]> gcc.gnu.org Git - gcc.git/blame - gcc/ada/sem_aggr.adb
configure.ac: Test for executability of GFORTRAN.
[gcc.git] / gcc / ada / sem_aggr.adb
CommitLineData
996ae0b0
RK
1------------------------------------------------------------------------------
2-- --
3-- GNAT COMPILER COMPONENTS --
4-- --
5-- S E M _ A G G R --
6-- --
7-- B o d y --
8-- --
6d2a1120 9-- Copyright (C) 1992-2009, Free Software Foundation, Inc. --
996ae0b0
RK
10-- --
11-- GNAT is free software; you can redistribute it and/or modify it under --
12-- terms of the GNU General Public License as published by the Free Soft- --
157a9bf5 13-- ware Foundation; either version 3, or (at your option) any later ver- --
996ae0b0
RK
14-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16-- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17-- for more details. You should have received a copy of the GNU General --
157a9bf5
ES
18-- Public License distributed with GNAT; see file COPYING3. If not, go to --
19-- http://www.gnu.org/licenses for a complete copy of the license. --
996ae0b0
RK
20-- --
21-- GNAT was originally developed by the GNAT team at New York University. --
71ff80dc 22-- Extensive contributions were provided by Ada Core Technologies Inc. --
996ae0b0
RK
23-- --
24------------------------------------------------------------------------------
25
26with Atree; use Atree;
27with Checks; use Checks;
28with Einfo; use Einfo;
29with Elists; use Elists;
30with Errout; use Errout;
4755cce9 31with Expander; use Expander;
52739835 32with Exp_Tss; use Exp_Tss;
996ae0b0
RK
33with Exp_Util; use Exp_Util;
34with Freeze; use Freeze;
35with Itypes; use Itypes;
c7ce71c2 36with Lib; use Lib;
fbf5a39b 37with Lib.Xref; use Lib.Xref;
996ae0b0 38with Namet; use Namet;
c80d4855 39with Namet.Sp; use Namet.Sp;
996ae0b0
RK
40with Nmake; use Nmake;
41with Nlists; use Nlists;
42with Opt; use Opt;
43with Sem; use Sem;
a4100e55 44with Sem_Aux; use Sem_Aux;
996ae0b0 45with Sem_Cat; use Sem_Cat;
88b32fc3 46with Sem_Ch3; use Sem_Ch3;
996ae0b0
RK
47with Sem_Ch13; use Sem_Ch13;
48with Sem_Eval; use Sem_Eval;
49with Sem_Res; use Sem_Res;
50with Sem_Util; use Sem_Util;
51with Sem_Type; use Sem_Type;
fbf5a39b 52with Sem_Warn; use Sem_Warn;
996ae0b0
RK
53with Sinfo; use Sinfo;
54with Snames; use Snames;
55with Stringt; use Stringt;
56with Stand; use Stand;
fbf5a39b 57with Targparm; use Targparm;
996ae0b0
RK
58with Tbuild; use Tbuild;
59with Uintp; use Uintp;
60
996ae0b0
RK
61package body Sem_Aggr is
62
63 type Case_Bounds is record
64 Choice_Lo : Node_Id;
65 Choice_Hi : Node_Id;
66 Choice_Node : Node_Id;
67 end record;
68
69 type Case_Table_Type is array (Nat range <>) of Case_Bounds;
70 -- Table type used by Check_Case_Choices procedure
71
72 -----------------------
73 -- Local Subprograms --
74 -----------------------
75
76 procedure Sort_Case_Table (Case_Table : in out Case_Table_Type);
77 -- Sort the Case Table using the Lower Bound of each Choice as the key.
78 -- A simple insertion sort is used since the number of choices in a case
79 -- statement of variant part will usually be small and probably in near
80 -- sorted order.
81
9b96e234
JM
82 procedure Check_Can_Never_Be_Null (Typ : Entity_Id; Expr : Node_Id);
83 -- Ada 2005 (AI-231): Check bad usage of null for a component for which
84 -- null exclusion (NOT NULL) is specified. Typ can be an E_Array_Type for
85 -- the array case (the component type of the array will be used) or an
86 -- E_Component/E_Discriminant entity in the record case, in which case the
87 -- type of the component will be used for the test. If Typ is any other
88 -- kind of entity, the call is ignored. Expr is the component node in the
8133b9d1 89 -- aggregate which is known to have a null value. A warning message will be
9b96e234
JM
90 -- issued if the component is null excluding.
91 --
92 -- It would be better to pass the proper type for Typ ???
2820d220 93
ca44152f
ES
94 procedure Check_Expr_OK_In_Limited_Aggregate (Expr : Node_Id);
95 -- Check that Expr is either not limited or else is one of the cases of
96 -- expressions allowed for a limited component association (namely, an
97 -- aggregate, function call, or <> notation). Report error for violations.
98
996ae0b0
RK
99 ------------------------------------------------------
100 -- Subprograms used for RECORD AGGREGATE Processing --
101 ------------------------------------------------------
102
103 procedure Resolve_Record_Aggregate (N : Node_Id; Typ : Entity_Id);
104 -- This procedure performs all the semantic checks required for record
105 -- aggregates. Note that for aggregates analysis and resolution go
106 -- hand in hand. Aggregate analysis has been delayed up to here and
107 -- it is done while resolving the aggregate.
108 --
109 -- N is the N_Aggregate node.
110 -- Typ is the record type for the aggregate resolution
111 --
9b96e234
JM
112 -- While performing the semantic checks, this procedure builds a new
113 -- Component_Association_List where each record field appears alone in a
114 -- Component_Choice_List along with its corresponding expression. The
115 -- record fields in the Component_Association_List appear in the same order
116 -- in which they appear in the record type Typ.
996ae0b0 117 --
9b96e234
JM
118 -- Once this new Component_Association_List is built and all the semantic
119 -- checks performed, the original aggregate subtree is replaced with the
120 -- new named record aggregate just built. Note that subtree substitution is
121 -- performed with Rewrite so as to be able to retrieve the original
122 -- aggregate.
996ae0b0
RK
123 --
124 -- The aggregate subtree manipulation performed by Resolve_Record_Aggregate
125 -- yields the aggregate format expected by Gigi. Typically, this kind of
126 -- tree manipulations are done in the expander. However, because the
9b96e234
JM
127 -- semantic checks that need to be performed on record aggregates really go
128 -- hand in hand with the record aggregate normalization, the aggregate
996ae0b0 129 -- subtree transformation is performed during resolution rather than
9b96e234
JM
130 -- expansion. Had we decided otherwise we would have had to duplicate most
131 -- of the code in the expansion procedure Expand_Record_Aggregate. Note,
c7ce71c2 132 -- however, that all the expansion concerning aggregates for tagged records
9b96e234 133 -- is done in Expand_Record_Aggregate.
996ae0b0
RK
134 --
135 -- The algorithm of Resolve_Record_Aggregate proceeds as follows:
136 --
137 -- 1. Make sure that the record type against which the record aggregate
c9a1acdc
AC
138 -- has to be resolved is not abstract. Furthermore if the type is a
139 -- null aggregate make sure the input aggregate N is also null.
996ae0b0
RK
140 --
141 -- 2. Verify that the structure of the aggregate is that of a record
142 -- aggregate. Specifically, look for component associations and ensure
143 -- that each choice list only has identifiers or the N_Others_Choice
144 -- node. Also make sure that if present, the N_Others_Choice occurs
145 -- last and by itself.
146 --
c9a1acdc
AC
147 -- 3. If Typ contains discriminants, the values for each discriminant is
148 -- looked for. If the record type Typ has variants, we check that the
149 -- expressions corresponding to each discriminant ruling the (possibly
150 -- nested) variant parts of Typ, are static. This allows us to determine
151 -- the variant parts to which the rest of the aggregate must conform.
152 -- The names of discriminants with their values are saved in a new
153 -- association list, New_Assoc_List which is later augmented with the
154 -- names and values of the remaining components in the record type.
996ae0b0
RK
155 --
156 -- During this phase we also make sure that every discriminant is
c9a1acdc
AC
157 -- assigned exactly one value. Note that when several values for a given
158 -- discriminant are found, semantic processing continues looking for
159 -- further errors. In this case it's the first discriminant value found
160 -- which we will be recorded.
996ae0b0
RK
161 --
162 -- IMPORTANT NOTE: For derived tagged types this procedure expects
163 -- First_Discriminant and Next_Discriminant to give the correct list
164 -- of discriminants, in the correct order.
165 --
c9a1acdc
AC
166 -- 4. After all the discriminant values have been gathered, we can set the
167 -- Etype of the record aggregate. If Typ contains no discriminants this
168 -- is straightforward: the Etype of N is just Typ, otherwise a new
169 -- implicit constrained subtype of Typ is built to be the Etype of N.
996ae0b0
RK
170 --
171 -- 5. Gather the remaining record components according to the discriminant
172 -- values. This involves recursively traversing the record type
173 -- structure to see what variants are selected by the given discriminant
174 -- values. This processing is a little more convoluted if Typ is a
175 -- derived tagged types since we need to retrieve the record structure
176 -- of all the ancestors of Typ.
177 --
c9a1acdc
AC
178 -- 6. After gathering the record components we look for their values in the
179 -- record aggregate and emit appropriate error messages should we not
180 -- find such values or should they be duplicated.
181 --
182 -- 7. We then make sure no illegal component names appear in the record
183 -- aggregate and make sure that the type of the record components
184 -- appearing in a same choice list is the same. Finally we ensure that
185 -- the others choice, if present, is used to provide the value of at
186 -- least a record component.
187 --
188 -- 8. The original aggregate node is replaced with the new named aggregate
189 -- built in steps 3 through 6, as explained earlier.
190 --
191 -- Given the complexity of record aggregate resolution, the primary goal of
192 -- this routine is clarity and simplicity rather than execution and storage
193 -- efficiency. If there are only positional components in the aggregate the
194 -- running time is linear. If there are associations the running time is
195 -- still linear as long as the order of the associations is not too far off
196 -- the order of the components in the record type. If this is not the case
197 -- the running time is at worst quadratic in the size of the association
198 -- list.
996ae0b0
RK
199
200 procedure Check_Misspelled_Component
9c290e69
PO
201 (Elements : Elist_Id;
202 Component : Node_Id);
c9a1acdc
AC
203 -- Give possible misspelling diagnostic if Component is likely to be a
204 -- misspelling of one of the components of the Assoc_List. This is called
205 -- by Resolve_Aggr_Expr after producing an invalid component error message.
996ae0b0
RK
206
207 procedure Check_Static_Discriminated_Subtype (T : Entity_Id; V : Node_Id);
c9a1acdc
AC
208 -- An optimization: determine whether a discriminated subtype has a static
209 -- constraint, and contains array components whose length is also static,
210 -- either because they are constrained by the discriminant, or because the
211 -- original component bounds are static.
996ae0b0
RK
212
213 -----------------------------------------------------
214 -- Subprograms used for ARRAY AGGREGATE Processing --
215 -----------------------------------------------------
216
217 function Resolve_Array_Aggregate
218 (N : Node_Id;
219 Index : Node_Id;
220 Index_Constr : Node_Id;
221 Component_Typ : Entity_Id;
ca44152f 222 Others_Allowed : Boolean) return Boolean;
996ae0b0
RK
223 -- This procedure performs the semantic checks for an array aggregate.
224 -- True is returned if the aggregate resolution succeeds.
ca44152f 225 --
996ae0b0 226 -- The procedure works by recursively checking each nested aggregate.
9f4fd324 227 -- Specifically, after checking a sub-aggregate nested at the i-th level
996ae0b0
RK
228 -- we recursively check all the subaggregates at the i+1-st level (if any).
229 -- Note that for aggregates analysis and resolution go hand in hand.
230 -- Aggregate analysis has been delayed up to here and it is done while
231 -- resolving the aggregate.
232 --
233 -- N is the current N_Aggregate node to be checked.
234 --
235 -- Index is the index node corresponding to the array sub-aggregate that
236 -- we are currently checking (RM 4.3.3 (8)). Its Etype is the
237 -- corresponding index type (or subtype).
238 --
239 -- Index_Constr is the node giving the applicable index constraint if
240 -- any (RM 4.3.3 (10)). It "is a constraint provided by certain
241 -- contexts [...] that can be used to determine the bounds of the array
242 -- value specified by the aggregate". If Others_Allowed below is False
243 -- there is no applicable index constraint and this node is set to Index.
244 --
245 -- Component_Typ is the array component type.
246 --
247 -- Others_Allowed indicates whether an others choice is allowed
248 -- in the context where the top-level aggregate appeared.
249 --
250 -- The algorithm of Resolve_Array_Aggregate proceeds as follows:
251 --
252 -- 1. Make sure that the others choice, if present, is by itself and
253 -- appears last in the sub-aggregate. Check that we do not have
254 -- positional and named components in the array sub-aggregate (unless
255 -- the named association is an others choice). Finally if an others
12a13f01 256 -- choice is present, make sure it is allowed in the aggregate context.
996ae0b0
RK
257 --
258 -- 2. If the array sub-aggregate contains discrete_choices:
259 --
260 -- (A) Verify their validity. Specifically verify that:
261 --
262 -- (a) If a null range is present it must be the only possible
263 -- choice in the array aggregate.
264 --
265 -- (b) Ditto for a non static range.
266 --
267 -- (c) Ditto for a non static expression.
268 --
269 -- In addition this step analyzes and resolves each discrete_choice,
270 -- making sure that its type is the type of the corresponding Index.
271 -- If we are not at the lowest array aggregate level (in the case of
272 -- multi-dimensional aggregates) then invoke Resolve_Array_Aggregate
273 -- recursively on each component expression. Otherwise, resolve the
274 -- bottom level component expressions against the expected component
275 -- type ONLY IF the component corresponds to a single discrete choice
276 -- which is not an others choice (to see why read the DELAYED
277 -- COMPONENT RESOLUTION below).
278 --
279 -- (B) Determine the bounds of the sub-aggregate and lowest and
280 -- highest choice values.
281 --
282 -- 3. For positional aggregates:
283 --
284 -- (A) Loop over the component expressions either recursively invoking
285 -- Resolve_Array_Aggregate on each of these for multi-dimensional
286 -- array aggregates or resolving the bottom level component
287 -- expressions against the expected component type.
288 --
289 -- (B) Determine the bounds of the positional sub-aggregates.
290 --
291 -- 4. Try to determine statically whether the evaluation of the array
292 -- sub-aggregate raises Constraint_Error. If yes emit proper
293 -- warnings. The precise checks are the following:
294 --
295 -- (A) Check that the index range defined by aggregate bounds is
296 -- compatible with corresponding index subtype.
297 -- We also check against the base type. In fact it could be that
298 -- Low/High bounds of the base type are static whereas those of
299 -- the index subtype are not. Thus if we can statically catch
300 -- a problem with respect to the base type we are guaranteed
301 -- that the same problem will arise with the index subtype
302 --
303 -- (B) If we are dealing with a named aggregate containing an others
304 -- choice and at least one discrete choice then make sure the range
305 -- specified by the discrete choices does not overflow the
306 -- aggregate bounds. We also check against the index type and base
307 -- type bounds for the same reasons given in (A).
308 --
309 -- (C) If we are dealing with a positional aggregate with an others
310 -- choice make sure the number of positional elements specified
311 -- does not overflow the aggregate bounds. We also check against
312 -- the index type and base type bounds as mentioned in (A).
313 --
314 -- Finally construct an N_Range node giving the sub-aggregate bounds.
315 -- Set the Aggregate_Bounds field of the sub-aggregate to be this
316 -- N_Range. The routine Array_Aggr_Subtype below uses such N_Ranges
317 -- to build the appropriate aggregate subtype. Aggregate_Bounds
318 -- information is needed during expansion.
319 --
320 -- DELAYED COMPONENT RESOLUTION: The resolution of bottom level component
321 -- expressions in an array aggregate may call Duplicate_Subexpr or some
322 -- other routine that inserts code just outside the outermost aggregate.
323 -- If the array aggregate contains discrete choices or an others choice,
324 -- this may be wrong. Consider for instance the following example.
325 --
326 -- type Rec is record
327 -- V : Integer := 0;
328 -- end record;
329 --
330 -- type Acc_Rec is access Rec;
331 -- Arr : array (1..3) of Acc_Rec := (1 .. 3 => new Rec);
332 --
333 -- Then the transformation of "new Rec" that occurs during resolution
334 -- entails the following code modifications
335 --
336 -- P7b : constant Acc_Rec := new Rec;
fbf5a39b 337 -- RecIP (P7b.all);
996ae0b0
RK
338 -- Arr : array (1..3) of Acc_Rec := (1 .. 3 => P7b);
339 --
340 -- This code transformation is clearly wrong, since we need to call
341 -- "new Rec" for each of the 3 array elements. To avoid this problem we
342 -- delay resolution of the components of non positional array aggregates
343 -- to the expansion phase. As an optimization, if the discrete choice
344 -- specifies a single value we do not delay resolution.
345
346 function Array_Aggr_Subtype (N : Node_Id; Typ : Node_Id) return Entity_Id;
347 -- This routine returns the type or subtype of an array aggregate.
348 --
349 -- N is the array aggregate node whose type we return.
350 --
351 -- Typ is the context type in which N occurs.
352 --
c45b6ae0 353 -- This routine creates an implicit array subtype whose bounds are
996ae0b0
RK
354 -- those defined by the aggregate. When this routine is invoked
355 -- Resolve_Array_Aggregate has already processed aggregate N. Thus the
356 -- Aggregate_Bounds of each sub-aggregate, is an N_Range node giving the
c7ce71c2 357 -- sub-aggregate bounds. When building the aggregate itype, this function
996ae0b0
RK
358 -- traverses the array aggregate N collecting such Aggregate_Bounds and
359 -- constructs the proper array aggregate itype.
360 --
361 -- Note that in the case of multidimensional aggregates each inner
362 -- sub-aggregate corresponding to a given array dimension, may provide a
363 -- different bounds. If it is possible to determine statically that
364 -- some sub-aggregates corresponding to the same index do not have the
365 -- same bounds, then a warning is emitted. If such check is not possible
366 -- statically (because some sub-aggregate bounds are dynamic expressions)
367 -- then this job is left to the expander. In all cases the particular
368 -- bounds that this function will chose for a given dimension is the first
369 -- N_Range node for a sub-aggregate corresponding to that dimension.
370 --
371 -- Note that the Raises_Constraint_Error flag of an array aggregate
372 -- whose evaluation is determined to raise CE by Resolve_Array_Aggregate,
373 -- is set in Resolve_Array_Aggregate but the aggregate is not
374 -- immediately replaced with a raise CE. In fact, Array_Aggr_Subtype must
375 -- first construct the proper itype for the aggregate (Gigi needs
376 -- this). After constructing the proper itype we will eventually replace
377 -- the top-level aggregate with a raise CE (done in Resolve_Aggregate).
378 -- Of course in cases such as:
379 --
380 -- type Arr is array (integer range <>) of Integer;
381 -- A : Arr := (positive range -1 .. 2 => 0);
382 --
383 -- The bounds of the aggregate itype are cooked up to look reasonable
384 -- (in this particular case the bounds will be 1 .. 2).
385
386 procedure Aggregate_Constraint_Checks
387 (Exp : Node_Id;
388 Check_Typ : Entity_Id);
389 -- Checks expression Exp against subtype Check_Typ. If Exp is an
390 -- aggregate and Check_Typ a constrained record type with discriminants,
391 -- we generate the appropriate discriminant checks. If Exp is an array
392 -- aggregate then emit the appropriate length checks. If Exp is a scalar
393 -- type, or a string literal, Exp is changed into Check_Typ'(Exp) to
394 -- ensure that range checks are performed at run time.
395
396 procedure Make_String_Into_Aggregate (N : Node_Id);
397 -- A string literal can appear in a context in which a one dimensional
398 -- array of characters is expected. This procedure simply rewrites the
399 -- string as an aggregate, prior to resolution.
400
401 ---------------------------------
402 -- Aggregate_Constraint_Checks --
403 ---------------------------------
404
405 procedure Aggregate_Constraint_Checks
406 (Exp : Node_Id;
407 Check_Typ : Entity_Id)
408 is
409 Exp_Typ : constant Entity_Id := Etype (Exp);
410
411 begin
412 if Raises_Constraint_Error (Exp) then
413 return;
414 end if;
415
33477fb7
ES
416 -- Ada 2005 (AI-230): Generate a conversion to an anonymous access
417 -- component's type to force the appropriate accessibility checks.
418
419 -- Ada 2005 (AI-231): Generate conversion to the null-excluding
420 -- type to force the corresponding run-time check
421
422 if Is_Access_Type (Check_Typ)
423 and then ((Is_Local_Anonymous_Access (Check_Typ))
424 or else (Can_Never_Be_Null (Check_Typ)
425 and then not Can_Never_Be_Null (Exp_Typ)))
426 then
427 Rewrite (Exp, Convert_To (Check_Typ, Relocate_Node (Exp)));
428 Analyze_And_Resolve (Exp, Check_Typ);
429 Check_Unset_Reference (Exp);
430 end if;
431
996ae0b0
RK
432 -- This is really expansion activity, so make sure that expansion
433 -- is on and is allowed.
434
ca44152f 435 if not Expander_Active or else In_Spec_Expression then
996ae0b0
RK
436 return;
437 end if;
438
439 -- First check if we have to insert discriminant checks
440
441 if Has_Discriminants (Exp_Typ) then
442 Apply_Discriminant_Check (Exp, Check_Typ);
443
444 -- Next emit length checks for array aggregates
445
446 elsif Is_Array_Type (Exp_Typ) then
447 Apply_Length_Check (Exp, Check_Typ);
448
449 -- Finally emit scalar and string checks. If we are dealing with a
450 -- scalar literal we need to check by hand because the Etype of
451 -- literals is not necessarily correct.
452
453 elsif Is_Scalar_Type (Exp_Typ)
454 and then Compile_Time_Known_Value (Exp)
455 then
456 if Is_Out_Of_Range (Exp, Base_Type (Check_Typ)) then
457 Apply_Compile_Time_Constraint_Error
07fc65c4 458 (Exp, "value not in range of}?", CE_Range_Check_Failed,
996ae0b0
RK
459 Ent => Base_Type (Check_Typ),
460 Typ => Base_Type (Check_Typ));
461
462 elsif Is_Out_Of_Range (Exp, Check_Typ) then
463 Apply_Compile_Time_Constraint_Error
07fc65c4 464 (Exp, "value not in range of}?", CE_Range_Check_Failed,
996ae0b0
RK
465 Ent => Check_Typ,
466 Typ => Check_Typ);
467
468 elsif not Range_Checks_Suppressed (Check_Typ) then
469 Apply_Scalar_Range_Check (Exp, Check_Typ);
470 end if;
471
88b32fc3
BD
472 -- Verify that target type is also scalar, to prevent view anomalies
473 -- in instantiations.
474
996ae0b0 475 elsif (Is_Scalar_Type (Exp_Typ)
88b32fc3
BD
476 or else Nkind (Exp) = N_String_Literal)
477 and then Is_Scalar_Type (Check_Typ)
996ae0b0
RK
478 and then Exp_Typ /= Check_Typ
479 then
480 if Is_Entity_Name (Exp)
481 and then Ekind (Entity (Exp)) = E_Constant
482 then
483 -- If expression is a constant, it is worthwhile checking whether
484 -- it is a bound of the type.
485
486 if (Is_Entity_Name (Type_Low_Bound (Check_Typ))
487 and then Entity (Exp) = Entity (Type_Low_Bound (Check_Typ)))
488 or else (Is_Entity_Name (Type_High_Bound (Check_Typ))
489 and then Entity (Exp) = Entity (Type_High_Bound (Check_Typ)))
490 then
491 return;
492
493 else
494 Rewrite (Exp, Convert_To (Check_Typ, Relocate_Node (Exp)));
495 Analyze_And_Resolve (Exp, Check_Typ);
fbf5a39b 496 Check_Unset_Reference (Exp);
996ae0b0
RK
497 end if;
498 else
499 Rewrite (Exp, Convert_To (Check_Typ, Relocate_Node (Exp)));
500 Analyze_And_Resolve (Exp, Check_Typ);
fbf5a39b 501 Check_Unset_Reference (Exp);
996ae0b0 502 end if;
2820d220 503
996ae0b0
RK
504 end if;
505 end Aggregate_Constraint_Checks;
506
507 ------------------------
508 -- Array_Aggr_Subtype --
509 ------------------------
510
511 function Array_Aggr_Subtype
b87971f3
AC
512 (N : Node_Id;
513 Typ : Entity_Id) return Entity_Id
996ae0b0
RK
514 is
515 Aggr_Dimension : constant Pos := Number_Dimensions (Typ);
ec53a6da 516 -- Number of aggregate index dimensions
996ae0b0
RK
517
518 Aggr_Range : array (1 .. Aggr_Dimension) of Node_Id := (others => Empty);
ec53a6da 519 -- Constrained N_Range of each index dimension in our aggregate itype
996ae0b0
RK
520
521 Aggr_Low : array (1 .. Aggr_Dimension) of Node_Id := (others => Empty);
522 Aggr_High : array (1 .. Aggr_Dimension) of Node_Id := (others => Empty);
ec53a6da 523 -- Low and High bounds for each index dimension in our aggregate itype
996ae0b0
RK
524
525 Is_Fully_Positional : Boolean := True;
526
527 procedure Collect_Aggr_Bounds (N : Node_Id; Dim : Pos);
528 -- N is an array (sub-)aggregate. Dim is the dimension corresponding to
529 -- (sub-)aggregate N. This procedure collects the constrained N_Range
530 -- nodes corresponding to each index dimension of our aggregate itype.
531 -- These N_Range nodes are collected in Aggr_Range above.
ec53a6da 532 --
996ae0b0
RK
533 -- Likewise collect in Aggr_Low & Aggr_High above the low and high
534 -- bounds of each index dimension. If, when collecting, two bounds
535 -- corresponding to the same dimension are static and found to differ,
536 -- then emit a warning, and mark N as raising Constraint_Error.
537
538 -------------------------
539 -- Collect_Aggr_Bounds --
540 -------------------------
541
542 procedure Collect_Aggr_Bounds (N : Node_Id; Dim : Pos) is
543 This_Range : constant Node_Id := Aggregate_Bounds (N);
ec53a6da 544 -- The aggregate range node of this specific sub-aggregate
996ae0b0
RK
545
546 This_Low : constant Node_Id := Low_Bound (Aggregate_Bounds (N));
547 This_High : constant Node_Id := High_Bound (Aggregate_Bounds (N));
ec53a6da 548 -- The aggregate bounds of this specific sub-aggregate
996ae0b0
RK
549
550 Assoc : Node_Id;
551 Expr : Node_Id;
552
553 begin
554 -- Collect the first N_Range for a given dimension that you find.
555 -- For a given dimension they must be all equal anyway.
556
557 if No (Aggr_Range (Dim)) then
558 Aggr_Low (Dim) := This_Low;
559 Aggr_High (Dim) := This_High;
560 Aggr_Range (Dim) := This_Range;
561
562 else
563 if Compile_Time_Known_Value (This_Low) then
564 if not Compile_Time_Known_Value (Aggr_Low (Dim)) then
565 Aggr_Low (Dim) := This_Low;
566
567 elsif Expr_Value (This_Low) /= Expr_Value (Aggr_Low (Dim)) then
568 Set_Raises_Constraint_Error (N);
bc49df98 569 Error_Msg_N ("sub-aggregate low bound mismatch?", N);
9b96e234
JM
570 Error_Msg_N
571 ("\Constraint_Error will be raised at run-time?", N);
996ae0b0
RK
572 end if;
573 end if;
574
575 if Compile_Time_Known_Value (This_High) then
576 if not Compile_Time_Known_Value (Aggr_High (Dim)) then
577 Aggr_High (Dim) := This_High;
578
579 elsif
580 Expr_Value (This_High) /= Expr_Value (Aggr_High (Dim))
581 then
582 Set_Raises_Constraint_Error (N);
bc49df98 583 Error_Msg_N ("sub-aggregate high bound mismatch?", N);
9b96e234
JM
584 Error_Msg_N
585 ("\Constraint_Error will be raised at run-time?", N);
996ae0b0
RK
586 end if;
587 end if;
588 end if;
589
590 if Dim < Aggr_Dimension then
591
592 -- Process positional components
593
594 if Present (Expressions (N)) then
595 Expr := First (Expressions (N));
596 while Present (Expr) loop
597 Collect_Aggr_Bounds (Expr, Dim + 1);
598 Next (Expr);
599 end loop;
600 end if;
601
602 -- Process component associations
603
604 if Present (Component_Associations (N)) then
605 Is_Fully_Positional := False;
606
607 Assoc := First (Component_Associations (N));
608 while Present (Assoc) loop
609 Expr := Expression (Assoc);
610 Collect_Aggr_Bounds (Expr, Dim + 1);
611 Next (Assoc);
612 end loop;
613 end if;
614 end if;
615 end Collect_Aggr_Bounds;
616
617 -- Array_Aggr_Subtype variables
618
619 Itype : Entity_Id;
b87971f3 620 -- The final itype of the overall aggregate
996ae0b0 621
fbf5a39b 622 Index_Constraints : constant List_Id := New_List;
ec53a6da 623 -- The list of index constraints of the aggregate itype
996ae0b0
RK
624
625 -- Start of processing for Array_Aggr_Subtype
626
627 begin
b87971f3
AC
628 -- Make sure that the list of index constraints is properly attached to
629 -- the tree, and then collect the aggregate bounds.
996ae0b0
RK
630
631 Set_Parent (Index_Constraints, N);
632 Collect_Aggr_Bounds (N, 1);
633
ec53a6da 634 -- Build the list of constrained indices of our aggregate itype
996ae0b0
RK
635
636 for J in 1 .. Aggr_Dimension loop
637 Create_Index : declare
fbf5a39b
AC
638 Index_Base : constant Entity_Id :=
639 Base_Type (Etype (Aggr_Range (J)));
996ae0b0
RK
640 Index_Typ : Entity_Id;
641
642 begin
8133b9d1
ES
643 -- Construct the Index subtype, and associate it with the range
644 -- construct that generates it.
996ae0b0 645
8133b9d1
ES
646 Index_Typ :=
647 Create_Itype (Subtype_Kind (Ekind (Index_Base)), Aggr_Range (J));
996ae0b0
RK
648
649 Set_Etype (Index_Typ, Index_Base);
650
651 if Is_Character_Type (Index_Base) then
652 Set_Is_Character_Type (Index_Typ);
653 end if;
654
655 Set_Size_Info (Index_Typ, (Index_Base));
656 Set_RM_Size (Index_Typ, RM_Size (Index_Base));
657 Set_First_Rep_Item (Index_Typ, First_Rep_Item (Index_Base));
658 Set_Scalar_Range (Index_Typ, Aggr_Range (J));
659
660 if Is_Discrete_Or_Fixed_Point_Type (Index_Typ) then
661 Set_RM_Size (Index_Typ, UI_From_Int (Minimum_Size (Index_Typ)));
662 end if;
663
664 Set_Etype (Aggr_Range (J), Index_Typ);
665
666 Append (Aggr_Range (J), To => Index_Constraints);
667 end Create_Index;
668 end loop;
669
670 -- Now build the Itype
671
672 Itype := Create_Itype (E_Array_Subtype, N);
673
b87971f3
AC
674 Set_First_Rep_Item (Itype, First_Rep_Item (Typ));
675 Set_Convention (Itype, Convention (Typ));
676 Set_Depends_On_Private (Itype, Has_Private_Component (Typ));
677 Set_Etype (Itype, Base_Type (Typ));
678 Set_Has_Alignment_Clause (Itype, Has_Alignment_Clause (Typ));
679 Set_Is_Aliased (Itype, Is_Aliased (Typ));
680 Set_Depends_On_Private (Itype, Depends_On_Private (Typ));
996ae0b0 681
fbf5a39b
AC
682 Copy_Suppress_Status (Index_Check, Typ, Itype);
683 Copy_Suppress_Status (Length_Check, Typ, Itype);
684
996ae0b0
RK
685 Set_First_Index (Itype, First (Index_Constraints));
686 Set_Is_Constrained (Itype, True);
687 Set_Is_Internal (Itype, True);
996ae0b0
RK
688
689 -- A simple optimization: purely positional aggregates of static
b87971f3
AC
690 -- components should be passed to gigi unexpanded whenever possible, and
691 -- regardless of the staticness of the bounds themselves. Subsequent
692 -- checks in exp_aggr verify that type is not packed, etc.
996ae0b0 693
8133b9d1
ES
694 Set_Size_Known_At_Compile_Time (Itype,
695 Is_Fully_Positional
696 and then Comes_From_Source (N)
697 and then Size_Known_At_Compile_Time (Component_Type (Typ)));
996ae0b0 698
b87971f3
AC
699 -- We always need a freeze node for a packed array subtype, so that we
700 -- can build the Packed_Array_Type corresponding to the subtype. If
701 -- expansion is disabled, the packed array subtype is not built, and we
702 -- must not generate a freeze node for the type, or else it will appear
703 -- incomplete to gigi.
996ae0b0 704
b87971f3
AC
705 if Is_Packed (Itype)
706 and then not In_Spec_Expression
996ae0b0
RK
707 and then Expander_Active
708 then
709 Freeze_Itype (Itype, N);
710 end if;
711
712 return Itype;
713 end Array_Aggr_Subtype;
714
715 --------------------------------
716 -- Check_Misspelled_Component --
717 --------------------------------
718
719 procedure Check_Misspelled_Component
9c290e69
PO
720 (Elements : Elist_Id;
721 Component : Node_Id)
996ae0b0
RK
722 is
723 Max_Suggestions : constant := 2;
724
725 Nr_Of_Suggestions : Natural := 0;
726 Suggestion_1 : Entity_Id := Empty;
727 Suggestion_2 : Entity_Id := Empty;
728 Component_Elmt : Elmt_Id;
729
730 begin
b87971f3
AC
731 -- All the components of List are matched against Component and a count
732 -- is maintained of possible misspellings. When at the end of the
733 -- the analysis there are one or two (not more!) possible misspellings,
734 -- these misspellings will be suggested as possible correction.
996ae0b0 735
c80d4855
RD
736 Component_Elmt := First_Elmt (Elements);
737 while Nr_Of_Suggestions <= Max_Suggestions
738 and then Present (Component_Elmt)
739 loop
740 if Is_Bad_Spelling_Of
741 (Chars (Node (Component_Elmt)),
742 Chars (Component))
743 then
744 Nr_Of_Suggestions := Nr_Of_Suggestions + 1;
996ae0b0 745
c80d4855
RD
746 case Nr_Of_Suggestions is
747 when 1 => Suggestion_1 := Node (Component_Elmt);
748 when 2 => Suggestion_2 := Node (Component_Elmt);
749 when others => exit;
750 end case;
751 end if;
996ae0b0 752
c80d4855
RD
753 Next_Elmt (Component_Elmt);
754 end loop;
996ae0b0 755
c80d4855 756 -- Report at most two suggestions
996ae0b0 757
c80d4855 758 if Nr_Of_Suggestions = 1 then
4e7a4f6e 759 Error_Msg_NE -- CODEFIX
c80d4855 760 ("\possible misspelling of&", Component, Suggestion_1);
996ae0b0 761
c80d4855
RD
762 elsif Nr_Of_Suggestions = 2 then
763 Error_Msg_Node_2 := Suggestion_2;
4e7a4f6e 764 Error_Msg_NE -- CODEFIX
c80d4855
RD
765 ("\possible misspelling of& or&", Component, Suggestion_1);
766 end if;
996ae0b0
RK
767 end Check_Misspelled_Component;
768
ca44152f
ES
769 ----------------------------------------
770 -- Check_Expr_OK_In_Limited_Aggregate --
771 ----------------------------------------
772
773 procedure Check_Expr_OK_In_Limited_Aggregate (Expr : Node_Id) is
774 begin
775 if Is_Limited_Type (Etype (Expr))
776 and then Comes_From_Source (Expr)
777 and then not In_Instance_Body
778 then
2a31c32b 779 if not OK_For_Limited_Init (Etype (Expr), Expr) then
ca44152f
ES
780 Error_Msg_N ("initialization not allowed for limited types", Expr);
781 Explain_Limited_Type (Etype (Expr), Expr);
782 end if;
783 end if;
784 end Check_Expr_OK_In_Limited_Aggregate;
785
996ae0b0
RK
786 ----------------------------------------
787 -- Check_Static_Discriminated_Subtype --
788 ----------------------------------------
789
790 procedure Check_Static_Discriminated_Subtype (T : Entity_Id; V : Node_Id) is
791 Disc : constant Entity_Id := First_Discriminant (T);
792 Comp : Entity_Id;
793 Ind : Entity_Id;
794
795 begin
07fc65c4 796 if Has_Record_Rep_Clause (T) then
996ae0b0
RK
797 return;
798
799 elsif Present (Next_Discriminant (Disc)) then
800 return;
801
802 elsif Nkind (V) /= N_Integer_Literal then
803 return;
804 end if;
805
806 Comp := First_Component (T);
996ae0b0 807 while Present (Comp) loop
996ae0b0
RK
808 if Is_Scalar_Type (Etype (Comp)) then
809 null;
810
811 elsif Is_Private_Type (Etype (Comp))
812 and then Present (Full_View (Etype (Comp)))
813 and then Is_Scalar_Type (Full_View (Etype (Comp)))
814 then
815 null;
816
817 elsif Is_Array_Type (Etype (Comp)) then
996ae0b0
RK
818 if Is_Bit_Packed_Array (Etype (Comp)) then
819 return;
820 end if;
821
822 Ind := First_Index (Etype (Comp));
996ae0b0 823 while Present (Ind) loop
996ae0b0
RK
824 if Nkind (Ind) /= N_Range
825 or else Nkind (Low_Bound (Ind)) /= N_Integer_Literal
826 or else Nkind (High_Bound (Ind)) /= N_Integer_Literal
827 then
828 return;
829 end if;
830
831 Next_Index (Ind);
832 end loop;
833
834 else
835 return;
836 end if;
837
838 Next_Component (Comp);
839 end loop;
840
ec53a6da 841 -- On exit, all components have statically known sizes
996ae0b0
RK
842
843 Set_Size_Known_At_Compile_Time (T);
844 end Check_Static_Discriminated_Subtype;
845
846 --------------------------------
847 -- Make_String_Into_Aggregate --
848 --------------------------------
849
850 procedure Make_String_Into_Aggregate (N : Node_Id) is
fbf5a39b 851 Exprs : constant List_Id := New_List;
996ae0b0 852 Loc : constant Source_Ptr := Sloc (N);
996ae0b0
RK
853 Str : constant String_Id := Strval (N);
854 Strlen : constant Nat := String_Length (Str);
fbf5a39b
AC
855 C : Char_Code;
856 C_Node : Node_Id;
857 New_N : Node_Id;
858 P : Source_Ptr;
996ae0b0
RK
859
860 begin
fbf5a39b 861 P := Loc + 1;
996ae0b0
RK
862 for J in 1 .. Strlen loop
863 C := Get_String_Char (Str, J);
864 Set_Character_Literal_Name (C);
865
82c80734
RD
866 C_Node :=
867 Make_Character_Literal (P,
868 Chars => Name_Find,
869 Char_Literal_Value => UI_From_CC (C));
996ae0b0 870 Set_Etype (C_Node, Any_Character);
996ae0b0
RK
871 Append_To (Exprs, C_Node);
872
873 P := P + 1;
b87971f3 874 -- Something special for wide strings???
996ae0b0
RK
875 end loop;
876
877 New_N := Make_Aggregate (Loc, Expressions => Exprs);
878 Set_Analyzed (New_N);
879 Set_Etype (New_N, Any_Composite);
880
881 Rewrite (N, New_N);
882 end Make_String_Into_Aggregate;
883
884 -----------------------
885 -- Resolve_Aggregate --
886 -----------------------
887
888 procedure Resolve_Aggregate (N : Node_Id; Typ : Entity_Id) is
889 Pkind : constant Node_Kind := Nkind (Parent (N));
890
891 Aggr_Subtyp : Entity_Id;
892 -- The actual aggregate subtype. This is not necessarily the same as Typ
893 -- which is the subtype of the context in which the aggregate was found.
894
895 begin
6d2a1120
RD
896 -- Ignore junk empty aggregate resulting from parser error
897
898 if No (Expressions (N))
899 and then No (Component_Associations (N))
900 and then not Null_Record_Present (N)
901 then
902 return;
903 end if;
904
fbf5a39b 905 -- Check for aggregates not allowed in configurable run-time mode.
b87971f3
AC
906 -- We allow all cases of aggregates that do not come from source, since
907 -- these are all assumed to be small (e.g. bounds of a string literal).
908 -- We also allow aggregates of types we know to be small.
fbf5a39b
AC
909
910 if not Support_Aggregates_On_Target
911 and then Comes_From_Source (N)
912 and then (not Known_Static_Esize (Typ) or else Esize (Typ) > 64)
913 then
914 Error_Msg_CRT ("aggregate", N);
915 end if;
996ae0b0 916
0ab80019 917 -- Ada 2005 (AI-287): Limited aggregates allowed
19f0526a 918
88b32fc3 919 if Is_Limited_Type (Typ) and then Ada_Version < Ada_05 then
fbf5a39b
AC
920 Error_Msg_N ("aggregate type cannot be limited", N);
921 Explain_Limited_Type (Typ, N);
996ae0b0
RK
922
923 elsif Is_Class_Wide_Type (Typ) then
924 Error_Msg_N ("type of aggregate cannot be class-wide", N);
925
926 elsif Typ = Any_String
927 or else Typ = Any_Composite
928 then
929 Error_Msg_N ("no unique type for aggregate", N);
930 Set_Etype (N, Any_Composite);
931
932 elsif Is_Array_Type (Typ) and then Null_Record_Present (N) then
933 Error_Msg_N ("null record forbidden in array aggregate", N);
934
935 elsif Is_Record_Type (Typ) then
936 Resolve_Record_Aggregate (N, Typ);
937
938 elsif Is_Array_Type (Typ) then
939
940 -- First a special test, for the case of a positional aggregate
941 -- of characters which can be replaced by a string literal.
ca44152f 942
b87971f3
AC
943 -- Do not perform this transformation if this was a string literal to
944 -- start with, whose components needed constraint checks, or if the
945 -- component type is non-static, because it will require those checks
946 -- and be transformed back into an aggregate.
996ae0b0
RK
947
948 if Number_Dimensions (Typ) = 1
ca44152f 949 and then Is_Standard_Character_Type (Component_Type (Typ))
996ae0b0
RK
950 and then No (Component_Associations (N))
951 and then not Is_Limited_Composite (Typ)
952 and then not Is_Private_Composite (Typ)
953 and then not Is_Bit_Packed_Array (Typ)
954 and then Nkind (Original_Node (Parent (N))) /= N_String_Literal
955 and then Is_Static_Subtype (Component_Type (Typ))
956 then
957 declare
958 Expr : Node_Id;
959
960 begin
961 Expr := First (Expressions (N));
962 while Present (Expr) loop
963 exit when Nkind (Expr) /= N_Character_Literal;
964 Next (Expr);
965 end loop;
966
967 if No (Expr) then
968 Start_String;
969
970 Expr := First (Expressions (N));
971 while Present (Expr) loop
82c80734 972 Store_String_Char (UI_To_CC (Char_Literal_Value (Expr)));
996ae0b0
RK
973 Next (Expr);
974 end loop;
975
976 Rewrite (N,
977 Make_String_Literal (Sloc (N), End_String));
978
979 Analyze_And_Resolve (N, Typ);
980 return;
981 end if;
982 end;
983 end if;
984
985 -- Here if we have a real aggregate to deal with
986
987 Array_Aggregate : declare
988 Aggr_Resolved : Boolean;
fbf5a39b
AC
989
990 Aggr_Typ : constant Entity_Id := Etype (Typ);
b87971f3
AC
991 -- This is the unconstrained array type, which is the type against
992 -- which the aggregate is to be resolved. Typ itself is the array
993 -- type of the context which may not be the same subtype as the
994 -- subtype for the final aggregate.
996ae0b0
RK
995
996 begin
997 -- In the following we determine whether an others choice is
998 -- allowed inside the array aggregate. The test checks the context
999 -- in which the array aggregate occurs. If the context does not
1000 -- permit it, or the aggregate type is unconstrained, an others
1001 -- choice is not allowed.
d8387153
ES
1002
1003 -- If expansion is disabled (generic context, or semantics-only
b87971f3
AC
1004 -- mode) actual subtypes cannot be constructed, and the type of an
1005 -- object may be its unconstrained nominal type. However, if the
1006 -- context is an assignment, we assume that "others" is allowed,
1007 -- because the target of the assignment will have a constrained
1008 -- subtype when fully compiled.
d8387153 1009
996ae0b0
RK
1010 -- Note that there is no node for Explicit_Actual_Parameter.
1011 -- To test for this context we therefore have to test for node
1012 -- N_Parameter_Association which itself appears only if there is a
1013 -- formal parameter. Consequently we also need to test for
1014 -- N_Procedure_Call_Statement or N_Function_Call.
1015
b87971f3 1016 Set_Etype (N, Aggr_Typ); -- May be overridden later on
c45b6ae0 1017
996ae0b0
RK
1018 if Is_Constrained (Typ) and then
1019 (Pkind = N_Assignment_Statement or else
1020 Pkind = N_Parameter_Association or else
1021 Pkind = N_Function_Call or else
1022 Pkind = N_Procedure_Call_Statement or else
1023 Pkind = N_Generic_Association or else
1024 Pkind = N_Formal_Object_Declaration or else
8133b9d1 1025 Pkind = N_Simple_Return_Statement or else
996ae0b0
RK
1026 Pkind = N_Object_Declaration or else
1027 Pkind = N_Component_Declaration or else
1028 Pkind = N_Parameter_Specification or else
1029 Pkind = N_Qualified_Expression or else
1030 Pkind = N_Aggregate or else
1031 Pkind = N_Extension_Aggregate or else
1032 Pkind = N_Component_Association)
1033 then
1034 Aggr_Resolved :=
1035 Resolve_Array_Aggregate
1036 (N,
1037 Index => First_Index (Aggr_Typ),
1038 Index_Constr => First_Index (Typ),
1039 Component_Typ => Component_Type (Typ),
1040 Others_Allowed => True);
1041
d8387153
ES
1042 elsif not Expander_Active
1043 and then Pkind = N_Assignment_Statement
1044 then
1045 Aggr_Resolved :=
1046 Resolve_Array_Aggregate
1047 (N,
1048 Index => First_Index (Aggr_Typ),
1049 Index_Constr => First_Index (Typ),
1050 Component_Typ => Component_Type (Typ),
1051 Others_Allowed => True);
996ae0b0
RK
1052 else
1053 Aggr_Resolved :=
1054 Resolve_Array_Aggregate
1055 (N,
1056 Index => First_Index (Aggr_Typ),
1057 Index_Constr => First_Index (Aggr_Typ),
1058 Component_Typ => Component_Type (Typ),
1059 Others_Allowed => False);
1060 end if;
1061
1062 if not Aggr_Resolved then
1063 Aggr_Subtyp := Any_Composite;
1064 else
1065 Aggr_Subtyp := Array_Aggr_Subtype (N, Typ);
1066 end if;
1067
1068 Set_Etype (N, Aggr_Subtyp);
1069 end Array_Aggregate;
1070
d8387153
ES
1071 elsif Is_Private_Type (Typ)
1072 and then Present (Full_View (Typ))
1073 and then In_Inlined_Body
1074 and then Is_Composite_Type (Full_View (Typ))
1075 then
1076 Resolve (N, Full_View (Typ));
1077
996ae0b0
RK
1078 else
1079 Error_Msg_N ("illegal context for aggregate", N);
996ae0b0
RK
1080 end if;
1081
b87971f3
AC
1082 -- If we can determine statically that the evaluation of the aggregate
1083 -- raises Constraint_Error, then replace the aggregate with an
1084 -- N_Raise_Constraint_Error node, but set the Etype to the right
1085 -- aggregate subtype. Gigi needs this.
996ae0b0
RK
1086
1087 if Raises_Constraint_Error (N) then
1088 Aggr_Subtyp := Etype (N);
07fc65c4
GB
1089 Rewrite (N,
1090 Make_Raise_Constraint_Error (Sloc (N),
1091 Reason => CE_Range_Check_Failed));
996ae0b0
RK
1092 Set_Raises_Constraint_Error (N);
1093 Set_Etype (N, Aggr_Subtyp);
1094 Set_Analyzed (N);
1095 end if;
996ae0b0
RK
1096 end Resolve_Aggregate;
1097
1098 -----------------------------
1099 -- Resolve_Array_Aggregate --
1100 -----------------------------
1101
1102 function Resolve_Array_Aggregate
1103 (N : Node_Id;
1104 Index : Node_Id;
1105 Index_Constr : Node_Id;
1106 Component_Typ : Entity_Id;
ca44152f 1107 Others_Allowed : Boolean) return Boolean
996ae0b0
RK
1108 is
1109 Loc : constant Source_Ptr := Sloc (N);
1110
1111 Failure : constant Boolean := False;
1112 Success : constant Boolean := True;
1113
1114 Index_Typ : constant Entity_Id := Etype (Index);
1115 Index_Typ_Low : constant Node_Id := Type_Low_Bound (Index_Typ);
1116 Index_Typ_High : constant Node_Id := Type_High_Bound (Index_Typ);
b87971f3
AC
1117 -- The type of the index corresponding to the array sub-aggregate along
1118 -- with its low and upper bounds.
996ae0b0
RK
1119
1120 Index_Base : constant Entity_Id := Base_Type (Index_Typ);
1121 Index_Base_Low : constant Node_Id := Type_Low_Bound (Index_Base);
1122 Index_Base_High : constant Node_Id := Type_High_Bound (Index_Base);
b87971f3 1123 -- Ditto for the base type
996ae0b0
RK
1124
1125 function Add (Val : Uint; To : Node_Id) return Node_Id;
1126 -- Creates a new expression node where Val is added to expression To.
1127 -- Tries to constant fold whenever possible. To must be an already
1128 -- analyzed expression.
1129
1130 procedure Check_Bound (BH : Node_Id; AH : in out Node_Id);
1131 -- Checks that AH (the upper bound of an array aggregate) is <= BH
1132 -- (the upper bound of the index base type). If the check fails a
b87971f3 1133 -- warning is emitted, the Raises_Constraint_Error flag of N is set,
996ae0b0
RK
1134 -- and AH is replaced with a duplicate of BH.
1135
1136 procedure Check_Bounds (L, H : Node_Id; AL, AH : Node_Id);
1137 -- Checks that range AL .. AH is compatible with range L .. H. Emits a
b87971f3 1138 -- warning if not and sets the Raises_Constraint_Error flag in N.
996ae0b0
RK
1139
1140 procedure Check_Length (L, H : Node_Id; Len : Uint);
1141 -- Checks that range L .. H contains at least Len elements. Emits a
b87971f3 1142 -- warning if not and sets the Raises_Constraint_Error flag in N.
996ae0b0
RK
1143
1144 function Dynamic_Or_Null_Range (L, H : Node_Id) return Boolean;
ec53a6da 1145 -- Returns True if range L .. H is dynamic or null
996ae0b0
RK
1146
1147 procedure Get (Value : out Uint; From : Node_Id; OK : out Boolean);
1148 -- Given expression node From, this routine sets OK to False if it
1149 -- cannot statically evaluate From. Otherwise it stores this static
1150 -- value into Value.
1151
1152 function Resolve_Aggr_Expr
1153 (Expr : Node_Id;
ca44152f 1154 Single_Elmt : Boolean) return Boolean;
12a13f01 1155 -- Resolves aggregate expression Expr. Returns False if resolution
996ae0b0 1156 -- fails. If Single_Elmt is set to False, the expression Expr may be
b87971f3
AC
1157 -- used to initialize several array aggregate elements (this can happen
1158 -- for discrete choices such as "L .. H => Expr" or the others choice).
1159 -- In this event we do not resolve Expr unless expansion is disabled.
1160 -- To know why, see the DELAYED COMPONENT RESOLUTION note above.
996ae0b0
RK
1161
1162 ---------
1163 -- Add --
1164 ---------
1165
1166 function Add (Val : Uint; To : Node_Id) return Node_Id is
1167 Expr_Pos : Node_Id;
1168 Expr : Node_Id;
1169 To_Pos : Node_Id;
1170
1171 begin
1172 if Raises_Constraint_Error (To) then
1173 return To;
1174 end if;
1175
1176 -- First test if we can do constant folding
1177
1178 if Compile_Time_Known_Value (To)
1179 or else Nkind (To) = N_Integer_Literal
1180 then
1181 Expr_Pos := Make_Integer_Literal (Loc, Expr_Value (To) + Val);
1182 Set_Is_Static_Expression (Expr_Pos);
1183 Set_Etype (Expr_Pos, Etype (To));
1184 Set_Analyzed (Expr_Pos, Analyzed (To));
1185
1186 if not Is_Enumeration_Type (Index_Typ) then
1187 Expr := Expr_Pos;
1188
1189 -- If we are dealing with enumeration return
1190 -- Index_Typ'Val (Expr_Pos)
1191
1192 else
1193 Expr :=
1194 Make_Attribute_Reference
1195 (Loc,
1196 Prefix => New_Reference_To (Index_Typ, Loc),
1197 Attribute_Name => Name_Val,
1198 Expressions => New_List (Expr_Pos));
1199 end if;
1200
1201 return Expr;
1202 end if;
1203
1204 -- If we are here no constant folding possible
1205
1206 if not Is_Enumeration_Type (Index_Base) then
1207 Expr :=
1208 Make_Op_Add (Loc,
1209 Left_Opnd => Duplicate_Subexpr (To),
1210 Right_Opnd => Make_Integer_Literal (Loc, Val));
1211
1212 -- If we are dealing with enumeration return
1213 -- Index_Typ'Val (Index_Typ'Pos (To) + Val)
1214
1215 else
1216 To_Pos :=
1217 Make_Attribute_Reference
1218 (Loc,
1219 Prefix => New_Reference_To (Index_Typ, Loc),
1220 Attribute_Name => Name_Pos,
1221 Expressions => New_List (Duplicate_Subexpr (To)));
1222
1223 Expr_Pos :=
1224 Make_Op_Add (Loc,
1225 Left_Opnd => To_Pos,
1226 Right_Opnd => Make_Integer_Literal (Loc, Val));
1227
1228 Expr :=
1229 Make_Attribute_Reference
1230 (Loc,
1231 Prefix => New_Reference_To (Index_Typ, Loc),
1232 Attribute_Name => Name_Val,
1233 Expressions => New_List (Expr_Pos));
1234 end if;
1235
1236 return Expr;
1237 end Add;
1238
1239 -----------------
1240 -- Check_Bound --
1241 -----------------
1242
1243 procedure Check_Bound (BH : Node_Id; AH : in out Node_Id) is
1244 Val_BH : Uint;
1245 Val_AH : Uint;
1246
1247 OK_BH : Boolean;
1248 OK_AH : Boolean;
1249
1250 begin
1251 Get (Value => Val_BH, From => BH, OK => OK_BH);
1252 Get (Value => Val_AH, From => AH, OK => OK_AH);
1253
1254 if OK_BH and then OK_AH and then Val_BH < Val_AH then
1255 Set_Raises_Constraint_Error (N);
1256 Error_Msg_N ("upper bound out of range?", AH);
9b96e234 1257 Error_Msg_N ("\Constraint_Error will be raised at run-time?", AH);
996ae0b0
RK
1258
1259 -- You need to set AH to BH or else in the case of enumerations
1260 -- indices we will not be able to resolve the aggregate bounds.
1261
1262 AH := Duplicate_Subexpr (BH);
1263 end if;
1264 end Check_Bound;
1265
1266 ------------------
1267 -- Check_Bounds --
1268 ------------------
1269
1270 procedure Check_Bounds (L, H : Node_Id; AL, AH : Node_Id) is
1271 Val_L : Uint;
1272 Val_H : Uint;
1273 Val_AL : Uint;
1274 Val_AH : Uint;
1275
f91e8020
GD
1276 OK_L : Boolean;
1277 OK_H : Boolean;
1278
996ae0b0 1279 OK_AL : Boolean;
f91e8020
GD
1280 OK_AH : Boolean;
1281 pragma Warnings (Off, OK_AL);
1282 pragma Warnings (Off, OK_AH);
996ae0b0
RK
1283
1284 begin
1285 if Raises_Constraint_Error (N)
1286 or else Dynamic_Or_Null_Range (AL, AH)
1287 then
1288 return;
1289 end if;
1290
1291 Get (Value => Val_L, From => L, OK => OK_L);
1292 Get (Value => Val_H, From => H, OK => OK_H);
1293
1294 Get (Value => Val_AL, From => AL, OK => OK_AL);
1295 Get (Value => Val_AH, From => AH, OK => OK_AH);
1296
1297 if OK_L and then Val_L > Val_AL then
1298 Set_Raises_Constraint_Error (N);
1299 Error_Msg_N ("lower bound of aggregate out of range?", N);
fbf5a39b 1300 Error_Msg_N ("\Constraint_Error will be raised at run-time?", N);
996ae0b0
RK
1301 end if;
1302
1303 if OK_H and then Val_H < Val_AH then
1304 Set_Raises_Constraint_Error (N);
1305 Error_Msg_N ("upper bound of aggregate out of range?", N);
fbf5a39b 1306 Error_Msg_N ("\Constraint_Error will be raised at run-time?", N);
996ae0b0
RK
1307 end if;
1308 end Check_Bounds;
1309
1310 ------------------
1311 -- Check_Length --
1312 ------------------
1313
1314 procedure Check_Length (L, H : Node_Id; Len : Uint) is
1315 Val_L : Uint;
1316 Val_H : Uint;
1317
1318 OK_L : Boolean;
1319 OK_H : Boolean;
1320
1321 Range_Len : Uint;
1322
1323 begin
1324 if Raises_Constraint_Error (N) then
1325 return;
1326 end if;
1327
1328 Get (Value => Val_L, From => L, OK => OK_L);
1329 Get (Value => Val_H, From => H, OK => OK_H);
1330
1331 if not OK_L or else not OK_H then
1332 return;
1333 end if;
1334
1335 -- If null range length is zero
1336
1337 if Val_L > Val_H then
1338 Range_Len := Uint_0;
1339 else
1340 Range_Len := Val_H - Val_L + 1;
1341 end if;
1342
1343 if Range_Len < Len then
1344 Set_Raises_Constraint_Error (N);
bc49df98 1345 Error_Msg_N ("too many elements?", N);
9b96e234 1346 Error_Msg_N ("\Constraint_Error will be raised at run-time?", N);
996ae0b0
RK
1347 end if;
1348 end Check_Length;
1349
1350 ---------------------------
1351 -- Dynamic_Or_Null_Range --
1352 ---------------------------
1353
1354 function Dynamic_Or_Null_Range (L, H : Node_Id) return Boolean is
1355 Val_L : Uint;
1356 Val_H : Uint;
1357
1358 OK_L : Boolean;
1359 OK_H : Boolean;
1360
1361 begin
1362 Get (Value => Val_L, From => L, OK => OK_L);
1363 Get (Value => Val_H, From => H, OK => OK_H);
1364
1365 return not OK_L or else not OK_H
1366 or else not Is_OK_Static_Expression (L)
1367 or else not Is_OK_Static_Expression (H)
1368 or else Val_L > Val_H;
1369 end Dynamic_Or_Null_Range;
1370
1371 ---------
1372 -- Get --
1373 ---------
1374
1375 procedure Get (Value : out Uint; From : Node_Id; OK : out Boolean) is
1376 begin
1377 OK := True;
1378
1379 if Compile_Time_Known_Value (From) then
1380 Value := Expr_Value (From);
1381
1382 -- If expression From is something like Some_Type'Val (10) then
1383 -- Value = 10
1384
1385 elsif Nkind (From) = N_Attribute_Reference
1386 and then Attribute_Name (From) = Name_Val
1387 and then Compile_Time_Known_Value (First (Expressions (From)))
1388 then
1389 Value := Expr_Value (First (Expressions (From)));
1390
1391 else
1392 Value := Uint_0;
1393 OK := False;
1394 end if;
1395 end Get;
1396
1397 -----------------------
1398 -- Resolve_Aggr_Expr --
1399 -----------------------
1400
1401 function Resolve_Aggr_Expr
1402 (Expr : Node_Id;
ca44152f 1403 Single_Elmt : Boolean) return Boolean
996ae0b0 1404 is
fbf5a39b
AC
1405 Nxt_Ind : constant Node_Id := Next_Index (Index);
1406 Nxt_Ind_Constr : constant Node_Id := Next_Index (Index_Constr);
12a13f01 1407 -- Index is the current index corresponding to the expression
996ae0b0
RK
1408
1409 Resolution_OK : Boolean := True;
ec53a6da 1410 -- Set to False if resolution of the expression failed
996ae0b0
RK
1411
1412 begin
1413 -- If the array type against which we are resolving the aggregate
1414 -- has several dimensions, the expressions nested inside the
1415 -- aggregate must be further aggregates (or strings).
1416
1417 if Present (Nxt_Ind) then
1418 if Nkind (Expr) /= N_Aggregate then
1419
1420 -- A string literal can appear where a one-dimensional array
1421 -- of characters is expected. If the literal looks like an
1422 -- operator, it is still an operator symbol, which will be
1423 -- transformed into a string when analyzed.
1424
1425 if Is_Character_Type (Component_Typ)
1426 and then No (Next_Index (Nxt_Ind))
f53f9dd7 1427 and then Nkind_In (Expr, N_String_Literal, N_Operator_Symbol)
996ae0b0
RK
1428 then
1429 -- A string literal used in a multidimensional array
1430 -- aggregate in place of the final one-dimensional
1431 -- aggregate must not be enclosed in parentheses.
1432
1433 if Paren_Count (Expr) /= 0 then
bc49df98 1434 Error_Msg_N ("no parenthesis allowed here", Expr);
996ae0b0
RK
1435 end if;
1436
1437 Make_String_Into_Aggregate (Expr);
1438
1439 else
1440 Error_Msg_N ("nested array aggregate expected", Expr);
9d0c3761
AC
1441
1442 -- If the expression is parenthesized, this may be
1443 -- a missing component association for a 1-aggregate.
1444
1445 if Paren_Count (Expr) > 0 then
1446 Error_Msg_N ("\if single-component aggregate is intended,"
1447 & " write e.g. (1 ='> ...)", Expr);
1448 end if;
996ae0b0
RK
1449 return Failure;
1450 end if;
1451 end if;
1452
0ab80019 1453 -- Ada 2005 (AI-231): Propagate the type to the nested aggregate.
35b7fa6a
AC
1454 -- Required to check the null-exclusion attribute (if present).
1455 -- This value may be overridden later on.
1456
1457 Set_Etype (Expr, Etype (N));
1458
996ae0b0
RK
1459 Resolution_OK := Resolve_Array_Aggregate
1460 (Expr, Nxt_Ind, Nxt_Ind_Constr, Component_Typ, Others_Allowed);
1461
1462 -- Do not resolve the expressions of discrete or others choices
1463 -- unless the expression covers a single component, or the expander
1464 -- is inactive.
1465
1466 elsif Single_Elmt
1467 or else not Expander_Active
ca44152f 1468 or else In_Spec_Expression
996ae0b0
RK
1469 then
1470 Analyze_And_Resolve (Expr, Component_Typ);
ca44152f 1471 Check_Expr_OK_In_Limited_Aggregate (Expr);
996ae0b0
RK
1472 Check_Non_Static_Context (Expr);
1473 Aggregate_Constraint_Checks (Expr, Component_Typ);
fbf5a39b 1474 Check_Unset_Reference (Expr);
996ae0b0
RK
1475 end if;
1476
1477 if Raises_Constraint_Error (Expr)
1478 and then Nkind (Parent (Expr)) /= N_Component_Association
1479 then
1480 Set_Raises_Constraint_Error (N);
1481 end if;
1482
d79e621a
GD
1483 -- If the expression has been marked as requiring a range check,
1484 -- then generate it here.
1485
1486 if Do_Range_Check (Expr) then
1487 Set_Do_Range_Check (Expr, False);
1488 Generate_Range_Check (Expr, Component_Typ, CE_Range_Check_Failed);
1489 end if;
1490
996ae0b0
RK
1491 return Resolution_OK;
1492 end Resolve_Aggr_Expr;
1493
1494 -- Variables local to Resolve_Array_Aggregate
1495
1496 Assoc : Node_Id;
1497 Choice : Node_Id;
1498 Expr : Node_Id;
1499
f91e8020
GD
1500 Discard : Node_Id;
1501 pragma Warnings (Off, Discard);
996ae0b0
RK
1502
1503 Aggr_Low : Node_Id := Empty;
1504 Aggr_High : Node_Id := Empty;
c7ce71c2 1505 -- The actual low and high bounds of this sub-aggregate
996ae0b0
RK
1506
1507 Choices_Low : Node_Id := Empty;
1508 Choices_High : Node_Id := Empty;
1509 -- The lowest and highest discrete choices values for a named aggregate
1510
1511 Nb_Elements : Uint := Uint_0;
c7ce71c2 1512 -- The number of elements in a positional aggregate
996ae0b0
RK
1513
1514 Others_Present : Boolean := False;
1515
1516 Nb_Choices : Nat := 0;
1517 -- Contains the overall number of named choices in this sub-aggregate
1518
1519 Nb_Discrete_Choices : Nat := 0;
1520 -- The overall number of discrete choices (not counting others choice)
1521
1522 Case_Table_Size : Nat;
1523 -- Contains the size of the case table needed to sort aggregate choices
1524
1525 -- Start of processing for Resolve_Array_Aggregate
1526
1527 begin
6d2a1120
RD
1528 -- Ignore junk empty aggregate resulting from parser error
1529
1530 if No (Expressions (N))
1531 and then No (Component_Associations (N))
1532 and then not Null_Record_Present (N)
1533 then
1534 return False;
1535 end if;
1536
996ae0b0
RK
1537 -- STEP 1: make sure the aggregate is correctly formatted
1538
1539 if Present (Component_Associations (N)) then
1540 Assoc := First (Component_Associations (N));
1541 while Present (Assoc) loop
1542 Choice := First (Choices (Assoc));
1543 while Present (Choice) loop
1544 if Nkind (Choice) = N_Others_Choice then
1545 Others_Present := True;
1546
1547 if Choice /= First (Choices (Assoc))
1548 or else Present (Next (Choice))
1549 then
1550 Error_Msg_N
1551 ("OTHERS must appear alone in a choice list", Choice);
1552 return Failure;
1553 end if;
1554
1555 if Present (Next (Assoc)) then
1556 Error_Msg_N
1557 ("OTHERS must appear last in an aggregate", Choice);
1558 return Failure;
1559 end if;
1560
0ab80019 1561 if Ada_Version = Ada_83
996ae0b0 1562 and then Assoc /= First (Component_Associations (N))
f53f9dd7
RD
1563 and then Nkind_In (Parent (N), N_Assignment_Statement,
1564 N_Object_Declaration)
996ae0b0
RK
1565 then
1566 Error_Msg_N
1567 ("(Ada 83) illegal context for OTHERS choice", N);
1568 end if;
1569 end if;
1570
1571 Nb_Choices := Nb_Choices + 1;
1572 Next (Choice);
1573 end loop;
1574
1575 Next (Assoc);
1576 end loop;
1577 end if;
1578
1579 -- At this point we know that the others choice, if present, is by
1580 -- itself and appears last in the aggregate. Check if we have mixed
1581 -- positional and discrete associations (other than the others choice).
1582
1583 if Present (Expressions (N))
1584 and then (Nb_Choices > 1
1585 or else (Nb_Choices = 1 and then not Others_Present))
1586 then
1587 Error_Msg_N
1588 ("named association cannot follow positional association",
1589 First (Choices (First (Component_Associations (N)))));
1590 return Failure;
1591 end if;
1592
1593 -- Test for the validity of an others choice if present
1594
1595 if Others_Present and then not Others_Allowed then
1596 Error_Msg_N
1597 ("OTHERS choice not allowed here",
1598 First (Choices (First (Component_Associations (N)))));
1599 return Failure;
1600 end if;
1601
07fc65c4
GB
1602 -- Protect against cascaded errors
1603
1604 if Etype (Index_Typ) = Any_Type then
1605 return Failure;
1606 end if;
1607
996ae0b0
RK
1608 -- STEP 2: Process named components
1609
1610 if No (Expressions (N)) then
996ae0b0
RK
1611 if Others_Present then
1612 Case_Table_Size := Nb_Choices - 1;
1613 else
1614 Case_Table_Size := Nb_Choices;
1615 end if;
1616
1617 Step_2 : declare
1618 Low : Node_Id;
1619 High : Node_Id;
1620 -- Denote the lowest and highest values in an aggregate choice
1621
1622 Hi_Val : Uint;
1623 Lo_Val : Uint;
1624 -- High end of one range and Low end of the next. Should be
1625 -- contiguous if there is no hole in the list of values.
1626
1627 Missing_Values : Boolean;
1628 -- Set True if missing index values
1629
1630 S_Low : Node_Id := Empty;
1631 S_High : Node_Id := Empty;
1632 -- if a choice in an aggregate is a subtype indication these
1633 -- denote the lowest and highest values of the subtype
1634
1635 Table : Case_Table_Type (1 .. Case_Table_Size);
1636 -- Used to sort all the different choice values
1637
1638 Single_Choice : Boolean;
1639 -- Set to true every time there is a single discrete choice in a
1640 -- discrete association
1641
1642 Prev_Nb_Discrete_Choices : Nat;
b87971f3
AC
1643 -- Used to keep track of the number of discrete choices in the
1644 -- current association.
996ae0b0
RK
1645
1646 begin
ec53a6da 1647 -- STEP 2 (A): Check discrete choices validity
996ae0b0
RK
1648
1649 Assoc := First (Component_Associations (N));
1650 while Present (Assoc) loop
996ae0b0
RK
1651 Prev_Nb_Discrete_Choices := Nb_Discrete_Choices;
1652 Choice := First (Choices (Assoc));
1653 loop
1654 Analyze (Choice);
1655
1656 if Nkind (Choice) = N_Others_Choice then
1657 Single_Choice := False;
1658 exit;
1659
1660 -- Test for subtype mark without constraint
1661
1662 elsif Is_Entity_Name (Choice) and then
1663 Is_Type (Entity (Choice))
1664 then
1665 if Base_Type (Entity (Choice)) /= Index_Base then
1666 Error_Msg_N
1667 ("invalid subtype mark in aggregate choice",
1668 Choice);
1669 return Failure;
1670 end if;
1671
ca44152f
ES
1672 -- Case of subtype indication
1673
996ae0b0
RK
1674 elsif Nkind (Choice) = N_Subtype_Indication then
1675 Resolve_Discrete_Subtype_Indication (Choice, Index_Base);
1676
1677 -- Does the subtype indication evaluation raise CE ?
1678
1679 Get_Index_Bounds (Subtype_Mark (Choice), S_Low, S_High);
1680 Get_Index_Bounds (Choice, Low, High);
1681 Check_Bounds (S_Low, S_High, Low, High);
1682
ca44152f
ES
1683 -- Case of range or expression
1684
1685 else
996ae0b0 1686 Resolve (Choice, Index_Base);
fbf5a39b 1687 Check_Unset_Reference (Choice);
996ae0b0
RK
1688 Check_Non_Static_Context (Choice);
1689
1690 -- Do not range check a choice. This check is redundant
b87971f3
AC
1691 -- since this test is already done when we check that the
1692 -- bounds of the array aggregate are within range.
996ae0b0
RK
1693
1694 Set_Do_Range_Check (Choice, False);
1695 end if;
1696
1697 -- If we could not resolve the discrete choice stop here
1698
1699 if Etype (Choice) = Any_Type then
1700 return Failure;
1701
ec53a6da 1702 -- If the discrete choice raises CE get its original bounds
996ae0b0
RK
1703
1704 elsif Nkind (Choice) = N_Raise_Constraint_Error then
1705 Set_Raises_Constraint_Error (N);
1706 Get_Index_Bounds (Original_Node (Choice), Low, High);
1707
1708 -- Otherwise get its bounds as usual
1709
1710 else
1711 Get_Index_Bounds (Choice, Low, High);
1712 end if;
1713
1714 if (Dynamic_Or_Null_Range (Low, High)
1715 or else (Nkind (Choice) = N_Subtype_Indication
1716 and then
1717 Dynamic_Or_Null_Range (S_Low, S_High)))
1718 and then Nb_Choices /= 1
1719 then
1720 Error_Msg_N
1721 ("dynamic or empty choice in aggregate " &
1722 "must be the only choice", Choice);
1723 return Failure;
1724 end if;
1725
1726 Nb_Discrete_Choices := Nb_Discrete_Choices + 1;
1727 Table (Nb_Discrete_Choices).Choice_Lo := Low;
1728 Table (Nb_Discrete_Choices).Choice_Hi := High;
1729
1730 Next (Choice);
1731
1732 if No (Choice) then
9b96e234 1733
996ae0b0
RK
1734 -- Check if we have a single discrete choice and whether
1735 -- this discrete choice specifies a single value.
1736
1737 Single_Choice :=
1738 (Nb_Discrete_Choices = Prev_Nb_Discrete_Choices + 1)
1739 and then (Low = High);
1740
1741 exit;
1742 end if;
1743 end loop;
1744
0ab80019 1745 -- Ada 2005 (AI-231)
2820d220 1746
ec53a6da 1747 if Ada_Version >= Ada_05
8133b9d1 1748 and then Known_Null (Expression (Assoc))
ec53a6da 1749 then
82c80734
RD
1750 Check_Can_Never_Be_Null (Etype (N), Expression (Assoc));
1751 end if;
2820d220 1752
0ab80019 1753 -- Ada 2005 (AI-287): In case of default initialized component
b87971f3 1754 -- we delay the resolution to the expansion phase.
c45b6ae0
AC
1755
1756 if Box_Present (Assoc) then
1757
b87971f3
AC
1758 -- Ada 2005 (AI-287): In case of default initialization of a
1759 -- component the expander will generate calls to the
1760 -- corresponding initialization subprogram.
c45b6ae0 1761
615cbd95 1762 null;
c45b6ae0
AC
1763
1764 elsif not Resolve_Aggr_Expr (Expression (Assoc),
1765 Single_Elmt => Single_Choice)
996ae0b0
RK
1766 then
1767 return Failure;
4755cce9
JM
1768
1769 -- Check incorrect use of dynamically tagged expression
1770
1771 -- We differentiate here two cases because the expression may
1772 -- not be decorated. For example, the analysis and resolution
b87971f3
AC
1773 -- of the expression associated with the others choice will be
1774 -- done later with the full aggregate. In such case we
4755cce9
JM
1775 -- duplicate the expression tree to analyze the copy and
1776 -- perform the required check.
1777
1778 elsif not Present (Etype (Expression (Assoc))) then
1779 declare
1780 Save_Analysis : constant Boolean := Full_Analysis;
1781 Expr : constant Node_Id :=
1782 New_Copy_Tree (Expression (Assoc));
1783
1784 begin
1785 Expander_Mode_Save_And_Set (False);
1786 Full_Analysis := False;
1787 Analyze (Expr);
1788 Full_Analysis := Save_Analysis;
1789 Expander_Mode_Restore;
1790
1791 if Is_Tagged_Type (Etype (Expr)) then
1792 Check_Dynamically_Tagged_Expression
1793 (Expr => Expr,
1794 Typ => Component_Type (Etype (N)),
1795 Related_Nod => N);
1796 end if;
1797 end;
1798
1799 elsif Is_Tagged_Type (Etype (Expression (Assoc))) then
1800 Check_Dynamically_Tagged_Expression
1801 (Expr => Expression (Assoc),
1802 Typ => Component_Type (Etype (N)),
1803 Related_Nod => N);
996ae0b0
RK
1804 end if;
1805
1806 Next (Assoc);
1807 end loop;
1808
1809 -- If aggregate contains more than one choice then these must be
b87971f3 1810 -- static. Sort them and check that they are contiguous.
996ae0b0
RK
1811
1812 if Nb_Discrete_Choices > 1 then
1813 Sort_Case_Table (Table);
1814 Missing_Values := False;
1815
1816 Outer : for J in 1 .. Nb_Discrete_Choices - 1 loop
1817 if Expr_Value (Table (J).Choice_Hi) >=
1818 Expr_Value (Table (J + 1).Choice_Lo)
1819 then
1820 Error_Msg_N
1821 ("duplicate choice values in array aggregate",
1822 Table (J).Choice_Hi);
1823 return Failure;
1824
1825 elsif not Others_Present then
996ae0b0
RK
1826 Hi_Val := Expr_Value (Table (J).Choice_Hi);
1827 Lo_Val := Expr_Value (Table (J + 1).Choice_Lo);
1828
1829 -- If missing values, output error messages
1830
1831 if Lo_Val - Hi_Val > 1 then
1832
1833 -- Header message if not first missing value
1834
1835 if not Missing_Values then
1836 Error_Msg_N
1837 ("missing index value(s) in array aggregate", N);
1838 Missing_Values := True;
1839 end if;
1840
1841 -- Output values of missing indexes
1842
1843 Lo_Val := Lo_Val - 1;
1844 Hi_Val := Hi_Val + 1;
1845
1846 -- Enumeration type case
1847
1848 if Is_Enumeration_Type (Index_Typ) then
1849 Error_Msg_Name_1 :=
1850 Chars
1851 (Get_Enum_Lit_From_Pos
1852 (Index_Typ, Hi_Val, Loc));
1853
1854 if Lo_Val = Hi_Val then
1855 Error_Msg_N ("\ %", N);
1856 else
1857 Error_Msg_Name_2 :=
1858 Chars
1859 (Get_Enum_Lit_From_Pos
1860 (Index_Typ, Lo_Val, Loc));
1861 Error_Msg_N ("\ % .. %", N);
1862 end if;
1863
1864 -- Integer types case
1865
1866 else
1867 Error_Msg_Uint_1 := Hi_Val;
1868
1869 if Lo_Val = Hi_Val then
1870 Error_Msg_N ("\ ^", N);
1871 else
1872 Error_Msg_Uint_2 := Lo_Val;
1873 Error_Msg_N ("\ ^ .. ^", N);
1874 end if;
1875 end if;
1876 end if;
1877 end if;
1878 end loop Outer;
1879
1880 if Missing_Values then
1881 Set_Etype (N, Any_Composite);
1882 return Failure;
1883 end if;
1884 end if;
1885
1886 -- STEP 2 (B): Compute aggregate bounds and min/max choices values
1887
1888 if Nb_Discrete_Choices > 0 then
1889 Choices_Low := Table (1).Choice_Lo;
1890 Choices_High := Table (Nb_Discrete_Choices).Choice_Hi;
1891 end if;
1892
ca44152f
ES
1893 -- If Others is present, then bounds of aggregate come from the
1894 -- index constraint (not the choices in the aggregate itself).
1895
996ae0b0
RK
1896 if Others_Present then
1897 Get_Index_Bounds (Index_Constr, Aggr_Low, Aggr_High);
1898
ca44152f
ES
1899 -- No others clause present
1900
996ae0b0 1901 else
ca44152f
ES
1902 -- Special processing if others allowed and not present. This
1903 -- means that the bounds of the aggregate come from the index
1904 -- constraint (and the length must match).
1905
1906 if Others_Allowed then
1907 Get_Index_Bounds (Index_Constr, Aggr_Low, Aggr_High);
1908
1909 -- If others allowed, and no others present, then the array
1910 -- should cover all index values. If it does not, we will
1911 -- get a length check warning, but there is two cases where
1912 -- an additional warning is useful:
1913
1914 -- If we have no positional components, and the length is
1915 -- wrong (which we can tell by others being allowed with
1916 -- missing components), and the index type is an enumeration
1917 -- type, then issue appropriate warnings about these missing
1918 -- components. They are only warnings, since the aggregate
1919 -- is fine, it's just the wrong length. We skip this check
1920 -- for standard character types (since there are no literals
1921 -- and it is too much trouble to concoct them), and also if
1922 -- any of the bounds have not-known-at-compile-time values.
1923
1924 -- Another case warranting a warning is when the length is
1925 -- right, but as above we have an index type that is an
1926 -- enumeration, and the bounds do not match. This is a
1927 -- case where dubious sliding is allowed and we generate
1928 -- a warning that the bounds do not match.
1929
1930 if No (Expressions (N))
1931 and then Nkind (Index) = N_Range
1932 and then Is_Enumeration_Type (Etype (Index))
1933 and then not Is_Standard_Character_Type (Etype (Index))
1934 and then Compile_Time_Known_Value (Aggr_Low)
1935 and then Compile_Time_Known_Value (Aggr_High)
1936 and then Compile_Time_Known_Value (Choices_Low)
1937 and then Compile_Time_Known_Value (Choices_High)
1938 then
d610088d
AC
1939
1940 -- If the bounds have semantic errors, do not attempt
1941 -- further resolution to prevent cascaded errors..
1942
1943 if Error_Posted (Choices_Low)
1944 or else Error_Posted (Choices_High)
1945 then
1946 return False;
1947 end if;
1948
ca44152f
ES
1949 declare
1950 ALo : constant Node_Id := Expr_Value_E (Aggr_Low);
1951 AHi : constant Node_Id := Expr_Value_E (Aggr_High);
1952 CLo : constant Node_Id := Expr_Value_E (Choices_Low);
1953 CHi : constant Node_Id := Expr_Value_E (Choices_High);
1954
1955 Ent : Entity_Id;
1956
1957 begin
1958 -- Warning case one, missing values at start/end. Only
1959 -- do the check if the number of entries is too small.
1960
1961 if (Enumeration_Pos (CHi) - Enumeration_Pos (CLo))
1962 <
1963 (Enumeration_Pos (AHi) - Enumeration_Pos (ALo))
1964 then
1965 Error_Msg_N
1966 ("missing index value(s) in array aggregate?", N);
1967
1968 -- Output missing value(s) at start
1969
1970 if Chars (ALo) /= Chars (CLo) then
1971 Ent := Prev (CLo);
1972
1973 if Chars (ALo) = Chars (Ent) then
1974 Error_Msg_Name_1 := Chars (ALo);
1975 Error_Msg_N ("\ %?", N);
1976 else
1977 Error_Msg_Name_1 := Chars (ALo);
1978 Error_Msg_Name_2 := Chars (Ent);
1979 Error_Msg_N ("\ % .. %?", N);
1980 end if;
1981 end if;
1982
1983 -- Output missing value(s) at end
1984
1985 if Chars (AHi) /= Chars (CHi) then
1986 Ent := Next (CHi);
1987
1988 if Chars (AHi) = Chars (Ent) then
1989 Error_Msg_Name_1 := Chars (Ent);
1990 Error_Msg_N ("\ %?", N);
1991 else
1992 Error_Msg_Name_1 := Chars (Ent);
1993 Error_Msg_Name_2 := Chars (AHi);
1994 Error_Msg_N ("\ % .. %?", N);
1995 end if;
1996 end if;
1997
1998 -- Warning case 2, dubious sliding. The First_Subtype
1999 -- test distinguishes between a constrained type where
2000 -- sliding is not allowed (so we will get a warning
2001 -- later that Constraint_Error will be raised), and
2002 -- the unconstrained case where sliding is permitted.
2003
2004 elsif (Enumeration_Pos (CHi) - Enumeration_Pos (CLo))
2005 =
2006 (Enumeration_Pos (AHi) - Enumeration_Pos (ALo))
2007 and then Chars (ALo) /= Chars (CLo)
2008 and then
2009 not Is_Constrained (First_Subtype (Etype (N)))
2010 then
2011 Error_Msg_N
2012 ("bounds of aggregate do not match target?", N);
2013 end if;
2014 end;
2015 end if;
2016 end if;
2017
f3d0f304 2018 -- If no others, aggregate bounds come from aggregate
ca44152f 2019
996ae0b0
RK
2020 Aggr_Low := Choices_Low;
2021 Aggr_High := Choices_High;
2022 end if;
2023 end Step_2;
2024
2025 -- STEP 3: Process positional components
2026
2027 else
2028 -- STEP 3 (A): Process positional elements
2029
2030 Expr := First (Expressions (N));
2031 Nb_Elements := Uint_0;
2032 while Present (Expr) loop
2033 Nb_Elements := Nb_Elements + 1;
2034
82c80734
RD
2035 -- Ada 2005 (AI-231)
2036
ec53a6da 2037 if Ada_Version >= Ada_05
8133b9d1 2038 and then Known_Null (Expr)
ec53a6da 2039 then
82c80734
RD
2040 Check_Can_Never_Be_Null (Etype (N), Expr);
2041 end if;
2820d220 2042
996ae0b0
RK
2043 if not Resolve_Aggr_Expr (Expr, Single_Elmt => True) then
2044 return Failure;
2045 end if;
2046
4755cce9
JM
2047 -- Check incorrect use of dynamically tagged expression
2048
2049 if Is_Tagged_Type (Etype (Expr)) then
2050 Check_Dynamically_Tagged_Expression
2051 (Expr => Expr,
2052 Typ => Component_Type (Etype (N)),
2053 Related_Nod => N);
2054 end if;
2055
996ae0b0
RK
2056 Next (Expr);
2057 end loop;
2058
2059 if Others_Present then
2060 Assoc := Last (Component_Associations (N));
c45b6ae0 2061
82c80734
RD
2062 -- Ada 2005 (AI-231)
2063
ec53a6da 2064 if Ada_Version >= Ada_05
8133b9d1 2065 and then Known_Null (Assoc)
ec53a6da 2066 then
9b96e234 2067 Check_Can_Never_Be_Null (Etype (N), Expression (Assoc));
82c80734 2068 end if;
2820d220 2069
0ab80019 2070 -- Ada 2005 (AI-287): In case of default initialized component
c45b6ae0
AC
2071 -- we delay the resolution to the expansion phase.
2072
2073 if Box_Present (Assoc) then
2074
0ab80019
AC
2075 -- Ada 2005 (AI-287): In case of default initialization
2076 -- of a component the expander will generate calls to
2077 -- the corresponding initialization subprogram.
c45b6ae0 2078
615cbd95 2079 null;
c45b6ae0
AC
2080
2081 elsif not Resolve_Aggr_Expr (Expression (Assoc),
2082 Single_Elmt => False)
996ae0b0
RK
2083 then
2084 return Failure;
4755cce9
JM
2085
2086 -- Check incorrect use of dynamically tagged expression. The
2087 -- expression of the others choice has not been resolved yet.
2088 -- In order to diagnose the semantic error we create a duplicate
2089 -- tree to analyze it and perform the check.
2090
2091 else
2092 declare
2093 Save_Analysis : constant Boolean := Full_Analysis;
2094 Expr : constant Node_Id :=
2095 New_Copy_Tree (Expression (Assoc));
2096
2097 begin
2098 Expander_Mode_Save_And_Set (False);
2099 Full_Analysis := False;
2100 Analyze (Expr);
2101 Full_Analysis := Save_Analysis;
2102 Expander_Mode_Restore;
2103
2104 if Is_Tagged_Type (Etype (Expr)) then
2105 Check_Dynamically_Tagged_Expression
2106 (Expr => Expr,
2107 Typ => Component_Type (Etype (N)),
2108 Related_Nod => N);
2109 end if;
2110 end;
996ae0b0
RK
2111 end if;
2112 end if;
2113
2114 -- STEP 3 (B): Compute the aggregate bounds
2115
2116 if Others_Present then
2117 Get_Index_Bounds (Index_Constr, Aggr_Low, Aggr_High);
2118
2119 else
2120 if Others_Allowed then
f91e8020 2121 Get_Index_Bounds (Index_Constr, Aggr_Low, Discard);
996ae0b0
RK
2122 else
2123 Aggr_Low := Index_Typ_Low;
2124 end if;
2125
2126 Aggr_High := Add (Nb_Elements - 1, To => Aggr_Low);
2127 Check_Bound (Index_Base_High, Aggr_High);
2128 end if;
2129 end if;
2130
2131 -- STEP 4: Perform static aggregate checks and save the bounds
2132
2133 -- Check (A)
2134
2135 Check_Bounds (Index_Typ_Low, Index_Typ_High, Aggr_Low, Aggr_High);
2136 Check_Bounds (Index_Base_Low, Index_Base_High, Aggr_Low, Aggr_High);
2137
2138 -- Check (B)
2139
2140 if Others_Present and then Nb_Discrete_Choices > 0 then
2141 Check_Bounds (Aggr_Low, Aggr_High, Choices_Low, Choices_High);
2142 Check_Bounds (Index_Typ_Low, Index_Typ_High,
2143 Choices_Low, Choices_High);
2144 Check_Bounds (Index_Base_Low, Index_Base_High,
2145 Choices_Low, Choices_High);
2146
2147 -- Check (C)
2148
2149 elsif Others_Present and then Nb_Elements > 0 then
2150 Check_Length (Aggr_Low, Aggr_High, Nb_Elements);
2151 Check_Length (Index_Typ_Low, Index_Typ_High, Nb_Elements);
2152 Check_Length (Index_Base_Low, Index_Base_High, Nb_Elements);
996ae0b0
RK
2153 end if;
2154
2155 if Raises_Constraint_Error (Aggr_Low)
2156 or else Raises_Constraint_Error (Aggr_High)
2157 then
2158 Set_Raises_Constraint_Error (N);
2159 end if;
2160
2161 Aggr_Low := Duplicate_Subexpr (Aggr_Low);
2162
2163 -- Do not duplicate Aggr_High if Aggr_High = Aggr_Low + Nb_Elements
2164 -- since the addition node returned by Add is not yet analyzed. Attach
2165 -- to tree and analyze first. Reset analyzed flag to insure it will get
9b96e234 2166 -- analyzed when it is a literal bound whose type must be properly set.
996ae0b0
RK
2167
2168 if Others_Present or else Nb_Discrete_Choices > 0 then
2169 Aggr_High := Duplicate_Subexpr (Aggr_High);
2170
2171 if Etype (Aggr_High) = Universal_Integer then
2172 Set_Analyzed (Aggr_High, False);
2173 end if;
2174 end if;
2175
3d923671
AC
2176 -- If the aggregate already has bounds attached to it, it means this is
2177 -- a positional aggregate created as an optimization by
2178 -- Exp_Aggr.Convert_To_Positional, so we don't want to change those
2179 -- bounds.
2180
2181 if Present (Aggregate_Bounds (N)) and then not Others_Allowed then
2182 Aggr_Low := Low_Bound (Aggregate_Bounds (N));
2183 Aggr_High := High_Bound (Aggregate_Bounds (N));
2184 end if;
2185
996ae0b0
RK
2186 Set_Aggregate_Bounds
2187 (N, Make_Range (Loc, Low_Bound => Aggr_Low, High_Bound => Aggr_High));
2188
2189 -- The bounds may contain expressions that must be inserted upwards.
2190 -- Attach them fully to the tree. After analysis, remove side effects
2191 -- from upper bound, if still needed.
2192
2193 Set_Parent (Aggregate_Bounds (N), N);
2194 Analyze_And_Resolve (Aggregate_Bounds (N), Index_Typ);
fbf5a39b 2195 Check_Unset_Reference (Aggregate_Bounds (N));
996ae0b0
RK
2196
2197 if not Others_Present and then Nb_Discrete_Choices = 0 then
2198 Set_High_Bound (Aggregate_Bounds (N),
2199 Duplicate_Subexpr (High_Bound (Aggregate_Bounds (N))));
2200 end if;
2201
2202 return Success;
2203 end Resolve_Array_Aggregate;
2204
2205 ---------------------------------
2206 -- Resolve_Extension_Aggregate --
2207 ---------------------------------
2208
2209 -- There are two cases to consider:
2210
2211 -- a) If the ancestor part is a type mark, the components needed are
2212 -- the difference between the components of the expected type and the
2213 -- components of the given type mark.
2214
2215 -- b) If the ancestor part is an expression, it must be unambiguous,
2216 -- and once we have its type we can also compute the needed components
2217 -- as in the previous case. In both cases, if the ancestor type is not
2218 -- the immediate ancestor, we have to build this ancestor recursively.
2219
2220 -- In both cases discriminants of the ancestor type do not play a
2221 -- role in the resolution of the needed components, because inherited
2222 -- discriminants cannot be used in a type extension. As a result we can
2223 -- compute independently the list of components of the ancestor type and
2224 -- of the expected type.
2225
2226 procedure Resolve_Extension_Aggregate (N : Node_Id; Typ : Entity_Id) is
fbf5a39b
AC
2227 A : constant Node_Id := Ancestor_Part (N);
2228 A_Type : Entity_Id;
2229 I : Interp_Index;
2230 It : Interp;
996ae0b0 2231
ca44152f
ES
2232 function Valid_Limited_Ancestor (Anc : Node_Id) return Boolean;
2233 -- If the type is limited, verify that the ancestor part is a legal
2234 -- expression (aggregate or function call, including 'Input)) that
2235 -- does not require a copy, as specified in 7.5 (2).
2236
996ae0b0
RK
2237 function Valid_Ancestor_Type return Boolean;
2238 -- Verify that the type of the ancestor part is a non-private ancestor
1543e3ab 2239 -- of the expected type, which must be a type extension.
996ae0b0 2240
ca44152f
ES
2241 ----------------------------
2242 -- Valid_Limited_Ancestor --
2243 ----------------------------
2244
2245 function Valid_Limited_Ancestor (Anc : Node_Id) return Boolean is
2246 begin
2247 if Is_Entity_Name (Anc)
2248 and then Is_Type (Entity (Anc))
2249 then
2250 return True;
2251
2252 elsif Nkind_In (Anc, N_Aggregate, N_Function_Call) then
2253 return True;
2254
2255 elsif Nkind (Anc) = N_Attribute_Reference
2256 and then Attribute_Name (Anc) = Name_Input
2257 then
2258 return True;
2259
2260 elsif
2261 Nkind (Anc) = N_Qualified_Expression
2262 then
2263 return Valid_Limited_Ancestor (Expression (Anc));
2264
2265 else
2266 return False;
2267 end if;
2268 end Valid_Limited_Ancestor;
2269
fbf5a39b
AC
2270 -------------------------
2271 -- Valid_Ancestor_Type --
2272 -------------------------
2273
996ae0b0
RK
2274 function Valid_Ancestor_Type return Boolean is
2275 Imm_Type : Entity_Id;
2276
2277 begin
2278 Imm_Type := Base_Type (Typ);
2af92e28
ES
2279 while Is_Derived_Type (Imm_Type) loop
2280 if Etype (Imm_Type) = Base_Type (A_Type) then
2281 return True;
2282
2283 -- The base type of the parent type may appear as a private
2284 -- extension if it is declared as such in a parent unit of
2285 -- the current one. For consistency of the subsequent analysis
2286 -- use the partial view for the ancestor part.
2287
2288 elsif Is_Private_Type (Etype (Imm_Type))
2289 and then Present (Full_View (Etype (Imm_Type)))
2290 and then Base_Type (A_Type) = Full_View (Etype (Imm_Type))
2291 then
2292 A_Type := Etype (Imm_Type);
2293 return True;
2af92e28
ES
2294 else
2295 Imm_Type := Etype (Base_Type (Imm_Type));
2296 end if;
996ae0b0
RK
2297 end loop;
2298
6d2a1120 2299 -- If previous loop did not find a proper ancestor, report error
2af92e28
ES
2300
2301 Error_Msg_NE ("expect ancestor type of &", A, Typ);
2302 return False;
996ae0b0
RK
2303 end Valid_Ancestor_Type;
2304
2305 -- Start of processing for Resolve_Extension_Aggregate
2306
2307 begin
70b70ce8
AC
2308 -- Analyze the ancestor part and account for the case where it's
2309 -- a parameterless function call.
2310
996ae0b0 2311 Analyze (A);
70b70ce8 2312 Check_Parameterless_Call (A);
996ae0b0
RK
2313
2314 if not Is_Tagged_Type (Typ) then
2315 Error_Msg_N ("type of extension aggregate must be tagged", N);
2316 return;
2317
19f0526a
AC
2318 elsif Is_Limited_Type (Typ) then
2319
0ab80019 2320 -- Ada 2005 (AI-287): Limited aggregates are allowed
19f0526a 2321
0ab80019 2322 if Ada_Version < Ada_05 then
19f0526a
AC
2323 Error_Msg_N ("aggregate type cannot be limited", N);
2324 Explain_Limited_Type (Typ, N);
2325 return;
ca44152f
ES
2326
2327 elsif Valid_Limited_Ancestor (A) then
2328 null;
2329
2330 else
2331 Error_Msg_N
2332 ("limited ancestor part must be aggregate or function call", A);
19f0526a 2333 end if;
996ae0b0
RK
2334
2335 elsif Is_Class_Wide_Type (Typ) then
2336 Error_Msg_N ("aggregate cannot be of a class-wide type", N);
2337 return;
2338 end if;
2339
2340 if Is_Entity_Name (A)
2341 and then Is_Type (Entity (A))
2342 then
fbf5a39b 2343 A_Type := Get_Full_View (Entity (A));
996ae0b0
RK
2344
2345 if Valid_Ancestor_Type then
2346 Set_Entity (A, A_Type);
2347 Set_Etype (A, A_Type);
2348
2349 Validate_Ancestor_Part (N);
2350 Resolve_Record_Aggregate (N, Typ);
2351 end if;
2352
2353 elsif Nkind (A) /= N_Aggregate then
2354 if Is_Overloaded (A) then
2355 A_Type := Any_Type;
996ae0b0 2356
7f9747c6 2357 Get_First_Interp (A, I, It);
996ae0b0 2358 while Present (It.Typ) loop
70b70ce8
AC
2359 -- Only consider limited interpretations in the Ada 2005 case
2360
996ae0b0 2361 if Is_Tagged_Type (It.Typ)
70b70ce8
AC
2362 and then (Ada_Version >= Ada_05
2363 or else not Is_Limited_Type (It.Typ))
996ae0b0
RK
2364 then
2365 if A_Type /= Any_Type then
2366 Error_Msg_N ("cannot resolve expression", A);
2367 return;
2368 else
2369 A_Type := It.Typ;
2370 end if;
2371 end if;
2372
2373 Get_Next_Interp (I, It);
2374 end loop;
2375
2376 if A_Type = Any_Type then
70b70ce8
AC
2377 if Ada_Version >= Ada_05 then
2378 Error_Msg_N ("ancestor part must be of a tagged type", A);
2379 else
2380 Error_Msg_N
2381 ("ancestor part must be of a nonlimited tagged type", A);
2382 end if;
2383
996ae0b0
RK
2384 return;
2385 end if;
2386
2387 else
2388 A_Type := Etype (A);
2389 end if;
2390
2391 if Valid_Ancestor_Type then
2392 Resolve (A, A_Type);
fbf5a39b 2393 Check_Unset_Reference (A);
996ae0b0 2394 Check_Non_Static_Context (A);
fbf5a39b 2395
1646c947
GD
2396 -- The aggregate is illegal if the ancestor expression is a call
2397 -- to a function with a limited unconstrained result, unless the
2398 -- type of the aggregate is a null extension. This restriction
2399 -- was added in AI05-67 to simplify implementation.
2400
2401 if Nkind (A) = N_Function_Call
2402 and then Is_Limited_Type (A_Type)
2403 and then not Is_Null_Extension (Typ)
2404 and then not Is_Constrained (A_Type)
2405 then
2406 Error_Msg_N
2407 ("type of limited ancestor part must be constrained", A);
2408
2409 elsif Is_Class_Wide_Type (Etype (A))
fbf5a39b
AC
2410 and then Nkind (Original_Node (A)) = N_Function_Call
2411 then
2412 -- If the ancestor part is a dispatching call, it appears
2413 -- statically to be a legal ancestor, but it yields any
2414 -- member of the class, and it is not possible to determine
2415 -- whether it is an ancestor of the extension aggregate (much
2416 -- less which ancestor). It is not possible to determine the
2417 -- required components of the extension part.
2418
82c80734
RD
2419 -- This check implements AI-306, which in fact was motivated
2420 -- by an ACT query to the ARG after this test was added.
2421
fbf5a39b
AC
2422 Error_Msg_N ("ancestor part must be statically tagged", A);
2423 else
2424 Resolve_Record_Aggregate (N, Typ);
2425 end if;
996ae0b0
RK
2426 end if;
2427
2428 else
88b32fc3 2429 Error_Msg_N ("no unique type for this aggregate", A);
996ae0b0 2430 end if;
996ae0b0
RK
2431 end Resolve_Extension_Aggregate;
2432
2433 ------------------------------
2434 -- Resolve_Record_Aggregate --
2435 ------------------------------
2436
2437 procedure Resolve_Record_Aggregate (N : Node_Id; Typ : Entity_Id) is
9b96e234
JM
2438 Assoc : Node_Id;
2439 -- N_Component_Association node belonging to the input aggregate N
2440
2441 Expr : Node_Id;
2442 Positional_Expr : Node_Id;
2443 Component : Entity_Id;
2444 Component_Elmt : Elmt_Id;
2445
2446 Components : constant Elist_Id := New_Elmt_List;
2447 -- Components is the list of the record components whose value must
2448 -- be provided in the aggregate. This list does include discriminants.
2449
fbf5a39b
AC
2450 New_Assoc_List : constant List_Id := New_List;
2451 New_Assoc : Node_Id;
996ae0b0
RK
2452 -- New_Assoc_List is the newly built list of N_Component_Association
2453 -- nodes. New_Assoc is one such N_Component_Association node in it.
2454 -- Please note that while Assoc and New_Assoc contain the same
2455 -- kind of nodes, they are used to iterate over two different
2456 -- N_Component_Association lists.
2457
2458 Others_Etype : Entity_Id := Empty;
2459 -- This variable is used to save the Etype of the last record component
2460 -- that takes its value from the others choice. Its purpose is:
2461 --
2462 -- (a) make sure the others choice is useful
2463 --
2464 -- (b) make sure the type of all the components whose value is
2465 -- subsumed by the others choice are the same.
2466 --
2467 -- This variable is updated as a side effect of function Get_Value
2468
9b96e234
JM
2469 Is_Box_Present : Boolean := False;
2470 Others_Box : Boolean := False;
0ab80019 2471 -- Ada 2005 (AI-287): Variables used in case of default initialization
9b96e234 2472 -- to provide a functionality similar to Others_Etype. Box_Present
19f0526a 2473 -- indicates that the component takes its default initialization;
9b96e234 2474 -- Others_Box indicates that at least one component takes its default
19f0526a
AC
2475 -- initialization. Similar to Others_Etype, they are also updated as a
2476 -- side effect of function Get_Value.
65356e64
AC
2477
2478 procedure Add_Association
9b96e234
JM
2479 (Component : Entity_Id;
2480 Expr : Node_Id;
107b023c 2481 Assoc_List : List_Id;
9b96e234 2482 Is_Box_Present : Boolean := False);
996ae0b0 2483 -- Builds a new N_Component_Association node which associates
107b023c
AC
2484 -- Component to expression Expr and adds it to the association
2485 -- list being built, either New_Assoc_List, or the association
2be0bff8 2486 -- being built for an inner aggregate.
996ae0b0
RK
2487
2488 function Discr_Present (Discr : Entity_Id) return Boolean;
2489 -- If aggregate N is a regular aggregate this routine will return True.
fbf5a39b 2490 -- Otherwise, if N is an extension aggregate, Discr is a discriminant
996ae0b0
RK
2491 -- whose value may already have been specified by N's ancestor part,
2492 -- this routine checks whether this is indeed the case and if so
2493 -- returns False, signaling that no value for Discr should appear in the
2494 -- N's aggregate part. Also, in this case, the routine appends to
2495 -- New_Assoc_List Discr the discriminant value specified in the ancestor
2496 -- part.
2497
2498 function Get_Value
2499 (Compon : Node_Id;
2500 From : List_Id;
2501 Consider_Others_Choice : Boolean := False)
2502 return Node_Id;
2503 -- Given a record component stored in parameter Compon, the
2504 -- following function returns its value as it appears in the list
2505 -- From, which is a list of N_Component_Association nodes. If no
2506 -- component association has a choice for the searched component,
2507 -- the value provided by the others choice is returned, if there
2508 -- is one and Consider_Others_Choice is set to true. Otherwise
2509 -- Empty is returned. If there is more than one component association
2510 -- giving a value for the searched record component, an error message
2511 -- is emitted and the first found value is returned.
2512 --
2513 -- If Consider_Others_Choice is set and the returned expression comes
2514 -- from the others choice, then Others_Etype is set as a side effect.
2515 -- An error message is emitted if the components taking their value
2516 -- from the others choice do not have same type.
2517
2518 procedure Resolve_Aggr_Expr (Expr : Node_Id; Component : Node_Id);
2519 -- Analyzes and resolves expression Expr against the Etype of the
638e383e 2520 -- Component. This routine also applies all appropriate checks to Expr.
996ae0b0
RK
2521 -- It finally saves a Expr in the newly created association list that
2522 -- will be attached to the final record aggregate. Note that if the
2523 -- Parent pointer of Expr is not set then Expr was produced with a
fbf5a39b 2524 -- New_Copy_Tree or some such.
996ae0b0
RK
2525
2526 ---------------------
2527 -- Add_Association --
2528 ---------------------
2529
65356e64 2530 procedure Add_Association
9b96e234
JM
2531 (Component : Entity_Id;
2532 Expr : Node_Id;
107b023c 2533 Assoc_List : List_Id;
9b96e234 2534 Is_Box_Present : Boolean := False)
65356e64 2535 is
fbf5a39b 2536 Choice_List : constant List_Id := New_List;
996ae0b0 2537 New_Assoc : Node_Id;
996ae0b0
RK
2538
2539 begin
2540 Append (New_Occurrence_Of (Component, Sloc (Expr)), Choice_List);
2541 New_Assoc :=
2542 Make_Component_Association (Sloc (Expr),
65356e64
AC
2543 Choices => Choice_List,
2544 Expression => Expr,
9b96e234 2545 Box_Present => Is_Box_Present);
107b023c 2546 Append (New_Assoc, Assoc_List);
996ae0b0
RK
2547 end Add_Association;
2548
2549 -------------------
2550 -- Discr_Present --
2551 -------------------
2552
2553 function Discr_Present (Discr : Entity_Id) return Boolean is
fbf5a39b
AC
2554 Regular_Aggr : constant Boolean := Nkind (N) /= N_Extension_Aggregate;
2555
996ae0b0
RK
2556 Loc : Source_Ptr;
2557
2558 Ancestor : Node_Id;
2559 Discr_Expr : Node_Id;
2560
2561 Ancestor_Typ : Entity_Id;
2562 Orig_Discr : Entity_Id;
2563 D : Entity_Id;
2564 D_Val : Elmt_Id := No_Elmt; -- stop junk warning
2565
2566 Ancestor_Is_Subtyp : Boolean;
2567
2568 begin
2569 if Regular_Aggr then
2570 return True;
2571 end if;
2572
2573 Ancestor := Ancestor_Part (N);
2574 Ancestor_Typ := Etype (Ancestor);
2575 Loc := Sloc (Ancestor);
2576
5987e59c
AC
2577 -- For a private type with unknown discriminants, use the underlying
2578 -- record view if it is available.
9013065b
AC
2579
2580 if Has_Unknown_Discriminants (Ancestor_Typ)
2581 and then Present (Full_View (Ancestor_Typ))
2582 and then Present (Underlying_Record_View (Full_View (Ancestor_Typ)))
2583 then
2584 Ancestor_Typ := Underlying_Record_View (Full_View (Ancestor_Typ));
2585 end if;
2586
996ae0b0
RK
2587 Ancestor_Is_Subtyp :=
2588 Is_Entity_Name (Ancestor) and then Is_Type (Entity (Ancestor));
2589
2590 -- If the ancestor part has no discriminants clearly N's aggregate
2591 -- part must provide a value for Discr.
2592
2593 if not Has_Discriminants (Ancestor_Typ) then
2594 return True;
2595
2596 -- If the ancestor part is an unconstrained subtype mark then the
2597 -- Discr must be present in N's aggregate part.
2598
2599 elsif Ancestor_Is_Subtyp
2600 and then not Is_Constrained (Entity (Ancestor))
2601 then
2602 return True;
2603 end if;
2604
ec53a6da 2605 -- Now look to see if Discr was specified in the ancestor part
996ae0b0
RK
2606
2607 if Ancestor_Is_Subtyp then
2608 D_Val := First_Elmt (Discriminant_Constraint (Entity (Ancestor)));
2609 end if;
2610
ec53a6da
JM
2611 Orig_Discr := Original_Record_Component (Discr);
2612
2613 D := First_Discriminant (Ancestor_Typ);
996ae0b0 2614 while Present (D) loop
ec53a6da
JM
2615
2616 -- If Ancestor has already specified Disc value than insert its
2617 -- value in the final aggregate.
996ae0b0
RK
2618
2619 if Original_Record_Component (D) = Orig_Discr then
2620 if Ancestor_Is_Subtyp then
2621 Discr_Expr := New_Copy_Tree (Node (D_Val));
2622 else
2623 Discr_Expr :=
2624 Make_Selected_Component (Loc,
2625 Prefix => Duplicate_Subexpr (Ancestor),
2626 Selector_Name => New_Occurrence_Of (Discr, Loc));
2627 end if;
2628
2629 Resolve_Aggr_Expr (Discr_Expr, Discr);
2630 return False;
2631 end if;
2632
2633 Next_Discriminant (D);
2634
2635 if Ancestor_Is_Subtyp then
2636 Next_Elmt (D_Val);
2637 end if;
2638 end loop;
2639
2640 return True;
2641 end Discr_Present;
2642
2643 ---------------
2644 -- Get_Value --
2645 ---------------
2646
2647 function Get_Value
2648 (Compon : Node_Id;
2649 From : List_Id;
2650 Consider_Others_Choice : Boolean := False)
2651 return Node_Id
2652 is
2653 Assoc : Node_Id;
2654 Expr : Node_Id := Empty;
2655 Selector_Name : Node_Id;
2656
2657 begin
9b96e234 2658 Is_Box_Present := False;
65356e64 2659
996ae0b0
RK
2660 if Present (From) then
2661 Assoc := First (From);
2662 else
2663 return Empty;
2664 end if;
2665
2666 while Present (Assoc) loop
2667 Selector_Name := First (Choices (Assoc));
2668 while Present (Selector_Name) loop
2669 if Nkind (Selector_Name) = N_Others_Choice then
2670 if Consider_Others_Choice and then No (Expr) then
996ae0b0
RK
2671
2672 -- We need to duplicate the expression for each
2673 -- successive component covered by the others choice.
fbf5a39b
AC
2674 -- This is redundant if the others_choice covers only
2675 -- one component (small optimization possible???), but
2676 -- indispensable otherwise, because each one must be
2677 -- expanded individually to preserve side-effects.
996ae0b0 2678
0ab80019
AC
2679 -- Ada 2005 (AI-287): In case of default initialization
2680 -- of components, we duplicate the corresponding default
88b32fc3
BD
2681 -- expression (from the record type declaration). The
2682 -- copy must carry the sloc of the association (not the
2683 -- original expression) to prevent spurious elaboration
2684 -- checks when the default includes function calls.
19f0526a 2685
65356e64 2686 if Box_Present (Assoc) then
9b96e234
JM
2687 Others_Box := True;
2688 Is_Box_Present := True;
65356e64
AC
2689
2690 if Expander_Active then
88b32fc3
BD
2691 return
2692 New_Copy_Tree
2693 (Expression (Parent (Compon)),
2694 New_Sloc => Sloc (Assoc));
65356e64
AC
2695 else
2696 return Expression (Parent (Compon));
2697 end if;
65356e64 2698
d05ef0ab 2699 else
65356e64
AC
2700 if Present (Others_Etype) and then
2701 Base_Type (Others_Etype) /= Base_Type (Etype
2702 (Compon))
2703 then
2704 Error_Msg_N ("components in OTHERS choice must " &
2705 "have same type", Selector_Name);
2706 end if;
2707
2708 Others_Etype := Etype (Compon);
2709
2710 if Expander_Active then
2711 return New_Copy_Tree (Expression (Assoc));
2712 else
2713 return Expression (Assoc);
2714 end if;
996ae0b0
RK
2715 end if;
2716 end if;
2717
2718 elsif Chars (Compon) = Chars (Selector_Name) then
2719 if No (Expr) then
fbf5a39b 2720
0ab80019 2721 -- Ada 2005 (AI-231)
2820d220 2722
0ab80019 2723 if Ada_Version >= Ada_05
8133b9d1 2724 and then Known_Null (Expression (Assoc))
2820d220 2725 then
82c80734 2726 Check_Can_Never_Be_Null (Compon, Expression (Assoc));
2820d220
AC
2727 end if;
2728
996ae0b0
RK
2729 -- We need to duplicate the expression when several
2730 -- components are grouped together with a "|" choice.
2731 -- For instance "filed1 | filed2 => Expr"
2732
0ab80019 2733 -- Ada 2005 (AI-287)
2820d220 2734
65356e64 2735 if Box_Present (Assoc) then
9b96e234 2736 Is_Box_Present := True;
65356e64
AC
2737
2738 -- Duplicate the default expression of the component
c7ce71c2
ES
2739 -- from the record type declaration, so a new copy
2740 -- can be attached to the association.
65356e64 2741
c7ce71c2
ES
2742 -- Note that we always copy the default expression,
2743 -- even when the association has a single choice, in
2744 -- order to create a proper association for the
2745 -- expanded aggregate.
2746
2747 Expr := New_Copy_Tree (Expression (Parent (Compon)));
65356e64 2748
d05ef0ab 2749 else
65356e64
AC
2750 if Present (Next (Selector_Name)) then
2751 Expr := New_Copy_Tree (Expression (Assoc));
2752 else
2753 Expr := Expression (Assoc);
2754 end if;
996ae0b0
RK
2755 end if;
2756
55603e5e 2757 Generate_Reference (Compon, Selector_Name, 'm');
fbf5a39b 2758
996ae0b0
RK
2759 else
2760 Error_Msg_NE
2761 ("more than one value supplied for &",
2762 Selector_Name, Compon);
2763
2764 end if;
2765 end if;
2766
2767 Next (Selector_Name);
2768 end loop;
2769
2770 Next (Assoc);
2771 end loop;
2772
2773 return Expr;
2774 end Get_Value;
2775
2776 -----------------------
2777 -- Resolve_Aggr_Expr --
2778 -----------------------
2779
2780 procedure Resolve_Aggr_Expr (Expr : Node_Id; Component : Node_Id) is
2781 New_C : Entity_Id := Component;
2782 Expr_Type : Entity_Id := Empty;
2783
2784 function Has_Expansion_Delayed (Expr : Node_Id) return Boolean;
2785 -- If the expression is an aggregate (possibly qualified) then its
2786 -- expansion is delayed until the enclosing aggregate is expanded
2787 -- into assignments. In that case, do not generate checks on the
2788 -- expression, because they will be generated later, and will other-
2789 -- wise force a copy (to remove side-effects) that would leave a
2790 -- dynamic-sized aggregate in the code, something that gigi cannot
2791 -- handle.
2792
2793 Relocate : Boolean;
2794 -- Set to True if the resolved Expr node needs to be relocated
2795 -- when attached to the newly created association list. This node
2796 -- need not be relocated if its parent pointer is not set.
2797 -- In fact in this case Expr is the output of a New_Copy_Tree call.
2798 -- if Relocate is True then we have analyzed the expression node
2799 -- in the original aggregate and hence it needs to be relocated
2800 -- when moved over the new association list.
2801
2802 function Has_Expansion_Delayed (Expr : Node_Id) return Boolean is
2803 Kind : constant Node_Kind := Nkind (Expr);
996ae0b0 2804 begin
f53f9dd7 2805 return (Nkind_In (Kind, N_Aggregate, N_Extension_Aggregate)
996ae0b0
RK
2806 and then Present (Etype (Expr))
2807 and then Is_Record_Type (Etype (Expr))
2808 and then Expansion_Delayed (Expr))
996ae0b0
RK
2809 or else (Kind = N_Qualified_Expression
2810 and then Has_Expansion_Delayed (Expression (Expr)));
2811 end Has_Expansion_Delayed;
2812
2813 -- Start of processing for Resolve_Aggr_Expr
2814
2815 begin
2816 -- If the type of the component is elementary or the type of the
2817 -- aggregate does not contain discriminants, use the type of the
2818 -- component to resolve Expr.
2819
2820 if Is_Elementary_Type (Etype (Component))
2821 or else not Has_Discriminants (Etype (N))
2822 then
2823 Expr_Type := Etype (Component);
2824
2825 -- Otherwise we have to pick up the new type of the component from
12a13f01 2826 -- the new constrained subtype of the aggregate. In fact components
996ae0b0
RK
2827 -- which are of a composite type might be constrained by a
2828 -- discriminant, and we want to resolve Expr against the subtype were
2829 -- all discriminant occurrences are replaced with their actual value.
2830
2831 else
2832 New_C := First_Component (Etype (N));
2833 while Present (New_C) loop
2834 if Chars (New_C) = Chars (Component) then
2835 Expr_Type := Etype (New_C);
2836 exit;
2837 end if;
2838
2839 Next_Component (New_C);
2840 end loop;
2841
2842 pragma Assert (Present (Expr_Type));
2843
2844 -- For each range in an array type where a discriminant has been
2845 -- replaced with the constraint, check that this range is within
ec53a6da
JM
2846 -- the range of the base type. This checks is done in the init
2847 -- proc for regular objects, but has to be done here for
fbf5a39b 2848 -- aggregates since no init proc is called for them.
996ae0b0
RK
2849
2850 if Is_Array_Type (Expr_Type) then
2851 declare
7f9747c6 2852 Index : Node_Id;
ec53a6da 2853 -- Range of the current constrained index in the array
996ae0b0 2854
ec53a6da 2855 Orig_Index : Node_Id := First_Index (Etype (Component));
996ae0b0
RK
2856 -- Range corresponding to the range Index above in the
2857 -- original unconstrained record type. The bounds of this
2858 -- range may be governed by discriminants.
2859
2860 Unconstr_Index : Node_Id := First_Index (Etype (Expr_Type));
2861 -- Range corresponding to the range Index above for the
2862 -- unconstrained array type. This range is needed to apply
2863 -- range checks.
2864
2865 begin
7f9747c6 2866 Index := First_Index (Expr_Type);
996ae0b0
RK
2867 while Present (Index) loop
2868 if Depends_On_Discriminant (Orig_Index) then
2869 Apply_Range_Check (Index, Etype (Unconstr_Index));
2870 end if;
2871
2872 Next_Index (Index);
2873 Next_Index (Orig_Index);
2874 Next_Index (Unconstr_Index);
2875 end loop;
2876 end;
2877 end if;
2878 end if;
2879
2880 -- If the Parent pointer of Expr is not set, Expr is an expression
2881 -- duplicated by New_Tree_Copy (this happens for record aggregates
2882 -- that look like (Field1 | Filed2 => Expr) or (others => Expr)).
2883 -- Such a duplicated expression must be attached to the tree
2884 -- before analysis and resolution to enforce the rule that a tree
2885 -- fragment should never be analyzed or resolved unless it is
2886 -- attached to the current compilation unit.
2887
2888 if No (Parent (Expr)) then
2889 Set_Parent (Expr, N);
2890 Relocate := False;
2891 else
2892 Relocate := True;
2893 end if;
2894
2895 Analyze_And_Resolve (Expr, Expr_Type);
ca44152f 2896 Check_Expr_OK_In_Limited_Aggregate (Expr);
996ae0b0 2897 Check_Non_Static_Context (Expr);
fbf5a39b 2898 Check_Unset_Reference (Expr);
996ae0b0 2899
0c020dde
AC
2900 -- Check wrong use of class-wide types
2901
7b4db06c 2902 if Is_Class_Wide_Type (Etype (Expr)) then
0c020dde
AC
2903 Error_Msg_N ("dynamically tagged expression not allowed", Expr);
2904 end if;
2905
996ae0b0
RK
2906 if not Has_Expansion_Delayed (Expr) then
2907 Aggregate_Constraint_Checks (Expr, Expr_Type);
2908 end if;
2909
2910 if Raises_Constraint_Error (Expr) then
2911 Set_Raises_Constraint_Error (N);
2912 end if;
2913
d79e621a
GD
2914 -- If the expression has been marked as requiring a range check,
2915 -- then generate it here.
2916
2917 if Do_Range_Check (Expr) then
2918 Set_Do_Range_Check (Expr, False);
2919 Generate_Range_Check (Expr, Expr_Type, CE_Range_Check_Failed);
2920 end if;
2921
996ae0b0 2922 if Relocate then
107b023c 2923 Add_Association (New_C, Relocate_Node (Expr), New_Assoc_List);
996ae0b0 2924 else
107b023c 2925 Add_Association (New_C, Expr, New_Assoc_List);
996ae0b0 2926 end if;
996ae0b0
RK
2927 end Resolve_Aggr_Expr;
2928
996ae0b0
RK
2929 -- Start of processing for Resolve_Record_Aggregate
2930
2931 begin
2932 -- We may end up calling Duplicate_Subexpr on expressions that are
2933 -- attached to New_Assoc_List. For this reason we need to attach it
2934 -- to the tree by setting its parent pointer to N. This parent point
2935 -- will change in STEP 8 below.
2936
2937 Set_Parent (New_Assoc_List, N);
2938
2939 -- STEP 1: abstract type and null record verification
2940
aad93b55 2941 if Is_Abstract_Type (Typ) then
996ae0b0
RK
2942 Error_Msg_N ("type of aggregate cannot be abstract", N);
2943 end if;
2944
2945 if No (First_Entity (Typ)) and then Null_Record_Present (N) then
2946 Set_Etype (N, Typ);
2947 return;
2948
2949 elsif Present (First_Entity (Typ))
2950 and then Null_Record_Present (N)
2951 and then not Is_Tagged_Type (Typ)
2952 then
2953 Error_Msg_N ("record aggregate cannot be null", N);
2954 return;
2955
eff332d9
GD
2956 -- If the type has no components, then the aggregate should either
2957 -- have "null record", or in Ada 2005 it could instead have a single
2958 -- component association given by "others => <>". For Ada 95 we flag
2959 -- an error at this point, but for Ada 2005 we proceed with checking
2960 -- the associations below, which will catch the case where it's not
2961 -- an aggregate with "others => <>". Note that the legality of a <>
2962 -- aggregate for a null record type was established by AI05-016.
2963
2964 elsif No (First_Entity (Typ))
2965 and then Ada_Version < Ada_05
2966 then
996ae0b0
RK
2967 Error_Msg_N ("record aggregate must be null", N);
2968 return;
2969 end if;
2970
2971 -- STEP 2: Verify aggregate structure
2972
2973 Step_2 : declare
2974 Selector_Name : Node_Id;
2975 Bad_Aggregate : Boolean := False;
2976
2977 begin
2978 if Present (Component_Associations (N)) then
2979 Assoc := First (Component_Associations (N));
2980 else
2981 Assoc := Empty;
2982 end if;
2983
2984 while Present (Assoc) loop
2985 Selector_Name := First (Choices (Assoc));
2986 while Present (Selector_Name) loop
2987 if Nkind (Selector_Name) = N_Identifier then
2988 null;
2989
2990 elsif Nkind (Selector_Name) = N_Others_Choice then
2991 if Selector_Name /= First (Choices (Assoc))
2992 or else Present (Next (Selector_Name))
2993 then
2994 Error_Msg_N ("OTHERS must appear alone in a choice list",
2995 Selector_Name);
2996 return;
2997
2998 elsif Present (Next (Assoc)) then
2999 Error_Msg_N ("OTHERS must appear last in an aggregate",
3000 Selector_Name);
3001 return;
1ab9541b
ES
3002
3003 -- (Ada2005): If this is an association with a box,
3004 -- indicate that the association need not represent
3005 -- any component.
3006
3007 elsif Box_Present (Assoc) then
3008 Others_Box := True;
996ae0b0
RK
3009 end if;
3010
3011 else
3012 Error_Msg_N
3013 ("selector name should be identifier or OTHERS",
3014 Selector_Name);
3015 Bad_Aggregate := True;
3016 end if;
3017
3018 Next (Selector_Name);
3019 end loop;
3020
3021 Next (Assoc);
3022 end loop;
3023
3024 if Bad_Aggregate then
3025 return;
3026 end if;
3027 end Step_2;
3028
3029 -- STEP 3: Find discriminant Values
3030
3031 Step_3 : declare
3032 Discrim : Entity_Id;
3033 Missing_Discriminants : Boolean := False;
3034
3035 begin
3036 if Present (Expressions (N)) then
3037 Positional_Expr := First (Expressions (N));
3038 else
3039 Positional_Expr := Empty;
3040 end if;
3041
9013065b
AC
3042 if Has_Unknown_Discriminants (Typ)
3043 and then Present (Underlying_Record_View (Typ))
3044 then
3045 Discrim := First_Discriminant (Underlying_Record_View (Typ));
3046 elsif Has_Discriminants (Typ) then
996ae0b0
RK
3047 Discrim := First_Discriminant (Typ);
3048 else
3049 Discrim := Empty;
3050 end if;
3051
3052 -- First find the discriminant values in the positional components
3053
3054 while Present (Discrim) and then Present (Positional_Expr) loop
3055 if Discr_Present (Discrim) then
3056 Resolve_Aggr_Expr (Positional_Expr, Discrim);
2820d220 3057
0ab80019 3058 -- Ada 2005 (AI-231)
2820d220 3059
ec53a6da 3060 if Ada_Version >= Ada_05
8133b9d1 3061 and then Known_Null (Positional_Expr)
ec53a6da 3062 then
82c80734 3063 Check_Can_Never_Be_Null (Discrim, Positional_Expr);
2820d220
AC
3064 end if;
3065
996ae0b0
RK
3066 Next (Positional_Expr);
3067 end if;
3068
3069 if Present (Get_Value (Discrim, Component_Associations (N))) then
3070 Error_Msg_NE
3071 ("more than one value supplied for discriminant&",
3072 N, Discrim);
3073 end if;
3074
3075 Next_Discriminant (Discrim);
3076 end loop;
3077
3078 -- Find remaining discriminant values, if any, among named components
3079
3080 while Present (Discrim) loop
3081 Expr := Get_Value (Discrim, Component_Associations (N), True);
3082
3083 if not Discr_Present (Discrim) then
3084 if Present (Expr) then
3085 Error_Msg_NE
3086 ("more than one value supplied for discriminant&",
3087 N, Discrim);
3088 end if;
3089
3090 elsif No (Expr) then
3091 Error_Msg_NE
3092 ("no value supplied for discriminant &", N, Discrim);
3093 Missing_Discriminants := True;
3094
3095 else
3096 Resolve_Aggr_Expr (Expr, Discrim);
3097 end if;
3098
3099 Next_Discriminant (Discrim);
3100 end loop;
3101
3102 if Missing_Discriminants then
3103 return;
3104 end if;
3105
3106 -- At this point and until the beginning of STEP 6, New_Assoc_List
3107 -- contains only the discriminants and their values.
3108
3109 end Step_3;
3110
3111 -- STEP 4: Set the Etype of the record aggregate
3112
3113 -- ??? This code is pretty much a copy of Sem_Ch3.Build_Subtype. That
3114 -- routine should really be exported in sem_util or some such and used
3115 -- in sem_ch3 and here rather than have a copy of the code which is a
3116 -- maintenance nightmare.
3117
12a13f01 3118 -- ??? Performance WARNING. The current implementation creates a new
996ae0b0
RK
3119 -- itype for all aggregates whose base type is discriminated.
3120 -- This means that for record aggregates nested inside an array
3121 -- aggregate we will create a new itype for each record aggregate
12a13f01 3122 -- if the array component type has discriminants. For large aggregates
996ae0b0
RK
3123 -- this may be a problem. What should be done in this case is
3124 -- to reuse itypes as much as possible.
3125
9013065b
AC
3126 if Has_Discriminants (Typ)
3127 or else (Has_Unknown_Discriminants (Typ)
3128 and then Present (Underlying_Record_View (Typ)))
3129 then
996ae0b0
RK
3130 Build_Constrained_Itype : declare
3131 Loc : constant Source_Ptr := Sloc (N);
3132 Indic : Node_Id;
3133 Subtyp_Decl : Node_Id;
3134 Def_Id : Entity_Id;
3135
fbf5a39b 3136 C : constant List_Id := New_List;
996ae0b0
RK
3137
3138 begin
3139 New_Assoc := First (New_Assoc_List);
3140 while Present (New_Assoc) loop
3141 Append (Duplicate_Subexpr (Expression (New_Assoc)), To => C);
3142 Next (New_Assoc);
3143 end loop;
3144
9013065b
AC
3145 if Has_Unknown_Discriminants (Typ)
3146 and then Present (Underlying_Record_View (Typ))
3147 then
3148 Indic :=
3149 Make_Subtype_Indication (Loc,
3150 Subtype_Mark =>
3151 New_Occurrence_Of (Underlying_Record_View (Typ), Loc),
3152 Constraint =>
3153 Make_Index_Or_Discriminant_Constraint (Loc, C));
3154 else
3155 Indic :=
3156 Make_Subtype_Indication (Loc,
3157 Subtype_Mark =>
3158 New_Occurrence_Of (Base_Type (Typ), Loc),
3159 Constraint =>
3160 Make_Index_Or_Discriminant_Constraint (Loc, C));
3161 end if;
996ae0b0
RK
3162
3163 Def_Id := Create_Itype (Ekind (Typ), N);
3164
3165 Subtyp_Decl :=
3166 Make_Subtype_Declaration (Loc,
3167 Defining_Identifier => Def_Id,
3168 Subtype_Indication => Indic);
3169 Set_Parent (Subtyp_Decl, Parent (N));
3170
ec53a6da 3171 -- Itypes must be analyzed with checks off (see itypes.ads)
996ae0b0
RK
3172
3173 Analyze (Subtyp_Decl, Suppress => All_Checks);
3174
3175 Set_Etype (N, Def_Id);
3176 Check_Static_Discriminated_Subtype
3177 (Def_Id, Expression (First (New_Assoc_List)));
3178 end Build_Constrained_Itype;
3179
3180 else
3181 Set_Etype (N, Typ);
3182 end if;
3183
3184 -- STEP 5: Get remaining components according to discriminant values
3185
3186 Step_5 : declare
3187 Record_Def : Node_Id;
3188 Parent_Typ : Entity_Id;
3189 Root_Typ : Entity_Id;
3190 Parent_Typ_List : Elist_Id;
3191 Parent_Elmt : Elmt_Id;
3192 Errors_Found : Boolean := False;
3193 Dnode : Node_Id;
3194
3195 begin
3196 if Is_Derived_Type (Typ) and then Is_Tagged_Type (Typ) then
3197 Parent_Typ_List := New_Elmt_List;
3198
3199 -- If this is an extension aggregate, the component list must
965dbd5c
AC
3200 -- include all components that are not in the given ancestor type.
3201 -- Otherwise, the component list must include components of all
3202 -- ancestors, starting with the root.
996ae0b0
RK
3203
3204 if Nkind (N) = N_Extension_Aggregate then
7b4db06c 3205 Root_Typ := Base_Type (Etype (Ancestor_Part (N)));
69a0c174 3206
996ae0b0
RK
3207 else
3208 Root_Typ := Root_Type (Typ);
3209
f53f9dd7
RD
3210 if Nkind (Parent (Base_Type (Root_Typ))) =
3211 N_Private_Type_Declaration
996ae0b0
RK
3212 then
3213 Error_Msg_NE
3214 ("type of aggregate has private ancestor&!",
3215 N, Root_Typ);
3216 Error_Msg_N ("must use extension aggregate!", N);
3217 return;
3218 end if;
3219
3220 Dnode := Declaration_Node (Base_Type (Root_Typ));
3221
3222 -- If we don't get a full declaration, then we have some
3223 -- error which will get signalled later so skip this part.
07fc65c4
GB
3224 -- Otherwise, gather components of root that apply to the
3225 -- aggregate type. We use the base type in case there is an
fbf5a39b 3226 -- applicable stored constraint that renames the discriminants
07fc65c4 3227 -- of the root.
996ae0b0
RK
3228
3229 if Nkind (Dnode) = N_Full_Type_Declaration then
3230 Record_Def := Type_Definition (Dnode);
07fc65c4 3231 Gather_Components (Base_Type (Typ),
996ae0b0
RK
3232 Component_List (Record_Def),
3233 Governed_By => New_Assoc_List,
3234 Into => Components,
3235 Report_Errors => Errors_Found);
3236 end if;
3237 end if;
3238
9013065b 3239 Parent_Typ := Base_Type (Typ);
996ae0b0 3240 while Parent_Typ /= Root_Typ loop
996ae0b0
RK
3241 Prepend_Elmt (Parent_Typ, To => Parent_Typ_List);
3242 Parent_Typ := Etype (Parent_Typ);
3243
fbf5a39b 3244 if Nkind (Parent (Base_Type (Parent_Typ))) =
996ae0b0 3245 N_Private_Type_Declaration
fbf5a39b
AC
3246 or else Nkind (Parent (Base_Type (Parent_Typ))) =
3247 N_Private_Extension_Declaration
996ae0b0
RK
3248 then
3249 if Nkind (N) /= N_Extension_Aggregate then
3250 Error_Msg_NE
3251 ("type of aggregate has private ancestor&!",
3252 N, Parent_Typ);
3253 Error_Msg_N ("must use extension aggregate!", N);
3254 return;
3255
3256 elsif Parent_Typ /= Root_Typ then
3257 Error_Msg_NE
3258 ("ancestor part of aggregate must be private type&",
3259 Ancestor_Part (N), Parent_Typ);
3260 return;
3261 end if;
3262 end if;
3263 end loop;
3264
bf06d37f
AC
3265 -- Now collect components from all other ancestors, beginning
3266 -- with the current type. If the type has unknown discriminants
349ff68f 3267 -- use the component list of the Underlying_Record_View, which
bf06d37f
AC
3268 -- needs to be used for the subsequent expansion of the aggregate
3269 -- into assignments.
996ae0b0
RK
3270
3271 Parent_Elmt := First_Elmt (Parent_Typ_List);
3272 while Present (Parent_Elmt) loop
3273 Parent_Typ := Node (Parent_Elmt);
bf06d37f
AC
3274
3275 if Has_Unknown_Discriminants (Parent_Typ)
3276 and then Present (Underlying_Record_View (Typ))
3277 then
3278 Parent_Typ := Underlying_Record_View (Parent_Typ);
3279 end if;
3280
996ae0b0
RK
3281 Record_Def := Type_Definition (Parent (Base_Type (Parent_Typ)));
3282 Gather_Components (Empty,
3283 Component_List (Record_Extension_Part (Record_Def)),
3284 Governed_By => New_Assoc_List,
3285 Into => Components,
3286 Report_Errors => Errors_Found);
3287
3288 Next_Elmt (Parent_Elmt);
3289 end loop;
3290
3291 else
6bde3eb5 3292 Record_Def := Type_Definition (Parent (Base_Type (Typ)));
996ae0b0
RK
3293
3294 if Null_Present (Record_Def) then
3295 null;
bf06d37f
AC
3296
3297 elsif not Has_Unknown_Discriminants (Typ) then
07fc65c4 3298 Gather_Components (Base_Type (Typ),
996ae0b0
RK
3299 Component_List (Record_Def),
3300 Governed_By => New_Assoc_List,
3301 Into => Components,
3302 Report_Errors => Errors_Found);
bf06d37f
AC
3303
3304 else
3305 Gather_Components
3306 (Base_Type (Underlying_Record_View (Typ)),
3307 Component_List (Record_Def),
3308 Governed_By => New_Assoc_List,
3309 Into => Components,
3310 Report_Errors => Errors_Found);
996ae0b0
RK
3311 end if;
3312 end if;
3313
3314 if Errors_Found then
3315 return;
3316 end if;
3317 end Step_5;
3318
3319 -- STEP 6: Find component Values
3320
3321 Component := Empty;
3322 Component_Elmt := First_Elmt (Components);
3323
3324 -- First scan the remaining positional associations in the aggregate.
3325 -- Remember that at this point Positional_Expr contains the current
3326 -- positional association if any is left after looking for discriminant
3327 -- values in step 3.
3328
3329 while Present (Positional_Expr) and then Present (Component_Elmt) loop
3330 Component := Node (Component_Elmt);
3331 Resolve_Aggr_Expr (Positional_Expr, Component);
3332
0ab80019
AC
3333 -- Ada 2005 (AI-231)
3334
ec53a6da 3335 if Ada_Version >= Ada_05
8133b9d1 3336 and then Known_Null (Positional_Expr)
ec53a6da 3337 then
82c80734 3338 Check_Can_Never_Be_Null (Component, Positional_Expr);
2820d220
AC
3339 end if;
3340
996ae0b0
RK
3341 if Present (Get_Value (Component, Component_Associations (N))) then
3342 Error_Msg_NE
3343 ("more than one value supplied for Component &", N, Component);
3344 end if;
3345
3346 Next (Positional_Expr);
3347 Next_Elmt (Component_Elmt);
3348 end loop;
3349
3350 if Present (Positional_Expr) then
3351 Error_Msg_N
3352 ("too many components for record aggregate", Positional_Expr);
3353 end if;
3354
3355 -- Now scan for the named arguments of the aggregate
3356
3357 while Present (Component_Elmt) loop
3358 Component := Node (Component_Elmt);
3359 Expr := Get_Value (Component, Component_Associations (N), True);
3360
9b96e234 3361 -- Note: The previous call to Get_Value sets the value of the
f91e8020 3362 -- variable Is_Box_Present.
65356e64 3363
9b96e234
JM
3364 -- Ada 2005 (AI-287): Handle components with default initialization.
3365 -- Note: This feature was originally added to Ada 2005 for limited
3366 -- but it was finally allowed with any type.
65356e64 3367
9b96e234 3368 if Is_Box_Present then
f91e8020
GD
3369 Check_Box_Component : declare
3370 Ctyp : constant Entity_Id := Etype (Component);
9b96e234
JM
3371
3372 begin
c7ce71c2
ES
3373 -- If there is a default expression for the aggregate, copy
3374 -- it into a new association.
3375
9b96e234
JM
3376 -- If the component has an initialization procedure (IP) we
3377 -- pass the component to the expander, which will generate
3378 -- the call to such IP.
3379
c7ce71c2
ES
3380 -- If the component has discriminants, their values must
3381 -- be taken from their subtype. This is indispensable for
3382 -- constraints that are given by the current instance of an
3383 -- enclosing type, to allow the expansion of the aggregate
3384 -- to replace the reference to the current instance by the
3385 -- target object of the aggregate.
3386
3387 if Present (Parent (Component))
3388 and then
3389 Nkind (Parent (Component)) = N_Component_Declaration
3390 and then Present (Expression (Parent (Component)))
aad93b55 3391 then
c7ce71c2
ES
3392 Expr :=
3393 New_Copy_Tree (Expression (Parent (Component)),
3394 New_Sloc => Sloc (N));
3395
9b96e234 3396 Add_Association
107b023c
AC
3397 (Component => Component,
3398 Expr => Expr,
3399 Assoc_List => New_Assoc_List);
c7ce71c2
ES
3400 Set_Has_Self_Reference (N);
3401
f91e8020
GD
3402 -- A box-defaulted access component gets the value null. Also
3403 -- included are components of private types whose underlying
c80d4855
RD
3404 -- type is an access type. In either case set the type of the
3405 -- literal, for subsequent use in semantic checks.
f91e8020
GD
3406
3407 elsif Present (Underlying_Type (Ctyp))
3408 and then Is_Access_Type (Underlying_Type (Ctyp))
3409 then
3410 if not Is_Private_Type (Ctyp) then
c80d4855
RD
3411 Expr := Make_Null (Sloc (N));
3412 Set_Etype (Expr, Ctyp);
f91e8020 3413 Add_Association
107b023c
AC
3414 (Component => Component,
3415 Expr => Expr,
3416 Assoc_List => New_Assoc_List);
f91e8020
GD
3417
3418 -- If the component's type is private with an access type as
3419 -- its underlying type then we have to create an unchecked
3420 -- conversion to satisfy type checking.
3421
3422 else
3423 declare
3424 Qual_Null : constant Node_Id :=
3425 Make_Qualified_Expression (Sloc (N),
3426 Subtype_Mark =>
3427 New_Occurrence_Of
3428 (Underlying_Type (Ctyp), Sloc (N)),
3429 Expression => Make_Null (Sloc (N)));
3430
3431 Convert_Null : constant Node_Id :=
3432 Unchecked_Convert_To
3433 (Ctyp, Qual_Null);
3434
3435 begin
3436 Analyze_And_Resolve (Convert_Null, Ctyp);
3437 Add_Association
107b023c
AC
3438 (Component => Component,
3439 Expr => Convert_Null,
3440 Assoc_List => New_Assoc_List);
f91e8020
GD
3441 end;
3442 end if;
3443
c7ce71c2
ES
3444 elsif Has_Non_Null_Base_Init_Proc (Ctyp)
3445 or else not Expander_Active
3446 then
3447 if Is_Record_Type (Ctyp)
3448 and then Has_Discriminants (Ctyp)
6bde3eb5 3449 and then not Is_Private_Type (Ctyp)
c7ce71c2
ES
3450 then
3451 -- We build a partially initialized aggregate with the
3452 -- values of the discriminants and box initialization
8133b9d1 3453 -- for the rest, if other components are present.
51ec70b8 3454 -- The type of the aggregate is the known subtype of
107b023c
AC
3455 -- the component. The capture of discriminants must
3456 -- be recursive because subcomponents may be contrained
3457 -- (transitively) by discriminants of enclosing types.
6bde3eb5
AC
3458 -- For a private type with discriminants, a call to the
3459 -- initialization procedure will be generated, and no
3460 -- subaggregate is needed.
c7ce71c2 3461
107b023c 3462 Capture_Discriminants : declare
c7ce71c2 3463 Loc : constant Source_Ptr := Sloc (N);
c7ce71c2
ES
3464 Expr : Node_Id;
3465
107b023c
AC
3466 procedure Add_Discriminant_Values
3467 (New_Aggr : Node_Id;
3468 Assoc_List : List_Id);
3469 -- The constraint to a component may be given by a
3470 -- discriminant of the enclosing type, in which case
3471 -- we have to retrieve its value, which is part of the
3472 -- enclosing aggregate. Assoc_List provides the
3473 -- discriminant associations of the current type or
3474 -- of some enclosing record.
3475
3476 procedure Propagate_Discriminants
3477 (Aggr : Node_Id;
3478 Assoc_List : List_Id;
3479 Comp : Entity_Id);
3480 -- Nested components may themselves be discriminated
2be0bff8 3481 -- types constrained by outer discriminants, whose
107b023c
AC
3482 -- values must be captured before the aggregate is
3483 -- expanded into assignments.
3484
3485 -----------------------------
3486 -- Add_Discriminant_Values --
3487 -----------------------------
3488
3489 procedure Add_Discriminant_Values
3490 (New_Aggr : Node_Id;
3491 Assoc_List : List_Id)
3492 is
3493 Assoc : Node_Id;
3494 Discr : Entity_Id;
3495 Discr_Elmt : Elmt_Id;
3496 Discr_Val : Node_Id;
3497 Val : Entity_Id;
c7ce71c2 3498
107b023c
AC
3499 begin
3500 Discr := First_Discriminant (Etype (New_Aggr));
3501 Discr_Elmt :=
3502 First_Elmt
3503 (Discriminant_Constraint (Etype (New_Aggr)));
3504 while Present (Discr_Elmt) loop
3505 Discr_Val := Node (Discr_Elmt);
3506
3507 -- If the constraint is given by a discriminant
3508 -- it is a discriminant of an enclosing record,
3509 -- and its value has already been placed in the
3510 -- association list.
3511
3512 if Is_Entity_Name (Discr_Val)
3513 and then
3514 Ekind (Entity (Discr_Val)) = E_Discriminant
3515 then
3516 Val := Entity (Discr_Val);
3517
3518 Assoc := First (Assoc_List);
3519 while Present (Assoc) loop
3520 if Present
3521 (Entity (First (Choices (Assoc))))
3522 and then
3523 Entity (First (Choices (Assoc)))
3524 = Val
3525 then
3526 Discr_Val := Expression (Assoc);
3527 exit;
3528 end if;
3529 Next (Assoc);
3530 end loop;
3531 end if;
157a9bf5 3532
107b023c
AC
3533 Add_Association
3534 (Discr, New_Copy_Tree (Discr_Val),
3535 Component_Associations (New_Aggr));
3536
3537 -- If the discriminant constraint is a current
3538 -- instance, mark the current aggregate so that
3539 -- the self-reference can be expanded later.
3540
3541 if Nkind (Discr_Val) = N_Attribute_Reference
3542 and then Is_Entity_Name (Prefix (Discr_Val))
3543 and then Is_Type (Entity (Prefix (Discr_Val)))
3544 and then Etype (N) =
3545 Entity (Prefix (Discr_Val))
3546 then
3547 Set_Has_Self_Reference (N);
3548 end if;
c7ce71c2 3549
107b023c
AC
3550 Next_Elmt (Discr_Elmt);
3551 Next_Discriminant (Discr);
3552 end loop;
3553 end Add_Discriminant_Values;
3554
3555 ------------------------------
3556 -- Propagate_Discriminants --
3557 ------------------------------
3558
3559 procedure Propagate_Discriminants
3560 (Aggr : Node_Id;
3561 Assoc_List : List_Id;
3562 Comp : Entity_Id)
3563 is
3564 Inner_Comp : Entity_Id;
3565 Comp_Type : Entity_Id;
3566 Needs_Box : Boolean := False;
3567 New_Aggr : Node_Id;
c7ce71c2 3568
107b023c 3569 begin
c7ce71c2 3570
107b023c
AC
3571 Inner_Comp := First_Component (Etype (Comp));
3572 while Present (Inner_Comp) loop
3573 Comp_Type := Etype (Inner_Comp);
c7ce71c2 3574
107b023c
AC
3575 if Is_Record_Type (Comp_Type)
3576 and then Has_Discriminants (Comp_Type)
3577 then
3578 New_Aggr :=
3579 Make_Aggregate (Loc, New_List, New_List);
3580 Set_Etype (New_Aggr, Comp_Type);
3581 Add_Association
3582 (Inner_Comp, New_Aggr,
3583 Component_Associations (Aggr));
8133b9d1 3584
e264efcc 3585 -- Collect discriminant values and recurse
107b023c
AC
3586
3587 Add_Discriminant_Values
3588 (New_Aggr, Assoc_List);
3589 Propagate_Discriminants
3590 (New_Aggr, Assoc_List, Inner_Comp);
3591
3592 else
3593 Needs_Box := True;
8133b9d1
ES
3594 end if;
3595
107b023c 3596 Next_Component (Inner_Comp);
8133b9d1 3597 end loop;
107b023c
AC
3598
3599 if Needs_Box then
3600 Append
3601 (Make_Component_Association (Loc,
3602 Choices =>
3603 New_List (Make_Others_Choice (Loc)),
3604 Expression => Empty,
3605 Box_Present => True),
3606 Component_Associations (Aggr));
3607 end if;
3608 end Propagate_Discriminants;
3609
3610 begin
3611 Expr := Make_Aggregate (Loc, New_List, New_List);
3612 Set_Etype (Expr, Ctyp);
3613
3614 -- If the enclosing type has discriminants, they
3615 -- have been collected in the aggregate earlier, and
3616 -- they may appear as constraints of subcomponents.
3617 -- Similarly if this component has discriminants, they
2be0bff8 3618 -- might in turn be propagated to their components.
107b023c
AC
3619
3620 if Has_Discriminants (Typ) then
3621 Add_Discriminant_Values (Expr, New_Assoc_List);
3622 Propagate_Discriminants
3623 (Expr, New_Assoc_List, Component);
3624
3625 elsif Has_Discriminants (Ctyp) then
3626 Add_Discriminant_Values
3627 (Expr, Component_Associations (Expr));
3628 Propagate_Discriminants
3629 (Expr, Component_Associations (Expr), Component);
3630
3631 else
3632 declare
3633 Comp : Entity_Id;
3634
3635 begin
3636 -- If the type has additional components, create
2be0bff8 3637 -- an OTHERS box association for them.
107b023c
AC
3638
3639 Comp := First_Component (Ctyp);
3640 while Present (Comp) loop
3641 if Ekind (Comp) = E_Component then
3642 if not Is_Record_Type (Etype (Comp)) then
3643 Append
3644 (Make_Component_Association (Loc,
3645 Choices =>
3646 New_List
3647 (Make_Others_Choice (Loc)),
3648 Expression => Empty,
3649 Box_Present => True),
3650 Component_Associations (Expr));
3651 end if;
3652 exit;
3653 end if;
3654
3655 Next_Component (Comp);
3656 end loop;
3657 end;
3658 end if;
c7ce71c2
ES
3659
3660 Add_Association
107b023c
AC
3661 (Component => Component,
3662 Expr => Expr,
3663 Assoc_List => New_Assoc_List);
3664 end Capture_Discriminants;
c7ce71c2
ES
3665
3666 else
3667 Add_Association
3668 (Component => Component,
3669 Expr => Empty,
107b023c 3670 Assoc_List => New_Assoc_List,
c7ce71c2
ES
3671 Is_Box_Present => True);
3672 end if;
9b96e234
JM
3673
3674 -- Otherwise we only need to resolve the expression if the
3675 -- component has partially initialized values (required to
3676 -- expand the corresponding assignments and run-time checks).
3677
3678 elsif Present (Expr)
f91e8020 3679 and then Is_Partially_Initialized_Type (Ctyp)
9b96e234
JM
3680 then
3681 Resolve_Aggr_Expr (Expr, Component);
3682 end if;
f91e8020 3683 end Check_Box_Component;
615cbd95 3684
65356e64 3685 elsif No (Expr) then
c7ce71c2
ES
3686
3687 -- Ignore hidden components associated with the position of the
3688 -- interface tags: these are initialized dynamically.
3689
c80d4855 3690 if not Present (Related_Type (Component)) then
c7ce71c2
ES
3691 Error_Msg_NE
3692 ("no value supplied for component &!", N, Component);
3693 end if;
615cbd95 3694
996ae0b0
RK
3695 else
3696 Resolve_Aggr_Expr (Expr, Component);
3697 end if;
3698
3699 Next_Elmt (Component_Elmt);
3700 end loop;
3701
3702 -- STEP 7: check for invalid components + check type in choice list
3703
3704 Step_7 : declare
3705 Selectr : Node_Id;
3706 -- Selector name
3707
9b96e234 3708 Typech : Entity_Id;
996ae0b0
RK
3709 -- Type of first component in choice list
3710
3711 begin
3712 if Present (Component_Associations (N)) then
3713 Assoc := First (Component_Associations (N));
3714 else
3715 Assoc := Empty;
3716 end if;
3717
3718 Verification : while Present (Assoc) loop
3719 Selectr := First (Choices (Assoc));
3720 Typech := Empty;
3721
3722 if Nkind (Selectr) = N_Others_Choice then
19f0526a 3723
9b96e234 3724 -- Ada 2005 (AI-287): others choice may have expression or box
19f0526a 3725
65356e64 3726 if No (Others_Etype)
9b96e234 3727 and then not Others_Box
65356e64 3728 then
996ae0b0
RK
3729 Error_Msg_N
3730 ("OTHERS must represent at least one component", Selectr);
3731 end if;
3732
3733 exit Verification;
3734 end if;
3735
3736 while Present (Selectr) loop
3737 New_Assoc := First (New_Assoc_List);
3738 while Present (New_Assoc) loop
3739 Component := First (Choices (New_Assoc));
3740 exit when Chars (Selectr) = Chars (Component);
3741 Next (New_Assoc);
3742 end loop;
3743
3744 -- If no association, this is not a legal component of
aad93b55
ES
3745 -- of the type in question, except if its association
3746 -- is provided with a box.
996ae0b0
RK
3747
3748 if No (New_Assoc) then
65356e64 3749 if Box_Present (Parent (Selectr)) then
aad93b55
ES
3750
3751 -- This may still be a bogus component with a box. Scan
3752 -- list of components to verify that a component with
3753 -- that name exists.
3754
3755 declare
3756 C : Entity_Id;
3757
3758 begin
3759 C := First_Component (Typ);
3760 while Present (C) loop
3761 if Chars (C) = Chars (Selectr) then
ca44152f
ES
3762
3763 -- If the context is an extension aggregate,
3764 -- the component must not be inherited from
3765 -- the ancestor part of the aggregate.
3766
3767 if Nkind (N) /= N_Extension_Aggregate
3768 or else
3769 Scope (Original_Record_Component (C)) /=
3770 Etype (Ancestor_Part (N))
3771 then
3772 exit;
3773 end if;
aad93b55
ES
3774 end if;
3775
3776 Next_Component (C);
3777 end loop;
3778
3779 if No (C) then
3780 Error_Msg_Node_2 := Typ;
3781 Error_Msg_N ("& is not a component of}", Selectr);
3782 end if;
3783 end;
996ae0b0 3784
65356e64 3785 elsif Chars (Selectr) /= Name_uTag
996ae0b0
RK
3786 and then Chars (Selectr) /= Name_uParent
3787 and then Chars (Selectr) /= Name_uController
3788 then
3789 if not Has_Discriminants (Typ) then
3790 Error_Msg_Node_2 := Typ;
aad93b55 3791 Error_Msg_N ("& is not a component of}", Selectr);
996ae0b0
RK
3792 else
3793 Error_Msg_N
3794 ("& is not a component of the aggregate subtype",
3795 Selectr);
3796 end if;
3797
3798 Check_Misspelled_Component (Components, Selectr);
3799 end if;
3800
3801 elsif No (Typech) then
3802 Typech := Base_Type (Etype (Component));
3803
3804 elsif Typech /= Base_Type (Etype (Component)) then
65356e64
AC
3805 if not Box_Present (Parent (Selectr)) then
3806 Error_Msg_N
3807 ("components in choice list must have same type",
3808 Selectr);
3809 end if;
996ae0b0
RK
3810 end if;
3811
3812 Next (Selectr);
3813 end loop;
3814
3815 Next (Assoc);
3816 end loop Verification;
3817 end Step_7;
3818
3819 -- STEP 8: replace the original aggregate
3820
3821 Step_8 : declare
fbf5a39b 3822 New_Aggregate : constant Node_Id := New_Copy (N);
996ae0b0
RK
3823
3824 begin
3825 Set_Expressions (New_Aggregate, No_List);
3826 Set_Etype (New_Aggregate, Etype (N));
3827 Set_Component_Associations (New_Aggregate, New_Assoc_List);
3828
3829 Rewrite (N, New_Aggregate);
3830 end Step_8;
3831 end Resolve_Record_Aggregate;
3832
2820d220
AC
3833 -----------------------------
3834 -- Check_Can_Never_Be_Null --
3835 -----------------------------
3836
9b96e234 3837 procedure Check_Can_Never_Be_Null (Typ : Entity_Id; Expr : Node_Id) is
ec53a6da
JM
3838 Comp_Typ : Entity_Id;
3839
2820d220 3840 begin
9b96e234
JM
3841 pragma Assert
3842 (Ada_Version >= Ada_05
3843 and then Present (Expr)
8133b9d1 3844 and then Known_Null (Expr));
82c80734 3845
ec53a6da
JM
3846 case Ekind (Typ) is
3847 when E_Array_Type =>
3848 Comp_Typ := Component_Type (Typ);
3849
3850 when E_Component |
3851 E_Discriminant =>
3852 Comp_Typ := Etype (Typ);
3853
3854 when others =>
3855 return;
3856 end case;
3857
9b96e234
JM
3858 if Can_Never_Be_Null (Comp_Typ) then
3859
3860 -- Here we know we have a constraint error. Note that we do not use
3861 -- Apply_Compile_Time_Constraint_Error here to the Expr, which might
3862 -- seem the more natural approach. That's because in some cases the
3863 -- components are rewritten, and the replacement would be missed.
3864
3865 Insert_Action
3866 (Compile_Time_Constraint_Error
3867 (Expr,
8133b9d1 3868 "(Ada 2005) null not allowed in null-excluding component?"),
9b96e234
JM
3869 Make_Raise_Constraint_Error (Sloc (Expr),
3870 Reason => CE_Access_Check_Failed));
3871
3872 -- Set proper type for bogus component (why is this needed???)
3873
3874 Set_Etype (Expr, Comp_Typ);
3875 Set_Analyzed (Expr);
2820d220
AC
3876 end if;
3877 end Check_Can_Never_Be_Null;
3878
996ae0b0
RK
3879 ---------------------
3880 -- Sort_Case_Table --
3881 ---------------------
3882
3883 procedure Sort_Case_Table (Case_Table : in out Case_Table_Type) is
fbf5a39b
AC
3884 L : constant Int := Case_Table'First;
3885 U : constant Int := Case_Table'Last;
996ae0b0
RK
3886 K : Int;
3887 J : Int;
3888 T : Case_Bounds;
3889
3890 begin
3891 K := L;
996ae0b0
RK
3892 while K /= U loop
3893 T := Case_Table (K + 1);
996ae0b0 3894
7f9747c6 3895 J := K + 1;
996ae0b0
RK
3896 while J /= L
3897 and then Expr_Value (Case_Table (J - 1).Choice_Lo) >
3898 Expr_Value (T.Choice_Lo)
3899 loop
3900 Case_Table (J) := Case_Table (J - 1);
3901 J := J - 1;
3902 end loop;
3903
3904 Case_Table (J) := T;
3905 K := K + 1;
3906 end loop;
3907 end Sort_Case_Table;
3908
3909end Sem_Aggr;
This page took 2.775704 seconds and 5 git commands to generate.