check_Non_Static_Context (Right);
2491 end if;
2492
2493 Rewrite_In_Raise_CE (N, Left);
2494 Set_Is_Static_Expression (N, Rstat);
2495 return;
2496
2497 -- If the result is not static, then we won't in any case fold
2498
2499 elsif not Rstat then
2500 Check_Non_Static_Context (Left);
2501 Check_Non_Static_Context (Right);
2502 return;
2503 end if;
2504
2505 -- Here the result is static, note that, unlike the normal processing
2506 -- in Test_Expression_Is_Foldable, we did *not* check above to see if
2507 -- the right operand raises constraint error, that's because it is not
2508 -- significant if the left operand is decisive.
2509
2510 Set_Is_Static_Expression (N);
2511
2512 -- It does not matter if the right operand raises constraint error if
2513 -- it will not be evaluated. So deal specially with the cases where
2514 -- the right operand is not evaluated. Note that we will fold these
2515 -- cases even if the right operand is non-static, which is fine, but
2516 -- of course in these cases the result is not potentially static.
2517
2518 Left_Int := Expr_Value (Left);
2519
2520 if (Kind = N_And_Then and then Is_False (Left_Int))
2521 or else (Kind = N_Or_Else and Is_True (Left_Int))
2522 then
fbf5a39b 2523 Fold_Uint (N, Left_Int, Rstat);
996ae0b0
RK
2524 return;
2525 end if;
2526
2527 -- If first operand not decisive, then it does matter if the right
2528 -- operand raises constraint error, since it will be evaluated, so
2529 -- we simply replace the node with the right operand. Note that this
2530 -- properly propagates Is_Static_Expression and Raises_Constraint_Error
2531 -- (both are set to True in Right).
2532
2533 if Raises_Constraint_Error (Right) then
2534 Rewrite_In_Raise_CE (N, Right);
2535 Check_Non_Static_Context (Left);
2536 return;
2537 end if;
2538
2539 -- Otherwise the result depends on the right operand
2540
fbf5a39b 2541 Fold_Uint (N, Expr_Value (Right), Rstat);
996ae0b0 2542 return;
996ae0b0
RK
2543 end Eval_Short_Circuit;
2544
2545 ----------------
2546 -- Eval_Slice --
2547 ----------------
2548
2549 -- Slices can never be static, so the only processing required is to
2550 -- check for non-static context if an explicit range is given.
2551
2552 procedure Eval_Slice (N : Node_Id) is
2553 Drange : constant Node_Id := Discrete_Range (N);
996ae0b0
RK
2554 begin
2555 if Nkind (Drange) = N_Range then
2556 Check_Non_Static_Context (Low_Bound (Drange));
2557 Check_Non_Static_Context (High_Bound (Drange));
2558 end if;
2559 end Eval_Slice;
2560
2561 -------------------------
2562 -- Eval_String_Literal --
2563 -------------------------
2564
2565 procedure Eval_String_Literal (N : Node_Id) is
91b1417d
AC
2566 Typ : constant Entity_Id := Etype (N);
2567 Bas : constant Entity_Id := Base_Type (Typ);
2568 Xtp : Entity_Id;
2569 Len : Nat;
2570 Lo : Node_Id;
996ae0b0
RK
2571
2572 begin
2573 -- Nothing to do if error type (handles cases like default expressions
2574 -- or generics where we have not yet fully resolved the type)
2575
91b1417d 2576 if Bas = Any_Type or else Bas = Any_String then
996ae0b0 2577 return;
91b1417d 2578 end if;
996ae0b0
RK
2579
2580 -- String literals are static if the subtype is static (RM 4.9(2)), so
2581 -- reset the static expression flag (it was set unconditionally in
2582 -- Analyze_String_Literal) if the subtype is non-static. We tell if
2583 -- the subtype is static by looking at the lower bound.
2584
91b1417d
AC
2585 if Ekind (Typ) = E_String_Literal_Subtype then
2586 if not Is_OK_Static_Expression (String_Literal_Low_Bound (Typ)) then
2587 Set_Is_Static_Expression (N, False);
2588 return;
2589 end if;
2590
2591 -- Here if Etype of string literal is normal Etype (not yet possible,
2592 -- but may be possible in future!)
2593
2594 elsif not Is_OK_Static_Expression
2595 (Type_Low_Bound (Etype (First_Index (Typ))))
2596 then
996ae0b0 2597 Set_Is_Static_Expression (N, False);
91b1417d
AC
2598 return;
2599 end if;
996ae0b0 2600
91b1417d
AC
2601 -- If original node was a type conversion, then result if non-static
2602
2603 if Nkind (Original_Node (N)) = N_Type_Conversion then
996ae0b0 2604 Set_Is_Static_Expression (N, False);
91b1417d
AC
2605 return;
2606 end if;
996ae0b0
RK
2607
2608 -- Test for illegal Ada 95 cases. A string literal is illegal in
2609 -- Ada 95 if its bounds are outside the index base type and this
91b1417d 2610 -- index type is static. This can happen in only two ways. Either
996ae0b0
RK
2611 -- the string literal is too long, or it is null, and the lower
2612 -- bound is type'First. In either case it is the upper bound that
2613 -- is out of range of the index type.
2614
0ab80019 2615 if Ada_Version >= Ada_95 then
91b1417d
AC
2616 if Root_Type (Bas) = Standard_String
2617 or else
2618 Root_Type (Bas) = Standard_Wide_String
996ae0b0 2619 then
91b1417d 2620 Xtp := Standard_Positive;
996ae0b0 2621 else
91b1417d 2622 Xtp := Etype (First_Index (Bas));
996ae0b0
RK
2623 end if;
2624
91b1417d
AC
2625 if Ekind (Typ) = E_String_Literal_Subtype then
2626 Lo := String_Literal_Low_Bound (Typ);
2627 else
2628 Lo := Type_Low_Bound (Etype (First_Index (Typ)));
2629 end if;
2630
2631 Len := String_Length (Strval (N));
2632
2633 if UI_From_Int (Len) > String_Type_Len (Bas) then
996ae0b0 2634 Apply_Compile_Time_Constraint_Error
07fc65c4 2635 (N, "string literal too long for}", CE_Length_Check_Failed,
91b1417d
AC
2636 Ent => Bas,
2637 Typ => First_Subtype (Bas));
996ae0b0 2638
91b1417d
AC
2639 elsif Len = 0
2640 and then not Is_Generic_Type (Xtp)
2641 and then
2642 Expr_Value (Lo) = Expr_Value (Type_Low_Bound (Base_Type (Xtp)))
996ae0b0
RK
2643 then
2644 Apply_Compile_Time_Constraint_Error
2645 (N, "null string literal not allowed for}",
07fc65c4 2646 CE_Length_Check_Failed,
91b1417d
AC
2647 Ent => Bas,
2648 Typ => First_Subtype (Bas));
996ae0b0
RK
2649 end if;
2650 end if;
996ae0b0
RK
2651 end Eval_String_Literal;
2652
2653 --------------------------
2654 -- Eval_Type_Conversion --
2655 --------------------------
2656
2657 -- A type conversion is potentially static if its subtype mark is for a
2658 -- static scalar subtype, and its operand expression is potentially static
2659 -- (RM 4.9 (10))
2660
2661 procedure Eval_Type_Conversion (N : Node_Id) is
2662 Operand : constant Node_Id := Expression (N);
2663 Source_Type : constant Entity_Id := Etype (Operand);
2664 Target_Type : constant Entity_Id := Etype (N);
2665
2666 Stat : Boolean;
2667 Fold : Boolean;
2668
2669 function To_Be_Treated_As_Integer (T : Entity_Id) return Boolean;
2670 -- Returns true if type T is an integer type, or if it is a
2671 -- fixed-point type to be treated as an integer (i.e. the flag
2672 -- Conversion_OK is set on the conversion node).
2673
2674 function To_Be_Treated_As_Real (T : Entity_Id) return Boolean;
2675 -- Returns true if type T is a floating-point type, or if it is a
2676 -- fixed-point type that is not to be treated as an integer (i.e. the
2677 -- flag Conversion_OK is not set on the conversion node).
2678
fbf5a39b
AC
2679 ------------------------------
2680 -- To_Be_Treated_As_Integer --
2681 ------------------------------
2682
996ae0b0
RK
2683 function To_Be_Treated_As_Integer (T : Entity_Id) return Boolean is
2684 begin
2685 return
2686 Is_Integer_Type (T)
2687 or else (Is_Fixed_Point_Type (T) and then Conversion_OK (N));
2688 end To_Be_Treated_As_Integer;
2689
fbf5a39b
AC
2690 ---------------------------
2691 -- To_Be_Treated_As_Real --
2692 ---------------------------
2693
996ae0b0
RK
2694 function To_Be_Treated_As_Real (T : Entity_Id) return Boolean is
2695 begin
2696 return
2697 Is_Floating_Point_Type (T)
2698 or else (Is_Fixed_Point_Type (T) and then not Conversion_OK (N));
2699 end To_Be_Treated_As_Real;
2700
2701 -- Start of processing for Eval_Type_Conversion
2702
2703 begin
82c80734 2704 -- Cannot fold if target type is non-static or if semantic error
996ae0b0
RK
2705
2706 if not Is_Static_Subtype (Target_Type) then
2707 Check_Non_Static_Context (Operand);
2708 return;
2709
2710 elsif Error_Posted (N) then
2711 return;
2712 end if;
2713
2714 -- If not foldable we are done
2715
2716 Test_Expression_Is_Foldable (N, Operand, Stat, Fold);
2717
2718 if not Fold then
2719 return;
2720
2721 -- Don't try fold if target type has constraint error bounds
2722
2723 elsif not Is_OK_Static_Subtype (Target_Type) then
2724 Set_Raises_Constraint_Error (N);
2725 return;
2726 end if;
2727
2728 -- Remaining processing depends on operand types. Note that in the
2729 -- following type test, fixed-point counts as real unless the flag
2730 -- Conversion_OK is set, in which case it counts as integer.
2731
82c80734 2732 -- Fold conversion, case of string type. The result is not static
996ae0b0
RK
2733
2734 if Is_String_Type (Target_Type) then
b11e8d6f 2735 Fold_Str (N, Strval (Get_String_Val (Operand)), Static => False);
996ae0b0
RK
2736
2737 return;
2738
2739 -- Fold conversion, case of integer target type
2740
2741 elsif To_Be_Treated_As_Integer (Target_Type) then
2742 declare
2743 Result : Uint;
2744
2745 begin
2746 -- Integer to integer conversion
2747
2748 if To_Be_Treated_As_Integer (Source_Type) then
2749 Result := Expr_Value (Operand);
2750
2751 -- Real to integer conversion
2752
2753 else
2754 Result := UR_To_Uint (Expr_Value_R (Operand));
2755 end if;
2756
2757 -- If fixed-point type (Conversion_OK must be set), then the
2758 -- result is logically an integer, but we must replace the
2759 -- conversion with the corresponding real literal, since the
2760 -- type from a semantic point of view is still fixed-point.
2761
2762 if Is_Fixed_Point_Type (Target_Type) then
2763 Fold_Ureal
fbf5a39b 2764 (N, UR_From_Uint (Result) * Small_Value (Target_Type), Stat);
996ae0b0
RK
2765
2766 -- Otherwise result is integer literal
2767
2768 else
fbf5a39b 2769 Fold_Uint (N, Result, Stat);
996ae0b0
RK
2770 end if;
2771 end;
2772
2773 -- Fold conversion, case of real target type
2774
2775 elsif To_Be_Treated_As_Real (Target_Type) then
2776 declare
2777 Result : Ureal;
2778
2779 begin
2780 if To_Be_Treated_As_Real (Source_Type) then
2781 Result := Expr_Value_R (Operand);
2782 else
2783 Result := UR_From_Uint (Expr_Value (Operand));
2784 end if;
2785
fbf5a39b 2786 Fold_Ureal (N, Result, Stat);
996ae0b0
RK
2787 end;
2788
2789 -- Enumeration types
2790
2791 else
fbf5a39b 2792 Fold_Uint (N, Expr_Value (Operand), Stat);
996ae0b0
RK
2793 end if;
2794
996ae0b0
RK
2795 if Is_Out_Of_Range (N, Etype (N)) then
2796 Out_Of_Range (N);
2797 end if;
2798
2799 end Eval_Type_Conversion;
2800
2801 -------------------
2802 -- Eval_Unary_Op --
2803 -------------------
2804
2805 -- Predefined unary operators are static functions (RM 4.9(20)) and thus
2806 -- are potentially static if the operand is potentially static (RM 4.9(7))
2807
2808 procedure Eval_Unary_Op (N : Node_Id) is
2809 Right : constant Node_Id := Right_Opnd (N);
2810 Stat : Boolean;
2811 Fold : Boolean;
2812
2813 begin
2814 -- If not foldable we are done
2815
2816 Test_Expression_Is_Foldable (N, Right, Stat, Fold);
2817
2818 if not Fold then
2819 return;
2820 end if;
2821
2822 -- Fold for integer case
2823
2824 if Is_Integer_Type (Etype (N)) then
2825 declare
2826 Rint : constant Uint := Expr_Value (Right);
2827 Result : Uint;
2828
2829 begin
2830 -- In the case of modular unary plus and abs there is no need
2831 -- to adjust the result of the operation since if the original
2832 -- operand was in bounds the result will be in the bounds of the
2833 -- modular type. However, in the case of modular unary minus the
2834 -- result may go out of the bounds of the modular type and needs
2835 -- adjustment.
2836
2837 if Nkind (N) = N_Op_Plus then
2838 Result := Rint;
2839
2840 elsif Nkind (N) = N_Op_Minus then
2841 if Is_Modular_Integer_Type (Etype (N)) then
2842 Result := (-Rint) mod Modulus (Etype (N));
2843 else
2844 Result := (-Rint);
2845 end if;
2846
2847 else
2848 pragma Assert (Nkind (N) = N_Op_Abs);
2849 Result := abs Rint;
2850 end if;
2851
fbf5a39b 2852 Fold_Uint (N, Result, Stat);
996ae0b0
RK
2853 end;
2854
2855 -- Fold for real case
2856
2857 elsif Is_Real_Type (Etype (N)) then
2858 declare
2859 Rreal : constant Ureal := Expr_Value_R (Right);
2860 Result : Ureal;
2861
2862 begin
2863 if Nkind (N) = N_Op_Plus then
2864 Result := Rreal;
2865
2866 elsif Nkind (N) = N_Op_Minus then
2867 Result := UR_Negate (Rreal);
2868
2869 else
2870 pragma Assert (Nkind (N) = N_Op_Abs);
2871 Result := abs Rreal;
2872 end if;
2873
fbf5a39b 2874 Fold_Ureal (N, Result, Stat);
996ae0b0
RK
2875 end;
2876 end if;
996ae0b0
RK
2877 end Eval_Unary_Op;
2878
2879 -------------------------------
2880 -- Eval_Unchecked_Conversion --
2881 -------------------------------
2882
2883 -- Unchecked conversions can never be static, so the only required
2884 -- processing is to check for a non-static context for the operand.
2885
2886 procedure Eval_Unchecked_Conversion (N : Node_Id) is
2887 begin
2888 Check_Non_Static_Context (Expression (N));
2889 end Eval_Unchecked_Conversion;
2890
2891 --------------------
2892 -- Expr_Rep_Value --
2893 --------------------
2894
2895 function Expr_Rep_Value (N : Node_Id) return Uint is
07fc65c4
GB
2896 Kind : constant Node_Kind := Nkind (N);
2897 Ent : Entity_Id;
996ae0b0
RK
2898
2899 begin
2900 if Is_Entity_Name (N) then
2901 Ent := Entity (N);
2902
2903 -- An enumeration literal that was either in the source or
2904 -- created as a result of static evaluation.
2905
2906 if Ekind (Ent) = E_Enumeration_Literal then
2907 return Enumeration_Rep (Ent);
2908
2909 -- A user defined static constant
2910
2911 else
2912 pragma Assert (Ekind (Ent) = E_Constant);
2913 return Expr_Rep_Value (Constant_Value (Ent));
2914 end if;
2915
2916 -- An integer literal that was either in the source or created
2917 -- as a result of static evaluation.
2918
2919 elsif Kind = N_Integer_Literal then
2920 return Intval (N);
2921
2922 -- A real literal for a fixed-point type. This must be the fixed-point
2923 -- case, either the literal is of a fixed-point type, or it is a bound
2924 -- of a fixed-point type, with type universal real. In either case we
2925 -- obtain the desired value from Corresponding_Integer_Value.
2926
2927 elsif Kind = N_Real_Literal then
996ae0b0
RK
2928 pragma Assert (Is_Fixed_Point_Type (Underlying_Type (Etype (N))));
2929 return Corresponding_Integer_Value (N);
2930
07fc65c4
GB
2931 -- Peculiar VMS case, if we have xxx'Null_Parameter, return zero
2932
2933 elsif Kind = N_Attribute_Reference
2934 and then Attribute_Name (N) = Name_Null_Parameter
2935 then
2936 return Uint_0;
2937
07fc65c4 2938 -- Otherwise must be character literal
8cbb664e 2939
996ae0b0
RK
2940 else
2941 pragma Assert (Kind = N_Character_Literal);
2942 Ent := Entity (N);
2943
2944 -- Since Character literals of type Standard.Character don't
2945 -- have any defining character literals built for them, they
2946 -- do not have their Entity set, so just use their Char
2947 -- code. Otherwise for user-defined character literals use
2948 -- their Pos value as usual which is the same as the Rep value.
2949
2950 if No (Ent) then
82c80734 2951 return Char_Literal_Value (N);
996ae0b0
RK
2952 else
2953 return Enumeration_Rep (Ent);
2954 end if;
2955 end if;
2956 end Expr_Rep_Value;
2957
2958 ----------------
2959 -- Expr_Value --
2960 ----------------
2961
2962 function Expr_Value (N : Node_Id) return Uint is
07fc65c4
GB
2963 Kind : constant Node_Kind := Nkind (N);
2964 CV_Ent : CV_Entry renames CV_Cache (Nat (N) mod CV_Cache_Size);
2965 Ent : Entity_Id;
2966 Val : Uint;
996ae0b0
RK
2967
2968 begin
13f34a3f
RD
2969 -- If already in cache, then we know it's compile time known and we can
2970 -- return the value that was previously stored in the cache since
2971 -- compile time known values cannot change.
07fc65c4
GB
2972
2973 if CV_Ent.N = N then
2974 return CV_Ent.V;
2975 end if;
2976
2977 -- Otherwise proceed to test value
2978
996ae0b0
RK
2979 if Is_Entity_Name (N) then
2980 Ent := Entity (N);
2981
2982 -- An enumeration literal that was either in the source or
2983 -- created as a result of static evaluation.
2984
2985 if Ekind (Ent) = E_Enumeration_Literal then
07fc65c4 2986 Val := Enumeration_Pos (Ent);
996ae0b0
RK
2987
2988 -- A user defined static constant
2989
2990 else
2991 pragma Assert (Ekind (Ent) = E_Constant);
07fc65c4 2992 Val := Expr_Value (Constant_Value (Ent));
996ae0b0
RK
2993 end if;
2994
2995 -- An integer literal that was either in the source or created
2996 -- as a result of static evaluation.
2997
2998 elsif Kind = N_Integer_Literal then
07fc65c4 2999 Val := Intval (N);
996ae0b0
RK
3000
3001 -- A real literal for a fixed-point type. This must be the fixed-point
3002 -- case, either the literal is of a fixed-point type, or it is a bound
3003 -- of a fixed-point type, with type universal real. In either case we
3004 -- obtain the desired value from Corresponding_Integer_Value.
3005
3006 elsif Kind = N_Real_Literal then
3007
996ae0b0 3008 pragma Assert (Is_Fixed_Point_Type (Underlying_Type (Etype (N))));
07fc65c4 3009 Val := Corresponding_Integer_Value (N);
996ae0b0
RK
3010
3011 -- Peculiar VMS case, if we have xxx'Null_Parameter, return zero
3012
3013 elsif Kind = N_Attribute_Reference
3014 and then Attribute_Name (N) = Name_Null_Parameter
3015 then
07fc65c4
GB
3016 Val := Uint_0;
3017
996ae0b0
RK
3018 -- Otherwise must be character literal
3019
3020 else
3021 pragma Assert (Kind = N_Character_Literal);
3022 Ent := Entity (N);
3023
3024 -- Since Character literals of type Standard.Character don't
3025 -- have any defining character literals built for them, they
3026 -- do not have their Entity set, so just use their Char
3027 -- code. Otherwise for user-defined character literals use
3028 -- their Pos value as usual.
3029
3030 if No (Ent) then
82c80734 3031 Val := Char_Literal_Value (N);
996ae0b0 3032 else
07fc65c4 3033 Val := Enumeration_Pos (Ent);
996ae0b0
RK
3034 end if;
3035 end if;
3036
07fc65c4
GB
3037 -- Come here with Val set to value to be returned, set cache
3038
3039 CV_Ent.N := N;
3040 CV_Ent.V := Val;
3041 return Val;
996ae0b0
RK
3042 end Expr_Value;
3043
3044 ------------------
3045 -- Expr_Value_E --
3046 ------------------
3047
3048 function Expr_Value_E (N : Node_Id) return Entity_Id is
3049 Ent : constant Entity_Id := Entity (N);
3050
3051 begin
3052 if Ekind (Ent) = E_Enumeration_Literal then
3053 return Ent;
3054 else
3055 pragma Assert (Ekind (Ent) = E_Constant);
3056 return Expr_Value_E (Constant_Value (Ent));
3057 end if;
3058 end Expr_Value_E;
3059
3060 ------------------
3061 -- Expr_Value_R --
3062 ------------------
3063
3064 function Expr_Value_R (N : Node_Id) return Ureal is
3065 Kind : constant Node_Kind := Nkind (N);
3066 Ent : Entity_Id;
3067 Expr : Node_Id;
3068
3069 begin
3070 if Kind = N_Real_Literal then
3071 return Realval (N);
3072
3073 elsif Kind = N_Identifier or else Kind = N_Expanded_Name then
3074 Ent := Entity (N);
3075 pragma Assert (Ekind (Ent) = E_Constant);
3076 return Expr_Value_R (Constant_Value (Ent));
3077
3078 elsif Kind = N_Integer_Literal then
3079 return UR_From_Uint (Expr_Value (N));
3080
3081 -- Strange case of VAX literals, which are at this stage transformed
3082 -- into Vax_Type!x_To_y(IEEE_Literal). See Expand_N_Real_Literal in
3083 -- Exp_Vfpt for further details.
3084
3085 elsif Vax_Float (Etype (N))
3086 and then Nkind (N) = N_Unchecked_Type_Conversion
3087 then
3088 Expr := Expression (N);
3089
3090 if Nkind (Expr) = N_Function_Call
3091 and then Present (Parameter_Associations (Expr))
3092 then
3093 Expr := First (Parameter_Associations (Expr));
3094
3095 if Nkind (Expr) = N_Real_Literal then
3096 return Realval (Expr);
3097 end if;
3098 end if;
3099
3100 -- Peculiar VMS case, if we have xxx'Null_Parameter, return 0.0
3101
3102 elsif Kind = N_Attribute_Reference
3103 and then Attribute_Name (N) = Name_Null_Parameter
3104 then
3105 return Ureal_0;
3106 end if;
3107
3108 -- If we fall through, we have a node that cannot be interepreted
3109 -- as a compile time constant. That is definitely an error.
3110
3111 raise Program_Error;
3112 end Expr_Value_R;
3113
3114 ------------------
3115 -- Expr_Value_S --
3116 ------------------
3117
3118 function Expr_Value_S (N : Node_Id) return Node_Id is
3119 begin
3120 if Nkind (N) = N_String_Literal then
3121 return N;
3122 else
3123 pragma Assert (Ekind (Entity (N)) = E_Constant);
3124 return Expr_Value_S (Constant_Value (Entity (N)));
3125 end if;
3126 end Expr_Value_S;
3127
fbf5a39b
AC
3128 --------------------------
3129 -- Flag_Non_Static_Expr --
3130 --------------------------
3131
3132 procedure Flag_Non_Static_Expr (Msg : String; Expr : Node_Id) is
3133 begin
3134 if Error_Posted (Expr) and then not All_Errors_Mode then
3135 return;
3136 else
3137 Error_Msg_F (Msg, Expr);
3138 Why_Not_Static (Expr);
3139 end if;
3140 end Flag_Non_Static_Expr;
3141
996ae0b0
RK
3142 --------------
3143 -- Fold_Str --
3144 --------------
3145
fbf5a39b 3146 procedure Fold_Str (N : Node_Id; Val : String_Id; Static : Boolean) is
996ae0b0
RK
3147 Loc : constant Source_Ptr := Sloc (N);
3148 Typ : constant Entity_Id := Etype (N);
3149
3150 begin
3151 Rewrite (N, Make_String_Literal (Loc, Strval => Val));
fbf5a39b
AC
3152
3153 -- We now have the literal with the right value, both the actual type
3154 -- and the expected type of this literal are taken from the expression
3155 -- that was evaluated.
3156
3157 Analyze (N);
3158 Set_Is_Static_Expression (N, Static);
3159 Set_Etype (N, Typ);
3160 Resolve (N);
996ae0b0
RK
3161 end Fold_Str;
3162
3163 ---------------
3164 -- Fold_Uint --
3165 ---------------
3166
fbf5a39b 3167 procedure Fold_Uint (N : Node_Id; Val : Uint; Static : Boolean) is
996ae0b0 3168 Loc : constant Source_Ptr := Sloc (N);
fbf5a39b
AC
3169 Typ : Entity_Id := Etype (N);
3170 Ent : Entity_Id;
996ae0b0
RK
3171
3172 begin
fbf5a39b
AC
3173 -- If we are folding a named number, retain the entity in the
3174 -- literal, for ASIS use.
3175
3176 if Is_Entity_Name (N)
3177 and then Ekind (Entity (N)) = E_Named_Integer
3178 then
3179 Ent := Entity (N);
3180 else
3181 Ent := Empty;
3182 end if;
3183
3184 if Is_Private_Type (Typ) then
3185 Typ := Full_View (Typ);
3186 end if;
3187
996ae0b0
RK
3188 -- For a result of type integer, subsitute an N_Integer_Literal node
3189 -- for the result of the compile time evaluation of the expression.
3190
fbf5a39b 3191 if Is_Integer_Type (Typ) then
996ae0b0 3192 Rewrite (N, Make_Integer_Literal (Loc, Val));
fbf5a39b 3193 Set_Original_Entity (N, Ent);
996ae0b0
RK
3194
3195 -- Otherwise we have an enumeration type, and we substitute either
3196 -- an N_Identifier or N_Character_Literal to represent the enumeration
3197 -- literal corresponding to the given value, which must always be in
3198 -- range, because appropriate tests have already been made for this.
3199
fbf5a39b 3200 else pragma Assert (Is_Enumeration_Type (Typ));
996ae0b0
RK
3201 Rewrite (N, Get_Enum_Lit_From_Pos (Etype (N), Val, Loc));
3202 end if;
3203
3204 -- We now have the literal with the right value, both the actual type
3205 -- and the expected type of this literal are taken from the expression
3206 -- that was evaluated.
3207
3208 Analyze (N);
fbf5a39b 3209 Set_Is_Static_Expression (N, Static);
996ae0b0 3210 Set_Etype (N, Typ);
fbf5a39b 3211 Resolve (N);
996ae0b0
RK
3212 end Fold_Uint;
3213
3214 ----------------
3215 -- Fold_Ureal --
3216 ----------------
3217
fbf5a39b 3218 procedure Fold_Ureal (N : Node_Id; Val : Ureal; Static : Boolean) is
996ae0b0
RK
3219 Loc : constant Source_Ptr := Sloc (N);
3220 Typ : constant Entity_Id := Etype (N);
fbf5a39b 3221 Ent : Entity_Id;
996ae0b0
RK
3222
3223 begin
fbf5a39b
AC
3224 -- If we are folding a named number, retain the entity in the
3225 -- literal, for ASIS use.
3226
3227 if Is_Entity_Name (N)
3228 and then Ekind (Entity (N)) = E_Named_Real
3229 then
3230 Ent := Entity (N);
3231 else
3232 Ent := Empty;
3233 end if;
3234
996ae0b0 3235 Rewrite (N, Make_Real_Literal (Loc, Realval => Val));
fbf5a39b 3236 Set_Original_Entity (N, Ent);
996ae0b0
RK
3237
3238 -- Both the actual and expected type comes from the original expression
3239
fbf5a39b
AC
3240 Analyze (N);
3241 Set_Is_Static_Expression (N, Static);
996ae0b0 3242 Set_Etype (N, Typ);
fbf5a39b 3243 Resolve (N);
996ae0b0
RK
3244 end Fold_Ureal;
3245
3246 ---------------
3247 -- From_Bits --
3248 ---------------
3249
3250 function From_Bits (B : Bits; T : Entity_Id) return Uint is
3251 V : Uint := Uint_0;
3252
3253 begin
3254 for J in 0 .. B'Last loop
3255 if B (J) then
3256 V := V + 2 ** J;
3257 end if;
3258 end loop;
3259
3260 if Non_Binary_Modulus (T) then
3261 V := V mod Modulus (T);
3262 end if;
3263
3264 return V;
3265 end From_Bits;
3266
3267 --------------------
3268 -- Get_String_Val --
3269 --------------------
3270
3271 function Get_String_Val (N : Node_Id) return Node_Id is
3272 begin
3273 if Nkind (N) = N_String_Literal then
3274 return N;
3275
3276 elsif Nkind (N) = N_Character_Literal then
3277 return N;
3278
3279 else
3280 pragma Assert (Is_Entity_Name (N));
3281 return Get_String_Val (Constant_Value (Entity (N)));
3282 end if;
3283 end Get_String_Val;
3284
fbf5a39b
AC
3285 ----------------
3286 -- Initialize --
3287 ----------------
3288
3289 procedure Initialize is
3290 begin
3291 CV_Cache := (others => (Node_High_Bound, Uint_0));
3292 end Initialize;
3293
996ae0b0
RK
3294 --------------------
3295 -- In_Subrange_Of --
3296 --------------------
3297
3298 function In_Subrange_Of
3299 (T1 : Entity_Id;
3300 T2 : Entity_Id;
f44fe430 3301 Fixed_Int : Boolean := False) return Boolean
996ae0b0
RK
3302 is
3303 L1 : Node_Id;
3304 H1 : Node_Id;
3305
3306 L2 : Node_Id;
3307 H2 : Node_Id;
3308
3309 begin
3310 if T1 = T2 or else Is_Subtype_Of (T1, T2) then
3311 return True;
3312
3313 -- Never in range if both types are not scalar. Don't know if this can
3314 -- actually happen, but just in case.
3315
3316 elsif not Is_Scalar_Type (T1) or else not Is_Scalar_Type (T1) then
3317 return False;
3318
3319 else
3320 L1 := Type_Low_Bound (T1);
3321 H1 := Type_High_Bound (T1);
3322
3323 L2 := Type_Low_Bound (T2);
3324 H2 := Type_High_Bound (T2);
3325
3326 -- Check bounds to see if comparison possible at compile time
3327
3328 if Compile_Time_Compare (L1, L2) in Compare_GE
3329 and then
3330 Compile_Time_Compare (H1, H2) in Compare_LE
3331 then
3332 return True;
3333 end if;
3334
3335 -- If bounds not comparable at compile time, then the bounds of T2
3336 -- must be compile time known or we cannot answer the query.
3337
3338 if not Compile_Time_Known_Value (L2)
3339 or else not Compile_Time_Known_Value (H2)
3340 then
3341 return False;
3342 end if;
3343
3344 -- If the bounds of T1 are know at compile time then use these
3345 -- ones, otherwise use the bounds of the base type (which are of
3346 -- course always static).
3347
3348 if not Compile_Time_Known_Value (L1) then
3349 L1 := Type_Low_Bound (Base_Type (T1));
3350 end if;
3351
3352 if not Compile_Time_Known_Value (H1) then
3353 H1 := Type_High_Bound (Base_Type (T1));
3354 end if;
3355
3356 -- Fixed point types should be considered as such only if
3357 -- flag Fixed_Int is set to False.
3358
3359 if Is_Floating_Point_Type (T1) or else Is_Floating_Point_Type (T2)
3360 or else (Is_Fixed_Point_Type (T1) and then not Fixed_Int)
3361 or else (Is_Fixed_Point_Type (T2) and then not Fixed_Int)
3362 then
3363 return
3364 Expr_Value_R (L2) <= Expr_Value_R (L1)
3365 and then
3366 Expr_Value_R (H2) >= Expr_Value_R (H1);
3367
3368 else
3369 return
3370 Expr_Value (L2) <= Expr_Value (L1)
3371 and then
3372 Expr_Value (H2) >= Expr_Value (H1);
3373
3374 end if;
3375 end if;
3376
3377 -- If any exception occurs, it means that we have some bug in the compiler
3378 -- possibly triggered by a previous error, or by some unforseen peculiar
3379 -- occurrence. However, this is only an optimization attempt, so there is
3380 -- really no point in crashing the compiler. Instead we just decide, too
3381 -- bad, we can't figure out the answer in this case after all.
3382
3383 exception
3384 when others =>
3385
3386 -- Debug flag K disables this behavior (useful for debugging)
3387
3388 if Debug_Flag_K then
3389 raise;
3390 else
3391 return False;
3392 end if;
3393 end In_Subrange_Of;
3394
3395 -----------------
3396 -- Is_In_Range --
3397 -----------------
3398
3399 function Is_In_Range
3400 (N : Node_Id;
3401 Typ : Entity_Id;
3402 Fixed_Int : Boolean := False;
f44fe430 3403 Int_Real : Boolean := False) return Boolean
996ae0b0
RK
3404 is
3405 Val : Uint;
3406 Valr : Ureal;
3407
3408 begin
82c80734 3409 -- Universal types have no range limits, so always in range
996ae0b0
RK
3410
3411 if Typ = Universal_Integer or else Typ = Universal_Real then
3412 return True;
3413
3414 -- Never in range if not scalar type. Don't know if this can
3415 -- actually happen, but our spec allows it, so we must check!
3416
3417 elsif not Is_Scalar_Type (Typ) then
3418 return False;
3419
82c80734 3420 -- Never in range unless we have a compile time known value
996ae0b0
RK
3421
3422 elsif not Compile_Time_Known_Value (N) then
3423 return False;
3424
3425 else
3426 declare
3427 Lo : constant Node_Id := Type_Low_Bound (Typ);
3428 Hi : constant Node_Id := Type_High_Bound (Typ);
3429 LB_Known : constant Boolean := Compile_Time_Known_Value (Lo);
3430 UB_Known : constant Boolean := Compile_Time_Known_Value (Hi);
3431
3432 begin
3433 -- Fixed point types should be considered as such only in
3434 -- flag Fixed_Int is set to False.
3435
3436 if Is_Floating_Point_Type (Typ)
3437 or else (Is_Fixed_Point_Type (Typ) and then not Fixed_Int)
3438 or else Int_Real
3439 then
3440 Valr := Expr_Value_R (N);
3441
3442 if LB_Known and then Valr >= Expr_Value_R (Lo)
3443 and then UB_Known and then Valr <= Expr_Value_R (Hi)
3444 then
3445 return True;
3446 else
3447 return False;
3448 end if;
3449
3450 else
3451 Val := Expr_Value (N);
3452
3453 if LB_Known and then Val >= Expr_Value (Lo)
3454 and then UB_Known and then Val <= Expr_Value (Hi)
3455 then
3456 return True;
3457 else
3458 return False;
3459 end if;
3460 end if;
3461 end;
3462 end if;
3463 end Is_In_Range;
3464
3465 -------------------
3466 -- Is_Null_Range --
3467 -------------------
3468
3469 function Is_Null_Range (Lo : Node_Id; Hi : Node_Id) return Boolean is
3470 Typ : constant Entity_Id := Etype (Lo);
3471
3472 begin
3473 if not Compile_Time_Known_Value (Lo)
3474 or else not Compile_Time_Known_Value (Hi)
3475 then
3476 return False;
3477 end if;
3478
3479 if Is_Discrete_Type (Typ) then
3480 return Expr_Value (Lo) > Expr_Value (Hi);
3481
3482 else
3483 pragma Assert (Is_Real_Type (Typ));
3484 return Expr_Value_R (Lo) > Expr_Value_R (Hi);
3485 end if;
3486 end Is_Null_Range;
3487
3488 -----------------------------
3489 -- Is_OK_Static_Expression --
3490 -----------------------------
3491
3492 function Is_OK_Static_Expression (N : Node_Id) return Boolean is
3493 begin
3494 return Is_Static_Expression (N)
3495 and then not Raises_Constraint_Error (N);
3496 end Is_OK_Static_Expression;
3497
3498 ------------------------
3499 -- Is_OK_Static_Range --
3500 ------------------------
3501
3502 -- A static range is a range whose bounds are static expressions, or a
3503 -- Range_Attribute_Reference equivalent to such a range (RM 4.9(26)).
3504 -- We have already converted range attribute references, so we get the
3505 -- "or" part of this rule without needing a special test.
3506
3507 function Is_OK_Static_Range (N : Node_Id) return Boolean is
3508 begin
3509 return Is_OK_Static_Expression (Low_Bound (N))
3510 and then Is_OK_Static_Expression (High_Bound (N));
3511 end Is_OK_Static_Range;
3512
3513 --------------------------
3514 -- Is_OK_Static_Subtype --
3515 --------------------------
3516
3517 -- Determines if Typ is a static subtype as defined in (RM 4.9(26))
3518 -- where neither bound raises constraint error when evaluated.
3519
3520 function Is_OK_Static_Subtype (Typ : Entity_Id) return Boolean is
3521 Base_T : constant Entity_Id := Base_Type (Typ);
3522 Anc_Subt : Entity_Id;
3523
3524 begin
3525 -- First a quick check on the non static subtype flag. As described
3526 -- in further detail in Einfo, this flag is not decisive in all cases,
3527 -- but if it is set, then the subtype is definitely non-static.
3528
3529 if Is_Non_Static_Subtype (Typ) then
3530 return False;
3531 end if;
3532
3533 Anc_Subt := Ancestor_Subtype (Typ);
3534
3535 if Anc_Subt = Empty then
3536 Anc_Subt := Base_T;
3537 end if;
3538
3539 if Is_Generic_Type (Root_Type (Base_T))
3540 or else Is_Generic_Actual_Type (Base_T)
3541 then
3542 return False;
3543
3544 -- String types
3545
3546 elsif Is_String_Type (Typ) then
3547 return
3548 Ekind (Typ) = E_String_Literal_Subtype
3549 or else
3550 (Is_OK_Static_Subtype (Component_Type (Typ))
3551 and then Is_OK_Static_Subtype (Etype (First_Index (Typ))));
3552
3553 -- Scalar types
3554
3555 elsif Is_Scalar_Type (Typ) then
3556 if Base_T = Typ then
3557 return True;
3558
3559 else
3560 -- Scalar_Range (Typ) might be an N_Subtype_Indication, so
3561 -- use Get_Type_Low,High_Bound.
3562
3563 return Is_OK_Static_Subtype (Anc_Subt)
3564 and then Is_OK_Static_Expression (Type_Low_Bound (Typ))
3565 and then Is_OK_Static_Expression (Type_High_Bound (Typ));
3566 end if;
3567
3568 -- Types other than string and scalar types are never static
3569
3570 else
3571 return False;
3572 end if;
3573 end Is_OK_Static_Subtype;
3574
3575 ---------------------
3576 -- Is_Out_Of_Range --
3577 ---------------------
3578
3579 function Is_Out_Of_Range
3580 (N : Node_Id;
3581 Typ : Entity_Id;
3582 Fixed_Int : Boolean := False;
f44fe430 3583 Int_Real : Boolean := False) return Boolean
996ae0b0
RK
3584 is
3585 Val : Uint;
3586 Valr : Ureal;
3587
3588 begin
82c80734 3589 -- Universal types have no range limits, so always in range
996ae0b0
RK
3590
3591 if Typ = Universal_Integer or else Typ = Universal_Real then
3592 return False;
3593
3594 -- Never out of range if not scalar type. Don't know if this can
3595 -- actually happen, but our spec allows it, so we must check!
3596
3597 elsif not Is_Scalar_Type (Typ) then
3598 return False;
3599
3600 -- Never out of range if this is a generic type, since the bounds
3601 -- of generic types are junk. Note that if we only checked for
3602 -- static expressions (instead of compile time known values) below,
3603 -- we would not need this check, because values of a generic type
3604 -- can never be static, but they can be known at compile time.
3605
3606 elsif Is_Generic_Type (Typ) then
3607 return False;
3608
fbf5a39b 3609 -- Never out of range unless we have a compile time known value
996ae0b0
RK
3610
3611 elsif not Compile_Time_Known_Value (N) then
3612 return False;
3613
3614 else
3615 declare
3616 Lo : constant Node_Id := Type_Low_Bound (Typ);
3617 Hi : constant Node_Id := Type_High_Bound (Typ);
3618 LB_Known : constant Boolean := Compile_Time_Known_Value (Lo);
3619 UB_Known : constant Boolean := Compile_Time_Known_Value (Hi);
3620
3621 begin
3622 -- Real types (note that fixed-point types are not treated
3623 -- as being of a real type if the flag Fixed_Int is set,
3624 -- since in that case they are regarded as integer types).
3625
3626 if Is_Floating_Point_Type (Typ)
3627 or else (Is_Fixed_Point_Type (Typ) and then not Fixed_Int)
3628 or else Int_Real
3629 then
3630 Valr := Expr_Value_R (N);
3631
3632 if LB_Known and then Valr < Expr_Value_R (Lo) then
3633 return True;
3634
3635 elsif UB_Known and then Expr_Value_R (Hi) < Valr then
3636 return True;
3637
3638 else
3639 return False;
3640 end if;
3641
3642 else
3643 Val := Expr_Value (N);
3644
3645 if LB_Known and then Val < Expr_Value (Lo) then
3646 return True;
3647
3648 elsif UB_Known and then Expr_Value (Hi) < Val then
3649 return True;
3650
3651 else
3652 return False;
3653 end if;
3654 end if;
3655 end;
3656 end if;
3657 end Is_Out_Of_Range;
3658
3659 ---------------------
3660 -- Is_Static_Range --
3661 ---------------------
3662
3663 -- A static range is a range whose bounds are static expressions, or a
3664 -- Range_Attribute_Reference equivalent to such a range (RM 4.9(26)).
3665 -- We have already converted range attribute references, so we get the
3666 -- "or" part of this rule without needing a special test.
3667
3668 function Is_Static_Range (N : Node_Id) return Boolean is
3669 begin
3670 return Is_Static_Expression (Low_Bound (N))
3671 and then Is_Static_Expression (High_Bound (N));
3672 end Is_Static_Range;
3673
3674 -----------------------
3675 -- Is_Static_Subtype --
3676 -----------------------
3677
82c80734 3678 -- Determines if Typ is a static subtype as defined in (RM 4.9(26))
996ae0b0
RK
3679
3680 function Is_Static_Subtype (Typ : Entity_Id) return Boolean is
3681 Base_T : constant Entity_Id := Base_Type (Typ);
3682 Anc_Subt : Entity_Id;
3683
3684 begin
3685 -- First a quick check on the non static subtype flag. As described
3686 -- in further detail in Einfo, this flag is not decisive in all cases,
3687 -- but if it is set, then the subtype is definitely non-static.
3688
3689 if Is_Non_Static_Subtype (Typ) then
3690 return False;
3691 end if;
3692
3693 Anc_Subt := Ancestor_Subtype (Typ);
3694
3695 if Anc_Subt = Empty then
3696 Anc_Subt := Base_T;
3697 end if;
3698
3699 if Is_Generic_Type (Root_Type (Base_T))
3700 or else Is_Generic_Actual_Type (Base_T)
3701 then
3702 return False;
3703
3704 -- String types
3705
3706 elsif Is_String_Type (Typ) then
3707 return
3708 Ekind (Typ) = E_String_Literal_Subtype
3709 or else
3710 (Is_Static_Subtype (Component_Type (Typ))
3711 and then Is_Static_Subtype (Etype (First_Index (Typ))));
3712
3713 -- Scalar types
3714
3715 elsif Is_Scalar_Type (Typ) then
3716 if Base_T = Typ then
3717 return True;
3718
3719 else
3720 return Is_Static_Subtype (Anc_Subt)
3721 and then Is_Static_Expression (Type_Low_Bound (Typ))
3722 and then Is_Static_Expression (Type_High_Bound (Typ));
3723 end if;
3724
3725 -- Types other than string and scalar types are never static
3726
3727 else
3728 return False;
3729 end if;
3730 end Is_Static_Subtype;
3731
3732 --------------------
3733 -- Not_Null_Range --
3734 --------------------
3735
3736 function Not_Null_Range (Lo : Node_Id; Hi : Node_Id) return Boolean is
3737 Typ : constant Entity_Id := Etype (Lo);
3738
3739 begin
3740 if not Compile_Time_Known_Value (Lo)
3741 or else not Compile_Time_Known_Value (Hi)
3742 then
3743 return False;
3744 end if;
3745
3746 if Is_Discrete_Type (Typ) then
3747 return Expr_Value (Lo) <= Expr_Value (Hi);
3748
3749 else
3750 pragma Assert (Is_Real_Type (Typ));
3751
3752 return Expr_Value_R (Lo) <= Expr_Value_R (Hi);
3753 end if;
3754 end Not_Null_Range;
3755
3756 -------------
3757 -- OK_Bits --
3758 -------------
3759
3760 function OK_Bits (N : Node_Id; Bits : Uint) return Boolean is
3761 begin
3762 -- We allow a maximum of 500,000 bits which seems a reasonable limit
3763
3764 if Bits < 500_000 then
3765 return True;
3766
3767 else
3768 Error_Msg_N ("static value too large, capacity exceeded", N);
3769 return False;
3770 end if;
3771 end OK_Bits;
3772
3773 ------------------
3774 -- Out_Of_Range --
3775 ------------------
3776
3777 procedure Out_Of_Range (N : Node_Id) is
3778 begin
3779 -- If we have the static expression case, then this is an illegality
3780 -- in Ada 95 mode, except that in an instance, we never generate an
3781 -- error (if the error is legitimate, it was already diagnosed in
3782 -- the template). The expression to compute the length of a packed
3783 -- array is attached to the array type itself, and deserves a separate
3784 -- message.
3785
3786 if Is_Static_Expression (N)
3787 and then not In_Instance
fbf5a39b 3788 and then not In_Inlined_Body
0ab80019 3789 and then Ada_Version >= Ada_95
996ae0b0 3790 then
996ae0b0
RK
3791 if Nkind (Parent (N)) = N_Defining_Identifier
3792 and then Is_Array_Type (Parent (N))
3793 and then Present (Packed_Array_Type (Parent (N)))
3794 and then Present (First_Rep_Item (Parent (N)))
3795 then
3796 Error_Msg_N
3797 ("length of packed array must not exceed Integer''Last",
3798 First_Rep_Item (Parent (N)));
3799 Rewrite (N, Make_Integer_Literal (Sloc (N), Uint_1));
3800
3801 else
3802 Apply_Compile_Time_Constraint_Error
07fc65c4 3803 (N, "value not in range of}", CE_Range_Check_Failed);
996ae0b0
RK
3804 end if;
3805
3806 -- Here we generate a warning for the Ada 83 case, or when we are
3807 -- in an instance, or when we have a non-static expression case.
3808
3809 else
996ae0b0 3810 Apply_Compile_Time_Constraint_Error
07fc65c4 3811 (N, "value not in range of}?", CE_Range_Check_Failed);
996ae0b0
RK
3812 end if;
3813 end Out_Of_Range;
3814
3815 -------------------------
3816 -- Rewrite_In_Raise_CE --
3817 -------------------------
3818
3819 procedure Rewrite_In_Raise_CE (N : Node_Id; Exp : Node_Id) is
3820 Typ : constant Entity_Id := Etype (N);
3821
3822 begin
3823 -- If we want to raise CE in the condition of a raise_CE node
3824 -- we may as well get rid of the condition
3825
3826 if Present (Parent (N))
3827 and then Nkind (Parent (N)) = N_Raise_Constraint_Error
3828 then
3829 Set_Condition (Parent (N), Empty);
3830
3831 -- If the expression raising CE is a N_Raise_CE node, we can use
3832 -- that one. We just preserve the type of the context
3833
3834 elsif Nkind (Exp) = N_Raise_Constraint_Error then
3835 Rewrite (N, Exp);
3836 Set_Etype (N, Typ);
3837
3838 -- We have to build an explicit raise_ce node
3839
3840 else
07fc65c4
GB
3841 Rewrite (N,
3842 Make_Raise_Constraint_Error (Sloc (Exp),
3843 Reason => CE_Range_Check_Failed));
996ae0b0
RK
3844 Set_Raises_Constraint_Error (N);
3845 Set_Etype (N, Typ);
3846 end if;
3847 end Rewrite_In_Raise_CE;
3848
3849 ---------------------
3850 -- String_Type_Len --
3851 ---------------------
3852
3853 function String_Type_Len (Stype : Entity_Id) return Uint is
3854 NT : constant Entity_Id := Etype (First_Index (Stype));
3855 T : Entity_Id;
3856
3857 begin
3858 if Is_OK_Static_Subtype (NT) then
3859 T := NT;
3860 else
3861 T := Base_Type (NT);
3862 end if;
3863
3864 return Expr_Value (Type_High_Bound (T)) -
3865 Expr_Value (Type_Low_Bound (T)) + 1;
3866 end String_Type_Len;
3867
3868 ------------------------------------
3869 -- Subtypes_Statically_Compatible --
3870 ------------------------------------
3871
3872 function Subtypes_Statically_Compatible
f44fe430
RD
3873 (T1 : Entity_Id;
3874 T2 : Entity_Id) return Boolean
996ae0b0
RK
3875 is
3876 begin
3877 if Is_Scalar_Type (T1) then
3878
3879 -- Definitely compatible if we match
3880
3881 if Subtypes_Statically_Match (T1, T2) then
3882 return True;
3883
3884 -- If either subtype is nonstatic then they're not compatible
3885
3886 elsif not Is_Static_Subtype (T1)
3887 or else not Is_Static_Subtype (T2)
3888 then
3889 return False;
3890
3891 -- If either type has constraint error bounds, then consider that
3892 -- they match to avoid junk cascaded errors here.
3893
3894 elsif not Is_OK_Static_Subtype (T1)
3895 or else not Is_OK_Static_Subtype (T2)
3896 then
3897 return True;
3898
3899 -- Base types must match, but we don't check that (should
3900 -- we???) but we do at least check that both types are
3901 -- real, or both types are not real.
3902
fbf5a39b 3903 elsif Is_Real_Type (T1) /= Is_Real_Type (T2) then
996ae0b0
RK
3904 return False;
3905
3906 -- Here we check the bounds
3907
3908 else
3909 declare
3910 LB1 : constant Node_Id := Type_Low_Bound (T1);
3911 HB1 : constant Node_Id := Type_High_Bound (T1);
3912 LB2 : constant Node_Id := Type_Low_Bound (T2);
3913 HB2 : constant Node_Id := Type_High_Bound (T2);
3914
3915 begin
3916 if Is_Real_Type (T1) then
3917 return
3918 (Expr_Value_R (LB1) > Expr_Value_R (HB1))
3919 or else
3920 (Expr_Value_R (LB2) <= Expr_Value_R (LB1)
3921 and then
3922 Expr_Value_R (HB1) <= Expr_Value_R (HB2));
3923
3924 else
3925 return
3926 (Expr_Value (LB1) > Expr_Value (HB1))
3927 or else
3928 (Expr_Value (LB2) <= Expr_Value (LB1)
3929 and then
3930 Expr_Value (HB1) <= Expr_Value (HB2));
3931 end if;
3932 end;
3933 end if;
3934
3935 elsif Is_Access_Type (T1) then
3936 return not Is_Constrained (T2)
3937 or else Subtypes_Statically_Match
3938 (Designated_Type (T1), Designated_Type (T2));
3939
3940 else
3941 return (Is_Composite_Type (T1) and then not Is_Constrained (T2))
3942 or else Subtypes_Statically_Match (T1, T2);
3943 end if;
3944 end Subtypes_Statically_Compatible;
3945
3946 -------------------------------
3947 -- Subtypes_Statically_Match --
3948 -------------------------------
3949
3950 -- Subtypes statically match if they have statically matching constraints
3951 -- (RM 4.9.1(2)). Constraints statically match if there are none, or if
3952 -- they are the same identical constraint, or if they are static and the
3953 -- values match (RM 4.9.1(1)).
3954
3955 function Subtypes_Statically_Match (T1, T2 : Entity_Id) return Boolean is
3956 begin
3957 -- A type always statically matches itself
3958
3959 if T1 = T2 then
3960 return True;
3961
3962 -- Scalar types
3963
3964 elsif Is_Scalar_Type (T1) then
3965
3966 -- Base types must be the same
3967
3968 if Base_Type (T1) /= Base_Type (T2) then
3969 return False;
3970 end if;
3971
3972 -- A constrained numeric subtype never matches an unconstrained
3973 -- subtype, i.e. both types must be constrained or unconstrained.
3974
3975 -- To understand the requirement for this test, see RM 4.9.1(1).
3976 -- As is made clear in RM 3.5.4(11), type Integer, for example
3977 -- is a constrained subtype with constraint bounds matching the
3978 -- bounds of its corresponding uncontrained base type. In this
3979 -- situation, Integer and Integer'Base do not statically match,
3980 -- even though they have the same bounds.
3981
3982 -- We only apply this test to types in Standard and types that
3983 -- appear in user programs. That way, we do not have to be
3984 -- too careful about setting Is_Constrained right for itypes.
3985
3986 if Is_Numeric_Type (T1)
3987 and then (Is_Constrained (T1) /= Is_Constrained (T2))
3988 and then (Scope (T1) = Standard_Standard
3989 or else Comes_From_Source (T1))
3990 and then (Scope (T2) = Standard_Standard
3991 or else Comes_From_Source (T2))
3992 then
3993 return False;
82c80734
RD
3994
3995 -- A generic scalar type does not statically match its base
3996 -- type (AI-311). In this case we make sure that the formals,
3997 -- which are first subtypes of their bases, are constrained.
3998
3999 elsif Is_Generic_Type (T1)
4000 and then Is_Generic_Type (T2)
4001 and then (Is_Constrained (T1) /= Is_Constrained (T2))
4002 then
4003 return False;
996ae0b0
RK
4004 end if;
4005
4006 -- If there was an error in either range, then just assume
4007 -- the types statically match to avoid further junk errors
4008
4009 if Error_Posted (Scalar_Range (T1))
4010 or else
4011 Error_Posted (Scalar_Range (T2))
4012 then
4013 return True;
4014 end if;
4015
4016 -- Otherwise both types have bound that can be compared
4017
4018 declare
4019 LB1 : constant Node_Id := Type_Low_Bound (T1);
4020 HB1 : constant Node_Id := Type_High_Bound (T1);
4021 LB2 : constant Node_Id := Type_Low_Bound (T2);
4022 HB2 : constant Node_Id := Type_High_Bound (T2);
4023
4024 begin
4025 -- If the bounds are the same tree node, then match
4026
4027 if LB1 = LB2 and then HB1 = HB2 then
4028 return True;
4029
4030 -- Otherwise bounds must be static and identical value
4031
4032 else
4033 if not Is_Static_Subtype (T1)
4034 or else not Is_Static_Subtype (T2)
4035 then
4036 return False;
4037
4038 -- If either type has constraint error bounds, then say
4039 -- that they match to avoid junk cascaded errors here.
4040
4041 elsif not Is_OK_Static_Subtype (T1)
4042 or else not Is_OK_Static_Subtype (T2)
4043 then
4044 return True;
4045
4046 elsif Is_Real_Type (T1) then
4047 return
4048 (Expr_Value_R (LB1) = Expr_Value_R (LB2))
4049 and then
4050 (Expr_Value_R (HB1) = Expr_Value_R (HB2));
4051
4052 else
4053 return
4054 Expr_Value (LB1) = Expr_Value (LB2)
4055 and then
4056 Expr_Value (HB1) = Expr_Value (HB2);
4057 end if;
4058 end if;
4059 end;
4060
4061 -- Type with discriminants
4062
4063 elsif Has_Discriminants (T1) or else Has_Discriminants (T2) then
6eaf4095 4064
c2bf339e
GD
4065 -- Because of view exchanges in multiple instantiations, conformance
4066 -- checking might try to match a partial view of a type with no
4067 -- discriminants with a full view that has defaulted discriminants.
4068 -- In such a case, use the discriminant constraint of the full view,
4069 -- which must exist because we know that the two subtypes have the
4070 -- same base type.
6eaf4095 4071
996ae0b0 4072 if Has_Discriminants (T1) /= Has_Discriminants (T2) then
c2bf339e
GD
4073 if In_Instance then
4074 if Is_Private_Type (T2)
4075 and then Present (Full_View (T2))
4076 and then Has_Discriminants (Full_View (T2))
4077 then
4078 return Subtypes_Statically_Match (T1, Full_View (T2));
4079
4080 elsif Is_Private_Type (T1)
4081 and then Present (Full_View (T1))
4082 and then Has_Discriminants (Full_View (T1))
4083 then
4084 return Subtypes_Statically_Match (Full_View (T1), T2);
4085
4086 else
4087 return False;
4088 end if;
6eaf4095
ES
4089 else
4090 return False;
4091 end if;
996ae0b0
RK
4092 end if;
4093
4094 declare
4095 DL1 : constant Elist_Id := Discriminant_Constraint (T1);
4096 DL2 : constant Elist_Id := Discriminant_Constraint (T2);
4097
13f34a3f
RD
4098 DA1 : Elmt_Id;
4099 DA2 : Elmt_Id;
996ae0b0
RK
4100
4101 begin
4102 if DL1 = DL2 then
4103 return True;
996ae0b0
RK
4104 elsif Is_Constrained (T1) /= Is_Constrained (T2) then
4105 return False;
4106 end if;
4107
13f34a3f 4108 -- Now loop through the discriminant constraints
996ae0b0 4109
13f34a3f
RD
4110 -- Note: the guard here seems necessary, since it is possible at
4111 -- least for DL1 to be No_Elist. Not clear this is reasonable ???
996ae0b0 4112
13f34a3f
RD
4113 if Present (DL1) and then Present (DL2) then
4114 DA1 := First_Elmt (DL1);
4115 DA2 := First_Elmt (DL2);
4116 while Present (DA1) loop
4117 declare
4118 Expr1 : constant Node_Id := Node (DA1);
4119 Expr2 : constant Node_Id := Node (DA2);
996ae0b0 4120
13f34a3f
RD
4121 begin
4122 if not Is_Static_Expression (Expr1)
4123 or else not Is_Static_Expression (Expr2)
4124 then
4125 return False;
996ae0b0 4126
13f34a3f
RD
4127 -- If either expression raised a constraint error,
4128 -- consider the expressions as matching, since this
4129 -- helps to prevent cascading errors.
4130
4131 elsif Raises_Constraint_Error (Expr1)
4132 or else Raises_Constraint_Error (Expr2)
4133 then
4134 null;
4135
4136 elsif Expr_Value (Expr1) /= Expr_Value (Expr2) then
4137 return False;
4138 end if;
4139 end;
996ae0b0 4140
13f34a3f
RD
4141 Next_Elmt (DA1);
4142 Next_Elmt (DA2);
4143 end loop;
4144 end if;
996ae0b0
RK
4145 end;
4146
4147 return True;
4148
82c80734 4149 -- A definite type does not match an indefinite or classwide type
0356699b
RD
4150 -- However, a generic type with unknown discriminants may be
4151 -- instantiated with a type with no discriminants, and conformance
4152 -- checking on an inherited operation may compare the actual with
4153 -- the subtype that renames it in the instance.
996ae0b0
RK
4154
4155 elsif
4156 Has_Unknown_Discriminants (T1) /= Has_Unknown_Discriminants (T2)
4157 then
7a3f77d2
AC
4158 return
4159 Is_Generic_Actual_Type (T1) or else Is_Generic_Actual_Type (T2);
996ae0b0
RK
4160
4161 -- Array type
4162
4163 elsif Is_Array_Type (T1) then
4164
4165 -- If either subtype is unconstrained then both must be,
4166 -- and if both are unconstrained then no further checking
4167 -- is needed.
4168
4169 if not Is_Constrained (T1) or else not Is_Constrained (T2) then
4170 return not (Is_Constrained (T1) or else Is_Constrained (T2));
4171 end if;
4172
4173 -- Both subtypes are constrained, so check that the index
4174 -- subtypes statically match.
4175
4176 declare
4177 Index1 : Node_Id := First_Index (T1);
4178 Index2 : Node_Id := First_Index (T2);
4179
4180 begin
4181 while Present (Index1) loop
4182 if not
4183 Subtypes_Statically_Match (Etype (Index1), Etype (Index2))
4184 then
4185 return False;
4186 end if;
4187
4188 Next_Index (Index1);
4189 Next_Index (Index2);
4190 end loop;
4191
4192 return True;
4193 end;
4194
4195 elsif Is_Access_Type (T1) then
b5bd964f
ES
4196 if Can_Never_Be_Null (T1) /= Can_Never_Be_Null (T2) then
4197 return False;
4198
7a3f77d2
AC
4199 elsif Ekind (T1) = E_Access_Subprogram_Type
4200 or else Ekind (T1) = E_Anonymous_Access_Subprogram_Type
4201 then
b5bd964f
ES
4202 return
4203 Subtype_Conformant
4204 (Designated_Type (T1),
7a3f77d2 4205 Designated_Type (T2));
b5bd964f
ES
4206 else
4207 return
4208 Subtypes_Statically_Match
4209 (Designated_Type (T1),
4210 Designated_Type (T2))
4211 and then Is_Access_Constant (T1) = Is_Access_Constant (T2);
4212 end if;
996ae0b0
RK
4213
4214 -- All other types definitely match
4215
4216 else
4217 return True;
4218 end if;
4219 end Subtypes_Statically_Match;
4220
4221 ----------
4222 -- Test --
4223 ----------
4224
4225 function Test (Cond : Boolean) return Uint is
4226 begin
4227 if Cond then
4228 return Uint_1;
4229 else
4230 return Uint_0;
4231 end if;
4232 end Test;
4233
4234 ---------------------------------
4235 -- Test_Expression_Is_Foldable --
4236 ---------------------------------
4237
4238 -- One operand case
4239
4240 procedure Test_Expression_Is_Foldable
4241 (N : Node_Id;
4242 Op1 : Node_Id;
4243 Stat : out Boolean;
4244 Fold : out Boolean)
4245 is
4246 begin
4247 Stat := False;
0356699b
RD
4248 Fold := False;
4249
4250 if Debug_Flag_Dot_F and then In_Extended_Main_Source_Unit (N) then
4251 return;
4252 end if;
996ae0b0
RK
4253
4254 -- If operand is Any_Type, just propagate to result and do not
4255 -- try to fold, this prevents cascaded errors.
4256
4257 if Etype (Op1) = Any_Type then
4258 Set_Etype (N, Any_Type);
996ae0b0
RK
4259 return;
4260
4261 -- If operand raises constraint error, then replace node N with the
4262 -- raise constraint error node, and we are obviously not foldable.
4263 -- Note that this replacement inherits the Is_Static_Expression flag
4264 -- from the operand.
4265
4266 elsif Raises_Constraint_Error (Op1) then
4267 Rewrite_In_Raise_CE (N, Op1);
996ae0b0
RK
4268 return;
4269
4270 -- If the operand is not static, then the result is not static, and
4271 -- all we have to do is to check the operand since it is now known
4272 -- to appear in a non-static context.
4273
4274 elsif not Is_Static_Expression (Op1) then
4275 Check_Non_Static_Context (Op1);
4276 Fold := Compile_Time_Known_Value (Op1);
4277 return;
4278
4279 -- An expression of a formal modular type is not foldable because
4280 -- the modulus is unknown.
4281
4282 elsif Is_Modular_Integer_Type (Etype (Op1))
4283 and then Is_Generic_Type (Etype (Op1))
4284 then
4285 Check_Non_Static_Context (Op1);
996ae0b0
RK
4286 return;
4287
4288 -- Here we have the case of an operand whose type is OK, which is
4289 -- static, and which does not raise constraint error, we can fold.
4290
4291 else
4292 Set_Is_Static_Expression (N);
4293 Fold := True;
4294 Stat := True;
4295 end if;
4296 end Test_Expression_Is_Foldable;
4297
4298 -- Two operand case
4299
4300 procedure Test_Expression_Is_Foldable
4301 (N : Node_Id;
4302 Op1 : Node_Id;
4303 Op2 : Node_Id;
4304 Stat : out Boolean;
4305 Fold : out Boolean)
4306 is
4307 Rstat : constant Boolean := Is_Static_Expression (Op1)
4308 and then Is_Static_Expression (Op2);
4309
4310 begin
4311 Stat := False;
0356699b
RD
4312 Fold := False;
4313
4314 if Debug_Flag_Dot_F and then In_Extended_Main_Source_Unit (N) then
4315 return;
4316 end if;
996ae0b0
RK
4317
4318 -- If either operand is Any_Type, just propagate to result and
4319 -- do not try to fold, this prevents cascaded errors.
4320
4321 if Etype (Op1) = Any_Type or else Etype (Op2) = Any_Type then
4322 Set_Etype (N, Any_Type);
996ae0b0
RK
4323 return;
4324
4325 -- If left operand raises constraint error, then replace node N with
4326 -- the raise constraint error node, and we are obviously not foldable.
4327 -- Is_Static_Expression is set from the two operands in the normal way,
4328 -- and we check the right operand if it is in a non-static context.
4329
4330 elsif Raises_Constraint_Error (Op1) then
4331 if not Rstat then
4332 Check_Non_Static_Context (Op2);
4333 end if;
4334
4335 Rewrite_In_Raise_CE (N, Op1);
4336 Set_Is_Static_Expression (N, Rstat);
996ae0b0
RK
4337 return;
4338
4339 -- Similar processing for the case of the right operand. Note that
4340 -- we don't use this routine for the short-circuit case, so we do
4341 -- not have to worry about that special case here.
4342
4343 elsif Raises_Constraint_Error (Op2) then
4344 if not Rstat then
4345 Check_Non_Static_Context (Op1);
4346 end if;
4347
4348 Rewrite_In_Raise_CE (N, Op2);
4349 Set_Is_Static_Expression (N, Rstat);
996ae0b0
RK
4350 return;
4351
82c80734 4352 -- Exclude expressions of a generic modular type, as above
996ae0b0
RK
4353
4354 elsif Is_Modular_Integer_Type (Etype (Op1))
4355 and then Is_Generic_Type (Etype (Op1))
4356 then
4357 Check_Non_Static_Context (Op1);
996ae0b0
RK
4358 return;
4359
4360 -- If result is not static, then check non-static contexts on operands
4361 -- since one of them may be static and the other one may not be static
4362
4363 elsif not Rstat then
4364 Check_Non_Static_Context (Op1);
4365 Check_Non_Static_Context (Op2);
4366 Fold := Compile_Time_Known_Value (Op1)
4367 and then Compile_Time_Known_Value (Op2);
4368 return;
4369
4370 -- Else result is static and foldable. Both operands are static,
4371 -- and neither raises constraint error, so we can definitely fold.
4372
4373 else
4374 Set_Is_Static_Expression (N);
4375 Fold := True;
4376 Stat := True;
4377 return;
4378 end if;
4379 end Test_Expression_Is_Foldable;
4380
4381 --------------
4382 -- To_Bits --
4383 --------------
4384
4385 procedure To_Bits (U : Uint; B : out Bits) is
4386 begin
4387 for J in 0 .. B'Last loop
4388 B (J) := (U / (2 ** J)) mod 2 /= 0;
4389 end loop;
4390 end To_Bits;
4391
fbf5a39b
AC
4392 --------------------
4393 -- Why_Not_Static --
4394 --------------------
4395
4396 procedure Why_Not_Static (Expr : Node_Id) is
4397 N : constant Node_Id := Original_Node (Expr);
4398 Typ : Entity_Id;
4399 E : Entity_Id;
4400
4401 procedure Why_Not_Static_List (L : List_Id);
4402 -- A version that can be called on a list of expressions. Finds
4403 -- all non-static violations in any element of the list.
4404
4405 -------------------------
4406 -- Why_Not_Static_List --
4407 -------------------------
4408
4409 procedure Why_Not_Static_List (L : List_Id) is
4410 N : Node_Id;
4411
4412 begin
4413 if Is_Non_Empty_List (L) then
4414 N := First (L);
4415 while Present (N) loop
4416 Why_Not_Static (N);
4417 Next (N);
4418 end loop;
4419 end if;
4420 end Why_Not_Static_List;
4421
4422 -- Start of processing for Why_Not_Static
4423
4424 begin
4425 -- If in ACATS mode (debug flag 2), then suppress all these
4426 -- messages, this avoids massive updates to the ACATS base line.
4427
4428 if Debug_Flag_2 then
4429 return;
4430 end if;
4431
4432 -- Ignore call on error or empty node
4433
4434 if No (Expr) or else Nkind (Expr) = N_Error then
4435 return;
4436 end if;
4437
4438 -- Preprocessing for sub expressions
4439
4440 if Nkind (Expr) in N_Subexpr then
4441
4442 -- Nothing to do if expression is static
4443
4444 if Is_OK_Static_Expression (Expr) then
4445 return;
4446 end if;
4447
4448 -- Test for constraint error raised
4449
4450 if Raises_Constraint_Error (Expr) then
4451 Error_Msg_N
4452 ("expression raises exception, cannot be static " &
b11e8d6f 4453 "(RM 4.9(34))!", N);
fbf5a39b
AC
4454 return;
4455 end if;
4456
4457 -- If no type, then something is pretty wrong, so ignore
4458
4459 Typ := Etype (Expr);
4460
4461 if No (Typ) then
4462 return;
4463 end if;
4464
4465 -- Type must be scalar or string type
4466
4467 if not Is_Scalar_Type (Typ)
4468 and then not Is_String_Type (Typ)
4469 then
4470 Error_Msg_N
4471 ("static expression must have scalar or string type " &
b11e8d6f 4472 "(RM 4.9(2))!", N);
fbf5a39b
AC
4473 return;
4474 end if;
4475 end if;
4476
4477 -- If we got through those checks, test particular node kind
4478
4479 case Nkind (N) is
4480 when N_Expanded_Name | N_Identifier | N_Operator_Symbol =>
4481 E := Entity (N);
4482
4483 if Is_Named_Number (E) then
4484 null;
4485
4486 elsif Ekind (E) = E_Constant then
4487 if not Is_Static_Expression (Constant_Value (E)) then
4488 Error_Msg_NE
b11e8d6f 4489 ("& is not a static constant (RM 4.9(5))!", N, E);
fbf5a39b
AC
4490 end if;
4491
4492 else
4493 Error_Msg_NE
4494 ("& is not static constant or named number " &
b11e8d6f 4495 "(RM 4.9(5))!", N, E);
fbf5a39b
AC
4496 end if;
4497
29797f34 4498 when N_Binary_Op | N_And_Then | N_Or_Else | N_Membership_Test =>
fbf5a39b
AC
4499 if Nkind (N) in N_Op_Shift then
4500 Error_Msg_N
b11e8d6f 4501 ("shift functions are never static (RM 4.9(6,18))!", N);
fbf5a39b
AC
4502
4503 else
4504 Why_Not_Static (Left_Opnd (N));
4505 Why_Not_Static (Right_Opnd (N));
4506 end if;
4507
4508 when N_Unary_Op =>
4509 Why_Not_Static (Right_Opnd (N));
4510
4511 when N_Attribute_Reference =>
4512 Why_Not_Static_List (Expressions (N));
4513
4514 E := Etype (Prefix (N));
4515
4516 if E = Standard_Void_Type then
4517 return;
4518 end if;
4519
4520 -- Special case non-scalar'Size since this is a common error
4521
4522 if Attribute_Name (N) = Name_Size then
4523 Error_Msg_N
4524 ("size attribute is only static for scalar type " &
b11e8d6f 4525 "(RM 4.9(7,8))", N);
fbf5a39b
AC
4526
4527 -- Flag array cases
4528
4529 elsif Is_Array_Type (E) then
4530 if Attribute_Name (N) /= Name_First
4531 and then
4532 Attribute_Name (N) /= Name_Last
4533 and then
4534 Attribute_Name (N) /= Name_Length
4535 then
4536 Error_Msg_N
4537 ("static array attribute must be Length, First, or Last " &
b11e8d6f 4538 "(RM 4.9(8))!", N);
fbf5a39b
AC
4539
4540 -- Since we know the expression is not-static (we already
4541 -- tested for this, must mean array is not static).
4542
4543 else
4544 Error_Msg_N
b11e8d6f 4545 ("prefix is non-static array (RM 4.9(8))!", Prefix (N));
fbf5a39b
AC
4546 end if;
4547
4548 return;
4549
4550 -- Special case generic types, since again this is a common
4551 -- source of confusion.
4552
4553 elsif Is_Generic_Actual_Type (E)
4554 or else
4555 Is_Generic_Type (E)
4556 then
4557 Error_Msg_N
4558 ("attribute of generic type is never static " &
b11e8d6f 4559 "(RM 4.9(7,8))!", N);
fbf5a39b
AC
4560
4561 elsif Is_Static_Subtype (E) then
4562 null;
4563
4564 elsif Is_Scalar_Type (E) then
4565 Error_Msg_N
4566 ("prefix type for attribute is not static scalar subtype " &
b11e8d6f 4567 "(RM 4.9(7))!", N);
fbf5a39b
AC
4568
4569 else
4570 Error_Msg_N
4571 ("static attribute must apply to array/scalar type " &
b11e8d6f 4572 "(RM 4.9(7,8))!", N);
fbf5a39b
AC
4573 end if;
4574
4575 when N_String_Literal =>
4576 Error_Msg_N
b11e8d6f 4577 ("subtype of string literal is non-static (RM 4.9(4))!", N);
fbf5a39b
AC
4578
4579 when N_Explicit_Dereference =>
4580 Error_Msg_N
b11e8d6f 4581 ("explicit dereference is never static (RM 4.9)!", N);
fbf5a39b
AC
4582
4583 when N_Function_Call =>
4584 Why_Not_Static_List (Parameter_Associations (N));
b11e8d6f 4585 Error_Msg_N ("non-static function call (RM 4.9(6,18))!", N);
fbf5a39b
AC
4586
4587 when N_Parameter_Association =>
4588 Why_Not_Static (Explicit_Actual_Parameter (N));
4589
4590 when N_Indexed_Component =>
4591 Error_Msg_N
b11e8d6f 4592 ("indexed component is never static (RM 4.9)!", N);
fbf5a39b
AC
4593
4594 when N_Procedure_Call_Statement =>
4595 Error_Msg_N
b11e8d6f 4596 ("procedure call is never static (RM 4.9)!", N);
fbf5a39b
AC
4597
4598 when N_Qualified_Expression =>
4599 Why_Not_Static (Expression (N));
4600
4601 when N_Aggregate | N_Extension_Aggregate =>
4602 Error_Msg_N
b11e8d6f 4603 ("an aggregate is never static (RM 4.9)!", N);
fbf5a39b
AC
4604
4605 when N_Range =>
4606 Why_Not_Static (Low_Bound (N));
4607 Why_Not_Static (High_Bound (N));
4608
4609 when N_Range_Constraint =>
4610 Why_Not_Static (Range_Expression (N));
4611
4612 when N_Subtype_Indication =>
4613 Why_Not_Static (Constraint (N));
4614
4615 when N_Selected_Component =>
4616 Error_Msg_N
b11e8d6f 4617 ("selected component is never static (RM 4.9)!", N);
fbf5a39b
AC
4618
4619 when N_Slice =>
4620 Error_Msg_N
b11e8d6f 4621 ("slice is never static (RM 4.9)!", N);
fbf5a39b
AC
4622
4623 when N_Type_Conversion =>
4624 Why_Not_Static (Expression (N));
4625
4626 if not Is_Scalar_Type (Etype (Prefix (N)))
4627 or else not Is_Static_Subtype (Etype (Prefix (N)))
4628 then
4629 Error_Msg_N
4630 ("static conversion requires static scalar subtype result " &
b11e8d6f 4631 "(RM 4.9(9))!", N);
fbf5a39b
AC
4632 end if;
4633
4634 when N_Unchecked_Type_Conversion =>
4635 Error_Msg_N
b11e8d6f 4636 ("unchecked type conversion is never static (RM 4.9)!", N);
fbf5a39b
AC
4637
4638 when others =>
4639 null;
4640
4641 end case;
4642 end Why_Not_Static;
4643
996ae0b0 4644end Sem_Eval;
This page took 2.01839 seconds and 5 git commands to generate.