]> gcc.gnu.org Git - gcc.git/blame - gcc/ada/sem_aggr.adb
[multiple changes]
[gcc.git] / gcc / ada / sem_aggr.adb
CommitLineData
996ae0b0
RK
1------------------------------------------------------------------------------
2-- --
3-- GNAT COMPILER COMPONENTS --
4-- --
5-- S E M _ A G G R --
6-- --
7-- B o d y --
8-- --
d3820795 9-- Copyright (C) 1992-2013, Free Software Foundation, Inc. --
996ae0b0
RK
10-- --
11-- GNAT is free software; you can redistribute it and/or modify it under --
12-- terms of the GNU General Public License as published by the Free Soft- --
157a9bf5 13-- ware Foundation; either version 3, or (at your option) any later ver- --
996ae0b0
RK
14-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16-- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17-- for more details. You should have received a copy of the GNU General --
157a9bf5
ES
18-- Public License distributed with GNAT; see file COPYING3. If not, go to --
19-- http://www.gnu.org/licenses for a complete copy of the license. --
996ae0b0
RK
20-- --
21-- GNAT was originally developed by the GNAT team at New York University. --
71ff80dc 22-- Extensive contributions were provided by Ada Core Technologies Inc. --
996ae0b0
RK
23-- --
24------------------------------------------------------------------------------
25
26with Atree; use Atree;
27with Checks; use Checks;
28with Einfo; use Einfo;
29with Elists; use Elists;
30with Errout; use Errout;
4755cce9 31with Expander; use Expander;
52739835 32with Exp_Tss; use Exp_Tss;
996ae0b0
RK
33with Exp_Util; use Exp_Util;
34with Freeze; use Freeze;
35with Itypes; use Itypes;
c7ce71c2 36with Lib; use Lib;
fbf5a39b 37with Lib.Xref; use Lib.Xref;
996ae0b0 38with Namet; use Namet;
c80d4855 39with Namet.Sp; use Namet.Sp;
996ae0b0
RK
40with Nmake; use Nmake;
41with Nlists; use Nlists;
42with Opt; use Opt;
bd65a2d7 43with Restrict; use Restrict;
996ae0b0 44with Sem; use Sem;
a4100e55 45with Sem_Aux; use Sem_Aux;
996ae0b0 46with Sem_Cat; use Sem_Cat;
88b32fc3 47with Sem_Ch3; use Sem_Ch3;
87729e5a 48with Sem_Ch8; use Sem_Ch8;
996ae0b0 49with Sem_Ch13; use Sem_Ch13;
0929eaeb 50with Sem_Dim; use Sem_Dim;
996ae0b0
RK
51with Sem_Eval; use Sem_Eval;
52with Sem_Res; use Sem_Res;
53with Sem_Util; use Sem_Util;
54with Sem_Type; use Sem_Type;
fbf5a39b 55with Sem_Warn; use Sem_Warn;
996ae0b0
RK
56with Sinfo; use Sinfo;
57with Snames; use Snames;
58with Stringt; use Stringt;
59with Stand; use Stand;
6989bc1f 60with Style; use Style;
fbf5a39b 61with Targparm; use Targparm;
996ae0b0
RK
62with Tbuild; use Tbuild;
63with Uintp; use Uintp;
64
996ae0b0
RK
65package body Sem_Aggr is
66
67 type Case_Bounds is record
82893775
AC
68 Lo : Node_Id;
69 -- Low bound of choice. Once we sort the Case_Table, then entries
70 -- will be in order of ascending Choice_Lo values.
71
72 Hi : Node_Id;
73 -- High Bound of choice. The sort does not pay any attention to the
74 -- high bound, so choices 1 .. 4 and 1 .. 5 could be in either order.
75
76 Highest : Uint;
77 -- If there are duplicates or missing entries, then in the sorted
78 -- table, this records the highest value among Choice_Hi values
79 -- seen so far, including this entry.
80
81 Choice : Node_Id;
82 -- The node of the choice
996ae0b0
RK
83 end record;
84
85 type Case_Table_Type is array (Nat range <>) of Case_Bounds;
82893775
AC
86 -- Table type used by Check_Case_Choices procedure. Entry zero is not
87 -- used (reserved for the sort). Real entries start at one.
996ae0b0
RK
88
89 -----------------------
90 -- Local Subprograms --
91 -----------------------
92
93 procedure Sort_Case_Table (Case_Table : in out Case_Table_Type);
82893775
AC
94 -- Sort the Case Table using the Lower Bound of each Choice as the key. A
95 -- simple insertion sort is used since the choices in a case statement will
96 -- usually be in near sorted order.
996ae0b0 97
9b96e234
JM
98 procedure Check_Can_Never_Be_Null (Typ : Entity_Id; Expr : Node_Id);
99 -- Ada 2005 (AI-231): Check bad usage of null for a component for which
100 -- null exclusion (NOT NULL) is specified. Typ can be an E_Array_Type for
101 -- the array case (the component type of the array will be used) or an
102 -- E_Component/E_Discriminant entity in the record case, in which case the
103 -- type of the component will be used for the test. If Typ is any other
104 -- kind of entity, the call is ignored. Expr is the component node in the
8133b9d1 105 -- aggregate which is known to have a null value. A warning message will be
9b96e234
JM
106 -- issued if the component is null excluding.
107 --
108 -- It would be better to pass the proper type for Typ ???
2820d220 109
ca44152f
ES
110 procedure Check_Expr_OK_In_Limited_Aggregate (Expr : Node_Id);
111 -- Check that Expr is either not limited or else is one of the cases of
112 -- expressions allowed for a limited component association (namely, an
113 -- aggregate, function call, or <> notation). Report error for violations.
114
a5fe697b
AC
115 procedure Check_Qualified_Aggregate (Level : Nat; Expr : Node_Id);
116 -- Given aggregate Expr, check that sub-aggregates of Expr that are nested
117 -- at Level are qualified. If Level = 0, this applies to Expr directly.
118 -- Only issue errors in formal verification mode.
119
120 function Is_Top_Level_Aggregate (Expr : Node_Id) return Boolean;
121 -- Return True of Expr is an aggregate not contained directly in another
122 -- aggregate.
123
996ae0b0
RK
124 ------------------------------------------------------
125 -- Subprograms used for RECORD AGGREGATE Processing --
126 ------------------------------------------------------
127
128 procedure Resolve_Record_Aggregate (N : Node_Id; Typ : Entity_Id);
129 -- This procedure performs all the semantic checks required for record
130 -- aggregates. Note that for aggregates analysis and resolution go
131 -- hand in hand. Aggregate analysis has been delayed up to here and
132 -- it is done while resolving the aggregate.
133 --
134 -- N is the N_Aggregate node.
135 -- Typ is the record type for the aggregate resolution
136 --
9b96e234
JM
137 -- While performing the semantic checks, this procedure builds a new
138 -- Component_Association_List where each record field appears alone in a
139 -- Component_Choice_List along with its corresponding expression. The
140 -- record fields in the Component_Association_List appear in the same order
141 -- in which they appear in the record type Typ.
996ae0b0 142 --
9b96e234
JM
143 -- Once this new Component_Association_List is built and all the semantic
144 -- checks performed, the original aggregate subtree is replaced with the
145 -- new named record aggregate just built. Note that subtree substitution is
146 -- performed with Rewrite so as to be able to retrieve the original
147 -- aggregate.
996ae0b0
RK
148 --
149 -- The aggregate subtree manipulation performed by Resolve_Record_Aggregate
150 -- yields the aggregate format expected by Gigi. Typically, this kind of
151 -- tree manipulations are done in the expander. However, because the
9b96e234
JM
152 -- semantic checks that need to be performed on record aggregates really go
153 -- hand in hand with the record aggregate normalization, the aggregate
996ae0b0 154 -- subtree transformation is performed during resolution rather than
9b96e234
JM
155 -- expansion. Had we decided otherwise we would have had to duplicate most
156 -- of the code in the expansion procedure Expand_Record_Aggregate. Note,
c7ce71c2 157 -- however, that all the expansion concerning aggregates for tagged records
9b96e234 158 -- is done in Expand_Record_Aggregate.
996ae0b0
RK
159 --
160 -- The algorithm of Resolve_Record_Aggregate proceeds as follows:
161 --
162 -- 1. Make sure that the record type against which the record aggregate
c9a1acdc
AC
163 -- has to be resolved is not abstract. Furthermore if the type is a
164 -- null aggregate make sure the input aggregate N is also null.
996ae0b0
RK
165 --
166 -- 2. Verify that the structure of the aggregate is that of a record
167 -- aggregate. Specifically, look for component associations and ensure
168 -- that each choice list only has identifiers or the N_Others_Choice
169 -- node. Also make sure that if present, the N_Others_Choice occurs
170 -- last and by itself.
171 --
c9a1acdc
AC
172 -- 3. If Typ contains discriminants, the values for each discriminant is
173 -- looked for. If the record type Typ has variants, we check that the
174 -- expressions corresponding to each discriminant ruling the (possibly
175 -- nested) variant parts of Typ, are static. This allows us to determine
176 -- the variant parts to which the rest of the aggregate must conform.
177 -- The names of discriminants with their values are saved in a new
178 -- association list, New_Assoc_List which is later augmented with the
179 -- names and values of the remaining components in the record type.
996ae0b0
RK
180 --
181 -- During this phase we also make sure that every discriminant is
c9a1acdc
AC
182 -- assigned exactly one value. Note that when several values for a given
183 -- discriminant are found, semantic processing continues looking for
184 -- further errors. In this case it's the first discriminant value found
185 -- which we will be recorded.
996ae0b0
RK
186 --
187 -- IMPORTANT NOTE: For derived tagged types this procedure expects
188 -- First_Discriminant and Next_Discriminant to give the correct list
189 -- of discriminants, in the correct order.
190 --
c9a1acdc
AC
191 -- 4. After all the discriminant values have been gathered, we can set the
192 -- Etype of the record aggregate. If Typ contains no discriminants this
193 -- is straightforward: the Etype of N is just Typ, otherwise a new
194 -- implicit constrained subtype of Typ is built to be the Etype of N.
996ae0b0
RK
195 --
196 -- 5. Gather the remaining record components according to the discriminant
197 -- values. This involves recursively traversing the record type
198 -- structure to see what variants are selected by the given discriminant
199 -- values. This processing is a little more convoluted if Typ is a
200 -- derived tagged types since we need to retrieve the record structure
201 -- of all the ancestors of Typ.
202 --
c9a1acdc
AC
203 -- 6. After gathering the record components we look for their values in the
204 -- record aggregate and emit appropriate error messages should we not
205 -- find such values or should they be duplicated.
206 --
207 -- 7. We then make sure no illegal component names appear in the record
208 -- aggregate and make sure that the type of the record components
209 -- appearing in a same choice list is the same. Finally we ensure that
210 -- the others choice, if present, is used to provide the value of at
211 -- least a record component.
212 --
213 -- 8. The original aggregate node is replaced with the new named aggregate
214 -- built in steps 3 through 6, as explained earlier.
215 --
216 -- Given the complexity of record aggregate resolution, the primary goal of
217 -- this routine is clarity and simplicity rather than execution and storage
218 -- efficiency. If there are only positional components in the aggregate the
219 -- running time is linear. If there are associations the running time is
220 -- still linear as long as the order of the associations is not too far off
221 -- the order of the components in the record type. If this is not the case
222 -- the running time is at worst quadratic in the size of the association
223 -- list.
996ae0b0
RK
224
225 procedure Check_Misspelled_Component
9c290e69
PO
226 (Elements : Elist_Id;
227 Component : Node_Id);
c9a1acdc
AC
228 -- Give possible misspelling diagnostic if Component is likely to be a
229 -- misspelling of one of the components of the Assoc_List. This is called
230 -- by Resolve_Aggr_Expr after producing an invalid component error message.
996ae0b0
RK
231
232 procedure Check_Static_Discriminated_Subtype (T : Entity_Id; V : Node_Id);
c9a1acdc
AC
233 -- An optimization: determine whether a discriminated subtype has a static
234 -- constraint, and contains array components whose length is also static,
235 -- either because they are constrained by the discriminant, or because the
236 -- original component bounds are static.
996ae0b0
RK
237
238 -----------------------------------------------------
239 -- Subprograms used for ARRAY AGGREGATE Processing --
240 -----------------------------------------------------
241
242 function Resolve_Array_Aggregate
243 (N : Node_Id;
244 Index : Node_Id;
245 Index_Constr : Node_Id;
246 Component_Typ : Entity_Id;
ca44152f 247 Others_Allowed : Boolean) return Boolean;
996ae0b0
RK
248 -- This procedure performs the semantic checks for an array aggregate.
249 -- True is returned if the aggregate resolution succeeds.
ca44152f 250 --
996ae0b0 251 -- The procedure works by recursively checking each nested aggregate.
9f4fd324 252 -- Specifically, after checking a sub-aggregate nested at the i-th level
996ae0b0
RK
253 -- we recursively check all the subaggregates at the i+1-st level (if any).
254 -- Note that for aggregates analysis and resolution go hand in hand.
255 -- Aggregate analysis has been delayed up to here and it is done while
256 -- resolving the aggregate.
257 --
258 -- N is the current N_Aggregate node to be checked.
259 --
260 -- Index is the index node corresponding to the array sub-aggregate that
261 -- we are currently checking (RM 4.3.3 (8)). Its Etype is the
262 -- corresponding index type (or subtype).
263 --
264 -- Index_Constr is the node giving the applicable index constraint if
265 -- any (RM 4.3.3 (10)). It "is a constraint provided by certain
266 -- contexts [...] that can be used to determine the bounds of the array
267 -- value specified by the aggregate". If Others_Allowed below is False
268 -- there is no applicable index constraint and this node is set to Index.
269 --
270 -- Component_Typ is the array component type.
271 --
272 -- Others_Allowed indicates whether an others choice is allowed
273 -- in the context where the top-level aggregate appeared.
274 --
275 -- The algorithm of Resolve_Array_Aggregate proceeds as follows:
276 --
277 -- 1. Make sure that the others choice, if present, is by itself and
278 -- appears last in the sub-aggregate. Check that we do not have
279 -- positional and named components in the array sub-aggregate (unless
280 -- the named association is an others choice). Finally if an others
12a13f01 281 -- choice is present, make sure it is allowed in the aggregate context.
996ae0b0
RK
282 --
283 -- 2. If the array sub-aggregate contains discrete_choices:
284 --
285 -- (A) Verify their validity. Specifically verify that:
286 --
287 -- (a) If a null range is present it must be the only possible
288 -- choice in the array aggregate.
289 --
290 -- (b) Ditto for a non static range.
291 --
292 -- (c) Ditto for a non static expression.
293 --
294 -- In addition this step analyzes and resolves each discrete_choice,
295 -- making sure that its type is the type of the corresponding Index.
296 -- If we are not at the lowest array aggregate level (in the case of
297 -- multi-dimensional aggregates) then invoke Resolve_Array_Aggregate
298 -- recursively on each component expression. Otherwise, resolve the
299 -- bottom level component expressions against the expected component
300 -- type ONLY IF the component corresponds to a single discrete choice
301 -- which is not an others choice (to see why read the DELAYED
302 -- COMPONENT RESOLUTION below).
303 --
304 -- (B) Determine the bounds of the sub-aggregate and lowest and
305 -- highest choice values.
306 --
307 -- 3. For positional aggregates:
308 --
309 -- (A) Loop over the component expressions either recursively invoking
310 -- Resolve_Array_Aggregate on each of these for multi-dimensional
311 -- array aggregates or resolving the bottom level component
312 -- expressions against the expected component type.
313 --
314 -- (B) Determine the bounds of the positional sub-aggregates.
315 --
316 -- 4. Try to determine statically whether the evaluation of the array
317 -- sub-aggregate raises Constraint_Error. If yes emit proper
318 -- warnings. The precise checks are the following:
319 --
320 -- (A) Check that the index range defined by aggregate bounds is
321 -- compatible with corresponding index subtype.
322 -- We also check against the base type. In fact it could be that
323 -- Low/High bounds of the base type are static whereas those of
324 -- the index subtype are not. Thus if we can statically catch
325 -- a problem with respect to the base type we are guaranteed
326 -- that the same problem will arise with the index subtype
327 --
328 -- (B) If we are dealing with a named aggregate containing an others
329 -- choice and at least one discrete choice then make sure the range
330 -- specified by the discrete choices does not overflow the
331 -- aggregate bounds. We also check against the index type and base
332 -- type bounds for the same reasons given in (A).
333 --
334 -- (C) If we are dealing with a positional aggregate with an others
335 -- choice make sure the number of positional elements specified
336 -- does not overflow the aggregate bounds. We also check against
337 -- the index type and base type bounds as mentioned in (A).
338 --
339 -- Finally construct an N_Range node giving the sub-aggregate bounds.
340 -- Set the Aggregate_Bounds field of the sub-aggregate to be this
341 -- N_Range. The routine Array_Aggr_Subtype below uses such N_Ranges
342 -- to build the appropriate aggregate subtype. Aggregate_Bounds
343 -- information is needed during expansion.
344 --
345 -- DELAYED COMPONENT RESOLUTION: The resolution of bottom level component
346 -- expressions in an array aggregate may call Duplicate_Subexpr or some
347 -- other routine that inserts code just outside the outermost aggregate.
348 -- If the array aggregate contains discrete choices or an others choice,
349 -- this may be wrong. Consider for instance the following example.
350 --
351 -- type Rec is record
352 -- V : Integer := 0;
353 -- end record;
354 --
355 -- type Acc_Rec is access Rec;
356 -- Arr : array (1..3) of Acc_Rec := (1 .. 3 => new Rec);
357 --
358 -- Then the transformation of "new Rec" that occurs during resolution
359 -- entails the following code modifications
360 --
361 -- P7b : constant Acc_Rec := new Rec;
fbf5a39b 362 -- RecIP (P7b.all);
996ae0b0
RK
363 -- Arr : array (1..3) of Acc_Rec := (1 .. 3 => P7b);
364 --
365 -- This code transformation is clearly wrong, since we need to call
366 -- "new Rec" for each of the 3 array elements. To avoid this problem we
367 -- delay resolution of the components of non positional array aggregates
368 -- to the expansion phase. As an optimization, if the discrete choice
369 -- specifies a single value we do not delay resolution.
370
371 function Array_Aggr_Subtype (N : Node_Id; Typ : Node_Id) return Entity_Id;
372 -- This routine returns the type or subtype of an array aggregate.
373 --
374 -- N is the array aggregate node whose type we return.
375 --
376 -- Typ is the context type in which N occurs.
377 --
c45b6ae0 378 -- This routine creates an implicit array subtype whose bounds are
996ae0b0
RK
379 -- those defined by the aggregate. When this routine is invoked
380 -- Resolve_Array_Aggregate has already processed aggregate N. Thus the
381 -- Aggregate_Bounds of each sub-aggregate, is an N_Range node giving the
c7ce71c2 382 -- sub-aggregate bounds. When building the aggregate itype, this function
996ae0b0
RK
383 -- traverses the array aggregate N collecting such Aggregate_Bounds and
384 -- constructs the proper array aggregate itype.
385 --
386 -- Note that in the case of multidimensional aggregates each inner
387 -- sub-aggregate corresponding to a given array dimension, may provide a
388 -- different bounds. If it is possible to determine statically that
389 -- some sub-aggregates corresponding to the same index do not have the
390 -- same bounds, then a warning is emitted. If such check is not possible
391 -- statically (because some sub-aggregate bounds are dynamic expressions)
392 -- then this job is left to the expander. In all cases the particular
393 -- bounds that this function will chose for a given dimension is the first
394 -- N_Range node for a sub-aggregate corresponding to that dimension.
395 --
396 -- Note that the Raises_Constraint_Error flag of an array aggregate
397 -- whose evaluation is determined to raise CE by Resolve_Array_Aggregate,
398 -- is set in Resolve_Array_Aggregate but the aggregate is not
399 -- immediately replaced with a raise CE. In fact, Array_Aggr_Subtype must
400 -- first construct the proper itype for the aggregate (Gigi needs
401 -- this). After constructing the proper itype we will eventually replace
402 -- the top-level aggregate with a raise CE (done in Resolve_Aggregate).
403 -- Of course in cases such as:
404 --
405 -- type Arr is array (integer range <>) of Integer;
406 -- A : Arr := (positive range -1 .. 2 => 0);
407 --
408 -- The bounds of the aggregate itype are cooked up to look reasonable
409 -- (in this particular case the bounds will be 1 .. 2).
410
411 procedure Aggregate_Constraint_Checks
412 (Exp : Node_Id;
413 Check_Typ : Entity_Id);
414 -- Checks expression Exp against subtype Check_Typ. If Exp is an
415 -- aggregate and Check_Typ a constrained record type with discriminants,
416 -- we generate the appropriate discriminant checks. If Exp is an array
417 -- aggregate then emit the appropriate length checks. If Exp is a scalar
418 -- type, or a string literal, Exp is changed into Check_Typ'(Exp) to
419 -- ensure that range checks are performed at run time.
420
421 procedure Make_String_Into_Aggregate (N : Node_Id);
422 -- A string literal can appear in a context in which a one dimensional
423 -- array of characters is expected. This procedure simply rewrites the
424 -- string as an aggregate, prior to resolution.
425
426 ---------------------------------
427 -- Aggregate_Constraint_Checks --
428 ---------------------------------
429
430 procedure Aggregate_Constraint_Checks
431 (Exp : Node_Id;
432 Check_Typ : Entity_Id)
433 is
434 Exp_Typ : constant Entity_Id := Etype (Exp);
435
436 begin
437 if Raises_Constraint_Error (Exp) then
438 return;
439 end if;
440
33477fb7
ES
441 -- Ada 2005 (AI-230): Generate a conversion to an anonymous access
442 -- component's type to force the appropriate accessibility checks.
443
444 -- Ada 2005 (AI-231): Generate conversion to the null-excluding
445 -- type to force the corresponding run-time check
446
447 if Is_Access_Type (Check_Typ)
448 and then ((Is_Local_Anonymous_Access (Check_Typ))
449 or else (Can_Never_Be_Null (Check_Typ)
450 and then not Can_Never_Be_Null (Exp_Typ)))
451 then
452 Rewrite (Exp, Convert_To (Check_Typ, Relocate_Node (Exp)));
453 Analyze_And_Resolve (Exp, Check_Typ);
454 Check_Unset_Reference (Exp);
455 end if;
456
f5da7a97 457 -- This is really expansion activity, so make sure that expansion is
110e2969
AC
458 -- on and is allowed. In GNATprove mode, we also want check flags to
459 -- be added in the tree, so that the formal verification can rely on
460 -- those to be present. In GNATprove mode for formal verification, some
461 -- treatment typically only done during expansion needs to be performed
462 -- on the tree, but it should not be applied inside generics. Otherwise,
463 -- this breaks the name resolution mechanism for generic instances.
996ae0b0 464
ffdeb702
AC
465 if not Expander_Active
466 and (Inside_A_Generic or not Full_Analysis or not GNATprove_Mode)
467 then
996ae0b0
RK
468 return;
469 end if;
470
471 -- First check if we have to insert discriminant checks
472
473 if Has_Discriminants (Exp_Typ) then
474 Apply_Discriminant_Check (Exp, Check_Typ);
475
476 -- Next emit length checks for array aggregates
477
478 elsif Is_Array_Type (Exp_Typ) then
479 Apply_Length_Check (Exp, Check_Typ);
480
481 -- Finally emit scalar and string checks. If we are dealing with a
482 -- scalar literal we need to check by hand because the Etype of
483 -- literals is not necessarily correct.
484
485 elsif Is_Scalar_Type (Exp_Typ)
486 and then Compile_Time_Known_Value (Exp)
487 then
488 if Is_Out_Of_Range (Exp, Base_Type (Check_Typ)) then
489 Apply_Compile_Time_Constraint_Error
324ac540 490 (Exp, "value not in range of}??", CE_Range_Check_Failed,
996ae0b0
RK
491 Ent => Base_Type (Check_Typ),
492 Typ => Base_Type (Check_Typ));
493
494 elsif Is_Out_Of_Range (Exp, Check_Typ) then
495 Apply_Compile_Time_Constraint_Error
324ac540 496 (Exp, "value not in range of}??", CE_Range_Check_Failed,
996ae0b0
RK
497 Ent => Check_Typ,
498 Typ => Check_Typ);
499
500 elsif not Range_Checks_Suppressed (Check_Typ) then
501 Apply_Scalar_Range_Check (Exp, Check_Typ);
502 end if;
503
88b32fc3
BD
504 -- Verify that target type is also scalar, to prevent view anomalies
505 -- in instantiations.
506
996ae0b0 507 elsif (Is_Scalar_Type (Exp_Typ)
88b32fc3
BD
508 or else Nkind (Exp) = N_String_Literal)
509 and then Is_Scalar_Type (Check_Typ)
996ae0b0
RK
510 and then Exp_Typ /= Check_Typ
511 then
512 if Is_Entity_Name (Exp)
513 and then Ekind (Entity (Exp)) = E_Constant
514 then
515 -- If expression is a constant, it is worthwhile checking whether
516 -- it is a bound of the type.
517
518 if (Is_Entity_Name (Type_Low_Bound (Check_Typ))
519 and then Entity (Exp) = Entity (Type_Low_Bound (Check_Typ)))
520 or else (Is_Entity_Name (Type_High_Bound (Check_Typ))
521 and then Entity (Exp) = Entity (Type_High_Bound (Check_Typ)))
522 then
523 return;
524
525 else
526 Rewrite (Exp, Convert_To (Check_Typ, Relocate_Node (Exp)));
527 Analyze_And_Resolve (Exp, Check_Typ);
fbf5a39b 528 Check_Unset_Reference (Exp);
996ae0b0
RK
529 end if;
530 else
531 Rewrite (Exp, Convert_To (Check_Typ, Relocate_Node (Exp)));
532 Analyze_And_Resolve (Exp, Check_Typ);
fbf5a39b 533 Check_Unset_Reference (Exp);
996ae0b0 534 end if;
2820d220 535
996ae0b0
RK
536 end if;
537 end Aggregate_Constraint_Checks;
538
539 ------------------------
540 -- Array_Aggr_Subtype --
541 ------------------------
542
543 function Array_Aggr_Subtype
b87971f3
AC
544 (N : Node_Id;
545 Typ : Entity_Id) return Entity_Id
996ae0b0
RK
546 is
547 Aggr_Dimension : constant Pos := Number_Dimensions (Typ);
ec53a6da 548 -- Number of aggregate index dimensions
996ae0b0
RK
549
550 Aggr_Range : array (1 .. Aggr_Dimension) of Node_Id := (others => Empty);
ec53a6da 551 -- Constrained N_Range of each index dimension in our aggregate itype
996ae0b0
RK
552
553 Aggr_Low : array (1 .. Aggr_Dimension) of Node_Id := (others => Empty);
554 Aggr_High : array (1 .. Aggr_Dimension) of Node_Id := (others => Empty);
ec53a6da 555 -- Low and High bounds for each index dimension in our aggregate itype
996ae0b0
RK
556
557 Is_Fully_Positional : Boolean := True;
558
559 procedure Collect_Aggr_Bounds (N : Node_Id; Dim : Pos);
fb468a94
AC
560 -- N is an array (sub-)aggregate. Dim is the dimension corresponding
561 -- to (sub-)aggregate N. This procedure collects and removes the side
562 -- effects of the constrained N_Range nodes corresponding to each index
2b3d67a5
AC
563 -- dimension of our aggregate itype. These N_Range nodes are collected
564 -- in Aggr_Range above.
ec53a6da 565 --
996ae0b0
RK
566 -- Likewise collect in Aggr_Low & Aggr_High above the low and high
567 -- bounds of each index dimension. If, when collecting, two bounds
568 -- corresponding to the same dimension are static and found to differ,
569 -- then emit a warning, and mark N as raising Constraint_Error.
570
571 -------------------------
572 -- Collect_Aggr_Bounds --
573 -------------------------
574
575 procedure Collect_Aggr_Bounds (N : Node_Id; Dim : Pos) is
576 This_Range : constant Node_Id := Aggregate_Bounds (N);
ec53a6da 577 -- The aggregate range node of this specific sub-aggregate
996ae0b0
RK
578
579 This_Low : constant Node_Id := Low_Bound (Aggregate_Bounds (N));
580 This_High : constant Node_Id := High_Bound (Aggregate_Bounds (N));
ec53a6da 581 -- The aggregate bounds of this specific sub-aggregate
996ae0b0
RK
582
583 Assoc : Node_Id;
584 Expr : Node_Id;
585
586 begin
fb468a94
AC
587 Remove_Side_Effects (This_Low, Variable_Ref => True);
588 Remove_Side_Effects (This_High, Variable_Ref => True);
589
996ae0b0
RK
590 -- Collect the first N_Range for a given dimension that you find.
591 -- For a given dimension they must be all equal anyway.
592
593 if No (Aggr_Range (Dim)) then
594 Aggr_Low (Dim) := This_Low;
595 Aggr_High (Dim) := This_High;
596 Aggr_Range (Dim) := This_Range;
597
598 else
599 if Compile_Time_Known_Value (This_Low) then
600 if not Compile_Time_Known_Value (Aggr_Low (Dim)) then
601 Aggr_Low (Dim) := This_Low;
602
603 elsif Expr_Value (This_Low) /= Expr_Value (Aggr_Low (Dim)) then
604 Set_Raises_Constraint_Error (N);
43417b90 605 Error_Msg_Warn := SPARK_Mode /= On;
4a28b181
AC
606 Error_Msg_N ("sub-aggregate low bound mismatch<<", N);
607 Error_Msg_N ("\Constraint_Error [<<", N);
996ae0b0
RK
608 end if;
609 end if;
610
611 if Compile_Time_Known_Value (This_High) then
612 if not Compile_Time_Known_Value (Aggr_High (Dim)) then
613 Aggr_High (Dim) := This_High;
614
615 elsif
616 Expr_Value (This_High) /= Expr_Value (Aggr_High (Dim))
617 then
618 Set_Raises_Constraint_Error (N);
43417b90 619 Error_Msg_Warn := SPARK_Mode /= On;
4a28b181
AC
620 Error_Msg_N ("sub-aggregate high bound mismatch<<", N);
621 Error_Msg_N ("\Constraint_Error [<<", N);
996ae0b0
RK
622 end if;
623 end if;
624 end if;
625
626 if Dim < Aggr_Dimension then
627
628 -- Process positional components
629
630 if Present (Expressions (N)) then
631 Expr := First (Expressions (N));
632 while Present (Expr) loop
633 Collect_Aggr_Bounds (Expr, Dim + 1);
634 Next (Expr);
635 end loop;
636 end if;
637
638 -- Process component associations
639
640 if Present (Component_Associations (N)) then
641 Is_Fully_Positional := False;
642
643 Assoc := First (Component_Associations (N));
644 while Present (Assoc) loop
645 Expr := Expression (Assoc);
646 Collect_Aggr_Bounds (Expr, Dim + 1);
647 Next (Assoc);
648 end loop;
649 end if;
650 end if;
651 end Collect_Aggr_Bounds;
652
653 -- Array_Aggr_Subtype variables
654
655 Itype : Entity_Id;
b87971f3 656 -- The final itype of the overall aggregate
996ae0b0 657
fbf5a39b 658 Index_Constraints : constant List_Id := New_List;
ec53a6da 659 -- The list of index constraints of the aggregate itype
996ae0b0
RK
660
661 -- Start of processing for Array_Aggr_Subtype
662
663 begin
b87971f3
AC
664 -- Make sure that the list of index constraints is properly attached to
665 -- the tree, and then collect the aggregate bounds.
996ae0b0
RK
666
667 Set_Parent (Index_Constraints, N);
668 Collect_Aggr_Bounds (N, 1);
669
3b42c566 670 -- Build the list of constrained indexes of our aggregate itype
996ae0b0
RK
671
672 for J in 1 .. Aggr_Dimension loop
673 Create_Index : declare
fbf5a39b
AC
674 Index_Base : constant Entity_Id :=
675 Base_Type (Etype (Aggr_Range (J)));
996ae0b0
RK
676 Index_Typ : Entity_Id;
677
678 begin
8133b9d1
ES
679 -- Construct the Index subtype, and associate it with the range
680 -- construct that generates it.
996ae0b0 681
8133b9d1
ES
682 Index_Typ :=
683 Create_Itype (Subtype_Kind (Ekind (Index_Base)), Aggr_Range (J));
996ae0b0
RK
684
685 Set_Etype (Index_Typ, Index_Base);
686
687 if Is_Character_Type (Index_Base) then
688 Set_Is_Character_Type (Index_Typ);
689 end if;
690
691 Set_Size_Info (Index_Typ, (Index_Base));
692 Set_RM_Size (Index_Typ, RM_Size (Index_Base));
693 Set_First_Rep_Item (Index_Typ, First_Rep_Item (Index_Base));
694 Set_Scalar_Range (Index_Typ, Aggr_Range (J));
695
696 if Is_Discrete_Or_Fixed_Point_Type (Index_Typ) then
697 Set_RM_Size (Index_Typ, UI_From_Int (Minimum_Size (Index_Typ)));
698 end if;
699
700 Set_Etype (Aggr_Range (J), Index_Typ);
701
702 Append (Aggr_Range (J), To => Index_Constraints);
703 end Create_Index;
704 end loop;
705
706 -- Now build the Itype
707
708 Itype := Create_Itype (E_Array_Subtype, N);
709
b87971f3
AC
710 Set_First_Rep_Item (Itype, First_Rep_Item (Typ));
711 Set_Convention (Itype, Convention (Typ));
712 Set_Depends_On_Private (Itype, Has_Private_Component (Typ));
713 Set_Etype (Itype, Base_Type (Typ));
714 Set_Has_Alignment_Clause (Itype, Has_Alignment_Clause (Typ));
715 Set_Is_Aliased (Itype, Is_Aliased (Typ));
716 Set_Depends_On_Private (Itype, Depends_On_Private (Typ));
996ae0b0 717
fbf5a39b
AC
718 Copy_Suppress_Status (Index_Check, Typ, Itype);
719 Copy_Suppress_Status (Length_Check, Typ, Itype);
720
996ae0b0
RK
721 Set_First_Index (Itype, First (Index_Constraints));
722 Set_Is_Constrained (Itype, True);
723 Set_Is_Internal (Itype, True);
996ae0b0
RK
724
725 -- A simple optimization: purely positional aggregates of static
b87971f3
AC
726 -- components should be passed to gigi unexpanded whenever possible, and
727 -- regardless of the staticness of the bounds themselves. Subsequent
728 -- checks in exp_aggr verify that type is not packed, etc.
996ae0b0 729
8133b9d1
ES
730 Set_Size_Known_At_Compile_Time (Itype,
731 Is_Fully_Positional
732 and then Comes_From_Source (N)
733 and then Size_Known_At_Compile_Time (Component_Type (Typ)));
996ae0b0 734
b87971f3
AC
735 -- We always need a freeze node for a packed array subtype, so that we
736 -- can build the Packed_Array_Type corresponding to the subtype. If
737 -- expansion is disabled, the packed array subtype is not built, and we
738 -- must not generate a freeze node for the type, or else it will appear
739 -- incomplete to gigi.
996ae0b0 740
b87971f3
AC
741 if Is_Packed (Itype)
742 and then not In_Spec_Expression
996ae0b0
RK
743 and then Expander_Active
744 then
745 Freeze_Itype (Itype, N);
746 end if;
747
748 return Itype;
749 end Array_Aggr_Subtype;
750
751 --------------------------------
752 -- Check_Misspelled_Component --
753 --------------------------------
754
755 procedure Check_Misspelled_Component
9c290e69
PO
756 (Elements : Elist_Id;
757 Component : Node_Id)
996ae0b0
RK
758 is
759 Max_Suggestions : constant := 2;
760
761 Nr_Of_Suggestions : Natural := 0;
762 Suggestion_1 : Entity_Id := Empty;
763 Suggestion_2 : Entity_Id := Empty;
764 Component_Elmt : Elmt_Id;
765
766 begin
b87971f3 767 -- All the components of List are matched against Component and a count
99ba07a3 768 -- is maintained of possible misspellings. When at the end of the the
a90bd866 769 -- analysis there are one or two (not more) possible misspellings,
b87971f3 770 -- these misspellings will be suggested as possible correction.
996ae0b0 771
c80d4855
RD
772 Component_Elmt := First_Elmt (Elements);
773 while Nr_Of_Suggestions <= Max_Suggestions
774 and then Present (Component_Elmt)
775 loop
776 if Is_Bad_Spelling_Of
777 (Chars (Node (Component_Elmt)),
778 Chars (Component))
779 then
780 Nr_Of_Suggestions := Nr_Of_Suggestions + 1;
996ae0b0 781
c80d4855
RD
782 case Nr_Of_Suggestions is
783 when 1 => Suggestion_1 := Node (Component_Elmt);
784 when 2 => Suggestion_2 := Node (Component_Elmt);
785 when others => exit;
786 end case;
787 end if;
996ae0b0 788
c80d4855
RD
789 Next_Elmt (Component_Elmt);
790 end loop;
996ae0b0 791
c80d4855 792 -- Report at most two suggestions
996ae0b0 793
c80d4855 794 if Nr_Of_Suggestions = 1 then
4e7a4f6e 795 Error_Msg_NE -- CODEFIX
c80d4855 796 ("\possible misspelling of&", Component, Suggestion_1);
996ae0b0 797
c80d4855
RD
798 elsif Nr_Of_Suggestions = 2 then
799 Error_Msg_Node_2 := Suggestion_2;
4e7a4f6e 800 Error_Msg_NE -- CODEFIX
c80d4855
RD
801 ("\possible misspelling of& or&", Component, Suggestion_1);
802 end if;
996ae0b0
RK
803 end Check_Misspelled_Component;
804
ca44152f
ES
805 ----------------------------------------
806 -- Check_Expr_OK_In_Limited_Aggregate --
807 ----------------------------------------
808
809 procedure Check_Expr_OK_In_Limited_Aggregate (Expr : Node_Id) is
810 begin
811 if Is_Limited_Type (Etype (Expr))
812 and then Comes_From_Source (Expr)
813 and then not In_Instance_Body
814 then
2a31c32b 815 if not OK_For_Limited_Init (Etype (Expr), Expr) then
ca44152f
ES
816 Error_Msg_N ("initialization not allowed for limited types", Expr);
817 Explain_Limited_Type (Etype (Expr), Expr);
818 end if;
819 end if;
820 end Check_Expr_OK_In_Limited_Aggregate;
821
a5fe697b
AC
822 -------------------------------
823 -- Check_Qualified_Aggregate --
824 -------------------------------
825
826 procedure Check_Qualified_Aggregate (Level : Nat; Expr : Node_Id) is
827 Comp_Expr : Node_Id;
828 Comp_Assn : Node_Id;
19fb051c 829
a5fe697b
AC
830 begin
831 if Level = 0 then
832 if Nkind (Parent (Expr)) /= N_Qualified_Expression then
2ba431e5 833 Check_SPARK_Restriction ("aggregate should be qualified", Expr);
a5fe697b 834 end if;
19fb051c 835
a5fe697b
AC
836 else
837 Comp_Expr := First (Expressions (Expr));
838 while Present (Comp_Expr) loop
839 if Nkind (Comp_Expr) = N_Aggregate then
840 Check_Qualified_Aggregate (Level - 1, Comp_Expr);
841 end if;
842
843 Comp_Expr := Next (Comp_Expr);
844 end loop;
845
846 Comp_Assn := First (Component_Associations (Expr));
847 while Present (Comp_Assn) loop
848 Comp_Expr := Expression (Comp_Assn);
849
850 if Nkind (Comp_Expr) = N_Aggregate then
851 Check_Qualified_Aggregate (Level - 1, Comp_Expr);
852 end if;
853
854 Comp_Assn := Next (Comp_Assn);
855 end loop;
856 end if;
857 end Check_Qualified_Aggregate;
858
996ae0b0
RK
859 ----------------------------------------
860 -- Check_Static_Discriminated_Subtype --
861 ----------------------------------------
862
863 procedure Check_Static_Discriminated_Subtype (T : Entity_Id; V : Node_Id) is
864 Disc : constant Entity_Id := First_Discriminant (T);
865 Comp : Entity_Id;
866 Ind : Entity_Id;
867
868 begin
07fc65c4 869 if Has_Record_Rep_Clause (T) then
996ae0b0
RK
870 return;
871
872 elsif Present (Next_Discriminant (Disc)) then
873 return;
874
875 elsif Nkind (V) /= N_Integer_Literal then
876 return;
877 end if;
878
879 Comp := First_Component (T);
996ae0b0 880 while Present (Comp) loop
996ae0b0
RK
881 if Is_Scalar_Type (Etype (Comp)) then
882 null;
883
884 elsif Is_Private_Type (Etype (Comp))
885 and then Present (Full_View (Etype (Comp)))
886 and then Is_Scalar_Type (Full_View (Etype (Comp)))
887 then
888 null;
889
890 elsif Is_Array_Type (Etype (Comp)) then
996ae0b0
RK
891 if Is_Bit_Packed_Array (Etype (Comp)) then
892 return;
893 end if;
894
895 Ind := First_Index (Etype (Comp));
996ae0b0 896 while Present (Ind) loop
996ae0b0
RK
897 if Nkind (Ind) /= N_Range
898 or else Nkind (Low_Bound (Ind)) /= N_Integer_Literal
899 or else Nkind (High_Bound (Ind)) /= N_Integer_Literal
900 then
901 return;
902 end if;
903
904 Next_Index (Ind);
905 end loop;
906
907 else
908 return;
909 end if;
910
911 Next_Component (Comp);
912 end loop;
913
ec53a6da 914 -- On exit, all components have statically known sizes
996ae0b0
RK
915
916 Set_Size_Known_At_Compile_Time (T);
917 end Check_Static_Discriminated_Subtype;
918
9f90d123
AC
919 -------------------------
920 -- Is_Others_Aggregate --
921 -------------------------
922
923 function Is_Others_Aggregate (Aggr : Node_Id) return Boolean is
924 begin
925 return No (Expressions (Aggr))
926 and then
927 Nkind (First (Choices (First (Component_Associations (Aggr)))))
928 = N_Others_Choice;
929 end Is_Others_Aggregate;
930
a5fe697b
AC
931 ----------------------------
932 -- Is_Top_Level_Aggregate --
933 ----------------------------
934
935 function Is_Top_Level_Aggregate (Expr : Node_Id) return Boolean is
936 begin
937 return Nkind (Parent (Expr)) /= N_Aggregate
938 and then (Nkind (Parent (Expr)) /= N_Component_Association
939 or else Nkind (Parent (Parent (Expr))) /= N_Aggregate);
940 end Is_Top_Level_Aggregate;
941
996ae0b0
RK
942 --------------------------------
943 -- Make_String_Into_Aggregate --
944 --------------------------------
945
946 procedure Make_String_Into_Aggregate (N : Node_Id) is
fbf5a39b 947 Exprs : constant List_Id := New_List;
996ae0b0 948 Loc : constant Source_Ptr := Sloc (N);
996ae0b0
RK
949 Str : constant String_Id := Strval (N);
950 Strlen : constant Nat := String_Length (Str);
fbf5a39b
AC
951 C : Char_Code;
952 C_Node : Node_Id;
953 New_N : Node_Id;
954 P : Source_Ptr;
996ae0b0
RK
955
956 begin
fbf5a39b 957 P := Loc + 1;
996ae0b0
RK
958 for J in 1 .. Strlen loop
959 C := Get_String_Char (Str, J);
960 Set_Character_Literal_Name (C);
961
82c80734
RD
962 C_Node :=
963 Make_Character_Literal (P,
964 Chars => Name_Find,
965 Char_Literal_Value => UI_From_CC (C));
996ae0b0 966 Set_Etype (C_Node, Any_Character);
996ae0b0
RK
967 Append_To (Exprs, C_Node);
968
969 P := P + 1;
b87971f3 970 -- Something special for wide strings???
996ae0b0
RK
971 end loop;
972
973 New_N := Make_Aggregate (Loc, Expressions => Exprs);
974 Set_Analyzed (New_N);
975 Set_Etype (New_N, Any_Composite);
976
977 Rewrite (N, New_N);
978 end Make_String_Into_Aggregate;
979
980 -----------------------
981 -- Resolve_Aggregate --
982 -----------------------
983
984 procedure Resolve_Aggregate (N : Node_Id; Typ : Entity_Id) is
f915704f 985 Loc : constant Source_Ptr := Sloc (N);
9fc2854d 986 Pkind : constant Node_Kind := Nkind (Parent (N));
996ae0b0
RK
987
988 Aggr_Subtyp : Entity_Id;
989 -- The actual aggregate subtype. This is not necessarily the same as Typ
990 -- which is the subtype of the context in which the aggregate was found.
991
992 begin
6d2a1120
RD
993 -- Ignore junk empty aggregate resulting from parser error
994
995 if No (Expressions (N))
996 and then No (Component_Associations (N))
997 and then not Null_Record_Present (N)
998 then
999 return;
1000 end if;
1001
0180fd26
AC
1002 -- If the aggregate has box-initialized components, its type must be
1003 -- frozen so that initialization procedures can properly be called
1004 -- in the resolution that follows. The replacement of boxes with
1005 -- initialization calls is properly an expansion activity but it must
f5da7a97 1006 -- be done during resolution.
0180fd26
AC
1007
1008 if Expander_Active
f5da7a97 1009 and then Present (Component_Associations (N))
0180fd26
AC
1010 then
1011 declare
1012 Comp : Node_Id;
1013
1014 begin
1015 Comp := First (Component_Associations (N));
1016 while Present (Comp) loop
1017 if Box_Present (Comp) then
1018 Insert_Actions (N, Freeze_Entity (Typ, N));
1019 exit;
1020 end if;
fe0ec02f 1021
0180fd26
AC
1022 Next (Comp);
1023 end loop;
1024 end;
1025 end if;
1026
2ba431e5 1027 -- An unqualified aggregate is restricted in SPARK to:
a5fe697b
AC
1028
1029 -- An aggregate item inside an aggregate for a multi-dimensional array
1030
1031 -- An expression being assigned to an unconstrained array, but only if
1032 -- the aggregate specifies a value for OTHERS only.
1033
1034 if Nkind (Parent (N)) = N_Qualified_Expression then
1035 if Is_Array_Type (Typ) then
1036 Check_Qualified_Aggregate (Number_Dimensions (Typ), N);
1037 else
1038 Check_Qualified_Aggregate (1, N);
1039 end if;
1040 else
1041 if Is_Array_Type (Typ)
1042 and then Nkind (Parent (N)) = N_Assignment_Statement
1043 and then not Is_Constrained (Etype (Name (Parent (N))))
a5fe697b 1044 then
5f7747af 1045 if not Is_Others_Aggregate (N) then
2ba431e5 1046 Check_SPARK_Restriction
5f7747af
AC
1047 ("array aggregate should have only OTHERS", N);
1048 end if;
1049
a5fe697b 1050 elsif Is_Top_Level_Aggregate (N) then
2ba431e5 1051 Check_SPARK_Restriction ("aggregate should be qualified", N);
a5fe697b
AC
1052
1053 -- The legality of this unqualified aggregate is checked by calling
1054 -- Check_Qualified_Aggregate from one of its enclosing aggregate,
1055 -- unless one of these already causes an error to be issued.
1056
1057 else
1058 null;
1059 end if;
1060 end if;
1061
fbf5a39b 1062 -- Check for aggregates not allowed in configurable run-time mode.
b87971f3
AC
1063 -- We allow all cases of aggregates that do not come from source, since
1064 -- these are all assumed to be small (e.g. bounds of a string literal).
1065 -- We also allow aggregates of types we know to be small.
fbf5a39b
AC
1066
1067 if not Support_Aggregates_On_Target
1068 and then Comes_From_Source (N)
1069 and then (not Known_Static_Esize (Typ) or else Esize (Typ) > 64)
1070 then
1071 Error_Msg_CRT ("aggregate", N);
1072 end if;
996ae0b0 1073
0ab80019 1074 -- Ada 2005 (AI-287): Limited aggregates allowed
579fda56 1075
67645bde
AC
1076 -- In an instance, ignore aggregate subcomponents tnat may be limited,
1077 -- because they originate in view conflicts. If the original aggregate
1078 -- is legal and the actuals are legal, the aggregate itself is legal.
19f0526a 1079
67645bde
AC
1080 if Is_Limited_Type (Typ)
1081 and then Ada_Version < Ada_2005
1082 and then not In_Instance
1083 then
fbf5a39b
AC
1084 Error_Msg_N ("aggregate type cannot be limited", N);
1085 Explain_Limited_Type (Typ, N);
996ae0b0
RK
1086
1087 elsif Is_Class_Wide_Type (Typ) then
1088 Error_Msg_N ("type of aggregate cannot be class-wide", N);
1089
1090 elsif Typ = Any_String
1091 or else Typ = Any_Composite
1092 then
1093 Error_Msg_N ("no unique type for aggregate", N);
1094 Set_Etype (N, Any_Composite);
1095
1096 elsif Is_Array_Type (Typ) and then Null_Record_Present (N) then
1097 Error_Msg_N ("null record forbidden in array aggregate", N);
1098
1099 elsif Is_Record_Type (Typ) then
1100 Resolve_Record_Aggregate (N, Typ);
1101
1102 elsif Is_Array_Type (Typ) then
1103
1104 -- First a special test, for the case of a positional aggregate
1105 -- of characters which can be replaced by a string literal.
ca44152f 1106
b87971f3
AC
1107 -- Do not perform this transformation if this was a string literal to
1108 -- start with, whose components needed constraint checks, or if the
1109 -- component type is non-static, because it will require those checks
1110 -- and be transformed back into an aggregate.
996ae0b0
RK
1111
1112 if Number_Dimensions (Typ) = 1
ca44152f 1113 and then Is_Standard_Character_Type (Component_Type (Typ))
996ae0b0
RK
1114 and then No (Component_Associations (N))
1115 and then not Is_Limited_Composite (Typ)
1116 and then not Is_Private_Composite (Typ)
1117 and then not Is_Bit_Packed_Array (Typ)
1118 and then Nkind (Original_Node (Parent (N))) /= N_String_Literal
1119 and then Is_Static_Subtype (Component_Type (Typ))
1120 then
1121 declare
1122 Expr : Node_Id;
1123
1124 begin
1125 Expr := First (Expressions (N));
1126 while Present (Expr) loop
1127 exit when Nkind (Expr) /= N_Character_Literal;
1128 Next (Expr);
1129 end loop;
1130
1131 if No (Expr) then
1132 Start_String;
1133
1134 Expr := First (Expressions (N));
1135 while Present (Expr) loop
82c80734 1136 Store_String_Char (UI_To_CC (Char_Literal_Value (Expr)));
996ae0b0
RK
1137 Next (Expr);
1138 end loop;
1139
f915704f 1140 Rewrite (N, Make_String_Literal (Loc, End_String));
996ae0b0
RK
1141
1142 Analyze_And_Resolve (N, Typ);
1143 return;
1144 end if;
1145 end;
1146 end if;
1147
1148 -- Here if we have a real aggregate to deal with
1149
1150 Array_Aggregate : declare
1151 Aggr_Resolved : Boolean;
fbf5a39b
AC
1152
1153 Aggr_Typ : constant Entity_Id := Etype (Typ);
b87971f3
AC
1154 -- This is the unconstrained array type, which is the type against
1155 -- which the aggregate is to be resolved. Typ itself is the array
1156 -- type of the context which may not be the same subtype as the
1157 -- subtype for the final aggregate.
996ae0b0
RK
1158
1159 begin
f915704f 1160 -- In the following we determine whether an OTHERS choice is
996ae0b0
RK
1161 -- allowed inside the array aggregate. The test checks the context
1162 -- in which the array aggregate occurs. If the context does not
f915704f 1163 -- permit it, or the aggregate type is unconstrained, an OTHERS
56e94186
AC
1164 -- choice is not allowed (except that it is always allowed on the
1165 -- right-hand side of an assignment statement; in this case the
1166 -- constrainedness of the type doesn't matter).
d8387153
ES
1167
1168 -- If expansion is disabled (generic context, or semantics-only
b87971f3
AC
1169 -- mode) actual subtypes cannot be constructed, and the type of an
1170 -- object may be its unconstrained nominal type. However, if the
f915704f 1171 -- context is an assignment, we assume that OTHERS is allowed,
b87971f3
AC
1172 -- because the target of the assignment will have a constrained
1173 -- subtype when fully compiled.
d8387153 1174
996ae0b0
RK
1175 -- Note that there is no node for Explicit_Actual_Parameter.
1176 -- To test for this context we therefore have to test for node
1177 -- N_Parameter_Association which itself appears only if there is a
1178 -- formal parameter. Consequently we also need to test for
1179 -- N_Procedure_Call_Statement or N_Function_Call.
1180
b87971f3 1181 Set_Etype (N, Aggr_Typ); -- May be overridden later on
c45b6ae0 1182
e917aec2
RD
1183 if Pkind = N_Assignment_Statement
1184 or else (Is_Constrained (Typ)
1185 and then
1186 (Pkind = N_Parameter_Association or else
1187 Pkind = N_Function_Call or else
1188 Pkind = N_Procedure_Call_Statement or else
1189 Pkind = N_Generic_Association or else
1190 Pkind = N_Formal_Object_Declaration or else
1191 Pkind = N_Simple_Return_Statement or else
1192 Pkind = N_Object_Declaration or else
1193 Pkind = N_Component_Declaration or else
1194 Pkind = N_Parameter_Specification or else
1195 Pkind = N_Qualified_Expression or else
1196 Pkind = N_Aggregate or else
1197 Pkind = N_Extension_Aggregate or else
1198 Pkind = N_Component_Association))
996ae0b0
RK
1199 then
1200 Aggr_Resolved :=
1201 Resolve_Array_Aggregate
1202 (N,
1203 Index => First_Index (Aggr_Typ),
1204 Index_Constr => First_Index (Typ),
1205 Component_Typ => Component_Type (Typ),
1206 Others_Allowed => True);
1207
d8387153
ES
1208 elsif not Expander_Active
1209 and then Pkind = N_Assignment_Statement
1210 then
1211 Aggr_Resolved :=
1212 Resolve_Array_Aggregate
1213 (N,
1214 Index => First_Index (Aggr_Typ),
1215 Index_Constr => First_Index (Typ),
1216 Component_Typ => Component_Type (Typ),
1217 Others_Allowed => True);
f915704f 1218
996ae0b0
RK
1219 else
1220 Aggr_Resolved :=
1221 Resolve_Array_Aggregate
1222 (N,
1223 Index => First_Index (Aggr_Typ),
1224 Index_Constr => First_Index (Aggr_Typ),
1225 Component_Typ => Component_Type (Typ),
1226 Others_Allowed => False);
1227 end if;
1228
1229 if not Aggr_Resolved then
f5afb270
AC
1230
1231 -- A parenthesized expression may have been intended as an
1232 -- aggregate, leading to a type error when analyzing the
1233 -- component. This can also happen for a nested component
1234 -- (see Analyze_Aggr_Expr).
1235
1236 if Paren_Count (N) > 0 then
1237 Error_Msg_N
1238 ("positional aggregate cannot have one component", N);
1239 end if;
1240
996ae0b0 1241 Aggr_Subtyp := Any_Composite;
e917aec2 1242
996ae0b0
RK
1243 else
1244 Aggr_Subtyp := Array_Aggr_Subtype (N, Typ);
1245 end if;
1246
1247 Set_Etype (N, Aggr_Subtyp);
1248 end Array_Aggregate;
1249
d8387153
ES
1250 elsif Is_Private_Type (Typ)
1251 and then Present (Full_View (Typ))
8256c1bf 1252 and then (In_Inlined_Body or In_Instance_Body)
d8387153
ES
1253 and then Is_Composite_Type (Full_View (Typ))
1254 then
1255 Resolve (N, Full_View (Typ));
1256
996ae0b0
RK
1257 else
1258 Error_Msg_N ("illegal context for aggregate", N);
996ae0b0
RK
1259 end if;
1260
b87971f3
AC
1261 -- If we can determine statically that the evaluation of the aggregate
1262 -- raises Constraint_Error, then replace the aggregate with an
1263 -- N_Raise_Constraint_Error node, but set the Etype to the right
1264 -- aggregate subtype. Gigi needs this.
996ae0b0
RK
1265
1266 if Raises_Constraint_Error (N) then
1267 Aggr_Subtyp := Etype (N);
07fc65c4 1268 Rewrite (N,
bd65a2d7 1269 Make_Raise_Constraint_Error (Loc, Reason => CE_Range_Check_Failed));
996ae0b0
RK
1270 Set_Raises_Constraint_Error (N);
1271 Set_Etype (N, Aggr_Subtyp);
1272 Set_Analyzed (N);
1273 end if;
d3820795
JM
1274
1275 Check_Function_Writable_Actuals (N);
996ae0b0
RK
1276 end Resolve_Aggregate;
1277
1278 -----------------------------
1279 -- Resolve_Array_Aggregate --
1280 -----------------------------
1281
1282 function Resolve_Array_Aggregate
1283 (N : Node_Id;
1284 Index : Node_Id;
1285 Index_Constr : Node_Id;
1286 Component_Typ : Entity_Id;
ca44152f 1287 Others_Allowed : Boolean) return Boolean
996ae0b0
RK
1288 is
1289 Loc : constant Source_Ptr := Sloc (N);
1290
1291 Failure : constant Boolean := False;
1292 Success : constant Boolean := True;
1293
1294 Index_Typ : constant Entity_Id := Etype (Index);
1295 Index_Typ_Low : constant Node_Id := Type_Low_Bound (Index_Typ);
1296 Index_Typ_High : constant Node_Id := Type_High_Bound (Index_Typ);
b87971f3
AC
1297 -- The type of the index corresponding to the array sub-aggregate along
1298 -- with its low and upper bounds.
996ae0b0
RK
1299
1300 Index_Base : constant Entity_Id := Base_Type (Index_Typ);
1301 Index_Base_Low : constant Node_Id := Type_Low_Bound (Index_Base);
1302 Index_Base_High : constant Node_Id := Type_High_Bound (Index_Base);
b87971f3 1303 -- Ditto for the base type
996ae0b0
RK
1304
1305 function Add (Val : Uint; To : Node_Id) return Node_Id;
1306 -- Creates a new expression node where Val is added to expression To.
1307 -- Tries to constant fold whenever possible. To must be an already
1308 -- analyzed expression.
1309
1310 procedure Check_Bound (BH : Node_Id; AH : in out Node_Id);
f915704f
AC
1311 -- Checks that AH (the upper bound of an array aggregate) is less than
1312 -- or equal to BH (the upper bound of the index base type). If the check
1313 -- fails, a warning is emitted, the Raises_Constraint_Error flag of N is
1314 -- set, and AH is replaced with a duplicate of BH.
996ae0b0
RK
1315
1316 procedure Check_Bounds (L, H : Node_Id; AL, AH : Node_Id);
1317 -- Checks that range AL .. AH is compatible with range L .. H. Emits a
b87971f3 1318 -- warning if not and sets the Raises_Constraint_Error flag in N.
996ae0b0
RK
1319
1320 procedure Check_Length (L, H : Node_Id; Len : Uint);
1321 -- Checks that range L .. H contains at least Len elements. Emits a
b87971f3 1322 -- warning if not and sets the Raises_Constraint_Error flag in N.
996ae0b0
RK
1323
1324 function Dynamic_Or_Null_Range (L, H : Node_Id) return Boolean;
ec53a6da 1325 -- Returns True if range L .. H is dynamic or null
996ae0b0
RK
1326
1327 procedure Get (Value : out Uint; From : Node_Id; OK : out Boolean);
1328 -- Given expression node From, this routine sets OK to False if it
1329 -- cannot statically evaluate From. Otherwise it stores this static
1330 -- value into Value.
1331
1332 function Resolve_Aggr_Expr
1333 (Expr : Node_Id;
ca44152f 1334 Single_Elmt : Boolean) return Boolean;
12a13f01 1335 -- Resolves aggregate expression Expr. Returns False if resolution
996ae0b0 1336 -- fails. If Single_Elmt is set to False, the expression Expr may be
b87971f3 1337 -- used to initialize several array aggregate elements (this can happen
f915704f 1338 -- for discrete choices such as "L .. H => Expr" or the OTHERS choice).
b87971f3
AC
1339 -- In this event we do not resolve Expr unless expansion is disabled.
1340 -- To know why, see the DELAYED COMPONENT RESOLUTION note above.
ca5af305
AC
1341 --
1342 -- NOTE: In the case of "... => <>", we pass the in the
1343 -- N_Component_Association node as Expr, since there is no Expression in
1344 -- that case, and we need a Sloc for the error message.
996ae0b0
RK
1345
1346 ---------
1347 -- Add --
1348 ---------
1349
1350 function Add (Val : Uint; To : Node_Id) return Node_Id is
1351 Expr_Pos : Node_Id;
1352 Expr : Node_Id;
1353 To_Pos : Node_Id;
1354
1355 begin
1356 if Raises_Constraint_Error (To) then
1357 return To;
1358 end if;
1359
1360 -- First test if we can do constant folding
1361
1362 if Compile_Time_Known_Value (To)
1363 or else Nkind (To) = N_Integer_Literal
1364 then
1365 Expr_Pos := Make_Integer_Literal (Loc, Expr_Value (To) + Val);
1366 Set_Is_Static_Expression (Expr_Pos);
1367 Set_Etype (Expr_Pos, Etype (To));
1368 Set_Analyzed (Expr_Pos, Analyzed (To));
1369
1370 if not Is_Enumeration_Type (Index_Typ) then
1371 Expr := Expr_Pos;
1372
1373 -- If we are dealing with enumeration return
1374 -- Index_Typ'Val (Expr_Pos)
1375
1376 else
1377 Expr :=
1378 Make_Attribute_Reference
1379 (Loc,
e4494292 1380 Prefix => New_Occurrence_Of (Index_Typ, Loc),
996ae0b0
RK
1381 Attribute_Name => Name_Val,
1382 Expressions => New_List (Expr_Pos));
1383 end if;
1384
1385 return Expr;
1386 end if;
1387
1388 -- If we are here no constant folding possible
1389
1390 if not Is_Enumeration_Type (Index_Base) then
1391 Expr :=
1392 Make_Op_Add (Loc,
f915704f
AC
1393 Left_Opnd => Duplicate_Subexpr (To),
1394 Right_Opnd => Make_Integer_Literal (Loc, Val));
996ae0b0
RK
1395
1396 -- If we are dealing with enumeration return
1397 -- Index_Typ'Val (Index_Typ'Pos (To) + Val)
1398
1399 else
1400 To_Pos :=
1401 Make_Attribute_Reference
1402 (Loc,
e4494292 1403 Prefix => New_Occurrence_Of (Index_Typ, Loc),
996ae0b0
RK
1404 Attribute_Name => Name_Pos,
1405 Expressions => New_List (Duplicate_Subexpr (To)));
1406
1407 Expr_Pos :=
1408 Make_Op_Add (Loc,
1409 Left_Opnd => To_Pos,
1410 Right_Opnd => Make_Integer_Literal (Loc, Val));
1411
1412 Expr :=
1413 Make_Attribute_Reference
1414 (Loc,
e4494292 1415 Prefix => New_Occurrence_Of (Index_Typ, Loc),
996ae0b0
RK
1416 Attribute_Name => Name_Val,
1417 Expressions => New_List (Expr_Pos));
f915704f
AC
1418
1419 -- If the index type has a non standard representation, the
1420 -- attributes 'Val and 'Pos expand into function calls and the
1421 -- resulting expression is considered non-safe for reevaluation
1422 -- by the backend. Relocate it into a constant temporary in order
1423 -- to make it safe for reevaluation.
1424
1425 if Has_Non_Standard_Rep (Etype (N)) then
1426 declare
1427 Def_Id : Entity_Id;
1428
1429 begin
1430 Def_Id := Make_Temporary (Loc, 'R', Expr);
1431 Set_Etype (Def_Id, Index_Typ);
1432 Insert_Action (N,
1433 Make_Object_Declaration (Loc,
1434 Defining_Identifier => Def_Id,
e4494292
RD
1435 Object_Definition =>
1436 New_Occurrence_Of (Index_Typ, Loc),
f915704f
AC
1437 Constant_Present => True,
1438 Expression => Relocate_Node (Expr)));
1439
e4494292 1440 Expr := New_Occurrence_Of (Def_Id, Loc);
f915704f
AC
1441 end;
1442 end if;
996ae0b0
RK
1443 end if;
1444
1445 return Expr;
1446 end Add;
1447
1448 -----------------
1449 -- Check_Bound --
1450 -----------------
1451
1452 procedure Check_Bound (BH : Node_Id; AH : in out Node_Id) is
1453 Val_BH : Uint;
1454 Val_AH : Uint;
1455
1456 OK_BH : Boolean;
1457 OK_AH : Boolean;
1458
1459 begin
1460 Get (Value => Val_BH, From => BH, OK => OK_BH);
1461 Get (Value => Val_AH, From => AH, OK => OK_AH);
1462
1463 if OK_BH and then OK_AH and then Val_BH < Val_AH then
1464 Set_Raises_Constraint_Error (N);
43417b90 1465 Error_Msg_Warn := SPARK_Mode /= On;
4a28b181
AC
1466 Error_Msg_N ("upper bound out of range<<", AH);
1467 Error_Msg_N ("\Constraint_Error [<<", AH);
996ae0b0
RK
1468
1469 -- You need to set AH to BH or else in the case of enumerations
3b42c566 1470 -- indexes we will not be able to resolve the aggregate bounds.
996ae0b0
RK
1471
1472 AH := Duplicate_Subexpr (BH);
1473 end if;
1474 end Check_Bound;
1475
1476 ------------------
1477 -- Check_Bounds --
1478 ------------------
1479
1480 procedure Check_Bounds (L, H : Node_Id; AL, AH : Node_Id) is
1481 Val_L : Uint;
1482 Val_H : Uint;
1483 Val_AL : Uint;
1484 Val_AH : Uint;
1485
f91e8020
GD
1486 OK_L : Boolean;
1487 OK_H : Boolean;
1488
996ae0b0 1489 OK_AL : Boolean;
f91e8020
GD
1490 OK_AH : Boolean;
1491 pragma Warnings (Off, OK_AL);
1492 pragma Warnings (Off, OK_AH);
996ae0b0
RK
1493
1494 begin
1495 if Raises_Constraint_Error (N)
1496 or else Dynamic_Or_Null_Range (AL, AH)
1497 then
1498 return;
1499 end if;
1500
1501 Get (Value => Val_L, From => L, OK => OK_L);
1502 Get (Value => Val_H, From => H, OK => OK_H);
1503
1504 Get (Value => Val_AL, From => AL, OK => OK_AL);
1505 Get (Value => Val_AH, From => AH, OK => OK_AH);
1506
1507 if OK_L and then Val_L > Val_AL then
1508 Set_Raises_Constraint_Error (N);
43417b90 1509 Error_Msg_Warn := SPARK_Mode /= On;
4a28b181
AC
1510 Error_Msg_N ("lower bound of aggregate out of range<<", N);
1511 Error_Msg_N ("\Constraint_Error [<<", N);
996ae0b0
RK
1512 end if;
1513
1514 if OK_H and then Val_H < Val_AH then
1515 Set_Raises_Constraint_Error (N);
43417b90 1516 Error_Msg_Warn := SPARK_Mode /= On;
4a28b181
AC
1517 Error_Msg_N ("upper bound of aggregate out of range<<", N);
1518 Error_Msg_N ("\Constraint_Error [<<", N);
996ae0b0
RK
1519 end if;
1520 end Check_Bounds;
1521
1522 ------------------
1523 -- Check_Length --
1524 ------------------
1525
1526 procedure Check_Length (L, H : Node_Id; Len : Uint) is
1527 Val_L : Uint;
1528 Val_H : Uint;
1529
1530 OK_L : Boolean;
1531 OK_H : Boolean;
1532
1533 Range_Len : Uint;
1534
1535 begin
1536 if Raises_Constraint_Error (N) then
1537 return;
1538 end if;
1539
1540 Get (Value => Val_L, From => L, OK => OK_L);
1541 Get (Value => Val_H, From => H, OK => OK_H);
1542
1543 if not OK_L or else not OK_H then
1544 return;
1545 end if;
1546
1547 -- If null range length is zero
1548
1549 if Val_L > Val_H then
1550 Range_Len := Uint_0;
1551 else
1552 Range_Len := Val_H - Val_L + 1;
1553 end if;
1554
1555 if Range_Len < Len then
1556 Set_Raises_Constraint_Error (N);
43417b90 1557 Error_Msg_Warn := SPARK_Mode /= On;
4a28b181
AC
1558 Error_Msg_N ("too many elements<<", N);
1559 Error_Msg_N ("\Constraint_Error [<<", N);
996ae0b0
RK
1560 end if;
1561 end Check_Length;
1562
1563 ---------------------------
1564 -- Dynamic_Or_Null_Range --
1565 ---------------------------
1566
1567 function Dynamic_Or_Null_Range (L, H : Node_Id) return Boolean is
1568 Val_L : Uint;
1569 Val_H : Uint;
1570
1571 OK_L : Boolean;
1572 OK_H : Boolean;
1573
1574 begin
1575 Get (Value => Val_L, From => L, OK => OK_L);
1576 Get (Value => Val_H, From => H, OK => OK_H);
1577
1578 return not OK_L or else not OK_H
1579 or else not Is_OK_Static_Expression (L)
1580 or else not Is_OK_Static_Expression (H)
1581 or else Val_L > Val_H;
1582 end Dynamic_Or_Null_Range;
1583
1584 ---------
1585 -- Get --
1586 ---------
1587
1588 procedure Get (Value : out Uint; From : Node_Id; OK : out Boolean) is
1589 begin
1590 OK := True;
1591
1592 if Compile_Time_Known_Value (From) then
1593 Value := Expr_Value (From);
1594
1595 -- If expression From is something like Some_Type'Val (10) then
1f0b1e48 1596 -- Value = 10.
996ae0b0
RK
1597
1598 elsif Nkind (From) = N_Attribute_Reference
1599 and then Attribute_Name (From) = Name_Val
1600 and then Compile_Time_Known_Value (First (Expressions (From)))
1601 then
1602 Value := Expr_Value (First (Expressions (From)));
1603
1604 else
1605 Value := Uint_0;
1606 OK := False;
1607 end if;
1608 end Get;
1609
1610 -----------------------
1611 -- Resolve_Aggr_Expr --
1612 -----------------------
1613
1614 function Resolve_Aggr_Expr
1615 (Expr : Node_Id;
ca44152f 1616 Single_Elmt : Boolean) return Boolean
996ae0b0 1617 is
fbf5a39b
AC
1618 Nxt_Ind : constant Node_Id := Next_Index (Index);
1619 Nxt_Ind_Constr : constant Node_Id := Next_Index (Index_Constr);
12a13f01 1620 -- Index is the current index corresponding to the expression
996ae0b0
RK
1621
1622 Resolution_OK : Boolean := True;
ec53a6da 1623 -- Set to False if resolution of the expression failed
996ae0b0
RK
1624
1625 begin
199c6a10
AC
1626 -- Defend against previous errors
1627
1628 if Nkind (Expr) = N_Error
1629 or else Error_Posted (Expr)
1630 then
1631 return True;
1632 end if;
1633
996ae0b0
RK
1634 -- If the array type against which we are resolving the aggregate
1635 -- has several dimensions, the expressions nested inside the
1636 -- aggregate must be further aggregates (or strings).
1637
1638 if Present (Nxt_Ind) then
1639 if Nkind (Expr) /= N_Aggregate then
1640
1641 -- A string literal can appear where a one-dimensional array
1642 -- of characters is expected. If the literal looks like an
1643 -- operator, it is still an operator symbol, which will be
1644 -- transformed into a string when analyzed.
1645
1646 if Is_Character_Type (Component_Typ)
1647 and then No (Next_Index (Nxt_Ind))
f53f9dd7 1648 and then Nkind_In (Expr, N_String_Literal, N_Operator_Symbol)
996ae0b0
RK
1649 then
1650 -- A string literal used in a multidimensional array
1651 -- aggregate in place of the final one-dimensional
1652 -- aggregate must not be enclosed in parentheses.
1653
1654 if Paren_Count (Expr) /= 0 then
ed2233dc 1655 Error_Msg_N ("no parenthesis allowed here", Expr);
996ae0b0
RK
1656 end if;
1657
1658 Make_String_Into_Aggregate (Expr);
1659
1660 else
1661 Error_Msg_N ("nested array aggregate expected", Expr);
9d0c3761
AC
1662
1663 -- If the expression is parenthesized, this may be
1664 -- a missing component association for a 1-aggregate.
1665
1666 if Paren_Count (Expr) > 0 then
ed2233dc 1667 Error_Msg_N
22cb89b5
AC
1668 ("\if single-component aggregate is intended,"
1669 & " write e.g. (1 ='> ...)", Expr);
9d0c3761 1670 end if;
f5afb270 1671
996ae0b0
RK
1672 return Failure;
1673 end if;
1674 end if;
1675
ca5af305
AC
1676 -- If it's "... => <>", nothing to resolve
1677
1678 if Nkind (Expr) = N_Component_Association then
1679 pragma Assert (Box_Present (Expr));
1680 return Success;
1681 end if;
1682
0ab80019 1683 -- Ada 2005 (AI-231): Propagate the type to the nested aggregate.
35b7fa6a
AC
1684 -- Required to check the null-exclusion attribute (if present).
1685 -- This value may be overridden later on.
1686
1687 Set_Etype (Expr, Etype (N));
1688
996ae0b0
RK
1689 Resolution_OK := Resolve_Array_Aggregate
1690 (Expr, Nxt_Ind, Nxt_Ind_Constr, Component_Typ, Others_Allowed);
1691
ca5af305 1692 else
ca5af305
AC
1693 -- If it's "... => <>", nothing to resolve
1694
1695 if Nkind (Expr) = N_Component_Association then
1696 pragma Assert (Box_Present (Expr));
1697 return Success;
1698 end if;
1699
1700 -- Do not resolve the expressions of discrete or others choices
1701 -- unless the expression covers a single component, or the
1702 -- expander is inactive.
1703
06b599fd
YM
1704 -- In SPARK mode, expressions that can perform side-effects will
1705 -- be recognized by the gnat2why back-end, and the whole
1706 -- subprogram will be ignored. So semantic analysis can be
1707 -- performed safely.
9f8d1e5c 1708
ca5af305 1709 if Single_Elmt
4460a9bc 1710 or else not Expander_Active
ca5af305
AC
1711 or else In_Spec_Expression
1712 then
1713 Analyze_And_Resolve (Expr, Component_Typ);
1714 Check_Expr_OK_In_Limited_Aggregate (Expr);
1715 Check_Non_Static_Context (Expr);
1716 Aggregate_Constraint_Checks (Expr, Component_Typ);
1717 Check_Unset_Reference (Expr);
1718 end if;
996ae0b0
RK
1719 end if;
1720
dec6faf1
AC
1721 -- If an aggregate component has a type with predicates, an explicit
1722 -- predicate check must be applied, as for an assignment statement,
1723 -- because the aggegate might not be expanded into individual
1724 -- component assignments.
1725
887d102a
AC
1726 if Present (Predicate_Function (Component_Typ)) then
1727 Apply_Predicate_Check (Expr, Component_Typ);
1728 end if;
1729
996ae0b0
RK
1730 if Raises_Constraint_Error (Expr)
1731 and then Nkind (Parent (Expr)) /= N_Component_Association
1732 then
1733 Set_Raises_Constraint_Error (N);
1734 end if;
1735
d79e621a
GD
1736 -- If the expression has been marked as requiring a range check,
1737 -- then generate it here.
1738
1739 if Do_Range_Check (Expr) then
1740 Set_Do_Range_Check (Expr, False);
1741 Generate_Range_Check (Expr, Component_Typ, CE_Range_Check_Failed);
1742 end if;
1743
996ae0b0
RK
1744 return Resolution_OK;
1745 end Resolve_Aggr_Expr;
1746
1747 -- Variables local to Resolve_Array_Aggregate
1748
882eadaf
RD
1749 Assoc : Node_Id;
1750 Choice : Node_Id;
1751 Expr : Node_Id;
996ae0b0 1752
f91e8020
GD
1753 Discard : Node_Id;
1754 pragma Warnings (Off, Discard);
996ae0b0 1755
2791be24
AC
1756 Delete_Choice : Boolean;
1757 -- Used when replacing a subtype choice with predicate by a list
1758
996ae0b0
RK
1759 Aggr_Low : Node_Id := Empty;
1760 Aggr_High : Node_Id := Empty;
c7ce71c2 1761 -- The actual low and high bounds of this sub-aggregate
996ae0b0
RK
1762
1763 Choices_Low : Node_Id := Empty;
1764 Choices_High : Node_Id := Empty;
1765 -- The lowest and highest discrete choices values for a named aggregate
1766
1767 Nb_Elements : Uint := Uint_0;
c7ce71c2 1768 -- The number of elements in a positional aggregate
996ae0b0
RK
1769
1770 Others_Present : Boolean := False;
1771
1772 Nb_Choices : Nat := 0;
1773 -- Contains the overall number of named choices in this sub-aggregate
1774
1775 Nb_Discrete_Choices : Nat := 0;
1776 -- The overall number of discrete choices (not counting others choice)
1777
1778 Case_Table_Size : Nat;
1779 -- Contains the size of the case table needed to sort aggregate choices
1780
1781 -- Start of processing for Resolve_Array_Aggregate
1782
1783 begin
6d2a1120
RD
1784 -- Ignore junk empty aggregate resulting from parser error
1785
1786 if No (Expressions (N))
1787 and then No (Component_Associations (N))
1788 and then not Null_Record_Present (N)
1789 then
1790 return False;
1791 end if;
1792
996ae0b0
RK
1793 -- STEP 1: make sure the aggregate is correctly formatted
1794
1795 if Present (Component_Associations (N)) then
1796 Assoc := First (Component_Associations (N));
1797 while Present (Assoc) loop
1798 Choice := First (Choices (Assoc));
2791be24
AC
1799 Delete_Choice := False;
1800
996ae0b0
RK
1801 while Present (Choice) loop
1802 if Nkind (Choice) = N_Others_Choice then
1803 Others_Present := True;
1804
1805 if Choice /= First (Choices (Assoc))
1806 or else Present (Next (Choice))
1807 then
ed2233dc 1808 Error_Msg_N
996ae0b0
RK
1809 ("OTHERS must appear alone in a choice list", Choice);
1810 return Failure;
1811 end if;
1812
1813 if Present (Next (Assoc)) then
ed2233dc 1814 Error_Msg_N
996ae0b0
RK
1815 ("OTHERS must appear last in an aggregate", Choice);
1816 return Failure;
1817 end if;
1818
0ab80019 1819 if Ada_Version = Ada_83
996ae0b0 1820 and then Assoc /= First (Component_Associations (N))
f53f9dd7
RD
1821 and then Nkind_In (Parent (N), N_Assignment_Statement,
1822 N_Object_Declaration)
996ae0b0
RK
1823 then
1824 Error_Msg_N
1825 ("(Ada 83) illegal context for OTHERS choice", N);
1826 end if;
2791be24
AC
1827
1828 elsif Is_Entity_Name (Choice) then
1829 Analyze (Choice);
1830
1831 declare
1832 E : constant Entity_Id := Entity (Choice);
1833 New_Cs : List_Id;
1834 P : Node_Id;
1835 C : Node_Id;
1836
1837 begin
1838 if Is_Type (E) and then Has_Predicates (E) then
1839 Freeze_Before (N, E);
1840
1841 -- If the subtype has a static predicate, replace the
1842 -- original choice with the list of individual values
1843 -- covered by the predicate.
1844
1845 if Present (Static_Predicate (E)) then
1846 Delete_Choice := True;
1847
1848 New_Cs := New_List;
1849 P := First (Static_Predicate (E));
1850 while Present (P) loop
1851 C := New_Copy (P);
1852 Set_Sloc (C, Sloc (Choice));
1853 Append_To (New_Cs, C);
1854 Next (P);
1855 end loop;
1856
1857 Insert_List_After (Choice, New_Cs);
1858 end if;
1859 end if;
1860 end;
996ae0b0
RK
1861 end if;
1862
1863 Nb_Choices := Nb_Choices + 1;
2791be24
AC
1864
1865 declare
1866 C : constant Node_Id := Choice;
1867
1868 begin
1869 Next (Choice);
1870
1871 if Delete_Choice then
1872 Remove (C);
1873 Nb_Choices := Nb_Choices - 1;
1874 Delete_Choice := False;
1875 end if;
1876 end;
996ae0b0
RK
1877 end loop;
1878
1879 Next (Assoc);
1880 end loop;
1881 end if;
1882
1883 -- At this point we know that the others choice, if present, is by
1884 -- itself and appears last in the aggregate. Check if we have mixed
1885 -- positional and discrete associations (other than the others choice).
1886
1887 if Present (Expressions (N))
1888 and then (Nb_Choices > 1
1889 or else (Nb_Choices = 1 and then not Others_Present))
1890 then
1891 Error_Msg_N
1892 ("named association cannot follow positional association",
1893 First (Choices (First (Component_Associations (N)))));
1894 return Failure;
1895 end if;
1896
1897 -- Test for the validity of an others choice if present
1898
1899 if Others_Present and then not Others_Allowed then
1900 Error_Msg_N
1901 ("OTHERS choice not allowed here",
1902 First (Choices (First (Component_Associations (N)))));
1903 return Failure;
1904 end if;
1905
07fc65c4
GB
1906 -- Protect against cascaded errors
1907
1908 if Etype (Index_Typ) = Any_Type then
1909 return Failure;
1910 end if;
1911
996ae0b0
RK
1912 -- STEP 2: Process named components
1913
1914 if No (Expressions (N)) then
996ae0b0
RK
1915 if Others_Present then
1916 Case_Table_Size := Nb_Choices - 1;
1917 else
1918 Case_Table_Size := Nb_Choices;
1919 end if;
1920
1921 Step_2 : declare
1922 Low : Node_Id;
1923 High : Node_Id;
1924 -- Denote the lowest and highest values in an aggregate choice
1925
996ae0b0
RK
1926 S_Low : Node_Id := Empty;
1927 S_High : Node_Id := Empty;
1928 -- if a choice in an aggregate is a subtype indication these
1929 -- denote the lowest and highest values of the subtype
1930
82893775
AC
1931 Table : Case_Table_Type (0 .. Case_Table_Size);
1932 -- Used to sort all the different choice values. Entry zero is
1933 -- reserved for sorting purposes.
996ae0b0
RK
1934
1935 Single_Choice : Boolean;
1936 -- Set to true every time there is a single discrete choice in a
1937 -- discrete association
1938
1939 Prev_Nb_Discrete_Choices : Nat;
b87971f3
AC
1940 -- Used to keep track of the number of discrete choices in the
1941 -- current association.
996ae0b0 1942
c0b11850
AC
1943 Errors_Posted_On_Choices : Boolean := False;
1944 -- Keeps track of whether any choices have semantic errors
1945
5a521b8a
AC
1946 function Empty_Range (A : Node_Id) return Boolean;
1947 -- If an association covers an empty range, some warnings on the
1948 -- expression of the association can be disabled.
1949
1950 -----------------
1951 -- Empty_Range --
1952 -----------------
1953
1954 function Empty_Range (A : Node_Id) return Boolean is
1955 R : constant Node_Id := First (Choices (A));
1956 begin
1957 return No (Next (R))
1958 and then Nkind (R) = N_Range
1959 and then Compile_Time_Compare
1960 (Low_Bound (R), High_Bound (R), False) = GT;
1961 end Empty_Range;
1962
1963 -- Start of processing for Step_2
1964
996ae0b0 1965 begin
ec53a6da 1966 -- STEP 2 (A): Check discrete choices validity
996ae0b0
RK
1967
1968 Assoc := First (Component_Associations (N));
1969 while Present (Assoc) loop
996ae0b0
RK
1970 Prev_Nb_Discrete_Choices := Nb_Discrete_Choices;
1971 Choice := First (Choices (Assoc));
1972 loop
1973 Analyze (Choice);
1974
1975 if Nkind (Choice) = N_Others_Choice then
1976 Single_Choice := False;
1977 exit;
1978
1979 -- Test for subtype mark without constraint
1980
1981 elsif Is_Entity_Name (Choice) and then
1982 Is_Type (Entity (Choice))
1983 then
1984 if Base_Type (Entity (Choice)) /= Index_Base then
1985 Error_Msg_N
1986 ("invalid subtype mark in aggregate choice",
1987 Choice);
1988 return Failure;
1989 end if;
1990
ca44152f
ES
1991 -- Case of subtype indication
1992
996ae0b0
RK
1993 elsif Nkind (Choice) = N_Subtype_Indication then
1994 Resolve_Discrete_Subtype_Indication (Choice, Index_Base);
1995
324ac540 1996 -- Does the subtype indication evaluation raise CE?
996ae0b0
RK
1997
1998 Get_Index_Bounds (Subtype_Mark (Choice), S_Low, S_High);
1999 Get_Index_Bounds (Choice, Low, High);
2000 Check_Bounds (S_Low, S_High, Low, High);
2001
ca44152f
ES
2002 -- Case of range or expression
2003
2004 else
996ae0b0 2005 Resolve (Choice, Index_Base);
fbf5a39b 2006 Check_Unset_Reference (Choice);
996ae0b0
RK
2007 Check_Non_Static_Context (Choice);
2008
c0b11850
AC
2009 -- If semantic errors were posted on the choice, then
2010 -- record that for possible early return from later
2011 -- processing (see handling of enumeration choices).
2012
2013 if Error_Posted (Choice) then
2014 Errors_Posted_On_Choices := True;
2015 end if;
2016
996ae0b0 2017 -- Do not range check a choice. This check is redundant
b87971f3
AC
2018 -- since this test is already done when we check that the
2019 -- bounds of the array aggregate are within range.
996ae0b0
RK
2020
2021 Set_Do_Range_Check (Choice, False);
9f90d123 2022
2ba431e5 2023 -- In SPARK, the choice must be static
9f90d123 2024
db72f10a
AC
2025 if not (Is_Static_Expression (Choice)
2026 or else (Nkind (Choice) = N_Range
2027 and then Is_Static_Range (Choice)))
2028 then
2ba431e5 2029 Check_SPARK_Restriction
fe5d3068 2030 ("choice should be static", Choice);
9f90d123 2031 end if;
996ae0b0
RK
2032 end if;
2033
2034 -- If we could not resolve the discrete choice stop here
2035
2036 if Etype (Choice) = Any_Type then
2037 return Failure;
2038
ec53a6da 2039 -- If the discrete choice raises CE get its original bounds
996ae0b0
RK
2040
2041 elsif Nkind (Choice) = N_Raise_Constraint_Error then
2042 Set_Raises_Constraint_Error (N);
2043 Get_Index_Bounds (Original_Node (Choice), Low, High);
2044
2045 -- Otherwise get its bounds as usual
2046
2047 else
2048 Get_Index_Bounds (Choice, Low, High);
2049 end if;
2050
2051 if (Dynamic_Or_Null_Range (Low, High)
2052 or else (Nkind (Choice) = N_Subtype_Indication
2053 and then
2054 Dynamic_Or_Null_Range (S_Low, S_High)))
2055 and then Nb_Choices /= 1
2056 then
2057 Error_Msg_N
2058 ("dynamic or empty choice in aggregate " &
2059 "must be the only choice", Choice);
2060 return Failure;
2061 end if;
2062
2063 Nb_Discrete_Choices := Nb_Discrete_Choices + 1;
82893775
AC
2064 Table (Nb_Discrete_Choices).Lo := Low;
2065 Table (Nb_Discrete_Choices).Hi := High;
2066 Table (Nb_Discrete_Choices).Choice := Choice;
996ae0b0
RK
2067
2068 Next (Choice);
2069
2070 if No (Choice) then
9b96e234 2071
996ae0b0
RK
2072 -- Check if we have a single discrete choice and whether
2073 -- this discrete choice specifies a single value.
2074
2075 Single_Choice :=
2076 (Nb_Discrete_Choices = Prev_Nb_Discrete_Choices + 1)
2077 and then (Low = High);
2078
2079 exit;
2080 end if;
2081 end loop;
2082
0ab80019 2083 -- Ada 2005 (AI-231)
2820d220 2084
0791fbe9 2085 if Ada_Version >= Ada_2005
8133b9d1 2086 and then Known_Null (Expression (Assoc))
5a521b8a 2087 and then not Empty_Range (Assoc)
ec53a6da 2088 then
82c80734
RD
2089 Check_Can_Never_Be_Null (Etype (N), Expression (Assoc));
2090 end if;
2820d220 2091
0ab80019 2092 -- Ada 2005 (AI-287): In case of default initialized component
b87971f3 2093 -- we delay the resolution to the expansion phase.
c45b6ae0
AC
2094
2095 if Box_Present (Assoc) then
2096
b87971f3
AC
2097 -- Ada 2005 (AI-287): In case of default initialization of a
2098 -- component the expander will generate calls to the
ca5af305
AC
2099 -- corresponding initialization subprogram. We need to call
2100 -- Resolve_Aggr_Expr to check the rules about
2101 -- dimensionality.
c45b6ae0 2102
882eadaf
RD
2103 if not Resolve_Aggr_Expr
2104 (Assoc, Single_Elmt => Single_Choice)
ca5af305
AC
2105 then
2106 return Failure;
2107 end if;
c45b6ae0 2108
882eadaf
RD
2109 elsif not Resolve_Aggr_Expr
2110 (Expression (Assoc), Single_Elmt => Single_Choice)
996ae0b0
RK
2111 then
2112 return Failure;
4755cce9
JM
2113
2114 -- Check incorrect use of dynamically tagged expression
2115
2116 -- We differentiate here two cases because the expression may
2117 -- not be decorated. For example, the analysis and resolution
b87971f3
AC
2118 -- of the expression associated with the others choice will be
2119 -- done later with the full aggregate. In such case we
4755cce9
JM
2120 -- duplicate the expression tree to analyze the copy and
2121 -- perform the required check.
2122
2123 elsif not Present (Etype (Expression (Assoc))) then
2124 declare
2125 Save_Analysis : constant Boolean := Full_Analysis;
2126 Expr : constant Node_Id :=
2127 New_Copy_Tree (Expression (Assoc));
2128
2129 begin
2130 Expander_Mode_Save_And_Set (False);
2131 Full_Analysis := False;
6ff6152d
ES
2132
2133 -- Analyze the expression, making sure it is properly
2134 -- attached to the tree before we do the analysis.
2135
2136 Set_Parent (Expr, Parent (Expression (Assoc)));
4755cce9 2137 Analyze (Expr);
094cefda
AC
2138
2139 -- If the expression is a literal, propagate this info
2140 -- to the expression in the association, to enable some
2141 -- optimizations downstream.
2142
2143 if Is_Entity_Name (Expr)
2144 and then Present (Entity (Expr))
2145 and then Ekind (Entity (Expr)) = E_Enumeration_Literal
2146 then
2147 Analyze_And_Resolve
2148 (Expression (Assoc), Component_Typ);
2149 end if;
2150
4755cce9
JM
2151 Full_Analysis := Save_Analysis;
2152 Expander_Mode_Restore;
2153
2154 if Is_Tagged_Type (Etype (Expr)) then
2155 Check_Dynamically_Tagged_Expression
2156 (Expr => Expr,
2157 Typ => Component_Type (Etype (N)),
2158 Related_Nod => N);
2159 end if;
2160 end;
2161
2162 elsif Is_Tagged_Type (Etype (Expression (Assoc))) then
2163 Check_Dynamically_Tagged_Expression
1c612f29
RD
2164 (Expr => Expression (Assoc),
2165 Typ => Component_Type (Etype (N)),
4755cce9 2166 Related_Nod => N);
996ae0b0
RK
2167 end if;
2168
2169 Next (Assoc);
2170 end loop;
2171
2172 -- If aggregate contains more than one choice then these must be
882eadaf
RD
2173 -- static. Check for duplicate and missing values.
2174
2175 -- Note: there is duplicated code here wrt Check_Choice_Set in
2176 -- the body of Sem_Case, and it is possible we could just reuse
2177 -- that procedure. To be checked ???
996ae0b0
RK
2178
2179 if Nb_Discrete_Choices > 1 then
882eadaf
RD
2180 Check_Choices : declare
2181 Choice : Node_Id;
2182 -- Location of choice for messages
996ae0b0 2183
882eadaf
RD
2184 Hi_Val : Uint;
2185 Lo_Val : Uint;
2186 -- High end of one range and Low end of the next. Should be
2187 -- contiguous if there is no hole in the list of values.
996ae0b0 2188
82893775
AC
2189 Lo_Dup : Uint;
2190 Hi_Dup : Uint;
2191 -- End points of duplicated range
2192
882eadaf
RD
2193 Missing_Or_Duplicates : Boolean := False;
2194 -- Set True if missing or duplicate choices found
996ae0b0 2195
882eadaf
RD
2196 procedure Output_Bad_Choices (Lo, Hi : Uint; C : Node_Id);
2197 -- Output continuation message with a representation of the
2198 -- bounds (just Lo if Lo = Hi, else Lo .. Hi). C is the
2199 -- choice node where the message is to be posted.
996ae0b0 2200
882eadaf
RD
2201 ------------------------
2202 -- Output_Bad_Choices --
2203 ------------------------
996ae0b0 2204
882eadaf
RD
2205 procedure Output_Bad_Choices (Lo, Hi : Uint; C : Node_Id) is
2206 begin
2207 -- Enumeration type case
996ae0b0 2208
882eadaf
RD
2209 if Is_Enumeration_Type (Index_Typ) then
2210 Error_Msg_Name_1 :=
2211 Chars (Get_Enum_Lit_From_Pos (Index_Typ, Lo, Loc));
2212 Error_Msg_Name_2 :=
2213 Chars (Get_Enum_Lit_From_Pos (Index_Typ, Hi, Loc));
2214
2215 if Lo = Hi then
2216 Error_Msg_N ("\\ %!", C);
2217 else
2218 Error_Msg_N ("\\ % .. %!", C);
996ae0b0
RK
2219 end if;
2220
882eadaf 2221 -- Integer types case
996ae0b0 2222
882eadaf
RD
2223 else
2224 Error_Msg_Uint_1 := Lo;
2225 Error_Msg_Uint_2 := Hi;
996ae0b0 2226
882eadaf
RD
2227 if Lo = Hi then
2228 Error_Msg_N ("\\ ^!", C);
2229 else
2230 Error_Msg_N ("\\ ^ .. ^!", C);
2231 end if;
2232 end if;
2233 end Output_Bad_Choices;
996ae0b0 2234
882eadaf 2235 -- Start of processing for Check_Choices
996ae0b0 2236
882eadaf
RD
2237 begin
2238 Sort_Case_Table (Table);
996ae0b0 2239
82893775
AC
2240 -- First we do a quick linear loop to find out if we have
2241 -- any duplicates or missing entries (usually we have a
2242 -- legal aggregate, so this will get us out quickly).
996ae0b0 2243
882eadaf 2244 for J in 1 .. Nb_Discrete_Choices - 1 loop
82893775
AC
2245 Hi_Val := Expr_Value (Table (J).Hi);
2246 Lo_Val := Expr_Value (Table (J + 1).Lo);
882eadaf 2247
82893775
AC
2248 if Lo_Val <= Hi_Val
2249 or else (Lo_Val > Hi_Val + 1
2250 and then not Others_Present)
2251 then
882eadaf 2252 Missing_Or_Duplicates := True;
82893775 2253 exit;
882eadaf
RD
2254 end if;
2255 end loop;
996ae0b0 2256
82893775
AC
2257 -- If we have missing or duplicate entries, first fill in
2258 -- the Highest entries to make life easier in the following
2259 -- loops to detect bad entries.
882eadaf 2260
82893775
AC
2261 if Missing_Or_Duplicates then
2262 Table (1).Highest := Expr_Value (Table (1).Hi);
882eadaf 2263
82893775
AC
2264 for J in 2 .. Nb_Discrete_Choices loop
2265 Table (J).Highest :=
2266 UI_Max
2267 (Table (J - 1).Highest, Expr_Value (Table (J).Hi));
2268 end loop;
882eadaf 2269
82893775
AC
2270 -- Loop through table entries to find duplicate indexes
2271
2272 for J in 2 .. Nb_Discrete_Choices loop
2273 Lo_Val := Expr_Value (Table (J).Lo);
2274 Hi_Val := Expr_Value (Table (J).Hi);
2275
2276 -- Case where we have duplicates (the lower bound of
2277 -- this choice is less than or equal to the highest
2278 -- high bound found so far).
2279
2280 if Lo_Val <= Table (J - 1).Highest then
2281
2282 -- We move backwards looking for duplicates. We can
2283 -- abandon this loop as soon as we reach a choice
2284 -- highest value that is less than Lo_Val.
2285
2286 for K in reverse 1 .. J - 1 loop
2287 exit when Table (K).Highest < Lo_Val;
2288
2289 -- Here we may have duplicates between entries
2290 -- for K and J. Get range of duplicates.
2291
2292 Lo_Dup :=
2293 UI_Max (Lo_Val, Expr_Value (Table (K).Lo));
2294 Hi_Dup :=
2295 UI_Min (Hi_Val, Expr_Value (Table (K).Hi));
2296
2297 -- Nothing to do if duplicate range is null
882eadaf 2298
82893775
AC
2299 if Lo_Dup > Hi_Dup then
2300 null;
2301
2302 -- Otherwise place proper message
2303
2304 else
2305 -- We place message on later choice, with a
2306 -- line reference to the earlier choice.
2307
2308 if Sloc (Table (J).Choice) <
2309 Sloc (Table (K).Choice)
2310 then
2311 Choice := Table (K).Choice;
2312 Error_Msg_Sloc := Sloc (Table (J).Choice);
2313 else
2314 Choice := Table (J).Choice;
2315 Error_Msg_Sloc := Sloc (Table (K).Choice);
2316 end if;
2317
2318 if Lo_Dup = Hi_Dup then
2319 Error_Msg_N
2320 ("index value in array aggregate "
2321 & "duplicates the one given#!", Choice);
2322 else
2323 Error_Msg_N
2324 ("index values in array aggregate "
2325 & "duplicate those given#!", Choice);
2326 end if;
2327
2328 Output_Bad_Choices (Lo_Dup, Hi_Dup, Choice);
2329 end if;
2330 end loop;
996ae0b0 2331 end if;
882eadaf 2332 end loop;
996ae0b0 2333
82893775
AC
2334 -- Loop through entries in table to find missing indexes.
2335 -- Not needed if others, since missing impossible.
2336
2337 if not Others_Present then
2338 for J in 2 .. Nb_Discrete_Choices loop
2339 Lo_Val := Expr_Value (Table (J).Lo);
2340 Hi_Val := Table (J - 1).Highest;
2341
2342 if Lo_Val > Hi_Val + 1 then
2343 Choice := Table (J).Lo;
2344
2345 if Hi_Val + 1 = Lo_Val - 1 then
2346 Error_Msg_N
2347 ("missing index value in array aggregate!",
2348 Choice);
2349 else
2350 Error_Msg_N
2351 ("missing index values in array aggregate!",
2352 Choice);
2353 end if;
2354
2355 Output_Bad_Choices
2356 (Hi_Val + 1, Lo_Val - 1, Choice);
2357 end if;
2358 end loop;
2359 end if;
2360
2361 -- If either missing or duplicate values, return failure
882eadaf 2362
882eadaf
RD
2363 Set_Etype (N, Any_Composite);
2364 return Failure;
2365 end if;
2366 end Check_Choices;
996ae0b0
RK
2367 end if;
2368
2369 -- STEP 2 (B): Compute aggregate bounds and min/max choices values
2370
2371 if Nb_Discrete_Choices > 0 then
82893775
AC
2372 Choices_Low := Table (1).Lo;
2373 Choices_High := Table (Nb_Discrete_Choices).Hi;
996ae0b0
RK
2374 end if;
2375
ca44152f
ES
2376 -- If Others is present, then bounds of aggregate come from the
2377 -- index constraint (not the choices in the aggregate itself).
2378
996ae0b0
RK
2379 if Others_Present then
2380 Get_Index_Bounds (Index_Constr, Aggr_Low, Aggr_High);
2381
ca44152f
ES
2382 -- No others clause present
2383
996ae0b0 2384 else
ca44152f
ES
2385 -- Special processing if others allowed and not present. This
2386 -- means that the bounds of the aggregate come from the index
2387 -- constraint (and the length must match).
2388
2389 if Others_Allowed then
2390 Get_Index_Bounds (Index_Constr, Aggr_Low, Aggr_High);
2391
2392 -- If others allowed, and no others present, then the array
2393 -- should cover all index values. If it does not, we will
2394 -- get a length check warning, but there is two cases where
2395 -- an additional warning is useful:
2396
2397 -- If we have no positional components, and the length is
2398 -- wrong (which we can tell by others being allowed with
2399 -- missing components), and the index type is an enumeration
2400 -- type, then issue appropriate warnings about these missing
2401 -- components. They are only warnings, since the aggregate
2402 -- is fine, it's just the wrong length. We skip this check
2403 -- for standard character types (since there are no literals
2404 -- and it is too much trouble to concoct them), and also if
2405 -- any of the bounds have not-known-at-compile-time values.
2406
2407 -- Another case warranting a warning is when the length is
2408 -- right, but as above we have an index type that is an
2409 -- enumeration, and the bounds do not match. This is a
2410 -- case where dubious sliding is allowed and we generate
2411 -- a warning that the bounds do not match.
2412
2413 if No (Expressions (N))
2414 and then Nkind (Index) = N_Range
2415 and then Is_Enumeration_Type (Etype (Index))
2416 and then not Is_Standard_Character_Type (Etype (Index))
2417 and then Compile_Time_Known_Value (Aggr_Low)
2418 and then Compile_Time_Known_Value (Aggr_High)
2419 and then Compile_Time_Known_Value (Choices_Low)
2420 and then Compile_Time_Known_Value (Choices_High)
2421 then
c0b11850
AC
2422 -- If any of the expressions or range bounds in choices
2423 -- have semantic errors, then do not attempt further
2424 -- resolution, to prevent cascaded errors.
d610088d 2425
c0b11850
AC
2426 if Errors_Posted_On_Choices then
2427 return Failure;
d610088d
AC
2428 end if;
2429
ca44152f
ES
2430 declare
2431 ALo : constant Node_Id := Expr_Value_E (Aggr_Low);
2432 AHi : constant Node_Id := Expr_Value_E (Aggr_High);
2433 CLo : constant Node_Id := Expr_Value_E (Choices_Low);
2434 CHi : constant Node_Id := Expr_Value_E (Choices_High);
2435
2436 Ent : Entity_Id;
2437
2438 begin
ebd34478 2439 -- Warning case 1, missing values at start/end. Only
ca44152f
ES
2440 -- do the check if the number of entries is too small.
2441
2442 if (Enumeration_Pos (CHi) - Enumeration_Pos (CLo))
2443 <
2444 (Enumeration_Pos (AHi) - Enumeration_Pos (ALo))
2445 then
2446 Error_Msg_N
324ac540
AC
2447 ("missing index value(s) in array aggregate??",
2448 N);
ca44152f
ES
2449
2450 -- Output missing value(s) at start
2451
2452 if Chars (ALo) /= Chars (CLo) then
2453 Ent := Prev (CLo);
2454
2455 if Chars (ALo) = Chars (Ent) then
2456 Error_Msg_Name_1 := Chars (ALo);
324ac540 2457 Error_Msg_N ("\ %??", N);
ca44152f
ES
2458 else
2459 Error_Msg_Name_1 := Chars (ALo);
2460 Error_Msg_Name_2 := Chars (Ent);
324ac540 2461 Error_Msg_N ("\ % .. %??", N);
ca44152f
ES
2462 end if;
2463 end if;
2464
2465 -- Output missing value(s) at end
2466
2467 if Chars (AHi) /= Chars (CHi) then
2468 Ent := Next (CHi);
2469
2470 if Chars (AHi) = Chars (Ent) then
2471 Error_Msg_Name_1 := Chars (Ent);
324ac540 2472 Error_Msg_N ("\ %??", N);
ca44152f
ES
2473 else
2474 Error_Msg_Name_1 := Chars (Ent);
2475 Error_Msg_Name_2 := Chars (AHi);
324ac540 2476 Error_Msg_N ("\ % .. %??", N);
ca44152f
ES
2477 end if;
2478 end if;
2479
2480 -- Warning case 2, dubious sliding. The First_Subtype
2481 -- test distinguishes between a constrained type where
2482 -- sliding is not allowed (so we will get a warning
2483 -- later that Constraint_Error will be raised), and
2484 -- the unconstrained case where sliding is permitted.
2485
2486 elsif (Enumeration_Pos (CHi) - Enumeration_Pos (CLo))
2487 =
2488 (Enumeration_Pos (AHi) - Enumeration_Pos (ALo))
2489 and then Chars (ALo) /= Chars (CLo)
2490 and then
2491 not Is_Constrained (First_Subtype (Etype (N)))
2492 then
2493 Error_Msg_N
324ac540 2494 ("bounds of aggregate do not match target??", N);
ca44152f
ES
2495 end if;
2496 end;
2497 end if;
2498 end if;
2499
f3d0f304 2500 -- If no others, aggregate bounds come from aggregate
ca44152f 2501
996ae0b0
RK
2502 Aggr_Low := Choices_Low;
2503 Aggr_High := Choices_High;
2504 end if;
2505 end Step_2;
2506
2507 -- STEP 3: Process positional components
2508
2509 else
2510 -- STEP 3 (A): Process positional elements
2511
2512 Expr := First (Expressions (N));
2513 Nb_Elements := Uint_0;
2514 while Present (Expr) loop
2515 Nb_Elements := Nb_Elements + 1;
2516
82c80734
RD
2517 -- Ada 2005 (AI-231)
2518
0791fbe9 2519 if Ada_Version >= Ada_2005
8133b9d1 2520 and then Known_Null (Expr)
ec53a6da 2521 then
82c80734
RD
2522 Check_Can_Never_Be_Null (Etype (N), Expr);
2523 end if;
2820d220 2524
996ae0b0
RK
2525 if not Resolve_Aggr_Expr (Expr, Single_Elmt => True) then
2526 return Failure;
2527 end if;
2528
4755cce9
JM
2529 -- Check incorrect use of dynamically tagged expression
2530
2531 if Is_Tagged_Type (Etype (Expr)) then
2532 Check_Dynamically_Tagged_Expression
2533 (Expr => Expr,
2534 Typ => Component_Type (Etype (N)),
2535 Related_Nod => N);
2536 end if;
2537
996ae0b0
RK
2538 Next (Expr);
2539 end loop;
2540
2541 if Others_Present then
2542 Assoc := Last (Component_Associations (N));
c45b6ae0 2543
82c80734
RD
2544 -- Ada 2005 (AI-231)
2545
0791fbe9 2546 if Ada_Version >= Ada_2005
8133b9d1 2547 and then Known_Null (Assoc)
ec53a6da 2548 then
9b96e234 2549 Check_Can_Never_Be_Null (Etype (N), Expression (Assoc));
82c80734 2550 end if;
2820d220 2551
ebd34478 2552 -- Ada 2005 (AI-287): In case of default initialized component,
c45b6ae0
AC
2553 -- we delay the resolution to the expansion phase.
2554
2555 if Box_Present (Assoc) then
2556
ebd34478
AC
2557 -- Ada 2005 (AI-287): In case of default initialization of a
2558 -- component the expander will generate calls to the
ca5af305
AC
2559 -- corresponding initialization subprogram. We need to call
2560 -- Resolve_Aggr_Expr to check the rules about
2561 -- dimensionality.
c45b6ae0 2562
ca5af305
AC
2563 if not Resolve_Aggr_Expr (Assoc, Single_Elmt => False) then
2564 return Failure;
2565 end if;
c45b6ae0
AC
2566
2567 elsif not Resolve_Aggr_Expr (Expression (Assoc),
2568 Single_Elmt => False)
996ae0b0
RK
2569 then
2570 return Failure;
4755cce9
JM
2571
2572 -- Check incorrect use of dynamically tagged expression. The
2573 -- expression of the others choice has not been resolved yet.
2574 -- In order to diagnose the semantic error we create a duplicate
2575 -- tree to analyze it and perform the check.
2576
2577 else
2578 declare
2579 Save_Analysis : constant Boolean := Full_Analysis;
2580 Expr : constant Node_Id :=
2581 New_Copy_Tree (Expression (Assoc));
2582
2583 begin
2584 Expander_Mode_Save_And_Set (False);
2585 Full_Analysis := False;
2586 Analyze (Expr);
2587 Full_Analysis := Save_Analysis;
2588 Expander_Mode_Restore;
2589
2590 if Is_Tagged_Type (Etype (Expr)) then
2591 Check_Dynamically_Tagged_Expression
2592 (Expr => Expr,
2593 Typ => Component_Type (Etype (N)),
2594 Related_Nod => N);
2595 end if;
2596 end;
996ae0b0
RK
2597 end if;
2598 end if;
2599
2600 -- STEP 3 (B): Compute the aggregate bounds
2601
2602 if Others_Present then
2603 Get_Index_Bounds (Index_Constr, Aggr_Low, Aggr_High);
2604
2605 else
2606 if Others_Allowed then
f91e8020 2607 Get_Index_Bounds (Index_Constr, Aggr_Low, Discard);
996ae0b0
RK
2608 else
2609 Aggr_Low := Index_Typ_Low;
2610 end if;
2611
2612 Aggr_High := Add (Nb_Elements - 1, To => Aggr_Low);
2613 Check_Bound (Index_Base_High, Aggr_High);
2614 end if;
2615 end if;
2616
2617 -- STEP 4: Perform static aggregate checks and save the bounds
2618
2619 -- Check (A)
2620
2621 Check_Bounds (Index_Typ_Low, Index_Typ_High, Aggr_Low, Aggr_High);
2622 Check_Bounds (Index_Base_Low, Index_Base_High, Aggr_Low, Aggr_High);
2623
2624 -- Check (B)
2625
2626 if Others_Present and then Nb_Discrete_Choices > 0 then
2627 Check_Bounds (Aggr_Low, Aggr_High, Choices_Low, Choices_High);
2628 Check_Bounds (Index_Typ_Low, Index_Typ_High,
2629 Choices_Low, Choices_High);
2630 Check_Bounds (Index_Base_Low, Index_Base_High,
2631 Choices_Low, Choices_High);
2632
2633 -- Check (C)
2634
2635 elsif Others_Present and then Nb_Elements > 0 then
2636 Check_Length (Aggr_Low, Aggr_High, Nb_Elements);
2637 Check_Length (Index_Typ_Low, Index_Typ_High, Nb_Elements);
2638 Check_Length (Index_Base_Low, Index_Base_High, Nb_Elements);
996ae0b0
RK
2639 end if;
2640
2641 if Raises_Constraint_Error (Aggr_Low)
2642 or else Raises_Constraint_Error (Aggr_High)
2643 then
2644 Set_Raises_Constraint_Error (N);
2645 end if;
2646
2647 Aggr_Low := Duplicate_Subexpr (Aggr_Low);
2648
2649 -- Do not duplicate Aggr_High if Aggr_High = Aggr_Low + Nb_Elements
2650 -- since the addition node returned by Add is not yet analyzed. Attach
ebd34478 2651 -- to tree and analyze first. Reset analyzed flag to ensure it will get
9b96e234 2652 -- analyzed when it is a literal bound whose type must be properly set.
996ae0b0
RK
2653
2654 if Others_Present or else Nb_Discrete_Choices > 0 then
2655 Aggr_High := Duplicate_Subexpr (Aggr_High);
2656
2657 if Etype (Aggr_High) = Universal_Integer then
2658 Set_Analyzed (Aggr_High, False);
2659 end if;
2660 end if;
2661
3d923671
AC
2662 -- If the aggregate already has bounds attached to it, it means this is
2663 -- a positional aggregate created as an optimization by
2664 -- Exp_Aggr.Convert_To_Positional, so we don't want to change those
2665 -- bounds.
2666
2667 if Present (Aggregate_Bounds (N)) and then not Others_Allowed then
ebd34478 2668 Aggr_Low := Low_Bound (Aggregate_Bounds (N));
3d923671
AC
2669 Aggr_High := High_Bound (Aggregate_Bounds (N));
2670 end if;
2671
996ae0b0
RK
2672 Set_Aggregate_Bounds
2673 (N, Make_Range (Loc, Low_Bound => Aggr_Low, High_Bound => Aggr_High));
2674
2675 -- The bounds may contain expressions that must be inserted upwards.
2676 -- Attach them fully to the tree. After analysis, remove side effects
2677 -- from upper bound, if still needed.
2678
2679 Set_Parent (Aggregate_Bounds (N), N);
2680 Analyze_And_Resolve (Aggregate_Bounds (N), Index_Typ);
fbf5a39b 2681 Check_Unset_Reference (Aggregate_Bounds (N));
996ae0b0
RK
2682
2683 if not Others_Present and then Nb_Discrete_Choices = 0 then
82893775
AC
2684 Set_High_Bound
2685 (Aggregate_Bounds (N),
2686 Duplicate_Subexpr (High_Bound (Aggregate_Bounds (N))));
996ae0b0
RK
2687 end if;
2688
d976bf74 2689 -- Check the dimensions of each component in the array aggregate
0929eaeb
AC
2690
2691 Analyze_Dimension_Array_Aggregate (N, Component_Typ);
2692
996ae0b0
RK
2693 return Success;
2694 end Resolve_Array_Aggregate;
2695
2696 ---------------------------------
2697 -- Resolve_Extension_Aggregate --
2698 ---------------------------------
2699
2700 -- There are two cases to consider:
2701
ebd34478
AC
2702 -- a) If the ancestor part is a type mark, the components needed are the
2703 -- difference between the components of the expected type and the
996ae0b0
RK
2704 -- components of the given type mark.
2705
ebd34478 2706 -- b) If the ancestor part is an expression, it must be unambiguous, and
12f0c50c 2707 -- once we have its type we can also compute the needed components as in
ebd34478
AC
2708 -- the previous case. In both cases, if the ancestor type is not the
2709 -- immediate ancestor, we have to build this ancestor recursively.
996ae0b0 2710
12f0c50c 2711 -- In both cases, discriminants of the ancestor type do not play a role in
ebd34478
AC
2712 -- the resolution of the needed components, because inherited discriminants
2713 -- cannot be used in a type extension. As a result we can compute
2714 -- independently the list of components of the ancestor type and of the
2715 -- expected type.
996ae0b0
RK
2716
2717 procedure Resolve_Extension_Aggregate (N : Node_Id; Typ : Entity_Id) is
fbf5a39b
AC
2718 A : constant Node_Id := Ancestor_Part (N);
2719 A_Type : Entity_Id;
2720 I : Interp_Index;
2721 It : Interp;
996ae0b0 2722
ca44152f
ES
2723 function Valid_Limited_Ancestor (Anc : Node_Id) return Boolean;
2724 -- If the type is limited, verify that the ancestor part is a legal
ebd34478
AC
2725 -- expression (aggregate or function call, including 'Input)) that does
2726 -- not require a copy, as specified in 7.5(2).
ca44152f 2727
996ae0b0
RK
2728 function Valid_Ancestor_Type return Boolean;
2729 -- Verify that the type of the ancestor part is a non-private ancestor
1543e3ab 2730 -- of the expected type, which must be a type extension.
996ae0b0 2731
ca44152f
ES
2732 ----------------------------
2733 -- Valid_Limited_Ancestor --
2734 ----------------------------
2735
2736 function Valid_Limited_Ancestor (Anc : Node_Id) return Boolean is
2737 begin
2738 if Is_Entity_Name (Anc)
2739 and then Is_Type (Entity (Anc))
2740 then
2741 return True;
2742
2743 elsif Nkind_In (Anc, N_Aggregate, N_Function_Call) then
2744 return True;
2745
2746 elsif Nkind (Anc) = N_Attribute_Reference
2747 and then Attribute_Name (Anc) = Name_Input
2748 then
2749 return True;
2750
ebd34478 2751 elsif Nkind (Anc) = N_Qualified_Expression then
ca44152f
ES
2752 return Valid_Limited_Ancestor (Expression (Anc));
2753
2754 else
2755 return False;
2756 end if;
2757 end Valid_Limited_Ancestor;
2758
fbf5a39b
AC
2759 -------------------------
2760 -- Valid_Ancestor_Type --
2761 -------------------------
2762
996ae0b0
RK
2763 function Valid_Ancestor_Type return Boolean is
2764 Imm_Type : Entity_Id;
2765
2766 begin
2767 Imm_Type := Base_Type (Typ);
2af92e28
ES
2768 while Is_Derived_Type (Imm_Type) loop
2769 if Etype (Imm_Type) = Base_Type (A_Type) then
2770 return True;
2771
2772 -- The base type of the parent type may appear as a private
ebd34478
AC
2773 -- extension if it is declared as such in a parent unit of the
2774 -- current one. For consistency of the subsequent analysis use
2775 -- the partial view for the ancestor part.
2af92e28
ES
2776
2777 elsif Is_Private_Type (Etype (Imm_Type))
2778 and then Present (Full_View (Etype (Imm_Type)))
2779 and then Base_Type (A_Type) = Full_View (Etype (Imm_Type))
2780 then
2781 A_Type := Etype (Imm_Type);
2782 return True;
4519314c
AC
2783
2784 -- The parent type may be a private extension. The aggregate is
2785 -- legal if the type of the aggregate is an extension of it that
2786 -- is not a private extension.
2787
2788 elsif Is_Private_Type (A_Type)
2789 and then not Is_Private_Type (Imm_Type)
2790 and then Present (Full_View (A_Type))
2791 and then Base_Type (Full_View (A_Type)) = Etype (Imm_Type)
2792 then
2793 return True;
2794
2af92e28
ES
2795 else
2796 Imm_Type := Etype (Base_Type (Imm_Type));
2797 end if;
996ae0b0
RK
2798 end loop;
2799
6d2a1120 2800 -- If previous loop did not find a proper ancestor, report error
2af92e28
ES
2801
2802 Error_Msg_NE ("expect ancestor type of &", A, Typ);
2803 return False;
996ae0b0
RK
2804 end Valid_Ancestor_Type;
2805
2806 -- Start of processing for Resolve_Extension_Aggregate
2807
2808 begin
ebd34478
AC
2809 -- Analyze the ancestor part and account for the case where it is a
2810 -- parameterless function call.
70b70ce8 2811
996ae0b0 2812 Analyze (A);
70b70ce8 2813 Check_Parameterless_Call (A);
996ae0b0 2814
2ba431e5 2815 -- In SPARK, the ancestor part cannot be a type mark
9f90d123 2816
fe5d3068 2817 if Is_Entity_Name (A)
9f90d123
AC
2818 and then Is_Type (Entity (A))
2819 then
2ba431e5 2820 Check_SPARK_Restriction ("ancestor part cannot be a type mark", A);
87729e5a
AC
2821
2822 -- AI05-0115: if the ancestor part is a subtype mark, the ancestor
2823 -- must not have unknown discriminants.
2824
2825 if Has_Unknown_Discriminants (Root_Type (Typ)) then
2826 Error_Msg_NE
2827 ("aggregate not available for type& whose ancestor "
2828 & "has unknown discriminants", N, Typ);
2829 end if;
9f90d123
AC
2830 end if;
2831
996ae0b0
RK
2832 if not Is_Tagged_Type (Typ) then
2833 Error_Msg_N ("type of extension aggregate must be tagged", N);
2834 return;
2835
19f0526a
AC
2836 elsif Is_Limited_Type (Typ) then
2837
0ab80019 2838 -- Ada 2005 (AI-287): Limited aggregates are allowed
19f0526a 2839
0791fbe9 2840 if Ada_Version < Ada_2005 then
19f0526a
AC
2841 Error_Msg_N ("aggregate type cannot be limited", N);
2842 Explain_Limited_Type (Typ, N);
2843 return;
ca44152f
ES
2844
2845 elsif Valid_Limited_Ancestor (A) then
2846 null;
2847
2848 else
2849 Error_Msg_N
2850 ("limited ancestor part must be aggregate or function call", A);
19f0526a 2851 end if;
996ae0b0
RK
2852
2853 elsif Is_Class_Wide_Type (Typ) then
2854 Error_Msg_N ("aggregate cannot be of a class-wide type", N);
2855 return;
2856 end if;
2857
2858 if Is_Entity_Name (A)
2859 and then Is_Type (Entity (A))
2860 then
fbf5a39b 2861 A_Type := Get_Full_View (Entity (A));
996ae0b0
RK
2862
2863 if Valid_Ancestor_Type then
2864 Set_Entity (A, A_Type);
2865 Set_Etype (A, A_Type);
2866
2867 Validate_Ancestor_Part (N);
2868 Resolve_Record_Aggregate (N, Typ);
2869 end if;
2870
2871 elsif Nkind (A) /= N_Aggregate then
2872 if Is_Overloaded (A) then
2873 A_Type := Any_Type;
996ae0b0 2874
7f9747c6 2875 Get_First_Interp (A, I, It);
996ae0b0 2876 while Present (It.Typ) loop
70b70ce8
AC
2877 -- Only consider limited interpretations in the Ada 2005 case
2878
996ae0b0 2879 if Is_Tagged_Type (It.Typ)
0791fbe9 2880 and then (Ada_Version >= Ada_2005
70b70ce8 2881 or else not Is_Limited_Type (It.Typ))
996ae0b0
RK
2882 then
2883 if A_Type /= Any_Type then
2884 Error_Msg_N ("cannot resolve expression", A);
2885 return;
2886 else
2887 A_Type := It.Typ;
2888 end if;
2889 end if;
2890
2891 Get_Next_Interp (I, It);
2892 end loop;
2893
2894 if A_Type = Any_Type then
0791fbe9 2895 if Ada_Version >= Ada_2005 then
70b70ce8
AC
2896 Error_Msg_N ("ancestor part must be of a tagged type", A);
2897 else
2898 Error_Msg_N
2899 ("ancestor part must be of a nonlimited tagged type", A);
2900 end if;
2901
996ae0b0
RK
2902 return;
2903 end if;
2904
2905 else
2906 A_Type := Etype (A);
2907 end if;
2908
2909 if Valid_Ancestor_Type then
2910 Resolve (A, A_Type);
fbf5a39b 2911 Check_Unset_Reference (A);
996ae0b0 2912 Check_Non_Static_Context (A);
fbf5a39b 2913
1646c947
GD
2914 -- The aggregate is illegal if the ancestor expression is a call
2915 -- to a function with a limited unconstrained result, unless the
2916 -- type of the aggregate is a null extension. This restriction
2917 -- was added in AI05-67 to simplify implementation.
2918
2919 if Nkind (A) = N_Function_Call
2920 and then Is_Limited_Type (A_Type)
2921 and then not Is_Null_Extension (Typ)
2922 and then not Is_Constrained (A_Type)
2923 then
2924 Error_Msg_N
2925 ("type of limited ancestor part must be constrained", A);
2926
cefce34c
JM
2927 -- Reject the use of CPP constructors that leave objects partially
2928 -- initialized. For example:
2929
2930 -- type CPP_Root is tagged limited record ...
2931 -- pragma Import (CPP, CPP_Root);
2932
2933 -- type CPP_DT is new CPP_Root and Iface ...
2934 -- pragma Import (CPP, CPP_DT);
2935
2936 -- type Ada_DT is new CPP_DT with ...
2937
2938 -- Obj : Ada_DT := Ada_DT'(New_CPP_Root with others => <>);
2939
2940 -- Using the constructor of CPP_Root the slots of the dispatch
2941 -- table of CPP_DT cannot be set, and the secondary tag of
2942 -- CPP_DT is unknown.
2943
2944 elsif Nkind (A) = N_Function_Call
2945 and then Is_CPP_Constructor_Call (A)
2946 and then Enclosing_CPP_Parent (Typ) /= A_Type
2947 then
2948 Error_Msg_NE
324ac540 2949 ("??must use 'C'P'P constructor for type &", A,
cefce34c
JM
2950 Enclosing_CPP_Parent (Typ));
2951
2952 -- The following call is not needed if the previous warning
2953 -- is promoted to an error.
2954
2955 Resolve_Record_Aggregate (N, Typ);
2956
1646c947 2957 elsif Is_Class_Wide_Type (Etype (A))
fbf5a39b
AC
2958 and then Nkind (Original_Node (A)) = N_Function_Call
2959 then
2960 -- If the ancestor part is a dispatching call, it appears
ebd34478
AC
2961 -- statically to be a legal ancestor, but it yields any member
2962 -- of the class, and it is not possible to determine whether
2963 -- it is an ancestor of the extension aggregate (much less
2964 -- which ancestor). It is not possible to determine the
2965 -- components of the extension part.
fbf5a39b 2966
ebd34478
AC
2967 -- This check implements AI-306, which in fact was motivated by
2968 -- an AdaCore query to the ARG after this test was added.
82c80734 2969
fbf5a39b
AC
2970 Error_Msg_N ("ancestor part must be statically tagged", A);
2971 else
2972 Resolve_Record_Aggregate (N, Typ);
2973 end if;
996ae0b0
RK
2974 end if;
2975
2976 else
88b32fc3 2977 Error_Msg_N ("no unique type for this aggregate", A);
996ae0b0 2978 end if;
d3820795
JM
2979
2980 Check_Function_Writable_Actuals (N);
996ae0b0
RK
2981 end Resolve_Extension_Aggregate;
2982
2983 ------------------------------
2984 -- Resolve_Record_Aggregate --
2985 ------------------------------
2986
2987 procedure Resolve_Record_Aggregate (N : Node_Id; Typ : Entity_Id) is
9b96e234
JM
2988 Assoc : Node_Id;
2989 -- N_Component_Association node belonging to the input aggregate N
2990
2991 Expr : Node_Id;
2992 Positional_Expr : Node_Id;
2993 Component : Entity_Id;
2994 Component_Elmt : Elmt_Id;
2995
2996 Components : constant Elist_Id := New_Elmt_List;
ebd34478
AC
2997 -- Components is the list of the record components whose value must be
2998 -- provided in the aggregate. This list does include discriminants.
9b96e234 2999
fbf5a39b
AC
3000 New_Assoc_List : constant List_Id := New_List;
3001 New_Assoc : Node_Id;
996ae0b0
RK
3002 -- New_Assoc_List is the newly built list of N_Component_Association
3003 -- nodes. New_Assoc is one such N_Component_Association node in it.
ebd34478
AC
3004 -- Note that while Assoc and New_Assoc contain the same kind of nodes,
3005 -- they are used to iterate over two different N_Component_Association
3006 -- lists.
996ae0b0
RK
3007
3008 Others_Etype : Entity_Id := Empty;
3009 -- This variable is used to save the Etype of the last record component
3010 -- that takes its value from the others choice. Its purpose is:
3011 --
3012 -- (a) make sure the others choice is useful
3013 --
3014 -- (b) make sure the type of all the components whose value is
3015 -- subsumed by the others choice are the same.
3016 --
ebd34478 3017 -- This variable is updated as a side effect of function Get_Value.
996ae0b0 3018
9b96e234
JM
3019 Is_Box_Present : Boolean := False;
3020 Others_Box : Boolean := False;
0ab80019 3021 -- Ada 2005 (AI-287): Variables used in case of default initialization
9b96e234 3022 -- to provide a functionality similar to Others_Etype. Box_Present
19f0526a 3023 -- indicates that the component takes its default initialization;
9b96e234 3024 -- Others_Box indicates that at least one component takes its default
19f0526a
AC
3025 -- initialization. Similar to Others_Etype, they are also updated as a
3026 -- side effect of function Get_Value.
65356e64
AC
3027
3028 procedure Add_Association
9b96e234
JM
3029 (Component : Entity_Id;
3030 Expr : Node_Id;
107b023c 3031 Assoc_List : List_Id;
9b96e234 3032 Is_Box_Present : Boolean := False);
ebd34478
AC
3033 -- Builds a new N_Component_Association node which associates Component
3034 -- to expression Expr and adds it to the association list being built,
3035 -- either New_Assoc_List, or the association being built for an inner
3036 -- aggregate.
996ae0b0
RK
3037
3038 function Discr_Present (Discr : Entity_Id) return Boolean;
3039 -- If aggregate N is a regular aggregate this routine will return True.
fbf5a39b 3040 -- Otherwise, if N is an extension aggregate, Discr is a discriminant
ebd34478
AC
3041 -- whose value may already have been specified by N's ancestor part.
3042 -- This routine checks whether this is indeed the case and if so returns
3043 -- False, signaling that no value for Discr should appear in N's
f104fca1 3044 -- aggregate part. Also, in this case, the routine appends to
2383acbd
AC
3045 -- New_Assoc_List the discriminant value specified in the ancestor part.
3046 --
f104fca1 3047 -- If the aggregate is in a context with expansion delayed, it will be
22cb89b5
AC
3048 -- reanalyzed. The inherited discriminant values must not be reinserted
3049 -- in the component list to prevent spurious errors, but they must be
f104fca1
AC
3050 -- present on first analysis to build the proper subtype indications.
3051 -- The flag Inherited_Discriminant is used to prevent the re-insertion.
996ae0b0
RK
3052
3053 function Get_Value
3054 (Compon : Node_Id;
3055 From : List_Id;
3056 Consider_Others_Choice : Boolean := False)
3057 return Node_Id;
4519314c
AC
3058 -- Given a record component stored in parameter Compon, this function
3059 -- returns its value as it appears in the list From, which is a list
3060 -- of N_Component_Association nodes.
2383acbd 3061 --
ebd34478
AC
3062 -- If no component association has a choice for the searched component,
3063 -- the value provided by the others choice is returned, if there is one,
3064 -- and Consider_Others_Choice is set to true. Otherwise Empty is
3065 -- returned. If there is more than one component association giving a
3066 -- value for the searched record component, an error message is emitted
3067 -- and the first found value is returned.
996ae0b0
RK
3068 --
3069 -- If Consider_Others_Choice is set and the returned expression comes
3070 -- from the others choice, then Others_Etype is set as a side effect.
ebd34478
AC
3071 -- An error message is emitted if the components taking their value from
3072 -- the others choice do not have same type.
996ae0b0 3073
ba914484
VP
3074 function New_Copy_Tree_And_Copy_Dimensions
3075 (Source : Node_Id;
3076 Map : Elist_Id := No_Elist;
3077 New_Sloc : Source_Ptr := No_Location;
3078 New_Scope : Entity_Id := Empty) return Node_Id;
3079 -- Same as New_Copy_Tree (defined in Sem_Util), except that this routine
3080 -- also copies the dimensions of Source to the returned node.
3081
996ae0b0
RK
3082 procedure Resolve_Aggr_Expr (Expr : Node_Id; Component : Node_Id);
3083 -- Analyzes and resolves expression Expr against the Etype of the
638e383e 3084 -- Component. This routine also applies all appropriate checks to Expr.
996ae0b0
RK
3085 -- It finally saves a Expr in the newly created association list that
3086 -- will be attached to the final record aggregate. Note that if the
3087 -- Parent pointer of Expr is not set then Expr was produced with a
fbf5a39b 3088 -- New_Copy_Tree or some such.
996ae0b0
RK
3089
3090 ---------------------
3091 -- Add_Association --
3092 ---------------------
3093
65356e64 3094 procedure Add_Association
9b96e234
JM
3095 (Component : Entity_Id;
3096 Expr : Node_Id;
107b023c 3097 Assoc_List : List_Id;
9b96e234 3098 Is_Box_Present : Boolean := False)
65356e64 3099 is
f5afb270 3100 Loc : Source_Ptr;
fbf5a39b 3101 Choice_List : constant List_Id := New_List;
996ae0b0 3102 New_Assoc : Node_Id;
996ae0b0
RK
3103
3104 begin
f5afb270
AC
3105 -- If this is a box association the expression is missing, so
3106 -- use the Sloc of the aggregate itself for the new association.
3107
3108 if Present (Expr) then
3109 Loc := Sloc (Expr);
3110 else
3111 Loc := Sloc (N);
3112 end if;
3113
3114 Append (New_Occurrence_Of (Component, Loc), Choice_List);
996ae0b0 3115 New_Assoc :=
f5afb270 3116 Make_Component_Association (Loc,
65356e64
AC
3117 Choices => Choice_List,
3118 Expression => Expr,
9b96e234 3119 Box_Present => Is_Box_Present);
107b023c 3120 Append (New_Assoc, Assoc_List);
996ae0b0
RK
3121 end Add_Association;
3122
3123 -------------------
3124 -- Discr_Present --
3125 -------------------
3126
3127 function Discr_Present (Discr : Entity_Id) return Boolean is
fbf5a39b
AC
3128 Regular_Aggr : constant Boolean := Nkind (N) /= N_Extension_Aggregate;
3129
996ae0b0
RK
3130 Loc : Source_Ptr;
3131
3132 Ancestor : Node_Id;
f104fca1 3133 Comp_Assoc : Node_Id;
996ae0b0
RK
3134 Discr_Expr : Node_Id;
3135
3136 Ancestor_Typ : Entity_Id;
3137 Orig_Discr : Entity_Id;
3138 D : Entity_Id;
3139 D_Val : Elmt_Id := No_Elmt; -- stop junk warning
3140
3141 Ancestor_Is_Subtyp : Boolean;
3142
3143 begin
3144 if Regular_Aggr then
3145 return True;
3146 end if;
3147
f104fca1
AC
3148 -- Check whether inherited discriminant values have already been
3149 -- inserted in the aggregate. This will be the case if we are
3150 -- re-analyzing an aggregate whose expansion was delayed.
3151
3152 if Present (Component_Associations (N)) then
3153 Comp_Assoc := First (Component_Associations (N));
3154 while Present (Comp_Assoc) loop
3155 if Inherited_Discriminant (Comp_Assoc) then
3156 return True;
3157 end if;
2383acbd 3158
f104fca1
AC
3159 Next (Comp_Assoc);
3160 end loop;
3161 end if;
3162
996ae0b0
RK
3163 Ancestor := Ancestor_Part (N);
3164 Ancestor_Typ := Etype (Ancestor);
3165 Loc := Sloc (Ancestor);
3166
5987e59c
AC
3167 -- For a private type with unknown discriminants, use the underlying
3168 -- record view if it is available.
9013065b
AC
3169
3170 if Has_Unknown_Discriminants (Ancestor_Typ)
3171 and then Present (Full_View (Ancestor_Typ))
3172 and then Present (Underlying_Record_View (Full_View (Ancestor_Typ)))
3173 then
3174 Ancestor_Typ := Underlying_Record_View (Full_View (Ancestor_Typ));
3175 end if;
3176
996ae0b0
RK
3177 Ancestor_Is_Subtyp :=
3178 Is_Entity_Name (Ancestor) and then Is_Type (Entity (Ancestor));
3179
3180 -- If the ancestor part has no discriminants clearly N's aggregate
3181 -- part must provide a value for Discr.
3182
3183 if not Has_Discriminants (Ancestor_Typ) then
3184 return True;
3185
3186 -- If the ancestor part is an unconstrained subtype mark then the
3187 -- Discr must be present in N's aggregate part.
3188
3189 elsif Ancestor_Is_Subtyp
3190 and then not Is_Constrained (Entity (Ancestor))
3191 then
3192 return True;
3193 end if;
3194
ec53a6da 3195 -- Now look to see if Discr was specified in the ancestor part
996ae0b0
RK
3196
3197 if Ancestor_Is_Subtyp then
3198 D_Val := First_Elmt (Discriminant_Constraint (Entity (Ancestor)));
3199 end if;
3200
ec53a6da
JM
3201 Orig_Discr := Original_Record_Component (Discr);
3202
3203 D := First_Discriminant (Ancestor_Typ);
996ae0b0 3204 while Present (D) loop
ec53a6da 3205
ebd34478 3206 -- If Ancestor has already specified Disc value then insert its
ec53a6da 3207 -- value in the final aggregate.
996ae0b0
RK
3208
3209 if Original_Record_Component (D) = Orig_Discr then
3210 if Ancestor_Is_Subtyp then
3211 Discr_Expr := New_Copy_Tree (Node (D_Val));
3212 else
3213 Discr_Expr :=
3214 Make_Selected_Component (Loc,
3215 Prefix => Duplicate_Subexpr (Ancestor),
3216 Selector_Name => New_Occurrence_Of (Discr, Loc));
3217 end if;
3218
3219 Resolve_Aggr_Expr (Discr_Expr, Discr);
f104fca1 3220 Set_Inherited_Discriminant (Last (New_Assoc_List));
996ae0b0
RK
3221 return False;
3222 end if;
3223
3224 Next_Discriminant (D);
3225
3226 if Ancestor_Is_Subtyp then
3227 Next_Elmt (D_Val);
3228 end if;
3229 end loop;
3230
3231 return True;
3232 end Discr_Present;
3233
3234 ---------------
3235 -- Get_Value --
3236 ---------------
3237
3238 function Get_Value
3239 (Compon : Node_Id;
3240 From : List_Id;
3241 Consider_Others_Choice : Boolean := False)
3242 return Node_Id
3243 is
3244 Assoc : Node_Id;
3245 Expr : Node_Id := Empty;
3246 Selector_Name : Node_Id;
3247
3248 begin
9b96e234 3249 Is_Box_Present := False;
65356e64 3250
996ae0b0
RK
3251 if Present (From) then
3252 Assoc := First (From);
3253 else
3254 return Empty;
3255 end if;
3256
3257 while Present (Assoc) loop
3258 Selector_Name := First (Choices (Assoc));
3259 while Present (Selector_Name) loop
3260 if Nkind (Selector_Name) = N_Others_Choice then
3261 if Consider_Others_Choice and then No (Expr) then
996ae0b0
RK
3262
3263 -- We need to duplicate the expression for each
3264 -- successive component covered by the others choice.
fbf5a39b
AC
3265 -- This is redundant if the others_choice covers only
3266 -- one component (small optimization possible???), but
3267 -- indispensable otherwise, because each one must be
3268 -- expanded individually to preserve side-effects.
996ae0b0 3269
0ab80019
AC
3270 -- Ada 2005 (AI-287): In case of default initialization
3271 -- of components, we duplicate the corresponding default
88b32fc3
BD
3272 -- expression (from the record type declaration). The
3273 -- copy must carry the sloc of the association (not the
3274 -- original expression) to prevent spurious elaboration
3275 -- checks when the default includes function calls.
19f0526a 3276
65356e64 3277 if Box_Present (Assoc) then
9b96e234
JM
3278 Others_Box := True;
3279 Is_Box_Present := True;
65356e64
AC
3280
3281 if Expander_Active then
88b32fc3 3282 return
ba914484 3283 New_Copy_Tree_And_Copy_Dimensions
88b32fc3
BD
3284 (Expression (Parent (Compon)),
3285 New_Sloc => Sloc (Assoc));
65356e64
AC
3286 else
3287 return Expression (Parent (Compon));
3288 end if;
65356e64 3289
d05ef0ab 3290 else
65356e64
AC
3291 if Present (Others_Etype) and then
3292 Base_Type (Others_Etype) /= Base_Type (Etype
3293 (Compon))
3294 then
3295 Error_Msg_N ("components in OTHERS choice must " &
3296 "have same type", Selector_Name);
3297 end if;
3298
3299 Others_Etype := Etype (Compon);
3300
3301 if Expander_Active then
ba914484
VP
3302 return
3303 New_Copy_Tree_And_Copy_Dimensions
3304 (Expression (Assoc));
65356e64
AC
3305 else
3306 return Expression (Assoc);
3307 end if;
996ae0b0
RK
3308 end if;
3309 end if;
3310
3311 elsif Chars (Compon) = Chars (Selector_Name) then
3312 if No (Expr) then
fbf5a39b 3313
0ab80019 3314 -- Ada 2005 (AI-231)
2820d220 3315
0791fbe9 3316 if Ada_Version >= Ada_2005
8133b9d1 3317 and then Known_Null (Expression (Assoc))
2820d220 3318 then
82c80734 3319 Check_Can_Never_Be_Null (Compon, Expression (Assoc));
2820d220
AC
3320 end if;
3321
996ae0b0
RK
3322 -- We need to duplicate the expression when several
3323 -- components are grouped together with a "|" choice.
3324 -- For instance "filed1 | filed2 => Expr"
3325
0ab80019 3326 -- Ada 2005 (AI-287)
2820d220 3327
65356e64 3328 if Box_Present (Assoc) then
9b96e234 3329 Is_Box_Present := True;
65356e64
AC
3330
3331 -- Duplicate the default expression of the component
c7ce71c2
ES
3332 -- from the record type declaration, so a new copy
3333 -- can be attached to the association.
65356e64 3334
c7ce71c2
ES
3335 -- Note that we always copy the default expression,
3336 -- even when the association has a single choice, in
3337 -- order to create a proper association for the
3338 -- expanded aggregate.
3339
8097203f
AC
3340 -- Component may have no default, in which case the
3341 -- expression is empty and the component is default-
3342 -- initialized, but an association for the component
3343 -- exists, and it is not covered by an others clause.
3344
ba914484
VP
3345 return
3346 New_Copy_Tree_And_Copy_Dimensions
3347 (Expression (Parent (Compon)));
8097203f 3348
d05ef0ab 3349 else
65356e64 3350 if Present (Next (Selector_Name)) then
ba914484
VP
3351 Expr :=
3352 New_Copy_Tree_And_Copy_Dimensions
3353 (Expression (Assoc));
65356e64
AC
3354 else
3355 Expr := Expression (Assoc);
3356 end if;
996ae0b0
RK
3357 end if;
3358
55603e5e 3359 Generate_Reference (Compon, Selector_Name, 'm');
fbf5a39b 3360
996ae0b0
RK
3361 else
3362 Error_Msg_NE
3363 ("more than one value supplied for &",
3364 Selector_Name, Compon);
3365
3366 end if;
3367 end if;
3368
3369 Next (Selector_Name);
3370 end loop;
3371
3372 Next (Assoc);
3373 end loop;
3374
3375 return Expr;
3376 end Get_Value;
3377
ba914484
VP
3378 ---------------------------------------
3379 -- New_Copy_Tree_And_Copy_Dimensions --
3380 ---------------------------------------
3381
3382 function New_Copy_Tree_And_Copy_Dimensions
3383 (Source : Node_Id;
3384 Map : Elist_Id := No_Elist;
3385 New_Sloc : Source_Ptr := No_Location;
3386 New_Scope : Entity_Id := Empty) return Node_Id
3387 is
3388 New_Copy : constant Node_Id :=
3389 New_Copy_Tree (Source, Map, New_Sloc, New_Scope);
3390 begin
3391 -- Move the dimensions of Source to New_Copy
3392
3393 Copy_Dimensions (Source, New_Copy);
3394 return New_Copy;
3395 end New_Copy_Tree_And_Copy_Dimensions;
3396
996ae0b0
RK
3397 -----------------------
3398 -- Resolve_Aggr_Expr --
3399 -----------------------
3400
3401 procedure Resolve_Aggr_Expr (Expr : Node_Id; Component : Node_Id) is
996ae0b0 3402 Expr_Type : Entity_Id := Empty;
0929eaeb
AC
3403 New_C : Entity_Id := Component;
3404 New_Expr : Node_Id;
996ae0b0
RK
3405
3406 function Has_Expansion_Delayed (Expr : Node_Id) return Boolean;
3407 -- If the expression is an aggregate (possibly qualified) then its
3408 -- expansion is delayed until the enclosing aggregate is expanded
3409 -- into assignments. In that case, do not generate checks on the
3410 -- expression, because they will be generated later, and will other-
3411 -- wise force a copy (to remove side-effects) that would leave a
3412 -- dynamic-sized aggregate in the code, something that gigi cannot
3413 -- handle.
3414
22243c12
RD
3415 Relocate : Boolean;
3416 -- Set to True if the resolved Expr node needs to be relocated when
3417 -- attached to the newly created association list. This node need not
3418 -- be relocated if its parent pointer is not set. In fact in this
3419 -- case Expr is the output of a New_Copy_Tree call. If Relocate is
3420 -- True then we have analyzed the expression node in the original
3421 -- aggregate and hence it needs to be relocated when moved over to
3422 -- the new association list.
3423
3424 ---------------------------
3425 -- Has_Expansion_Delayed --
3426 ---------------------------
996ae0b0
RK
3427
3428 function Has_Expansion_Delayed (Expr : Node_Id) return Boolean is
3429 Kind : constant Node_Kind := Nkind (Expr);
996ae0b0 3430 begin
f53f9dd7 3431 return (Nkind_In (Kind, N_Aggregate, N_Extension_Aggregate)
996ae0b0
RK
3432 and then Present (Etype (Expr))
3433 and then Is_Record_Type (Etype (Expr))
3434 and then Expansion_Delayed (Expr))
996ae0b0
RK
3435 or else (Kind = N_Qualified_Expression
3436 and then Has_Expansion_Delayed (Expression (Expr)));
3437 end Has_Expansion_Delayed;
3438
22243c12 3439 -- Start of processing for Resolve_Aggr_Expr
996ae0b0
RK
3440
3441 begin
3442 -- If the type of the component is elementary or the type of the
3443 -- aggregate does not contain discriminants, use the type of the
3444 -- component to resolve Expr.
3445
3446 if Is_Elementary_Type (Etype (Component))
3447 or else not Has_Discriminants (Etype (N))
3448 then
3449 Expr_Type := Etype (Component);
3450
3451 -- Otherwise we have to pick up the new type of the component from
12a13f01 3452 -- the new constrained subtype of the aggregate. In fact components
996ae0b0
RK
3453 -- which are of a composite type might be constrained by a
3454 -- discriminant, and we want to resolve Expr against the subtype were
3455 -- all discriminant occurrences are replaced with their actual value.
3456
3457 else
3458 New_C := First_Component (Etype (N));
3459 while Present (New_C) loop
3460 if Chars (New_C) = Chars (Component) then
3461 Expr_Type := Etype (New_C);
3462 exit;
3463 end if;
3464
3465 Next_Component (New_C);
3466 end loop;
3467
3468 pragma Assert (Present (Expr_Type));
3469
3470 -- For each range in an array type where a discriminant has been
3471 -- replaced with the constraint, check that this range is within
ec53a6da
JM
3472 -- the range of the base type. This checks is done in the init
3473 -- proc for regular objects, but has to be done here for
fbf5a39b 3474 -- aggregates since no init proc is called for them.
996ae0b0
RK
3475
3476 if Is_Array_Type (Expr_Type) then
3477 declare
7f9747c6 3478 Index : Node_Id;
ec53a6da 3479 -- Range of the current constrained index in the array
996ae0b0 3480
ec53a6da 3481 Orig_Index : Node_Id := First_Index (Etype (Component));
996ae0b0
RK
3482 -- Range corresponding to the range Index above in the
3483 -- original unconstrained record type. The bounds of this
3484 -- range may be governed by discriminants.
3485
3486 Unconstr_Index : Node_Id := First_Index (Etype (Expr_Type));
3487 -- Range corresponding to the range Index above for the
3488 -- unconstrained array type. This range is needed to apply
3489 -- range checks.
3490
3491 begin
7f9747c6 3492 Index := First_Index (Expr_Type);
996ae0b0
RK
3493 while Present (Index) loop
3494 if Depends_On_Discriminant (Orig_Index) then
3495 Apply_Range_Check (Index, Etype (Unconstr_Index));
3496 end if;
3497
3498 Next_Index (Index);
3499 Next_Index (Orig_Index);
3500 Next_Index (Unconstr_Index);
3501 end loop;
3502 end;
3503 end if;
3504 end if;
3505
3506 -- If the Parent pointer of Expr is not set, Expr is an expression
3507 -- duplicated by New_Tree_Copy (this happens for record aggregates
3508 -- that look like (Field1 | Filed2 => Expr) or (others => Expr)).
3509 -- Such a duplicated expression must be attached to the tree
3510 -- before analysis and resolution to enforce the rule that a tree
3511 -- fragment should never be analyzed or resolved unless it is
3512 -- attached to the current compilation unit.
3513
3514 if No (Parent (Expr)) then
3515 Set_Parent (Expr, N);
3516 Relocate := False;
3517 else
3518 Relocate := True;
3519 end if;
3520
3521 Analyze_And_Resolve (Expr, Expr_Type);
ca44152f 3522 Check_Expr_OK_In_Limited_Aggregate (Expr);
996ae0b0 3523 Check_Non_Static_Context (Expr);
fbf5a39b 3524 Check_Unset_Reference (Expr);
996ae0b0 3525
0c020dde
AC
3526 -- Check wrong use of class-wide types
3527
7b4db06c 3528 if Is_Class_Wide_Type (Etype (Expr)) then
0c020dde
AC
3529 Error_Msg_N ("dynamically tagged expression not allowed", Expr);
3530 end if;
3531
996ae0b0
RK
3532 if not Has_Expansion_Delayed (Expr) then
3533 Aggregate_Constraint_Checks (Expr, Expr_Type);
887d102a
AC
3534 end if;
3535
dec6faf1
AC
3536 -- If an aggregate component has a type with predicates, an explicit
3537 -- predicate check must be applied, as for an assignment statement,
3538 -- because the aggegate might not be expanded into individual
3539 -- component assignments.
3540
887d102a
AC
3541 if Present (Predicate_Function (Expr_Type)) then
3542 Apply_Predicate_Check (Expr, Expr_Type);
996ae0b0
RK
3543 end if;
3544
3545 if Raises_Constraint_Error (Expr) then
3546 Set_Raises_Constraint_Error (N);
3547 end if;
3548
22243c12
RD
3549 -- If the expression has been marked as requiring a range check, then
3550 -- generate it here.
d79e621a
GD
3551
3552 if Do_Range_Check (Expr) then
3553 Set_Do_Range_Check (Expr, False);
3554 Generate_Range_Check (Expr, Expr_Type, CE_Range_Check_Failed);
3555 end if;
3556
996ae0b0 3557 if Relocate then
0929eaeb
AC
3558 New_Expr := Relocate_Node (Expr);
3559
3560 -- Since New_Expr is not gonna be analyzed later on, we need to
3561 -- propagate here the dimensions form Expr to New_Expr.
3562
ba914484 3563 Copy_Dimensions (Expr, New_Expr);
d976bf74 3564
996ae0b0 3565 else
0929eaeb 3566 New_Expr := Expr;
996ae0b0 3567 end if;
0929eaeb
AC
3568
3569 Add_Association (New_C, New_Expr, New_Assoc_List);
996ae0b0
RK
3570 end Resolve_Aggr_Expr;
3571
996ae0b0
RK
3572 -- Start of processing for Resolve_Record_Aggregate
3573
3574 begin
2ba431e5 3575 -- A record aggregate is restricted in SPARK:
15918371 3576
bd65a2d7
AC
3577 -- Each named association can have only a single choice.
3578 -- OTHERS cannot be used.
3579 -- Positional and named associations cannot be mixed.
9f90d123 3580
fe5d3068
YM
3581 if Present (Component_Associations (N))
3582 and then Present (First (Component_Associations (N)))
9f90d123 3583 then
fe5d3068 3584
9f90d123 3585 if Present (Expressions (N)) then
2ba431e5 3586 Check_SPARK_Restriction
23685ae6 3587 ("named association cannot follow positional one",
9f90d123
AC
3588 First (Choices (First (Component_Associations (N)))));
3589 end if;
3590
3591 declare
3592 Assoc : Node_Id;
bd65a2d7 3593
9f90d123
AC
3594 begin
3595 Assoc := First (Component_Associations (N));
3596 while Present (Assoc) loop
3597 if List_Length (Choices (Assoc)) > 1 then
2ba431e5 3598 Check_SPARK_Restriction
fe5d3068 3599 ("component association in record aggregate must "
9f90d123
AC
3600 & "contain a single choice", Assoc);
3601 end if;
bd65a2d7 3602
9f90d123 3603 if Nkind (First (Choices (Assoc))) = N_Others_Choice then
2ba431e5 3604 Check_SPARK_Restriction
fe5d3068 3605 ("record aggregate cannot contain OTHERS", Assoc);
9f90d123 3606 end if;
bd65a2d7 3607
9f90d123
AC
3608 Assoc := Next (Assoc);
3609 end loop;
3610 end;
3611 end if;
3612
996ae0b0
RK
3613 -- We may end up calling Duplicate_Subexpr on expressions that are
3614 -- attached to New_Assoc_List. For this reason we need to attach it
3615 -- to the tree by setting its parent pointer to N. This parent point
3616 -- will change in STEP 8 below.
3617
3618 Set_Parent (New_Assoc_List, N);
3619
3620 -- STEP 1: abstract type and null record verification
3621
aad93b55 3622 if Is_Abstract_Type (Typ) then
996ae0b0
RK
3623 Error_Msg_N ("type of aggregate cannot be abstract", N);
3624 end if;
3625
3626 if No (First_Entity (Typ)) and then Null_Record_Present (N) then
3627 Set_Etype (N, Typ);
3628 return;
3629
3630 elsif Present (First_Entity (Typ))
3631 and then Null_Record_Present (N)
3632 and then not Is_Tagged_Type (Typ)
3633 then
3634 Error_Msg_N ("record aggregate cannot be null", N);
3635 return;
3636
eff332d9
GD
3637 -- If the type has no components, then the aggregate should either
3638 -- have "null record", or in Ada 2005 it could instead have a single
22243c12
RD
3639 -- component association given by "others => <>". For Ada 95 we flag an
3640 -- error at this point, but for Ada 2005 we proceed with checking the
3641 -- associations below, which will catch the case where it's not an
3642 -- aggregate with "others => <>". Note that the legality of a <>
eff332d9
GD
3643 -- aggregate for a null record type was established by AI05-016.
3644
3645 elsif No (First_Entity (Typ))
0791fbe9 3646 and then Ada_Version < Ada_2005
eff332d9 3647 then
996ae0b0
RK
3648 Error_Msg_N ("record aggregate must be null", N);
3649 return;
3650 end if;
3651
3652 -- STEP 2: Verify aggregate structure
3653
3654 Step_2 : declare
3655 Selector_Name : Node_Id;
3656 Bad_Aggregate : Boolean := False;
3657
3658 begin
3659 if Present (Component_Associations (N)) then
3660 Assoc := First (Component_Associations (N));
3661 else
3662 Assoc := Empty;
3663 end if;
3664
3665 while Present (Assoc) loop
3666 Selector_Name := First (Choices (Assoc));
3667 while Present (Selector_Name) loop
3668 if Nkind (Selector_Name) = N_Identifier then
3669 null;
3670
3671 elsif Nkind (Selector_Name) = N_Others_Choice then
3672 if Selector_Name /= First (Choices (Assoc))
3673 or else Present (Next (Selector_Name))
3674 then
ed2233dc 3675 Error_Msg_N
22cb89b5
AC
3676 ("OTHERS must appear alone in a choice list",
3677 Selector_Name);
996ae0b0
RK
3678 return;
3679
3680 elsif Present (Next (Assoc)) then
ed2233dc 3681 Error_Msg_N
22cb89b5
AC
3682 ("OTHERS must appear last in an aggregate",
3683 Selector_Name);
996ae0b0 3684 return;
1ab9541b 3685
885c4871 3686 -- (Ada 2005): If this is an association with a box,
1ab9541b
ES
3687 -- indicate that the association need not represent
3688 -- any component.
3689
3690 elsif Box_Present (Assoc) then
3691 Others_Box := True;
996ae0b0
RK
3692 end if;
3693
3694 else
3695 Error_Msg_N
3696 ("selector name should be identifier or OTHERS",
3697 Selector_Name);
3698 Bad_Aggregate := True;
3699 end if;
3700
3701 Next (Selector_Name);
3702 end loop;
3703
3704 Next (Assoc);
3705 end loop;
3706
3707 if Bad_Aggregate then
3708 return;
3709 end if;
3710 end Step_2;
3711
3712 -- STEP 3: Find discriminant Values
3713
3714 Step_3 : declare
3715 Discrim : Entity_Id;
3716 Missing_Discriminants : Boolean := False;
3717
3718 begin
3719 if Present (Expressions (N)) then
3720 Positional_Expr := First (Expressions (N));
3721 else
3722 Positional_Expr := Empty;
3723 end if;
3724
87729e5a 3725 -- AI05-0115: if the ancestor part is a subtype mark, the ancestor
33bd17e7 3726 -- must not have unknown discriminants.
87729e5a
AC
3727
3728 if Is_Derived_Type (Typ)
3729 and then Has_Unknown_Discriminants (Root_Type (Typ))
3730 and then Nkind (N) /= N_Extension_Aggregate
3731 then
3732 Error_Msg_NE
3733 ("aggregate not available for type& whose ancestor "
3734 & "has unknown discriminants ", N, Typ);
3735 end if;
3736
9013065b
AC
3737 if Has_Unknown_Discriminants (Typ)
3738 and then Present (Underlying_Record_View (Typ))
3739 then
3740 Discrim := First_Discriminant (Underlying_Record_View (Typ));
3741 elsif Has_Discriminants (Typ) then
996ae0b0
RK
3742 Discrim := First_Discriminant (Typ);
3743 else
3744 Discrim := Empty;
3745 end if;
3746
3747 -- First find the discriminant values in the positional components
3748
3749 while Present (Discrim) and then Present (Positional_Expr) loop
3750 if Discr_Present (Discrim) then
3751 Resolve_Aggr_Expr (Positional_Expr, Discrim);
2820d220 3752
0ab80019 3753 -- Ada 2005 (AI-231)
2820d220 3754
0791fbe9 3755 if Ada_Version >= Ada_2005
8133b9d1 3756 and then Known_Null (Positional_Expr)
ec53a6da 3757 then
82c80734 3758 Check_Can_Never_Be_Null (Discrim, Positional_Expr);
2820d220
AC
3759 end if;
3760
996ae0b0
RK
3761 Next (Positional_Expr);
3762 end if;
3763
3764 if Present (Get_Value (Discrim, Component_Associations (N))) then
3765 Error_Msg_NE
3766 ("more than one value supplied for discriminant&",
3767 N, Discrim);
3768 end if;
3769
3770 Next_Discriminant (Discrim);
3771 end loop;
3772
50decc81 3773 -- Find remaining discriminant values if any among named components
996ae0b0
RK
3774
3775 while Present (Discrim) loop
3776 Expr := Get_Value (Discrim, Component_Associations (N), True);
3777
3778 if not Discr_Present (Discrim) then
3779 if Present (Expr) then
3780 Error_Msg_NE
3781 ("more than one value supplied for discriminant&",
3782 N, Discrim);
3783 end if;
3784
3785 elsif No (Expr) then
3786 Error_Msg_NE
3787 ("no value supplied for discriminant &", N, Discrim);
3788 Missing_Discriminants := True;
3789
3790 else
3791 Resolve_Aggr_Expr (Expr, Discrim);
3792 end if;
3793
3794 Next_Discriminant (Discrim);
3795 end loop;
3796
3797 if Missing_Discriminants then
3798 return;
3799 end if;
3800
3801 -- At this point and until the beginning of STEP 6, New_Assoc_List
3802 -- contains only the discriminants and their values.
3803
3804 end Step_3;
3805
3806 -- STEP 4: Set the Etype of the record aggregate
3807
3808 -- ??? This code is pretty much a copy of Sem_Ch3.Build_Subtype. That
3809 -- routine should really be exported in sem_util or some such and used
3810 -- in sem_ch3 and here rather than have a copy of the code which is a
3811 -- maintenance nightmare.
3812
12a13f01 3813 -- ??? Performance WARNING. The current implementation creates a new
50decc81
RD
3814 -- itype for all aggregates whose base type is discriminated. This means
3815 -- that for record aggregates nested inside an array aggregate we will
3816 -- create a new itype for each record aggregate if the array component
3817 -- type has discriminants. For large aggregates this may be a problem.
3818 -- What should be done in this case is to reuse itypes as much as
3819 -- possible.
996ae0b0 3820
9013065b
AC
3821 if Has_Discriminants (Typ)
3822 or else (Has_Unknown_Discriminants (Typ)
3823 and then Present (Underlying_Record_View (Typ)))
3824 then
996ae0b0
RK
3825 Build_Constrained_Itype : declare
3826 Loc : constant Source_Ptr := Sloc (N);
3827 Indic : Node_Id;
3828 Subtyp_Decl : Node_Id;
3829 Def_Id : Entity_Id;
3830
fbf5a39b 3831 C : constant List_Id := New_List;
996ae0b0
RK
3832
3833 begin
3834 New_Assoc := First (New_Assoc_List);
3835 while Present (New_Assoc) loop
3836 Append (Duplicate_Subexpr (Expression (New_Assoc)), To => C);
3837 Next (New_Assoc);
3838 end loop;
3839
9013065b
AC
3840 if Has_Unknown_Discriminants (Typ)
3841 and then Present (Underlying_Record_View (Typ))
3842 then
3843 Indic :=
3844 Make_Subtype_Indication (Loc,
3845 Subtype_Mark =>
3846 New_Occurrence_Of (Underlying_Record_View (Typ), Loc),
3847 Constraint =>
3848 Make_Index_Or_Discriminant_Constraint (Loc, C));
3849 else
3850 Indic :=
3851 Make_Subtype_Indication (Loc,
3852 Subtype_Mark =>
3853 New_Occurrence_Of (Base_Type (Typ), Loc),
3854 Constraint =>
3855 Make_Index_Or_Discriminant_Constraint (Loc, C));
3856 end if;
996ae0b0
RK
3857
3858 Def_Id := Create_Itype (Ekind (Typ), N);
3859
3860 Subtyp_Decl :=
3861 Make_Subtype_Declaration (Loc,
3862 Defining_Identifier => Def_Id,
3863 Subtype_Indication => Indic);
3864 Set_Parent (Subtyp_Decl, Parent (N));
3865
ec53a6da 3866 -- Itypes must be analyzed with checks off (see itypes.ads)
996ae0b0
RK
3867
3868 Analyze (Subtyp_Decl, Suppress => All_Checks);
3869
3870 Set_Etype (N, Def_Id);
3871 Check_Static_Discriminated_Subtype
3872 (Def_Id, Expression (First (New_Assoc_List)));
3873 end Build_Constrained_Itype;
3874
3875 else
3876 Set_Etype (N, Typ);
3877 end if;
3878
3879 -- STEP 5: Get remaining components according to discriminant values
3880
3881 Step_5 : declare
3882 Record_Def : Node_Id;
3883 Parent_Typ : Entity_Id;
3884 Root_Typ : Entity_Id;
3885 Parent_Typ_List : Elist_Id;
3886 Parent_Elmt : Elmt_Id;
3887 Errors_Found : Boolean := False;
3888 Dnode : Node_Id;
3889
87729e5a
AC
3890 function Find_Private_Ancestor return Entity_Id;
3891 -- AI05-0115: Find earlier ancestor in the derivation chain that is
3892 -- derived from a private view. Whether the aggregate is legal
3893 -- depends on the current visibility of the type as well as that
3894 -- of the parent of the ancestor.
3895
3896 ---------------------------
3897 -- Find_Private_Ancestor --
3898 ---------------------------
3899
3900 function Find_Private_Ancestor return Entity_Id is
3901 Par : Entity_Id;
3902 begin
3903 Par := Typ;
3904 loop
3905 if Has_Private_Ancestor (Par)
3906 and then not Has_Private_Ancestor (Etype (Base_Type (Par)))
3907 then
3908 return Par;
3909
3910 elsif not Is_Derived_Type (Par) then
3911 return Empty;
3912
3913 else
3914 Par := Etype (Base_Type (Par));
3915 end if;
3916 end loop;
3917 end Find_Private_Ancestor;
3918
15918371
AC
3919 -- Start of processing for Step_5
3920
996ae0b0
RK
3921 begin
3922 if Is_Derived_Type (Typ) and then Is_Tagged_Type (Typ) then
3923 Parent_Typ_List := New_Elmt_List;
3924
3925 -- If this is an extension aggregate, the component list must
965dbd5c
AC
3926 -- include all components that are not in the given ancestor type.
3927 -- Otherwise, the component list must include components of all
3928 -- ancestors, starting with the root.
996ae0b0
RK
3929
3930 if Nkind (N) = N_Extension_Aggregate then
7b4db06c 3931 Root_Typ := Base_Type (Etype (Ancestor_Part (N)));
69a0c174 3932
996ae0b0 3933 else
87729e5a
AC
3934 -- AI05-0115: check legality of aggregate for type with
3935 -- aa private ancestor.
3936
996ae0b0 3937 Root_Typ := Root_Type (Typ);
87729e5a
AC
3938 if Has_Private_Ancestor (Typ) then
3939 declare
3940 Ancestor : constant Entity_Id :=
3941 Find_Private_Ancestor;
3942 Ancestor_Unit : constant Entity_Id :=
3943 Cunit_Entity (Get_Source_Unit (Ancestor));
3944 Parent_Unit : constant Entity_Id :=
3945 Cunit_Entity
3946 (Get_Source_Unit (Base_Type (Etype (Ancestor))));
3947 begin
996ae0b0 3948
87729e5a
AC
3949 -- check whether we are in a scope that has full view
3950 -- over the private ancestor and its parent. This can
3951 -- only happen if the derivation takes place in a child
3952 -- unit of the unit that declares the parent, and we are
3953 -- in the private part or body of that child unit, else
3954 -- the aggregate is illegal.
3955
3956 if Is_Child_Unit (Ancestor_Unit)
3957 and then Scope (Ancestor_Unit) = Parent_Unit
3958 and then In_Open_Scopes (Scope (Ancestor))
3959 and then
3960 (In_Private_Part (Scope (Ancestor))
3961 or else In_Package_Body (Scope (Ancestor)))
3962 then
3963 null;
3964
3965 else
3966 Error_Msg_NE
3967 ("type of aggregate has private ancestor&!",
3968 N, Root_Typ);
3969 Error_Msg_N ("must use extension aggregate!", N);
3970 return;
3971 end if;
3972 end;
996ae0b0
RK
3973 end if;
3974
3975 Dnode := Declaration_Node (Base_Type (Root_Typ));
3976
4519314c
AC
3977 -- If we don't get a full declaration, then we have some error
3978 -- which will get signalled later so skip this part. Otherwise
3979 -- gather components of root that apply to the aggregate type.
3980 -- We use the base type in case there is an applicable stored
3981 -- constraint that renames the discriminants of the root.
996ae0b0
RK
3982
3983 if Nkind (Dnode) = N_Full_Type_Declaration then
3984 Record_Def := Type_Definition (Dnode);
15918371
AC
3985 Gather_Components
3986 (Base_Type (Typ),
3987 Component_List (Record_Def),
3988 Governed_By => New_Assoc_List,
3989 Into => Components,
3990 Report_Errors => Errors_Found);
996ae0b0
RK
3991 end if;
3992 end if;
3993
9013065b 3994 Parent_Typ := Base_Type (Typ);
996ae0b0 3995 while Parent_Typ /= Root_Typ loop
996ae0b0
RK
3996 Prepend_Elmt (Parent_Typ, To => Parent_Typ_List);
3997 Parent_Typ := Etype (Parent_Typ);
3998
fbf5a39b 3999 if Nkind (Parent (Base_Type (Parent_Typ))) =
996ae0b0 4000 N_Private_Type_Declaration
fbf5a39b
AC
4001 or else Nkind (Parent (Base_Type (Parent_Typ))) =
4002 N_Private_Extension_Declaration
996ae0b0
RK
4003 then
4004 if Nkind (N) /= N_Extension_Aggregate then
ed2233dc 4005 Error_Msg_NE
996ae0b0
RK
4006 ("type of aggregate has private ancestor&!",
4007 N, Parent_Typ);
ed2233dc 4008 Error_Msg_N ("must use extension aggregate!", N);
996ae0b0
RK
4009 return;
4010
4011 elsif Parent_Typ /= Root_Typ then
4012 Error_Msg_NE
4013 ("ancestor part of aggregate must be private type&",
4014 Ancestor_Part (N), Parent_Typ);
4015 return;
4016 end if;
4519314c
AC
4017
4018 -- The current view of ancestor part may be a private type,
4019 -- while the context type is always non-private.
4020
4021 elsif Is_Private_Type (Root_Typ)
4022 and then Present (Full_View (Root_Typ))
4023 and then Nkind (N) = N_Extension_Aggregate
4024 then
4025 exit when Base_Type (Full_View (Root_Typ)) = Parent_Typ;
996ae0b0
RK
4026 end if;
4027 end loop;
4028
bf06d37f
AC
4029 -- Now collect components from all other ancestors, beginning
4030 -- with the current type. If the type has unknown discriminants
349ff68f 4031 -- use the component list of the Underlying_Record_View, which
bf06d37f
AC
4032 -- needs to be used for the subsequent expansion of the aggregate
4033 -- into assignments.
996ae0b0
RK
4034
4035 Parent_Elmt := First_Elmt (Parent_Typ_List);
4036 while Present (Parent_Elmt) loop
4037 Parent_Typ := Node (Parent_Elmt);
bf06d37f
AC
4038
4039 if Has_Unknown_Discriminants (Parent_Typ)
4040 and then Present (Underlying_Record_View (Typ))
4041 then
4042 Parent_Typ := Underlying_Record_View (Parent_Typ);
4043 end if;
4044
996ae0b0
RK
4045 Record_Def := Type_Definition (Parent (Base_Type (Parent_Typ)));
4046 Gather_Components (Empty,
4047 Component_List (Record_Extension_Part (Record_Def)),
4048 Governed_By => New_Assoc_List,
4049 Into => Components,
4050 Report_Errors => Errors_Found);
4051
4052 Next_Elmt (Parent_Elmt);
4053 end loop;
4054
33bd17e7
ES
4055 -- Typ is not a derived tagged type
4056
996ae0b0 4057 else
33bd17e7
ES
4058 -- A type derived from an untagged private type whose full view
4059 -- has discriminants is constructed as a record type but there
4060 -- are no legal aggregates for it.
4061
4062 if Is_Derived_Type (Typ)
4063 and then Has_Private_Ancestor (Typ)
4064 and then Nkind (N) /= N_Extension_Aggregate
4065 then
4066 Error_Msg_Node_2 := Base_Type (Etype (Typ));
4067 Error_Msg_NE
4068 ("no aggregate available for type& derived from "
4069 & "private type&", N, Typ);
4070 return;
4071 end if;
4072
6bde3eb5 4073 Record_Def := Type_Definition (Parent (Base_Type (Typ)));
996ae0b0
RK
4074
4075 if Null_Present (Record_Def) then
4076 null;
bf06d37f
AC
4077
4078 elsif not Has_Unknown_Discriminants (Typ) then
15918371
AC
4079 Gather_Components
4080 (Base_Type (Typ),
4081 Component_List (Record_Def),
4082 Governed_By => New_Assoc_List,
4083 Into => Components,
4084 Report_Errors => Errors_Found);
bf06d37f
AC
4085
4086 else
4087 Gather_Components
4088 (Base_Type (Underlying_Record_View (Typ)),
15918371
AC
4089 Component_List (Record_Def),
4090 Governed_By => New_Assoc_List,
4091 Into => Components,
4092 Report_Errors => Errors_Found);
996ae0b0
RK
4093 end if;
4094 end if;
4095
4096 if Errors_Found then
4097 return;
4098 end if;
4099 end Step_5;
4100
4101 -- STEP 6: Find component Values
4102
4103 Component := Empty;
4104 Component_Elmt := First_Elmt (Components);
4105
4106 -- First scan the remaining positional associations in the aggregate.
4107 -- Remember that at this point Positional_Expr contains the current
4108 -- positional association if any is left after looking for discriminant
4109 -- values in step 3.
4110
4111 while Present (Positional_Expr) and then Present (Component_Elmt) loop
4112 Component := Node (Component_Elmt);
4113 Resolve_Aggr_Expr (Positional_Expr, Component);
4114
0ab80019
AC
4115 -- Ada 2005 (AI-231)
4116
0791fbe9 4117 if Ada_Version >= Ada_2005
8133b9d1 4118 and then Known_Null (Positional_Expr)
ec53a6da 4119 then
82c80734 4120 Check_Can_Never_Be_Null (Component, Positional_Expr);
2820d220
AC
4121 end if;
4122
996ae0b0
RK
4123 if Present (Get_Value (Component, Component_Associations (N))) then
4124 Error_Msg_NE
4125 ("more than one value supplied for Component &", N, Component);
4126 end if;
4127
4128 Next (Positional_Expr);
4129 Next_Elmt (Component_Elmt);
4130 end loop;
4131
4132 if Present (Positional_Expr) then
4133 Error_Msg_N
4134 ("too many components for record aggregate", Positional_Expr);
4135 end if;
4136
4137 -- Now scan for the named arguments of the aggregate
4138
4139 while Present (Component_Elmt) loop
4140 Component := Node (Component_Elmt);
4141 Expr := Get_Value (Component, Component_Associations (N), True);
4142
9b96e234 4143 -- Note: The previous call to Get_Value sets the value of the
f91e8020 4144 -- variable Is_Box_Present.
65356e64 4145
9b96e234
JM
4146 -- Ada 2005 (AI-287): Handle components with default initialization.
4147 -- Note: This feature was originally added to Ada 2005 for limited
4148 -- but it was finally allowed with any type.
65356e64 4149
9b96e234 4150 if Is_Box_Present then
f91e8020
GD
4151 Check_Box_Component : declare
4152 Ctyp : constant Entity_Id := Etype (Component);
9b96e234
JM
4153
4154 begin
c7ce71c2 4155 -- If there is a default expression for the aggregate, copy
0df7e2d0
AC
4156 -- it into a new association. This copy must modify the scopes
4157 -- of internal types that may be attached to the expression
4158 -- (e.g. index subtypes of arrays) because in general the type
4159 -- declaration and the aggregate appear in different scopes,
4160 -- and the backend requires the scope of the type to match the
4161 -- point at which it is elaborated.
c7ce71c2 4162
9b96e234
JM
4163 -- If the component has an initialization procedure (IP) we
4164 -- pass the component to the expander, which will generate
4165 -- the call to such IP.
4166
c7ce71c2
ES
4167 -- If the component has discriminants, their values must
4168 -- be taken from their subtype. This is indispensable for
4169 -- constraints that are given by the current instance of an
50decc81
RD
4170 -- enclosing type, to allow the expansion of the aggregate to
4171 -- replace the reference to the current instance by the target
4172 -- object of the aggregate.
c7ce71c2
ES
4173
4174 if Present (Parent (Component))
4175 and then
4176 Nkind (Parent (Component)) = N_Component_Declaration
4177 and then Present (Expression (Parent (Component)))
aad93b55 4178 then
c7ce71c2 4179 Expr :=
ba914484 4180 New_Copy_Tree_And_Copy_Dimensions
2293611f
AC
4181 (Expression (Parent (Component)),
4182 New_Scope => Current_Scope,
4183 New_Sloc => Sloc (N));
c7ce71c2 4184
9b96e234 4185 Add_Association
107b023c
AC
4186 (Component => Component,
4187 Expr => Expr,
4188 Assoc_List => New_Assoc_List);
c7ce71c2
ES
4189 Set_Has_Self_Reference (N);
4190
f91e8020
GD
4191 -- A box-defaulted access component gets the value null. Also
4192 -- included are components of private types whose underlying
c80d4855
RD
4193 -- type is an access type. In either case set the type of the
4194 -- literal, for subsequent use in semantic checks.
f91e8020
GD
4195
4196 elsif Present (Underlying_Type (Ctyp))
4197 and then Is_Access_Type (Underlying_Type (Ctyp))
4198 then
4199 if not Is_Private_Type (Ctyp) then
c80d4855
RD
4200 Expr := Make_Null (Sloc (N));
4201 Set_Etype (Expr, Ctyp);
f91e8020 4202 Add_Association
107b023c
AC
4203 (Component => Component,
4204 Expr => Expr,
4205 Assoc_List => New_Assoc_List);
f91e8020
GD
4206
4207 -- If the component's type is private with an access type as
4208 -- its underlying type then we have to create an unchecked
4209 -- conversion to satisfy type checking.
4210
4211 else
4212 declare
4213 Qual_Null : constant Node_Id :=
4214 Make_Qualified_Expression (Sloc (N),
4215 Subtype_Mark =>
4216 New_Occurrence_Of
4217 (Underlying_Type (Ctyp), Sloc (N)),
4218 Expression => Make_Null (Sloc (N)));
4219
4220 Convert_Null : constant Node_Id :=
4221 Unchecked_Convert_To
4222 (Ctyp, Qual_Null);
4223
4224 begin
4225 Analyze_And_Resolve (Convert_Null, Ctyp);
4226 Add_Association
107b023c
AC
4227 (Component => Component,
4228 Expr => Convert_Null,
4229 Assoc_List => New_Assoc_List);
f91e8020
GD
4230 end;
4231 end if;
4232
7610fee8
AC
4233 -- Ada 2012: If component is scalar with default value, use it
4234
4235 elsif Is_Scalar_Type (Ctyp)
4236 and then Has_Default_Aspect (Ctyp)
4237 then
4238 Add_Association
4239 (Component => Component,
4240 Expr => Default_Aspect_Value
4241 (First_Subtype (Underlying_Type (Ctyp))),
4242 Assoc_List => New_Assoc_List);
4243
c7ce71c2
ES
4244 elsif Has_Non_Null_Base_Init_Proc (Ctyp)
4245 or else not Expander_Active
4246 then
4247 if Is_Record_Type (Ctyp)
4248 and then Has_Discriminants (Ctyp)
6bde3eb5 4249 and then not Is_Private_Type (Ctyp)
c7ce71c2
ES
4250 then
4251 -- We build a partially initialized aggregate with the
4252 -- values of the discriminants and box initialization
8133b9d1 4253 -- for the rest, if other components are present.
c7e152b5 4254
51ec70b8 4255 -- The type of the aggregate is the known subtype of
107b023c 4256 -- the component. The capture of discriminants must
308e6f3a 4257 -- be recursive because subcomponents may be constrained
107b023c 4258 -- (transitively) by discriminants of enclosing types.
6bde3eb5
AC
4259 -- For a private type with discriminants, a call to the
4260 -- initialization procedure will be generated, and no
4261 -- subaggregate is needed.
c7ce71c2 4262
107b023c 4263 Capture_Discriminants : declare
719aaf4d
AC
4264 Loc : constant Source_Ptr := Sloc (N);
4265 Expr : Node_Id;
c7ce71c2 4266
107b023c
AC
4267 procedure Add_Discriminant_Values
4268 (New_Aggr : Node_Id;
4269 Assoc_List : List_Id);
4270 -- The constraint to a component may be given by a
4271 -- discriminant of the enclosing type, in which case
4272 -- we have to retrieve its value, which is part of the
4273 -- enclosing aggregate. Assoc_List provides the
4274 -- discriminant associations of the current type or
4275 -- of some enclosing record.
4276
4277 procedure Propagate_Discriminants
4278 (Aggr : Node_Id;
105b5e65 4279 Assoc_List : List_Id);
107b023c 4280 -- Nested components may themselves be discriminated
2be0bff8 4281 -- types constrained by outer discriminants, whose
107b023c
AC
4282 -- values must be captured before the aggregate is
4283 -- expanded into assignments.
4284
4285 -----------------------------
4286 -- Add_Discriminant_Values --
4287 -----------------------------
4288
4289 procedure Add_Discriminant_Values
4290 (New_Aggr : Node_Id;
4291 Assoc_List : List_Id)
4292 is
4293 Assoc : Node_Id;
4294 Discr : Entity_Id;
4295 Discr_Elmt : Elmt_Id;
4296 Discr_Val : Node_Id;
4297 Val : Entity_Id;
c7ce71c2 4298
107b023c
AC
4299 begin
4300 Discr := First_Discriminant (Etype (New_Aggr));
4301 Discr_Elmt :=
4302 First_Elmt
4303 (Discriminant_Constraint (Etype (New_Aggr)));
4304 while Present (Discr_Elmt) loop
4305 Discr_Val := Node (Discr_Elmt);
4306
4307 -- If the constraint is given by a discriminant
4308 -- it is a discriminant of an enclosing record,
4309 -- and its value has already been placed in the
4310 -- association list.
4311
4312 if Is_Entity_Name (Discr_Val)
4313 and then
4314 Ekind (Entity (Discr_Val)) = E_Discriminant
4315 then
4316 Val := Entity (Discr_Val);
4317
4318 Assoc := First (Assoc_List);
4319 while Present (Assoc) loop
4320 if Present
4321 (Entity (First (Choices (Assoc))))
4322 and then
4323 Entity (First (Choices (Assoc)))
4324 = Val
4325 then
4326 Discr_Val := Expression (Assoc);
4327 exit;
4328 end if;
4329 Next (Assoc);
4330 end loop;
4331 end if;
157a9bf5 4332
107b023c
AC
4333 Add_Association
4334 (Discr, New_Copy_Tree (Discr_Val),
4335 Component_Associations (New_Aggr));
4336
4337 -- If the discriminant constraint is a current
4338 -- instance, mark the current aggregate so that
4339 -- the self-reference can be expanded later.
4340
4341 if Nkind (Discr_Val) = N_Attribute_Reference
4342 and then Is_Entity_Name (Prefix (Discr_Val))
4343 and then Is_Type (Entity (Prefix (Discr_Val)))
4344 and then Etype (N) =
4345 Entity (Prefix (Discr_Val))
4346 then
4347 Set_Has_Self_Reference (N);
4348 end if;
c7ce71c2 4349
107b023c
AC
4350 Next_Elmt (Discr_Elmt);
4351 Next_Discriminant (Discr);
4352 end loop;
4353 end Add_Discriminant_Values;
4354
4355 ------------------------------
4356 -- Propagate_Discriminants --
4357 ------------------------------
4358
4359 procedure Propagate_Discriminants
4360 (Aggr : Node_Id;
105b5e65 4361 Assoc_List : List_Id)
107b023c 4362 is
3786bbd1
RD
4363 Aggr_Type : constant Entity_Id :=
4364 Base_Type (Etype (Aggr));
4365 Def_Node : constant Node_Id :=
4366 Type_Definition
4367 (Declaration_Node (Aggr_Type));
105b5e65
AC
4368
4369 Comp : Node_Id;
4370 Comp_Elmt : Elmt_Id;
4371 Components : constant Elist_Id := New_Elmt_List;
107b023c 4372 Needs_Box : Boolean := False;
105b5e65 4373 Errors : Boolean;
c7ce71c2 4374
105b5e65 4375 procedure Process_Component (Comp : Entity_Id);
3786bbd1 4376 -- Add one component with a box association to the
105b5e65
AC
4377 -- inner aggregate, and recurse if component is
4378 -- itself composite.
4379
4380 ------------------------
4381 -- Process_Component --
4382 ------------------------
c7ce71c2 4383
105b5e65
AC
4384 procedure Process_Component (Comp : Entity_Id) is
4385 T : constant Entity_Id := Etype (Comp);
4386 New_Aggr : Node_Id;
4387
4388 begin
4389 if Is_Record_Type (T)
4390 and then Has_Discriminants (T)
107b023c
AC
4391 then
4392 New_Aggr :=
4393 Make_Aggregate (Loc, New_List, New_List);
105b5e65 4394 Set_Etype (New_Aggr, T);
107b023c 4395 Add_Association
105b5e65
AC
4396 (Comp, New_Aggr,
4397 Component_Associations (Aggr));
8133b9d1 4398
e264efcc 4399 -- Collect discriminant values and recurse
107b023c
AC
4400
4401 Add_Discriminant_Values
4402 (New_Aggr, Assoc_List);
4403 Propagate_Discriminants
105b5e65 4404 (New_Aggr, Assoc_List);
107b023c
AC
4405
4406 else
4407 Needs_Box := True;
8133b9d1 4408 end if;
105b5e65 4409 end Process_Component;
8133b9d1 4410
c159409f
AC
4411 -- Start of processing for Propagate_Discriminants
4412
105b5e65 4413 begin
105b5e65
AC
4414 -- The component type may be a variant type, so
4415 -- collect the components that are ruled by the
c159409f
AC
4416 -- known values of the discriminants. Their values
4417 -- have already been inserted into the component
4418 -- list of the current aggregate.
105b5e65
AC
4419
4420 if Nkind (Def_Node) = N_Record_Definition
4421 and then
4422 Present (Component_List (Def_Node))
4423 and then
4424 Present
4425 (Variant_Part (Component_List (Def_Node)))
4426 then
4427 Gather_Components (Aggr_Type,
4428 Component_List (Def_Node),
c159409f 4429 Governed_By => Component_Associations (Aggr),
105b5e65
AC
4430 Into => Components,
4431 Report_Errors => Errors);
4432
4433 Comp_Elmt := First_Elmt (Components);
4434 while Present (Comp_Elmt) loop
4435 if
4436 Ekind (Node (Comp_Elmt)) /= E_Discriminant
4437 then
4438 Process_Component (Node (Comp_Elmt));
4439 end if;
4440
4441 Next_Elmt (Comp_Elmt);
4442 end loop;
4443
4444 -- No variant part, iterate over all components
4445
4446 else
105b5e65
AC
4447 Comp := First_Component (Etype (Aggr));
4448 while Present (Comp) loop
4449 Process_Component (Comp);
4450 Next_Component (Comp);
4451 end loop;
4452 end if;
107b023c
AC
4453
4454 if Needs_Box then
4455 Append
4456 (Make_Component_Association (Loc,
4457 Choices =>
4458 New_List (Make_Others_Choice (Loc)),
4459 Expression => Empty,
4460 Box_Present => True),
4461 Component_Associations (Aggr));
4462 end if;
4463 end Propagate_Discriminants;
4464
3786bbd1 4465 -- Start of processing for Capture_Discriminants
105b5e65 4466
107b023c
AC
4467 begin
4468 Expr := Make_Aggregate (Loc, New_List, New_List);
4469 Set_Etype (Expr, Ctyp);
4470
3786bbd1
RD
4471 -- If the enclosing type has discriminants, they have
4472 -- been collected in the aggregate earlier, and they
4473 -- may appear as constraints of subcomponents.
4474
107b023c 4475 -- Similarly if this component has discriminants, they
2be0bff8 4476 -- might in turn be propagated to their components.
107b023c
AC
4477
4478 if Has_Discriminants (Typ) then
4479 Add_Discriminant_Values (Expr, New_Assoc_List);
105b5e65 4480 Propagate_Discriminants (Expr, New_Assoc_List);
107b023c
AC
4481
4482 elsif Has_Discriminants (Ctyp) then
4483 Add_Discriminant_Values
3786bbd1 4484 (Expr, Component_Associations (Expr));
107b023c 4485 Propagate_Discriminants
105b5e65 4486 (Expr, Component_Associations (Expr));
107b023c
AC
4487
4488 else
4489 declare
719aaf4d 4490 Comp : Entity_Id;
107b023c
AC
4491
4492 begin
4493 -- If the type has additional components, create
2be0bff8 4494 -- an OTHERS box association for them.
107b023c
AC
4495
4496 Comp := First_Component (Ctyp);
4497 while Present (Comp) loop
4498 if Ekind (Comp) = E_Component then
4499 if not Is_Record_Type (Etype (Comp)) then
4500 Append
4501 (Make_Component_Association (Loc,
4502 Choices =>
4503 New_List
4504 (Make_Others_Choice (Loc)),
4505 Expression => Empty,
4506 Box_Present => True),
4507 Component_Associations (Expr));
4508 end if;
4509 exit;
4510 end if;
4511
4512 Next_Component (Comp);
4513 end loop;
4514 end;
4515 end if;
c7ce71c2
ES
4516
4517 Add_Association
107b023c
AC
4518 (Component => Component,
4519 Expr => Expr,
4520 Assoc_List => New_Assoc_List);
4521 end Capture_Discriminants;
c7ce71c2
ES
4522
4523 else
4524 Add_Association
4525 (Component => Component,
4526 Expr => Empty,
107b023c 4527 Assoc_List => New_Assoc_List,
c7ce71c2
ES
4528 Is_Box_Present => True);
4529 end if;
9b96e234
JM
4530
4531 -- Otherwise we only need to resolve the expression if the
4532 -- component has partially initialized values (required to
4533 -- expand the corresponding assignments and run-time checks).
4534
4535 elsif Present (Expr)
f91e8020 4536 and then Is_Partially_Initialized_Type (Ctyp)
9b96e234
JM
4537 then
4538 Resolve_Aggr_Expr (Expr, Component);
4539 end if;
f91e8020 4540 end Check_Box_Component;
615cbd95 4541
65356e64 4542 elsif No (Expr) then
c7ce71c2
ES
4543
4544 -- Ignore hidden components associated with the position of the
4545 -- interface tags: these are initialized dynamically.
4546
c80d4855 4547 if not Present (Related_Type (Component)) then
c7ce71c2
ES
4548 Error_Msg_NE
4549 ("no value supplied for component &!", N, Component);
4550 end if;
615cbd95 4551
996ae0b0
RK
4552 else
4553 Resolve_Aggr_Expr (Expr, Component);
4554 end if;
4555
4556 Next_Elmt (Component_Elmt);
4557 end loop;
4558
4559 -- STEP 7: check for invalid components + check type in choice list
4560
4561 Step_7 : declare
4562 Selectr : Node_Id;
4563 -- Selector name
4564
9b96e234 4565 Typech : Entity_Id;
996ae0b0
RK
4566 -- Type of first component in choice list
4567
4568 begin
4569 if Present (Component_Associations (N)) then
4570 Assoc := First (Component_Associations (N));
4571 else
4572 Assoc := Empty;
4573 end if;
4574
4575 Verification : while Present (Assoc) loop
4576 Selectr := First (Choices (Assoc));
4577 Typech := Empty;
4578
4579 if Nkind (Selectr) = N_Others_Choice then
19f0526a 4580
9b96e234 4581 -- Ada 2005 (AI-287): others choice may have expression or box
19f0526a 4582
65356e64 4583 if No (Others_Etype)
9b96e234 4584 and then not Others_Box
65356e64 4585 then
ed2233dc 4586 Error_Msg_N
996ae0b0
RK
4587 ("OTHERS must represent at least one component", Selectr);
4588 end if;
4589
4590 exit Verification;
4591 end if;
4592
4593 while Present (Selectr) loop
4594 New_Assoc := First (New_Assoc_List);
4595 while Present (New_Assoc) loop
4596 Component := First (Choices (New_Assoc));
6989bc1f
AC
4597
4598 if Chars (Selectr) = Chars (Component) then
4599 if Style_Check then
4600 Check_Identifier (Selectr, Entity (Component));
4601 end if;
4602
4603 exit;
4604 end if;
4605
996ae0b0
RK
4606 Next (New_Assoc);
4607 end loop;
4608
c7e152b5
AC
4609 -- If no association, this is not a legal component of the type
4610 -- in question, unless its association is provided with a box.
996ae0b0
RK
4611
4612 if No (New_Assoc) then
65356e64 4613 if Box_Present (Parent (Selectr)) then
aad93b55
ES
4614
4615 -- This may still be a bogus component with a box. Scan
4616 -- list of components to verify that a component with
4617 -- that name exists.
4618
4619 declare
4620 C : Entity_Id;
4621
4622 begin
4623 C := First_Component (Typ);
4624 while Present (C) loop
4625 if Chars (C) = Chars (Selectr) then
ca44152f
ES
4626
4627 -- If the context is an extension aggregate,
4628 -- the component must not be inherited from
4629 -- the ancestor part of the aggregate.
4630
4631 if Nkind (N) /= N_Extension_Aggregate
4632 or else
4633 Scope (Original_Record_Component (C)) /=
4634 Etype (Ancestor_Part (N))
4635 then
4636 exit;
4637 end if;
aad93b55
ES
4638 end if;
4639
4640 Next_Component (C);
4641 end loop;
4642
4643 if No (C) then
4644 Error_Msg_Node_2 := Typ;
4645 Error_Msg_N ("& is not a component of}", Selectr);
4646 end if;
4647 end;
996ae0b0 4648
65356e64 4649 elsif Chars (Selectr) /= Name_uTag
996ae0b0 4650 and then Chars (Selectr) /= Name_uParent
996ae0b0
RK
4651 then
4652 if not Has_Discriminants (Typ) then
4653 Error_Msg_Node_2 := Typ;
aad93b55 4654 Error_Msg_N ("& is not a component of}", Selectr);
996ae0b0
RK
4655 else
4656 Error_Msg_N
4657 ("& is not a component of the aggregate subtype",
4658 Selectr);
4659 end if;
4660
4661 Check_Misspelled_Component (Components, Selectr);
4662 end if;
4663
4664 elsif No (Typech) then
4665 Typech := Base_Type (Etype (Component));
4666
feab3549 4667 -- AI05-0199: In Ada 2012, several components of anonymous
8da337c5
AC
4668 -- access types can appear in a choice list, as long as the
4669 -- designated types match.
4670
996ae0b0 4671 elsif Typech /= Base_Type (Etype (Component)) then
dbe945f1 4672 if Ada_Version >= Ada_2012
8da337c5
AC
4673 and then Ekind (Typech) = E_Anonymous_Access_Type
4674 and then
4675 Ekind (Etype (Component)) = E_Anonymous_Access_Type
4676 and then Base_Type (Designated_Type (Typech)) =
4677 Base_Type (Designated_Type (Etype (Component)))
4678 and then
4679 Subtypes_Statically_Match (Typech, (Etype (Component)))
4680 then
4681 null;
4682
4683 elsif not Box_Present (Parent (Selectr)) then
65356e64
AC
4684 Error_Msg_N
4685 ("components in choice list must have same type",
4686 Selectr);
4687 end if;
996ae0b0
RK
4688 end if;
4689
4690 Next (Selectr);
4691 end loop;
4692
4693 Next (Assoc);
4694 end loop Verification;
4695 end Step_7;
4696
4697 -- STEP 8: replace the original aggregate
4698
4699 Step_8 : declare
fbf5a39b 4700 New_Aggregate : constant Node_Id := New_Copy (N);
996ae0b0
RK
4701
4702 begin
4703 Set_Expressions (New_Aggregate, No_List);
4704 Set_Etype (New_Aggregate, Etype (N));
4705 Set_Component_Associations (New_Aggregate, New_Assoc_List);
4706
4707 Rewrite (N, New_Aggregate);
4708 end Step_8;
0929eaeb 4709
d976bf74 4710 -- Check the dimensions of the components in the record aggregate
0929eaeb
AC
4711
4712 Analyze_Dimension_Extension_Or_Record_Aggregate (N);
996ae0b0
RK
4713 end Resolve_Record_Aggregate;
4714
2820d220
AC
4715 -----------------------------
4716 -- Check_Can_Never_Be_Null --
4717 -----------------------------
4718
9b96e234 4719 procedure Check_Can_Never_Be_Null (Typ : Entity_Id; Expr : Node_Id) is
ec53a6da
JM
4720 Comp_Typ : Entity_Id;
4721
2820d220 4722 begin
9b96e234 4723 pragma Assert
0791fbe9 4724 (Ada_Version >= Ada_2005
9b96e234 4725 and then Present (Expr)
8133b9d1 4726 and then Known_Null (Expr));
82c80734 4727
ec53a6da
JM
4728 case Ekind (Typ) is
4729 when E_Array_Type =>
4730 Comp_Typ := Component_Type (Typ);
4731
4732 when E_Component |
4733 E_Discriminant =>
4734 Comp_Typ := Etype (Typ);
4735
4736 when others =>
4737 return;
4738 end case;
4739
9b96e234
JM
4740 if Can_Never_Be_Null (Comp_Typ) then
4741
4742 -- Here we know we have a constraint error. Note that we do not use
4743 -- Apply_Compile_Time_Constraint_Error here to the Expr, which might
4744 -- seem the more natural approach. That's because in some cases the
4745 -- components are rewritten, and the replacement would be missed.
5a521b8a
AC
4746 -- We do not mark the whole aggregate as raising a constraint error,
4747 -- because the association may be a null array range.
9b96e234 4748
5a521b8a
AC
4749 Error_Msg_N
4750 ("(Ada 2005) null not allowed in null-excluding component??", Expr);
4751 Error_Msg_N
2db5b47e 4752 ("\Constraint_Error will be raised at run time?", Expr);
9b96e234 4753
5a521b8a
AC
4754 Rewrite (Expr,
4755 Make_Raise_Constraint_Error
4756 (Sloc (Expr), Reason => CE_Access_Check_Failed));
9b96e234
JM
4757 Set_Etype (Expr, Comp_Typ);
4758 Set_Analyzed (Expr);
2820d220
AC
4759 end if;
4760 end Check_Can_Never_Be_Null;
4761
996ae0b0
RK
4762 ---------------------
4763 -- Sort_Case_Table --
4764 ---------------------
4765
4766 procedure Sort_Case_Table (Case_Table : in out Case_Table_Type) is
fbf5a39b 4767 U : constant Int := Case_Table'Last;
996ae0b0
RK
4768 K : Int;
4769 J : Int;
4770 T : Case_Bounds;
4771
4772 begin
82893775
AC
4773 K := 1;
4774 while K < U loop
996ae0b0 4775 T := Case_Table (K + 1);
996ae0b0 4776
7f9747c6 4777 J := K + 1;
82893775
AC
4778 while J > 1
4779 and then Expr_Value (Case_Table (J - 1).Lo) > Expr_Value (T.Lo)
996ae0b0
RK
4780 loop
4781 Case_Table (J) := Case_Table (J - 1);
4782 J := J - 1;
4783 end loop;
4784
4785 Case_Table (J) := T;
4786 K := K + 1;
4787 end loop;
4788 end Sort_Case_Table;
4789
4790end Sem_Aggr;
This page took 4.650147 seconds and 5 git commands to generate.