]> gcc.gnu.org Git - gcc.git/blame - gcc/ada/freeze.adb
adaint.c (__gnat_pthread_setaffinity_np): New routine.
[gcc.git] / gcc / ada / freeze.adb
CommitLineData
19590d70 1-----------------------------------------------------------------------------
70482933
RK
2-- --
3-- GNAT COMPILER COMPONENTS --
4-- --
5-- F R E E Z E --
6-- --
7-- B o d y --
8-- --
7d8b9c99 9-- Copyright (C) 1992-2007, Free Software Foundation, Inc. --
70482933
RK
10-- --
11-- GNAT is free software; you can redistribute it and/or modify it under --
12-- terms of the GNU General Public License as published by the Free Soft- --
13-- ware Foundation; either version 2, or (at your option) any later ver- --
14-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16-- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17-- for more details. You should have received a copy of the GNU General --
18-- Public License distributed with GNAT; see file COPYING. If not, write --
cb5fee25
KC
19-- to the Free Software Foundation, 51 Franklin Street, Fifth Floor, --
20-- Boston, MA 02110-1301, USA. --
70482933
RK
21-- --
22-- GNAT was originally developed by the GNAT team at New York University. --
71ff80dc 23-- Extensive contributions were provided by Ada Core Technologies Inc. --
70482933
RK
24-- --
25------------------------------------------------------------------------------
26
27with Atree; use Atree;
28with Debug; use Debug;
29with Einfo; use Einfo;
30with Elists; use Elists;
31with Errout; use Errout;
32with Exp_Ch7; use Exp_Ch7;
70482933
RK
33with Exp_Pakd; use Exp_Pakd;
34with Exp_Util; use Exp_Util;
fbf5a39b 35with Exp_Tss; use Exp_Tss;
70482933 36with Layout; use Layout;
07fc65c4 37with Lib.Xref; use Lib.Xref;
7d8b9c99 38with Namet; use Namet;
70482933
RK
39with Nlists; use Nlists;
40with Nmake; use Nmake;
41with Opt; use Opt;
42with Restrict; use Restrict;
6e937c1c 43with Rident; use Rident;
70482933
RK
44with Sem; use Sem;
45with Sem_Cat; use Sem_Cat;
46with Sem_Ch6; use Sem_Ch6;
47with Sem_Ch7; use Sem_Ch7;
48with Sem_Ch8; use Sem_Ch8;
49with Sem_Ch13; use Sem_Ch13;
50with Sem_Eval; use Sem_Eval;
51with Sem_Mech; use Sem_Mech;
52with Sem_Prag; use Sem_Prag;
53with Sem_Res; use Sem_Res;
54with Sem_Util; use Sem_Util;
55with Sinfo; use Sinfo;
56with Snames; use Snames;
57with Stand; use Stand;
58with Targparm; use Targparm;
59with Tbuild; use Tbuild;
60with Ttypes; use Ttypes;
61with Uintp; use Uintp;
62with Urealp; use Urealp;
63
64package body Freeze is
65
66 -----------------------
67 -- Local Subprograms --
68 -----------------------
69
70 procedure Adjust_Esize_For_Alignment (Typ : Entity_Id);
71 -- Typ is a type that is being frozen. If no size clause is given,
72 -- but a default Esize has been computed, then this default Esize is
73 -- adjusted up if necessary to be consistent with a given alignment,
74 -- but never to a value greater than Long_Long_Integer'Size. This
75 -- is used for all discrete types and for fixed-point types.
76
77 procedure Build_And_Analyze_Renamed_Body
78 (Decl : Node_Id;
79 New_S : Entity_Id;
80 After : in out Node_Id);
49e90211 81 -- Build body for a renaming declaration, insert in tree and analyze
70482933 82
fbf5a39b
AC
83 procedure Check_Address_Clause (E : Entity_Id);
84 -- Apply legality checks to address clauses for object declarations,
2c9beb8a 85 -- at the point the object is frozen.
fbf5a39b 86
70482933
RK
87 procedure Check_Strict_Alignment (E : Entity_Id);
88 -- E is a base type. If E is tagged or has a component that is aliased
89 -- or tagged or contains something this is aliased or tagged, set
90 -- Strict_Alignment.
91
92 procedure Check_Unsigned_Type (E : Entity_Id);
93 pragma Inline (Check_Unsigned_Type);
94 -- If E is a fixed-point or discrete type, then all the necessary work
95 -- to freeze it is completed except for possible setting of the flag
96 -- Is_Unsigned_Type, which is done by this procedure. The call has no
97 -- effect if the entity E is not a discrete or fixed-point type.
98
99 procedure Freeze_And_Append
100 (Ent : Entity_Id;
101 Loc : Source_Ptr;
102 Result : in out List_Id);
103 -- Freezes Ent using Freeze_Entity, and appends the resulting list of
104 -- nodes to Result, modifying Result from No_List if necessary.
105
106 procedure Freeze_Enumeration_Type (Typ : Entity_Id);
107 -- Freeze enumeration type. The Esize field is set as processing
108 -- proceeds (i.e. set by default when the type is declared and then
109 -- adjusted by rep clauses. What this procedure does is to make sure
110 -- that if a foreign convention is specified, and no specific size
111 -- is given, then the size must be at least Integer'Size.
112
70482933
RK
113 procedure Freeze_Static_Object (E : Entity_Id);
114 -- If an object is frozen which has Is_Statically_Allocated set, then
115 -- all referenced types must also be marked with this flag. This routine
116 -- is in charge of meeting this requirement for the object entity E.
117
118 procedure Freeze_Subprogram (E : Entity_Id);
119 -- Perform freezing actions for a subprogram (create extra formals,
120 -- and set proper default mechanism values). Note that this routine
121 -- is not called for internal subprograms, for which neither of these
122 -- actions is needed (or desirable, we do not want for example to have
123 -- these extra formals present in initialization procedures, where they
124 -- would serve no purpose). In this call E is either a subprogram or
125 -- a subprogram type (i.e. an access to a subprogram).
126
127 function Is_Fully_Defined (T : Entity_Id) return Boolean;
bde58e32 128 -- True if T is not private and has no private components, or has a full
657a9dd9
AC
129 -- view. Used to determine whether the designated type of an access type
130 -- should be frozen when the access type is frozen. This is done when an
131 -- allocator is frozen, or an expression that may involve attributes of
132 -- the designated type. Otherwise freezing the access type does not freeze
133 -- the designated type.
70482933
RK
134
135 procedure Process_Default_Expressions
136 (E : Entity_Id;
137 After : in out Node_Id);
138 -- This procedure is called for each subprogram to complete processing
139 -- of default expressions at the point where all types are known to be
140 -- frozen. The expressions must be analyzed in full, to make sure that
141 -- all error processing is done (they have only been pre-analyzed). If
142 -- the expression is not an entity or literal, its analysis may generate
143 -- code which must not be executed. In that case we build a function
144 -- body to hold that code. This wrapper function serves no other purpose
145 -- (it used to be called to evaluate the default, but now the default is
146 -- inlined at each point of call).
147
148 procedure Set_Component_Alignment_If_Not_Set (Typ : Entity_Id);
149 -- Typ is a record or array type that is being frozen. This routine
150 -- sets the default component alignment from the scope stack values
151 -- if the alignment is otherwise not specified.
152
153 procedure Check_Debug_Info_Needed (T : Entity_Id);
154 -- As each entity is frozen, this routine is called to deal with the
155 -- setting of Debug_Info_Needed for the entity. This flag is set if
156 -- the entity comes from source, or if we are in Debug_Generated_Code
157 -- mode or if the -gnatdV debug flag is set. However, it never sets
158 -- the flag if Debug_Info_Off is set.
159
160 procedure Set_Debug_Info_Needed (T : Entity_Id);
161 -- Sets the Debug_Info_Needed flag on entity T if not already set, and
162 -- also on any entities that are needed by T (for an object, the type
163 -- of the object is needed, and for a type, the subsidiary types are
164 -- needed -- see body for details). Never has any effect on T if the
165 -- Debug_Info_Off flag is set.
166
c6823a20
EB
167 procedure Undelay_Type (T : Entity_Id);
168 -- T is a type of a component that we know to be an Itype.
169 -- We don't want this to have a Freeze_Node, so ensure it doesn't.
170 -- Do the same for any Full_View or Corresponding_Record_Type.
171
fbf5a39b
AC
172 procedure Warn_Overlay
173 (Expr : Node_Id;
174 Typ : Entity_Id;
175 Nam : Node_Id);
176 -- Expr is the expression for an address clause for entity Nam whose type
177 -- is Typ. If Typ has a default initialization, and there is no explicit
178 -- initialization in the source declaration, check whether the address
179 -- clause might cause overlaying of an entity, and emit a warning on the
180 -- side effect that the initialization will cause.
181
70482933
RK
182 -------------------------------
183 -- Adjust_Esize_For_Alignment --
184 -------------------------------
185
186 procedure Adjust_Esize_For_Alignment (Typ : Entity_Id) is
187 Align : Uint;
188
189 begin
190 if Known_Esize (Typ) and then Known_Alignment (Typ) then
191 Align := Alignment_In_Bits (Typ);
192
193 if Align > Esize (Typ)
194 and then Align <= Standard_Long_Long_Integer_Size
195 then
196 Set_Esize (Typ, Align);
197 end if;
198 end if;
199 end Adjust_Esize_For_Alignment;
200
201 ------------------------------------
202 -- Build_And_Analyze_Renamed_Body --
203 ------------------------------------
204
205 procedure Build_And_Analyze_Renamed_Body
206 (Decl : Node_Id;
207 New_S : Entity_Id;
208 After : in out Node_Id)
209 is
210 Body_Node : constant Node_Id := Build_Renamed_Body (Decl, New_S);
70482933
RK
211 begin
212 Insert_After (After, Body_Node);
213 Mark_Rewrite_Insertion (Body_Node);
214 Analyze (Body_Node);
215 After := Body_Node;
216 end Build_And_Analyze_Renamed_Body;
217
218 ------------------------
219 -- Build_Renamed_Body --
220 ------------------------
221
222 function Build_Renamed_Body
223 (Decl : Node_Id;
fbf5a39b 224 New_S : Entity_Id) return Node_Id
70482933
RK
225 is
226 Loc : constant Source_Ptr := Sloc (New_S);
227 -- We use for the source location of the renamed body, the location
228 -- of the spec entity. It might seem more natural to use the location
229 -- of the renaming declaration itself, but that would be wrong, since
230 -- then the body we create would look as though it was created far
231 -- too late, and this could cause problems with elaboration order
232 -- analysis, particularly in connection with instantiations.
233
234 N : constant Node_Id := Unit_Declaration_Node (New_S);
235 Nam : constant Node_Id := Name (N);
236 Old_S : Entity_Id;
237 Spec : constant Node_Id := New_Copy_Tree (Specification (Decl));
238 Actuals : List_Id := No_List;
239 Call_Node : Node_Id;
240 Call_Name : Node_Id;
241 Body_Node : Node_Id;
242 Formal : Entity_Id;
243 O_Formal : Entity_Id;
244 Param_Spec : Node_Id;
245
246 begin
247 -- Determine the entity being renamed, which is the target of the
248 -- call statement. If the name is an explicit dereference, this is
249 -- a renaming of a subprogram type rather than a subprogram. The
250 -- name itself is fully analyzed.
251
252 if Nkind (Nam) = N_Selected_Component then
253 Old_S := Entity (Selector_Name (Nam));
254
255 elsif Nkind (Nam) = N_Explicit_Dereference then
256 Old_S := Etype (Nam);
257
258 elsif Nkind (Nam) = N_Indexed_Component then
70482933
RK
259 if Is_Entity_Name (Prefix (Nam)) then
260 Old_S := Entity (Prefix (Nam));
261 else
262 Old_S := Entity (Selector_Name (Prefix (Nam)));
263 end if;
264
265 elsif Nkind (Nam) = N_Character_Literal then
266 Old_S := Etype (New_S);
267
268 else
269 Old_S := Entity (Nam);
270 end if;
271
272 if Is_Entity_Name (Nam) then
07fc65c4
GB
273
274 -- If the renamed entity is a predefined operator, retain full
275 -- name to ensure its visibility.
276
277 if Ekind (Old_S) = E_Operator
278 and then Nkind (Nam) = N_Expanded_Name
279 then
280 Call_Name := New_Copy (Name (N));
281 else
282 Call_Name := New_Reference_To (Old_S, Loc);
283 end if;
284
70482933
RK
285 else
286 Call_Name := New_Copy (Name (N));
287
288 -- The original name may have been overloaded, but
289 -- is fully resolved now.
290
291 Set_Is_Overloaded (Call_Name, False);
292 end if;
293
294 -- For simple renamings, subsequent calls can be expanded directly
295 -- as called to the renamed entity. The body must be generated in
296 -- any case for calls they may appear elsewhere.
297
298 if (Ekind (Old_S) = E_Function
299 or else Ekind (Old_S) = E_Procedure)
300 and then Nkind (Decl) = N_Subprogram_Declaration
301 then
302 Set_Body_To_Inline (Decl, Old_S);
303 end if;
304
305 -- The body generated for this renaming is an internal artifact, and
306 -- does not constitute a freeze point for the called entity.
307
308 Set_Must_Not_Freeze (Call_Name);
309
310 Formal := First_Formal (Defining_Entity (Decl));
311
312 if Present (Formal) then
313 Actuals := New_List;
314
315 while Present (Formal) loop
316 Append (New_Reference_To (Formal, Loc), Actuals);
317 Next_Formal (Formal);
318 end loop;
319 end if;
320
321 -- If the renamed entity is an entry, inherit its profile. For
322 -- other renamings as bodies, both profiles must be subtype
323 -- conformant, so it is not necessary to replace the profile given
324 -- in the declaration. However, default values that are aggregates
325 -- are rewritten when partially analyzed, so we recover the original
326 -- aggregate to insure that subsequent conformity checking works.
07fc65c4
GB
327 -- Similarly, if the default expression was constant-folded, recover
328 -- the original expression.
70482933
RK
329
330 Formal := First_Formal (Defining_Entity (Decl));
331
332 if Present (Formal) then
333 O_Formal := First_Formal (Old_S);
334 Param_Spec := First (Parameter_Specifications (Spec));
335
336 while Present (Formal) loop
337 if Is_Entry (Old_S) then
338
339 if Nkind (Parameter_Type (Param_Spec)) /=
340 N_Access_Definition
341 then
342 Set_Etype (Formal, Etype (O_Formal));
343 Set_Entity (Parameter_Type (Param_Spec), Etype (O_Formal));
344 end if;
345
07fc65c4
GB
346 elsif Nkind (Default_Value (O_Formal)) = N_Aggregate
347 or else Nkind (Original_Node (Default_Value (O_Formal))) /=
348 Nkind (Default_Value (O_Formal))
349 then
70482933
RK
350 Set_Expression (Param_Spec,
351 New_Copy_Tree (Original_Node (Default_Value (O_Formal))));
352 end if;
353
354 Next_Formal (Formal);
355 Next_Formal (O_Formal);
356 Next (Param_Spec);
357 end loop;
358 end if;
359
360 -- If the renamed entity is a function, the generated body contains a
361 -- return statement. Otherwise, build a procedure call. If the entity is
362 -- an entry, subsequent analysis of the call will transform it into the
363 -- proper entry or protected operation call. If the renamed entity is
364 -- a character literal, return it directly.
365
366 if Ekind (Old_S) = E_Function
367 or else Ekind (Old_S) = E_Operator
368 or else (Ekind (Old_S) = E_Subprogram_Type
369 and then Etype (Old_S) /= Standard_Void_Type)
370 then
371 Call_Node :=
86cde7b1 372 Make_Simple_Return_Statement (Loc,
70482933
RK
373 Expression =>
374 Make_Function_Call (Loc,
375 Name => Call_Name,
376 Parameter_Associations => Actuals));
377
378 elsif Ekind (Old_S) = E_Enumeration_Literal then
379 Call_Node :=
86cde7b1 380 Make_Simple_Return_Statement (Loc,
70482933
RK
381 Expression => New_Occurrence_Of (Old_S, Loc));
382
383 elsif Nkind (Nam) = N_Character_Literal then
384 Call_Node :=
86cde7b1 385 Make_Simple_Return_Statement (Loc,
70482933
RK
386 Expression => Call_Name);
387
388 else
389 Call_Node :=
390 Make_Procedure_Call_Statement (Loc,
391 Name => Call_Name,
392 Parameter_Associations => Actuals);
393 end if;
394
49e90211 395 -- Create entities for subprogram body and formals
70482933
RK
396
397 Set_Defining_Unit_Name (Spec,
398 Make_Defining_Identifier (Loc, Chars => Chars (New_S)));
399
400 Param_Spec := First (Parameter_Specifications (Spec));
401
402 while Present (Param_Spec) loop
403 Set_Defining_Identifier (Param_Spec,
404 Make_Defining_Identifier (Loc,
405 Chars => Chars (Defining_Identifier (Param_Spec))));
406 Next (Param_Spec);
407 end loop;
408
409 Body_Node :=
410 Make_Subprogram_Body (Loc,
411 Specification => Spec,
412 Declarations => New_List,
413 Handled_Statement_Sequence =>
414 Make_Handled_Sequence_Of_Statements (Loc,
415 Statements => New_List (Call_Node)));
416
417 if Nkind (Decl) /= N_Subprogram_Declaration then
418 Rewrite (N,
419 Make_Subprogram_Declaration (Loc,
420 Specification => Specification (N)));
421 end if;
422
423 -- Link the body to the entity whose declaration it completes. If
424 -- the body is analyzed when the renamed entity is frozen, it may be
425 -- necessary to restore the proper scope (see package Exp_Ch13).
426
427 if Nkind (N) = N_Subprogram_Renaming_Declaration
428 and then Present (Corresponding_Spec (N))
429 then
430 Set_Corresponding_Spec (Body_Node, Corresponding_Spec (N));
431 else
432 Set_Corresponding_Spec (Body_Node, New_S);
433 end if;
434
435 return Body_Node;
436 end Build_Renamed_Body;
437
fbf5a39b
AC
438 --------------------------
439 -- Check_Address_Clause --
440 --------------------------
441
442 procedure Check_Address_Clause (E : Entity_Id) is
443 Addr : constant Node_Id := Address_Clause (E);
444 Expr : Node_Id;
445 Decl : constant Node_Id := Declaration_Node (E);
446 Typ : constant Entity_Id := Etype (E);
447
448 begin
449 if Present (Addr) then
450 Expr := Expression (Addr);
451
452 -- If we have no initialization of any kind, then we don't
453 -- need to place any restrictions on the address clause, because
454 -- the object will be elaborated after the address clause is
455 -- evaluated. This happens if the declaration has no initial
456 -- expression, or the type has no implicit initialization, or
457 -- the object is imported.
458
459 -- The same holds for all initialized scalar types and all
460 -- access types. Packed bit arrays of size up to 64 are
461 -- represented using a modular type with an initialization
462 -- (to zero) and can be processed like other initialized
463 -- scalar types.
464
465 -- If the type is controlled, code to attach the object to a
466 -- finalization chain is generated at the point of declaration,
467 -- and therefore the elaboration of the object cannot be delayed:
468 -- the address expression must be a constant.
469
470 if (No (Expression (Decl))
471 and then not Controlled_Type (Typ)
472 and then
473 (not Has_Non_Null_Base_Init_Proc (Typ)
474 or else Is_Imported (E)))
475
476 or else
477 (Present (Expression (Decl))
478 and then Is_Scalar_Type (Typ))
479
480 or else
481 Is_Access_Type (Typ)
482
483 or else
484 (Is_Bit_Packed_Array (Typ)
485 and then
486 Is_Modular_Integer_Type (Packed_Array_Type (Typ)))
487 then
488 null;
489
490 -- Otherwise, we require the address clause to be constant
491 -- because the call to the initialization procedure (or the
492 -- attach code) has to happen at the point of the declaration.
493
494 else
495 Check_Constant_Address_Clause (Expr, E);
496 Set_Has_Delayed_Freeze (E, False);
497 end if;
498
499 if not Error_Posted (Expr)
500 and then not Controlled_Type (Typ)
501 then
502 Warn_Overlay (Expr, Typ, Name (Addr));
503 end if;
504 end if;
505 end Check_Address_Clause;
506
70482933
RK
507 -----------------------------
508 -- Check_Compile_Time_Size --
509 -----------------------------
510
511 procedure Check_Compile_Time_Size (T : Entity_Id) is
512
c6823a20 513 procedure Set_Small_Size (T : Entity_Id; S : Uint);
70482933 514 -- Sets the compile time known size (32 bits or less) in the Esize
c6823a20 515 -- field, of T checking for a size clause that was given which attempts
70482933
RK
516 -- to give a smaller size.
517
518 function Size_Known (T : Entity_Id) return Boolean;
07fc65c4 519 -- Recursive function that does all the work
70482933
RK
520
521 function Static_Discriminated_Components (T : Entity_Id) return Boolean;
522 -- If T is a constrained subtype, its size is not known if any of its
523 -- discriminant constraints is not static and it is not a null record.
fbf5a39b 524 -- The test is conservative and doesn't check that the components are
70482933
RK
525 -- in fact constrained by non-static discriminant values. Could be made
526 -- more precise ???
527
528 --------------------
529 -- Set_Small_Size --
530 --------------------
531
c6823a20 532 procedure Set_Small_Size (T : Entity_Id; S : Uint) is
70482933
RK
533 begin
534 if S > 32 then
535 return;
536
537 elsif Has_Size_Clause (T) then
538 if RM_Size (T) < S then
539 Error_Msg_Uint_1 := S;
540 Error_Msg_NE
7d8b9c99 541 ("size for & too small, minimum allowed is ^",
70482933
RK
542 Size_Clause (T), T);
543
544 elsif Unknown_Esize (T) then
545 Set_Esize (T, S);
546 end if;
547
548 -- Set sizes if not set already
549
550 else
551 if Unknown_Esize (T) then
552 Set_Esize (T, S);
553 end if;
554
555 if Unknown_RM_Size (T) then
556 Set_RM_Size (T, S);
557 end if;
558 end if;
559 end Set_Small_Size;
560
561 ----------------
562 -- Size_Known --
563 ----------------
564
565 function Size_Known (T : Entity_Id) return Boolean is
566 Index : Entity_Id;
567 Comp : Entity_Id;
568 Ctyp : Entity_Id;
569 Low : Node_Id;
570 High : Node_Id;
571
572 begin
573 if Size_Known_At_Compile_Time (T) then
574 return True;
575
70482933
RK
576 elsif Is_Scalar_Type (T)
577 or else Is_Task_Type (T)
578 then
579 return not Is_Generic_Type (T);
580
581 elsif Is_Array_Type (T) then
70482933 582 if Ekind (T) = E_String_Literal_Subtype then
c6823a20
EB
583 Set_Small_Size (T, Component_Size (T)
584 * String_Literal_Length (T));
70482933
RK
585 return True;
586
587 elsif not Is_Constrained (T) then
588 return False;
589
07fc65c4
GB
590 -- Don't do any recursion on type with error posted, since
591 -- we may have a malformed type that leads us into a loop
592
593 elsif Error_Posted (T) then
594 return False;
595
70482933
RK
596 elsif not Size_Known (Component_Type (T)) then
597 return False;
598 end if;
599
600 -- Check for all indexes static, and also compute possible
601 -- size (in case it is less than 32 and may be packable).
602
603 declare
604 Esiz : Uint := Component_Size (T);
605 Dim : Uint;
606
607 begin
608 Index := First_Index (T);
70482933
RK
609 while Present (Index) loop
610 if Nkind (Index) = N_Range then
611 Get_Index_Bounds (Index, Low, High);
612
613 elsif Error_Posted (Scalar_Range (Etype (Index))) then
614 return False;
615
616 else
617 Low := Type_Low_Bound (Etype (Index));
618 High := Type_High_Bound (Etype (Index));
619 end if;
620
621 if not Compile_Time_Known_Value (Low)
622 or else not Compile_Time_Known_Value (High)
623 or else Etype (Index) = Any_Type
624 then
625 return False;
626
627 else
628 Dim := Expr_Value (High) - Expr_Value (Low) + 1;
629
630 if Dim >= 0 then
631 Esiz := Esiz * Dim;
632 else
633 Esiz := Uint_0;
634 end if;
635 end if;
636
637 Next_Index (Index);
638 end loop;
639
c6823a20 640 Set_Small_Size (T, Esiz);
70482933
RK
641 return True;
642 end;
643
644 elsif Is_Access_Type (T) then
645 return True;
646
647 elsif Is_Private_Type (T)
648 and then not Is_Generic_Type (T)
649 and then Present (Underlying_Type (T))
650 then
07fc65c4
GB
651 -- Don't do any recursion on type with error posted, since
652 -- we may have a malformed type that leads us into a loop
653
654 if Error_Posted (T) then
655 return False;
656 else
657 return Size_Known (Underlying_Type (T));
658 end if;
70482933
RK
659
660 elsif Is_Record_Type (T) then
fbf5a39b
AC
661
662 -- A class-wide type is never considered to have a known size
663
70482933
RK
664 if Is_Class_Wide_Type (T) then
665 return False;
666
fbf5a39b
AC
667 -- A subtype of a variant record must not have non-static
668 -- discriminanted components.
669
670 elsif T /= Base_Type (T)
671 and then not Static_Discriminated_Components (T)
672 then
673 return False;
70482933 674
07fc65c4
GB
675 -- Don't do any recursion on type with error posted, since
676 -- we may have a malformed type that leads us into a loop
677
678 elsif Error_Posted (T) then
679 return False;
fbf5a39b 680 end if;
07fc65c4 681
fbf5a39b 682 -- Now look at the components of the record
70482933 683
fbf5a39b
AC
684 declare
685 -- The following two variables are used to keep track of
686 -- the size of packed records if we can tell the size of
687 -- the packed record in the front end. Packed_Size_Known
688 -- is True if so far we can figure out the size. It is
689 -- initialized to True for a packed record, unless the
690 -- record has discriminants. The reason we eliminate the
691 -- discriminated case is that we don't know the way the
692 -- back end lays out discriminated packed records. If
693 -- Packed_Size_Known is True, then Packed_Size is the
694 -- size in bits so far.
695
696 Packed_Size_Known : Boolean :=
697 Is_Packed (T)
698 and then not Has_Discriminants (T);
699
700 Packed_Size : Uint := Uint_0;
701
702 begin
703 -- Test for variant part present
704
705 if Has_Discriminants (T)
706 and then Present (Parent (T))
707 and then Nkind (Parent (T)) = N_Full_Type_Declaration
708 and then Nkind (Type_Definition (Parent (T))) =
709 N_Record_Definition
710 and then not Null_Present (Type_Definition (Parent (T)))
711 and then Present (Variant_Part
712 (Component_List (Type_Definition (Parent (T)))))
713 then
714 -- If variant part is present, and type is unconstrained,
715 -- then we must have defaulted discriminants, or a size
716 -- clause must be present for the type, or else the size
717 -- is definitely not known at compile time.
718
719 if not Is_Constrained (T)
720 and then
721 No (Discriminant_Default_Value
722 (First_Discriminant (T)))
723 and then Unknown_Esize (T)
70482933 724 then
fbf5a39b
AC
725 return False;
726 end if;
727 end if;
70482933 728
fbf5a39b
AC
729 -- Loop through components
730
fea9e956 731 Comp := First_Component_Or_Discriminant (T);
fbf5a39b 732 while Present (Comp) loop
fea9e956 733 Ctyp := Etype (Comp);
fbf5a39b 734
fea9e956
ES
735 -- We do not know the packed size if there is a component
736 -- clause present (we possibly could, but this would only
737 -- help in the case of a record with partial rep clauses.
738 -- That's because in the case of full rep clauses, the
739 -- size gets figured out anyway by a different circuit).
fbf5a39b 740
fea9e956
ES
741 if Present (Component_Clause (Comp)) then
742 Packed_Size_Known := False;
743 end if;
70482933 744
fea9e956
ES
745 -- We need to identify a component that is an array where
746 -- the index type is an enumeration type with non-standard
747 -- representation, and some bound of the type depends on a
748 -- discriminant.
70482933 749
fea9e956
ES
750 -- This is because gigi computes the size by doing a
751 -- substituation of the appropriate discriminant value in
752 -- the size expression for the base type, and gigi is not
753 -- clever enough to evaluate the resulting expression (which
754 -- involves a call to rep_to_pos) at compile time.
fbf5a39b 755
fea9e956
ES
756 -- It would be nice if gigi would either recognize that
757 -- this expression can be computed at compile time, or
758 -- alternatively figured out the size from the subtype
759 -- directly, where all the information is at hand ???
fbf5a39b 760
fea9e956
ES
761 if Is_Array_Type (Etype (Comp))
762 and then Present (Packed_Array_Type (Etype (Comp)))
763 then
764 declare
765 Ocomp : constant Entity_Id :=
766 Original_Record_Component (Comp);
767 OCtyp : constant Entity_Id := Etype (Ocomp);
768 Ind : Node_Id;
769 Indtyp : Entity_Id;
770 Lo, Hi : Node_Id;
70482933 771
fea9e956
ES
772 begin
773 Ind := First_Index (OCtyp);
774 while Present (Ind) loop
775 Indtyp := Etype (Ind);
70482933 776
fea9e956
ES
777 if Is_Enumeration_Type (Indtyp)
778 and then Has_Non_Standard_Rep (Indtyp)
779 then
780 Lo := Type_Low_Bound (Indtyp);
781 Hi := Type_High_Bound (Indtyp);
fbf5a39b 782
fea9e956
ES
783 if Is_Entity_Name (Lo)
784 and then Ekind (Entity (Lo)) = E_Discriminant
785 then
786 return False;
fbf5a39b 787
fea9e956
ES
788 elsif Is_Entity_Name (Hi)
789 and then Ekind (Entity (Hi)) = E_Discriminant
790 then
791 return False;
792 end if;
793 end if;
fbf5a39b 794
fea9e956
ES
795 Next_Index (Ind);
796 end loop;
797 end;
798 end if;
70482933 799
fea9e956
ES
800 -- Clearly size of record is not known if the size of
801 -- one of the components is not known.
70482933 802
fea9e956
ES
803 if not Size_Known (Ctyp) then
804 return False;
805 end if;
70482933 806
fea9e956 807 -- Accumulate packed size if possible
70482933 808
fea9e956 809 if Packed_Size_Known then
70482933 810
fea9e956
ES
811 -- We can only deal with elementary types, since for
812 -- non-elementary components, alignment enters into the
813 -- picture, and we don't know enough to handle proper
814 -- alignment in this context. Packed arrays count as
815 -- elementary if the representation is a modular type.
fbf5a39b 816
fea9e956
ES
817 if Is_Elementary_Type (Ctyp)
818 or else (Is_Array_Type (Ctyp)
819 and then Present (Packed_Array_Type (Ctyp))
820 and then Is_Modular_Integer_Type
821 (Packed_Array_Type (Ctyp)))
822 then
823 -- If RM_Size is known and static, then we can
824 -- keep accumulating the packed size.
70482933 825
fea9e956 826 if Known_Static_RM_Size (Ctyp) then
70482933 827
fea9e956
ES
828 -- A little glitch, to be removed sometime ???
829 -- gigi does not understand zero sizes yet.
830
831 if RM_Size (Ctyp) = Uint_0 then
70482933 832 Packed_Size_Known := False;
fea9e956
ES
833
834 -- Normal case where we can keep accumulating the
835 -- packed array size.
836
837 else
838 Packed_Size := Packed_Size + RM_Size (Ctyp);
70482933 839 end if;
fbf5a39b 840
fea9e956
ES
841 -- If we have a field whose RM_Size is not known then
842 -- we can't figure out the packed size here.
fbf5a39b
AC
843
844 else
845 Packed_Size_Known := False;
70482933 846 end if;
fea9e956
ES
847
848 -- If we have a non-elementary type we can't figure out
849 -- the packed array size (alignment issues).
850
851 else
852 Packed_Size_Known := False;
70482933 853 end if;
fbf5a39b 854 end if;
70482933 855
fea9e956 856 Next_Component_Or_Discriminant (Comp);
fbf5a39b 857 end loop;
70482933 858
fbf5a39b 859 if Packed_Size_Known then
c6823a20 860 Set_Small_Size (T, Packed_Size);
fbf5a39b 861 end if;
70482933 862
fbf5a39b
AC
863 return True;
864 end;
70482933
RK
865
866 else
867 return False;
868 end if;
869 end Size_Known;
870
871 -------------------------------------
872 -- Static_Discriminated_Components --
873 -------------------------------------
874
875 function Static_Discriminated_Components
0da2c8ac 876 (T : Entity_Id) return Boolean
70482933
RK
877 is
878 Constraint : Elmt_Id;
879
880 begin
881 if Has_Discriminants (T)
882 and then Present (Discriminant_Constraint (T))
883 and then Present (First_Component (T))
884 then
885 Constraint := First_Elmt (Discriminant_Constraint (T));
70482933
RK
886 while Present (Constraint) loop
887 if not Compile_Time_Known_Value (Node (Constraint)) then
888 return False;
889 end if;
890
891 Next_Elmt (Constraint);
892 end loop;
893 end if;
894
895 return True;
896 end Static_Discriminated_Components;
897
898 -- Start of processing for Check_Compile_Time_Size
899
900 begin
901 Set_Size_Known_At_Compile_Time (T, Size_Known (T));
902 end Check_Compile_Time_Size;
903
904 -----------------------------
905 -- Check_Debug_Info_Needed --
906 -----------------------------
907
908 procedure Check_Debug_Info_Needed (T : Entity_Id) is
909 begin
910 if Needs_Debug_Info (T) or else Debug_Info_Off (T) then
911 return;
912
913 elsif Comes_From_Source (T)
914 or else Debug_Generated_Code
915 or else Debug_Flag_VV
916 then
917 Set_Debug_Info_Needed (T);
918 end if;
919 end Check_Debug_Info_Needed;
920
921 ----------------------------
922 -- Check_Strict_Alignment --
923 ----------------------------
924
925 procedure Check_Strict_Alignment (E : Entity_Id) is
926 Comp : Entity_Id;
927
928 begin
929 if Is_Tagged_Type (E) or else Is_Concurrent_Type (E) then
930 Set_Strict_Alignment (E);
931
932 elsif Is_Array_Type (E) then
933 Set_Strict_Alignment (E, Strict_Alignment (Component_Type (E)));
934
935 elsif Is_Record_Type (E) then
936 if Is_Limited_Record (E) then
937 Set_Strict_Alignment (E);
938 return;
939 end if;
940
941 Comp := First_Component (E);
942
943 while Present (Comp) loop
944 if not Is_Type (Comp)
945 and then (Strict_Alignment (Etype (Comp))
fbf5a39b 946 or else Is_Aliased (Comp))
70482933
RK
947 then
948 Set_Strict_Alignment (E);
949 return;
950 end if;
951
952 Next_Component (Comp);
953 end loop;
954 end if;
955 end Check_Strict_Alignment;
956
957 -------------------------
958 -- Check_Unsigned_Type --
959 -------------------------
960
961 procedure Check_Unsigned_Type (E : Entity_Id) is
962 Ancestor : Entity_Id;
963 Lo_Bound : Node_Id;
964 Btyp : Entity_Id;
965
966 begin
967 if not Is_Discrete_Or_Fixed_Point_Type (E) then
968 return;
969 end if;
970
971 -- Do not attempt to analyze case where range was in error
972
973 if Error_Posted (Scalar_Range (E)) then
974 return;
975 end if;
976
977 -- The situation that is non trivial is something like
978
979 -- subtype x1 is integer range -10 .. +10;
980 -- subtype x2 is x1 range 0 .. V1;
981 -- subtype x3 is x2 range V2 .. V3;
982 -- subtype x4 is x3 range V4 .. V5;
983
984 -- where Vn are variables. Here the base type is signed, but we still
985 -- know that x4 is unsigned because of the lower bound of x2.
986
987 -- The only way to deal with this is to look up the ancestor chain
988
989 Ancestor := E;
990 loop
991 if Ancestor = Any_Type or else Etype (Ancestor) = Any_Type then
992 return;
993 end if;
994
995 Lo_Bound := Type_Low_Bound (Ancestor);
996
997 if Compile_Time_Known_Value (Lo_Bound) then
998
999 if Expr_Rep_Value (Lo_Bound) >= 0 then
1000 Set_Is_Unsigned_Type (E, True);
1001 end if;
1002
1003 return;
1004
1005 else
1006 Ancestor := Ancestor_Subtype (Ancestor);
1007
1008 -- If no ancestor had a static lower bound, go to base type
1009
1010 if No (Ancestor) then
1011
1012 -- Note: the reason we still check for a compile time known
1013 -- value for the base type is that at least in the case of
1014 -- generic formals, we can have bounds that fail this test,
1015 -- and there may be other cases in error situations.
1016
1017 Btyp := Base_Type (E);
1018
1019 if Btyp = Any_Type or else Etype (Btyp) = Any_Type then
1020 return;
1021 end if;
1022
1023 Lo_Bound := Type_Low_Bound (Base_Type (E));
1024
1025 if Compile_Time_Known_Value (Lo_Bound)
1026 and then Expr_Rep_Value (Lo_Bound) >= 0
1027 then
1028 Set_Is_Unsigned_Type (E, True);
1029 end if;
1030
1031 return;
70482933
RK
1032 end if;
1033 end if;
1034 end loop;
1035 end Check_Unsigned_Type;
1036
fbf5a39b
AC
1037 -----------------------------
1038 -- Expand_Atomic_Aggregate --
1039 -----------------------------
1040
1041 procedure Expand_Atomic_Aggregate (E : Entity_Id; Typ : Entity_Id) is
1042 Loc : constant Source_Ptr := Sloc (E);
1043 New_N : Node_Id;
1044 Temp : Entity_Id;
1045
1046 begin
1047 if (Nkind (Parent (E)) = N_Object_Declaration
1048 or else Nkind (Parent (E)) = N_Assignment_Statement)
1049 and then Comes_From_Source (Parent (E))
1050 and then Nkind (E) = N_Aggregate
1051 then
1052 Temp :=
1053 Make_Defining_Identifier (Loc,
1054 New_Internal_Name ('T'));
1055
1056 New_N :=
1057 Make_Object_Declaration (Loc,
1058 Defining_Identifier => Temp,
1059 Object_definition => New_Occurrence_Of (Typ, Loc),
1060 Expression => Relocate_Node (E));
1061 Insert_Before (Parent (E), New_N);
1062 Analyze (New_N);
1063
1064 Set_Expression (Parent (E), New_Occurrence_Of (Temp, Loc));
1065
1066 -- To prevent the temporary from being constant-folded (which
1067 -- would lead to the same piecemeal assignment on the original
1068 -- target) indicate to the back-end that the temporary is a
1069 -- variable with real storage. See description of this flag
1070 -- in Einfo, and the notes on N_Assignment_Statement and
1071 -- N_Object_Declaration in Sinfo.
1072
1073 Set_Is_True_Constant (Temp, False);
1074 end if;
1075 end Expand_Atomic_Aggregate;
1076
70482933
RK
1077 ----------------
1078 -- Freeze_All --
1079 ----------------
1080
1081 -- Note: the easy coding for this procedure would be to just build a
1082 -- single list of freeze nodes and then insert them and analyze them
1083 -- all at once. This won't work, because the analysis of earlier freeze
1084 -- nodes may recursively freeze types which would otherwise appear later
1085 -- on in the freeze list. So we must analyze and expand the freeze nodes
1086 -- as they are generated.
1087
1088 procedure Freeze_All (From : Entity_Id; After : in out Node_Id) is
1089 Loc : constant Source_Ptr := Sloc (After);
1090 E : Entity_Id;
1091 Decl : Node_Id;
1092
1093 procedure Freeze_All_Ent (From : Entity_Id; After : in out Node_Id);
1094 -- This is the internal recursive routine that does freezing of
1095 -- entities (but NOT the analysis of default expressions, which
1096 -- should not be recursive, we don't want to analyze those till
1097 -- we are sure that ALL the types are frozen).
1098
fbf5a39b
AC
1099 --------------------
1100 -- Freeze_All_Ent --
1101 --------------------
1102
70482933
RK
1103 procedure Freeze_All_Ent
1104 (From : Entity_Id;
1105 After : in out Node_Id)
1106 is
1107 E : Entity_Id;
1108 Flist : List_Id;
1109 Lastn : Node_Id;
1110
1111 procedure Process_Flist;
1112 -- If freeze nodes are present, insert and analyze, and reset
1113 -- cursor for next insertion.
1114
fbf5a39b
AC
1115 -------------------
1116 -- Process_Flist --
1117 -------------------
1118
70482933
RK
1119 procedure Process_Flist is
1120 begin
1121 if Is_Non_Empty_List (Flist) then
1122 Lastn := Next (After);
1123 Insert_List_After_And_Analyze (After, Flist);
1124
1125 if Present (Lastn) then
1126 After := Prev (Lastn);
1127 else
1128 After := Last (List_Containing (After));
1129 end if;
1130 end if;
1131 end Process_Flist;
1132
fbf5a39b
AC
1133 -- Start or processing for Freeze_All_Ent
1134
70482933
RK
1135 begin
1136 E := From;
1137 while Present (E) loop
1138
1139 -- If the entity is an inner package which is not a package
1140 -- renaming, then its entities must be frozen at this point.
1141 -- Note that such entities do NOT get frozen at the end of
1142 -- the nested package itself (only library packages freeze).
1143
1144 -- Same is true for task declarations, where anonymous records
1145 -- created for entry parameters must be frozen.
1146
1147 if Ekind (E) = E_Package
1148 and then No (Renamed_Object (E))
1149 and then not Is_Child_Unit (E)
1150 and then not Is_Frozen (E)
1151 then
7d8b9c99 1152 Push_Scope (E);
70482933
RK
1153 Install_Visible_Declarations (E);
1154 Install_Private_Declarations (E);
1155
1156 Freeze_All (First_Entity (E), After);
1157
1158 End_Package_Scope (E);
1159
1160 elsif Ekind (E) in Task_Kind
1161 and then
1162 (Nkind (Parent (E)) = N_Task_Type_Declaration
fbf5a39b 1163 or else
70482933
RK
1164 Nkind (Parent (E)) = N_Single_Task_Declaration)
1165 then
7d8b9c99 1166 Push_Scope (E);
70482933
RK
1167 Freeze_All (First_Entity (E), After);
1168 End_Scope;
1169
1170 -- For a derived tagged type, we must ensure that all the
1171 -- primitive operations of the parent have been frozen, so
1172 -- that their addresses will be in the parent's dispatch table
1173 -- at the point it is inherited.
1174
1175 elsif Ekind (E) = E_Record_Type
1176 and then Is_Tagged_Type (E)
1177 and then Is_Tagged_Type (Etype (E))
1178 and then Is_Derived_Type (E)
1179 then
1180 declare
1181 Prim_List : constant Elist_Id :=
1182 Primitive_Operations (Etype (E));
fbf5a39b
AC
1183
1184 Prim : Elmt_Id;
1185 Subp : Entity_Id;
70482933
RK
1186
1187 begin
1188 Prim := First_Elmt (Prim_List);
1189
1190 while Present (Prim) loop
1191 Subp := Node (Prim);
1192
1193 if Comes_From_Source (Subp)
1194 and then not Is_Frozen (Subp)
1195 then
1196 Flist := Freeze_Entity (Subp, Loc);
1197 Process_Flist;
1198 end if;
1199
1200 Next_Elmt (Prim);
1201 end loop;
1202 end;
1203 end if;
1204
1205 if not Is_Frozen (E) then
1206 Flist := Freeze_Entity (E, Loc);
1207 Process_Flist;
1208 end if;
1209
fbf5a39b
AC
1210 -- If an incomplete type is still not frozen, this may be
1211 -- a premature freezing because of a body declaration that
1212 -- follows. Indicate where the freezing took place.
1213
1214 -- If the freezing is caused by the end of the current
1215 -- declarative part, it is a Taft Amendment type, and there
1216 -- is no error.
1217
1218 if not Is_Frozen (E)
1219 and then Ekind (E) = E_Incomplete_Type
1220 then
1221 declare
1222 Bod : constant Node_Id := Next (After);
1223
1224 begin
1225 if (Nkind (Bod) = N_Subprogram_Body
1226 or else Nkind (Bod) = N_Entry_Body
1227 or else Nkind (Bod) = N_Package_Body
1228 or else Nkind (Bod) = N_Protected_Body
1229 or else Nkind (Bod) = N_Task_Body
1230 or else Nkind (Bod) in N_Body_Stub)
1231 and then
1232 List_Containing (After) = List_Containing (Parent (E))
1233 then
1234 Error_Msg_Sloc := Sloc (Next (After));
1235 Error_Msg_NE
1236 ("type& is frozen# before its full declaration",
1237 Parent (E), E);
1238 end if;
1239 end;
1240 end if;
1241
70482933
RK
1242 Next_Entity (E);
1243 end loop;
1244 end Freeze_All_Ent;
1245
1246 -- Start of processing for Freeze_All
1247
1248 begin
1249 Freeze_All_Ent (From, After);
1250
1251 -- Now that all types are frozen, we can deal with default expressions
1252 -- that require us to build a default expression functions. This is the
1253 -- point at which such functions are constructed (after all types that
1254 -- might be used in such expressions have been frozen).
fbf5a39b 1255
70482933
RK
1256 -- We also add finalization chains to access types whose designated
1257 -- types are controlled. This is normally done when freezing the type,
1258 -- but this misses recursive type definitions where the later members
1259 -- of the recursion introduce controlled components (e.g. 5624-001).
1260
1261 -- Loop through entities
1262
1263 E := From;
1264 while Present (E) loop
70482933
RK
1265 if Is_Subprogram (E) then
1266
1267 if not Default_Expressions_Processed (E) then
1268 Process_Default_Expressions (E, After);
1269 end if;
1270
1271 if not Has_Completion (E) then
1272 Decl := Unit_Declaration_Node (E);
1273
1274 if Nkind (Decl) = N_Subprogram_Renaming_Declaration then
1275 Build_And_Analyze_Renamed_Body (Decl, E, After);
1276
1277 elsif Nkind (Decl) = N_Subprogram_Declaration
1278 and then Present (Corresponding_Body (Decl))
1279 and then
1280 Nkind (Unit_Declaration_Node (Corresponding_Body (Decl)))
fbf5a39b 1281 = N_Subprogram_Renaming_Declaration
70482933
RK
1282 then
1283 Build_And_Analyze_Renamed_Body
1284 (Decl, Corresponding_Body (Decl), After);
1285 end if;
1286 end if;
1287
1288 elsif Ekind (E) in Task_Kind
1289 and then
1290 (Nkind (Parent (E)) = N_Task_Type_Declaration
fbf5a39b 1291 or else
70482933
RK
1292 Nkind (Parent (E)) = N_Single_Task_Declaration)
1293 then
1294 declare
1295 Ent : Entity_Id;
70482933
RK
1296 begin
1297 Ent := First_Entity (E);
1298
1299 while Present (Ent) loop
1300
1301 if Is_Entry (Ent)
1302 and then not Default_Expressions_Processed (Ent)
1303 then
1304 Process_Default_Expressions (Ent, After);
1305 end if;
1306
1307 Next_Entity (Ent);
1308 end loop;
1309 end;
1310
1311 elsif Is_Access_Type (E)
1312 and then Comes_From_Source (E)
1313 and then Ekind (Directly_Designated_Type (E)) = E_Incomplete_Type
1314 and then Controlled_Type (Designated_Type (E))
1315 and then No (Associated_Final_Chain (E))
1316 then
1317 Build_Final_List (Parent (E), E);
1318 end if;
1319
1320 Next_Entity (E);
1321 end loop;
70482933
RK
1322 end Freeze_All;
1323
1324 -----------------------
1325 -- Freeze_And_Append --
1326 -----------------------
1327
1328 procedure Freeze_And_Append
1329 (Ent : Entity_Id;
1330 Loc : Source_Ptr;
1331 Result : in out List_Id)
1332 is
1333 L : constant List_Id := Freeze_Entity (Ent, Loc);
70482933
RK
1334 begin
1335 if Is_Non_Empty_List (L) then
1336 if Result = No_List then
1337 Result := L;
1338 else
1339 Append_List (L, Result);
1340 end if;
1341 end if;
1342 end Freeze_And_Append;
1343
1344 -------------------
1345 -- Freeze_Before --
1346 -------------------
1347
1348 procedure Freeze_Before (N : Node_Id; T : Entity_Id) is
1349 Freeze_Nodes : constant List_Id := Freeze_Entity (T, Sloc (N));
70482933
RK
1350 begin
1351 if Is_Non_Empty_List (Freeze_Nodes) then
fbf5a39b 1352 Insert_Actions (N, Freeze_Nodes);
70482933
RK
1353 end if;
1354 end Freeze_Before;
1355
1356 -------------------
1357 -- Freeze_Entity --
1358 -------------------
1359
1360 function Freeze_Entity (E : Entity_Id; Loc : Source_Ptr) return List_Id is
c6823a20 1361 Test_E : Entity_Id := E;
70482933
RK
1362 Comp : Entity_Id;
1363 F_Node : Node_Id;
1364 Result : List_Id;
1365 Indx : Node_Id;
1366 Formal : Entity_Id;
1367 Atype : Entity_Id;
1368
1369 procedure Check_Current_Instance (Comp_Decl : Node_Id);
edd63e9b
ES
1370 -- Check that an Access or Unchecked_Access attribute with a prefix
1371 -- which is the current instance type can only be applied when the type
1372 -- is limited.
70482933
RK
1373
1374 function After_Last_Declaration return Boolean;
1375 -- If Loc is a freeze_entity that appears after the last declaration
1376 -- in the scope, inhibit error messages on late completion.
1377
1378 procedure Freeze_Record_Type (Rec : Entity_Id);
edd63e9b
ES
1379 -- Freeze each component, handle some representation clauses, and freeze
1380 -- primitive operations if this is a tagged type.
70482933
RK
1381
1382 ----------------------------
1383 -- After_Last_Declaration --
1384 ----------------------------
1385
1386 function After_Last_Declaration return Boolean is
fbf5a39b 1387 Spec : constant Node_Id := Parent (Current_Scope);
70482933
RK
1388 begin
1389 if Nkind (Spec) = N_Package_Specification then
1390 if Present (Private_Declarations (Spec)) then
1391 return Loc >= Sloc (Last (Private_Declarations (Spec)));
70482933
RK
1392 elsif Present (Visible_Declarations (Spec)) then
1393 return Loc >= Sloc (Last (Visible_Declarations (Spec)));
1394 else
1395 return False;
1396 end if;
70482933
RK
1397 else
1398 return False;
1399 end if;
1400 end After_Last_Declaration;
1401
1402 ----------------------------
1403 -- Check_Current_Instance --
1404 ----------------------------
1405
1406 procedure Check_Current_Instance (Comp_Decl : Node_Id) is
1407
1408 function Process (N : Node_Id) return Traverse_Result;
49e90211 1409 -- Process routine to apply check to given node
70482933 1410
fbf5a39b
AC
1411 -------------
1412 -- Process --
1413 -------------
1414
70482933
RK
1415 function Process (N : Node_Id) return Traverse_Result is
1416 begin
1417 case Nkind (N) is
1418 when N_Attribute_Reference =>
1419 if (Attribute_Name (N) = Name_Access
1420 or else
1421 Attribute_Name (N) = Name_Unchecked_Access)
1422 and then Is_Entity_Name (Prefix (N))
1423 and then Is_Type (Entity (Prefix (N)))
1424 and then Entity (Prefix (N)) = E
1425 then
1426 Error_Msg_N
1427 ("current instance must be a limited type", Prefix (N));
1428 return Abandon;
1429 else
1430 return OK;
1431 end if;
1432
1433 when others => return OK;
1434 end case;
1435 end Process;
1436
1437 procedure Traverse is new Traverse_Proc (Process);
1438
1439 -- Start of processing for Check_Current_Instance
1440
1441 begin
1442 Traverse (Comp_Decl);
1443 end Check_Current_Instance;
1444
1445 ------------------------
1446 -- Freeze_Record_Type --
1447 ------------------------
1448
1449 procedure Freeze_Record_Type (Rec : Entity_Id) is
1450 Comp : Entity_Id;
fbf5a39b 1451 IR : Node_Id;
70482933 1452 ADC : Node_Id;
c6823a20 1453 Prev : Entity_Id;
70482933 1454
67ce0d7e
RD
1455 Junk : Boolean;
1456 pragma Warnings (Off, Junk);
1457
70482933
RK
1458 Unplaced_Component : Boolean := False;
1459 -- Set True if we find at least one component with no component
1460 -- clause (used to warn about useless Pack pragmas).
1461
1462 Placed_Component : Boolean := False;
1463 -- Set True if we find at least one component with a component
1464 -- clause (used to warn about useless Bit_Order pragmas).
1465
e18d6a15
JM
1466 function Check_Allocator (N : Node_Id) return Node_Id;
1467 -- If N is an allocator, possibly wrapped in one or more level of
1468 -- qualified expression(s), return the inner allocator node, else
1469 -- return Empty.
19590d70 1470
7d8b9c99
RD
1471 procedure Check_Itype (Typ : Entity_Id);
1472 -- If the component subtype is an access to a constrained subtype of
1473 -- an already frozen type, make the subtype frozen as well. It might
1474 -- otherwise be frozen in the wrong scope, and a freeze node on
1475 -- subtype has no effect. Similarly, if the component subtype is a
1476 -- regular (not protected) access to subprogram, set the anonymous
1477 -- subprogram type to frozen as well, to prevent an out-of-scope
1478 -- freeze node at some eventual point of call. Protected operations
1479 -- are handled elsewhere.
6e059adb 1480
19590d70
GD
1481 ---------------------
1482 -- Check_Allocator --
1483 ---------------------
1484
e18d6a15
JM
1485 function Check_Allocator (N : Node_Id) return Node_Id is
1486 Inner : Node_Id;
19590d70 1487 begin
e18d6a15 1488 Inner := N;
e18d6a15
JM
1489 loop
1490 if Nkind (Inner) = N_Allocator then
1491 return Inner;
e18d6a15
JM
1492 elsif Nkind (Inner) = N_Qualified_Expression then
1493 Inner := Expression (Inner);
e18d6a15
JM
1494 else
1495 return Empty;
1496 end if;
1497 end loop;
19590d70
GD
1498 end Check_Allocator;
1499
6871ba5f
AC
1500 -----------------
1501 -- Check_Itype --
1502 -----------------
1503
7d8b9c99
RD
1504 procedure Check_Itype (Typ : Entity_Id) is
1505 Desig : constant Entity_Id := Designated_Type (Typ);
1506
6e059adb
AC
1507 begin
1508 if not Is_Frozen (Desig)
1509 and then Is_Frozen (Base_Type (Desig))
1510 then
1511 Set_Is_Frozen (Desig);
1512
1513 -- In addition, add an Itype_Reference to ensure that the
7d8b9c99
RD
1514 -- access subtype is elaborated early enough. This cannot be
1515 -- done if the subtype may depend on discriminants.
6e059adb
AC
1516
1517 if Ekind (Comp) = E_Component
1518 and then Is_Itype (Etype (Comp))
1519 and then not Has_Discriminants (Rec)
1520 then
1521 IR := Make_Itype_Reference (Sloc (Comp));
1522 Set_Itype (IR, Desig);
1523
1524 if No (Result) then
1525 Result := New_List (IR);
1526 else
1527 Append (IR, Result);
1528 end if;
1529 end if;
7d8b9c99
RD
1530
1531 elsif Ekind (Typ) = E_Anonymous_Access_Subprogram_Type
1532 and then Convention (Desig) /= Convention_Protected
1533 then
1534 Set_Is_Frozen (Desig);
6e059adb
AC
1535 end if;
1536 end Check_Itype;
1537
1538 -- Start of processing for Freeze_Record_Type
1539
70482933 1540 begin
7d8b9c99
RD
1541 -- If this is a subtype of a controlled type, declared without a
1542 -- constraint, the _controller may not appear in the component list
1543 -- if the parent was not frozen at the point of subtype declaration.
1544 -- Inherit the _controller component now.
fbf5a39b
AC
1545
1546 if Rec /= Base_Type (Rec)
1547 and then Has_Controlled_Component (Rec)
1548 then
1549 if Nkind (Parent (Rec)) = N_Subtype_Declaration
1550 and then Is_Entity_Name (Subtype_Indication (Parent (Rec)))
1551 then
1552 Set_First_Entity (Rec, First_Entity (Base_Type (Rec)));
1553
49e90211 1554 -- If this is an internal type without a declaration, as for
6871ba5f
AC
1555 -- record component, the base type may not yet be frozen, and its
1556 -- controller has not been created. Add an explicit freeze node
49e90211
ES
1557 -- for the itype, so it will be frozen after the base type. This
1558 -- freeze node is used to communicate with the expander, in order
1559 -- to create the controller for the enclosing record, and it is
1560 -- deleted afterwards (see exp_ch3). It must not be created when
1561 -- expansion is off, because it might appear in the wrong context
1562 -- for the back end.
fbf5a39b
AC
1563
1564 elsif Is_Itype (Rec)
1565 and then Has_Delayed_Freeze (Base_Type (Rec))
1566 and then
1567 Nkind (Associated_Node_For_Itype (Rec)) =
49e90211
ES
1568 N_Component_Declaration
1569 and then Expander_Active
fbf5a39b
AC
1570 then
1571 Ensure_Freeze_Node (Rec);
1572 end if;
1573 end if;
1574
49e90211 1575 -- Freeze components and embedded subtypes
70482933
RK
1576
1577 Comp := First_Entity (Rec);
c6823a20 1578 Prev := Empty;
c6823a20 1579 while Present (Comp) loop
70482933 1580
49e90211 1581 -- First handle the (real) component case
70482933
RK
1582
1583 if Ekind (Comp) = E_Component
1584 or else Ekind (Comp) = E_Discriminant
1585 then
70482933
RK
1586 declare
1587 CC : constant Node_Id := Component_Clause (Comp);
1588
1589 begin
c6823a20
EB
1590 -- Freezing a record type freezes the type of each of its
1591 -- components. However, if the type of the component is
1592 -- part of this record, we do not want or need a separate
1593 -- Freeze_Node. Note that Is_Itype is wrong because that's
1594 -- also set in private type cases. We also can't check for
1595 -- the Scope being exactly Rec because of private types and
1596 -- record extensions.
1597
1598 if Is_Itype (Etype (Comp))
1599 and then Is_Record_Type (Underlying_Type
1600 (Scope (Etype (Comp))))
1601 then
1602 Undelay_Type (Etype (Comp));
1603 end if;
1604
1605 Freeze_And_Append (Etype (Comp), Loc, Result);
1606
0da2c8ac
AC
1607 -- Check for error of component clause given for variable
1608 -- sized type. We have to delay this test till this point,
1609 -- since the component type has to be frozen for us to know
1610 -- if it is variable length. We omit this test in a generic
1611 -- context, it will be applied at instantiation time.
1612
70482933
RK
1613 if Present (CC) then
1614 Placed_Component := True;
1615
07fc65c4
GB
1616 if Inside_A_Generic then
1617 null;
1618
7d8b9c99
RD
1619 elsif not
1620 Size_Known_At_Compile_Time
1621 (Underlying_Type (Etype (Comp)))
70482933
RK
1622 then
1623 Error_Msg_N
1624 ("component clause not allowed for variable " &
1625 "length component", CC);
1626 end if;
1627
1628 else
1629 Unplaced_Component := True;
1630 end if;
70482933 1631
0da2c8ac 1632 -- Case of component requires byte alignment
70482933 1633
0da2c8ac 1634 if Must_Be_On_Byte_Boundary (Etype (Comp)) then
70482933 1635
0da2c8ac 1636 -- Set the enclosing record to also require byte align
70482933 1637
0da2c8ac 1638 Set_Must_Be_On_Byte_Boundary (Rec);
70482933 1639
7d8b9c99
RD
1640 -- Check for component clause that is inconsistent with
1641 -- the required byte boundary alignment.
70482933 1642
0da2c8ac
AC
1643 if Present (CC)
1644 and then Normalized_First_Bit (Comp) mod
1645 System_Storage_Unit /= 0
1646 then
1647 Error_Msg_N
1648 ("component & must be byte aligned",
1649 Component_Name (Component_Clause (Comp)));
1650 end if;
1651 end if;
70482933 1652
7d8b9c99
RD
1653 -- If component clause is present, then deal with the non-
1654 -- default bit order case for Ada 95 mode. The required
fea9e956
ES
1655 -- processing for Ada 2005 mode is handled separately after
1656 -- processing all components.
70482933 1657
0da2c8ac
AC
1658 -- We only do this processing for the base type, and in
1659 -- fact that's important, since otherwise if there are
1660 -- record subtypes, we could reverse the bits once for
1661 -- each subtype, which would be incorrect.
70482933 1662
0da2c8ac
AC
1663 if Present (CC)
1664 and then Reverse_Bit_Order (Rec)
1665 and then Ekind (E) = E_Record_Type
fea9e956 1666 and then Ada_Version <= Ada_95
0da2c8ac
AC
1667 then
1668 declare
1669 CFB : constant Uint := Component_Bit_Offset (Comp);
1670 CSZ : constant Uint := Esize (Comp);
1671 CLC : constant Node_Id := Component_Clause (Comp);
1672 Pos : constant Node_Id := Position (CLC);
1673 FB : constant Node_Id := First_Bit (CLC);
1674
1675 Storage_Unit_Offset : constant Uint :=
1676 CFB / System_Storage_Unit;
1677
1678 Start_Bit : constant Uint :=
1679 CFB mod System_Storage_Unit;
1680
1681 begin
1682 -- Cases where field goes over storage unit boundary
1683
1684 if Start_Bit + CSZ > System_Storage_Unit then
70482933 1685
0da2c8ac
AC
1686 -- Allow multi-byte field but generate warning
1687
1688 if Start_Bit mod System_Storage_Unit = 0
1689 and then CSZ mod System_Storage_Unit = 0
1690 then
70482933 1691 Error_Msg_N
0da2c8ac
AC
1692 ("multi-byte field specified with non-standard"
1693 & " Bit_Order?", CLC);
1694
1695 if Bytes_Big_Endian then
1696 Error_Msg_N
1697 ("bytes are not reversed "
1698 & "(component is big-endian)?", CLC);
1699 else
1700 Error_Msg_N
1701 ("bytes are not reversed "
1702 & "(component is little-endian)?", CLC);
1703 end if;
1704
1705 -- Do not allow non-contiguous field
1706
70482933
RK
1707 else
1708 Error_Msg_N
0da2c8ac
AC
1709 ("attempt to specify non-contiguous field"
1710 & " not permitted", CLC);
1711 Error_Msg_N
1712 ("\(caused by non-standard Bit_Order "
1713 & "specified)", CLC);
70482933
RK
1714 end if;
1715
0da2c8ac 1716 -- Case where field fits in one storage unit
70482933
RK
1717
1718 else
0da2c8ac 1719 -- Give warning if suspicious component clause
70482933 1720
fea9e956
ES
1721 if Intval (FB) >= System_Storage_Unit
1722 and then Warn_On_Reverse_Bit_Order
1723 then
0da2c8ac
AC
1724 Error_Msg_N
1725 ("?Bit_Order clause does not affect " &
1726 "byte ordering", Pos);
1727 Error_Msg_Uint_1 :=
1728 Intval (Pos) + Intval (FB) /
1729 System_Storage_Unit;
1730 Error_Msg_N
1731 ("?position normalized to ^ before bit " &
1732 "order interpreted", Pos);
1733 end if;
70482933 1734
0da2c8ac
AC
1735 -- Here is where we fix up the Component_Bit_Offset
1736 -- value to account for the reverse bit order.
1737 -- Some examples of what needs to be done are:
70482933 1738
0da2c8ac
AC
1739 -- First_Bit .. Last_Bit Component_Bit_Offset
1740 -- old new old new
70482933 1741
0da2c8ac
AC
1742 -- 0 .. 0 7 .. 7 0 7
1743 -- 0 .. 1 6 .. 7 0 6
1744 -- 0 .. 2 5 .. 7 0 5
1745 -- 0 .. 7 0 .. 7 0 4
70482933 1746
0da2c8ac
AC
1747 -- 1 .. 1 6 .. 6 1 6
1748 -- 1 .. 4 3 .. 6 1 3
1749 -- 4 .. 7 0 .. 3 4 0
70482933 1750
0da2c8ac
AC
1751 -- The general rule is that the first bit is
1752 -- is obtained by subtracting the old ending bit
1753 -- from storage_unit - 1.
70482933 1754
0da2c8ac
AC
1755 Set_Component_Bit_Offset
1756 (Comp,
1757 (Storage_Unit_Offset * System_Storage_Unit) +
1758 (System_Storage_Unit - 1) -
1759 (Start_Bit + CSZ - 1));
70482933 1760
0da2c8ac
AC
1761 Set_Normalized_First_Bit
1762 (Comp,
1763 Component_Bit_Offset (Comp) mod
1764 System_Storage_Unit);
1765 end if;
1766 end;
1767 end if;
1768 end;
70482933
RK
1769 end if;
1770
c6823a20
EB
1771 -- If the component is an Itype with Delayed_Freeze and is either
1772 -- a record or array subtype and its base type has not yet been
1773 -- frozen, we must remove this from the entity list of this
1774 -- record and put it on the entity list of the scope of its base
1775 -- type. Note that we know that this is not the type of a
1776 -- component since we cleared Has_Delayed_Freeze for it in the
1777 -- previous loop. Thus this must be the Designated_Type of an
1778 -- access type, which is the type of a component.
1779
1780 if Is_Itype (Comp)
1781 and then Is_Type (Scope (Comp))
1782 and then Is_Composite_Type (Comp)
1783 and then Base_Type (Comp) /= Comp
1784 and then Has_Delayed_Freeze (Comp)
1785 and then not Is_Frozen (Base_Type (Comp))
1786 then
1787 declare
1788 Will_Be_Frozen : Boolean := False;
1789 S : Entity_Id := Scope (Rec);
1790
1791 begin
fea9e956
ES
1792 -- We have a pretty bad kludge here. Suppose Rec is subtype
1793 -- being defined in a subprogram that's created as part of
1794 -- the freezing of Rec'Base. In that case, we know that
1795 -- Comp'Base must have already been frozen by the time we
1796 -- get to elaborate this because Gigi doesn't elaborate any
1797 -- bodies until it has elaborated all of the declarative
1798 -- part. But Is_Frozen will not be set at this point because
1799 -- we are processing code in lexical order.
1800
1801 -- We detect this case by going up the Scope chain of Rec
1802 -- and seeing if we have a subprogram scope before reaching
1803 -- the top of the scope chain or that of Comp'Base. If we
1804 -- do, then mark that Comp'Base will actually be frozen. If
1805 -- so, we merely undelay it.
c6823a20
EB
1806
1807 while Present (S) loop
1808 if Is_Subprogram (S) then
1809 Will_Be_Frozen := True;
1810 exit;
1811 elsif S = Scope (Base_Type (Comp)) then
1812 exit;
1813 end if;
1814
1815 S := Scope (S);
1816 end loop;
1817
1818 if Will_Be_Frozen then
1819 Undelay_Type (Comp);
1820 else
1821 if Present (Prev) then
1822 Set_Next_Entity (Prev, Next_Entity (Comp));
1823 else
1824 Set_First_Entity (Rec, Next_Entity (Comp));
1825 end if;
1826
1827 -- Insert in entity list of scope of base type (which
1828 -- must be an enclosing scope, because still unfrozen).
1829
1830 Append_Entity (Comp, Scope (Base_Type (Comp)));
1831 end if;
1832 end;
1833
1834 -- If the component is an access type with an allocator as
1835 -- default value, the designated type will be frozen by the
1836 -- corresponding expression in init_proc. In order to place the
1837 -- freeze node for the designated type before that for the
1838 -- current record type, freeze it now.
1839
1840 -- Same process if the component is an array of access types,
1841 -- initialized with an aggregate. If the designated type is
1842 -- private, it cannot contain allocators, and it is premature to
1843 -- freeze the type, so we check for this as well.
1844
1845 elsif Is_Access_Type (Etype (Comp))
1846 and then Present (Parent (Comp))
1847 and then Present (Expression (Parent (Comp)))
c6823a20
EB
1848 then
1849 declare
e18d6a15
JM
1850 Alloc : constant Node_Id :=
1851 Check_Allocator (Expression (Parent (Comp)));
c6823a20
EB
1852
1853 begin
e18d6a15 1854 if Present (Alloc) then
19590d70 1855
e18d6a15
JM
1856 -- If component is pointer to a classwide type, freeze
1857 -- the specific type in the expression being allocated.
1858 -- The expression may be a subtype indication, in which
1859 -- case freeze the subtype mark.
c6823a20 1860
e18d6a15
JM
1861 if Is_Class_Wide_Type
1862 (Designated_Type (Etype (Comp)))
0f4cb75c 1863 then
e18d6a15
JM
1864 if Is_Entity_Name (Expression (Alloc)) then
1865 Freeze_And_Append
1866 (Entity (Expression (Alloc)), Loc, Result);
1867 elsif
1868 Nkind (Expression (Alloc)) = N_Subtype_Indication
1869 then
1870 Freeze_And_Append
1871 (Entity (Subtype_Mark (Expression (Alloc))),
1872 Loc, Result);
1873 end if;
0f4cb75c 1874
e18d6a15
JM
1875 elsif Is_Itype (Designated_Type (Etype (Comp))) then
1876 Check_Itype (Etype (Comp));
0f4cb75c 1877
e18d6a15
JM
1878 else
1879 Freeze_And_Append
1880 (Designated_Type (Etype (Comp)), Loc, Result);
1881 end if;
c6823a20
EB
1882 end if;
1883 end;
1884
1885 elsif Is_Access_Type (Etype (Comp))
1886 and then Is_Itype (Designated_Type (Etype (Comp)))
1887 then
7d8b9c99 1888 Check_Itype (Etype (Comp));
c6823a20
EB
1889
1890 elsif Is_Array_Type (Etype (Comp))
1891 and then Is_Access_Type (Component_Type (Etype (Comp)))
1892 and then Present (Parent (Comp))
1893 and then Nkind (Parent (Comp)) = N_Component_Declaration
1894 and then Present (Expression (Parent (Comp)))
1895 and then Nkind (Expression (Parent (Comp))) = N_Aggregate
1896 and then Is_Fully_Defined
1897 (Designated_Type (Component_Type (Etype (Comp))))
1898 then
1899 Freeze_And_Append
1900 (Designated_Type
1901 (Component_Type (Etype (Comp))), Loc, Result);
1902 end if;
1903
1904 Prev := Comp;
70482933
RK
1905 Next_Entity (Comp);
1906 end loop;
1907
fea9e956
ES
1908 -- Deal with pragma Bit_Order
1909
1910 if Reverse_Bit_Order (Rec) and then Base_Type (Rec) = Rec then
1911 if not Placed_Component then
1912 ADC :=
1913 Get_Attribute_Definition_Clause (Rec, Attribute_Bit_Order);
1914 Error_Msg_N
1915 ("?Bit_Order specification has no effect", ADC);
1916 Error_Msg_N
1917 ("\?since no component clauses were specified", ADC);
1918
1919 -- Here is where we do Ada 2005 processing for bit order (the
1920 -- Ada 95 case was already taken care of above).
70482933 1921
fea9e956
ES
1922 elsif Ada_Version >= Ada_05 then
1923 Adjust_Record_For_Reverse_Bit_Order (Rec);
1924 end if;
70482933
RK
1925 end if;
1926
ee094616
RD
1927 -- Check for useless pragma Pack when all components placed. We only
1928 -- do this check for record types, not subtypes, since a subtype may
1929 -- have all its components placed, and it still makes perfectly good
1930 -- sense to pack other subtypes or the parent type.
70482933 1931
ee094616
RD
1932 if Ekind (Rec) = E_Record_Type
1933 and then Is_Packed (Rec)
70482933 1934 and then not Unplaced_Component
70482933 1935 then
ee094616
RD
1936 -- Reset packed status. Probably not necessary, but we do it
1937 -- so that there is no chance of the back end doing something
1938 -- strange with this redundant indication of packing.
1939
70482933 1940 Set_Is_Packed (Rec, False);
ee094616
RD
1941
1942 -- Give warning if redundant constructs warnings on
1943
1944 if Warn_On_Redundant_Constructs then
1945 Error_Msg_N
1946 ("?pragma Pack has no effect, no unplaced components",
1947 Get_Rep_Pragma (Rec, Name_Pack));
1948 end if;
70482933
RK
1949 end if;
1950
ee094616
RD
1951 -- If this is the record corresponding to a remote type, freeze the
1952 -- remote type here since that is what we are semantically freezing.
1953 -- This prevents the freeze node for that type in an inner scope.
70482933
RK
1954
1955 -- Also, Check for controlled components and unchecked unions.
ee094616
RD
1956 -- Finally, enforce the restriction that access attributes with a
1957 -- current instance prefix can only apply to limited types.
70482933
RK
1958
1959 if Ekind (Rec) = E_Record_Type then
70482933
RK
1960 if Present (Corresponding_Remote_Type (Rec)) then
1961 Freeze_And_Append
1962 (Corresponding_Remote_Type (Rec), Loc, Result);
1963 end if;
1964
1965 Comp := First_Component (Rec);
70482933
RK
1966 while Present (Comp) loop
1967 if Has_Controlled_Component (Etype (Comp))
1968 or else (Chars (Comp) /= Name_uParent
1969 and then Is_Controlled (Etype (Comp)))
1970 or else (Is_Protected_Type (Etype (Comp))
1971 and then Present
1972 (Corresponding_Record_Type (Etype (Comp)))
1973 and then Has_Controlled_Component
1974 (Corresponding_Record_Type (Etype (Comp))))
1975 then
1976 Set_Has_Controlled_Component (Rec);
1977 exit;
1978 end if;
1979
1980 if Has_Unchecked_Union (Etype (Comp)) then
1981 Set_Has_Unchecked_Union (Rec);
1982 end if;
1983
1984 if Has_Per_Object_Constraint (Comp)
1985 and then not Is_Limited_Type (Rec)
1986 then
ee094616
RD
1987 -- Scan component declaration for likely misuses of current
1988 -- instance, either in a constraint or a default expression.
70482933
RK
1989
1990 Check_Current_Instance (Parent (Comp));
1991 end if;
1992
1993 Next_Component (Comp);
1994 end loop;
1995 end if;
1996
1997 Set_Component_Alignment_If_Not_Set (Rec);
1998
ee094616
RD
1999 -- For first subtypes, check if there are any fixed-point fields with
2000 -- component clauses, where we must check the size. This is not done
2001 -- till the freeze point, since for fixed-point types, we do not know
2002 -- the size until the type is frozen. Similar processing applies to
2003 -- bit packed arrays.
70482933
RK
2004
2005 if Is_First_Subtype (Rec) then
2006 Comp := First_Component (Rec);
2007
2008 while Present (Comp) loop
2009 if Present (Component_Clause (Comp))
d05ef0ab
AC
2010 and then (Is_Fixed_Point_Type (Etype (Comp))
2011 or else
2012 Is_Bit_Packed_Array (Etype (Comp)))
70482933
RK
2013 then
2014 Check_Size
d05ef0ab 2015 (Component_Name (Component_Clause (Comp)),
70482933
RK
2016 Etype (Comp),
2017 Esize (Comp),
2018 Junk);
2019 end if;
2020
2021 Next_Component (Comp);
2022 end loop;
2023 end if;
7d8b9c99
RD
2024
2025 -- Generate warning for applying C or C++ convention to a record
2026 -- with discriminants. This is suppressed for the unchecked union
2027 -- case, since the whole point in this case is interface C.
2028
2029 if Has_Discriminants (E)
2030 and then not Is_Unchecked_Union (E)
2031 and then not Warnings_Off (E)
2032 and then not Warnings_Off (Base_Type (E))
2033 and then (Convention (E) = Convention_C
2034 or else
2035 Convention (E) = Convention_CPP)
2036 and then Comes_From_Source (E)
2037 then
2038 declare
2039 Cprag : constant Node_Id := Get_Rep_Pragma (E, Name_Convention);
2040 A2 : Node_Id;
2041
2042 begin
2043 if Present (Cprag) then
2044 A2 := Next (First (Pragma_Argument_Associations (Cprag)));
2045
2046 if Convention (E) = Convention_C then
2047 Error_Msg_N
2048 ("?variant record has no direct equivalent in C", A2);
2049 else
2050 Error_Msg_N
2051 ("?variant record has no direct equivalent in C++", A2);
2052 end if;
2053
2054 Error_Msg_NE
2055 ("\?use of convention for type& is dubious", A2, E);
2056 end if;
2057 end;
2058 end if;
70482933
RK
2059 end Freeze_Record_Type;
2060
2061 -- Start of processing for Freeze_Entity
2062
2063 begin
c6823a20
EB
2064 -- We are going to test for various reasons why this entity need not be
2065 -- frozen here, but in the case of an Itype that's defined within a
2066 -- record, that test actually applies to the record.
2067
2068 if Is_Itype (E) and then Is_Record_Type (Scope (E)) then
2069 Test_E := Scope (E);
2070 elsif Is_Itype (E) and then Present (Underlying_Type (Scope (E)))
2071 and then Is_Record_Type (Underlying_Type (Scope (E)))
2072 then
2073 Test_E := Underlying_Type (Scope (E));
2074 end if;
2075
fbf5a39b 2076 -- Do not freeze if already frozen since we only need one freeze node
70482933
RK
2077
2078 if Is_Frozen (E) then
2079 return No_List;
2080
c6823a20
EB
2081 -- It is improper to freeze an external entity within a generic because
2082 -- its freeze node will appear in a non-valid context. The entity will
2083 -- be frozen in the proper scope after the current generic is analyzed.
70482933 2084
c6823a20 2085 elsif Inside_A_Generic and then External_Ref_In_Generic (Test_E) then
70482933
RK
2086 return No_List;
2087
2088 -- Do not freeze a global entity within an inner scope created during
2089 -- expansion. A call to subprogram E within some internal procedure
2090 -- (a stream attribute for example) might require freezing E, but the
2091 -- freeze node must appear in the same declarative part as E itself.
2092 -- The two-pass elaboration mechanism in gigi guarantees that E will
2093 -- be frozen before the inner call is elaborated. We exclude constants
2094 -- from this test, because deferred constants may be frozen early, and
19590d70
GD
2095 -- must be diagnosed (e.g. in the case of a deferred constant being used
2096 -- in a default expression). If the enclosing subprogram comes from
2097 -- source, or is a generic instance, then the freeze point is the one
2098 -- mandated by the language, and we freeze the entity. A subprogram that
2099 -- is a child unit body that acts as a spec does not have a spec that
2100 -- comes from source, but can only come from source.
70482933 2101
c6823a20
EB
2102 elsif In_Open_Scopes (Scope (Test_E))
2103 and then Scope (Test_E) /= Current_Scope
2104 and then Ekind (Test_E) /= E_Constant
70482933
RK
2105 then
2106 declare
2107 S : Entity_Id := Current_Scope;
2108
2109 begin
2110 while Present (S) loop
2111 if Is_Overloadable (S) then
2112 if Comes_From_Source (S)
2113 or else Is_Generic_Instance (S)
fea9e956 2114 or else Is_Child_Unit (S)
70482933
RK
2115 then
2116 exit;
2117 else
2118 return No_List;
2119 end if;
2120 end if;
2121
2122 S := Scope (S);
2123 end loop;
2124 end;
555360a5
AC
2125
2126 -- Similarly, an inlined instance body may make reference to global
2127 -- entities, but these references cannot be the proper freezing point
7d8b9c99 2128 -- for them, and in the absence of inlining freezing will take place
555360a5
AC
2129 -- in their own scope. Normally instance bodies are analyzed after
2130 -- the enclosing compilation, and everything has been frozen at the
2131 -- proper place, but with front-end inlining an instance body is
2132 -- compiled before the end of the enclosing scope, and as a result
2133 -- out-of-order freezing must be prevented.
2134
2135 elsif Front_End_Inlining
7d8b9c99 2136 and then In_Instance_Body
c6823a20 2137 and then Present (Scope (Test_E))
555360a5
AC
2138 then
2139 declare
c6823a20
EB
2140 S : Entity_Id := Scope (Test_E);
2141
555360a5
AC
2142 begin
2143 while Present (S) loop
2144 if Is_Generic_Instance (S) then
2145 exit;
2146 else
2147 S := Scope (S);
2148 end if;
2149 end loop;
2150
2151 if No (S) then
2152 return No_List;
2153 end if;
2154 end;
70482933
RK
2155 end if;
2156
2157 -- Here to freeze the entity
2158
2159 Result := No_List;
2160 Set_Is_Frozen (E);
2161
2162 -- Case of entity being frozen is other than a type
2163
2164 if not Is_Type (E) then
2165
2166 -- If entity is exported or imported and does not have an external
2167 -- name, now is the time to provide the appropriate default name.
2168 -- Skip this if the entity is stubbed, since we don't need a name
2169 -- for any stubbed routine.
2170
2171 if (Is_Imported (E) or else Is_Exported (E))
2172 and then No (Interface_Name (E))
2173 and then Convention (E) /= Convention_Stubbed
2174 then
2175 Set_Encoded_Interface_Name
2176 (E, Get_Default_External_Name (E));
fbf5a39b
AC
2177
2178 -- Special processing for atomic objects appearing in object decls
2179
2180 elsif Is_Atomic (E)
2181 and then Nkind (Parent (E)) = N_Object_Declaration
2182 and then Present (Expression (Parent (E)))
2183 then
2184 declare
2185 Expr : constant Node_Id := Expression (Parent (E));
2186
2187 begin
2188 -- If expression is an aggregate, assign to a temporary to
2189 -- ensure that the actual assignment is done atomically rather
2190 -- than component-wise (the assignment to the temp may be done
7d8b9c99 2191 -- component-wise, but that is harmless).
fbf5a39b
AC
2192
2193 if Nkind (Expr) = N_Aggregate then
2194 Expand_Atomic_Aggregate (Expr, Etype (E));
2195
ee094616
RD
2196 -- If the expression is a reference to a record or array object
2197 -- entity, then reset Is_True_Constant to False so that the
2198 -- compiler will not optimize away the intermediate object,
2199 -- which we need in this case for the same reason (to ensure
2200 -- that the actual assignment is atomic, rather than
2201 -- component-wise).
fbf5a39b
AC
2202
2203 elsif Is_Entity_Name (Expr)
2204 and then (Is_Record_Type (Etype (Expr))
2205 or else
2206 Is_Array_Type (Etype (Expr)))
2207 then
2208 Set_Is_True_Constant (Entity (Expr), False);
2209 end if;
2210 end;
70482933
RK
2211 end if;
2212
2213 -- For a subprogram, freeze all parameter types and also the return
fbf5a39b 2214 -- type (RM 13.14(14)). However skip this for internal subprograms.
70482933
RK
2215 -- This is also the point where any extra formal parameters are
2216 -- created since we now know whether the subprogram will use
2217 -- a foreign convention.
2218
2219 if Is_Subprogram (E) then
70482933 2220 if not Is_Internal (E) then
70482933 2221 declare
6d11af89
AC
2222 F_Type : Entity_Id;
2223 Warn_Node : Node_Id;
70482933
RK
2224
2225 function Is_Fat_C_Ptr_Type (T : Entity_Id) return Boolean;
2226 -- Determines if given type entity is a fat pointer type
2227 -- used as an argument type or return type to a subprogram
2228 -- with C or C++ convention set.
2229
2230 --------------------------
2231 -- Is_Fat_C_Access_Type --
2232 --------------------------
2233
2234 function Is_Fat_C_Ptr_Type (T : Entity_Id) return Boolean is
2235 begin
2236 return (Convention (E) = Convention_C
2237 or else
2238 Convention (E) = Convention_CPP)
2239 and then Is_Access_Type (T)
2240 and then Esize (T) > Ttypes.System_Address_Size;
2241 end Is_Fat_C_Ptr_Type;
2242
2243 begin
2244 -- Loop through formals
2245
2246 Formal := First_Formal (E);
70482933 2247 while Present (Formal) loop
70482933
RK
2248 F_Type := Etype (Formal);
2249 Freeze_And_Append (F_Type, Loc, Result);
2250
2251 if Is_Private_Type (F_Type)
2252 and then Is_Private_Type (Base_Type (F_Type))
2253 and then No (Full_View (Base_Type (F_Type)))
2254 and then not Is_Generic_Type (F_Type)
2255 and then not Is_Derived_Type (F_Type)
2256 then
2257 -- If the type of a formal is incomplete, subprogram
2258 -- is being frozen prematurely. Within an instance
2259 -- (but not within a wrapper package) this is an
2260 -- an artifact of our need to regard the end of an
2261 -- instantiation as a freeze point. Otherwise it is
2262 -- a definite error.
fbf5a39b 2263
70482933
RK
2264 -- and then not Is_Wrapper_Package (Current_Scope) ???
2265
2266 if In_Instance then
2267 Set_Is_Frozen (E, False);
2268 return No_List;
2269
86cde7b1
RD
2270 elsif not After_Last_Declaration
2271 and then not Freezing_Library_Level_Tagged_Type
2272 then
70482933
RK
2273 Error_Msg_Node_1 := F_Type;
2274 Error_Msg
2275 ("type& must be fully defined before this point",
2276 Loc);
2277 end if;
2278 end if;
2279
2280 -- Check bad use of fat C pointer
2281
fbf5a39b
AC
2282 if Warn_On_Export_Import and then
2283 Is_Fat_C_Ptr_Type (F_Type)
2284 then
70482933
RK
2285 Error_Msg_Qual_Level := 1;
2286 Error_Msg_N
2287 ("?type of & does not correspond to C pointer",
2288 Formal);
2289 Error_Msg_Qual_Level := 0;
2290 end if;
2291
2292 -- Check for unconstrained array in exported foreign
2293 -- convention case.
2294
2295 if Convention (E) in Foreign_Convention
2296 and then not Is_Imported (E)
2297 and then Is_Array_Type (F_Type)
2298 and then not Is_Constrained (F_Type)
fbf5a39b 2299 and then Warn_On_Export_Import
70482933
RK
2300 then
2301 Error_Msg_Qual_Level := 1;
6d11af89
AC
2302
2303 -- If this is an inherited operation, place the
2304 -- warning on the derived type declaration, rather
2305 -- than on the original subprogram.
2306
2307 if Nkind (Original_Node (Parent (E))) =
2308 N_Full_Type_Declaration
2309 then
2310 Warn_Node := Parent (E);
2311
2312 if Formal = First_Formal (E) then
2313 Error_Msg_NE
add9f797 2314 ("?in inherited operation&", Warn_Node, E);
6d11af89
AC
2315 end if;
2316 else
2317 Warn_Node := Formal;
2318 end if;
2319
2320 Error_Msg_NE
70482933 2321 ("?type of argument& is unconstrained array",
6d11af89
AC
2322 Warn_Node, Formal);
2323 Error_Msg_NE
70482933 2324 ("?foreign caller must pass bounds explicitly",
6d11af89 2325 Warn_Node, Formal);
70482933
RK
2326 Error_Msg_Qual_Level := 0;
2327 end if;
2328
d8db0bca
JM
2329 -- Ada 2005 (AI-326): Check wrong use of tag incomplete
2330 -- types with unknown discriminants. For example:
2331
2332 -- type T (<>) is tagged;
2333 -- procedure P (X : access T); -- ERROR
2334 -- procedure P (X : T); -- ERROR
2335
2336 if not From_With_Type (F_Type) then
2337 if Is_Access_Type (F_Type) then
2338 F_Type := Designated_Type (F_Type);
2339 end if;
2340
2341 if Ekind (F_Type) = E_Incomplete_Type
2342 and then Is_Tagged_Type (F_Type)
2343 and then not Is_Class_Wide_Type (F_Type)
2344 and then No (Full_View (F_Type))
2345 and then Unknown_Discriminants_Present
2346 (Parent (F_Type))
2347 and then No (Stored_Constraint (F_Type))
2348 then
2349 Error_Msg_N
2350 ("(Ada 2005): invalid use of unconstrained tagged"
2351 & " incomplete type", E);
57747aec 2352
7d8b9c99
RD
2353 -- If the formal is an anonymous_access_to_subprogram
2354 -- freeze the subprogram type as well, to prevent
2355 -- scope anomalies in gigi, because there is no other
2356 -- clear point at which it could be frozen.
2357
2358 elsif Is_Itype (Etype (Formal))
2359 and then Ekind (F_Type) = E_Subprogram_Type
2360 then
57747aec 2361 Freeze_And_Append (F_Type, Loc, Result);
d8db0bca
JM
2362 end if;
2363 end if;
2364
70482933
RK
2365 Next_Formal (Formal);
2366 end loop;
2367
2368 -- Check return type
2369
2370 if Ekind (E) = E_Function then
2371 Freeze_And_Append (Etype (E), Loc, Result);
2372
fbf5a39b
AC
2373 if Warn_On_Export_Import
2374 and then Is_Fat_C_Ptr_Type (Etype (E))
2375 then
70482933
RK
2376 Error_Msg_N
2377 ("?return type of& does not correspond to C pointer",
2378 E);
2379
2380 elsif Is_Array_Type (Etype (E))
2381 and then not Is_Constrained (Etype (E))
2382 and then not Is_Imported (E)
2383 and then Convention (E) in Foreign_Convention
fbf5a39b 2384 and then Warn_On_Export_Import
70482933
RK
2385 then
2386 Error_Msg_N
fbf5a39b 2387 ("?foreign convention function& should not " &
70482933 2388 "return unconstrained array", E);
d8db0bca
JM
2389
2390 -- Ada 2005 (AI-326): Check wrong use of tagged
2391 -- incomplete type
2392 --
2393 -- type T is tagged;
2394 -- function F (X : Boolean) return T; -- ERROR
2395
2396 elsif Ekind (Etype (E)) = E_Incomplete_Type
2397 and then Is_Tagged_Type (Etype (E))
2398 and then No (Full_View (Etype (E)))
7d8b9c99 2399 and then not Is_Value_Type (Etype (E))
d8db0bca
JM
2400 then
2401 Error_Msg_N
2402 ("(Ada 2005): invalid use of tagged incomplete type",
2403 E);
70482933
RK
2404 end if;
2405 end if;
2406 end;
2407 end if;
2408
2409 -- Must freeze its parent first if it is a derived subprogram
2410
2411 if Present (Alias (E)) then
2412 Freeze_And_Append (Alias (E), Loc, Result);
2413 end if;
2414
19590d70
GD
2415 -- We don't freeze internal subprograms, because we don't normally
2416 -- want addition of extra formals or mechanism setting to happen
2417 -- for those. However we do pass through predefined dispatching
2418 -- cases, since extra formals may be needed in some cases, such as
2419 -- for the stream 'Input function (build-in-place formals).
2420
2421 if not Is_Internal (E)
2422 or else Is_Predefined_Dispatching_Operation (E)
2423 then
70482933
RK
2424 Freeze_Subprogram (E);
2425 end if;
2426
2427 -- Here for other than a subprogram or type
2428
2429 else
2430 -- If entity has a type, and it is not a generic unit, then
7d8b9c99 2431 -- freeze it first (RM 13.14(10)).
70482933
RK
2432
2433 if Present (Etype (E))
2434 and then Ekind (E) /= E_Generic_Function
2435 then
2436 Freeze_And_Append (Etype (E), Loc, Result);
2437 end if;
2438
2c9beb8a 2439 -- Special processing for objects created by object declaration
70482933
RK
2440
2441 if Nkind (Declaration_Node (E)) = N_Object_Declaration then
2c9beb8a
RD
2442
2443 -- For object created by object declaration, perform required
2444 -- categorization (preelaborate and pure) checks. Defer these
2445 -- checks to freeze time since pragma Import inhibits default
2446 -- initialization and thus pragma Import affects these checks.
2447
70482933 2448 Validate_Object_Declaration (Declaration_Node (E));
2c9beb8a
RD
2449
2450 -- If there is an address clause, check it is valid
2451
fbf5a39b 2452 Check_Address_Clause (E);
2c9beb8a
RD
2453
2454 -- For imported objects, set Is_Public unless there is also
2455 -- an address clause, which means that there is no external
2456 -- symbol needed for the Import (Is_Public may still be set
2457 -- for other unrelated reasons). Note that we delayed this
2458 -- processing till freeze time so that we can be sure not
2459 -- to set the flag if there is an address clause. If there
7d8b9c99 2460 -- is such a clause, then the only purpose of the Import
2c9beb8a
RD
2461 -- pragma is to suppress implicit initialization.
2462
2463 if Is_Imported (E)
add9f797 2464 and then No (Address_Clause (E))
2c9beb8a
RD
2465 then
2466 Set_Is_Public (E);
2467 end if;
7d8b9c99
RD
2468
2469 -- For convention C objects of an enumeration type, warn if
2470 -- the size is not integer size and no explicit size given.
2471 -- Skip warning for Boolean, and Character, assume programmer
2472 -- expects 8-bit sizes for these cases.
2473
2474 if (Convention (E) = Convention_C
2475 or else
2476 Convention (E) = Convention_CPP)
2477 and then Is_Enumeration_Type (Etype (E))
2478 and then not Is_Character_Type (Etype (E))
2479 and then not Is_Boolean_Type (Etype (E))
2480 and then Esize (Etype (E)) < Standard_Integer_Size
2481 and then not Has_Size_Clause (E)
2482 then
2483 Error_Msg_Uint_1 := UI_From_Int (Standard_Integer_Size);
2484 Error_Msg_N
2485 ("?convention C enumeration object has size less than ^",
2486 E);
2487 Error_Msg_N ("\?use explicit size clause to set size", E);
2488 end if;
70482933
RK
2489 end if;
2490
2491 -- Check that a constant which has a pragma Volatile[_Components]
7d8b9c99 2492 -- or Atomic[_Components] also has a pragma Import (RM C.6(13)).
70482933
RK
2493
2494 -- Note: Atomic[_Components] also sets Volatile[_Components]
2495
2496 if Ekind (E) = E_Constant
2497 and then (Has_Volatile_Components (E) or else Is_Volatile (E))
2498 and then not Is_Imported (E)
2499 then
2500 -- Make sure we actually have a pragma, and have not merely
2501 -- inherited the indication from elsewhere (e.g. an address
2502 -- clause, which is not good enough in RM terms!)
2503
1d571f3b 2504 if Has_Rep_Pragma (E, Name_Atomic)
91b1417d 2505 or else
1d571f3b 2506 Has_Rep_Pragma (E, Name_Atomic_Components)
70482933
RK
2507 then
2508 Error_Msg_N
91b1417d 2509 ("stand alone atomic constant must be " &
86cde7b1 2510 "imported ('R'M C.6(13))", E);
91b1417d 2511
1d571f3b 2512 elsif Has_Rep_Pragma (E, Name_Volatile)
91b1417d 2513 or else
1d571f3b 2514 Has_Rep_Pragma (E, Name_Volatile_Components)
91b1417d
AC
2515 then
2516 Error_Msg_N
2517 ("stand alone volatile constant must be " &
86cde7b1 2518 "imported (RM C.6(13))", E);
70482933
RK
2519 end if;
2520 end if;
2521
2522 -- Static objects require special handling
2523
2524 if (Ekind (E) = E_Constant or else Ekind (E) = E_Variable)
2525 and then Is_Statically_Allocated (E)
2526 then
2527 Freeze_Static_Object (E);
2528 end if;
2529
2530 -- Remaining step is to layout objects
2531
2532 if Ekind (E) = E_Variable
2533 or else
2534 Ekind (E) = E_Constant
2535 or else
2536 Ekind (E) = E_Loop_Parameter
2537 or else
2538 Is_Formal (E)
2539 then
2540 Layout_Object (E);
2541 end if;
2542 end if;
2543
2544 -- Case of a type or subtype being frozen
2545
2546 else
31b5873d
GD
2547 -- We used to check here that a full type must have preelaborable
2548 -- initialization if it completes a private type specified with
2549 -- pragma Preelaborable_Intialization, but that missed cases where
2550 -- the types occur within a generic package, since the freezing
2551 -- that occurs within a containing scope generally skips traversal
2552 -- of a generic unit's declarations (those will be frozen within
2553 -- instances). This check was moved to Analyze_Package_Specification.
3f1ede06 2554
70482933
RK
2555 -- The type may be defined in a generic unit. This can occur when
2556 -- freezing a generic function that returns the type (which is
2557 -- defined in a parent unit). It is clearly meaningless to freeze
2558 -- this type. However, if it is a subtype, its size may be determi-
2559 -- nable and used in subsequent checks, so might as well try to
2560 -- compute it.
2561
2562 if Present (Scope (E))
2563 and then Is_Generic_Unit (Scope (E))
2564 then
2565 Check_Compile_Time_Size (E);
2566 return No_List;
2567 end if;
2568
2569 -- Deal with special cases of freezing for subtype
2570
2571 if E /= Base_Type (E) then
2572
86cde7b1
RD
2573 -- Before we do anything else, a specialized test for the case of
2574 -- a size given for an array where the array needs to be packed,
2575 -- but was not so the size cannot be honored. This would of course
2576 -- be caught by the backend, and indeed we don't catch all cases.
2577 -- The point is that we can give a better error message in those
2578 -- cases that we do catch with the circuitry here. Also if pragma
2579 -- Implicit_Packing is set, this is where the packing occurs.
2580
2581 -- The reason we do this so early is that the processing in the
2582 -- automatic packing case affects the layout of the base type, so
2583 -- it must be done before we freeze the base type.
2584
2585 if Is_Array_Type (E) then
2586 declare
2587 Lo, Hi : Node_Id;
2588 Ctyp : constant Entity_Id := Component_Type (E);
2589
2590 begin
2591 -- Check enabling conditions. These are straightforward
2592 -- except for the test for a limited composite type. This
2593 -- eliminates the rare case of a array of limited components
2594 -- where there are issues of whether or not we can go ahead
2595 -- and pack the array (since we can't freely pack and unpack
2596 -- arrays if they are limited).
2597
2598 -- Note that we check the root type explicitly because the
2599 -- whole point is we are doing this test before we have had
2600 -- a chance to freeze the base type (and it is that freeze
2601 -- action that causes stuff to be inherited).
2602
2603 if Present (Size_Clause (E))
2604 and then Known_Static_Esize (E)
2605 and then not Is_Packed (E)
2606 and then not Has_Pragma_Pack (E)
2607 and then Number_Dimensions (E) = 1
2608 and then not Has_Component_Size_Clause (E)
2609 and then Known_Static_Esize (Ctyp)
2610 and then not Is_Limited_Composite (E)
2611 and then not Is_Packed (Root_Type (E))
2612 and then not Has_Component_Size_Clause (Root_Type (E))
2613 then
2614 Get_Index_Bounds (First_Index (E), Lo, Hi);
2615
2616 if Compile_Time_Known_Value (Lo)
2617 and then Compile_Time_Known_Value (Hi)
2618 and then Known_Static_RM_Size (Ctyp)
2619 and then RM_Size (Ctyp) < 64
2620 then
2621 declare
2622 Lov : constant Uint := Expr_Value (Lo);
2623 Hiv : constant Uint := Expr_Value (Hi);
2624 Len : constant Uint := UI_Max
2625 (Uint_0,
2626 Hiv - Lov + 1);
2627 Rsiz : constant Uint := RM_Size (Ctyp);
2628 SZ : constant Node_Id := Size_Clause (E);
2629 Btyp : constant Entity_Id := Base_Type (E);
2630
2631 -- What we are looking for here is the situation where
2632 -- the RM_Size given would be exactly right if there
2633 -- was a pragma Pack (resulting in the component size
2634 -- being the same as the RM_Size). Furthermore, the
2635 -- component type size must be an odd size (not a
2636 -- multiple of storage unit)
2637
2638 begin
2639 if RM_Size (E) = Len * Rsiz
2640 and then Rsiz mod System_Storage_Unit /= 0
2641 then
2642 -- For implicit packing mode, just set the
2643 -- component size silently
2644
2645 if Implicit_Packing then
2646 Set_Component_Size (Btyp, Rsiz);
2647 Set_Is_Bit_Packed_Array (Btyp);
2648 Set_Is_Packed (Btyp);
2649 Set_Has_Non_Standard_Rep (Btyp);
2650
2651 -- Otherwise give an error message
2652
2653 else
2654 Error_Msg_NE
2655 ("size given for& too small", SZ, E);
2656 Error_Msg_N
2657 ("\use explicit pragma Pack "
2658 & "or use pragma Implicit_Packing", SZ);
2659 end if;
2660 end if;
2661 end;
2662 end if;
2663 end if;
2664 end;
2665 end if;
2666
70482933
RK
2667 -- If ancestor subtype present, freeze that first.
2668 -- Note that this will also get the base type frozen.
2669
2670 Atype := Ancestor_Subtype (E);
2671
2672 if Present (Atype) then
2673 Freeze_And_Append (Atype, Loc, Result);
2674
2675 -- Otherwise freeze the base type of the entity before
7d8b9c99 2676 -- freezing the entity itself (RM 13.14(15)).
70482933
RK
2677
2678 elsif E /= Base_Type (E) then
2679 Freeze_And_Append (Base_Type (E), Loc, Result);
2680 end if;
2681
fbf5a39b 2682 -- For a derived type, freeze its parent type first (RM 13.14(15))
70482933
RK
2683
2684 elsif Is_Derived_Type (E) then
2685 Freeze_And_Append (Etype (E), Loc, Result);
2686 Freeze_And_Append (First_Subtype (Etype (E)), Loc, Result);
2687 end if;
2688
2689 -- For array type, freeze index types and component type first
fbf5a39b 2690 -- before freezing the array (RM 13.14(15)).
70482933
RK
2691
2692 if Is_Array_Type (E) then
2693 declare
fbf5a39b 2694 Ctyp : constant Entity_Id := Component_Type (E);
70482933
RK
2695
2696 Non_Standard_Enum : Boolean := False;
7d8b9c99
RD
2697 -- Set true if any of the index types is an enumeration type
2698 -- with a non-standard representation.
70482933
RK
2699
2700 begin
2701 Freeze_And_Append (Ctyp, Loc, Result);
2702
2703 Indx := First_Index (E);
2704 while Present (Indx) loop
2705 Freeze_And_Append (Etype (Indx), Loc, Result);
2706
2707 if Is_Enumeration_Type (Etype (Indx))
2708 and then Has_Non_Standard_Rep (Etype (Indx))
2709 then
2710 Non_Standard_Enum := True;
2711 end if;
2712
2713 Next_Index (Indx);
2714 end loop;
2715
07fc65c4 2716 -- Processing that is done only for base types
70482933
RK
2717
2718 if Ekind (E) = E_Array_Type then
07fc65c4
GB
2719
2720 -- Propagate flags for component type
2721
70482933
RK
2722 if Is_Controlled (Component_Type (E))
2723 or else Has_Controlled_Component (Ctyp)
2724 then
2725 Set_Has_Controlled_Component (E);
2726 end if;
2727
2728 if Has_Unchecked_Union (Component_Type (E)) then
2729 Set_Has_Unchecked_Union (E);
2730 end if;
70482933 2731
07fc65c4
GB
2732 -- If packing was requested or if the component size was set
2733 -- explicitly, then see if bit packing is required. This
2734 -- processing is only done for base types, since all the
2735 -- representation aspects involved are type-related. This
2736 -- is not just an optimization, if we start processing the
2737 -- subtypes, they intefere with the settings on the base
2738 -- type (this is because Is_Packed has a slightly different
2739 -- meaning before and after freezing).
70482933 2740
70482933
RK
2741 declare
2742 Csiz : Uint;
2743 Esiz : Uint;
2744
2745 begin
2746 if (Is_Packed (E) or else Has_Pragma_Pack (E))
2747 and then not Has_Atomic_Components (E)
2748 and then Known_Static_RM_Size (Ctyp)
2749 then
2750 Csiz := UI_Max (RM_Size (Ctyp), 1);
2751
2752 elsif Known_Component_Size (E) then
2753 Csiz := Component_Size (E);
2754
2755 elsif not Known_Static_Esize (Ctyp) then
2756 Csiz := Uint_0;
2757
2758 else
2759 Esiz := Esize (Ctyp);
2760
2761 -- We can set the component size if it is less than
2762 -- 16, rounding it up to the next storage unit size.
2763
2764 if Esiz <= 8 then
2765 Csiz := Uint_8;
2766 elsif Esiz <= 16 then
2767 Csiz := Uint_16;
2768 else
2769 Csiz := Uint_0;
2770 end if;
2771
7d8b9c99
RD
2772 -- Set component size up to match alignment if it
2773 -- would otherwise be less than the alignment. This
2774 -- deals with cases of types whose alignment exceeds
2775 -- their size (padded types).
70482933
RK
2776
2777 if Csiz /= 0 then
2778 declare
2779 A : constant Uint := Alignment_In_Bits (Ctyp);
70482933
RK
2780 begin
2781 if Csiz < A then
2782 Csiz := A;
2783 end if;
2784 end;
2785 end if;
70482933
RK
2786 end if;
2787
86cde7b1
RD
2788 -- Case of component size that may result in packing
2789
70482933 2790 if 1 <= Csiz and then Csiz <= 64 then
86cde7b1
RD
2791 declare
2792 Ent : constant Entity_Id :=
2793 First_Subtype (E);
2794 Pack_Pragma : constant Node_Id :=
2795 Get_Rep_Pragma (Ent, Name_Pack);
2796 Comp_Size_C : constant Node_Id :=
2797 Get_Attribute_Definition_Clause
2798 (Ent, Attribute_Component_Size);
2799 begin
2800 -- Warn if we have pack and component size so that
2801 -- the pack is ignored.
70482933 2802
86cde7b1
RD
2803 -- Note: here we must check for the presence of a
2804 -- component size before checking for a Pack pragma
2805 -- to deal with the case where the array type is a
2806 -- derived type whose parent is currently private.
2807
2808 if Present (Comp_Size_C)
2809 and then Has_Pragma_Pack (Ent)
2810 then
2811 Error_Msg_Sloc := Sloc (Comp_Size_C);
2812 Error_Msg_NE
2813 ("?pragma Pack for& ignored!",
2814 Pack_Pragma, Ent);
2815 Error_Msg_N
2816 ("\?explicit component size given#!",
2817 Pack_Pragma);
2818 end if;
70482933 2819
86cde7b1
RD
2820 -- Set component size if not already set by a
2821 -- component size clause.
70482933 2822
86cde7b1
RD
2823 if not Present (Comp_Size_C) then
2824 Set_Component_Size (E, Csiz);
2825 end if;
fbf5a39b 2826
86cde7b1
RD
2827 -- Check for base type of 8, 16, 32 bits, where an
2828 -- unsigned subtype has a length one less than the
2829 -- base type (e.g. Natural subtype of Integer).
fbf5a39b 2830
86cde7b1
RD
2831 -- In such cases, if a component size was not set
2832 -- explicitly, then generate a warning.
fbf5a39b 2833
86cde7b1
RD
2834 if Has_Pragma_Pack (E)
2835 and then not Present (Comp_Size_C)
2836 and then
2837 (Csiz = 7 or else Csiz = 15 or else Csiz = 31)
2838 and then Esize (Base_Type (Ctyp)) = Csiz + 1
2839 then
2840 Error_Msg_Uint_1 := Csiz;
2841
2842 if Present (Pack_Pragma) then
2843 Error_Msg_N
2844 ("?pragma Pack causes component size "
2845 & "to be ^!", Pack_Pragma);
2846 Error_Msg_N
2847 ("\?use Component_Size to set "
2848 & "desired value!", Pack_Pragma);
2849 end if;
fbf5a39b 2850 end if;
fbf5a39b 2851
86cde7b1
RD
2852 -- Actual packing is not needed for 8, 16, 32, 64.
2853 -- Also not needed for 24 if alignment is 1.
70482933 2854
86cde7b1
RD
2855 if Csiz = 8
2856 or else Csiz = 16
2857 or else Csiz = 32
2858 or else Csiz = 64
2859 or else (Csiz = 24 and then Alignment (Ctyp) = 1)
2860 then
2861 -- Here the array was requested to be packed,
2862 -- but the packing request had no effect, so
2863 -- Is_Packed is reset.
70482933 2864
86cde7b1
RD
2865 -- Note: semantically this means that we lose
2866 -- track of the fact that a derived type
2867 -- inherited a pragma Pack that was non-
2868 -- effective, but that seems fine.
70482933 2869
86cde7b1
RD
2870 -- We regard a Pack pragma as a request to set
2871 -- a representation characteristic, and this
2872 -- request may be ignored.
70482933 2873
86cde7b1 2874 Set_Is_Packed (Base_Type (E), False);
70482933 2875
86cde7b1 2876 -- In all other cases, packing is indeed needed
70482933 2877
86cde7b1
RD
2878 else
2879 Set_Has_Non_Standard_Rep (Base_Type (E));
2880 Set_Is_Bit_Packed_Array (Base_Type (E));
2881 Set_Is_Packed (Base_Type (E));
2882 end if;
2883 end;
70482933
RK
2884 end if;
2885 end;
07fc65c4
GB
2886
2887 -- Processing that is done only for subtypes
2888
2889 else
2890 -- Acquire alignment from base type
2891
2892 if Unknown_Alignment (E) then
2893 Set_Alignment (E, Alignment (Base_Type (E)));
7d8b9c99 2894 Adjust_Esize_Alignment (E);
07fc65c4
GB
2895 end if;
2896 end if;
2897
d05ef0ab
AC
2898 -- For bit-packed arrays, check the size
2899
2900 if Is_Bit_Packed_Array (E)
7d8b9c99 2901 and then Known_RM_Size (E)
d05ef0ab
AC
2902 then
2903 declare
67ce0d7e
RD
2904 SizC : constant Node_Id := Size_Clause (E);
2905
d05ef0ab 2906 Discard : Boolean;
67ce0d7e 2907 pragma Warnings (Off, Discard);
d05ef0ab
AC
2908
2909 begin
2910 -- It is not clear if it is possible to have no size
7d8b9c99
RD
2911 -- clause at this stage, but it is not worth worrying
2912 -- about. Post error on the entity name in the size
d05ef0ab
AC
2913 -- clause if present, else on the type entity itself.
2914
2915 if Present (SizC) then
7d8b9c99 2916 Check_Size (Name (SizC), E, RM_Size (E), Discard);
d05ef0ab 2917 else
7d8b9c99 2918 Check_Size (E, E, RM_Size (E), Discard);
d05ef0ab
AC
2919 end if;
2920 end;
2921 end if;
2922
70482933
RK
2923 -- If any of the index types was an enumeration type with
2924 -- a non-standard rep clause, then we indicate that the
2925 -- array type is always packed (even if it is not bit packed).
2926
2927 if Non_Standard_Enum then
2928 Set_Has_Non_Standard_Rep (Base_Type (E));
2929 Set_Is_Packed (Base_Type (E));
2930 end if;
70482933 2931
0da2c8ac 2932 Set_Component_Alignment_If_Not_Set (E);
70482933 2933
0da2c8ac
AC
2934 -- If the array is packed, we must create the packed array
2935 -- type to be used to actually implement the type. This is
2936 -- only needed for real array types (not for string literal
2937 -- types, since they are present only for the front end).
70482933 2938
0da2c8ac
AC
2939 if Is_Packed (E)
2940 and then Ekind (E) /= E_String_Literal_Subtype
2941 then
2942 Create_Packed_Array_Type (E);
2943 Freeze_And_Append (Packed_Array_Type (E), Loc, Result);
70482933 2944
0da2c8ac 2945 -- Size information of packed array type is copied to the
fea9e956
ES
2946 -- array type, since this is really the representation. But
2947 -- do not override explicit existing size values.
2948
2949 if not Has_Size_Clause (E) then
2950 Set_Esize (E, Esize (Packed_Array_Type (E)));
2951 Set_RM_Size (E, RM_Size (Packed_Array_Type (E)));
2952 end if;
70482933 2953
fea9e956
ES
2954 if not Has_Alignment_Clause (E) then
2955 Set_Alignment (E, Alignment (Packed_Array_Type (E)));
2956 end if;
0da2c8ac
AC
2957 end if;
2958
2959 -- For non-packed arrays set the alignment of the array
2960 -- to the alignment of the component type if it is unknown.
2961 -- Skip this in the atomic case, since atomic arrays may
2962 -- need larger alignments.
2963
2964 if not Is_Packed (E)
2965 and then Unknown_Alignment (E)
2966 and then Known_Alignment (Ctyp)
2967 and then Known_Static_Component_Size (E)
2968 and then Known_Static_Esize (Ctyp)
2969 and then Esize (Ctyp) = Component_Size (E)
2970 and then not Is_Atomic (E)
2971 then
2972 Set_Alignment (E, Alignment (Component_Type (E)));
2973 end if;
2974 end;
70482933 2975
fbf5a39b
AC
2976 -- For a class-wide type, the corresponding specific type is
2977 -- frozen as well (RM 13.14(15))
70482933
RK
2978
2979 elsif Is_Class_Wide_Type (E) then
2980 Freeze_And_Append (Root_Type (E), Loc, Result);
2981
86cde7b1
RD
2982 -- If the base type of the class-wide type is still incomplete,
2983 -- the class-wide remains unfrozen as well. This is legal when
2984 -- E is the formal of a primitive operation of some other type
2985 -- which is being frozen.
2986
2987 if not Is_Frozen (Root_Type (E)) then
2988 Set_Is_Frozen (E, False);
2989 return Result;
2990 end if;
2991
70482933
RK
2992 -- If the Class_Wide_Type is an Itype (when type is the anonymous
2993 -- parent of a derived type) and it is a library-level entity,
2994 -- generate an itype reference for it. Otherwise, its first
2995 -- explicit reference may be in an inner scope, which will be
2996 -- rejected by the back-end.
2997
2998 if Is_Itype (E)
2999 and then Is_Compilation_Unit (Scope (E))
3000 then
70482933 3001 declare
fbf5a39b 3002 Ref : constant Node_Id := Make_Itype_Reference (Loc);
70482933
RK
3003
3004 begin
3005 Set_Itype (Ref, E);
3006 if No (Result) then
3007 Result := New_List (Ref);
3008 else
3009 Append (Ref, Result);
3010 end if;
3011 end;
3012 end if;
3013
fbf5a39b
AC
3014 -- The equivalent type associated with a class-wide subtype
3015 -- needs to be frozen to ensure that its layout is done.
3016 -- Class-wide subtypes are currently only frozen on targets
3017 -- requiring front-end layout (see New_Class_Wide_Subtype
3018 -- and Make_CW_Equivalent_Type in exp_util.adb).
3019
3020 if Ekind (E) = E_Class_Wide_Subtype
3021 and then Present (Equivalent_Type (E))
3022 then
3023 Freeze_And_Append (Equivalent_Type (E), Loc, Result);
3024 end if;
3025
3026 -- For a record (sub)type, freeze all the component types (RM
3027 -- 13.14(15). We test for E_Record_(sub)Type here, rather than
70482933
RK
3028 -- using Is_Record_Type, because we don't want to attempt the
3029 -- freeze for the case of a private type with record extension
3030 -- (we will do that later when the full type is frozen).
3031
3032 elsif Ekind (E) = E_Record_Type
3033 or else Ekind (E) = E_Record_Subtype
3034 then
3035 Freeze_Record_Type (E);
3036
3037 -- For a concurrent type, freeze corresponding record type. This
3038 -- does not correpond to any specific rule in the RM, but the
3039 -- record type is essentially part of the concurrent type.
3040 -- Freeze as well all local entities. This includes record types
3041 -- created for entry parameter blocks, and whatever local entities
3042 -- may appear in the private part.
3043
3044 elsif Is_Concurrent_Type (E) then
3045 if Present (Corresponding_Record_Type (E)) then
3046 Freeze_And_Append
3047 (Corresponding_Record_Type (E), Loc, Result);
3048 end if;
3049
3050 Comp := First_Entity (E);
3051
3052 while Present (Comp) loop
3053 if Is_Type (Comp) then
3054 Freeze_And_Append (Comp, Loc, Result);
3055
3056 elsif (Ekind (Comp)) /= E_Function then
c6823a20
EB
3057 if Is_Itype (Etype (Comp))
3058 and then Underlying_Type (Scope (Etype (Comp))) = E
3059 then
3060 Undelay_Type (Etype (Comp));
3061 end if;
3062
70482933
RK
3063 Freeze_And_Append (Etype (Comp), Loc, Result);
3064 end if;
3065
3066 Next_Entity (Comp);
3067 end loop;
3068
ee094616
RD
3069 -- Private types are required to point to the same freeze node as
3070 -- their corresponding full views. The freeze node itself has to
3071 -- point to the partial view of the entity (because from the partial
3072 -- view, we can retrieve the full view, but not the reverse).
3073 -- However, in order to freeze correctly, we need to freeze the full
3074 -- view. If we are freezing at the end of a scope (or within the
3075 -- scope of the private type), the partial and full views will have
3076 -- been swapped, the full view appears first in the entity chain and
3077 -- the swapping mechanism ensures that the pointers are properly set
3078 -- (on scope exit).
3079
3080 -- If we encounter the partial view before the full view (e.g. when
3081 -- freezing from another scope), we freeze the full view, and then
3082 -- set the pointers appropriately since we cannot rely on swapping to
3083 -- fix things up (subtypes in an outer scope might not get swapped).
70482933
RK
3084
3085 elsif Is_Incomplete_Or_Private_Type (E)
3086 and then not Is_Generic_Type (E)
3087 then
86cde7b1
RD
3088 -- The construction of the dispatch table associated with library
3089 -- level tagged types forces freezing of all the primitives of the
3090 -- type, which may cause premature freezing of the partial view.
3091 -- For example:
3092
3093 -- package Pkg is
3094 -- type T is tagged private;
3095 -- type DT is new T with private;
3096 -- procedure Prim (X : in out T; Y : in out DT'class);
3097 -- private
3098 -- type T is tagged null record;
3099 -- Obj : T;
3100 -- type DT is new T with null record;
3101 -- end;
3102
3103 -- In this case the type will be frozen later by the usual
3104 -- mechanism: an object declaration, an instantiation, or the
3105 -- end of a declarative part.
3106
3107 if Is_Library_Level_Tagged_Type (E)
3108 and then not Present (Full_View (E))
3109 then
3110 Set_Is_Frozen (E, False);
3111 return Result;
3112
70482933
RK
3113 -- Case of full view present
3114
86cde7b1 3115 elsif Present (Full_View (E)) then
70482933 3116
ee094616
RD
3117 -- If full view has already been frozen, then no further
3118 -- processing is required
70482933
RK
3119
3120 if Is_Frozen (Full_View (E)) then
3121
3122 Set_Has_Delayed_Freeze (E, False);
3123 Set_Freeze_Node (E, Empty);
3124 Check_Debug_Info_Needed (E);
3125
ee094616
RD
3126 -- Otherwise freeze full view and patch the pointers so that
3127 -- the freeze node will elaborate both views in the back-end.
70482933
RK
3128
3129 else
fbf5a39b
AC
3130 declare
3131 Full : constant Entity_Id := Full_View (E);
70482933 3132
fbf5a39b
AC
3133 begin
3134 if Is_Private_Type (Full)
3135 and then Present (Underlying_Full_View (Full))
3136 then
3137 Freeze_And_Append
3138 (Underlying_Full_View (Full), Loc, Result);
3139 end if;
70482933 3140
fbf5a39b 3141 Freeze_And_Append (Full, Loc, Result);
70482933 3142
fbf5a39b
AC
3143 if Has_Delayed_Freeze (E) then
3144 F_Node := Freeze_Node (Full);
70482933 3145
fbf5a39b
AC
3146 if Present (F_Node) then
3147 Set_Freeze_Node (E, F_Node);
3148 Set_Entity (F_Node, E);
3149
3150 else
3151 -- {Incomplete,Private}_Subtypes
3152 -- with Full_Views constrained by discriminants
3153
3154 Set_Has_Delayed_Freeze (E, False);
3155 Set_Freeze_Node (E, Empty);
3156 end if;
70482933 3157 end if;
fbf5a39b 3158 end;
70482933
RK
3159
3160 Check_Debug_Info_Needed (E);
3161 end if;
3162
ee094616
RD
3163 -- AI-117 requires that the convention of a partial view be the
3164 -- same as the convention of the full view. Note that this is a
3165 -- recognized breach of privacy, but it's essential for logical
3166 -- consistency of representation, and the lack of a rule in
3167 -- RM95 was an oversight.
70482933
RK
3168
3169 Set_Convention (E, Convention (Full_View (E)));
3170
3171 Set_Size_Known_At_Compile_Time (E,
3172 Size_Known_At_Compile_Time (Full_View (E)));
3173
3174 -- Size information is copied from the full view to the
3175 -- incomplete or private view for consistency
3176
ee094616
RD
3177 -- We skip this is the full view is not a type. This is very
3178 -- strange of course, and can only happen as a result of
3179 -- certain illegalities, such as a premature attempt to derive
3180 -- from an incomplete type.
70482933
RK
3181
3182 if Is_Type (Full_View (E)) then
3183 Set_Size_Info (E, Full_View (E));
3184 Set_RM_Size (E, RM_Size (Full_View (E)));
3185 end if;
3186
3187 return Result;
3188
3189 -- Case of no full view present. If entity is derived or subtype,
3190 -- it is safe to freeze, correctness depends on the frozen status
3191 -- of parent. Otherwise it is either premature usage, or a Taft
3192 -- amendment type, so diagnosis is at the point of use and the
3193 -- type might be frozen later.
3194
3195 elsif E /= Base_Type (E)
3196 or else Is_Derived_Type (E)
3197 then
3198 null;
3199
3200 else
3201 Set_Is_Frozen (E, False);
3202 return No_List;
3203 end if;
3204
3205 -- For access subprogram, freeze types of all formals, the return
3206 -- type was already frozen, since it is the Etype of the function.
3207
3208 elsif Ekind (E) = E_Subprogram_Type then
3209 Formal := First_Formal (E);
3210 while Present (Formal) loop
3211 Freeze_And_Append (Etype (Formal), Loc, Result);
3212 Next_Formal (Formal);
3213 end loop;
3214
70482933
RK
3215 Freeze_Subprogram (E);
3216
3f1ede06 3217 -- Ada 2005 (AI-326): Check wrong use of tag incomplete type
d8db0bca
JM
3218 --
3219 -- type T is tagged;
3220 -- type Acc is access function (X : T) return T; -- ERROR
3221
3222 if Ekind (Etype (E)) = E_Incomplete_Type
3223 and then Is_Tagged_Type (Etype (E))
3224 and then No (Full_View (Etype (E)))
7d8b9c99 3225 and then not Is_Value_Type (Etype (E))
d8db0bca
JM
3226 then
3227 Error_Msg_N
3228 ("(Ada 2005): invalid use of tagged incomplete type", E);
3229 end if;
3230
ee094616
RD
3231 -- For access to a protected subprogram, freeze the equivalent type
3232 -- (however this is not set if we are not generating code or if this
3233 -- is an anonymous type used just for resolution).
70482933 3234
fea9e956 3235 elsif Is_Access_Protected_Subprogram_Type (E) then
d8db0bca
JM
3236
3237 -- AI-326: Check wrong use of tagged incomplete types
3238
3239 -- type T is tagged;
3240 -- type As3D is access protected
3241 -- function (X : Float) return T; -- ERROR
3242
3243 declare
3244 Etyp : Entity_Id;
3245
3246 begin
3247 Etyp := Etype (Directly_Designated_Type (E));
3248
3249 if Is_Class_Wide_Type (Etyp) then
3250 Etyp := Etype (Etyp);
3251 end if;
3252
3253 if Ekind (Etyp) = E_Incomplete_Type
3254 and then Is_Tagged_Type (Etyp)
3255 and then No (Full_View (Etyp))
7d8b9c99 3256 and then not Is_Value_Type (Etype (E))
d8db0bca
JM
3257 then
3258 Error_Msg_N
3259 ("(Ada 2005): invalid use of tagged incomplete type", E);
3260 end if;
3261 end;
3262
57747aec 3263 if Present (Equivalent_Type (E)) then
d8db0bca
JM
3264 Freeze_And_Append (Equivalent_Type (E), Loc, Result);
3265 end if;
70482933
RK
3266 end if;
3267
3268 -- Generic types are never seen by the back-end, and are also not
3269 -- processed by the expander (since the expander is turned off for
3270 -- generic processing), so we never need freeze nodes for them.
3271
3272 if Is_Generic_Type (E) then
3273 return Result;
3274 end if;
3275
3276 -- Some special processing for non-generic types to complete
3277 -- representation details not known till the freeze point.
3278
3279 if Is_Fixed_Point_Type (E) then
3280 Freeze_Fixed_Point_Type (E);
3281
ee094616
RD
3282 -- Some error checks required for ordinary fixed-point type. Defer
3283 -- these till the freeze-point since we need the small and range
3284 -- values. We only do these checks for base types
fbf5a39b
AC
3285
3286 if Is_Ordinary_Fixed_Point_Type (E)
3287 and then E = Base_Type (E)
3288 then
3289 if Small_Value (E) < Ureal_2_M_80 then
3290 Error_Msg_Name_1 := Name_Small;
3291 Error_Msg_N
7d8b9c99 3292 ("`&''%` too small, minimum allowed is 2.0'*'*(-80)", E);
fbf5a39b
AC
3293
3294 elsif Small_Value (E) > Ureal_2_80 then
3295 Error_Msg_Name_1 := Name_Small;
3296 Error_Msg_N
7d8b9c99 3297 ("`&''%` too large, maximum allowed is 2.0'*'*80", E);
fbf5a39b
AC
3298 end if;
3299
3300 if Expr_Value_R (Type_Low_Bound (E)) < Ureal_M_10_36 then
3301 Error_Msg_Name_1 := Name_First;
3302 Error_Msg_N
7d8b9c99 3303 ("`&''%` too small, minimum allowed is -10.0'*'*36", E);
fbf5a39b
AC
3304 end if;
3305
3306 if Expr_Value_R (Type_High_Bound (E)) > Ureal_10_36 then
3307 Error_Msg_Name_1 := Name_Last;
3308 Error_Msg_N
7d8b9c99 3309 ("`&''%` too large, maximum allowed is 10.0'*'*36", E);
fbf5a39b
AC
3310 end if;
3311 end if;
3312
70482933
RK
3313 elsif Is_Enumeration_Type (E) then
3314 Freeze_Enumeration_Type (E);
3315
3316 elsif Is_Integer_Type (E) then
3317 Adjust_Esize_For_Alignment (E);
3318
edd63e9b
ES
3319 elsif Is_Access_Type (E) then
3320
3321 -- Check restriction for standard storage pool
3322
3323 if No (Associated_Storage_Pool (E)) then
3324 Check_Restriction (No_Standard_Storage_Pools, E);
3325 end if;
3326
3327 -- Deal with error message for pure access type. This is not an
3328 -- error in Ada 2005 if there is no pool (see AI-366).
3329
3330 if Is_Pure_Unit_Access_Type (E)
3331 and then (Ada_Version < Ada_05
3332 or else not No_Pool_Assigned (E))
3333 then
3334 Error_Msg_N ("named access type not allowed in pure unit", E);
3335 end if;
70482933
RK
3336 end if;
3337
edd63e9b
ES
3338 -- Case of composite types
3339
70482933
RK
3340 if Is_Composite_Type (E) then
3341
edd63e9b
ES
3342 -- AI-117 requires that all new primitives of a tagged type must
3343 -- inherit the convention of the full view of the type. Inherited
3344 -- and overriding operations are defined to inherit the convention
3345 -- of their parent or overridden subprogram (also specified in
ee094616
RD
3346 -- AI-117), which will have occurred earlier (in Derive_Subprogram
3347 -- and New_Overloaded_Entity). Here we set the convention of
3348 -- primitives that are still convention Ada, which will ensure
3349 -- that any new primitives inherit the type's convention.
3350 -- Class-wide types can have a foreign convention inherited from
3351 -- their specific type, but are excluded from this since they
3352 -- don't have any associated primitives.
70482933
RK
3353
3354 if Is_Tagged_Type (E)
3355 and then not Is_Class_Wide_Type (E)
3356 and then Convention (E) /= Convention_Ada
3357 then
3358 declare
3359 Prim_List : constant Elist_Id := Primitive_Operations (E);
07fc65c4 3360 Prim : Elmt_Id;
70482933 3361 begin
07fc65c4 3362 Prim := First_Elmt (Prim_List);
70482933
RK
3363 while Present (Prim) loop
3364 if Convention (Node (Prim)) = Convention_Ada then
3365 Set_Convention (Node (Prim), Convention (E));
3366 end if;
3367
3368 Next_Elmt (Prim);
3369 end loop;
3370 end;
3371 end if;
3372 end if;
3373
07fc65c4
GB
3374 -- Generate primitive operation references for a tagged type
3375
3376 if Is_Tagged_Type (E)
3377 and then not Is_Class_Wide_Type (E)
3378 then
3379 declare
edd63e9b 3380 Prim_List : Elist_Id;
07fc65c4
GB
3381 Prim : Elmt_Id;
3382 Ent : Entity_Id;
add9f797 3383 Aux_E : Entity_Id;
07fc65c4
GB
3384
3385 begin
add9f797
JM
3386 -- Handle subtypes
3387
3388 if Ekind (E) = E_Protected_Subtype
3389 or else Ekind (E) = E_Task_Subtype
3390 then
3391 Aux_E := Etype (E);
3392 else
3393 Aux_E := E;
3394 end if;
3395
edd63e9b
ES
3396 -- Ada 2005 (AI-345): In case of concurrent type generate
3397 -- reference to the wrapper that allow us to dispatch calls
3398 -- through their implemented abstract interface types.
3399
3400 -- The check for Present here is to protect against previously
3401 -- reported critical errors.
3402
add9f797
JM
3403 if Is_Concurrent_Type (Aux_E)
3404 and then Present (Corresponding_Record_Type (Aux_E))
edd63e9b 3405 then
edd63e9b 3406 Prim_List := Primitive_Operations
add9f797 3407 (Corresponding_Record_Type (Aux_E));
edd63e9b 3408 else
add9f797 3409 Prim_List := Primitive_Operations (Aux_E);
edd63e9b
ES
3410 end if;
3411
3412 -- Loop to generate references for primitive operations
3413
ee094616
RD
3414 if Present (Prim_List) then
3415 Prim := First_Elmt (Prim_List);
3416 while Present (Prim) loop
07fc65c4 3417
ee094616
RD
3418 -- If the operation is derived, get the original for
3419 -- cross-reference purposes (it is the original for
3420 -- which we want the xref, and for which the comes
3421 -- from source test needs to be performed).
07fc65c4 3422
ee094616
RD
3423 Ent := Node (Prim);
3424 while Present (Alias (Ent)) loop
3425 Ent := Alias (Ent);
3426 end loop;
07fc65c4 3427
ee094616
RD
3428 Generate_Reference (E, Ent, 'p', Set_Ref => False);
3429 Next_Elmt (Prim);
3430 end loop;
3431 end if;
07fc65c4
GB
3432 end;
3433 end if;
3434
ee094616
RD
3435 -- Now that all types from which E may depend are frozen, see if the
3436 -- size is known at compile time, if it must be unsigned, or if
7d8b9c99 3437 -- strict alignment is required
70482933
RK
3438
3439 Check_Compile_Time_Size (E);
3440 Check_Unsigned_Type (E);
3441
3442 if Base_Type (E) = E then
3443 Check_Strict_Alignment (E);
3444 end if;
3445
3446 -- Do not allow a size clause for a type which does not have a size
3447 -- that is known at compile time
3448
3449 if Has_Size_Clause (E)
3450 and then not Size_Known_At_Compile_Time (E)
3451 then
07fc65c4
GB
3452 -- Supress this message if errors posted on E, even if we are
3453 -- in all errors mode, since this is often a junk message
3454
3455 if not Error_Posted (E) then
3456 Error_Msg_N
3457 ("size clause not allowed for variable length type",
3458 Size_Clause (E));
3459 end if;
70482933
RK
3460 end if;
3461
3462 -- Remaining process is to set/verify the representation information,
3463 -- in particular the size and alignment values. This processing is
3464 -- not required for generic types, since generic types do not play
3465 -- any part in code generation, and so the size and alignment values
c6823a20 3466 -- for such types are irrelevant.
70482933
RK
3467
3468 if Is_Generic_Type (E) then
3469 return Result;
3470
3471 -- Otherwise we call the layout procedure
3472
3473 else
3474 Layout_Type (E);
3475 end if;
3476
3477 -- End of freeze processing for type entities
3478 end if;
3479
3480 -- Here is where we logically freeze the current entity. If it has a
3481 -- freeze node, then this is the point at which the freeze node is
3482 -- linked into the result list.
3483
3484 if Has_Delayed_Freeze (E) then
3485
3486 -- If a freeze node is already allocated, use it, otherwise allocate
3487 -- a new one. The preallocation happens in the case of anonymous base
3488 -- types, where we preallocate so that we can set First_Subtype_Link.
3489 -- Note that we reset the Sloc to the current freeze location.
3490
3491 if Present (Freeze_Node (E)) then
3492 F_Node := Freeze_Node (E);
3493 Set_Sloc (F_Node, Loc);
3494
3495 else
3496 F_Node := New_Node (N_Freeze_Entity, Loc);
3497 Set_Freeze_Node (E, F_Node);
3498 Set_Access_Types_To_Process (F_Node, No_Elist);
3499 Set_TSS_Elist (F_Node, No_Elist);
3500 Set_Actions (F_Node, No_List);
3501 end if;
3502
3503 Set_Entity (F_Node, E);
3504
3505 if Result = No_List then
3506 Result := New_List (F_Node);
3507 else
3508 Append (F_Node, Result);
3509 end if;
35ae2ed8
AC
3510
3511 -- A final pass over record types with discriminants. If the type
3512 -- has an incomplete declaration, there may be constrained access
3513 -- subtypes declared elsewhere, which do not depend on the discrimi-
3514 -- nants of the type, and which are used as component types (i.e.
3515 -- the full view is a recursive type). The designated types of these
3516 -- subtypes can only be elaborated after the type itself, and they
3517 -- need an itype reference.
3518
3519 if Ekind (E) = E_Record_Type
3520 and then Has_Discriminants (E)
3521 then
3522 declare
3523 Comp : Entity_Id;
3524 IR : Node_Id;
3525 Typ : Entity_Id;
3526
3527 begin
3528 Comp := First_Component (E);
3529
3530 while Present (Comp) loop
3531 Typ := Etype (Comp);
3532
3533 if Ekind (Comp) = E_Component
3534 and then Is_Access_Type (Typ)
3535 and then Scope (Typ) /= E
3536 and then Base_Type (Designated_Type (Typ)) = E
3537 and then Is_Itype (Designated_Type (Typ))
3538 then
3539 IR := Make_Itype_Reference (Sloc (Comp));
3540 Set_Itype (IR, Designated_Type (Typ));
3541 Append (IR, Result);
3542 end if;
3543
3544 Next_Component (Comp);
3545 end loop;
3546 end;
3547 end if;
70482933
RK
3548 end if;
3549
3550 -- When a type is frozen, the first subtype of the type is frozen as
3551 -- well (RM 13.14(15)). This has to be done after freezing the type,
3552 -- since obviously the first subtype depends on its own base type.
3553
3554 if Is_Type (E) then
3555 Freeze_And_Append (First_Subtype (E), Loc, Result);
3556
3557 -- If we just froze a tagged non-class wide record, then freeze the
3558 -- corresponding class-wide type. This must be done after the tagged
3559 -- type itself is frozen, because the class-wide type refers to the
3560 -- tagged type which generates the class.
3561
3562 if Is_Tagged_Type (E)
3563 and then not Is_Class_Wide_Type (E)
3564 and then Present (Class_Wide_Type (E))
3565 then
3566 Freeze_And_Append (Class_Wide_Type (E), Loc, Result);
3567 end if;
3568 end if;
3569
3570 Check_Debug_Info_Needed (E);
3571
3572 -- Special handling for subprograms
3573
3574 if Is_Subprogram (E) then
3575
3576 -- If subprogram has address clause then reset Is_Public flag, since
3577 -- we do not want the backend to generate external references.
3578
3579 if Present (Address_Clause (E))
3580 and then not Is_Library_Level_Entity (E)
3581 then
3582 Set_Is_Public (E, False);
3583
3584 -- If no address clause and not intrinsic, then for imported
3585 -- subprogram in main unit, generate descriptor if we are in
3586 -- Propagate_Exceptions mode.
3587
3588 elsif Propagate_Exceptions
3589 and then Is_Imported (E)
3590 and then not Is_Intrinsic_Subprogram (E)
3591 and then Convention (E) /= Convention_Stubbed
3592 then
3593 if Result = No_List then
3594 Result := Empty_List;
3595 end if;
70482933 3596 end if;
70482933
RK
3597 end if;
3598
3599 return Result;
3600 end Freeze_Entity;
3601
3602 -----------------------------
3603 -- Freeze_Enumeration_Type --
3604 -----------------------------
3605
3606 procedure Freeze_Enumeration_Type (Typ : Entity_Id) is
3607 begin
3608 if Has_Foreign_Convention (Typ)
3609 and then not Has_Size_Clause (Typ)
3610 and then Esize (Typ) < Standard_Integer_Size
3611 then
3612 Init_Esize (Typ, Standard_Integer_Size);
70482933
RK
3613 else
3614 Adjust_Esize_For_Alignment (Typ);
3615 end if;
3616 end Freeze_Enumeration_Type;
3617
3618 -----------------------
3619 -- Freeze_Expression --
3620 -----------------------
3621
3622 procedure Freeze_Expression (N : Node_Id) is
3623 In_Def_Exp : constant Boolean := In_Default_Expression;
3624 Typ : Entity_Id;
3625 Nam : Entity_Id;
3626 Desig_Typ : Entity_Id;
3627 P : Node_Id;
3628 Parent_P : Node_Id;
3629
3630 Freeze_Outside : Boolean := False;
3631 -- This flag is set true if the entity must be frozen outside the
3632 -- current subprogram. This happens in the case of expander generated
3633 -- subprograms (_Init_Proc, _Input, _Output, _Read, _Write) which do
3634 -- not freeze all entities like other bodies, but which nevertheless
3635 -- may reference entities that have to be frozen before the body and
3636 -- obviously cannot be frozen inside the body.
3637
3638 function In_Exp_Body (N : Node_Id) return Boolean;
3639 -- Given an N_Handled_Sequence_Of_Statements node N, determines whether
c6823a20 3640 -- it is the handled statement sequence of an expander-generated
7d8b9c99
RD
3641 -- subprogram (init proc, stream subprogram, or renaming as body).
3642 -- If so, this is not a freezing context.
70482933 3643
fbf5a39b
AC
3644 -----------------
3645 -- In_Exp_Body --
3646 -----------------
3647
70482933 3648 function In_Exp_Body (N : Node_Id) return Boolean is
7d8b9c99
RD
3649 P : Node_Id;
3650 Id : Entity_Id;
70482933
RK
3651
3652 begin
3653 if Nkind (N) = N_Subprogram_Body then
3654 P := N;
3655 else
3656 P := Parent (N);
3657 end if;
3658
3659 if Nkind (P) /= N_Subprogram_Body then
3660 return False;
3661
3662 else
7d8b9c99
RD
3663 Id := Defining_Unit_Name (Specification (P));
3664
3665 if Nkind (Id) = N_Defining_Identifier
3666 and then (Is_Init_Proc (Id) or else
3667 Is_TSS (Id, TSS_Stream_Input) or else
3668 Is_TSS (Id, TSS_Stream_Output) or else
3669 Is_TSS (Id, TSS_Stream_Read) or else
3670 Is_TSS (Id, TSS_Stream_Write) or else
3671 Nkind (Original_Node (P)) =
3672 N_Subprogram_Renaming_Declaration)
70482933
RK
3673 then
3674 return True;
3675 else
3676 return False;
3677 end if;
3678 end if;
70482933
RK
3679 end In_Exp_Body;
3680
3681 -- Start of processing for Freeze_Expression
3682
3683 begin
edd63e9b
ES
3684 -- Immediate return if freezing is inhibited. This flag is set by the
3685 -- analyzer to stop freezing on generated expressions that would cause
3686 -- freezing if they were in the source program, but which are not
3687 -- supposed to freeze, since they are created.
70482933
RK
3688
3689 if Must_Not_Freeze (N) then
3690 return;
3691 end if;
3692
3693 -- If expression is non-static, then it does not freeze in a default
3694 -- expression, see section "Handling of Default Expressions" in the
3695 -- spec of package Sem for further details. Note that we have to
3696 -- make sure that we actually have a real expression (if we have
3697 -- a subtype indication, we can't test Is_Static_Expression!)
3698
3699 if In_Def_Exp
3700 and then Nkind (N) in N_Subexpr
3701 and then not Is_Static_Expression (N)
3702 then
3703 return;
3704 end if;
3705
3706 -- Freeze type of expression if not frozen already
3707
fbf5a39b
AC
3708 Typ := Empty;
3709
3710 if Nkind (N) in N_Has_Etype then
3711 if not Is_Frozen (Etype (N)) then
3712 Typ := Etype (N);
3713
3714 -- Base type may be an derived numeric type that is frozen at
3715 -- the point of declaration, but first_subtype is still unfrozen.
3716
3717 elsif not Is_Frozen (First_Subtype (Etype (N))) then
3718 Typ := First_Subtype (Etype (N));
3719 end if;
70482933
RK
3720 end if;
3721
3722 -- For entity name, freeze entity if not frozen already. A special
3723 -- exception occurs for an identifier that did not come from source.
3724 -- We don't let such identifiers freeze a non-internal entity, i.e.
3725 -- an entity that did come from source, since such an identifier was
3726 -- generated by the expander, and cannot have any semantic effect on
3727 -- the freezing semantics. For example, this stops the parameter of
3728 -- an initialization procedure from freezing the variable.
3729
3730 if Is_Entity_Name (N)
3731 and then not Is_Frozen (Entity (N))
3732 and then (Nkind (N) /= N_Identifier
3733 or else Comes_From_Source (N)
3734 or else not Comes_From_Source (Entity (N)))
3735 then
3736 Nam := Entity (N);
70482933
RK
3737 else
3738 Nam := Empty;
3739 end if;
3740
49e90211 3741 -- For an allocator freeze designated type if not frozen already
70482933 3742
ee094616
RD
3743 -- For an aggregate whose component type is an access type, freeze the
3744 -- designated type now, so that its freeze does not appear within the
3745 -- loop that might be created in the expansion of the aggregate. If the
3746 -- designated type is a private type without full view, the expression
3747 -- cannot contain an allocator, so the type is not frozen.
70482933
RK
3748
3749 Desig_Typ := Empty;
70482933 3750
fbf5a39b 3751 case Nkind (N) is
70482933
RK
3752 when N_Allocator =>
3753 Desig_Typ := Designated_Type (Etype (N));
3754
3755 when N_Aggregate =>
3756 if Is_Array_Type (Etype (N))
3757 and then Is_Access_Type (Component_Type (Etype (N)))
3758 then
3759 Desig_Typ := Designated_Type (Component_Type (Etype (N)));
3760 end if;
3761
3762 when N_Selected_Component |
3763 N_Indexed_Component |
3764 N_Slice =>
3765
3766 if Is_Access_Type (Etype (Prefix (N))) then
3767 Desig_Typ := Designated_Type (Etype (Prefix (N)));
3768 end if;
3769
3770 when others =>
3771 null;
70482933
RK
3772 end case;
3773
3774 if Desig_Typ /= Empty
3775 and then (Is_Frozen (Desig_Typ)
3776 or else (not Is_Fully_Defined (Desig_Typ)))
3777 then
3778 Desig_Typ := Empty;
3779 end if;
3780
3781 -- All done if nothing needs freezing
3782
3783 if No (Typ)
3784 and then No (Nam)
3785 and then No (Desig_Typ)
3786 then
3787 return;
3788 end if;
3789
3790 -- Loop for looking at the right place to insert the freeze nodes
3791 -- exiting from the loop when it is appropriate to insert the freeze
3792 -- node before the current node P.
3793
3794 -- Also checks some special exceptions to the freezing rules. These
3795 -- cases result in a direct return, bypassing the freeze action.
3796
3797 P := N;
3798 loop
3799 Parent_P := Parent (P);
3800
ee094616
RD
3801 -- If we don't have a parent, then we are not in a well-formed tree.
3802 -- This is an unusual case, but there are some legitimate situations
3803 -- in which this occurs, notably when the expressions in the range of
3804 -- a type declaration are resolved. We simply ignore the freeze
3805 -- request in this case. Is this right ???
70482933
RK
3806
3807 if No (Parent_P) then
3808 return;
3809 end if;
3810
3811 -- See if we have got to an appropriate point in the tree
3812
3813 case Nkind (Parent_P) is
3814
edd63e9b
ES
3815 -- A special test for the exception of (RM 13.14(8)) for the case
3816 -- of per-object expressions (RM 3.8(18)) occurring in component
3817 -- definition or a discrete subtype definition. Note that we test
3818 -- for a component declaration which includes both cases we are
3819 -- interested in, and furthermore the tree does not have explicit
3820 -- nodes for either of these two constructs.
70482933
RK
3821
3822 when N_Component_Declaration =>
3823
3824 -- The case we want to test for here is an identifier that is
3825 -- a per-object expression, this is either a discriminant that
3826 -- appears in a context other than the component declaration
3827 -- or it is a reference to the type of the enclosing construct.
3828
3829 -- For either of these cases, we skip the freezing
3830
3831 if not In_Default_Expression
3832 and then Nkind (N) = N_Identifier
3833 and then (Present (Entity (N)))
3834 then
3835 -- We recognize the discriminant case by just looking for
3836 -- a reference to a discriminant. It can only be one for
3837 -- the enclosing construct. Skip freezing in this case.
3838
3839 if Ekind (Entity (N)) = E_Discriminant then
3840 return;
3841
3842 -- For the case of a reference to the enclosing record,
3843 -- (or task or protected type), we look for a type that
3844 -- matches the current scope.
3845
3846 elsif Entity (N) = Current_Scope then
3847 return;
3848 end if;
3849 end if;
3850
edd63e9b
ES
3851 -- If we have an enumeration literal that appears as the choice in
3852 -- the aggregate of an enumeration representation clause, then
3853 -- freezing does not occur (RM 13.14(10)).
70482933
RK
3854
3855 when N_Enumeration_Representation_Clause =>
3856
3857 -- The case we are looking for is an enumeration literal
3858
3859 if (Nkind (N) = N_Identifier or Nkind (N) = N_Character_Literal)
3860 and then Is_Enumeration_Type (Etype (N))
3861 then
3862 -- If enumeration literal appears directly as the choice,
3863 -- do not freeze (this is the normal non-overloade case)
3864
3865 if Nkind (Parent (N)) = N_Component_Association
3866 and then First (Choices (Parent (N))) = N
3867 then
3868 return;
3869
ee094616
RD
3870 -- If enumeration literal appears as the name of function
3871 -- which is the choice, then also do not freeze. This
3872 -- happens in the overloaded literal case, where the
70482933
RK
3873 -- enumeration literal is temporarily changed to a function
3874 -- call for overloading analysis purposes.
3875
3876 elsif Nkind (Parent (N)) = N_Function_Call
3877 and then
3878 Nkind (Parent (Parent (N))) = N_Component_Association
3879 and then
3880 First (Choices (Parent (Parent (N)))) = Parent (N)
3881 then
3882 return;
3883 end if;
3884 end if;
3885
3886 -- Normally if the parent is a handled sequence of statements,
3887 -- then the current node must be a statement, and that is an
3888 -- appropriate place to insert a freeze node.
3889
3890 when N_Handled_Sequence_Of_Statements =>
3891
edd63e9b
ES
3892 -- An exception occurs when the sequence of statements is for
3893 -- an expander generated body that did not do the usual freeze
3894 -- all operation. In this case we usually want to freeze
3895 -- outside this body, not inside it, and we skip past the
3896 -- subprogram body that we are inside.
70482933
RK
3897
3898 if In_Exp_Body (Parent_P) then
3899
3900 -- However, we *do* want to freeze at this point if we have
3901 -- an entity to freeze, and that entity is declared *inside*
3902 -- the body of the expander generated procedure. This case
3903 -- is recognized by the scope of the type, which is either
3904 -- the spec for some enclosing body, or (in the case of
3905 -- init_procs, for which there are no separate specs) the
3906 -- current scope.
3907
3908 declare
3909 Subp : constant Node_Id := Parent (Parent_P);
3910 Cspc : Entity_Id;
3911
3912 begin
3913 if Nkind (Subp) = N_Subprogram_Body then
3914 Cspc := Corresponding_Spec (Subp);
3915
3916 if (Present (Typ) and then Scope (Typ) = Cspc)
3917 or else
3918 (Present (Nam) and then Scope (Nam) = Cspc)
3919 then
3920 exit;
3921
3922 elsif Present (Typ)
3923 and then Scope (Typ) = Current_Scope
3924 and then Current_Scope = Defining_Entity (Subp)
3925 then
3926 exit;
3927 end if;
3928 end if;
3929 end;
3930
3931 -- If not that exception to the exception, then this is
3932 -- where we delay the freeze till outside the body.
3933
3934 Parent_P := Parent (Parent_P);
3935 Freeze_Outside := True;
3936
3937 -- Here if normal case where we are in handled statement
3938 -- sequence and want to do the insertion right there.
3939
3940 else
3941 exit;
3942 end if;
3943
ee094616
RD
3944 -- If parent is a body or a spec or a block, then the current node
3945 -- is a statement or declaration and we can insert the freeze node
3946 -- before it.
70482933
RK
3947
3948 when N_Package_Specification |
3949 N_Package_Body |
3950 N_Subprogram_Body |
3951 N_Task_Body |
3952 N_Protected_Body |
3953 N_Entry_Body |
3954 N_Block_Statement => exit;
3955
3956 -- The expander is allowed to define types in any statements list,
3957 -- so any of the following parent nodes also mark a freezing point
3958 -- if the actual node is in a list of statements or declarations.
3959
3960 when N_Exception_Handler |
3961 N_If_Statement |
3962 N_Elsif_Part |
3963 N_Case_Statement_Alternative |
3964 N_Compilation_Unit_Aux |
3965 N_Selective_Accept |
3966 N_Accept_Alternative |
3967 N_Delay_Alternative |
3968 N_Conditional_Entry_Call |
3969 N_Entry_Call_Alternative |
3970 N_Triggering_Alternative |
3971 N_Abortable_Part |
3972 N_Freeze_Entity =>
3973
3974 exit when Is_List_Member (P);
3975
3976 -- Note: The N_Loop_Statement is a special case. A type that
3977 -- appears in the source can never be frozen in a loop (this
edd63e9b
ES
3978 -- occurs only because of a loop expanded by the expander), so we
3979 -- keep on going. Otherwise we terminate the search. Same is true
ee094616
RD
3980 -- of any entity which comes from source. (if they have predefined
3981 -- type, that type does not appear to come from source, but the
3982 -- entity should not be frozen here).
70482933
RK
3983
3984 when N_Loop_Statement =>
3985 exit when not Comes_From_Source (Etype (N))
3986 and then (No (Nam) or else not Comes_From_Source (Nam));
3987
3988 -- For all other cases, keep looking at parents
3989
3990 when others =>
3991 null;
3992 end case;
3993
3994 -- We fall through the case if we did not yet find the proper
3995 -- place in the free for inserting the freeze node, so climb!
3996
3997 P := Parent_P;
3998 end loop;
3999
edd63e9b
ES
4000 -- If the expression appears in a record or an initialization procedure,
4001 -- the freeze nodes are collected and attached to the current scope, to
4002 -- be inserted and analyzed on exit from the scope, to insure that
4003 -- generated entities appear in the correct scope. If the expression is
4004 -- a default for a discriminant specification, the scope is still void.
4005 -- The expression can also appear in the discriminant part of a private
4006 -- or concurrent type.
70482933 4007
c6823a20 4008 -- If the expression appears in a constrained subcomponent of an
edd63e9b
ES
4009 -- enclosing record declaration, the freeze nodes must be attached to
4010 -- the outer record type so they can eventually be placed in the
c6823a20
EB
4011 -- enclosing declaration list.
4012
ee094616
RD
4013 -- The other case requiring this special handling is if we are in a
4014 -- default expression, since in that case we are about to freeze a
4015 -- static type, and the freeze scope needs to be the outer scope, not
4016 -- the scope of the subprogram with the default parameter.
70482933
RK
4017
4018 -- For default expressions in generic units, the Move_Freeze_Nodes
ee094616
RD
4019 -- mechanism (see sem_ch12.adb) takes care of placing them at the proper
4020 -- place, after the generic unit.
70482933
RK
4021
4022 if (In_Def_Exp and not Inside_A_Generic)
4023 or else Freeze_Outside
4024 or else (Is_Type (Current_Scope)
4025 and then (not Is_Concurrent_Type (Current_Scope)
4026 or else not Has_Completion (Current_Scope)))
4027 or else Ekind (Current_Scope) = E_Void
4028 then
4029 declare
4030 Loc : constant Source_Ptr := Sloc (Current_Scope);
4031 Freeze_Nodes : List_Id := No_List;
c6823a20 4032 Pos : Int := Scope_Stack.Last;
70482933
RK
4033
4034 begin
4035 if Present (Desig_Typ) then
4036 Freeze_And_Append (Desig_Typ, Loc, Freeze_Nodes);
4037 end if;
4038
4039 if Present (Typ) then
4040 Freeze_And_Append (Typ, Loc, Freeze_Nodes);
4041 end if;
4042
4043 if Present (Nam) then
4044 Freeze_And_Append (Nam, Loc, Freeze_Nodes);
4045 end if;
4046
c6823a20
EB
4047 -- The current scope may be that of a constrained component of
4048 -- an enclosing record declaration, which is above the current
4049 -- scope in the scope stack.
4050
4051 if Is_Record_Type (Scope (Current_Scope)) then
4052 Pos := Pos - 1;
4053 end if;
4054
70482933 4055 if Is_Non_Empty_List (Freeze_Nodes) then
c6823a20
EB
4056 if No (Scope_Stack.Table (Pos).Pending_Freeze_Actions) then
4057 Scope_Stack.Table (Pos).Pending_Freeze_Actions :=
70482933
RK
4058 Freeze_Nodes;
4059 else
4060 Append_List (Freeze_Nodes, Scope_Stack.Table
c6823a20 4061 (Pos).Pending_Freeze_Actions);
70482933
RK
4062 end if;
4063 end if;
4064 end;
4065
4066 return;
4067 end if;
4068
4069 -- Now we have the right place to do the freezing. First, a special
4070 -- adjustment, if we are in default expression analysis mode, these
ee094616
RD
4071 -- freeze actions must not be thrown away (normally all inserted actions
4072 -- are thrown away in this mode. However, the freeze actions are from
4073 -- static expressions and one of the important reasons we are doing this
4074 -- special analysis is to get these freeze actions. Therefore we turn
4075 -- off the In_Default_Expression mode to propagate these freeze actions.
4076 -- This also means they get properly analyzed and expanded.
70482933
RK
4077
4078 In_Default_Expression := False;
4079
fbf5a39b 4080 -- Freeze the designated type of an allocator (RM 13.14(13))
70482933
RK
4081
4082 if Present (Desig_Typ) then
4083 Freeze_Before (P, Desig_Typ);
4084 end if;
4085
fbf5a39b 4086 -- Freeze type of expression (RM 13.14(10)). Note that we took care of
70482933
RK
4087 -- the enumeration representation clause exception in the loop above.
4088
4089 if Present (Typ) then
4090 Freeze_Before (P, Typ);
4091 end if;
4092
fbf5a39b 4093 -- Freeze name if one is present (RM 13.14(11))
70482933
RK
4094
4095 if Present (Nam) then
4096 Freeze_Before (P, Nam);
4097 end if;
4098
4099 In_Default_Expression := In_Def_Exp;
4100 end Freeze_Expression;
4101
4102 -----------------------------
4103 -- Freeze_Fixed_Point_Type --
4104 -----------------------------
4105
edd63e9b
ES
4106 -- Certain fixed-point types and subtypes, including implicit base types
4107 -- and declared first subtypes, have not yet set up a range. This is
4108 -- because the range cannot be set until the Small and Size values are
4109 -- known, and these are not known till the type is frozen.
70482933 4110
edd63e9b
ES
4111 -- To signal this case, Scalar_Range contains an unanalyzed syntactic range
4112 -- whose bounds are unanalyzed real literals. This routine will recognize
4113 -- this case, and transform this range node into a properly typed range
4114 -- with properly analyzed and resolved values.
70482933
RK
4115
4116 procedure Freeze_Fixed_Point_Type (Typ : Entity_Id) is
4117 Rng : constant Node_Id := Scalar_Range (Typ);
4118 Lo : constant Node_Id := Low_Bound (Rng);
4119 Hi : constant Node_Id := High_Bound (Rng);
4120 Btyp : constant Entity_Id := Base_Type (Typ);
4121 Brng : constant Node_Id := Scalar_Range (Btyp);
4122 BLo : constant Node_Id := Low_Bound (Brng);
4123 BHi : constant Node_Id := High_Bound (Brng);
4124 Small : constant Ureal := Small_Value (Typ);
4125 Loval : Ureal;
4126 Hival : Ureal;
4127 Atype : Entity_Id;
4128
4129 Actual_Size : Nat;
4130
4131 function Fsize (Lov, Hiv : Ureal) return Nat;
4132 -- Returns size of type with given bounds. Also leaves these
4133 -- bounds set as the current bounds of the Typ.
4134
0da2c8ac
AC
4135 -----------
4136 -- Fsize --
4137 -----------
4138
70482933
RK
4139 function Fsize (Lov, Hiv : Ureal) return Nat is
4140 begin
4141 Set_Realval (Lo, Lov);
4142 Set_Realval (Hi, Hiv);
4143 return Minimum_Size (Typ);
4144 end Fsize;
4145
0da2c8ac 4146 -- Start of processing for Freeze_Fixed_Point_Type
70482933
RK
4147
4148 begin
4149 -- If Esize of a subtype has not previously been set, set it now
4150
4151 if Unknown_Esize (Typ) then
4152 Atype := Ancestor_Subtype (Typ);
4153
4154 if Present (Atype) then
fbf5a39b 4155 Set_Esize (Typ, Esize (Atype));
70482933 4156 else
fbf5a39b 4157 Set_Esize (Typ, Esize (Base_Type (Typ)));
70482933
RK
4158 end if;
4159 end if;
4160
ee094616
RD
4161 -- Immediate return if the range is already analyzed. This means that
4162 -- the range is already set, and does not need to be computed by this
4163 -- routine.
70482933
RK
4164
4165 if Analyzed (Rng) then
4166 return;
4167 end if;
4168
4169 -- Immediate return if either of the bounds raises Constraint_Error
4170
4171 if Raises_Constraint_Error (Lo)
4172 or else Raises_Constraint_Error (Hi)
4173 then
4174 return;
4175 end if;
4176
4177 Loval := Realval (Lo);
4178 Hival := Realval (Hi);
4179
4180 -- Ordinary fixed-point case
4181
4182 if Is_Ordinary_Fixed_Point_Type (Typ) then
4183
4184 -- For the ordinary fixed-point case, we are allowed to fudge the
ee094616
RD
4185 -- end-points up or down by small. Generally we prefer to fudge up,
4186 -- i.e. widen the bounds for non-model numbers so that the end points
4187 -- are included. However there are cases in which this cannot be
4188 -- done, and indeed cases in which we may need to narrow the bounds.
4189 -- The following circuit makes the decision.
70482933 4190
ee094616
RD
4191 -- Note: our terminology here is that Incl_EP means that the bounds
4192 -- are widened by Small if necessary to include the end points, and
4193 -- Excl_EP means that the bounds are narrowed by Small to exclude the
4194 -- end-points if this reduces the size.
70482933
RK
4195
4196 -- Note that in the Incl case, all we care about is including the
4197 -- end-points. In the Excl case, we want to narrow the bounds as
4198 -- much as permitted by the RM, to give the smallest possible size.
4199
4200 Fudge : declare
4201 Loval_Incl_EP : Ureal;
4202 Hival_Incl_EP : Ureal;
4203
4204 Loval_Excl_EP : Ureal;
4205 Hival_Excl_EP : Ureal;
4206
4207 Size_Incl_EP : Nat;
4208 Size_Excl_EP : Nat;
4209
4210 Model_Num : Ureal;
4211 First_Subt : Entity_Id;
4212 Actual_Lo : Ureal;
4213 Actual_Hi : Ureal;
4214
4215 begin
4216 -- First step. Base types are required to be symmetrical. Right
4217 -- now, the base type range is a copy of the first subtype range.
4218 -- This will be corrected before we are done, but right away we
4219 -- need to deal with the case where both bounds are non-negative.
4220 -- In this case, we set the low bound to the negative of the high
4221 -- bound, to make sure that the size is computed to include the
4222 -- required sign. Note that we do not need to worry about the
4223 -- case of both bounds negative, because the sign will be dealt
4224 -- with anyway. Furthermore we can't just go making such a bound
4225 -- symmetrical, since in a twos-complement system, there is an
4226 -- extra negative value which could not be accomodated on the
4227 -- positive side.
4228
4229 if Typ = Btyp
4230 and then not UR_Is_Negative (Loval)
4231 and then Hival > Loval
4232 then
4233 Loval := -Hival;
4234 Set_Realval (Lo, Loval);
4235 end if;
4236
4237 -- Compute the fudged bounds. If the number is a model number,
edd63e9b
ES
4238 -- then we do nothing to include it, but we are allowed to backoff
4239 -- to the next adjacent model number when we exclude it. If it is
4240 -- not a model number then we straddle the two values with the
4241 -- model numbers on either side.
70482933
RK
4242
4243 Model_Num := UR_Trunc (Loval / Small) * Small;
4244
4245 if Loval = Model_Num then
4246 Loval_Incl_EP := Model_Num;
4247 else
4248 Loval_Incl_EP := Model_Num - Small;
4249 end if;
4250
4251 -- The low value excluding the end point is Small greater, but
4252 -- we do not do this exclusion if the low value is positive,
4253 -- since it can't help the size and could actually hurt by
4254 -- crossing the high bound.
4255
4256 if UR_Is_Negative (Loval_Incl_EP) then
4257 Loval_Excl_EP := Loval_Incl_EP + Small;
4258 else
4259 Loval_Excl_EP := Loval_Incl_EP;
4260 end if;
4261
4262 -- Similar processing for upper bound and high value
4263
4264 Model_Num := UR_Trunc (Hival / Small) * Small;
4265
4266 if Hival = Model_Num then
4267 Hival_Incl_EP := Model_Num;
4268 else
4269 Hival_Incl_EP := Model_Num + Small;
4270 end if;
4271
4272 if UR_Is_Positive (Hival_Incl_EP) then
4273 Hival_Excl_EP := Hival_Incl_EP - Small;
4274 else
4275 Hival_Excl_EP := Hival_Incl_EP;
4276 end if;
4277
ee094616
RD
4278 -- One further adjustment is needed. In the case of subtypes, we
4279 -- cannot go outside the range of the base type, or we get
70482933 4280 -- peculiarities, and the base type range is already set. This
ee094616
RD
4281 -- only applies to the Incl values, since clearly the Excl values
4282 -- are already as restricted as they are allowed to be.
70482933
RK
4283
4284 if Typ /= Btyp then
4285 Loval_Incl_EP := UR_Max (Loval_Incl_EP, Realval (BLo));
4286 Hival_Incl_EP := UR_Min (Hival_Incl_EP, Realval (BHi));
4287 end if;
4288
4289 -- Get size including and excluding end points
4290
4291 Size_Incl_EP := Fsize (Loval_Incl_EP, Hival_Incl_EP);
4292 Size_Excl_EP := Fsize (Loval_Excl_EP, Hival_Excl_EP);
4293
4294 -- No need to exclude end-points if it does not reduce size
4295
4296 if Fsize (Loval_Incl_EP, Hival_Excl_EP) = Size_Excl_EP then
4297 Loval_Excl_EP := Loval_Incl_EP;
4298 end if;
4299
4300 if Fsize (Loval_Excl_EP, Hival_Incl_EP) = Size_Excl_EP then
4301 Hival_Excl_EP := Hival_Incl_EP;
4302 end if;
4303
4304 -- Now we set the actual size to be used. We want to use the
4305 -- bounds fudged up to include the end-points but only if this
4306 -- can be done without violating a specifically given size
4307 -- size clause or causing an unacceptable increase in size.
4308
4309 -- Case of size clause given
4310
4311 if Has_Size_Clause (Typ) then
4312
4313 -- Use the inclusive size only if it is consistent with
4314 -- the explicitly specified size.
4315
4316 if Size_Incl_EP <= RM_Size (Typ) then
4317 Actual_Lo := Loval_Incl_EP;
4318 Actual_Hi := Hival_Incl_EP;
4319 Actual_Size := Size_Incl_EP;
4320
4321 -- If the inclusive size is too large, we try excluding
4322 -- the end-points (will be caught later if does not work).
4323
4324 else
4325 Actual_Lo := Loval_Excl_EP;
4326 Actual_Hi := Hival_Excl_EP;
4327 Actual_Size := Size_Excl_EP;
4328 end if;
4329
4330 -- Case of size clause not given
4331
4332 else
4333 -- If we have a base type whose corresponding first subtype
4334 -- has an explicit size that is large enough to include our
4335 -- end-points, then do so. There is no point in working hard
4336 -- to get a base type whose size is smaller than the specified
4337 -- size of the first subtype.
4338
4339 First_Subt := First_Subtype (Typ);
4340
4341 if Has_Size_Clause (First_Subt)
4342 and then Size_Incl_EP <= Esize (First_Subt)
4343 then
4344 Actual_Size := Size_Incl_EP;
4345 Actual_Lo := Loval_Incl_EP;
4346 Actual_Hi := Hival_Incl_EP;
4347
4348 -- If excluding the end-points makes the size smaller and
4349 -- results in a size of 8,16,32,64, then we take the smaller
4350 -- size. For the 64 case, this is compulsory. For the other
4351 -- cases, it seems reasonable. We like to include end points
4352 -- if we can, but not at the expense of moving to the next
4353 -- natural boundary of size.
4354
4355 elsif Size_Incl_EP /= Size_Excl_EP
4356 and then
4357 (Size_Excl_EP = 8 or else
4358 Size_Excl_EP = 16 or else
4359 Size_Excl_EP = 32 or else
4360 Size_Excl_EP = 64)
4361 then
4362 Actual_Size := Size_Excl_EP;
4363 Actual_Lo := Loval_Excl_EP;
4364 Actual_Hi := Hival_Excl_EP;
4365
4366 -- Otherwise we can definitely include the end points
4367
4368 else
4369 Actual_Size := Size_Incl_EP;
4370 Actual_Lo := Loval_Incl_EP;
4371 Actual_Hi := Hival_Incl_EP;
4372 end if;
4373
edd63e9b
ES
4374 -- One pathological case: normally we never fudge a low bound
4375 -- down, since it would seem to increase the size (if it has
4376 -- any effect), but for ranges containing single value, or no
4377 -- values, the high bound can be small too large. Consider:
70482933
RK
4378
4379 -- type t is delta 2.0**(-14)
4380 -- range 131072.0 .. 0;
4381
edd63e9b
ES
4382 -- That lower bound is *just* outside the range of 32 bits, and
4383 -- does need fudging down in this case. Note that the bounds
4384 -- will always have crossed here, since the high bound will be
4385 -- fudged down if necessary, as in the case of:
70482933
RK
4386
4387 -- type t is delta 2.0**(-14)
4388 -- range 131072.0 .. 131072.0;
4389
edd63e9b
ES
4390 -- So we detect the situation by looking for crossed bounds,
4391 -- and if the bounds are crossed, and the low bound is greater
4392 -- than zero, we will always back it off by small, since this
4393 -- is completely harmless.
70482933
RK
4394
4395 if Actual_Lo > Actual_Hi then
4396 if UR_Is_Positive (Actual_Lo) then
4397 Actual_Lo := Loval_Incl_EP - Small;
4398 Actual_Size := Fsize (Actual_Lo, Actual_Hi);
4399
4400 -- And of course, we need to do exactly the same parallel
4401 -- fudge for flat ranges in the negative region.
4402
4403 elsif UR_Is_Negative (Actual_Hi) then
4404 Actual_Hi := Hival_Incl_EP + Small;
4405 Actual_Size := Fsize (Actual_Lo, Actual_Hi);
4406 end if;
4407 end if;
4408 end if;
4409
4410 Set_Realval (Lo, Actual_Lo);
4411 Set_Realval (Hi, Actual_Hi);
4412 end Fudge;
4413
4414 -- For the decimal case, none of this fudging is required, since there
4415 -- are no end-point problems in the decimal case (the end-points are
4416 -- always included).
4417
4418 else
4419 Actual_Size := Fsize (Loval, Hival);
4420 end if;
4421
4422 -- At this stage, the actual size has been calculated and the proper
4423 -- required bounds are stored in the low and high bounds.
4424
4425 if Actual_Size > 64 then
4426 Error_Msg_Uint_1 := UI_From_Int (Actual_Size);
4427 Error_Msg_N
7d8b9c99
RD
4428 ("size required (^) for type& too large, maximum allowed is 64",
4429 Typ);
70482933
RK
4430 Actual_Size := 64;
4431 end if;
4432
4433 -- Check size against explicit given size
4434
4435 if Has_Size_Clause (Typ) then
4436 if Actual_Size > RM_Size (Typ) then
4437 Error_Msg_Uint_1 := RM_Size (Typ);
4438 Error_Msg_Uint_2 := UI_From_Int (Actual_Size);
4439 Error_Msg_NE
7d8b9c99 4440 ("size given (^) for type& too small, minimum allowed is ^",
70482933
RK
4441 Size_Clause (Typ), Typ);
4442
4443 else
4444 Actual_Size := UI_To_Int (Esize (Typ));
4445 end if;
4446
4447 -- Increase size to next natural boundary if no size clause given
4448
4449 else
4450 if Actual_Size <= 8 then
4451 Actual_Size := 8;
4452 elsif Actual_Size <= 16 then
4453 Actual_Size := 16;
4454 elsif Actual_Size <= 32 then
4455 Actual_Size := 32;
4456 else
4457 Actual_Size := 64;
4458 end if;
4459
4460 Init_Esize (Typ, Actual_Size);
4461 Adjust_Esize_For_Alignment (Typ);
4462 end if;
4463
edd63e9b
ES
4464 -- If we have a base type, then expand the bounds so that they extend to
4465 -- the full width of the allocated size in bits, to avoid junk range
4466 -- checks on intermediate computations.
70482933
RK
4467
4468 if Base_Type (Typ) = Typ then
4469 Set_Realval (Lo, -(Small * (Uint_2 ** (Actual_Size - 1))));
4470 Set_Realval (Hi, (Small * (Uint_2 ** (Actual_Size - 1) - 1)));
4471 end if;
4472
4473 -- Final step is to reanalyze the bounds using the proper type
4474 -- and set the Corresponding_Integer_Value fields of the literals.
4475
4476 Set_Etype (Lo, Empty);
4477 Set_Analyzed (Lo, False);
4478 Analyze (Lo);
4479
edd63e9b
ES
4480 -- Resolve with universal fixed if the base type, and the base type if
4481 -- it is a subtype. Note we can't resolve the base type with itself,
4482 -- that would be a reference before definition.
70482933
RK
4483
4484 if Typ = Btyp then
4485 Resolve (Lo, Universal_Fixed);
4486 else
4487 Resolve (Lo, Btyp);
4488 end if;
4489
4490 -- Set corresponding integer value for bound
4491
4492 Set_Corresponding_Integer_Value
4493 (Lo, UR_To_Uint (Realval (Lo) / Small));
4494
4495 -- Similar processing for high bound
4496
4497 Set_Etype (Hi, Empty);
4498 Set_Analyzed (Hi, False);
4499 Analyze (Hi);
4500
4501 if Typ = Btyp then
4502 Resolve (Hi, Universal_Fixed);
4503 else
4504 Resolve (Hi, Btyp);
4505 end if;
4506
4507 Set_Corresponding_Integer_Value
4508 (Hi, UR_To_Uint (Realval (Hi) / Small));
4509
4510 -- Set type of range to correspond to bounds
4511
4512 Set_Etype (Rng, Etype (Lo));
4513
fbf5a39b 4514 -- Set Esize to calculated size if not set already
70482933 4515
fbf5a39b
AC
4516 if Unknown_Esize (Typ) then
4517 Init_Esize (Typ, Actual_Size);
4518 end if;
70482933
RK
4519
4520 -- Set RM_Size if not already set. If already set, check value
4521
4522 declare
4523 Minsiz : constant Uint := UI_From_Int (Minimum_Size (Typ));
4524
4525 begin
4526 if RM_Size (Typ) /= Uint_0 then
4527 if RM_Size (Typ) < Minsiz then
4528 Error_Msg_Uint_1 := RM_Size (Typ);
4529 Error_Msg_Uint_2 := Minsiz;
4530 Error_Msg_NE
7d8b9c99 4531 ("size given (^) for type& too small, minimum allowed is ^",
70482933
RK
4532 Size_Clause (Typ), Typ);
4533 end if;
4534
4535 else
4536 Set_RM_Size (Typ, Minsiz);
4537 end if;
4538 end;
70482933
RK
4539 end Freeze_Fixed_Point_Type;
4540
4541 ------------------
4542 -- Freeze_Itype --
4543 ------------------
4544
4545 procedure Freeze_Itype (T : Entity_Id; N : Node_Id) is
4546 L : List_Id;
4547
4548 begin
4549 Set_Has_Delayed_Freeze (T);
4550 L := Freeze_Entity (T, Sloc (N));
4551
4552 if Is_Non_Empty_List (L) then
4553 Insert_Actions (N, L);
4554 end if;
4555 end Freeze_Itype;
4556
4557 --------------------------
4558 -- Freeze_Static_Object --
4559 --------------------------
4560
4561 procedure Freeze_Static_Object (E : Entity_Id) is
4562
4563 Cannot_Be_Static : exception;
4564 -- Exception raised if the type of a static object cannot be made
4565 -- static. This happens if the type depends on non-global objects.
4566
4567 procedure Ensure_Expression_Is_SA (N : Node_Id);
ee094616
RD
4568 -- Called to ensure that an expression used as part of a type definition
4569 -- is statically allocatable, which means that the expression type is
4570 -- statically allocatable, and the expression is either static, or a
4571 -- reference to a library level constant.
70482933
RK
4572
4573 procedure Ensure_Type_Is_SA (Typ : Entity_Id);
4574 -- Called to mark a type as static, checking that it is possible
4575 -- to set the type as static. If it is not possible, then the
4576 -- exception Cannot_Be_Static is raised.
4577
4578 -----------------------------
4579 -- Ensure_Expression_Is_SA --
4580 -----------------------------
4581
4582 procedure Ensure_Expression_Is_SA (N : Node_Id) is
4583 Ent : Entity_Id;
4584
4585 begin
4586 Ensure_Type_Is_SA (Etype (N));
4587
4588 if Is_Static_Expression (N) then
4589 return;
4590
4591 elsif Nkind (N) = N_Identifier then
4592 Ent := Entity (N);
4593
4594 if Present (Ent)
4595 and then Ekind (Ent) = E_Constant
4596 and then Is_Library_Level_Entity (Ent)
4597 then
4598 return;
4599 end if;
4600 end if;
4601
4602 raise Cannot_Be_Static;
4603 end Ensure_Expression_Is_SA;
4604
4605 -----------------------
4606 -- Ensure_Type_Is_SA --
4607 -----------------------
4608
4609 procedure Ensure_Type_Is_SA (Typ : Entity_Id) is
4610 N : Node_Id;
4611 C : Entity_Id;
4612
4613 begin
4614 -- If type is library level, we are all set
4615
4616 if Is_Library_Level_Entity (Typ) then
4617 return;
4618 end if;
4619
ee094616
RD
4620 -- We are also OK if the type already marked as statically allocated,
4621 -- which means we processed it before.
70482933
RK
4622
4623 if Is_Statically_Allocated (Typ) then
4624 return;
4625 end if;
4626
4627 -- Mark type as statically allocated
4628
4629 Set_Is_Statically_Allocated (Typ);
4630
4631 -- Check that it is safe to statically allocate this type
4632
4633 if Is_Scalar_Type (Typ) or else Is_Real_Type (Typ) then
4634 Ensure_Expression_Is_SA (Type_Low_Bound (Typ));
4635 Ensure_Expression_Is_SA (Type_High_Bound (Typ));
4636
4637 elsif Is_Array_Type (Typ) then
4638 N := First_Index (Typ);
4639 while Present (N) loop
4640 Ensure_Type_Is_SA (Etype (N));
4641 Next_Index (N);
4642 end loop;
4643
4644 Ensure_Type_Is_SA (Component_Type (Typ));
4645
4646 elsif Is_Access_Type (Typ) then
4647 if Ekind (Designated_Type (Typ)) = E_Subprogram_Type then
4648
4649 declare
4650 F : Entity_Id;
4651 T : constant Entity_Id := Etype (Designated_Type (Typ));
4652
4653 begin
4654 if T /= Standard_Void_Type then
4655 Ensure_Type_Is_SA (T);
4656 end if;
4657
4658 F := First_Formal (Designated_Type (Typ));
4659
4660 while Present (F) loop
4661 Ensure_Type_Is_SA (Etype (F));
4662 Next_Formal (F);
4663 end loop;
4664 end;
4665
4666 else
4667 Ensure_Type_Is_SA (Designated_Type (Typ));
4668 end if;
4669
4670 elsif Is_Record_Type (Typ) then
4671 C := First_Entity (Typ);
70482933
RK
4672 while Present (C) loop
4673 if Ekind (C) = E_Discriminant
4674 or else Ekind (C) = E_Component
4675 then
4676 Ensure_Type_Is_SA (Etype (C));
4677
4678 elsif Is_Type (C) then
4679 Ensure_Type_Is_SA (C);
4680 end if;
4681
4682 Next_Entity (C);
4683 end loop;
4684
4685 elsif Ekind (Typ) = E_Subprogram_Type then
4686 Ensure_Type_Is_SA (Etype (Typ));
4687
4688 C := First_Formal (Typ);
4689 while Present (C) loop
4690 Ensure_Type_Is_SA (Etype (C));
4691 Next_Formal (C);
4692 end loop;
4693
4694 else
4695 raise Cannot_Be_Static;
4696 end if;
4697 end Ensure_Type_Is_SA;
4698
4699 -- Start of processing for Freeze_Static_Object
4700
4701 begin
4702 Ensure_Type_Is_SA (Etype (E));
4703
4704 exception
4705 when Cannot_Be_Static =>
4706
4707 -- If the object that cannot be static is imported or exported,
4708 -- then we give an error message saying that this object cannot
4709 -- be imported or exported.
4710
4711 if Is_Imported (E) then
4712 Error_Msg_N
4713 ("& cannot be imported (local type is not constant)", E);
4714
4715 -- Otherwise must be exported, something is wrong if compiler
4716 -- is marking something as statically allocated which cannot be).
4717
4718 else pragma Assert (Is_Exported (E));
4719 Error_Msg_N
4720 ("& cannot be exported (local type is not constant)", E);
4721 end if;
4722 end Freeze_Static_Object;
4723
4724 -----------------------
4725 -- Freeze_Subprogram --
4726 -----------------------
4727
4728 procedure Freeze_Subprogram (E : Entity_Id) is
4729 Retype : Entity_Id;
4730 F : Entity_Id;
4731
4732 begin
4733 -- Subprogram may not have an address clause unless it is imported
4734
4735 if Present (Address_Clause (E)) then
4736 if not Is_Imported (E) then
4737 Error_Msg_N
4738 ("address clause can only be given " &
4739 "for imported subprogram",
4740 Name (Address_Clause (E)));
4741 end if;
4742 end if;
4743
91b1417d
AC
4744 -- Reset the Pure indication on an imported subprogram unless an
4745 -- explicit Pure_Function pragma was present. We do this because
ee094616
RD
4746 -- otherwise it is an insidious error to call a non-pure function from
4747 -- pure unit and have calls mysteriously optimized away. What happens
4748 -- here is that the Import can bypass the normal check to ensure that
4749 -- pure units call only pure subprograms.
91b1417d
AC
4750
4751 if Is_Imported (E)
4752 and then Is_Pure (E)
4753 and then not Has_Pragma_Pure_Function (E)
4754 then
4755 Set_Is_Pure (E, False);
4756 end if;
4757
70482933
RK
4758 -- For non-foreign convention subprograms, this is where we create
4759 -- the extra formals (for accessibility level and constrained bit
4760 -- information). We delay this till the freeze point precisely so
4761 -- that we know the convention!
4762
4763 if not Has_Foreign_Convention (E) then
4764 Create_Extra_Formals (E);
4765 Set_Mechanisms (E);
4766
4767 -- If this is convention Ada and a Valued_Procedure, that's odd
4768
4769 if Ekind (E) = E_Procedure
4770 and then Is_Valued_Procedure (E)
4771 and then Convention (E) = Convention_Ada
fbf5a39b 4772 and then Warn_On_Export_Import
70482933
RK
4773 then
4774 Error_Msg_N
4775 ("?Valued_Procedure has no effect for convention Ada", E);
4776 Set_Is_Valued_Procedure (E, False);
4777 end if;
4778
4779 -- Case of foreign convention
4780
4781 else
4782 Set_Mechanisms (E);
4783
fbf5a39b 4784 -- For foreign conventions, warn about return of an
70482933
RK
4785 -- unconstrained array.
4786
4787 -- Note: we *do* allow a return by descriptor for the VMS case,
4788 -- though here there is probably more to be done ???
4789
4790 if Ekind (E) = E_Function then
4791 Retype := Underlying_Type (Etype (E));
4792
4793 -- If no return type, probably some other error, e.g. a
4794 -- missing full declaration, so ignore.
4795
4796 if No (Retype) then
4797 null;
4798
4799 -- If the return type is generic, we have emitted a warning
edd63e9b
ES
4800 -- earlier on, and there is nothing else to check here. Specific
4801 -- instantiations may lead to erroneous behavior.
70482933
RK
4802
4803 elsif Is_Generic_Type (Etype (E)) then
4804 null;
4805
4806 elsif Is_Array_Type (Retype)
4807 and then not Is_Constrained (Retype)
4808 and then Mechanism (E) not in Descriptor_Codes
fbf5a39b 4809 and then Warn_On_Export_Import
70482933 4810 then
fbf5a39b
AC
4811 Error_Msg_N
4812 ("?foreign convention function& should not return " &
4813 "unconstrained array", E);
70482933
RK
4814 return;
4815 end if;
4816 end if;
4817
4818 -- If any of the formals for an exported foreign convention
edd63e9b
ES
4819 -- subprogram have defaults, then emit an appropriate warning since
4820 -- this is odd (default cannot be used from non-Ada code)
70482933
RK
4821
4822 if Is_Exported (E) then
4823 F := First_Formal (E);
4824 while Present (F) loop
fbf5a39b
AC
4825 if Warn_On_Export_Import
4826 and then Present (Default_Value (F))
4827 then
70482933
RK
4828 Error_Msg_N
4829 ("?parameter cannot be defaulted in non-Ada call",
4830 Default_Value (F));
4831 end if;
4832
4833 Next_Formal (F);
4834 end loop;
4835 end if;
4836 end if;
4837
4838 -- For VMS, descriptor mechanisms for parameters are allowed only
7d8b9c99
RD
4839 -- for imported/exported subprograms. Moreover, the NCA descriptor
4840 -- is not allowed for parameters of exported subprograms.
70482933
RK
4841
4842 if OpenVMS_On_Target then
7d8b9c99
RD
4843 if Is_Exported (E) then
4844 F := First_Formal (E);
4845 while Present (F) loop
4846 if Mechanism (F) = By_Descriptor_NCA then
4847 Error_Msg_N
4848 ("'N'C'A' descriptor for parameter not permitted", F);
4849 Error_Msg_N
4850 ("\can only be used for imported subprogram", F);
4851 end if;
4852
4853 Next_Formal (F);
4854 end loop;
4855
4856 elsif not Is_Imported (E) then
70482933
RK
4857 F := First_Formal (E);
4858 while Present (F) loop
4859 if Mechanism (F) in Descriptor_Codes then
4860 Error_Msg_N
4861 ("descriptor mechanism for parameter not permitted", F);
4862 Error_Msg_N
7d8b9c99 4863 ("\can only be used for imported/exported subprogram", F);
70482933
RK
4864 end if;
4865
4866 Next_Formal (F);
4867 end loop;
4868 end if;
4869 end if;
edd63e9b
ES
4870
4871 -- Pragma Inline_Always is disallowed for dispatching subprograms
4872 -- because the address of such subprograms is saved in the dispatch
4873 -- table to support dispatching calls, and dispatching calls cannot
4874 -- be inlined. This is consistent with the restriction against using
4875 -- 'Access or 'Address on an Inline_Always subprogram.
4876
4877 if Is_Dispatching_Operation (E) and then Is_Always_Inlined (E) then
4878 Error_Msg_N
4879 ("pragma Inline_Always not allowed for dispatching subprograms", E);
4880 end if;
70482933
RK
4881 end Freeze_Subprogram;
4882
15ce9ca2
AC
4883 ----------------------
4884 -- Is_Fully_Defined --
4885 ----------------------
70482933 4886
70482933
RK
4887 function Is_Fully_Defined (T : Entity_Id) return Boolean is
4888 begin
4889 if Ekind (T) = E_Class_Wide_Type then
4890 return Is_Fully_Defined (Etype (T));
657a9dd9
AC
4891
4892 elsif Is_Array_Type (T) then
4893 return Is_Fully_Defined (Component_Type (T));
4894
4895 elsif Is_Record_Type (T)
4896 and not Is_Private_Type (T)
4897 then
ee094616
RD
4898 -- Verify that the record type has no components with private types
4899 -- without completion.
657a9dd9
AC
4900
4901 declare
4902 Comp : Entity_Id;
bde58e32 4903
657a9dd9
AC
4904 begin
4905 Comp := First_Component (T);
4906
4907 while Present (Comp) loop
4908 if not Is_Fully_Defined (Etype (Comp)) then
4909 return False;
4910 end if;
4911
4912 Next_Component (Comp);
4913 end loop;
4914 return True;
4915 end;
4916
86cde7b1
RD
4917 else
4918 return not Is_Private_Type (T)
4919 or else Present (Full_View (Base_Type (T)));
70482933
RK
4920 end if;
4921 end Is_Fully_Defined;
4922
4923 ---------------------------------
4924 -- Process_Default_Expressions --
4925 ---------------------------------
4926
4927 procedure Process_Default_Expressions
4928 (E : Entity_Id;
4929 After : in out Node_Id)
4930 is
4931 Loc : constant Source_Ptr := Sloc (E);
4932 Dbody : Node_Id;
4933 Formal : Node_Id;
4934 Dcopy : Node_Id;
4935 Dnam : Entity_Id;
4936
4937 begin
4938 Set_Default_Expressions_Processed (E);
4939
ee094616
RD
4940 -- A subprogram instance and its associated anonymous subprogram share
4941 -- their signature. The default expression functions are defined in the
4942 -- wrapper packages for the anonymous subprogram, and should not be
4943 -- generated again for the instance.
70482933
RK
4944
4945 if Is_Generic_Instance (E)
4946 and then Present (Alias (E))
4947 and then Default_Expressions_Processed (Alias (E))
4948 then
4949 return;
4950 end if;
4951
4952 Formal := First_Formal (E);
70482933
RK
4953 while Present (Formal) loop
4954 if Present (Default_Value (Formal)) then
4955
4956 -- We work with a copy of the default expression because we
4957 -- do not want to disturb the original, since this would mess
4958 -- up the conformance checking.
4959
4960 Dcopy := New_Copy_Tree (Default_Value (Formal));
4961
4962 -- The analysis of the expression may generate insert actions,
4963 -- which of course must not be executed. We wrap those actions
4964 -- in a procedure that is not called, and later on eliminated.
4965 -- The following cases have no side-effects, and are analyzed
4966 -- directly.
4967
4968 if Nkind (Dcopy) = N_Identifier
4969 or else Nkind (Dcopy) = N_Expanded_Name
4970 or else Nkind (Dcopy) = N_Integer_Literal
4971 or else (Nkind (Dcopy) = N_Real_Literal
4972 and then not Vax_Float (Etype (Dcopy)))
4973 or else Nkind (Dcopy) = N_Character_Literal
4974 or else Nkind (Dcopy) = N_String_Literal
86cde7b1 4975 or else Known_Null (Dcopy)
70482933
RK
4976 or else (Nkind (Dcopy) = N_Attribute_Reference
4977 and then
4978 Attribute_Name (Dcopy) = Name_Null_Parameter)
70482933
RK
4979 then
4980
4981 -- If there is no default function, we must still do a full
ee094616
RD
4982 -- analyze call on the default value, to ensure that all error
4983 -- checks are performed, e.g. those associated with static
4984 -- evaluation. Note: this branch will always be taken if the
4985 -- analyzer is turned off (but we still need the error checks).
70482933
RK
4986
4987 -- Note: the setting of parent here is to meet the requirement
4988 -- that we can only analyze the expression while attached to
4989 -- the tree. Really the requirement is that the parent chain
4990 -- be set, we don't actually need to be in the tree.
4991
4992 Set_Parent (Dcopy, Declaration_Node (Formal));
4993 Analyze (Dcopy);
4994
4995 -- Default expressions are resolved with their own type if the
4996 -- context is generic, to avoid anomalies with private types.
4997
4998 if Ekind (Scope (E)) = E_Generic_Package then
fbf5a39b 4999 Resolve (Dcopy);
70482933
RK
5000 else
5001 Resolve (Dcopy, Etype (Formal));
5002 end if;
5003
5004 -- If that resolved expression will raise constraint error,
5005 -- then flag the default value as raising constraint error.
5006 -- This allows a proper error message on the calls.
5007
5008 if Raises_Constraint_Error (Dcopy) then
5009 Set_Raises_Constraint_Error (Default_Value (Formal));
5010 end if;
5011
5012 -- If the default is a parameterless call, we use the name of
5013 -- the called function directly, and there is no body to build.
5014
5015 elsif Nkind (Dcopy) = N_Function_Call
5016 and then No (Parameter_Associations (Dcopy))
5017 then
5018 null;
5019
5020 -- Else construct and analyze the body of a wrapper procedure
5021 -- that contains an object declaration to hold the expression.
5022 -- Given that this is done only to complete the analysis, it
5023 -- simpler to build a procedure than a function which might
5024 -- involve secondary stack expansion.
5025
5026 else
5027 Dnam :=
5028 Make_Defining_Identifier (Loc, New_Internal_Name ('D'));
5029
5030 Dbody :=
5031 Make_Subprogram_Body (Loc,
5032 Specification =>
5033 Make_Procedure_Specification (Loc,
5034 Defining_Unit_Name => Dnam),
5035
5036 Declarations => New_List (
5037 Make_Object_Declaration (Loc,
5038 Defining_Identifier =>
5039 Make_Defining_Identifier (Loc,
5040 New_Internal_Name ('T')),
5041 Object_Definition =>
5042 New_Occurrence_Of (Etype (Formal), Loc),
5043 Expression => New_Copy_Tree (Dcopy))),
5044
5045 Handled_Statement_Sequence =>
5046 Make_Handled_Sequence_Of_Statements (Loc,
5047 Statements => New_List));
5048
5049 Set_Scope (Dnam, Scope (E));
5050 Set_Assignment_OK (First (Declarations (Dbody)));
5051 Set_Is_Eliminated (Dnam);
5052 Insert_After (After, Dbody);
5053 Analyze (Dbody);
5054 After := Dbody;
5055 end if;
5056 end if;
5057
5058 Next_Formal (Formal);
5059 end loop;
5060
5061 end Process_Default_Expressions;
5062
5063 ----------------------------------------
5064 -- Set_Component_Alignment_If_Not_Set --
5065 ----------------------------------------
5066
5067 procedure Set_Component_Alignment_If_Not_Set (Typ : Entity_Id) is
5068 begin
5069 -- Ignore if not base type, subtypes don't need anything
5070
5071 if Typ /= Base_Type (Typ) then
5072 return;
5073 end if;
5074
5075 -- Do not override existing representation
5076
5077 if Is_Packed (Typ) then
5078 return;
5079
5080 elsif Has_Specified_Layout (Typ) then
5081 return;
5082
5083 elsif Component_Alignment (Typ) /= Calign_Default then
5084 return;
5085
5086 else
5087 Set_Component_Alignment
5088 (Typ, Scope_Stack.Table
5089 (Scope_Stack.Last).Component_Alignment_Default);
5090 end if;
5091 end Set_Component_Alignment_If_Not_Set;
5092
5093 ---------------------------
5094 -- Set_Debug_Info_Needed --
5095 ---------------------------
5096
5097 procedure Set_Debug_Info_Needed (T : Entity_Id) is
5098 begin
5099 if No (T)
5100 or else Needs_Debug_Info (T)
5101 or else Debug_Info_Off (T)
5102 then
5103 return;
5104 else
5105 Set_Needs_Debug_Info (T);
5106 end if;
5107
5108 if Is_Object (T) then
5109 Set_Debug_Info_Needed (Etype (T));
5110
5111 elsif Is_Type (T) then
5112 Set_Debug_Info_Needed (Etype (T));
5113
5114 if Is_Record_Type (T) then
5115 declare
5116 Ent : Entity_Id := First_Entity (T);
5117 begin
5118 while Present (Ent) loop
5119 Set_Debug_Info_Needed (Ent);
5120 Next_Entity (Ent);
5121 end loop;
5122 end;
5123
5124 elsif Is_Array_Type (T) then
5125 Set_Debug_Info_Needed (Component_Type (T));
5126
5127 declare
5128 Indx : Node_Id := First_Index (T);
5129 begin
5130 while Present (Indx) loop
5131 Set_Debug_Info_Needed (Etype (Indx));
5132 Indx := Next_Index (Indx);
5133 end loop;
5134 end;
5135
5136 if Is_Packed (T) then
5137 Set_Debug_Info_Needed (Packed_Array_Type (T));
5138 end if;
5139
5140 elsif Is_Access_Type (T) then
5141 Set_Debug_Info_Needed (Directly_Designated_Type (T));
5142
5143 elsif Is_Private_Type (T) then
5144 Set_Debug_Info_Needed (Full_View (T));
5145
5146 elsif Is_Protected_Type (T) then
5147 Set_Debug_Info_Needed (Corresponding_Record_Type (T));
5148 end if;
5149 end if;
70482933
RK
5150 end Set_Debug_Info_Needed;
5151
c6823a20
EB
5152 ------------------
5153 -- Undelay_Type --
5154 ------------------
5155
5156 procedure Undelay_Type (T : Entity_Id) is
5157 begin
5158 Set_Has_Delayed_Freeze (T, False);
5159 Set_Freeze_Node (T, Empty);
5160
5161 -- Since we don't want T to have a Freeze_Node, we don't want its
5162 -- Full_View or Corresponding_Record_Type to have one either.
5163
5164 -- ??? Fundamentally, this whole handling is a kludge. What we really
ee094616
RD
5165 -- want is to be sure that for an Itype that's part of record R and is a
5166 -- subtype of type T, that it's frozen after the later of the freeze
c6823a20
EB
5167 -- points of R and T. We have no way of doing that directly, so what we
5168 -- do is force most such Itypes to be frozen as part of freezing R via
5169 -- this procedure and only delay the ones that need to be delayed
ee094616
RD
5170 -- (mostly the designated types of access types that are defined as part
5171 -- of the record).
c6823a20
EB
5172
5173 if Is_Private_Type (T)
5174 and then Present (Full_View (T))
5175 and then Is_Itype (Full_View (T))
5176 and then Is_Record_Type (Scope (Full_View (T)))
5177 then
5178 Undelay_Type (Full_View (T));
5179 end if;
5180
5181 if Is_Concurrent_Type (T)
5182 and then Present (Corresponding_Record_Type (T))
5183 and then Is_Itype (Corresponding_Record_Type (T))
5184 and then Is_Record_Type (Scope (Corresponding_Record_Type (T)))
5185 then
5186 Undelay_Type (Corresponding_Record_Type (T));
5187 end if;
5188 end Undelay_Type;
5189
fbf5a39b
AC
5190 ------------------
5191 -- Warn_Overlay --
5192 ------------------
5193
5194 procedure Warn_Overlay
5195 (Expr : Node_Id;
5196 Typ : Entity_Id;
5197 Nam : Entity_Id)
5198 is
5199 Ent : constant Entity_Id := Entity (Nam);
49e90211 5200 -- The object to which the address clause applies
fbf5a39b
AC
5201
5202 Init : Node_Id;
5203 Old : Entity_Id := Empty;
5204 Decl : Node_Id;
5205
5206 begin
5207 -- No warning if address clause overlay warnings are off
5208
5209 if not Address_Clause_Overlay_Warnings then
5210 return;
5211 end if;
5212
5213 -- No warning if there is an explicit initialization
5214
5215 Init := Original_Node (Expression (Declaration_Node (Ent)));
5216
5217 if Present (Init) and then Comes_From_Source (Init) then
5218 return;
5219 end if;
5220
edd63e9b
ES
5221 -- We only give the warning for non-imported entities of a type for
5222 -- which a non-null base init proc is defined (or for access types which
5223 -- have implicit null initialization).
fbf5a39b
AC
5224
5225 if Present (Expr)
5226 and then (Has_Non_Null_Base_Init_Proc (Typ)
5227 or else Is_Access_Type (Typ))
5228 and then not Is_Imported (Ent)
5229 then
5230 if Nkind (Expr) = N_Attribute_Reference
5231 and then Is_Entity_Name (Prefix (Expr))
5232 then
5233 Old := Entity (Prefix (Expr));
5234
5235 elsif Is_Entity_Name (Expr)
5236 and then Ekind (Entity (Expr)) = E_Constant
5237 then
5238 Decl := Declaration_Node (Entity (Expr));
5239
5240 if Nkind (Decl) = N_Object_Declaration
5241 and then Present (Expression (Decl))
5242 and then Nkind (Expression (Decl)) = N_Attribute_Reference
5243 and then Is_Entity_Name (Prefix (Expression (Decl)))
5244 then
5245 Old := Entity (Prefix (Expression (Decl)));
5246
5247 elsif Nkind (Expr) = N_Function_Call then
5248 return;
5249 end if;
5250
ee094616
RD
5251 -- A function call (most likely to To_Address) is probably not an
5252 -- overlay, so skip warning. Ditto if the function call was inlined
5253 -- and transformed into an entity.
fbf5a39b
AC
5254
5255 elsif Nkind (Original_Node (Expr)) = N_Function_Call then
5256 return;
5257 end if;
5258
5259 Decl := Next (Parent (Expr));
5260
5261 -- If a pragma Import follows, we assume that it is for the current
5262 -- target of the address clause, and skip the warning.
5263
5264 if Present (Decl)
5265 and then Nkind (Decl) = N_Pragma
5266 and then Chars (Decl) = Name_Import
5267 then
5268 return;
5269 end if;
5270
5271 if Present (Old) then
5272 Error_Msg_Node_2 := Old;
5273 Error_Msg_N
5274 ("default initialization of & may modify &?",
5275 Nam);
5276 else
5277 Error_Msg_N
5278 ("default initialization of & may modify overlaid storage?",
5279 Nam);
5280 end if;
5281
5282 -- Add friendly warning if initialization comes from a packed array
5283 -- component.
5284
5285 if Is_Record_Type (Typ) then
5286 declare
5287 Comp : Entity_Id;
5288
5289 begin
5290 Comp := First_Component (Typ);
5291
5292 while Present (Comp) loop
5293 if Nkind (Parent (Comp)) = N_Component_Declaration
5294 and then Present (Expression (Parent (Comp)))
5295 then
5296 exit;
5297 elsif Is_Array_Type (Etype (Comp))
5298 and then Present (Packed_Array_Type (Etype (Comp)))
5299 then
5300 Error_Msg_NE
3f1ede06
RD
5301 ("\packed array component& " &
5302 "will be initialized to zero?",
5303 Nam, Comp);
fbf5a39b
AC
5304 exit;
5305 else
5306 Next_Component (Comp);
5307 end if;
5308 end loop;
5309 end;
5310 end if;
5311
5312 Error_Msg_N
3f1ede06 5313 ("\use pragma Import for & to " &
86cde7b1 5314 "suppress initialization (RM B.1(24))?",
3f1ede06 5315 Nam);
fbf5a39b
AC
5316 end if;
5317 end Warn_Overlay;
5318
70482933 5319end Freeze;
This page took 1.969721 seconds and 5 git commands to generate.