]>
Commit | Line | Data |
---|---|---|
19590d70 | 1 | ----------------------------------------------------------------------------- |
70482933 RK |
2 | -- -- |
3 | -- GNAT COMPILER COMPONENTS -- | |
4 | -- -- | |
5 | -- F R E E Z E -- | |
6 | -- -- | |
7 | -- B o d y -- | |
8 | -- -- | |
7d8b9c99 | 9 | -- Copyright (C) 1992-2007, Free Software Foundation, Inc. -- |
70482933 RK |
10 | -- -- |
11 | -- GNAT is free software; you can redistribute it and/or modify it under -- | |
12 | -- terms of the GNU General Public License as published by the Free Soft- -- | |
13 | -- ware Foundation; either version 2, or (at your option) any later ver- -- | |
14 | -- sion. GNAT is distributed in the hope that it will be useful, but WITH- -- | |
15 | -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY -- | |
16 | -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License -- | |
17 | -- for more details. You should have received a copy of the GNU General -- | |
18 | -- Public License distributed with GNAT; see file COPYING. If not, write -- | |
cb5fee25 KC |
19 | -- to the Free Software Foundation, 51 Franklin Street, Fifth Floor, -- |
20 | -- Boston, MA 02110-1301, USA. -- | |
70482933 RK |
21 | -- -- |
22 | -- GNAT was originally developed by the GNAT team at New York University. -- | |
71ff80dc | 23 | -- Extensive contributions were provided by Ada Core Technologies Inc. -- |
70482933 RK |
24 | -- -- |
25 | ------------------------------------------------------------------------------ | |
26 | ||
27 | with Atree; use Atree; | |
28 | with Debug; use Debug; | |
29 | with Einfo; use Einfo; | |
30 | with Elists; use Elists; | |
31 | with Errout; use Errout; | |
32 | with Exp_Ch7; use Exp_Ch7; | |
70482933 RK |
33 | with Exp_Pakd; use Exp_Pakd; |
34 | with Exp_Util; use Exp_Util; | |
fbf5a39b | 35 | with Exp_Tss; use Exp_Tss; |
70482933 | 36 | with Layout; use Layout; |
07fc65c4 | 37 | with Lib.Xref; use Lib.Xref; |
7d8b9c99 | 38 | with Namet; use Namet; |
70482933 RK |
39 | with Nlists; use Nlists; |
40 | with Nmake; use Nmake; | |
41 | with Opt; use Opt; | |
42 | with Restrict; use Restrict; | |
6e937c1c | 43 | with Rident; use Rident; |
70482933 RK |
44 | with Sem; use Sem; |
45 | with Sem_Cat; use Sem_Cat; | |
46 | with Sem_Ch6; use Sem_Ch6; | |
47 | with Sem_Ch7; use Sem_Ch7; | |
48 | with Sem_Ch8; use Sem_Ch8; | |
49 | with Sem_Ch13; use Sem_Ch13; | |
50 | with Sem_Eval; use Sem_Eval; | |
51 | with Sem_Mech; use Sem_Mech; | |
52 | with Sem_Prag; use Sem_Prag; | |
53 | with Sem_Res; use Sem_Res; | |
54 | with Sem_Util; use Sem_Util; | |
55 | with Sinfo; use Sinfo; | |
56 | with Snames; use Snames; | |
57 | with Stand; use Stand; | |
58 | with Targparm; use Targparm; | |
59 | with Tbuild; use Tbuild; | |
60 | with Ttypes; use Ttypes; | |
61 | with Uintp; use Uintp; | |
62 | with Urealp; use Urealp; | |
63 | ||
64 | package body Freeze is | |
65 | ||
66 | ----------------------- | |
67 | -- Local Subprograms -- | |
68 | ----------------------- | |
69 | ||
70 | procedure Adjust_Esize_For_Alignment (Typ : Entity_Id); | |
71 | -- Typ is a type that is being frozen. If no size clause is given, | |
72 | -- but a default Esize has been computed, then this default Esize is | |
73 | -- adjusted up if necessary to be consistent with a given alignment, | |
74 | -- but never to a value greater than Long_Long_Integer'Size. This | |
75 | -- is used for all discrete types and for fixed-point types. | |
76 | ||
77 | procedure Build_And_Analyze_Renamed_Body | |
78 | (Decl : Node_Id; | |
79 | New_S : Entity_Id; | |
80 | After : in out Node_Id); | |
49e90211 | 81 | -- Build body for a renaming declaration, insert in tree and analyze |
70482933 | 82 | |
fbf5a39b AC |
83 | procedure Check_Address_Clause (E : Entity_Id); |
84 | -- Apply legality checks to address clauses for object declarations, | |
2c9beb8a | 85 | -- at the point the object is frozen. |
fbf5a39b | 86 | |
70482933 RK |
87 | procedure Check_Strict_Alignment (E : Entity_Id); |
88 | -- E is a base type. If E is tagged or has a component that is aliased | |
89 | -- or tagged or contains something this is aliased or tagged, set | |
90 | -- Strict_Alignment. | |
91 | ||
92 | procedure Check_Unsigned_Type (E : Entity_Id); | |
93 | pragma Inline (Check_Unsigned_Type); | |
94 | -- If E is a fixed-point or discrete type, then all the necessary work | |
95 | -- to freeze it is completed except for possible setting of the flag | |
96 | -- Is_Unsigned_Type, which is done by this procedure. The call has no | |
97 | -- effect if the entity E is not a discrete or fixed-point type. | |
98 | ||
99 | procedure Freeze_And_Append | |
100 | (Ent : Entity_Id; | |
101 | Loc : Source_Ptr; | |
102 | Result : in out List_Id); | |
103 | -- Freezes Ent using Freeze_Entity, and appends the resulting list of | |
104 | -- nodes to Result, modifying Result from No_List if necessary. | |
105 | ||
106 | procedure Freeze_Enumeration_Type (Typ : Entity_Id); | |
107 | -- Freeze enumeration type. The Esize field is set as processing | |
108 | -- proceeds (i.e. set by default when the type is declared and then | |
109 | -- adjusted by rep clauses. What this procedure does is to make sure | |
110 | -- that if a foreign convention is specified, and no specific size | |
111 | -- is given, then the size must be at least Integer'Size. | |
112 | ||
70482933 RK |
113 | procedure Freeze_Static_Object (E : Entity_Id); |
114 | -- If an object is frozen which has Is_Statically_Allocated set, then | |
115 | -- all referenced types must also be marked with this flag. This routine | |
116 | -- is in charge of meeting this requirement for the object entity E. | |
117 | ||
118 | procedure Freeze_Subprogram (E : Entity_Id); | |
119 | -- Perform freezing actions for a subprogram (create extra formals, | |
120 | -- and set proper default mechanism values). Note that this routine | |
121 | -- is not called for internal subprograms, for which neither of these | |
122 | -- actions is needed (or desirable, we do not want for example to have | |
123 | -- these extra formals present in initialization procedures, where they | |
124 | -- would serve no purpose). In this call E is either a subprogram or | |
125 | -- a subprogram type (i.e. an access to a subprogram). | |
126 | ||
127 | function Is_Fully_Defined (T : Entity_Id) return Boolean; | |
bde58e32 | 128 | -- True if T is not private and has no private components, or has a full |
657a9dd9 AC |
129 | -- view. Used to determine whether the designated type of an access type |
130 | -- should be frozen when the access type is frozen. This is done when an | |
131 | -- allocator is frozen, or an expression that may involve attributes of | |
132 | -- the designated type. Otherwise freezing the access type does not freeze | |
133 | -- the designated type. | |
70482933 RK |
134 | |
135 | procedure Process_Default_Expressions | |
136 | (E : Entity_Id; | |
137 | After : in out Node_Id); | |
138 | -- This procedure is called for each subprogram to complete processing | |
139 | -- of default expressions at the point where all types are known to be | |
140 | -- frozen. The expressions must be analyzed in full, to make sure that | |
141 | -- all error processing is done (they have only been pre-analyzed). If | |
142 | -- the expression is not an entity or literal, its analysis may generate | |
143 | -- code which must not be executed. In that case we build a function | |
144 | -- body to hold that code. This wrapper function serves no other purpose | |
145 | -- (it used to be called to evaluate the default, but now the default is | |
146 | -- inlined at each point of call). | |
147 | ||
148 | procedure Set_Component_Alignment_If_Not_Set (Typ : Entity_Id); | |
149 | -- Typ is a record or array type that is being frozen. This routine | |
150 | -- sets the default component alignment from the scope stack values | |
151 | -- if the alignment is otherwise not specified. | |
152 | ||
153 | procedure Check_Debug_Info_Needed (T : Entity_Id); | |
154 | -- As each entity is frozen, this routine is called to deal with the | |
155 | -- setting of Debug_Info_Needed for the entity. This flag is set if | |
156 | -- the entity comes from source, or if we are in Debug_Generated_Code | |
157 | -- mode or if the -gnatdV debug flag is set. However, it never sets | |
158 | -- the flag if Debug_Info_Off is set. | |
159 | ||
160 | procedure Set_Debug_Info_Needed (T : Entity_Id); | |
161 | -- Sets the Debug_Info_Needed flag on entity T if not already set, and | |
162 | -- also on any entities that are needed by T (for an object, the type | |
163 | -- of the object is needed, and for a type, the subsidiary types are | |
164 | -- needed -- see body for details). Never has any effect on T if the | |
165 | -- Debug_Info_Off flag is set. | |
166 | ||
c6823a20 EB |
167 | procedure Undelay_Type (T : Entity_Id); |
168 | -- T is a type of a component that we know to be an Itype. | |
169 | -- We don't want this to have a Freeze_Node, so ensure it doesn't. | |
170 | -- Do the same for any Full_View or Corresponding_Record_Type. | |
171 | ||
fbf5a39b AC |
172 | procedure Warn_Overlay |
173 | (Expr : Node_Id; | |
174 | Typ : Entity_Id; | |
175 | Nam : Node_Id); | |
176 | -- Expr is the expression for an address clause for entity Nam whose type | |
177 | -- is Typ. If Typ has a default initialization, and there is no explicit | |
178 | -- initialization in the source declaration, check whether the address | |
179 | -- clause might cause overlaying of an entity, and emit a warning on the | |
180 | -- side effect that the initialization will cause. | |
181 | ||
70482933 RK |
182 | ------------------------------- |
183 | -- Adjust_Esize_For_Alignment -- | |
184 | ------------------------------- | |
185 | ||
186 | procedure Adjust_Esize_For_Alignment (Typ : Entity_Id) is | |
187 | Align : Uint; | |
188 | ||
189 | begin | |
190 | if Known_Esize (Typ) and then Known_Alignment (Typ) then | |
191 | Align := Alignment_In_Bits (Typ); | |
192 | ||
193 | if Align > Esize (Typ) | |
194 | and then Align <= Standard_Long_Long_Integer_Size | |
195 | then | |
196 | Set_Esize (Typ, Align); | |
197 | end if; | |
198 | end if; | |
199 | end Adjust_Esize_For_Alignment; | |
200 | ||
201 | ------------------------------------ | |
202 | -- Build_And_Analyze_Renamed_Body -- | |
203 | ------------------------------------ | |
204 | ||
205 | procedure Build_And_Analyze_Renamed_Body | |
206 | (Decl : Node_Id; | |
207 | New_S : Entity_Id; | |
208 | After : in out Node_Id) | |
209 | is | |
210 | Body_Node : constant Node_Id := Build_Renamed_Body (Decl, New_S); | |
70482933 RK |
211 | begin |
212 | Insert_After (After, Body_Node); | |
213 | Mark_Rewrite_Insertion (Body_Node); | |
214 | Analyze (Body_Node); | |
215 | After := Body_Node; | |
216 | end Build_And_Analyze_Renamed_Body; | |
217 | ||
218 | ------------------------ | |
219 | -- Build_Renamed_Body -- | |
220 | ------------------------ | |
221 | ||
222 | function Build_Renamed_Body | |
223 | (Decl : Node_Id; | |
fbf5a39b | 224 | New_S : Entity_Id) return Node_Id |
70482933 RK |
225 | is |
226 | Loc : constant Source_Ptr := Sloc (New_S); | |
227 | -- We use for the source location of the renamed body, the location | |
228 | -- of the spec entity. It might seem more natural to use the location | |
229 | -- of the renaming declaration itself, but that would be wrong, since | |
230 | -- then the body we create would look as though it was created far | |
231 | -- too late, and this could cause problems with elaboration order | |
232 | -- analysis, particularly in connection with instantiations. | |
233 | ||
234 | N : constant Node_Id := Unit_Declaration_Node (New_S); | |
235 | Nam : constant Node_Id := Name (N); | |
236 | Old_S : Entity_Id; | |
237 | Spec : constant Node_Id := New_Copy_Tree (Specification (Decl)); | |
238 | Actuals : List_Id := No_List; | |
239 | Call_Node : Node_Id; | |
240 | Call_Name : Node_Id; | |
241 | Body_Node : Node_Id; | |
242 | Formal : Entity_Id; | |
243 | O_Formal : Entity_Id; | |
244 | Param_Spec : Node_Id; | |
245 | ||
246 | begin | |
247 | -- Determine the entity being renamed, which is the target of the | |
248 | -- call statement. If the name is an explicit dereference, this is | |
249 | -- a renaming of a subprogram type rather than a subprogram. The | |
250 | -- name itself is fully analyzed. | |
251 | ||
252 | if Nkind (Nam) = N_Selected_Component then | |
253 | Old_S := Entity (Selector_Name (Nam)); | |
254 | ||
255 | elsif Nkind (Nam) = N_Explicit_Dereference then | |
256 | Old_S := Etype (Nam); | |
257 | ||
258 | elsif Nkind (Nam) = N_Indexed_Component then | |
70482933 RK |
259 | if Is_Entity_Name (Prefix (Nam)) then |
260 | Old_S := Entity (Prefix (Nam)); | |
261 | else | |
262 | Old_S := Entity (Selector_Name (Prefix (Nam))); | |
263 | end if; | |
264 | ||
265 | elsif Nkind (Nam) = N_Character_Literal then | |
266 | Old_S := Etype (New_S); | |
267 | ||
268 | else | |
269 | Old_S := Entity (Nam); | |
270 | end if; | |
271 | ||
272 | if Is_Entity_Name (Nam) then | |
07fc65c4 GB |
273 | |
274 | -- If the renamed entity is a predefined operator, retain full | |
275 | -- name to ensure its visibility. | |
276 | ||
277 | if Ekind (Old_S) = E_Operator | |
278 | and then Nkind (Nam) = N_Expanded_Name | |
279 | then | |
280 | Call_Name := New_Copy (Name (N)); | |
281 | else | |
282 | Call_Name := New_Reference_To (Old_S, Loc); | |
283 | end if; | |
284 | ||
70482933 RK |
285 | else |
286 | Call_Name := New_Copy (Name (N)); | |
287 | ||
288 | -- The original name may have been overloaded, but | |
289 | -- is fully resolved now. | |
290 | ||
291 | Set_Is_Overloaded (Call_Name, False); | |
292 | end if; | |
293 | ||
294 | -- For simple renamings, subsequent calls can be expanded directly | |
295 | -- as called to the renamed entity. The body must be generated in | |
296 | -- any case for calls they may appear elsewhere. | |
297 | ||
298 | if (Ekind (Old_S) = E_Function | |
299 | or else Ekind (Old_S) = E_Procedure) | |
300 | and then Nkind (Decl) = N_Subprogram_Declaration | |
301 | then | |
302 | Set_Body_To_Inline (Decl, Old_S); | |
303 | end if; | |
304 | ||
305 | -- The body generated for this renaming is an internal artifact, and | |
306 | -- does not constitute a freeze point for the called entity. | |
307 | ||
308 | Set_Must_Not_Freeze (Call_Name); | |
309 | ||
310 | Formal := First_Formal (Defining_Entity (Decl)); | |
311 | ||
312 | if Present (Formal) then | |
313 | Actuals := New_List; | |
314 | ||
315 | while Present (Formal) loop | |
316 | Append (New_Reference_To (Formal, Loc), Actuals); | |
317 | Next_Formal (Formal); | |
318 | end loop; | |
319 | end if; | |
320 | ||
321 | -- If the renamed entity is an entry, inherit its profile. For | |
322 | -- other renamings as bodies, both profiles must be subtype | |
323 | -- conformant, so it is not necessary to replace the profile given | |
324 | -- in the declaration. However, default values that are aggregates | |
325 | -- are rewritten when partially analyzed, so we recover the original | |
326 | -- aggregate to insure that subsequent conformity checking works. | |
07fc65c4 GB |
327 | -- Similarly, if the default expression was constant-folded, recover |
328 | -- the original expression. | |
70482933 RK |
329 | |
330 | Formal := First_Formal (Defining_Entity (Decl)); | |
331 | ||
332 | if Present (Formal) then | |
333 | O_Formal := First_Formal (Old_S); | |
334 | Param_Spec := First (Parameter_Specifications (Spec)); | |
335 | ||
336 | while Present (Formal) loop | |
337 | if Is_Entry (Old_S) then | |
338 | ||
339 | if Nkind (Parameter_Type (Param_Spec)) /= | |
340 | N_Access_Definition | |
341 | then | |
342 | Set_Etype (Formal, Etype (O_Formal)); | |
343 | Set_Entity (Parameter_Type (Param_Spec), Etype (O_Formal)); | |
344 | end if; | |
345 | ||
07fc65c4 GB |
346 | elsif Nkind (Default_Value (O_Formal)) = N_Aggregate |
347 | or else Nkind (Original_Node (Default_Value (O_Formal))) /= | |
348 | Nkind (Default_Value (O_Formal)) | |
349 | then | |
70482933 RK |
350 | Set_Expression (Param_Spec, |
351 | New_Copy_Tree (Original_Node (Default_Value (O_Formal)))); | |
352 | end if; | |
353 | ||
354 | Next_Formal (Formal); | |
355 | Next_Formal (O_Formal); | |
356 | Next (Param_Spec); | |
357 | end loop; | |
358 | end if; | |
359 | ||
360 | -- If the renamed entity is a function, the generated body contains a | |
361 | -- return statement. Otherwise, build a procedure call. If the entity is | |
362 | -- an entry, subsequent analysis of the call will transform it into the | |
363 | -- proper entry or protected operation call. If the renamed entity is | |
364 | -- a character literal, return it directly. | |
365 | ||
366 | if Ekind (Old_S) = E_Function | |
367 | or else Ekind (Old_S) = E_Operator | |
368 | or else (Ekind (Old_S) = E_Subprogram_Type | |
369 | and then Etype (Old_S) /= Standard_Void_Type) | |
370 | then | |
371 | Call_Node := | |
86cde7b1 | 372 | Make_Simple_Return_Statement (Loc, |
70482933 RK |
373 | Expression => |
374 | Make_Function_Call (Loc, | |
375 | Name => Call_Name, | |
376 | Parameter_Associations => Actuals)); | |
377 | ||
378 | elsif Ekind (Old_S) = E_Enumeration_Literal then | |
379 | Call_Node := | |
86cde7b1 | 380 | Make_Simple_Return_Statement (Loc, |
70482933 RK |
381 | Expression => New_Occurrence_Of (Old_S, Loc)); |
382 | ||
383 | elsif Nkind (Nam) = N_Character_Literal then | |
384 | Call_Node := | |
86cde7b1 | 385 | Make_Simple_Return_Statement (Loc, |
70482933 RK |
386 | Expression => Call_Name); |
387 | ||
388 | else | |
389 | Call_Node := | |
390 | Make_Procedure_Call_Statement (Loc, | |
391 | Name => Call_Name, | |
392 | Parameter_Associations => Actuals); | |
393 | end if; | |
394 | ||
49e90211 | 395 | -- Create entities for subprogram body and formals |
70482933 RK |
396 | |
397 | Set_Defining_Unit_Name (Spec, | |
398 | Make_Defining_Identifier (Loc, Chars => Chars (New_S))); | |
399 | ||
400 | Param_Spec := First (Parameter_Specifications (Spec)); | |
401 | ||
402 | while Present (Param_Spec) loop | |
403 | Set_Defining_Identifier (Param_Spec, | |
404 | Make_Defining_Identifier (Loc, | |
405 | Chars => Chars (Defining_Identifier (Param_Spec)))); | |
406 | Next (Param_Spec); | |
407 | end loop; | |
408 | ||
409 | Body_Node := | |
410 | Make_Subprogram_Body (Loc, | |
411 | Specification => Spec, | |
412 | Declarations => New_List, | |
413 | Handled_Statement_Sequence => | |
414 | Make_Handled_Sequence_Of_Statements (Loc, | |
415 | Statements => New_List (Call_Node))); | |
416 | ||
417 | if Nkind (Decl) /= N_Subprogram_Declaration then | |
418 | Rewrite (N, | |
419 | Make_Subprogram_Declaration (Loc, | |
420 | Specification => Specification (N))); | |
421 | end if; | |
422 | ||
423 | -- Link the body to the entity whose declaration it completes. If | |
424 | -- the body is analyzed when the renamed entity is frozen, it may be | |
425 | -- necessary to restore the proper scope (see package Exp_Ch13). | |
426 | ||
427 | if Nkind (N) = N_Subprogram_Renaming_Declaration | |
428 | and then Present (Corresponding_Spec (N)) | |
429 | then | |
430 | Set_Corresponding_Spec (Body_Node, Corresponding_Spec (N)); | |
431 | else | |
432 | Set_Corresponding_Spec (Body_Node, New_S); | |
433 | end if; | |
434 | ||
435 | return Body_Node; | |
436 | end Build_Renamed_Body; | |
437 | ||
fbf5a39b AC |
438 | -------------------------- |
439 | -- Check_Address_Clause -- | |
440 | -------------------------- | |
441 | ||
442 | procedure Check_Address_Clause (E : Entity_Id) is | |
443 | Addr : constant Node_Id := Address_Clause (E); | |
444 | Expr : Node_Id; | |
445 | Decl : constant Node_Id := Declaration_Node (E); | |
446 | Typ : constant Entity_Id := Etype (E); | |
447 | ||
448 | begin | |
449 | if Present (Addr) then | |
450 | Expr := Expression (Addr); | |
451 | ||
452 | -- If we have no initialization of any kind, then we don't | |
453 | -- need to place any restrictions on the address clause, because | |
454 | -- the object will be elaborated after the address clause is | |
455 | -- evaluated. This happens if the declaration has no initial | |
456 | -- expression, or the type has no implicit initialization, or | |
457 | -- the object is imported. | |
458 | ||
459 | -- The same holds for all initialized scalar types and all | |
460 | -- access types. Packed bit arrays of size up to 64 are | |
461 | -- represented using a modular type with an initialization | |
462 | -- (to zero) and can be processed like other initialized | |
463 | -- scalar types. | |
464 | ||
465 | -- If the type is controlled, code to attach the object to a | |
466 | -- finalization chain is generated at the point of declaration, | |
467 | -- and therefore the elaboration of the object cannot be delayed: | |
468 | -- the address expression must be a constant. | |
469 | ||
470 | if (No (Expression (Decl)) | |
471 | and then not Controlled_Type (Typ) | |
472 | and then | |
473 | (not Has_Non_Null_Base_Init_Proc (Typ) | |
474 | or else Is_Imported (E))) | |
475 | ||
476 | or else | |
477 | (Present (Expression (Decl)) | |
478 | and then Is_Scalar_Type (Typ)) | |
479 | ||
480 | or else | |
481 | Is_Access_Type (Typ) | |
482 | ||
483 | or else | |
484 | (Is_Bit_Packed_Array (Typ) | |
485 | and then | |
486 | Is_Modular_Integer_Type (Packed_Array_Type (Typ))) | |
487 | then | |
488 | null; | |
489 | ||
490 | -- Otherwise, we require the address clause to be constant | |
491 | -- because the call to the initialization procedure (or the | |
492 | -- attach code) has to happen at the point of the declaration. | |
493 | ||
494 | else | |
495 | Check_Constant_Address_Clause (Expr, E); | |
496 | Set_Has_Delayed_Freeze (E, False); | |
497 | end if; | |
498 | ||
499 | if not Error_Posted (Expr) | |
500 | and then not Controlled_Type (Typ) | |
501 | then | |
502 | Warn_Overlay (Expr, Typ, Name (Addr)); | |
503 | end if; | |
504 | end if; | |
505 | end Check_Address_Clause; | |
506 | ||
70482933 RK |
507 | ----------------------------- |
508 | -- Check_Compile_Time_Size -- | |
509 | ----------------------------- | |
510 | ||
511 | procedure Check_Compile_Time_Size (T : Entity_Id) is | |
512 | ||
c6823a20 | 513 | procedure Set_Small_Size (T : Entity_Id; S : Uint); |
70482933 | 514 | -- Sets the compile time known size (32 bits or less) in the Esize |
c6823a20 | 515 | -- field, of T checking for a size clause that was given which attempts |
70482933 RK |
516 | -- to give a smaller size. |
517 | ||
518 | function Size_Known (T : Entity_Id) return Boolean; | |
07fc65c4 | 519 | -- Recursive function that does all the work |
70482933 RK |
520 | |
521 | function Static_Discriminated_Components (T : Entity_Id) return Boolean; | |
522 | -- If T is a constrained subtype, its size is not known if any of its | |
523 | -- discriminant constraints is not static and it is not a null record. | |
fbf5a39b | 524 | -- The test is conservative and doesn't check that the components are |
70482933 RK |
525 | -- in fact constrained by non-static discriminant values. Could be made |
526 | -- more precise ??? | |
527 | ||
528 | -------------------- | |
529 | -- Set_Small_Size -- | |
530 | -------------------- | |
531 | ||
c6823a20 | 532 | procedure Set_Small_Size (T : Entity_Id; S : Uint) is |
70482933 RK |
533 | begin |
534 | if S > 32 then | |
535 | return; | |
536 | ||
537 | elsif Has_Size_Clause (T) then | |
538 | if RM_Size (T) < S then | |
539 | Error_Msg_Uint_1 := S; | |
540 | Error_Msg_NE | |
7d8b9c99 | 541 | ("size for & too small, minimum allowed is ^", |
70482933 RK |
542 | Size_Clause (T), T); |
543 | ||
544 | elsif Unknown_Esize (T) then | |
545 | Set_Esize (T, S); | |
546 | end if; | |
547 | ||
548 | -- Set sizes if not set already | |
549 | ||
550 | else | |
551 | if Unknown_Esize (T) then | |
552 | Set_Esize (T, S); | |
553 | end if; | |
554 | ||
555 | if Unknown_RM_Size (T) then | |
556 | Set_RM_Size (T, S); | |
557 | end if; | |
558 | end if; | |
559 | end Set_Small_Size; | |
560 | ||
561 | ---------------- | |
562 | -- Size_Known -- | |
563 | ---------------- | |
564 | ||
565 | function Size_Known (T : Entity_Id) return Boolean is | |
566 | Index : Entity_Id; | |
567 | Comp : Entity_Id; | |
568 | Ctyp : Entity_Id; | |
569 | Low : Node_Id; | |
570 | High : Node_Id; | |
571 | ||
572 | begin | |
573 | if Size_Known_At_Compile_Time (T) then | |
574 | return True; | |
575 | ||
70482933 RK |
576 | elsif Is_Scalar_Type (T) |
577 | or else Is_Task_Type (T) | |
578 | then | |
579 | return not Is_Generic_Type (T); | |
580 | ||
581 | elsif Is_Array_Type (T) then | |
70482933 | 582 | if Ekind (T) = E_String_Literal_Subtype then |
c6823a20 EB |
583 | Set_Small_Size (T, Component_Size (T) |
584 | * String_Literal_Length (T)); | |
70482933 RK |
585 | return True; |
586 | ||
587 | elsif not Is_Constrained (T) then | |
588 | return False; | |
589 | ||
07fc65c4 GB |
590 | -- Don't do any recursion on type with error posted, since |
591 | -- we may have a malformed type that leads us into a loop | |
592 | ||
593 | elsif Error_Posted (T) then | |
594 | return False; | |
595 | ||
70482933 RK |
596 | elsif not Size_Known (Component_Type (T)) then |
597 | return False; | |
598 | end if; | |
599 | ||
600 | -- Check for all indexes static, and also compute possible | |
601 | -- size (in case it is less than 32 and may be packable). | |
602 | ||
603 | declare | |
604 | Esiz : Uint := Component_Size (T); | |
605 | Dim : Uint; | |
606 | ||
607 | begin | |
608 | Index := First_Index (T); | |
70482933 RK |
609 | while Present (Index) loop |
610 | if Nkind (Index) = N_Range then | |
611 | Get_Index_Bounds (Index, Low, High); | |
612 | ||
613 | elsif Error_Posted (Scalar_Range (Etype (Index))) then | |
614 | return False; | |
615 | ||
616 | else | |
617 | Low := Type_Low_Bound (Etype (Index)); | |
618 | High := Type_High_Bound (Etype (Index)); | |
619 | end if; | |
620 | ||
621 | if not Compile_Time_Known_Value (Low) | |
622 | or else not Compile_Time_Known_Value (High) | |
623 | or else Etype (Index) = Any_Type | |
624 | then | |
625 | return False; | |
626 | ||
627 | else | |
628 | Dim := Expr_Value (High) - Expr_Value (Low) + 1; | |
629 | ||
630 | if Dim >= 0 then | |
631 | Esiz := Esiz * Dim; | |
632 | else | |
633 | Esiz := Uint_0; | |
634 | end if; | |
635 | end if; | |
636 | ||
637 | Next_Index (Index); | |
638 | end loop; | |
639 | ||
c6823a20 | 640 | Set_Small_Size (T, Esiz); |
70482933 RK |
641 | return True; |
642 | end; | |
643 | ||
644 | elsif Is_Access_Type (T) then | |
645 | return True; | |
646 | ||
647 | elsif Is_Private_Type (T) | |
648 | and then not Is_Generic_Type (T) | |
649 | and then Present (Underlying_Type (T)) | |
650 | then | |
07fc65c4 GB |
651 | -- Don't do any recursion on type with error posted, since |
652 | -- we may have a malformed type that leads us into a loop | |
653 | ||
654 | if Error_Posted (T) then | |
655 | return False; | |
656 | else | |
657 | return Size_Known (Underlying_Type (T)); | |
658 | end if; | |
70482933 RK |
659 | |
660 | elsif Is_Record_Type (T) then | |
fbf5a39b AC |
661 | |
662 | -- A class-wide type is never considered to have a known size | |
663 | ||
70482933 RK |
664 | if Is_Class_Wide_Type (T) then |
665 | return False; | |
666 | ||
fbf5a39b AC |
667 | -- A subtype of a variant record must not have non-static |
668 | -- discriminanted components. | |
669 | ||
670 | elsif T /= Base_Type (T) | |
671 | and then not Static_Discriminated_Components (T) | |
672 | then | |
673 | return False; | |
70482933 | 674 | |
07fc65c4 GB |
675 | -- Don't do any recursion on type with error posted, since |
676 | -- we may have a malformed type that leads us into a loop | |
677 | ||
678 | elsif Error_Posted (T) then | |
679 | return False; | |
fbf5a39b | 680 | end if; |
07fc65c4 | 681 | |
fbf5a39b | 682 | -- Now look at the components of the record |
70482933 | 683 | |
fbf5a39b AC |
684 | declare |
685 | -- The following two variables are used to keep track of | |
686 | -- the size of packed records if we can tell the size of | |
687 | -- the packed record in the front end. Packed_Size_Known | |
688 | -- is True if so far we can figure out the size. It is | |
689 | -- initialized to True for a packed record, unless the | |
690 | -- record has discriminants. The reason we eliminate the | |
691 | -- discriminated case is that we don't know the way the | |
692 | -- back end lays out discriminated packed records. If | |
693 | -- Packed_Size_Known is True, then Packed_Size is the | |
694 | -- size in bits so far. | |
695 | ||
696 | Packed_Size_Known : Boolean := | |
697 | Is_Packed (T) | |
698 | and then not Has_Discriminants (T); | |
699 | ||
700 | Packed_Size : Uint := Uint_0; | |
701 | ||
702 | begin | |
703 | -- Test for variant part present | |
704 | ||
705 | if Has_Discriminants (T) | |
706 | and then Present (Parent (T)) | |
707 | and then Nkind (Parent (T)) = N_Full_Type_Declaration | |
708 | and then Nkind (Type_Definition (Parent (T))) = | |
709 | N_Record_Definition | |
710 | and then not Null_Present (Type_Definition (Parent (T))) | |
711 | and then Present (Variant_Part | |
712 | (Component_List (Type_Definition (Parent (T))))) | |
713 | then | |
714 | -- If variant part is present, and type is unconstrained, | |
715 | -- then we must have defaulted discriminants, or a size | |
716 | -- clause must be present for the type, or else the size | |
717 | -- is definitely not known at compile time. | |
718 | ||
719 | if not Is_Constrained (T) | |
720 | and then | |
721 | No (Discriminant_Default_Value | |
722 | (First_Discriminant (T))) | |
723 | and then Unknown_Esize (T) | |
70482933 | 724 | then |
fbf5a39b AC |
725 | return False; |
726 | end if; | |
727 | end if; | |
70482933 | 728 | |
fbf5a39b AC |
729 | -- Loop through components |
730 | ||
fea9e956 | 731 | Comp := First_Component_Or_Discriminant (T); |
fbf5a39b | 732 | while Present (Comp) loop |
fea9e956 | 733 | Ctyp := Etype (Comp); |
fbf5a39b | 734 | |
fea9e956 ES |
735 | -- We do not know the packed size if there is a component |
736 | -- clause present (we possibly could, but this would only | |
737 | -- help in the case of a record with partial rep clauses. | |
738 | -- That's because in the case of full rep clauses, the | |
739 | -- size gets figured out anyway by a different circuit). | |
fbf5a39b | 740 | |
fea9e956 ES |
741 | if Present (Component_Clause (Comp)) then |
742 | Packed_Size_Known := False; | |
743 | end if; | |
70482933 | 744 | |
fea9e956 ES |
745 | -- We need to identify a component that is an array where |
746 | -- the index type is an enumeration type with non-standard | |
747 | -- representation, and some bound of the type depends on a | |
748 | -- discriminant. | |
70482933 | 749 | |
fea9e956 ES |
750 | -- This is because gigi computes the size by doing a |
751 | -- substituation of the appropriate discriminant value in | |
752 | -- the size expression for the base type, and gigi is not | |
753 | -- clever enough to evaluate the resulting expression (which | |
754 | -- involves a call to rep_to_pos) at compile time. | |
fbf5a39b | 755 | |
fea9e956 ES |
756 | -- It would be nice if gigi would either recognize that |
757 | -- this expression can be computed at compile time, or | |
758 | -- alternatively figured out the size from the subtype | |
759 | -- directly, where all the information is at hand ??? | |
fbf5a39b | 760 | |
fea9e956 ES |
761 | if Is_Array_Type (Etype (Comp)) |
762 | and then Present (Packed_Array_Type (Etype (Comp))) | |
763 | then | |
764 | declare | |
765 | Ocomp : constant Entity_Id := | |
766 | Original_Record_Component (Comp); | |
767 | OCtyp : constant Entity_Id := Etype (Ocomp); | |
768 | Ind : Node_Id; | |
769 | Indtyp : Entity_Id; | |
770 | Lo, Hi : Node_Id; | |
70482933 | 771 | |
fea9e956 ES |
772 | begin |
773 | Ind := First_Index (OCtyp); | |
774 | while Present (Ind) loop | |
775 | Indtyp := Etype (Ind); | |
70482933 | 776 | |
fea9e956 ES |
777 | if Is_Enumeration_Type (Indtyp) |
778 | and then Has_Non_Standard_Rep (Indtyp) | |
779 | then | |
780 | Lo := Type_Low_Bound (Indtyp); | |
781 | Hi := Type_High_Bound (Indtyp); | |
fbf5a39b | 782 | |
fea9e956 ES |
783 | if Is_Entity_Name (Lo) |
784 | and then Ekind (Entity (Lo)) = E_Discriminant | |
785 | then | |
786 | return False; | |
fbf5a39b | 787 | |
fea9e956 ES |
788 | elsif Is_Entity_Name (Hi) |
789 | and then Ekind (Entity (Hi)) = E_Discriminant | |
790 | then | |
791 | return False; | |
792 | end if; | |
793 | end if; | |
fbf5a39b | 794 | |
fea9e956 ES |
795 | Next_Index (Ind); |
796 | end loop; | |
797 | end; | |
798 | end if; | |
70482933 | 799 | |
fea9e956 ES |
800 | -- Clearly size of record is not known if the size of |
801 | -- one of the components is not known. | |
70482933 | 802 | |
fea9e956 ES |
803 | if not Size_Known (Ctyp) then |
804 | return False; | |
805 | end if; | |
70482933 | 806 | |
fea9e956 | 807 | -- Accumulate packed size if possible |
70482933 | 808 | |
fea9e956 | 809 | if Packed_Size_Known then |
70482933 | 810 | |
fea9e956 ES |
811 | -- We can only deal with elementary types, since for |
812 | -- non-elementary components, alignment enters into the | |
813 | -- picture, and we don't know enough to handle proper | |
814 | -- alignment in this context. Packed arrays count as | |
815 | -- elementary if the representation is a modular type. | |
fbf5a39b | 816 | |
fea9e956 ES |
817 | if Is_Elementary_Type (Ctyp) |
818 | or else (Is_Array_Type (Ctyp) | |
819 | and then Present (Packed_Array_Type (Ctyp)) | |
820 | and then Is_Modular_Integer_Type | |
821 | (Packed_Array_Type (Ctyp))) | |
822 | then | |
823 | -- If RM_Size is known and static, then we can | |
824 | -- keep accumulating the packed size. | |
70482933 | 825 | |
fea9e956 | 826 | if Known_Static_RM_Size (Ctyp) then |
70482933 | 827 | |
fea9e956 ES |
828 | -- A little glitch, to be removed sometime ??? |
829 | -- gigi does not understand zero sizes yet. | |
830 | ||
831 | if RM_Size (Ctyp) = Uint_0 then | |
70482933 | 832 | Packed_Size_Known := False; |
fea9e956 ES |
833 | |
834 | -- Normal case where we can keep accumulating the | |
835 | -- packed array size. | |
836 | ||
837 | else | |
838 | Packed_Size := Packed_Size + RM_Size (Ctyp); | |
70482933 | 839 | end if; |
fbf5a39b | 840 | |
fea9e956 ES |
841 | -- If we have a field whose RM_Size is not known then |
842 | -- we can't figure out the packed size here. | |
fbf5a39b AC |
843 | |
844 | else | |
845 | Packed_Size_Known := False; | |
70482933 | 846 | end if; |
fea9e956 ES |
847 | |
848 | -- If we have a non-elementary type we can't figure out | |
849 | -- the packed array size (alignment issues). | |
850 | ||
851 | else | |
852 | Packed_Size_Known := False; | |
70482933 | 853 | end if; |
fbf5a39b | 854 | end if; |
70482933 | 855 | |
fea9e956 | 856 | Next_Component_Or_Discriminant (Comp); |
fbf5a39b | 857 | end loop; |
70482933 | 858 | |
fbf5a39b | 859 | if Packed_Size_Known then |
c6823a20 | 860 | Set_Small_Size (T, Packed_Size); |
fbf5a39b | 861 | end if; |
70482933 | 862 | |
fbf5a39b AC |
863 | return True; |
864 | end; | |
70482933 RK |
865 | |
866 | else | |
867 | return False; | |
868 | end if; | |
869 | end Size_Known; | |
870 | ||
871 | ------------------------------------- | |
872 | -- Static_Discriminated_Components -- | |
873 | ------------------------------------- | |
874 | ||
875 | function Static_Discriminated_Components | |
0da2c8ac | 876 | (T : Entity_Id) return Boolean |
70482933 RK |
877 | is |
878 | Constraint : Elmt_Id; | |
879 | ||
880 | begin | |
881 | if Has_Discriminants (T) | |
882 | and then Present (Discriminant_Constraint (T)) | |
883 | and then Present (First_Component (T)) | |
884 | then | |
885 | Constraint := First_Elmt (Discriminant_Constraint (T)); | |
70482933 RK |
886 | while Present (Constraint) loop |
887 | if not Compile_Time_Known_Value (Node (Constraint)) then | |
888 | return False; | |
889 | end if; | |
890 | ||
891 | Next_Elmt (Constraint); | |
892 | end loop; | |
893 | end if; | |
894 | ||
895 | return True; | |
896 | end Static_Discriminated_Components; | |
897 | ||
898 | -- Start of processing for Check_Compile_Time_Size | |
899 | ||
900 | begin | |
901 | Set_Size_Known_At_Compile_Time (T, Size_Known (T)); | |
902 | end Check_Compile_Time_Size; | |
903 | ||
904 | ----------------------------- | |
905 | -- Check_Debug_Info_Needed -- | |
906 | ----------------------------- | |
907 | ||
908 | procedure Check_Debug_Info_Needed (T : Entity_Id) is | |
909 | begin | |
910 | if Needs_Debug_Info (T) or else Debug_Info_Off (T) then | |
911 | return; | |
912 | ||
913 | elsif Comes_From_Source (T) | |
914 | or else Debug_Generated_Code | |
915 | or else Debug_Flag_VV | |
916 | then | |
917 | Set_Debug_Info_Needed (T); | |
918 | end if; | |
919 | end Check_Debug_Info_Needed; | |
920 | ||
921 | ---------------------------- | |
922 | -- Check_Strict_Alignment -- | |
923 | ---------------------------- | |
924 | ||
925 | procedure Check_Strict_Alignment (E : Entity_Id) is | |
926 | Comp : Entity_Id; | |
927 | ||
928 | begin | |
929 | if Is_Tagged_Type (E) or else Is_Concurrent_Type (E) then | |
930 | Set_Strict_Alignment (E); | |
931 | ||
932 | elsif Is_Array_Type (E) then | |
933 | Set_Strict_Alignment (E, Strict_Alignment (Component_Type (E))); | |
934 | ||
935 | elsif Is_Record_Type (E) then | |
936 | if Is_Limited_Record (E) then | |
937 | Set_Strict_Alignment (E); | |
938 | return; | |
939 | end if; | |
940 | ||
941 | Comp := First_Component (E); | |
942 | ||
943 | while Present (Comp) loop | |
944 | if not Is_Type (Comp) | |
945 | and then (Strict_Alignment (Etype (Comp)) | |
fbf5a39b | 946 | or else Is_Aliased (Comp)) |
70482933 RK |
947 | then |
948 | Set_Strict_Alignment (E); | |
949 | return; | |
950 | end if; | |
951 | ||
952 | Next_Component (Comp); | |
953 | end loop; | |
954 | end if; | |
955 | end Check_Strict_Alignment; | |
956 | ||
957 | ------------------------- | |
958 | -- Check_Unsigned_Type -- | |
959 | ------------------------- | |
960 | ||
961 | procedure Check_Unsigned_Type (E : Entity_Id) is | |
962 | Ancestor : Entity_Id; | |
963 | Lo_Bound : Node_Id; | |
964 | Btyp : Entity_Id; | |
965 | ||
966 | begin | |
967 | if not Is_Discrete_Or_Fixed_Point_Type (E) then | |
968 | return; | |
969 | end if; | |
970 | ||
971 | -- Do not attempt to analyze case where range was in error | |
972 | ||
973 | if Error_Posted (Scalar_Range (E)) then | |
974 | return; | |
975 | end if; | |
976 | ||
977 | -- The situation that is non trivial is something like | |
978 | ||
979 | -- subtype x1 is integer range -10 .. +10; | |
980 | -- subtype x2 is x1 range 0 .. V1; | |
981 | -- subtype x3 is x2 range V2 .. V3; | |
982 | -- subtype x4 is x3 range V4 .. V5; | |
983 | ||
984 | -- where Vn are variables. Here the base type is signed, but we still | |
985 | -- know that x4 is unsigned because of the lower bound of x2. | |
986 | ||
987 | -- The only way to deal with this is to look up the ancestor chain | |
988 | ||
989 | Ancestor := E; | |
990 | loop | |
991 | if Ancestor = Any_Type or else Etype (Ancestor) = Any_Type then | |
992 | return; | |
993 | end if; | |
994 | ||
995 | Lo_Bound := Type_Low_Bound (Ancestor); | |
996 | ||
997 | if Compile_Time_Known_Value (Lo_Bound) then | |
998 | ||
999 | if Expr_Rep_Value (Lo_Bound) >= 0 then | |
1000 | Set_Is_Unsigned_Type (E, True); | |
1001 | end if; | |
1002 | ||
1003 | return; | |
1004 | ||
1005 | else | |
1006 | Ancestor := Ancestor_Subtype (Ancestor); | |
1007 | ||
1008 | -- If no ancestor had a static lower bound, go to base type | |
1009 | ||
1010 | if No (Ancestor) then | |
1011 | ||
1012 | -- Note: the reason we still check for a compile time known | |
1013 | -- value for the base type is that at least in the case of | |
1014 | -- generic formals, we can have bounds that fail this test, | |
1015 | -- and there may be other cases in error situations. | |
1016 | ||
1017 | Btyp := Base_Type (E); | |
1018 | ||
1019 | if Btyp = Any_Type or else Etype (Btyp) = Any_Type then | |
1020 | return; | |
1021 | end if; | |
1022 | ||
1023 | Lo_Bound := Type_Low_Bound (Base_Type (E)); | |
1024 | ||
1025 | if Compile_Time_Known_Value (Lo_Bound) | |
1026 | and then Expr_Rep_Value (Lo_Bound) >= 0 | |
1027 | then | |
1028 | Set_Is_Unsigned_Type (E, True); | |
1029 | end if; | |
1030 | ||
1031 | return; | |
70482933 RK |
1032 | end if; |
1033 | end if; | |
1034 | end loop; | |
1035 | end Check_Unsigned_Type; | |
1036 | ||
fbf5a39b AC |
1037 | ----------------------------- |
1038 | -- Expand_Atomic_Aggregate -- | |
1039 | ----------------------------- | |
1040 | ||
1041 | procedure Expand_Atomic_Aggregate (E : Entity_Id; Typ : Entity_Id) is | |
1042 | Loc : constant Source_Ptr := Sloc (E); | |
1043 | New_N : Node_Id; | |
1044 | Temp : Entity_Id; | |
1045 | ||
1046 | begin | |
1047 | if (Nkind (Parent (E)) = N_Object_Declaration | |
1048 | or else Nkind (Parent (E)) = N_Assignment_Statement) | |
1049 | and then Comes_From_Source (Parent (E)) | |
1050 | and then Nkind (E) = N_Aggregate | |
1051 | then | |
1052 | Temp := | |
1053 | Make_Defining_Identifier (Loc, | |
1054 | New_Internal_Name ('T')); | |
1055 | ||
1056 | New_N := | |
1057 | Make_Object_Declaration (Loc, | |
1058 | Defining_Identifier => Temp, | |
1059 | Object_definition => New_Occurrence_Of (Typ, Loc), | |
1060 | Expression => Relocate_Node (E)); | |
1061 | Insert_Before (Parent (E), New_N); | |
1062 | Analyze (New_N); | |
1063 | ||
1064 | Set_Expression (Parent (E), New_Occurrence_Of (Temp, Loc)); | |
1065 | ||
1066 | -- To prevent the temporary from being constant-folded (which | |
1067 | -- would lead to the same piecemeal assignment on the original | |
1068 | -- target) indicate to the back-end that the temporary is a | |
1069 | -- variable with real storage. See description of this flag | |
1070 | -- in Einfo, and the notes on N_Assignment_Statement and | |
1071 | -- N_Object_Declaration in Sinfo. | |
1072 | ||
1073 | Set_Is_True_Constant (Temp, False); | |
1074 | end if; | |
1075 | end Expand_Atomic_Aggregate; | |
1076 | ||
70482933 RK |
1077 | ---------------- |
1078 | -- Freeze_All -- | |
1079 | ---------------- | |
1080 | ||
1081 | -- Note: the easy coding for this procedure would be to just build a | |
1082 | -- single list of freeze nodes and then insert them and analyze them | |
1083 | -- all at once. This won't work, because the analysis of earlier freeze | |
1084 | -- nodes may recursively freeze types which would otherwise appear later | |
1085 | -- on in the freeze list. So we must analyze and expand the freeze nodes | |
1086 | -- as they are generated. | |
1087 | ||
1088 | procedure Freeze_All (From : Entity_Id; After : in out Node_Id) is | |
1089 | Loc : constant Source_Ptr := Sloc (After); | |
1090 | E : Entity_Id; | |
1091 | Decl : Node_Id; | |
1092 | ||
1093 | procedure Freeze_All_Ent (From : Entity_Id; After : in out Node_Id); | |
1094 | -- This is the internal recursive routine that does freezing of | |
1095 | -- entities (but NOT the analysis of default expressions, which | |
1096 | -- should not be recursive, we don't want to analyze those till | |
1097 | -- we are sure that ALL the types are frozen). | |
1098 | ||
fbf5a39b AC |
1099 | -------------------- |
1100 | -- Freeze_All_Ent -- | |
1101 | -------------------- | |
1102 | ||
70482933 RK |
1103 | procedure Freeze_All_Ent |
1104 | (From : Entity_Id; | |
1105 | After : in out Node_Id) | |
1106 | is | |
1107 | E : Entity_Id; | |
1108 | Flist : List_Id; | |
1109 | Lastn : Node_Id; | |
1110 | ||
1111 | procedure Process_Flist; | |
1112 | -- If freeze nodes are present, insert and analyze, and reset | |
1113 | -- cursor for next insertion. | |
1114 | ||
fbf5a39b AC |
1115 | ------------------- |
1116 | -- Process_Flist -- | |
1117 | ------------------- | |
1118 | ||
70482933 RK |
1119 | procedure Process_Flist is |
1120 | begin | |
1121 | if Is_Non_Empty_List (Flist) then | |
1122 | Lastn := Next (After); | |
1123 | Insert_List_After_And_Analyze (After, Flist); | |
1124 | ||
1125 | if Present (Lastn) then | |
1126 | After := Prev (Lastn); | |
1127 | else | |
1128 | After := Last (List_Containing (After)); | |
1129 | end if; | |
1130 | end if; | |
1131 | end Process_Flist; | |
1132 | ||
fbf5a39b AC |
1133 | -- Start or processing for Freeze_All_Ent |
1134 | ||
70482933 RK |
1135 | begin |
1136 | E := From; | |
1137 | while Present (E) loop | |
1138 | ||
1139 | -- If the entity is an inner package which is not a package | |
1140 | -- renaming, then its entities must be frozen at this point. | |
1141 | -- Note that such entities do NOT get frozen at the end of | |
1142 | -- the nested package itself (only library packages freeze). | |
1143 | ||
1144 | -- Same is true for task declarations, where anonymous records | |
1145 | -- created for entry parameters must be frozen. | |
1146 | ||
1147 | if Ekind (E) = E_Package | |
1148 | and then No (Renamed_Object (E)) | |
1149 | and then not Is_Child_Unit (E) | |
1150 | and then not Is_Frozen (E) | |
1151 | then | |
7d8b9c99 | 1152 | Push_Scope (E); |
70482933 RK |
1153 | Install_Visible_Declarations (E); |
1154 | Install_Private_Declarations (E); | |
1155 | ||
1156 | Freeze_All (First_Entity (E), After); | |
1157 | ||
1158 | End_Package_Scope (E); | |
1159 | ||
1160 | elsif Ekind (E) in Task_Kind | |
1161 | and then | |
1162 | (Nkind (Parent (E)) = N_Task_Type_Declaration | |
fbf5a39b | 1163 | or else |
70482933 RK |
1164 | Nkind (Parent (E)) = N_Single_Task_Declaration) |
1165 | then | |
7d8b9c99 | 1166 | Push_Scope (E); |
70482933 RK |
1167 | Freeze_All (First_Entity (E), After); |
1168 | End_Scope; | |
1169 | ||
1170 | -- For a derived tagged type, we must ensure that all the | |
1171 | -- primitive operations of the parent have been frozen, so | |
1172 | -- that their addresses will be in the parent's dispatch table | |
1173 | -- at the point it is inherited. | |
1174 | ||
1175 | elsif Ekind (E) = E_Record_Type | |
1176 | and then Is_Tagged_Type (E) | |
1177 | and then Is_Tagged_Type (Etype (E)) | |
1178 | and then Is_Derived_Type (E) | |
1179 | then | |
1180 | declare | |
1181 | Prim_List : constant Elist_Id := | |
1182 | Primitive_Operations (Etype (E)); | |
fbf5a39b AC |
1183 | |
1184 | Prim : Elmt_Id; | |
1185 | Subp : Entity_Id; | |
70482933 RK |
1186 | |
1187 | begin | |
1188 | Prim := First_Elmt (Prim_List); | |
1189 | ||
1190 | while Present (Prim) loop | |
1191 | Subp := Node (Prim); | |
1192 | ||
1193 | if Comes_From_Source (Subp) | |
1194 | and then not Is_Frozen (Subp) | |
1195 | then | |
1196 | Flist := Freeze_Entity (Subp, Loc); | |
1197 | Process_Flist; | |
1198 | end if; | |
1199 | ||
1200 | Next_Elmt (Prim); | |
1201 | end loop; | |
1202 | end; | |
1203 | end if; | |
1204 | ||
1205 | if not Is_Frozen (E) then | |
1206 | Flist := Freeze_Entity (E, Loc); | |
1207 | Process_Flist; | |
1208 | end if; | |
1209 | ||
fbf5a39b AC |
1210 | -- If an incomplete type is still not frozen, this may be |
1211 | -- a premature freezing because of a body declaration that | |
1212 | -- follows. Indicate where the freezing took place. | |
1213 | ||
1214 | -- If the freezing is caused by the end of the current | |
1215 | -- declarative part, it is a Taft Amendment type, and there | |
1216 | -- is no error. | |
1217 | ||
1218 | if not Is_Frozen (E) | |
1219 | and then Ekind (E) = E_Incomplete_Type | |
1220 | then | |
1221 | declare | |
1222 | Bod : constant Node_Id := Next (After); | |
1223 | ||
1224 | begin | |
1225 | if (Nkind (Bod) = N_Subprogram_Body | |
1226 | or else Nkind (Bod) = N_Entry_Body | |
1227 | or else Nkind (Bod) = N_Package_Body | |
1228 | or else Nkind (Bod) = N_Protected_Body | |
1229 | or else Nkind (Bod) = N_Task_Body | |
1230 | or else Nkind (Bod) in N_Body_Stub) | |
1231 | and then | |
1232 | List_Containing (After) = List_Containing (Parent (E)) | |
1233 | then | |
1234 | Error_Msg_Sloc := Sloc (Next (After)); | |
1235 | Error_Msg_NE | |
1236 | ("type& is frozen# before its full declaration", | |
1237 | Parent (E), E); | |
1238 | end if; | |
1239 | end; | |
1240 | end if; | |
1241 | ||
70482933 RK |
1242 | Next_Entity (E); |
1243 | end loop; | |
1244 | end Freeze_All_Ent; | |
1245 | ||
1246 | -- Start of processing for Freeze_All | |
1247 | ||
1248 | begin | |
1249 | Freeze_All_Ent (From, After); | |
1250 | ||
1251 | -- Now that all types are frozen, we can deal with default expressions | |
1252 | -- that require us to build a default expression functions. This is the | |
1253 | -- point at which such functions are constructed (after all types that | |
1254 | -- might be used in such expressions have been frozen). | |
fbf5a39b | 1255 | |
70482933 RK |
1256 | -- We also add finalization chains to access types whose designated |
1257 | -- types are controlled. This is normally done when freezing the type, | |
1258 | -- but this misses recursive type definitions where the later members | |
1259 | -- of the recursion introduce controlled components (e.g. 5624-001). | |
1260 | ||
1261 | -- Loop through entities | |
1262 | ||
1263 | E := From; | |
1264 | while Present (E) loop | |
70482933 RK |
1265 | if Is_Subprogram (E) then |
1266 | ||
1267 | if not Default_Expressions_Processed (E) then | |
1268 | Process_Default_Expressions (E, After); | |
1269 | end if; | |
1270 | ||
1271 | if not Has_Completion (E) then | |
1272 | Decl := Unit_Declaration_Node (E); | |
1273 | ||
1274 | if Nkind (Decl) = N_Subprogram_Renaming_Declaration then | |
1275 | Build_And_Analyze_Renamed_Body (Decl, E, After); | |
1276 | ||
1277 | elsif Nkind (Decl) = N_Subprogram_Declaration | |
1278 | and then Present (Corresponding_Body (Decl)) | |
1279 | and then | |
1280 | Nkind (Unit_Declaration_Node (Corresponding_Body (Decl))) | |
fbf5a39b | 1281 | = N_Subprogram_Renaming_Declaration |
70482933 RK |
1282 | then |
1283 | Build_And_Analyze_Renamed_Body | |
1284 | (Decl, Corresponding_Body (Decl), After); | |
1285 | end if; | |
1286 | end if; | |
1287 | ||
1288 | elsif Ekind (E) in Task_Kind | |
1289 | and then | |
1290 | (Nkind (Parent (E)) = N_Task_Type_Declaration | |
fbf5a39b | 1291 | or else |
70482933 RK |
1292 | Nkind (Parent (E)) = N_Single_Task_Declaration) |
1293 | then | |
1294 | declare | |
1295 | Ent : Entity_Id; | |
70482933 RK |
1296 | begin |
1297 | Ent := First_Entity (E); | |
1298 | ||
1299 | while Present (Ent) loop | |
1300 | ||
1301 | if Is_Entry (Ent) | |
1302 | and then not Default_Expressions_Processed (Ent) | |
1303 | then | |
1304 | Process_Default_Expressions (Ent, After); | |
1305 | end if; | |
1306 | ||
1307 | Next_Entity (Ent); | |
1308 | end loop; | |
1309 | end; | |
1310 | ||
1311 | elsif Is_Access_Type (E) | |
1312 | and then Comes_From_Source (E) | |
1313 | and then Ekind (Directly_Designated_Type (E)) = E_Incomplete_Type | |
1314 | and then Controlled_Type (Designated_Type (E)) | |
1315 | and then No (Associated_Final_Chain (E)) | |
1316 | then | |
1317 | Build_Final_List (Parent (E), E); | |
1318 | end if; | |
1319 | ||
1320 | Next_Entity (E); | |
1321 | end loop; | |
70482933 RK |
1322 | end Freeze_All; |
1323 | ||
1324 | ----------------------- | |
1325 | -- Freeze_And_Append -- | |
1326 | ----------------------- | |
1327 | ||
1328 | procedure Freeze_And_Append | |
1329 | (Ent : Entity_Id; | |
1330 | Loc : Source_Ptr; | |
1331 | Result : in out List_Id) | |
1332 | is | |
1333 | L : constant List_Id := Freeze_Entity (Ent, Loc); | |
70482933 RK |
1334 | begin |
1335 | if Is_Non_Empty_List (L) then | |
1336 | if Result = No_List then | |
1337 | Result := L; | |
1338 | else | |
1339 | Append_List (L, Result); | |
1340 | end if; | |
1341 | end if; | |
1342 | end Freeze_And_Append; | |
1343 | ||
1344 | ------------------- | |
1345 | -- Freeze_Before -- | |
1346 | ------------------- | |
1347 | ||
1348 | procedure Freeze_Before (N : Node_Id; T : Entity_Id) is | |
1349 | Freeze_Nodes : constant List_Id := Freeze_Entity (T, Sloc (N)); | |
70482933 RK |
1350 | begin |
1351 | if Is_Non_Empty_List (Freeze_Nodes) then | |
fbf5a39b | 1352 | Insert_Actions (N, Freeze_Nodes); |
70482933 RK |
1353 | end if; |
1354 | end Freeze_Before; | |
1355 | ||
1356 | ------------------- | |
1357 | -- Freeze_Entity -- | |
1358 | ------------------- | |
1359 | ||
1360 | function Freeze_Entity (E : Entity_Id; Loc : Source_Ptr) return List_Id is | |
c6823a20 | 1361 | Test_E : Entity_Id := E; |
70482933 RK |
1362 | Comp : Entity_Id; |
1363 | F_Node : Node_Id; | |
1364 | Result : List_Id; | |
1365 | Indx : Node_Id; | |
1366 | Formal : Entity_Id; | |
1367 | Atype : Entity_Id; | |
1368 | ||
1369 | procedure Check_Current_Instance (Comp_Decl : Node_Id); | |
edd63e9b ES |
1370 | -- Check that an Access or Unchecked_Access attribute with a prefix |
1371 | -- which is the current instance type can only be applied when the type | |
1372 | -- is limited. | |
70482933 RK |
1373 | |
1374 | function After_Last_Declaration return Boolean; | |
1375 | -- If Loc is a freeze_entity that appears after the last declaration | |
1376 | -- in the scope, inhibit error messages on late completion. | |
1377 | ||
1378 | procedure Freeze_Record_Type (Rec : Entity_Id); | |
edd63e9b ES |
1379 | -- Freeze each component, handle some representation clauses, and freeze |
1380 | -- primitive operations if this is a tagged type. | |
70482933 RK |
1381 | |
1382 | ---------------------------- | |
1383 | -- After_Last_Declaration -- | |
1384 | ---------------------------- | |
1385 | ||
1386 | function After_Last_Declaration return Boolean is | |
fbf5a39b | 1387 | Spec : constant Node_Id := Parent (Current_Scope); |
70482933 RK |
1388 | begin |
1389 | if Nkind (Spec) = N_Package_Specification then | |
1390 | if Present (Private_Declarations (Spec)) then | |
1391 | return Loc >= Sloc (Last (Private_Declarations (Spec))); | |
70482933 RK |
1392 | elsif Present (Visible_Declarations (Spec)) then |
1393 | return Loc >= Sloc (Last (Visible_Declarations (Spec))); | |
1394 | else | |
1395 | return False; | |
1396 | end if; | |
70482933 RK |
1397 | else |
1398 | return False; | |
1399 | end if; | |
1400 | end After_Last_Declaration; | |
1401 | ||
1402 | ---------------------------- | |
1403 | -- Check_Current_Instance -- | |
1404 | ---------------------------- | |
1405 | ||
1406 | procedure Check_Current_Instance (Comp_Decl : Node_Id) is | |
1407 | ||
1408 | function Process (N : Node_Id) return Traverse_Result; | |
49e90211 | 1409 | -- Process routine to apply check to given node |
70482933 | 1410 | |
fbf5a39b AC |
1411 | ------------- |
1412 | -- Process -- | |
1413 | ------------- | |
1414 | ||
70482933 RK |
1415 | function Process (N : Node_Id) return Traverse_Result is |
1416 | begin | |
1417 | case Nkind (N) is | |
1418 | when N_Attribute_Reference => | |
1419 | if (Attribute_Name (N) = Name_Access | |
1420 | or else | |
1421 | Attribute_Name (N) = Name_Unchecked_Access) | |
1422 | and then Is_Entity_Name (Prefix (N)) | |
1423 | and then Is_Type (Entity (Prefix (N))) | |
1424 | and then Entity (Prefix (N)) = E | |
1425 | then | |
1426 | Error_Msg_N | |
1427 | ("current instance must be a limited type", Prefix (N)); | |
1428 | return Abandon; | |
1429 | else | |
1430 | return OK; | |
1431 | end if; | |
1432 | ||
1433 | when others => return OK; | |
1434 | end case; | |
1435 | end Process; | |
1436 | ||
1437 | procedure Traverse is new Traverse_Proc (Process); | |
1438 | ||
1439 | -- Start of processing for Check_Current_Instance | |
1440 | ||
1441 | begin | |
1442 | Traverse (Comp_Decl); | |
1443 | end Check_Current_Instance; | |
1444 | ||
1445 | ------------------------ | |
1446 | -- Freeze_Record_Type -- | |
1447 | ------------------------ | |
1448 | ||
1449 | procedure Freeze_Record_Type (Rec : Entity_Id) is | |
1450 | Comp : Entity_Id; | |
fbf5a39b | 1451 | IR : Node_Id; |
70482933 | 1452 | ADC : Node_Id; |
c6823a20 | 1453 | Prev : Entity_Id; |
70482933 | 1454 | |
67ce0d7e RD |
1455 | Junk : Boolean; |
1456 | pragma Warnings (Off, Junk); | |
1457 | ||
70482933 RK |
1458 | Unplaced_Component : Boolean := False; |
1459 | -- Set True if we find at least one component with no component | |
1460 | -- clause (used to warn about useless Pack pragmas). | |
1461 | ||
1462 | Placed_Component : Boolean := False; | |
1463 | -- Set True if we find at least one component with a component | |
1464 | -- clause (used to warn about useless Bit_Order pragmas). | |
1465 | ||
e18d6a15 JM |
1466 | function Check_Allocator (N : Node_Id) return Node_Id; |
1467 | -- If N is an allocator, possibly wrapped in one or more level of | |
1468 | -- qualified expression(s), return the inner allocator node, else | |
1469 | -- return Empty. | |
19590d70 | 1470 | |
7d8b9c99 RD |
1471 | procedure Check_Itype (Typ : Entity_Id); |
1472 | -- If the component subtype is an access to a constrained subtype of | |
1473 | -- an already frozen type, make the subtype frozen as well. It might | |
1474 | -- otherwise be frozen in the wrong scope, and a freeze node on | |
1475 | -- subtype has no effect. Similarly, if the component subtype is a | |
1476 | -- regular (not protected) access to subprogram, set the anonymous | |
1477 | -- subprogram type to frozen as well, to prevent an out-of-scope | |
1478 | -- freeze node at some eventual point of call. Protected operations | |
1479 | -- are handled elsewhere. | |
6e059adb | 1480 | |
19590d70 GD |
1481 | --------------------- |
1482 | -- Check_Allocator -- | |
1483 | --------------------- | |
1484 | ||
e18d6a15 JM |
1485 | function Check_Allocator (N : Node_Id) return Node_Id is |
1486 | Inner : Node_Id; | |
19590d70 | 1487 | begin |
e18d6a15 | 1488 | Inner := N; |
e18d6a15 JM |
1489 | loop |
1490 | if Nkind (Inner) = N_Allocator then | |
1491 | return Inner; | |
e18d6a15 JM |
1492 | elsif Nkind (Inner) = N_Qualified_Expression then |
1493 | Inner := Expression (Inner); | |
e18d6a15 JM |
1494 | else |
1495 | return Empty; | |
1496 | end if; | |
1497 | end loop; | |
19590d70 GD |
1498 | end Check_Allocator; |
1499 | ||
6871ba5f AC |
1500 | ----------------- |
1501 | -- Check_Itype -- | |
1502 | ----------------- | |
1503 | ||
7d8b9c99 RD |
1504 | procedure Check_Itype (Typ : Entity_Id) is |
1505 | Desig : constant Entity_Id := Designated_Type (Typ); | |
1506 | ||
6e059adb AC |
1507 | begin |
1508 | if not Is_Frozen (Desig) | |
1509 | and then Is_Frozen (Base_Type (Desig)) | |
1510 | then | |
1511 | Set_Is_Frozen (Desig); | |
1512 | ||
1513 | -- In addition, add an Itype_Reference to ensure that the | |
7d8b9c99 RD |
1514 | -- access subtype is elaborated early enough. This cannot be |
1515 | -- done if the subtype may depend on discriminants. | |
6e059adb AC |
1516 | |
1517 | if Ekind (Comp) = E_Component | |
1518 | and then Is_Itype (Etype (Comp)) | |
1519 | and then not Has_Discriminants (Rec) | |
1520 | then | |
1521 | IR := Make_Itype_Reference (Sloc (Comp)); | |
1522 | Set_Itype (IR, Desig); | |
1523 | ||
1524 | if No (Result) then | |
1525 | Result := New_List (IR); | |
1526 | else | |
1527 | Append (IR, Result); | |
1528 | end if; | |
1529 | end if; | |
7d8b9c99 RD |
1530 | |
1531 | elsif Ekind (Typ) = E_Anonymous_Access_Subprogram_Type | |
1532 | and then Convention (Desig) /= Convention_Protected | |
1533 | then | |
1534 | Set_Is_Frozen (Desig); | |
6e059adb AC |
1535 | end if; |
1536 | end Check_Itype; | |
1537 | ||
1538 | -- Start of processing for Freeze_Record_Type | |
1539 | ||
70482933 | 1540 | begin |
7d8b9c99 RD |
1541 | -- If this is a subtype of a controlled type, declared without a |
1542 | -- constraint, the _controller may not appear in the component list | |
1543 | -- if the parent was not frozen at the point of subtype declaration. | |
1544 | -- Inherit the _controller component now. | |
fbf5a39b AC |
1545 | |
1546 | if Rec /= Base_Type (Rec) | |
1547 | and then Has_Controlled_Component (Rec) | |
1548 | then | |
1549 | if Nkind (Parent (Rec)) = N_Subtype_Declaration | |
1550 | and then Is_Entity_Name (Subtype_Indication (Parent (Rec))) | |
1551 | then | |
1552 | Set_First_Entity (Rec, First_Entity (Base_Type (Rec))); | |
1553 | ||
49e90211 | 1554 | -- If this is an internal type without a declaration, as for |
6871ba5f AC |
1555 | -- record component, the base type may not yet be frozen, and its |
1556 | -- controller has not been created. Add an explicit freeze node | |
49e90211 ES |
1557 | -- for the itype, so it will be frozen after the base type. This |
1558 | -- freeze node is used to communicate with the expander, in order | |
1559 | -- to create the controller for the enclosing record, and it is | |
1560 | -- deleted afterwards (see exp_ch3). It must not be created when | |
1561 | -- expansion is off, because it might appear in the wrong context | |
1562 | -- for the back end. | |
fbf5a39b AC |
1563 | |
1564 | elsif Is_Itype (Rec) | |
1565 | and then Has_Delayed_Freeze (Base_Type (Rec)) | |
1566 | and then | |
1567 | Nkind (Associated_Node_For_Itype (Rec)) = | |
49e90211 ES |
1568 | N_Component_Declaration |
1569 | and then Expander_Active | |
fbf5a39b AC |
1570 | then |
1571 | Ensure_Freeze_Node (Rec); | |
1572 | end if; | |
1573 | end if; | |
1574 | ||
49e90211 | 1575 | -- Freeze components and embedded subtypes |
70482933 RK |
1576 | |
1577 | Comp := First_Entity (Rec); | |
c6823a20 | 1578 | Prev := Empty; |
c6823a20 | 1579 | while Present (Comp) loop |
70482933 | 1580 | |
49e90211 | 1581 | -- First handle the (real) component case |
70482933 RK |
1582 | |
1583 | if Ekind (Comp) = E_Component | |
1584 | or else Ekind (Comp) = E_Discriminant | |
1585 | then | |
70482933 RK |
1586 | declare |
1587 | CC : constant Node_Id := Component_Clause (Comp); | |
1588 | ||
1589 | begin | |
c6823a20 EB |
1590 | -- Freezing a record type freezes the type of each of its |
1591 | -- components. However, if the type of the component is | |
1592 | -- part of this record, we do not want or need a separate | |
1593 | -- Freeze_Node. Note that Is_Itype is wrong because that's | |
1594 | -- also set in private type cases. We also can't check for | |
1595 | -- the Scope being exactly Rec because of private types and | |
1596 | -- record extensions. | |
1597 | ||
1598 | if Is_Itype (Etype (Comp)) | |
1599 | and then Is_Record_Type (Underlying_Type | |
1600 | (Scope (Etype (Comp)))) | |
1601 | then | |
1602 | Undelay_Type (Etype (Comp)); | |
1603 | end if; | |
1604 | ||
1605 | Freeze_And_Append (Etype (Comp), Loc, Result); | |
1606 | ||
0da2c8ac AC |
1607 | -- Check for error of component clause given for variable |
1608 | -- sized type. We have to delay this test till this point, | |
1609 | -- since the component type has to be frozen for us to know | |
1610 | -- if it is variable length. We omit this test in a generic | |
1611 | -- context, it will be applied at instantiation time. | |
1612 | ||
70482933 RK |
1613 | if Present (CC) then |
1614 | Placed_Component := True; | |
1615 | ||
07fc65c4 GB |
1616 | if Inside_A_Generic then |
1617 | null; | |
1618 | ||
7d8b9c99 RD |
1619 | elsif not |
1620 | Size_Known_At_Compile_Time | |
1621 | (Underlying_Type (Etype (Comp))) | |
70482933 RK |
1622 | then |
1623 | Error_Msg_N | |
1624 | ("component clause not allowed for variable " & | |
1625 | "length component", CC); | |
1626 | end if; | |
1627 | ||
1628 | else | |
1629 | Unplaced_Component := True; | |
1630 | end if; | |
70482933 | 1631 | |
0da2c8ac | 1632 | -- Case of component requires byte alignment |
70482933 | 1633 | |
0da2c8ac | 1634 | if Must_Be_On_Byte_Boundary (Etype (Comp)) then |
70482933 | 1635 | |
0da2c8ac | 1636 | -- Set the enclosing record to also require byte align |
70482933 | 1637 | |
0da2c8ac | 1638 | Set_Must_Be_On_Byte_Boundary (Rec); |
70482933 | 1639 | |
7d8b9c99 RD |
1640 | -- Check for component clause that is inconsistent with |
1641 | -- the required byte boundary alignment. | |
70482933 | 1642 | |
0da2c8ac AC |
1643 | if Present (CC) |
1644 | and then Normalized_First_Bit (Comp) mod | |
1645 | System_Storage_Unit /= 0 | |
1646 | then | |
1647 | Error_Msg_N | |
1648 | ("component & must be byte aligned", | |
1649 | Component_Name (Component_Clause (Comp))); | |
1650 | end if; | |
1651 | end if; | |
70482933 | 1652 | |
7d8b9c99 RD |
1653 | -- If component clause is present, then deal with the non- |
1654 | -- default bit order case for Ada 95 mode. The required | |
fea9e956 ES |
1655 | -- processing for Ada 2005 mode is handled separately after |
1656 | -- processing all components. | |
70482933 | 1657 | |
0da2c8ac AC |
1658 | -- We only do this processing for the base type, and in |
1659 | -- fact that's important, since otherwise if there are | |
1660 | -- record subtypes, we could reverse the bits once for | |
1661 | -- each subtype, which would be incorrect. | |
70482933 | 1662 | |
0da2c8ac AC |
1663 | if Present (CC) |
1664 | and then Reverse_Bit_Order (Rec) | |
1665 | and then Ekind (E) = E_Record_Type | |
fea9e956 | 1666 | and then Ada_Version <= Ada_95 |
0da2c8ac AC |
1667 | then |
1668 | declare | |
1669 | CFB : constant Uint := Component_Bit_Offset (Comp); | |
1670 | CSZ : constant Uint := Esize (Comp); | |
1671 | CLC : constant Node_Id := Component_Clause (Comp); | |
1672 | Pos : constant Node_Id := Position (CLC); | |
1673 | FB : constant Node_Id := First_Bit (CLC); | |
1674 | ||
1675 | Storage_Unit_Offset : constant Uint := | |
1676 | CFB / System_Storage_Unit; | |
1677 | ||
1678 | Start_Bit : constant Uint := | |
1679 | CFB mod System_Storage_Unit; | |
1680 | ||
1681 | begin | |
1682 | -- Cases where field goes over storage unit boundary | |
1683 | ||
1684 | if Start_Bit + CSZ > System_Storage_Unit then | |
70482933 | 1685 | |
0da2c8ac AC |
1686 | -- Allow multi-byte field but generate warning |
1687 | ||
1688 | if Start_Bit mod System_Storage_Unit = 0 | |
1689 | and then CSZ mod System_Storage_Unit = 0 | |
1690 | then | |
70482933 | 1691 | Error_Msg_N |
0da2c8ac AC |
1692 | ("multi-byte field specified with non-standard" |
1693 | & " Bit_Order?", CLC); | |
1694 | ||
1695 | if Bytes_Big_Endian then | |
1696 | Error_Msg_N | |
1697 | ("bytes are not reversed " | |
1698 | & "(component is big-endian)?", CLC); | |
1699 | else | |
1700 | Error_Msg_N | |
1701 | ("bytes are not reversed " | |
1702 | & "(component is little-endian)?", CLC); | |
1703 | end if; | |
1704 | ||
1705 | -- Do not allow non-contiguous field | |
1706 | ||
70482933 RK |
1707 | else |
1708 | Error_Msg_N | |
0da2c8ac AC |
1709 | ("attempt to specify non-contiguous field" |
1710 | & " not permitted", CLC); | |
1711 | Error_Msg_N | |
1712 | ("\(caused by non-standard Bit_Order " | |
1713 | & "specified)", CLC); | |
70482933 RK |
1714 | end if; |
1715 | ||
0da2c8ac | 1716 | -- Case where field fits in one storage unit |
70482933 RK |
1717 | |
1718 | else | |
0da2c8ac | 1719 | -- Give warning if suspicious component clause |
70482933 | 1720 | |
fea9e956 ES |
1721 | if Intval (FB) >= System_Storage_Unit |
1722 | and then Warn_On_Reverse_Bit_Order | |
1723 | then | |
0da2c8ac AC |
1724 | Error_Msg_N |
1725 | ("?Bit_Order clause does not affect " & | |
1726 | "byte ordering", Pos); | |
1727 | Error_Msg_Uint_1 := | |
1728 | Intval (Pos) + Intval (FB) / | |
1729 | System_Storage_Unit; | |
1730 | Error_Msg_N | |
1731 | ("?position normalized to ^ before bit " & | |
1732 | "order interpreted", Pos); | |
1733 | end if; | |
70482933 | 1734 | |
0da2c8ac AC |
1735 | -- Here is where we fix up the Component_Bit_Offset |
1736 | -- value to account for the reverse bit order. | |
1737 | -- Some examples of what needs to be done are: | |
70482933 | 1738 | |
0da2c8ac AC |
1739 | -- First_Bit .. Last_Bit Component_Bit_Offset |
1740 | -- old new old new | |
70482933 | 1741 | |
0da2c8ac AC |
1742 | -- 0 .. 0 7 .. 7 0 7 |
1743 | -- 0 .. 1 6 .. 7 0 6 | |
1744 | -- 0 .. 2 5 .. 7 0 5 | |
1745 | -- 0 .. 7 0 .. 7 0 4 | |
70482933 | 1746 | |
0da2c8ac AC |
1747 | -- 1 .. 1 6 .. 6 1 6 |
1748 | -- 1 .. 4 3 .. 6 1 3 | |
1749 | -- 4 .. 7 0 .. 3 4 0 | |
70482933 | 1750 | |
0da2c8ac AC |
1751 | -- The general rule is that the first bit is |
1752 | -- is obtained by subtracting the old ending bit | |
1753 | -- from storage_unit - 1. | |
70482933 | 1754 | |
0da2c8ac AC |
1755 | Set_Component_Bit_Offset |
1756 | (Comp, | |
1757 | (Storage_Unit_Offset * System_Storage_Unit) + | |
1758 | (System_Storage_Unit - 1) - | |
1759 | (Start_Bit + CSZ - 1)); | |
70482933 | 1760 | |
0da2c8ac AC |
1761 | Set_Normalized_First_Bit |
1762 | (Comp, | |
1763 | Component_Bit_Offset (Comp) mod | |
1764 | System_Storage_Unit); | |
1765 | end if; | |
1766 | end; | |
1767 | end if; | |
1768 | end; | |
70482933 RK |
1769 | end if; |
1770 | ||
c6823a20 EB |
1771 | -- If the component is an Itype with Delayed_Freeze and is either |
1772 | -- a record or array subtype and its base type has not yet been | |
1773 | -- frozen, we must remove this from the entity list of this | |
1774 | -- record and put it on the entity list of the scope of its base | |
1775 | -- type. Note that we know that this is not the type of a | |
1776 | -- component since we cleared Has_Delayed_Freeze for it in the | |
1777 | -- previous loop. Thus this must be the Designated_Type of an | |
1778 | -- access type, which is the type of a component. | |
1779 | ||
1780 | if Is_Itype (Comp) | |
1781 | and then Is_Type (Scope (Comp)) | |
1782 | and then Is_Composite_Type (Comp) | |
1783 | and then Base_Type (Comp) /= Comp | |
1784 | and then Has_Delayed_Freeze (Comp) | |
1785 | and then not Is_Frozen (Base_Type (Comp)) | |
1786 | then | |
1787 | declare | |
1788 | Will_Be_Frozen : Boolean := False; | |
1789 | S : Entity_Id := Scope (Rec); | |
1790 | ||
1791 | begin | |
fea9e956 ES |
1792 | -- We have a pretty bad kludge here. Suppose Rec is subtype |
1793 | -- being defined in a subprogram that's created as part of | |
1794 | -- the freezing of Rec'Base. In that case, we know that | |
1795 | -- Comp'Base must have already been frozen by the time we | |
1796 | -- get to elaborate this because Gigi doesn't elaborate any | |
1797 | -- bodies until it has elaborated all of the declarative | |
1798 | -- part. But Is_Frozen will not be set at this point because | |
1799 | -- we are processing code in lexical order. | |
1800 | ||
1801 | -- We detect this case by going up the Scope chain of Rec | |
1802 | -- and seeing if we have a subprogram scope before reaching | |
1803 | -- the top of the scope chain or that of Comp'Base. If we | |
1804 | -- do, then mark that Comp'Base will actually be frozen. If | |
1805 | -- so, we merely undelay it. | |
c6823a20 EB |
1806 | |
1807 | while Present (S) loop | |
1808 | if Is_Subprogram (S) then | |
1809 | Will_Be_Frozen := True; | |
1810 | exit; | |
1811 | elsif S = Scope (Base_Type (Comp)) then | |
1812 | exit; | |
1813 | end if; | |
1814 | ||
1815 | S := Scope (S); | |
1816 | end loop; | |
1817 | ||
1818 | if Will_Be_Frozen then | |
1819 | Undelay_Type (Comp); | |
1820 | else | |
1821 | if Present (Prev) then | |
1822 | Set_Next_Entity (Prev, Next_Entity (Comp)); | |
1823 | else | |
1824 | Set_First_Entity (Rec, Next_Entity (Comp)); | |
1825 | end if; | |
1826 | ||
1827 | -- Insert in entity list of scope of base type (which | |
1828 | -- must be an enclosing scope, because still unfrozen). | |
1829 | ||
1830 | Append_Entity (Comp, Scope (Base_Type (Comp))); | |
1831 | end if; | |
1832 | end; | |
1833 | ||
1834 | -- If the component is an access type with an allocator as | |
1835 | -- default value, the designated type will be frozen by the | |
1836 | -- corresponding expression in init_proc. In order to place the | |
1837 | -- freeze node for the designated type before that for the | |
1838 | -- current record type, freeze it now. | |
1839 | ||
1840 | -- Same process if the component is an array of access types, | |
1841 | -- initialized with an aggregate. If the designated type is | |
1842 | -- private, it cannot contain allocators, and it is premature to | |
1843 | -- freeze the type, so we check for this as well. | |
1844 | ||
1845 | elsif Is_Access_Type (Etype (Comp)) | |
1846 | and then Present (Parent (Comp)) | |
1847 | and then Present (Expression (Parent (Comp))) | |
c6823a20 EB |
1848 | then |
1849 | declare | |
e18d6a15 JM |
1850 | Alloc : constant Node_Id := |
1851 | Check_Allocator (Expression (Parent (Comp))); | |
c6823a20 EB |
1852 | |
1853 | begin | |
e18d6a15 | 1854 | if Present (Alloc) then |
19590d70 | 1855 | |
e18d6a15 JM |
1856 | -- If component is pointer to a classwide type, freeze |
1857 | -- the specific type in the expression being allocated. | |
1858 | -- The expression may be a subtype indication, in which | |
1859 | -- case freeze the subtype mark. | |
c6823a20 | 1860 | |
e18d6a15 JM |
1861 | if Is_Class_Wide_Type |
1862 | (Designated_Type (Etype (Comp))) | |
0f4cb75c | 1863 | then |
e18d6a15 JM |
1864 | if Is_Entity_Name (Expression (Alloc)) then |
1865 | Freeze_And_Append | |
1866 | (Entity (Expression (Alloc)), Loc, Result); | |
1867 | elsif | |
1868 | Nkind (Expression (Alloc)) = N_Subtype_Indication | |
1869 | then | |
1870 | Freeze_And_Append | |
1871 | (Entity (Subtype_Mark (Expression (Alloc))), | |
1872 | Loc, Result); | |
1873 | end if; | |
0f4cb75c | 1874 | |
e18d6a15 JM |
1875 | elsif Is_Itype (Designated_Type (Etype (Comp))) then |
1876 | Check_Itype (Etype (Comp)); | |
0f4cb75c | 1877 | |
e18d6a15 JM |
1878 | else |
1879 | Freeze_And_Append | |
1880 | (Designated_Type (Etype (Comp)), Loc, Result); | |
1881 | end if; | |
c6823a20 EB |
1882 | end if; |
1883 | end; | |
1884 | ||
1885 | elsif Is_Access_Type (Etype (Comp)) | |
1886 | and then Is_Itype (Designated_Type (Etype (Comp))) | |
1887 | then | |
7d8b9c99 | 1888 | Check_Itype (Etype (Comp)); |
c6823a20 EB |
1889 | |
1890 | elsif Is_Array_Type (Etype (Comp)) | |
1891 | and then Is_Access_Type (Component_Type (Etype (Comp))) | |
1892 | and then Present (Parent (Comp)) | |
1893 | and then Nkind (Parent (Comp)) = N_Component_Declaration | |
1894 | and then Present (Expression (Parent (Comp))) | |
1895 | and then Nkind (Expression (Parent (Comp))) = N_Aggregate | |
1896 | and then Is_Fully_Defined | |
1897 | (Designated_Type (Component_Type (Etype (Comp)))) | |
1898 | then | |
1899 | Freeze_And_Append | |
1900 | (Designated_Type | |
1901 | (Component_Type (Etype (Comp))), Loc, Result); | |
1902 | end if; | |
1903 | ||
1904 | Prev := Comp; | |
70482933 RK |
1905 | Next_Entity (Comp); |
1906 | end loop; | |
1907 | ||
fea9e956 ES |
1908 | -- Deal with pragma Bit_Order |
1909 | ||
1910 | if Reverse_Bit_Order (Rec) and then Base_Type (Rec) = Rec then | |
1911 | if not Placed_Component then | |
1912 | ADC := | |
1913 | Get_Attribute_Definition_Clause (Rec, Attribute_Bit_Order); | |
1914 | Error_Msg_N | |
1915 | ("?Bit_Order specification has no effect", ADC); | |
1916 | Error_Msg_N | |
1917 | ("\?since no component clauses were specified", ADC); | |
1918 | ||
1919 | -- Here is where we do Ada 2005 processing for bit order (the | |
1920 | -- Ada 95 case was already taken care of above). | |
70482933 | 1921 | |
fea9e956 ES |
1922 | elsif Ada_Version >= Ada_05 then |
1923 | Adjust_Record_For_Reverse_Bit_Order (Rec); | |
1924 | end if; | |
70482933 RK |
1925 | end if; |
1926 | ||
ee094616 RD |
1927 | -- Check for useless pragma Pack when all components placed. We only |
1928 | -- do this check for record types, not subtypes, since a subtype may | |
1929 | -- have all its components placed, and it still makes perfectly good | |
1930 | -- sense to pack other subtypes or the parent type. | |
70482933 | 1931 | |
ee094616 RD |
1932 | if Ekind (Rec) = E_Record_Type |
1933 | and then Is_Packed (Rec) | |
70482933 | 1934 | and then not Unplaced_Component |
70482933 | 1935 | then |
ee094616 RD |
1936 | -- Reset packed status. Probably not necessary, but we do it |
1937 | -- so that there is no chance of the back end doing something | |
1938 | -- strange with this redundant indication of packing. | |
1939 | ||
70482933 | 1940 | Set_Is_Packed (Rec, False); |
ee094616 RD |
1941 | |
1942 | -- Give warning if redundant constructs warnings on | |
1943 | ||
1944 | if Warn_On_Redundant_Constructs then | |
1945 | Error_Msg_N | |
1946 | ("?pragma Pack has no effect, no unplaced components", | |
1947 | Get_Rep_Pragma (Rec, Name_Pack)); | |
1948 | end if; | |
70482933 RK |
1949 | end if; |
1950 | ||
ee094616 RD |
1951 | -- If this is the record corresponding to a remote type, freeze the |
1952 | -- remote type here since that is what we are semantically freezing. | |
1953 | -- This prevents the freeze node for that type in an inner scope. | |
70482933 RK |
1954 | |
1955 | -- Also, Check for controlled components and unchecked unions. | |
ee094616 RD |
1956 | -- Finally, enforce the restriction that access attributes with a |
1957 | -- current instance prefix can only apply to limited types. | |
70482933 RK |
1958 | |
1959 | if Ekind (Rec) = E_Record_Type then | |
70482933 RK |
1960 | if Present (Corresponding_Remote_Type (Rec)) then |
1961 | Freeze_And_Append | |
1962 | (Corresponding_Remote_Type (Rec), Loc, Result); | |
1963 | end if; | |
1964 | ||
1965 | Comp := First_Component (Rec); | |
70482933 RK |
1966 | while Present (Comp) loop |
1967 | if Has_Controlled_Component (Etype (Comp)) | |
1968 | or else (Chars (Comp) /= Name_uParent | |
1969 | and then Is_Controlled (Etype (Comp))) | |
1970 | or else (Is_Protected_Type (Etype (Comp)) | |
1971 | and then Present | |
1972 | (Corresponding_Record_Type (Etype (Comp))) | |
1973 | and then Has_Controlled_Component | |
1974 | (Corresponding_Record_Type (Etype (Comp)))) | |
1975 | then | |
1976 | Set_Has_Controlled_Component (Rec); | |
1977 | exit; | |
1978 | end if; | |
1979 | ||
1980 | if Has_Unchecked_Union (Etype (Comp)) then | |
1981 | Set_Has_Unchecked_Union (Rec); | |
1982 | end if; | |
1983 | ||
1984 | if Has_Per_Object_Constraint (Comp) | |
1985 | and then not Is_Limited_Type (Rec) | |
1986 | then | |
ee094616 RD |
1987 | -- Scan component declaration for likely misuses of current |
1988 | -- instance, either in a constraint or a default expression. | |
70482933 RK |
1989 | |
1990 | Check_Current_Instance (Parent (Comp)); | |
1991 | end if; | |
1992 | ||
1993 | Next_Component (Comp); | |
1994 | end loop; | |
1995 | end if; | |
1996 | ||
1997 | Set_Component_Alignment_If_Not_Set (Rec); | |
1998 | ||
ee094616 RD |
1999 | -- For first subtypes, check if there are any fixed-point fields with |
2000 | -- component clauses, where we must check the size. This is not done | |
2001 | -- till the freeze point, since for fixed-point types, we do not know | |
2002 | -- the size until the type is frozen. Similar processing applies to | |
2003 | -- bit packed arrays. | |
70482933 RK |
2004 | |
2005 | if Is_First_Subtype (Rec) then | |
2006 | Comp := First_Component (Rec); | |
2007 | ||
2008 | while Present (Comp) loop | |
2009 | if Present (Component_Clause (Comp)) | |
d05ef0ab AC |
2010 | and then (Is_Fixed_Point_Type (Etype (Comp)) |
2011 | or else | |
2012 | Is_Bit_Packed_Array (Etype (Comp))) | |
70482933 RK |
2013 | then |
2014 | Check_Size | |
d05ef0ab | 2015 | (Component_Name (Component_Clause (Comp)), |
70482933 RK |
2016 | Etype (Comp), |
2017 | Esize (Comp), | |
2018 | Junk); | |
2019 | end if; | |
2020 | ||
2021 | Next_Component (Comp); | |
2022 | end loop; | |
2023 | end if; | |
7d8b9c99 RD |
2024 | |
2025 | -- Generate warning for applying C or C++ convention to a record | |
2026 | -- with discriminants. This is suppressed for the unchecked union | |
2027 | -- case, since the whole point in this case is interface C. | |
2028 | ||
2029 | if Has_Discriminants (E) | |
2030 | and then not Is_Unchecked_Union (E) | |
2031 | and then not Warnings_Off (E) | |
2032 | and then not Warnings_Off (Base_Type (E)) | |
2033 | and then (Convention (E) = Convention_C | |
2034 | or else | |
2035 | Convention (E) = Convention_CPP) | |
2036 | and then Comes_From_Source (E) | |
2037 | then | |
2038 | declare | |
2039 | Cprag : constant Node_Id := Get_Rep_Pragma (E, Name_Convention); | |
2040 | A2 : Node_Id; | |
2041 | ||
2042 | begin | |
2043 | if Present (Cprag) then | |
2044 | A2 := Next (First (Pragma_Argument_Associations (Cprag))); | |
2045 | ||
2046 | if Convention (E) = Convention_C then | |
2047 | Error_Msg_N | |
2048 | ("?variant record has no direct equivalent in C", A2); | |
2049 | else | |
2050 | Error_Msg_N | |
2051 | ("?variant record has no direct equivalent in C++", A2); | |
2052 | end if; | |
2053 | ||
2054 | Error_Msg_NE | |
2055 | ("\?use of convention for type& is dubious", A2, E); | |
2056 | end if; | |
2057 | end; | |
2058 | end if; | |
70482933 RK |
2059 | end Freeze_Record_Type; |
2060 | ||
2061 | -- Start of processing for Freeze_Entity | |
2062 | ||
2063 | begin | |
c6823a20 EB |
2064 | -- We are going to test for various reasons why this entity need not be |
2065 | -- frozen here, but in the case of an Itype that's defined within a | |
2066 | -- record, that test actually applies to the record. | |
2067 | ||
2068 | if Is_Itype (E) and then Is_Record_Type (Scope (E)) then | |
2069 | Test_E := Scope (E); | |
2070 | elsif Is_Itype (E) and then Present (Underlying_Type (Scope (E))) | |
2071 | and then Is_Record_Type (Underlying_Type (Scope (E))) | |
2072 | then | |
2073 | Test_E := Underlying_Type (Scope (E)); | |
2074 | end if; | |
2075 | ||
fbf5a39b | 2076 | -- Do not freeze if already frozen since we only need one freeze node |
70482933 RK |
2077 | |
2078 | if Is_Frozen (E) then | |
2079 | return No_List; | |
2080 | ||
c6823a20 EB |
2081 | -- It is improper to freeze an external entity within a generic because |
2082 | -- its freeze node will appear in a non-valid context. The entity will | |
2083 | -- be frozen in the proper scope after the current generic is analyzed. | |
70482933 | 2084 | |
c6823a20 | 2085 | elsif Inside_A_Generic and then External_Ref_In_Generic (Test_E) then |
70482933 RK |
2086 | return No_List; |
2087 | ||
2088 | -- Do not freeze a global entity within an inner scope created during | |
2089 | -- expansion. A call to subprogram E within some internal procedure | |
2090 | -- (a stream attribute for example) might require freezing E, but the | |
2091 | -- freeze node must appear in the same declarative part as E itself. | |
2092 | -- The two-pass elaboration mechanism in gigi guarantees that E will | |
2093 | -- be frozen before the inner call is elaborated. We exclude constants | |
2094 | -- from this test, because deferred constants may be frozen early, and | |
19590d70 GD |
2095 | -- must be diagnosed (e.g. in the case of a deferred constant being used |
2096 | -- in a default expression). If the enclosing subprogram comes from | |
2097 | -- source, or is a generic instance, then the freeze point is the one | |
2098 | -- mandated by the language, and we freeze the entity. A subprogram that | |
2099 | -- is a child unit body that acts as a spec does not have a spec that | |
2100 | -- comes from source, but can only come from source. | |
70482933 | 2101 | |
c6823a20 EB |
2102 | elsif In_Open_Scopes (Scope (Test_E)) |
2103 | and then Scope (Test_E) /= Current_Scope | |
2104 | and then Ekind (Test_E) /= E_Constant | |
70482933 RK |
2105 | then |
2106 | declare | |
2107 | S : Entity_Id := Current_Scope; | |
2108 | ||
2109 | begin | |
2110 | while Present (S) loop | |
2111 | if Is_Overloadable (S) then | |
2112 | if Comes_From_Source (S) | |
2113 | or else Is_Generic_Instance (S) | |
fea9e956 | 2114 | or else Is_Child_Unit (S) |
70482933 RK |
2115 | then |
2116 | exit; | |
2117 | else | |
2118 | return No_List; | |
2119 | end if; | |
2120 | end if; | |
2121 | ||
2122 | S := Scope (S); | |
2123 | end loop; | |
2124 | end; | |
555360a5 AC |
2125 | |
2126 | -- Similarly, an inlined instance body may make reference to global | |
2127 | -- entities, but these references cannot be the proper freezing point | |
7d8b9c99 | 2128 | -- for them, and in the absence of inlining freezing will take place |
555360a5 AC |
2129 | -- in their own scope. Normally instance bodies are analyzed after |
2130 | -- the enclosing compilation, and everything has been frozen at the | |
2131 | -- proper place, but with front-end inlining an instance body is | |
2132 | -- compiled before the end of the enclosing scope, and as a result | |
2133 | -- out-of-order freezing must be prevented. | |
2134 | ||
2135 | elsif Front_End_Inlining | |
7d8b9c99 | 2136 | and then In_Instance_Body |
c6823a20 | 2137 | and then Present (Scope (Test_E)) |
555360a5 AC |
2138 | then |
2139 | declare | |
c6823a20 EB |
2140 | S : Entity_Id := Scope (Test_E); |
2141 | ||
555360a5 AC |
2142 | begin |
2143 | while Present (S) loop | |
2144 | if Is_Generic_Instance (S) then | |
2145 | exit; | |
2146 | else | |
2147 | S := Scope (S); | |
2148 | end if; | |
2149 | end loop; | |
2150 | ||
2151 | if No (S) then | |
2152 | return No_List; | |
2153 | end if; | |
2154 | end; | |
70482933 RK |
2155 | end if; |
2156 | ||
2157 | -- Here to freeze the entity | |
2158 | ||
2159 | Result := No_List; | |
2160 | Set_Is_Frozen (E); | |
2161 | ||
2162 | -- Case of entity being frozen is other than a type | |
2163 | ||
2164 | if not Is_Type (E) then | |
2165 | ||
2166 | -- If entity is exported or imported and does not have an external | |
2167 | -- name, now is the time to provide the appropriate default name. | |
2168 | -- Skip this if the entity is stubbed, since we don't need a name | |
2169 | -- for any stubbed routine. | |
2170 | ||
2171 | if (Is_Imported (E) or else Is_Exported (E)) | |
2172 | and then No (Interface_Name (E)) | |
2173 | and then Convention (E) /= Convention_Stubbed | |
2174 | then | |
2175 | Set_Encoded_Interface_Name | |
2176 | (E, Get_Default_External_Name (E)); | |
fbf5a39b AC |
2177 | |
2178 | -- Special processing for atomic objects appearing in object decls | |
2179 | ||
2180 | elsif Is_Atomic (E) | |
2181 | and then Nkind (Parent (E)) = N_Object_Declaration | |
2182 | and then Present (Expression (Parent (E))) | |
2183 | then | |
2184 | declare | |
2185 | Expr : constant Node_Id := Expression (Parent (E)); | |
2186 | ||
2187 | begin | |
2188 | -- If expression is an aggregate, assign to a temporary to | |
2189 | -- ensure that the actual assignment is done atomically rather | |
2190 | -- than component-wise (the assignment to the temp may be done | |
7d8b9c99 | 2191 | -- component-wise, but that is harmless). |
fbf5a39b AC |
2192 | |
2193 | if Nkind (Expr) = N_Aggregate then | |
2194 | Expand_Atomic_Aggregate (Expr, Etype (E)); | |
2195 | ||
ee094616 RD |
2196 | -- If the expression is a reference to a record or array object |
2197 | -- entity, then reset Is_True_Constant to False so that the | |
2198 | -- compiler will not optimize away the intermediate object, | |
2199 | -- which we need in this case for the same reason (to ensure | |
2200 | -- that the actual assignment is atomic, rather than | |
2201 | -- component-wise). | |
fbf5a39b AC |
2202 | |
2203 | elsif Is_Entity_Name (Expr) | |
2204 | and then (Is_Record_Type (Etype (Expr)) | |
2205 | or else | |
2206 | Is_Array_Type (Etype (Expr))) | |
2207 | then | |
2208 | Set_Is_True_Constant (Entity (Expr), False); | |
2209 | end if; | |
2210 | end; | |
70482933 RK |
2211 | end if; |
2212 | ||
2213 | -- For a subprogram, freeze all parameter types and also the return | |
fbf5a39b | 2214 | -- type (RM 13.14(14)). However skip this for internal subprograms. |
70482933 RK |
2215 | -- This is also the point where any extra formal parameters are |
2216 | -- created since we now know whether the subprogram will use | |
2217 | -- a foreign convention. | |
2218 | ||
2219 | if Is_Subprogram (E) then | |
70482933 | 2220 | if not Is_Internal (E) then |
70482933 | 2221 | declare |
6d11af89 AC |
2222 | F_Type : Entity_Id; |
2223 | Warn_Node : Node_Id; | |
70482933 RK |
2224 | |
2225 | function Is_Fat_C_Ptr_Type (T : Entity_Id) return Boolean; | |
2226 | -- Determines if given type entity is a fat pointer type | |
2227 | -- used as an argument type or return type to a subprogram | |
2228 | -- with C or C++ convention set. | |
2229 | ||
2230 | -------------------------- | |
2231 | -- Is_Fat_C_Access_Type -- | |
2232 | -------------------------- | |
2233 | ||
2234 | function Is_Fat_C_Ptr_Type (T : Entity_Id) return Boolean is | |
2235 | begin | |
2236 | return (Convention (E) = Convention_C | |
2237 | or else | |
2238 | Convention (E) = Convention_CPP) | |
2239 | and then Is_Access_Type (T) | |
2240 | and then Esize (T) > Ttypes.System_Address_Size; | |
2241 | end Is_Fat_C_Ptr_Type; | |
2242 | ||
2243 | begin | |
2244 | -- Loop through formals | |
2245 | ||
2246 | Formal := First_Formal (E); | |
70482933 | 2247 | while Present (Formal) loop |
70482933 RK |
2248 | F_Type := Etype (Formal); |
2249 | Freeze_And_Append (F_Type, Loc, Result); | |
2250 | ||
2251 | if Is_Private_Type (F_Type) | |
2252 | and then Is_Private_Type (Base_Type (F_Type)) | |
2253 | and then No (Full_View (Base_Type (F_Type))) | |
2254 | and then not Is_Generic_Type (F_Type) | |
2255 | and then not Is_Derived_Type (F_Type) | |
2256 | then | |
2257 | -- If the type of a formal is incomplete, subprogram | |
2258 | -- is being frozen prematurely. Within an instance | |
2259 | -- (but not within a wrapper package) this is an | |
2260 | -- an artifact of our need to regard the end of an | |
2261 | -- instantiation as a freeze point. Otherwise it is | |
2262 | -- a definite error. | |
fbf5a39b | 2263 | |
70482933 RK |
2264 | -- and then not Is_Wrapper_Package (Current_Scope) ??? |
2265 | ||
2266 | if In_Instance then | |
2267 | Set_Is_Frozen (E, False); | |
2268 | return No_List; | |
2269 | ||
86cde7b1 RD |
2270 | elsif not After_Last_Declaration |
2271 | and then not Freezing_Library_Level_Tagged_Type | |
2272 | then | |
70482933 RK |
2273 | Error_Msg_Node_1 := F_Type; |
2274 | Error_Msg | |
2275 | ("type& must be fully defined before this point", | |
2276 | Loc); | |
2277 | end if; | |
2278 | end if; | |
2279 | ||
2280 | -- Check bad use of fat C pointer | |
2281 | ||
fbf5a39b AC |
2282 | if Warn_On_Export_Import and then |
2283 | Is_Fat_C_Ptr_Type (F_Type) | |
2284 | then | |
70482933 RK |
2285 | Error_Msg_Qual_Level := 1; |
2286 | Error_Msg_N | |
2287 | ("?type of & does not correspond to C pointer", | |
2288 | Formal); | |
2289 | Error_Msg_Qual_Level := 0; | |
2290 | end if; | |
2291 | ||
2292 | -- Check for unconstrained array in exported foreign | |
2293 | -- convention case. | |
2294 | ||
2295 | if Convention (E) in Foreign_Convention | |
2296 | and then not Is_Imported (E) | |
2297 | and then Is_Array_Type (F_Type) | |
2298 | and then not Is_Constrained (F_Type) | |
fbf5a39b | 2299 | and then Warn_On_Export_Import |
70482933 RK |
2300 | then |
2301 | Error_Msg_Qual_Level := 1; | |
6d11af89 AC |
2302 | |
2303 | -- If this is an inherited operation, place the | |
2304 | -- warning on the derived type declaration, rather | |
2305 | -- than on the original subprogram. | |
2306 | ||
2307 | if Nkind (Original_Node (Parent (E))) = | |
2308 | N_Full_Type_Declaration | |
2309 | then | |
2310 | Warn_Node := Parent (E); | |
2311 | ||
2312 | if Formal = First_Formal (E) then | |
2313 | Error_Msg_NE | |
add9f797 | 2314 | ("?in inherited operation&", Warn_Node, E); |
6d11af89 AC |
2315 | end if; |
2316 | else | |
2317 | Warn_Node := Formal; | |
2318 | end if; | |
2319 | ||
2320 | Error_Msg_NE | |
70482933 | 2321 | ("?type of argument& is unconstrained array", |
6d11af89 AC |
2322 | Warn_Node, Formal); |
2323 | Error_Msg_NE | |
70482933 | 2324 | ("?foreign caller must pass bounds explicitly", |
6d11af89 | 2325 | Warn_Node, Formal); |
70482933 RK |
2326 | Error_Msg_Qual_Level := 0; |
2327 | end if; | |
2328 | ||
d8db0bca JM |
2329 | -- Ada 2005 (AI-326): Check wrong use of tag incomplete |
2330 | -- types with unknown discriminants. For example: | |
2331 | ||
2332 | -- type T (<>) is tagged; | |
2333 | -- procedure P (X : access T); -- ERROR | |
2334 | -- procedure P (X : T); -- ERROR | |
2335 | ||
2336 | if not From_With_Type (F_Type) then | |
2337 | if Is_Access_Type (F_Type) then | |
2338 | F_Type := Designated_Type (F_Type); | |
2339 | end if; | |
2340 | ||
2341 | if Ekind (F_Type) = E_Incomplete_Type | |
2342 | and then Is_Tagged_Type (F_Type) | |
2343 | and then not Is_Class_Wide_Type (F_Type) | |
2344 | and then No (Full_View (F_Type)) | |
2345 | and then Unknown_Discriminants_Present | |
2346 | (Parent (F_Type)) | |
2347 | and then No (Stored_Constraint (F_Type)) | |
2348 | then | |
2349 | Error_Msg_N | |
2350 | ("(Ada 2005): invalid use of unconstrained tagged" | |
2351 | & " incomplete type", E); | |
57747aec | 2352 | |
7d8b9c99 RD |
2353 | -- If the formal is an anonymous_access_to_subprogram |
2354 | -- freeze the subprogram type as well, to prevent | |
2355 | -- scope anomalies in gigi, because there is no other | |
2356 | -- clear point at which it could be frozen. | |
2357 | ||
2358 | elsif Is_Itype (Etype (Formal)) | |
2359 | and then Ekind (F_Type) = E_Subprogram_Type | |
2360 | then | |
57747aec | 2361 | Freeze_And_Append (F_Type, Loc, Result); |
d8db0bca JM |
2362 | end if; |
2363 | end if; | |
2364 | ||
70482933 RK |
2365 | Next_Formal (Formal); |
2366 | end loop; | |
2367 | ||
2368 | -- Check return type | |
2369 | ||
2370 | if Ekind (E) = E_Function then | |
2371 | Freeze_And_Append (Etype (E), Loc, Result); | |
2372 | ||
fbf5a39b AC |
2373 | if Warn_On_Export_Import |
2374 | and then Is_Fat_C_Ptr_Type (Etype (E)) | |
2375 | then | |
70482933 RK |
2376 | Error_Msg_N |
2377 | ("?return type of& does not correspond to C pointer", | |
2378 | E); | |
2379 | ||
2380 | elsif Is_Array_Type (Etype (E)) | |
2381 | and then not Is_Constrained (Etype (E)) | |
2382 | and then not Is_Imported (E) | |
2383 | and then Convention (E) in Foreign_Convention | |
fbf5a39b | 2384 | and then Warn_On_Export_Import |
70482933 RK |
2385 | then |
2386 | Error_Msg_N | |
fbf5a39b | 2387 | ("?foreign convention function& should not " & |
70482933 | 2388 | "return unconstrained array", E); |
d8db0bca JM |
2389 | |
2390 | -- Ada 2005 (AI-326): Check wrong use of tagged | |
2391 | -- incomplete type | |
2392 | -- | |
2393 | -- type T is tagged; | |
2394 | -- function F (X : Boolean) return T; -- ERROR | |
2395 | ||
2396 | elsif Ekind (Etype (E)) = E_Incomplete_Type | |
2397 | and then Is_Tagged_Type (Etype (E)) | |
2398 | and then No (Full_View (Etype (E))) | |
7d8b9c99 | 2399 | and then not Is_Value_Type (Etype (E)) |
d8db0bca JM |
2400 | then |
2401 | Error_Msg_N | |
2402 | ("(Ada 2005): invalid use of tagged incomplete type", | |
2403 | E); | |
70482933 RK |
2404 | end if; |
2405 | end if; | |
2406 | end; | |
2407 | end if; | |
2408 | ||
2409 | -- Must freeze its parent first if it is a derived subprogram | |
2410 | ||
2411 | if Present (Alias (E)) then | |
2412 | Freeze_And_Append (Alias (E), Loc, Result); | |
2413 | end if; | |
2414 | ||
19590d70 GD |
2415 | -- We don't freeze internal subprograms, because we don't normally |
2416 | -- want addition of extra formals or mechanism setting to happen | |
2417 | -- for those. However we do pass through predefined dispatching | |
2418 | -- cases, since extra formals may be needed in some cases, such as | |
2419 | -- for the stream 'Input function (build-in-place formals). | |
2420 | ||
2421 | if not Is_Internal (E) | |
2422 | or else Is_Predefined_Dispatching_Operation (E) | |
2423 | then | |
70482933 RK |
2424 | Freeze_Subprogram (E); |
2425 | end if; | |
2426 | ||
2427 | -- Here for other than a subprogram or type | |
2428 | ||
2429 | else | |
2430 | -- If entity has a type, and it is not a generic unit, then | |
7d8b9c99 | 2431 | -- freeze it first (RM 13.14(10)). |
70482933 RK |
2432 | |
2433 | if Present (Etype (E)) | |
2434 | and then Ekind (E) /= E_Generic_Function | |
2435 | then | |
2436 | Freeze_And_Append (Etype (E), Loc, Result); | |
2437 | end if; | |
2438 | ||
2c9beb8a | 2439 | -- Special processing for objects created by object declaration |
70482933 RK |
2440 | |
2441 | if Nkind (Declaration_Node (E)) = N_Object_Declaration then | |
2c9beb8a RD |
2442 | |
2443 | -- For object created by object declaration, perform required | |
2444 | -- categorization (preelaborate and pure) checks. Defer these | |
2445 | -- checks to freeze time since pragma Import inhibits default | |
2446 | -- initialization and thus pragma Import affects these checks. | |
2447 | ||
70482933 | 2448 | Validate_Object_Declaration (Declaration_Node (E)); |
2c9beb8a RD |
2449 | |
2450 | -- If there is an address clause, check it is valid | |
2451 | ||
fbf5a39b | 2452 | Check_Address_Clause (E); |
2c9beb8a RD |
2453 | |
2454 | -- For imported objects, set Is_Public unless there is also | |
2455 | -- an address clause, which means that there is no external | |
2456 | -- symbol needed for the Import (Is_Public may still be set | |
2457 | -- for other unrelated reasons). Note that we delayed this | |
2458 | -- processing till freeze time so that we can be sure not | |
2459 | -- to set the flag if there is an address clause. If there | |
7d8b9c99 | 2460 | -- is such a clause, then the only purpose of the Import |
2c9beb8a RD |
2461 | -- pragma is to suppress implicit initialization. |
2462 | ||
2463 | if Is_Imported (E) | |
add9f797 | 2464 | and then No (Address_Clause (E)) |
2c9beb8a RD |
2465 | then |
2466 | Set_Is_Public (E); | |
2467 | end if; | |
7d8b9c99 RD |
2468 | |
2469 | -- For convention C objects of an enumeration type, warn if | |
2470 | -- the size is not integer size and no explicit size given. | |
2471 | -- Skip warning for Boolean, and Character, assume programmer | |
2472 | -- expects 8-bit sizes for these cases. | |
2473 | ||
2474 | if (Convention (E) = Convention_C | |
2475 | or else | |
2476 | Convention (E) = Convention_CPP) | |
2477 | and then Is_Enumeration_Type (Etype (E)) | |
2478 | and then not Is_Character_Type (Etype (E)) | |
2479 | and then not Is_Boolean_Type (Etype (E)) | |
2480 | and then Esize (Etype (E)) < Standard_Integer_Size | |
2481 | and then not Has_Size_Clause (E) | |
2482 | then | |
2483 | Error_Msg_Uint_1 := UI_From_Int (Standard_Integer_Size); | |
2484 | Error_Msg_N | |
2485 | ("?convention C enumeration object has size less than ^", | |
2486 | E); | |
2487 | Error_Msg_N ("\?use explicit size clause to set size", E); | |
2488 | end if; | |
70482933 RK |
2489 | end if; |
2490 | ||
2491 | -- Check that a constant which has a pragma Volatile[_Components] | |
7d8b9c99 | 2492 | -- or Atomic[_Components] also has a pragma Import (RM C.6(13)). |
70482933 RK |
2493 | |
2494 | -- Note: Atomic[_Components] also sets Volatile[_Components] | |
2495 | ||
2496 | if Ekind (E) = E_Constant | |
2497 | and then (Has_Volatile_Components (E) or else Is_Volatile (E)) | |
2498 | and then not Is_Imported (E) | |
2499 | then | |
2500 | -- Make sure we actually have a pragma, and have not merely | |
2501 | -- inherited the indication from elsewhere (e.g. an address | |
2502 | -- clause, which is not good enough in RM terms!) | |
2503 | ||
1d571f3b | 2504 | if Has_Rep_Pragma (E, Name_Atomic) |
91b1417d | 2505 | or else |
1d571f3b | 2506 | Has_Rep_Pragma (E, Name_Atomic_Components) |
70482933 RK |
2507 | then |
2508 | Error_Msg_N | |
91b1417d | 2509 | ("stand alone atomic constant must be " & |
86cde7b1 | 2510 | "imported ('R'M C.6(13))", E); |
91b1417d | 2511 | |
1d571f3b | 2512 | elsif Has_Rep_Pragma (E, Name_Volatile) |
91b1417d | 2513 | or else |
1d571f3b | 2514 | Has_Rep_Pragma (E, Name_Volatile_Components) |
91b1417d AC |
2515 | then |
2516 | Error_Msg_N | |
2517 | ("stand alone volatile constant must be " & | |
86cde7b1 | 2518 | "imported (RM C.6(13))", E); |
70482933 RK |
2519 | end if; |
2520 | end if; | |
2521 | ||
2522 | -- Static objects require special handling | |
2523 | ||
2524 | if (Ekind (E) = E_Constant or else Ekind (E) = E_Variable) | |
2525 | and then Is_Statically_Allocated (E) | |
2526 | then | |
2527 | Freeze_Static_Object (E); | |
2528 | end if; | |
2529 | ||
2530 | -- Remaining step is to layout objects | |
2531 | ||
2532 | if Ekind (E) = E_Variable | |
2533 | or else | |
2534 | Ekind (E) = E_Constant | |
2535 | or else | |
2536 | Ekind (E) = E_Loop_Parameter | |
2537 | or else | |
2538 | Is_Formal (E) | |
2539 | then | |
2540 | Layout_Object (E); | |
2541 | end if; | |
2542 | end if; | |
2543 | ||
2544 | -- Case of a type or subtype being frozen | |
2545 | ||
2546 | else | |
31b5873d GD |
2547 | -- We used to check here that a full type must have preelaborable |
2548 | -- initialization if it completes a private type specified with | |
2549 | -- pragma Preelaborable_Intialization, but that missed cases where | |
2550 | -- the types occur within a generic package, since the freezing | |
2551 | -- that occurs within a containing scope generally skips traversal | |
2552 | -- of a generic unit's declarations (those will be frozen within | |
2553 | -- instances). This check was moved to Analyze_Package_Specification. | |
3f1ede06 | 2554 | |
70482933 RK |
2555 | -- The type may be defined in a generic unit. This can occur when |
2556 | -- freezing a generic function that returns the type (which is | |
2557 | -- defined in a parent unit). It is clearly meaningless to freeze | |
2558 | -- this type. However, if it is a subtype, its size may be determi- | |
2559 | -- nable and used in subsequent checks, so might as well try to | |
2560 | -- compute it. | |
2561 | ||
2562 | if Present (Scope (E)) | |
2563 | and then Is_Generic_Unit (Scope (E)) | |
2564 | then | |
2565 | Check_Compile_Time_Size (E); | |
2566 | return No_List; | |
2567 | end if; | |
2568 | ||
2569 | -- Deal with special cases of freezing for subtype | |
2570 | ||
2571 | if E /= Base_Type (E) then | |
2572 | ||
86cde7b1 RD |
2573 | -- Before we do anything else, a specialized test for the case of |
2574 | -- a size given for an array where the array needs to be packed, | |
2575 | -- but was not so the size cannot be honored. This would of course | |
2576 | -- be caught by the backend, and indeed we don't catch all cases. | |
2577 | -- The point is that we can give a better error message in those | |
2578 | -- cases that we do catch with the circuitry here. Also if pragma | |
2579 | -- Implicit_Packing is set, this is where the packing occurs. | |
2580 | ||
2581 | -- The reason we do this so early is that the processing in the | |
2582 | -- automatic packing case affects the layout of the base type, so | |
2583 | -- it must be done before we freeze the base type. | |
2584 | ||
2585 | if Is_Array_Type (E) then | |
2586 | declare | |
2587 | Lo, Hi : Node_Id; | |
2588 | Ctyp : constant Entity_Id := Component_Type (E); | |
2589 | ||
2590 | begin | |
2591 | -- Check enabling conditions. These are straightforward | |
2592 | -- except for the test for a limited composite type. This | |
2593 | -- eliminates the rare case of a array of limited components | |
2594 | -- where there are issues of whether or not we can go ahead | |
2595 | -- and pack the array (since we can't freely pack and unpack | |
2596 | -- arrays if they are limited). | |
2597 | ||
2598 | -- Note that we check the root type explicitly because the | |
2599 | -- whole point is we are doing this test before we have had | |
2600 | -- a chance to freeze the base type (and it is that freeze | |
2601 | -- action that causes stuff to be inherited). | |
2602 | ||
2603 | if Present (Size_Clause (E)) | |
2604 | and then Known_Static_Esize (E) | |
2605 | and then not Is_Packed (E) | |
2606 | and then not Has_Pragma_Pack (E) | |
2607 | and then Number_Dimensions (E) = 1 | |
2608 | and then not Has_Component_Size_Clause (E) | |
2609 | and then Known_Static_Esize (Ctyp) | |
2610 | and then not Is_Limited_Composite (E) | |
2611 | and then not Is_Packed (Root_Type (E)) | |
2612 | and then not Has_Component_Size_Clause (Root_Type (E)) | |
2613 | then | |
2614 | Get_Index_Bounds (First_Index (E), Lo, Hi); | |
2615 | ||
2616 | if Compile_Time_Known_Value (Lo) | |
2617 | and then Compile_Time_Known_Value (Hi) | |
2618 | and then Known_Static_RM_Size (Ctyp) | |
2619 | and then RM_Size (Ctyp) < 64 | |
2620 | then | |
2621 | declare | |
2622 | Lov : constant Uint := Expr_Value (Lo); | |
2623 | Hiv : constant Uint := Expr_Value (Hi); | |
2624 | Len : constant Uint := UI_Max | |
2625 | (Uint_0, | |
2626 | Hiv - Lov + 1); | |
2627 | Rsiz : constant Uint := RM_Size (Ctyp); | |
2628 | SZ : constant Node_Id := Size_Clause (E); | |
2629 | Btyp : constant Entity_Id := Base_Type (E); | |
2630 | ||
2631 | -- What we are looking for here is the situation where | |
2632 | -- the RM_Size given would be exactly right if there | |
2633 | -- was a pragma Pack (resulting in the component size | |
2634 | -- being the same as the RM_Size). Furthermore, the | |
2635 | -- component type size must be an odd size (not a | |
2636 | -- multiple of storage unit) | |
2637 | ||
2638 | begin | |
2639 | if RM_Size (E) = Len * Rsiz | |
2640 | and then Rsiz mod System_Storage_Unit /= 0 | |
2641 | then | |
2642 | -- For implicit packing mode, just set the | |
2643 | -- component size silently | |
2644 | ||
2645 | if Implicit_Packing then | |
2646 | Set_Component_Size (Btyp, Rsiz); | |
2647 | Set_Is_Bit_Packed_Array (Btyp); | |
2648 | Set_Is_Packed (Btyp); | |
2649 | Set_Has_Non_Standard_Rep (Btyp); | |
2650 | ||
2651 | -- Otherwise give an error message | |
2652 | ||
2653 | else | |
2654 | Error_Msg_NE | |
2655 | ("size given for& too small", SZ, E); | |
2656 | Error_Msg_N | |
2657 | ("\use explicit pragma Pack " | |
2658 | & "or use pragma Implicit_Packing", SZ); | |
2659 | end if; | |
2660 | end if; | |
2661 | end; | |
2662 | end if; | |
2663 | end if; | |
2664 | end; | |
2665 | end if; | |
2666 | ||
70482933 RK |
2667 | -- If ancestor subtype present, freeze that first. |
2668 | -- Note that this will also get the base type frozen. | |
2669 | ||
2670 | Atype := Ancestor_Subtype (E); | |
2671 | ||
2672 | if Present (Atype) then | |
2673 | Freeze_And_Append (Atype, Loc, Result); | |
2674 | ||
2675 | -- Otherwise freeze the base type of the entity before | |
7d8b9c99 | 2676 | -- freezing the entity itself (RM 13.14(15)). |
70482933 RK |
2677 | |
2678 | elsif E /= Base_Type (E) then | |
2679 | Freeze_And_Append (Base_Type (E), Loc, Result); | |
2680 | end if; | |
2681 | ||
fbf5a39b | 2682 | -- For a derived type, freeze its parent type first (RM 13.14(15)) |
70482933 RK |
2683 | |
2684 | elsif Is_Derived_Type (E) then | |
2685 | Freeze_And_Append (Etype (E), Loc, Result); | |
2686 | Freeze_And_Append (First_Subtype (Etype (E)), Loc, Result); | |
2687 | end if; | |
2688 | ||
2689 | -- For array type, freeze index types and component type first | |
fbf5a39b | 2690 | -- before freezing the array (RM 13.14(15)). |
70482933 RK |
2691 | |
2692 | if Is_Array_Type (E) then | |
2693 | declare | |
fbf5a39b | 2694 | Ctyp : constant Entity_Id := Component_Type (E); |
70482933 RK |
2695 | |
2696 | Non_Standard_Enum : Boolean := False; | |
7d8b9c99 RD |
2697 | -- Set true if any of the index types is an enumeration type |
2698 | -- with a non-standard representation. | |
70482933 RK |
2699 | |
2700 | begin | |
2701 | Freeze_And_Append (Ctyp, Loc, Result); | |
2702 | ||
2703 | Indx := First_Index (E); | |
2704 | while Present (Indx) loop | |
2705 | Freeze_And_Append (Etype (Indx), Loc, Result); | |
2706 | ||
2707 | if Is_Enumeration_Type (Etype (Indx)) | |
2708 | and then Has_Non_Standard_Rep (Etype (Indx)) | |
2709 | then | |
2710 | Non_Standard_Enum := True; | |
2711 | end if; | |
2712 | ||
2713 | Next_Index (Indx); | |
2714 | end loop; | |
2715 | ||
07fc65c4 | 2716 | -- Processing that is done only for base types |
70482933 RK |
2717 | |
2718 | if Ekind (E) = E_Array_Type then | |
07fc65c4 GB |
2719 | |
2720 | -- Propagate flags for component type | |
2721 | ||
70482933 RK |
2722 | if Is_Controlled (Component_Type (E)) |
2723 | or else Has_Controlled_Component (Ctyp) | |
2724 | then | |
2725 | Set_Has_Controlled_Component (E); | |
2726 | end if; | |
2727 | ||
2728 | if Has_Unchecked_Union (Component_Type (E)) then | |
2729 | Set_Has_Unchecked_Union (E); | |
2730 | end if; | |
70482933 | 2731 | |
07fc65c4 GB |
2732 | -- If packing was requested or if the component size was set |
2733 | -- explicitly, then see if bit packing is required. This | |
2734 | -- processing is only done for base types, since all the | |
2735 | -- representation aspects involved are type-related. This | |
2736 | -- is not just an optimization, if we start processing the | |
2737 | -- subtypes, they intefere with the settings on the base | |
2738 | -- type (this is because Is_Packed has a slightly different | |
2739 | -- meaning before and after freezing). | |
70482933 | 2740 | |
70482933 RK |
2741 | declare |
2742 | Csiz : Uint; | |
2743 | Esiz : Uint; | |
2744 | ||
2745 | begin | |
2746 | if (Is_Packed (E) or else Has_Pragma_Pack (E)) | |
2747 | and then not Has_Atomic_Components (E) | |
2748 | and then Known_Static_RM_Size (Ctyp) | |
2749 | then | |
2750 | Csiz := UI_Max (RM_Size (Ctyp), 1); | |
2751 | ||
2752 | elsif Known_Component_Size (E) then | |
2753 | Csiz := Component_Size (E); | |
2754 | ||
2755 | elsif not Known_Static_Esize (Ctyp) then | |
2756 | Csiz := Uint_0; | |
2757 | ||
2758 | else | |
2759 | Esiz := Esize (Ctyp); | |
2760 | ||
2761 | -- We can set the component size if it is less than | |
2762 | -- 16, rounding it up to the next storage unit size. | |
2763 | ||
2764 | if Esiz <= 8 then | |
2765 | Csiz := Uint_8; | |
2766 | elsif Esiz <= 16 then | |
2767 | Csiz := Uint_16; | |
2768 | else | |
2769 | Csiz := Uint_0; | |
2770 | end if; | |
2771 | ||
7d8b9c99 RD |
2772 | -- Set component size up to match alignment if it |
2773 | -- would otherwise be less than the alignment. This | |
2774 | -- deals with cases of types whose alignment exceeds | |
2775 | -- their size (padded types). | |
70482933 RK |
2776 | |
2777 | if Csiz /= 0 then | |
2778 | declare | |
2779 | A : constant Uint := Alignment_In_Bits (Ctyp); | |
70482933 RK |
2780 | begin |
2781 | if Csiz < A then | |
2782 | Csiz := A; | |
2783 | end if; | |
2784 | end; | |
2785 | end if; | |
70482933 RK |
2786 | end if; |
2787 | ||
86cde7b1 RD |
2788 | -- Case of component size that may result in packing |
2789 | ||
70482933 | 2790 | if 1 <= Csiz and then Csiz <= 64 then |
86cde7b1 RD |
2791 | declare |
2792 | Ent : constant Entity_Id := | |
2793 | First_Subtype (E); | |
2794 | Pack_Pragma : constant Node_Id := | |
2795 | Get_Rep_Pragma (Ent, Name_Pack); | |
2796 | Comp_Size_C : constant Node_Id := | |
2797 | Get_Attribute_Definition_Clause | |
2798 | (Ent, Attribute_Component_Size); | |
2799 | begin | |
2800 | -- Warn if we have pack and component size so that | |
2801 | -- the pack is ignored. | |
70482933 | 2802 | |
86cde7b1 RD |
2803 | -- Note: here we must check for the presence of a |
2804 | -- component size before checking for a Pack pragma | |
2805 | -- to deal with the case where the array type is a | |
2806 | -- derived type whose parent is currently private. | |
2807 | ||
2808 | if Present (Comp_Size_C) | |
2809 | and then Has_Pragma_Pack (Ent) | |
2810 | then | |
2811 | Error_Msg_Sloc := Sloc (Comp_Size_C); | |
2812 | Error_Msg_NE | |
2813 | ("?pragma Pack for& ignored!", | |
2814 | Pack_Pragma, Ent); | |
2815 | Error_Msg_N | |
2816 | ("\?explicit component size given#!", | |
2817 | Pack_Pragma); | |
2818 | end if; | |
70482933 | 2819 | |
86cde7b1 RD |
2820 | -- Set component size if not already set by a |
2821 | -- component size clause. | |
70482933 | 2822 | |
86cde7b1 RD |
2823 | if not Present (Comp_Size_C) then |
2824 | Set_Component_Size (E, Csiz); | |
2825 | end if; | |
fbf5a39b | 2826 | |
86cde7b1 RD |
2827 | -- Check for base type of 8, 16, 32 bits, where an |
2828 | -- unsigned subtype has a length one less than the | |
2829 | -- base type (e.g. Natural subtype of Integer). | |
fbf5a39b | 2830 | |
86cde7b1 RD |
2831 | -- In such cases, if a component size was not set |
2832 | -- explicitly, then generate a warning. | |
fbf5a39b | 2833 | |
86cde7b1 RD |
2834 | if Has_Pragma_Pack (E) |
2835 | and then not Present (Comp_Size_C) | |
2836 | and then | |
2837 | (Csiz = 7 or else Csiz = 15 or else Csiz = 31) | |
2838 | and then Esize (Base_Type (Ctyp)) = Csiz + 1 | |
2839 | then | |
2840 | Error_Msg_Uint_1 := Csiz; | |
2841 | ||
2842 | if Present (Pack_Pragma) then | |
2843 | Error_Msg_N | |
2844 | ("?pragma Pack causes component size " | |
2845 | & "to be ^!", Pack_Pragma); | |
2846 | Error_Msg_N | |
2847 | ("\?use Component_Size to set " | |
2848 | & "desired value!", Pack_Pragma); | |
2849 | end if; | |
fbf5a39b | 2850 | end if; |
fbf5a39b | 2851 | |
86cde7b1 RD |
2852 | -- Actual packing is not needed for 8, 16, 32, 64. |
2853 | -- Also not needed for 24 if alignment is 1. | |
70482933 | 2854 | |
86cde7b1 RD |
2855 | if Csiz = 8 |
2856 | or else Csiz = 16 | |
2857 | or else Csiz = 32 | |
2858 | or else Csiz = 64 | |
2859 | or else (Csiz = 24 and then Alignment (Ctyp) = 1) | |
2860 | then | |
2861 | -- Here the array was requested to be packed, | |
2862 | -- but the packing request had no effect, so | |
2863 | -- Is_Packed is reset. | |
70482933 | 2864 | |
86cde7b1 RD |
2865 | -- Note: semantically this means that we lose |
2866 | -- track of the fact that a derived type | |
2867 | -- inherited a pragma Pack that was non- | |
2868 | -- effective, but that seems fine. | |
70482933 | 2869 | |
86cde7b1 RD |
2870 | -- We regard a Pack pragma as a request to set |
2871 | -- a representation characteristic, and this | |
2872 | -- request may be ignored. | |
70482933 | 2873 | |
86cde7b1 | 2874 | Set_Is_Packed (Base_Type (E), False); |
70482933 | 2875 | |
86cde7b1 | 2876 | -- In all other cases, packing is indeed needed |
70482933 | 2877 | |
86cde7b1 RD |
2878 | else |
2879 | Set_Has_Non_Standard_Rep (Base_Type (E)); | |
2880 | Set_Is_Bit_Packed_Array (Base_Type (E)); | |
2881 | Set_Is_Packed (Base_Type (E)); | |
2882 | end if; | |
2883 | end; | |
70482933 RK |
2884 | end if; |
2885 | end; | |
07fc65c4 GB |
2886 | |
2887 | -- Processing that is done only for subtypes | |
2888 | ||
2889 | else | |
2890 | -- Acquire alignment from base type | |
2891 | ||
2892 | if Unknown_Alignment (E) then | |
2893 | Set_Alignment (E, Alignment (Base_Type (E))); | |
7d8b9c99 | 2894 | Adjust_Esize_Alignment (E); |
07fc65c4 GB |
2895 | end if; |
2896 | end if; | |
2897 | ||
d05ef0ab AC |
2898 | -- For bit-packed arrays, check the size |
2899 | ||
2900 | if Is_Bit_Packed_Array (E) | |
7d8b9c99 | 2901 | and then Known_RM_Size (E) |
d05ef0ab AC |
2902 | then |
2903 | declare | |
67ce0d7e RD |
2904 | SizC : constant Node_Id := Size_Clause (E); |
2905 | ||
d05ef0ab | 2906 | Discard : Boolean; |
67ce0d7e | 2907 | pragma Warnings (Off, Discard); |
d05ef0ab AC |
2908 | |
2909 | begin | |
2910 | -- It is not clear if it is possible to have no size | |
7d8b9c99 RD |
2911 | -- clause at this stage, but it is not worth worrying |
2912 | -- about. Post error on the entity name in the size | |
d05ef0ab AC |
2913 | -- clause if present, else on the type entity itself. |
2914 | ||
2915 | if Present (SizC) then | |
7d8b9c99 | 2916 | Check_Size (Name (SizC), E, RM_Size (E), Discard); |
d05ef0ab | 2917 | else |
7d8b9c99 | 2918 | Check_Size (E, E, RM_Size (E), Discard); |
d05ef0ab AC |
2919 | end if; |
2920 | end; | |
2921 | end if; | |
2922 | ||
70482933 RK |
2923 | -- If any of the index types was an enumeration type with |
2924 | -- a non-standard rep clause, then we indicate that the | |
2925 | -- array type is always packed (even if it is not bit packed). | |
2926 | ||
2927 | if Non_Standard_Enum then | |
2928 | Set_Has_Non_Standard_Rep (Base_Type (E)); | |
2929 | Set_Is_Packed (Base_Type (E)); | |
2930 | end if; | |
70482933 | 2931 | |
0da2c8ac | 2932 | Set_Component_Alignment_If_Not_Set (E); |
70482933 | 2933 | |
0da2c8ac AC |
2934 | -- If the array is packed, we must create the packed array |
2935 | -- type to be used to actually implement the type. This is | |
2936 | -- only needed for real array types (not for string literal | |
2937 | -- types, since they are present only for the front end). | |
70482933 | 2938 | |
0da2c8ac AC |
2939 | if Is_Packed (E) |
2940 | and then Ekind (E) /= E_String_Literal_Subtype | |
2941 | then | |
2942 | Create_Packed_Array_Type (E); | |
2943 | Freeze_And_Append (Packed_Array_Type (E), Loc, Result); | |
70482933 | 2944 | |
0da2c8ac | 2945 | -- Size information of packed array type is copied to the |
fea9e956 ES |
2946 | -- array type, since this is really the representation. But |
2947 | -- do not override explicit existing size values. | |
2948 | ||
2949 | if not Has_Size_Clause (E) then | |
2950 | Set_Esize (E, Esize (Packed_Array_Type (E))); | |
2951 | Set_RM_Size (E, RM_Size (Packed_Array_Type (E))); | |
2952 | end if; | |
70482933 | 2953 | |
fea9e956 ES |
2954 | if not Has_Alignment_Clause (E) then |
2955 | Set_Alignment (E, Alignment (Packed_Array_Type (E))); | |
2956 | end if; | |
0da2c8ac AC |
2957 | end if; |
2958 | ||
2959 | -- For non-packed arrays set the alignment of the array | |
2960 | -- to the alignment of the component type if it is unknown. | |
2961 | -- Skip this in the atomic case, since atomic arrays may | |
2962 | -- need larger alignments. | |
2963 | ||
2964 | if not Is_Packed (E) | |
2965 | and then Unknown_Alignment (E) | |
2966 | and then Known_Alignment (Ctyp) | |
2967 | and then Known_Static_Component_Size (E) | |
2968 | and then Known_Static_Esize (Ctyp) | |
2969 | and then Esize (Ctyp) = Component_Size (E) | |
2970 | and then not Is_Atomic (E) | |
2971 | then | |
2972 | Set_Alignment (E, Alignment (Component_Type (E))); | |
2973 | end if; | |
2974 | end; | |
70482933 | 2975 | |
fbf5a39b AC |
2976 | -- For a class-wide type, the corresponding specific type is |
2977 | -- frozen as well (RM 13.14(15)) | |
70482933 RK |
2978 | |
2979 | elsif Is_Class_Wide_Type (E) then | |
2980 | Freeze_And_Append (Root_Type (E), Loc, Result); | |
2981 | ||
86cde7b1 RD |
2982 | -- If the base type of the class-wide type is still incomplete, |
2983 | -- the class-wide remains unfrozen as well. This is legal when | |
2984 | -- E is the formal of a primitive operation of some other type | |
2985 | -- which is being frozen. | |
2986 | ||
2987 | if not Is_Frozen (Root_Type (E)) then | |
2988 | Set_Is_Frozen (E, False); | |
2989 | return Result; | |
2990 | end if; | |
2991 | ||
70482933 RK |
2992 | -- If the Class_Wide_Type is an Itype (when type is the anonymous |
2993 | -- parent of a derived type) and it is a library-level entity, | |
2994 | -- generate an itype reference for it. Otherwise, its first | |
2995 | -- explicit reference may be in an inner scope, which will be | |
2996 | -- rejected by the back-end. | |
2997 | ||
2998 | if Is_Itype (E) | |
2999 | and then Is_Compilation_Unit (Scope (E)) | |
3000 | then | |
70482933 | 3001 | declare |
fbf5a39b | 3002 | Ref : constant Node_Id := Make_Itype_Reference (Loc); |
70482933 RK |
3003 | |
3004 | begin | |
3005 | Set_Itype (Ref, E); | |
3006 | if No (Result) then | |
3007 | Result := New_List (Ref); | |
3008 | else | |
3009 | Append (Ref, Result); | |
3010 | end if; | |
3011 | end; | |
3012 | end if; | |
3013 | ||
fbf5a39b AC |
3014 | -- The equivalent type associated with a class-wide subtype |
3015 | -- needs to be frozen to ensure that its layout is done. | |
3016 | -- Class-wide subtypes are currently only frozen on targets | |
3017 | -- requiring front-end layout (see New_Class_Wide_Subtype | |
3018 | -- and Make_CW_Equivalent_Type in exp_util.adb). | |
3019 | ||
3020 | if Ekind (E) = E_Class_Wide_Subtype | |
3021 | and then Present (Equivalent_Type (E)) | |
3022 | then | |
3023 | Freeze_And_Append (Equivalent_Type (E), Loc, Result); | |
3024 | end if; | |
3025 | ||
3026 | -- For a record (sub)type, freeze all the component types (RM | |
3027 | -- 13.14(15). We test for E_Record_(sub)Type here, rather than | |
70482933 RK |
3028 | -- using Is_Record_Type, because we don't want to attempt the |
3029 | -- freeze for the case of a private type with record extension | |
3030 | -- (we will do that later when the full type is frozen). | |
3031 | ||
3032 | elsif Ekind (E) = E_Record_Type | |
3033 | or else Ekind (E) = E_Record_Subtype | |
3034 | then | |
3035 | Freeze_Record_Type (E); | |
3036 | ||
3037 | -- For a concurrent type, freeze corresponding record type. This | |
3038 | -- does not correpond to any specific rule in the RM, but the | |
3039 | -- record type is essentially part of the concurrent type. | |
3040 | -- Freeze as well all local entities. This includes record types | |
3041 | -- created for entry parameter blocks, and whatever local entities | |
3042 | -- may appear in the private part. | |
3043 | ||
3044 | elsif Is_Concurrent_Type (E) then | |
3045 | if Present (Corresponding_Record_Type (E)) then | |
3046 | Freeze_And_Append | |
3047 | (Corresponding_Record_Type (E), Loc, Result); | |
3048 | end if; | |
3049 | ||
3050 | Comp := First_Entity (E); | |
3051 | ||
3052 | while Present (Comp) loop | |
3053 | if Is_Type (Comp) then | |
3054 | Freeze_And_Append (Comp, Loc, Result); | |
3055 | ||
3056 | elsif (Ekind (Comp)) /= E_Function then | |
c6823a20 EB |
3057 | if Is_Itype (Etype (Comp)) |
3058 | and then Underlying_Type (Scope (Etype (Comp))) = E | |
3059 | then | |
3060 | Undelay_Type (Etype (Comp)); | |
3061 | end if; | |
3062 | ||
70482933 RK |
3063 | Freeze_And_Append (Etype (Comp), Loc, Result); |
3064 | end if; | |
3065 | ||
3066 | Next_Entity (Comp); | |
3067 | end loop; | |
3068 | ||
ee094616 RD |
3069 | -- Private types are required to point to the same freeze node as |
3070 | -- their corresponding full views. The freeze node itself has to | |
3071 | -- point to the partial view of the entity (because from the partial | |
3072 | -- view, we can retrieve the full view, but not the reverse). | |
3073 | -- However, in order to freeze correctly, we need to freeze the full | |
3074 | -- view. If we are freezing at the end of a scope (or within the | |
3075 | -- scope of the private type), the partial and full views will have | |
3076 | -- been swapped, the full view appears first in the entity chain and | |
3077 | -- the swapping mechanism ensures that the pointers are properly set | |
3078 | -- (on scope exit). | |
3079 | ||
3080 | -- If we encounter the partial view before the full view (e.g. when | |
3081 | -- freezing from another scope), we freeze the full view, and then | |
3082 | -- set the pointers appropriately since we cannot rely on swapping to | |
3083 | -- fix things up (subtypes in an outer scope might not get swapped). | |
70482933 RK |
3084 | |
3085 | elsif Is_Incomplete_Or_Private_Type (E) | |
3086 | and then not Is_Generic_Type (E) | |
3087 | then | |
86cde7b1 RD |
3088 | -- The construction of the dispatch table associated with library |
3089 | -- level tagged types forces freezing of all the primitives of the | |
3090 | -- type, which may cause premature freezing of the partial view. | |
3091 | -- For example: | |
3092 | ||
3093 | -- package Pkg is | |
3094 | -- type T is tagged private; | |
3095 | -- type DT is new T with private; | |
3096 | -- procedure Prim (X : in out T; Y : in out DT'class); | |
3097 | -- private | |
3098 | -- type T is tagged null record; | |
3099 | -- Obj : T; | |
3100 | -- type DT is new T with null record; | |
3101 | -- end; | |
3102 | ||
3103 | -- In this case the type will be frozen later by the usual | |
3104 | -- mechanism: an object declaration, an instantiation, or the | |
3105 | -- end of a declarative part. | |
3106 | ||
3107 | if Is_Library_Level_Tagged_Type (E) | |
3108 | and then not Present (Full_View (E)) | |
3109 | then | |
3110 | Set_Is_Frozen (E, False); | |
3111 | return Result; | |
3112 | ||
70482933 RK |
3113 | -- Case of full view present |
3114 | ||
86cde7b1 | 3115 | elsif Present (Full_View (E)) then |
70482933 | 3116 | |
ee094616 RD |
3117 | -- If full view has already been frozen, then no further |
3118 | -- processing is required | |
70482933 RK |
3119 | |
3120 | if Is_Frozen (Full_View (E)) then | |
3121 | ||
3122 | Set_Has_Delayed_Freeze (E, False); | |
3123 | Set_Freeze_Node (E, Empty); | |
3124 | Check_Debug_Info_Needed (E); | |
3125 | ||
ee094616 RD |
3126 | -- Otherwise freeze full view and patch the pointers so that |
3127 | -- the freeze node will elaborate both views in the back-end. | |
70482933 RK |
3128 | |
3129 | else | |
fbf5a39b AC |
3130 | declare |
3131 | Full : constant Entity_Id := Full_View (E); | |
70482933 | 3132 | |
fbf5a39b AC |
3133 | begin |
3134 | if Is_Private_Type (Full) | |
3135 | and then Present (Underlying_Full_View (Full)) | |
3136 | then | |
3137 | Freeze_And_Append | |
3138 | (Underlying_Full_View (Full), Loc, Result); | |
3139 | end if; | |
70482933 | 3140 | |
fbf5a39b | 3141 | Freeze_And_Append (Full, Loc, Result); |
70482933 | 3142 | |
fbf5a39b AC |
3143 | if Has_Delayed_Freeze (E) then |
3144 | F_Node := Freeze_Node (Full); | |
70482933 | 3145 | |
fbf5a39b AC |
3146 | if Present (F_Node) then |
3147 | Set_Freeze_Node (E, F_Node); | |
3148 | Set_Entity (F_Node, E); | |
3149 | ||
3150 | else | |
3151 | -- {Incomplete,Private}_Subtypes | |
3152 | -- with Full_Views constrained by discriminants | |
3153 | ||
3154 | Set_Has_Delayed_Freeze (E, False); | |
3155 | Set_Freeze_Node (E, Empty); | |
3156 | end if; | |
70482933 | 3157 | end if; |
fbf5a39b | 3158 | end; |
70482933 RK |
3159 | |
3160 | Check_Debug_Info_Needed (E); | |
3161 | end if; | |
3162 | ||
ee094616 RD |
3163 | -- AI-117 requires that the convention of a partial view be the |
3164 | -- same as the convention of the full view. Note that this is a | |
3165 | -- recognized breach of privacy, but it's essential for logical | |
3166 | -- consistency of representation, and the lack of a rule in | |
3167 | -- RM95 was an oversight. | |
70482933 RK |
3168 | |
3169 | Set_Convention (E, Convention (Full_View (E))); | |
3170 | ||
3171 | Set_Size_Known_At_Compile_Time (E, | |
3172 | Size_Known_At_Compile_Time (Full_View (E))); | |
3173 | ||
3174 | -- Size information is copied from the full view to the | |
3175 | -- incomplete or private view for consistency | |
3176 | ||
ee094616 RD |
3177 | -- We skip this is the full view is not a type. This is very |
3178 | -- strange of course, and can only happen as a result of | |
3179 | -- certain illegalities, such as a premature attempt to derive | |
3180 | -- from an incomplete type. | |
70482933 RK |
3181 | |
3182 | if Is_Type (Full_View (E)) then | |
3183 | Set_Size_Info (E, Full_View (E)); | |
3184 | Set_RM_Size (E, RM_Size (Full_View (E))); | |
3185 | end if; | |
3186 | ||
3187 | return Result; | |
3188 | ||
3189 | -- Case of no full view present. If entity is derived or subtype, | |
3190 | -- it is safe to freeze, correctness depends on the frozen status | |
3191 | -- of parent. Otherwise it is either premature usage, or a Taft | |
3192 | -- amendment type, so diagnosis is at the point of use and the | |
3193 | -- type might be frozen later. | |
3194 | ||
3195 | elsif E /= Base_Type (E) | |
3196 | or else Is_Derived_Type (E) | |
3197 | then | |
3198 | null; | |
3199 | ||
3200 | else | |
3201 | Set_Is_Frozen (E, False); | |
3202 | return No_List; | |
3203 | end if; | |
3204 | ||
3205 | -- For access subprogram, freeze types of all formals, the return | |
3206 | -- type was already frozen, since it is the Etype of the function. | |
3207 | ||
3208 | elsif Ekind (E) = E_Subprogram_Type then | |
3209 | Formal := First_Formal (E); | |
3210 | while Present (Formal) loop | |
3211 | Freeze_And_Append (Etype (Formal), Loc, Result); | |
3212 | Next_Formal (Formal); | |
3213 | end loop; | |
3214 | ||
70482933 RK |
3215 | Freeze_Subprogram (E); |
3216 | ||
3f1ede06 | 3217 | -- Ada 2005 (AI-326): Check wrong use of tag incomplete type |
d8db0bca JM |
3218 | -- |
3219 | -- type T is tagged; | |
3220 | -- type Acc is access function (X : T) return T; -- ERROR | |
3221 | ||
3222 | if Ekind (Etype (E)) = E_Incomplete_Type | |
3223 | and then Is_Tagged_Type (Etype (E)) | |
3224 | and then No (Full_View (Etype (E))) | |
7d8b9c99 | 3225 | and then not Is_Value_Type (Etype (E)) |
d8db0bca JM |
3226 | then |
3227 | Error_Msg_N | |
3228 | ("(Ada 2005): invalid use of tagged incomplete type", E); | |
3229 | end if; | |
3230 | ||
ee094616 RD |
3231 | -- For access to a protected subprogram, freeze the equivalent type |
3232 | -- (however this is not set if we are not generating code or if this | |
3233 | -- is an anonymous type used just for resolution). | |
70482933 | 3234 | |
fea9e956 | 3235 | elsif Is_Access_Protected_Subprogram_Type (E) then |
d8db0bca JM |
3236 | |
3237 | -- AI-326: Check wrong use of tagged incomplete types | |
3238 | ||
3239 | -- type T is tagged; | |
3240 | -- type As3D is access protected | |
3241 | -- function (X : Float) return T; -- ERROR | |
3242 | ||
3243 | declare | |
3244 | Etyp : Entity_Id; | |
3245 | ||
3246 | begin | |
3247 | Etyp := Etype (Directly_Designated_Type (E)); | |
3248 | ||
3249 | if Is_Class_Wide_Type (Etyp) then | |
3250 | Etyp := Etype (Etyp); | |
3251 | end if; | |
3252 | ||
3253 | if Ekind (Etyp) = E_Incomplete_Type | |
3254 | and then Is_Tagged_Type (Etyp) | |
3255 | and then No (Full_View (Etyp)) | |
7d8b9c99 | 3256 | and then not Is_Value_Type (Etype (E)) |
d8db0bca JM |
3257 | then |
3258 | Error_Msg_N | |
3259 | ("(Ada 2005): invalid use of tagged incomplete type", E); | |
3260 | end if; | |
3261 | end; | |
3262 | ||
57747aec | 3263 | if Present (Equivalent_Type (E)) then |
d8db0bca JM |
3264 | Freeze_And_Append (Equivalent_Type (E), Loc, Result); |
3265 | end if; | |
70482933 RK |
3266 | end if; |
3267 | ||
3268 | -- Generic types are never seen by the back-end, and are also not | |
3269 | -- processed by the expander (since the expander is turned off for | |
3270 | -- generic processing), so we never need freeze nodes for them. | |
3271 | ||
3272 | if Is_Generic_Type (E) then | |
3273 | return Result; | |
3274 | end if; | |
3275 | ||
3276 | -- Some special processing for non-generic types to complete | |
3277 | -- representation details not known till the freeze point. | |
3278 | ||
3279 | if Is_Fixed_Point_Type (E) then | |
3280 | Freeze_Fixed_Point_Type (E); | |
3281 | ||
ee094616 RD |
3282 | -- Some error checks required for ordinary fixed-point type. Defer |
3283 | -- these till the freeze-point since we need the small and range | |
3284 | -- values. We only do these checks for base types | |
fbf5a39b AC |
3285 | |
3286 | if Is_Ordinary_Fixed_Point_Type (E) | |
3287 | and then E = Base_Type (E) | |
3288 | then | |
3289 | if Small_Value (E) < Ureal_2_M_80 then | |
3290 | Error_Msg_Name_1 := Name_Small; | |
3291 | Error_Msg_N | |
7d8b9c99 | 3292 | ("`&''%` too small, minimum allowed is 2.0'*'*(-80)", E); |
fbf5a39b AC |
3293 | |
3294 | elsif Small_Value (E) > Ureal_2_80 then | |
3295 | Error_Msg_Name_1 := Name_Small; | |
3296 | Error_Msg_N | |
7d8b9c99 | 3297 | ("`&''%` too large, maximum allowed is 2.0'*'*80", E); |
fbf5a39b AC |
3298 | end if; |
3299 | ||
3300 | if Expr_Value_R (Type_Low_Bound (E)) < Ureal_M_10_36 then | |
3301 | Error_Msg_Name_1 := Name_First; | |
3302 | Error_Msg_N | |
7d8b9c99 | 3303 | ("`&''%` too small, minimum allowed is -10.0'*'*36", E); |
fbf5a39b AC |
3304 | end if; |
3305 | ||
3306 | if Expr_Value_R (Type_High_Bound (E)) > Ureal_10_36 then | |
3307 | Error_Msg_Name_1 := Name_Last; | |
3308 | Error_Msg_N | |
7d8b9c99 | 3309 | ("`&''%` too large, maximum allowed is 10.0'*'*36", E); |
fbf5a39b AC |
3310 | end if; |
3311 | end if; | |
3312 | ||
70482933 RK |
3313 | elsif Is_Enumeration_Type (E) then |
3314 | Freeze_Enumeration_Type (E); | |
3315 | ||
3316 | elsif Is_Integer_Type (E) then | |
3317 | Adjust_Esize_For_Alignment (E); | |
3318 | ||
edd63e9b ES |
3319 | elsif Is_Access_Type (E) then |
3320 | ||
3321 | -- Check restriction for standard storage pool | |
3322 | ||
3323 | if No (Associated_Storage_Pool (E)) then | |
3324 | Check_Restriction (No_Standard_Storage_Pools, E); | |
3325 | end if; | |
3326 | ||
3327 | -- Deal with error message for pure access type. This is not an | |
3328 | -- error in Ada 2005 if there is no pool (see AI-366). | |
3329 | ||
3330 | if Is_Pure_Unit_Access_Type (E) | |
3331 | and then (Ada_Version < Ada_05 | |
3332 | or else not No_Pool_Assigned (E)) | |
3333 | then | |
3334 | Error_Msg_N ("named access type not allowed in pure unit", E); | |
3335 | end if; | |
70482933 RK |
3336 | end if; |
3337 | ||
edd63e9b ES |
3338 | -- Case of composite types |
3339 | ||
70482933 RK |
3340 | if Is_Composite_Type (E) then |
3341 | ||
edd63e9b ES |
3342 | -- AI-117 requires that all new primitives of a tagged type must |
3343 | -- inherit the convention of the full view of the type. Inherited | |
3344 | -- and overriding operations are defined to inherit the convention | |
3345 | -- of their parent or overridden subprogram (also specified in | |
ee094616 RD |
3346 | -- AI-117), which will have occurred earlier (in Derive_Subprogram |
3347 | -- and New_Overloaded_Entity). Here we set the convention of | |
3348 | -- primitives that are still convention Ada, which will ensure | |
3349 | -- that any new primitives inherit the type's convention. | |
3350 | -- Class-wide types can have a foreign convention inherited from | |
3351 | -- their specific type, but are excluded from this since they | |
3352 | -- don't have any associated primitives. | |
70482933 RK |
3353 | |
3354 | if Is_Tagged_Type (E) | |
3355 | and then not Is_Class_Wide_Type (E) | |
3356 | and then Convention (E) /= Convention_Ada | |
3357 | then | |
3358 | declare | |
3359 | Prim_List : constant Elist_Id := Primitive_Operations (E); | |
07fc65c4 | 3360 | Prim : Elmt_Id; |
70482933 | 3361 | begin |
07fc65c4 | 3362 | Prim := First_Elmt (Prim_List); |
70482933 RK |
3363 | while Present (Prim) loop |
3364 | if Convention (Node (Prim)) = Convention_Ada then | |
3365 | Set_Convention (Node (Prim), Convention (E)); | |
3366 | end if; | |
3367 | ||
3368 | Next_Elmt (Prim); | |
3369 | end loop; | |
3370 | end; | |
3371 | end if; | |
3372 | end if; | |
3373 | ||
07fc65c4 GB |
3374 | -- Generate primitive operation references for a tagged type |
3375 | ||
3376 | if Is_Tagged_Type (E) | |
3377 | and then not Is_Class_Wide_Type (E) | |
3378 | then | |
3379 | declare | |
edd63e9b | 3380 | Prim_List : Elist_Id; |
07fc65c4 GB |
3381 | Prim : Elmt_Id; |
3382 | Ent : Entity_Id; | |
add9f797 | 3383 | Aux_E : Entity_Id; |
07fc65c4 GB |
3384 | |
3385 | begin | |
add9f797 JM |
3386 | -- Handle subtypes |
3387 | ||
3388 | if Ekind (E) = E_Protected_Subtype | |
3389 | or else Ekind (E) = E_Task_Subtype | |
3390 | then | |
3391 | Aux_E := Etype (E); | |
3392 | else | |
3393 | Aux_E := E; | |
3394 | end if; | |
3395 | ||
edd63e9b ES |
3396 | -- Ada 2005 (AI-345): In case of concurrent type generate |
3397 | -- reference to the wrapper that allow us to dispatch calls | |
3398 | -- through their implemented abstract interface types. | |
3399 | ||
3400 | -- The check for Present here is to protect against previously | |
3401 | -- reported critical errors. | |
3402 | ||
add9f797 JM |
3403 | if Is_Concurrent_Type (Aux_E) |
3404 | and then Present (Corresponding_Record_Type (Aux_E)) | |
edd63e9b | 3405 | then |
edd63e9b | 3406 | Prim_List := Primitive_Operations |
add9f797 | 3407 | (Corresponding_Record_Type (Aux_E)); |
edd63e9b | 3408 | else |
add9f797 | 3409 | Prim_List := Primitive_Operations (Aux_E); |
edd63e9b ES |
3410 | end if; |
3411 | ||
3412 | -- Loop to generate references for primitive operations | |
3413 | ||
ee094616 RD |
3414 | if Present (Prim_List) then |
3415 | Prim := First_Elmt (Prim_List); | |
3416 | while Present (Prim) loop | |
07fc65c4 | 3417 | |
ee094616 RD |
3418 | -- If the operation is derived, get the original for |
3419 | -- cross-reference purposes (it is the original for | |
3420 | -- which we want the xref, and for which the comes | |
3421 | -- from source test needs to be performed). | |
07fc65c4 | 3422 | |
ee094616 RD |
3423 | Ent := Node (Prim); |
3424 | while Present (Alias (Ent)) loop | |
3425 | Ent := Alias (Ent); | |
3426 | end loop; | |
07fc65c4 | 3427 | |
ee094616 RD |
3428 | Generate_Reference (E, Ent, 'p', Set_Ref => False); |
3429 | Next_Elmt (Prim); | |
3430 | end loop; | |
3431 | end if; | |
07fc65c4 GB |
3432 | end; |
3433 | end if; | |
3434 | ||
ee094616 RD |
3435 | -- Now that all types from which E may depend are frozen, see if the |
3436 | -- size is known at compile time, if it must be unsigned, or if | |
7d8b9c99 | 3437 | -- strict alignment is required |
70482933 RK |
3438 | |
3439 | Check_Compile_Time_Size (E); | |
3440 | Check_Unsigned_Type (E); | |
3441 | ||
3442 | if Base_Type (E) = E then | |
3443 | Check_Strict_Alignment (E); | |
3444 | end if; | |
3445 | ||
3446 | -- Do not allow a size clause for a type which does not have a size | |
3447 | -- that is known at compile time | |
3448 | ||
3449 | if Has_Size_Clause (E) | |
3450 | and then not Size_Known_At_Compile_Time (E) | |
3451 | then | |
07fc65c4 GB |
3452 | -- Supress this message if errors posted on E, even if we are |
3453 | -- in all errors mode, since this is often a junk message | |
3454 | ||
3455 | if not Error_Posted (E) then | |
3456 | Error_Msg_N | |
3457 | ("size clause not allowed for variable length type", | |
3458 | Size_Clause (E)); | |
3459 | end if; | |
70482933 RK |
3460 | end if; |
3461 | ||
3462 | -- Remaining process is to set/verify the representation information, | |
3463 | -- in particular the size and alignment values. This processing is | |
3464 | -- not required for generic types, since generic types do not play | |
3465 | -- any part in code generation, and so the size and alignment values | |
c6823a20 | 3466 | -- for such types are irrelevant. |
70482933 RK |
3467 | |
3468 | if Is_Generic_Type (E) then | |
3469 | return Result; | |
3470 | ||
3471 | -- Otherwise we call the layout procedure | |
3472 | ||
3473 | else | |
3474 | Layout_Type (E); | |
3475 | end if; | |
3476 | ||
3477 | -- End of freeze processing for type entities | |
3478 | end if; | |
3479 | ||
3480 | -- Here is where we logically freeze the current entity. If it has a | |
3481 | -- freeze node, then this is the point at which the freeze node is | |
3482 | -- linked into the result list. | |
3483 | ||
3484 | if Has_Delayed_Freeze (E) then | |
3485 | ||
3486 | -- If a freeze node is already allocated, use it, otherwise allocate | |
3487 | -- a new one. The preallocation happens in the case of anonymous base | |
3488 | -- types, where we preallocate so that we can set First_Subtype_Link. | |
3489 | -- Note that we reset the Sloc to the current freeze location. | |
3490 | ||
3491 | if Present (Freeze_Node (E)) then | |
3492 | F_Node := Freeze_Node (E); | |
3493 | Set_Sloc (F_Node, Loc); | |
3494 | ||
3495 | else | |
3496 | F_Node := New_Node (N_Freeze_Entity, Loc); | |
3497 | Set_Freeze_Node (E, F_Node); | |
3498 | Set_Access_Types_To_Process (F_Node, No_Elist); | |
3499 | Set_TSS_Elist (F_Node, No_Elist); | |
3500 | Set_Actions (F_Node, No_List); | |
3501 | end if; | |
3502 | ||
3503 | Set_Entity (F_Node, E); | |
3504 | ||
3505 | if Result = No_List then | |
3506 | Result := New_List (F_Node); | |
3507 | else | |
3508 | Append (F_Node, Result); | |
3509 | end if; | |
35ae2ed8 AC |
3510 | |
3511 | -- A final pass over record types with discriminants. If the type | |
3512 | -- has an incomplete declaration, there may be constrained access | |
3513 | -- subtypes declared elsewhere, which do not depend on the discrimi- | |
3514 | -- nants of the type, and which are used as component types (i.e. | |
3515 | -- the full view is a recursive type). The designated types of these | |
3516 | -- subtypes can only be elaborated after the type itself, and they | |
3517 | -- need an itype reference. | |
3518 | ||
3519 | if Ekind (E) = E_Record_Type | |
3520 | and then Has_Discriminants (E) | |
3521 | then | |
3522 | declare | |
3523 | Comp : Entity_Id; | |
3524 | IR : Node_Id; | |
3525 | Typ : Entity_Id; | |
3526 | ||
3527 | begin | |
3528 | Comp := First_Component (E); | |
3529 | ||
3530 | while Present (Comp) loop | |
3531 | Typ := Etype (Comp); | |
3532 | ||
3533 | if Ekind (Comp) = E_Component | |
3534 | and then Is_Access_Type (Typ) | |
3535 | and then Scope (Typ) /= E | |
3536 | and then Base_Type (Designated_Type (Typ)) = E | |
3537 | and then Is_Itype (Designated_Type (Typ)) | |
3538 | then | |
3539 | IR := Make_Itype_Reference (Sloc (Comp)); | |
3540 | Set_Itype (IR, Designated_Type (Typ)); | |
3541 | Append (IR, Result); | |
3542 | end if; | |
3543 | ||
3544 | Next_Component (Comp); | |
3545 | end loop; | |
3546 | end; | |
3547 | end if; | |
70482933 RK |
3548 | end if; |
3549 | ||
3550 | -- When a type is frozen, the first subtype of the type is frozen as | |
3551 | -- well (RM 13.14(15)). This has to be done after freezing the type, | |
3552 | -- since obviously the first subtype depends on its own base type. | |
3553 | ||
3554 | if Is_Type (E) then | |
3555 | Freeze_And_Append (First_Subtype (E), Loc, Result); | |
3556 | ||
3557 | -- If we just froze a tagged non-class wide record, then freeze the | |
3558 | -- corresponding class-wide type. This must be done after the tagged | |
3559 | -- type itself is frozen, because the class-wide type refers to the | |
3560 | -- tagged type which generates the class. | |
3561 | ||
3562 | if Is_Tagged_Type (E) | |
3563 | and then not Is_Class_Wide_Type (E) | |
3564 | and then Present (Class_Wide_Type (E)) | |
3565 | then | |
3566 | Freeze_And_Append (Class_Wide_Type (E), Loc, Result); | |
3567 | end if; | |
3568 | end if; | |
3569 | ||
3570 | Check_Debug_Info_Needed (E); | |
3571 | ||
3572 | -- Special handling for subprograms | |
3573 | ||
3574 | if Is_Subprogram (E) then | |
3575 | ||
3576 | -- If subprogram has address clause then reset Is_Public flag, since | |
3577 | -- we do not want the backend to generate external references. | |
3578 | ||
3579 | if Present (Address_Clause (E)) | |
3580 | and then not Is_Library_Level_Entity (E) | |
3581 | then | |
3582 | Set_Is_Public (E, False); | |
3583 | ||
3584 | -- If no address clause and not intrinsic, then for imported | |
3585 | -- subprogram in main unit, generate descriptor if we are in | |
3586 | -- Propagate_Exceptions mode. | |
3587 | ||
3588 | elsif Propagate_Exceptions | |
3589 | and then Is_Imported (E) | |
3590 | and then not Is_Intrinsic_Subprogram (E) | |
3591 | and then Convention (E) /= Convention_Stubbed | |
3592 | then | |
3593 | if Result = No_List then | |
3594 | Result := Empty_List; | |
3595 | end if; | |
70482933 | 3596 | end if; |
70482933 RK |
3597 | end if; |
3598 | ||
3599 | return Result; | |
3600 | end Freeze_Entity; | |
3601 | ||
3602 | ----------------------------- | |
3603 | -- Freeze_Enumeration_Type -- | |
3604 | ----------------------------- | |
3605 | ||
3606 | procedure Freeze_Enumeration_Type (Typ : Entity_Id) is | |
3607 | begin | |
3608 | if Has_Foreign_Convention (Typ) | |
3609 | and then not Has_Size_Clause (Typ) | |
3610 | and then Esize (Typ) < Standard_Integer_Size | |
3611 | then | |
3612 | Init_Esize (Typ, Standard_Integer_Size); | |
70482933 RK |
3613 | else |
3614 | Adjust_Esize_For_Alignment (Typ); | |
3615 | end if; | |
3616 | end Freeze_Enumeration_Type; | |
3617 | ||
3618 | ----------------------- | |
3619 | -- Freeze_Expression -- | |
3620 | ----------------------- | |
3621 | ||
3622 | procedure Freeze_Expression (N : Node_Id) is | |
3623 | In_Def_Exp : constant Boolean := In_Default_Expression; | |
3624 | Typ : Entity_Id; | |
3625 | Nam : Entity_Id; | |
3626 | Desig_Typ : Entity_Id; | |
3627 | P : Node_Id; | |
3628 | Parent_P : Node_Id; | |
3629 | ||
3630 | Freeze_Outside : Boolean := False; | |
3631 | -- This flag is set true if the entity must be frozen outside the | |
3632 | -- current subprogram. This happens in the case of expander generated | |
3633 | -- subprograms (_Init_Proc, _Input, _Output, _Read, _Write) which do | |
3634 | -- not freeze all entities like other bodies, but which nevertheless | |
3635 | -- may reference entities that have to be frozen before the body and | |
3636 | -- obviously cannot be frozen inside the body. | |
3637 | ||
3638 | function In_Exp_Body (N : Node_Id) return Boolean; | |
3639 | -- Given an N_Handled_Sequence_Of_Statements node N, determines whether | |
c6823a20 | 3640 | -- it is the handled statement sequence of an expander-generated |
7d8b9c99 RD |
3641 | -- subprogram (init proc, stream subprogram, or renaming as body). |
3642 | -- If so, this is not a freezing context. | |
70482933 | 3643 | |
fbf5a39b AC |
3644 | ----------------- |
3645 | -- In_Exp_Body -- | |
3646 | ----------------- | |
3647 | ||
70482933 | 3648 | function In_Exp_Body (N : Node_Id) return Boolean is |
7d8b9c99 RD |
3649 | P : Node_Id; |
3650 | Id : Entity_Id; | |
70482933 RK |
3651 | |
3652 | begin | |
3653 | if Nkind (N) = N_Subprogram_Body then | |
3654 | P := N; | |
3655 | else | |
3656 | P := Parent (N); | |
3657 | end if; | |
3658 | ||
3659 | if Nkind (P) /= N_Subprogram_Body then | |
3660 | return False; | |
3661 | ||
3662 | else | |
7d8b9c99 RD |
3663 | Id := Defining_Unit_Name (Specification (P)); |
3664 | ||
3665 | if Nkind (Id) = N_Defining_Identifier | |
3666 | and then (Is_Init_Proc (Id) or else | |
3667 | Is_TSS (Id, TSS_Stream_Input) or else | |
3668 | Is_TSS (Id, TSS_Stream_Output) or else | |
3669 | Is_TSS (Id, TSS_Stream_Read) or else | |
3670 | Is_TSS (Id, TSS_Stream_Write) or else | |
3671 | Nkind (Original_Node (P)) = | |
3672 | N_Subprogram_Renaming_Declaration) | |
70482933 RK |
3673 | then |
3674 | return True; | |
3675 | else | |
3676 | return False; | |
3677 | end if; | |
3678 | end if; | |
70482933 RK |
3679 | end In_Exp_Body; |
3680 | ||
3681 | -- Start of processing for Freeze_Expression | |
3682 | ||
3683 | begin | |
edd63e9b ES |
3684 | -- Immediate return if freezing is inhibited. This flag is set by the |
3685 | -- analyzer to stop freezing on generated expressions that would cause | |
3686 | -- freezing if they were in the source program, but which are not | |
3687 | -- supposed to freeze, since they are created. | |
70482933 RK |
3688 | |
3689 | if Must_Not_Freeze (N) then | |
3690 | return; | |
3691 | end if; | |
3692 | ||
3693 | -- If expression is non-static, then it does not freeze in a default | |
3694 | -- expression, see section "Handling of Default Expressions" in the | |
3695 | -- spec of package Sem for further details. Note that we have to | |
3696 | -- make sure that we actually have a real expression (if we have | |
3697 | -- a subtype indication, we can't test Is_Static_Expression!) | |
3698 | ||
3699 | if In_Def_Exp | |
3700 | and then Nkind (N) in N_Subexpr | |
3701 | and then not Is_Static_Expression (N) | |
3702 | then | |
3703 | return; | |
3704 | end if; | |
3705 | ||
3706 | -- Freeze type of expression if not frozen already | |
3707 | ||
fbf5a39b AC |
3708 | Typ := Empty; |
3709 | ||
3710 | if Nkind (N) in N_Has_Etype then | |
3711 | if not Is_Frozen (Etype (N)) then | |
3712 | Typ := Etype (N); | |
3713 | ||
3714 | -- Base type may be an derived numeric type that is frozen at | |
3715 | -- the point of declaration, but first_subtype is still unfrozen. | |
3716 | ||
3717 | elsif not Is_Frozen (First_Subtype (Etype (N))) then | |
3718 | Typ := First_Subtype (Etype (N)); | |
3719 | end if; | |
70482933 RK |
3720 | end if; |
3721 | ||
3722 | -- For entity name, freeze entity if not frozen already. A special | |
3723 | -- exception occurs for an identifier that did not come from source. | |
3724 | -- We don't let such identifiers freeze a non-internal entity, i.e. | |
3725 | -- an entity that did come from source, since such an identifier was | |
3726 | -- generated by the expander, and cannot have any semantic effect on | |
3727 | -- the freezing semantics. For example, this stops the parameter of | |
3728 | -- an initialization procedure from freezing the variable. | |
3729 | ||
3730 | if Is_Entity_Name (N) | |
3731 | and then not Is_Frozen (Entity (N)) | |
3732 | and then (Nkind (N) /= N_Identifier | |
3733 | or else Comes_From_Source (N) | |
3734 | or else not Comes_From_Source (Entity (N))) | |
3735 | then | |
3736 | Nam := Entity (N); | |
70482933 RK |
3737 | else |
3738 | Nam := Empty; | |
3739 | end if; | |
3740 | ||
49e90211 | 3741 | -- For an allocator freeze designated type if not frozen already |
70482933 | 3742 | |
ee094616 RD |
3743 | -- For an aggregate whose component type is an access type, freeze the |
3744 | -- designated type now, so that its freeze does not appear within the | |
3745 | -- loop that might be created in the expansion of the aggregate. If the | |
3746 | -- designated type is a private type without full view, the expression | |
3747 | -- cannot contain an allocator, so the type is not frozen. | |
70482933 RK |
3748 | |
3749 | Desig_Typ := Empty; | |
70482933 | 3750 | |
fbf5a39b | 3751 | case Nkind (N) is |
70482933 RK |
3752 | when N_Allocator => |
3753 | Desig_Typ := Designated_Type (Etype (N)); | |
3754 | ||
3755 | when N_Aggregate => | |
3756 | if Is_Array_Type (Etype (N)) | |
3757 | and then Is_Access_Type (Component_Type (Etype (N))) | |
3758 | then | |
3759 | Desig_Typ := Designated_Type (Component_Type (Etype (N))); | |
3760 | end if; | |
3761 | ||
3762 | when N_Selected_Component | | |
3763 | N_Indexed_Component | | |
3764 | N_Slice => | |
3765 | ||
3766 | if Is_Access_Type (Etype (Prefix (N))) then | |
3767 | Desig_Typ := Designated_Type (Etype (Prefix (N))); | |
3768 | end if; | |
3769 | ||
3770 | when others => | |
3771 | null; | |
70482933 RK |
3772 | end case; |
3773 | ||
3774 | if Desig_Typ /= Empty | |
3775 | and then (Is_Frozen (Desig_Typ) | |
3776 | or else (not Is_Fully_Defined (Desig_Typ))) | |
3777 | then | |
3778 | Desig_Typ := Empty; | |
3779 | end if; | |
3780 | ||
3781 | -- All done if nothing needs freezing | |
3782 | ||
3783 | if No (Typ) | |
3784 | and then No (Nam) | |
3785 | and then No (Desig_Typ) | |
3786 | then | |
3787 | return; | |
3788 | end if; | |
3789 | ||
3790 | -- Loop for looking at the right place to insert the freeze nodes | |
3791 | -- exiting from the loop when it is appropriate to insert the freeze | |
3792 | -- node before the current node P. | |
3793 | ||
3794 | -- Also checks some special exceptions to the freezing rules. These | |
3795 | -- cases result in a direct return, bypassing the freeze action. | |
3796 | ||
3797 | P := N; | |
3798 | loop | |
3799 | Parent_P := Parent (P); | |
3800 | ||
ee094616 RD |
3801 | -- If we don't have a parent, then we are not in a well-formed tree. |
3802 | -- This is an unusual case, but there are some legitimate situations | |
3803 | -- in which this occurs, notably when the expressions in the range of | |
3804 | -- a type declaration are resolved. We simply ignore the freeze | |
3805 | -- request in this case. Is this right ??? | |
70482933 RK |
3806 | |
3807 | if No (Parent_P) then | |
3808 | return; | |
3809 | end if; | |
3810 | ||
3811 | -- See if we have got to an appropriate point in the tree | |
3812 | ||
3813 | case Nkind (Parent_P) is | |
3814 | ||
edd63e9b ES |
3815 | -- A special test for the exception of (RM 13.14(8)) for the case |
3816 | -- of per-object expressions (RM 3.8(18)) occurring in component | |
3817 | -- definition or a discrete subtype definition. Note that we test | |
3818 | -- for a component declaration which includes both cases we are | |
3819 | -- interested in, and furthermore the tree does not have explicit | |
3820 | -- nodes for either of these two constructs. | |
70482933 RK |
3821 | |
3822 | when N_Component_Declaration => | |
3823 | ||
3824 | -- The case we want to test for here is an identifier that is | |
3825 | -- a per-object expression, this is either a discriminant that | |
3826 | -- appears in a context other than the component declaration | |
3827 | -- or it is a reference to the type of the enclosing construct. | |
3828 | ||
3829 | -- For either of these cases, we skip the freezing | |
3830 | ||
3831 | if not In_Default_Expression | |
3832 | and then Nkind (N) = N_Identifier | |
3833 | and then (Present (Entity (N))) | |
3834 | then | |
3835 | -- We recognize the discriminant case by just looking for | |
3836 | -- a reference to a discriminant. It can only be one for | |
3837 | -- the enclosing construct. Skip freezing in this case. | |
3838 | ||
3839 | if Ekind (Entity (N)) = E_Discriminant then | |
3840 | return; | |
3841 | ||
3842 | -- For the case of a reference to the enclosing record, | |
3843 | -- (or task or protected type), we look for a type that | |
3844 | -- matches the current scope. | |
3845 | ||
3846 | elsif Entity (N) = Current_Scope then | |
3847 | return; | |
3848 | end if; | |
3849 | end if; | |
3850 | ||
edd63e9b ES |
3851 | -- If we have an enumeration literal that appears as the choice in |
3852 | -- the aggregate of an enumeration representation clause, then | |
3853 | -- freezing does not occur (RM 13.14(10)). | |
70482933 RK |
3854 | |
3855 | when N_Enumeration_Representation_Clause => | |
3856 | ||
3857 | -- The case we are looking for is an enumeration literal | |
3858 | ||
3859 | if (Nkind (N) = N_Identifier or Nkind (N) = N_Character_Literal) | |
3860 | and then Is_Enumeration_Type (Etype (N)) | |
3861 | then | |
3862 | -- If enumeration literal appears directly as the choice, | |
3863 | -- do not freeze (this is the normal non-overloade case) | |
3864 | ||
3865 | if Nkind (Parent (N)) = N_Component_Association | |
3866 | and then First (Choices (Parent (N))) = N | |
3867 | then | |
3868 | return; | |
3869 | ||
ee094616 RD |
3870 | -- If enumeration literal appears as the name of function |
3871 | -- which is the choice, then also do not freeze. This | |
3872 | -- happens in the overloaded literal case, where the | |
70482933 RK |
3873 | -- enumeration literal is temporarily changed to a function |
3874 | -- call for overloading analysis purposes. | |
3875 | ||
3876 | elsif Nkind (Parent (N)) = N_Function_Call | |
3877 | and then | |
3878 | Nkind (Parent (Parent (N))) = N_Component_Association | |
3879 | and then | |
3880 | First (Choices (Parent (Parent (N)))) = Parent (N) | |
3881 | then | |
3882 | return; | |
3883 | end if; | |
3884 | end if; | |
3885 | ||
3886 | -- Normally if the parent is a handled sequence of statements, | |
3887 | -- then the current node must be a statement, and that is an | |
3888 | -- appropriate place to insert a freeze node. | |
3889 | ||
3890 | when N_Handled_Sequence_Of_Statements => | |
3891 | ||
edd63e9b ES |
3892 | -- An exception occurs when the sequence of statements is for |
3893 | -- an expander generated body that did not do the usual freeze | |
3894 | -- all operation. In this case we usually want to freeze | |
3895 | -- outside this body, not inside it, and we skip past the | |
3896 | -- subprogram body that we are inside. | |
70482933 RK |
3897 | |
3898 | if In_Exp_Body (Parent_P) then | |
3899 | ||
3900 | -- However, we *do* want to freeze at this point if we have | |
3901 | -- an entity to freeze, and that entity is declared *inside* | |
3902 | -- the body of the expander generated procedure. This case | |
3903 | -- is recognized by the scope of the type, which is either | |
3904 | -- the spec for some enclosing body, or (in the case of | |
3905 | -- init_procs, for which there are no separate specs) the | |
3906 | -- current scope. | |
3907 | ||
3908 | declare | |
3909 | Subp : constant Node_Id := Parent (Parent_P); | |
3910 | Cspc : Entity_Id; | |
3911 | ||
3912 | begin | |
3913 | if Nkind (Subp) = N_Subprogram_Body then | |
3914 | Cspc := Corresponding_Spec (Subp); | |
3915 | ||
3916 | if (Present (Typ) and then Scope (Typ) = Cspc) | |
3917 | or else | |
3918 | (Present (Nam) and then Scope (Nam) = Cspc) | |
3919 | then | |
3920 | exit; | |
3921 | ||
3922 | elsif Present (Typ) | |
3923 | and then Scope (Typ) = Current_Scope | |
3924 | and then Current_Scope = Defining_Entity (Subp) | |
3925 | then | |
3926 | exit; | |
3927 | end if; | |
3928 | end if; | |
3929 | end; | |
3930 | ||
3931 | -- If not that exception to the exception, then this is | |
3932 | -- where we delay the freeze till outside the body. | |
3933 | ||
3934 | Parent_P := Parent (Parent_P); | |
3935 | Freeze_Outside := True; | |
3936 | ||
3937 | -- Here if normal case where we are in handled statement | |
3938 | -- sequence and want to do the insertion right there. | |
3939 | ||
3940 | else | |
3941 | exit; | |
3942 | end if; | |
3943 | ||
ee094616 RD |
3944 | -- If parent is a body or a spec or a block, then the current node |
3945 | -- is a statement or declaration and we can insert the freeze node | |
3946 | -- before it. | |
70482933 RK |
3947 | |
3948 | when N_Package_Specification | | |
3949 | N_Package_Body | | |
3950 | N_Subprogram_Body | | |
3951 | N_Task_Body | | |
3952 | N_Protected_Body | | |
3953 | N_Entry_Body | | |
3954 | N_Block_Statement => exit; | |
3955 | ||
3956 | -- The expander is allowed to define types in any statements list, | |
3957 | -- so any of the following parent nodes also mark a freezing point | |
3958 | -- if the actual node is in a list of statements or declarations. | |
3959 | ||
3960 | when N_Exception_Handler | | |
3961 | N_If_Statement | | |
3962 | N_Elsif_Part | | |
3963 | N_Case_Statement_Alternative | | |
3964 | N_Compilation_Unit_Aux | | |
3965 | N_Selective_Accept | | |
3966 | N_Accept_Alternative | | |
3967 | N_Delay_Alternative | | |
3968 | N_Conditional_Entry_Call | | |
3969 | N_Entry_Call_Alternative | | |
3970 | N_Triggering_Alternative | | |
3971 | N_Abortable_Part | | |
3972 | N_Freeze_Entity => | |
3973 | ||
3974 | exit when Is_List_Member (P); | |
3975 | ||
3976 | -- Note: The N_Loop_Statement is a special case. A type that | |
3977 | -- appears in the source can never be frozen in a loop (this | |
edd63e9b ES |
3978 | -- occurs only because of a loop expanded by the expander), so we |
3979 | -- keep on going. Otherwise we terminate the search. Same is true | |
ee094616 RD |
3980 | -- of any entity which comes from source. (if they have predefined |
3981 | -- type, that type does not appear to come from source, but the | |
3982 | -- entity should not be frozen here). | |
70482933 RK |
3983 | |
3984 | when N_Loop_Statement => | |
3985 | exit when not Comes_From_Source (Etype (N)) | |
3986 | and then (No (Nam) or else not Comes_From_Source (Nam)); | |
3987 | ||
3988 | -- For all other cases, keep looking at parents | |
3989 | ||
3990 | when others => | |
3991 | null; | |
3992 | end case; | |
3993 | ||
3994 | -- We fall through the case if we did not yet find the proper | |
3995 | -- place in the free for inserting the freeze node, so climb! | |
3996 | ||
3997 | P := Parent_P; | |
3998 | end loop; | |
3999 | ||
edd63e9b ES |
4000 | -- If the expression appears in a record or an initialization procedure, |
4001 | -- the freeze nodes are collected and attached to the current scope, to | |
4002 | -- be inserted and analyzed on exit from the scope, to insure that | |
4003 | -- generated entities appear in the correct scope. If the expression is | |
4004 | -- a default for a discriminant specification, the scope is still void. | |
4005 | -- The expression can also appear in the discriminant part of a private | |
4006 | -- or concurrent type. | |
70482933 | 4007 | |
c6823a20 | 4008 | -- If the expression appears in a constrained subcomponent of an |
edd63e9b ES |
4009 | -- enclosing record declaration, the freeze nodes must be attached to |
4010 | -- the outer record type so they can eventually be placed in the | |
c6823a20 EB |
4011 | -- enclosing declaration list. |
4012 | ||
ee094616 RD |
4013 | -- The other case requiring this special handling is if we are in a |
4014 | -- default expression, since in that case we are about to freeze a | |
4015 | -- static type, and the freeze scope needs to be the outer scope, not | |
4016 | -- the scope of the subprogram with the default parameter. | |
70482933 RK |
4017 | |
4018 | -- For default expressions in generic units, the Move_Freeze_Nodes | |
ee094616 RD |
4019 | -- mechanism (see sem_ch12.adb) takes care of placing them at the proper |
4020 | -- place, after the generic unit. | |
70482933 RK |
4021 | |
4022 | if (In_Def_Exp and not Inside_A_Generic) | |
4023 | or else Freeze_Outside | |
4024 | or else (Is_Type (Current_Scope) | |
4025 | and then (not Is_Concurrent_Type (Current_Scope) | |
4026 | or else not Has_Completion (Current_Scope))) | |
4027 | or else Ekind (Current_Scope) = E_Void | |
4028 | then | |
4029 | declare | |
4030 | Loc : constant Source_Ptr := Sloc (Current_Scope); | |
4031 | Freeze_Nodes : List_Id := No_List; | |
c6823a20 | 4032 | Pos : Int := Scope_Stack.Last; |
70482933 RK |
4033 | |
4034 | begin | |
4035 | if Present (Desig_Typ) then | |
4036 | Freeze_And_Append (Desig_Typ, Loc, Freeze_Nodes); | |
4037 | end if; | |
4038 | ||
4039 | if Present (Typ) then | |
4040 | Freeze_And_Append (Typ, Loc, Freeze_Nodes); | |
4041 | end if; | |
4042 | ||
4043 | if Present (Nam) then | |
4044 | Freeze_And_Append (Nam, Loc, Freeze_Nodes); | |
4045 | end if; | |
4046 | ||
c6823a20 EB |
4047 | -- The current scope may be that of a constrained component of |
4048 | -- an enclosing record declaration, which is above the current | |
4049 | -- scope in the scope stack. | |
4050 | ||
4051 | if Is_Record_Type (Scope (Current_Scope)) then | |
4052 | Pos := Pos - 1; | |
4053 | end if; | |
4054 | ||
70482933 | 4055 | if Is_Non_Empty_List (Freeze_Nodes) then |
c6823a20 EB |
4056 | if No (Scope_Stack.Table (Pos).Pending_Freeze_Actions) then |
4057 | Scope_Stack.Table (Pos).Pending_Freeze_Actions := | |
70482933 RK |
4058 | Freeze_Nodes; |
4059 | else | |
4060 | Append_List (Freeze_Nodes, Scope_Stack.Table | |
c6823a20 | 4061 | (Pos).Pending_Freeze_Actions); |
70482933 RK |
4062 | end if; |
4063 | end if; | |
4064 | end; | |
4065 | ||
4066 | return; | |
4067 | end if; | |
4068 | ||
4069 | -- Now we have the right place to do the freezing. First, a special | |
4070 | -- adjustment, if we are in default expression analysis mode, these | |
ee094616 RD |
4071 | -- freeze actions must not be thrown away (normally all inserted actions |
4072 | -- are thrown away in this mode. However, the freeze actions are from | |
4073 | -- static expressions and one of the important reasons we are doing this | |
4074 | -- special analysis is to get these freeze actions. Therefore we turn | |
4075 | -- off the In_Default_Expression mode to propagate these freeze actions. | |
4076 | -- This also means they get properly analyzed and expanded. | |
70482933 RK |
4077 | |
4078 | In_Default_Expression := False; | |
4079 | ||
fbf5a39b | 4080 | -- Freeze the designated type of an allocator (RM 13.14(13)) |
70482933 RK |
4081 | |
4082 | if Present (Desig_Typ) then | |
4083 | Freeze_Before (P, Desig_Typ); | |
4084 | end if; | |
4085 | ||
fbf5a39b | 4086 | -- Freeze type of expression (RM 13.14(10)). Note that we took care of |
70482933 RK |
4087 | -- the enumeration representation clause exception in the loop above. |
4088 | ||
4089 | if Present (Typ) then | |
4090 | Freeze_Before (P, Typ); | |
4091 | end if; | |
4092 | ||
fbf5a39b | 4093 | -- Freeze name if one is present (RM 13.14(11)) |
70482933 RK |
4094 | |
4095 | if Present (Nam) then | |
4096 | Freeze_Before (P, Nam); | |
4097 | end if; | |
4098 | ||
4099 | In_Default_Expression := In_Def_Exp; | |
4100 | end Freeze_Expression; | |
4101 | ||
4102 | ----------------------------- | |
4103 | -- Freeze_Fixed_Point_Type -- | |
4104 | ----------------------------- | |
4105 | ||
edd63e9b ES |
4106 | -- Certain fixed-point types and subtypes, including implicit base types |
4107 | -- and declared first subtypes, have not yet set up a range. This is | |
4108 | -- because the range cannot be set until the Small and Size values are | |
4109 | -- known, and these are not known till the type is frozen. | |
70482933 | 4110 | |
edd63e9b ES |
4111 | -- To signal this case, Scalar_Range contains an unanalyzed syntactic range |
4112 | -- whose bounds are unanalyzed real literals. This routine will recognize | |
4113 | -- this case, and transform this range node into a properly typed range | |
4114 | -- with properly analyzed and resolved values. | |
70482933 RK |
4115 | |
4116 | procedure Freeze_Fixed_Point_Type (Typ : Entity_Id) is | |
4117 | Rng : constant Node_Id := Scalar_Range (Typ); | |
4118 | Lo : constant Node_Id := Low_Bound (Rng); | |
4119 | Hi : constant Node_Id := High_Bound (Rng); | |
4120 | Btyp : constant Entity_Id := Base_Type (Typ); | |
4121 | Brng : constant Node_Id := Scalar_Range (Btyp); | |
4122 | BLo : constant Node_Id := Low_Bound (Brng); | |
4123 | BHi : constant Node_Id := High_Bound (Brng); | |
4124 | Small : constant Ureal := Small_Value (Typ); | |
4125 | Loval : Ureal; | |
4126 | Hival : Ureal; | |
4127 | Atype : Entity_Id; | |
4128 | ||
4129 | Actual_Size : Nat; | |
4130 | ||
4131 | function Fsize (Lov, Hiv : Ureal) return Nat; | |
4132 | -- Returns size of type with given bounds. Also leaves these | |
4133 | -- bounds set as the current bounds of the Typ. | |
4134 | ||
0da2c8ac AC |
4135 | ----------- |
4136 | -- Fsize -- | |
4137 | ----------- | |
4138 | ||
70482933 RK |
4139 | function Fsize (Lov, Hiv : Ureal) return Nat is |
4140 | begin | |
4141 | Set_Realval (Lo, Lov); | |
4142 | Set_Realval (Hi, Hiv); | |
4143 | return Minimum_Size (Typ); | |
4144 | end Fsize; | |
4145 | ||
0da2c8ac | 4146 | -- Start of processing for Freeze_Fixed_Point_Type |
70482933 RK |
4147 | |
4148 | begin | |
4149 | -- If Esize of a subtype has not previously been set, set it now | |
4150 | ||
4151 | if Unknown_Esize (Typ) then | |
4152 | Atype := Ancestor_Subtype (Typ); | |
4153 | ||
4154 | if Present (Atype) then | |
fbf5a39b | 4155 | Set_Esize (Typ, Esize (Atype)); |
70482933 | 4156 | else |
fbf5a39b | 4157 | Set_Esize (Typ, Esize (Base_Type (Typ))); |
70482933 RK |
4158 | end if; |
4159 | end if; | |
4160 | ||
ee094616 RD |
4161 | -- Immediate return if the range is already analyzed. This means that |
4162 | -- the range is already set, and does not need to be computed by this | |
4163 | -- routine. | |
70482933 RK |
4164 | |
4165 | if Analyzed (Rng) then | |
4166 | return; | |
4167 | end if; | |
4168 | ||
4169 | -- Immediate return if either of the bounds raises Constraint_Error | |
4170 | ||
4171 | if Raises_Constraint_Error (Lo) | |
4172 | or else Raises_Constraint_Error (Hi) | |
4173 | then | |
4174 | return; | |
4175 | end if; | |
4176 | ||
4177 | Loval := Realval (Lo); | |
4178 | Hival := Realval (Hi); | |
4179 | ||
4180 | -- Ordinary fixed-point case | |
4181 | ||
4182 | if Is_Ordinary_Fixed_Point_Type (Typ) then | |
4183 | ||
4184 | -- For the ordinary fixed-point case, we are allowed to fudge the | |
ee094616 RD |
4185 | -- end-points up or down by small. Generally we prefer to fudge up, |
4186 | -- i.e. widen the bounds for non-model numbers so that the end points | |
4187 | -- are included. However there are cases in which this cannot be | |
4188 | -- done, and indeed cases in which we may need to narrow the bounds. | |
4189 | -- The following circuit makes the decision. | |
70482933 | 4190 | |
ee094616 RD |
4191 | -- Note: our terminology here is that Incl_EP means that the bounds |
4192 | -- are widened by Small if necessary to include the end points, and | |
4193 | -- Excl_EP means that the bounds are narrowed by Small to exclude the | |
4194 | -- end-points if this reduces the size. | |
70482933 RK |
4195 | |
4196 | -- Note that in the Incl case, all we care about is including the | |
4197 | -- end-points. In the Excl case, we want to narrow the bounds as | |
4198 | -- much as permitted by the RM, to give the smallest possible size. | |
4199 | ||
4200 | Fudge : declare | |
4201 | Loval_Incl_EP : Ureal; | |
4202 | Hival_Incl_EP : Ureal; | |
4203 | ||
4204 | Loval_Excl_EP : Ureal; | |
4205 | Hival_Excl_EP : Ureal; | |
4206 | ||
4207 | Size_Incl_EP : Nat; | |
4208 | Size_Excl_EP : Nat; | |
4209 | ||
4210 | Model_Num : Ureal; | |
4211 | First_Subt : Entity_Id; | |
4212 | Actual_Lo : Ureal; | |
4213 | Actual_Hi : Ureal; | |
4214 | ||
4215 | begin | |
4216 | -- First step. Base types are required to be symmetrical. Right | |
4217 | -- now, the base type range is a copy of the first subtype range. | |
4218 | -- This will be corrected before we are done, but right away we | |
4219 | -- need to deal with the case where both bounds are non-negative. | |
4220 | -- In this case, we set the low bound to the negative of the high | |
4221 | -- bound, to make sure that the size is computed to include the | |
4222 | -- required sign. Note that we do not need to worry about the | |
4223 | -- case of both bounds negative, because the sign will be dealt | |
4224 | -- with anyway. Furthermore we can't just go making such a bound | |
4225 | -- symmetrical, since in a twos-complement system, there is an | |
4226 | -- extra negative value which could not be accomodated on the | |
4227 | -- positive side. | |
4228 | ||
4229 | if Typ = Btyp | |
4230 | and then not UR_Is_Negative (Loval) | |
4231 | and then Hival > Loval | |
4232 | then | |
4233 | Loval := -Hival; | |
4234 | Set_Realval (Lo, Loval); | |
4235 | end if; | |
4236 | ||
4237 | -- Compute the fudged bounds. If the number is a model number, | |
edd63e9b ES |
4238 | -- then we do nothing to include it, but we are allowed to backoff |
4239 | -- to the next adjacent model number when we exclude it. If it is | |
4240 | -- not a model number then we straddle the two values with the | |
4241 | -- model numbers on either side. | |
70482933 RK |
4242 | |
4243 | Model_Num := UR_Trunc (Loval / Small) * Small; | |
4244 | ||
4245 | if Loval = Model_Num then | |
4246 | Loval_Incl_EP := Model_Num; | |
4247 | else | |
4248 | Loval_Incl_EP := Model_Num - Small; | |
4249 | end if; | |
4250 | ||
4251 | -- The low value excluding the end point is Small greater, but | |
4252 | -- we do not do this exclusion if the low value is positive, | |
4253 | -- since it can't help the size and could actually hurt by | |
4254 | -- crossing the high bound. | |
4255 | ||
4256 | if UR_Is_Negative (Loval_Incl_EP) then | |
4257 | Loval_Excl_EP := Loval_Incl_EP + Small; | |
4258 | else | |
4259 | Loval_Excl_EP := Loval_Incl_EP; | |
4260 | end if; | |
4261 | ||
4262 | -- Similar processing for upper bound and high value | |
4263 | ||
4264 | Model_Num := UR_Trunc (Hival / Small) * Small; | |
4265 | ||
4266 | if Hival = Model_Num then | |
4267 | Hival_Incl_EP := Model_Num; | |
4268 | else | |
4269 | Hival_Incl_EP := Model_Num + Small; | |
4270 | end if; | |
4271 | ||
4272 | if UR_Is_Positive (Hival_Incl_EP) then | |
4273 | Hival_Excl_EP := Hival_Incl_EP - Small; | |
4274 | else | |
4275 | Hival_Excl_EP := Hival_Incl_EP; | |
4276 | end if; | |
4277 | ||
ee094616 RD |
4278 | -- One further adjustment is needed. In the case of subtypes, we |
4279 | -- cannot go outside the range of the base type, or we get | |
70482933 | 4280 | -- peculiarities, and the base type range is already set. This |
ee094616 RD |
4281 | -- only applies to the Incl values, since clearly the Excl values |
4282 | -- are already as restricted as they are allowed to be. | |
70482933 RK |
4283 | |
4284 | if Typ /= Btyp then | |
4285 | Loval_Incl_EP := UR_Max (Loval_Incl_EP, Realval (BLo)); | |
4286 | Hival_Incl_EP := UR_Min (Hival_Incl_EP, Realval (BHi)); | |
4287 | end if; | |
4288 | ||
4289 | -- Get size including and excluding end points | |
4290 | ||
4291 | Size_Incl_EP := Fsize (Loval_Incl_EP, Hival_Incl_EP); | |
4292 | Size_Excl_EP := Fsize (Loval_Excl_EP, Hival_Excl_EP); | |
4293 | ||
4294 | -- No need to exclude end-points if it does not reduce size | |
4295 | ||
4296 | if Fsize (Loval_Incl_EP, Hival_Excl_EP) = Size_Excl_EP then | |
4297 | Loval_Excl_EP := Loval_Incl_EP; | |
4298 | end if; | |
4299 | ||
4300 | if Fsize (Loval_Excl_EP, Hival_Incl_EP) = Size_Excl_EP then | |
4301 | Hival_Excl_EP := Hival_Incl_EP; | |
4302 | end if; | |
4303 | ||
4304 | -- Now we set the actual size to be used. We want to use the | |
4305 | -- bounds fudged up to include the end-points but only if this | |
4306 | -- can be done without violating a specifically given size | |
4307 | -- size clause or causing an unacceptable increase in size. | |
4308 | ||
4309 | -- Case of size clause given | |
4310 | ||
4311 | if Has_Size_Clause (Typ) then | |
4312 | ||
4313 | -- Use the inclusive size only if it is consistent with | |
4314 | -- the explicitly specified size. | |
4315 | ||
4316 | if Size_Incl_EP <= RM_Size (Typ) then | |
4317 | Actual_Lo := Loval_Incl_EP; | |
4318 | Actual_Hi := Hival_Incl_EP; | |
4319 | Actual_Size := Size_Incl_EP; | |
4320 | ||
4321 | -- If the inclusive size is too large, we try excluding | |
4322 | -- the end-points (will be caught later if does not work). | |
4323 | ||
4324 | else | |
4325 | Actual_Lo := Loval_Excl_EP; | |
4326 | Actual_Hi := Hival_Excl_EP; | |
4327 | Actual_Size := Size_Excl_EP; | |
4328 | end if; | |
4329 | ||
4330 | -- Case of size clause not given | |
4331 | ||
4332 | else | |
4333 | -- If we have a base type whose corresponding first subtype | |
4334 | -- has an explicit size that is large enough to include our | |
4335 | -- end-points, then do so. There is no point in working hard | |
4336 | -- to get a base type whose size is smaller than the specified | |
4337 | -- size of the first subtype. | |
4338 | ||
4339 | First_Subt := First_Subtype (Typ); | |
4340 | ||
4341 | if Has_Size_Clause (First_Subt) | |
4342 | and then Size_Incl_EP <= Esize (First_Subt) | |
4343 | then | |
4344 | Actual_Size := Size_Incl_EP; | |
4345 | Actual_Lo := Loval_Incl_EP; | |
4346 | Actual_Hi := Hival_Incl_EP; | |
4347 | ||
4348 | -- If excluding the end-points makes the size smaller and | |
4349 | -- results in a size of 8,16,32,64, then we take the smaller | |
4350 | -- size. For the 64 case, this is compulsory. For the other | |
4351 | -- cases, it seems reasonable. We like to include end points | |
4352 | -- if we can, but not at the expense of moving to the next | |
4353 | -- natural boundary of size. | |
4354 | ||
4355 | elsif Size_Incl_EP /= Size_Excl_EP | |
4356 | and then | |
4357 | (Size_Excl_EP = 8 or else | |
4358 | Size_Excl_EP = 16 or else | |
4359 | Size_Excl_EP = 32 or else | |
4360 | Size_Excl_EP = 64) | |
4361 | then | |
4362 | Actual_Size := Size_Excl_EP; | |
4363 | Actual_Lo := Loval_Excl_EP; | |
4364 | Actual_Hi := Hival_Excl_EP; | |
4365 | ||
4366 | -- Otherwise we can definitely include the end points | |
4367 | ||
4368 | else | |
4369 | Actual_Size := Size_Incl_EP; | |
4370 | Actual_Lo := Loval_Incl_EP; | |
4371 | Actual_Hi := Hival_Incl_EP; | |
4372 | end if; | |
4373 | ||
edd63e9b ES |
4374 | -- One pathological case: normally we never fudge a low bound |
4375 | -- down, since it would seem to increase the size (if it has | |
4376 | -- any effect), but for ranges containing single value, or no | |
4377 | -- values, the high bound can be small too large. Consider: | |
70482933 RK |
4378 | |
4379 | -- type t is delta 2.0**(-14) | |
4380 | -- range 131072.0 .. 0; | |
4381 | ||
edd63e9b ES |
4382 | -- That lower bound is *just* outside the range of 32 bits, and |
4383 | -- does need fudging down in this case. Note that the bounds | |
4384 | -- will always have crossed here, since the high bound will be | |
4385 | -- fudged down if necessary, as in the case of: | |
70482933 RK |
4386 | |
4387 | -- type t is delta 2.0**(-14) | |
4388 | -- range 131072.0 .. 131072.0; | |
4389 | ||
edd63e9b ES |
4390 | -- So we detect the situation by looking for crossed bounds, |
4391 | -- and if the bounds are crossed, and the low bound is greater | |
4392 | -- than zero, we will always back it off by small, since this | |
4393 | -- is completely harmless. | |
70482933 RK |
4394 | |
4395 | if Actual_Lo > Actual_Hi then | |
4396 | if UR_Is_Positive (Actual_Lo) then | |
4397 | Actual_Lo := Loval_Incl_EP - Small; | |
4398 | Actual_Size := Fsize (Actual_Lo, Actual_Hi); | |
4399 | ||
4400 | -- And of course, we need to do exactly the same parallel | |
4401 | -- fudge for flat ranges in the negative region. | |
4402 | ||
4403 | elsif UR_Is_Negative (Actual_Hi) then | |
4404 | Actual_Hi := Hival_Incl_EP + Small; | |
4405 | Actual_Size := Fsize (Actual_Lo, Actual_Hi); | |
4406 | end if; | |
4407 | end if; | |
4408 | end if; | |
4409 | ||
4410 | Set_Realval (Lo, Actual_Lo); | |
4411 | Set_Realval (Hi, Actual_Hi); | |
4412 | end Fudge; | |
4413 | ||
4414 | -- For the decimal case, none of this fudging is required, since there | |
4415 | -- are no end-point problems in the decimal case (the end-points are | |
4416 | -- always included). | |
4417 | ||
4418 | else | |
4419 | Actual_Size := Fsize (Loval, Hival); | |
4420 | end if; | |
4421 | ||
4422 | -- At this stage, the actual size has been calculated and the proper | |
4423 | -- required bounds are stored in the low and high bounds. | |
4424 | ||
4425 | if Actual_Size > 64 then | |
4426 | Error_Msg_Uint_1 := UI_From_Int (Actual_Size); | |
4427 | Error_Msg_N | |
7d8b9c99 RD |
4428 | ("size required (^) for type& too large, maximum allowed is 64", |
4429 | Typ); | |
70482933 RK |
4430 | Actual_Size := 64; |
4431 | end if; | |
4432 | ||
4433 | -- Check size against explicit given size | |
4434 | ||
4435 | if Has_Size_Clause (Typ) then | |
4436 | if Actual_Size > RM_Size (Typ) then | |
4437 | Error_Msg_Uint_1 := RM_Size (Typ); | |
4438 | Error_Msg_Uint_2 := UI_From_Int (Actual_Size); | |
4439 | Error_Msg_NE | |
7d8b9c99 | 4440 | ("size given (^) for type& too small, minimum allowed is ^", |
70482933 RK |
4441 | Size_Clause (Typ), Typ); |
4442 | ||
4443 | else | |
4444 | Actual_Size := UI_To_Int (Esize (Typ)); | |
4445 | end if; | |
4446 | ||
4447 | -- Increase size to next natural boundary if no size clause given | |
4448 | ||
4449 | else | |
4450 | if Actual_Size <= 8 then | |
4451 | Actual_Size := 8; | |
4452 | elsif Actual_Size <= 16 then | |
4453 | Actual_Size := 16; | |
4454 | elsif Actual_Size <= 32 then | |
4455 | Actual_Size := 32; | |
4456 | else | |
4457 | Actual_Size := 64; | |
4458 | end if; | |
4459 | ||
4460 | Init_Esize (Typ, Actual_Size); | |
4461 | Adjust_Esize_For_Alignment (Typ); | |
4462 | end if; | |
4463 | ||
edd63e9b ES |
4464 | -- If we have a base type, then expand the bounds so that they extend to |
4465 | -- the full width of the allocated size in bits, to avoid junk range | |
4466 | -- checks on intermediate computations. | |
70482933 RK |
4467 | |
4468 | if Base_Type (Typ) = Typ then | |
4469 | Set_Realval (Lo, -(Small * (Uint_2 ** (Actual_Size - 1)))); | |
4470 | Set_Realval (Hi, (Small * (Uint_2 ** (Actual_Size - 1) - 1))); | |
4471 | end if; | |
4472 | ||
4473 | -- Final step is to reanalyze the bounds using the proper type | |
4474 | -- and set the Corresponding_Integer_Value fields of the literals. | |
4475 | ||
4476 | Set_Etype (Lo, Empty); | |
4477 | Set_Analyzed (Lo, False); | |
4478 | Analyze (Lo); | |
4479 | ||
edd63e9b ES |
4480 | -- Resolve with universal fixed if the base type, and the base type if |
4481 | -- it is a subtype. Note we can't resolve the base type with itself, | |
4482 | -- that would be a reference before definition. | |
70482933 RK |
4483 | |
4484 | if Typ = Btyp then | |
4485 | Resolve (Lo, Universal_Fixed); | |
4486 | else | |
4487 | Resolve (Lo, Btyp); | |
4488 | end if; | |
4489 | ||
4490 | -- Set corresponding integer value for bound | |
4491 | ||
4492 | Set_Corresponding_Integer_Value | |
4493 | (Lo, UR_To_Uint (Realval (Lo) / Small)); | |
4494 | ||
4495 | -- Similar processing for high bound | |
4496 | ||
4497 | Set_Etype (Hi, Empty); | |
4498 | Set_Analyzed (Hi, False); | |
4499 | Analyze (Hi); | |
4500 | ||
4501 | if Typ = Btyp then | |
4502 | Resolve (Hi, Universal_Fixed); | |
4503 | else | |
4504 | Resolve (Hi, Btyp); | |
4505 | end if; | |
4506 | ||
4507 | Set_Corresponding_Integer_Value | |
4508 | (Hi, UR_To_Uint (Realval (Hi) / Small)); | |
4509 | ||
4510 | -- Set type of range to correspond to bounds | |
4511 | ||
4512 | Set_Etype (Rng, Etype (Lo)); | |
4513 | ||
fbf5a39b | 4514 | -- Set Esize to calculated size if not set already |
70482933 | 4515 | |
fbf5a39b AC |
4516 | if Unknown_Esize (Typ) then |
4517 | Init_Esize (Typ, Actual_Size); | |
4518 | end if; | |
70482933 RK |
4519 | |
4520 | -- Set RM_Size if not already set. If already set, check value | |
4521 | ||
4522 | declare | |
4523 | Minsiz : constant Uint := UI_From_Int (Minimum_Size (Typ)); | |
4524 | ||
4525 | begin | |
4526 | if RM_Size (Typ) /= Uint_0 then | |
4527 | if RM_Size (Typ) < Minsiz then | |
4528 | Error_Msg_Uint_1 := RM_Size (Typ); | |
4529 | Error_Msg_Uint_2 := Minsiz; | |
4530 | Error_Msg_NE | |
7d8b9c99 | 4531 | ("size given (^) for type& too small, minimum allowed is ^", |
70482933 RK |
4532 | Size_Clause (Typ), Typ); |
4533 | end if; | |
4534 | ||
4535 | else | |
4536 | Set_RM_Size (Typ, Minsiz); | |
4537 | end if; | |
4538 | end; | |
70482933 RK |
4539 | end Freeze_Fixed_Point_Type; |
4540 | ||
4541 | ------------------ | |
4542 | -- Freeze_Itype -- | |
4543 | ------------------ | |
4544 | ||
4545 | procedure Freeze_Itype (T : Entity_Id; N : Node_Id) is | |
4546 | L : List_Id; | |
4547 | ||
4548 | begin | |
4549 | Set_Has_Delayed_Freeze (T); | |
4550 | L := Freeze_Entity (T, Sloc (N)); | |
4551 | ||
4552 | if Is_Non_Empty_List (L) then | |
4553 | Insert_Actions (N, L); | |
4554 | end if; | |
4555 | end Freeze_Itype; | |
4556 | ||
4557 | -------------------------- | |
4558 | -- Freeze_Static_Object -- | |
4559 | -------------------------- | |
4560 | ||
4561 | procedure Freeze_Static_Object (E : Entity_Id) is | |
4562 | ||
4563 | Cannot_Be_Static : exception; | |
4564 | -- Exception raised if the type of a static object cannot be made | |
4565 | -- static. This happens if the type depends on non-global objects. | |
4566 | ||
4567 | procedure Ensure_Expression_Is_SA (N : Node_Id); | |
ee094616 RD |
4568 | -- Called to ensure that an expression used as part of a type definition |
4569 | -- is statically allocatable, which means that the expression type is | |
4570 | -- statically allocatable, and the expression is either static, or a | |
4571 | -- reference to a library level constant. | |
70482933 RK |
4572 | |
4573 | procedure Ensure_Type_Is_SA (Typ : Entity_Id); | |
4574 | -- Called to mark a type as static, checking that it is possible | |
4575 | -- to set the type as static. If it is not possible, then the | |
4576 | -- exception Cannot_Be_Static is raised. | |
4577 | ||
4578 | ----------------------------- | |
4579 | -- Ensure_Expression_Is_SA -- | |
4580 | ----------------------------- | |
4581 | ||
4582 | procedure Ensure_Expression_Is_SA (N : Node_Id) is | |
4583 | Ent : Entity_Id; | |
4584 | ||
4585 | begin | |
4586 | Ensure_Type_Is_SA (Etype (N)); | |
4587 | ||
4588 | if Is_Static_Expression (N) then | |
4589 | return; | |
4590 | ||
4591 | elsif Nkind (N) = N_Identifier then | |
4592 | Ent := Entity (N); | |
4593 | ||
4594 | if Present (Ent) | |
4595 | and then Ekind (Ent) = E_Constant | |
4596 | and then Is_Library_Level_Entity (Ent) | |
4597 | then | |
4598 | return; | |
4599 | end if; | |
4600 | end if; | |
4601 | ||
4602 | raise Cannot_Be_Static; | |
4603 | end Ensure_Expression_Is_SA; | |
4604 | ||
4605 | ----------------------- | |
4606 | -- Ensure_Type_Is_SA -- | |
4607 | ----------------------- | |
4608 | ||
4609 | procedure Ensure_Type_Is_SA (Typ : Entity_Id) is | |
4610 | N : Node_Id; | |
4611 | C : Entity_Id; | |
4612 | ||
4613 | begin | |
4614 | -- If type is library level, we are all set | |
4615 | ||
4616 | if Is_Library_Level_Entity (Typ) then | |
4617 | return; | |
4618 | end if; | |
4619 | ||
ee094616 RD |
4620 | -- We are also OK if the type already marked as statically allocated, |
4621 | -- which means we processed it before. | |
70482933 RK |
4622 | |
4623 | if Is_Statically_Allocated (Typ) then | |
4624 | return; | |
4625 | end if; | |
4626 | ||
4627 | -- Mark type as statically allocated | |
4628 | ||
4629 | Set_Is_Statically_Allocated (Typ); | |
4630 | ||
4631 | -- Check that it is safe to statically allocate this type | |
4632 | ||
4633 | if Is_Scalar_Type (Typ) or else Is_Real_Type (Typ) then | |
4634 | Ensure_Expression_Is_SA (Type_Low_Bound (Typ)); | |
4635 | Ensure_Expression_Is_SA (Type_High_Bound (Typ)); | |
4636 | ||
4637 | elsif Is_Array_Type (Typ) then | |
4638 | N := First_Index (Typ); | |
4639 | while Present (N) loop | |
4640 | Ensure_Type_Is_SA (Etype (N)); | |
4641 | Next_Index (N); | |
4642 | end loop; | |
4643 | ||
4644 | Ensure_Type_Is_SA (Component_Type (Typ)); | |
4645 | ||
4646 | elsif Is_Access_Type (Typ) then | |
4647 | if Ekind (Designated_Type (Typ)) = E_Subprogram_Type then | |
4648 | ||
4649 | declare | |
4650 | F : Entity_Id; | |
4651 | T : constant Entity_Id := Etype (Designated_Type (Typ)); | |
4652 | ||
4653 | begin | |
4654 | if T /= Standard_Void_Type then | |
4655 | Ensure_Type_Is_SA (T); | |
4656 | end if; | |
4657 | ||
4658 | F := First_Formal (Designated_Type (Typ)); | |
4659 | ||
4660 | while Present (F) loop | |
4661 | Ensure_Type_Is_SA (Etype (F)); | |
4662 | Next_Formal (F); | |
4663 | end loop; | |
4664 | end; | |
4665 | ||
4666 | else | |
4667 | Ensure_Type_Is_SA (Designated_Type (Typ)); | |
4668 | end if; | |
4669 | ||
4670 | elsif Is_Record_Type (Typ) then | |
4671 | C := First_Entity (Typ); | |
70482933 RK |
4672 | while Present (C) loop |
4673 | if Ekind (C) = E_Discriminant | |
4674 | or else Ekind (C) = E_Component | |
4675 | then | |
4676 | Ensure_Type_Is_SA (Etype (C)); | |
4677 | ||
4678 | elsif Is_Type (C) then | |
4679 | Ensure_Type_Is_SA (C); | |
4680 | end if; | |
4681 | ||
4682 | Next_Entity (C); | |
4683 | end loop; | |
4684 | ||
4685 | elsif Ekind (Typ) = E_Subprogram_Type then | |
4686 | Ensure_Type_Is_SA (Etype (Typ)); | |
4687 | ||
4688 | C := First_Formal (Typ); | |
4689 | while Present (C) loop | |
4690 | Ensure_Type_Is_SA (Etype (C)); | |
4691 | Next_Formal (C); | |
4692 | end loop; | |
4693 | ||
4694 | else | |
4695 | raise Cannot_Be_Static; | |
4696 | end if; | |
4697 | end Ensure_Type_Is_SA; | |
4698 | ||
4699 | -- Start of processing for Freeze_Static_Object | |
4700 | ||
4701 | begin | |
4702 | Ensure_Type_Is_SA (Etype (E)); | |
4703 | ||
4704 | exception | |
4705 | when Cannot_Be_Static => | |
4706 | ||
4707 | -- If the object that cannot be static is imported or exported, | |
4708 | -- then we give an error message saying that this object cannot | |
4709 | -- be imported or exported. | |
4710 | ||
4711 | if Is_Imported (E) then | |
4712 | Error_Msg_N | |
4713 | ("& cannot be imported (local type is not constant)", E); | |
4714 | ||
4715 | -- Otherwise must be exported, something is wrong if compiler | |
4716 | -- is marking something as statically allocated which cannot be). | |
4717 | ||
4718 | else pragma Assert (Is_Exported (E)); | |
4719 | Error_Msg_N | |
4720 | ("& cannot be exported (local type is not constant)", E); | |
4721 | end if; | |
4722 | end Freeze_Static_Object; | |
4723 | ||
4724 | ----------------------- | |
4725 | -- Freeze_Subprogram -- | |
4726 | ----------------------- | |
4727 | ||
4728 | procedure Freeze_Subprogram (E : Entity_Id) is | |
4729 | Retype : Entity_Id; | |
4730 | F : Entity_Id; | |
4731 | ||
4732 | begin | |
4733 | -- Subprogram may not have an address clause unless it is imported | |
4734 | ||
4735 | if Present (Address_Clause (E)) then | |
4736 | if not Is_Imported (E) then | |
4737 | Error_Msg_N | |
4738 | ("address clause can only be given " & | |
4739 | "for imported subprogram", | |
4740 | Name (Address_Clause (E))); | |
4741 | end if; | |
4742 | end if; | |
4743 | ||
91b1417d AC |
4744 | -- Reset the Pure indication on an imported subprogram unless an |
4745 | -- explicit Pure_Function pragma was present. We do this because | |
ee094616 RD |
4746 | -- otherwise it is an insidious error to call a non-pure function from |
4747 | -- pure unit and have calls mysteriously optimized away. What happens | |
4748 | -- here is that the Import can bypass the normal check to ensure that | |
4749 | -- pure units call only pure subprograms. | |
91b1417d AC |
4750 | |
4751 | if Is_Imported (E) | |
4752 | and then Is_Pure (E) | |
4753 | and then not Has_Pragma_Pure_Function (E) | |
4754 | then | |
4755 | Set_Is_Pure (E, False); | |
4756 | end if; | |
4757 | ||
70482933 RK |
4758 | -- For non-foreign convention subprograms, this is where we create |
4759 | -- the extra formals (for accessibility level and constrained bit | |
4760 | -- information). We delay this till the freeze point precisely so | |
4761 | -- that we know the convention! | |
4762 | ||
4763 | if not Has_Foreign_Convention (E) then | |
4764 | Create_Extra_Formals (E); | |
4765 | Set_Mechanisms (E); | |
4766 | ||
4767 | -- If this is convention Ada and a Valued_Procedure, that's odd | |
4768 | ||
4769 | if Ekind (E) = E_Procedure | |
4770 | and then Is_Valued_Procedure (E) | |
4771 | and then Convention (E) = Convention_Ada | |
fbf5a39b | 4772 | and then Warn_On_Export_Import |
70482933 RK |
4773 | then |
4774 | Error_Msg_N | |
4775 | ("?Valued_Procedure has no effect for convention Ada", E); | |
4776 | Set_Is_Valued_Procedure (E, False); | |
4777 | end if; | |
4778 | ||
4779 | -- Case of foreign convention | |
4780 | ||
4781 | else | |
4782 | Set_Mechanisms (E); | |
4783 | ||
fbf5a39b | 4784 | -- For foreign conventions, warn about return of an |
70482933 RK |
4785 | -- unconstrained array. |
4786 | ||
4787 | -- Note: we *do* allow a return by descriptor for the VMS case, | |
4788 | -- though here there is probably more to be done ??? | |
4789 | ||
4790 | if Ekind (E) = E_Function then | |
4791 | Retype := Underlying_Type (Etype (E)); | |
4792 | ||
4793 | -- If no return type, probably some other error, e.g. a | |
4794 | -- missing full declaration, so ignore. | |
4795 | ||
4796 | if No (Retype) then | |
4797 | null; | |
4798 | ||
4799 | -- If the return type is generic, we have emitted a warning | |
edd63e9b ES |
4800 | -- earlier on, and there is nothing else to check here. Specific |
4801 | -- instantiations may lead to erroneous behavior. | |
70482933 RK |
4802 | |
4803 | elsif Is_Generic_Type (Etype (E)) then | |
4804 | null; | |
4805 | ||
4806 | elsif Is_Array_Type (Retype) | |
4807 | and then not Is_Constrained (Retype) | |
4808 | and then Mechanism (E) not in Descriptor_Codes | |
fbf5a39b | 4809 | and then Warn_On_Export_Import |
70482933 | 4810 | then |
fbf5a39b AC |
4811 | Error_Msg_N |
4812 | ("?foreign convention function& should not return " & | |
4813 | "unconstrained array", E); | |
70482933 RK |
4814 | return; |
4815 | end if; | |
4816 | end if; | |
4817 | ||
4818 | -- If any of the formals for an exported foreign convention | |
edd63e9b ES |
4819 | -- subprogram have defaults, then emit an appropriate warning since |
4820 | -- this is odd (default cannot be used from non-Ada code) | |
70482933 RK |
4821 | |
4822 | if Is_Exported (E) then | |
4823 | F := First_Formal (E); | |
4824 | while Present (F) loop | |
fbf5a39b AC |
4825 | if Warn_On_Export_Import |
4826 | and then Present (Default_Value (F)) | |
4827 | then | |
70482933 RK |
4828 | Error_Msg_N |
4829 | ("?parameter cannot be defaulted in non-Ada call", | |
4830 | Default_Value (F)); | |
4831 | end if; | |
4832 | ||
4833 | Next_Formal (F); | |
4834 | end loop; | |
4835 | end if; | |
4836 | end if; | |
4837 | ||
4838 | -- For VMS, descriptor mechanisms for parameters are allowed only | |
7d8b9c99 RD |
4839 | -- for imported/exported subprograms. Moreover, the NCA descriptor |
4840 | -- is not allowed for parameters of exported subprograms. | |
70482933 RK |
4841 | |
4842 | if OpenVMS_On_Target then | |
7d8b9c99 RD |
4843 | if Is_Exported (E) then |
4844 | F := First_Formal (E); | |
4845 | while Present (F) loop | |
4846 | if Mechanism (F) = By_Descriptor_NCA then | |
4847 | Error_Msg_N | |
4848 | ("'N'C'A' descriptor for parameter not permitted", F); | |
4849 | Error_Msg_N | |
4850 | ("\can only be used for imported subprogram", F); | |
4851 | end if; | |
4852 | ||
4853 | Next_Formal (F); | |
4854 | end loop; | |
4855 | ||
4856 | elsif not Is_Imported (E) then | |
70482933 RK |
4857 | F := First_Formal (E); |
4858 | while Present (F) loop | |
4859 | if Mechanism (F) in Descriptor_Codes then | |
4860 | Error_Msg_N | |
4861 | ("descriptor mechanism for parameter not permitted", F); | |
4862 | Error_Msg_N | |
7d8b9c99 | 4863 | ("\can only be used for imported/exported subprogram", F); |
70482933 RK |
4864 | end if; |
4865 | ||
4866 | Next_Formal (F); | |
4867 | end loop; | |
4868 | end if; | |
4869 | end if; | |
edd63e9b ES |
4870 | |
4871 | -- Pragma Inline_Always is disallowed for dispatching subprograms | |
4872 | -- because the address of such subprograms is saved in the dispatch | |
4873 | -- table to support dispatching calls, and dispatching calls cannot | |
4874 | -- be inlined. This is consistent with the restriction against using | |
4875 | -- 'Access or 'Address on an Inline_Always subprogram. | |
4876 | ||
4877 | if Is_Dispatching_Operation (E) and then Is_Always_Inlined (E) then | |
4878 | Error_Msg_N | |
4879 | ("pragma Inline_Always not allowed for dispatching subprograms", E); | |
4880 | end if; | |
70482933 RK |
4881 | end Freeze_Subprogram; |
4882 | ||
15ce9ca2 AC |
4883 | ---------------------- |
4884 | -- Is_Fully_Defined -- | |
4885 | ---------------------- | |
70482933 | 4886 | |
70482933 RK |
4887 | function Is_Fully_Defined (T : Entity_Id) return Boolean is |
4888 | begin | |
4889 | if Ekind (T) = E_Class_Wide_Type then | |
4890 | return Is_Fully_Defined (Etype (T)); | |
657a9dd9 AC |
4891 | |
4892 | elsif Is_Array_Type (T) then | |
4893 | return Is_Fully_Defined (Component_Type (T)); | |
4894 | ||
4895 | elsif Is_Record_Type (T) | |
4896 | and not Is_Private_Type (T) | |
4897 | then | |
ee094616 RD |
4898 | -- Verify that the record type has no components with private types |
4899 | -- without completion. | |
657a9dd9 AC |
4900 | |
4901 | declare | |
4902 | Comp : Entity_Id; | |
bde58e32 | 4903 | |
657a9dd9 AC |
4904 | begin |
4905 | Comp := First_Component (T); | |
4906 | ||
4907 | while Present (Comp) loop | |
4908 | if not Is_Fully_Defined (Etype (Comp)) then | |
4909 | return False; | |
4910 | end if; | |
4911 | ||
4912 | Next_Component (Comp); | |
4913 | end loop; | |
4914 | return True; | |
4915 | end; | |
4916 | ||
86cde7b1 RD |
4917 | else |
4918 | return not Is_Private_Type (T) | |
4919 | or else Present (Full_View (Base_Type (T))); | |
70482933 RK |
4920 | end if; |
4921 | end Is_Fully_Defined; | |
4922 | ||
4923 | --------------------------------- | |
4924 | -- Process_Default_Expressions -- | |
4925 | --------------------------------- | |
4926 | ||
4927 | procedure Process_Default_Expressions | |
4928 | (E : Entity_Id; | |
4929 | After : in out Node_Id) | |
4930 | is | |
4931 | Loc : constant Source_Ptr := Sloc (E); | |
4932 | Dbody : Node_Id; | |
4933 | Formal : Node_Id; | |
4934 | Dcopy : Node_Id; | |
4935 | Dnam : Entity_Id; | |
4936 | ||
4937 | begin | |
4938 | Set_Default_Expressions_Processed (E); | |
4939 | ||
ee094616 RD |
4940 | -- A subprogram instance and its associated anonymous subprogram share |
4941 | -- their signature. The default expression functions are defined in the | |
4942 | -- wrapper packages for the anonymous subprogram, and should not be | |
4943 | -- generated again for the instance. | |
70482933 RK |
4944 | |
4945 | if Is_Generic_Instance (E) | |
4946 | and then Present (Alias (E)) | |
4947 | and then Default_Expressions_Processed (Alias (E)) | |
4948 | then | |
4949 | return; | |
4950 | end if; | |
4951 | ||
4952 | Formal := First_Formal (E); | |
70482933 RK |
4953 | while Present (Formal) loop |
4954 | if Present (Default_Value (Formal)) then | |
4955 | ||
4956 | -- We work with a copy of the default expression because we | |
4957 | -- do not want to disturb the original, since this would mess | |
4958 | -- up the conformance checking. | |
4959 | ||
4960 | Dcopy := New_Copy_Tree (Default_Value (Formal)); | |
4961 | ||
4962 | -- The analysis of the expression may generate insert actions, | |
4963 | -- which of course must not be executed. We wrap those actions | |
4964 | -- in a procedure that is not called, and later on eliminated. | |
4965 | -- The following cases have no side-effects, and are analyzed | |
4966 | -- directly. | |
4967 | ||
4968 | if Nkind (Dcopy) = N_Identifier | |
4969 | or else Nkind (Dcopy) = N_Expanded_Name | |
4970 | or else Nkind (Dcopy) = N_Integer_Literal | |
4971 | or else (Nkind (Dcopy) = N_Real_Literal | |
4972 | and then not Vax_Float (Etype (Dcopy))) | |
4973 | or else Nkind (Dcopy) = N_Character_Literal | |
4974 | or else Nkind (Dcopy) = N_String_Literal | |
86cde7b1 | 4975 | or else Known_Null (Dcopy) |
70482933 RK |
4976 | or else (Nkind (Dcopy) = N_Attribute_Reference |
4977 | and then | |
4978 | Attribute_Name (Dcopy) = Name_Null_Parameter) | |
70482933 RK |
4979 | then |
4980 | ||
4981 | -- If there is no default function, we must still do a full | |
ee094616 RD |
4982 | -- analyze call on the default value, to ensure that all error |
4983 | -- checks are performed, e.g. those associated with static | |
4984 | -- evaluation. Note: this branch will always be taken if the | |
4985 | -- analyzer is turned off (but we still need the error checks). | |
70482933 RK |
4986 | |
4987 | -- Note: the setting of parent here is to meet the requirement | |
4988 | -- that we can only analyze the expression while attached to | |
4989 | -- the tree. Really the requirement is that the parent chain | |
4990 | -- be set, we don't actually need to be in the tree. | |
4991 | ||
4992 | Set_Parent (Dcopy, Declaration_Node (Formal)); | |
4993 | Analyze (Dcopy); | |
4994 | ||
4995 | -- Default expressions are resolved with their own type if the | |
4996 | -- context is generic, to avoid anomalies with private types. | |
4997 | ||
4998 | if Ekind (Scope (E)) = E_Generic_Package then | |
fbf5a39b | 4999 | Resolve (Dcopy); |
70482933 RK |
5000 | else |
5001 | Resolve (Dcopy, Etype (Formal)); | |
5002 | end if; | |
5003 | ||
5004 | -- If that resolved expression will raise constraint error, | |
5005 | -- then flag the default value as raising constraint error. | |
5006 | -- This allows a proper error message on the calls. | |
5007 | ||
5008 | if Raises_Constraint_Error (Dcopy) then | |
5009 | Set_Raises_Constraint_Error (Default_Value (Formal)); | |
5010 | end if; | |
5011 | ||
5012 | -- If the default is a parameterless call, we use the name of | |
5013 | -- the called function directly, and there is no body to build. | |
5014 | ||
5015 | elsif Nkind (Dcopy) = N_Function_Call | |
5016 | and then No (Parameter_Associations (Dcopy)) | |
5017 | then | |
5018 | null; | |
5019 | ||
5020 | -- Else construct and analyze the body of a wrapper procedure | |
5021 | -- that contains an object declaration to hold the expression. | |
5022 | -- Given that this is done only to complete the analysis, it | |
5023 | -- simpler to build a procedure than a function which might | |
5024 | -- involve secondary stack expansion. | |
5025 | ||
5026 | else | |
5027 | Dnam := | |
5028 | Make_Defining_Identifier (Loc, New_Internal_Name ('D')); | |
5029 | ||
5030 | Dbody := | |
5031 | Make_Subprogram_Body (Loc, | |
5032 | Specification => | |
5033 | Make_Procedure_Specification (Loc, | |
5034 | Defining_Unit_Name => Dnam), | |
5035 | ||
5036 | Declarations => New_List ( | |
5037 | Make_Object_Declaration (Loc, | |
5038 | Defining_Identifier => | |
5039 | Make_Defining_Identifier (Loc, | |
5040 | New_Internal_Name ('T')), | |
5041 | Object_Definition => | |
5042 | New_Occurrence_Of (Etype (Formal), Loc), | |
5043 | Expression => New_Copy_Tree (Dcopy))), | |
5044 | ||
5045 | Handled_Statement_Sequence => | |
5046 | Make_Handled_Sequence_Of_Statements (Loc, | |
5047 | Statements => New_List)); | |
5048 | ||
5049 | Set_Scope (Dnam, Scope (E)); | |
5050 | Set_Assignment_OK (First (Declarations (Dbody))); | |
5051 | Set_Is_Eliminated (Dnam); | |
5052 | Insert_After (After, Dbody); | |
5053 | Analyze (Dbody); | |
5054 | After := Dbody; | |
5055 | end if; | |
5056 | end if; | |
5057 | ||
5058 | Next_Formal (Formal); | |
5059 | end loop; | |
5060 | ||
5061 | end Process_Default_Expressions; | |
5062 | ||
5063 | ---------------------------------------- | |
5064 | -- Set_Component_Alignment_If_Not_Set -- | |
5065 | ---------------------------------------- | |
5066 | ||
5067 | procedure Set_Component_Alignment_If_Not_Set (Typ : Entity_Id) is | |
5068 | begin | |
5069 | -- Ignore if not base type, subtypes don't need anything | |
5070 | ||
5071 | if Typ /= Base_Type (Typ) then | |
5072 | return; | |
5073 | end if; | |
5074 | ||
5075 | -- Do not override existing representation | |
5076 | ||
5077 | if Is_Packed (Typ) then | |
5078 | return; | |
5079 | ||
5080 | elsif Has_Specified_Layout (Typ) then | |
5081 | return; | |
5082 | ||
5083 | elsif Component_Alignment (Typ) /= Calign_Default then | |
5084 | return; | |
5085 | ||
5086 | else | |
5087 | Set_Component_Alignment | |
5088 | (Typ, Scope_Stack.Table | |
5089 | (Scope_Stack.Last).Component_Alignment_Default); | |
5090 | end if; | |
5091 | end Set_Component_Alignment_If_Not_Set; | |
5092 | ||
5093 | --------------------------- | |
5094 | -- Set_Debug_Info_Needed -- | |
5095 | --------------------------- | |
5096 | ||
5097 | procedure Set_Debug_Info_Needed (T : Entity_Id) is | |
5098 | begin | |
5099 | if No (T) | |
5100 | or else Needs_Debug_Info (T) | |
5101 | or else Debug_Info_Off (T) | |
5102 | then | |
5103 | return; | |
5104 | else | |
5105 | Set_Needs_Debug_Info (T); | |
5106 | end if; | |
5107 | ||
5108 | if Is_Object (T) then | |
5109 | Set_Debug_Info_Needed (Etype (T)); | |
5110 | ||
5111 | elsif Is_Type (T) then | |
5112 | Set_Debug_Info_Needed (Etype (T)); | |
5113 | ||
5114 | if Is_Record_Type (T) then | |
5115 | declare | |
5116 | Ent : Entity_Id := First_Entity (T); | |
5117 | begin | |
5118 | while Present (Ent) loop | |
5119 | Set_Debug_Info_Needed (Ent); | |
5120 | Next_Entity (Ent); | |
5121 | end loop; | |
5122 | end; | |
5123 | ||
5124 | elsif Is_Array_Type (T) then | |
5125 | Set_Debug_Info_Needed (Component_Type (T)); | |
5126 | ||
5127 | declare | |
5128 | Indx : Node_Id := First_Index (T); | |
5129 | begin | |
5130 | while Present (Indx) loop | |
5131 | Set_Debug_Info_Needed (Etype (Indx)); | |
5132 | Indx := Next_Index (Indx); | |
5133 | end loop; | |
5134 | end; | |
5135 | ||
5136 | if Is_Packed (T) then | |
5137 | Set_Debug_Info_Needed (Packed_Array_Type (T)); | |
5138 | end if; | |
5139 | ||
5140 | elsif Is_Access_Type (T) then | |
5141 | Set_Debug_Info_Needed (Directly_Designated_Type (T)); | |
5142 | ||
5143 | elsif Is_Private_Type (T) then | |
5144 | Set_Debug_Info_Needed (Full_View (T)); | |
5145 | ||
5146 | elsif Is_Protected_Type (T) then | |
5147 | Set_Debug_Info_Needed (Corresponding_Record_Type (T)); | |
5148 | end if; | |
5149 | end if; | |
70482933 RK |
5150 | end Set_Debug_Info_Needed; |
5151 | ||
c6823a20 EB |
5152 | ------------------ |
5153 | -- Undelay_Type -- | |
5154 | ------------------ | |
5155 | ||
5156 | procedure Undelay_Type (T : Entity_Id) is | |
5157 | begin | |
5158 | Set_Has_Delayed_Freeze (T, False); | |
5159 | Set_Freeze_Node (T, Empty); | |
5160 | ||
5161 | -- Since we don't want T to have a Freeze_Node, we don't want its | |
5162 | -- Full_View or Corresponding_Record_Type to have one either. | |
5163 | ||
5164 | -- ??? Fundamentally, this whole handling is a kludge. What we really | |
ee094616 RD |
5165 | -- want is to be sure that for an Itype that's part of record R and is a |
5166 | -- subtype of type T, that it's frozen after the later of the freeze | |
c6823a20 EB |
5167 | -- points of R and T. We have no way of doing that directly, so what we |
5168 | -- do is force most such Itypes to be frozen as part of freezing R via | |
5169 | -- this procedure and only delay the ones that need to be delayed | |
ee094616 RD |
5170 | -- (mostly the designated types of access types that are defined as part |
5171 | -- of the record). | |
c6823a20 EB |
5172 | |
5173 | if Is_Private_Type (T) | |
5174 | and then Present (Full_View (T)) | |
5175 | and then Is_Itype (Full_View (T)) | |
5176 | and then Is_Record_Type (Scope (Full_View (T))) | |
5177 | then | |
5178 | Undelay_Type (Full_View (T)); | |
5179 | end if; | |
5180 | ||
5181 | if Is_Concurrent_Type (T) | |
5182 | and then Present (Corresponding_Record_Type (T)) | |
5183 | and then Is_Itype (Corresponding_Record_Type (T)) | |
5184 | and then Is_Record_Type (Scope (Corresponding_Record_Type (T))) | |
5185 | then | |
5186 | Undelay_Type (Corresponding_Record_Type (T)); | |
5187 | end if; | |
5188 | end Undelay_Type; | |
5189 | ||
fbf5a39b AC |
5190 | ------------------ |
5191 | -- Warn_Overlay -- | |
5192 | ------------------ | |
5193 | ||
5194 | procedure Warn_Overlay | |
5195 | (Expr : Node_Id; | |
5196 | Typ : Entity_Id; | |
5197 | Nam : Entity_Id) | |
5198 | is | |
5199 | Ent : constant Entity_Id := Entity (Nam); | |
49e90211 | 5200 | -- The object to which the address clause applies |
fbf5a39b AC |
5201 | |
5202 | Init : Node_Id; | |
5203 | Old : Entity_Id := Empty; | |
5204 | Decl : Node_Id; | |
5205 | ||
5206 | begin | |
5207 | -- No warning if address clause overlay warnings are off | |
5208 | ||
5209 | if not Address_Clause_Overlay_Warnings then | |
5210 | return; | |
5211 | end if; | |
5212 | ||
5213 | -- No warning if there is an explicit initialization | |
5214 | ||
5215 | Init := Original_Node (Expression (Declaration_Node (Ent))); | |
5216 | ||
5217 | if Present (Init) and then Comes_From_Source (Init) then | |
5218 | return; | |
5219 | end if; | |
5220 | ||
edd63e9b ES |
5221 | -- We only give the warning for non-imported entities of a type for |
5222 | -- which a non-null base init proc is defined (or for access types which | |
5223 | -- have implicit null initialization). | |
fbf5a39b AC |
5224 | |
5225 | if Present (Expr) | |
5226 | and then (Has_Non_Null_Base_Init_Proc (Typ) | |
5227 | or else Is_Access_Type (Typ)) | |
5228 | and then not Is_Imported (Ent) | |
5229 | then | |
5230 | if Nkind (Expr) = N_Attribute_Reference | |
5231 | and then Is_Entity_Name (Prefix (Expr)) | |
5232 | then | |
5233 | Old := Entity (Prefix (Expr)); | |
5234 | ||
5235 | elsif Is_Entity_Name (Expr) | |
5236 | and then Ekind (Entity (Expr)) = E_Constant | |
5237 | then | |
5238 | Decl := Declaration_Node (Entity (Expr)); | |
5239 | ||
5240 | if Nkind (Decl) = N_Object_Declaration | |
5241 | and then Present (Expression (Decl)) | |
5242 | and then Nkind (Expression (Decl)) = N_Attribute_Reference | |
5243 | and then Is_Entity_Name (Prefix (Expression (Decl))) | |
5244 | then | |
5245 | Old := Entity (Prefix (Expression (Decl))); | |
5246 | ||
5247 | elsif Nkind (Expr) = N_Function_Call then | |
5248 | return; | |
5249 | end if; | |
5250 | ||
ee094616 RD |
5251 | -- A function call (most likely to To_Address) is probably not an |
5252 | -- overlay, so skip warning. Ditto if the function call was inlined | |
5253 | -- and transformed into an entity. | |
fbf5a39b AC |
5254 | |
5255 | elsif Nkind (Original_Node (Expr)) = N_Function_Call then | |
5256 | return; | |
5257 | end if; | |
5258 | ||
5259 | Decl := Next (Parent (Expr)); | |
5260 | ||
5261 | -- If a pragma Import follows, we assume that it is for the current | |
5262 | -- target of the address clause, and skip the warning. | |
5263 | ||
5264 | if Present (Decl) | |
5265 | and then Nkind (Decl) = N_Pragma | |
5266 | and then Chars (Decl) = Name_Import | |
5267 | then | |
5268 | return; | |
5269 | end if; | |
5270 | ||
5271 | if Present (Old) then | |
5272 | Error_Msg_Node_2 := Old; | |
5273 | Error_Msg_N | |
5274 | ("default initialization of & may modify &?", | |
5275 | Nam); | |
5276 | else | |
5277 | Error_Msg_N | |
5278 | ("default initialization of & may modify overlaid storage?", | |
5279 | Nam); | |
5280 | end if; | |
5281 | ||
5282 | -- Add friendly warning if initialization comes from a packed array | |
5283 | -- component. | |
5284 | ||
5285 | if Is_Record_Type (Typ) then | |
5286 | declare | |
5287 | Comp : Entity_Id; | |
5288 | ||
5289 | begin | |
5290 | Comp := First_Component (Typ); | |
5291 | ||
5292 | while Present (Comp) loop | |
5293 | if Nkind (Parent (Comp)) = N_Component_Declaration | |
5294 | and then Present (Expression (Parent (Comp))) | |
5295 | then | |
5296 | exit; | |
5297 | elsif Is_Array_Type (Etype (Comp)) | |
5298 | and then Present (Packed_Array_Type (Etype (Comp))) | |
5299 | then | |
5300 | Error_Msg_NE | |
3f1ede06 RD |
5301 | ("\packed array component& " & |
5302 | "will be initialized to zero?", | |
5303 | Nam, Comp); | |
fbf5a39b AC |
5304 | exit; |
5305 | else | |
5306 | Next_Component (Comp); | |
5307 | end if; | |
5308 | end loop; | |
5309 | end; | |
5310 | end if; | |
5311 | ||
5312 | Error_Msg_N | |
3f1ede06 | 5313 | ("\use pragma Import for & to " & |
86cde7b1 | 5314 | "suppress initialization (RM B.1(24))?", |
3f1ede06 | 5315 | Nam); |
fbf5a39b AC |
5316 | end if; |
5317 | end Warn_Overlay; | |
5318 | ||
70482933 | 5319 | end Freeze; |