]> gcc.gnu.org Git - gcc.git/blame - gcc/ada/sem_aggr.adb
[multiple changes]
[gcc.git] / gcc / ada / sem_aggr.adb
CommitLineData
996ae0b0
RK
1------------------------------------------------------------------------------
2-- --
3-- GNAT COMPILER COMPONENTS --
4-- --
5-- S E M _ A G G R --
6-- --
7-- B o d y --
8-- --
888be6b1 9-- Copyright (C) 1992-2016, Free Software Foundation, Inc. --
996ae0b0
RK
10-- --
11-- GNAT is free software; you can redistribute it and/or modify it under --
12-- terms of the GNU General Public License as published by the Free Soft- --
157a9bf5 13-- ware Foundation; either version 3, or (at your option) any later ver- --
996ae0b0
RK
14-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16-- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17-- for more details. You should have received a copy of the GNU General --
157a9bf5
ES
18-- Public License distributed with GNAT; see file COPYING3. If not, go to --
19-- http://www.gnu.org/licenses for a complete copy of the license. --
996ae0b0
RK
20-- --
21-- GNAT was originally developed by the GNAT team at New York University. --
71ff80dc 22-- Extensive contributions were provided by Ada Core Technologies Inc. --
996ae0b0
RK
23-- --
24------------------------------------------------------------------------------
25
d10bb9d5 26with Aspects; use Aspects;
996ae0b0
RK
27with Atree; use Atree;
28with Checks; use Checks;
29with Einfo; use Einfo;
30with Elists; use Elists;
31with Errout; use Errout;
4755cce9 32with Expander; use Expander;
52739835 33with Exp_Tss; use Exp_Tss;
996ae0b0
RK
34with Exp_Util; use Exp_Util;
35with Freeze; use Freeze;
36with Itypes; use Itypes;
c7ce71c2 37with Lib; use Lib;
fbf5a39b 38with Lib.Xref; use Lib.Xref;
996ae0b0 39with Namet; use Namet;
c80d4855 40with Namet.Sp; use Namet.Sp;
996ae0b0
RK
41with Nmake; use Nmake;
42with Nlists; use Nlists;
43with Opt; use Opt;
bd65a2d7 44with Restrict; use Restrict;
2f7ae2aa 45with Rident; use Rident;
996ae0b0 46with Sem; use Sem;
a4100e55 47with Sem_Aux; use Sem_Aux;
996ae0b0 48with Sem_Cat; use Sem_Cat;
88b32fc3 49with Sem_Ch3; use Sem_Ch3;
87729e5a 50with Sem_Ch8; use Sem_Ch8;
996ae0b0 51with Sem_Ch13; use Sem_Ch13;
0929eaeb 52with Sem_Dim; use Sem_Dim;
996ae0b0
RK
53with Sem_Eval; use Sem_Eval;
54with Sem_Res; use Sem_Res;
55with Sem_Util; use Sem_Util;
56with Sem_Type; use Sem_Type;
fbf5a39b 57with Sem_Warn; use Sem_Warn;
996ae0b0
RK
58with Sinfo; use Sinfo;
59with Snames; use Snames;
60with Stringt; use Stringt;
61with Stand; use Stand;
6989bc1f 62with Style; use Style;
fbf5a39b 63with Targparm; use Targparm;
996ae0b0
RK
64with Tbuild; use Tbuild;
65with Uintp; use Uintp;
66
996ae0b0
RK
67package body Sem_Aggr is
68
69 type Case_Bounds is record
82893775
AC
70 Lo : Node_Id;
71 -- Low bound of choice. Once we sort the Case_Table, then entries
72 -- will be in order of ascending Choice_Lo values.
73
74 Hi : Node_Id;
75 -- High Bound of choice. The sort does not pay any attention to the
76 -- high bound, so choices 1 .. 4 and 1 .. 5 could be in either order.
77
78 Highest : Uint;
79 -- If there are duplicates or missing entries, then in the sorted
80 -- table, this records the highest value among Choice_Hi values
81 -- seen so far, including this entry.
82
83 Choice : Node_Id;
84 -- The node of the choice
996ae0b0
RK
85 end record;
86
87 type Case_Table_Type is array (Nat range <>) of Case_Bounds;
82893775
AC
88 -- Table type used by Check_Case_Choices procedure. Entry zero is not
89 -- used (reserved for the sort). Real entries start at one.
996ae0b0
RK
90
91 -----------------------
92 -- Local Subprograms --
93 -----------------------
94
95 procedure Sort_Case_Table (Case_Table : in out Case_Table_Type);
82893775
AC
96 -- Sort the Case Table using the Lower Bound of each Choice as the key. A
97 -- simple insertion sort is used since the choices in a case statement will
98 -- usually be in near sorted order.
996ae0b0 99
9b96e234
JM
100 procedure Check_Can_Never_Be_Null (Typ : Entity_Id; Expr : Node_Id);
101 -- Ada 2005 (AI-231): Check bad usage of null for a component for which
102 -- null exclusion (NOT NULL) is specified. Typ can be an E_Array_Type for
103 -- the array case (the component type of the array will be used) or an
104 -- E_Component/E_Discriminant entity in the record case, in which case the
105 -- type of the component will be used for the test. If Typ is any other
106 -- kind of entity, the call is ignored. Expr is the component node in the
8133b9d1 107 -- aggregate which is known to have a null value. A warning message will be
9b96e234
JM
108 -- issued if the component is null excluding.
109 --
110 -- It would be better to pass the proper type for Typ ???
2820d220 111
ca44152f
ES
112 procedure Check_Expr_OK_In_Limited_Aggregate (Expr : Node_Id);
113 -- Check that Expr is either not limited or else is one of the cases of
114 -- expressions allowed for a limited component association (namely, an
115 -- aggregate, function call, or <> notation). Report error for violations.
480156b2 116 -- Expression is also OK in an instance or inlining context, because we
4bd4bb7f 117 -- have already pre-analyzed and it is known to be type correct.
ca44152f 118
a5fe697b
AC
119 procedure Check_Qualified_Aggregate (Level : Nat; Expr : Node_Id);
120 -- Given aggregate Expr, check that sub-aggregates of Expr that are nested
121 -- at Level are qualified. If Level = 0, this applies to Expr directly.
122 -- Only issue errors in formal verification mode.
123
124 function Is_Top_Level_Aggregate (Expr : Node_Id) return Boolean;
125 -- Return True of Expr is an aggregate not contained directly in another
126 -- aggregate.
127
996ae0b0
RK
128 ------------------------------------------------------
129 -- Subprograms used for RECORD AGGREGATE Processing --
130 ------------------------------------------------------
131
132 procedure Resolve_Record_Aggregate (N : Node_Id; Typ : Entity_Id);
133 -- This procedure performs all the semantic checks required for record
134 -- aggregates. Note that for aggregates analysis and resolution go
135 -- hand in hand. Aggregate analysis has been delayed up to here and
136 -- it is done while resolving the aggregate.
137 --
138 -- N is the N_Aggregate node.
139 -- Typ is the record type for the aggregate resolution
140 --
9b96e234
JM
141 -- While performing the semantic checks, this procedure builds a new
142 -- Component_Association_List where each record field appears alone in a
143 -- Component_Choice_List along with its corresponding expression. The
144 -- record fields in the Component_Association_List appear in the same order
145 -- in which they appear in the record type Typ.
996ae0b0 146 --
9b96e234
JM
147 -- Once this new Component_Association_List is built and all the semantic
148 -- checks performed, the original aggregate subtree is replaced with the
149 -- new named record aggregate just built. Note that subtree substitution is
150 -- performed with Rewrite so as to be able to retrieve the original
151 -- aggregate.
996ae0b0
RK
152 --
153 -- The aggregate subtree manipulation performed by Resolve_Record_Aggregate
154 -- yields the aggregate format expected by Gigi. Typically, this kind of
155 -- tree manipulations are done in the expander. However, because the
9b96e234
JM
156 -- semantic checks that need to be performed on record aggregates really go
157 -- hand in hand with the record aggregate normalization, the aggregate
996ae0b0 158 -- subtree transformation is performed during resolution rather than
9b96e234
JM
159 -- expansion. Had we decided otherwise we would have had to duplicate most
160 -- of the code in the expansion procedure Expand_Record_Aggregate. Note,
c7ce71c2 161 -- however, that all the expansion concerning aggregates for tagged records
9b96e234 162 -- is done in Expand_Record_Aggregate.
996ae0b0
RK
163 --
164 -- The algorithm of Resolve_Record_Aggregate proceeds as follows:
165 --
166 -- 1. Make sure that the record type against which the record aggregate
c9a1acdc
AC
167 -- has to be resolved is not abstract. Furthermore if the type is a
168 -- null aggregate make sure the input aggregate N is also null.
996ae0b0
RK
169 --
170 -- 2. Verify that the structure of the aggregate is that of a record
171 -- aggregate. Specifically, look for component associations and ensure
172 -- that each choice list only has identifiers or the N_Others_Choice
173 -- node. Also make sure that if present, the N_Others_Choice occurs
174 -- last and by itself.
175 --
c9a1acdc
AC
176 -- 3. If Typ contains discriminants, the values for each discriminant is
177 -- looked for. If the record type Typ has variants, we check that the
178 -- expressions corresponding to each discriminant ruling the (possibly
179 -- nested) variant parts of Typ, are static. This allows us to determine
180 -- the variant parts to which the rest of the aggregate must conform.
181 -- The names of discriminants with their values are saved in a new
182 -- association list, New_Assoc_List which is later augmented with the
183 -- names and values of the remaining components in the record type.
996ae0b0
RK
184 --
185 -- During this phase we also make sure that every discriminant is
c9a1acdc
AC
186 -- assigned exactly one value. Note that when several values for a given
187 -- discriminant are found, semantic processing continues looking for
188 -- further errors. In this case it's the first discriminant value found
189 -- which we will be recorded.
996ae0b0
RK
190 --
191 -- IMPORTANT NOTE: For derived tagged types this procedure expects
192 -- First_Discriminant and Next_Discriminant to give the correct list
193 -- of discriminants, in the correct order.
194 --
c9a1acdc
AC
195 -- 4. After all the discriminant values have been gathered, we can set the
196 -- Etype of the record aggregate. If Typ contains no discriminants this
197 -- is straightforward: the Etype of N is just Typ, otherwise a new
198 -- implicit constrained subtype of Typ is built to be the Etype of N.
996ae0b0
RK
199 --
200 -- 5. Gather the remaining record components according to the discriminant
201 -- values. This involves recursively traversing the record type
202 -- structure to see what variants are selected by the given discriminant
203 -- values. This processing is a little more convoluted if Typ is a
204 -- derived tagged types since we need to retrieve the record structure
205 -- of all the ancestors of Typ.
206 --
c9a1acdc
AC
207 -- 6. After gathering the record components we look for their values in the
208 -- record aggregate and emit appropriate error messages should we not
209 -- find such values or should they be duplicated.
210 --
211 -- 7. We then make sure no illegal component names appear in the record
212 -- aggregate and make sure that the type of the record components
213 -- appearing in a same choice list is the same. Finally we ensure that
214 -- the others choice, if present, is used to provide the value of at
215 -- least a record component.
216 --
217 -- 8. The original aggregate node is replaced with the new named aggregate
218 -- built in steps 3 through 6, as explained earlier.
219 --
220 -- Given the complexity of record aggregate resolution, the primary goal of
221 -- this routine is clarity and simplicity rather than execution and storage
222 -- efficiency. If there are only positional components in the aggregate the
223 -- running time is linear. If there are associations the running time is
224 -- still linear as long as the order of the associations is not too far off
225 -- the order of the components in the record type. If this is not the case
226 -- the running time is at worst quadratic in the size of the association
227 -- list.
996ae0b0
RK
228
229 procedure Check_Misspelled_Component
9c290e69
PO
230 (Elements : Elist_Id;
231 Component : Node_Id);
c9a1acdc
AC
232 -- Give possible misspelling diagnostic if Component is likely to be a
233 -- misspelling of one of the components of the Assoc_List. This is called
234 -- by Resolve_Aggr_Expr after producing an invalid component error message.
996ae0b0
RK
235
236 procedure Check_Static_Discriminated_Subtype (T : Entity_Id; V : Node_Id);
c9a1acdc
AC
237 -- An optimization: determine whether a discriminated subtype has a static
238 -- constraint, and contains array components whose length is also static,
239 -- either because they are constrained by the discriminant, or because the
240 -- original component bounds are static.
996ae0b0
RK
241
242 -----------------------------------------------------
243 -- Subprograms used for ARRAY AGGREGATE Processing --
244 -----------------------------------------------------
245
246 function Resolve_Array_Aggregate
247 (N : Node_Id;
248 Index : Node_Id;
249 Index_Constr : Node_Id;
250 Component_Typ : Entity_Id;
ca44152f 251 Others_Allowed : Boolean) return Boolean;
996ae0b0
RK
252 -- This procedure performs the semantic checks for an array aggregate.
253 -- True is returned if the aggregate resolution succeeds.
ca44152f 254 --
996ae0b0 255 -- The procedure works by recursively checking each nested aggregate.
9f4fd324 256 -- Specifically, after checking a sub-aggregate nested at the i-th level
996ae0b0
RK
257 -- we recursively check all the subaggregates at the i+1-st level (if any).
258 -- Note that for aggregates analysis and resolution go hand in hand.
259 -- Aggregate analysis has been delayed up to here and it is done while
260 -- resolving the aggregate.
261 --
262 -- N is the current N_Aggregate node to be checked.
263 --
264 -- Index is the index node corresponding to the array sub-aggregate that
265 -- we are currently checking (RM 4.3.3 (8)). Its Etype is the
266 -- corresponding index type (or subtype).
267 --
268 -- Index_Constr is the node giving the applicable index constraint if
269 -- any (RM 4.3.3 (10)). It "is a constraint provided by certain
270 -- contexts [...] that can be used to determine the bounds of the array
271 -- value specified by the aggregate". If Others_Allowed below is False
272 -- there is no applicable index constraint and this node is set to Index.
273 --
274 -- Component_Typ is the array component type.
275 --
276 -- Others_Allowed indicates whether an others choice is allowed
277 -- in the context where the top-level aggregate appeared.
278 --
279 -- The algorithm of Resolve_Array_Aggregate proceeds as follows:
280 --
281 -- 1. Make sure that the others choice, if present, is by itself and
282 -- appears last in the sub-aggregate. Check that we do not have
283 -- positional and named components in the array sub-aggregate (unless
284 -- the named association is an others choice). Finally if an others
12a13f01 285 -- choice is present, make sure it is allowed in the aggregate context.
996ae0b0
RK
286 --
287 -- 2. If the array sub-aggregate contains discrete_choices:
288 --
289 -- (A) Verify their validity. Specifically verify that:
290 --
291 -- (a) If a null range is present it must be the only possible
292 -- choice in the array aggregate.
293 --
294 -- (b) Ditto for a non static range.
295 --
296 -- (c) Ditto for a non static expression.
297 --
298 -- In addition this step analyzes and resolves each discrete_choice,
299 -- making sure that its type is the type of the corresponding Index.
300 -- If we are not at the lowest array aggregate level (in the case of
301 -- multi-dimensional aggregates) then invoke Resolve_Array_Aggregate
302 -- recursively on each component expression. Otherwise, resolve the
303 -- bottom level component expressions against the expected component
304 -- type ONLY IF the component corresponds to a single discrete choice
305 -- which is not an others choice (to see why read the DELAYED
306 -- COMPONENT RESOLUTION below).
307 --
308 -- (B) Determine the bounds of the sub-aggregate and lowest and
309 -- highest choice values.
310 --
311 -- 3. For positional aggregates:
312 --
313 -- (A) Loop over the component expressions either recursively invoking
314 -- Resolve_Array_Aggregate on each of these for multi-dimensional
315 -- array aggregates or resolving the bottom level component
316 -- expressions against the expected component type.
317 --
318 -- (B) Determine the bounds of the positional sub-aggregates.
319 --
320 -- 4. Try to determine statically whether the evaluation of the array
321 -- sub-aggregate raises Constraint_Error. If yes emit proper
322 -- warnings. The precise checks are the following:
323 --
324 -- (A) Check that the index range defined by aggregate bounds is
325 -- compatible with corresponding index subtype.
326 -- We also check against the base type. In fact it could be that
327 -- Low/High bounds of the base type are static whereas those of
328 -- the index subtype are not. Thus if we can statically catch
329 -- a problem with respect to the base type we are guaranteed
330 -- that the same problem will arise with the index subtype
331 --
332 -- (B) If we are dealing with a named aggregate containing an others
333 -- choice and at least one discrete choice then make sure the range
334 -- specified by the discrete choices does not overflow the
335 -- aggregate bounds. We also check against the index type and base
336 -- type bounds for the same reasons given in (A).
337 --
338 -- (C) If we are dealing with a positional aggregate with an others
339 -- choice make sure the number of positional elements specified
340 -- does not overflow the aggregate bounds. We also check against
341 -- the index type and base type bounds as mentioned in (A).
342 --
343 -- Finally construct an N_Range node giving the sub-aggregate bounds.
344 -- Set the Aggregate_Bounds field of the sub-aggregate to be this
345 -- N_Range. The routine Array_Aggr_Subtype below uses such N_Ranges
346 -- to build the appropriate aggregate subtype. Aggregate_Bounds
347 -- information is needed during expansion.
348 --
349 -- DELAYED COMPONENT RESOLUTION: The resolution of bottom level component
350 -- expressions in an array aggregate may call Duplicate_Subexpr or some
351 -- other routine that inserts code just outside the outermost aggregate.
352 -- If the array aggregate contains discrete choices or an others choice,
353 -- this may be wrong. Consider for instance the following example.
354 --
355 -- type Rec is record
356 -- V : Integer := 0;
357 -- end record;
358 --
359 -- type Acc_Rec is access Rec;
360 -- Arr : array (1..3) of Acc_Rec := (1 .. 3 => new Rec);
361 --
362 -- Then the transformation of "new Rec" that occurs during resolution
363 -- entails the following code modifications
364 --
365 -- P7b : constant Acc_Rec := new Rec;
fbf5a39b 366 -- RecIP (P7b.all);
996ae0b0
RK
367 -- Arr : array (1..3) of Acc_Rec := (1 .. 3 => P7b);
368 --
369 -- This code transformation is clearly wrong, since we need to call
370 -- "new Rec" for each of the 3 array elements. To avoid this problem we
371 -- delay resolution of the components of non positional array aggregates
372 -- to the expansion phase. As an optimization, if the discrete choice
373 -- specifies a single value we do not delay resolution.
374
375 function Array_Aggr_Subtype (N : Node_Id; Typ : Node_Id) return Entity_Id;
376 -- This routine returns the type or subtype of an array aggregate.
377 --
378 -- N is the array aggregate node whose type we return.
379 --
380 -- Typ is the context type in which N occurs.
381 --
c45b6ae0 382 -- This routine creates an implicit array subtype whose bounds are
996ae0b0
RK
383 -- those defined by the aggregate. When this routine is invoked
384 -- Resolve_Array_Aggregate has already processed aggregate N. Thus the
385 -- Aggregate_Bounds of each sub-aggregate, is an N_Range node giving the
c7ce71c2 386 -- sub-aggregate bounds. When building the aggregate itype, this function
996ae0b0
RK
387 -- traverses the array aggregate N collecting such Aggregate_Bounds and
388 -- constructs the proper array aggregate itype.
389 --
390 -- Note that in the case of multidimensional aggregates each inner
391 -- sub-aggregate corresponding to a given array dimension, may provide a
392 -- different bounds. If it is possible to determine statically that
393 -- some sub-aggregates corresponding to the same index do not have the
394 -- same bounds, then a warning is emitted. If such check is not possible
395 -- statically (because some sub-aggregate bounds are dynamic expressions)
396 -- then this job is left to the expander. In all cases the particular
397 -- bounds that this function will chose for a given dimension is the first
398 -- N_Range node for a sub-aggregate corresponding to that dimension.
399 --
400 -- Note that the Raises_Constraint_Error flag of an array aggregate
401 -- whose evaluation is determined to raise CE by Resolve_Array_Aggregate,
402 -- is set in Resolve_Array_Aggregate but the aggregate is not
403 -- immediately replaced with a raise CE. In fact, Array_Aggr_Subtype must
404 -- first construct the proper itype for the aggregate (Gigi needs
21d7ef70 405 -- this). After constructing the proper itype we will eventually replace
996ae0b0
RK
406 -- the top-level aggregate with a raise CE (done in Resolve_Aggregate).
407 -- Of course in cases such as:
408 --
409 -- type Arr is array (integer range <>) of Integer;
410 -- A : Arr := (positive range -1 .. 2 => 0);
411 --
412 -- The bounds of the aggregate itype are cooked up to look reasonable
413 -- (in this particular case the bounds will be 1 .. 2).
414
996ae0b0 415 procedure Make_String_Into_Aggregate (N : Node_Id);
21d7ef70 416 -- A string literal can appear in a context in which a one dimensional
996ae0b0
RK
417 -- array of characters is expected. This procedure simply rewrites the
418 -- string as an aggregate, prior to resolution.
419
996ae0b0
RK
420 ------------------------
421 -- Array_Aggr_Subtype --
422 ------------------------
423
424 function Array_Aggr_Subtype
b87971f3
AC
425 (N : Node_Id;
426 Typ : Entity_Id) return Entity_Id
996ae0b0
RK
427 is
428 Aggr_Dimension : constant Pos := Number_Dimensions (Typ);
ec53a6da 429 -- Number of aggregate index dimensions
996ae0b0
RK
430
431 Aggr_Range : array (1 .. Aggr_Dimension) of Node_Id := (others => Empty);
ec53a6da 432 -- Constrained N_Range of each index dimension in our aggregate itype
996ae0b0 433
58009744
AC
434 Aggr_Low : array (1 .. Aggr_Dimension) of Node_Id := (others => Empty);
435 Aggr_High : array (1 .. Aggr_Dimension) of Node_Id := (others => Empty);
ec53a6da 436 -- Low and High bounds for each index dimension in our aggregate itype
996ae0b0
RK
437
438 Is_Fully_Positional : Boolean := True;
439
440 procedure Collect_Aggr_Bounds (N : Node_Id; Dim : Pos);
fb468a94
AC
441 -- N is an array (sub-)aggregate. Dim is the dimension corresponding
442 -- to (sub-)aggregate N. This procedure collects and removes the side
443 -- effects of the constrained N_Range nodes corresponding to each index
2b3d67a5
AC
444 -- dimension of our aggregate itype. These N_Range nodes are collected
445 -- in Aggr_Range above.
ec53a6da 446 --
996ae0b0
RK
447 -- Likewise collect in Aggr_Low & Aggr_High above the low and high
448 -- bounds of each index dimension. If, when collecting, two bounds
449 -- corresponding to the same dimension are static and found to differ,
450 -- then emit a warning, and mark N as raising Constraint_Error.
451
452 -------------------------
453 -- Collect_Aggr_Bounds --
454 -------------------------
455
456 procedure Collect_Aggr_Bounds (N : Node_Id; Dim : Pos) is
457 This_Range : constant Node_Id := Aggregate_Bounds (N);
ec53a6da 458 -- The aggregate range node of this specific sub-aggregate
996ae0b0
RK
459
460 This_Low : constant Node_Id := Low_Bound (Aggregate_Bounds (N));
461 This_High : constant Node_Id := High_Bound (Aggregate_Bounds (N));
ec53a6da 462 -- The aggregate bounds of this specific sub-aggregate
996ae0b0
RK
463
464 Assoc : Node_Id;
465 Expr : Node_Id;
466
467 begin
fb468a94
AC
468 Remove_Side_Effects (This_Low, Variable_Ref => True);
469 Remove_Side_Effects (This_High, Variable_Ref => True);
470
996ae0b0
RK
471 -- Collect the first N_Range for a given dimension that you find.
472 -- For a given dimension they must be all equal anyway.
473
474 if No (Aggr_Range (Dim)) then
475 Aggr_Low (Dim) := This_Low;
476 Aggr_High (Dim) := This_High;
477 Aggr_Range (Dim) := This_Range;
478
479 else
480 if Compile_Time_Known_Value (This_Low) then
481 if not Compile_Time_Known_Value (Aggr_Low (Dim)) then
be035558 482 Aggr_Low (Dim) := This_Low;
996ae0b0
RK
483
484 elsif Expr_Value (This_Low) /= Expr_Value (Aggr_Low (Dim)) then
485 Set_Raises_Constraint_Error (N);
43417b90 486 Error_Msg_Warn := SPARK_Mode /= On;
4a28b181
AC
487 Error_Msg_N ("sub-aggregate low bound mismatch<<", N);
488 Error_Msg_N ("\Constraint_Error [<<", N);
996ae0b0
RK
489 end if;
490 end if;
491
492 if Compile_Time_Known_Value (This_High) then
493 if not Compile_Time_Known_Value (Aggr_High (Dim)) then
be035558 494 Aggr_High (Dim) := This_High;
996ae0b0
RK
495
496 elsif
497 Expr_Value (This_High) /= Expr_Value (Aggr_High (Dim))
498 then
499 Set_Raises_Constraint_Error (N);
43417b90 500 Error_Msg_Warn := SPARK_Mode /= On;
4a28b181
AC
501 Error_Msg_N ("sub-aggregate high bound mismatch<<", N);
502 Error_Msg_N ("\Constraint_Error [<<", N);
996ae0b0
RK
503 end if;
504 end if;
505 end if;
506
507 if Dim < Aggr_Dimension then
508
509 -- Process positional components
510
511 if Present (Expressions (N)) then
512 Expr := First (Expressions (N));
513 while Present (Expr) loop
514 Collect_Aggr_Bounds (Expr, Dim + 1);
515 Next (Expr);
516 end loop;
517 end if;
518
519 -- Process component associations
520
521 if Present (Component_Associations (N)) then
522 Is_Fully_Positional := False;
523
524 Assoc := First (Component_Associations (N));
525 while Present (Assoc) loop
526 Expr := Expression (Assoc);
527 Collect_Aggr_Bounds (Expr, Dim + 1);
528 Next (Assoc);
529 end loop;
530 end if;
531 end if;
532 end Collect_Aggr_Bounds;
533
534 -- Array_Aggr_Subtype variables
535
536 Itype : Entity_Id;
b87971f3 537 -- The final itype of the overall aggregate
996ae0b0 538
fbf5a39b 539 Index_Constraints : constant List_Id := New_List;
ec53a6da 540 -- The list of index constraints of the aggregate itype
996ae0b0
RK
541
542 -- Start of processing for Array_Aggr_Subtype
543
544 begin
b87971f3
AC
545 -- Make sure that the list of index constraints is properly attached to
546 -- the tree, and then collect the aggregate bounds.
996ae0b0
RK
547
548 Set_Parent (Index_Constraints, N);
549 Collect_Aggr_Bounds (N, 1);
550
3b42c566 551 -- Build the list of constrained indexes of our aggregate itype
996ae0b0
RK
552
553 for J in 1 .. Aggr_Dimension loop
554 Create_Index : declare
fbf5a39b
AC
555 Index_Base : constant Entity_Id :=
556 Base_Type (Etype (Aggr_Range (J)));
996ae0b0
RK
557 Index_Typ : Entity_Id;
558
559 begin
8133b9d1
ES
560 -- Construct the Index subtype, and associate it with the range
561 -- construct that generates it.
996ae0b0 562
8133b9d1
ES
563 Index_Typ :=
564 Create_Itype (Subtype_Kind (Ekind (Index_Base)), Aggr_Range (J));
996ae0b0
RK
565
566 Set_Etype (Index_Typ, Index_Base);
567
568 if Is_Character_Type (Index_Base) then
569 Set_Is_Character_Type (Index_Typ);
570 end if;
571
572 Set_Size_Info (Index_Typ, (Index_Base));
573 Set_RM_Size (Index_Typ, RM_Size (Index_Base));
574 Set_First_Rep_Item (Index_Typ, First_Rep_Item (Index_Base));
575 Set_Scalar_Range (Index_Typ, Aggr_Range (J));
576
577 if Is_Discrete_Or_Fixed_Point_Type (Index_Typ) then
578 Set_RM_Size (Index_Typ, UI_From_Int (Minimum_Size (Index_Typ)));
579 end if;
580
581 Set_Etype (Aggr_Range (J), Index_Typ);
582
583 Append (Aggr_Range (J), To => Index_Constraints);
584 end Create_Index;
585 end loop;
586
587 -- Now build the Itype
588
589 Itype := Create_Itype (E_Array_Subtype, N);
590
b87971f3
AC
591 Set_First_Rep_Item (Itype, First_Rep_Item (Typ));
592 Set_Convention (Itype, Convention (Typ));
593 Set_Depends_On_Private (Itype, Has_Private_Component (Typ));
594 Set_Etype (Itype, Base_Type (Typ));
595 Set_Has_Alignment_Clause (Itype, Has_Alignment_Clause (Typ));
596 Set_Is_Aliased (Itype, Is_Aliased (Typ));
597 Set_Depends_On_Private (Itype, Depends_On_Private (Typ));
996ae0b0 598
fbf5a39b
AC
599 Copy_Suppress_Status (Index_Check, Typ, Itype);
600 Copy_Suppress_Status (Length_Check, Typ, Itype);
601
996ae0b0
RK
602 Set_First_Index (Itype, First (Index_Constraints));
603 Set_Is_Constrained (Itype, True);
604 Set_Is_Internal (Itype, True);
996ae0b0
RK
605
606 -- A simple optimization: purely positional aggregates of static
b87971f3
AC
607 -- components should be passed to gigi unexpanded whenever possible, and
608 -- regardless of the staticness of the bounds themselves. Subsequent
609 -- checks in exp_aggr verify that type is not packed, etc.
996ae0b0 610
58009744
AC
611 Set_Size_Known_At_Compile_Time
612 (Itype,
8133b9d1
ES
613 Is_Fully_Positional
614 and then Comes_From_Source (N)
615 and then Size_Known_At_Compile_Time (Component_Type (Typ)));
996ae0b0 616
b87971f3 617 -- We always need a freeze node for a packed array subtype, so that we
8ca597af 618 -- can build the Packed_Array_Impl_Type corresponding to the subtype. If
b87971f3
AC
619 -- expansion is disabled, the packed array subtype is not built, and we
620 -- must not generate a freeze node for the type, or else it will appear
621 -- incomplete to gigi.
996ae0b0 622
b87971f3
AC
623 if Is_Packed (Itype)
624 and then not In_Spec_Expression
996ae0b0
RK
625 and then Expander_Active
626 then
627 Freeze_Itype (Itype, N);
628 end if;
629
630 return Itype;
631 end Array_Aggr_Subtype;
632
633 --------------------------------
634 -- Check_Misspelled_Component --
635 --------------------------------
636
637 procedure Check_Misspelled_Component
9c290e69
PO
638 (Elements : Elist_Id;
639 Component : Node_Id)
996ae0b0
RK
640 is
641 Max_Suggestions : constant := 2;
642
643 Nr_Of_Suggestions : Natural := 0;
644 Suggestion_1 : Entity_Id := Empty;
645 Suggestion_2 : Entity_Id := Empty;
646 Component_Elmt : Elmt_Id;
647
648 begin
b87971f3 649 -- All the components of List are matched against Component and a count
e49de265 650 -- is maintained of possible misspellings. When at the end of the
a90bd866 651 -- analysis there are one or two (not more) possible misspellings,
e49de265 652 -- these misspellings will be suggested as possible corrections.
996ae0b0 653
c80d4855
RD
654 Component_Elmt := First_Elmt (Elements);
655 while Nr_Of_Suggestions <= Max_Suggestions
656 and then Present (Component_Elmt)
657 loop
658 if Is_Bad_Spelling_Of
659 (Chars (Node (Component_Elmt)),
660 Chars (Component))
661 then
662 Nr_Of_Suggestions := Nr_Of_Suggestions + 1;
996ae0b0 663
c80d4855
RD
664 case Nr_Of_Suggestions is
665 when 1 => Suggestion_1 := Node (Component_Elmt);
666 when 2 => Suggestion_2 := Node (Component_Elmt);
e49de265 667 when others => null;
c80d4855
RD
668 end case;
669 end if;
996ae0b0 670
c80d4855
RD
671 Next_Elmt (Component_Elmt);
672 end loop;
996ae0b0 673
c80d4855 674 -- Report at most two suggestions
996ae0b0 675
c80d4855 676 if Nr_Of_Suggestions = 1 then
4e7a4f6e 677 Error_Msg_NE -- CODEFIX
c80d4855 678 ("\possible misspelling of&", Component, Suggestion_1);
996ae0b0 679
c80d4855
RD
680 elsif Nr_Of_Suggestions = 2 then
681 Error_Msg_Node_2 := Suggestion_2;
4e7a4f6e 682 Error_Msg_NE -- CODEFIX
c80d4855
RD
683 ("\possible misspelling of& or&", Component, Suggestion_1);
684 end if;
996ae0b0
RK
685 end Check_Misspelled_Component;
686
ca44152f
ES
687 ----------------------------------------
688 -- Check_Expr_OK_In_Limited_Aggregate --
689 ----------------------------------------
690
691 procedure Check_Expr_OK_In_Limited_Aggregate (Expr : Node_Id) is
692 begin
693 if Is_Limited_Type (Etype (Expr))
694 and then Comes_From_Source (Expr)
ca44152f 695 then
36428cc4
AC
696 if In_Instance_Body or else In_Inlined_Body then
697 null;
698
699 elsif not OK_For_Limited_Init (Etype (Expr), Expr) then
700 Error_Msg_N
701 ("initialization not allowed for limited types", Expr);
ca44152f
ES
702 Explain_Limited_Type (Etype (Expr), Expr);
703 end if;
704 end if;
705 end Check_Expr_OK_In_Limited_Aggregate;
706
a5fe697b
AC
707 -------------------------------
708 -- Check_Qualified_Aggregate --
709 -------------------------------
710
711 procedure Check_Qualified_Aggregate (Level : Nat; Expr : Node_Id) is
712 Comp_Expr : Node_Id;
713 Comp_Assn : Node_Id;
19fb051c 714
a5fe697b
AC
715 begin
716 if Level = 0 then
717 if Nkind (Parent (Expr)) /= N_Qualified_Expression then
ce5ba43a 718 Check_SPARK_05_Restriction ("aggregate should be qualified", Expr);
a5fe697b 719 end if;
19fb051c 720
a5fe697b
AC
721 else
722 Comp_Expr := First (Expressions (Expr));
723 while Present (Comp_Expr) loop
724 if Nkind (Comp_Expr) = N_Aggregate then
725 Check_Qualified_Aggregate (Level - 1, Comp_Expr);
726 end if;
727
728 Comp_Expr := Next (Comp_Expr);
729 end loop;
730
731 Comp_Assn := First (Component_Associations (Expr));
732 while Present (Comp_Assn) loop
733 Comp_Expr := Expression (Comp_Assn);
734
735 if Nkind (Comp_Expr) = N_Aggregate then
736 Check_Qualified_Aggregate (Level - 1, Comp_Expr);
737 end if;
738
739 Comp_Assn := Next (Comp_Assn);
740 end loop;
741 end if;
742 end Check_Qualified_Aggregate;
743
996ae0b0
RK
744 ----------------------------------------
745 -- Check_Static_Discriminated_Subtype --
746 ----------------------------------------
747
748 procedure Check_Static_Discriminated_Subtype (T : Entity_Id; V : Node_Id) is
749 Disc : constant Entity_Id := First_Discriminant (T);
750 Comp : Entity_Id;
751 Ind : Entity_Id;
752
753 begin
07fc65c4 754 if Has_Record_Rep_Clause (T) then
996ae0b0
RK
755 return;
756
757 elsif Present (Next_Discriminant (Disc)) then
758 return;
759
760 elsif Nkind (V) /= N_Integer_Literal then
761 return;
762 end if;
763
764 Comp := First_Component (T);
996ae0b0 765 while Present (Comp) loop
996ae0b0
RK
766 if Is_Scalar_Type (Etype (Comp)) then
767 null;
768
769 elsif Is_Private_Type (Etype (Comp))
770 and then Present (Full_View (Etype (Comp)))
771 and then Is_Scalar_Type (Full_View (Etype (Comp)))
772 then
773 null;
774
775 elsif Is_Array_Type (Etype (Comp)) then
996ae0b0
RK
776 if Is_Bit_Packed_Array (Etype (Comp)) then
777 return;
778 end if;
779
780 Ind := First_Index (Etype (Comp));
996ae0b0 781 while Present (Ind) loop
996ae0b0 782 if Nkind (Ind) /= N_Range
58009744 783 or else Nkind (Low_Bound (Ind)) /= N_Integer_Literal
996ae0b0
RK
784 or else Nkind (High_Bound (Ind)) /= N_Integer_Literal
785 then
786 return;
787 end if;
788
789 Next_Index (Ind);
790 end loop;
791
792 else
793 return;
794 end if;
795
796 Next_Component (Comp);
797 end loop;
798
ec53a6da 799 -- On exit, all components have statically known sizes
996ae0b0
RK
800
801 Set_Size_Known_At_Compile_Time (T);
802 end Check_Static_Discriminated_Subtype;
803
9f90d123
AC
804 -------------------------
805 -- Is_Others_Aggregate --
806 -------------------------
807
808 function Is_Others_Aggregate (Aggr : Node_Id) return Boolean is
809 begin
810 return No (Expressions (Aggr))
811 and then
58009744
AC
812 Nkind (First (Choices (First (Component_Associations (Aggr))))) =
813 N_Others_Choice;
9f90d123
AC
814 end Is_Others_Aggregate;
815
a5fe697b
AC
816 ----------------------------
817 -- Is_Top_Level_Aggregate --
818 ----------------------------
819
820 function Is_Top_Level_Aggregate (Expr : Node_Id) return Boolean is
821 begin
822 return Nkind (Parent (Expr)) /= N_Aggregate
823 and then (Nkind (Parent (Expr)) /= N_Component_Association
824 or else Nkind (Parent (Parent (Expr))) /= N_Aggregate);
825 end Is_Top_Level_Aggregate;
826
996ae0b0
RK
827 --------------------------------
828 -- Make_String_Into_Aggregate --
829 --------------------------------
830
831 procedure Make_String_Into_Aggregate (N : Node_Id) is
fbf5a39b 832 Exprs : constant List_Id := New_List;
996ae0b0 833 Loc : constant Source_Ptr := Sloc (N);
996ae0b0
RK
834 Str : constant String_Id := Strval (N);
835 Strlen : constant Nat := String_Length (Str);
fbf5a39b
AC
836 C : Char_Code;
837 C_Node : Node_Id;
838 New_N : Node_Id;
839 P : Source_Ptr;
996ae0b0
RK
840
841 begin
fbf5a39b 842 P := Loc + 1;
996ae0b0
RK
843 for J in 1 .. Strlen loop
844 C := Get_String_Char (Str, J);
845 Set_Character_Literal_Name (C);
846
82c80734
RD
847 C_Node :=
848 Make_Character_Literal (P,
849 Chars => Name_Find,
850 Char_Literal_Value => UI_From_CC (C));
996ae0b0 851 Set_Etype (C_Node, Any_Character);
996ae0b0
RK
852 Append_To (Exprs, C_Node);
853
854 P := P + 1;
b87971f3 855 -- Something special for wide strings???
996ae0b0
RK
856 end loop;
857
858 New_N := Make_Aggregate (Loc, Expressions => Exprs);
859 Set_Analyzed (New_N);
860 Set_Etype (New_N, Any_Composite);
861
862 Rewrite (N, New_N);
863 end Make_String_Into_Aggregate;
864
865 -----------------------
866 -- Resolve_Aggregate --
867 -----------------------
868
869 procedure Resolve_Aggregate (N : Node_Id; Typ : Entity_Id) is
f915704f 870 Loc : constant Source_Ptr := Sloc (N);
9fc2854d 871 Pkind : constant Node_Kind := Nkind (Parent (N));
996ae0b0
RK
872
873 Aggr_Subtyp : Entity_Id;
874 -- The actual aggregate subtype. This is not necessarily the same as Typ
875 -- which is the subtype of the context in which the aggregate was found.
876
877 begin
6d2a1120
RD
878 -- Ignore junk empty aggregate resulting from parser error
879
880 if No (Expressions (N))
881 and then No (Component_Associations (N))
882 and then not Null_Record_Present (N)
883 then
884 return;
885 end if;
886
0180fd26
AC
887 -- If the aggregate has box-initialized components, its type must be
888 -- frozen so that initialization procedures can properly be called
889 -- in the resolution that follows. The replacement of boxes with
890 -- initialization calls is properly an expansion activity but it must
f5da7a97 891 -- be done during resolution.
0180fd26
AC
892
893 if Expander_Active
f5da7a97 894 and then Present (Component_Associations (N))
0180fd26
AC
895 then
896 declare
897 Comp : Node_Id;
898
899 begin
900 Comp := First (Component_Associations (N));
901 while Present (Comp) loop
902 if Box_Present (Comp) then
903 Insert_Actions (N, Freeze_Entity (Typ, N));
904 exit;
905 end if;
fe0ec02f 906
0180fd26
AC
907 Next (Comp);
908 end loop;
909 end;
910 end if;
911
2ba431e5 912 -- An unqualified aggregate is restricted in SPARK to:
a5fe697b
AC
913
914 -- An aggregate item inside an aggregate for a multi-dimensional array
915
916 -- An expression being assigned to an unconstrained array, but only if
917 -- the aggregate specifies a value for OTHERS only.
918
919 if Nkind (Parent (N)) = N_Qualified_Expression then
920 if Is_Array_Type (Typ) then
921 Check_Qualified_Aggregate (Number_Dimensions (Typ), N);
922 else
923 Check_Qualified_Aggregate (1, N);
924 end if;
925 else
926 if Is_Array_Type (Typ)
927 and then Nkind (Parent (N)) = N_Assignment_Statement
928 and then not Is_Constrained (Etype (Name (Parent (N))))
a5fe697b 929 then
5f7747af 930 if not Is_Others_Aggregate (N) then
ce5ba43a 931 Check_SPARK_05_Restriction
5f7747af
AC
932 ("array aggregate should have only OTHERS", N);
933 end if;
934
a5fe697b 935 elsif Is_Top_Level_Aggregate (N) then
ce5ba43a 936 Check_SPARK_05_Restriction ("aggregate should be qualified", N);
a5fe697b
AC
937
938 -- The legality of this unqualified aggregate is checked by calling
939 -- Check_Qualified_Aggregate from one of its enclosing aggregate,
940 -- unless one of these already causes an error to be issued.
941
942 else
943 null;
944 end if;
945 end if;
946
fbf5a39b 947 -- Check for aggregates not allowed in configurable run-time mode.
b87971f3
AC
948 -- We allow all cases of aggregates that do not come from source, since
949 -- these are all assumed to be small (e.g. bounds of a string literal).
950 -- We also allow aggregates of types we know to be small.
fbf5a39b
AC
951
952 if not Support_Aggregates_On_Target
953 and then Comes_From_Source (N)
954 and then (not Known_Static_Esize (Typ) or else Esize (Typ) > 64)
955 then
956 Error_Msg_CRT ("aggregate", N);
957 end if;
996ae0b0 958
0ab80019 959 -- Ada 2005 (AI-287): Limited aggregates allowed
579fda56 960
67645bde
AC
961 -- In an instance, ignore aggregate subcomponents tnat may be limited,
962 -- because they originate in view conflicts. If the original aggregate
963 -- is legal and the actuals are legal, the aggregate itself is legal.
19f0526a 964
67645bde
AC
965 if Is_Limited_Type (Typ)
966 and then Ada_Version < Ada_2005
967 and then not In_Instance
968 then
fbf5a39b
AC
969 Error_Msg_N ("aggregate type cannot be limited", N);
970 Explain_Limited_Type (Typ, N);
996ae0b0
RK
971
972 elsif Is_Class_Wide_Type (Typ) then
973 Error_Msg_N ("type of aggregate cannot be class-wide", N);
974
975 elsif Typ = Any_String
976 or else Typ = Any_Composite
977 then
978 Error_Msg_N ("no unique type for aggregate", N);
979 Set_Etype (N, Any_Composite);
980
981 elsif Is_Array_Type (Typ) and then Null_Record_Present (N) then
982 Error_Msg_N ("null record forbidden in array aggregate", N);
983
984 elsif Is_Record_Type (Typ) then
985 Resolve_Record_Aggregate (N, Typ);
986
987 elsif Is_Array_Type (Typ) then
988
989 -- First a special test, for the case of a positional aggregate
990 -- of characters which can be replaced by a string literal.
ca44152f 991
b87971f3
AC
992 -- Do not perform this transformation if this was a string literal to
993 -- start with, whose components needed constraint checks, or if the
994 -- component type is non-static, because it will require those checks
995 -- and be transformed back into an aggregate.
996ae0b0
RK
996
997 if Number_Dimensions (Typ) = 1
ca44152f 998 and then Is_Standard_Character_Type (Component_Type (Typ))
996ae0b0
RK
999 and then No (Component_Associations (N))
1000 and then not Is_Limited_Composite (Typ)
1001 and then not Is_Private_Composite (Typ)
1002 and then not Is_Bit_Packed_Array (Typ)
1003 and then Nkind (Original_Node (Parent (N))) /= N_String_Literal
edab6088 1004 and then Is_OK_Static_Subtype (Component_Type (Typ))
996ae0b0
RK
1005 then
1006 declare
1007 Expr : Node_Id;
1008
1009 begin
1010 Expr := First (Expressions (N));
1011 while Present (Expr) loop
1012 exit when Nkind (Expr) /= N_Character_Literal;
1013 Next (Expr);
1014 end loop;
1015
1016 if No (Expr) then
1017 Start_String;
1018
1019 Expr := First (Expressions (N));
1020 while Present (Expr) loop
82c80734 1021 Store_String_Char (UI_To_CC (Char_Literal_Value (Expr)));
996ae0b0
RK
1022 Next (Expr);
1023 end loop;
1024
f915704f 1025 Rewrite (N, Make_String_Literal (Loc, End_String));
996ae0b0
RK
1026
1027 Analyze_And_Resolve (N, Typ);
1028 return;
1029 end if;
1030 end;
1031 end if;
1032
1033 -- Here if we have a real aggregate to deal with
1034
1035 Array_Aggregate : declare
1036 Aggr_Resolved : Boolean;
fbf5a39b
AC
1037
1038 Aggr_Typ : constant Entity_Id := Etype (Typ);
b87971f3
AC
1039 -- This is the unconstrained array type, which is the type against
1040 -- which the aggregate is to be resolved. Typ itself is the array
1041 -- type of the context which may not be the same subtype as the
1042 -- subtype for the final aggregate.
996ae0b0
RK
1043
1044 begin
f915704f 1045 -- In the following we determine whether an OTHERS choice is
996ae0b0
RK
1046 -- allowed inside the array aggregate. The test checks the context
1047 -- in which the array aggregate occurs. If the context does not
f915704f 1048 -- permit it, or the aggregate type is unconstrained, an OTHERS
56e94186
AC
1049 -- choice is not allowed (except that it is always allowed on the
1050 -- right-hand side of an assignment statement; in this case the
1051 -- constrainedness of the type doesn't matter).
d8387153
ES
1052
1053 -- If expansion is disabled (generic context, or semantics-only
b87971f3
AC
1054 -- mode) actual subtypes cannot be constructed, and the type of an
1055 -- object may be its unconstrained nominal type. However, if the
f915704f 1056 -- context is an assignment, we assume that OTHERS is allowed,
b87971f3
AC
1057 -- because the target of the assignment will have a constrained
1058 -- subtype when fully compiled.
d8387153 1059
996ae0b0
RK
1060 -- Note that there is no node for Explicit_Actual_Parameter.
1061 -- To test for this context we therefore have to test for node
1062 -- N_Parameter_Association which itself appears only if there is a
1063 -- formal parameter. Consequently we also need to test for
1064 -- N_Procedure_Call_Statement or N_Function_Call.
1065
5f6fb720
AC
1066 -- The context may be an N_Reference node, created by expansion.
1067 -- Legality of the others clause was established in the source,
1068 -- so the context is legal.
1069
b87971f3 1070 Set_Etype (N, Aggr_Typ); -- May be overridden later on
c45b6ae0 1071
e917aec2
RD
1072 if Pkind = N_Assignment_Statement
1073 or else (Is_Constrained (Typ)
1074 and then
1075 (Pkind = N_Parameter_Association or else
1076 Pkind = N_Function_Call or else
1077 Pkind = N_Procedure_Call_Statement or else
1078 Pkind = N_Generic_Association or else
1079 Pkind = N_Formal_Object_Declaration or else
1080 Pkind = N_Simple_Return_Statement or else
1081 Pkind = N_Object_Declaration or else
1082 Pkind = N_Component_Declaration or else
1083 Pkind = N_Parameter_Specification or else
1084 Pkind = N_Qualified_Expression or else
5f6fb720 1085 Pkind = N_Reference or else
e917aec2
RD
1086 Pkind = N_Aggregate or else
1087 Pkind = N_Extension_Aggregate or else
1088 Pkind = N_Component_Association))
996ae0b0
RK
1089 then
1090 Aggr_Resolved :=
1091 Resolve_Array_Aggregate
1092 (N,
1093 Index => First_Index (Aggr_Typ),
1094 Index_Constr => First_Index (Typ),
1095 Component_Typ => Component_Type (Typ),
1096 Others_Allowed => True);
996ae0b0
RK
1097 else
1098 Aggr_Resolved :=
1099 Resolve_Array_Aggregate
1100 (N,
1101 Index => First_Index (Aggr_Typ),
1102 Index_Constr => First_Index (Aggr_Typ),
1103 Component_Typ => Component_Type (Typ),
1104 Others_Allowed => False);
1105 end if;
1106
1107 if not Aggr_Resolved then
f5afb270
AC
1108
1109 -- A parenthesized expression may have been intended as an
1110 -- aggregate, leading to a type error when analyzing the
1111 -- component. This can also happen for a nested component
1112 -- (see Analyze_Aggr_Expr).
1113
1114 if Paren_Count (N) > 0 then
1115 Error_Msg_N
1116 ("positional aggregate cannot have one component", N);
1117 end if;
1118
996ae0b0 1119 Aggr_Subtyp := Any_Composite;
e917aec2 1120
996ae0b0
RK
1121 else
1122 Aggr_Subtyp := Array_Aggr_Subtype (N, Typ);
1123 end if;
1124
1125 Set_Etype (N, Aggr_Subtyp);
1126 end Array_Aggregate;
1127
d8387153
ES
1128 elsif Is_Private_Type (Typ)
1129 and then Present (Full_View (Typ))
8256c1bf 1130 and then (In_Inlined_Body or In_Instance_Body)
d8387153
ES
1131 and then Is_Composite_Type (Full_View (Typ))
1132 then
1133 Resolve (N, Full_View (Typ));
1134
996ae0b0
RK
1135 else
1136 Error_Msg_N ("illegal context for aggregate", N);
996ae0b0
RK
1137 end if;
1138
b87971f3
AC
1139 -- If we can determine statically that the evaluation of the aggregate
1140 -- raises Constraint_Error, then replace the aggregate with an
1141 -- N_Raise_Constraint_Error node, but set the Etype to the right
1142 -- aggregate subtype. Gigi needs this.
996ae0b0
RK
1143
1144 if Raises_Constraint_Error (N) then
1145 Aggr_Subtyp := Etype (N);
07fc65c4 1146 Rewrite (N,
bd65a2d7 1147 Make_Raise_Constraint_Error (Loc, Reason => CE_Range_Check_Failed));
996ae0b0
RK
1148 Set_Raises_Constraint_Error (N);
1149 Set_Etype (N, Aggr_Subtyp);
1150 Set_Analyzed (N);
1151 end if;
d3820795 1152
22e89283 1153 Check_Function_Writable_Actuals (N);
996ae0b0
RK
1154 end Resolve_Aggregate;
1155
1156 -----------------------------
1157 -- Resolve_Array_Aggregate --
1158 -----------------------------
1159
1160 function Resolve_Array_Aggregate
1161 (N : Node_Id;
1162 Index : Node_Id;
1163 Index_Constr : Node_Id;
1164 Component_Typ : Entity_Id;
ca44152f 1165 Others_Allowed : Boolean) return Boolean
996ae0b0
RK
1166 is
1167 Loc : constant Source_Ptr := Sloc (N);
1168
1169 Failure : constant Boolean := False;
1170 Success : constant Boolean := True;
1171
1172 Index_Typ : constant Entity_Id := Etype (Index);
1173 Index_Typ_Low : constant Node_Id := Type_Low_Bound (Index_Typ);
1174 Index_Typ_High : constant Node_Id := Type_High_Bound (Index_Typ);
b87971f3
AC
1175 -- The type of the index corresponding to the array sub-aggregate along
1176 -- with its low and upper bounds.
996ae0b0
RK
1177
1178 Index_Base : constant Entity_Id := Base_Type (Index_Typ);
1179 Index_Base_Low : constant Node_Id := Type_Low_Bound (Index_Base);
1180 Index_Base_High : constant Node_Id := Type_High_Bound (Index_Base);
b87971f3 1181 -- Ditto for the base type
996ae0b0 1182
ef74daea
AC
1183 Others_Present : Boolean := False;
1184
1185 Nb_Choices : Nat := 0;
1186 -- Contains the overall number of named choices in this sub-aggregate
1187
996ae0b0
RK
1188 function Add (Val : Uint; To : Node_Id) return Node_Id;
1189 -- Creates a new expression node where Val is added to expression To.
1190 -- Tries to constant fold whenever possible. To must be an already
1191 -- analyzed expression.
1192
1193 procedure Check_Bound (BH : Node_Id; AH : in out Node_Id);
f915704f
AC
1194 -- Checks that AH (the upper bound of an array aggregate) is less than
1195 -- or equal to BH (the upper bound of the index base type). If the check
1196 -- fails, a warning is emitted, the Raises_Constraint_Error flag of N is
1197 -- set, and AH is replaced with a duplicate of BH.
996ae0b0
RK
1198
1199 procedure Check_Bounds (L, H : Node_Id; AL, AH : Node_Id);
1200 -- Checks that range AL .. AH is compatible with range L .. H. Emits a
b87971f3 1201 -- warning if not and sets the Raises_Constraint_Error flag in N.
996ae0b0
RK
1202
1203 procedure Check_Length (L, H : Node_Id; Len : Uint);
1204 -- Checks that range L .. H contains at least Len elements. Emits a
b87971f3 1205 -- warning if not and sets the Raises_Constraint_Error flag in N.
996ae0b0
RK
1206
1207 function Dynamic_Or_Null_Range (L, H : Node_Id) return Boolean;
ec53a6da 1208 -- Returns True if range L .. H is dynamic or null
996ae0b0 1209
ef74daea
AC
1210 function Choice_List (N : Node_Id) return List_Id;
1211 -- Utility to retrieve the choices of a Component_Association or the
1212 -- Discrete_Choices of an Iterated_Component_Association.
1213
996ae0b0
RK
1214 procedure Get (Value : out Uint; From : Node_Id; OK : out Boolean);
1215 -- Given expression node From, this routine sets OK to False if it
1216 -- cannot statically evaluate From. Otherwise it stores this static
1217 -- value into Value.
1218
1219 function Resolve_Aggr_Expr
1220 (Expr : Node_Id;
ca44152f 1221 Single_Elmt : Boolean) return Boolean;
12a13f01 1222 -- Resolves aggregate expression Expr. Returns False if resolution
996ae0b0 1223 -- fails. If Single_Elmt is set to False, the expression Expr may be
b87971f3 1224 -- used to initialize several array aggregate elements (this can happen
f915704f 1225 -- for discrete choices such as "L .. H => Expr" or the OTHERS choice).
b87971f3
AC
1226 -- In this event we do not resolve Expr unless expansion is disabled.
1227 -- To know why, see the DELAYED COMPONENT RESOLUTION note above.
ca5af305
AC
1228 --
1229 -- NOTE: In the case of "... => <>", we pass the in the
1230 -- N_Component_Association node as Expr, since there is no Expression in
1231 -- that case, and we need a Sloc for the error message.
996ae0b0 1232
ef74daea
AC
1233 procedure Resolve_Iterated_Component_Association
1234 (N : Node_Id;
1235 Index_Typ : Entity_Id);
1236 -- For AI12-061
1237
996ae0b0
RK
1238 ---------
1239 -- Add --
1240 ---------
1241
1242 function Add (Val : Uint; To : Node_Id) return Node_Id is
1243 Expr_Pos : Node_Id;
1244 Expr : Node_Id;
1245 To_Pos : Node_Id;
1246
1247 begin
1248 if Raises_Constraint_Error (To) then
1249 return To;
1250 end if;
1251
1252 -- First test if we can do constant folding
1253
1254 if Compile_Time_Known_Value (To)
1255 or else Nkind (To) = N_Integer_Literal
1256 then
1257 Expr_Pos := Make_Integer_Literal (Loc, Expr_Value (To) + Val);
1258 Set_Is_Static_Expression (Expr_Pos);
1259 Set_Etype (Expr_Pos, Etype (To));
1260 Set_Analyzed (Expr_Pos, Analyzed (To));
1261
1262 if not Is_Enumeration_Type (Index_Typ) then
1263 Expr := Expr_Pos;
1264
1265 -- If we are dealing with enumeration return
1266 -- Index_Typ'Val (Expr_Pos)
1267
1268 else
1269 Expr :=
1270 Make_Attribute_Reference
1271 (Loc,
e4494292 1272 Prefix => New_Occurrence_Of (Index_Typ, Loc),
996ae0b0
RK
1273 Attribute_Name => Name_Val,
1274 Expressions => New_List (Expr_Pos));
1275 end if;
1276
1277 return Expr;
1278 end if;
1279
1280 -- If we are here no constant folding possible
1281
1282 if not Is_Enumeration_Type (Index_Base) then
1283 Expr :=
1284 Make_Op_Add (Loc,
f915704f
AC
1285 Left_Opnd => Duplicate_Subexpr (To),
1286 Right_Opnd => Make_Integer_Literal (Loc, Val));
996ae0b0
RK
1287
1288 -- If we are dealing with enumeration return
1289 -- Index_Typ'Val (Index_Typ'Pos (To) + Val)
1290
1291 else
1292 To_Pos :=
1293 Make_Attribute_Reference
1294 (Loc,
e4494292 1295 Prefix => New_Occurrence_Of (Index_Typ, Loc),
996ae0b0
RK
1296 Attribute_Name => Name_Pos,
1297 Expressions => New_List (Duplicate_Subexpr (To)));
1298
1299 Expr_Pos :=
1300 Make_Op_Add (Loc,
58009744
AC
1301 Left_Opnd => To_Pos,
1302 Right_Opnd => Make_Integer_Literal (Loc, Val));
996ae0b0
RK
1303
1304 Expr :=
1305 Make_Attribute_Reference
1306 (Loc,
e4494292 1307 Prefix => New_Occurrence_Of (Index_Typ, Loc),
996ae0b0
RK
1308 Attribute_Name => Name_Val,
1309 Expressions => New_List (Expr_Pos));
f915704f
AC
1310
1311 -- If the index type has a non standard representation, the
1312 -- attributes 'Val and 'Pos expand into function calls and the
1313 -- resulting expression is considered non-safe for reevaluation
1314 -- by the backend. Relocate it into a constant temporary in order
1315 -- to make it safe for reevaluation.
1316
1317 if Has_Non_Standard_Rep (Etype (N)) then
1318 declare
1319 Def_Id : Entity_Id;
1320
1321 begin
1322 Def_Id := Make_Temporary (Loc, 'R', Expr);
1323 Set_Etype (Def_Id, Index_Typ);
1324 Insert_Action (N,
1325 Make_Object_Declaration (Loc,
1326 Defining_Identifier => Def_Id,
e4494292
RD
1327 Object_Definition =>
1328 New_Occurrence_Of (Index_Typ, Loc),
f915704f
AC
1329 Constant_Present => True,
1330 Expression => Relocate_Node (Expr)));
1331
e4494292 1332 Expr := New_Occurrence_Of (Def_Id, Loc);
f915704f
AC
1333 end;
1334 end if;
996ae0b0
RK
1335 end if;
1336
1337 return Expr;
1338 end Add;
1339
1340 -----------------
1341 -- Check_Bound --
1342 -----------------
1343
1344 procedure Check_Bound (BH : Node_Id; AH : in out Node_Id) is
1345 Val_BH : Uint;
1346 Val_AH : Uint;
1347
1348 OK_BH : Boolean;
1349 OK_AH : Boolean;
1350
1351 begin
1352 Get (Value => Val_BH, From => BH, OK => OK_BH);
1353 Get (Value => Val_AH, From => AH, OK => OK_AH);
1354
1355 if OK_BH and then OK_AH and then Val_BH < Val_AH then
1356 Set_Raises_Constraint_Error (N);
43417b90 1357 Error_Msg_Warn := SPARK_Mode /= On;
4a28b181
AC
1358 Error_Msg_N ("upper bound out of range<<", AH);
1359 Error_Msg_N ("\Constraint_Error [<<", AH);
996ae0b0
RK
1360
1361 -- You need to set AH to BH or else in the case of enumerations
3b42c566 1362 -- indexes we will not be able to resolve the aggregate bounds.
996ae0b0
RK
1363
1364 AH := Duplicate_Subexpr (BH);
1365 end if;
1366 end Check_Bound;
1367
1368 ------------------
1369 -- Check_Bounds --
1370 ------------------
1371
1372 procedure Check_Bounds (L, H : Node_Id; AL, AH : Node_Id) is
1373 Val_L : Uint;
1374 Val_H : Uint;
1375 Val_AL : Uint;
1376 Val_AH : Uint;
1377
f91e8020
GD
1378 OK_L : Boolean;
1379 OK_H : Boolean;
1380
996ae0b0 1381 OK_AL : Boolean;
f91e8020
GD
1382 OK_AH : Boolean;
1383 pragma Warnings (Off, OK_AL);
1384 pragma Warnings (Off, OK_AH);
996ae0b0
RK
1385
1386 begin
1387 if Raises_Constraint_Error (N)
1388 or else Dynamic_Or_Null_Range (AL, AH)
1389 then
1390 return;
1391 end if;
1392
1393 Get (Value => Val_L, From => L, OK => OK_L);
1394 Get (Value => Val_H, From => H, OK => OK_H);
1395
1396 Get (Value => Val_AL, From => AL, OK => OK_AL);
1397 Get (Value => Val_AH, From => AH, OK => OK_AH);
1398
1399 if OK_L and then Val_L > Val_AL then
1400 Set_Raises_Constraint_Error (N);
43417b90 1401 Error_Msg_Warn := SPARK_Mode /= On;
4a28b181
AC
1402 Error_Msg_N ("lower bound of aggregate out of range<<", N);
1403 Error_Msg_N ("\Constraint_Error [<<", N);
996ae0b0
RK
1404 end if;
1405
1406 if OK_H and then Val_H < Val_AH then
1407 Set_Raises_Constraint_Error (N);
43417b90 1408 Error_Msg_Warn := SPARK_Mode /= On;
4a28b181
AC
1409 Error_Msg_N ("upper bound of aggregate out of range<<", N);
1410 Error_Msg_N ("\Constraint_Error [<<", N);
996ae0b0
RK
1411 end if;
1412 end Check_Bounds;
1413
1414 ------------------
1415 -- Check_Length --
1416 ------------------
1417
1418 procedure Check_Length (L, H : Node_Id; Len : Uint) is
1419 Val_L : Uint;
1420 Val_H : Uint;
1421
1422 OK_L : Boolean;
1423 OK_H : Boolean;
1424
1425 Range_Len : Uint;
1426
1427 begin
1428 if Raises_Constraint_Error (N) then
1429 return;
1430 end if;
1431
1432 Get (Value => Val_L, From => L, OK => OK_L);
1433 Get (Value => Val_H, From => H, OK => OK_H);
1434
1435 if not OK_L or else not OK_H then
1436 return;
1437 end if;
1438
1439 -- If null range length is zero
1440
1441 if Val_L > Val_H then
1442 Range_Len := Uint_0;
1443 else
1444 Range_Len := Val_H - Val_L + 1;
1445 end if;
1446
1447 if Range_Len < Len then
1448 Set_Raises_Constraint_Error (N);
43417b90 1449 Error_Msg_Warn := SPARK_Mode /= On;
4a28b181
AC
1450 Error_Msg_N ("too many elements<<", N);
1451 Error_Msg_N ("\Constraint_Error [<<", N);
996ae0b0
RK
1452 end if;
1453 end Check_Length;
1454
1455 ---------------------------
1456 -- Dynamic_Or_Null_Range --
1457 ---------------------------
1458
1459 function Dynamic_Or_Null_Range (L, H : Node_Id) return Boolean is
1460 Val_L : Uint;
1461 Val_H : Uint;
1462
1463 OK_L : Boolean;
1464 OK_H : Boolean;
1465
1466 begin
1467 Get (Value => Val_L, From => L, OK => OK_L);
1468 Get (Value => Val_H, From => H, OK => OK_H);
1469
1470 return not OK_L or else not OK_H
1471 or else not Is_OK_Static_Expression (L)
1472 or else not Is_OK_Static_Expression (H)
1473 or else Val_L > Val_H;
1474 end Dynamic_Or_Null_Range;
1475
ef74daea
AC
1476 -----------------
1477 -- Choice_List --
1478 -----------------
1479
1480 function Choice_List (N : Node_Id) return List_Id is
1481 begin
1482 if Nkind (N) = N_Iterated_Component_Association then
1483 return Discrete_Choices (N);
1484 else
1485 return Choices (N);
1486 end if;
1487 end Choice_List;
1488
996ae0b0
RK
1489 ---------
1490 -- Get --
1491 ---------
1492
1493 procedure Get (Value : out Uint; From : Node_Id; OK : out Boolean) is
1494 begin
1495 OK := True;
1496
1497 if Compile_Time_Known_Value (From) then
1498 Value := Expr_Value (From);
1499
1500 -- If expression From is something like Some_Type'Val (10) then
1f0b1e48 1501 -- Value = 10.
996ae0b0
RK
1502
1503 elsif Nkind (From) = N_Attribute_Reference
1504 and then Attribute_Name (From) = Name_Val
1505 and then Compile_Time_Known_Value (First (Expressions (From)))
1506 then
1507 Value := Expr_Value (First (Expressions (From)));
996ae0b0
RK
1508 else
1509 Value := Uint_0;
1510 OK := False;
1511 end if;
1512 end Get;
1513
1514 -----------------------
1515 -- Resolve_Aggr_Expr --
1516 -----------------------
1517
1518 function Resolve_Aggr_Expr
1519 (Expr : Node_Id;
ca44152f 1520 Single_Elmt : Boolean) return Boolean
996ae0b0 1521 is
fbf5a39b
AC
1522 Nxt_Ind : constant Node_Id := Next_Index (Index);
1523 Nxt_Ind_Constr : constant Node_Id := Next_Index (Index_Constr);
12a13f01 1524 -- Index is the current index corresponding to the expression
996ae0b0
RK
1525
1526 Resolution_OK : Boolean := True;
ec53a6da 1527 -- Set to False if resolution of the expression failed
996ae0b0
RK
1528
1529 begin
199c6a10
AC
1530 -- Defend against previous errors
1531
1532 if Nkind (Expr) = N_Error
1533 or else Error_Posted (Expr)
1534 then
1535 return True;
1536 end if;
1537
996ae0b0
RK
1538 -- If the array type against which we are resolving the aggregate
1539 -- has several dimensions, the expressions nested inside the
1540 -- aggregate must be further aggregates (or strings).
1541
1542 if Present (Nxt_Ind) then
1543 if Nkind (Expr) /= N_Aggregate then
1544
1545 -- A string literal can appear where a one-dimensional array
1546 -- of characters is expected. If the literal looks like an
1547 -- operator, it is still an operator symbol, which will be
1548 -- transformed into a string when analyzed.
1549
1550 if Is_Character_Type (Component_Typ)
1551 and then No (Next_Index (Nxt_Ind))
f53f9dd7 1552 and then Nkind_In (Expr, N_String_Literal, N_Operator_Symbol)
996ae0b0
RK
1553 then
1554 -- A string literal used in a multidimensional array
1555 -- aggregate in place of the final one-dimensional
1556 -- aggregate must not be enclosed in parentheses.
1557
1558 if Paren_Count (Expr) /= 0 then
ed2233dc 1559 Error_Msg_N ("no parenthesis allowed here", Expr);
996ae0b0
RK
1560 end if;
1561
1562 Make_String_Into_Aggregate (Expr);
1563
1564 else
1565 Error_Msg_N ("nested array aggregate expected", Expr);
9d0c3761
AC
1566
1567 -- If the expression is parenthesized, this may be
1568 -- a missing component association for a 1-aggregate.
1569
1570 if Paren_Count (Expr) > 0 then
ed2233dc 1571 Error_Msg_N
58009744
AC
1572 ("\if single-component aggregate is intended, "
1573 & "write e.g. (1 ='> ...)", Expr);
9d0c3761 1574 end if;
f5afb270 1575
996ae0b0
RK
1576 return Failure;
1577 end if;
1578 end if;
1579
ca5af305
AC
1580 -- If it's "... => <>", nothing to resolve
1581
1582 if Nkind (Expr) = N_Component_Association then
1583 pragma Assert (Box_Present (Expr));
1584 return Success;
1585 end if;
1586
0ab80019 1587 -- Ada 2005 (AI-231): Propagate the type to the nested aggregate.
35b7fa6a
AC
1588 -- Required to check the null-exclusion attribute (if present).
1589 -- This value may be overridden later on.
1590
1591 Set_Etype (Expr, Etype (N));
1592
996ae0b0
RK
1593 Resolution_OK := Resolve_Array_Aggregate
1594 (Expr, Nxt_Ind, Nxt_Ind_Constr, Component_Typ, Others_Allowed);
1595
ca5af305 1596 else
ca5af305
AC
1597 -- If it's "... => <>", nothing to resolve
1598
1599 if Nkind (Expr) = N_Component_Association then
1600 pragma Assert (Box_Present (Expr));
1601 return Success;
1602 end if;
1603
1604 -- Do not resolve the expressions of discrete or others choices
1605 -- unless the expression covers a single component, or the
1606 -- expander is inactive.
1607
06b599fd
YM
1608 -- In SPARK mode, expressions that can perform side-effects will
1609 -- be recognized by the gnat2why back-end, and the whole
1610 -- subprogram will be ignored. So semantic analysis can be
1611 -- performed safely.
9f8d1e5c 1612
ca5af305 1613 if Single_Elmt
4460a9bc 1614 or else not Expander_Active
ca5af305
AC
1615 or else In_Spec_Expression
1616 then
1617 Analyze_And_Resolve (Expr, Component_Typ);
1618 Check_Expr_OK_In_Limited_Aggregate (Expr);
1619 Check_Non_Static_Context (Expr);
1620 Aggregate_Constraint_Checks (Expr, Component_Typ);
1621 Check_Unset_Reference (Expr);
1622 end if;
996ae0b0
RK
1623 end if;
1624
dec6faf1
AC
1625 -- If an aggregate component has a type with predicates, an explicit
1626 -- predicate check must be applied, as for an assignment statement,
1627 -- because the aggegate might not be expanded into individual
07eb872e
AC
1628 -- component assignments. If the expression covers several components
1629 -- the analysis and the predicate check take place later.
dec6faf1 1630
07eb872e
AC
1631 if Present (Predicate_Function (Component_Typ))
1632 and then Analyzed (Expr)
1633 then
887d102a
AC
1634 Apply_Predicate_Check (Expr, Component_Typ);
1635 end if;
1636
996ae0b0
RK
1637 if Raises_Constraint_Error (Expr)
1638 and then Nkind (Parent (Expr)) /= N_Component_Association
1639 then
1640 Set_Raises_Constraint_Error (N);
1641 end if;
1642
d79e621a 1643 -- If the expression has been marked as requiring a range check,
edab6088
RD
1644 -- then generate it here. It's a bit odd to be generating such
1645 -- checks in the analyzer, but harmless since Generate_Range_Check
1646 -- does nothing (other than making sure Do_Range_Check is set) if
1647 -- the expander is not active.
d79e621a
GD
1648
1649 if Do_Range_Check (Expr) then
d79e621a
GD
1650 Generate_Range_Check (Expr, Component_Typ, CE_Range_Check_Failed);
1651 end if;
1652
996ae0b0
RK
1653 return Resolution_OK;
1654 end Resolve_Aggr_Expr;
1655
ef74daea
AC
1656 --------------------------------------------
1657 -- Resolve_Iterated_Component_Association --
1658 --------------------------------------------
1659
1660 procedure Resolve_Iterated_Component_Association
1661 (N : Node_Id;
1662 Index_Typ : Entity_Id)
1663 is
1664 Id : constant Entity_Id := Defining_Identifier (N);
1665 Loc : constant Source_Ptr := Sloc (N);
1666
1667 Choice : Node_Id;
1668 Dummy : Boolean;
1669 Ent : Entity_Id;
1670
1671 begin
1672 Choice := First (Discrete_Choices (N));
1673
1674 while Present (Choice) loop
1675 if Nkind (Choice) = N_Others_Choice then
1676 Error_Msg_N ("others choice not allowed in this context", N);
1677 Others_Present := True;
1678
1679 else
1680 Analyze_And_Resolve (Choice, Index_Typ);
1681 end if;
1682
1683 Nb_Choices := Nb_Choices + 1;
1684 Next (Choice);
1685 end loop;
1686
1687 -- Create a scope in which to introduce an index, which is usually
1688 -- visible in the expression for the component.
1689
1690 Ent := New_Internal_Entity (E_Loop, Current_Scope, Loc, 'L');
1691 Set_Etype (Ent, Standard_Void_Type);
1692 Set_Parent (Ent, Parent (N));
1693
1694 Enter_Name (Id);
1695 Set_Etype (Id, Index_Typ);
1696 Set_Ekind (Id, E_Variable);
1697 Set_Scope (Id, Ent);
1698
1699 Push_Scope (Ent);
1700 Dummy := Resolve_Aggr_Expr (Expression (N), False);
1701 End_Scope;
1702 end Resolve_Iterated_Component_Association;
1703
1704 -- Local variables
996ae0b0 1705
58009744
AC
1706 Assoc : Node_Id;
1707 Choice : Node_Id;
1708 Expr : Node_Id;
f91e8020 1709 Discard : Node_Id;
996ae0b0 1710
ef74daea 1711 Iterated_Component_Present : Boolean := False;
2791be24 1712
996ae0b0
RK
1713 Aggr_Low : Node_Id := Empty;
1714 Aggr_High : Node_Id := Empty;
c7ce71c2 1715 -- The actual low and high bounds of this sub-aggregate
996ae0b0 1716
ef74daea
AC
1717 Case_Table_Size : Nat;
1718 -- Contains the size of the case table needed to sort aggregate choices
1719
996ae0b0
RK
1720 Choices_Low : Node_Id := Empty;
1721 Choices_High : Node_Id := Empty;
1722 -- The lowest and highest discrete choices values for a named aggregate
1723
ef74daea
AC
1724 Delete_Choice : Boolean;
1725 -- Used when replacing a subtype choice with predicate by a list
1726
996ae0b0 1727 Nb_Elements : Uint := Uint_0;
c7ce71c2 1728 -- The number of elements in a positional aggregate
996ae0b0 1729
996ae0b0
RK
1730 Nb_Discrete_Choices : Nat := 0;
1731 -- The overall number of discrete choices (not counting others choice)
1732
996ae0b0
RK
1733 -- Start of processing for Resolve_Array_Aggregate
1734
1735 begin
6d2a1120
RD
1736 -- Ignore junk empty aggregate resulting from parser error
1737
1738 if No (Expressions (N))
1739 and then No (Component_Associations (N))
1740 and then not Null_Record_Present (N)
1741 then
1742 return False;
1743 end if;
1744
996ae0b0
RK
1745 -- STEP 1: make sure the aggregate is correctly formatted
1746
1747 if Present (Component_Associations (N)) then
1748 Assoc := First (Component_Associations (N));
1749 while Present (Assoc) loop
ef74daea
AC
1750 if Nkind (Assoc) = N_Iterated_Component_Association then
1751 Resolve_Iterated_Component_Association (Assoc, Index_Typ);
1752 Iterated_Component_Present := True;
1753 goto Next_Assoc;
1754 end if;
1755
996ae0b0 1756 Choice := First (Choices (Assoc));
2791be24 1757 Delete_Choice := False;
996ae0b0
RK
1758 while Present (Choice) loop
1759 if Nkind (Choice) = N_Others_Choice then
1760 Others_Present := True;
1761
1762 if Choice /= First (Choices (Assoc))
1763 or else Present (Next (Choice))
1764 then
ed2233dc 1765 Error_Msg_N
996ae0b0
RK
1766 ("OTHERS must appear alone in a choice list", Choice);
1767 return Failure;
1768 end if;
1769
1770 if Present (Next (Assoc)) then
ed2233dc 1771 Error_Msg_N
996ae0b0
RK
1772 ("OTHERS must appear last in an aggregate", Choice);
1773 return Failure;
1774 end if;
1775
0ab80019 1776 if Ada_Version = Ada_83
996ae0b0 1777 and then Assoc /= First (Component_Associations (N))
f53f9dd7
RD
1778 and then Nkind_In (Parent (N), N_Assignment_Statement,
1779 N_Object_Declaration)
996ae0b0
RK
1780 then
1781 Error_Msg_N
1782 ("(Ada 83) illegal context for OTHERS choice", N);
1783 end if;
2791be24
AC
1784
1785 elsif Is_Entity_Name (Choice) then
1786 Analyze (Choice);
1787
1788 declare
1789 E : constant Entity_Id := Entity (Choice);
1790 New_Cs : List_Id;
1791 P : Node_Id;
1792 C : Node_Id;
1793
1794 begin
1795 if Is_Type (E) and then Has_Predicates (E) then
1796 Freeze_Before (N, E);
1797
24de083f 1798 if Has_Dynamic_Predicate_Aspect (E) then
b330e3c8
AC
1799 Error_Msg_NE
1800 ("subtype& has dynamic predicate, not allowed "
1801 & "in aggregate choice", Choice, E);
24de083f 1802
4b259b2d 1803 elsif not Is_OK_Static_Subtype (E) then
b330e3c8
AC
1804 Error_Msg_NE
1805 ("non-static subtype& has predicate, not allowed "
1806 & "in aggregate choice", Choice, E);
24de083f
AC
1807 end if;
1808
2791be24
AC
1809 -- If the subtype has a static predicate, replace the
1810 -- original choice with the list of individual values
1811 -- covered by the predicate.
1812
60f908dd 1813 if Present (Static_Discrete_Predicate (E)) then
2791be24
AC
1814 Delete_Choice := True;
1815
1816 New_Cs := New_List;
60f908dd 1817 P := First (Static_Discrete_Predicate (E));
2791be24
AC
1818 while Present (P) loop
1819 C := New_Copy (P);
1820 Set_Sloc (C, Sloc (Choice));
1821 Append_To (New_Cs, C);
1822 Next (P);
1823 end loop;
1824
1825 Insert_List_After (Choice, New_Cs);
1826 end if;
1827 end if;
1828 end;
996ae0b0
RK
1829 end if;
1830
1831 Nb_Choices := Nb_Choices + 1;
2791be24
AC
1832
1833 declare
1834 C : constant Node_Id := Choice;
1835
1836 begin
1837 Next (Choice);
1838
1839 if Delete_Choice then
1840 Remove (C);
1841 Nb_Choices := Nb_Choices - 1;
1842 Delete_Choice := False;
1843 end if;
1844 end;
996ae0b0
RK
1845 end loop;
1846
ef74daea 1847 <<Next_Assoc>>
996ae0b0
RK
1848 Next (Assoc);
1849 end loop;
1850 end if;
1851
1852 -- At this point we know that the others choice, if present, is by
1853 -- itself and appears last in the aggregate. Check if we have mixed
1854 -- positional and discrete associations (other than the others choice).
1855
1856 if Present (Expressions (N))
1857 and then (Nb_Choices > 1
1858 or else (Nb_Choices = 1 and then not Others_Present))
1859 then
1860 Error_Msg_N
1861 ("named association cannot follow positional association",
ef74daea 1862 First (Choice_List (First (Component_Associations (N)))));
996ae0b0
RK
1863 return Failure;
1864 end if;
1865
1866 -- Test for the validity of an others choice if present
1867
1868 if Others_Present and then not Others_Allowed then
1869 Error_Msg_N
1870 ("OTHERS choice not allowed here",
1871 First (Choices (First (Component_Associations (N)))));
1872 return Failure;
1873 end if;
1874
07fc65c4
GB
1875 -- Protect against cascaded errors
1876
1877 if Etype (Index_Typ) = Any_Type then
1878 return Failure;
1879 end if;
1880
996ae0b0
RK
1881 -- STEP 2: Process named components
1882
1883 if No (Expressions (N)) then
996ae0b0
RK
1884 if Others_Present then
1885 Case_Table_Size := Nb_Choices - 1;
1886 else
1887 Case_Table_Size := Nb_Choices;
1888 end if;
1889
1890 Step_2 : declare
10edebe7
AC
1891 function Empty_Range (A : Node_Id) return Boolean;
1892 -- If an association covers an empty range, some warnings on the
1893 -- expression of the association can be disabled.
1894
1895 -----------------
1896 -- Empty_Range --
1897 -----------------
1898
1899 function Empty_Range (A : Node_Id) return Boolean is
1900 R : constant Node_Id := First (Choices (A));
1901 begin
1902 return No (Next (R))
1903 and then Nkind (R) = N_Range
1904 and then Compile_Time_Compare
1905 (Low_Bound (R), High_Bound (R), False) = GT;
1906 end Empty_Range;
1907
1908 -- Local variables
1909
996ae0b0
RK
1910 Low : Node_Id;
1911 High : Node_Id;
1912 -- Denote the lowest and highest values in an aggregate choice
1913
996ae0b0
RK
1914 S_Low : Node_Id := Empty;
1915 S_High : Node_Id := Empty;
1916 -- if a choice in an aggregate is a subtype indication these
1917 -- denote the lowest and highest values of the subtype
1918
82893775
AC
1919 Table : Case_Table_Type (0 .. Case_Table_Size);
1920 -- Used to sort all the different choice values. Entry zero is
1921 -- reserved for sorting purposes.
996ae0b0
RK
1922
1923 Single_Choice : Boolean;
1924 -- Set to true every time there is a single discrete choice in a
1925 -- discrete association
1926
1927 Prev_Nb_Discrete_Choices : Nat;
b87971f3
AC
1928 -- Used to keep track of the number of discrete choices in the
1929 -- current association.
996ae0b0 1930
c0b11850
AC
1931 Errors_Posted_On_Choices : Boolean := False;
1932 -- Keeps track of whether any choices have semantic errors
1933
5a521b8a
AC
1934 -- Start of processing for Step_2
1935
996ae0b0 1936 begin
ec53a6da 1937 -- STEP 2 (A): Check discrete choices validity
996ae0b0
RK
1938
1939 Assoc := First (Component_Associations (N));
1940 while Present (Assoc) loop
996ae0b0 1941 Prev_Nb_Discrete_Choices := Nb_Discrete_Choices;
ef74daea
AC
1942 Choice := First (Choice_List (Assoc));
1943
996ae0b0
RK
1944 loop
1945 Analyze (Choice);
1946
1947 if Nkind (Choice) = N_Others_Choice then
1948 Single_Choice := False;
1949 exit;
1950
1951 -- Test for subtype mark without constraint
1952
1953 elsif Is_Entity_Name (Choice) and then
1954 Is_Type (Entity (Choice))
1955 then
1956 if Base_Type (Entity (Choice)) /= Index_Base then
1957 Error_Msg_N
1958 ("invalid subtype mark in aggregate choice",
1959 Choice);
1960 return Failure;
1961 end if;
1962
ca44152f
ES
1963 -- Case of subtype indication
1964
996ae0b0
RK
1965 elsif Nkind (Choice) = N_Subtype_Indication then
1966 Resolve_Discrete_Subtype_Indication (Choice, Index_Base);
1967
24de083f
AC
1968 if Has_Dynamic_Predicate_Aspect
1969 (Entity (Subtype_Mark (Choice)))
1970 then
58009744
AC
1971 Error_Msg_NE
1972 ("subtype& has dynamic predicate, "
1973 & "not allowed in aggregate choice",
1974 Choice, Entity (Subtype_Mark (Choice)));
24de083f
AC
1975 end if;
1976
324ac540 1977 -- Does the subtype indication evaluation raise CE?
996ae0b0
RK
1978
1979 Get_Index_Bounds (Subtype_Mark (Choice), S_Low, S_High);
1980 Get_Index_Bounds (Choice, Low, High);
1981 Check_Bounds (S_Low, S_High, Low, High);
1982
ca44152f
ES
1983 -- Case of range or expression
1984
1985 else
996ae0b0 1986 Resolve (Choice, Index_Base);
fbf5a39b 1987 Check_Unset_Reference (Choice);
996ae0b0
RK
1988 Check_Non_Static_Context (Choice);
1989
c0b11850
AC
1990 -- If semantic errors were posted on the choice, then
1991 -- record that for possible early return from later
1992 -- processing (see handling of enumeration choices).
1993
1994 if Error_Posted (Choice) then
1995 Errors_Posted_On_Choices := True;
1996 end if;
1997
996ae0b0 1998 -- Do not range check a choice. This check is redundant
b87971f3
AC
1999 -- since this test is already done when we check that the
2000 -- bounds of the array aggregate are within range.
996ae0b0
RK
2001
2002 Set_Do_Range_Check (Choice, False);
9f90d123 2003
2ba431e5 2004 -- In SPARK, the choice must be static
9f90d123 2005
edab6088 2006 if not (Is_OK_Static_Expression (Choice)
db72f10a 2007 or else (Nkind (Choice) = N_Range
edab6088 2008 and then Is_OK_Static_Range (Choice)))
db72f10a 2009 then
ce5ba43a 2010 Check_SPARK_05_Restriction
fe5d3068 2011 ("choice should be static", Choice);
9f90d123 2012 end if;
996ae0b0
RK
2013 end if;
2014
2015 -- If we could not resolve the discrete choice stop here
2016
2017 if Etype (Choice) = Any_Type then
2018 return Failure;
2019
ec53a6da 2020 -- If the discrete choice raises CE get its original bounds
996ae0b0
RK
2021
2022 elsif Nkind (Choice) = N_Raise_Constraint_Error then
2023 Set_Raises_Constraint_Error (N);
2024 Get_Index_Bounds (Original_Node (Choice), Low, High);
2025
2026 -- Otherwise get its bounds as usual
2027
2028 else
2029 Get_Index_Bounds (Choice, Low, High);
2030 end if;
2031
2032 if (Dynamic_Or_Null_Range (Low, High)
2033 or else (Nkind (Choice) = N_Subtype_Indication
2034 and then
2035 Dynamic_Or_Null_Range (S_Low, S_High)))
2036 and then Nb_Choices /= 1
2037 then
2038 Error_Msg_N
58009744
AC
2039 ("dynamic or empty choice in aggregate "
2040 & "must be the only choice", Choice);
996ae0b0
RK
2041 return Failure;
2042 end if;
2043
2f7ae2aa
BD
2044 if not (All_Composite_Constraints_Static (Low)
2045 and then All_Composite_Constraints_Static (High)
2046 and then All_Composite_Constraints_Static (S_Low)
2047 and then All_Composite_Constraints_Static (S_High))
2048 then
2049 Check_Restriction (No_Dynamic_Sized_Objects, Choice);
2050 end if;
2051
996ae0b0 2052 Nb_Discrete_Choices := Nb_Discrete_Choices + 1;
82893775
AC
2053 Table (Nb_Discrete_Choices).Lo := Low;
2054 Table (Nb_Discrete_Choices).Hi := High;
2055 Table (Nb_Discrete_Choices).Choice := Choice;
996ae0b0
RK
2056
2057 Next (Choice);
2058
2059 if No (Choice) then
9b96e234 2060
996ae0b0
RK
2061 -- Check if we have a single discrete choice and whether
2062 -- this discrete choice specifies a single value.
2063
2064 Single_Choice :=
2065 (Nb_Discrete_Choices = Prev_Nb_Discrete_Choices + 1)
2066 and then (Low = High);
2067
2068 exit;
2069 end if;
2070 end loop;
2071
0ab80019 2072 -- Ada 2005 (AI-231)
2820d220 2073
0791fbe9 2074 if Ada_Version >= Ada_2005
8133b9d1 2075 and then Known_Null (Expression (Assoc))
5a521b8a 2076 and then not Empty_Range (Assoc)
ec53a6da 2077 then
82c80734
RD
2078 Check_Can_Never_Be_Null (Etype (N), Expression (Assoc));
2079 end if;
2820d220 2080
0ab80019 2081 -- Ada 2005 (AI-287): In case of default initialized component
b87971f3 2082 -- we delay the resolution to the expansion phase.
c45b6ae0
AC
2083
2084 if Box_Present (Assoc) then
2085
b87971f3
AC
2086 -- Ada 2005 (AI-287): In case of default initialization of a
2087 -- component the expander will generate calls to the
ca5af305
AC
2088 -- corresponding initialization subprogram. We need to call
2089 -- Resolve_Aggr_Expr to check the rules about
2090 -- dimensionality.
c45b6ae0 2091
882eadaf
RD
2092 if not Resolve_Aggr_Expr
2093 (Assoc, Single_Elmt => Single_Choice)
ca5af305
AC
2094 then
2095 return Failure;
2096 end if;
c45b6ae0 2097
882eadaf
RD
2098 elsif not Resolve_Aggr_Expr
2099 (Expression (Assoc), Single_Elmt => Single_Choice)
996ae0b0
RK
2100 then
2101 return Failure;
4755cce9
JM
2102
2103 -- Check incorrect use of dynamically tagged expression
2104
2105 -- We differentiate here two cases because the expression may
2106 -- not be decorated. For example, the analysis and resolution
b87971f3
AC
2107 -- of the expression associated with the others choice will be
2108 -- done later with the full aggregate. In such case we
4755cce9
JM
2109 -- duplicate the expression tree to analyze the copy and
2110 -- perform the required check.
2111
2112 elsif not Present (Etype (Expression (Assoc))) then
2113 declare
2114 Save_Analysis : constant Boolean := Full_Analysis;
2115 Expr : constant Node_Id :=
2116 New_Copy_Tree (Expression (Assoc));
2117
2118 begin
2119 Expander_Mode_Save_And_Set (False);
2120 Full_Analysis := False;
6ff6152d
ES
2121
2122 -- Analyze the expression, making sure it is properly
2123 -- attached to the tree before we do the analysis.
2124
2125 Set_Parent (Expr, Parent (Expression (Assoc)));
4755cce9 2126 Analyze (Expr);
094cefda 2127
a6ac7311
AC
2128 -- Compute its dimensions now, rather than at the end of
2129 -- resolution, because in the case of multidimensional
888be6b1
AC
2130 -- aggregates subsequent expansion may lead to spurious
2131 -- errors.
2132
2133 Check_Expression_Dimensions (Expr, Component_Typ);
2134
094cefda
AC
2135 -- If the expression is a literal, propagate this info
2136 -- to the expression in the association, to enable some
2137 -- optimizations downstream.
2138
2139 if Is_Entity_Name (Expr)
2140 and then Present (Entity (Expr))
2141 and then Ekind (Entity (Expr)) = E_Enumeration_Literal
2142 then
2143 Analyze_And_Resolve
2144 (Expression (Assoc), Component_Typ);
2145 end if;
2146
4755cce9
JM
2147 Full_Analysis := Save_Analysis;
2148 Expander_Mode_Restore;
2149
2150 if Is_Tagged_Type (Etype (Expr)) then
2151 Check_Dynamically_Tagged_Expression
2152 (Expr => Expr,
2153 Typ => Component_Type (Etype (N)),
2154 Related_Nod => N);
2155 end if;
2156 end;
2157
2158 elsif Is_Tagged_Type (Etype (Expression (Assoc))) then
2159 Check_Dynamically_Tagged_Expression
1c612f29
RD
2160 (Expr => Expression (Assoc),
2161 Typ => Component_Type (Etype (N)),
4755cce9 2162 Related_Nod => N);
996ae0b0
RK
2163 end if;
2164
2165 Next (Assoc);
2166 end loop;
2167
2168 -- If aggregate contains more than one choice then these must be
882eadaf
RD
2169 -- static. Check for duplicate and missing values.
2170
2171 -- Note: there is duplicated code here wrt Check_Choice_Set in
2172 -- the body of Sem_Case, and it is possible we could just reuse
2173 -- that procedure. To be checked ???
996ae0b0
RK
2174
2175 if Nb_Discrete_Choices > 1 then
882eadaf
RD
2176 Check_Choices : declare
2177 Choice : Node_Id;
2178 -- Location of choice for messages
996ae0b0 2179
882eadaf
RD
2180 Hi_Val : Uint;
2181 Lo_Val : Uint;
2182 -- High end of one range and Low end of the next. Should be
2183 -- contiguous if there is no hole in the list of values.
996ae0b0 2184
82893775
AC
2185 Lo_Dup : Uint;
2186 Hi_Dup : Uint;
2187 -- End points of duplicated range
2188
882eadaf
RD
2189 Missing_Or_Duplicates : Boolean := False;
2190 -- Set True if missing or duplicate choices found
996ae0b0 2191
882eadaf
RD
2192 procedure Output_Bad_Choices (Lo, Hi : Uint; C : Node_Id);
2193 -- Output continuation message with a representation of the
2194 -- bounds (just Lo if Lo = Hi, else Lo .. Hi). C is the
2195 -- choice node where the message is to be posted.
996ae0b0 2196
882eadaf
RD
2197 ------------------------
2198 -- Output_Bad_Choices --
2199 ------------------------
996ae0b0 2200
882eadaf
RD
2201 procedure Output_Bad_Choices (Lo, Hi : Uint; C : Node_Id) is
2202 begin
2203 -- Enumeration type case
996ae0b0 2204
882eadaf
RD
2205 if Is_Enumeration_Type (Index_Typ) then
2206 Error_Msg_Name_1 :=
2207 Chars (Get_Enum_Lit_From_Pos (Index_Typ, Lo, Loc));
2208 Error_Msg_Name_2 :=
2209 Chars (Get_Enum_Lit_From_Pos (Index_Typ, Hi, Loc));
2210
2211 if Lo = Hi then
2212 Error_Msg_N ("\\ %!", C);
2213 else
2214 Error_Msg_N ("\\ % .. %!", C);
996ae0b0
RK
2215 end if;
2216
882eadaf 2217 -- Integer types case
996ae0b0 2218
882eadaf
RD
2219 else
2220 Error_Msg_Uint_1 := Lo;
2221 Error_Msg_Uint_2 := Hi;
996ae0b0 2222
882eadaf
RD
2223 if Lo = Hi then
2224 Error_Msg_N ("\\ ^!", C);
2225 else
2226 Error_Msg_N ("\\ ^ .. ^!", C);
2227 end if;
2228 end if;
2229 end Output_Bad_Choices;
996ae0b0 2230
882eadaf 2231 -- Start of processing for Check_Choices
996ae0b0 2232
882eadaf
RD
2233 begin
2234 Sort_Case_Table (Table);
996ae0b0 2235
82893775
AC
2236 -- First we do a quick linear loop to find out if we have
2237 -- any duplicates or missing entries (usually we have a
2238 -- legal aggregate, so this will get us out quickly).
996ae0b0 2239
882eadaf 2240 for J in 1 .. Nb_Discrete_Choices - 1 loop
82893775
AC
2241 Hi_Val := Expr_Value (Table (J).Hi);
2242 Lo_Val := Expr_Value (Table (J + 1).Lo);
882eadaf 2243
82893775
AC
2244 if Lo_Val <= Hi_Val
2245 or else (Lo_Val > Hi_Val + 1
2246 and then not Others_Present)
2247 then
882eadaf 2248 Missing_Or_Duplicates := True;
82893775 2249 exit;
882eadaf
RD
2250 end if;
2251 end loop;
996ae0b0 2252
82893775
AC
2253 -- If we have missing or duplicate entries, first fill in
2254 -- the Highest entries to make life easier in the following
2255 -- loops to detect bad entries.
882eadaf 2256
82893775
AC
2257 if Missing_Or_Duplicates then
2258 Table (1).Highest := Expr_Value (Table (1).Hi);
882eadaf 2259
82893775
AC
2260 for J in 2 .. Nb_Discrete_Choices loop
2261 Table (J).Highest :=
2262 UI_Max
2263 (Table (J - 1).Highest, Expr_Value (Table (J).Hi));
2264 end loop;
882eadaf 2265
82893775
AC
2266 -- Loop through table entries to find duplicate indexes
2267
2268 for J in 2 .. Nb_Discrete_Choices loop
2269 Lo_Val := Expr_Value (Table (J).Lo);
2270 Hi_Val := Expr_Value (Table (J).Hi);
2271
2272 -- Case where we have duplicates (the lower bound of
2273 -- this choice is less than or equal to the highest
2274 -- high bound found so far).
2275
2276 if Lo_Val <= Table (J - 1).Highest then
2277
2278 -- We move backwards looking for duplicates. We can
2279 -- abandon this loop as soon as we reach a choice
2280 -- highest value that is less than Lo_Val.
2281
2282 for K in reverse 1 .. J - 1 loop
2283 exit when Table (K).Highest < Lo_Val;
2284
2285 -- Here we may have duplicates between entries
2286 -- for K and J. Get range of duplicates.
2287
2288 Lo_Dup :=
2289 UI_Max (Lo_Val, Expr_Value (Table (K).Lo));
2290 Hi_Dup :=
2291 UI_Min (Hi_Val, Expr_Value (Table (K).Hi));
2292
2293 -- Nothing to do if duplicate range is null
882eadaf 2294
82893775
AC
2295 if Lo_Dup > Hi_Dup then
2296 null;
2297
2298 -- Otherwise place proper message
2299
2300 else
2301 -- We place message on later choice, with a
2302 -- line reference to the earlier choice.
2303
2304 if Sloc (Table (J).Choice) <
2305 Sloc (Table (K).Choice)
2306 then
2307 Choice := Table (K).Choice;
2308 Error_Msg_Sloc := Sloc (Table (J).Choice);
2309 else
2310 Choice := Table (J).Choice;
2311 Error_Msg_Sloc := Sloc (Table (K).Choice);
2312 end if;
2313
2314 if Lo_Dup = Hi_Dup then
2315 Error_Msg_N
2316 ("index value in array aggregate "
2317 & "duplicates the one given#!", Choice);
2318 else
2319 Error_Msg_N
2320 ("index values in array aggregate "
2321 & "duplicate those given#!", Choice);
2322 end if;
2323
2324 Output_Bad_Choices (Lo_Dup, Hi_Dup, Choice);
2325 end if;
2326 end loop;
996ae0b0 2327 end if;
882eadaf 2328 end loop;
996ae0b0 2329
82893775
AC
2330 -- Loop through entries in table to find missing indexes.
2331 -- Not needed if others, since missing impossible.
2332
2333 if not Others_Present then
2334 for J in 2 .. Nb_Discrete_Choices loop
2335 Lo_Val := Expr_Value (Table (J).Lo);
2336 Hi_Val := Table (J - 1).Highest;
2337
2338 if Lo_Val > Hi_Val + 1 then
16a569d2 2339
7b4ebba5
AC
2340 declare
2341 Error_Node : Node_Id;
16a569d2 2342
7b4ebba5
AC
2343 begin
2344 -- If the choice is the bound of a range in
2345 -- a subtype indication, it is not in the
2346 -- source lists for the aggregate itself, so
2347 -- post the error on the aggregate. Otherwise
2348 -- post it on choice itself.
16a569d2 2349
7b4ebba5 2350 Choice := Table (J).Choice;
16a569d2 2351
7b4ebba5
AC
2352 if Is_List_Member (Choice) then
2353 Error_Node := Choice;
2354 else
2355 Error_Node := N;
2356 end if;
82893775 2357
7b4ebba5
AC
2358 if Hi_Val + 1 = Lo_Val - 1 then
2359 Error_Msg_N
2360 ("missing index value "
2361 & "in array aggregate!", Error_Node);
2362 else
2363 Error_Msg_N
2364 ("missing index values "
2365 & "in array aggregate!", Error_Node);
2366 end if;
82893775 2367
7b4ebba5
AC
2368 Output_Bad_Choices
2369 (Hi_Val + 1, Lo_Val - 1, Error_Node);
2370 end;
82893775
AC
2371 end if;
2372 end loop;
2373 end if;
2374
2375 -- If either missing or duplicate values, return failure
882eadaf 2376
882eadaf
RD
2377 Set_Etype (N, Any_Composite);
2378 return Failure;
2379 end if;
2380 end Check_Choices;
996ae0b0
RK
2381 end if;
2382
2383 -- STEP 2 (B): Compute aggregate bounds and min/max choices values
2384
2385 if Nb_Discrete_Choices > 0 then
82893775
AC
2386 Choices_Low := Table (1).Lo;
2387 Choices_High := Table (Nb_Discrete_Choices).Hi;
996ae0b0
RK
2388 end if;
2389
ca44152f
ES
2390 -- If Others is present, then bounds of aggregate come from the
2391 -- index constraint (not the choices in the aggregate itself).
2392
996ae0b0
RK
2393 if Others_Present then
2394 Get_Index_Bounds (Index_Constr, Aggr_Low, Aggr_High);
2395
596b25f9
AC
2396 -- Abandon processing if either bound is already signalled as
2397 -- an error (prevents junk cascaded messages and blow ups).
2398
2399 if Nkind (Aggr_Low) = N_Error
2400 or else
2401 Nkind (Aggr_High) = N_Error
2402 then
2403 return False;
2404 end if;
2405
ca44152f
ES
2406 -- No others clause present
2407
996ae0b0 2408 else
ca44152f
ES
2409 -- Special processing if others allowed and not present. This
2410 -- means that the bounds of the aggregate come from the index
2411 -- constraint (and the length must match).
2412
2413 if Others_Allowed then
2414 Get_Index_Bounds (Index_Constr, Aggr_Low, Aggr_High);
2415
596b25f9
AC
2416 -- Abandon processing if either bound is already signalled
2417 -- as an error (stop junk cascaded messages and blow ups).
2418
2419 if Nkind (Aggr_Low) = N_Error
2420 or else
2421 Nkind (Aggr_High) = N_Error
2422 then
2423 return False;
2424 end if;
2425
ca44152f
ES
2426 -- If others allowed, and no others present, then the array
2427 -- should cover all index values. If it does not, we will
2428 -- get a length check warning, but there is two cases where
2429 -- an additional warning is useful:
2430
2431 -- If we have no positional components, and the length is
2432 -- wrong (which we can tell by others being allowed with
2433 -- missing components), and the index type is an enumeration
2434 -- type, then issue appropriate warnings about these missing
2435 -- components. They are only warnings, since the aggregate
2436 -- is fine, it's just the wrong length. We skip this check
2437 -- for standard character types (since there are no literals
2438 -- and it is too much trouble to concoct them), and also if
50ea6357
AC
2439 -- any of the bounds have values that are not known at
2440 -- compile time.
ca44152f 2441
58009744
AC
2442 -- Another case warranting a warning is when the length
2443 -- is right, but as above we have an index type that is
2444 -- an enumeration, and the bounds do not match. This is a
2445 -- case where dubious sliding is allowed and we generate a
2446 -- warning that the bounds do not match.
ca44152f
ES
2447
2448 if No (Expressions (N))
2449 and then Nkind (Index) = N_Range
2450 and then Is_Enumeration_Type (Etype (Index))
2451 and then not Is_Standard_Character_Type (Etype (Index))
2452 and then Compile_Time_Known_Value (Aggr_Low)
2453 and then Compile_Time_Known_Value (Aggr_High)
2454 and then Compile_Time_Known_Value (Choices_Low)
2455 and then Compile_Time_Known_Value (Choices_High)
2456 then
c0b11850
AC
2457 -- If any of the expressions or range bounds in choices
2458 -- have semantic errors, then do not attempt further
2459 -- resolution, to prevent cascaded errors.
d610088d 2460
c0b11850
AC
2461 if Errors_Posted_On_Choices then
2462 return Failure;
d610088d
AC
2463 end if;
2464
ca44152f
ES
2465 declare
2466 ALo : constant Node_Id := Expr_Value_E (Aggr_Low);
2467 AHi : constant Node_Id := Expr_Value_E (Aggr_High);
2468 CLo : constant Node_Id := Expr_Value_E (Choices_Low);
2469 CHi : constant Node_Id := Expr_Value_E (Choices_High);
2470
2471 Ent : Entity_Id;
2472
2473 begin
ebd34478 2474 -- Warning case 1, missing values at start/end. Only
ca44152f
ES
2475 -- do the check if the number of entries is too small.
2476
2477 if (Enumeration_Pos (CHi) - Enumeration_Pos (CLo))
2478 <
2479 (Enumeration_Pos (AHi) - Enumeration_Pos (ALo))
2480 then
2481 Error_Msg_N
324ac540
AC
2482 ("missing index value(s) in array aggregate??",
2483 N);
ca44152f
ES
2484
2485 -- Output missing value(s) at start
2486
2487 if Chars (ALo) /= Chars (CLo) then
2488 Ent := Prev (CLo);
2489
2490 if Chars (ALo) = Chars (Ent) then
2491 Error_Msg_Name_1 := Chars (ALo);
324ac540 2492 Error_Msg_N ("\ %??", N);
ca44152f
ES
2493 else
2494 Error_Msg_Name_1 := Chars (ALo);
2495 Error_Msg_Name_2 := Chars (Ent);
324ac540 2496 Error_Msg_N ("\ % .. %??", N);
ca44152f
ES
2497 end if;
2498 end if;
2499
2500 -- Output missing value(s) at end
2501
2502 if Chars (AHi) /= Chars (CHi) then
2503 Ent := Next (CHi);
2504
2505 if Chars (AHi) = Chars (Ent) then
2506 Error_Msg_Name_1 := Chars (Ent);
324ac540 2507 Error_Msg_N ("\ %??", N);
ca44152f
ES
2508 else
2509 Error_Msg_Name_1 := Chars (Ent);
2510 Error_Msg_Name_2 := Chars (AHi);
324ac540 2511 Error_Msg_N ("\ % .. %??", N);
ca44152f
ES
2512 end if;
2513 end if;
2514
2515 -- Warning case 2, dubious sliding. The First_Subtype
2516 -- test distinguishes between a constrained type where
2517 -- sliding is not allowed (so we will get a warning
2518 -- later that Constraint_Error will be raised), and
2519 -- the unconstrained case where sliding is permitted.
2520
2521 elsif (Enumeration_Pos (CHi) - Enumeration_Pos (CLo))
2522 =
2523 (Enumeration_Pos (AHi) - Enumeration_Pos (ALo))
2524 and then Chars (ALo) /= Chars (CLo)
2525 and then
2526 not Is_Constrained (First_Subtype (Etype (N)))
2527 then
2528 Error_Msg_N
324ac540 2529 ("bounds of aggregate do not match target??", N);
ca44152f
ES
2530 end if;
2531 end;
2532 end if;
2533 end if;
2534
f3d0f304 2535 -- If no others, aggregate bounds come from aggregate
ca44152f 2536
996ae0b0
RK
2537 Aggr_Low := Choices_Low;
2538 Aggr_High := Choices_High;
2539 end if;
2540 end Step_2;
2541
2542 -- STEP 3: Process positional components
2543
2544 else
2545 -- STEP 3 (A): Process positional elements
2546
2547 Expr := First (Expressions (N));
2548 Nb_Elements := Uint_0;
2549 while Present (Expr) loop
2550 Nb_Elements := Nb_Elements + 1;
2551
82c80734
RD
2552 -- Ada 2005 (AI-231)
2553
58009744 2554 if Ada_Version >= Ada_2005 and then Known_Null (Expr) then
82c80734
RD
2555 Check_Can_Never_Be_Null (Etype (N), Expr);
2556 end if;
2820d220 2557
ef74daea 2558 if not Resolve_Aggr_Expr (Expr, Single_Elmt => True) then
996ae0b0
RK
2559 return Failure;
2560 end if;
2561
4755cce9
JM
2562 -- Check incorrect use of dynamically tagged expression
2563
2564 if Is_Tagged_Type (Etype (Expr)) then
2565 Check_Dynamically_Tagged_Expression
2566 (Expr => Expr,
2567 Typ => Component_Type (Etype (N)),
2568 Related_Nod => N);
2569 end if;
2570
996ae0b0
RK
2571 Next (Expr);
2572 end loop;
2573
2574 if Others_Present then
2575 Assoc := Last (Component_Associations (N));
c45b6ae0 2576
82c80734
RD
2577 -- Ada 2005 (AI-231)
2578
58009744 2579 if Ada_Version >= Ada_2005 and then Known_Null (Assoc) then
9b96e234 2580 Check_Can_Never_Be_Null (Etype (N), Expression (Assoc));
82c80734 2581 end if;
2820d220 2582
ebd34478 2583 -- Ada 2005 (AI-287): In case of default initialized component,
c45b6ae0
AC
2584 -- we delay the resolution to the expansion phase.
2585
2586 if Box_Present (Assoc) then
2587
ebd34478
AC
2588 -- Ada 2005 (AI-287): In case of default initialization of a
2589 -- component the expander will generate calls to the
ca5af305
AC
2590 -- corresponding initialization subprogram. We need to call
2591 -- Resolve_Aggr_Expr to check the rules about
2592 -- dimensionality.
c45b6ae0 2593
ca5af305
AC
2594 if not Resolve_Aggr_Expr (Assoc, Single_Elmt => False) then
2595 return Failure;
2596 end if;
c45b6ae0
AC
2597
2598 elsif not Resolve_Aggr_Expr (Expression (Assoc),
2599 Single_Elmt => False)
996ae0b0
RK
2600 then
2601 return Failure;
4755cce9
JM
2602
2603 -- Check incorrect use of dynamically tagged expression. The
2604 -- expression of the others choice has not been resolved yet.
2605 -- In order to diagnose the semantic error we create a duplicate
2606 -- tree to analyze it and perform the check.
2607
2608 else
2609 declare
2610 Save_Analysis : constant Boolean := Full_Analysis;
2611 Expr : constant Node_Id :=
2612 New_Copy_Tree (Expression (Assoc));
2613
2614 begin
2615 Expander_Mode_Save_And_Set (False);
2616 Full_Analysis := False;
2617 Analyze (Expr);
2618 Full_Analysis := Save_Analysis;
2619 Expander_Mode_Restore;
2620
2621 if Is_Tagged_Type (Etype (Expr)) then
2622 Check_Dynamically_Tagged_Expression
58009744
AC
2623 (Expr => Expr,
2624 Typ => Component_Type (Etype (N)),
4755cce9
JM
2625 Related_Nod => N);
2626 end if;
2627 end;
996ae0b0
RK
2628 end if;
2629 end if;
2630
2631 -- STEP 3 (B): Compute the aggregate bounds
2632
2633 if Others_Present then
2634 Get_Index_Bounds (Index_Constr, Aggr_Low, Aggr_High);
2635
2636 else
2637 if Others_Allowed then
f91e8020 2638 Get_Index_Bounds (Index_Constr, Aggr_Low, Discard);
996ae0b0
RK
2639 else
2640 Aggr_Low := Index_Typ_Low;
2641 end if;
2642
2643 Aggr_High := Add (Nb_Elements - 1, To => Aggr_Low);
2644 Check_Bound (Index_Base_High, Aggr_High);
2645 end if;
2646 end if;
2647
2648 -- STEP 4: Perform static aggregate checks and save the bounds
2649
2650 -- Check (A)
2651
2652 Check_Bounds (Index_Typ_Low, Index_Typ_High, Aggr_Low, Aggr_High);
2653 Check_Bounds (Index_Base_Low, Index_Base_High, Aggr_Low, Aggr_High);
2654
2655 -- Check (B)
2656
2657 if Others_Present and then Nb_Discrete_Choices > 0 then
2658 Check_Bounds (Aggr_Low, Aggr_High, Choices_Low, Choices_High);
2659 Check_Bounds (Index_Typ_Low, Index_Typ_High,
2660 Choices_Low, Choices_High);
2661 Check_Bounds (Index_Base_Low, Index_Base_High,
2662 Choices_Low, Choices_High);
2663
2664 -- Check (C)
2665
2666 elsif Others_Present and then Nb_Elements > 0 then
2667 Check_Length (Aggr_Low, Aggr_High, Nb_Elements);
2668 Check_Length (Index_Typ_Low, Index_Typ_High, Nb_Elements);
2669 Check_Length (Index_Base_Low, Index_Base_High, Nb_Elements);
996ae0b0
RK
2670 end if;
2671
2672 if Raises_Constraint_Error (Aggr_Low)
2673 or else Raises_Constraint_Error (Aggr_High)
2674 then
2675 Set_Raises_Constraint_Error (N);
2676 end if;
2677
2678 Aggr_Low := Duplicate_Subexpr (Aggr_Low);
2679
2680 -- Do not duplicate Aggr_High if Aggr_High = Aggr_Low + Nb_Elements
2681 -- since the addition node returned by Add is not yet analyzed. Attach
ebd34478 2682 -- to tree and analyze first. Reset analyzed flag to ensure it will get
9b96e234 2683 -- analyzed when it is a literal bound whose type must be properly set.
996ae0b0
RK
2684
2685 if Others_Present or else Nb_Discrete_Choices > 0 then
2686 Aggr_High := Duplicate_Subexpr (Aggr_High);
2687
2688 if Etype (Aggr_High) = Universal_Integer then
2689 Set_Analyzed (Aggr_High, False);
2690 end if;
2691 end if;
2692
3d923671
AC
2693 -- If the aggregate already has bounds attached to it, it means this is
2694 -- a positional aggregate created as an optimization by
2695 -- Exp_Aggr.Convert_To_Positional, so we don't want to change those
2696 -- bounds.
2697
2698 if Present (Aggregate_Bounds (N)) and then not Others_Allowed then
ebd34478 2699 Aggr_Low := Low_Bound (Aggregate_Bounds (N));
3d923671
AC
2700 Aggr_High := High_Bound (Aggregate_Bounds (N));
2701 end if;
2702
996ae0b0
RK
2703 Set_Aggregate_Bounds
2704 (N, Make_Range (Loc, Low_Bound => Aggr_Low, High_Bound => Aggr_High));
2705
2706 -- The bounds may contain expressions that must be inserted upwards.
2707 -- Attach them fully to the tree. After analysis, remove side effects
2708 -- from upper bound, if still needed.
2709
2710 Set_Parent (Aggregate_Bounds (N), N);
2711 Analyze_And_Resolve (Aggregate_Bounds (N), Index_Typ);
fbf5a39b 2712 Check_Unset_Reference (Aggregate_Bounds (N));
996ae0b0
RK
2713
2714 if not Others_Present and then Nb_Discrete_Choices = 0 then
82893775
AC
2715 Set_High_Bound
2716 (Aggregate_Bounds (N),
2717 Duplicate_Subexpr (High_Bound (Aggregate_Bounds (N))));
996ae0b0
RK
2718 end if;
2719
d976bf74 2720 -- Check the dimensions of each component in the array aggregate
0929eaeb
AC
2721
2722 Analyze_Dimension_Array_Aggregate (N, Component_Typ);
2723
ef74daea
AC
2724 if Iterated_Component_Present then
2725 Error_Msg_N ("iterated association not implemented yet", N);
2726 end if;
2727
996ae0b0
RK
2728 return Success;
2729 end Resolve_Array_Aggregate;
2730
2731 ---------------------------------
2732 -- Resolve_Extension_Aggregate --
2733 ---------------------------------
2734
2735 -- There are two cases to consider:
2736
ebd34478
AC
2737 -- a) If the ancestor part is a type mark, the components needed are the
2738 -- difference between the components of the expected type and the
996ae0b0
RK
2739 -- components of the given type mark.
2740
ebd34478 2741 -- b) If the ancestor part is an expression, it must be unambiguous, and
12f0c50c 2742 -- once we have its type we can also compute the needed components as in
ebd34478
AC
2743 -- the previous case. In both cases, if the ancestor type is not the
2744 -- immediate ancestor, we have to build this ancestor recursively.
996ae0b0 2745
12f0c50c 2746 -- In both cases, discriminants of the ancestor type do not play a role in
ebd34478
AC
2747 -- the resolution of the needed components, because inherited discriminants
2748 -- cannot be used in a type extension. As a result we can compute
2749 -- independently the list of components of the ancestor type and of the
2750 -- expected type.
996ae0b0
RK
2751
2752 procedure Resolve_Extension_Aggregate (N : Node_Id; Typ : Entity_Id) is
fbf5a39b
AC
2753 A : constant Node_Id := Ancestor_Part (N);
2754 A_Type : Entity_Id;
2755 I : Interp_Index;
2756 It : Interp;
996ae0b0 2757
ca44152f
ES
2758 function Valid_Limited_Ancestor (Anc : Node_Id) return Boolean;
2759 -- If the type is limited, verify that the ancestor part is a legal
ebd34478
AC
2760 -- expression (aggregate or function call, including 'Input)) that does
2761 -- not require a copy, as specified in 7.5(2).
ca44152f 2762
996ae0b0
RK
2763 function Valid_Ancestor_Type return Boolean;
2764 -- Verify that the type of the ancestor part is a non-private ancestor
1543e3ab 2765 -- of the expected type, which must be a type extension.
996ae0b0 2766
ca44152f
ES
2767 ----------------------------
2768 -- Valid_Limited_Ancestor --
2769 ----------------------------
2770
2771 function Valid_Limited_Ancestor (Anc : Node_Id) return Boolean is
2772 begin
d8d7e809
AC
2773 if Is_Entity_Name (Anc) and then Is_Type (Entity (Anc)) then
2774 return True;
2775
2776 -- The ancestor must be a call or an aggregate, but a call may
2777 -- have been expanded into a temporary, so check original node.
2778
2779 elsif Nkind_In (Anc, N_Aggregate,
2780 N_Extension_Aggregate,
2781 N_Function_Call)
ca44152f
ES
2782 then
2783 return True;
2784
d8d7e809 2785 elsif Nkind (Original_Node (Anc)) = N_Function_Call then
ca44152f
ES
2786 return True;
2787
2788 elsif Nkind (Anc) = N_Attribute_Reference
2789 and then Attribute_Name (Anc) = Name_Input
2790 then
2791 return True;
2792
ebd34478 2793 elsif Nkind (Anc) = N_Qualified_Expression then
ca44152f
ES
2794 return Valid_Limited_Ancestor (Expression (Anc));
2795
2796 else
2797 return False;
2798 end if;
2799 end Valid_Limited_Ancestor;
2800
fbf5a39b
AC
2801 -------------------------
2802 -- Valid_Ancestor_Type --
2803 -------------------------
2804
996ae0b0
RK
2805 function Valid_Ancestor_Type return Boolean is
2806 Imm_Type : Entity_Id;
2807
2808 begin
2809 Imm_Type := Base_Type (Typ);
2af92e28
ES
2810 while Is_Derived_Type (Imm_Type) loop
2811 if Etype (Imm_Type) = Base_Type (A_Type) then
2812 return True;
2813
21d7ef70 2814 -- The base type of the parent type may appear as a private
ebd34478
AC
2815 -- extension if it is declared as such in a parent unit of the
2816 -- current one. For consistency of the subsequent analysis use
2817 -- the partial view for the ancestor part.
2af92e28
ES
2818
2819 elsif Is_Private_Type (Etype (Imm_Type))
2820 and then Present (Full_View (Etype (Imm_Type)))
2821 and then Base_Type (A_Type) = Full_View (Etype (Imm_Type))
2822 then
2823 A_Type := Etype (Imm_Type);
2824 return True;
4519314c
AC
2825
2826 -- The parent type may be a private extension. The aggregate is
2827 -- legal if the type of the aggregate is an extension of it that
2828 -- is not a private extension.
2829
2830 elsif Is_Private_Type (A_Type)
2831 and then not Is_Private_Type (Imm_Type)
2832 and then Present (Full_View (A_Type))
2833 and then Base_Type (Full_View (A_Type)) = Etype (Imm_Type)
2834 then
2835 return True;
2836
2af92e28
ES
2837 else
2838 Imm_Type := Etype (Base_Type (Imm_Type));
2839 end if;
996ae0b0
RK
2840 end loop;
2841
6d2a1120 2842 -- If previous loop did not find a proper ancestor, report error
2af92e28
ES
2843
2844 Error_Msg_NE ("expect ancestor type of &", A, Typ);
2845 return False;
996ae0b0
RK
2846 end Valid_Ancestor_Type;
2847
2848 -- Start of processing for Resolve_Extension_Aggregate
2849
2850 begin
ebd34478
AC
2851 -- Analyze the ancestor part and account for the case where it is a
2852 -- parameterless function call.
70b70ce8 2853
996ae0b0 2854 Analyze (A);
70b70ce8 2855 Check_Parameterless_Call (A);
996ae0b0 2856
2ba431e5 2857 -- In SPARK, the ancestor part cannot be a type mark
9f90d123 2858
58009744 2859 if Is_Entity_Name (A) and then Is_Type (Entity (A)) then
ce5ba43a 2860 Check_SPARK_05_Restriction ("ancestor part cannot be a type mark", A);
87729e5a
AC
2861
2862 -- AI05-0115: if the ancestor part is a subtype mark, the ancestor
2863 -- must not have unknown discriminants.
2864
2865 if Has_Unknown_Discriminants (Root_Type (Typ)) then
2866 Error_Msg_NE
2867 ("aggregate not available for type& whose ancestor "
2868 & "has unknown discriminants", N, Typ);
2869 end if;
9f90d123
AC
2870 end if;
2871
996ae0b0
RK
2872 if not Is_Tagged_Type (Typ) then
2873 Error_Msg_N ("type of extension aggregate must be tagged", N);
2874 return;
2875
19f0526a
AC
2876 elsif Is_Limited_Type (Typ) then
2877
0ab80019 2878 -- Ada 2005 (AI-287): Limited aggregates are allowed
19f0526a 2879
0791fbe9 2880 if Ada_Version < Ada_2005 then
19f0526a
AC
2881 Error_Msg_N ("aggregate type cannot be limited", N);
2882 Explain_Limited_Type (Typ, N);
2883 return;
ca44152f
ES
2884
2885 elsif Valid_Limited_Ancestor (A) then
2886 null;
2887
2888 else
2889 Error_Msg_N
2890 ("limited ancestor part must be aggregate or function call", A);
19f0526a 2891 end if;
996ae0b0
RK
2892
2893 elsif Is_Class_Wide_Type (Typ) then
2894 Error_Msg_N ("aggregate cannot be of a class-wide type", N);
2895 return;
2896 end if;
2897
58009744 2898 if Is_Entity_Name (A) and then Is_Type (Entity (A)) then
fbf5a39b 2899 A_Type := Get_Full_View (Entity (A));
996ae0b0
RK
2900
2901 if Valid_Ancestor_Type then
2902 Set_Entity (A, A_Type);
2903 Set_Etype (A, A_Type);
2904
2905 Validate_Ancestor_Part (N);
2906 Resolve_Record_Aggregate (N, Typ);
2907 end if;
2908
2909 elsif Nkind (A) /= N_Aggregate then
2910 if Is_Overloaded (A) then
2911 A_Type := Any_Type;
996ae0b0 2912
7f9747c6 2913 Get_First_Interp (A, I, It);
996ae0b0 2914 while Present (It.Typ) loop
58009744 2915
70b70ce8
AC
2916 -- Only consider limited interpretations in the Ada 2005 case
2917
996ae0b0 2918 if Is_Tagged_Type (It.Typ)
0791fbe9 2919 and then (Ada_Version >= Ada_2005
70b70ce8 2920 or else not Is_Limited_Type (It.Typ))
996ae0b0
RK
2921 then
2922 if A_Type /= Any_Type then
2923 Error_Msg_N ("cannot resolve expression", A);
2924 return;
2925 else
2926 A_Type := It.Typ;
2927 end if;
2928 end if;
2929
2930 Get_Next_Interp (I, It);
2931 end loop;
2932
2933 if A_Type = Any_Type then
0791fbe9 2934 if Ada_Version >= Ada_2005 then
58009744
AC
2935 Error_Msg_N
2936 ("ancestor part must be of a tagged type", A);
70b70ce8
AC
2937 else
2938 Error_Msg_N
2939 ("ancestor part must be of a nonlimited tagged type", A);
2940 end if;
2941
996ae0b0
RK
2942 return;
2943 end if;
2944
2945 else
2946 A_Type := Etype (A);
2947 end if;
2948
2949 if Valid_Ancestor_Type then
2950 Resolve (A, A_Type);
fbf5a39b 2951 Check_Unset_Reference (A);
996ae0b0 2952 Check_Non_Static_Context (A);
fbf5a39b 2953
1646c947
GD
2954 -- The aggregate is illegal if the ancestor expression is a call
2955 -- to a function with a limited unconstrained result, unless the
2956 -- type of the aggregate is a null extension. This restriction
2957 -- was added in AI05-67 to simplify implementation.
2958
2959 if Nkind (A) = N_Function_Call
2960 and then Is_Limited_Type (A_Type)
2961 and then not Is_Null_Extension (Typ)
2962 and then not Is_Constrained (A_Type)
2963 then
2964 Error_Msg_N
2965 ("type of limited ancestor part must be constrained", A);
2966
cefce34c
JM
2967 -- Reject the use of CPP constructors that leave objects partially
2968 -- initialized. For example:
2969
2970 -- type CPP_Root is tagged limited record ...
2971 -- pragma Import (CPP, CPP_Root);
2972
2973 -- type CPP_DT is new CPP_Root and Iface ...
2974 -- pragma Import (CPP, CPP_DT);
2975
2976 -- type Ada_DT is new CPP_DT with ...
2977
2978 -- Obj : Ada_DT := Ada_DT'(New_CPP_Root with others => <>);
2979
2980 -- Using the constructor of CPP_Root the slots of the dispatch
2981 -- table of CPP_DT cannot be set, and the secondary tag of
2982 -- CPP_DT is unknown.
2983
2984 elsif Nkind (A) = N_Function_Call
2985 and then Is_CPP_Constructor_Call (A)
2986 and then Enclosing_CPP_Parent (Typ) /= A_Type
2987 then
2988 Error_Msg_NE
324ac540 2989 ("??must use 'C'P'P constructor for type &", A,
cefce34c
JM
2990 Enclosing_CPP_Parent (Typ));
2991
2992 -- The following call is not needed if the previous warning
2993 -- is promoted to an error.
2994
2995 Resolve_Record_Aggregate (N, Typ);
2996
1646c947 2997 elsif Is_Class_Wide_Type (Etype (A))
fbf5a39b
AC
2998 and then Nkind (Original_Node (A)) = N_Function_Call
2999 then
3000 -- If the ancestor part is a dispatching call, it appears
ebd34478
AC
3001 -- statically to be a legal ancestor, but it yields any member
3002 -- of the class, and it is not possible to determine whether
3003 -- it is an ancestor of the extension aggregate (much less
3004 -- which ancestor). It is not possible to determine the
3005 -- components of the extension part.
fbf5a39b 3006
ebd34478
AC
3007 -- This check implements AI-306, which in fact was motivated by
3008 -- an AdaCore query to the ARG after this test was added.
82c80734 3009
fbf5a39b
AC
3010 Error_Msg_N ("ancestor part must be statically tagged", A);
3011 else
3012 Resolve_Record_Aggregate (N, Typ);
3013 end if;
996ae0b0
RK
3014 end if;
3015
3016 else
937e9676 3017 Error_Msg_N ("no unique type for this aggregate", A);
996ae0b0 3018 end if;
d3820795 3019
22e89283 3020 Check_Function_Writable_Actuals (N);
996ae0b0
RK
3021 end Resolve_Extension_Aggregate;
3022
3023 ------------------------------
3024 -- Resolve_Record_Aggregate --
3025 ------------------------------
3026
3027 procedure Resolve_Record_Aggregate (N : Node_Id; Typ : Entity_Id) is
fbf5a39b 3028 New_Assoc_List : constant List_Id := New_List;
996ae0b0 3029 -- New_Assoc_List is the newly built list of N_Component_Association
937e9676 3030 -- nodes.
996ae0b0
RK
3031
3032 Others_Etype : Entity_Id := Empty;
3033 -- This variable is used to save the Etype of the last record component
3034 -- that takes its value from the others choice. Its purpose is:
3035 --
3036 -- (a) make sure the others choice is useful
3037 --
3038 -- (b) make sure the type of all the components whose value is
3039 -- subsumed by the others choice are the same.
3040 --
ebd34478 3041 -- This variable is updated as a side effect of function Get_Value.
996ae0b0 3042
ec3c7387 3043 Box_Node : Node_Id;
9b96e234 3044 Is_Box_Present : Boolean := False;
ec3c7387 3045 Others_Box : Integer := 0;
0ab80019 3046 -- Ada 2005 (AI-287): Variables used in case of default initialization
9b96e234 3047 -- to provide a functionality similar to Others_Etype. Box_Present
19f0526a 3048 -- indicates that the component takes its default initialization;
ec3c7387
AC
3049 -- Others_Box counts the number of components of the current aggregate
3050 -- (which may be a sub-aggregate of a larger one) that are default-
3051 -- initialized. A value of One indicates that an others_box is present.
3052 -- Any larger value indicates that the others_box is not redundant.
937e9676
AC
3053 -- These variables, similar to Others_Etype, are also updated as a side
3054 -- effect of function Get_Value. Box_Node is used to place a warning on
3055 -- a redundant others_box.
65356e64
AC
3056
3057 procedure Add_Association
9b96e234
JM
3058 (Component : Entity_Id;
3059 Expr : Node_Id;
107b023c 3060 Assoc_List : List_Id;
9b96e234 3061 Is_Box_Present : Boolean := False);
ebd34478
AC
3062 -- Builds a new N_Component_Association node which associates Component
3063 -- to expression Expr and adds it to the association list being built,
3064 -- either New_Assoc_List, or the association being built for an inner
3065 -- aggregate.
996ae0b0 3066
937e9676
AC
3067 procedure Add_Discriminant_Values
3068 (New_Aggr : Node_Id;
3069 Assoc_List : List_Id);
3070 -- The constraint to a component may be given by a discriminant of the
3071 -- enclosing type, in which case we have to retrieve its value, which is
3072 -- part of the enclosing aggregate. Assoc_List provides the discriminant
3073 -- associations of the current type or of some enclosing record.
3074
3075 function Discriminant_Present (Input_Discr : Entity_Id) return Boolean;
996ae0b0 3076 -- If aggregate N is a regular aggregate this routine will return True.
937e9676
AC
3077 -- Otherwise, if N is an extension aggregate, then Input_Discr denotes
3078 -- a discriminant whose value may already have been specified by N's
3079 -- ancestor part. This routine checks whether this is indeed the case
3080 -- and if so returns False, signaling that no value for Input_Discr
3081 -- should appear in N's aggregate part. Also, in this case, the routine
3082 -- appends to New_Assoc_List the discriminant value specified in the
3083 -- ancestor part.
2383acbd 3084 --
f104fca1 3085 -- If the aggregate is in a context with expansion delayed, it will be
22cb89b5
AC
3086 -- reanalyzed. The inherited discriminant values must not be reinserted
3087 -- in the component list to prevent spurious errors, but they must be
f104fca1
AC
3088 -- present on first analysis to build the proper subtype indications.
3089 -- The flag Inherited_Discriminant is used to prevent the re-insertion.
996ae0b0 3090
937e9676
AC
3091 function Find_Private_Ancestor (Typ : Entity_Id) return Entity_Id;
3092 -- AI05-0115: Find earlier ancestor in the derivation chain that is
3093 -- derived from private view Typ. Whether the aggregate is legal depends
3094 -- on the current visibility of the type as well as that of the parent
3095 -- of the ancestor.
3096
996ae0b0
RK
3097 function Get_Value
3098 (Compon : Node_Id;
3099 From : List_Id;
937e9676 3100 Consider_Others_Choice : Boolean := False) return Node_Id;
4519314c
AC
3101 -- Given a record component stored in parameter Compon, this function
3102 -- returns its value as it appears in the list From, which is a list
3103 -- of N_Component_Association nodes.
2383acbd 3104 --
ebd34478
AC
3105 -- If no component association has a choice for the searched component,
3106 -- the value provided by the others choice is returned, if there is one,
3107 -- and Consider_Others_Choice is set to true. Otherwise Empty is
3108 -- returned. If there is more than one component association giving a
3109 -- value for the searched record component, an error message is emitted
3110 -- and the first found value is returned.
996ae0b0
RK
3111 --
3112 -- If Consider_Others_Choice is set and the returned expression comes
3113 -- from the others choice, then Others_Etype is set as a side effect.
ebd34478
AC
3114 -- An error message is emitted if the components taking their value from
3115 -- the others choice do not have same type.
996ae0b0 3116
ba914484
VP
3117 function New_Copy_Tree_And_Copy_Dimensions
3118 (Source : Node_Id;
3119 Map : Elist_Id := No_Elist;
3120 New_Sloc : Source_Ptr := No_Location;
3121 New_Scope : Entity_Id := Empty) return Node_Id;
3122 -- Same as New_Copy_Tree (defined in Sem_Util), except that this routine
3123 -- also copies the dimensions of Source to the returned node.
3124
937e9676
AC
3125 procedure Propagate_Discriminants
3126 (Aggr : Node_Id;
3127 Assoc_List : List_Id);
3128 -- Nested components may themselves be discriminated types constrained
3129 -- by outer discriminants, whose values must be captured before the
3130 -- aggregate is expanded into assignments.
3131
3132 procedure Resolve_Aggr_Expr (Expr : Node_Id; Component : Entity_Id);
996ae0b0 3133 -- Analyzes and resolves expression Expr against the Etype of the
638e383e 3134 -- Component. This routine also applies all appropriate checks to Expr.
996ae0b0
RK
3135 -- It finally saves a Expr in the newly created association list that
3136 -- will be attached to the final record aggregate. Note that if the
3137 -- Parent pointer of Expr is not set then Expr was produced with a
fbf5a39b 3138 -- New_Copy_Tree or some such.
996ae0b0
RK
3139
3140 ---------------------
3141 -- Add_Association --
3142 ---------------------
3143
65356e64 3144 procedure Add_Association
9b96e234
JM
3145 (Component : Entity_Id;
3146 Expr : Node_Id;
107b023c 3147 Assoc_List : List_Id;
9b96e234 3148 Is_Box_Present : Boolean := False)
65356e64 3149 is
fbf5a39b 3150 Choice_List : constant List_Id := New_List;
937e9676 3151 Loc : Source_Ptr;
996ae0b0
RK
3152
3153 begin
937e9676
AC
3154 -- If this is a box association the expression is missing, so use the
3155 -- Sloc of the aggregate itself for the new association.
f5afb270
AC
3156
3157 if Present (Expr) then
3158 Loc := Sloc (Expr);
3159 else
3160 Loc := Sloc (N);
3161 end if;
3162
937e9676
AC
3163 Append_To (Choice_List, New_Occurrence_Of (Component, Loc));
3164
3165 Append_To (Assoc_List,
f5afb270 3166 Make_Component_Association (Loc,
65356e64
AC
3167 Choices => Choice_List,
3168 Expression => Expr,
937e9676 3169 Box_Present => Is_Box_Present));
996ae0b0
RK
3170 end Add_Association;
3171
937e9676
AC
3172 -----------------------------
3173 -- Add_Discriminant_Values --
3174 -----------------------------
3175
3176 procedure Add_Discriminant_Values
3177 (New_Aggr : Node_Id;
3178 Assoc_List : List_Id)
3179 is
3180 Assoc : Node_Id;
3181 Discr : Entity_Id;
3182 Discr_Elmt : Elmt_Id;
3183 Discr_Val : Node_Id;
3184 Val : Entity_Id;
3185
3186 begin
3187 Discr := First_Discriminant (Etype (New_Aggr));
3188 Discr_Elmt := First_Elmt (Discriminant_Constraint (Etype (New_Aggr)));
3189 while Present (Discr_Elmt) loop
3190 Discr_Val := Node (Discr_Elmt);
3191
3192 -- If the constraint is given by a discriminant then it is a
3193 -- discriminant of an enclosing record, and its value has already
3194 -- been placed in the association list.
996ae0b0 3195
937e9676
AC
3196 if Is_Entity_Name (Discr_Val)
3197 and then Ekind (Entity (Discr_Val)) = E_Discriminant
3198 then
3199 Val := Entity (Discr_Val);
3200
3201 Assoc := First (Assoc_List);
3202 while Present (Assoc) loop
3203 if Present (Entity (First (Choices (Assoc))))
3204 and then Entity (First (Choices (Assoc))) = Val
3205 then
3206 Discr_Val := Expression (Assoc);
3207 exit;
3208 end if;
3209
3210 Next (Assoc);
3211 end loop;
3212 end if;
3213
3214 Add_Association
3215 (Discr, New_Copy_Tree (Discr_Val),
3216 Component_Associations (New_Aggr));
3217
3218 -- If the discriminant constraint is a current instance, mark the
3219 -- current aggregate so that the self-reference can be expanded
3220 -- later. The constraint may refer to the subtype of aggregate, so
3221 -- use base type for comparison.
3222
3223 if Nkind (Discr_Val) = N_Attribute_Reference
3224 and then Is_Entity_Name (Prefix (Discr_Val))
3225 and then Is_Type (Entity (Prefix (Discr_Val)))
3226 and then Base_Type (Etype (N)) = Entity (Prefix (Discr_Val))
3227 then
3228 Set_Has_Self_Reference (N);
3229 end if;
3230
3231 Next_Elmt (Discr_Elmt);
3232 Next_Discriminant (Discr);
3233 end loop;
3234 end Add_Discriminant_Values;
3235
3236 --------------------------
3237 -- Discriminant_Present --
3238 --------------------------
3239
3240 function Discriminant_Present (Input_Discr : Entity_Id) return Boolean is
fbf5a39b
AC
3241 Regular_Aggr : constant Boolean := Nkind (N) /= N_Extension_Aggregate;
3242
937e9676
AC
3243 Ancestor_Is_Subtyp : Boolean;
3244
996ae0b0
RK
3245 Loc : Source_Ptr;
3246
3247 Ancestor : Node_Id;
937e9676 3248 Ancestor_Typ : Entity_Id;
f104fca1 3249 Comp_Assoc : Node_Id;
937e9676 3250 Discr : Entity_Id;
996ae0b0 3251 Discr_Expr : Node_Id;
937e9676 3252 Discr_Val : Elmt_Id := No_Elmt;
996ae0b0 3253 Orig_Discr : Entity_Id;
996ae0b0
RK
3254
3255 begin
3256 if Regular_Aggr then
3257 return True;
3258 end if;
3259
f104fca1
AC
3260 -- Check whether inherited discriminant values have already been
3261 -- inserted in the aggregate. This will be the case if we are
3262 -- re-analyzing an aggregate whose expansion was delayed.
3263
3264 if Present (Component_Associations (N)) then
3265 Comp_Assoc := First (Component_Associations (N));
3266 while Present (Comp_Assoc) loop
3267 if Inherited_Discriminant (Comp_Assoc) then
3268 return True;
3269 end if;
2383acbd 3270
f104fca1
AC
3271 Next (Comp_Assoc);
3272 end loop;
3273 end if;
3274
996ae0b0
RK
3275 Ancestor := Ancestor_Part (N);
3276 Ancestor_Typ := Etype (Ancestor);
3277 Loc := Sloc (Ancestor);
3278
5987e59c
AC
3279 -- For a private type with unknown discriminants, use the underlying
3280 -- record view if it is available.
9013065b
AC
3281
3282 if Has_Unknown_Discriminants (Ancestor_Typ)
3283 and then Present (Full_View (Ancestor_Typ))
3284 and then Present (Underlying_Record_View (Full_View (Ancestor_Typ)))
3285 then
3286 Ancestor_Typ := Underlying_Record_View (Full_View (Ancestor_Typ));
3287 end if;
3288
996ae0b0
RK
3289 Ancestor_Is_Subtyp :=
3290 Is_Entity_Name (Ancestor) and then Is_Type (Entity (Ancestor));
3291
3292 -- If the ancestor part has no discriminants clearly N's aggregate
3293 -- part must provide a value for Discr.
3294
3295 if not Has_Discriminants (Ancestor_Typ) then
3296 return True;
3297
3298 -- If the ancestor part is an unconstrained subtype mark then the
3299 -- Discr must be present in N's aggregate part.
3300
3301 elsif Ancestor_Is_Subtyp
3302 and then not Is_Constrained (Entity (Ancestor))
3303 then
3304 return True;
3305 end if;
3306
ec53a6da 3307 -- Now look to see if Discr was specified in the ancestor part
996ae0b0
RK
3308
3309 if Ancestor_Is_Subtyp then
937e9676
AC
3310 Discr_Val :=
3311 First_Elmt (Discriminant_Constraint (Entity (Ancestor)));
996ae0b0
RK
3312 end if;
3313
937e9676 3314 Orig_Discr := Original_Record_Component (Input_Discr);
ec53a6da 3315
937e9676
AC
3316 Discr := First_Discriminant (Ancestor_Typ);
3317 while Present (Discr) loop
ec53a6da 3318
ebd34478 3319 -- If Ancestor has already specified Disc value then insert its
ec53a6da 3320 -- value in the final aggregate.
996ae0b0 3321
937e9676 3322 if Original_Record_Component (Discr) = Orig_Discr then
996ae0b0 3323 if Ancestor_Is_Subtyp then
937e9676 3324 Discr_Expr := New_Copy_Tree (Node (Discr_Val));
996ae0b0
RK
3325 else
3326 Discr_Expr :=
3327 Make_Selected_Component (Loc,
3328 Prefix => Duplicate_Subexpr (Ancestor),
937e9676 3329 Selector_Name => New_Occurrence_Of (Input_Discr, Loc));
996ae0b0
RK
3330 end if;
3331
937e9676 3332 Resolve_Aggr_Expr (Discr_Expr, Input_Discr);
f104fca1 3333 Set_Inherited_Discriminant (Last (New_Assoc_List));
996ae0b0
RK
3334 return False;
3335 end if;
3336
937e9676 3337 Next_Discriminant (Discr);
996ae0b0
RK
3338
3339 if Ancestor_Is_Subtyp then
937e9676 3340 Next_Elmt (Discr_Val);
996ae0b0
RK
3341 end if;
3342 end loop;
3343
3344 return True;
937e9676
AC
3345 end Discriminant_Present;
3346
3347 ---------------------------
3348 -- Find_Private_Ancestor --
3349 ---------------------------
3350
3351 function Find_Private_Ancestor (Typ : Entity_Id) return Entity_Id is
3352 Par : Entity_Id;
3353
3354 begin
3355 Par := Typ;
3356 loop
3357 if Has_Private_Ancestor (Par)
3358 and then not Has_Private_Ancestor (Etype (Base_Type (Par)))
3359 then
3360 return Par;
3361
3362 elsif not Is_Derived_Type (Par) then
3363 return Empty;
3364
3365 else
3366 Par := Etype (Base_Type (Par));
3367 end if;
3368 end loop;
3369 end Find_Private_Ancestor;
996ae0b0
RK
3370
3371 ---------------
3372 -- Get_Value --
3373 ---------------
3374
3375 function Get_Value
3376 (Compon : Node_Id;
3377 From : List_Id;
937e9676 3378 Consider_Others_Choice : Boolean := False) return Node_Id
996ae0b0 3379 is
d10bb9d5 3380 Typ : constant Entity_Id := Etype (Compon);
996ae0b0
RK
3381 Assoc : Node_Id;
3382 Expr : Node_Id := Empty;
3383 Selector_Name : Node_Id;
3384
3385 begin
9b96e234 3386 Is_Box_Present := False;
65356e64 3387
58009744 3388 if No (From) then
996ae0b0
RK
3389 return Empty;
3390 end if;
3391
58009744 3392 Assoc := First (From);
996ae0b0
RK
3393 while Present (Assoc) loop
3394 Selector_Name := First (Choices (Assoc));
3395 while Present (Selector_Name) loop
3396 if Nkind (Selector_Name) = N_Others_Choice then
3397 if Consider_Others_Choice and then No (Expr) then
996ae0b0
RK
3398
3399 -- We need to duplicate the expression for each
3400 -- successive component covered by the others choice.
fbf5a39b
AC
3401 -- This is redundant if the others_choice covers only
3402 -- one component (small optimization possible???), but
3403 -- indispensable otherwise, because each one must be
3404 -- expanded individually to preserve side-effects.
996ae0b0 3405
0ab80019
AC
3406 -- Ada 2005 (AI-287): In case of default initialization
3407 -- of components, we duplicate the corresponding default
88b32fc3
BD
3408 -- expression (from the record type declaration). The
3409 -- copy must carry the sloc of the association (not the
3410 -- original expression) to prevent spurious elaboration
3411 -- checks when the default includes function calls.
19f0526a 3412
65356e64 3413 if Box_Present (Assoc) then
ec3c7387 3414 Others_Box := Others_Box + 1;
9b96e234 3415 Is_Box_Present := True;
65356e64
AC
3416
3417 if Expander_Active then
88b32fc3 3418 return
ba914484 3419 New_Copy_Tree_And_Copy_Dimensions
88b32fc3
BD
3420 (Expression (Parent (Compon)),
3421 New_Sloc => Sloc (Assoc));
65356e64
AC
3422 else
3423 return Expression (Parent (Compon));
3424 end if;
65356e64 3425
d05ef0ab 3426 else
d10bb9d5
AC
3427 if Present (Others_Etype)
3428 and then Base_Type (Others_Etype) /= Base_Type (Typ)
65356e64 3429 then
a921e83c
AC
3430 -- If the components are of an anonymous access
3431 -- type they are distinct, but this is legal in
3432 -- Ada 2012 as long as designated types match.
3433
3434 if (Ekind (Typ) = E_Anonymous_Access_Type
3435 or else Ekind (Typ) =
3436 E_Anonymous_Access_Subprogram_Type)
3437 and then Designated_Type (Typ) =
3438 Designated_Type (Others_Etype)
3439 then
3440 null;
3441 else
3442 Error_Msg_N
937e9676
AC
3443 ("components in OTHERS choice must have same "
3444 & "type", Selector_Name);
a921e83c 3445 end if;
65356e64
AC
3446 end if;
3447
d10bb9d5 3448 Others_Etype := Typ;
65356e64 3449
937e9676 3450 -- Copy the expression so that it is resolved
a921e83c
AC
3451 -- independently for each component, This is needed
3452 -- for accessibility checks on compoents of anonymous
3453 -- access types, even in compile_only mode.
3454
3455 if not Inside_A_Generic then
fc6d9796
AC
3456
3457 -- In ASIS mode, preanalyze the expression in an
3458 -- others association before making copies for
3459 -- separate resolution and accessibility checks.
3460 -- This ensures that the type of the expression is
3461 -- available to ASIS in all cases, in particular if
3462 -- the expression is itself an aggregate.
3463
3464 if ASIS_Mode then
3465 Preanalyze_And_Resolve (Expression (Assoc), Typ);
3466 end if;
3467
ba914484
VP
3468 return
3469 New_Copy_Tree_And_Copy_Dimensions
3470 (Expression (Assoc));
a921e83c 3471
65356e64
AC
3472 else
3473 return Expression (Assoc);
3474 end if;
996ae0b0
RK
3475 end if;
3476 end if;
3477
3478 elsif Chars (Compon) = Chars (Selector_Name) then
3479 if No (Expr) then
fbf5a39b 3480
0ab80019 3481 -- Ada 2005 (AI-231)
2820d220 3482
0791fbe9 3483 if Ada_Version >= Ada_2005
8133b9d1 3484 and then Known_Null (Expression (Assoc))
2820d220 3485 then
82c80734 3486 Check_Can_Never_Be_Null (Compon, Expression (Assoc));
2820d220
AC
3487 end if;
3488
996ae0b0
RK
3489 -- We need to duplicate the expression when several
3490 -- components are grouped together with a "|" choice.
3491 -- For instance "filed1 | filed2 => Expr"
3492
0ab80019 3493 -- Ada 2005 (AI-287)
2820d220 3494
65356e64 3495 if Box_Present (Assoc) then
9b96e234 3496 Is_Box_Present := True;
65356e64
AC
3497
3498 -- Duplicate the default expression of the component
c7ce71c2
ES
3499 -- from the record type declaration, so a new copy
3500 -- can be attached to the association.
65356e64 3501
c7ce71c2
ES
3502 -- Note that we always copy the default expression,
3503 -- even when the association has a single choice, in
3504 -- order to create a proper association for the
3505 -- expanded aggregate.
3506
8097203f
AC
3507 -- Component may have no default, in which case the
3508 -- expression is empty and the component is default-
3509 -- initialized, but an association for the component
3510 -- exists, and it is not covered by an others clause.
3511
d10bb9d5
AC
3512 -- Scalar and private types have no initialization
3513 -- procedure, so they remain uninitialized. If the
3514 -- target of the aggregate is a constant this
3515 -- deserves a warning.
3516
3517 if No (Expression (Parent (Compon)))
3518 and then not Has_Non_Null_Base_Init_Proc (Typ)
3519 and then not Has_Aspect (Typ, Aspect_Default_Value)
3520 and then not Is_Concurrent_Type (Typ)
3521 and then Nkind (Parent (N)) = N_Object_Declaration
3522 and then Constant_Present (Parent (N))
3523 then
3524 Error_Msg_Node_2 := Typ;
3525 Error_Msg_NE
3526 ("component&? of type& is uninitialized",
3527 Assoc, Selector_Name);
3528
3529 -- An additional reminder if the component type
3530 -- is a generic formal.
3531
3532 if Is_Generic_Type (Base_Type (Typ)) then
3533 Error_Msg_NE
58009744
AC
3534 ("\instance should provide actual type with "
3535 & "initialization for&", Assoc, Typ);
d10bb9d5
AC
3536 end if;
3537 end if;
3538
ba914484
VP
3539 return
3540 New_Copy_Tree_And_Copy_Dimensions
3541 (Expression (Parent (Compon)));
8097203f 3542
d05ef0ab 3543 else
65356e64 3544 if Present (Next (Selector_Name)) then
d10bb9d5
AC
3545 Expr := New_Copy_Tree_And_Copy_Dimensions
3546 (Expression (Assoc));
65356e64
AC
3547 else
3548 Expr := Expression (Assoc);
3549 end if;
996ae0b0
RK
3550 end if;
3551
55603e5e 3552 Generate_Reference (Compon, Selector_Name, 'm');
fbf5a39b 3553
996ae0b0
RK
3554 else
3555 Error_Msg_NE
3556 ("more than one value supplied for &",
3557 Selector_Name, Compon);
3558
3559 end if;
3560 end if;
3561
3562 Next (Selector_Name);
3563 end loop;
3564
3565 Next (Assoc);
3566 end loop;
3567
3568 return Expr;
3569 end Get_Value;
3570
ba914484
VP
3571 ---------------------------------------
3572 -- New_Copy_Tree_And_Copy_Dimensions --
3573 ---------------------------------------
3574
3575 function New_Copy_Tree_And_Copy_Dimensions
3576 (Source : Node_Id;
3577 Map : Elist_Id := No_Elist;
3578 New_Sloc : Source_Ptr := No_Location;
3579 New_Scope : Entity_Id := Empty) return Node_Id
3580 is
3581 New_Copy : constant Node_Id :=
3582 New_Copy_Tree (Source, Map, New_Sloc, New_Scope);
58009744 3583
ba914484
VP
3584 begin
3585 -- Move the dimensions of Source to New_Copy
3586
3587 Copy_Dimensions (Source, New_Copy);
3588 return New_Copy;
3589 end New_Copy_Tree_And_Copy_Dimensions;
3590
937e9676
AC
3591 -----------------------------
3592 -- Propagate_Discriminants --
3593 -----------------------------
3594
3595 procedure Propagate_Discriminants
3596 (Aggr : Node_Id;
3597 Assoc_List : List_Id)
3598 is
3599 Loc : constant Source_Ptr := Sloc (N);
3600
3601 Needs_Box : Boolean := False;
3602
3603 procedure Process_Component (Comp : Entity_Id);
3604 -- Add one component with a box association to the inner aggregate,
3605 -- and recurse if component is itself composite.
3606
3607 -----------------------
3608 -- Process_Component --
3609 -----------------------
3610
3611 procedure Process_Component (Comp : Entity_Id) is
3612 T : constant Entity_Id := Etype (Comp);
3613 New_Aggr : Node_Id;
3614
3615 begin
3616 if Is_Record_Type (T) and then Has_Discriminants (T) then
3617 New_Aggr := Make_Aggregate (Loc, New_List, New_List);
3618 Set_Etype (New_Aggr, T);
3619
3620 Add_Association
3621 (Comp, New_Aggr, Component_Associations (Aggr));
3622
3623 -- Collect discriminant values and recurse
3624
3625 Add_Discriminant_Values (New_Aggr, Assoc_List);
3626 Propagate_Discriminants (New_Aggr, Assoc_List);
3627
3628 else
3629 Needs_Box := True;
3630 end if;
3631 end Process_Component;
3632
3633 -- Local variables
3634
3635 Aggr_Type : constant Entity_Id := Base_Type (Etype (Aggr));
3636 Components : constant Elist_Id := New_Elmt_List;
3637 Def_Node : constant Node_Id :=
3638 Type_Definition (Declaration_Node (Aggr_Type));
3639
3640 Comp : Node_Id;
3641 Comp_Elmt : Elmt_Id;
3642 Errors : Boolean;
3643
3644 -- Start of processing for Propagate_Discriminants
3645
3646 begin
3647 -- The component type may be a variant type. Collect the components
3648 -- that are ruled by the known values of the discriminants. Their
3649 -- values have already been inserted into the component list of the
3650 -- current aggregate.
3651
3652 if Nkind (Def_Node) = N_Record_Definition
3653 and then Present (Component_List (Def_Node))
3654 and then Present (Variant_Part (Component_List (Def_Node)))
3655 then
3656 Gather_Components (Aggr_Type,
3657 Component_List (Def_Node),
3658 Governed_By => Component_Associations (Aggr),
3659 Into => Components,
3660 Report_Errors => Errors);
3661
3662 Comp_Elmt := First_Elmt (Components);
3663 while Present (Comp_Elmt) loop
3664 if Ekind (Node (Comp_Elmt)) /= E_Discriminant then
3665 Process_Component (Node (Comp_Elmt));
3666 end if;
3667
3668 Next_Elmt (Comp_Elmt);
3669 end loop;
3670
3671 -- No variant part, iterate over all components
3672
3673 else
3674 Comp := First_Component (Etype (Aggr));
3675 while Present (Comp) loop
3676 Process_Component (Comp);
3677 Next_Component (Comp);
3678 end loop;
3679 end if;
3680
3681 if Needs_Box then
3682 Append_To (Component_Associations (Aggr),
3683 Make_Component_Association (Loc,
3684 Choices => New_List (Make_Others_Choice (Loc)),
3685 Expression => Empty,
3686 Box_Present => True));
3687 end if;
3688 end Propagate_Discriminants;
3689
996ae0b0
RK
3690 -----------------------
3691 -- Resolve_Aggr_Expr --
3692 -----------------------
3693
937e9676 3694 procedure Resolve_Aggr_Expr (Expr : Node_Id; Component : Entity_Id) is
996ae0b0
RK
3695 function Has_Expansion_Delayed (Expr : Node_Id) return Boolean;
3696 -- If the expression is an aggregate (possibly qualified) then its
3697 -- expansion is delayed until the enclosing aggregate is expanded
3698 -- into assignments. In that case, do not generate checks on the
3699 -- expression, because they will be generated later, and will other-
3700 -- wise force a copy (to remove side-effects) that would leave a
3701 -- dynamic-sized aggregate in the code, something that gigi cannot
3702 -- handle.
3703
22243c12
RD
3704 ---------------------------
3705 -- Has_Expansion_Delayed --
3706 ---------------------------
996ae0b0
RK
3707
3708 function Has_Expansion_Delayed (Expr : Node_Id) return Boolean is
996ae0b0 3709 begin
937e9676
AC
3710 return
3711 (Nkind_In (Expr, N_Aggregate, N_Extension_Aggregate)
3712 and then Present (Etype (Expr))
3713 and then Is_Record_Type (Etype (Expr))
3714 and then Expansion_Delayed (Expr))
3715 or else
3716 (Nkind (Expr) = N_Qualified_Expression
3717 and then Has_Expansion_Delayed (Expression (Expr)));
996ae0b0
RK
3718 end Has_Expansion_Delayed;
3719
10edebe7
AC
3720 -- Local variables
3721
3722 Expr_Type : Entity_Id := Empty;
3723 New_C : Entity_Id := Component;
3724 New_Expr : Node_Id;
3725
3726 Relocate : Boolean;
3727 -- Set to True if the resolved Expr node needs to be relocated when
3728 -- attached to the newly created association list. This node need not
3729 -- be relocated if its parent pointer is not set. In fact in this
3730 -- case Expr is the output of a New_Copy_Tree call. If Relocate is
3731 -- True then we have analyzed the expression node in the original
3732 -- aggregate and hence it needs to be relocated when moved over to
3733 -- the new association list.
3734
22243c12 3735 -- Start of processing for Resolve_Aggr_Expr
996ae0b0
RK
3736
3737 begin
3738 -- If the type of the component is elementary or the type of the
3739 -- aggregate does not contain discriminants, use the type of the
3740 -- component to resolve Expr.
3741
3742 if Is_Elementary_Type (Etype (Component))
3743 or else not Has_Discriminants (Etype (N))
3744 then
3745 Expr_Type := Etype (Component);
3746
3747 -- Otherwise we have to pick up the new type of the component from
12a13f01 3748 -- the new constrained subtype of the aggregate. In fact components
996ae0b0
RK
3749 -- which are of a composite type might be constrained by a
3750 -- discriminant, and we want to resolve Expr against the subtype were
3751 -- all discriminant occurrences are replaced with their actual value.
3752
3753 else
3754 New_C := First_Component (Etype (N));
3755 while Present (New_C) loop
3756 if Chars (New_C) = Chars (Component) then
3757 Expr_Type := Etype (New_C);
3758 exit;
3759 end if;
3760
3761 Next_Component (New_C);
3762 end loop;
3763
3764 pragma Assert (Present (Expr_Type));
3765
3766 -- For each range in an array type where a discriminant has been
3767 -- replaced with the constraint, check that this range is within
ec53a6da
JM
3768 -- the range of the base type. This checks is done in the init
3769 -- proc for regular objects, but has to be done here for
fbf5a39b 3770 -- aggregates since no init proc is called for them.
996ae0b0
RK
3771
3772 if Is_Array_Type (Expr_Type) then
3773 declare
7f9747c6 3774 Index : Node_Id;
ec53a6da 3775 -- Range of the current constrained index in the array
996ae0b0 3776
ec53a6da 3777 Orig_Index : Node_Id := First_Index (Etype (Component));
996ae0b0
RK
3778 -- Range corresponding to the range Index above in the
3779 -- original unconstrained record type. The bounds of this
3780 -- range may be governed by discriminants.
3781
3782 Unconstr_Index : Node_Id := First_Index (Etype (Expr_Type));
3783 -- Range corresponding to the range Index above for the
3784 -- unconstrained array type. This range is needed to apply
3785 -- range checks.
3786
3787 begin
7f9747c6 3788 Index := First_Index (Expr_Type);
996ae0b0
RK
3789 while Present (Index) loop
3790 if Depends_On_Discriminant (Orig_Index) then
3791 Apply_Range_Check (Index, Etype (Unconstr_Index));
3792 end if;
3793
3794 Next_Index (Index);
3795 Next_Index (Orig_Index);
3796 Next_Index (Unconstr_Index);
3797 end loop;
3798 end;
3799 end if;
3800 end if;
3801
3802 -- If the Parent pointer of Expr is not set, Expr is an expression
3803 -- duplicated by New_Tree_Copy (this happens for record aggregates
3804 -- that look like (Field1 | Filed2 => Expr) or (others => Expr)).
3805 -- Such a duplicated expression must be attached to the tree
3806 -- before analysis and resolution to enforce the rule that a tree
3807 -- fragment should never be analyzed or resolved unless it is
3808 -- attached to the current compilation unit.
3809
3810 if No (Parent (Expr)) then
3811 Set_Parent (Expr, N);
3812 Relocate := False;
3813 else
3814 Relocate := True;
3815 end if;
3816
3817 Analyze_And_Resolve (Expr, Expr_Type);
ca44152f 3818 Check_Expr_OK_In_Limited_Aggregate (Expr);
996ae0b0 3819 Check_Non_Static_Context (Expr);
fbf5a39b 3820 Check_Unset_Reference (Expr);
996ae0b0 3821
0c020dde
AC
3822 -- Check wrong use of class-wide types
3823
7b4db06c 3824 if Is_Class_Wide_Type (Etype (Expr)) then
0c020dde
AC
3825 Error_Msg_N ("dynamically tagged expression not allowed", Expr);
3826 end if;
3827
996ae0b0
RK
3828 if not Has_Expansion_Delayed (Expr) then
3829 Aggregate_Constraint_Checks (Expr, Expr_Type);
887d102a
AC
3830 end if;
3831
dec6faf1
AC
3832 -- If an aggregate component has a type with predicates, an explicit
3833 -- predicate check must be applied, as for an assignment statement,
3834 -- because the aggegate might not be expanded into individual
3835 -- component assignments.
3836
07eb872e
AC
3837 if Present (Predicate_Function (Expr_Type))
3838 and then Analyzed (Expr)
3839 then
887d102a 3840 Apply_Predicate_Check (Expr, Expr_Type);
996ae0b0
RK
3841 end if;
3842
3843 if Raises_Constraint_Error (Expr) then
3844 Set_Raises_Constraint_Error (N);
3845 end if;
3846
22243c12 3847 -- If the expression has been marked as requiring a range check, then
edab6088
RD
3848 -- generate it here. It's a bit odd to be generating such checks in
3849 -- the analyzer, but harmless since Generate_Range_Check does nothing
3850 -- (other than making sure Do_Range_Check is set) if the expander is
3851 -- not active.
d79e621a
GD
3852
3853 if Do_Range_Check (Expr) then
d79e621a
GD
3854 Generate_Range_Check (Expr, Expr_Type, CE_Range_Check_Failed);
3855 end if;
3856
937e9676
AC
3857 -- Add association Component => Expr if the caller requests it
3858
996ae0b0 3859 if Relocate then
0929eaeb
AC
3860 New_Expr := Relocate_Node (Expr);
3861
3862 -- Since New_Expr is not gonna be analyzed later on, we need to
3863 -- propagate here the dimensions form Expr to New_Expr.
3864
ba914484 3865 Copy_Dimensions (Expr, New_Expr);
d976bf74 3866
996ae0b0 3867 else
0929eaeb 3868 New_Expr := Expr;
996ae0b0 3869 end if;
0929eaeb
AC
3870
3871 Add_Association (New_C, New_Expr, New_Assoc_List);
996ae0b0
RK
3872 end Resolve_Aggr_Expr;
3873
937e9676
AC
3874 -- Local variables
3875
3876 Components : constant Elist_Id := New_Elmt_List;
3877 -- Components is the list of the record components whose value must be
3878 -- provided in the aggregate. This list does include discriminants.
3879
3880 Expr : Node_Id;
3881 Component : Entity_Id;
3882 Component_Elmt : Elmt_Id;
3883 Positional_Expr : Node_Id;
3884
996ae0b0
RK
3885 -- Start of processing for Resolve_Record_Aggregate
3886
3887 begin
2ba431e5 3888 -- A record aggregate is restricted in SPARK:
15918371 3889
bd65a2d7
AC
3890 -- Each named association can have only a single choice.
3891 -- OTHERS cannot be used.
3892 -- Positional and named associations cannot be mixed.
9f90d123 3893
fe5d3068
YM
3894 if Present (Component_Associations (N))
3895 and then Present (First (Component_Associations (N)))
9f90d123
AC
3896 then
3897 if Present (Expressions (N)) then
ce5ba43a 3898 Check_SPARK_05_Restriction
23685ae6 3899 ("named association cannot follow positional one",
9f90d123
AC
3900 First (Choices (First (Component_Associations (N)))));
3901 end if;
3902
3903 declare
3904 Assoc : Node_Id;
bd65a2d7 3905
9f90d123
AC
3906 begin
3907 Assoc := First (Component_Associations (N));
3908 while Present (Assoc) loop
3909 if List_Length (Choices (Assoc)) > 1 then
ce5ba43a 3910 Check_SPARK_05_Restriction
fe5d3068 3911 ("component association in record aggregate must "
9f90d123
AC
3912 & "contain a single choice", Assoc);
3913 end if;
bd65a2d7 3914
9f90d123 3915 if Nkind (First (Choices (Assoc))) = N_Others_Choice then
ce5ba43a 3916 Check_SPARK_05_Restriction
fe5d3068 3917 ("record aggregate cannot contain OTHERS", Assoc);
9f90d123 3918 end if;
bd65a2d7 3919
9f90d123
AC
3920 Assoc := Next (Assoc);
3921 end loop;
3922 end;
3923 end if;
3924
996ae0b0
RK
3925 -- We may end up calling Duplicate_Subexpr on expressions that are
3926 -- attached to New_Assoc_List. For this reason we need to attach it
3927 -- to the tree by setting its parent pointer to N. This parent point
3928 -- will change in STEP 8 below.
3929
3930 Set_Parent (New_Assoc_List, N);
3931
3932 -- STEP 1: abstract type and null record verification
3933
aad93b55 3934 if Is_Abstract_Type (Typ) then
996ae0b0
RK
3935 Error_Msg_N ("type of aggregate cannot be abstract", N);
3936 end if;
3937
3938 if No (First_Entity (Typ)) and then Null_Record_Present (N) then
3939 Set_Etype (N, Typ);
3940 return;
3941
3942 elsif Present (First_Entity (Typ))
3943 and then Null_Record_Present (N)
3944 and then not Is_Tagged_Type (Typ)
3945 then
3946 Error_Msg_N ("record aggregate cannot be null", N);
3947 return;
3948
eff332d9
GD
3949 -- If the type has no components, then the aggregate should either
3950 -- have "null record", or in Ada 2005 it could instead have a single
22243c12
RD
3951 -- component association given by "others => <>". For Ada 95 we flag an
3952 -- error at this point, but for Ada 2005 we proceed with checking the
3953 -- associations below, which will catch the case where it's not an
3954 -- aggregate with "others => <>". Note that the legality of a <>
eff332d9
GD
3955 -- aggregate for a null record type was established by AI05-016.
3956
3957 elsif No (First_Entity (Typ))
0791fbe9 3958 and then Ada_Version < Ada_2005
eff332d9 3959 then
996ae0b0
RK
3960 Error_Msg_N ("record aggregate must be null", N);
3961 return;
3962 end if;
3963
3964 -- STEP 2: Verify aggregate structure
3965
3966 Step_2 : declare
937e9676 3967 Assoc : Node_Id;
996ae0b0 3968 Bad_Aggregate : Boolean := False;
937e9676 3969 Selector_Name : Node_Id;
996ae0b0
RK
3970
3971 begin
3972 if Present (Component_Associations (N)) then
3973 Assoc := First (Component_Associations (N));
3974 else
3975 Assoc := Empty;
3976 end if;
3977
3978 while Present (Assoc) loop
3979 Selector_Name := First (Choices (Assoc));
3980 while Present (Selector_Name) loop
3981 if Nkind (Selector_Name) = N_Identifier then
3982 null;
3983
3984 elsif Nkind (Selector_Name) = N_Others_Choice then
3985 if Selector_Name /= First (Choices (Assoc))
3986 or else Present (Next (Selector_Name))
3987 then
ed2233dc 3988 Error_Msg_N
22cb89b5
AC
3989 ("OTHERS must appear alone in a choice list",
3990 Selector_Name);
996ae0b0
RK
3991 return;
3992
3993 elsif Present (Next (Assoc)) then
ed2233dc 3994 Error_Msg_N
22cb89b5
AC
3995 ("OTHERS must appear last in an aggregate",
3996 Selector_Name);
996ae0b0 3997 return;
1ab9541b 3998
885c4871 3999 -- (Ada 2005): If this is an association with a box,
1ab9541b
ES
4000 -- indicate that the association need not represent
4001 -- any component.
4002
4003 elsif Box_Present (Assoc) then
ec3c7387
AC
4004 Others_Box := 1;
4005 Box_Node := Assoc;
996ae0b0
RK
4006 end if;
4007
4008 else
4009 Error_Msg_N
4010 ("selector name should be identifier or OTHERS",
4011 Selector_Name);
4012 Bad_Aggregate := True;
4013 end if;
4014
4015 Next (Selector_Name);
4016 end loop;
4017
4018 Next (Assoc);
4019 end loop;
4020
4021 if Bad_Aggregate then
4022 return;
4023 end if;
4024 end Step_2;
4025
4026 -- STEP 3: Find discriminant Values
4027
4028 Step_3 : declare
4029 Discrim : Entity_Id;
4030 Missing_Discriminants : Boolean := False;
4031
4032 begin
4033 if Present (Expressions (N)) then
4034 Positional_Expr := First (Expressions (N));
4035 else
4036 Positional_Expr := Empty;
4037 end if;
4038
87729e5a 4039 -- AI05-0115: if the ancestor part is a subtype mark, the ancestor
33bd17e7 4040 -- must not have unknown discriminants.
87729e5a
AC
4041
4042 if Is_Derived_Type (Typ)
4043 and then Has_Unknown_Discriminants (Root_Type (Typ))
4044 and then Nkind (N) /= N_Extension_Aggregate
4045 then
4046 Error_Msg_NE
4047 ("aggregate not available for type& whose ancestor "
58009744 4048 & "has unknown discriminants ", N, Typ);
87729e5a
AC
4049 end if;
4050
9013065b
AC
4051 if Has_Unknown_Discriminants (Typ)
4052 and then Present (Underlying_Record_View (Typ))
4053 then
4054 Discrim := First_Discriminant (Underlying_Record_View (Typ));
4055 elsif Has_Discriminants (Typ) then
996ae0b0
RK
4056 Discrim := First_Discriminant (Typ);
4057 else
4058 Discrim := Empty;
4059 end if;
4060
4061 -- First find the discriminant values in the positional components
4062
4063 while Present (Discrim) and then Present (Positional_Expr) loop
937e9676 4064 if Discriminant_Present (Discrim) then
996ae0b0 4065 Resolve_Aggr_Expr (Positional_Expr, Discrim);
2820d220 4066
0ab80019 4067 -- Ada 2005 (AI-231)
2820d220 4068
0791fbe9 4069 if Ada_Version >= Ada_2005
8133b9d1 4070 and then Known_Null (Positional_Expr)
ec53a6da 4071 then
82c80734 4072 Check_Can_Never_Be_Null (Discrim, Positional_Expr);
2820d220
AC
4073 end if;
4074
996ae0b0
RK
4075 Next (Positional_Expr);
4076 end if;
4077
4078 if Present (Get_Value (Discrim, Component_Associations (N))) then
4079 Error_Msg_NE
4080 ("more than one value supplied for discriminant&",
4081 N, Discrim);
4082 end if;
4083
4084 Next_Discriminant (Discrim);
4085 end loop;
4086
50decc81 4087 -- Find remaining discriminant values if any among named components
996ae0b0
RK
4088
4089 while Present (Discrim) loop
4090 Expr := Get_Value (Discrim, Component_Associations (N), True);
4091
937e9676 4092 if not Discriminant_Present (Discrim) then
996ae0b0
RK
4093 if Present (Expr) then
4094 Error_Msg_NE
58009744 4095 ("more than one value supplied for discriminant &",
996ae0b0
RK
4096 N, Discrim);
4097 end if;
4098
4099 elsif No (Expr) then
4100 Error_Msg_NE
4101 ("no value supplied for discriminant &", N, Discrim);
4102 Missing_Discriminants := True;
4103
4104 else
4105 Resolve_Aggr_Expr (Expr, Discrim);
4106 end if;
4107
4108 Next_Discriminant (Discrim);
4109 end loop;
4110
4111 if Missing_Discriminants then
4112 return;
4113 end if;
4114
4115 -- At this point and until the beginning of STEP 6, New_Assoc_List
4116 -- contains only the discriminants and their values.
4117
4118 end Step_3;
4119
4120 -- STEP 4: Set the Etype of the record aggregate
4121
4122 -- ??? This code is pretty much a copy of Sem_Ch3.Build_Subtype. That
4123 -- routine should really be exported in sem_util or some such and used
4124 -- in sem_ch3 and here rather than have a copy of the code which is a
4125 -- maintenance nightmare.
4126
12a13f01 4127 -- ??? Performance WARNING. The current implementation creates a new
50decc81
RD
4128 -- itype for all aggregates whose base type is discriminated. This means
4129 -- that for record aggregates nested inside an array aggregate we will
4130 -- create a new itype for each record aggregate if the array component
4131 -- type has discriminants. For large aggregates this may be a problem.
4132 -- What should be done in this case is to reuse itypes as much as
4133 -- possible.
996ae0b0 4134
9013065b
AC
4135 if Has_Discriminants (Typ)
4136 or else (Has_Unknown_Discriminants (Typ)
58009744 4137 and then Present (Underlying_Record_View (Typ)))
9013065b 4138 then
996ae0b0 4139 Build_Constrained_Itype : declare
937e9676 4140 Constrs : constant List_Id := New_List;
996ae0b0 4141 Loc : constant Source_Ptr := Sloc (N);
937e9676 4142 Def_Id : Entity_Id;
996ae0b0 4143 Indic : Node_Id;
937e9676 4144 New_Assoc : Node_Id;
996ae0b0 4145 Subtyp_Decl : Node_Id;
996ae0b0
RK
4146
4147 begin
4148 New_Assoc := First (New_Assoc_List);
4149 while Present (New_Assoc) loop
937e9676 4150 Append_To (Constrs, Duplicate_Subexpr (Expression (New_Assoc)));
996ae0b0
RK
4151 Next (New_Assoc);
4152 end loop;
4153
9013065b
AC
4154 if Has_Unknown_Discriminants (Typ)
4155 and then Present (Underlying_Record_View (Typ))
4156 then
4157 Indic :=
4158 Make_Subtype_Indication (Loc,
4159 Subtype_Mark =>
4160 New_Occurrence_Of (Underlying_Record_View (Typ), Loc),
58009744 4161 Constraint =>
937e9676
AC
4162 Make_Index_Or_Discriminant_Constraint (Loc,
4163 Constraints => Constrs));
9013065b
AC
4164 else
4165 Indic :=
4166 Make_Subtype_Indication (Loc,
4167 Subtype_Mark =>
4168 New_Occurrence_Of (Base_Type (Typ), Loc),
58009744 4169 Constraint =>
937e9676
AC
4170 Make_Index_Or_Discriminant_Constraint (Loc,
4171 Constraints => Constrs));
9013065b 4172 end if;
996ae0b0
RK
4173
4174 Def_Id := Create_Itype (Ekind (Typ), N);
4175
4176 Subtyp_Decl :=
4177 Make_Subtype_Declaration (Loc,
4178 Defining_Identifier => Def_Id,
4179 Subtype_Indication => Indic);
4180 Set_Parent (Subtyp_Decl, Parent (N));
4181
ec53a6da 4182 -- Itypes must be analyzed with checks off (see itypes.ads)
996ae0b0
RK
4183
4184 Analyze (Subtyp_Decl, Suppress => All_Checks);
4185
4186 Set_Etype (N, Def_Id);
4187 Check_Static_Discriminated_Subtype
4188 (Def_Id, Expression (First (New_Assoc_List)));
4189 end Build_Constrained_Itype;
4190
4191 else
4192 Set_Etype (N, Typ);
4193 end if;
4194
4195 -- STEP 5: Get remaining components according to discriminant values
4196
4197 Step_5 : declare
937e9676
AC
4198 Dnode : Node_Id;
4199 Errors_Found : Boolean := False;
996ae0b0
RK
4200 Record_Def : Node_Id;
4201 Parent_Typ : Entity_Id;
996ae0b0
RK
4202 Parent_Typ_List : Elist_Id;
4203 Parent_Elmt : Elmt_Id;
937e9676 4204 Root_Typ : Entity_Id;
15918371 4205
996ae0b0
RK
4206 begin
4207 if Is_Derived_Type (Typ) and then Is_Tagged_Type (Typ) then
4208 Parent_Typ_List := New_Elmt_List;
4209
4210 -- If this is an extension aggregate, the component list must
965dbd5c
AC
4211 -- include all components that are not in the given ancestor type.
4212 -- Otherwise, the component list must include components of all
4213 -- ancestors, starting with the root.
996ae0b0
RK
4214
4215 if Nkind (N) = N_Extension_Aggregate then
7b4db06c 4216 Root_Typ := Base_Type (Etype (Ancestor_Part (N)));
69a0c174 4217
996ae0b0 4218 else
937e9676
AC
4219 -- AI05-0115: check legality of aggregate for type with a
4220 -- private ancestor.
87729e5a 4221
996ae0b0 4222 Root_Typ := Root_Type (Typ);
87729e5a
AC
4223 if Has_Private_Ancestor (Typ) then
4224 declare
4225 Ancestor : constant Entity_Id :=
937e9676 4226 Find_Private_Ancestor (Typ);
87729e5a 4227 Ancestor_Unit : constant Entity_Id :=
937e9676
AC
4228 Cunit_Entity
4229 (Get_Source_Unit (Ancestor));
87729e5a 4230 Parent_Unit : constant Entity_Id :=
937e9676
AC
4231 Cunit_Entity (Get_Source_Unit
4232 (Base_Type (Etype (Ancestor))));
87729e5a 4233 begin
58009744 4234 -- Check whether we are in a scope that has full view
87729e5a
AC
4235 -- over the private ancestor and its parent. This can
4236 -- only happen if the derivation takes place in a child
4237 -- unit of the unit that declares the parent, and we are
4238 -- in the private part or body of that child unit, else
4239 -- the aggregate is illegal.
4240
4241 if Is_Child_Unit (Ancestor_Unit)
4242 and then Scope (Ancestor_Unit) = Parent_Unit
4243 and then In_Open_Scopes (Scope (Ancestor))
4244 and then
4245 (In_Private_Part (Scope (Ancestor))
58009744 4246 or else In_Package_Body (Scope (Ancestor)))
87729e5a
AC
4247 then
4248 null;
4249
4250 else
4251 Error_Msg_NE
4252 ("type of aggregate has private ancestor&!",
58009744 4253 N, Root_Typ);
87729e5a
AC
4254 Error_Msg_N ("must use extension aggregate!", N);
4255 return;
4256 end if;
4257 end;
996ae0b0
RK
4258 end if;
4259
4260 Dnode := Declaration_Node (Base_Type (Root_Typ));
4261
4519314c
AC
4262 -- If we don't get a full declaration, then we have some error
4263 -- which will get signalled later so skip this part. Otherwise
4264 -- gather components of root that apply to the aggregate type.
4265 -- We use the base type in case there is an applicable stored
4266 -- constraint that renames the discriminants of the root.
996ae0b0
RK
4267
4268 if Nkind (Dnode) = N_Full_Type_Declaration then
4269 Record_Def := Type_Definition (Dnode);
15918371
AC
4270 Gather_Components
4271 (Base_Type (Typ),
4272 Component_List (Record_Def),
4273 Governed_By => New_Assoc_List,
4274 Into => Components,
4275 Report_Errors => Errors_Found);
4ffafd86
AC
4276
4277 if Errors_Found then
4278 Error_Msg_N
4279 ("discriminant controlling variant part is not static",
4280 N);
4281 return;
4282 end if;
996ae0b0
RK
4283 end if;
4284 end if;
4285
9013065b 4286 Parent_Typ := Base_Type (Typ);
996ae0b0 4287 while Parent_Typ /= Root_Typ loop
996ae0b0
RK
4288 Prepend_Elmt (Parent_Typ, To => Parent_Typ_List);
4289 Parent_Typ := Etype (Parent_Typ);
4290
fbf5a39b 4291 if Nkind (Parent (Base_Type (Parent_Typ))) =
996ae0b0 4292 N_Private_Type_Declaration
fbf5a39b
AC
4293 or else Nkind (Parent (Base_Type (Parent_Typ))) =
4294 N_Private_Extension_Declaration
996ae0b0
RK
4295 then
4296 if Nkind (N) /= N_Extension_Aggregate then
ed2233dc 4297 Error_Msg_NE
996ae0b0
RK
4298 ("type of aggregate has private ancestor&!",
4299 N, Parent_Typ);
ed2233dc 4300 Error_Msg_N ("must use extension aggregate!", N);
996ae0b0
RK
4301 return;
4302
4303 elsif Parent_Typ /= Root_Typ then
4304 Error_Msg_NE
4305 ("ancestor part of aggregate must be private type&",
4306 Ancestor_Part (N), Parent_Typ);
4307 return;
4308 end if;
4519314c
AC
4309
4310 -- The current view of ancestor part may be a private type,
4311 -- while the context type is always non-private.
4312
4313 elsif Is_Private_Type (Root_Typ)
4314 and then Present (Full_View (Root_Typ))
4315 and then Nkind (N) = N_Extension_Aggregate
4316 then
4317 exit when Base_Type (Full_View (Root_Typ)) = Parent_Typ;
996ae0b0
RK
4318 end if;
4319 end loop;
4320
bf06d37f
AC
4321 -- Now collect components from all other ancestors, beginning
4322 -- with the current type. If the type has unknown discriminants
349ff68f 4323 -- use the component list of the Underlying_Record_View, which
bf06d37f
AC
4324 -- needs to be used for the subsequent expansion of the aggregate
4325 -- into assignments.
996ae0b0
RK
4326
4327 Parent_Elmt := First_Elmt (Parent_Typ_List);
4328 while Present (Parent_Elmt) loop
4329 Parent_Typ := Node (Parent_Elmt);
bf06d37f
AC
4330
4331 if Has_Unknown_Discriminants (Parent_Typ)
4332 and then Present (Underlying_Record_View (Typ))
4333 then
4334 Parent_Typ := Underlying_Record_View (Parent_Typ);
4335 end if;
4336
996ae0b0
RK
4337 Record_Def := Type_Definition (Parent (Base_Type (Parent_Typ)));
4338 Gather_Components (Empty,
4339 Component_List (Record_Extension_Part (Record_Def)),
4340 Governed_By => New_Assoc_List,
4341 Into => Components,
4342 Report_Errors => Errors_Found);
4343
4344 Next_Elmt (Parent_Elmt);
4345 end loop;
4346
33bd17e7
ES
4347 -- Typ is not a derived tagged type
4348
996ae0b0 4349 else
6bde3eb5 4350 Record_Def := Type_Definition (Parent (Base_Type (Typ)));
996ae0b0
RK
4351
4352 if Null_Present (Record_Def) then
4353 null;
bf06d37f
AC
4354
4355 elsif not Has_Unknown_Discriminants (Typ) then
15918371
AC
4356 Gather_Components
4357 (Base_Type (Typ),
4358 Component_List (Record_Def),
4359 Governed_By => New_Assoc_List,
4360 Into => Components,
4361 Report_Errors => Errors_Found);
bf06d37f
AC
4362
4363 else
4364 Gather_Components
4365 (Base_Type (Underlying_Record_View (Typ)),
15918371
AC
4366 Component_List (Record_Def),
4367 Governed_By => New_Assoc_List,
4368 Into => Components,
4369 Report_Errors => Errors_Found);
996ae0b0
RK
4370 end if;
4371 end if;
4372
4373 if Errors_Found then
4374 return;
4375 end if;
4376 end Step_5;
4377
4378 -- STEP 6: Find component Values
4379
4380 Component := Empty;
4381 Component_Elmt := First_Elmt (Components);
4382
4383 -- First scan the remaining positional associations in the aggregate.
4384 -- Remember that at this point Positional_Expr contains the current
4385 -- positional association if any is left after looking for discriminant
4386 -- values in step 3.
4387
4388 while Present (Positional_Expr) and then Present (Component_Elmt) loop
4389 Component := Node (Component_Elmt);
4390 Resolve_Aggr_Expr (Positional_Expr, Component);
4391
0ab80019
AC
4392 -- Ada 2005 (AI-231)
4393
58009744 4394 if Ada_Version >= Ada_2005 and then Known_Null (Positional_Expr) then
82c80734 4395 Check_Can_Never_Be_Null (Component, Positional_Expr);
2820d220
AC
4396 end if;
4397
996ae0b0
RK
4398 if Present (Get_Value (Component, Component_Associations (N))) then
4399 Error_Msg_NE
4400 ("more than one value supplied for Component &", N, Component);
4401 end if;
4402
4403 Next (Positional_Expr);
4404 Next_Elmt (Component_Elmt);
4405 end loop;
4406
4407 if Present (Positional_Expr) then
4408 Error_Msg_N
4409 ("too many components for record aggregate", Positional_Expr);
4410 end if;
4411
4412 -- Now scan for the named arguments of the aggregate
4413
4414 while Present (Component_Elmt) loop
4415 Component := Node (Component_Elmt);
4416 Expr := Get_Value (Component, Component_Associations (N), True);
4417
9b96e234 4418 -- Note: The previous call to Get_Value sets the value of the
f91e8020 4419 -- variable Is_Box_Present.
65356e64 4420
9b96e234
JM
4421 -- Ada 2005 (AI-287): Handle components with default initialization.
4422 -- Note: This feature was originally added to Ada 2005 for limited
4423 -- but it was finally allowed with any type.
65356e64 4424
9b96e234 4425 if Is_Box_Present then
f91e8020
GD
4426 Check_Box_Component : declare
4427 Ctyp : constant Entity_Id := Etype (Component);
9b96e234
JM
4428
4429 begin
c7ce71c2 4430 -- If there is a default expression for the aggregate, copy
0df7e2d0
AC
4431 -- it into a new association. This copy must modify the scopes
4432 -- of internal types that may be attached to the expression
4433 -- (e.g. index subtypes of arrays) because in general the type
4434 -- declaration and the aggregate appear in different scopes,
4435 -- and the backend requires the scope of the type to match the
4436 -- point at which it is elaborated.
c7ce71c2 4437
9b96e234
JM
4438 -- If the component has an initialization procedure (IP) we
4439 -- pass the component to the expander, which will generate
4440 -- the call to such IP.
4441
c7ce71c2
ES
4442 -- If the component has discriminants, their values must
4443 -- be taken from their subtype. This is indispensable for
4444 -- constraints that are given by the current instance of an
50decc81
RD
4445 -- enclosing type, to allow the expansion of the aggregate to
4446 -- replace the reference to the current instance by the target
4447 -- object of the aggregate.
c7ce71c2
ES
4448
4449 if Present (Parent (Component))
937e9676 4450 and then Nkind (Parent (Component)) = N_Component_Declaration
c7ce71c2 4451 and then Present (Expression (Parent (Component)))
aad93b55 4452 then
c7ce71c2 4453 Expr :=
ba914484 4454 New_Copy_Tree_And_Copy_Dimensions
2293611f
AC
4455 (Expression (Parent (Component)),
4456 New_Scope => Current_Scope,
4457 New_Sloc => Sloc (N));
c7ce71c2 4458
9b96e234 4459 Add_Association
107b023c
AC
4460 (Component => Component,
4461 Expr => Expr,
4462 Assoc_List => New_Assoc_List);
c7ce71c2
ES
4463 Set_Has_Self_Reference (N);
4464
f91e8020
GD
4465 -- A box-defaulted access component gets the value null. Also
4466 -- included are components of private types whose underlying
c80d4855
RD
4467 -- type is an access type. In either case set the type of the
4468 -- literal, for subsequent use in semantic checks.
f91e8020
GD
4469
4470 elsif Present (Underlying_Type (Ctyp))
4471 and then Is_Access_Type (Underlying_Type (Ctyp))
4472 then
f91e8020
GD
4473 -- If the component's type is private with an access type as
4474 -- its underlying type then we have to create an unchecked
4475 -- conversion to satisfy type checking.
4476
937e9676 4477 if Is_Private_Type (Ctyp) then
f91e8020
GD
4478 declare
4479 Qual_Null : constant Node_Id :=
4480 Make_Qualified_Expression (Sloc (N),
4481 Subtype_Mark =>
4482 New_Occurrence_Of
4483 (Underlying_Type (Ctyp), Sloc (N)),
937e9676 4484 Expression => Make_Null (Sloc (N)));
f91e8020
GD
4485
4486 Convert_Null : constant Node_Id :=
4487 Unchecked_Convert_To
4488 (Ctyp, Qual_Null);
4489
4490 begin
4491 Analyze_And_Resolve (Convert_Null, Ctyp);
4492 Add_Association
107b023c
AC
4493 (Component => Component,
4494 Expr => Convert_Null,
4495 Assoc_List => New_Assoc_List);
f91e8020 4496 end;
937e9676
AC
4497
4498 -- Otherwise the component type is non-private
4499
4500 else
4501 Expr := Make_Null (Sloc (N));
4502 Set_Etype (Expr, Ctyp);
4503
4504 Add_Association
4505 (Component => Component,
4506 Expr => Expr,
4507 Assoc_List => New_Assoc_List);
f91e8020
GD
4508 end if;
4509
7610fee8
AC
4510 -- Ada 2012: If component is scalar with default value, use it
4511
4512 elsif Is_Scalar_Type (Ctyp)
4513 and then Has_Default_Aspect (Ctyp)
4514 then
4515 Add_Association
4516 (Component => Component,
937e9676
AC
4517 Expr =>
4518 Default_Aspect_Value
4519 (First_Subtype (Underlying_Type (Ctyp))),
7610fee8
AC
4520 Assoc_List => New_Assoc_List);
4521
c7ce71c2
ES
4522 elsif Has_Non_Null_Base_Init_Proc (Ctyp)
4523 or else not Expander_Active
4524 then
4525 if Is_Record_Type (Ctyp)
4526 and then Has_Discriminants (Ctyp)
6bde3eb5 4527 and then not Is_Private_Type (Ctyp)
c7ce71c2
ES
4528 then
4529 -- We build a partially initialized aggregate with the
4530 -- values of the discriminants and box initialization
8133b9d1 4531 -- for the rest, if other components are present.
c7e152b5 4532
51ec70b8 4533 -- The type of the aggregate is the known subtype of
937e9676
AC
4534 -- the component. The capture of discriminants must be
4535 -- recursive because subcomponents may be constrained
107b023c 4536 -- (transitively) by discriminants of enclosing types.
6bde3eb5
AC
4537 -- For a private type with discriminants, a call to the
4538 -- initialization procedure will be generated, and no
4539 -- subaggregate is needed.
c7ce71c2 4540
107b023c 4541 Capture_Discriminants : declare
719aaf4d
AC
4542 Loc : constant Source_Ptr := Sloc (N);
4543 Expr : Node_Id;
c7ce71c2 4544
107b023c
AC
4545 begin
4546 Expr := Make_Aggregate (Loc, New_List, New_List);
4547 Set_Etype (Expr, Ctyp);
4548
3786bbd1
RD
4549 -- If the enclosing type has discriminants, they have
4550 -- been collected in the aggregate earlier, and they
4551 -- may appear as constraints of subcomponents.
4552
107b023c 4553 -- Similarly if this component has discriminants, they
2be0bff8 4554 -- might in turn be propagated to their components.
107b023c
AC
4555
4556 if Has_Discriminants (Typ) then
4557 Add_Discriminant_Values (Expr, New_Assoc_List);
105b5e65 4558 Propagate_Discriminants (Expr, New_Assoc_List);
107b023c
AC
4559
4560 elsif Has_Discriminants (Ctyp) then
4561 Add_Discriminant_Values
937e9676 4562 (Expr, Component_Associations (Expr));
107b023c 4563 Propagate_Discriminants
937e9676 4564 (Expr, Component_Associations (Expr));
107b023c
AC
4565
4566 else
4567 declare
719aaf4d 4568 Comp : Entity_Id;
107b023c
AC
4569
4570 begin
4571 -- If the type has additional components, create
2be0bff8 4572 -- an OTHERS box association for them.
107b023c
AC
4573
4574 Comp := First_Component (Ctyp);
4575 while Present (Comp) loop
4576 if Ekind (Comp) = E_Component then
4577 if not Is_Record_Type (Etype (Comp)) then
37368818
RD
4578 Append_To
4579 (Component_Associations (Expr),
4580 Make_Component_Association (Loc,
107b023c 4581 Choices =>
58009744
AC
4582 New_List (
4583 Make_Others_Choice (Loc)),
107b023c 4584 Expression => Empty,
58009744 4585 Box_Present => True));
107b023c 4586 end if;
937e9676 4587
107b023c
AC
4588 exit;
4589 end if;
4590
4591 Next_Component (Comp);
4592 end loop;
4593 end;
4594 end if;
c7ce71c2
ES
4595
4596 Add_Association
107b023c
AC
4597 (Component => Component,
4598 Expr => Expr,
4599 Assoc_List => New_Assoc_List);
4600 end Capture_Discriminants;
c7ce71c2 4601
937e9676
AC
4602 -- Otherwise the component type is not a record, or it has
4603 -- not discriminants, or it is private.
4604
c7ce71c2
ES
4605 else
4606 Add_Association
4607 (Component => Component,
4608 Expr => Empty,
107b023c 4609 Assoc_List => New_Assoc_List,
c7ce71c2
ES
4610 Is_Box_Present => True);
4611 end if;
9b96e234
JM
4612
4613 -- Otherwise we only need to resolve the expression if the
4614 -- component has partially initialized values (required to
4615 -- expand the corresponding assignments and run-time checks).
4616
4617 elsif Present (Expr)
f91e8020 4618 and then Is_Partially_Initialized_Type (Ctyp)
9b96e234
JM
4619 then
4620 Resolve_Aggr_Expr (Expr, Component);
4621 end if;
f91e8020 4622 end Check_Box_Component;
615cbd95 4623
65356e64 4624 elsif No (Expr) then
c7ce71c2
ES
4625
4626 -- Ignore hidden components associated with the position of the
4627 -- interface tags: these are initialized dynamically.
4628
c80d4855 4629 if not Present (Related_Type (Component)) then
c7ce71c2
ES
4630 Error_Msg_NE
4631 ("no value supplied for component &!", N, Component);
4632 end if;
615cbd95 4633
996ae0b0
RK
4634 else
4635 Resolve_Aggr_Expr (Expr, Component);
4636 end if;
4637
4638 Next_Elmt (Component_Elmt);
4639 end loop;
4640
4641 -- STEP 7: check for invalid components + check type in choice list
4642
4643 Step_7 : declare
937e9676
AC
4644 Assoc : Node_Id;
4645 New_Assoc : Node_Id;
4646
996ae0b0
RK
4647 Selectr : Node_Id;
4648 -- Selector name
4649
9b96e234 4650 Typech : Entity_Id;
996ae0b0
RK
4651 -- Type of first component in choice list
4652
4653 begin
4654 if Present (Component_Associations (N)) then
4655 Assoc := First (Component_Associations (N));
4656 else
4657 Assoc := Empty;
4658 end if;
4659
4660 Verification : while Present (Assoc) loop
4661 Selectr := First (Choices (Assoc));
4662 Typech := Empty;
4663
4664 if Nkind (Selectr) = N_Others_Choice then
19f0526a 4665
9b96e234 4666 -- Ada 2005 (AI-287): others choice may have expression or box
19f0526a 4667
ec3c7387 4668 if No (Others_Etype) and then Others_Box = 0 then
ed2233dc 4669 Error_Msg_N
996ae0b0 4670 ("OTHERS must represent at least one component", Selectr);
ec3c7387
AC
4671
4672 elsif Others_Box = 1 and then Warn_On_Redundant_Constructs then
4673 Error_Msg_N ("others choice is redundant?", Box_Node);
bd717ec9
AC
4674 Error_Msg_N
4675 ("\previous choices cover all components?", Box_Node);
996ae0b0
RK
4676 end if;
4677
4678 exit Verification;
4679 end if;
4680
4681 while Present (Selectr) loop
4682 New_Assoc := First (New_Assoc_List);
4683 while Present (New_Assoc) loop
4684 Component := First (Choices (New_Assoc));
6989bc1f
AC
4685
4686 if Chars (Selectr) = Chars (Component) then
4687 if Style_Check then
4688 Check_Identifier (Selectr, Entity (Component));
4689 end if;
4690
4691 exit;
4692 end if;
4693
996ae0b0
RK
4694 Next (New_Assoc);
4695 end loop;
4696
c7e152b5
AC
4697 -- If no association, this is not a legal component of the type
4698 -- in question, unless its association is provided with a box.
996ae0b0
RK
4699
4700 if No (New_Assoc) then
65356e64 4701 if Box_Present (Parent (Selectr)) then
aad93b55
ES
4702
4703 -- This may still be a bogus component with a box. Scan
4704 -- list of components to verify that a component with
4705 -- that name exists.
4706
4707 declare
4708 C : Entity_Id;
4709
4710 begin
4711 C := First_Component (Typ);
4712 while Present (C) loop
4713 if Chars (C) = Chars (Selectr) then
ca44152f
ES
4714
4715 -- If the context is an extension aggregate,
4716 -- the component must not be inherited from
4717 -- the ancestor part of the aggregate.
4718
4719 if Nkind (N) /= N_Extension_Aggregate
4720 or else
4721 Scope (Original_Record_Component (C)) /=
937e9676 4722 Etype (Ancestor_Part (N))
ca44152f
ES
4723 then
4724 exit;
4725 end if;
aad93b55
ES
4726 end if;
4727
4728 Next_Component (C);
4729 end loop;
4730
4731 if No (C) then
4732 Error_Msg_Node_2 := Typ;
4733 Error_Msg_N ("& is not a component of}", Selectr);
4734 end if;
4735 end;
996ae0b0 4736
65356e64 4737 elsif Chars (Selectr) /= Name_uTag
996ae0b0 4738 and then Chars (Selectr) /= Name_uParent
996ae0b0
RK
4739 then
4740 if not Has_Discriminants (Typ) then
4741 Error_Msg_Node_2 := Typ;
aad93b55 4742 Error_Msg_N ("& is not a component of}", Selectr);
996ae0b0
RK
4743 else
4744 Error_Msg_N
4745 ("& is not a component of the aggregate subtype",
4746 Selectr);
4747 end if;
4748
4749 Check_Misspelled_Component (Components, Selectr);
4750 end if;
4751
4752 elsif No (Typech) then
4753 Typech := Base_Type (Etype (Component));
4754
feab3549 4755 -- AI05-0199: In Ada 2012, several components of anonymous
8da337c5
AC
4756 -- access types can appear in a choice list, as long as the
4757 -- designated types match.
4758
996ae0b0 4759 elsif Typech /= Base_Type (Etype (Component)) then
dbe945f1 4760 if Ada_Version >= Ada_2012
8da337c5
AC
4761 and then Ekind (Typech) = E_Anonymous_Access_Type
4762 and then
4763 Ekind (Etype (Component)) = E_Anonymous_Access_Type
4764 and then Base_Type (Designated_Type (Typech)) =
4765 Base_Type (Designated_Type (Etype (Component)))
4766 and then
4767 Subtypes_Statically_Match (Typech, (Etype (Component)))
4768 then
4769 null;
4770
4771 elsif not Box_Present (Parent (Selectr)) then
65356e64
AC
4772 Error_Msg_N
4773 ("components in choice list must have same type",
4774 Selectr);
4775 end if;
996ae0b0
RK
4776 end if;
4777
4778 Next (Selectr);
4779 end loop;
4780
4781 Next (Assoc);
4782 end loop Verification;
4783 end Step_7;
4784
4785 -- STEP 8: replace the original aggregate
4786
4787 Step_8 : declare
fbf5a39b 4788 New_Aggregate : constant Node_Id := New_Copy (N);
996ae0b0
RK
4789
4790 begin
4791 Set_Expressions (New_Aggregate, No_List);
4792 Set_Etype (New_Aggregate, Etype (N));
4793 Set_Component_Associations (New_Aggregate, New_Assoc_List);
288cbbbd 4794 Set_Check_Actuals (New_Aggregate, Check_Actuals (N));
996ae0b0
RK
4795
4796 Rewrite (N, New_Aggregate);
4797 end Step_8;
0929eaeb 4798
d976bf74 4799 -- Check the dimensions of the components in the record aggregate
0929eaeb
AC
4800
4801 Analyze_Dimension_Extension_Or_Record_Aggregate (N);
996ae0b0
RK
4802 end Resolve_Record_Aggregate;
4803
2820d220
AC
4804 -----------------------------
4805 -- Check_Can_Never_Be_Null --
4806 -----------------------------
4807
9b96e234 4808 procedure Check_Can_Never_Be_Null (Typ : Entity_Id; Expr : Node_Id) is
ec53a6da
JM
4809 Comp_Typ : Entity_Id;
4810
2820d220 4811 begin
9b96e234 4812 pragma Assert
0791fbe9 4813 (Ada_Version >= Ada_2005
9b96e234 4814 and then Present (Expr)
8133b9d1 4815 and then Known_Null (Expr));
82c80734 4816
ec53a6da
JM
4817 case Ekind (Typ) is
4818 when E_Array_Type =>
4819 Comp_Typ := Component_Type (Typ);
4820
d8f43ee6
HK
4821 when E_Component
4822 | E_Discriminant
4823 =>
ec53a6da
JM
4824 Comp_Typ := Etype (Typ);
4825
4826 when others =>
4827 return;
4828 end case;
4829
9b96e234
JM
4830 if Can_Never_Be_Null (Comp_Typ) then
4831
4832 -- Here we know we have a constraint error. Note that we do not use
4833 -- Apply_Compile_Time_Constraint_Error here to the Expr, which might
4834 -- seem the more natural approach. That's because in some cases the
4835 -- components are rewritten, and the replacement would be missed.
5a521b8a
AC
4836 -- We do not mark the whole aggregate as raising a constraint error,
4837 -- because the association may be a null array range.
9b96e234 4838
5a521b8a
AC
4839 Error_Msg_N
4840 ("(Ada 2005) null not allowed in null-excluding component??", Expr);
4841 Error_Msg_N
b785e0b8 4842 ("\Constraint_Error will be raised at run time??", Expr);
9b96e234 4843
5a521b8a
AC
4844 Rewrite (Expr,
4845 Make_Raise_Constraint_Error
4846 (Sloc (Expr), Reason => CE_Access_Check_Failed));
9b96e234
JM
4847 Set_Etype (Expr, Comp_Typ);
4848 Set_Analyzed (Expr);
2820d220
AC
4849 end if;
4850 end Check_Can_Never_Be_Null;
4851
996ae0b0
RK
4852 ---------------------
4853 -- Sort_Case_Table --
4854 ---------------------
4855
4856 procedure Sort_Case_Table (Case_Table : in out Case_Table_Type) is
fbf5a39b 4857 U : constant Int := Case_Table'Last;
996ae0b0
RK
4858 K : Int;
4859 J : Int;
4860 T : Case_Bounds;
4861
4862 begin
82893775
AC
4863 K := 1;
4864 while K < U loop
996ae0b0 4865 T := Case_Table (K + 1);
996ae0b0 4866
7f9747c6 4867 J := K + 1;
82893775
AC
4868 while J > 1
4869 and then Expr_Value (Case_Table (J - 1).Lo) > Expr_Value (T.Lo)
996ae0b0
RK
4870 loop
4871 Case_Table (J) := Case_Table (J - 1);
4872 J := J - 1;
4873 end loop;
4874
4875 Case_Table (J) := T;
4876 K := K + 1;
4877 end loop;
4878 end Sort_Case_Table;
4879
4880end Sem_Aggr;
This page took 5.952797 seconds and 5 git commands to generate.