]> gcc.gnu.org Git - gcc.git/blame - gcc/ada/freeze.adb
makeutl.adb, [...]: Minor reformatting.
[gcc.git] / gcc / ada / freeze.adb
CommitLineData
8dc10d38 1------------------------------------------------------------------------------
70482933
RK
2-- --
3-- GNAT COMPILER COMPONENTS --
4-- --
5-- F R E E Z E --
6-- --
7-- B o d y --
8-- --
748086b7 9-- Copyright (C) 1992-2009, Free Software Foundation, Inc. --
70482933
RK
10-- --
11-- GNAT is free software; you can redistribute it and/or modify it under --
12-- terms of the GNU General Public License as published by the Free Soft- --
748086b7 13-- ware Foundation; either version 3, or (at your option) any later ver- --
70482933
RK
14-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
748086b7
JJ
16-- or FITNESS FOR A PARTICULAR PURPOSE. --
17-- --
18-- You should have received a copy of the GNU General Public License along --
19-- with this program; see file COPYING3. If not see --
20-- <http://www.gnu.org/licenses/>. --
70482933
RK
21-- --
22-- GNAT was originally developed by the GNAT team at New York University. --
71ff80dc 23-- Extensive contributions were provided by Ada Core Technologies Inc. --
70482933
RK
24-- --
25------------------------------------------------------------------------------
26
27with Atree; use Atree;
28with Debug; use Debug;
29with Einfo; use Einfo;
30with Elists; use Elists;
31with Errout; use Errout;
1ce1f005 32with Exp_Ch3; use Exp_Ch3;
70482933 33with Exp_Ch7; use Exp_Ch7;
ce2b6ba5 34with Exp_Disp; use Exp_Disp;
70482933
RK
35with Exp_Pakd; use Exp_Pakd;
36with Exp_Util; use Exp_Util;
fbf5a39b 37with Exp_Tss; use Exp_Tss;
70482933 38with Layout; use Layout;
7d8b9c99 39with Namet; use Namet;
70482933
RK
40with Nlists; use Nlists;
41with Nmake; use Nmake;
42with Opt; use Opt;
43with Restrict; use Restrict;
6e937c1c 44with Rident; use Rident;
70482933 45with Sem; use Sem;
a4100e55 46with Sem_Aux; use Sem_Aux;
70482933
RK
47with Sem_Cat; use Sem_Cat;
48with Sem_Ch6; use Sem_Ch6;
49with Sem_Ch7; use Sem_Ch7;
50with Sem_Ch8; use Sem_Ch8;
51with Sem_Ch13; use Sem_Ch13;
52with Sem_Eval; use Sem_Eval;
53with Sem_Mech; use Sem_Mech;
54with Sem_Prag; use Sem_Prag;
55with Sem_Res; use Sem_Res;
56with Sem_Util; use Sem_Util;
57with Sinfo; use Sinfo;
58with Snames; use Snames;
59with Stand; use Stand;
60with Targparm; use Targparm;
61with Tbuild; use Tbuild;
62with Ttypes; use Ttypes;
63with Uintp; use Uintp;
64with Urealp; use Urealp;
65
66package body Freeze is
67
68 -----------------------
69 -- Local Subprograms --
70 -----------------------
71
72 procedure Adjust_Esize_For_Alignment (Typ : Entity_Id);
73 -- Typ is a type that is being frozen. If no size clause is given,
74 -- but a default Esize has been computed, then this default Esize is
75 -- adjusted up if necessary to be consistent with a given alignment,
76 -- but never to a value greater than Long_Long_Integer'Size. This
77 -- is used for all discrete types and for fixed-point types.
78
79 procedure Build_And_Analyze_Renamed_Body
80 (Decl : Node_Id;
81 New_S : Entity_Id;
82 After : in out Node_Id);
49e90211 83 -- Build body for a renaming declaration, insert in tree and analyze
70482933 84
fbf5a39b
AC
85 procedure Check_Address_Clause (E : Entity_Id);
86 -- Apply legality checks to address clauses for object declarations,
2c9beb8a 87 -- at the point the object is frozen.
fbf5a39b 88
70482933
RK
89 procedure Check_Strict_Alignment (E : Entity_Id);
90 -- E is a base type. If E is tagged or has a component that is aliased
91 -- or tagged or contains something this is aliased or tagged, set
92 -- Strict_Alignment.
93
94 procedure Check_Unsigned_Type (E : Entity_Id);
95 pragma Inline (Check_Unsigned_Type);
96 -- If E is a fixed-point or discrete type, then all the necessary work
97 -- to freeze it is completed except for possible setting of the flag
98 -- Is_Unsigned_Type, which is done by this procedure. The call has no
99 -- effect if the entity E is not a discrete or fixed-point type.
100
101 procedure Freeze_And_Append
102 (Ent : Entity_Id;
103 Loc : Source_Ptr;
104 Result : in out List_Id);
105 -- Freezes Ent using Freeze_Entity, and appends the resulting list of
106 -- nodes to Result, modifying Result from No_List if necessary.
107
108 procedure Freeze_Enumeration_Type (Typ : Entity_Id);
109 -- Freeze enumeration type. The Esize field is set as processing
110 -- proceeds (i.e. set by default when the type is declared and then
111 -- adjusted by rep clauses. What this procedure does is to make sure
112 -- that if a foreign convention is specified, and no specific size
113 -- is given, then the size must be at least Integer'Size.
114
70482933
RK
115 procedure Freeze_Static_Object (E : Entity_Id);
116 -- If an object is frozen which has Is_Statically_Allocated set, then
117 -- all referenced types must also be marked with this flag. This routine
118 -- is in charge of meeting this requirement for the object entity E.
119
120 procedure Freeze_Subprogram (E : Entity_Id);
121 -- Perform freezing actions for a subprogram (create extra formals,
122 -- and set proper default mechanism values). Note that this routine
123 -- is not called for internal subprograms, for which neither of these
124 -- actions is needed (or desirable, we do not want for example to have
125 -- these extra formals present in initialization procedures, where they
126 -- would serve no purpose). In this call E is either a subprogram or
127 -- a subprogram type (i.e. an access to a subprogram).
128
129 function Is_Fully_Defined (T : Entity_Id) return Boolean;
bde58e32 130 -- True if T is not private and has no private components, or has a full
657a9dd9
AC
131 -- view. Used to determine whether the designated type of an access type
132 -- should be frozen when the access type is frozen. This is done when an
133 -- allocator is frozen, or an expression that may involve attributes of
134 -- the designated type. Otherwise freezing the access type does not freeze
135 -- the designated type.
70482933
RK
136
137 procedure Process_Default_Expressions
138 (E : Entity_Id;
139 After : in out Node_Id);
140 -- This procedure is called for each subprogram to complete processing
141 -- of default expressions at the point where all types are known to be
142 -- frozen. The expressions must be analyzed in full, to make sure that
143 -- all error processing is done (they have only been pre-analyzed). If
144 -- the expression is not an entity or literal, its analysis may generate
145 -- code which must not be executed. In that case we build a function
146 -- body to hold that code. This wrapper function serves no other purpose
147 -- (it used to be called to evaluate the default, but now the default is
148 -- inlined at each point of call).
149
150 procedure Set_Component_Alignment_If_Not_Set (Typ : Entity_Id);
151 -- Typ is a record or array type that is being frozen. This routine
152 -- sets the default component alignment from the scope stack values
153 -- if the alignment is otherwise not specified.
154
155 procedure Check_Debug_Info_Needed (T : Entity_Id);
156 -- As each entity is frozen, this routine is called to deal with the
157 -- setting of Debug_Info_Needed for the entity. This flag is set if
158 -- the entity comes from source, or if we are in Debug_Generated_Code
159 -- mode or if the -gnatdV debug flag is set. However, it never sets
1b24ada5
RD
160 -- the flag if Debug_Info_Off is set. This procedure also ensures that
161 -- subsidiary entities have the flag set as required.
70482933 162
c6823a20
EB
163 procedure Undelay_Type (T : Entity_Id);
164 -- T is a type of a component that we know to be an Itype.
165 -- We don't want this to have a Freeze_Node, so ensure it doesn't.
166 -- Do the same for any Full_View or Corresponding_Record_Type.
167
fbf5a39b
AC
168 procedure Warn_Overlay
169 (Expr : Node_Id;
170 Typ : Entity_Id;
171 Nam : Node_Id);
172 -- Expr is the expression for an address clause for entity Nam whose type
173 -- is Typ. If Typ has a default initialization, and there is no explicit
174 -- initialization in the source declaration, check whether the address
175 -- clause might cause overlaying of an entity, and emit a warning on the
176 -- side effect that the initialization will cause.
177
70482933
RK
178 -------------------------------
179 -- Adjust_Esize_For_Alignment --
180 -------------------------------
181
182 procedure Adjust_Esize_For_Alignment (Typ : Entity_Id) is
183 Align : Uint;
184
185 begin
186 if Known_Esize (Typ) and then Known_Alignment (Typ) then
187 Align := Alignment_In_Bits (Typ);
188
189 if Align > Esize (Typ)
190 and then Align <= Standard_Long_Long_Integer_Size
191 then
192 Set_Esize (Typ, Align);
193 end if;
194 end if;
195 end Adjust_Esize_For_Alignment;
196
197 ------------------------------------
198 -- Build_And_Analyze_Renamed_Body --
199 ------------------------------------
200
201 procedure Build_And_Analyze_Renamed_Body
202 (Decl : Node_Id;
203 New_S : Entity_Id;
204 After : in out Node_Id)
205 is
206 Body_Node : constant Node_Id := Build_Renamed_Body (Decl, New_S);
70482933
RK
207 begin
208 Insert_After (After, Body_Node);
209 Mark_Rewrite_Insertion (Body_Node);
210 Analyze (Body_Node);
211 After := Body_Node;
212 end Build_And_Analyze_Renamed_Body;
213
214 ------------------------
215 -- Build_Renamed_Body --
216 ------------------------
217
218 function Build_Renamed_Body
219 (Decl : Node_Id;
fbf5a39b 220 New_S : Entity_Id) return Node_Id
70482933
RK
221 is
222 Loc : constant Source_Ptr := Sloc (New_S);
223 -- We use for the source location of the renamed body, the location
224 -- of the spec entity. It might seem more natural to use the location
225 -- of the renaming declaration itself, but that would be wrong, since
226 -- then the body we create would look as though it was created far
227 -- too late, and this could cause problems with elaboration order
228 -- analysis, particularly in connection with instantiations.
229
230 N : constant Node_Id := Unit_Declaration_Node (New_S);
231 Nam : constant Node_Id := Name (N);
232 Old_S : Entity_Id;
233 Spec : constant Node_Id := New_Copy_Tree (Specification (Decl));
234 Actuals : List_Id := No_List;
235 Call_Node : Node_Id;
236 Call_Name : Node_Id;
237 Body_Node : Node_Id;
238 Formal : Entity_Id;
239 O_Formal : Entity_Id;
240 Param_Spec : Node_Id;
241
def46b54
RD
242 Pref : Node_Id := Empty;
243 -- If the renamed entity is a primitive operation given in prefix form,
244 -- the prefix is the target object and it has to be added as the first
245 -- actual in the generated call.
246
70482933 247 begin
def46b54
RD
248 -- Determine the entity being renamed, which is the target of the call
249 -- statement. If the name is an explicit dereference, this is a renaming
250 -- of a subprogram type rather than a subprogram. The name itself is
251 -- fully analyzed.
70482933
RK
252
253 if Nkind (Nam) = N_Selected_Component then
254 Old_S := Entity (Selector_Name (Nam));
255
256 elsif Nkind (Nam) = N_Explicit_Dereference then
257 Old_S := Etype (Nam);
258
259 elsif Nkind (Nam) = N_Indexed_Component then
70482933
RK
260 if Is_Entity_Name (Prefix (Nam)) then
261 Old_S := Entity (Prefix (Nam));
262 else
263 Old_S := Entity (Selector_Name (Prefix (Nam)));
264 end if;
265
266 elsif Nkind (Nam) = N_Character_Literal then
267 Old_S := Etype (New_S);
268
269 else
270 Old_S := Entity (Nam);
271 end if;
272
273 if Is_Entity_Name (Nam) then
07fc65c4 274
def46b54
RD
275 -- If the renamed entity is a predefined operator, retain full name
276 -- to ensure its visibility.
07fc65c4
GB
277
278 if Ekind (Old_S) = E_Operator
279 and then Nkind (Nam) = N_Expanded_Name
280 then
281 Call_Name := New_Copy (Name (N));
282 else
283 Call_Name := New_Reference_To (Old_S, Loc);
284 end if;
285
70482933 286 else
def46b54
RD
287 if Nkind (Nam) = N_Selected_Component
288 and then Present (First_Formal (Old_S))
289 and then
290 (Is_Controlling_Formal (First_Formal (Old_S))
291 or else Is_Class_Wide_Type (Etype (First_Formal (Old_S))))
292 then
293
294 -- Retrieve the target object, to be added as a first actual
295 -- in the call.
296
297 Call_Name := New_Occurrence_Of (Old_S, Loc);
298 Pref := Prefix (Nam);
299
300 else
301 Call_Name := New_Copy (Name (N));
302 end if;
70482933
RK
303
304 -- The original name may have been overloaded, but
305 -- is fully resolved now.
306
307 Set_Is_Overloaded (Call_Name, False);
308 end if;
309
def46b54
RD
310 -- For simple renamings, subsequent calls can be expanded directly as
311 -- called to the renamed entity. The body must be generated in any case
312 -- for calls they may appear elsewhere.
70482933
RK
313
314 if (Ekind (Old_S) = E_Function
315 or else Ekind (Old_S) = E_Procedure)
316 and then Nkind (Decl) = N_Subprogram_Declaration
317 then
318 Set_Body_To_Inline (Decl, Old_S);
319 end if;
320
321 -- The body generated for this renaming is an internal artifact, and
322 -- does not constitute a freeze point for the called entity.
323
324 Set_Must_Not_Freeze (Call_Name);
325
326 Formal := First_Formal (Defining_Entity (Decl));
327
def46b54
RD
328 if Present (Pref) then
329 declare
330 Pref_Type : constant Entity_Id := Etype (Pref);
331 Form_Type : constant Entity_Id := Etype (First_Formal (Old_S));
332
333 begin
334
335 -- The controlling formal may be an access parameter, or the
e14c931f 336 -- actual may be an access value, so adjust accordingly.
def46b54
RD
337
338 if Is_Access_Type (Pref_Type)
339 and then not Is_Access_Type (Form_Type)
340 then
341 Actuals := New_List
342 (Make_Explicit_Dereference (Loc, Relocate_Node (Pref)));
343
344 elsif Is_Access_Type (Form_Type)
345 and then not Is_Access_Type (Pref)
346 then
347 Actuals := New_List
348 (Make_Attribute_Reference (Loc,
349 Attribute_Name => Name_Access,
350 Prefix => Relocate_Node (Pref)));
351 else
352 Actuals := New_List (Pref);
353 end if;
354 end;
355
356 elsif Present (Formal) then
70482933
RK
357 Actuals := New_List;
358
def46b54
RD
359 else
360 Actuals := No_List;
361 end if;
362
363 if Present (Formal) then
70482933
RK
364 while Present (Formal) loop
365 Append (New_Reference_To (Formal, Loc), Actuals);
366 Next_Formal (Formal);
367 end loop;
368 end if;
369
def46b54
RD
370 -- If the renamed entity is an entry, inherit its profile. For other
371 -- renamings as bodies, both profiles must be subtype conformant, so it
372 -- is not necessary to replace the profile given in the declaration.
373 -- However, default values that are aggregates are rewritten when
374 -- partially analyzed, so we recover the original aggregate to insure
375 -- that subsequent conformity checking works. Similarly, if the default
376 -- expression was constant-folded, recover the original expression.
70482933
RK
377
378 Formal := First_Formal (Defining_Entity (Decl));
379
380 if Present (Formal) then
381 O_Formal := First_Formal (Old_S);
382 Param_Spec := First (Parameter_Specifications (Spec));
383
384 while Present (Formal) loop
385 if Is_Entry (Old_S) then
386
387 if Nkind (Parameter_Type (Param_Spec)) /=
388 N_Access_Definition
389 then
390 Set_Etype (Formal, Etype (O_Formal));
391 Set_Entity (Parameter_Type (Param_Spec), Etype (O_Formal));
392 end if;
393
07fc65c4
GB
394 elsif Nkind (Default_Value (O_Formal)) = N_Aggregate
395 or else Nkind (Original_Node (Default_Value (O_Formal))) /=
396 Nkind (Default_Value (O_Formal))
397 then
70482933
RK
398 Set_Expression (Param_Spec,
399 New_Copy_Tree (Original_Node (Default_Value (O_Formal))));
400 end if;
401
402 Next_Formal (Formal);
403 Next_Formal (O_Formal);
404 Next (Param_Spec);
405 end loop;
406 end if;
407
408 -- If the renamed entity is a function, the generated body contains a
409 -- return statement. Otherwise, build a procedure call. If the entity is
410 -- an entry, subsequent analysis of the call will transform it into the
411 -- proper entry or protected operation call. If the renamed entity is
412 -- a character literal, return it directly.
413
414 if Ekind (Old_S) = E_Function
415 or else Ekind (Old_S) = E_Operator
416 or else (Ekind (Old_S) = E_Subprogram_Type
417 and then Etype (Old_S) /= Standard_Void_Type)
418 then
419 Call_Node :=
86cde7b1 420 Make_Simple_Return_Statement (Loc,
70482933
RK
421 Expression =>
422 Make_Function_Call (Loc,
423 Name => Call_Name,
424 Parameter_Associations => Actuals));
425
426 elsif Ekind (Old_S) = E_Enumeration_Literal then
427 Call_Node :=
86cde7b1 428 Make_Simple_Return_Statement (Loc,
70482933
RK
429 Expression => New_Occurrence_Of (Old_S, Loc));
430
431 elsif Nkind (Nam) = N_Character_Literal then
432 Call_Node :=
86cde7b1 433 Make_Simple_Return_Statement (Loc,
70482933
RK
434 Expression => Call_Name);
435
436 else
437 Call_Node :=
438 Make_Procedure_Call_Statement (Loc,
439 Name => Call_Name,
440 Parameter_Associations => Actuals);
441 end if;
442
49e90211 443 -- Create entities for subprogram body and formals
70482933
RK
444
445 Set_Defining_Unit_Name (Spec,
446 Make_Defining_Identifier (Loc, Chars => Chars (New_S)));
447
448 Param_Spec := First (Parameter_Specifications (Spec));
449
450 while Present (Param_Spec) loop
451 Set_Defining_Identifier (Param_Spec,
452 Make_Defining_Identifier (Loc,
453 Chars => Chars (Defining_Identifier (Param_Spec))));
454 Next (Param_Spec);
455 end loop;
456
457 Body_Node :=
458 Make_Subprogram_Body (Loc,
459 Specification => Spec,
460 Declarations => New_List,
461 Handled_Statement_Sequence =>
462 Make_Handled_Sequence_Of_Statements (Loc,
463 Statements => New_List (Call_Node)));
464
465 if Nkind (Decl) /= N_Subprogram_Declaration then
466 Rewrite (N,
467 Make_Subprogram_Declaration (Loc,
468 Specification => Specification (N)));
469 end if;
470
471 -- Link the body to the entity whose declaration it completes. If
def46b54
RD
472 -- the body is analyzed when the renamed entity is frozen, it may
473 -- be necessary to restore the proper scope (see package Exp_Ch13).
70482933
RK
474
475 if Nkind (N) = N_Subprogram_Renaming_Declaration
476 and then Present (Corresponding_Spec (N))
477 then
478 Set_Corresponding_Spec (Body_Node, Corresponding_Spec (N));
479 else
480 Set_Corresponding_Spec (Body_Node, New_S);
481 end if;
482
483 return Body_Node;
484 end Build_Renamed_Body;
485
fbf5a39b
AC
486 --------------------------
487 -- Check_Address_Clause --
488 --------------------------
489
490 procedure Check_Address_Clause (E : Entity_Id) is
491 Addr : constant Node_Id := Address_Clause (E);
492 Expr : Node_Id;
493 Decl : constant Node_Id := Declaration_Node (E);
494 Typ : constant Entity_Id := Etype (E);
495
496 begin
497 if Present (Addr) then
498 Expr := Expression (Addr);
499
def46b54
RD
500 -- If we have no initialization of any kind, then we don't need to
501 -- place any restrictions on the address clause, because the object
502 -- will be elaborated after the address clause is evaluated. This
503 -- happens if the declaration has no initial expression, or the type
504 -- has no implicit initialization, or the object is imported.
fbf5a39b 505
def46b54
RD
506 -- The same holds for all initialized scalar types and all access
507 -- types. Packed bit arrays of size up to 64 are represented using a
508 -- modular type with an initialization (to zero) and can be processed
509 -- like other initialized scalar types.
fbf5a39b
AC
510
511 -- If the type is controlled, code to attach the object to a
512 -- finalization chain is generated at the point of declaration,
513 -- and therefore the elaboration of the object cannot be delayed:
514 -- the address expression must be a constant.
515
516 if (No (Expression (Decl))
048e5cef 517 and then not Needs_Finalization (Typ)
fbf5a39b
AC
518 and then
519 (not Has_Non_Null_Base_Init_Proc (Typ)
520 or else Is_Imported (E)))
521
522 or else
523 (Present (Expression (Decl))
524 and then Is_Scalar_Type (Typ))
525
526 or else
527 Is_Access_Type (Typ)
528
529 or else
530 (Is_Bit_Packed_Array (Typ)
531 and then
532 Is_Modular_Integer_Type (Packed_Array_Type (Typ)))
533 then
534 null;
535
def46b54
RD
536 -- Otherwise, we require the address clause to be constant because
537 -- the call to the initialization procedure (or the attach code) has
538 -- to happen at the point of the declaration.
f3b57ab0
AC
539 -- Actually the IP call has been moved to the freeze actions
540 -- anyway, so maybe we can relax this restriction???
fbf5a39b
AC
541
542 else
543 Check_Constant_Address_Clause (Expr, E);
f3b57ab0
AC
544
545 -- Has_Delayed_Freeze was set on E when the address clause was
546 -- analyzed. Reset the flag now unless freeze actions were
547 -- attached to it in the mean time.
548
549 if No (Freeze_Node (E)) then
550 Set_Has_Delayed_Freeze (E, False);
551 end if;
fbf5a39b
AC
552 end if;
553
554 if not Error_Posted (Expr)
048e5cef 555 and then not Needs_Finalization (Typ)
fbf5a39b
AC
556 then
557 Warn_Overlay (Expr, Typ, Name (Addr));
558 end if;
559 end if;
560 end Check_Address_Clause;
561
70482933
RK
562 -----------------------------
563 -- Check_Compile_Time_Size --
564 -----------------------------
565
566 procedure Check_Compile_Time_Size (T : Entity_Id) is
567
c6823a20 568 procedure Set_Small_Size (T : Entity_Id; S : Uint);
70482933 569 -- Sets the compile time known size (32 bits or less) in the Esize
c6823a20 570 -- field, of T checking for a size clause that was given which attempts
70482933
RK
571 -- to give a smaller size.
572
573 function Size_Known (T : Entity_Id) return Boolean;
07fc65c4 574 -- Recursive function that does all the work
70482933
RK
575
576 function Static_Discriminated_Components (T : Entity_Id) return Boolean;
577 -- If T is a constrained subtype, its size is not known if any of its
578 -- discriminant constraints is not static and it is not a null record.
fbf5a39b 579 -- The test is conservative and doesn't check that the components are
70482933
RK
580 -- in fact constrained by non-static discriminant values. Could be made
581 -- more precise ???
582
583 --------------------
584 -- Set_Small_Size --
585 --------------------
586
c6823a20 587 procedure Set_Small_Size (T : Entity_Id; S : Uint) is
70482933
RK
588 begin
589 if S > 32 then
590 return;
591
592 elsif Has_Size_Clause (T) then
593 if RM_Size (T) < S then
594 Error_Msg_Uint_1 := S;
595 Error_Msg_NE
d58b9515 596 ("size for& too small, minimum allowed is ^",
70482933
RK
597 Size_Clause (T), T);
598
599 elsif Unknown_Esize (T) then
600 Set_Esize (T, S);
601 end if;
602
603 -- Set sizes if not set already
604
605 else
606 if Unknown_Esize (T) then
607 Set_Esize (T, S);
608 end if;
609
610 if Unknown_RM_Size (T) then
611 Set_RM_Size (T, S);
612 end if;
613 end if;
614 end Set_Small_Size;
615
616 ----------------
617 -- Size_Known --
618 ----------------
619
620 function Size_Known (T : Entity_Id) return Boolean is
621 Index : Entity_Id;
622 Comp : Entity_Id;
623 Ctyp : Entity_Id;
624 Low : Node_Id;
625 High : Node_Id;
626
627 begin
628 if Size_Known_At_Compile_Time (T) then
629 return True;
630
c6a9797e
RD
631 -- Always True for scalar types. This is true even for generic formal
632 -- scalar types. We used to return False in the latter case, but the
633 -- size is known at compile time, even in the template, we just do
634 -- not know the exact size but that's not the point of this routine.
635
70482933
RK
636 elsif Is_Scalar_Type (T)
637 or else Is_Task_Type (T)
638 then
c6a9797e
RD
639 return True;
640
641 -- Array types
70482933
RK
642
643 elsif Is_Array_Type (T) then
c6a9797e
RD
644
645 -- String literals always have known size, and we can set it
646
70482933 647 if Ekind (T) = E_String_Literal_Subtype then
c6823a20
EB
648 Set_Small_Size (T, Component_Size (T)
649 * String_Literal_Length (T));
70482933
RK
650 return True;
651
c6a9797e
RD
652 -- Unconstrained types never have known at compile time size
653
70482933
RK
654 elsif not Is_Constrained (T) then
655 return False;
656
def46b54
RD
657 -- Don't do any recursion on type with error posted, since we may
658 -- have a malformed type that leads us into a loop.
07fc65c4
GB
659
660 elsif Error_Posted (T) then
661 return False;
662
c6a9797e
RD
663 -- Otherwise if component size unknown, then array size unknown
664
70482933
RK
665 elsif not Size_Known (Component_Type (T)) then
666 return False;
667 end if;
668
def46b54
RD
669 -- Check for all indexes static, and also compute possible size
670 -- (in case it is less than 32 and may be packable).
70482933
RK
671
672 declare
673 Esiz : Uint := Component_Size (T);
674 Dim : Uint;
675
676 begin
677 Index := First_Index (T);
70482933
RK
678 while Present (Index) loop
679 if Nkind (Index) = N_Range then
680 Get_Index_Bounds (Index, Low, High);
681
682 elsif Error_Posted (Scalar_Range (Etype (Index))) then
683 return False;
684
685 else
686 Low := Type_Low_Bound (Etype (Index));
687 High := Type_High_Bound (Etype (Index));
688 end if;
689
690 if not Compile_Time_Known_Value (Low)
691 or else not Compile_Time_Known_Value (High)
692 or else Etype (Index) = Any_Type
693 then
694 return False;
695
696 else
697 Dim := Expr_Value (High) - Expr_Value (Low) + 1;
698
699 if Dim >= 0 then
700 Esiz := Esiz * Dim;
701 else
702 Esiz := Uint_0;
703 end if;
704 end if;
705
706 Next_Index (Index);
707 end loop;
708
c6823a20 709 Set_Small_Size (T, Esiz);
70482933
RK
710 return True;
711 end;
712
c6a9797e
RD
713 -- Access types always have known at compile time sizes
714
70482933
RK
715 elsif Is_Access_Type (T) then
716 return True;
717
c6a9797e
RD
718 -- For non-generic private types, go to underlying type if present
719
70482933
RK
720 elsif Is_Private_Type (T)
721 and then not Is_Generic_Type (T)
722 and then Present (Underlying_Type (T))
723 then
def46b54
RD
724 -- Don't do any recursion on type with error posted, since we may
725 -- have a malformed type that leads us into a loop.
07fc65c4
GB
726
727 if Error_Posted (T) then
728 return False;
729 else
730 return Size_Known (Underlying_Type (T));
731 end if;
70482933 732
c6a9797e
RD
733 -- Record types
734
70482933 735 elsif Is_Record_Type (T) then
fbf5a39b
AC
736
737 -- A class-wide type is never considered to have a known size
738
70482933
RK
739 if Is_Class_Wide_Type (T) then
740 return False;
741
fbf5a39b
AC
742 -- A subtype of a variant record must not have non-static
743 -- discriminanted components.
744
745 elsif T /= Base_Type (T)
746 and then not Static_Discriminated_Components (T)
747 then
748 return False;
70482933 749
def46b54
RD
750 -- Don't do any recursion on type with error posted, since we may
751 -- have a malformed type that leads us into a loop.
07fc65c4
GB
752
753 elsif Error_Posted (T) then
754 return False;
fbf5a39b 755 end if;
07fc65c4 756
fbf5a39b 757 -- Now look at the components of the record
70482933 758
fbf5a39b 759 declare
def46b54
RD
760 -- The following two variables are used to keep track of the
761 -- size of packed records if we can tell the size of the packed
762 -- record in the front end. Packed_Size_Known is True if so far
763 -- we can figure out the size. It is initialized to True for a
764 -- packed record, unless the record has discriminants. The
765 -- reason we eliminate the discriminated case is that we don't
766 -- know the way the back end lays out discriminated packed
767 -- records. If Packed_Size_Known is True, then Packed_Size is
768 -- the size in bits so far.
fbf5a39b
AC
769
770 Packed_Size_Known : Boolean :=
771 Is_Packed (T)
772 and then not Has_Discriminants (T);
773
774 Packed_Size : Uint := Uint_0;
775
776 begin
777 -- Test for variant part present
778
779 if Has_Discriminants (T)
780 and then Present (Parent (T))
781 and then Nkind (Parent (T)) = N_Full_Type_Declaration
782 and then Nkind (Type_Definition (Parent (T))) =
783 N_Record_Definition
784 and then not Null_Present (Type_Definition (Parent (T)))
785 and then Present (Variant_Part
786 (Component_List (Type_Definition (Parent (T)))))
787 then
788 -- If variant part is present, and type is unconstrained,
789 -- then we must have defaulted discriminants, or a size
790 -- clause must be present for the type, or else the size
791 -- is definitely not known at compile time.
792
793 if not Is_Constrained (T)
794 and then
795 No (Discriminant_Default_Value
796 (First_Discriminant (T)))
797 and then Unknown_Esize (T)
70482933 798 then
fbf5a39b
AC
799 return False;
800 end if;
801 end if;
70482933 802
fbf5a39b
AC
803 -- Loop through components
804
fea9e956 805 Comp := First_Component_Or_Discriminant (T);
fbf5a39b 806 while Present (Comp) loop
fea9e956 807 Ctyp := Etype (Comp);
fbf5a39b 808
fea9e956
ES
809 -- We do not know the packed size if there is a component
810 -- clause present (we possibly could, but this would only
811 -- help in the case of a record with partial rep clauses.
812 -- That's because in the case of full rep clauses, the
813 -- size gets figured out anyway by a different circuit).
fbf5a39b 814
fea9e956
ES
815 if Present (Component_Clause (Comp)) then
816 Packed_Size_Known := False;
817 end if;
70482933 818
fea9e956
ES
819 -- We need to identify a component that is an array where
820 -- the index type is an enumeration type with non-standard
821 -- representation, and some bound of the type depends on a
822 -- discriminant.
70482933 823
fea9e956 824 -- This is because gigi computes the size by doing a
e14c931f 825 -- substitution of the appropriate discriminant value in
fea9e956
ES
826 -- the size expression for the base type, and gigi is not
827 -- clever enough to evaluate the resulting expression (which
828 -- involves a call to rep_to_pos) at compile time.
fbf5a39b 829
fea9e956
ES
830 -- It would be nice if gigi would either recognize that
831 -- this expression can be computed at compile time, or
832 -- alternatively figured out the size from the subtype
833 -- directly, where all the information is at hand ???
fbf5a39b 834
fea9e956
ES
835 if Is_Array_Type (Etype (Comp))
836 and then Present (Packed_Array_Type (Etype (Comp)))
837 then
838 declare
839 Ocomp : constant Entity_Id :=
840 Original_Record_Component (Comp);
841 OCtyp : constant Entity_Id := Etype (Ocomp);
842 Ind : Node_Id;
843 Indtyp : Entity_Id;
844 Lo, Hi : Node_Id;
70482933 845
fea9e956
ES
846 begin
847 Ind := First_Index (OCtyp);
848 while Present (Ind) loop
849 Indtyp := Etype (Ind);
70482933 850
fea9e956
ES
851 if Is_Enumeration_Type (Indtyp)
852 and then Has_Non_Standard_Rep (Indtyp)
853 then
854 Lo := Type_Low_Bound (Indtyp);
855 Hi := Type_High_Bound (Indtyp);
fbf5a39b 856
fea9e956
ES
857 if Is_Entity_Name (Lo)
858 and then Ekind (Entity (Lo)) = E_Discriminant
859 then
860 return False;
fbf5a39b 861
fea9e956
ES
862 elsif Is_Entity_Name (Hi)
863 and then Ekind (Entity (Hi)) = E_Discriminant
864 then
865 return False;
866 end if;
867 end if;
fbf5a39b 868
fea9e956
ES
869 Next_Index (Ind);
870 end loop;
871 end;
872 end if;
70482933 873
def46b54
RD
874 -- Clearly size of record is not known if the size of one of
875 -- the components is not known.
70482933 876
fea9e956
ES
877 if not Size_Known (Ctyp) then
878 return False;
879 end if;
70482933 880
fea9e956 881 -- Accumulate packed size if possible
70482933 882
fea9e956 883 if Packed_Size_Known then
70482933 884
fea9e956
ES
885 -- We can only deal with elementary types, since for
886 -- non-elementary components, alignment enters into the
887 -- picture, and we don't know enough to handle proper
888 -- alignment in this context. Packed arrays count as
889 -- elementary if the representation is a modular type.
fbf5a39b 890
fea9e956
ES
891 if Is_Elementary_Type (Ctyp)
892 or else (Is_Array_Type (Ctyp)
893 and then Present (Packed_Array_Type (Ctyp))
894 and then Is_Modular_Integer_Type
895 (Packed_Array_Type (Ctyp)))
896 then
897 -- If RM_Size is known and static, then we can
898 -- keep accumulating the packed size.
70482933 899
fea9e956 900 if Known_Static_RM_Size (Ctyp) then
70482933 901
fea9e956
ES
902 -- A little glitch, to be removed sometime ???
903 -- gigi does not understand zero sizes yet.
904
905 if RM_Size (Ctyp) = Uint_0 then
70482933 906 Packed_Size_Known := False;
fea9e956
ES
907
908 -- Normal case where we can keep accumulating the
909 -- packed array size.
910
911 else
912 Packed_Size := Packed_Size + RM_Size (Ctyp);
70482933 913 end if;
fbf5a39b 914
fea9e956
ES
915 -- If we have a field whose RM_Size is not known then
916 -- we can't figure out the packed size here.
fbf5a39b
AC
917
918 else
919 Packed_Size_Known := False;
70482933 920 end if;
fea9e956
ES
921
922 -- If we have a non-elementary type we can't figure out
923 -- the packed array size (alignment issues).
924
925 else
926 Packed_Size_Known := False;
70482933 927 end if;
fbf5a39b 928 end if;
70482933 929
fea9e956 930 Next_Component_Or_Discriminant (Comp);
fbf5a39b 931 end loop;
70482933 932
fbf5a39b 933 if Packed_Size_Known then
c6823a20 934 Set_Small_Size (T, Packed_Size);
fbf5a39b 935 end if;
70482933 936
fbf5a39b
AC
937 return True;
938 end;
70482933 939
c6a9797e
RD
940 -- All other cases, size not known at compile time
941
70482933
RK
942 else
943 return False;
944 end if;
945 end Size_Known;
946
947 -------------------------------------
948 -- Static_Discriminated_Components --
949 -------------------------------------
950
951 function Static_Discriminated_Components
0da2c8ac 952 (T : Entity_Id) return Boolean
70482933
RK
953 is
954 Constraint : Elmt_Id;
955
956 begin
957 if Has_Discriminants (T)
958 and then Present (Discriminant_Constraint (T))
959 and then Present (First_Component (T))
960 then
961 Constraint := First_Elmt (Discriminant_Constraint (T));
70482933
RK
962 while Present (Constraint) loop
963 if not Compile_Time_Known_Value (Node (Constraint)) then
964 return False;
965 end if;
966
967 Next_Elmt (Constraint);
968 end loop;
969 end if;
970
971 return True;
972 end Static_Discriminated_Components;
973
974 -- Start of processing for Check_Compile_Time_Size
975
976 begin
977 Set_Size_Known_At_Compile_Time (T, Size_Known (T));
978 end Check_Compile_Time_Size;
979
980 -----------------------------
981 -- Check_Debug_Info_Needed --
982 -----------------------------
983
984 procedure Check_Debug_Info_Needed (T : Entity_Id) is
985 begin
1b24ada5 986 if Debug_Info_Off (T) then
70482933
RK
987 return;
988
989 elsif Comes_From_Source (T)
990 or else Debug_Generated_Code
991 or else Debug_Flag_VV
1b24ada5 992 or else Needs_Debug_Info (T)
70482933
RK
993 then
994 Set_Debug_Info_Needed (T);
995 end if;
996 end Check_Debug_Info_Needed;
997
998 ----------------------------
999 -- Check_Strict_Alignment --
1000 ----------------------------
1001
1002 procedure Check_Strict_Alignment (E : Entity_Id) is
1003 Comp : Entity_Id;
1004
1005 begin
1006 if Is_Tagged_Type (E) or else Is_Concurrent_Type (E) then
1007 Set_Strict_Alignment (E);
1008
1009 elsif Is_Array_Type (E) then
1010 Set_Strict_Alignment (E, Strict_Alignment (Component_Type (E)));
1011
1012 elsif Is_Record_Type (E) then
1013 if Is_Limited_Record (E) then
1014 Set_Strict_Alignment (E);
1015 return;
1016 end if;
1017
1018 Comp := First_Component (E);
1019
1020 while Present (Comp) loop
1021 if not Is_Type (Comp)
1022 and then (Strict_Alignment (Etype (Comp))
fbf5a39b 1023 or else Is_Aliased (Comp))
70482933
RK
1024 then
1025 Set_Strict_Alignment (E);
1026 return;
1027 end if;
1028
1029 Next_Component (Comp);
1030 end loop;
1031 end if;
1032 end Check_Strict_Alignment;
1033
1034 -------------------------
1035 -- Check_Unsigned_Type --
1036 -------------------------
1037
1038 procedure Check_Unsigned_Type (E : Entity_Id) is
1039 Ancestor : Entity_Id;
1040 Lo_Bound : Node_Id;
1041 Btyp : Entity_Id;
1042
1043 begin
1044 if not Is_Discrete_Or_Fixed_Point_Type (E) then
1045 return;
1046 end if;
1047
1048 -- Do not attempt to analyze case where range was in error
1049
1050 if Error_Posted (Scalar_Range (E)) then
1051 return;
1052 end if;
1053
1054 -- The situation that is non trivial is something like
1055
1056 -- subtype x1 is integer range -10 .. +10;
1057 -- subtype x2 is x1 range 0 .. V1;
1058 -- subtype x3 is x2 range V2 .. V3;
1059 -- subtype x4 is x3 range V4 .. V5;
1060
1061 -- where Vn are variables. Here the base type is signed, but we still
1062 -- know that x4 is unsigned because of the lower bound of x2.
1063
1064 -- The only way to deal with this is to look up the ancestor chain
1065
1066 Ancestor := E;
1067 loop
1068 if Ancestor = Any_Type or else Etype (Ancestor) = Any_Type then
1069 return;
1070 end if;
1071
1072 Lo_Bound := Type_Low_Bound (Ancestor);
1073
1074 if Compile_Time_Known_Value (Lo_Bound) then
1075
1076 if Expr_Rep_Value (Lo_Bound) >= 0 then
1077 Set_Is_Unsigned_Type (E, True);
1078 end if;
1079
1080 return;
1081
1082 else
1083 Ancestor := Ancestor_Subtype (Ancestor);
1084
1085 -- If no ancestor had a static lower bound, go to base type
1086
1087 if No (Ancestor) then
1088
1089 -- Note: the reason we still check for a compile time known
1090 -- value for the base type is that at least in the case of
1091 -- generic formals, we can have bounds that fail this test,
1092 -- and there may be other cases in error situations.
1093
1094 Btyp := Base_Type (E);
1095
1096 if Btyp = Any_Type or else Etype (Btyp) = Any_Type then
1097 return;
1098 end if;
1099
1100 Lo_Bound := Type_Low_Bound (Base_Type (E));
1101
1102 if Compile_Time_Known_Value (Lo_Bound)
1103 and then Expr_Rep_Value (Lo_Bound) >= 0
1104 then
1105 Set_Is_Unsigned_Type (E, True);
1106 end if;
1107
1108 return;
70482933
RK
1109 end if;
1110 end if;
1111 end loop;
1112 end Check_Unsigned_Type;
1113
cfb120b5
AC
1114 -------------------------
1115 -- Is_Atomic_Aggregate --
1116 -------------------------
fbf5a39b 1117
cfb120b5 1118 function Is_Atomic_Aggregate
b0159fbe
AC
1119 (E : Entity_Id;
1120 Typ : Entity_Id) return Boolean
1121 is
fbf5a39b
AC
1122 Loc : constant Source_Ptr := Sloc (E);
1123 New_N : Node_Id;
b0159fbe 1124 Par : Node_Id;
fbf5a39b
AC
1125 Temp : Entity_Id;
1126
1127 begin
b0159fbe
AC
1128 Par := Parent (E);
1129
01957849 1130 -- Array may be qualified, so find outer context
b0159fbe
AC
1131
1132 if Nkind (Par) = N_Qualified_Expression then
1133 Par := Parent (Par);
1134 end if;
1135
fb2e11ee 1136 if Nkind_In (Par, N_Object_Declaration, N_Assignment_Statement)
b0159fbe 1137 and then Comes_From_Source (Par)
fbf5a39b
AC
1138 then
1139 Temp :=
1140 Make_Defining_Identifier (Loc,
1141 New_Internal_Name ('T'));
1142
1143 New_N :=
1144 Make_Object_Declaration (Loc,
1145 Defining_Identifier => Temp,
c6a9797e
RD
1146 Object_Definition => New_Occurrence_Of (Typ, Loc),
1147 Expression => Relocate_Node (E));
b0159fbe 1148 Insert_Before (Par, New_N);
fbf5a39b
AC
1149 Analyze (New_N);
1150
b0159fbe
AC
1151 Set_Expression (Par, New_Occurrence_Of (Temp, Loc));
1152 return True;
fbf5a39b 1153
b0159fbe
AC
1154 else
1155 return False;
fbf5a39b 1156 end if;
cfb120b5 1157 end Is_Atomic_Aggregate;
fbf5a39b 1158
70482933
RK
1159 ----------------
1160 -- Freeze_All --
1161 ----------------
1162
1163 -- Note: the easy coding for this procedure would be to just build a
1164 -- single list of freeze nodes and then insert them and analyze them
1165 -- all at once. This won't work, because the analysis of earlier freeze
1166 -- nodes may recursively freeze types which would otherwise appear later
1167 -- on in the freeze list. So we must analyze and expand the freeze nodes
1168 -- as they are generated.
1169
1170 procedure Freeze_All (From : Entity_Id; After : in out Node_Id) is
1171 Loc : constant Source_Ptr := Sloc (After);
1172 E : Entity_Id;
1173 Decl : Node_Id;
1174
1175 procedure Freeze_All_Ent (From : Entity_Id; After : in out Node_Id);
def46b54
RD
1176 -- This is the internal recursive routine that does freezing of entities
1177 -- (but NOT the analysis of default expressions, which should not be
1178 -- recursive, we don't want to analyze those till we are sure that ALL
1179 -- the types are frozen).
70482933 1180
fbf5a39b
AC
1181 --------------------
1182 -- Freeze_All_Ent --
1183 --------------------
1184
70482933
RK
1185 procedure Freeze_All_Ent
1186 (From : Entity_Id;
1187 After : in out Node_Id)
1188 is
1189 E : Entity_Id;
1190 Flist : List_Id;
1191 Lastn : Node_Id;
1192
1193 procedure Process_Flist;
def46b54
RD
1194 -- If freeze nodes are present, insert and analyze, and reset cursor
1195 -- for next insertion.
70482933 1196
fbf5a39b
AC
1197 -------------------
1198 -- Process_Flist --
1199 -------------------
1200
70482933
RK
1201 procedure Process_Flist is
1202 begin
1203 if Is_Non_Empty_List (Flist) then
1204 Lastn := Next (After);
1205 Insert_List_After_And_Analyze (After, Flist);
1206
1207 if Present (Lastn) then
1208 After := Prev (Lastn);
1209 else
1210 After := Last (List_Containing (After));
1211 end if;
1212 end if;
1213 end Process_Flist;
1214
fbf5a39b
AC
1215 -- Start or processing for Freeze_All_Ent
1216
70482933
RK
1217 begin
1218 E := From;
1219 while Present (E) loop
1220
1221 -- If the entity is an inner package which is not a package
def46b54
RD
1222 -- renaming, then its entities must be frozen at this point. Note
1223 -- that such entities do NOT get frozen at the end of the nested
1224 -- package itself (only library packages freeze).
70482933
RK
1225
1226 -- Same is true for task declarations, where anonymous records
1227 -- created for entry parameters must be frozen.
1228
1229 if Ekind (E) = E_Package
1230 and then No (Renamed_Object (E))
1231 and then not Is_Child_Unit (E)
1232 and then not Is_Frozen (E)
1233 then
7d8b9c99 1234 Push_Scope (E);
70482933
RK
1235 Install_Visible_Declarations (E);
1236 Install_Private_Declarations (E);
1237
1238 Freeze_All (First_Entity (E), After);
1239
1240 End_Package_Scope (E);
1241
1242 elsif Ekind (E) in Task_Kind
1243 and then
1244 (Nkind (Parent (E)) = N_Task_Type_Declaration
fbf5a39b 1245 or else
70482933
RK
1246 Nkind (Parent (E)) = N_Single_Task_Declaration)
1247 then
7d8b9c99 1248 Push_Scope (E);
70482933
RK
1249 Freeze_All (First_Entity (E), After);
1250 End_Scope;
1251
1252 -- For a derived tagged type, we must ensure that all the
def46b54
RD
1253 -- primitive operations of the parent have been frozen, so that
1254 -- their addresses will be in the parent's dispatch table at the
1255 -- point it is inherited.
70482933
RK
1256
1257 elsif Ekind (E) = E_Record_Type
1258 and then Is_Tagged_Type (E)
1259 and then Is_Tagged_Type (Etype (E))
1260 and then Is_Derived_Type (E)
1261 then
1262 declare
1263 Prim_List : constant Elist_Id :=
1264 Primitive_Operations (Etype (E));
fbf5a39b
AC
1265
1266 Prim : Elmt_Id;
1267 Subp : Entity_Id;
70482933
RK
1268
1269 begin
1270 Prim := First_Elmt (Prim_List);
1271
1272 while Present (Prim) loop
1273 Subp := Node (Prim);
1274
1275 if Comes_From_Source (Subp)
1276 and then not Is_Frozen (Subp)
1277 then
1278 Flist := Freeze_Entity (Subp, Loc);
1279 Process_Flist;
1280 end if;
1281
1282 Next_Elmt (Prim);
1283 end loop;
1284 end;
1285 end if;
1286
1287 if not Is_Frozen (E) then
1288 Flist := Freeze_Entity (E, Loc);
1289 Process_Flist;
1290 end if;
1291
def46b54
RD
1292 -- If an incomplete type is still not frozen, this may be a
1293 -- premature freezing because of a body declaration that follows.
1294 -- Indicate where the freezing took place.
fbf5a39b 1295
def46b54
RD
1296 -- If the freezing is caused by the end of the current declarative
1297 -- part, it is a Taft Amendment type, and there is no error.
fbf5a39b
AC
1298
1299 if not Is_Frozen (E)
1300 and then Ekind (E) = E_Incomplete_Type
1301 then
1302 declare
1303 Bod : constant Node_Id := Next (After);
1304
1305 begin
1306 if (Nkind (Bod) = N_Subprogram_Body
1307 or else Nkind (Bod) = N_Entry_Body
1308 or else Nkind (Bod) = N_Package_Body
1309 or else Nkind (Bod) = N_Protected_Body
1310 or else Nkind (Bod) = N_Task_Body
1311 or else Nkind (Bod) in N_Body_Stub)
1312 and then
1313 List_Containing (After) = List_Containing (Parent (E))
1314 then
1315 Error_Msg_Sloc := Sloc (Next (After));
1316 Error_Msg_NE
1317 ("type& is frozen# before its full declaration",
1318 Parent (E), E);
1319 end if;
1320 end;
1321 end if;
1322
70482933
RK
1323 Next_Entity (E);
1324 end loop;
1325 end Freeze_All_Ent;
1326
1327 -- Start of processing for Freeze_All
1328
1329 begin
1330 Freeze_All_Ent (From, After);
1331
1332 -- Now that all types are frozen, we can deal with default expressions
1333 -- that require us to build a default expression functions. This is the
1334 -- point at which such functions are constructed (after all types that
1335 -- might be used in such expressions have been frozen).
fbf5a39b 1336
70482933
RK
1337 -- We also add finalization chains to access types whose designated
1338 -- types are controlled. This is normally done when freezing the type,
1339 -- but this misses recursive type definitions where the later members
c6a9797e 1340 -- of the recursion introduce controlled components.
70482933
RK
1341
1342 -- Loop through entities
1343
1344 E := From;
1345 while Present (E) loop
70482933
RK
1346 if Is_Subprogram (E) then
1347
1348 if not Default_Expressions_Processed (E) then
1349 Process_Default_Expressions (E, After);
1350 end if;
1351
1352 if not Has_Completion (E) then
1353 Decl := Unit_Declaration_Node (E);
1354
1355 if Nkind (Decl) = N_Subprogram_Renaming_Declaration then
1356 Build_And_Analyze_Renamed_Body (Decl, E, After);
1357
1358 elsif Nkind (Decl) = N_Subprogram_Declaration
1359 and then Present (Corresponding_Body (Decl))
1360 and then
1361 Nkind (Unit_Declaration_Node (Corresponding_Body (Decl)))
fbf5a39b 1362 = N_Subprogram_Renaming_Declaration
70482933
RK
1363 then
1364 Build_And_Analyze_Renamed_Body
1365 (Decl, Corresponding_Body (Decl), After);
1366 end if;
1367 end if;
1368
1369 elsif Ekind (E) in Task_Kind
1370 and then
1371 (Nkind (Parent (E)) = N_Task_Type_Declaration
fbf5a39b 1372 or else
70482933
RK
1373 Nkind (Parent (E)) = N_Single_Task_Declaration)
1374 then
1375 declare
1376 Ent : Entity_Id;
70482933
RK
1377 begin
1378 Ent := First_Entity (E);
1379
1380 while Present (Ent) loop
1381
1382 if Is_Entry (Ent)
1383 and then not Default_Expressions_Processed (Ent)
1384 then
1385 Process_Default_Expressions (Ent, After);
1386 end if;
1387
1388 Next_Entity (Ent);
1389 end loop;
1390 end;
1391
1392 elsif Is_Access_Type (E)
1393 and then Comes_From_Source (E)
1394 and then Ekind (Directly_Designated_Type (E)) = E_Incomplete_Type
048e5cef 1395 and then Needs_Finalization (Designated_Type (E))
70482933
RK
1396 and then No (Associated_Final_Chain (E))
1397 then
1398 Build_Final_List (Parent (E), E);
1399 end if;
1400
1401 Next_Entity (E);
1402 end loop;
70482933
RK
1403 end Freeze_All;
1404
1405 -----------------------
1406 -- Freeze_And_Append --
1407 -----------------------
1408
1409 procedure Freeze_And_Append
1410 (Ent : Entity_Id;
1411 Loc : Source_Ptr;
1412 Result : in out List_Id)
1413 is
1414 L : constant List_Id := Freeze_Entity (Ent, Loc);
70482933
RK
1415 begin
1416 if Is_Non_Empty_List (L) then
1417 if Result = No_List then
1418 Result := L;
1419 else
1420 Append_List (L, Result);
1421 end if;
1422 end if;
1423 end Freeze_And_Append;
1424
1425 -------------------
1426 -- Freeze_Before --
1427 -------------------
1428
1429 procedure Freeze_Before (N : Node_Id; T : Entity_Id) is
1430 Freeze_Nodes : constant List_Id := Freeze_Entity (T, Sloc (N));
70482933
RK
1431 begin
1432 if Is_Non_Empty_List (Freeze_Nodes) then
fbf5a39b 1433 Insert_Actions (N, Freeze_Nodes);
70482933
RK
1434 end if;
1435 end Freeze_Before;
1436
1437 -------------------
1438 -- Freeze_Entity --
1439 -------------------
1440
1441 function Freeze_Entity (E : Entity_Id; Loc : Source_Ptr) return List_Id is
c6823a20 1442 Test_E : Entity_Id := E;
70482933
RK
1443 Comp : Entity_Id;
1444 F_Node : Node_Id;
1445 Result : List_Id;
1446 Indx : Node_Id;
1447 Formal : Entity_Id;
1448 Atype : Entity_Id;
1449
4c8a5bb8
AC
1450 Has_Default_Initialization : Boolean := False;
1451 -- This flag gets set to true for a variable with default initialization
1452
70482933 1453 procedure Check_Current_Instance (Comp_Decl : Node_Id);
edd63e9b
ES
1454 -- Check that an Access or Unchecked_Access attribute with a prefix
1455 -- which is the current instance type can only be applied when the type
1456 -- is limited.
70482933 1457
67b3acf8
RD
1458 procedure Check_Suspicious_Modulus (Utype : Entity_Id);
1459 -- Give warning for modulus of 8, 16, 32, or 64 given as an explicit
1460 -- integer literal without an explicit corresponding size clause. The
1461 -- caller has checked that Utype is a modular integer type.
1462
70482933
RK
1463 function After_Last_Declaration return Boolean;
1464 -- If Loc is a freeze_entity that appears after the last declaration
1465 -- in the scope, inhibit error messages on late completion.
1466
1467 procedure Freeze_Record_Type (Rec : Entity_Id);
edd63e9b
ES
1468 -- Freeze each component, handle some representation clauses, and freeze
1469 -- primitive operations if this is a tagged type.
70482933
RK
1470
1471 ----------------------------
1472 -- After_Last_Declaration --
1473 ----------------------------
1474
1475 function After_Last_Declaration return Boolean is
fb2e11ee 1476 Spec : constant Node_Id := Parent (Current_Scope);
70482933
RK
1477 begin
1478 if Nkind (Spec) = N_Package_Specification then
1479 if Present (Private_Declarations (Spec)) then
1480 return Loc >= Sloc (Last (Private_Declarations (Spec)));
70482933
RK
1481 elsif Present (Visible_Declarations (Spec)) then
1482 return Loc >= Sloc (Last (Visible_Declarations (Spec)));
1483 else
1484 return False;
1485 end if;
70482933
RK
1486 else
1487 return False;
1488 end if;
1489 end After_Last_Declaration;
1490
1491 ----------------------------
1492 -- Check_Current_Instance --
1493 ----------------------------
1494
1495 procedure Check_Current_Instance (Comp_Decl : Node_Id) is
1496
32c760e6
ES
1497 Rec_Type : constant Entity_Id :=
1498 Scope (Defining_Identifier (Comp_Decl));
1499
1500 Decl : constant Node_Id := Parent (Rec_Type);
1501
70482933 1502 function Process (N : Node_Id) return Traverse_Result;
49e90211 1503 -- Process routine to apply check to given node
70482933 1504
fbf5a39b
AC
1505 -------------
1506 -- Process --
1507 -------------
1508
70482933
RK
1509 function Process (N : Node_Id) return Traverse_Result is
1510 begin
1511 case Nkind (N) is
1512 when N_Attribute_Reference =>
def46b54 1513 if (Attribute_Name (N) = Name_Access
70482933
RK
1514 or else
1515 Attribute_Name (N) = Name_Unchecked_Access)
1516 and then Is_Entity_Name (Prefix (N))
1517 and then Is_Type (Entity (Prefix (N)))
1518 and then Entity (Prefix (N)) = E
1519 then
1520 Error_Msg_N
1521 ("current instance must be a limited type", Prefix (N));
1522 return Abandon;
1523 else
1524 return OK;
1525 end if;
1526
1527 when others => return OK;
1528 end case;
1529 end Process;
1530
1531 procedure Traverse is new Traverse_Proc (Process);
1532
1533 -- Start of processing for Check_Current_Instance
1534
1535 begin
32c760e6
ES
1536 -- In Ada95, the (imprecise) rule is that the current instance of a
1537 -- limited type is aliased. In Ada2005, limitedness must be explicit:
1538 -- either a tagged type, or a limited record.
1539
1540 if Is_Limited_Type (Rec_Type)
fb2e11ee 1541 and then (Ada_Version < Ada_05 or else Is_Tagged_Type (Rec_Type))
32c760e6
ES
1542 then
1543 return;
1544
1545 elsif Nkind (Decl) = N_Full_Type_Declaration
1546 and then Limited_Present (Type_Definition (Decl))
1547 then
1548 return;
1549
1550 else
1551 Traverse (Comp_Decl);
1552 end if;
70482933
RK
1553 end Check_Current_Instance;
1554
67b3acf8
RD
1555 ------------------------------
1556 -- Check_Suspicious_Modulus --
1557 ------------------------------
1558
1559 procedure Check_Suspicious_Modulus (Utype : Entity_Id) is
1560 Decl : constant Node_Id := Declaration_Node (Underlying_Type (Utype));
1561
1562 begin
1563 if Nkind (Decl) = N_Full_Type_Declaration then
1564 declare
1565 Tdef : constant Node_Id := Type_Definition (Decl);
1566 begin
1567 if Nkind (Tdef) = N_Modular_Type_Definition then
1568 declare
1569 Modulus : constant Node_Id :=
1570 Original_Node (Expression (Tdef));
1571 begin
1572 if Nkind (Modulus) = N_Integer_Literal then
1573 declare
1574 Modv : constant Uint := Intval (Modulus);
1575 Sizv : constant Uint := RM_Size (Utype);
1576
1577 begin
1578 -- First case, modulus and size are the same. This
1579 -- happens if you have something like mod 32, with
1580 -- an explicit size of 32, this is for sure a case
1581 -- where the warning is given, since it is seems
1582 -- very unlikely that someone would want e.g. a
1583 -- five bit type stored in 32 bits. It is much
1584 -- more likely they wanted a 32-bit type.
1585
1586 if Modv = Sizv then
1587 null;
1588
1589 -- Second case, the modulus is 32 or 64 and no
1590 -- size clause is present. This is a less clear
1591 -- case for giving the warning, but in the case
1592 -- of 32/64 (5-bit or 6-bit types) these seem rare
1593 -- enough that it is a likely error (and in any
1594 -- case using 2**5 or 2**6 in these cases seems
1595 -- clearer. We don't include 8 or 16 here, simply
1596 -- because in practice 3-bit and 4-bit types are
1597 -- more common and too many false positives if
1598 -- we warn in these cases.
1599
1600 elsif not Has_Size_Clause (Utype)
1601 and then (Modv = Uint_32 or else Modv = Uint_64)
1602 then
1603 null;
1604
1605 -- No warning needed
1606
1607 else
1608 return;
1609 end if;
1610
1611 -- If we fall through, give warning
1612
1613 Error_Msg_Uint_1 := Modv;
1614 Error_Msg_N
1615 ("?2 '*'*^' may have been intended here",
1616 Modulus);
1617 end;
1618 end if;
1619 end;
1620 end if;
1621 end;
1622 end if;
1623 end Check_Suspicious_Modulus;
1624
70482933
RK
1625 ------------------------
1626 -- Freeze_Record_Type --
1627 ------------------------
1628
1629 procedure Freeze_Record_Type (Rec : Entity_Id) is
1630 Comp : Entity_Id;
fbf5a39b 1631 IR : Node_Id;
70482933 1632 ADC : Node_Id;
c6823a20 1633 Prev : Entity_Id;
70482933 1634
67ce0d7e
RD
1635 Junk : Boolean;
1636 pragma Warnings (Off, Junk);
1637
70482933
RK
1638 Unplaced_Component : Boolean := False;
1639 -- Set True if we find at least one component with no component
1640 -- clause (used to warn about useless Pack pragmas).
1641
1642 Placed_Component : Boolean := False;
1643 -- Set True if we find at least one component with a component
8dc10d38
AC
1644 -- clause (used to warn about useless Bit_Order pragmas, and also
1645 -- to detect cases where Implicit_Packing may have an effect).
1646
1647 All_Scalar_Components : Boolean := True;
1648 -- Set False if we encounter a component of a non-scalar type
1649
1650 Scalar_Component_Total_RM_Size : Uint := Uint_0;
1651 Scalar_Component_Total_Esize : Uint := Uint_0;
1652 -- Accumulates total RM_Size values and total Esize values of all
1653 -- scalar components. Used for processing of Implicit_Packing.
70482933 1654
e18d6a15
JM
1655 function Check_Allocator (N : Node_Id) return Node_Id;
1656 -- If N is an allocator, possibly wrapped in one or more level of
1657 -- qualified expression(s), return the inner allocator node, else
1658 -- return Empty.
19590d70 1659
7d8b9c99
RD
1660 procedure Check_Itype (Typ : Entity_Id);
1661 -- If the component subtype is an access to a constrained subtype of
1662 -- an already frozen type, make the subtype frozen as well. It might
1663 -- otherwise be frozen in the wrong scope, and a freeze node on
1664 -- subtype has no effect. Similarly, if the component subtype is a
1665 -- regular (not protected) access to subprogram, set the anonymous
1666 -- subprogram type to frozen as well, to prevent an out-of-scope
1667 -- freeze node at some eventual point of call. Protected operations
1668 -- are handled elsewhere.
6e059adb 1669
19590d70
GD
1670 ---------------------
1671 -- Check_Allocator --
1672 ---------------------
1673
e18d6a15
JM
1674 function Check_Allocator (N : Node_Id) return Node_Id is
1675 Inner : Node_Id;
19590d70 1676 begin
e18d6a15 1677 Inner := N;
e18d6a15
JM
1678 loop
1679 if Nkind (Inner) = N_Allocator then
1680 return Inner;
e18d6a15
JM
1681 elsif Nkind (Inner) = N_Qualified_Expression then
1682 Inner := Expression (Inner);
e18d6a15
JM
1683 else
1684 return Empty;
1685 end if;
1686 end loop;
19590d70
GD
1687 end Check_Allocator;
1688
6871ba5f
AC
1689 -----------------
1690 -- Check_Itype --
1691 -----------------
1692
7d8b9c99
RD
1693 procedure Check_Itype (Typ : Entity_Id) is
1694 Desig : constant Entity_Id := Designated_Type (Typ);
1695
6e059adb
AC
1696 begin
1697 if not Is_Frozen (Desig)
1698 and then Is_Frozen (Base_Type (Desig))
1699 then
1700 Set_Is_Frozen (Desig);
1701
1702 -- In addition, add an Itype_Reference to ensure that the
7d8b9c99
RD
1703 -- access subtype is elaborated early enough. This cannot be
1704 -- done if the subtype may depend on discriminants.
6e059adb
AC
1705
1706 if Ekind (Comp) = E_Component
1707 and then Is_Itype (Etype (Comp))
1708 and then not Has_Discriminants (Rec)
1709 then
1710 IR := Make_Itype_Reference (Sloc (Comp));
1711 Set_Itype (IR, Desig);
1712
1713 if No (Result) then
1714 Result := New_List (IR);
1715 else
1716 Append (IR, Result);
1717 end if;
1718 end if;
7d8b9c99
RD
1719
1720 elsif Ekind (Typ) = E_Anonymous_Access_Subprogram_Type
1721 and then Convention (Desig) /= Convention_Protected
1722 then
1723 Set_Is_Frozen (Desig);
6e059adb
AC
1724 end if;
1725 end Check_Itype;
1726
1727 -- Start of processing for Freeze_Record_Type
1728
70482933 1729 begin
7d8b9c99
RD
1730 -- If this is a subtype of a controlled type, declared without a
1731 -- constraint, the _controller may not appear in the component list
1732 -- if the parent was not frozen at the point of subtype declaration.
1733 -- Inherit the _controller component now.
fbf5a39b
AC
1734
1735 if Rec /= Base_Type (Rec)
1736 and then Has_Controlled_Component (Rec)
1737 then
1738 if Nkind (Parent (Rec)) = N_Subtype_Declaration
1739 and then Is_Entity_Name (Subtype_Indication (Parent (Rec)))
1740 then
1741 Set_First_Entity (Rec, First_Entity (Base_Type (Rec)));
1742
49e90211 1743 -- If this is an internal type without a declaration, as for
6871ba5f
AC
1744 -- record component, the base type may not yet be frozen, and its
1745 -- controller has not been created. Add an explicit freeze node
49e90211
ES
1746 -- for the itype, so it will be frozen after the base type. This
1747 -- freeze node is used to communicate with the expander, in order
1748 -- to create the controller for the enclosing record, and it is
1749 -- deleted afterwards (see exp_ch3). It must not be created when
1750 -- expansion is off, because it might appear in the wrong context
1751 -- for the back end.
fbf5a39b
AC
1752
1753 elsif Is_Itype (Rec)
1754 and then Has_Delayed_Freeze (Base_Type (Rec))
1755 and then
1756 Nkind (Associated_Node_For_Itype (Rec)) =
49e90211
ES
1757 N_Component_Declaration
1758 and then Expander_Active
fbf5a39b
AC
1759 then
1760 Ensure_Freeze_Node (Rec);
1761 end if;
1762 end if;
1763
49e90211 1764 -- Freeze components and embedded subtypes
70482933
RK
1765
1766 Comp := First_Entity (Rec);
c6823a20 1767 Prev := Empty;
c6823a20 1768 while Present (Comp) loop
70482933 1769
49e90211 1770 -- First handle the (real) component case
70482933
RK
1771
1772 if Ekind (Comp) = E_Component
1773 or else Ekind (Comp) = E_Discriminant
1774 then
70482933
RK
1775 declare
1776 CC : constant Node_Id := Component_Clause (Comp);
1777
1778 begin
c6823a20
EB
1779 -- Freezing a record type freezes the type of each of its
1780 -- components. However, if the type of the component is
1781 -- part of this record, we do not want or need a separate
1782 -- Freeze_Node. Note that Is_Itype is wrong because that's
1783 -- also set in private type cases. We also can't check for
1784 -- the Scope being exactly Rec because of private types and
1785 -- record extensions.
1786
1787 if Is_Itype (Etype (Comp))
1788 and then Is_Record_Type (Underlying_Type
1789 (Scope (Etype (Comp))))
1790 then
1791 Undelay_Type (Etype (Comp));
1792 end if;
1793
1794 Freeze_And_Append (Etype (Comp), Loc, Result);
1795
0da2c8ac
AC
1796 -- Check for error of component clause given for variable
1797 -- sized type. We have to delay this test till this point,
1798 -- since the component type has to be frozen for us to know
1799 -- if it is variable length. We omit this test in a generic
1800 -- context, it will be applied at instantiation time.
1801
70482933
RK
1802 if Present (CC) then
1803 Placed_Component := True;
1804
07fc65c4
GB
1805 if Inside_A_Generic then
1806 null;
1807
7d8b9c99
RD
1808 elsif not
1809 Size_Known_At_Compile_Time
1810 (Underlying_Type (Etype (Comp)))
70482933
RK
1811 then
1812 Error_Msg_N
1813 ("component clause not allowed for variable " &
1814 "length component", CC);
1815 end if;
1816
1817 else
1818 Unplaced_Component := True;
1819 end if;
70482933 1820
0da2c8ac 1821 -- Case of component requires byte alignment
70482933 1822
0da2c8ac 1823 if Must_Be_On_Byte_Boundary (Etype (Comp)) then
70482933 1824
0da2c8ac 1825 -- Set the enclosing record to also require byte align
70482933 1826
0da2c8ac 1827 Set_Must_Be_On_Byte_Boundary (Rec);
70482933 1828
7d8b9c99
RD
1829 -- Check for component clause that is inconsistent with
1830 -- the required byte boundary alignment.
70482933 1831
0da2c8ac
AC
1832 if Present (CC)
1833 and then Normalized_First_Bit (Comp) mod
1834 System_Storage_Unit /= 0
1835 then
1836 Error_Msg_N
1837 ("component & must be byte aligned",
1838 Component_Name (Component_Clause (Comp)));
1839 end if;
1840 end if;
70482933 1841
7d8b9c99
RD
1842 -- If component clause is present, then deal with the non-
1843 -- default bit order case for Ada 95 mode. The required
fea9e956
ES
1844 -- processing for Ada 2005 mode is handled separately after
1845 -- processing all components.
70482933 1846
0da2c8ac
AC
1847 -- We only do this processing for the base type, and in
1848 -- fact that's important, since otherwise if there are
1849 -- record subtypes, we could reverse the bits once for
1850 -- each subtype, which would be incorrect.
70482933 1851
0da2c8ac
AC
1852 if Present (CC)
1853 and then Reverse_Bit_Order (Rec)
1854 and then Ekind (E) = E_Record_Type
fea9e956 1855 and then Ada_Version <= Ada_95
0da2c8ac
AC
1856 then
1857 declare
1858 CFB : constant Uint := Component_Bit_Offset (Comp);
1859 CSZ : constant Uint := Esize (Comp);
1860 CLC : constant Node_Id := Component_Clause (Comp);
1861 Pos : constant Node_Id := Position (CLC);
1862 FB : constant Node_Id := First_Bit (CLC);
1863
1864 Storage_Unit_Offset : constant Uint :=
1865 CFB / System_Storage_Unit;
1866
1867 Start_Bit : constant Uint :=
1868 CFB mod System_Storage_Unit;
1869
1870 begin
1871 -- Cases where field goes over storage unit boundary
1872
1873 if Start_Bit + CSZ > System_Storage_Unit then
70482933 1874
0da2c8ac
AC
1875 -- Allow multi-byte field but generate warning
1876
1877 if Start_Bit mod System_Storage_Unit = 0
1878 and then CSZ mod System_Storage_Unit = 0
1879 then
70482933 1880 Error_Msg_N
0da2c8ac
AC
1881 ("multi-byte field specified with non-standard"
1882 & " Bit_Order?", CLC);
1883
1884 if Bytes_Big_Endian then
1885 Error_Msg_N
1886 ("bytes are not reversed "
1887 & "(component is big-endian)?", CLC);
1888 else
1889 Error_Msg_N
1890 ("bytes are not reversed "
1891 & "(component is little-endian)?", CLC);
1892 end if;
1893
c6084ae0 1894 -- Do not allow non-contiguous field
0da2c8ac 1895
70482933
RK
1896 else
1897 Error_Msg_N
c6084ae0
AC
1898 ("attempt to specify non-contiguous field "
1899 & "not permitted", CLC);
0da2c8ac 1900 Error_Msg_N
c6084ae0
AC
1901 ("\caused by non-standard Bit_Order "
1902 & "specified", CLC);
1903 Error_Msg_N
1904 ("\consider possibility of using "
1905 & "Ada 2005 mode here", CLC);
70482933
RK
1906 end if;
1907
c6084ae0 1908 -- Case where field fits in one storage unit
70482933
RK
1909
1910 else
0da2c8ac 1911 -- Give warning if suspicious component clause
70482933 1912
fea9e956
ES
1913 if Intval (FB) >= System_Storage_Unit
1914 and then Warn_On_Reverse_Bit_Order
1915 then
0da2c8ac
AC
1916 Error_Msg_N
1917 ("?Bit_Order clause does not affect " &
1918 "byte ordering", Pos);
1919 Error_Msg_Uint_1 :=
1920 Intval (Pos) + Intval (FB) /
1921 System_Storage_Unit;
1922 Error_Msg_N
1923 ("?position normalized to ^ before bit " &
1924 "order interpreted", Pos);
1925 end if;
70482933 1926
0da2c8ac
AC
1927 -- Here is where we fix up the Component_Bit_Offset
1928 -- value to account for the reverse bit order.
1929 -- Some examples of what needs to be done are:
70482933 1930
0da2c8ac
AC
1931 -- First_Bit .. Last_Bit Component_Bit_Offset
1932 -- old new old new
70482933 1933
0da2c8ac
AC
1934 -- 0 .. 0 7 .. 7 0 7
1935 -- 0 .. 1 6 .. 7 0 6
1936 -- 0 .. 2 5 .. 7 0 5
1937 -- 0 .. 7 0 .. 7 0 4
70482933 1938
0da2c8ac
AC
1939 -- 1 .. 1 6 .. 6 1 6
1940 -- 1 .. 4 3 .. 6 1 3
1941 -- 4 .. 7 0 .. 3 4 0
70482933 1942
0da2c8ac
AC
1943 -- The general rule is that the first bit is
1944 -- is obtained by subtracting the old ending bit
1945 -- from storage_unit - 1.
70482933 1946
0da2c8ac
AC
1947 Set_Component_Bit_Offset
1948 (Comp,
1949 (Storage_Unit_Offset * System_Storage_Unit) +
1950 (System_Storage_Unit - 1) -
1951 (Start_Bit + CSZ - 1));
70482933 1952
0da2c8ac
AC
1953 Set_Normalized_First_Bit
1954 (Comp,
1955 Component_Bit_Offset (Comp) mod
1956 System_Storage_Unit);
1957 end if;
1958 end;
1959 end if;
1960 end;
70482933
RK
1961 end if;
1962
426d2717 1963 -- Gather data for possible Implicit_Packing later
8dc10d38 1964
426d2717
AC
1965 if not Is_Scalar_Type (Etype (Comp)) then
1966 All_Scalar_Components := False;
1967 else
1968 Scalar_Component_Total_RM_Size :=
1969 Scalar_Component_Total_RM_Size + RM_Size (Etype (Comp));
1970 Scalar_Component_Total_Esize :=
1971 Scalar_Component_Total_Esize + Esize (Etype (Comp));
8dc10d38
AC
1972 end if;
1973
c6823a20
EB
1974 -- If the component is an Itype with Delayed_Freeze and is either
1975 -- a record or array subtype and its base type has not yet been
1976 -- frozen, we must remove this from the entity list of this
1977 -- record and put it on the entity list of the scope of its base
1978 -- type. Note that we know that this is not the type of a
1979 -- component since we cleared Has_Delayed_Freeze for it in the
1980 -- previous loop. Thus this must be the Designated_Type of an
1981 -- access type, which is the type of a component.
1982
1983 if Is_Itype (Comp)
1984 and then Is_Type (Scope (Comp))
1985 and then Is_Composite_Type (Comp)
1986 and then Base_Type (Comp) /= Comp
1987 and then Has_Delayed_Freeze (Comp)
1988 and then not Is_Frozen (Base_Type (Comp))
1989 then
1990 declare
1991 Will_Be_Frozen : Boolean := False;
1b24ada5 1992 S : Entity_Id;
c6823a20
EB
1993
1994 begin
fea9e956
ES
1995 -- We have a pretty bad kludge here. Suppose Rec is subtype
1996 -- being defined in a subprogram that's created as part of
1997 -- the freezing of Rec'Base. In that case, we know that
1998 -- Comp'Base must have already been frozen by the time we
1999 -- get to elaborate this because Gigi doesn't elaborate any
2000 -- bodies until it has elaborated all of the declarative
2001 -- part. But Is_Frozen will not be set at this point because
2002 -- we are processing code in lexical order.
2003
2004 -- We detect this case by going up the Scope chain of Rec
2005 -- and seeing if we have a subprogram scope before reaching
2006 -- the top of the scope chain or that of Comp'Base. If we
2007 -- do, then mark that Comp'Base will actually be frozen. If
2008 -- so, we merely undelay it.
c6823a20 2009
1b24ada5 2010 S := Scope (Rec);
c6823a20
EB
2011 while Present (S) loop
2012 if Is_Subprogram (S) then
2013 Will_Be_Frozen := True;
2014 exit;
2015 elsif S = Scope (Base_Type (Comp)) then
2016 exit;
2017 end if;
2018
2019 S := Scope (S);
2020 end loop;
2021
2022 if Will_Be_Frozen then
2023 Undelay_Type (Comp);
2024 else
2025 if Present (Prev) then
2026 Set_Next_Entity (Prev, Next_Entity (Comp));
2027 else
2028 Set_First_Entity (Rec, Next_Entity (Comp));
2029 end if;
2030
2031 -- Insert in entity list of scope of base type (which
2032 -- must be an enclosing scope, because still unfrozen).
2033
2034 Append_Entity (Comp, Scope (Base_Type (Comp)));
2035 end if;
2036 end;
2037
def46b54
RD
2038 -- If the component is an access type with an allocator as default
2039 -- value, the designated type will be frozen by the corresponding
2040 -- expression in init_proc. In order to place the freeze node for
2041 -- the designated type before that for the current record type,
2042 -- freeze it now.
c6823a20
EB
2043
2044 -- Same process if the component is an array of access types,
2045 -- initialized with an aggregate. If the designated type is
def46b54
RD
2046 -- private, it cannot contain allocators, and it is premature
2047 -- to freeze the type, so we check for this as well.
c6823a20
EB
2048
2049 elsif Is_Access_Type (Etype (Comp))
2050 and then Present (Parent (Comp))
2051 and then Present (Expression (Parent (Comp)))
c6823a20
EB
2052 then
2053 declare
e18d6a15
JM
2054 Alloc : constant Node_Id :=
2055 Check_Allocator (Expression (Parent (Comp)));
c6823a20
EB
2056
2057 begin
e18d6a15 2058 if Present (Alloc) then
19590d70 2059
e18d6a15
JM
2060 -- If component is pointer to a classwide type, freeze
2061 -- the specific type in the expression being allocated.
2062 -- The expression may be a subtype indication, in which
2063 -- case freeze the subtype mark.
c6823a20 2064
e18d6a15
JM
2065 if Is_Class_Wide_Type
2066 (Designated_Type (Etype (Comp)))
0f4cb75c 2067 then
e18d6a15
JM
2068 if Is_Entity_Name (Expression (Alloc)) then
2069 Freeze_And_Append
2070 (Entity (Expression (Alloc)), Loc, Result);
2071 elsif
2072 Nkind (Expression (Alloc)) = N_Subtype_Indication
2073 then
2074 Freeze_And_Append
2075 (Entity (Subtype_Mark (Expression (Alloc))),
2076 Loc, Result);
2077 end if;
0f4cb75c 2078
e18d6a15
JM
2079 elsif Is_Itype (Designated_Type (Etype (Comp))) then
2080 Check_Itype (Etype (Comp));
0f4cb75c 2081
e18d6a15
JM
2082 else
2083 Freeze_And_Append
2084 (Designated_Type (Etype (Comp)), Loc, Result);
2085 end if;
c6823a20
EB
2086 end if;
2087 end;
2088
2089 elsif Is_Access_Type (Etype (Comp))
2090 and then Is_Itype (Designated_Type (Etype (Comp)))
2091 then
7d8b9c99 2092 Check_Itype (Etype (Comp));
c6823a20
EB
2093
2094 elsif Is_Array_Type (Etype (Comp))
2095 and then Is_Access_Type (Component_Type (Etype (Comp)))
2096 and then Present (Parent (Comp))
2097 and then Nkind (Parent (Comp)) = N_Component_Declaration
2098 and then Present (Expression (Parent (Comp)))
2099 and then Nkind (Expression (Parent (Comp))) = N_Aggregate
2100 and then Is_Fully_Defined
2101 (Designated_Type (Component_Type (Etype (Comp))))
2102 then
2103 Freeze_And_Append
2104 (Designated_Type
2105 (Component_Type (Etype (Comp))), Loc, Result);
2106 end if;
2107
2108 Prev := Comp;
70482933
RK
2109 Next_Entity (Comp);
2110 end loop;
2111
fea9e956
ES
2112 -- Deal with pragma Bit_Order
2113
2114 if Reverse_Bit_Order (Rec) and then Base_Type (Rec) = Rec then
2115 if not Placed_Component then
2116 ADC :=
2117 Get_Attribute_Definition_Clause (Rec, Attribute_Bit_Order);
2118 Error_Msg_N
2119 ("?Bit_Order specification has no effect", ADC);
2120 Error_Msg_N
2121 ("\?since no component clauses were specified", ADC);
2122
def46b54
RD
2123 -- Here is where we do Ada 2005 processing for bit order (the Ada
2124 -- 95 case was already taken care of above).
70482933 2125
fea9e956
ES
2126 elsif Ada_Version >= Ada_05 then
2127 Adjust_Record_For_Reverse_Bit_Order (Rec);
2128 end if;
70482933
RK
2129 end if;
2130
1b24ada5
RD
2131 -- Set OK_To_Reorder_Components depending on debug flags
2132
2133 if Rec = Base_Type (Rec)
2134 and then Convention (Rec) = Convention_Ada
2135 then
2136 if (Has_Discriminants (Rec) and then Debug_Flag_Dot_V)
2137 or else
2138 (not Has_Discriminants (Rec) and then Debug_Flag_Dot_R)
2139 then
2140 Set_OK_To_Reorder_Components (Rec);
2141 end if;
2142 end if;
2143
ee094616
RD
2144 -- Check for useless pragma Pack when all components placed. We only
2145 -- do this check for record types, not subtypes, since a subtype may
2146 -- have all its components placed, and it still makes perfectly good
1b24ada5
RD
2147 -- sense to pack other subtypes or the parent type. We do not give
2148 -- this warning if Optimize_Alignment is set to Space, since the
2149 -- pragma Pack does have an effect in this case (it always resets
2150 -- the alignment to one).
70482933 2151
ee094616
RD
2152 if Ekind (Rec) = E_Record_Type
2153 and then Is_Packed (Rec)
70482933 2154 and then not Unplaced_Component
1b24ada5 2155 and then Optimize_Alignment /= 'S'
70482933 2156 then
def46b54
RD
2157 -- Reset packed status. Probably not necessary, but we do it so
2158 -- that there is no chance of the back end doing something strange
2159 -- with this redundant indication of packing.
ee094616 2160
70482933 2161 Set_Is_Packed (Rec, False);
ee094616
RD
2162
2163 -- Give warning if redundant constructs warnings on
2164
2165 if Warn_On_Redundant_Constructs then
2166 Error_Msg_N
2167 ("?pragma Pack has no effect, no unplaced components",
2168 Get_Rep_Pragma (Rec, Name_Pack));
2169 end if;
70482933
RK
2170 end if;
2171
ee094616
RD
2172 -- If this is the record corresponding to a remote type, freeze the
2173 -- remote type here since that is what we are semantically freezing.
2174 -- This prevents the freeze node for that type in an inner scope.
70482933
RK
2175
2176 -- Also, Check for controlled components and unchecked unions.
ee094616
RD
2177 -- Finally, enforce the restriction that access attributes with a
2178 -- current instance prefix can only apply to limited types.
70482933 2179
8dc10d38 2180 if Ekind (Rec) = E_Record_Type then
70482933
RK
2181 if Present (Corresponding_Remote_Type (Rec)) then
2182 Freeze_And_Append
2183 (Corresponding_Remote_Type (Rec), Loc, Result);
2184 end if;
2185
2186 Comp := First_Component (Rec);
70482933
RK
2187 while Present (Comp) loop
2188 if Has_Controlled_Component (Etype (Comp))
2189 or else (Chars (Comp) /= Name_uParent
2190 and then Is_Controlled (Etype (Comp)))
2191 or else (Is_Protected_Type (Etype (Comp))
2192 and then Present
2193 (Corresponding_Record_Type (Etype (Comp)))
2194 and then Has_Controlled_Component
2195 (Corresponding_Record_Type (Etype (Comp))))
2196 then
2197 Set_Has_Controlled_Component (Rec);
2198 exit;
2199 end if;
2200
2201 if Has_Unchecked_Union (Etype (Comp)) then
2202 Set_Has_Unchecked_Union (Rec);
2203 end if;
2204
32c760e6
ES
2205 if Has_Per_Object_Constraint (Comp) then
2206
ee094616
RD
2207 -- Scan component declaration for likely misuses of current
2208 -- instance, either in a constraint or a default expression.
70482933
RK
2209
2210 Check_Current_Instance (Parent (Comp));
2211 end if;
2212
2213 Next_Component (Comp);
2214 end loop;
2215 end if;
2216
2217 Set_Component_Alignment_If_Not_Set (Rec);
2218
ee094616
RD
2219 -- For first subtypes, check if there are any fixed-point fields with
2220 -- component clauses, where we must check the size. This is not done
2221 -- till the freeze point, since for fixed-point types, we do not know
2222 -- the size until the type is frozen. Similar processing applies to
2223 -- bit packed arrays.
70482933
RK
2224
2225 if Is_First_Subtype (Rec) then
2226 Comp := First_Component (Rec);
2227
2228 while Present (Comp) loop
2229 if Present (Component_Clause (Comp))
d05ef0ab
AC
2230 and then (Is_Fixed_Point_Type (Etype (Comp))
2231 or else
2232 Is_Bit_Packed_Array (Etype (Comp)))
70482933
RK
2233 then
2234 Check_Size
d05ef0ab 2235 (Component_Name (Component_Clause (Comp)),
70482933
RK
2236 Etype (Comp),
2237 Esize (Comp),
2238 Junk);
2239 end if;
2240
2241 Next_Component (Comp);
2242 end loop;
2243 end if;
7d8b9c99
RD
2244
2245 -- Generate warning for applying C or C++ convention to a record
2246 -- with discriminants. This is suppressed for the unchecked union
1b24ada5
RD
2247 -- case, since the whole point in this case is interface C. We also
2248 -- do not generate this within instantiations, since we will have
2249 -- generated a message on the template.
7d8b9c99
RD
2250
2251 if Has_Discriminants (E)
2252 and then not Is_Unchecked_Union (E)
7d8b9c99
RD
2253 and then (Convention (E) = Convention_C
2254 or else
2255 Convention (E) = Convention_CPP)
2256 and then Comes_From_Source (E)
1b24ada5
RD
2257 and then not In_Instance
2258 and then not Has_Warnings_Off (E)
2259 and then not Has_Warnings_Off (Base_Type (E))
7d8b9c99
RD
2260 then
2261 declare
2262 Cprag : constant Node_Id := Get_Rep_Pragma (E, Name_Convention);
2263 A2 : Node_Id;
2264
2265 begin
2266 if Present (Cprag) then
2267 A2 := Next (First (Pragma_Argument_Associations (Cprag)));
2268
2269 if Convention (E) = Convention_C then
2270 Error_Msg_N
2271 ("?variant record has no direct equivalent in C", A2);
2272 else
2273 Error_Msg_N
2274 ("?variant record has no direct equivalent in C++", A2);
2275 end if;
2276
2277 Error_Msg_NE
2278 ("\?use of convention for type& is dubious", A2, E);
2279 end if;
2280 end;
2281 end if;
8dc10d38 2282
ce14c577 2283 -- See if Size is too small as is (and implicit packing might help)
8dc10d38 2284
426d2717 2285 if not Is_Packed (Rec)
ce14c577
AC
2286
2287 -- No implicit packing if even one component is explicitly placed
2288
426d2717 2289 and then not Placed_Component
ce14c577
AC
2290
2291 -- Must have size clause and all scalar components
2292
8dc10d38
AC
2293 and then Has_Size_Clause (Rec)
2294 and then All_Scalar_Components
ce14c577
AC
2295
2296 -- Do not try implicit packing on records with discriminants, too
2297 -- complicated, especially in the variant record case.
2298
8dc10d38 2299 and then not Has_Discriminants (Rec)
ce14c577
AC
2300
2301 -- We can implicitly pack if the specified size of the record is
2302 -- less than the sum of the object sizes (no point in packing if
2303 -- this is not the case).
2304
8dc10d38 2305 and then Esize (Rec) < Scalar_Component_Total_Esize
ce14c577
AC
2306
2307 -- And the total RM size cannot be greater than the specified size
2308 -- since otherwise packing will not get us where we have to be!
2309
8dc10d38 2310 and then Esize (Rec) >= Scalar_Component_Total_RM_Size
ce14c577
AC
2311
2312 -- Never do implicit packing in CodePeer mode since we don't do
2313 -- any packing ever in this mode (why not???)
2314
d58b9515 2315 and then not CodePeer_Mode
8dc10d38 2316 then
426d2717
AC
2317 -- If implicit packing enabled, do it
2318
2319 if Implicit_Packing then
2320 Set_Is_Packed (Rec);
2321
2322 -- Otherwise flag the size clause
2323
2324 else
2325 declare
2326 Sz : constant Node_Id := Size_Clause (Rec);
2327 begin
2995ebee 2328 Error_Msg_NE -- CODEFIX
426d2717 2329 ("size given for& too small", Sz, Rec);
2995ebee 2330 Error_Msg_N -- CODEFIX
426d2717
AC
2331 ("\use explicit pragma Pack "
2332 & "or use pragma Implicit_Packing", Sz);
2333 end;
2334 end if;
8dc10d38 2335 end if;
70482933
RK
2336 end Freeze_Record_Type;
2337
2338 -- Start of processing for Freeze_Entity
2339
2340 begin
c6823a20
EB
2341 -- We are going to test for various reasons why this entity need not be
2342 -- frozen here, but in the case of an Itype that's defined within a
2343 -- record, that test actually applies to the record.
2344
2345 if Is_Itype (E) and then Is_Record_Type (Scope (E)) then
2346 Test_E := Scope (E);
2347 elsif Is_Itype (E) and then Present (Underlying_Type (Scope (E)))
2348 and then Is_Record_Type (Underlying_Type (Scope (E)))
2349 then
2350 Test_E := Underlying_Type (Scope (E));
2351 end if;
2352
fbf5a39b 2353 -- Do not freeze if already frozen since we only need one freeze node
70482933
RK
2354
2355 if Is_Frozen (E) then
2356 return No_List;
2357
c6823a20
EB
2358 -- It is improper to freeze an external entity within a generic because
2359 -- its freeze node will appear in a non-valid context. The entity will
2360 -- be frozen in the proper scope after the current generic is analyzed.
70482933 2361
c6823a20 2362 elsif Inside_A_Generic and then External_Ref_In_Generic (Test_E) then
70482933
RK
2363 return No_List;
2364
2365 -- Do not freeze a global entity within an inner scope created during
2366 -- expansion. A call to subprogram E within some internal procedure
2367 -- (a stream attribute for example) might require freezing E, but the
2368 -- freeze node must appear in the same declarative part as E itself.
2369 -- The two-pass elaboration mechanism in gigi guarantees that E will
2370 -- be frozen before the inner call is elaborated. We exclude constants
2371 -- from this test, because deferred constants may be frozen early, and
19590d70
GD
2372 -- must be diagnosed (e.g. in the case of a deferred constant being used
2373 -- in a default expression). If the enclosing subprogram comes from
2374 -- source, or is a generic instance, then the freeze point is the one
2375 -- mandated by the language, and we freeze the entity. A subprogram that
2376 -- is a child unit body that acts as a spec does not have a spec that
2377 -- comes from source, but can only come from source.
70482933 2378
c6823a20
EB
2379 elsif In_Open_Scopes (Scope (Test_E))
2380 and then Scope (Test_E) /= Current_Scope
2381 and then Ekind (Test_E) /= E_Constant
70482933
RK
2382 then
2383 declare
2384 S : Entity_Id := Current_Scope;
2385
2386 begin
2387 while Present (S) loop
2388 if Is_Overloadable (S) then
2389 if Comes_From_Source (S)
2390 or else Is_Generic_Instance (S)
fea9e956 2391 or else Is_Child_Unit (S)
70482933
RK
2392 then
2393 exit;
2394 else
2395 return No_List;
2396 end if;
2397 end if;
2398
2399 S := Scope (S);
2400 end loop;
2401 end;
555360a5
AC
2402
2403 -- Similarly, an inlined instance body may make reference to global
2404 -- entities, but these references cannot be the proper freezing point
def46b54
RD
2405 -- for them, and in the absence of inlining freezing will take place in
2406 -- their own scope. Normally instance bodies are analyzed after the
2407 -- enclosing compilation, and everything has been frozen at the proper
2408 -- place, but with front-end inlining an instance body is compiled
2409 -- before the end of the enclosing scope, and as a result out-of-order
2410 -- freezing must be prevented.
555360a5
AC
2411
2412 elsif Front_End_Inlining
7d8b9c99 2413 and then In_Instance_Body
c6823a20 2414 and then Present (Scope (Test_E))
555360a5
AC
2415 then
2416 declare
c6823a20
EB
2417 S : Entity_Id := Scope (Test_E);
2418
555360a5
AC
2419 begin
2420 while Present (S) loop
2421 if Is_Generic_Instance (S) then
2422 exit;
2423 else
2424 S := Scope (S);
2425 end if;
2426 end loop;
2427
2428 if No (S) then
2429 return No_List;
2430 end if;
2431 end;
70482933
RK
2432 end if;
2433
2434 -- Here to freeze the entity
2435
2436 Result := No_List;
2437 Set_Is_Frozen (E);
2438
2439 -- Case of entity being frozen is other than a type
2440
2441 if not Is_Type (E) then
2442
2443 -- If entity is exported or imported and does not have an external
2444 -- name, now is the time to provide the appropriate default name.
2445 -- Skip this if the entity is stubbed, since we don't need a name
75a64833
AC
2446 -- for any stubbed routine. For the case on intrinsics, if no
2447 -- external name is specified, then calls will be handled in
2448 -- Exp_Intr.Expand_Intrinsic_Call, and no name is needed; if
2449 -- an external name is provided, then Expand_Intrinsic_Call leaves
2450 -- calls in place for expansion by GIGI.
70482933
RK
2451
2452 if (Is_Imported (E) or else Is_Exported (E))
2453 and then No (Interface_Name (E))
2454 and then Convention (E) /= Convention_Stubbed
75a64833 2455 and then Convention (E) /= Convention_Intrinsic
70482933
RK
2456 then
2457 Set_Encoded_Interface_Name
2458 (E, Get_Default_External_Name (E));
fbf5a39b 2459
bbaba73f
EB
2460 -- If entity is an atomic object appearing in a declaration and
2461 -- the expression is an aggregate, assign it to a temporary to
2462 -- ensure that the actual assignment is done atomically rather
2463 -- than component-wise (the assignment to the temp may be done
2464 -- component-wise, but that is harmless).
fbf5a39b
AC
2465
2466 elsif Is_Atomic (E)
2467 and then Nkind (Parent (E)) = N_Object_Declaration
2468 and then Present (Expression (Parent (E)))
bbaba73f 2469 and then Nkind (Expression (Parent (E))) = N_Aggregate
b0159fbe 2470 and then
cfb120b5 2471 Is_Atomic_Aggregate (Expression (Parent (E)), Etype (E))
fbf5a39b 2472 then
b0159fbe 2473 null;
70482933
RK
2474 end if;
2475
2476 -- For a subprogram, freeze all parameter types and also the return
fbf5a39b 2477 -- type (RM 13.14(14)). However skip this for internal subprograms.
70482933 2478 -- This is also the point where any extra formal parameters are
fb2e11ee
AC
2479 -- created since we now know whether the subprogram will use a
2480 -- foreign convention.
70482933
RK
2481
2482 if Is_Subprogram (E) then
70482933 2483 if not Is_Internal (E) then
70482933 2484 declare
6d11af89 2485 F_Type : Entity_Id;
def46b54 2486 R_Type : Entity_Id;
6d11af89 2487 Warn_Node : Node_Id;
70482933 2488
70482933
RK
2489 begin
2490 -- Loop through formals
2491
2492 Formal := First_Formal (E);
70482933 2493 while Present (Formal) loop
70482933
RK
2494 F_Type := Etype (Formal);
2495 Freeze_And_Append (F_Type, Loc, Result);
2496
2497 if Is_Private_Type (F_Type)
2498 and then Is_Private_Type (Base_Type (F_Type))
2499 and then No (Full_View (Base_Type (F_Type)))
2500 and then not Is_Generic_Type (F_Type)
2501 and then not Is_Derived_Type (F_Type)
2502 then
2503 -- If the type of a formal is incomplete, subprogram
2504 -- is being frozen prematurely. Within an instance
2505 -- (but not within a wrapper package) this is an
fb2e11ee 2506 -- artifact of our need to regard the end of an
70482933
RK
2507 -- instantiation as a freeze point. Otherwise it is
2508 -- a definite error.
fbf5a39b 2509
70482933
RK
2510 if In_Instance then
2511 Set_Is_Frozen (E, False);
2512 return No_List;
2513
86cde7b1
RD
2514 elsif not After_Last_Declaration
2515 and then not Freezing_Library_Level_Tagged_Type
2516 then
70482933
RK
2517 Error_Msg_Node_1 := F_Type;
2518 Error_Msg
2519 ("type& must be fully defined before this point",
2520 Loc);
2521 end if;
2522 end if;
2523
def46b54 2524 -- Check suspicious parameter for C function. These tests
1b24ada5 2525 -- apply only to exported/imported subprograms.
70482933 2526
def46b54 2527 if Warn_On_Export_Import
1b24ada5 2528 and then Comes_From_Source (E)
def46b54
RD
2529 and then (Convention (E) = Convention_C
2530 or else
2531 Convention (E) = Convention_CPP)
def46b54 2532 and then (Is_Imported (E) or else Is_Exported (E))
1b24ada5
RD
2533 and then Convention (E) /= Convention (Formal)
2534 and then not Has_Warnings_Off (E)
2535 and then not Has_Warnings_Off (F_Type)
2536 and then not Has_Warnings_Off (Formal)
fbf5a39b 2537 then
70482933 2538 Error_Msg_Qual_Level := 1;
def46b54
RD
2539
2540 -- Check suspicious use of fat C pointer
2541
2542 if Is_Access_Type (F_Type)
2543 and then Esize (F_Type) > Ttypes.System_Address_Size
2544 then
2545 Error_Msg_N
2546 ("?type of & does not correspond "
2547 & "to C pointer!", Formal);
2548
2549 -- Check suspicious return of boolean
2550
2551 elsif Root_Type (F_Type) = Standard_Boolean
2552 and then Convention (F_Type) = Convention_Ada
67198556
RD
2553 and then not Has_Warnings_Off (F_Type)
2554 and then not Has_Size_Clause (F_Type)
def46b54
RD
2555 then
2556 Error_Msg_N
2557 ("?& is an 8-bit Ada Boolean, "
2558 & "use char in C!", Formal);
2559
2560 -- Check suspicious tagged type
2561
2562 elsif (Is_Tagged_Type (F_Type)
2563 or else (Is_Access_Type (F_Type)
2564 and then
2565 Is_Tagged_Type
2566 (Designated_Type (F_Type))))
2567 and then Convention (E) = Convention_C
2568 then
2569 Error_Msg_N
e7d72fb9 2570 ("?& involves a tagged type which does not "
def46b54
RD
2571 & "correspond to any C type!", Formal);
2572
2573 -- Check wrong convention subprogram pointer
2574
2575 elsif Ekind (F_Type) = E_Access_Subprogram_Type
2576 and then not Has_Foreign_Convention (F_Type)
2577 then
2578 Error_Msg_N
2579 ("?subprogram pointer & should "
2580 & "have foreign convention!", Formal);
2581 Error_Msg_Sloc := Sloc (F_Type);
2582 Error_Msg_NE
2583 ("\?add Convention pragma to declaration of &#",
2584 Formal, F_Type);
2585 end if;
2586
70482933
RK
2587 Error_Msg_Qual_Level := 0;
2588 end if;
2589
2590 -- Check for unconstrained array in exported foreign
2591 -- convention case.
2592
def46b54 2593 if Has_Foreign_Convention (E)
70482933
RK
2594 and then not Is_Imported (E)
2595 and then Is_Array_Type (F_Type)
2596 and then not Is_Constrained (F_Type)
fbf5a39b 2597 and then Warn_On_Export_Import
70482933
RK
2598 then
2599 Error_Msg_Qual_Level := 1;
6d11af89
AC
2600
2601 -- If this is an inherited operation, place the
2602 -- warning on the derived type declaration, rather
2603 -- than on the original subprogram.
2604
2605 if Nkind (Original_Node (Parent (E))) =
2606 N_Full_Type_Declaration
2607 then
2608 Warn_Node := Parent (E);
2609
2610 if Formal = First_Formal (E) then
2611 Error_Msg_NE
add9f797 2612 ("?in inherited operation&", Warn_Node, E);
6d11af89
AC
2613 end if;
2614 else
2615 Warn_Node := Formal;
2616 end if;
2617
2618 Error_Msg_NE
70482933 2619 ("?type of argument& is unconstrained array",
6d11af89
AC
2620 Warn_Node, Formal);
2621 Error_Msg_NE
70482933 2622 ("?foreign caller must pass bounds explicitly",
6d11af89 2623 Warn_Node, Formal);
70482933
RK
2624 Error_Msg_Qual_Level := 0;
2625 end if;
2626
d8db0bca
JM
2627 if not From_With_Type (F_Type) then
2628 if Is_Access_Type (F_Type) then
2629 F_Type := Designated_Type (F_Type);
2630 end if;
2631
7d8b9c99
RD
2632 -- If the formal is an anonymous_access_to_subprogram
2633 -- freeze the subprogram type as well, to prevent
2634 -- scope anomalies in gigi, because there is no other
2635 -- clear point at which it could be frozen.
2636
93bcda23 2637 if Is_Itype (Etype (Formal))
7d8b9c99
RD
2638 and then Ekind (F_Type) = E_Subprogram_Type
2639 then
57747aec 2640 Freeze_And_Append (F_Type, Loc, Result);
d8db0bca
JM
2641 end if;
2642 end if;
2643
70482933
RK
2644 Next_Formal (Formal);
2645 end loop;
2646
5e39baa6 2647 -- Case of function: similar checks on return type
70482933
RK
2648
2649 if Ekind (E) = E_Function then
def46b54
RD
2650
2651 -- Freeze return type
2652
2653 R_Type := Etype (E);
2654 Freeze_And_Append (R_Type, Loc, Result);
2655
2656 -- Check suspicious return type for C function
70482933 2657
fbf5a39b 2658 if Warn_On_Export_Import
def46b54
RD
2659 and then (Convention (E) = Convention_C
2660 or else
2661 Convention (E) = Convention_CPP)
def46b54 2662 and then (Is_Imported (E) or else Is_Exported (E))
fbf5a39b 2663 then
def46b54
RD
2664 -- Check suspicious return of fat C pointer
2665
2666 if Is_Access_Type (R_Type)
2667 and then Esize (R_Type) > Ttypes.System_Address_Size
1b24ada5
RD
2668 and then not Has_Warnings_Off (E)
2669 and then not Has_Warnings_Off (R_Type)
def46b54
RD
2670 then
2671 Error_Msg_N
2672 ("?return type of& does not "
2673 & "correspond to C pointer!", E);
2674
2675 -- Check suspicious return of boolean
2676
2677 elsif Root_Type (R_Type) = Standard_Boolean
2678 and then Convention (R_Type) = Convention_Ada
1b24ada5
RD
2679 and then not Has_Warnings_Off (E)
2680 and then not Has_Warnings_Off (R_Type)
67198556 2681 and then not Has_Size_Clause (R_Type)
def46b54
RD
2682 then
2683 Error_Msg_N
2684 ("?return type of & is an 8-bit "
2685 & "Ada Boolean, use char in C!", E);
70482933 2686
def46b54
RD
2687 -- Check suspicious return tagged type
2688
2689 elsif (Is_Tagged_Type (R_Type)
2690 or else (Is_Access_Type (R_Type)
2691 and then
2692 Is_Tagged_Type
2693 (Designated_Type (R_Type))))
2694 and then Convention (E) = Convention_C
1b24ada5
RD
2695 and then not Has_Warnings_Off (E)
2696 and then not Has_Warnings_Off (R_Type)
def46b54
RD
2697 then
2698 Error_Msg_N
2699 ("?return type of & does not "
2700 & "correspond to C type!", E);
2701
2702 -- Check return of wrong convention subprogram pointer
2703
2704 elsif Ekind (R_Type) = E_Access_Subprogram_Type
2705 and then not Has_Foreign_Convention (R_Type)
1b24ada5
RD
2706 and then not Has_Warnings_Off (E)
2707 and then not Has_Warnings_Off (R_Type)
def46b54
RD
2708 then
2709 Error_Msg_N
2710 ("?& should return a foreign "
2711 & "convention subprogram pointer", E);
2712 Error_Msg_Sloc := Sloc (R_Type);
2713 Error_Msg_NE
2714 ("\?add Convention pragma to declaration of& #",
2715 E, R_Type);
2716 end if;
2717 end if;
2718
e7d72fb9
AC
2719 -- Give warning for suspicous return of a result of an
2720 -- unconstrained array type in a foreign convention
2721 -- function.
59366db6 2722
e7d72fb9
AC
2723 if Has_Foreign_Convention (E)
2724
2725 -- We are looking for a return of unconstrained array
2726
2727 and then Is_Array_Type (R_Type)
93bcda23 2728 and then not Is_Constrained (R_Type)
e7d72fb9
AC
2729
2730 -- Exclude imported routines, the warning does not
2731 -- belong on the import, but on the routine definition.
2732
70482933 2733 and then not Is_Imported (E)
e7d72fb9
AC
2734
2735 -- Exclude VM case, since both .NET and JVM can handle
2736 -- return of unconstrained arrays without a problem.
2737
f3b57ab0 2738 and then VM_Target = No_VM
e7d72fb9
AC
2739
2740 -- Check that general warning is enabled, and that it
2741 -- is not suppressed for this particular case.
2742
fbf5a39b 2743 and then Warn_On_Export_Import
1b24ada5 2744 and then not Has_Warnings_Off (E)
93bcda23 2745 and then not Has_Warnings_Off (R_Type)
70482933
RK
2746 then
2747 Error_Msg_N
fbf5a39b 2748 ("?foreign convention function& should not " &
1b24ada5 2749 "return unconstrained array!", E);
70482933
RK
2750 end if;
2751 end if;
2752 end;
2753 end if;
2754
2755 -- Must freeze its parent first if it is a derived subprogram
2756
2757 if Present (Alias (E)) then
2758 Freeze_And_Append (Alias (E), Loc, Result);
2759 end if;
2760
19590d70
GD
2761 -- We don't freeze internal subprograms, because we don't normally
2762 -- want addition of extra formals or mechanism setting to happen
2763 -- for those. However we do pass through predefined dispatching
2764 -- cases, since extra formals may be needed in some cases, such as
2765 -- for the stream 'Input function (build-in-place formals).
2766
2767 if not Is_Internal (E)
2768 or else Is_Predefined_Dispatching_Operation (E)
2769 then
70482933
RK
2770 Freeze_Subprogram (E);
2771 end if;
2772
2773 -- Here for other than a subprogram or type
2774
2775 else
2776 -- If entity has a type, and it is not a generic unit, then
7d8b9c99 2777 -- freeze it first (RM 13.14(10)).
70482933 2778
ac72c9c5 2779 if Present (Etype (E))
70482933
RK
2780 and then Ekind (E) /= E_Generic_Function
2781 then
2782 Freeze_And_Append (Etype (E), Loc, Result);
2783 end if;
2784
2c9beb8a 2785 -- Special processing for objects created by object declaration
70482933
RK
2786
2787 if Nkind (Declaration_Node (E)) = N_Object_Declaration then
2c9beb8a 2788
6823270c
AC
2789 -- Abstract type allowed only for C++ imported variables or
2790 -- constants.
2791
2792 -- Note: we inhibit this check for objects that do not come
2793 -- from source because there is at least one case (the
2794 -- expansion of x'class'input where x is abstract) where we
2795 -- legitimately generate an abstract object.
2796
2797 if Is_Abstract_Type (Etype (E))
2798 and then Comes_From_Source (Parent (E))
2799 and then not (Is_Imported (E)
2800 and then Is_CPP_Class (Etype (E)))
2801 then
2802 Error_Msg_N ("type of object cannot be abstract",
2803 Object_Definition (Parent (E)));
2804
2805 if Is_CPP_Class (Etype (E)) then
2806 Error_Msg_NE ("\} may need a cpp_constructor",
2807 Object_Definition (Parent (E)), Etype (E));
2808 end if;
2809 end if;
2810
2c9beb8a
RD
2811 -- For object created by object declaration, perform required
2812 -- categorization (preelaborate and pure) checks. Defer these
2813 -- checks to freeze time since pragma Import inhibits default
2814 -- initialization and thus pragma Import affects these checks.
2815
70482933 2816 Validate_Object_Declaration (Declaration_Node (E));
2c9beb8a 2817
1ce1f005 2818 -- If there is an address clause, check that it is valid
2c9beb8a 2819
fbf5a39b 2820 Check_Address_Clause (E);
2c9beb8a 2821
1ce1f005
GD
2822 -- If the object needs any kind of default initialization, an
2823 -- error must be issued if No_Default_Initialization applies.
2824 -- The check doesn't apply to imported objects, which are not
2825 -- ever default initialized, and is why the check is deferred
2826 -- until freezing, at which point we know if Import applies.
4fec4e7a
ES
2827 -- Deferred constants are also exempted from this test because
2828 -- their completion is explicit, or through an import pragma.
1ce1f005 2829
4fec4e7a
ES
2830 if Ekind (E) = E_Constant
2831 and then Present (Full_View (E))
2832 then
2833 null;
2834
2835 elsif Comes_From_Source (E)
b6e209b5 2836 and then not Is_Imported (E)
1ce1f005
GD
2837 and then not Has_Init_Expression (Declaration_Node (E))
2838 and then
2839 ((Has_Non_Null_Base_Init_Proc (Etype (E))
2840 and then not No_Initialization (Declaration_Node (E))
2841 and then not Is_Value_Type (Etype (E))
2842 and then not Suppress_Init_Proc (Etype (E)))
2843 or else
2844 (Needs_Simple_Initialization (Etype (E))
2845 and then not Is_Internal (E)))
2846 then
4c8a5bb8 2847 Has_Default_Initialization := True;
1ce1f005
GD
2848 Check_Restriction
2849 (No_Default_Initialization, Declaration_Node (E));
2850 end if;
2851
4c8a5bb8
AC
2852 -- Check that a Thread_Local_Storage variable does not have
2853 -- default initialization, and any explicit initialization must
2854 -- either be the null constant or a static constant.
2855
2856 if Has_Pragma_Thread_Local_Storage (E) then
2857 declare
2858 Decl : constant Node_Id := Declaration_Node (E);
2859 begin
2860 if Has_Default_Initialization
2861 or else
2862 (Has_Init_Expression (Decl)
2863 and then
2864 (No (Expression (Decl))
2865 or else not
2866 (Is_Static_Expression (Expression (Decl))
2867 or else
2868 Nkind (Expression (Decl)) = N_Null)))
2869 then
2870 Error_Msg_NE
2871 ("Thread_Local_Storage variable& is "
2872 & "improperly initialized", Decl, E);
2873 Error_Msg_NE
2874 ("\only allowed initialization is explicit "
2875 & "NULL or static expression", Decl, E);
2876 end if;
2877 end;
2878 end if;
2879
def46b54
RD
2880 -- For imported objects, set Is_Public unless there is also an
2881 -- address clause, which means that there is no external symbol
2882 -- needed for the Import (Is_Public may still be set for other
2883 -- unrelated reasons). Note that we delayed this processing
2884 -- till freeze time so that we can be sure not to set the flag
2885 -- if there is an address clause. If there is such a clause,
2886 -- then the only purpose of the Import pragma is to suppress
2887 -- implicit initialization.
2c9beb8a
RD
2888
2889 if Is_Imported (E)
add9f797 2890 and then No (Address_Clause (E))
2c9beb8a
RD
2891 then
2892 Set_Is_Public (E);
2893 end if;
7d8b9c99
RD
2894
2895 -- For convention C objects of an enumeration type, warn if
2896 -- the size is not integer size and no explicit size given.
2897 -- Skip warning for Boolean, and Character, assume programmer
2898 -- expects 8-bit sizes for these cases.
2899
2900 if (Convention (E) = Convention_C
2901 or else
2902 Convention (E) = Convention_CPP)
2903 and then Is_Enumeration_Type (Etype (E))
2904 and then not Is_Character_Type (Etype (E))
2905 and then not Is_Boolean_Type (Etype (E))
2906 and then Esize (Etype (E)) < Standard_Integer_Size
2907 and then not Has_Size_Clause (E)
2908 then
2909 Error_Msg_Uint_1 := UI_From_Int (Standard_Integer_Size);
2910 Error_Msg_N
2911 ("?convention C enumeration object has size less than ^",
2912 E);
2913 Error_Msg_N ("\?use explicit size clause to set size", E);
2914 end if;
70482933
RK
2915 end if;
2916
2917 -- Check that a constant which has a pragma Volatile[_Components]
7d8b9c99 2918 -- or Atomic[_Components] also has a pragma Import (RM C.6(13)).
70482933
RK
2919
2920 -- Note: Atomic[_Components] also sets Volatile[_Components]
2921
2922 if Ekind (E) = E_Constant
2923 and then (Has_Volatile_Components (E) or else Is_Volatile (E))
2924 and then not Is_Imported (E)
2925 then
2926 -- Make sure we actually have a pragma, and have not merely
2927 -- inherited the indication from elsewhere (e.g. an address
2928 -- clause, which is not good enough in RM terms!)
2929
1d571f3b 2930 if Has_Rep_Pragma (E, Name_Atomic)
91b1417d 2931 or else
1d571f3b 2932 Has_Rep_Pragma (E, Name_Atomic_Components)
70482933
RK
2933 then
2934 Error_Msg_N
91b1417d 2935 ("stand alone atomic constant must be " &
def46b54 2936 "imported (RM C.6(13))", E);
91b1417d 2937
1d571f3b 2938 elsif Has_Rep_Pragma (E, Name_Volatile)
91b1417d 2939 or else
1d571f3b 2940 Has_Rep_Pragma (E, Name_Volatile_Components)
91b1417d
AC
2941 then
2942 Error_Msg_N
2943 ("stand alone volatile constant must be " &
86cde7b1 2944 "imported (RM C.6(13))", E);
70482933
RK
2945 end if;
2946 end if;
2947
2948 -- Static objects require special handling
2949
2950 if (Ekind (E) = E_Constant or else Ekind (E) = E_Variable)
2951 and then Is_Statically_Allocated (E)
2952 then
2953 Freeze_Static_Object (E);
2954 end if;
2955
2956 -- Remaining step is to layout objects
2957
2958 if Ekind (E) = E_Variable
2959 or else
2960 Ekind (E) = E_Constant
2961 or else
2962 Ekind (E) = E_Loop_Parameter
2963 or else
2964 Is_Formal (E)
2965 then
2966 Layout_Object (E);
2967 end if;
2968 end if;
2969
2970 -- Case of a type or subtype being frozen
2971
2972 else
31b5873d
GD
2973 -- We used to check here that a full type must have preelaborable
2974 -- initialization if it completes a private type specified with
2975 -- pragma Preelaborable_Intialization, but that missed cases where
2976 -- the types occur within a generic package, since the freezing
2977 -- that occurs within a containing scope generally skips traversal
2978 -- of a generic unit's declarations (those will be frozen within
2979 -- instances). This check was moved to Analyze_Package_Specification.
3f1ede06 2980
70482933
RK
2981 -- The type may be defined in a generic unit. This can occur when
2982 -- freezing a generic function that returns the type (which is
2983 -- defined in a parent unit). It is clearly meaningless to freeze
2984 -- this type. However, if it is a subtype, its size may be determi-
2985 -- nable and used in subsequent checks, so might as well try to
2986 -- compute it.
2987
2988 if Present (Scope (E))
2989 and then Is_Generic_Unit (Scope (E))
2990 then
2991 Check_Compile_Time_Size (E);
2992 return No_List;
2993 end if;
2994
2995 -- Deal with special cases of freezing for subtype
2996
2997 if E /= Base_Type (E) then
2998
86cde7b1
RD
2999 -- Before we do anything else, a specialized test for the case of
3000 -- a size given for an array where the array needs to be packed,
3001 -- but was not so the size cannot be honored. This would of course
3002 -- be caught by the backend, and indeed we don't catch all cases.
3003 -- The point is that we can give a better error message in those
3004 -- cases that we do catch with the circuitry here. Also if pragma
3005 -- Implicit_Packing is set, this is where the packing occurs.
3006
3007 -- The reason we do this so early is that the processing in the
3008 -- automatic packing case affects the layout of the base type, so
3009 -- it must be done before we freeze the base type.
3010
3011 if Is_Array_Type (E) then
3012 declare
3013 Lo, Hi : Node_Id;
3014 Ctyp : constant Entity_Id := Component_Type (E);
3015
3016 begin
3017 -- Check enabling conditions. These are straightforward
3018 -- except for the test for a limited composite type. This
3019 -- eliminates the rare case of a array of limited components
3020 -- where there are issues of whether or not we can go ahead
3021 -- and pack the array (since we can't freely pack and unpack
3022 -- arrays if they are limited).
3023
3024 -- Note that we check the root type explicitly because the
3025 -- whole point is we are doing this test before we have had
3026 -- a chance to freeze the base type (and it is that freeze
3027 -- action that causes stuff to be inherited).
3028
3029 if Present (Size_Clause (E))
3030 and then Known_Static_Esize (E)
3031 and then not Is_Packed (E)
3032 and then not Has_Pragma_Pack (E)
3033 and then Number_Dimensions (E) = 1
3034 and then not Has_Component_Size_Clause (E)
3035 and then Known_Static_Esize (Ctyp)
3036 and then not Is_Limited_Composite (E)
3037 and then not Is_Packed (Root_Type (E))
3038 and then not Has_Component_Size_Clause (Root_Type (E))
d58b9515 3039 and then not CodePeer_Mode
86cde7b1
RD
3040 then
3041 Get_Index_Bounds (First_Index (E), Lo, Hi);
3042
3043 if Compile_Time_Known_Value (Lo)
3044 and then Compile_Time_Known_Value (Hi)
3045 and then Known_Static_RM_Size (Ctyp)
3046 and then RM_Size (Ctyp) < 64
3047 then
3048 declare
3049 Lov : constant Uint := Expr_Value (Lo);
3050 Hiv : constant Uint := Expr_Value (Hi);
3051 Len : constant Uint := UI_Max
3052 (Uint_0,
3053 Hiv - Lov + 1);
3054 Rsiz : constant Uint := RM_Size (Ctyp);
3055 SZ : constant Node_Id := Size_Clause (E);
3056 Btyp : constant Entity_Id := Base_Type (E);
3057
3058 -- What we are looking for here is the situation where
3059 -- the RM_Size given would be exactly right if there
3060 -- was a pragma Pack (resulting in the component size
3061 -- being the same as the RM_Size). Furthermore, the
3062 -- component type size must be an odd size (not a
5a989c6b
AC
3063 -- multiple of storage unit). If the component RM size
3064 -- is an exact number of storage units that is a power
3065 -- of two, the array is not packed and has a standard
3066 -- representation.
86cde7b1
RD
3067
3068 begin
3069 if RM_Size (E) = Len * Rsiz
3070 and then Rsiz mod System_Storage_Unit /= 0
3071 then
3072 -- For implicit packing mode, just set the
fd366a46 3073 -- component size silently.
86cde7b1
RD
3074
3075 if Implicit_Packing then
3076 Set_Component_Size (Btyp, Rsiz);
3077 Set_Is_Bit_Packed_Array (Btyp);
3078 Set_Is_Packed (Btyp);
3079 Set_Has_Non_Standard_Rep (Btyp);
3080
3081 -- Otherwise give an error message
3082
3083 else
3084 Error_Msg_NE
3085 ("size given for& too small", SZ, E);
3086 Error_Msg_N
3087 ("\use explicit pragma Pack "
3088 & "or use pragma Implicit_Packing", SZ);
3089 end if;
5a989c6b
AC
3090
3091 elsif RM_Size (E) = Len * Rsiz
3092 and then Implicit_Packing
3093 and then
3094 (Rsiz / System_Storage_Unit = 1
3095 or else Rsiz / System_Storage_Unit = 2
3096 or else Rsiz / System_Storage_Unit = 4)
3097 then
3098
3099 -- Not a packed array, but indicate the desired
3100 -- component size, for the back-end.
3101
3102 Set_Component_Size (Btyp, Rsiz);
86cde7b1
RD
3103 end if;
3104 end;
3105 end if;
3106 end if;
3107 end;
3108 end if;
3109
def46b54
RD
3110 -- If ancestor subtype present, freeze that first. Note that this
3111 -- will also get the base type frozen.
70482933
RK
3112
3113 Atype := Ancestor_Subtype (E);
3114
3115 if Present (Atype) then
3116 Freeze_And_Append (Atype, Loc, Result);
3117
def46b54
RD
3118 -- Otherwise freeze the base type of the entity before freezing
3119 -- the entity itself (RM 13.14(15)).
70482933
RK
3120
3121 elsif E /= Base_Type (E) then
3122 Freeze_And_Append (Base_Type (E), Loc, Result);
3123 end if;
3124
fbf5a39b 3125 -- For a derived type, freeze its parent type first (RM 13.14(15))
70482933
RK
3126
3127 elsif Is_Derived_Type (E) then
3128 Freeze_And_Append (Etype (E), Loc, Result);
3129 Freeze_And_Append (First_Subtype (Etype (E)), Loc, Result);
3130 end if;
3131
3132 -- For array type, freeze index types and component type first
fbf5a39b 3133 -- before freezing the array (RM 13.14(15)).
70482933
RK
3134
3135 if Is_Array_Type (E) then
3136 declare
fbf5a39b 3137 Ctyp : constant Entity_Id := Component_Type (E);
70482933
RK
3138
3139 Non_Standard_Enum : Boolean := False;
7d8b9c99
RD
3140 -- Set true if any of the index types is an enumeration type
3141 -- with a non-standard representation.
70482933
RK
3142
3143 begin
3144 Freeze_And_Append (Ctyp, Loc, Result);
3145
3146 Indx := First_Index (E);
3147 while Present (Indx) loop
3148 Freeze_And_Append (Etype (Indx), Loc, Result);
3149
3150 if Is_Enumeration_Type (Etype (Indx))
3151 and then Has_Non_Standard_Rep (Etype (Indx))
3152 then
3153 Non_Standard_Enum := True;
3154 end if;
3155
3156 Next_Index (Indx);
3157 end loop;
3158
07fc65c4 3159 -- Processing that is done only for base types
70482933
RK
3160
3161 if Ekind (E) = E_Array_Type then
07fc65c4
GB
3162
3163 -- Propagate flags for component type
3164
70482933
RK
3165 if Is_Controlled (Component_Type (E))
3166 or else Has_Controlled_Component (Ctyp)
3167 then
3168 Set_Has_Controlled_Component (E);
3169 end if;
3170
3171 if Has_Unchecked_Union (Component_Type (E)) then
3172 Set_Has_Unchecked_Union (E);
3173 end if;
70482933 3174
07fc65c4
GB
3175 -- If packing was requested or if the component size was set
3176 -- explicitly, then see if bit packing is required. This
3177 -- processing is only done for base types, since all the
3178 -- representation aspects involved are type-related. This
3179 -- is not just an optimization, if we start processing the
e14c931f 3180 -- subtypes, they interfere with the settings on the base
07fc65c4
GB
3181 -- type (this is because Is_Packed has a slightly different
3182 -- meaning before and after freezing).
70482933 3183
70482933
RK
3184 declare
3185 Csiz : Uint;
3186 Esiz : Uint;
3187
3188 begin
3189 if (Is_Packed (E) or else Has_Pragma_Pack (E))
3190 and then not Has_Atomic_Components (E)
3191 and then Known_Static_RM_Size (Ctyp)
3192 then
3193 Csiz := UI_Max (RM_Size (Ctyp), 1);
3194
3195 elsif Known_Component_Size (E) then
3196 Csiz := Component_Size (E);
3197
3198 elsif not Known_Static_Esize (Ctyp) then
3199 Csiz := Uint_0;
3200
3201 else
3202 Esiz := Esize (Ctyp);
3203
3204 -- We can set the component size if it is less than
3205 -- 16, rounding it up to the next storage unit size.
3206
3207 if Esiz <= 8 then
3208 Csiz := Uint_8;
3209 elsif Esiz <= 16 then
3210 Csiz := Uint_16;
3211 else
3212 Csiz := Uint_0;
3213 end if;
3214
7d8b9c99
RD
3215 -- Set component size up to match alignment if it
3216 -- would otherwise be less than the alignment. This
3217 -- deals with cases of types whose alignment exceeds
3218 -- their size (padded types).
70482933
RK
3219
3220 if Csiz /= 0 then
3221 declare
3222 A : constant Uint := Alignment_In_Bits (Ctyp);
70482933
RK
3223 begin
3224 if Csiz < A then
3225 Csiz := A;
3226 end if;
3227 end;
3228 end if;
70482933
RK
3229 end if;
3230
86cde7b1
RD
3231 -- Case of component size that may result in packing
3232
70482933 3233 if 1 <= Csiz and then Csiz <= 64 then
86cde7b1
RD
3234 declare
3235 Ent : constant Entity_Id :=
3236 First_Subtype (E);
3237 Pack_Pragma : constant Node_Id :=
3238 Get_Rep_Pragma (Ent, Name_Pack);
3239 Comp_Size_C : constant Node_Id :=
3240 Get_Attribute_Definition_Clause
3241 (Ent, Attribute_Component_Size);
3242 begin
3243 -- Warn if we have pack and component size so that
3244 -- the pack is ignored.
70482933 3245
86cde7b1
RD
3246 -- Note: here we must check for the presence of a
3247 -- component size before checking for a Pack pragma
3248 -- to deal with the case where the array type is a
3249 -- derived type whose parent is currently private.
3250
3251 if Present (Comp_Size_C)
3252 and then Has_Pragma_Pack (Ent)
3253 then
3254 Error_Msg_Sloc := Sloc (Comp_Size_C);
3255 Error_Msg_NE
3256 ("?pragma Pack for& ignored!",
3257 Pack_Pragma, Ent);
3258 Error_Msg_N
3259 ("\?explicit component size given#!",
3260 Pack_Pragma);
3261 end if;
70482933 3262
86cde7b1
RD
3263 -- Set component size if not already set by a
3264 -- component size clause.
70482933 3265
86cde7b1
RD
3266 if not Present (Comp_Size_C) then
3267 Set_Component_Size (E, Csiz);
3268 end if;
fbf5a39b 3269
86cde7b1
RD
3270 -- Check for base type of 8, 16, 32 bits, where an
3271 -- unsigned subtype has a length one less than the
3272 -- base type (e.g. Natural subtype of Integer).
fbf5a39b 3273
86cde7b1
RD
3274 -- In such cases, if a component size was not set
3275 -- explicitly, then generate a warning.
fbf5a39b 3276
86cde7b1
RD
3277 if Has_Pragma_Pack (E)
3278 and then not Present (Comp_Size_C)
3279 and then
3280 (Csiz = 7 or else Csiz = 15 or else Csiz = 31)
3281 and then Esize (Base_Type (Ctyp)) = Csiz + 1
3282 then
3283 Error_Msg_Uint_1 := Csiz;
3284
3285 if Present (Pack_Pragma) then
3286 Error_Msg_N
3287 ("?pragma Pack causes component size "
3288 & "to be ^!", Pack_Pragma);
3289 Error_Msg_N
3290 ("\?use Component_Size to set "
3291 & "desired value!", Pack_Pragma);
3292 end if;
fbf5a39b 3293 end if;
fbf5a39b 3294
86cde7b1
RD
3295 -- Actual packing is not needed for 8, 16, 32, 64.
3296 -- Also not needed for 24 if alignment is 1.
70482933 3297
86cde7b1
RD
3298 if Csiz = 8
3299 or else Csiz = 16
3300 or else Csiz = 32
3301 or else Csiz = 64
3302 or else (Csiz = 24 and then Alignment (Ctyp) = 1)
3303 then
3304 -- Here the array was requested to be packed,
3305 -- but the packing request had no effect, so
3306 -- Is_Packed is reset.
70482933 3307
86cde7b1
RD
3308 -- Note: semantically this means that we lose
3309 -- track of the fact that a derived type
3310 -- inherited a pragma Pack that was non-
3311 -- effective, but that seems fine.
70482933 3312
86cde7b1
RD
3313 -- We regard a Pack pragma as a request to set
3314 -- a representation characteristic, and this
3315 -- request may be ignored.
70482933 3316
86cde7b1 3317 Set_Is_Packed (Base_Type (E), False);
70482933 3318
86cde7b1 3319 -- In all other cases, packing is indeed needed
70482933 3320
86cde7b1
RD
3321 else
3322 Set_Has_Non_Standard_Rep (Base_Type (E));
3323 Set_Is_Bit_Packed_Array (Base_Type (E));
3324 Set_Is_Packed (Base_Type (E));
3325 end if;
3326 end;
70482933
RK
3327 end if;
3328 end;
07fc65c4
GB
3329
3330 -- Processing that is done only for subtypes
3331
3332 else
3333 -- Acquire alignment from base type
3334
3335 if Unknown_Alignment (E) then
3336 Set_Alignment (E, Alignment (Base_Type (E)));
7d8b9c99 3337 Adjust_Esize_Alignment (E);
07fc65c4
GB
3338 end if;
3339 end if;
3340
d05ef0ab
AC
3341 -- For bit-packed arrays, check the size
3342
75a64833 3343 if Is_Bit_Packed_Array (E) and then Known_RM_Size (E) then
d05ef0ab 3344 declare
67ce0d7e
RD
3345 SizC : constant Node_Id := Size_Clause (E);
3346
d05ef0ab 3347 Discard : Boolean;
67ce0d7e 3348 pragma Warnings (Off, Discard);
d05ef0ab
AC
3349
3350 begin
3351 -- It is not clear if it is possible to have no size
7d8b9c99
RD
3352 -- clause at this stage, but it is not worth worrying
3353 -- about. Post error on the entity name in the size
d05ef0ab
AC
3354 -- clause if present, else on the type entity itself.
3355
3356 if Present (SizC) then
7d8b9c99 3357 Check_Size (Name (SizC), E, RM_Size (E), Discard);
d05ef0ab 3358 else
7d8b9c99 3359 Check_Size (E, E, RM_Size (E), Discard);
d05ef0ab
AC
3360 end if;
3361 end;
3362 end if;
3363
70482933
RK
3364 -- If any of the index types was an enumeration type with
3365 -- a non-standard rep clause, then we indicate that the
3366 -- array type is always packed (even if it is not bit packed).
3367
3368 if Non_Standard_Enum then
3369 Set_Has_Non_Standard_Rep (Base_Type (E));
3370 Set_Is_Packed (Base_Type (E));
3371 end if;
70482933 3372
0da2c8ac 3373 Set_Component_Alignment_If_Not_Set (E);
70482933 3374
0da2c8ac
AC
3375 -- If the array is packed, we must create the packed array
3376 -- type to be used to actually implement the type. This is
3377 -- only needed for real array types (not for string literal
3378 -- types, since they are present only for the front end).
70482933 3379
0da2c8ac
AC
3380 if Is_Packed (E)
3381 and then Ekind (E) /= E_String_Literal_Subtype
3382 then
3383 Create_Packed_Array_Type (E);
3384 Freeze_And_Append (Packed_Array_Type (E), Loc, Result);
70482933 3385
0da2c8ac 3386 -- Size information of packed array type is copied to the
fea9e956 3387 -- array type, since this is really the representation. But
def46b54
RD
3388 -- do not override explicit existing size values. If the
3389 -- ancestor subtype is constrained the packed_array_type
3390 -- will be inherited from it, but the size may have been
3391 -- provided already, and must not be overridden either.
fea9e956 3392
def46b54
RD
3393 if not Has_Size_Clause (E)
3394 and then
3395 (No (Ancestor_Subtype (E))
3396 or else not Has_Size_Clause (Ancestor_Subtype (E)))
3397 then
fea9e956
ES
3398 Set_Esize (E, Esize (Packed_Array_Type (E)));
3399 Set_RM_Size (E, RM_Size (Packed_Array_Type (E)));
3400 end if;
70482933 3401
fea9e956
ES
3402 if not Has_Alignment_Clause (E) then
3403 Set_Alignment (E, Alignment (Packed_Array_Type (E)));
3404 end if;
0da2c8ac
AC
3405 end if;
3406
def46b54
RD
3407 -- For non-packed arrays set the alignment of the array to the
3408 -- alignment of the component type if it is unknown. Skip this
3409 -- in atomic case (atomic arrays may need larger alignments).
0da2c8ac
AC
3410
3411 if not Is_Packed (E)
3412 and then Unknown_Alignment (E)
3413 and then Known_Alignment (Ctyp)
3414 and then Known_Static_Component_Size (E)
3415 and then Known_Static_Esize (Ctyp)
3416 and then Esize (Ctyp) = Component_Size (E)
3417 and then not Is_Atomic (E)
3418 then
3419 Set_Alignment (E, Alignment (Component_Type (E)));
3420 end if;
3421 end;
70482933 3422
fbf5a39b
AC
3423 -- For a class-wide type, the corresponding specific type is
3424 -- frozen as well (RM 13.14(15))
70482933
RK
3425
3426 elsif Is_Class_Wide_Type (E) then
3427 Freeze_And_Append (Root_Type (E), Loc, Result);
3428
86cde7b1
RD
3429 -- If the base type of the class-wide type is still incomplete,
3430 -- the class-wide remains unfrozen as well. This is legal when
3431 -- E is the formal of a primitive operation of some other type
3432 -- which is being frozen.
3433
3434 if not Is_Frozen (Root_Type (E)) then
3435 Set_Is_Frozen (E, False);
3436 return Result;
3437 end if;
3438
70482933
RK
3439 -- If the Class_Wide_Type is an Itype (when type is the anonymous
3440 -- parent of a derived type) and it is a library-level entity,
3441 -- generate an itype reference for it. Otherwise, its first
3442 -- explicit reference may be in an inner scope, which will be
3443 -- rejected by the back-end.
3444
3445 if Is_Itype (E)
3446 and then Is_Compilation_Unit (Scope (E))
3447 then
70482933 3448 declare
fbf5a39b 3449 Ref : constant Node_Id := Make_Itype_Reference (Loc);
70482933
RK
3450
3451 begin
3452 Set_Itype (Ref, E);
3453 if No (Result) then
3454 Result := New_List (Ref);
3455 else
3456 Append (Ref, Result);
3457 end if;
3458 end;
3459 end if;
3460
def46b54 3461 -- The equivalent type associated with a class-wide subtype needs
cbae498b 3462 -- to be frozen to ensure that its layout is done.
fbf5a39b
AC
3463
3464 if Ekind (E) = E_Class_Wide_Subtype
3465 and then Present (Equivalent_Type (E))
3466 then
3467 Freeze_And_Append (Equivalent_Type (E), Loc, Result);
3468 end if;
3469
3470 -- For a record (sub)type, freeze all the component types (RM
def46b54
RD
3471 -- 13.14(15). We test for E_Record_(sub)Type here, rather than using
3472 -- Is_Record_Type, because we don't want to attempt the freeze for
3473 -- the case of a private type with record extension (we will do that
3474 -- later when the full type is frozen).
70482933
RK
3475
3476 elsif Ekind (E) = E_Record_Type
fd366a46 3477 or else Ekind (E) = E_Record_Subtype
70482933
RK
3478 then
3479 Freeze_Record_Type (E);
3480
3481 -- For a concurrent type, freeze corresponding record type. This
e14c931f 3482 -- does not correspond to any specific rule in the RM, but the
70482933
RK
3483 -- record type is essentially part of the concurrent type.
3484 -- Freeze as well all local entities. This includes record types
3485 -- created for entry parameter blocks, and whatever local entities
3486 -- may appear in the private part.
3487
3488 elsif Is_Concurrent_Type (E) then
3489 if Present (Corresponding_Record_Type (E)) then
3490 Freeze_And_Append
3491 (Corresponding_Record_Type (E), Loc, Result);
3492 end if;
3493
3494 Comp := First_Entity (E);
70482933
RK
3495 while Present (Comp) loop
3496 if Is_Type (Comp) then
3497 Freeze_And_Append (Comp, Loc, Result);
3498
3499 elsif (Ekind (Comp)) /= E_Function then
c6823a20
EB
3500 if Is_Itype (Etype (Comp))
3501 and then Underlying_Type (Scope (Etype (Comp))) = E
3502 then
3503 Undelay_Type (Etype (Comp));
3504 end if;
3505
70482933
RK
3506 Freeze_And_Append (Etype (Comp), Loc, Result);
3507 end if;
3508
3509 Next_Entity (Comp);
3510 end loop;
3511
ee094616
RD
3512 -- Private types are required to point to the same freeze node as
3513 -- their corresponding full views. The freeze node itself has to
3514 -- point to the partial view of the entity (because from the partial
3515 -- view, we can retrieve the full view, but not the reverse).
3516 -- However, in order to freeze correctly, we need to freeze the full
3517 -- view. If we are freezing at the end of a scope (or within the
3518 -- scope of the private type), the partial and full views will have
3519 -- been swapped, the full view appears first in the entity chain and
3520 -- the swapping mechanism ensures that the pointers are properly set
3521 -- (on scope exit).
3522
3523 -- If we encounter the partial view before the full view (e.g. when
3524 -- freezing from another scope), we freeze the full view, and then
3525 -- set the pointers appropriately since we cannot rely on swapping to
3526 -- fix things up (subtypes in an outer scope might not get swapped).
70482933
RK
3527
3528 elsif Is_Incomplete_Or_Private_Type (E)
3529 and then not Is_Generic_Type (E)
3530 then
86cde7b1
RD
3531 -- The construction of the dispatch table associated with library
3532 -- level tagged types forces freezing of all the primitives of the
3533 -- type, which may cause premature freezing of the partial view.
3534 -- For example:
3535
3536 -- package Pkg is
3537 -- type T is tagged private;
3538 -- type DT is new T with private;
3539 -- procedure Prim (X : in out T; Y : in out DT'class);
3540 -- private
3541 -- type T is tagged null record;
3542 -- Obj : T;
3543 -- type DT is new T with null record;
3544 -- end;
3545
3546 -- In this case the type will be frozen later by the usual
3547 -- mechanism: an object declaration, an instantiation, or the
3548 -- end of a declarative part.
3549
3550 if Is_Library_Level_Tagged_Type (E)
3551 and then not Present (Full_View (E))
3552 then
3553 Set_Is_Frozen (E, False);
3554 return Result;
3555
70482933
RK
3556 -- Case of full view present
3557
86cde7b1 3558 elsif Present (Full_View (E)) then
70482933 3559
ee094616
RD
3560 -- If full view has already been frozen, then no further
3561 -- processing is required
70482933
RK
3562
3563 if Is_Frozen (Full_View (E)) then
3564
3565 Set_Has_Delayed_Freeze (E, False);
3566 Set_Freeze_Node (E, Empty);
3567 Check_Debug_Info_Needed (E);
3568
ee094616
RD
3569 -- Otherwise freeze full view and patch the pointers so that
3570 -- the freeze node will elaborate both views in the back-end.
70482933
RK
3571
3572 else
fbf5a39b
AC
3573 declare
3574 Full : constant Entity_Id := Full_View (E);
70482933 3575
fbf5a39b
AC
3576 begin
3577 if Is_Private_Type (Full)
3578 and then Present (Underlying_Full_View (Full))
3579 then
3580 Freeze_And_Append
3581 (Underlying_Full_View (Full), Loc, Result);
3582 end if;
70482933 3583
fbf5a39b 3584 Freeze_And_Append (Full, Loc, Result);
70482933 3585
fbf5a39b
AC
3586 if Has_Delayed_Freeze (E) then
3587 F_Node := Freeze_Node (Full);
70482933 3588
fbf5a39b
AC
3589 if Present (F_Node) then
3590 Set_Freeze_Node (E, F_Node);
3591 Set_Entity (F_Node, E);
3592
3593 else
def46b54
RD
3594 -- {Incomplete,Private}_Subtypes with Full_Views
3595 -- constrained by discriminants.
fbf5a39b
AC
3596
3597 Set_Has_Delayed_Freeze (E, False);
3598 Set_Freeze_Node (E, Empty);
3599 end if;
70482933 3600 end if;
fbf5a39b 3601 end;
70482933
RK
3602
3603 Check_Debug_Info_Needed (E);
3604 end if;
3605
ee094616
RD
3606 -- AI-117 requires that the convention of a partial view be the
3607 -- same as the convention of the full view. Note that this is a
3608 -- recognized breach of privacy, but it's essential for logical
3609 -- consistency of representation, and the lack of a rule in
3610 -- RM95 was an oversight.
70482933
RK
3611
3612 Set_Convention (E, Convention (Full_View (E)));
3613
3614 Set_Size_Known_At_Compile_Time (E,
3615 Size_Known_At_Compile_Time (Full_View (E)));
3616
3617 -- Size information is copied from the full view to the
def46b54 3618 -- incomplete or private view for consistency.
70482933 3619
ee094616
RD
3620 -- We skip this is the full view is not a type. This is very
3621 -- strange of course, and can only happen as a result of
3622 -- certain illegalities, such as a premature attempt to derive
3623 -- from an incomplete type.
70482933
RK
3624
3625 if Is_Type (Full_View (E)) then
3626 Set_Size_Info (E, Full_View (E));
3627 Set_RM_Size (E, RM_Size (Full_View (E)));
3628 end if;
3629
3630 return Result;
3631
3632 -- Case of no full view present. If entity is derived or subtype,
3633 -- it is safe to freeze, correctness depends on the frozen status
3634 -- of parent. Otherwise it is either premature usage, or a Taft
3635 -- amendment type, so diagnosis is at the point of use and the
3636 -- type might be frozen later.
3637
3638 elsif E /= Base_Type (E)
3639 or else Is_Derived_Type (E)
3640 then
3641 null;
3642
3643 else
3644 Set_Is_Frozen (E, False);
3645 return No_List;
3646 end if;
3647
3648 -- For access subprogram, freeze types of all formals, the return
3649 -- type was already frozen, since it is the Etype of the function.
8aec446b 3650 -- Formal types can be tagged Taft amendment types, but otherwise
205c14b0 3651 -- they cannot be incomplete.
70482933
RK
3652
3653 elsif Ekind (E) = E_Subprogram_Type then
3654 Formal := First_Formal (E);
8aec446b 3655
70482933 3656 while Present (Formal) loop
8aec446b
AC
3657 if Ekind (Etype (Formal)) = E_Incomplete_Type
3658 and then No (Full_View (Etype (Formal)))
3659 and then not Is_Value_Type (Etype (Formal))
3660 then
3661 if Is_Tagged_Type (Etype (Formal)) then
3662 null;
3663 else
3664 Error_Msg_NE
3665 ("invalid use of incomplete type&", E, Etype (Formal));
3666 end if;
3667 end if;
3668
70482933
RK
3669 Freeze_And_Append (Etype (Formal), Loc, Result);
3670 Next_Formal (Formal);
3671 end loop;
3672
70482933
RK
3673 Freeze_Subprogram (E);
3674
ee094616
RD
3675 -- For access to a protected subprogram, freeze the equivalent type
3676 -- (however this is not set if we are not generating code or if this
3677 -- is an anonymous type used just for resolution).
70482933 3678
fea9e956 3679 elsif Is_Access_Protected_Subprogram_Type (E) then
57747aec 3680 if Present (Equivalent_Type (E)) then
d8db0bca
JM
3681 Freeze_And_Append (Equivalent_Type (E), Loc, Result);
3682 end if;
70482933
RK
3683 end if;
3684
3685 -- Generic types are never seen by the back-end, and are also not
3686 -- processed by the expander (since the expander is turned off for
3687 -- generic processing), so we never need freeze nodes for them.
3688
3689 if Is_Generic_Type (E) then
3690 return Result;
3691 end if;
3692
3693 -- Some special processing for non-generic types to complete
3694 -- representation details not known till the freeze point.
3695
3696 if Is_Fixed_Point_Type (E) then
3697 Freeze_Fixed_Point_Type (E);
3698
ee094616
RD
3699 -- Some error checks required for ordinary fixed-point type. Defer
3700 -- these till the freeze-point since we need the small and range
3701 -- values. We only do these checks for base types
fbf5a39b
AC
3702
3703 if Is_Ordinary_Fixed_Point_Type (E)
3704 and then E = Base_Type (E)
3705 then
3706 if Small_Value (E) < Ureal_2_M_80 then
3707 Error_Msg_Name_1 := Name_Small;
3708 Error_Msg_N
7d8b9c99 3709 ("`&''%` too small, minimum allowed is 2.0'*'*(-80)", E);
fbf5a39b
AC
3710
3711 elsif Small_Value (E) > Ureal_2_80 then
3712 Error_Msg_Name_1 := Name_Small;
3713 Error_Msg_N
7d8b9c99 3714 ("`&''%` too large, maximum allowed is 2.0'*'*80", E);
fbf5a39b
AC
3715 end if;
3716
3717 if Expr_Value_R (Type_Low_Bound (E)) < Ureal_M_10_36 then
3718 Error_Msg_Name_1 := Name_First;
3719 Error_Msg_N
7d8b9c99 3720 ("`&''%` too small, minimum allowed is -10.0'*'*36", E);
fbf5a39b
AC
3721 end if;
3722
3723 if Expr_Value_R (Type_High_Bound (E)) > Ureal_10_36 then
3724 Error_Msg_Name_1 := Name_Last;
3725 Error_Msg_N
7d8b9c99 3726 ("`&''%` too large, maximum allowed is 10.0'*'*36", E);
fbf5a39b
AC
3727 end if;
3728 end if;
3729
70482933
RK
3730 elsif Is_Enumeration_Type (E) then
3731 Freeze_Enumeration_Type (E);
3732
3733 elsif Is_Integer_Type (E) then
3734 Adjust_Esize_For_Alignment (E);
3735
79afa047
AC
3736 if Is_Modular_Integer_Type (E)
3737 and then Warn_On_Suspicious_Modulus_Value
3738 then
67b3acf8
RD
3739 Check_Suspicious_Modulus (E);
3740 end if;
3741
edd63e9b
ES
3742 elsif Is_Access_Type (E) then
3743
3744 -- Check restriction for standard storage pool
3745
3746 if No (Associated_Storage_Pool (E)) then
3747 Check_Restriction (No_Standard_Storage_Pools, E);
3748 end if;
3749
3750 -- Deal with error message for pure access type. This is not an
3751 -- error in Ada 2005 if there is no pool (see AI-366).
3752
3753 if Is_Pure_Unit_Access_Type (E)
3754 and then (Ada_Version < Ada_05
c6a9797e 3755 or else not No_Pool_Assigned (E))
edd63e9b
ES
3756 then
3757 Error_Msg_N ("named access type not allowed in pure unit", E);
c6a9797e
RD
3758
3759 if Ada_Version >= Ada_05 then
3760 Error_Msg_N
3761 ("\would be legal if Storage_Size of 0 given?", E);
3762
3763 elsif No_Pool_Assigned (E) then
3764 Error_Msg_N
3765 ("\would be legal in Ada 2005?", E);
3766
3767 else
3768 Error_Msg_N
3769 ("\would be legal in Ada 2005 if "
3770 & "Storage_Size of 0 given?", E);
3771 end if;
edd63e9b 3772 end if;
70482933
RK
3773 end if;
3774
edd63e9b
ES
3775 -- Case of composite types
3776
70482933
RK
3777 if Is_Composite_Type (E) then
3778
edd63e9b
ES
3779 -- AI-117 requires that all new primitives of a tagged type must
3780 -- inherit the convention of the full view of the type. Inherited
3781 -- and overriding operations are defined to inherit the convention
3782 -- of their parent or overridden subprogram (also specified in
ee094616
RD
3783 -- AI-117), which will have occurred earlier (in Derive_Subprogram
3784 -- and New_Overloaded_Entity). Here we set the convention of
3785 -- primitives that are still convention Ada, which will ensure
def46b54
RD
3786 -- that any new primitives inherit the type's convention. Class-
3787 -- wide types can have a foreign convention inherited from their
3788 -- specific type, but are excluded from this since they don't have
3789 -- any associated primitives.
70482933
RK
3790
3791 if Is_Tagged_Type (E)
3792 and then not Is_Class_Wide_Type (E)
3793 and then Convention (E) /= Convention_Ada
3794 then
3795 declare
3796 Prim_List : constant Elist_Id := Primitive_Operations (E);
07fc65c4 3797 Prim : Elmt_Id;
70482933 3798 begin
07fc65c4 3799 Prim := First_Elmt (Prim_List);
70482933
RK
3800 while Present (Prim) loop
3801 if Convention (Node (Prim)) = Convention_Ada then
3802 Set_Convention (Node (Prim), Convention (E));
3803 end if;
3804
3805 Next_Elmt (Prim);
3806 end loop;
3807 end;
3808 end if;
3809 end if;
3810
ee094616
RD
3811 -- Now that all types from which E may depend are frozen, see if the
3812 -- size is known at compile time, if it must be unsigned, or if
7d8b9c99 3813 -- strict alignment is required
70482933
RK
3814
3815 Check_Compile_Time_Size (E);
3816 Check_Unsigned_Type (E);
3817
3818 if Base_Type (E) = E then
3819 Check_Strict_Alignment (E);
3820 end if;
3821
3822 -- Do not allow a size clause for a type which does not have a size
3823 -- that is known at compile time
3824
3825 if Has_Size_Clause (E)
3826 and then not Size_Known_At_Compile_Time (E)
3827 then
e14c931f 3828 -- Suppress this message if errors posted on E, even if we are
07fc65c4
GB
3829 -- in all errors mode, since this is often a junk message
3830
3831 if not Error_Posted (E) then
3832 Error_Msg_N
3833 ("size clause not allowed for variable length type",
3834 Size_Clause (E));
3835 end if;
70482933
RK
3836 end if;
3837
3838 -- Remaining process is to set/verify the representation information,
3839 -- in particular the size and alignment values. This processing is
3840 -- not required for generic types, since generic types do not play
3841 -- any part in code generation, and so the size and alignment values
c6823a20 3842 -- for such types are irrelevant.
70482933
RK
3843
3844 if Is_Generic_Type (E) then
3845 return Result;
3846
3847 -- Otherwise we call the layout procedure
3848
3849 else
3850 Layout_Type (E);
3851 end if;
3852
3853 -- End of freeze processing for type entities
3854 end if;
3855
3856 -- Here is where we logically freeze the current entity. If it has a
3857 -- freeze node, then this is the point at which the freeze node is
3858 -- linked into the result list.
3859
3860 if Has_Delayed_Freeze (E) then
3861
3862 -- If a freeze node is already allocated, use it, otherwise allocate
3863 -- a new one. The preallocation happens in the case of anonymous base
3864 -- types, where we preallocate so that we can set First_Subtype_Link.
3865 -- Note that we reset the Sloc to the current freeze location.
3866
3867 if Present (Freeze_Node (E)) then
3868 F_Node := Freeze_Node (E);
3869 Set_Sloc (F_Node, Loc);
3870
3871 else
3872 F_Node := New_Node (N_Freeze_Entity, Loc);
3873 Set_Freeze_Node (E, F_Node);
3874 Set_Access_Types_To_Process (F_Node, No_Elist);
3875 Set_TSS_Elist (F_Node, No_Elist);
3876 Set_Actions (F_Node, No_List);
3877 end if;
3878
3879 Set_Entity (F_Node, E);
3880
3881 if Result = No_List then
3882 Result := New_List (F_Node);
3883 else
3884 Append (F_Node, Result);
3885 end if;
35ae2ed8
AC
3886
3887 -- A final pass over record types with discriminants. If the type
3888 -- has an incomplete declaration, there may be constrained access
3889 -- subtypes declared elsewhere, which do not depend on the discrimi-
3890 -- nants of the type, and which are used as component types (i.e.
3891 -- the full view is a recursive type). The designated types of these
3892 -- subtypes can only be elaborated after the type itself, and they
3893 -- need an itype reference.
3894
3895 if Ekind (E) = E_Record_Type
3896 and then Has_Discriminants (E)
3897 then
3898 declare
3899 Comp : Entity_Id;
3900 IR : Node_Id;
3901 Typ : Entity_Id;
3902
3903 begin
3904 Comp := First_Component (E);
3905
3906 while Present (Comp) loop
3907 Typ := Etype (Comp);
3908
3909 if Ekind (Comp) = E_Component
3910 and then Is_Access_Type (Typ)
3911 and then Scope (Typ) /= E
3912 and then Base_Type (Designated_Type (Typ)) = E
3913 and then Is_Itype (Designated_Type (Typ))
3914 then
3915 IR := Make_Itype_Reference (Sloc (Comp));
3916 Set_Itype (IR, Designated_Type (Typ));
3917 Append (IR, Result);
3918 end if;
3919
3920 Next_Component (Comp);
3921 end loop;
3922 end;
3923 end if;
70482933
RK
3924 end if;
3925
3926 -- When a type is frozen, the first subtype of the type is frozen as
3927 -- well (RM 13.14(15)). This has to be done after freezing the type,
3928 -- since obviously the first subtype depends on its own base type.
3929
3930 if Is_Type (E) then
3931 Freeze_And_Append (First_Subtype (E), Loc, Result);
3932
3933 -- If we just froze a tagged non-class wide record, then freeze the
3934 -- corresponding class-wide type. This must be done after the tagged
3935 -- type itself is frozen, because the class-wide type refers to the
3936 -- tagged type which generates the class.
3937
3938 if Is_Tagged_Type (E)
3939 and then not Is_Class_Wide_Type (E)
3940 and then Present (Class_Wide_Type (E))
3941 then
3942 Freeze_And_Append (Class_Wide_Type (E), Loc, Result);
3943 end if;
3944 end if;
3945
3946 Check_Debug_Info_Needed (E);
3947
3948 -- Special handling for subprograms
3949
3950 if Is_Subprogram (E) then
3951
3952 -- If subprogram has address clause then reset Is_Public flag, since
3953 -- we do not want the backend to generate external references.
3954
3955 if Present (Address_Clause (E))
3956 and then not Is_Library_Level_Entity (E)
3957 then
3958 Set_Is_Public (E, False);
3959
3960 -- If no address clause and not intrinsic, then for imported
3961 -- subprogram in main unit, generate descriptor if we are in
3962 -- Propagate_Exceptions mode.
3963
3964 elsif Propagate_Exceptions
3965 and then Is_Imported (E)
3966 and then not Is_Intrinsic_Subprogram (E)
3967 and then Convention (E) /= Convention_Stubbed
3968 then
3969 if Result = No_List then
3970 Result := Empty_List;
3971 end if;
70482933 3972 end if;
70482933
RK
3973 end if;
3974
3975 return Result;
3976 end Freeze_Entity;
3977
3978 -----------------------------
3979 -- Freeze_Enumeration_Type --
3980 -----------------------------
3981
3982 procedure Freeze_Enumeration_Type (Typ : Entity_Id) is
3983 begin
d677afa9
ES
3984 -- By default, if no size clause is present, an enumeration type with
3985 -- Convention C is assumed to interface to a C enum, and has integer
3986 -- size. This applies to types. For subtypes, verify that its base
3987 -- type has no size clause either.
3988
70482933
RK
3989 if Has_Foreign_Convention (Typ)
3990 and then not Has_Size_Clause (Typ)
d677afa9 3991 and then not Has_Size_Clause (Base_Type (Typ))
70482933
RK
3992 and then Esize (Typ) < Standard_Integer_Size
3993 then
3994 Init_Esize (Typ, Standard_Integer_Size);
d677afa9 3995
70482933 3996 else
d677afa9
ES
3997 -- If the enumeration type interfaces to C, and it has a size clause
3998 -- that specifies less than int size, it warrants a warning. The
3999 -- user may intend the C type to be an enum or a char, so this is
4000 -- not by itself an error that the Ada compiler can detect, but it
4001 -- it is a worth a heads-up. For Boolean and Character types we
4002 -- assume that the programmer has the proper C type in mind.
4003
4004 if Convention (Typ) = Convention_C
4005 and then Has_Size_Clause (Typ)
4006 and then Esize (Typ) /= Esize (Standard_Integer)
4007 and then not Is_Boolean_Type (Typ)
4008 and then not Is_Character_Type (Typ)
4009 then
4010 Error_Msg_N
4011 ("C enum types have the size of a C int?", Size_Clause (Typ));
4012 end if;
4013
70482933
RK
4014 Adjust_Esize_For_Alignment (Typ);
4015 end if;
4016 end Freeze_Enumeration_Type;
4017
4018 -----------------------
4019 -- Freeze_Expression --
4020 -----------------------
4021
4022 procedure Freeze_Expression (N : Node_Id) is
c6a9797e
RD
4023 In_Spec_Exp : constant Boolean := In_Spec_Expression;
4024 Typ : Entity_Id;
4025 Nam : Entity_Id;
4026 Desig_Typ : Entity_Id;
4027 P : Node_Id;
4028 Parent_P : Node_Id;
70482933
RK
4029
4030 Freeze_Outside : Boolean := False;
4031 -- This flag is set true if the entity must be frozen outside the
4032 -- current subprogram. This happens in the case of expander generated
4033 -- subprograms (_Init_Proc, _Input, _Output, _Read, _Write) which do
4034 -- not freeze all entities like other bodies, but which nevertheless
4035 -- may reference entities that have to be frozen before the body and
4036 -- obviously cannot be frozen inside the body.
4037
4038 function In_Exp_Body (N : Node_Id) return Boolean;
4039 -- Given an N_Handled_Sequence_Of_Statements node N, determines whether
c6823a20 4040 -- it is the handled statement sequence of an expander-generated
7d8b9c99
RD
4041 -- subprogram (init proc, stream subprogram, or renaming as body).
4042 -- If so, this is not a freezing context.
70482933 4043
fbf5a39b
AC
4044 -----------------
4045 -- In_Exp_Body --
4046 -----------------
4047
70482933 4048 function In_Exp_Body (N : Node_Id) return Boolean is
7d8b9c99
RD
4049 P : Node_Id;
4050 Id : Entity_Id;
70482933
RK
4051
4052 begin
4053 if Nkind (N) = N_Subprogram_Body then
4054 P := N;
4055 else
4056 P := Parent (N);
4057 end if;
4058
4059 if Nkind (P) /= N_Subprogram_Body then
4060 return False;
4061
4062 else
7d8b9c99
RD
4063 Id := Defining_Unit_Name (Specification (P));
4064
4065 if Nkind (Id) = N_Defining_Identifier
4066 and then (Is_Init_Proc (Id) or else
4067 Is_TSS (Id, TSS_Stream_Input) or else
4068 Is_TSS (Id, TSS_Stream_Output) or else
4069 Is_TSS (Id, TSS_Stream_Read) or else
4070 Is_TSS (Id, TSS_Stream_Write) or else
4071 Nkind (Original_Node (P)) =
4072 N_Subprogram_Renaming_Declaration)
70482933
RK
4073 then
4074 return True;
4075 else
4076 return False;
4077 end if;
4078 end if;
70482933
RK
4079 end In_Exp_Body;
4080
4081 -- Start of processing for Freeze_Expression
4082
4083 begin
edd63e9b
ES
4084 -- Immediate return if freezing is inhibited. This flag is set by the
4085 -- analyzer to stop freezing on generated expressions that would cause
4086 -- freezing if they were in the source program, but which are not
4087 -- supposed to freeze, since they are created.
70482933
RK
4088
4089 if Must_Not_Freeze (N) then
4090 return;
4091 end if;
4092
4093 -- If expression is non-static, then it does not freeze in a default
4094 -- expression, see section "Handling of Default Expressions" in the
4095 -- spec of package Sem for further details. Note that we have to
4096 -- make sure that we actually have a real expression (if we have
4097 -- a subtype indication, we can't test Is_Static_Expression!)
4098
c6a9797e 4099 if In_Spec_Exp
70482933
RK
4100 and then Nkind (N) in N_Subexpr
4101 and then not Is_Static_Expression (N)
4102 then
4103 return;
4104 end if;
4105
4106 -- Freeze type of expression if not frozen already
4107
fbf5a39b
AC
4108 Typ := Empty;
4109
4110 if Nkind (N) in N_Has_Etype then
4111 if not Is_Frozen (Etype (N)) then
4112 Typ := Etype (N);
4113
4114 -- Base type may be an derived numeric type that is frozen at
4115 -- the point of declaration, but first_subtype is still unfrozen.
4116
4117 elsif not Is_Frozen (First_Subtype (Etype (N))) then
4118 Typ := First_Subtype (Etype (N));
4119 end if;
70482933
RK
4120 end if;
4121
4122 -- For entity name, freeze entity if not frozen already. A special
4123 -- exception occurs for an identifier that did not come from source.
4124 -- We don't let such identifiers freeze a non-internal entity, i.e.
4125 -- an entity that did come from source, since such an identifier was
4126 -- generated by the expander, and cannot have any semantic effect on
4127 -- the freezing semantics. For example, this stops the parameter of
4128 -- an initialization procedure from freezing the variable.
4129
4130 if Is_Entity_Name (N)
4131 and then not Is_Frozen (Entity (N))
4132 and then (Nkind (N) /= N_Identifier
4133 or else Comes_From_Source (N)
4134 or else not Comes_From_Source (Entity (N)))
4135 then
4136 Nam := Entity (N);
70482933
RK
4137 else
4138 Nam := Empty;
4139 end if;
4140
49e90211 4141 -- For an allocator freeze designated type if not frozen already
70482933 4142
ee094616
RD
4143 -- For an aggregate whose component type is an access type, freeze the
4144 -- designated type now, so that its freeze does not appear within the
4145 -- loop that might be created in the expansion of the aggregate. If the
4146 -- designated type is a private type without full view, the expression
4147 -- cannot contain an allocator, so the type is not frozen.
70482933 4148
7aedb36a
AC
4149 -- For a function, we freeze the entity when the subprogram declaration
4150 -- is frozen, but a function call may appear in an initialization proc.
f6cf5b85 4151 -- before the declaration is frozen. We need to generate the extra
7aedb36a 4152 -- formals, if any, to ensure that the expansion of the call includes
2f4f3f3f
AC
4153 -- the proper actuals. This only applies to Ada subprograms, not to
4154 -- imported ones.
7aedb36a 4155
70482933 4156 Desig_Typ := Empty;
70482933 4157
fbf5a39b 4158 case Nkind (N) is
70482933
RK
4159 when N_Allocator =>
4160 Desig_Typ := Designated_Type (Etype (N));
4161
4162 when N_Aggregate =>
4163 if Is_Array_Type (Etype (N))
4164 and then Is_Access_Type (Component_Type (Etype (N)))
4165 then
4166 Desig_Typ := Designated_Type (Component_Type (Etype (N)));
4167 end if;
4168
4169 when N_Selected_Component |
4170 N_Indexed_Component |
4171 N_Slice =>
4172
4173 if Is_Access_Type (Etype (Prefix (N))) then
4174 Desig_Typ := Designated_Type (Etype (Prefix (N)));
4175 end if;
4176
7aedb36a
AC
4177 when N_Identifier =>
4178 if Present (Nam)
4179 and then Ekind (Nam) = E_Function
4180 and then Nkind (Parent (N)) = N_Function_Call
2f4f3f3f 4181 and then Convention (Nam) = Convention_Ada
7aedb36a
AC
4182 then
4183 Create_Extra_Formals (Nam);
4184 end if;
4185
70482933
RK
4186 when others =>
4187 null;
70482933
RK
4188 end case;
4189
4190 if Desig_Typ /= Empty
4191 and then (Is_Frozen (Desig_Typ)
4192 or else (not Is_Fully_Defined (Desig_Typ)))
4193 then
4194 Desig_Typ := Empty;
4195 end if;
4196
4197 -- All done if nothing needs freezing
4198
4199 if No (Typ)
4200 and then No (Nam)
4201 and then No (Desig_Typ)
4202 then
4203 return;
4204 end if;
4205
f6cf5b85 4206 -- Loop for looking at the right place to insert the freeze nodes,
70482933
RK
4207 -- exiting from the loop when it is appropriate to insert the freeze
4208 -- node before the current node P.
4209
f6cf5b85
AC
4210 -- Also checks som special exceptions to the freezing rules. These cases
4211 -- result in a direct return, bypassing the freeze action.
70482933
RK
4212
4213 P := N;
4214 loop
4215 Parent_P := Parent (P);
4216
ee094616
RD
4217 -- If we don't have a parent, then we are not in a well-formed tree.
4218 -- This is an unusual case, but there are some legitimate situations
4219 -- in which this occurs, notably when the expressions in the range of
4220 -- a type declaration are resolved. We simply ignore the freeze
4221 -- request in this case. Is this right ???
70482933
RK
4222
4223 if No (Parent_P) then
4224 return;
4225 end if;
4226
4227 -- See if we have got to an appropriate point in the tree
4228
4229 case Nkind (Parent_P) is
4230
edd63e9b
ES
4231 -- A special test for the exception of (RM 13.14(8)) for the case
4232 -- of per-object expressions (RM 3.8(18)) occurring in component
4233 -- definition or a discrete subtype definition. Note that we test
4234 -- for a component declaration which includes both cases we are
4235 -- interested in, and furthermore the tree does not have explicit
4236 -- nodes for either of these two constructs.
70482933
RK
4237
4238 when N_Component_Declaration =>
4239
4240 -- The case we want to test for here is an identifier that is
4241 -- a per-object expression, this is either a discriminant that
4242 -- appears in a context other than the component declaration
4243 -- or it is a reference to the type of the enclosing construct.
4244
4245 -- For either of these cases, we skip the freezing
4246
c6a9797e 4247 if not In_Spec_Expression
70482933
RK
4248 and then Nkind (N) = N_Identifier
4249 and then (Present (Entity (N)))
4250 then
4251 -- We recognize the discriminant case by just looking for
4252 -- a reference to a discriminant. It can only be one for
4253 -- the enclosing construct. Skip freezing in this case.
4254
4255 if Ekind (Entity (N)) = E_Discriminant then
4256 return;
4257
4258 -- For the case of a reference to the enclosing record,
4259 -- (or task or protected type), we look for a type that
4260 -- matches the current scope.
4261
4262 elsif Entity (N) = Current_Scope then
4263 return;
4264 end if;
4265 end if;
4266
edd63e9b
ES
4267 -- If we have an enumeration literal that appears as the choice in
4268 -- the aggregate of an enumeration representation clause, then
4269 -- freezing does not occur (RM 13.14(10)).
70482933
RK
4270
4271 when N_Enumeration_Representation_Clause =>
4272
4273 -- The case we are looking for is an enumeration literal
4274
4275 if (Nkind (N) = N_Identifier or Nkind (N) = N_Character_Literal)
4276 and then Is_Enumeration_Type (Etype (N))
4277 then
4278 -- If enumeration literal appears directly as the choice,
e14c931f 4279 -- do not freeze (this is the normal non-overloaded case)
70482933
RK
4280
4281 if Nkind (Parent (N)) = N_Component_Association
4282 and then First (Choices (Parent (N))) = N
4283 then
4284 return;
4285
ee094616
RD
4286 -- If enumeration literal appears as the name of function
4287 -- which is the choice, then also do not freeze. This
4288 -- happens in the overloaded literal case, where the
70482933
RK
4289 -- enumeration literal is temporarily changed to a function
4290 -- call for overloading analysis purposes.
4291
4292 elsif Nkind (Parent (N)) = N_Function_Call
4293 and then
4294 Nkind (Parent (Parent (N))) = N_Component_Association
4295 and then
4296 First (Choices (Parent (Parent (N)))) = Parent (N)
4297 then
4298 return;
4299 end if;
4300 end if;
4301
4302 -- Normally if the parent is a handled sequence of statements,
4303 -- then the current node must be a statement, and that is an
4304 -- appropriate place to insert a freeze node.
4305
4306 when N_Handled_Sequence_Of_Statements =>
4307
edd63e9b
ES
4308 -- An exception occurs when the sequence of statements is for
4309 -- an expander generated body that did not do the usual freeze
4310 -- all operation. In this case we usually want to freeze
4311 -- outside this body, not inside it, and we skip past the
4312 -- subprogram body that we are inside.
70482933
RK
4313
4314 if In_Exp_Body (Parent_P) then
4315
4316 -- However, we *do* want to freeze at this point if we have
4317 -- an entity to freeze, and that entity is declared *inside*
4318 -- the body of the expander generated procedure. This case
4319 -- is recognized by the scope of the type, which is either
4320 -- the spec for some enclosing body, or (in the case of
4321 -- init_procs, for which there are no separate specs) the
4322 -- current scope.
4323
4324 declare
4325 Subp : constant Node_Id := Parent (Parent_P);
4326 Cspc : Entity_Id;
4327
4328 begin
4329 if Nkind (Subp) = N_Subprogram_Body then
4330 Cspc := Corresponding_Spec (Subp);
4331
4332 if (Present (Typ) and then Scope (Typ) = Cspc)
4333 or else
4334 (Present (Nam) and then Scope (Nam) = Cspc)
4335 then
4336 exit;
4337
4338 elsif Present (Typ)
4339 and then Scope (Typ) = Current_Scope
4340 and then Current_Scope = Defining_Entity (Subp)
4341 then
4342 exit;
4343 end if;
4344 end if;
4345 end;
4346
4347 -- If not that exception to the exception, then this is
4348 -- where we delay the freeze till outside the body.
4349
4350 Parent_P := Parent (Parent_P);
4351 Freeze_Outside := True;
4352
4353 -- Here if normal case where we are in handled statement
4354 -- sequence and want to do the insertion right there.
4355
4356 else
4357 exit;
4358 end if;
4359
ee094616
RD
4360 -- If parent is a body or a spec or a block, then the current node
4361 -- is a statement or declaration and we can insert the freeze node
4362 -- before it.
70482933
RK
4363
4364 when N_Package_Specification |
4365 N_Package_Body |
4366 N_Subprogram_Body |
4367 N_Task_Body |
4368 N_Protected_Body |
4369 N_Entry_Body |
4370 N_Block_Statement => exit;
4371
4372 -- The expander is allowed to define types in any statements list,
4373 -- so any of the following parent nodes also mark a freezing point
4374 -- if the actual node is in a list of statements or declarations.
4375
4376 when N_Exception_Handler |
4377 N_If_Statement |
4378 N_Elsif_Part |
4379 N_Case_Statement_Alternative |
4380 N_Compilation_Unit_Aux |
4381 N_Selective_Accept |
4382 N_Accept_Alternative |
4383 N_Delay_Alternative |
4384 N_Conditional_Entry_Call |
4385 N_Entry_Call_Alternative |
4386 N_Triggering_Alternative |
4387 N_Abortable_Part |
4388 N_Freeze_Entity =>
4389
4390 exit when Is_List_Member (P);
4391
4392 -- Note: The N_Loop_Statement is a special case. A type that
4393 -- appears in the source can never be frozen in a loop (this
edd63e9b
ES
4394 -- occurs only because of a loop expanded by the expander), so we
4395 -- keep on going. Otherwise we terminate the search. Same is true
ee094616
RD
4396 -- of any entity which comes from source. (if they have predefined
4397 -- type, that type does not appear to come from source, but the
4398 -- entity should not be frozen here).
70482933
RK
4399
4400 when N_Loop_Statement =>
4401 exit when not Comes_From_Source (Etype (N))
4402 and then (No (Nam) or else not Comes_From_Source (Nam));
4403
4404 -- For all other cases, keep looking at parents
4405
4406 when others =>
4407 null;
4408 end case;
4409
4410 -- We fall through the case if we did not yet find the proper
4411 -- place in the free for inserting the freeze node, so climb!
4412
4413 P := Parent_P;
4414 end loop;
4415
edd63e9b
ES
4416 -- If the expression appears in a record or an initialization procedure,
4417 -- the freeze nodes are collected and attached to the current scope, to
4418 -- be inserted and analyzed on exit from the scope, to insure that
4419 -- generated entities appear in the correct scope. If the expression is
4420 -- a default for a discriminant specification, the scope is still void.
4421 -- The expression can also appear in the discriminant part of a private
4422 -- or concurrent type.
70482933 4423
c6823a20 4424 -- If the expression appears in a constrained subcomponent of an
edd63e9b
ES
4425 -- enclosing record declaration, the freeze nodes must be attached to
4426 -- the outer record type so they can eventually be placed in the
c6823a20
EB
4427 -- enclosing declaration list.
4428
ee094616
RD
4429 -- The other case requiring this special handling is if we are in a
4430 -- default expression, since in that case we are about to freeze a
4431 -- static type, and the freeze scope needs to be the outer scope, not
4432 -- the scope of the subprogram with the default parameter.
70482933 4433
c6a9797e
RD
4434 -- For default expressions and other spec expressions in generic units,
4435 -- the Move_Freeze_Nodes mechanism (see sem_ch12.adb) takes care of
4436 -- placing them at the proper place, after the generic unit.
70482933 4437
c6a9797e 4438 if (In_Spec_Exp and not Inside_A_Generic)
70482933
RK
4439 or else Freeze_Outside
4440 or else (Is_Type (Current_Scope)
4441 and then (not Is_Concurrent_Type (Current_Scope)
4442 or else not Has_Completion (Current_Scope)))
4443 or else Ekind (Current_Scope) = E_Void
4444 then
4445 declare
4446 Loc : constant Source_Ptr := Sloc (Current_Scope);
4447 Freeze_Nodes : List_Id := No_List;
c6823a20 4448 Pos : Int := Scope_Stack.Last;
70482933
RK
4449
4450 begin
4451 if Present (Desig_Typ) then
4452 Freeze_And_Append (Desig_Typ, Loc, Freeze_Nodes);
4453 end if;
4454
4455 if Present (Typ) then
4456 Freeze_And_Append (Typ, Loc, Freeze_Nodes);
4457 end if;
4458
4459 if Present (Nam) then
4460 Freeze_And_Append (Nam, Loc, Freeze_Nodes);
4461 end if;
4462
c6823a20
EB
4463 -- The current scope may be that of a constrained component of
4464 -- an enclosing record declaration, which is above the current
4465 -- scope in the scope stack.
4466
4467 if Is_Record_Type (Scope (Current_Scope)) then
4468 Pos := Pos - 1;
4469 end if;
4470
70482933 4471 if Is_Non_Empty_List (Freeze_Nodes) then
c6823a20
EB
4472 if No (Scope_Stack.Table (Pos).Pending_Freeze_Actions) then
4473 Scope_Stack.Table (Pos).Pending_Freeze_Actions :=
70482933
RK
4474 Freeze_Nodes;
4475 else
4476 Append_List (Freeze_Nodes, Scope_Stack.Table
c6823a20 4477 (Pos).Pending_Freeze_Actions);
70482933
RK
4478 end if;
4479 end if;
4480 end;
4481
4482 return;
4483 end if;
4484
4485 -- Now we have the right place to do the freezing. First, a special
c6a9797e
RD
4486 -- adjustment, if we are in spec-expression analysis mode, these freeze
4487 -- actions must not be thrown away (normally all inserted actions are
4488 -- thrown away in this mode. However, the freeze actions are from static
4489 -- expressions and one of the important reasons we are doing this
ee094616 4490 -- special analysis is to get these freeze actions. Therefore we turn
c6a9797e 4491 -- off the In_Spec_Expression mode to propagate these freeze actions.
ee094616 4492 -- This also means they get properly analyzed and expanded.
70482933 4493
c6a9797e 4494 In_Spec_Expression := False;
70482933 4495
fbf5a39b 4496 -- Freeze the designated type of an allocator (RM 13.14(13))
70482933
RK
4497
4498 if Present (Desig_Typ) then
4499 Freeze_Before (P, Desig_Typ);
4500 end if;
4501
fbf5a39b 4502 -- Freeze type of expression (RM 13.14(10)). Note that we took care of
70482933
RK
4503 -- the enumeration representation clause exception in the loop above.
4504
4505 if Present (Typ) then
4506 Freeze_Before (P, Typ);
4507 end if;
4508
fbf5a39b 4509 -- Freeze name if one is present (RM 13.14(11))
70482933
RK
4510
4511 if Present (Nam) then
4512 Freeze_Before (P, Nam);
4513 end if;
4514
c6a9797e
RD
4515 -- Restore In_Spec_Expression flag
4516
4517 In_Spec_Expression := In_Spec_Exp;
70482933
RK
4518 end Freeze_Expression;
4519
4520 -----------------------------
4521 -- Freeze_Fixed_Point_Type --
4522 -----------------------------
4523
edd63e9b
ES
4524 -- Certain fixed-point types and subtypes, including implicit base types
4525 -- and declared first subtypes, have not yet set up a range. This is
4526 -- because the range cannot be set until the Small and Size values are
4527 -- known, and these are not known till the type is frozen.
70482933 4528
edd63e9b
ES
4529 -- To signal this case, Scalar_Range contains an unanalyzed syntactic range
4530 -- whose bounds are unanalyzed real literals. This routine will recognize
4531 -- this case, and transform this range node into a properly typed range
4532 -- with properly analyzed and resolved values.
70482933
RK
4533
4534 procedure Freeze_Fixed_Point_Type (Typ : Entity_Id) is
4535 Rng : constant Node_Id := Scalar_Range (Typ);
4536 Lo : constant Node_Id := Low_Bound (Rng);
4537 Hi : constant Node_Id := High_Bound (Rng);
4538 Btyp : constant Entity_Id := Base_Type (Typ);
4539 Brng : constant Node_Id := Scalar_Range (Btyp);
4540 BLo : constant Node_Id := Low_Bound (Brng);
4541 BHi : constant Node_Id := High_Bound (Brng);
4542 Small : constant Ureal := Small_Value (Typ);
4543 Loval : Ureal;
4544 Hival : Ureal;
4545 Atype : Entity_Id;
4546
4547 Actual_Size : Nat;
4548
4549 function Fsize (Lov, Hiv : Ureal) return Nat;
4550 -- Returns size of type with given bounds. Also leaves these
4551 -- bounds set as the current bounds of the Typ.
4552
0da2c8ac
AC
4553 -----------
4554 -- Fsize --
4555 -----------
4556
70482933
RK
4557 function Fsize (Lov, Hiv : Ureal) return Nat is
4558 begin
4559 Set_Realval (Lo, Lov);
4560 Set_Realval (Hi, Hiv);
4561 return Minimum_Size (Typ);
4562 end Fsize;
4563
0da2c8ac 4564 -- Start of processing for Freeze_Fixed_Point_Type
70482933
RK
4565
4566 begin
4567 -- If Esize of a subtype has not previously been set, set it now
4568
4569 if Unknown_Esize (Typ) then
4570 Atype := Ancestor_Subtype (Typ);
4571
4572 if Present (Atype) then
fbf5a39b 4573 Set_Esize (Typ, Esize (Atype));
70482933 4574 else
fbf5a39b 4575 Set_Esize (Typ, Esize (Base_Type (Typ)));
70482933
RK
4576 end if;
4577 end if;
4578
ee094616
RD
4579 -- Immediate return if the range is already analyzed. This means that
4580 -- the range is already set, and does not need to be computed by this
4581 -- routine.
70482933
RK
4582
4583 if Analyzed (Rng) then
4584 return;
4585 end if;
4586
4587 -- Immediate return if either of the bounds raises Constraint_Error
4588
4589 if Raises_Constraint_Error (Lo)
4590 or else Raises_Constraint_Error (Hi)
4591 then
4592 return;
4593 end if;
4594
4595 Loval := Realval (Lo);
4596 Hival := Realval (Hi);
4597
4598 -- Ordinary fixed-point case
4599
4600 if Is_Ordinary_Fixed_Point_Type (Typ) then
4601
4602 -- For the ordinary fixed-point case, we are allowed to fudge the
ee094616
RD
4603 -- end-points up or down by small. Generally we prefer to fudge up,
4604 -- i.e. widen the bounds for non-model numbers so that the end points
4605 -- are included. However there are cases in which this cannot be
4606 -- done, and indeed cases in which we may need to narrow the bounds.
4607 -- The following circuit makes the decision.
70482933 4608
ee094616
RD
4609 -- Note: our terminology here is that Incl_EP means that the bounds
4610 -- are widened by Small if necessary to include the end points, and
4611 -- Excl_EP means that the bounds are narrowed by Small to exclude the
4612 -- end-points if this reduces the size.
70482933
RK
4613
4614 -- Note that in the Incl case, all we care about is including the
4615 -- end-points. In the Excl case, we want to narrow the bounds as
4616 -- much as permitted by the RM, to give the smallest possible size.
4617
4618 Fudge : declare
4619 Loval_Incl_EP : Ureal;
4620 Hival_Incl_EP : Ureal;
4621
4622 Loval_Excl_EP : Ureal;
4623 Hival_Excl_EP : Ureal;
4624
4625 Size_Incl_EP : Nat;
4626 Size_Excl_EP : Nat;
4627
4628 Model_Num : Ureal;
4629 First_Subt : Entity_Id;
4630 Actual_Lo : Ureal;
4631 Actual_Hi : Ureal;
4632
4633 begin
4634 -- First step. Base types are required to be symmetrical. Right
4635 -- now, the base type range is a copy of the first subtype range.
4636 -- This will be corrected before we are done, but right away we
4637 -- need to deal with the case where both bounds are non-negative.
4638 -- In this case, we set the low bound to the negative of the high
4639 -- bound, to make sure that the size is computed to include the
4640 -- required sign. Note that we do not need to worry about the
4641 -- case of both bounds negative, because the sign will be dealt
4642 -- with anyway. Furthermore we can't just go making such a bound
4643 -- symmetrical, since in a twos-complement system, there is an
e14c931f 4644 -- extra negative value which could not be accommodated on the
70482933
RK
4645 -- positive side.
4646
4647 if Typ = Btyp
4648 and then not UR_Is_Negative (Loval)
4649 and then Hival > Loval
4650 then
4651 Loval := -Hival;
4652 Set_Realval (Lo, Loval);
4653 end if;
4654
4655 -- Compute the fudged bounds. If the number is a model number,
edd63e9b
ES
4656 -- then we do nothing to include it, but we are allowed to backoff
4657 -- to the next adjacent model number when we exclude it. If it is
4658 -- not a model number then we straddle the two values with the
4659 -- model numbers on either side.
70482933
RK
4660
4661 Model_Num := UR_Trunc (Loval / Small) * Small;
4662
4663 if Loval = Model_Num then
4664 Loval_Incl_EP := Model_Num;
4665 else
4666 Loval_Incl_EP := Model_Num - Small;
4667 end if;
4668
4669 -- The low value excluding the end point is Small greater, but
4670 -- we do not do this exclusion if the low value is positive,
4671 -- since it can't help the size and could actually hurt by
4672 -- crossing the high bound.
4673
4674 if UR_Is_Negative (Loval_Incl_EP) then
4675 Loval_Excl_EP := Loval_Incl_EP + Small;
def46b54
RD
4676
4677 -- If the value went from negative to zero, then we have the
4678 -- case where Loval_Incl_EP is the model number just below
4679 -- zero, so we want to stick to the negative value for the
4680 -- base type to maintain the condition that the size will
4681 -- include signed values.
4682
4683 if Typ = Btyp
4684 and then UR_Is_Zero (Loval_Excl_EP)
4685 then
4686 Loval_Excl_EP := Loval_Incl_EP;
4687 end if;
4688
70482933
RK
4689 else
4690 Loval_Excl_EP := Loval_Incl_EP;
4691 end if;
4692
4693 -- Similar processing for upper bound and high value
4694
4695 Model_Num := UR_Trunc (Hival / Small) * Small;
4696
4697 if Hival = Model_Num then
4698 Hival_Incl_EP := Model_Num;
4699 else
4700 Hival_Incl_EP := Model_Num + Small;
4701 end if;
4702
4703 if UR_Is_Positive (Hival_Incl_EP) then
4704 Hival_Excl_EP := Hival_Incl_EP - Small;
4705 else
4706 Hival_Excl_EP := Hival_Incl_EP;
4707 end if;
4708
ee094616
RD
4709 -- One further adjustment is needed. In the case of subtypes, we
4710 -- cannot go outside the range of the base type, or we get
70482933 4711 -- peculiarities, and the base type range is already set. This
ee094616
RD
4712 -- only applies to the Incl values, since clearly the Excl values
4713 -- are already as restricted as they are allowed to be.
70482933
RK
4714
4715 if Typ /= Btyp then
4716 Loval_Incl_EP := UR_Max (Loval_Incl_EP, Realval (BLo));
4717 Hival_Incl_EP := UR_Min (Hival_Incl_EP, Realval (BHi));
4718 end if;
4719
4720 -- Get size including and excluding end points
4721
4722 Size_Incl_EP := Fsize (Loval_Incl_EP, Hival_Incl_EP);
4723 Size_Excl_EP := Fsize (Loval_Excl_EP, Hival_Excl_EP);
4724
4725 -- No need to exclude end-points if it does not reduce size
4726
4727 if Fsize (Loval_Incl_EP, Hival_Excl_EP) = Size_Excl_EP then
4728 Loval_Excl_EP := Loval_Incl_EP;
4729 end if;
4730
4731 if Fsize (Loval_Excl_EP, Hival_Incl_EP) = Size_Excl_EP then
4732 Hival_Excl_EP := Hival_Incl_EP;
4733 end if;
4734
4735 -- Now we set the actual size to be used. We want to use the
4736 -- bounds fudged up to include the end-points but only if this
4737 -- can be done without violating a specifically given size
4738 -- size clause or causing an unacceptable increase in size.
4739
4740 -- Case of size clause given
4741
4742 if Has_Size_Clause (Typ) then
4743
4744 -- Use the inclusive size only if it is consistent with
4745 -- the explicitly specified size.
4746
4747 if Size_Incl_EP <= RM_Size (Typ) then
4748 Actual_Lo := Loval_Incl_EP;
4749 Actual_Hi := Hival_Incl_EP;
4750 Actual_Size := Size_Incl_EP;
4751
4752 -- If the inclusive size is too large, we try excluding
4753 -- the end-points (will be caught later if does not work).
4754
4755 else
4756 Actual_Lo := Loval_Excl_EP;
4757 Actual_Hi := Hival_Excl_EP;
4758 Actual_Size := Size_Excl_EP;
4759 end if;
4760
4761 -- Case of size clause not given
4762
4763 else
4764 -- If we have a base type whose corresponding first subtype
4765 -- has an explicit size that is large enough to include our
4766 -- end-points, then do so. There is no point in working hard
4767 -- to get a base type whose size is smaller than the specified
4768 -- size of the first subtype.
4769
4770 First_Subt := First_Subtype (Typ);
4771
4772 if Has_Size_Clause (First_Subt)
4773 and then Size_Incl_EP <= Esize (First_Subt)
4774 then
4775 Actual_Size := Size_Incl_EP;
4776 Actual_Lo := Loval_Incl_EP;
4777 Actual_Hi := Hival_Incl_EP;
4778
4779 -- If excluding the end-points makes the size smaller and
4780 -- results in a size of 8,16,32,64, then we take the smaller
4781 -- size. For the 64 case, this is compulsory. For the other
4782 -- cases, it seems reasonable. We like to include end points
4783 -- if we can, but not at the expense of moving to the next
4784 -- natural boundary of size.
4785
4786 elsif Size_Incl_EP /= Size_Excl_EP
4787 and then
4788 (Size_Excl_EP = 8 or else
4789 Size_Excl_EP = 16 or else
4790 Size_Excl_EP = 32 or else
4791 Size_Excl_EP = 64)
4792 then
4793 Actual_Size := Size_Excl_EP;
4794 Actual_Lo := Loval_Excl_EP;
4795 Actual_Hi := Hival_Excl_EP;
4796
4797 -- Otherwise we can definitely include the end points
4798
4799 else
4800 Actual_Size := Size_Incl_EP;
4801 Actual_Lo := Loval_Incl_EP;
4802 Actual_Hi := Hival_Incl_EP;
4803 end if;
4804
edd63e9b
ES
4805 -- One pathological case: normally we never fudge a low bound
4806 -- down, since it would seem to increase the size (if it has
4807 -- any effect), but for ranges containing single value, or no
4808 -- values, the high bound can be small too large. Consider:
70482933
RK
4809
4810 -- type t is delta 2.0**(-14)
4811 -- range 131072.0 .. 0;
4812
edd63e9b
ES
4813 -- That lower bound is *just* outside the range of 32 bits, and
4814 -- does need fudging down in this case. Note that the bounds
4815 -- will always have crossed here, since the high bound will be
4816 -- fudged down if necessary, as in the case of:
70482933
RK
4817
4818 -- type t is delta 2.0**(-14)
4819 -- range 131072.0 .. 131072.0;
4820
edd63e9b
ES
4821 -- So we detect the situation by looking for crossed bounds,
4822 -- and if the bounds are crossed, and the low bound is greater
4823 -- than zero, we will always back it off by small, since this
4824 -- is completely harmless.
70482933
RK
4825
4826 if Actual_Lo > Actual_Hi then
4827 if UR_Is_Positive (Actual_Lo) then
4828 Actual_Lo := Loval_Incl_EP - Small;
4829 Actual_Size := Fsize (Actual_Lo, Actual_Hi);
4830
4831 -- And of course, we need to do exactly the same parallel
4832 -- fudge for flat ranges in the negative region.
4833
4834 elsif UR_Is_Negative (Actual_Hi) then
4835 Actual_Hi := Hival_Incl_EP + Small;
4836 Actual_Size := Fsize (Actual_Lo, Actual_Hi);
4837 end if;
4838 end if;
4839 end if;
4840
4841 Set_Realval (Lo, Actual_Lo);
4842 Set_Realval (Hi, Actual_Hi);
4843 end Fudge;
4844
4845 -- For the decimal case, none of this fudging is required, since there
4846 -- are no end-point problems in the decimal case (the end-points are
4847 -- always included).
4848
4849 else
4850 Actual_Size := Fsize (Loval, Hival);
4851 end if;
4852
4853 -- At this stage, the actual size has been calculated and the proper
4854 -- required bounds are stored in the low and high bounds.
4855
4856 if Actual_Size > 64 then
4857 Error_Msg_Uint_1 := UI_From_Int (Actual_Size);
4858 Error_Msg_N
7d8b9c99
RD
4859 ("size required (^) for type& too large, maximum allowed is 64",
4860 Typ);
70482933
RK
4861 Actual_Size := 64;
4862 end if;
4863
4864 -- Check size against explicit given size
4865
4866 if Has_Size_Clause (Typ) then
4867 if Actual_Size > RM_Size (Typ) then
4868 Error_Msg_Uint_1 := RM_Size (Typ);
4869 Error_Msg_Uint_2 := UI_From_Int (Actual_Size);
4870 Error_Msg_NE
7d8b9c99 4871 ("size given (^) for type& too small, minimum allowed is ^",
70482933
RK
4872 Size_Clause (Typ), Typ);
4873
4874 else
4875 Actual_Size := UI_To_Int (Esize (Typ));
4876 end if;
4877
4878 -- Increase size to next natural boundary if no size clause given
4879
4880 else
4881 if Actual_Size <= 8 then
4882 Actual_Size := 8;
4883 elsif Actual_Size <= 16 then
4884 Actual_Size := 16;
4885 elsif Actual_Size <= 32 then
4886 Actual_Size := 32;
4887 else
4888 Actual_Size := 64;
4889 end if;
4890
4891 Init_Esize (Typ, Actual_Size);
4892 Adjust_Esize_For_Alignment (Typ);
4893 end if;
4894
edd63e9b
ES
4895 -- If we have a base type, then expand the bounds so that they extend to
4896 -- the full width of the allocated size in bits, to avoid junk range
4897 -- checks on intermediate computations.
70482933
RK
4898
4899 if Base_Type (Typ) = Typ then
4900 Set_Realval (Lo, -(Small * (Uint_2 ** (Actual_Size - 1))));
4901 Set_Realval (Hi, (Small * (Uint_2 ** (Actual_Size - 1) - 1)));
4902 end if;
4903
4904 -- Final step is to reanalyze the bounds using the proper type
4905 -- and set the Corresponding_Integer_Value fields of the literals.
4906
4907 Set_Etype (Lo, Empty);
4908 Set_Analyzed (Lo, False);
4909 Analyze (Lo);
4910
edd63e9b
ES
4911 -- Resolve with universal fixed if the base type, and the base type if
4912 -- it is a subtype. Note we can't resolve the base type with itself,
4913 -- that would be a reference before definition.
70482933
RK
4914
4915 if Typ = Btyp then
4916 Resolve (Lo, Universal_Fixed);
4917 else
4918 Resolve (Lo, Btyp);
4919 end if;
4920
4921 -- Set corresponding integer value for bound
4922
4923 Set_Corresponding_Integer_Value
4924 (Lo, UR_To_Uint (Realval (Lo) / Small));
4925
4926 -- Similar processing for high bound
4927
4928 Set_Etype (Hi, Empty);
4929 Set_Analyzed (Hi, False);
4930 Analyze (Hi);
4931
4932 if Typ = Btyp then
4933 Resolve (Hi, Universal_Fixed);
4934 else
4935 Resolve (Hi, Btyp);
4936 end if;
4937
4938 Set_Corresponding_Integer_Value
4939 (Hi, UR_To_Uint (Realval (Hi) / Small));
4940
4941 -- Set type of range to correspond to bounds
4942
4943 Set_Etype (Rng, Etype (Lo));
4944
fbf5a39b 4945 -- Set Esize to calculated size if not set already
70482933 4946
fbf5a39b
AC
4947 if Unknown_Esize (Typ) then
4948 Init_Esize (Typ, Actual_Size);
4949 end if;
70482933
RK
4950
4951 -- Set RM_Size if not already set. If already set, check value
4952
4953 declare
4954 Minsiz : constant Uint := UI_From_Int (Minimum_Size (Typ));
4955
4956 begin
4957 if RM_Size (Typ) /= Uint_0 then
4958 if RM_Size (Typ) < Minsiz then
4959 Error_Msg_Uint_1 := RM_Size (Typ);
4960 Error_Msg_Uint_2 := Minsiz;
4961 Error_Msg_NE
7d8b9c99 4962 ("size given (^) for type& too small, minimum allowed is ^",
70482933
RK
4963 Size_Clause (Typ), Typ);
4964 end if;
4965
4966 else
4967 Set_RM_Size (Typ, Minsiz);
4968 end if;
4969 end;
70482933
RK
4970 end Freeze_Fixed_Point_Type;
4971
4972 ------------------
4973 -- Freeze_Itype --
4974 ------------------
4975
4976 procedure Freeze_Itype (T : Entity_Id; N : Node_Id) is
4977 L : List_Id;
4978
4979 begin
4980 Set_Has_Delayed_Freeze (T);
4981 L := Freeze_Entity (T, Sloc (N));
4982
4983 if Is_Non_Empty_List (L) then
4984 Insert_Actions (N, L);
4985 end if;
4986 end Freeze_Itype;
4987
4988 --------------------------
4989 -- Freeze_Static_Object --
4990 --------------------------
4991
4992 procedure Freeze_Static_Object (E : Entity_Id) is
4993
4994 Cannot_Be_Static : exception;
4995 -- Exception raised if the type of a static object cannot be made
4996 -- static. This happens if the type depends on non-global objects.
4997
4998 procedure Ensure_Expression_Is_SA (N : Node_Id);
ee094616
RD
4999 -- Called to ensure that an expression used as part of a type definition
5000 -- is statically allocatable, which means that the expression type is
5001 -- statically allocatable, and the expression is either static, or a
5002 -- reference to a library level constant.
70482933
RK
5003
5004 procedure Ensure_Type_Is_SA (Typ : Entity_Id);
5005 -- Called to mark a type as static, checking that it is possible
5006 -- to set the type as static. If it is not possible, then the
5007 -- exception Cannot_Be_Static is raised.
5008
5009 -----------------------------
5010 -- Ensure_Expression_Is_SA --
5011 -----------------------------
5012
5013 procedure Ensure_Expression_Is_SA (N : Node_Id) is
5014 Ent : Entity_Id;
5015
5016 begin
5017 Ensure_Type_Is_SA (Etype (N));
5018
5019 if Is_Static_Expression (N) then
5020 return;
5021
5022 elsif Nkind (N) = N_Identifier then
5023 Ent := Entity (N);
5024
5025 if Present (Ent)
5026 and then Ekind (Ent) = E_Constant
5027 and then Is_Library_Level_Entity (Ent)
5028 then
5029 return;
5030 end if;
5031 end if;
5032
5033 raise Cannot_Be_Static;
5034 end Ensure_Expression_Is_SA;
5035
5036 -----------------------
5037 -- Ensure_Type_Is_SA --
5038 -----------------------
5039
5040 procedure Ensure_Type_Is_SA (Typ : Entity_Id) is
5041 N : Node_Id;
5042 C : Entity_Id;
5043
5044 begin
5045 -- If type is library level, we are all set
5046
5047 if Is_Library_Level_Entity (Typ) then
5048 return;
5049 end if;
5050
ee094616
RD
5051 -- We are also OK if the type already marked as statically allocated,
5052 -- which means we processed it before.
70482933
RK
5053
5054 if Is_Statically_Allocated (Typ) then
5055 return;
5056 end if;
5057
5058 -- Mark type as statically allocated
5059
5060 Set_Is_Statically_Allocated (Typ);
5061
5062 -- Check that it is safe to statically allocate this type
5063
5064 if Is_Scalar_Type (Typ) or else Is_Real_Type (Typ) then
5065 Ensure_Expression_Is_SA (Type_Low_Bound (Typ));
5066 Ensure_Expression_Is_SA (Type_High_Bound (Typ));
5067
5068 elsif Is_Array_Type (Typ) then
5069 N := First_Index (Typ);
5070 while Present (N) loop
5071 Ensure_Type_Is_SA (Etype (N));
5072 Next_Index (N);
5073 end loop;
5074
5075 Ensure_Type_Is_SA (Component_Type (Typ));
5076
5077 elsif Is_Access_Type (Typ) then
5078 if Ekind (Designated_Type (Typ)) = E_Subprogram_Type then
5079
5080 declare
5081 F : Entity_Id;
5082 T : constant Entity_Id := Etype (Designated_Type (Typ));
5083
5084 begin
5085 if T /= Standard_Void_Type then
5086 Ensure_Type_Is_SA (T);
5087 end if;
5088
5089 F := First_Formal (Designated_Type (Typ));
5090
5091 while Present (F) loop
5092 Ensure_Type_Is_SA (Etype (F));
5093 Next_Formal (F);
5094 end loop;
5095 end;
5096
5097 else
5098 Ensure_Type_Is_SA (Designated_Type (Typ));
5099 end if;
5100
5101 elsif Is_Record_Type (Typ) then
5102 C := First_Entity (Typ);
70482933
RK
5103 while Present (C) loop
5104 if Ekind (C) = E_Discriminant
5105 or else Ekind (C) = E_Component
5106 then
5107 Ensure_Type_Is_SA (Etype (C));
5108
5109 elsif Is_Type (C) then
5110 Ensure_Type_Is_SA (C);
5111 end if;
5112
5113 Next_Entity (C);
5114 end loop;
5115
5116 elsif Ekind (Typ) = E_Subprogram_Type then
5117 Ensure_Type_Is_SA (Etype (Typ));
5118
5119 C := First_Formal (Typ);
5120 while Present (C) loop
5121 Ensure_Type_Is_SA (Etype (C));
5122 Next_Formal (C);
5123 end loop;
5124
5125 else
5126 raise Cannot_Be_Static;
5127 end if;
5128 end Ensure_Type_Is_SA;
5129
5130 -- Start of processing for Freeze_Static_Object
5131
5132 begin
5133 Ensure_Type_Is_SA (Etype (E));
5134
5135 exception
5136 when Cannot_Be_Static =>
5137
09494c32
AC
5138 -- If the object that cannot be static is imported or exported, then
5139 -- issue an error message saying that this object cannot be imported
5140 -- or exported. If it has an address clause it is an overlay in the
5141 -- current partition and the static requirement is not relevant.
5142
5143 if Is_Imported (E) and then No (Address_Clause (E)) then
70482933
RK
5144 Error_Msg_N
5145 ("& cannot be imported (local type is not constant)", E);
5146
5147 -- Otherwise must be exported, something is wrong if compiler
5148 -- is marking something as statically allocated which cannot be).
5149
5150 else pragma Assert (Is_Exported (E));
5151 Error_Msg_N
5152 ("& cannot be exported (local type is not constant)", E);
5153 end if;
5154 end Freeze_Static_Object;
5155
5156 -----------------------
5157 -- Freeze_Subprogram --
5158 -----------------------
5159
5160 procedure Freeze_Subprogram (E : Entity_Id) is
5161 Retype : Entity_Id;
5162 F : Entity_Id;
5163
5164 begin
5165 -- Subprogram may not have an address clause unless it is imported
5166
5167 if Present (Address_Clause (E)) then
5168 if not Is_Imported (E) then
5169 Error_Msg_N
5170 ("address clause can only be given " &
5171 "for imported subprogram",
5172 Name (Address_Clause (E)));
5173 end if;
5174 end if;
5175
91b1417d
AC
5176 -- Reset the Pure indication on an imported subprogram unless an
5177 -- explicit Pure_Function pragma was present. We do this because
ee094616
RD
5178 -- otherwise it is an insidious error to call a non-pure function from
5179 -- pure unit and have calls mysteriously optimized away. What happens
5180 -- here is that the Import can bypass the normal check to ensure that
5181 -- pure units call only pure subprograms.
91b1417d
AC
5182
5183 if Is_Imported (E)
5184 and then Is_Pure (E)
5185 and then not Has_Pragma_Pure_Function (E)
5186 then
5187 Set_Is_Pure (E, False);
5188 end if;
5189
70482933
RK
5190 -- For non-foreign convention subprograms, this is where we create
5191 -- the extra formals (for accessibility level and constrained bit
5192 -- information). We delay this till the freeze point precisely so
5193 -- that we know the convention!
5194
5195 if not Has_Foreign_Convention (E) then
5196 Create_Extra_Formals (E);
5197 Set_Mechanisms (E);
5198
5199 -- If this is convention Ada and a Valued_Procedure, that's odd
5200
5201 if Ekind (E) = E_Procedure
5202 and then Is_Valued_Procedure (E)
5203 and then Convention (E) = Convention_Ada
fbf5a39b 5204 and then Warn_On_Export_Import
70482933
RK
5205 then
5206 Error_Msg_N
5207 ("?Valued_Procedure has no effect for convention Ada", E);
5208 Set_Is_Valued_Procedure (E, False);
5209 end if;
5210
5211 -- Case of foreign convention
5212
5213 else
5214 Set_Mechanisms (E);
5215
fbf5a39b 5216 -- For foreign conventions, warn about return of an
70482933
RK
5217 -- unconstrained array.
5218
5219 -- Note: we *do* allow a return by descriptor for the VMS case,
5220 -- though here there is probably more to be done ???
5221
5222 if Ekind (E) = E_Function then
5223 Retype := Underlying_Type (Etype (E));
5224
5225 -- If no return type, probably some other error, e.g. a
5226 -- missing full declaration, so ignore.
5227
5228 if No (Retype) then
5229 null;
5230
5231 -- If the return type is generic, we have emitted a warning
edd63e9b
ES
5232 -- earlier on, and there is nothing else to check here. Specific
5233 -- instantiations may lead to erroneous behavior.
70482933
RK
5234
5235 elsif Is_Generic_Type (Etype (E)) then
5236 null;
5237
e7d72fb9 5238 -- Display warning if returning unconstrained array
59366db6 5239
70482933
RK
5240 elsif Is_Array_Type (Retype)
5241 and then not Is_Constrained (Retype)
e7d72fb9
AC
5242
5243 -- Exclude cases where descriptor mechanism is set, since the
5244 -- VMS descriptor mechanisms allow such unconstrained returns.
5245
70482933 5246 and then Mechanism (E) not in Descriptor_Codes
e7d72fb9
AC
5247
5248 -- Check appropriate warning is enabled (should we check for
5249 -- Warnings (Off) on specific entities here, probably so???)
5250
fbf5a39b 5251 and then Warn_On_Export_Import
e7d72fb9
AC
5252
5253 -- Exclude the VM case, since return of unconstrained arrays
5254 -- is properly handled in both the JVM and .NET cases.
5255
f3b57ab0 5256 and then VM_Target = No_VM
70482933 5257 then
fbf5a39b
AC
5258 Error_Msg_N
5259 ("?foreign convention function& should not return " &
5260 "unconstrained array", E);
70482933
RK
5261 return;
5262 end if;
5263 end if;
5264
5265 -- If any of the formals for an exported foreign convention
edd63e9b
ES
5266 -- subprogram have defaults, then emit an appropriate warning since
5267 -- this is odd (default cannot be used from non-Ada code)
70482933
RK
5268
5269 if Is_Exported (E) then
5270 F := First_Formal (E);
5271 while Present (F) loop
fbf5a39b
AC
5272 if Warn_On_Export_Import
5273 and then Present (Default_Value (F))
5274 then
70482933
RK
5275 Error_Msg_N
5276 ("?parameter cannot be defaulted in non-Ada call",
5277 Default_Value (F));
5278 end if;
5279
5280 Next_Formal (F);
5281 end loop;
5282 end if;
5283 end if;
5284
e7d72fb9
AC
5285 -- For VMS, descriptor mechanisms for parameters are allowed only for
5286 -- imported/exported subprograms. Moreover, the NCA descriptor is not
5287 -- allowed for parameters of exported subprograms.
70482933
RK
5288
5289 if OpenVMS_On_Target then
7d8b9c99
RD
5290 if Is_Exported (E) then
5291 F := First_Formal (E);
5292 while Present (F) loop
5293 if Mechanism (F) = By_Descriptor_NCA then
5294 Error_Msg_N
5295 ("'N'C'A' descriptor for parameter not permitted", F);
5296 Error_Msg_N
5297 ("\can only be used for imported subprogram", F);
5298 end if;
5299
5300 Next_Formal (F);
5301 end loop;
5302
5303 elsif not Is_Imported (E) then
70482933
RK
5304 F := First_Formal (E);
5305 while Present (F) loop
5306 if Mechanism (F) in Descriptor_Codes then
5307 Error_Msg_N
5308 ("descriptor mechanism for parameter not permitted", F);
5309 Error_Msg_N
7d8b9c99 5310 ("\can only be used for imported/exported subprogram", F);
70482933
RK
5311 end if;
5312
5313 Next_Formal (F);
5314 end loop;
5315 end if;
5316 end if;
edd63e9b
ES
5317
5318 -- Pragma Inline_Always is disallowed for dispatching subprograms
5319 -- because the address of such subprograms is saved in the dispatch
5320 -- table to support dispatching calls, and dispatching calls cannot
5321 -- be inlined. This is consistent with the restriction against using
5322 -- 'Access or 'Address on an Inline_Always subprogram.
5323
def46b54
RD
5324 if Is_Dispatching_Operation (E)
5325 and then Has_Pragma_Inline_Always (E)
5326 then
edd63e9b
ES
5327 Error_Msg_N
5328 ("pragma Inline_Always not allowed for dispatching subprograms", E);
5329 end if;
c6a9797e
RD
5330
5331 -- Because of the implicit representation of inherited predefined
5332 -- operators in the front-end, the overriding status of the operation
5333 -- may be affected when a full view of a type is analyzed, and this is
5334 -- not captured by the analysis of the corresponding type declaration.
5335 -- Therefore the correctness of a not-overriding indicator must be
5336 -- rechecked when the subprogram is frozen.
5337
5338 if Nkind (E) = N_Defining_Operator_Symbol
5339 and then not Error_Posted (Parent (E))
5340 then
5341 Check_Overriding_Indicator (E, Empty, Is_Primitive (E));
5342 end if;
70482933
RK
5343 end Freeze_Subprogram;
5344
15ce9ca2
AC
5345 ----------------------
5346 -- Is_Fully_Defined --
5347 ----------------------
70482933 5348
70482933
RK
5349 function Is_Fully_Defined (T : Entity_Id) return Boolean is
5350 begin
5351 if Ekind (T) = E_Class_Wide_Type then
5352 return Is_Fully_Defined (Etype (T));
657a9dd9
AC
5353
5354 elsif Is_Array_Type (T) then
5355 return Is_Fully_Defined (Component_Type (T));
5356
5357 elsif Is_Record_Type (T)
5358 and not Is_Private_Type (T)
5359 then
ee094616
RD
5360 -- Verify that the record type has no components with private types
5361 -- without completion.
657a9dd9
AC
5362
5363 declare
5364 Comp : Entity_Id;
bde58e32 5365
657a9dd9
AC
5366 begin
5367 Comp := First_Component (T);
5368
5369 while Present (Comp) loop
5370 if not Is_Fully_Defined (Etype (Comp)) then
5371 return False;
5372 end if;
5373
5374 Next_Component (Comp);
5375 end loop;
5376 return True;
5377 end;
5378
86cde7b1
RD
5379 else
5380 return not Is_Private_Type (T)
5381 or else Present (Full_View (Base_Type (T)));
70482933
RK
5382 end if;
5383 end Is_Fully_Defined;
5384
70d904ca 5385 ---------------------------------
70482933
RK
5386 -- Process_Default_Expressions --
5387 ---------------------------------
5388
5389 procedure Process_Default_Expressions
5390 (E : Entity_Id;
5391 After : in out Node_Id)
5392 is
5393 Loc : constant Source_Ptr := Sloc (E);
5394 Dbody : Node_Id;
5395 Formal : Node_Id;
5396 Dcopy : Node_Id;
5397 Dnam : Entity_Id;
5398
5399 begin
5400 Set_Default_Expressions_Processed (E);
5401
ee094616
RD
5402 -- A subprogram instance and its associated anonymous subprogram share
5403 -- their signature. The default expression functions are defined in the
5404 -- wrapper packages for the anonymous subprogram, and should not be
5405 -- generated again for the instance.
70482933
RK
5406
5407 if Is_Generic_Instance (E)
5408 and then Present (Alias (E))
5409 and then Default_Expressions_Processed (Alias (E))
5410 then
5411 return;
5412 end if;
5413
5414 Formal := First_Formal (E);
70482933
RK
5415 while Present (Formal) loop
5416 if Present (Default_Value (Formal)) then
5417
5418 -- We work with a copy of the default expression because we
5419 -- do not want to disturb the original, since this would mess
5420 -- up the conformance checking.
5421
5422 Dcopy := New_Copy_Tree (Default_Value (Formal));
5423
5424 -- The analysis of the expression may generate insert actions,
5425 -- which of course must not be executed. We wrap those actions
5426 -- in a procedure that is not called, and later on eliminated.
5427 -- The following cases have no side-effects, and are analyzed
5428 -- directly.
5429
5430 if Nkind (Dcopy) = N_Identifier
5431 or else Nkind (Dcopy) = N_Expanded_Name
5432 or else Nkind (Dcopy) = N_Integer_Literal
5433 or else (Nkind (Dcopy) = N_Real_Literal
5434 and then not Vax_Float (Etype (Dcopy)))
5435 or else Nkind (Dcopy) = N_Character_Literal
5436 or else Nkind (Dcopy) = N_String_Literal
86cde7b1 5437 or else Known_Null (Dcopy)
70482933
RK
5438 or else (Nkind (Dcopy) = N_Attribute_Reference
5439 and then
5440 Attribute_Name (Dcopy) = Name_Null_Parameter)
70482933
RK
5441 then
5442
5443 -- If there is no default function, we must still do a full
ee094616
RD
5444 -- analyze call on the default value, to ensure that all error
5445 -- checks are performed, e.g. those associated with static
5446 -- evaluation. Note: this branch will always be taken if the
5447 -- analyzer is turned off (but we still need the error checks).
70482933
RK
5448
5449 -- Note: the setting of parent here is to meet the requirement
5450 -- that we can only analyze the expression while attached to
5451 -- the tree. Really the requirement is that the parent chain
5452 -- be set, we don't actually need to be in the tree.
5453
5454 Set_Parent (Dcopy, Declaration_Node (Formal));
5455 Analyze (Dcopy);
5456
5457 -- Default expressions are resolved with their own type if the
5458 -- context is generic, to avoid anomalies with private types.
5459
5460 if Ekind (Scope (E)) = E_Generic_Package then
fbf5a39b 5461 Resolve (Dcopy);
70482933
RK
5462 else
5463 Resolve (Dcopy, Etype (Formal));
5464 end if;
5465
5466 -- If that resolved expression will raise constraint error,
5467 -- then flag the default value as raising constraint error.
5468 -- This allows a proper error message on the calls.
5469
5470 if Raises_Constraint_Error (Dcopy) then
5471 Set_Raises_Constraint_Error (Default_Value (Formal));
5472 end if;
5473
5474 -- If the default is a parameterless call, we use the name of
5475 -- the called function directly, and there is no body to build.
5476
5477 elsif Nkind (Dcopy) = N_Function_Call
5478 and then No (Parameter_Associations (Dcopy))
5479 then
5480 null;
5481
5482 -- Else construct and analyze the body of a wrapper procedure
5483 -- that contains an object declaration to hold the expression.
5484 -- Given that this is done only to complete the analysis, it
5485 -- simpler to build a procedure than a function which might
5486 -- involve secondary stack expansion.
5487
5488 else
5489 Dnam :=
5490 Make_Defining_Identifier (Loc, New_Internal_Name ('D'));
5491
5492 Dbody :=
5493 Make_Subprogram_Body (Loc,
5494 Specification =>
5495 Make_Procedure_Specification (Loc,
5496 Defining_Unit_Name => Dnam),
5497
5498 Declarations => New_List (
5499 Make_Object_Declaration (Loc,
5500 Defining_Identifier =>
5501 Make_Defining_Identifier (Loc,
5502 New_Internal_Name ('T')),
5503 Object_Definition =>
5504 New_Occurrence_Of (Etype (Formal), Loc),
5505 Expression => New_Copy_Tree (Dcopy))),
5506
5507 Handled_Statement_Sequence =>
5508 Make_Handled_Sequence_Of_Statements (Loc,
5509 Statements => New_List));
5510
5511 Set_Scope (Dnam, Scope (E));
5512 Set_Assignment_OK (First (Declarations (Dbody)));
5513 Set_Is_Eliminated (Dnam);
5514 Insert_After (After, Dbody);
5515 Analyze (Dbody);
5516 After := Dbody;
5517 end if;
5518 end if;
5519
5520 Next_Formal (Formal);
5521 end loop;
70482933
RK
5522 end Process_Default_Expressions;
5523
5524 ----------------------------------------
5525 -- Set_Component_Alignment_If_Not_Set --
5526 ----------------------------------------
5527
5528 procedure Set_Component_Alignment_If_Not_Set (Typ : Entity_Id) is
5529 begin
5530 -- Ignore if not base type, subtypes don't need anything
5531
5532 if Typ /= Base_Type (Typ) then
5533 return;
5534 end if;
5535
5536 -- Do not override existing representation
5537
5538 if Is_Packed (Typ) then
5539 return;
5540
5541 elsif Has_Specified_Layout (Typ) then
5542 return;
5543
5544 elsif Component_Alignment (Typ) /= Calign_Default then
5545 return;
5546
5547 else
5548 Set_Component_Alignment
5549 (Typ, Scope_Stack.Table
5550 (Scope_Stack.Last).Component_Alignment_Default);
5551 end if;
5552 end Set_Component_Alignment_If_Not_Set;
5553
c6823a20
EB
5554 ------------------
5555 -- Undelay_Type --
5556 ------------------
5557
5558 procedure Undelay_Type (T : Entity_Id) is
5559 begin
5560 Set_Has_Delayed_Freeze (T, False);
5561 Set_Freeze_Node (T, Empty);
5562
5563 -- Since we don't want T to have a Freeze_Node, we don't want its
5564 -- Full_View or Corresponding_Record_Type to have one either.
5565
5566 -- ??? Fundamentally, this whole handling is a kludge. What we really
ee094616
RD
5567 -- want is to be sure that for an Itype that's part of record R and is a
5568 -- subtype of type T, that it's frozen after the later of the freeze
c6823a20
EB
5569 -- points of R and T. We have no way of doing that directly, so what we
5570 -- do is force most such Itypes to be frozen as part of freezing R via
5571 -- this procedure and only delay the ones that need to be delayed
ee094616
RD
5572 -- (mostly the designated types of access types that are defined as part
5573 -- of the record).
c6823a20
EB
5574
5575 if Is_Private_Type (T)
5576 and then Present (Full_View (T))
5577 and then Is_Itype (Full_View (T))
5578 and then Is_Record_Type (Scope (Full_View (T)))
5579 then
5580 Undelay_Type (Full_View (T));
5581 end if;
5582
5583 if Is_Concurrent_Type (T)
5584 and then Present (Corresponding_Record_Type (T))
5585 and then Is_Itype (Corresponding_Record_Type (T))
5586 and then Is_Record_Type (Scope (Corresponding_Record_Type (T)))
5587 then
5588 Undelay_Type (Corresponding_Record_Type (T));
5589 end if;
5590 end Undelay_Type;
5591
fbf5a39b
AC
5592 ------------------
5593 -- Warn_Overlay --
5594 ------------------
5595
5596 procedure Warn_Overlay
5597 (Expr : Node_Id;
5598 Typ : Entity_Id;
5599 Nam : Entity_Id)
5600 is
5601 Ent : constant Entity_Id := Entity (Nam);
49e90211 5602 -- The object to which the address clause applies
fbf5a39b
AC
5603
5604 Init : Node_Id;
5605 Old : Entity_Id := Empty;
5606 Decl : Node_Id;
5607
5608 begin
5609 -- No warning if address clause overlay warnings are off
5610
5611 if not Address_Clause_Overlay_Warnings then
5612 return;
5613 end if;
5614
5615 -- No warning if there is an explicit initialization
5616
5617 Init := Original_Node (Expression (Declaration_Node (Ent)));
5618
5619 if Present (Init) and then Comes_From_Source (Init) then
5620 return;
5621 end if;
5622
edd63e9b 5623 -- We only give the warning for non-imported entities of a type for
0ac73189
AC
5624 -- which a non-null base init proc is defined, or for objects of access
5625 -- types with implicit null initialization, or when Initialize_Scalars
5626 -- applies and the type is scalar or a string type (the latter being
5627 -- tested for because predefined String types are initialized by inline
5628 -- code rather than by an init_proc).
fbf5a39b
AC
5629
5630 if Present (Expr)
fbf5a39b 5631 and then not Is_Imported (Ent)
0ac73189
AC
5632 and then (Has_Non_Null_Base_Init_Proc (Typ)
5633 or else Is_Access_Type (Typ)
5634 or else (Init_Or_Norm_Scalars
5635 and then (Is_Scalar_Type (Typ)
5636 or else Is_String_Type (Typ))))
fbf5a39b
AC
5637 then
5638 if Nkind (Expr) = N_Attribute_Reference
5639 and then Is_Entity_Name (Prefix (Expr))
5640 then
5641 Old := Entity (Prefix (Expr));
5642
5643 elsif Is_Entity_Name (Expr)
5644 and then Ekind (Entity (Expr)) = E_Constant
5645 then
5646 Decl := Declaration_Node (Entity (Expr));
5647
5648 if Nkind (Decl) = N_Object_Declaration
5649 and then Present (Expression (Decl))
5650 and then Nkind (Expression (Decl)) = N_Attribute_Reference
5651 and then Is_Entity_Name (Prefix (Expression (Decl)))
5652 then
5653 Old := Entity (Prefix (Expression (Decl)));
5654
5655 elsif Nkind (Expr) = N_Function_Call then
5656 return;
5657 end if;
5658
ee094616
RD
5659 -- A function call (most likely to To_Address) is probably not an
5660 -- overlay, so skip warning. Ditto if the function call was inlined
5661 -- and transformed into an entity.
fbf5a39b
AC
5662
5663 elsif Nkind (Original_Node (Expr)) = N_Function_Call then
5664 return;
5665 end if;
5666
5667 Decl := Next (Parent (Expr));
5668
5669 -- If a pragma Import follows, we assume that it is for the current
5670 -- target of the address clause, and skip the warning.
5671
5672 if Present (Decl)
5673 and then Nkind (Decl) = N_Pragma
1b24ada5 5674 and then Pragma_Name (Decl) = Name_Import
fbf5a39b
AC
5675 then
5676 return;
5677 end if;
5678
5679 if Present (Old) then
5680 Error_Msg_Node_2 := Old;
5681 Error_Msg_N
5682 ("default initialization of & may modify &?",
5683 Nam);
5684 else
5685 Error_Msg_N
5686 ("default initialization of & may modify overlaid storage?",
5687 Nam);
5688 end if;
5689
5690 -- Add friendly warning if initialization comes from a packed array
5691 -- component.
5692
5693 if Is_Record_Type (Typ) then
5694 declare
5695 Comp : Entity_Id;
5696
5697 begin
5698 Comp := First_Component (Typ);
5699
5700 while Present (Comp) loop
5701 if Nkind (Parent (Comp)) = N_Component_Declaration
5702 and then Present (Expression (Parent (Comp)))
5703 then
5704 exit;
5705 elsif Is_Array_Type (Etype (Comp))
5706 and then Present (Packed_Array_Type (Etype (Comp)))
5707 then
5708 Error_Msg_NE
3f1ede06
RD
5709 ("\packed array component& " &
5710 "will be initialized to zero?",
5711 Nam, Comp);
fbf5a39b
AC
5712 exit;
5713 else
5714 Next_Component (Comp);
5715 end if;
5716 end loop;
5717 end;
5718 end if;
5719
5720 Error_Msg_N
3f1ede06 5721 ("\use pragma Import for & to " &
86cde7b1 5722 "suppress initialization (RM B.1(24))?",
3f1ede06 5723 Nam);
fbf5a39b
AC
5724 end if;
5725 end Warn_Overlay;
5726
70482933 5727end Freeze;
This page took 2.390201 seconds and 5 git commands to generate.