]> gcc.gnu.org Git - gcc.git/blame - gcc/ada/freeze.adb
[multiple changes]
[gcc.git] / gcc / ada / freeze.adb
CommitLineData
8dc10d38 1------------------------------------------------------------------------------
70482933
RK
2-- --
3-- GNAT COMPILER COMPONENTS --
4-- --
5-- F R E E Z E --
6-- --
7-- B o d y --
8-- --
e1308fa8 9-- Copyright (C) 1992-2012, Free Software Foundation, Inc. --
70482933
RK
10-- --
11-- GNAT is free software; you can redistribute it and/or modify it under --
12-- terms of the GNU General Public License as published by the Free Soft- --
748086b7 13-- ware Foundation; either version 3, or (at your option) any later ver- --
70482933
RK
14-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
2010d078
AC
16-- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17-- for more details. You should have received a copy of the GNU General --
18-- Public License distributed with GNAT; see file COPYING3. If not, go to --
19-- http://www.gnu.org/licenses for a complete copy of the license. --
70482933
RK
20-- --
21-- GNAT was originally developed by the GNAT team at New York University. --
71ff80dc 22-- Extensive contributions were provided by Ada Core Technologies Inc. --
70482933
RK
23-- --
24------------------------------------------------------------------------------
25
26with Atree; use Atree;
27with Debug; use Debug;
28with Einfo; use Einfo;
29with Elists; use Elists;
30with Errout; use Errout;
1ce1f005 31with Exp_Ch3; use Exp_Ch3;
70482933 32with Exp_Ch7; use Exp_Ch7;
ce2b6ba5 33with Exp_Disp; use Exp_Disp;
70482933
RK
34with Exp_Pakd; use Exp_Pakd;
35with Exp_Util; use Exp_Util;
fbf5a39b 36with Exp_Tss; use Exp_Tss;
70482933 37with Layout; use Layout;
ca0cb93e 38with Lib; use Lib;
7d8b9c99 39with Namet; use Namet;
70482933
RK
40with Nlists; use Nlists;
41with Nmake; use Nmake;
42with Opt; use Opt;
43with Restrict; use Restrict;
6e937c1c 44with Rident; use Rident;
a8551b5f 45with Rtsfind; use Rtsfind;
70482933 46with Sem; use Sem;
a4100e55 47with Sem_Aux; use Sem_Aux;
70482933
RK
48with Sem_Cat; use Sem_Cat;
49with Sem_Ch6; use Sem_Ch6;
50with Sem_Ch7; use Sem_Ch7;
51with Sem_Ch8; use Sem_Ch8;
52with Sem_Ch13; use Sem_Ch13;
53with Sem_Eval; use Sem_Eval;
54with Sem_Mech; use Sem_Mech;
55with Sem_Prag; use Sem_Prag;
56with Sem_Res; use Sem_Res;
57with Sem_Util; use Sem_Util;
58with Sinfo; use Sinfo;
59with Snames; use Snames;
60with Stand; use Stand;
61with Targparm; use Targparm;
62with Tbuild; use Tbuild;
63with Ttypes; use Ttypes;
64with Uintp; use Uintp;
65with Urealp; use Urealp;
66
67package body Freeze is
68
69 -----------------------
70 -- Local Subprograms --
71 -----------------------
72
73 procedure Adjust_Esize_For_Alignment (Typ : Entity_Id);
74 -- Typ is a type that is being frozen. If no size clause is given,
75 -- but a default Esize has been computed, then this default Esize is
76 -- adjusted up if necessary to be consistent with a given alignment,
77 -- but never to a value greater than Long_Long_Integer'Size. This
78 -- is used for all discrete types and for fixed-point types.
79
80 procedure Build_And_Analyze_Renamed_Body
81 (Decl : Node_Id;
82 New_S : Entity_Id;
83 After : in out Node_Id);
49e90211 84 -- Build body for a renaming declaration, insert in tree and analyze
70482933 85
fbf5a39b
AC
86 procedure Check_Address_Clause (E : Entity_Id);
87 -- Apply legality checks to address clauses for object declarations,
2c9beb8a 88 -- at the point the object is frozen.
fbf5a39b 89
70482933
RK
90 procedure Check_Strict_Alignment (E : Entity_Id);
91 -- E is a base type. If E is tagged or has a component that is aliased
92 -- or tagged or contains something this is aliased or tagged, set
93 -- Strict_Alignment.
94
95 procedure Check_Unsigned_Type (E : Entity_Id);
96 pragma Inline (Check_Unsigned_Type);
97 -- If E is a fixed-point or discrete type, then all the necessary work
98 -- to freeze it is completed except for possible setting of the flag
99 -- Is_Unsigned_Type, which is done by this procedure. The call has no
100 -- effect if the entity E is not a discrete or fixed-point type.
101
102 procedure Freeze_And_Append
103 (Ent : Entity_Id;
c159409f 104 N : Node_Id;
70482933
RK
105 Result : in out List_Id);
106 -- Freezes Ent using Freeze_Entity, and appends the resulting list of
c159409f
AC
107 -- nodes to Result, modifying Result from No_List if necessary. N has
108 -- the same usage as in Freeze_Entity.
70482933
RK
109
110 procedure Freeze_Enumeration_Type (Typ : Entity_Id);
111 -- Freeze enumeration type. The Esize field is set as processing
112 -- proceeds (i.e. set by default when the type is declared and then
113 -- adjusted by rep clauses. What this procedure does is to make sure
114 -- that if a foreign convention is specified, and no specific size
115 -- is given, then the size must be at least Integer'Size.
116
70482933
RK
117 procedure Freeze_Static_Object (E : Entity_Id);
118 -- If an object is frozen which has Is_Statically_Allocated set, then
119 -- all referenced types must also be marked with this flag. This routine
120 -- is in charge of meeting this requirement for the object entity E.
121
122 procedure Freeze_Subprogram (E : Entity_Id);
123 -- Perform freezing actions for a subprogram (create extra formals,
124 -- and set proper default mechanism values). Note that this routine
125 -- is not called for internal subprograms, for which neither of these
126 -- actions is needed (or desirable, we do not want for example to have
127 -- these extra formals present in initialization procedures, where they
128 -- would serve no purpose). In this call E is either a subprogram or
129 -- a subprogram type (i.e. an access to a subprogram).
130
131 function Is_Fully_Defined (T : Entity_Id) return Boolean;
bde58e32 132 -- True if T is not private and has no private components, or has a full
657a9dd9
AC
133 -- view. Used to determine whether the designated type of an access type
134 -- should be frozen when the access type is frozen. This is done when an
135 -- allocator is frozen, or an expression that may involve attributes of
136 -- the designated type. Otherwise freezing the access type does not freeze
137 -- the designated type.
70482933
RK
138
139 procedure Process_Default_Expressions
140 (E : Entity_Id;
141 After : in out Node_Id);
c159409f
AC
142 -- This procedure is called for each subprogram to complete processing of
143 -- default expressions at the point where all types are known to be frozen.
144 -- The expressions must be analyzed in full, to make sure that all error
145 -- processing is done (they have only been pre-analyzed). If the expression
146 -- is not an entity or literal, its analysis may generate code which must
147 -- not be executed. In that case we build a function body to hold that
148 -- code. This wrapper function serves no other purpose (it used to be
149 -- called to evaluate the default, but now the default is inlined at each
150 -- point of call).
70482933
RK
151
152 procedure Set_Component_Alignment_If_Not_Set (Typ : Entity_Id);
c159409f
AC
153 -- Typ is a record or array type that is being frozen. This routine sets
154 -- the default component alignment from the scope stack values if the
155 -- alignment is otherwise not specified.
70482933
RK
156
157 procedure Check_Debug_Info_Needed (T : Entity_Id);
158 -- As each entity is frozen, this routine is called to deal with the
159 -- setting of Debug_Info_Needed for the entity. This flag is set if
160 -- the entity comes from source, or if we are in Debug_Generated_Code
161 -- mode or if the -gnatdV debug flag is set. However, it never sets
1b24ada5
RD
162 -- the flag if Debug_Info_Off is set. This procedure also ensures that
163 -- subsidiary entities have the flag set as required.
70482933 164
c6823a20 165 procedure Undelay_Type (T : Entity_Id);
c159409f
AC
166 -- T is a type of a component that we know to be an Itype. We don't want
167 -- this to have a Freeze_Node, so ensure it doesn't. Do the same for any
168 -- Full_View or Corresponding_Record_Type.
c6823a20 169
fbf5a39b
AC
170 procedure Warn_Overlay
171 (Expr : Node_Id;
172 Typ : Entity_Id;
173 Nam : Node_Id);
174 -- Expr is the expression for an address clause for entity Nam whose type
175 -- is Typ. If Typ has a default initialization, and there is no explicit
176 -- initialization in the source declaration, check whether the address
177 -- clause might cause overlaying of an entity, and emit a warning on the
178 -- side effect that the initialization will cause.
179
70482933
RK
180 -------------------------------
181 -- Adjust_Esize_For_Alignment --
182 -------------------------------
183
184 procedure Adjust_Esize_For_Alignment (Typ : Entity_Id) is
185 Align : Uint;
186
187 begin
188 if Known_Esize (Typ) and then Known_Alignment (Typ) then
189 Align := Alignment_In_Bits (Typ);
190
191 if Align > Esize (Typ)
192 and then Align <= Standard_Long_Long_Integer_Size
193 then
194 Set_Esize (Typ, Align);
195 end if;
196 end if;
197 end Adjust_Esize_For_Alignment;
198
199 ------------------------------------
200 -- Build_And_Analyze_Renamed_Body --
201 ------------------------------------
202
203 procedure Build_And_Analyze_Renamed_Body
204 (Decl : Node_Id;
205 New_S : Entity_Id;
206 After : in out Node_Id)
207 is
ca0cb93e
AC
208 Body_Decl : constant Node_Id := Unit_Declaration_Node (New_S);
209 Ent : constant Entity_Id := Defining_Entity (Decl);
210 Body_Node : Node_Id;
211 Renamed_Subp : Entity_Id;
d4fc0fb4 212
70482933 213 begin
1c612f29
RD
214 -- If the renamed subprogram is intrinsic, there is no need for a
215 -- wrapper body: we set the alias that will be called and expanded which
216 -- completes the declaration. This transformation is only legal if the
217 -- renamed entity has already been elaborated.
ca0cb93e 218
d4fc0fb4
AC
219 -- Note that it is legal for a renaming_as_body to rename an intrinsic
220 -- subprogram, as long as the renaming occurs before the new entity
221 -- is frozen. See RM 8.5.4 (5).
222
223 if Nkind (Body_Decl) = N_Subprogram_Renaming_Declaration
545cb5be 224 and then Is_Entity_Name (Name (Body_Decl))
d4fc0fb4 225 then
ca0cb93e
AC
226 Renamed_Subp := Entity (Name (Body_Decl));
227 else
228 Renamed_Subp := Empty;
229 end if;
230
231 if Present (Renamed_Subp)
232 and then Is_Intrinsic_Subprogram (Renamed_Subp)
ca0cb93e
AC
233 and then
234 (not In_Same_Source_Unit (Renamed_Subp, Ent)
235 or else Sloc (Renamed_Subp) < Sloc (Ent))
879e23f0 236
308e6f3a 237 -- We can make the renaming entity intrinsic if the renamed function
545cb5be
AC
238 -- has an interface name, or if it is one of the shift/rotate
239 -- operations known to the compiler.
879e23f0 240
545cb5be
AC
241 and then (Present (Interface_Name (Renamed_Subp))
242 or else Chars (Renamed_Subp) = Name_Rotate_Left
243 or else Chars (Renamed_Subp) = Name_Rotate_Right
244 or else Chars (Renamed_Subp) = Name_Shift_Left
245 or else Chars (Renamed_Subp) = Name_Shift_Right
246 or else Chars (Renamed_Subp) = Name_Shift_Right_Arithmetic)
ca0cb93e
AC
247 then
248 Set_Interface_Name (Ent, Interface_Name (Renamed_Subp));
545cb5be 249
ca0cb93e
AC
250 if Present (Alias (Renamed_Subp)) then
251 Set_Alias (Ent, Alias (Renamed_Subp));
d4fc0fb4 252 else
ca0cb93e 253 Set_Alias (Ent, Renamed_Subp);
d4fc0fb4
AC
254 end if;
255
256 Set_Is_Intrinsic_Subprogram (Ent);
257 Set_Has_Completion (Ent);
258
259 else
260 Body_Node := Build_Renamed_Body (Decl, New_S);
261 Insert_After (After, Body_Node);
262 Mark_Rewrite_Insertion (Body_Node);
263 Analyze (Body_Node);
264 After := Body_Node;
265 end if;
70482933
RK
266 end Build_And_Analyze_Renamed_Body;
267
268 ------------------------
269 -- Build_Renamed_Body --
270 ------------------------
271
272 function Build_Renamed_Body
273 (Decl : Node_Id;
fbf5a39b 274 New_S : Entity_Id) return Node_Id
70482933
RK
275 is
276 Loc : constant Source_Ptr := Sloc (New_S);
545cb5be
AC
277 -- We use for the source location of the renamed body, the location of
278 -- the spec entity. It might seem more natural to use the location of
279 -- the renaming declaration itself, but that would be wrong, since then
280 -- the body we create would look as though it was created far too late,
281 -- and this could cause problems with elaboration order analysis,
282 -- particularly in connection with instantiations.
70482933
RK
283
284 N : constant Node_Id := Unit_Declaration_Node (New_S);
285 Nam : constant Node_Id := Name (N);
286 Old_S : Entity_Id;
287 Spec : constant Node_Id := New_Copy_Tree (Specification (Decl));
288 Actuals : List_Id := No_List;
289 Call_Node : Node_Id;
290 Call_Name : Node_Id;
291 Body_Node : Node_Id;
292 Formal : Entity_Id;
293 O_Formal : Entity_Id;
294 Param_Spec : Node_Id;
295
def46b54
RD
296 Pref : Node_Id := Empty;
297 -- If the renamed entity is a primitive operation given in prefix form,
298 -- the prefix is the target object and it has to be added as the first
299 -- actual in the generated call.
300
70482933 301 begin
def46b54
RD
302 -- Determine the entity being renamed, which is the target of the call
303 -- statement. If the name is an explicit dereference, this is a renaming
304 -- of a subprogram type rather than a subprogram. The name itself is
305 -- fully analyzed.
70482933
RK
306
307 if Nkind (Nam) = N_Selected_Component then
308 Old_S := Entity (Selector_Name (Nam));
309
310 elsif Nkind (Nam) = N_Explicit_Dereference then
311 Old_S := Etype (Nam);
312
313 elsif Nkind (Nam) = N_Indexed_Component then
70482933
RK
314 if Is_Entity_Name (Prefix (Nam)) then
315 Old_S := Entity (Prefix (Nam));
316 else
317 Old_S := Entity (Selector_Name (Prefix (Nam)));
318 end if;
319
320 elsif Nkind (Nam) = N_Character_Literal then
321 Old_S := Etype (New_S);
322
323 else
324 Old_S := Entity (Nam);
325 end if;
326
327 if Is_Entity_Name (Nam) then
07fc65c4 328
def46b54
RD
329 -- If the renamed entity is a predefined operator, retain full name
330 -- to ensure its visibility.
07fc65c4
GB
331
332 if Ekind (Old_S) = E_Operator
333 and then Nkind (Nam) = N_Expanded_Name
334 then
335 Call_Name := New_Copy (Name (N));
336 else
337 Call_Name := New_Reference_To (Old_S, Loc);
338 end if;
339
70482933 340 else
def46b54
RD
341 if Nkind (Nam) = N_Selected_Component
342 and then Present (First_Formal (Old_S))
343 and then
344 (Is_Controlling_Formal (First_Formal (Old_S))
345 or else Is_Class_Wide_Type (Etype (First_Formal (Old_S))))
346 then
347
348 -- Retrieve the target object, to be added as a first actual
349 -- in the call.
350
351 Call_Name := New_Occurrence_Of (Old_S, Loc);
352 Pref := Prefix (Nam);
353
354 else
355 Call_Name := New_Copy (Name (N));
356 end if;
70482933 357
545cb5be 358 -- Original name may have been overloaded, but is fully resolved now
70482933
RK
359
360 Set_Is_Overloaded (Call_Name, False);
361 end if;
362
def46b54 363 -- For simple renamings, subsequent calls can be expanded directly as
d4fc0fb4 364 -- calls to the renamed entity. The body must be generated in any case
a3068ca6
AC
365 -- for calls that may appear elsewhere. This is not done in the case
366 -- where the subprogram is an instantiation because the actual proper
367 -- body has not been built yet.
70482933 368
545cb5be 369 if Ekind_In (Old_S, E_Function, E_Procedure)
70482933 370 and then Nkind (Decl) = N_Subprogram_Declaration
a3068ca6 371 and then not Is_Generic_Instance (Old_S)
70482933
RK
372 then
373 Set_Body_To_Inline (Decl, Old_S);
374 end if;
375
376 -- The body generated for this renaming is an internal artifact, and
377 -- does not constitute a freeze point for the called entity.
378
379 Set_Must_Not_Freeze (Call_Name);
380
381 Formal := First_Formal (Defining_Entity (Decl));
382
def46b54
RD
383 if Present (Pref) then
384 declare
385 Pref_Type : constant Entity_Id := Etype (Pref);
386 Form_Type : constant Entity_Id := Etype (First_Formal (Old_S));
387
388 begin
def46b54 389 -- The controlling formal may be an access parameter, or the
e14c931f 390 -- actual may be an access value, so adjust accordingly.
def46b54
RD
391
392 if Is_Access_Type (Pref_Type)
393 and then not Is_Access_Type (Form_Type)
394 then
395 Actuals := New_List
396 (Make_Explicit_Dereference (Loc, Relocate_Node (Pref)));
397
398 elsif Is_Access_Type (Form_Type)
399 and then not Is_Access_Type (Pref)
400 then
401 Actuals := New_List
402 (Make_Attribute_Reference (Loc,
403 Attribute_Name => Name_Access,
404 Prefix => Relocate_Node (Pref)));
405 else
406 Actuals := New_List (Pref);
407 end if;
408 end;
409
410 elsif Present (Formal) then
70482933
RK
411 Actuals := New_List;
412
def46b54
RD
413 else
414 Actuals := No_List;
415 end if;
416
417 if Present (Formal) then
70482933
RK
418 while Present (Formal) loop
419 Append (New_Reference_To (Formal, Loc), Actuals);
420 Next_Formal (Formal);
421 end loop;
422 end if;
423
def46b54
RD
424 -- If the renamed entity is an entry, inherit its profile. For other
425 -- renamings as bodies, both profiles must be subtype conformant, so it
426 -- is not necessary to replace the profile given in the declaration.
427 -- However, default values that are aggregates are rewritten when
428 -- partially analyzed, so we recover the original aggregate to insure
429 -- that subsequent conformity checking works. Similarly, if the default
430 -- expression was constant-folded, recover the original expression.
70482933
RK
431
432 Formal := First_Formal (Defining_Entity (Decl));
433
434 if Present (Formal) then
435 O_Formal := First_Formal (Old_S);
436 Param_Spec := First (Parameter_Specifications (Spec));
70482933
RK
437 while Present (Formal) loop
438 if Is_Entry (Old_S) then
70482933
RK
439 if Nkind (Parameter_Type (Param_Spec)) /=
440 N_Access_Definition
441 then
442 Set_Etype (Formal, Etype (O_Formal));
443 Set_Entity (Parameter_Type (Param_Spec), Etype (O_Formal));
444 end if;
445
07fc65c4
GB
446 elsif Nkind (Default_Value (O_Formal)) = N_Aggregate
447 or else Nkind (Original_Node (Default_Value (O_Formal))) /=
448 Nkind (Default_Value (O_Formal))
449 then
70482933
RK
450 Set_Expression (Param_Spec,
451 New_Copy_Tree (Original_Node (Default_Value (O_Formal))));
452 end if;
453
454 Next_Formal (Formal);
455 Next_Formal (O_Formal);
456 Next (Param_Spec);
457 end loop;
458 end if;
459
460 -- If the renamed entity is a function, the generated body contains a
461 -- return statement. Otherwise, build a procedure call. If the entity is
462 -- an entry, subsequent analysis of the call will transform it into the
463 -- proper entry or protected operation call. If the renamed entity is
464 -- a character literal, return it directly.
465
466 if Ekind (Old_S) = E_Function
467 or else Ekind (Old_S) = E_Operator
468 or else (Ekind (Old_S) = E_Subprogram_Type
469 and then Etype (Old_S) /= Standard_Void_Type)
470 then
471 Call_Node :=
86cde7b1 472 Make_Simple_Return_Statement (Loc,
70482933
RK
473 Expression =>
474 Make_Function_Call (Loc,
475 Name => Call_Name,
476 Parameter_Associations => Actuals));
477
478 elsif Ekind (Old_S) = E_Enumeration_Literal then
479 Call_Node :=
86cde7b1 480 Make_Simple_Return_Statement (Loc,
70482933
RK
481 Expression => New_Occurrence_Of (Old_S, Loc));
482
483 elsif Nkind (Nam) = N_Character_Literal then
484 Call_Node :=
86cde7b1 485 Make_Simple_Return_Statement (Loc,
70482933
RK
486 Expression => Call_Name);
487
488 else
489 Call_Node :=
490 Make_Procedure_Call_Statement (Loc,
491 Name => Call_Name,
492 Parameter_Associations => Actuals);
493 end if;
494
49e90211 495 -- Create entities for subprogram body and formals
70482933
RK
496
497 Set_Defining_Unit_Name (Spec,
498 Make_Defining_Identifier (Loc, Chars => Chars (New_S)));
499
500 Param_Spec := First (Parameter_Specifications (Spec));
70482933
RK
501 while Present (Param_Spec) loop
502 Set_Defining_Identifier (Param_Spec,
503 Make_Defining_Identifier (Loc,
504 Chars => Chars (Defining_Identifier (Param_Spec))));
505 Next (Param_Spec);
506 end loop;
507
508 Body_Node :=
509 Make_Subprogram_Body (Loc,
510 Specification => Spec,
511 Declarations => New_List,
512 Handled_Statement_Sequence =>
513 Make_Handled_Sequence_Of_Statements (Loc,
514 Statements => New_List (Call_Node)));
515
516 if Nkind (Decl) /= N_Subprogram_Declaration then
517 Rewrite (N,
518 Make_Subprogram_Declaration (Loc,
519 Specification => Specification (N)));
520 end if;
521
522 -- Link the body to the entity whose declaration it completes. If
def46b54
RD
523 -- the body is analyzed when the renamed entity is frozen, it may
524 -- be necessary to restore the proper scope (see package Exp_Ch13).
70482933
RK
525
526 if Nkind (N) = N_Subprogram_Renaming_Declaration
527 and then Present (Corresponding_Spec (N))
528 then
529 Set_Corresponding_Spec (Body_Node, Corresponding_Spec (N));
530 else
531 Set_Corresponding_Spec (Body_Node, New_S);
532 end if;
533
534 return Body_Node;
535 end Build_Renamed_Body;
536
fbf5a39b
AC
537 --------------------------
538 -- Check_Address_Clause --
539 --------------------------
540
541 procedure Check_Address_Clause (E : Entity_Id) is
542 Addr : constant Node_Id := Address_Clause (E);
543 Expr : Node_Id;
544 Decl : constant Node_Id := Declaration_Node (E);
545 Typ : constant Entity_Id := Etype (E);
546
547 begin
548 if Present (Addr) then
549 Expr := Expression (Addr);
550
0d901290 551 if Needs_Constant_Address (Decl, Typ) then
fbf5a39b 552 Check_Constant_Address_Clause (Expr, E);
f3b57ab0
AC
553
554 -- Has_Delayed_Freeze was set on E when the address clause was
555 -- analyzed. Reset the flag now unless freeze actions were
556 -- attached to it in the mean time.
557
558 if No (Freeze_Node (E)) then
559 Set_Has_Delayed_Freeze (E, False);
560 end if;
fbf5a39b
AC
561 end if;
562
1d57c04f
AC
563 -- If Rep_Clauses are to be ignored, remove address clause from
564 -- list attached to entity, because it may be illegal for gigi,
565 -- for example by breaking order of elaboration..
566
567 if Ignore_Rep_Clauses then
568 declare
569 Rep : Node_Id;
570
571 begin
572 Rep := First_Rep_Item (E);
573
574 if Rep = Addr then
575 Set_First_Rep_Item (E, Next_Rep_Item (Addr));
576
577 else
578 while Present (Rep)
579 and then Next_Rep_Item (Rep) /= Addr
580 loop
581 Rep := Next_Rep_Item (Rep);
582 end loop;
583 end if;
584
585 if Present (Rep) then
586 Set_Next_Rep_Item (Rep, Next_Rep_Item (Addr));
587 end if;
588 end;
589
590 Rewrite (Addr, Make_Null_Statement (Sloc (E)));
591
592 elsif not Error_Posted (Expr)
048e5cef 593 and then not Needs_Finalization (Typ)
fbf5a39b
AC
594 then
595 Warn_Overlay (Expr, Typ, Name (Addr));
596 end if;
597 end if;
598 end Check_Address_Clause;
599
70482933
RK
600 -----------------------------
601 -- Check_Compile_Time_Size --
602 -----------------------------
603
604 procedure Check_Compile_Time_Size (T : Entity_Id) is
605
c6823a20 606 procedure Set_Small_Size (T : Entity_Id; S : Uint);
70482933 607 -- Sets the compile time known size (32 bits or less) in the Esize
c6823a20 608 -- field, of T checking for a size clause that was given which attempts
2593c3e1 609 -- to give a smaller size, and also checking for an alignment clause.
70482933
RK
610
611 function Size_Known (T : Entity_Id) return Boolean;
07fc65c4 612 -- Recursive function that does all the work
70482933
RK
613
614 function Static_Discriminated_Components (T : Entity_Id) return Boolean;
615 -- If T is a constrained subtype, its size is not known if any of its
616 -- discriminant constraints is not static and it is not a null record.
fbf5a39b 617 -- The test is conservative and doesn't check that the components are
70482933
RK
618 -- in fact constrained by non-static discriminant values. Could be made
619 -- more precise ???
620
621 --------------------
622 -- Set_Small_Size --
623 --------------------
624
c6823a20 625 procedure Set_Small_Size (T : Entity_Id; S : Uint) is
70482933
RK
626 begin
627 if S > 32 then
628 return;
629
2593c3e1
AC
630 -- Check for bad size clause given
631
70482933
RK
632 elsif Has_Size_Clause (T) then
633 if RM_Size (T) < S then
634 Error_Msg_Uint_1 := S;
635 Error_Msg_NE
d58b9515 636 ("size for& too small, minimum allowed is ^",
70482933 637 Size_Clause (T), T);
70482933
RK
638 end if;
639
fc893455 640 -- Set size if not set already
70482933 641
fc893455
AC
642 elsif Unknown_RM_Size (T) then
643 Set_RM_Size (T, S);
70482933
RK
644 end if;
645 end Set_Small_Size;
646
647 ----------------
648 -- Size_Known --
649 ----------------
650
651 function Size_Known (T : Entity_Id) return Boolean is
652 Index : Entity_Id;
653 Comp : Entity_Id;
654 Ctyp : Entity_Id;
655 Low : Node_Id;
656 High : Node_Id;
657
658 begin
659 if Size_Known_At_Compile_Time (T) then
660 return True;
661
c6a9797e
RD
662 -- Always True for scalar types. This is true even for generic formal
663 -- scalar types. We used to return False in the latter case, but the
664 -- size is known at compile time, even in the template, we just do
665 -- not know the exact size but that's not the point of this routine.
666
70482933
RK
667 elsif Is_Scalar_Type (T)
668 or else Is_Task_Type (T)
669 then
c6a9797e
RD
670 return True;
671
672 -- Array types
70482933
RK
673
674 elsif Is_Array_Type (T) then
c6a9797e
RD
675
676 -- String literals always have known size, and we can set it
677
70482933 678 if Ekind (T) = E_String_Literal_Subtype then
c6823a20
EB
679 Set_Small_Size (T, Component_Size (T)
680 * String_Literal_Length (T));
70482933
RK
681 return True;
682
c6a9797e
RD
683 -- Unconstrained types never have known at compile time size
684
70482933
RK
685 elsif not Is_Constrained (T) then
686 return False;
687
def46b54
RD
688 -- Don't do any recursion on type with error posted, since we may
689 -- have a malformed type that leads us into a loop.
07fc65c4
GB
690
691 elsif Error_Posted (T) then
692 return False;
693
c6a9797e
RD
694 -- Otherwise if component size unknown, then array size unknown
695
70482933
RK
696 elsif not Size_Known (Component_Type (T)) then
697 return False;
698 end if;
699
def46b54
RD
700 -- Check for all indexes static, and also compute possible size
701 -- (in case it is less than 32 and may be packable).
70482933
RK
702
703 declare
704 Esiz : Uint := Component_Size (T);
705 Dim : Uint;
706
707 begin
708 Index := First_Index (T);
70482933
RK
709 while Present (Index) loop
710 if Nkind (Index) = N_Range then
711 Get_Index_Bounds (Index, Low, High);
712
713 elsif Error_Posted (Scalar_Range (Etype (Index))) then
714 return False;
715
716 else
717 Low := Type_Low_Bound (Etype (Index));
718 High := Type_High_Bound (Etype (Index));
719 end if;
720
721 if not Compile_Time_Known_Value (Low)
722 or else not Compile_Time_Known_Value (High)
723 or else Etype (Index) = Any_Type
724 then
725 return False;
726
727 else
728 Dim := Expr_Value (High) - Expr_Value (Low) + 1;
729
730 if Dim >= 0 then
731 Esiz := Esiz * Dim;
732 else
733 Esiz := Uint_0;
734 end if;
735 end if;
736
737 Next_Index (Index);
738 end loop;
739
c6823a20 740 Set_Small_Size (T, Esiz);
70482933
RK
741 return True;
742 end;
743
c6a9797e
RD
744 -- Access types always have known at compile time sizes
745
70482933
RK
746 elsif Is_Access_Type (T) then
747 return True;
748
c6a9797e
RD
749 -- For non-generic private types, go to underlying type if present
750
70482933
RK
751 elsif Is_Private_Type (T)
752 and then not Is_Generic_Type (T)
753 and then Present (Underlying_Type (T))
754 then
def46b54
RD
755 -- Don't do any recursion on type with error posted, since we may
756 -- have a malformed type that leads us into a loop.
07fc65c4
GB
757
758 if Error_Posted (T) then
759 return False;
760 else
761 return Size_Known (Underlying_Type (T));
762 end if;
70482933 763
c6a9797e
RD
764 -- Record types
765
70482933 766 elsif Is_Record_Type (T) then
fbf5a39b
AC
767
768 -- A class-wide type is never considered to have a known size
769
70482933
RK
770 if Is_Class_Wide_Type (T) then
771 return False;
772
fbf5a39b 773 -- A subtype of a variant record must not have non-static
308e6f3a 774 -- discriminated components.
fbf5a39b
AC
775
776 elsif T /= Base_Type (T)
777 and then not Static_Discriminated_Components (T)
778 then
779 return False;
70482933 780
def46b54
RD
781 -- Don't do any recursion on type with error posted, since we may
782 -- have a malformed type that leads us into a loop.
07fc65c4
GB
783
784 elsif Error_Posted (T) then
785 return False;
fbf5a39b 786 end if;
07fc65c4 787
fbf5a39b 788 -- Now look at the components of the record
70482933 789
fbf5a39b 790 declare
def46b54
RD
791 -- The following two variables are used to keep track of the
792 -- size of packed records if we can tell the size of the packed
793 -- record in the front end. Packed_Size_Known is True if so far
794 -- we can figure out the size. It is initialized to True for a
795 -- packed record, unless the record has discriminants. The
796 -- reason we eliminate the discriminated case is that we don't
797 -- know the way the back end lays out discriminated packed
798 -- records. If Packed_Size_Known is True, then Packed_Size is
799 -- the size in bits so far.
fbf5a39b
AC
800
801 Packed_Size_Known : Boolean :=
802 Is_Packed (T)
803 and then not Has_Discriminants (T);
804
805 Packed_Size : Uint := Uint_0;
806
807 begin
808 -- Test for variant part present
809
810 if Has_Discriminants (T)
811 and then Present (Parent (T))
812 and then Nkind (Parent (T)) = N_Full_Type_Declaration
813 and then Nkind (Type_Definition (Parent (T))) =
545cb5be 814 N_Record_Definition
fbf5a39b
AC
815 and then not Null_Present (Type_Definition (Parent (T)))
816 and then Present (Variant_Part
817 (Component_List (Type_Definition (Parent (T)))))
818 then
819 -- If variant part is present, and type is unconstrained,
820 -- then we must have defaulted discriminants, or a size
821 -- clause must be present for the type, or else the size
822 -- is definitely not known at compile time.
823
824 if not Is_Constrained (T)
825 and then
545cb5be 826 No (Discriminant_Default_Value (First_Discriminant (T)))
fc893455 827 and then Unknown_RM_Size (T)
70482933 828 then
fbf5a39b
AC
829 return False;
830 end if;
831 end if;
70482933 832
fbf5a39b
AC
833 -- Loop through components
834
fea9e956 835 Comp := First_Component_Or_Discriminant (T);
fbf5a39b 836 while Present (Comp) loop
fea9e956 837 Ctyp := Etype (Comp);
fbf5a39b 838
fea9e956
ES
839 -- We do not know the packed size if there is a component
840 -- clause present (we possibly could, but this would only
841 -- help in the case of a record with partial rep clauses.
842 -- That's because in the case of full rep clauses, the
843 -- size gets figured out anyway by a different circuit).
fbf5a39b 844
fea9e956
ES
845 if Present (Component_Clause (Comp)) then
846 Packed_Size_Known := False;
847 end if;
70482933 848
fea9e956
ES
849 -- We need to identify a component that is an array where
850 -- the index type is an enumeration type with non-standard
851 -- representation, and some bound of the type depends on a
852 -- discriminant.
70482933 853
fea9e956 854 -- This is because gigi computes the size by doing a
e14c931f 855 -- substitution of the appropriate discriminant value in
fea9e956
ES
856 -- the size expression for the base type, and gigi is not
857 -- clever enough to evaluate the resulting expression (which
858 -- involves a call to rep_to_pos) at compile time.
fbf5a39b 859
fea9e956
ES
860 -- It would be nice if gigi would either recognize that
861 -- this expression can be computed at compile time, or
862 -- alternatively figured out the size from the subtype
863 -- directly, where all the information is at hand ???
fbf5a39b 864
fea9e956
ES
865 if Is_Array_Type (Etype (Comp))
866 and then Present (Packed_Array_Type (Etype (Comp)))
867 then
868 declare
869 Ocomp : constant Entity_Id :=
870 Original_Record_Component (Comp);
871 OCtyp : constant Entity_Id := Etype (Ocomp);
872 Ind : Node_Id;
873 Indtyp : Entity_Id;
874 Lo, Hi : Node_Id;
70482933 875
fea9e956
ES
876 begin
877 Ind := First_Index (OCtyp);
878 while Present (Ind) loop
879 Indtyp := Etype (Ind);
70482933 880
fea9e956
ES
881 if Is_Enumeration_Type (Indtyp)
882 and then Has_Non_Standard_Rep (Indtyp)
883 then
884 Lo := Type_Low_Bound (Indtyp);
885 Hi := Type_High_Bound (Indtyp);
fbf5a39b 886
fea9e956
ES
887 if Is_Entity_Name (Lo)
888 and then Ekind (Entity (Lo)) = E_Discriminant
889 then
890 return False;
fbf5a39b 891
fea9e956
ES
892 elsif Is_Entity_Name (Hi)
893 and then Ekind (Entity (Hi)) = E_Discriminant
894 then
895 return False;
896 end if;
897 end if;
fbf5a39b 898
fea9e956
ES
899 Next_Index (Ind);
900 end loop;
901 end;
902 end if;
70482933 903
def46b54
RD
904 -- Clearly size of record is not known if the size of one of
905 -- the components is not known.
70482933 906
fea9e956
ES
907 if not Size_Known (Ctyp) then
908 return False;
909 end if;
70482933 910
fea9e956 911 -- Accumulate packed size if possible
70482933 912
fea9e956 913 if Packed_Size_Known then
70482933 914
fea9e956
ES
915 -- We can only deal with elementary types, since for
916 -- non-elementary components, alignment enters into the
917 -- picture, and we don't know enough to handle proper
918 -- alignment in this context. Packed arrays count as
919 -- elementary if the representation is a modular type.
fbf5a39b 920
fea9e956
ES
921 if Is_Elementary_Type (Ctyp)
922 or else (Is_Array_Type (Ctyp)
2593c3e1
AC
923 and then Present (Packed_Array_Type (Ctyp))
924 and then Is_Modular_Integer_Type
925 (Packed_Array_Type (Ctyp)))
fea9e956 926 then
2593c3e1
AC
927 -- If RM_Size is known and static, then we can keep
928 -- accumulating the packed size.
70482933 929
fea9e956 930 if Known_Static_RM_Size (Ctyp) then
70482933 931
fea9e956
ES
932 -- A little glitch, to be removed sometime ???
933 -- gigi does not understand zero sizes yet.
934
935 if RM_Size (Ctyp) = Uint_0 then
70482933 936 Packed_Size_Known := False;
fea9e956
ES
937
938 -- Normal case where we can keep accumulating the
939 -- packed array size.
940
941 else
942 Packed_Size := Packed_Size + RM_Size (Ctyp);
70482933 943 end if;
fbf5a39b 944
fea9e956
ES
945 -- If we have a field whose RM_Size is not known then
946 -- we can't figure out the packed size here.
fbf5a39b
AC
947
948 else
949 Packed_Size_Known := False;
70482933 950 end if;
fea9e956
ES
951
952 -- If we have a non-elementary type we can't figure out
953 -- the packed array size (alignment issues).
954
955 else
956 Packed_Size_Known := False;
70482933 957 end if;
fbf5a39b 958 end if;
70482933 959
fea9e956 960 Next_Component_Or_Discriminant (Comp);
fbf5a39b 961 end loop;
70482933 962
fbf5a39b 963 if Packed_Size_Known then
c6823a20 964 Set_Small_Size (T, Packed_Size);
fbf5a39b 965 end if;
70482933 966
fbf5a39b
AC
967 return True;
968 end;
70482933 969
c6a9797e
RD
970 -- All other cases, size not known at compile time
971
70482933
RK
972 else
973 return False;
974 end if;
975 end Size_Known;
976
977 -------------------------------------
978 -- Static_Discriminated_Components --
979 -------------------------------------
980
981 function Static_Discriminated_Components
0da2c8ac 982 (T : Entity_Id) return Boolean
70482933
RK
983 is
984 Constraint : Elmt_Id;
985
986 begin
987 if Has_Discriminants (T)
988 and then Present (Discriminant_Constraint (T))
989 and then Present (First_Component (T))
990 then
991 Constraint := First_Elmt (Discriminant_Constraint (T));
70482933
RK
992 while Present (Constraint) loop
993 if not Compile_Time_Known_Value (Node (Constraint)) then
994 return False;
995 end if;
996
997 Next_Elmt (Constraint);
998 end loop;
999 end if;
1000
1001 return True;
1002 end Static_Discriminated_Components;
1003
1004 -- Start of processing for Check_Compile_Time_Size
1005
1006 begin
1007 Set_Size_Known_At_Compile_Time (T, Size_Known (T));
1008 end Check_Compile_Time_Size;
1009
1010 -----------------------------
1011 -- Check_Debug_Info_Needed --
1012 -----------------------------
1013
1014 procedure Check_Debug_Info_Needed (T : Entity_Id) is
1015 begin
1b24ada5 1016 if Debug_Info_Off (T) then
70482933
RK
1017 return;
1018
1019 elsif Comes_From_Source (T)
1020 or else Debug_Generated_Code
1021 or else Debug_Flag_VV
1b24ada5 1022 or else Needs_Debug_Info (T)
70482933
RK
1023 then
1024 Set_Debug_Info_Needed (T);
1025 end if;
1026 end Check_Debug_Info_Needed;
1027
1028 ----------------------------
1029 -- Check_Strict_Alignment --
1030 ----------------------------
1031
1032 procedure Check_Strict_Alignment (E : Entity_Id) is
1033 Comp : Entity_Id;
1034
1035 begin
1036 if Is_Tagged_Type (E) or else Is_Concurrent_Type (E) then
1037 Set_Strict_Alignment (E);
1038
1039 elsif Is_Array_Type (E) then
1040 Set_Strict_Alignment (E, Strict_Alignment (Component_Type (E)));
1041
1042 elsif Is_Record_Type (E) then
1043 if Is_Limited_Record (E) then
1044 Set_Strict_Alignment (E);
1045 return;
1046 end if;
1047
1048 Comp := First_Component (E);
70482933
RK
1049 while Present (Comp) loop
1050 if not Is_Type (Comp)
1051 and then (Strict_Alignment (Etype (Comp))
fbf5a39b 1052 or else Is_Aliased (Comp))
70482933
RK
1053 then
1054 Set_Strict_Alignment (E);
1055 return;
1056 end if;
1057
1058 Next_Component (Comp);
1059 end loop;
1060 end if;
1061 end Check_Strict_Alignment;
1062
1063 -------------------------
1064 -- Check_Unsigned_Type --
1065 -------------------------
1066
1067 procedure Check_Unsigned_Type (E : Entity_Id) is
1068 Ancestor : Entity_Id;
1069 Lo_Bound : Node_Id;
1070 Btyp : Entity_Id;
1071
1072 begin
1073 if not Is_Discrete_Or_Fixed_Point_Type (E) then
1074 return;
1075 end if;
1076
1077 -- Do not attempt to analyze case where range was in error
1078
199c6a10
AC
1079 if No (Scalar_Range (E))
1080 or else Error_Posted (Scalar_Range (E))
1081 then
70482933
RK
1082 return;
1083 end if;
1084
1085 -- The situation that is non trivial is something like
1086
1087 -- subtype x1 is integer range -10 .. +10;
1088 -- subtype x2 is x1 range 0 .. V1;
1089 -- subtype x3 is x2 range V2 .. V3;
1090 -- subtype x4 is x3 range V4 .. V5;
1091
1092 -- where Vn are variables. Here the base type is signed, but we still
1093 -- know that x4 is unsigned because of the lower bound of x2.
1094
1095 -- The only way to deal with this is to look up the ancestor chain
1096
1097 Ancestor := E;
1098 loop
1099 if Ancestor = Any_Type or else Etype (Ancestor) = Any_Type then
1100 return;
1101 end if;
1102
1103 Lo_Bound := Type_Low_Bound (Ancestor);
1104
1105 if Compile_Time_Known_Value (Lo_Bound) then
1106
1107 if Expr_Rep_Value (Lo_Bound) >= 0 then
1108 Set_Is_Unsigned_Type (E, True);
1109 end if;
1110
1111 return;
1112
1113 else
1114 Ancestor := Ancestor_Subtype (Ancestor);
1115
1116 -- If no ancestor had a static lower bound, go to base type
1117
1118 if No (Ancestor) then
1119
1120 -- Note: the reason we still check for a compile time known
1121 -- value for the base type is that at least in the case of
1122 -- generic formals, we can have bounds that fail this test,
1123 -- and there may be other cases in error situations.
1124
1125 Btyp := Base_Type (E);
1126
1127 if Btyp = Any_Type or else Etype (Btyp) = Any_Type then
1128 return;
1129 end if;
1130
1131 Lo_Bound := Type_Low_Bound (Base_Type (E));
1132
1133 if Compile_Time_Known_Value (Lo_Bound)
1134 and then Expr_Rep_Value (Lo_Bound) >= 0
1135 then
1136 Set_Is_Unsigned_Type (E, True);
1137 end if;
1138
1139 return;
70482933
RK
1140 end if;
1141 end if;
1142 end loop;
1143 end Check_Unsigned_Type;
1144
cfb120b5
AC
1145 -------------------------
1146 -- Is_Atomic_Aggregate --
1147 -------------------------
fbf5a39b 1148
cfb120b5 1149 function Is_Atomic_Aggregate
b0159fbe
AC
1150 (E : Entity_Id;
1151 Typ : Entity_Id) return Boolean
1152 is
fbf5a39b
AC
1153 Loc : constant Source_Ptr := Sloc (E);
1154 New_N : Node_Id;
b0159fbe 1155 Par : Node_Id;
fbf5a39b
AC
1156 Temp : Entity_Id;
1157
1158 begin
b0159fbe
AC
1159 Par := Parent (E);
1160
01957849 1161 -- Array may be qualified, so find outer context
b0159fbe
AC
1162
1163 if Nkind (Par) = N_Qualified_Expression then
1164 Par := Parent (Par);
1165 end if;
1166
fb2e11ee 1167 if Nkind_In (Par, N_Object_Declaration, N_Assignment_Statement)
b0159fbe 1168 and then Comes_From_Source (Par)
fbf5a39b 1169 then
b29def53 1170 Temp := Make_Temporary (Loc, 'T', E);
fbf5a39b
AC
1171 New_N :=
1172 Make_Object_Declaration (Loc,
1173 Defining_Identifier => Temp,
c6a9797e
RD
1174 Object_Definition => New_Occurrence_Of (Typ, Loc),
1175 Expression => Relocate_Node (E));
b0159fbe 1176 Insert_Before (Par, New_N);
fbf5a39b
AC
1177 Analyze (New_N);
1178
b0159fbe
AC
1179 Set_Expression (Par, New_Occurrence_Of (Temp, Loc));
1180 return True;
2c1b72d7 1181
b0159fbe
AC
1182 else
1183 return False;
fbf5a39b 1184 end if;
cfb120b5 1185 end Is_Atomic_Aggregate;
fbf5a39b 1186
70482933
RK
1187 ----------------
1188 -- Freeze_All --
1189 ----------------
1190
1191 -- Note: the easy coding for this procedure would be to just build a
1192 -- single list of freeze nodes and then insert them and analyze them
1193 -- all at once. This won't work, because the analysis of earlier freeze
1194 -- nodes may recursively freeze types which would otherwise appear later
1195 -- on in the freeze list. So we must analyze and expand the freeze nodes
1196 -- as they are generated.
1197
1198 procedure Freeze_All (From : Entity_Id; After : in out Node_Id) is
70482933
RK
1199 E : Entity_Id;
1200 Decl : Node_Id;
1201
1202 procedure Freeze_All_Ent (From : Entity_Id; After : in out Node_Id);
def46b54
RD
1203 -- This is the internal recursive routine that does freezing of entities
1204 -- (but NOT the analysis of default expressions, which should not be
1205 -- recursive, we don't want to analyze those till we are sure that ALL
1206 -- the types are frozen).
70482933 1207
fbf5a39b
AC
1208 --------------------
1209 -- Freeze_All_Ent --
1210 --------------------
1211
545cb5be 1212 procedure Freeze_All_Ent (From : Entity_Id; After : in out Node_Id) is
70482933
RK
1213 E : Entity_Id;
1214 Flist : List_Id;
1215 Lastn : Node_Id;
1216
1217 procedure Process_Flist;
def46b54
RD
1218 -- If freeze nodes are present, insert and analyze, and reset cursor
1219 -- for next insertion.
70482933 1220
fbf5a39b
AC
1221 -------------------
1222 -- Process_Flist --
1223 -------------------
1224
70482933
RK
1225 procedure Process_Flist is
1226 begin
1227 if Is_Non_Empty_List (Flist) then
1228 Lastn := Next (After);
1229 Insert_List_After_And_Analyze (After, Flist);
1230
1231 if Present (Lastn) then
1232 After := Prev (Lastn);
1233 else
1234 After := Last (List_Containing (After));
1235 end if;
1236 end if;
1237 end Process_Flist;
1238
fbf5a39b
AC
1239 -- Start or processing for Freeze_All_Ent
1240
70482933
RK
1241 begin
1242 E := From;
1243 while Present (E) loop
1244
1245 -- If the entity is an inner package which is not a package
def46b54
RD
1246 -- renaming, then its entities must be frozen at this point. Note
1247 -- that such entities do NOT get frozen at the end of the nested
1248 -- package itself (only library packages freeze).
70482933
RK
1249
1250 -- Same is true for task declarations, where anonymous records
1251 -- created for entry parameters must be frozen.
1252
1253 if Ekind (E) = E_Package
1254 and then No (Renamed_Object (E))
1255 and then not Is_Child_Unit (E)
1256 and then not Is_Frozen (E)
1257 then
7d8b9c99 1258 Push_Scope (E);
70482933
RK
1259 Install_Visible_Declarations (E);
1260 Install_Private_Declarations (E);
1261
1262 Freeze_All (First_Entity (E), After);
1263
1264 End_Package_Scope (E);
1265
d3cb4cc0
AC
1266 if Is_Generic_Instance (E)
1267 and then Has_Delayed_Freeze (E)
1268 then
1269 Set_Has_Delayed_Freeze (E, False);
1270 Expand_N_Package_Declaration (Unit_Declaration_Node (E));
1271 end if;
1272
70482933
RK
1273 elsif Ekind (E) in Task_Kind
1274 and then
1275 (Nkind (Parent (E)) = N_Task_Type_Declaration
fbf5a39b 1276 or else
70482933
RK
1277 Nkind (Parent (E)) = N_Single_Task_Declaration)
1278 then
7d8b9c99 1279 Push_Scope (E);
70482933
RK
1280 Freeze_All (First_Entity (E), After);
1281 End_Scope;
1282
1283 -- For a derived tagged type, we must ensure that all the
def46b54
RD
1284 -- primitive operations of the parent have been frozen, so that
1285 -- their addresses will be in the parent's dispatch table at the
1286 -- point it is inherited.
70482933
RK
1287
1288 elsif Ekind (E) = E_Record_Type
1289 and then Is_Tagged_Type (E)
1290 and then Is_Tagged_Type (Etype (E))
1291 and then Is_Derived_Type (E)
1292 then
1293 declare
1294 Prim_List : constant Elist_Id :=
1295 Primitive_Operations (Etype (E));
fbf5a39b
AC
1296
1297 Prim : Elmt_Id;
1298 Subp : Entity_Id;
70482933
RK
1299
1300 begin
df3e68b1 1301 Prim := First_Elmt (Prim_List);
70482933
RK
1302 while Present (Prim) loop
1303 Subp := Node (Prim);
1304
1305 if Comes_From_Source (Subp)
1306 and then not Is_Frozen (Subp)
1307 then
c159409f 1308 Flist := Freeze_Entity (Subp, After);
70482933
RK
1309 Process_Flist;
1310 end if;
1311
1312 Next_Elmt (Prim);
1313 end loop;
1314 end;
1315 end if;
1316
1317 if not Is_Frozen (E) then
c159409f 1318 Flist := Freeze_Entity (E, After);
70482933 1319 Process_Flist;
47e11d08
AC
1320
1321 -- If already frozen, and there are delayed aspects, this is where
1322 -- we do the visibility check for these aspects (see Sem_Ch13 spec
1323 -- for a description of how we handle aspect visibility).
1324
1325 elsif Has_Delayed_Aspects (E) then
1326 declare
1327 Ritem : Node_Id;
1328
1329 begin
1330 Ritem := First_Rep_Item (E);
1331 while Present (Ritem) loop
1332 if Nkind (Ritem) = N_Aspect_Specification
bd949ee2 1333 and then Entity (Ritem) = E
47e11d08
AC
1334 and then Is_Delayed_Aspect (Ritem)
1335 then
1336 Check_Aspect_At_End_Of_Declarations (Ritem);
1337 end if;
1338
1339 Ritem := Next_Rep_Item (Ritem);
1340 end loop;
1341 end;
70482933
RK
1342 end if;
1343
def46b54
RD
1344 -- If an incomplete type is still not frozen, this may be a
1345 -- premature freezing because of a body declaration that follows.
ef992452
AC
1346 -- Indicate where the freezing took place. Freezing will happen
1347 -- if the body comes from source, but not if it is internally
1348 -- generated, for example as the body of a type invariant.
fbf5a39b 1349
def46b54
RD
1350 -- If the freezing is caused by the end of the current declarative
1351 -- part, it is a Taft Amendment type, and there is no error.
fbf5a39b
AC
1352
1353 if not Is_Frozen (E)
1354 and then Ekind (E) = E_Incomplete_Type
1355 then
1356 declare
1357 Bod : constant Node_Id := Next (After);
1358
1359 begin
35fae080
RD
1360 -- The presence of a body freezes all entities previously
1361 -- declared in the current list of declarations, but this
1362 -- does not apply if the body does not come from source.
1363 -- A type invariant is transformed into a subprogram body
1364 -- which is placed at the end of the private part of the
1365 -- current package, but this body does not freeze incomplete
1366 -- types that may be declared in this private part.
1367
545cb5be
AC
1368 if (Nkind_In (Bod, N_Subprogram_Body,
1369 N_Entry_Body,
1370 N_Package_Body,
1371 N_Protected_Body,
1372 N_Task_Body)
fbf5a39b 1373 or else Nkind (Bod) in N_Body_Stub)
ef992452 1374 and then
35fae080 1375 List_Containing (After) = List_Containing (Parent (E))
ef992452 1376 and then Comes_From_Source (Bod)
fbf5a39b
AC
1377 then
1378 Error_Msg_Sloc := Sloc (Next (After));
1379 Error_Msg_NE
1380 ("type& is frozen# before its full declaration",
1381 Parent (E), E);
1382 end if;
1383 end;
1384 end if;
1385
70482933
RK
1386 Next_Entity (E);
1387 end loop;
1388 end Freeze_All_Ent;
1389
1390 -- Start of processing for Freeze_All
1391
1392 begin
1393 Freeze_All_Ent (From, After);
1394
1395 -- Now that all types are frozen, we can deal with default expressions
1396 -- that require us to build a default expression functions. This is the
1397 -- point at which such functions are constructed (after all types that
1398 -- might be used in such expressions have been frozen).
fbf5a39b 1399
d4fc0fb4
AC
1400 -- For subprograms that are renaming_as_body, we create the wrapper
1401 -- bodies as needed.
1402
70482933
RK
1403 -- We also add finalization chains to access types whose designated
1404 -- types are controlled. This is normally done when freezing the type,
1405 -- but this misses recursive type definitions where the later members
c6a9797e 1406 -- of the recursion introduce controlled components.
70482933
RK
1407
1408 -- Loop through entities
1409
1410 E := From;
1411 while Present (E) loop
70482933
RK
1412 if Is_Subprogram (E) then
1413
1414 if not Default_Expressions_Processed (E) then
1415 Process_Default_Expressions (E, After);
1416 end if;
1417
1418 if not Has_Completion (E) then
1419 Decl := Unit_Declaration_Node (E);
1420
1421 if Nkind (Decl) = N_Subprogram_Renaming_Declaration then
8417f4b2
AC
1422 if Error_Posted (Decl) then
1423 Set_Has_Completion (E);
8417f4b2
AC
1424 else
1425 Build_And_Analyze_Renamed_Body (Decl, E, After);
1426 end if;
70482933
RK
1427
1428 elsif Nkind (Decl) = N_Subprogram_Declaration
1429 and then Present (Corresponding_Body (Decl))
1430 and then
1431 Nkind (Unit_Declaration_Node (Corresponding_Body (Decl)))
fbf5a39b 1432 = N_Subprogram_Renaming_Declaration
70482933
RK
1433 then
1434 Build_And_Analyze_Renamed_Body
1435 (Decl, Corresponding_Body (Decl), After);
1436 end if;
1437 end if;
1438
1439 elsif Ekind (E) in Task_Kind
1440 and then
1441 (Nkind (Parent (E)) = N_Task_Type_Declaration
fbf5a39b 1442 or else
70482933
RK
1443 Nkind (Parent (E)) = N_Single_Task_Declaration)
1444 then
1445 declare
1446 Ent : Entity_Id;
545cb5be 1447
70482933
RK
1448 begin
1449 Ent := First_Entity (E);
70482933 1450 while Present (Ent) loop
70482933
RK
1451 if Is_Entry (Ent)
1452 and then not Default_Expressions_Processed (Ent)
1453 then
1454 Process_Default_Expressions (Ent, After);
1455 end if;
1456
1457 Next_Entity (Ent);
1458 end loop;
1459 end;
1460
ca5af305
AC
1461 -- We add finalization masters to access types whose designated types
1462 -- require finalization. This is normally done when freezing the
1463 -- type, but this misses recursive type definitions where the later
1464 -- members of the recursion introduce controlled components (such as
1465 -- can happen when incomplete types are involved), as well cases
1466 -- where a component type is private and the controlled full type
1467 -- occurs after the access type is frozen. Cases that don't need a
1468 -- finalization master are generic formal types (the actual type will
1469 -- have it) and types with Java and CIL conventions, since those are
1470 -- used for API bindings. (Are there any other cases that should be
1471 -- excluded here???)
df3e68b1 1472
70482933
RK
1473 elsif Is_Access_Type (E)
1474 and then Comes_From_Source (E)
df3e68b1 1475 and then not Is_Generic_Type (E)
048e5cef 1476 and then Needs_Finalization (Designated_Type (E))
70482933 1477 then
ca5af305 1478 Build_Finalization_Master (E);
70482933
RK
1479 end if;
1480
1481 Next_Entity (E);
1482 end loop;
70482933
RK
1483 end Freeze_All;
1484
1485 -----------------------
1486 -- Freeze_And_Append --
1487 -----------------------
1488
1489 procedure Freeze_And_Append
1490 (Ent : Entity_Id;
c159409f 1491 N : Node_Id;
70482933
RK
1492 Result : in out List_Id)
1493 is
c159409f 1494 L : constant List_Id := Freeze_Entity (Ent, N);
70482933
RK
1495 begin
1496 if Is_Non_Empty_List (L) then
1497 if Result = No_List then
1498 Result := L;
1499 else
1500 Append_List (L, Result);
1501 end if;
1502 end if;
1503 end Freeze_And_Append;
1504
1505 -------------------
1506 -- Freeze_Before --
1507 -------------------
1508
1509 procedure Freeze_Before (N : Node_Id; T : Entity_Id) is
c159409f 1510 Freeze_Nodes : constant List_Id := Freeze_Entity (T, N);
70482933
RK
1511 begin
1512 if Is_Non_Empty_List (Freeze_Nodes) then
fbf5a39b 1513 Insert_Actions (N, Freeze_Nodes);
70482933
RK
1514 end if;
1515 end Freeze_Before;
1516
1517 -------------------
1518 -- Freeze_Entity --
1519 -------------------
1520
c159409f
AC
1521 function Freeze_Entity (E : Entity_Id; N : Node_Id) return List_Id is
1522 Loc : constant Source_Ptr := Sloc (N);
c6823a20 1523 Test_E : Entity_Id := E;
70482933
RK
1524 Comp : Entity_Id;
1525 F_Node : Node_Id;
70482933
RK
1526 Indx : Node_Id;
1527 Formal : Entity_Id;
1528 Atype : Entity_Id;
1529
90878b12
AC
1530 Result : List_Id := No_List;
1531 -- List of freezing actions, left at No_List if none
1532
4c8a5bb8
AC
1533 Has_Default_Initialization : Boolean := False;
1534 -- This flag gets set to true for a variable with default initialization
1535
90878b12
AC
1536 procedure Add_To_Result (N : Node_Id);
1537 -- N is a freezing action to be appended to the Result
1538
70482933 1539 procedure Check_Current_Instance (Comp_Decl : Node_Id);
edd63e9b
ES
1540 -- Check that an Access or Unchecked_Access attribute with a prefix
1541 -- which is the current instance type can only be applied when the type
1542 -- is limited.
70482933 1543
67b3acf8
RD
1544 procedure Check_Suspicious_Modulus (Utype : Entity_Id);
1545 -- Give warning for modulus of 8, 16, 32, or 64 given as an explicit
1546 -- integer literal without an explicit corresponding size clause. The
1547 -- caller has checked that Utype is a modular integer type.
1548
70482933
RK
1549 function After_Last_Declaration return Boolean;
1550 -- If Loc is a freeze_entity that appears after the last declaration
1551 -- in the scope, inhibit error messages on late completion.
1552
1553 procedure Freeze_Record_Type (Rec : Entity_Id);
edd63e9b
ES
1554 -- Freeze each component, handle some representation clauses, and freeze
1555 -- primitive operations if this is a tagged type.
70482933 1556
90878b12
AC
1557 -------------------
1558 -- Add_To_Result --
1559 -------------------
1560
1561 procedure Add_To_Result (N : Node_Id) is
1562 begin
1563 if No (Result) then
1564 Result := New_List (N);
1565 else
1566 Append (N, Result);
1567 end if;
1568 end Add_To_Result;
1569
70482933
RK
1570 ----------------------------
1571 -- After_Last_Declaration --
1572 ----------------------------
1573
1574 function After_Last_Declaration return Boolean is
fb2e11ee 1575 Spec : constant Node_Id := Parent (Current_Scope);
70482933
RK
1576 begin
1577 if Nkind (Spec) = N_Package_Specification then
1578 if Present (Private_Declarations (Spec)) then
1579 return Loc >= Sloc (Last (Private_Declarations (Spec)));
70482933
RK
1580 elsif Present (Visible_Declarations (Spec)) then
1581 return Loc >= Sloc (Last (Visible_Declarations (Spec)));
1582 else
1583 return False;
1584 end if;
70482933
RK
1585 else
1586 return False;
1587 end if;
1588 end After_Last_Declaration;
1589
1590 ----------------------------
1591 -- Check_Current_Instance --
1592 ----------------------------
1593
1594 procedure Check_Current_Instance (Comp_Decl : Node_Id) is
1595
e1308fa8
AC
1596 function Is_Aliased_View_Of_Type (Typ : Entity_Id) return Boolean;
1597 -- Determine whether Typ is compatible with the rules for aliased
1598 -- views of types as defined in RM 3.10 in the various dialects.
32c760e6 1599
70482933 1600 function Process (N : Node_Id) return Traverse_Result;
49e90211 1601 -- Process routine to apply check to given node
70482933 1602
e1308fa8
AC
1603 -----------------------------
1604 -- Is_Aliased_View_Of_Type --
1605 -----------------------------
1606
1607 function Is_Aliased_View_Of_Type (Typ : Entity_Id) return Boolean is
1608 Typ_Decl : constant Node_Id := Parent (Typ);
1609
1610 begin
1611 -- Common case
1612
1613 if Nkind (Typ_Decl) = N_Full_Type_Declaration
1614 and then Limited_Present (Type_Definition (Typ_Decl))
1615 then
1616 return True;
1617
1618 -- The following paragraphs describe what a legal aliased view of
1619 -- a type is in the various dialects of Ada.
1620
1621 -- Ada 95
1622
1623 -- The current instance of a limited type, and a formal parameter
1624 -- or generic formal object of a tagged type.
1625
1626 -- Ada 95 limited type
1627 -- * Type with reserved word "limited"
1628 -- * A protected or task type
1629 -- * A composite type with limited component
1630
1631 elsif Ada_Version <= Ada_95 then
1632 return Is_Limited_Type (Typ);
1633
1634 -- Ada 2005
1635
1636 -- The current instance of a limited tagged type, a protected
1637 -- type, a task type, or a type that has the reserved word
1638 -- "limited" in its full definition ... a formal parameter or
1639 -- generic formal object of a tagged type.
1640
1641 -- Ada 2005 limited type
1642 -- * Type with reserved word "limited", "synchronized", "task"
1643 -- or "protected"
1644 -- * A composite type with limited component
1645 -- * A derived type whose parent is a non-interface limited type
1646
1647 elsif Ada_Version = Ada_2005 then
1648 return
1649 (Is_Limited_Type (Typ) and then Is_Tagged_Type (Typ))
1650 or else
1651 (Is_Derived_Type (Typ)
1652 and then not Is_Interface (Etype (Typ))
1653 and then Is_Limited_Type (Etype (Typ)));
1654
1655 -- Ada 2012 and beyond
1656
1657 -- The current instance of an immutably limited type ... a formal
1658 -- parameter or generic formal object of a tagged type.
1659
1660 -- Ada 2012 limited type
1661 -- * Type with reserved word "limited", "synchronized", "task"
1662 -- or "protected"
1663 -- * A composite type with limited component
1664 -- * A derived type whose parent is a non-interface limited type
1665 -- * An incomplete view
1666
1667 -- Ada 2012 immutably limited type
1668 -- * Explicitly limited record type
1669 -- * Record extension with "limited" present
1670 -- * Non-formal limited private type that is either tagged
1671 -- or has at least one access discriminant with a default
1672 -- expression
1673 -- * Task type, protected type or synchronized interface
1674 -- * Type derived from immutably limited type
1675
1676 else
1677 return
1678 Is_Immutably_Limited_Type (Typ)
1679 or else Is_Incomplete_Type (Typ);
1680 end if;
1681 end Is_Aliased_View_Of_Type;
1682
fbf5a39b
AC
1683 -------------
1684 -- Process --
1685 -------------
1686
70482933
RK
1687 function Process (N : Node_Id) return Traverse_Result is
1688 begin
1689 case Nkind (N) is
1690 when N_Attribute_Reference =>
def46b54 1691 if (Attribute_Name (N) = Name_Access
70482933
RK
1692 or else
1693 Attribute_Name (N) = Name_Unchecked_Access)
1694 and then Is_Entity_Name (Prefix (N))
1695 and then Is_Type (Entity (Prefix (N)))
1696 and then Entity (Prefix (N)) = E
1697 then
1698 Error_Msg_N
1699 ("current instance must be a limited type", Prefix (N));
1700 return Abandon;
1701 else
1702 return OK;
1703 end if;
1704
1705 when others => return OK;
1706 end case;
1707 end Process;
1708
1709 procedure Traverse is new Traverse_Proc (Process);
1710
e1308fa8 1711 -- Local variables
32c760e6 1712
e1308fa8
AC
1713 Rec_Type : constant Entity_Id :=
1714 Scope (Defining_Identifier (Comp_Decl));
32c760e6 1715
e1308fa8 1716 -- Start of processing for Check_Current_Instance
32c760e6 1717
e1308fa8
AC
1718 begin
1719 if not Is_Aliased_View_Of_Type (Rec_Type) then
32c760e6
ES
1720 Traverse (Comp_Decl);
1721 end if;
70482933
RK
1722 end Check_Current_Instance;
1723
67b3acf8
RD
1724 ------------------------------
1725 -- Check_Suspicious_Modulus --
1726 ------------------------------
1727
1728 procedure Check_Suspicious_Modulus (Utype : Entity_Id) is
1729 Decl : constant Node_Id := Declaration_Node (Underlying_Type (Utype));
1730
1731 begin
1732 if Nkind (Decl) = N_Full_Type_Declaration then
1733 declare
1734 Tdef : constant Node_Id := Type_Definition (Decl);
3e7302c3 1735
67b3acf8
RD
1736 begin
1737 if Nkind (Tdef) = N_Modular_Type_Definition then
1738 declare
1739 Modulus : constant Node_Id :=
1740 Original_Node (Expression (Tdef));
1741 begin
1742 if Nkind (Modulus) = N_Integer_Literal then
1743 declare
1744 Modv : constant Uint := Intval (Modulus);
1745 Sizv : constant Uint := RM_Size (Utype);
1746
1747 begin
1748 -- First case, modulus and size are the same. This
1749 -- happens if you have something like mod 32, with
1750 -- an explicit size of 32, this is for sure a case
1751 -- where the warning is given, since it is seems
1752 -- very unlikely that someone would want e.g. a
1753 -- five bit type stored in 32 bits. It is much
1754 -- more likely they wanted a 32-bit type.
1755
1756 if Modv = Sizv then
1757 null;
1758
1759 -- Second case, the modulus is 32 or 64 and no
1760 -- size clause is present. This is a less clear
1761 -- case for giving the warning, but in the case
1762 -- of 32/64 (5-bit or 6-bit types) these seem rare
1763 -- enough that it is a likely error (and in any
1764 -- case using 2**5 or 2**6 in these cases seems
1765 -- clearer. We don't include 8 or 16 here, simply
1766 -- because in practice 3-bit and 4-bit types are
1767 -- more common and too many false positives if
1768 -- we warn in these cases.
1769
1770 elsif not Has_Size_Clause (Utype)
1771 and then (Modv = Uint_32 or else Modv = Uint_64)
1772 then
1773 null;
1774
1775 -- No warning needed
1776
1777 else
1778 return;
1779 end if;
1780
1781 -- If we fall through, give warning
1782
1783 Error_Msg_Uint_1 := Modv;
1784 Error_Msg_N
1785 ("?2 '*'*^' may have been intended here",
1786 Modulus);
1787 end;
1788 end if;
1789 end;
1790 end if;
1791 end;
1792 end if;
1793 end Check_Suspicious_Modulus;
1794
70482933
RK
1795 ------------------------
1796 -- Freeze_Record_Type --
1797 ------------------------
1798
1799 procedure Freeze_Record_Type (Rec : Entity_Id) is
1800 Comp : Entity_Id;
fbf5a39b 1801 IR : Node_Id;
70482933 1802 ADC : Node_Id;
c6823a20 1803 Prev : Entity_Id;
70482933 1804
67ce0d7e
RD
1805 Junk : Boolean;
1806 pragma Warnings (Off, Junk);
1807
70482933
RK
1808 Unplaced_Component : Boolean := False;
1809 -- Set True if we find at least one component with no component
1810 -- clause (used to warn about useless Pack pragmas).
1811
1812 Placed_Component : Boolean := False;
1813 -- Set True if we find at least one component with a component
8dc10d38
AC
1814 -- clause (used to warn about useless Bit_Order pragmas, and also
1815 -- to detect cases where Implicit_Packing may have an effect).
1816
1817 All_Scalar_Components : Boolean := True;
1818 -- Set False if we encounter a component of a non-scalar type
1819
1820 Scalar_Component_Total_RM_Size : Uint := Uint_0;
1821 Scalar_Component_Total_Esize : Uint := Uint_0;
1822 -- Accumulates total RM_Size values and total Esize values of all
1823 -- scalar components. Used for processing of Implicit_Packing.
70482933 1824
e18d6a15
JM
1825 function Check_Allocator (N : Node_Id) return Node_Id;
1826 -- If N is an allocator, possibly wrapped in one or more level of
1827 -- qualified expression(s), return the inner allocator node, else
1828 -- return Empty.
19590d70 1829
7d8b9c99
RD
1830 procedure Check_Itype (Typ : Entity_Id);
1831 -- If the component subtype is an access to a constrained subtype of
1832 -- an already frozen type, make the subtype frozen as well. It might
1833 -- otherwise be frozen in the wrong scope, and a freeze node on
1834 -- subtype has no effect. Similarly, if the component subtype is a
1835 -- regular (not protected) access to subprogram, set the anonymous
1836 -- subprogram type to frozen as well, to prevent an out-of-scope
1837 -- freeze node at some eventual point of call. Protected operations
1838 -- are handled elsewhere.
6e059adb 1839
19590d70
GD
1840 ---------------------
1841 -- Check_Allocator --
1842 ---------------------
1843
e18d6a15
JM
1844 function Check_Allocator (N : Node_Id) return Node_Id is
1845 Inner : Node_Id;
19590d70 1846 begin
e18d6a15 1847 Inner := N;
e18d6a15
JM
1848 loop
1849 if Nkind (Inner) = N_Allocator then
1850 return Inner;
e18d6a15
JM
1851 elsif Nkind (Inner) = N_Qualified_Expression then
1852 Inner := Expression (Inner);
e18d6a15
JM
1853 else
1854 return Empty;
1855 end if;
1856 end loop;
19590d70
GD
1857 end Check_Allocator;
1858
6871ba5f
AC
1859 -----------------
1860 -- Check_Itype --
1861 -----------------
1862
7d8b9c99
RD
1863 procedure Check_Itype (Typ : Entity_Id) is
1864 Desig : constant Entity_Id := Designated_Type (Typ);
1865
6e059adb
AC
1866 begin
1867 if not Is_Frozen (Desig)
1868 and then Is_Frozen (Base_Type (Desig))
1869 then
1870 Set_Is_Frozen (Desig);
1871
1872 -- In addition, add an Itype_Reference to ensure that the
7d8b9c99
RD
1873 -- access subtype is elaborated early enough. This cannot be
1874 -- done if the subtype may depend on discriminants.
6e059adb
AC
1875
1876 if Ekind (Comp) = E_Component
1877 and then Is_Itype (Etype (Comp))
1878 and then not Has_Discriminants (Rec)
1879 then
1880 IR := Make_Itype_Reference (Sloc (Comp));
1881 Set_Itype (IR, Desig);
90878b12 1882 Add_To_Result (IR);
6e059adb 1883 end if;
7d8b9c99
RD
1884
1885 elsif Ekind (Typ) = E_Anonymous_Access_Subprogram_Type
1886 and then Convention (Desig) /= Convention_Protected
1887 then
1888 Set_Is_Frozen (Desig);
6e059adb
AC
1889 end if;
1890 end Check_Itype;
1891
1892 -- Start of processing for Freeze_Record_Type
1893
70482933 1894 begin
49e90211 1895 -- Freeze components and embedded subtypes
70482933
RK
1896
1897 Comp := First_Entity (Rec);
c6823a20 1898 Prev := Empty;
c6823a20 1899 while Present (Comp) loop
70482933 1900
8a95f4e8 1901 -- First handle the component case
70482933
RK
1902
1903 if Ekind (Comp) = E_Component
1904 or else Ekind (Comp) = E_Discriminant
1905 then
70482933
RK
1906 declare
1907 CC : constant Node_Id := Component_Clause (Comp);
1908
1909 begin
c6823a20
EB
1910 -- Freezing a record type freezes the type of each of its
1911 -- components. However, if the type of the component is
1912 -- part of this record, we do not want or need a separate
1913 -- Freeze_Node. Note that Is_Itype is wrong because that's
1914 -- also set in private type cases. We also can't check for
1915 -- the Scope being exactly Rec because of private types and
1916 -- record extensions.
1917
1918 if Is_Itype (Etype (Comp))
1919 and then Is_Record_Type (Underlying_Type
1920 (Scope (Etype (Comp))))
1921 then
1922 Undelay_Type (Etype (Comp));
1923 end if;
1924
c159409f 1925 Freeze_And_Append (Etype (Comp), N, Result);
c6823a20 1926
0da2c8ac
AC
1927 -- Check for error of component clause given for variable
1928 -- sized type. We have to delay this test till this point,
1929 -- since the component type has to be frozen for us to know
1930 -- if it is variable length. We omit this test in a generic
1931 -- context, it will be applied at instantiation time.
579fda56 1932
24c34107
AC
1933 -- We also omit this test in CodePeer mode, since we do not
1934 -- have sufficient info on size and representation clauses.
0da2c8ac 1935
70482933
RK
1936 if Present (CC) then
1937 Placed_Component := True;
1938
07fc65c4
GB
1939 if Inside_A_Generic then
1940 null;
1941
24c34107
AC
1942 elsif CodePeer_Mode then
1943 null;
1944
7d8b9c99
RD
1945 elsif not
1946 Size_Known_At_Compile_Time
1947 (Underlying_Type (Etype (Comp)))
70482933
RK
1948 then
1949 Error_Msg_N
1950 ("component clause not allowed for variable " &
1951 "length component", CC);
1952 end if;
1953
1954 else
1955 Unplaced_Component := True;
1956 end if;
70482933 1957
0da2c8ac 1958 -- Case of component requires byte alignment
70482933 1959
0da2c8ac 1960 if Must_Be_On_Byte_Boundary (Etype (Comp)) then
70482933 1961
0da2c8ac 1962 -- Set the enclosing record to also require byte align
70482933 1963
0da2c8ac 1964 Set_Must_Be_On_Byte_Boundary (Rec);
70482933 1965
7d8b9c99
RD
1966 -- Check for component clause that is inconsistent with
1967 -- the required byte boundary alignment.
70482933 1968
0da2c8ac
AC
1969 if Present (CC)
1970 and then Normalized_First_Bit (Comp) mod
1971 System_Storage_Unit /= 0
1972 then
1973 Error_Msg_N
1974 ("component & must be byte aligned",
1975 Component_Name (Component_Clause (Comp)));
1976 end if;
1977 end if;
0da2c8ac 1978 end;
70482933
RK
1979 end if;
1980
8a95f4e8
RD
1981 -- Gather data for possible Implicit_Packing later. Note that at
1982 -- this stage we might be dealing with a real component, or with
1983 -- an implicit subtype declaration.
8dc10d38 1984
426d2717
AC
1985 if not Is_Scalar_Type (Etype (Comp)) then
1986 All_Scalar_Components := False;
1987 else
1988 Scalar_Component_Total_RM_Size :=
1989 Scalar_Component_Total_RM_Size + RM_Size (Etype (Comp));
1990 Scalar_Component_Total_Esize :=
1991 Scalar_Component_Total_Esize + Esize (Etype (Comp));
8dc10d38
AC
1992 end if;
1993
c6823a20
EB
1994 -- If the component is an Itype with Delayed_Freeze and is either
1995 -- a record or array subtype and its base type has not yet been
545cb5be
AC
1996 -- frozen, we must remove this from the entity list of this record
1997 -- and put it on the entity list of the scope of its base type.
1998 -- Note that we know that this is not the type of a component
1999 -- since we cleared Has_Delayed_Freeze for it in the previous
2000 -- loop. Thus this must be the Designated_Type of an access type,
2001 -- which is the type of a component.
c6823a20
EB
2002
2003 if Is_Itype (Comp)
2004 and then Is_Type (Scope (Comp))
2005 and then Is_Composite_Type (Comp)
2006 and then Base_Type (Comp) /= Comp
2007 and then Has_Delayed_Freeze (Comp)
2008 and then not Is_Frozen (Base_Type (Comp))
2009 then
2010 declare
2011 Will_Be_Frozen : Boolean := False;
1b24ada5 2012 S : Entity_Id;
c6823a20
EB
2013
2014 begin
fea9e956
ES
2015 -- We have a pretty bad kludge here. Suppose Rec is subtype
2016 -- being defined in a subprogram that's created as part of
2017 -- the freezing of Rec'Base. In that case, we know that
2018 -- Comp'Base must have already been frozen by the time we
2019 -- get to elaborate this because Gigi doesn't elaborate any
2020 -- bodies until it has elaborated all of the declarative
2021 -- part. But Is_Frozen will not be set at this point because
2022 -- we are processing code in lexical order.
2023
2024 -- We detect this case by going up the Scope chain of Rec
2025 -- and seeing if we have a subprogram scope before reaching
2026 -- the top of the scope chain or that of Comp'Base. If we
2027 -- do, then mark that Comp'Base will actually be frozen. If
2028 -- so, we merely undelay it.
c6823a20 2029
1b24ada5 2030 S := Scope (Rec);
c6823a20
EB
2031 while Present (S) loop
2032 if Is_Subprogram (S) then
2033 Will_Be_Frozen := True;
2034 exit;
2035 elsif S = Scope (Base_Type (Comp)) then
2036 exit;
2037 end if;
2038
2039 S := Scope (S);
2040 end loop;
2041
2042 if Will_Be_Frozen then
2043 Undelay_Type (Comp);
2044 else
2045 if Present (Prev) then
2046 Set_Next_Entity (Prev, Next_Entity (Comp));
2047 else
2048 Set_First_Entity (Rec, Next_Entity (Comp));
2049 end if;
2050
2051 -- Insert in entity list of scope of base type (which
2052 -- must be an enclosing scope, because still unfrozen).
2053
2054 Append_Entity (Comp, Scope (Base_Type (Comp)));
2055 end if;
2056 end;
2057
def46b54
RD
2058 -- If the component is an access type with an allocator as default
2059 -- value, the designated type will be frozen by the corresponding
2060 -- expression in init_proc. In order to place the freeze node for
2061 -- the designated type before that for the current record type,
2062 -- freeze it now.
c6823a20
EB
2063
2064 -- Same process if the component is an array of access types,
2065 -- initialized with an aggregate. If the designated type is
def46b54
RD
2066 -- private, it cannot contain allocators, and it is premature
2067 -- to freeze the type, so we check for this as well.
c6823a20
EB
2068
2069 elsif Is_Access_Type (Etype (Comp))
2070 and then Present (Parent (Comp))
2071 and then Present (Expression (Parent (Comp)))
c6823a20
EB
2072 then
2073 declare
e18d6a15
JM
2074 Alloc : constant Node_Id :=
2075 Check_Allocator (Expression (Parent (Comp)));
c6823a20
EB
2076
2077 begin
e18d6a15 2078 if Present (Alloc) then
19590d70 2079
e18d6a15
JM
2080 -- If component is pointer to a classwide type, freeze
2081 -- the specific type in the expression being allocated.
2082 -- The expression may be a subtype indication, in which
2083 -- case freeze the subtype mark.
c6823a20 2084
e18d6a15
JM
2085 if Is_Class_Wide_Type
2086 (Designated_Type (Etype (Comp)))
0f4cb75c 2087 then
e18d6a15
JM
2088 if Is_Entity_Name (Expression (Alloc)) then
2089 Freeze_And_Append
c159409f 2090 (Entity (Expression (Alloc)), N, Result);
e18d6a15
JM
2091 elsif
2092 Nkind (Expression (Alloc)) = N_Subtype_Indication
2093 then
2094 Freeze_And_Append
2095 (Entity (Subtype_Mark (Expression (Alloc))),
c159409f 2096 N, Result);
e18d6a15 2097 end if;
0f4cb75c 2098
e18d6a15
JM
2099 elsif Is_Itype (Designated_Type (Etype (Comp))) then
2100 Check_Itype (Etype (Comp));
0f4cb75c 2101
e18d6a15
JM
2102 else
2103 Freeze_And_Append
c159409f 2104 (Designated_Type (Etype (Comp)), N, Result);
e18d6a15 2105 end if;
c6823a20
EB
2106 end if;
2107 end;
2108
2109 elsif Is_Access_Type (Etype (Comp))
2110 and then Is_Itype (Designated_Type (Etype (Comp)))
2111 then
7d8b9c99 2112 Check_Itype (Etype (Comp));
c6823a20
EB
2113
2114 elsif Is_Array_Type (Etype (Comp))
2115 and then Is_Access_Type (Component_Type (Etype (Comp)))
2116 and then Present (Parent (Comp))
2117 and then Nkind (Parent (Comp)) = N_Component_Declaration
2118 and then Present (Expression (Parent (Comp)))
2119 and then Nkind (Expression (Parent (Comp))) = N_Aggregate
2120 and then Is_Fully_Defined
2121 (Designated_Type (Component_Type (Etype (Comp))))
2122 then
2123 Freeze_And_Append
2124 (Designated_Type
c159409f 2125 (Component_Type (Etype (Comp))), N, Result);
c6823a20
EB
2126 end if;
2127
2128 Prev := Comp;
70482933
RK
2129 Next_Entity (Comp);
2130 end loop;
2131
164e06c6 2132 -- Deal with Bit_Order aspect specifying a non-default bit order
fea9e956
ES
2133
2134 if Reverse_Bit_Order (Rec) and then Base_Type (Rec) = Rec then
2135 if not Placed_Component then
2136 ADC :=
2137 Get_Attribute_Definition_Clause (Rec, Attribute_Bit_Order);
ed2233dc 2138 Error_Msg_N ("?Bit_Order specification has no effect", ADC);
fea9e956
ES
2139 Error_Msg_N
2140 ("\?since no component clauses were specified", ADC);
2141
8a95f4e8 2142 -- Here is where we do the processing for reversed bit order
70482933 2143
8a95f4e8 2144 else
fea9e956
ES
2145 Adjust_Record_For_Reverse_Bit_Order (Rec);
2146 end if;
70482933
RK
2147 end if;
2148
8a95f4e8
RD
2149 -- Complete error checking on record representation clause (e.g.
2150 -- overlap of components). This is called after adjusting the
2151 -- record for reverse bit order.
2152
2153 declare
2154 RRC : constant Node_Id := Get_Record_Representation_Clause (Rec);
2155 begin
2156 if Present (RRC) then
2157 Check_Record_Representation_Clause (RRC);
2158 end if;
2159 end;
2160
1b24ada5
RD
2161 -- Set OK_To_Reorder_Components depending on debug flags
2162
d347f572 2163 if Is_Base_Type (Rec) and then Convention (Rec) = Convention_Ada then
1b24ada5
RD
2164 if (Has_Discriminants (Rec) and then Debug_Flag_Dot_V)
2165 or else
2166 (not Has_Discriminants (Rec) and then Debug_Flag_Dot_R)
2167 then
2168 Set_OK_To_Reorder_Components (Rec);
2169 end if;
2170 end if;
2171
ee094616
RD
2172 -- Check for useless pragma Pack when all components placed. We only
2173 -- do this check for record types, not subtypes, since a subtype may
2174 -- have all its components placed, and it still makes perfectly good
1b24ada5
RD
2175 -- sense to pack other subtypes or the parent type. We do not give
2176 -- this warning if Optimize_Alignment is set to Space, since the
2177 -- pragma Pack does have an effect in this case (it always resets
2178 -- the alignment to one).
70482933 2179
ee094616
RD
2180 if Ekind (Rec) = E_Record_Type
2181 and then Is_Packed (Rec)
70482933 2182 and then not Unplaced_Component
1b24ada5 2183 and then Optimize_Alignment /= 'S'
70482933 2184 then
def46b54
RD
2185 -- Reset packed status. Probably not necessary, but we do it so
2186 -- that there is no chance of the back end doing something strange
2187 -- with this redundant indication of packing.
ee094616 2188
70482933 2189 Set_Is_Packed (Rec, False);
ee094616
RD
2190
2191 -- Give warning if redundant constructs warnings on
2192
2193 if Warn_On_Redundant_Constructs then
ed2233dc 2194 Error_Msg_N -- CODEFIX
ee094616
RD
2195 ("?pragma Pack has no effect, no unplaced components",
2196 Get_Rep_Pragma (Rec, Name_Pack));
2197 end if;
70482933
RK
2198 end if;
2199
ee094616
RD
2200 -- If this is the record corresponding to a remote type, freeze the
2201 -- remote type here since that is what we are semantically freezing.
2202 -- This prevents the freeze node for that type in an inner scope.
70482933
RK
2203
2204 -- Also, Check for controlled components and unchecked unions.
ee094616
RD
2205 -- Finally, enforce the restriction that access attributes with a
2206 -- current instance prefix can only apply to limited types.
70482933 2207
8dc10d38 2208 if Ekind (Rec) = E_Record_Type then
70482933 2209 if Present (Corresponding_Remote_Type (Rec)) then
c159409f 2210 Freeze_And_Append (Corresponding_Remote_Type (Rec), N, Result);
70482933
RK
2211 end if;
2212
2213 Comp := First_Component (Rec);
70482933 2214 while Present (Comp) loop
80fa4617
EB
2215
2216 -- Do not set Has_Controlled_Component on a class-wide
2217 -- equivalent type. See Make_CW_Equivalent_Type.
2218
2219 if not Is_Class_Wide_Equivalent_Type (Rec)
2220 and then (Has_Controlled_Component (Etype (Comp))
2221 or else (Chars (Comp) /= Name_uParent
2222 and then Is_Controlled (Etype (Comp)))
2223 or else (Is_Protected_Type (Etype (Comp))
2224 and then Present
2225 (Corresponding_Record_Type
2226 (Etype (Comp)))
2227 and then Has_Controlled_Component
2228 (Corresponding_Record_Type
2229 (Etype (Comp)))))
70482933
RK
2230 then
2231 Set_Has_Controlled_Component (Rec);
70482933
RK
2232 end if;
2233
2234 if Has_Unchecked_Union (Etype (Comp)) then
2235 Set_Has_Unchecked_Union (Rec);
2236 end if;
2237
e1308fa8
AC
2238 -- Scan component declaration for likely misuses of current
2239 -- instance, either in a constraint or a default expression.
70482933 2240
e1308fa8 2241 if Has_Per_Object_Constraint (Comp) then
70482933
RK
2242 Check_Current_Instance (Parent (Comp));
2243 end if;
2244
2245 Next_Component (Comp);
2246 end loop;
2247 end if;
2248
2249 Set_Component_Alignment_If_Not_Set (Rec);
2250
ee094616
RD
2251 -- For first subtypes, check if there are any fixed-point fields with
2252 -- component clauses, where we must check the size. This is not done
2253 -- till the freeze point, since for fixed-point types, we do not know
2254 -- the size until the type is frozen. Similar processing applies to
2255 -- bit packed arrays.
70482933
RK
2256
2257 if Is_First_Subtype (Rec) then
2258 Comp := First_Component (Rec);
70482933
RK
2259 while Present (Comp) loop
2260 if Present (Component_Clause (Comp))
d05ef0ab
AC
2261 and then (Is_Fixed_Point_Type (Etype (Comp))
2262 or else
2263 Is_Bit_Packed_Array (Etype (Comp)))
70482933
RK
2264 then
2265 Check_Size
d05ef0ab 2266 (Component_Name (Component_Clause (Comp)),
70482933
RK
2267 Etype (Comp),
2268 Esize (Comp),
2269 Junk);
2270 end if;
2271
2272 Next_Component (Comp);
2273 end loop;
2274 end if;
7d8b9c99
RD
2275
2276 -- Generate warning for applying C or C++ convention to a record
2277 -- with discriminants. This is suppressed for the unchecked union
1b24ada5
RD
2278 -- case, since the whole point in this case is interface C. We also
2279 -- do not generate this within instantiations, since we will have
2280 -- generated a message on the template.
7d8b9c99
RD
2281
2282 if Has_Discriminants (E)
2283 and then not Is_Unchecked_Union (E)
7d8b9c99
RD
2284 and then (Convention (E) = Convention_C
2285 or else
2286 Convention (E) = Convention_CPP)
2287 and then Comes_From_Source (E)
1b24ada5
RD
2288 and then not In_Instance
2289 and then not Has_Warnings_Off (E)
2290 and then not Has_Warnings_Off (Base_Type (E))
7d8b9c99
RD
2291 then
2292 declare
2293 Cprag : constant Node_Id := Get_Rep_Pragma (E, Name_Convention);
2294 A2 : Node_Id;
2295
2296 begin
2297 if Present (Cprag) then
2298 A2 := Next (First (Pragma_Argument_Associations (Cprag)));
2299
2300 if Convention (E) = Convention_C then
2301 Error_Msg_N
2302 ("?variant record has no direct equivalent in C", A2);
2303 else
2304 Error_Msg_N
2305 ("?variant record has no direct equivalent in C++", A2);
2306 end if;
2307
2308 Error_Msg_NE
2309 ("\?use of convention for type& is dubious", A2, E);
2310 end if;
2311 end;
2312 end if;
8dc10d38 2313
ce14c577 2314 -- See if Size is too small as is (and implicit packing might help)
8dc10d38 2315
426d2717 2316 if not Is_Packed (Rec)
ce14c577
AC
2317
2318 -- No implicit packing if even one component is explicitly placed
2319
426d2717 2320 and then not Placed_Component
ce14c577
AC
2321
2322 -- Must have size clause and all scalar components
2323
8dc10d38
AC
2324 and then Has_Size_Clause (Rec)
2325 and then All_Scalar_Components
ce14c577
AC
2326
2327 -- Do not try implicit packing on records with discriminants, too
2328 -- complicated, especially in the variant record case.
2329
8dc10d38 2330 and then not Has_Discriminants (Rec)
ce14c577
AC
2331
2332 -- We can implicitly pack if the specified size of the record is
2333 -- less than the sum of the object sizes (no point in packing if
2334 -- this is not the case).
2335
fc893455 2336 and then RM_Size (Rec) < Scalar_Component_Total_Esize
ce14c577
AC
2337
2338 -- And the total RM size cannot be greater than the specified size
2339 -- since otherwise packing will not get us where we have to be!
2340
fc893455 2341 and then RM_Size (Rec) >= Scalar_Component_Total_RM_Size
ce14c577 2342
56812278 2343 -- Never do implicit packing in CodePeer or Alfa modes since
59e6b23c 2344 -- we don't do any packing in these modes, since this generates
25ebc085
AC
2345 -- over-complex code that confuses static analysis, and in
2346 -- general, neither CodePeer not GNATprove care about the
2347 -- internal representation of objects.
ce14c577 2348
56812278 2349 and then not (CodePeer_Mode or Alfa_Mode)
8dc10d38 2350 then
426d2717
AC
2351 -- If implicit packing enabled, do it
2352
2353 if Implicit_Packing then
2354 Set_Is_Packed (Rec);
2355
2356 -- Otherwise flag the size clause
2357
2358 else
2359 declare
2360 Sz : constant Node_Id := Size_Clause (Rec);
2361 begin
ed2233dc 2362 Error_Msg_NE -- CODEFIX
426d2717 2363 ("size given for& too small", Sz, Rec);
ed2233dc 2364 Error_Msg_N -- CODEFIX
426d2717
AC
2365 ("\use explicit pragma Pack "
2366 & "or use pragma Implicit_Packing", Sz);
2367 end;
2368 end if;
8dc10d38 2369 end if;
70482933
RK
2370 end Freeze_Record_Type;
2371
2372 -- Start of processing for Freeze_Entity
2373
2374 begin
c6823a20
EB
2375 -- We are going to test for various reasons why this entity need not be
2376 -- frozen here, but in the case of an Itype that's defined within a
2377 -- record, that test actually applies to the record.
2378
2379 if Is_Itype (E) and then Is_Record_Type (Scope (E)) then
2380 Test_E := Scope (E);
2381 elsif Is_Itype (E) and then Present (Underlying_Type (Scope (E)))
2382 and then Is_Record_Type (Underlying_Type (Scope (E)))
2383 then
2384 Test_E := Underlying_Type (Scope (E));
2385 end if;
2386
fbf5a39b 2387 -- Do not freeze if already frozen since we only need one freeze node
70482933
RK
2388
2389 if Is_Frozen (E) then
2390 return No_List;
2391
c6823a20
EB
2392 -- It is improper to freeze an external entity within a generic because
2393 -- its freeze node will appear in a non-valid context. The entity will
2394 -- be frozen in the proper scope after the current generic is analyzed.
70482933 2395
c6823a20 2396 elsif Inside_A_Generic and then External_Ref_In_Generic (Test_E) then
70482933
RK
2397 return No_List;
2398
164e06c6
AC
2399 -- AI05-0213: A formal incomplete type does not freeze the actual. In
2400 -- the instance, the same applies to the subtype renaming the actual.
d3cb4cc0
AC
2401
2402 elsif Is_Private_Type (E)
2403 and then Is_Generic_Actual_Type (E)
2404 and then No (Full_View (Base_Type (E)))
2405 and then Ada_Version >= Ada_2012
2406 then
2407 return No_List;
2408
70482933
RK
2409 -- Do not freeze a global entity within an inner scope created during
2410 -- expansion. A call to subprogram E within some internal procedure
2411 -- (a stream attribute for example) might require freezing E, but the
2412 -- freeze node must appear in the same declarative part as E itself.
2413 -- The two-pass elaboration mechanism in gigi guarantees that E will
2414 -- be frozen before the inner call is elaborated. We exclude constants
2415 -- from this test, because deferred constants may be frozen early, and
19590d70
GD
2416 -- must be diagnosed (e.g. in the case of a deferred constant being used
2417 -- in a default expression). If the enclosing subprogram comes from
2418 -- source, or is a generic instance, then the freeze point is the one
2419 -- mandated by the language, and we freeze the entity. A subprogram that
2420 -- is a child unit body that acts as a spec does not have a spec that
2421 -- comes from source, but can only come from source.
70482933 2422
c6823a20
EB
2423 elsif In_Open_Scopes (Scope (Test_E))
2424 and then Scope (Test_E) /= Current_Scope
2425 and then Ekind (Test_E) /= E_Constant
70482933
RK
2426 then
2427 declare
3cae7f14 2428 S : Entity_Id;
70482933
RK
2429
2430 begin
3cae7f14 2431 S := Current_Scope;
70482933
RK
2432 while Present (S) loop
2433 if Is_Overloadable (S) then
2434 if Comes_From_Source (S)
2435 or else Is_Generic_Instance (S)
fea9e956 2436 or else Is_Child_Unit (S)
70482933
RK
2437 then
2438 exit;
2439 else
2440 return No_List;
2441 end if;
2442 end if;
2443
2444 S := Scope (S);
2445 end loop;
2446 end;
555360a5
AC
2447
2448 -- Similarly, an inlined instance body may make reference to global
2449 -- entities, but these references cannot be the proper freezing point
def46b54
RD
2450 -- for them, and in the absence of inlining freezing will take place in
2451 -- their own scope. Normally instance bodies are analyzed after the
2452 -- enclosing compilation, and everything has been frozen at the proper
2453 -- place, but with front-end inlining an instance body is compiled
2454 -- before the end of the enclosing scope, and as a result out-of-order
2455 -- freezing must be prevented.
555360a5
AC
2456
2457 elsif Front_End_Inlining
7d8b9c99 2458 and then In_Instance_Body
c6823a20 2459 and then Present (Scope (Test_E))
555360a5
AC
2460 then
2461 declare
3cae7f14 2462 S : Entity_Id;
c6823a20 2463
555360a5 2464 begin
3cae7f14 2465 S := Scope (Test_E);
555360a5
AC
2466 while Present (S) loop
2467 if Is_Generic_Instance (S) then
2468 exit;
2469 else
2470 S := Scope (S);
2471 end if;
2472 end loop;
2473
2474 if No (S) then
2475 return No_List;
2476 end if;
2477 end;
70482933
RK
2478 end if;
2479
6bb88533 2480 -- Deal with delayed aspect specifications. The analysis of the aspect
308e6f3a 2481 -- is required to be delayed to the freeze point, so we evaluate the
c159409f
AC
2482 -- pragma or attribute definition clause in the tree at this point.
2483
2484 if Has_Delayed_Aspects (E) then
2485 declare
2486 Ritem : Node_Id;
2487 Aitem : Node_Id;
2488
2489 begin
6bb88533
AC
2490 -- Look for aspect specification entries for this entity
2491
c159409f
AC
2492 Ritem := First_Rep_Item (E);
2493 while Present (Ritem) loop
6bb88533
AC
2494 if Nkind (Ritem) = N_Aspect_Specification
2495 and then Entity (Ritem) = E
47e11d08 2496 and then Is_Delayed_Aspect (Ritem)
d3cb4cc0 2497 and then Scope (E) = Current_Scope
6bb88533 2498 then
c159409f 2499 Aitem := Aspect_Rep_Item (Ritem);
a01b9df6
AC
2500
2501 -- Skip if this is an aspect with no corresponding pragma
2502 -- or attribute definition node (such as Default_Value).
2503
2504 if Present (Aitem) then
2505 Set_Parent (Aitem, Ritem);
2506 Analyze (Aitem);
2507 end if;
c159409f
AC
2508 end if;
2509
2510 Next_Rep_Item (Ritem);
2511 end loop;
2512 end;
2513 end if;
2514
70482933
RK
2515 -- Here to freeze the entity
2516
70482933
RK
2517 Set_Is_Frozen (E);
2518
2519 -- Case of entity being frozen is other than a type
2520
2521 if not Is_Type (E) then
2522
2523 -- If entity is exported or imported and does not have an external
2524 -- name, now is the time to provide the appropriate default name.
2525 -- Skip this if the entity is stubbed, since we don't need a name
75a64833
AC
2526 -- for any stubbed routine. For the case on intrinsics, if no
2527 -- external name is specified, then calls will be handled in
545cb5be
AC
2528 -- Exp_Intr.Expand_Intrinsic_Call, and no name is needed. If an
2529 -- external name is provided, then Expand_Intrinsic_Call leaves
75a64833 2530 -- calls in place for expansion by GIGI.
70482933
RK
2531
2532 if (Is_Imported (E) or else Is_Exported (E))
2533 and then No (Interface_Name (E))
2534 and then Convention (E) /= Convention_Stubbed
75a64833 2535 and then Convention (E) /= Convention_Intrinsic
70482933
RK
2536 then
2537 Set_Encoded_Interface_Name
2538 (E, Get_Default_External_Name (E));
fbf5a39b 2539
bbaba73f
EB
2540 -- If entity is an atomic object appearing in a declaration and
2541 -- the expression is an aggregate, assign it to a temporary to
2542 -- ensure that the actual assignment is done atomically rather
2543 -- than component-wise (the assignment to the temp may be done
2544 -- component-wise, but that is harmless).
fbf5a39b
AC
2545
2546 elsif Is_Atomic (E)
2547 and then Nkind (Parent (E)) = N_Object_Declaration
2548 and then Present (Expression (Parent (E)))
bbaba73f 2549 and then Nkind (Expression (Parent (E))) = N_Aggregate
f96b2d85 2550 and then Is_Atomic_Aggregate (Expression (Parent (E)), Etype (E))
fbf5a39b 2551 then
b0159fbe 2552 null;
70482933
RK
2553 end if;
2554
2555 -- For a subprogram, freeze all parameter types and also the return
fbf5a39b 2556 -- type (RM 13.14(14)). However skip this for internal subprograms.
70482933 2557 -- This is also the point where any extra formal parameters are
fb2e11ee
AC
2558 -- created since we now know whether the subprogram will use a
2559 -- foreign convention.
70482933
RK
2560
2561 if Is_Subprogram (E) then
70482933 2562 if not Is_Internal (E) then
70482933 2563 declare
6d11af89 2564 F_Type : Entity_Id;
def46b54 2565 R_Type : Entity_Id;
6d11af89 2566 Warn_Node : Node_Id;
70482933 2567
70482933
RK
2568 begin
2569 -- Loop through formals
2570
2571 Formal := First_Formal (E);
70482933 2572 while Present (Formal) loop
70482933 2573 F_Type := Etype (Formal);
406935b6
AC
2574
2575 -- AI05-0151 : incomplete types can appear in a profile.
2576 -- By the time the entity is frozen, the full view must
2577 -- be available, unless it is a limited view.
2578
2579 if Is_Incomplete_Type (F_Type)
2580 and then Present (Full_View (F_Type))
2581 then
2582 F_Type := Full_View (F_Type);
2583 Set_Etype (Formal, F_Type);
2584 end if;
2585
c159409f 2586 Freeze_And_Append (F_Type, N, Result);
70482933
RK
2587
2588 if Is_Private_Type (F_Type)
2589 and then Is_Private_Type (Base_Type (F_Type))
2590 and then No (Full_View (Base_Type (F_Type)))
2591 and then not Is_Generic_Type (F_Type)
2592 and then not Is_Derived_Type (F_Type)
2593 then
2594 -- If the type of a formal is incomplete, subprogram
2595 -- is being frozen prematurely. Within an instance
2596 -- (but not within a wrapper package) this is an
fb2e11ee 2597 -- artifact of our need to regard the end of an
70482933
RK
2598 -- instantiation as a freeze point. Otherwise it is
2599 -- a definite error.
fbf5a39b 2600
70482933
RK
2601 if In_Instance then
2602 Set_Is_Frozen (E, False);
2603 return No_List;
2604
86cde7b1
RD
2605 elsif not After_Last_Declaration
2606 and then not Freezing_Library_Level_Tagged_Type
2607 then
70482933
RK
2608 Error_Msg_Node_1 := F_Type;
2609 Error_Msg
2610 ("type& must be fully defined before this point",
2611 Loc);
2612 end if;
2613 end if;
2614
def46b54 2615 -- Check suspicious parameter for C function. These tests
1b24ada5 2616 -- apply only to exported/imported subprograms.
70482933 2617
def46b54 2618 if Warn_On_Export_Import
1b24ada5 2619 and then Comes_From_Source (E)
def46b54
RD
2620 and then (Convention (E) = Convention_C
2621 or else
2622 Convention (E) = Convention_CPP)
def46b54 2623 and then (Is_Imported (E) or else Is_Exported (E))
1b24ada5
RD
2624 and then Convention (E) /= Convention (Formal)
2625 and then not Has_Warnings_Off (E)
2626 and then not Has_Warnings_Off (F_Type)
2627 and then not Has_Warnings_Off (Formal)
fbf5a39b 2628 then
b3afa59b
AC
2629 -- Qualify mention of formals with subprogram name
2630
70482933 2631 Error_Msg_Qual_Level := 1;
def46b54
RD
2632
2633 -- Check suspicious use of fat C pointer
2634
2635 if Is_Access_Type (F_Type)
2636 and then Esize (F_Type) > Ttypes.System_Address_Size
2637 then
2638 Error_Msg_N
b3afa59b
AC
2639 ("?type of & does not correspond to C pointer!",
2640 Formal);
def46b54
RD
2641
2642 -- Check suspicious return of boolean
2643
2644 elsif Root_Type (F_Type) = Standard_Boolean
2645 and then Convention (F_Type) = Convention_Ada
67198556
RD
2646 and then not Has_Warnings_Off (F_Type)
2647 and then not Has_Size_Clause (F_Type)
6a2afd13 2648 and then VM_Target = No_VM
def46b54 2649 then
ed2233dc 2650 Error_Msg_N ("& is an 8-bit Ada Boolean?", Formal);
b3afa59b
AC
2651 Error_Msg_N
2652 ("\use appropriate corresponding type in C "
2653 & "(e.g. char)?", Formal);
def46b54
RD
2654
2655 -- Check suspicious tagged type
2656
2657 elsif (Is_Tagged_Type (F_Type)
2658 or else (Is_Access_Type (F_Type)
2659 and then
2660 Is_Tagged_Type
2661 (Designated_Type (F_Type))))
2662 and then Convention (E) = Convention_C
2663 then
2664 Error_Msg_N
e7d72fb9 2665 ("?& involves a tagged type which does not "
def46b54
RD
2666 & "correspond to any C type!", Formal);
2667
2668 -- Check wrong convention subprogram pointer
2669
2670 elsif Ekind (F_Type) = E_Access_Subprogram_Type
2671 and then not Has_Foreign_Convention (F_Type)
2672 then
2673 Error_Msg_N
2674 ("?subprogram pointer & should "
2675 & "have foreign convention!", Formal);
2676 Error_Msg_Sloc := Sloc (F_Type);
2677 Error_Msg_NE
2678 ("\?add Convention pragma to declaration of &#",
2679 Formal, F_Type);
2680 end if;
2681
b3afa59b
AC
2682 -- Turn off name qualification after message output
2683
70482933
RK
2684 Error_Msg_Qual_Level := 0;
2685 end if;
2686
2687 -- Check for unconstrained array in exported foreign
2688 -- convention case.
2689
def46b54 2690 if Has_Foreign_Convention (E)
70482933
RK
2691 and then not Is_Imported (E)
2692 and then Is_Array_Type (F_Type)
2693 and then not Is_Constrained (F_Type)
fbf5a39b 2694 and then Warn_On_Export_Import
3acdda2d
AC
2695
2696 -- Exclude VM case, since both .NET and JVM can handle
2697 -- unconstrained arrays without a problem.
2698
2699 and then VM_Target = No_VM
70482933
RK
2700 then
2701 Error_Msg_Qual_Level := 1;
6d11af89
AC
2702
2703 -- If this is an inherited operation, place the
2704 -- warning on the derived type declaration, rather
2705 -- than on the original subprogram.
2706
2707 if Nkind (Original_Node (Parent (E))) =
2708 N_Full_Type_Declaration
2709 then
2710 Warn_Node := Parent (E);
2711
2712 if Formal = First_Formal (E) then
2713 Error_Msg_NE
add9f797 2714 ("?in inherited operation&", Warn_Node, E);
6d11af89
AC
2715 end if;
2716 else
2717 Warn_Node := Formal;
2718 end if;
2719
2720 Error_Msg_NE
70482933 2721 ("?type of argument& is unconstrained array",
6d11af89
AC
2722 Warn_Node, Formal);
2723 Error_Msg_NE
70482933 2724 ("?foreign caller must pass bounds explicitly",
6d11af89 2725 Warn_Node, Formal);
70482933
RK
2726 Error_Msg_Qual_Level := 0;
2727 end if;
2728
d8db0bca
JM
2729 if not From_With_Type (F_Type) then
2730 if Is_Access_Type (F_Type) then
2731 F_Type := Designated_Type (F_Type);
2732 end if;
2733
7d8b9c99
RD
2734 -- If the formal is an anonymous_access_to_subprogram
2735 -- freeze the subprogram type as well, to prevent
2736 -- scope anomalies in gigi, because there is no other
2737 -- clear point at which it could be frozen.
2738
93bcda23 2739 if Is_Itype (Etype (Formal))
7d8b9c99
RD
2740 and then Ekind (F_Type) = E_Subprogram_Type
2741 then
c159409f 2742 Freeze_And_Append (F_Type, N, Result);
d8db0bca
JM
2743 end if;
2744 end if;
2745
70482933
RK
2746 Next_Formal (Formal);
2747 end loop;
2748
5e39baa6 2749 -- Case of function: similar checks on return type
70482933
RK
2750
2751 if Ekind (E) = E_Function then
def46b54
RD
2752
2753 -- Freeze return type
2754
2755 R_Type := Etype (E);
406935b6
AC
2756
2757 -- AI05-0151: the return type may have been incomplete
2758 -- at the point of declaration.
2759
2760 if Ekind (R_Type) = E_Incomplete_Type
2761 and then Present (Full_View (R_Type))
2762 then
2763 R_Type := Full_View (R_Type);
2764 Set_Etype (E, R_Type);
2765 end if;
2766
c159409f 2767 Freeze_And_Append (R_Type, N, Result);
def46b54
RD
2768
2769 -- Check suspicious return type for C function
70482933 2770
fbf5a39b 2771 if Warn_On_Export_Import
def46b54
RD
2772 and then (Convention (E) = Convention_C
2773 or else
2774 Convention (E) = Convention_CPP)
def46b54 2775 and then (Is_Imported (E) or else Is_Exported (E))
fbf5a39b 2776 then
def46b54
RD
2777 -- Check suspicious return of fat C pointer
2778
2779 if Is_Access_Type (R_Type)
2780 and then Esize (R_Type) > Ttypes.System_Address_Size
1b24ada5
RD
2781 and then not Has_Warnings_Off (E)
2782 and then not Has_Warnings_Off (R_Type)
def46b54
RD
2783 then
2784 Error_Msg_N
2785 ("?return type of& does not "
2786 & "correspond to C pointer!", E);
2787
2788 -- Check suspicious return of boolean
2789
2790 elsif Root_Type (R_Type) = Standard_Boolean
2791 and then Convention (R_Type) = Convention_Ada
6a2afd13 2792 and then VM_Target = No_VM
1b24ada5
RD
2793 and then not Has_Warnings_Off (E)
2794 and then not Has_Warnings_Off (R_Type)
67198556 2795 and then not Has_Size_Clause (R_Type)
def46b54 2796 then
b3afa59b
AC
2797 declare
2798 N : constant Node_Id :=
2799 Result_Definition (Declaration_Node (E));
2800 begin
2801 Error_Msg_NE
2802 ("return type of & is an 8-bit Ada Boolean?",
2803 N, E);
2804 Error_Msg_NE
2805 ("\use appropriate corresponding type in C "
2806 & "(e.g. char)?", N, E);
2807 end;
70482933 2808
def46b54
RD
2809 -- Check suspicious return tagged type
2810
2811 elsif (Is_Tagged_Type (R_Type)
2812 or else (Is_Access_Type (R_Type)
2813 and then
2814 Is_Tagged_Type
2815 (Designated_Type (R_Type))))
2816 and then Convention (E) = Convention_C
1b24ada5
RD
2817 and then not Has_Warnings_Off (E)
2818 and then not Has_Warnings_Off (R_Type)
def46b54
RD
2819 then
2820 Error_Msg_N
2821 ("?return type of & does not "
2822 & "correspond to C type!", E);
2823
2824 -- Check return of wrong convention subprogram pointer
2825
2826 elsif Ekind (R_Type) = E_Access_Subprogram_Type
2827 and then not Has_Foreign_Convention (R_Type)
1b24ada5
RD
2828 and then not Has_Warnings_Off (E)
2829 and then not Has_Warnings_Off (R_Type)
def46b54
RD
2830 then
2831 Error_Msg_N
2832 ("?& should return a foreign "
2833 & "convention subprogram pointer", E);
2834 Error_Msg_Sloc := Sloc (R_Type);
2835 Error_Msg_NE
2836 ("\?add Convention pragma to declaration of& #",
2837 E, R_Type);
2838 end if;
2839 end if;
2840
308e6f3a 2841 -- Give warning for suspicious return of a result of an
e7d72fb9
AC
2842 -- unconstrained array type in a foreign convention
2843 -- function.
59366db6 2844
e7d72fb9
AC
2845 if Has_Foreign_Convention (E)
2846
2c1b72d7 2847 -- We are looking for a return of unconstrained array
e7d72fb9
AC
2848
2849 and then Is_Array_Type (R_Type)
93bcda23 2850 and then not Is_Constrained (R_Type)
e7d72fb9 2851
2c1b72d7
AC
2852 -- Exclude imported routines, the warning does not
2853 -- belong on the import, but rather on the routine
2854 -- definition.
e7d72fb9 2855
70482933 2856 and then not Is_Imported (E)
e7d72fb9 2857
2c1b72d7
AC
2858 -- Exclude VM case, since both .NET and JVM can handle
2859 -- return of unconstrained arrays without a problem.
e7d72fb9 2860
f3b57ab0 2861 and then VM_Target = No_VM
e7d72fb9 2862
2c1b72d7
AC
2863 -- Check that general warning is enabled, and that it
2864 -- is not suppressed for this particular case.
e7d72fb9 2865
fbf5a39b 2866 and then Warn_On_Export_Import
1b24ada5 2867 and then not Has_Warnings_Off (E)
93bcda23 2868 and then not Has_Warnings_Off (R_Type)
70482933
RK
2869 then
2870 Error_Msg_N
fbf5a39b 2871 ("?foreign convention function& should not " &
1b24ada5 2872 "return unconstrained array!", E);
70482933
RK
2873 end if;
2874 end if;
2875 end;
2876 end if;
2877
2878 -- Must freeze its parent first if it is a derived subprogram
2879
2880 if Present (Alias (E)) then
c159409f 2881 Freeze_And_Append (Alias (E), N, Result);
70482933
RK
2882 end if;
2883
19590d70
GD
2884 -- We don't freeze internal subprograms, because we don't normally
2885 -- want addition of extra formals or mechanism setting to happen
2886 -- for those. However we do pass through predefined dispatching
2887 -- cases, since extra formals may be needed in some cases, such as
2888 -- for the stream 'Input function (build-in-place formals).
2889
2890 if not Is_Internal (E)
2891 or else Is_Predefined_Dispatching_Operation (E)
2892 then
70482933
RK
2893 Freeze_Subprogram (E);
2894 end if;
2895
2896 -- Here for other than a subprogram or type
2897
2898 else
2899 -- If entity has a type, and it is not a generic unit, then
7d8b9c99 2900 -- freeze it first (RM 13.14(10)).
70482933 2901
ac72c9c5 2902 if Present (Etype (E))
70482933
RK
2903 and then Ekind (E) /= E_Generic_Function
2904 then
c159409f 2905 Freeze_And_Append (Etype (E), N, Result);
70482933
RK
2906 end if;
2907
2c9beb8a 2908 -- Special processing for objects created by object declaration
70482933
RK
2909
2910 if Nkind (Declaration_Node (E)) = N_Object_Declaration then
2c9beb8a 2911
6823270c
AC
2912 -- Abstract type allowed only for C++ imported variables or
2913 -- constants.
2914
2915 -- Note: we inhibit this check for objects that do not come
2916 -- from source because there is at least one case (the
3e24afaa 2917 -- expansion of x'Class'Input where x is abstract) where we
6823270c
AC
2918 -- legitimately generate an abstract object.
2919
2920 if Is_Abstract_Type (Etype (E))
2921 and then Comes_From_Source (Parent (E))
2922 and then not (Is_Imported (E)
2923 and then Is_CPP_Class (Etype (E)))
2924 then
2925 Error_Msg_N ("type of object cannot be abstract",
2926 Object_Definition (Parent (E)));
2927
2928 if Is_CPP_Class (Etype (E)) then
ed2233dc
AC
2929 Error_Msg_NE
2930 ("\} may need a cpp_constructor",
6823270c
AC
2931 Object_Definition (Parent (E)), Etype (E));
2932 end if;
2933 end if;
2934
2c9beb8a
RD
2935 -- For object created by object declaration, perform required
2936 -- categorization (preelaborate and pure) checks. Defer these
2937 -- checks to freeze time since pragma Import inhibits default
2938 -- initialization and thus pragma Import affects these checks.
2939
70482933 2940 Validate_Object_Declaration (Declaration_Node (E));
2c9beb8a 2941
1ce1f005 2942 -- If there is an address clause, check that it is valid
2c9beb8a 2943
fbf5a39b 2944 Check_Address_Clause (E);
2c9beb8a 2945
1ce1f005
GD
2946 -- If the object needs any kind of default initialization, an
2947 -- error must be issued if No_Default_Initialization applies.
2948 -- The check doesn't apply to imported objects, which are not
2949 -- ever default initialized, and is why the check is deferred
2950 -- until freezing, at which point we know if Import applies.
4fec4e7a
ES
2951 -- Deferred constants are also exempted from this test because
2952 -- their completion is explicit, or through an import pragma.
1ce1f005 2953
4fec4e7a
ES
2954 if Ekind (E) = E_Constant
2955 and then Present (Full_View (E))
2956 then
2957 null;
2958
2959 elsif Comes_From_Source (E)
b6e209b5 2960 and then not Is_Imported (E)
1ce1f005
GD
2961 and then not Has_Init_Expression (Declaration_Node (E))
2962 and then
2963 ((Has_Non_Null_Base_Init_Proc (Etype (E))
2964 and then not No_Initialization (Declaration_Node (E))
2965 and then not Is_Value_Type (Etype (E))
5b1e6aca 2966 and then not Initialization_Suppressed (Etype (E)))
1ce1f005
GD
2967 or else
2968 (Needs_Simple_Initialization (Etype (E))
2969 and then not Is_Internal (E)))
2970 then
4c8a5bb8 2971 Has_Default_Initialization := True;
1ce1f005
GD
2972 Check_Restriction
2973 (No_Default_Initialization, Declaration_Node (E));
2974 end if;
2975
4c8a5bb8
AC
2976 -- Check that a Thread_Local_Storage variable does not have
2977 -- default initialization, and any explicit initialization must
2978 -- either be the null constant or a static constant.
2979
2980 if Has_Pragma_Thread_Local_Storage (E) then
2981 declare
2982 Decl : constant Node_Id := Declaration_Node (E);
2983 begin
2984 if Has_Default_Initialization
2985 or else
2986 (Has_Init_Expression (Decl)
2987 and then
2988 (No (Expression (Decl))
2989 or else not
2990 (Is_Static_Expression (Expression (Decl))
2991 or else
2992 Nkind (Expression (Decl)) = N_Null)))
2993 then
2994 Error_Msg_NE
2995 ("Thread_Local_Storage variable& is "
2996 & "improperly initialized", Decl, E);
2997 Error_Msg_NE
2998 ("\only allowed initialization is explicit "
2999 & "NULL or static expression", Decl, E);
3000 end if;
3001 end;
3002 end if;
3003
def46b54
RD
3004 -- For imported objects, set Is_Public unless there is also an
3005 -- address clause, which means that there is no external symbol
3006 -- needed for the Import (Is_Public may still be set for other
3007 -- unrelated reasons). Note that we delayed this processing
3008 -- till freeze time so that we can be sure not to set the flag
3009 -- if there is an address clause. If there is such a clause,
3010 -- then the only purpose of the Import pragma is to suppress
3011 -- implicit initialization.
2c9beb8a
RD
3012
3013 if Is_Imported (E)
add9f797 3014 and then No (Address_Clause (E))
2c9beb8a
RD
3015 then
3016 Set_Is_Public (E);
3017 end if;
7d8b9c99
RD
3018
3019 -- For convention C objects of an enumeration type, warn if
3020 -- the size is not integer size and no explicit size given.
3021 -- Skip warning for Boolean, and Character, assume programmer
3022 -- expects 8-bit sizes for these cases.
3023
3024 if (Convention (E) = Convention_C
3025 or else
3026 Convention (E) = Convention_CPP)
3027 and then Is_Enumeration_Type (Etype (E))
3028 and then not Is_Character_Type (Etype (E))
3029 and then not Is_Boolean_Type (Etype (E))
3030 and then Esize (Etype (E)) < Standard_Integer_Size
3031 and then not Has_Size_Clause (E)
3032 then
3033 Error_Msg_Uint_1 := UI_From_Int (Standard_Integer_Size);
3034 Error_Msg_N
3035 ("?convention C enumeration object has size less than ^",
3036 E);
3037 Error_Msg_N ("\?use explicit size clause to set size", E);
3038 end if;
70482933
RK
3039 end if;
3040
3041 -- Check that a constant which has a pragma Volatile[_Components]
7d8b9c99 3042 -- or Atomic[_Components] also has a pragma Import (RM C.6(13)).
70482933
RK
3043
3044 -- Note: Atomic[_Components] also sets Volatile[_Components]
3045
3046 if Ekind (E) = E_Constant
3047 and then (Has_Volatile_Components (E) or else Is_Volatile (E))
3048 and then not Is_Imported (E)
3049 then
3050 -- Make sure we actually have a pragma, and have not merely
3051 -- inherited the indication from elsewhere (e.g. an address
3052 -- clause, which is not good enough in RM terms!)
3053
1d571f3b 3054 if Has_Rep_Pragma (E, Name_Atomic)
91b1417d 3055 or else
1d571f3b 3056 Has_Rep_Pragma (E, Name_Atomic_Components)
70482933
RK
3057 then
3058 Error_Msg_N
91b1417d 3059 ("stand alone atomic constant must be " &
def46b54 3060 "imported (RM C.6(13))", E);
91b1417d 3061
1d571f3b 3062 elsif Has_Rep_Pragma (E, Name_Volatile)
91b1417d 3063 or else
1d571f3b 3064 Has_Rep_Pragma (E, Name_Volatile_Components)
91b1417d
AC
3065 then
3066 Error_Msg_N
3067 ("stand alone volatile constant must be " &
86cde7b1 3068 "imported (RM C.6(13))", E);
70482933
RK
3069 end if;
3070 end if;
3071
3072 -- Static objects require special handling
3073
3074 if (Ekind (E) = E_Constant or else Ekind (E) = E_Variable)
3075 and then Is_Statically_Allocated (E)
3076 then
3077 Freeze_Static_Object (E);
3078 end if;
3079
3080 -- Remaining step is to layout objects
3081
3082 if Ekind (E) = E_Variable
3083 or else
3084 Ekind (E) = E_Constant
3085 or else
3086 Ekind (E) = E_Loop_Parameter
3087 or else
3088 Is_Formal (E)
3089 then
3090 Layout_Object (E);
3091 end if;
3092 end if;
3093
3094 -- Case of a type or subtype being frozen
3095
3096 else
31b5873d
GD
3097 -- We used to check here that a full type must have preelaborable
3098 -- initialization if it completes a private type specified with
308e6f3a 3099 -- pragma Preelaborable_Initialization, but that missed cases where
31b5873d
GD
3100 -- the types occur within a generic package, since the freezing
3101 -- that occurs within a containing scope generally skips traversal
3102 -- of a generic unit's declarations (those will be frozen within
3103 -- instances). This check was moved to Analyze_Package_Specification.
3f1ede06 3104
70482933
RK
3105 -- The type may be defined in a generic unit. This can occur when
3106 -- freezing a generic function that returns the type (which is
3107 -- defined in a parent unit). It is clearly meaningless to freeze
3108 -- this type. However, if it is a subtype, its size may be determi-
3109 -- nable and used in subsequent checks, so might as well try to
3110 -- compute it.
3111
cf7bb903 3112 -- In Ada 2012, Freeze_Entities is also used in the front end to
e876c43a
AC
3113 -- trigger the analysis of aspect expressions, so in this case we
3114 -- want to continue the freezing process.
3115
70482933
RK
3116 if Present (Scope (E))
3117 and then Is_Generic_Unit (Scope (E))
e876c43a 3118 and then not Has_Predicates (E)
70482933
RK
3119 then
3120 Check_Compile_Time_Size (E);
3121 return No_List;
3122 end if;
3123
3124 -- Deal with special cases of freezing for subtype
3125
3126 if E /= Base_Type (E) then
3127
86cde7b1
RD
3128 -- Before we do anything else, a specialized test for the case of
3129 -- a size given for an array where the array needs to be packed,
3130 -- but was not so the size cannot be honored. This would of course
3131 -- be caught by the backend, and indeed we don't catch all cases.
3132 -- The point is that we can give a better error message in those
3133 -- cases that we do catch with the circuitry here. Also if pragma
3134 -- Implicit_Packing is set, this is where the packing occurs.
3135
3136 -- The reason we do this so early is that the processing in the
3137 -- automatic packing case affects the layout of the base type, so
3138 -- it must be done before we freeze the base type.
3139
3140 if Is_Array_Type (E) then
3141 declare
3142 Lo, Hi : Node_Id;
3143 Ctyp : constant Entity_Id := Component_Type (E);
3144
3145 begin
3146 -- Check enabling conditions. These are straightforward
3147 -- except for the test for a limited composite type. This
3148 -- eliminates the rare case of a array of limited components
3149 -- where there are issues of whether or not we can go ahead
3150 -- and pack the array (since we can't freely pack and unpack
3151 -- arrays if they are limited).
3152
3153 -- Note that we check the root type explicitly because the
3154 -- whole point is we are doing this test before we have had
3155 -- a chance to freeze the base type (and it is that freeze
3156 -- action that causes stuff to be inherited).
3157
3158 if Present (Size_Clause (E))
fc893455 3159 and then Known_Static_RM_Size (E)
86cde7b1
RD
3160 and then not Is_Packed (E)
3161 and then not Has_Pragma_Pack (E)
3162 and then Number_Dimensions (E) = 1
3163 and then not Has_Component_Size_Clause (E)
fc893455 3164 and then Known_Static_RM_Size (Ctyp)
86cde7b1
RD
3165 and then not Is_Limited_Composite (E)
3166 and then not Is_Packed (Root_Type (E))
3167 and then not Has_Component_Size_Clause (Root_Type (E))
56812278 3168 and then not (CodePeer_Mode or Alfa_Mode)
86cde7b1
RD
3169 then
3170 Get_Index_Bounds (First_Index (E), Lo, Hi);
3171
3172 if Compile_Time_Known_Value (Lo)
3173 and then Compile_Time_Known_Value (Hi)
3174 and then Known_Static_RM_Size (Ctyp)
3175 and then RM_Size (Ctyp) < 64
3176 then
3177 declare
3178 Lov : constant Uint := Expr_Value (Lo);
3179 Hiv : constant Uint := Expr_Value (Hi);
3180 Len : constant Uint := UI_Max
3181 (Uint_0,
3182 Hiv - Lov + 1);
3183 Rsiz : constant Uint := RM_Size (Ctyp);
3184 SZ : constant Node_Id := Size_Clause (E);
3185 Btyp : constant Entity_Id := Base_Type (E);
3186
3187 -- What we are looking for here is the situation where
3188 -- the RM_Size given would be exactly right if there
3189 -- was a pragma Pack (resulting in the component size
3190 -- being the same as the RM_Size). Furthermore, the
3191 -- component type size must be an odd size (not a
5a989c6b
AC
3192 -- multiple of storage unit). If the component RM size
3193 -- is an exact number of storage units that is a power
3194 -- of two, the array is not packed and has a standard
3195 -- representation.
86cde7b1
RD
3196
3197 begin
3198 if RM_Size (E) = Len * Rsiz
3199 and then Rsiz mod System_Storage_Unit /= 0
3200 then
3201 -- For implicit packing mode, just set the
fd366a46 3202 -- component size silently.
86cde7b1
RD
3203
3204 if Implicit_Packing then
3205 Set_Component_Size (Btyp, Rsiz);
3206 Set_Is_Bit_Packed_Array (Btyp);
3207 Set_Is_Packed (Btyp);
3208 Set_Has_Non_Standard_Rep (Btyp);
3209
3210 -- Otherwise give an error message
3211
3212 else
3213 Error_Msg_NE
3214 ("size given for& too small", SZ, E);
ed2233dc 3215 Error_Msg_N -- CODEFIX
86cde7b1
RD
3216 ("\use explicit pragma Pack "
3217 & "or use pragma Implicit_Packing", SZ);
3218 end if;
5a989c6b
AC
3219
3220 elsif RM_Size (E) = Len * Rsiz
3221 and then Implicit_Packing
3222 and then
3223 (Rsiz / System_Storage_Unit = 1
3224 or else Rsiz / System_Storage_Unit = 2
3225 or else Rsiz / System_Storage_Unit = 4)
3226 then
3227
3228 -- Not a packed array, but indicate the desired
3229 -- component size, for the back-end.
3230
3231 Set_Component_Size (Btyp, Rsiz);
86cde7b1
RD
3232 end if;
3233 end;
3234 end if;
3235 end if;
3236 end;
3237 end if;
3238
def46b54 3239 -- If ancestor subtype present, freeze that first. Note that this
8110ee3b 3240 -- will also get the base type frozen. Need RM reference ???
70482933
RK
3241
3242 Atype := Ancestor_Subtype (E);
3243
3244 if Present (Atype) then
c159409f 3245 Freeze_And_Append (Atype, N, Result);
70482933 3246
8110ee3b 3247 -- No ancestor subtype present
70482933 3248
8110ee3b
RD
3249 else
3250 -- See if we have a nearest ancestor that has a predicate.
3251 -- That catches the case of derived type with a predicate.
3252 -- Need RM reference here ???
3253
3254 Atype := Nearest_Ancestor (E);
3255
3256 if Present (Atype) and then Has_Predicates (Atype) then
3257 Freeze_And_Append (Atype, N, Result);
3258 end if;
3259
3260 -- Freeze base type before freezing the entity (RM 13.14(15))
3261
3262 if E /= Base_Type (E) then
3263 Freeze_And_Append (Base_Type (E), N, Result);
3264 end if;
70482933
RK
3265 end if;
3266
fbf5a39b 3267 -- For a derived type, freeze its parent type first (RM 13.14(15))
70482933
RK
3268
3269 elsif Is_Derived_Type (E) then
c159409f
AC
3270 Freeze_And_Append (Etype (E), N, Result);
3271 Freeze_And_Append (First_Subtype (Etype (E)), N, Result);
70482933
RK
3272 end if;
3273
3274 -- For array type, freeze index types and component type first
fbf5a39b 3275 -- before freezing the array (RM 13.14(15)).
70482933
RK
3276
3277 if Is_Array_Type (E) then
3278 declare
094cefda
AC
3279 FS : constant Entity_Id := First_Subtype (E);
3280 Ctyp : constant Entity_Id := Component_Type (E);
3281 Clause : Entity_Id;
70482933
RK
3282
3283 Non_Standard_Enum : Boolean := False;
7d8b9c99
RD
3284 -- Set true if any of the index types is an enumeration type
3285 -- with a non-standard representation.
70482933
RK
3286
3287 begin
c159409f 3288 Freeze_And_Append (Ctyp, N, Result);
70482933
RK
3289
3290 Indx := First_Index (E);
3291 while Present (Indx) loop
c159409f 3292 Freeze_And_Append (Etype (Indx), N, Result);
70482933
RK
3293
3294 if Is_Enumeration_Type (Etype (Indx))
3295 and then Has_Non_Standard_Rep (Etype (Indx))
3296 then
3297 Non_Standard_Enum := True;
3298 end if;
3299
3300 Next_Index (Indx);
3301 end loop;
3302
07fc65c4 3303 -- Processing that is done only for base types
70482933
RK
3304
3305 if Ekind (E) = E_Array_Type then
07fc65c4
GB
3306
3307 -- Propagate flags for component type
3308
70482933
RK
3309 if Is_Controlled (Component_Type (E))
3310 or else Has_Controlled_Component (Ctyp)
3311 then
3312 Set_Has_Controlled_Component (E);
3313 end if;
3314
3315 if Has_Unchecked_Union (Component_Type (E)) then
3316 Set_Has_Unchecked_Union (E);
3317 end if;
70482933 3318
07fc65c4
GB
3319 -- If packing was requested or if the component size was set
3320 -- explicitly, then see if bit packing is required. This
3321 -- processing is only done for base types, since all the
3322 -- representation aspects involved are type-related. This
3323 -- is not just an optimization, if we start processing the
e14c931f 3324 -- subtypes, they interfere with the settings on the base
07fc65c4
GB
3325 -- type (this is because Is_Packed has a slightly different
3326 -- meaning before and after freezing).
70482933 3327
70482933
RK
3328 declare
3329 Csiz : Uint;
3330 Esiz : Uint;
3331
3332 begin
3333 if (Is_Packed (E) or else Has_Pragma_Pack (E))
70482933 3334 and then Known_Static_RM_Size (Ctyp)
094cefda 3335 and then not Has_Component_Size_Clause (E)
70482933
RK
3336 then
3337 Csiz := UI_Max (RM_Size (Ctyp), 1);
3338
3339 elsif Known_Component_Size (E) then
3340 Csiz := Component_Size (E);
3341
3342 elsif not Known_Static_Esize (Ctyp) then
3343 Csiz := Uint_0;
3344
3345 else
3346 Esiz := Esize (Ctyp);
3347
3348 -- We can set the component size if it is less than
3349 -- 16, rounding it up to the next storage unit size.
3350
3351 if Esiz <= 8 then
3352 Csiz := Uint_8;
3353 elsif Esiz <= 16 then
3354 Csiz := Uint_16;
3355 else
3356 Csiz := Uint_0;
3357 end if;
3358
7d8b9c99
RD
3359 -- Set component size up to match alignment if it
3360 -- would otherwise be less than the alignment. This
3361 -- deals with cases of types whose alignment exceeds
3362 -- their size (padded types).
70482933
RK
3363
3364 if Csiz /= 0 then
3365 declare
3366 A : constant Uint := Alignment_In_Bits (Ctyp);
70482933
RK
3367 begin
3368 if Csiz < A then
3369 Csiz := A;
3370 end if;
3371 end;
3372 end if;
70482933
RK
3373 end if;
3374
86cde7b1
RD
3375 -- Case of component size that may result in packing
3376
70482933 3377 if 1 <= Csiz and then Csiz <= 64 then
86cde7b1
RD
3378 declare
3379 Ent : constant Entity_Id :=
3380 First_Subtype (E);
3381 Pack_Pragma : constant Node_Id :=
3382 Get_Rep_Pragma (Ent, Name_Pack);
3383 Comp_Size_C : constant Node_Id :=
3384 Get_Attribute_Definition_Clause
3385 (Ent, Attribute_Component_Size);
3386 begin
3387 -- Warn if we have pack and component size so that
3388 -- the pack is ignored.
70482933 3389
86cde7b1
RD
3390 -- Note: here we must check for the presence of a
3391 -- component size before checking for a Pack pragma
3392 -- to deal with the case where the array type is a
3393 -- derived type whose parent is currently private.
3394
3395 if Present (Comp_Size_C)
3396 and then Has_Pragma_Pack (Ent)
094cefda 3397 and then Warn_On_Redundant_Constructs
86cde7b1
RD
3398 then
3399 Error_Msg_Sloc := Sloc (Comp_Size_C);
3400 Error_Msg_NE
3401 ("?pragma Pack for& ignored!",
3402 Pack_Pragma, Ent);
3403 Error_Msg_N
3404 ("\?explicit component size given#!",
3405 Pack_Pragma);
094cefda
AC
3406 Set_Is_Packed (Base_Type (Ent), False);
3407 Set_Is_Bit_Packed_Array (Base_Type (Ent), False);
86cde7b1 3408 end if;
70482933 3409
86cde7b1
RD
3410 -- Set component size if not already set by a
3411 -- component size clause.
70482933 3412
86cde7b1
RD
3413 if not Present (Comp_Size_C) then
3414 Set_Component_Size (E, Csiz);
3415 end if;
fbf5a39b 3416
86cde7b1
RD
3417 -- Check for base type of 8, 16, 32 bits, where an
3418 -- unsigned subtype has a length one less than the
3419 -- base type (e.g. Natural subtype of Integer).
fbf5a39b 3420
86cde7b1
RD
3421 -- In such cases, if a component size was not set
3422 -- explicitly, then generate a warning.
fbf5a39b 3423
86cde7b1
RD
3424 if Has_Pragma_Pack (E)
3425 and then not Present (Comp_Size_C)
3426 and then
3427 (Csiz = 7 or else Csiz = 15 or else Csiz = 31)
3428 and then Esize (Base_Type (Ctyp)) = Csiz + 1
3429 then
3430 Error_Msg_Uint_1 := Csiz;
3431
3432 if Present (Pack_Pragma) then
3433 Error_Msg_N
3434 ("?pragma Pack causes component size "
3435 & "to be ^!", Pack_Pragma);
3436 Error_Msg_N
3437 ("\?use Component_Size to set "
3438 & "desired value!", Pack_Pragma);
3439 end if;
fbf5a39b 3440 end if;
fbf5a39b 3441
86cde7b1
RD
3442 -- Actual packing is not needed for 8, 16, 32, 64.
3443 -- Also not needed for 24 if alignment is 1.
70482933 3444
86cde7b1
RD
3445 if Csiz = 8
3446 or else Csiz = 16
3447 or else Csiz = 32
3448 or else Csiz = 64
3449 or else (Csiz = 24 and then Alignment (Ctyp) = 1)
3450 then
3451 -- Here the array was requested to be packed,
3452 -- but the packing request had no effect, so
3453 -- Is_Packed is reset.
70482933 3454
86cde7b1
RD
3455 -- Note: semantically this means that we lose
3456 -- track of the fact that a derived type
3457 -- inherited a pragma Pack that was non-
3458 -- effective, but that seems fine.
70482933 3459
86cde7b1
RD
3460 -- We regard a Pack pragma as a request to set
3461 -- a representation characteristic, and this
3462 -- request may be ignored.
70482933 3463
094cefda
AC
3464 Set_Is_Packed (Base_Type (E), False);
3465 Set_Is_Bit_Packed_Array (Base_Type (E), False);
70482933 3466
094cefda
AC
3467 if Known_Static_Esize (Component_Type (E))
3468 and then Esize (Component_Type (E)) = Csiz
3469 then
3470 Set_Has_Non_Standard_Rep
3471 (Base_Type (E), False);
3472 end if;
3473
3474 -- In all other cases, packing is indeed needed
70482933 3475
86cde7b1 3476 else
094cefda
AC
3477 Set_Has_Non_Standard_Rep (Base_Type (E), True);
3478 Set_Is_Bit_Packed_Array (Base_Type (E), True);
3479 Set_Is_Packed (Base_Type (E), True);
86cde7b1
RD
3480 end if;
3481 end;
70482933
RK
3482 end if;
3483 end;
07fc65c4 3484
094cefda
AC
3485 -- Check for Atomic_Components or Aliased with unsuitable
3486 -- packing or explicit component size clause given.
3487
3488 if (Has_Atomic_Components (E)
3489 or else Has_Aliased_Components (E))
3490 and then (Has_Component_Size_Clause (E)
3491 or else Is_Packed (E))
3492 then
3493 Alias_Atomic_Check : declare
3494
3495 procedure Complain_CS (T : String);
3496 -- Outputs error messages for incorrect CS clause or
3497 -- pragma Pack for aliased or atomic components (T is
3498 -- "aliased" or "atomic");
3499
3500 -----------------
3501 -- Complain_CS --
3502 -----------------
3503
3504 procedure Complain_CS (T : String) is
3505 begin
3506 if Has_Component_Size_Clause (E) then
3507 Clause :=
3508 Get_Attribute_Definition_Clause
3509 (FS, Attribute_Component_Size);
3510
3511 if Known_Static_Esize (Ctyp) then
3512 Error_Msg_N
3513 ("incorrect component size for "
3514 & T & " components", Clause);
3515 Error_Msg_Uint_1 := Esize (Ctyp);
3516 Error_Msg_N
3517 ("\only allowed value is^", Clause);
3518
3519 else
3520 Error_Msg_N
3521 ("component size cannot be given for "
3522 & T & " components", Clause);
3523 end if;
3524
3525 else
3526 Error_Msg_N
3527 ("cannot pack " & T & " components",
3528 Get_Rep_Pragma (FS, Name_Pack));
3529 end if;
3530
3531 return;
3532 end Complain_CS;
3533
3534 -- Start of processing for Alias_Atomic_Check
3535
3536 begin
fc893455
AC
3537
3538 -- If object size of component type isn't known, we
3539 -- cannot be sure so we defer to the back end.
3540
3541 if not Known_Static_Esize (Ctyp) then
3542 null;
3543
84df40f7 3544 -- Case where component size has no effect. First
fc893455
AC
3545 -- check for object size of component type multiple
3546 -- of the storage unit size.
094cefda 3547
fc893455 3548 elsif Esize (Ctyp) mod System_Storage_Unit = 0
84df40f7
AC
3549
3550 -- OK in both packing case and component size case
3551 -- if RM size is known and static and the same as
3552 -- the object size.
3553
3554 and then
3555 ((Known_Static_RM_Size (Ctyp)
3556 and then Esize (Ctyp) = RM_Size (Ctyp))
3557
3558 -- Or if we have an explicit component size
3559 -- clause and the component size and object size
3560 -- are equal.
3561
3562 or else
3563 (Has_Component_Size_Clause (E)
3564 and then Component_Size (E) = Esize (Ctyp)))
094cefda
AC
3565 then
3566 null;
3567
3568 elsif Has_Aliased_Components (E)
3569 or else Is_Aliased (Ctyp)
3570 then
3571 Complain_CS ("aliased");
3572
3573 elsif Has_Atomic_Components (E)
3574 or else Is_Atomic (Ctyp)
3575 then
3576 Complain_CS ("atomic");
3577 end if;
3578 end Alias_Atomic_Check;
3579 end if;
3580
3581 -- Warn for case of atomic type
3582
3583 Clause := Get_Rep_Pragma (FS, Name_Atomic);
3584
3585 if Present (Clause)
3586 and then not Addressable (Component_Size (FS))
3587 then
3588 Error_Msg_NE
3589 ("non-atomic components of type& may not be "
3590 & "accessible by separate tasks?", Clause, E);
3591
3592 if Has_Component_Size_Clause (E) then
3593 Error_Msg_Sloc :=
3594 Sloc
3595 (Get_Attribute_Definition_Clause
3596 (FS, Attribute_Component_Size));
3597 Error_Msg_N
3598 ("\because of component size clause#?",
3599 Clause);
3600
3601 elsif Has_Pragma_Pack (E) then
3602 Error_Msg_Sloc :=
3603 Sloc (Get_Rep_Pragma (FS, Name_Pack));
3604 Error_Msg_N
3605 ("\because of pragma Pack#?", Clause);
3606 end if;
3607 end if;
3608
07fc65c4
GB
3609 -- Processing that is done only for subtypes
3610
3611 else
3612 -- Acquire alignment from base type
3613
3614 if Unknown_Alignment (E) then
3615 Set_Alignment (E, Alignment (Base_Type (E)));
7d8b9c99 3616 Adjust_Esize_Alignment (E);
07fc65c4
GB
3617 end if;
3618 end if;
3619
d05ef0ab
AC
3620 -- For bit-packed arrays, check the size
3621
75a64833 3622 if Is_Bit_Packed_Array (E) and then Known_RM_Size (E) then
d05ef0ab 3623 declare
67ce0d7e
RD
3624 SizC : constant Node_Id := Size_Clause (E);
3625
d05ef0ab 3626 Discard : Boolean;
67ce0d7e 3627 pragma Warnings (Off, Discard);
d05ef0ab
AC
3628
3629 begin
3630 -- It is not clear if it is possible to have no size
7d8b9c99
RD
3631 -- clause at this stage, but it is not worth worrying
3632 -- about. Post error on the entity name in the size
d05ef0ab
AC
3633 -- clause if present, else on the type entity itself.
3634
3635 if Present (SizC) then
7d8b9c99 3636 Check_Size (Name (SizC), E, RM_Size (E), Discard);
d05ef0ab 3637 else
7d8b9c99 3638 Check_Size (E, E, RM_Size (E), Discard);
d05ef0ab
AC
3639 end if;
3640 end;
3641 end if;
3642
2d4e0553
AC
3643 -- If any of the index types was an enumeration type with a
3644 -- non-standard rep clause, then we indicate that the array
3645 -- type is always packed (even if it is not bit packed).
70482933
RK
3646
3647 if Non_Standard_Enum then
3648 Set_Has_Non_Standard_Rep (Base_Type (E));
3649 Set_Is_Packed (Base_Type (E));
3650 end if;
70482933 3651
0da2c8ac 3652 Set_Component_Alignment_If_Not_Set (E);
70482933 3653
0da2c8ac
AC
3654 -- If the array is packed, we must create the packed array
3655 -- type to be used to actually implement the type. This is
3656 -- only needed for real array types (not for string literal
3657 -- types, since they are present only for the front end).
70482933 3658
0da2c8ac
AC
3659 if Is_Packed (E)
3660 and then Ekind (E) /= E_String_Literal_Subtype
3661 then
3662 Create_Packed_Array_Type (E);
c159409f 3663 Freeze_And_Append (Packed_Array_Type (E), N, Result);
70482933 3664
0da2c8ac 3665 -- Size information of packed array type is copied to the
fea9e956 3666 -- array type, since this is really the representation. But
def46b54
RD
3667 -- do not override explicit existing size values. If the
3668 -- ancestor subtype is constrained the packed_array_type
3669 -- will be inherited from it, but the size may have been
3670 -- provided already, and must not be overridden either.
fea9e956 3671
def46b54
RD
3672 if not Has_Size_Clause (E)
3673 and then
3674 (No (Ancestor_Subtype (E))
3675 or else not Has_Size_Clause (Ancestor_Subtype (E)))
3676 then
fea9e956
ES
3677 Set_Esize (E, Esize (Packed_Array_Type (E)));
3678 Set_RM_Size (E, RM_Size (Packed_Array_Type (E)));
3679 end if;
70482933 3680
fea9e956
ES
3681 if not Has_Alignment_Clause (E) then
3682 Set_Alignment (E, Alignment (Packed_Array_Type (E)));
3683 end if;
0da2c8ac
AC
3684 end if;
3685
def46b54
RD
3686 -- For non-packed arrays set the alignment of the array to the
3687 -- alignment of the component type if it is unknown. Skip this
3688 -- in atomic case (atomic arrays may need larger alignments).
0da2c8ac
AC
3689
3690 if not Is_Packed (E)
3691 and then Unknown_Alignment (E)
3692 and then Known_Alignment (Ctyp)
3693 and then Known_Static_Component_Size (E)
3694 and then Known_Static_Esize (Ctyp)
3695 and then Esize (Ctyp) = Component_Size (E)
3696 and then not Is_Atomic (E)
3697 then
3698 Set_Alignment (E, Alignment (Component_Type (E)));
3699 end if;
3700 end;
70482933 3701
fbf5a39b
AC
3702 -- For a class-wide type, the corresponding specific type is
3703 -- frozen as well (RM 13.14(15))
70482933
RK
3704
3705 elsif Is_Class_Wide_Type (E) then
c159409f 3706 Freeze_And_Append (Root_Type (E), N, Result);
70482933 3707
86cde7b1
RD
3708 -- If the base type of the class-wide type is still incomplete,
3709 -- the class-wide remains unfrozen as well. This is legal when
3710 -- E is the formal of a primitive operation of some other type
3711 -- which is being frozen.
3712
3713 if not Is_Frozen (Root_Type (E)) then
3714 Set_Is_Frozen (E, False);
3715 return Result;
3716 end if;
3717
70482933
RK
3718 -- If the Class_Wide_Type is an Itype (when type is the anonymous
3719 -- parent of a derived type) and it is a library-level entity,
3720 -- generate an itype reference for it. Otherwise, its first
3721 -- explicit reference may be in an inner scope, which will be
3722 -- rejected by the back-end.
3723
3724 if Is_Itype (E)
3725 and then Is_Compilation_Unit (Scope (E))
3726 then
70482933 3727 declare
fbf5a39b 3728 Ref : constant Node_Id := Make_Itype_Reference (Loc);
70482933
RK
3729
3730 begin
3731 Set_Itype (Ref, E);
90878b12 3732 Add_To_Result (Ref);
70482933
RK
3733 end;
3734 end if;
3735
def46b54 3736 -- The equivalent type associated with a class-wide subtype needs
cbae498b 3737 -- to be frozen to ensure that its layout is done.
fbf5a39b
AC
3738
3739 if Ekind (E) = E_Class_Wide_Subtype
3740 and then Present (Equivalent_Type (E))
3741 then
c159409f 3742 Freeze_And_Append (Equivalent_Type (E), N, Result);
fbf5a39b
AC
3743 end if;
3744
3745 -- For a record (sub)type, freeze all the component types (RM
def46b54
RD
3746 -- 13.14(15). We test for E_Record_(sub)Type here, rather than using
3747 -- Is_Record_Type, because we don't want to attempt the freeze for
3748 -- the case of a private type with record extension (we will do that
3749 -- later when the full type is frozen).
70482933
RK
3750
3751 elsif Ekind (E) = E_Record_Type
fd366a46 3752 or else Ekind (E) = E_Record_Subtype
70482933
RK
3753 then
3754 Freeze_Record_Type (E);
3755
3756 -- For a concurrent type, freeze corresponding record type. This
e14c931f 3757 -- does not correspond to any specific rule in the RM, but the
70482933
RK
3758 -- record type is essentially part of the concurrent type.
3759 -- Freeze as well all local entities. This includes record types
3760 -- created for entry parameter blocks, and whatever local entities
3761 -- may appear in the private part.
3762
3763 elsif Is_Concurrent_Type (E) then
3764 if Present (Corresponding_Record_Type (E)) then
3765 Freeze_And_Append
c159409f 3766 (Corresponding_Record_Type (E), N, Result);
70482933
RK
3767 end if;
3768
3769 Comp := First_Entity (E);
70482933
RK
3770 while Present (Comp) loop
3771 if Is_Type (Comp) then
c159409f 3772 Freeze_And_Append (Comp, N, Result);
70482933
RK
3773
3774 elsif (Ekind (Comp)) /= E_Function then
c6823a20
EB
3775 if Is_Itype (Etype (Comp))
3776 and then Underlying_Type (Scope (Etype (Comp))) = E
3777 then
3778 Undelay_Type (Etype (Comp));
3779 end if;
3780
c159409f 3781 Freeze_And_Append (Etype (Comp), N, Result);
70482933
RK
3782 end if;
3783
3784 Next_Entity (Comp);
3785 end loop;
3786
ee094616
RD
3787 -- Private types are required to point to the same freeze node as
3788 -- their corresponding full views. The freeze node itself has to
3789 -- point to the partial view of the entity (because from the partial
3790 -- view, we can retrieve the full view, but not the reverse).
3791 -- However, in order to freeze correctly, we need to freeze the full
3792 -- view. If we are freezing at the end of a scope (or within the
3793 -- scope of the private type), the partial and full views will have
3794 -- been swapped, the full view appears first in the entity chain and
3795 -- the swapping mechanism ensures that the pointers are properly set
3796 -- (on scope exit).
3797
3798 -- If we encounter the partial view before the full view (e.g. when
3799 -- freezing from another scope), we freeze the full view, and then
3800 -- set the pointers appropriately since we cannot rely on swapping to
3801 -- fix things up (subtypes in an outer scope might not get swapped).
70482933
RK
3802
3803 elsif Is_Incomplete_Or_Private_Type (E)
3804 and then not Is_Generic_Type (E)
3805 then
86cde7b1
RD
3806 -- The construction of the dispatch table associated with library
3807 -- level tagged types forces freezing of all the primitives of the
3808 -- type, which may cause premature freezing of the partial view.
3809 -- For example:
3810
3811 -- package Pkg is
3812 -- type T is tagged private;
3813 -- type DT is new T with private;
3e24afaa 3814 -- procedure Prim (X : in out T; Y : in out DT'Class);
86cde7b1
RD
3815 -- private
3816 -- type T is tagged null record;
3817 -- Obj : T;
3818 -- type DT is new T with null record;
3819 -- end;
3820
3821 -- In this case the type will be frozen later by the usual
3822 -- mechanism: an object declaration, an instantiation, or the
3823 -- end of a declarative part.
3824
3825 if Is_Library_Level_Tagged_Type (E)
3826 and then not Present (Full_View (E))
3827 then
3828 Set_Is_Frozen (E, False);
3829 return Result;
3830
70482933
RK
3831 -- Case of full view present
3832
86cde7b1 3833 elsif Present (Full_View (E)) then
70482933 3834
ee094616
RD
3835 -- If full view has already been frozen, then no further
3836 -- processing is required
70482933
RK
3837
3838 if Is_Frozen (Full_View (E)) then
70482933
RK
3839 Set_Has_Delayed_Freeze (E, False);
3840 Set_Freeze_Node (E, Empty);
3841 Check_Debug_Info_Needed (E);
3842
ee094616
RD
3843 -- Otherwise freeze full view and patch the pointers so that
3844 -- the freeze node will elaborate both views in the back-end.
70482933
RK
3845
3846 else
fbf5a39b
AC
3847 declare
3848 Full : constant Entity_Id := Full_View (E);
70482933 3849
fbf5a39b
AC
3850 begin
3851 if Is_Private_Type (Full)
3852 and then Present (Underlying_Full_View (Full))
3853 then
3854 Freeze_And_Append
c159409f 3855 (Underlying_Full_View (Full), N, Result);
fbf5a39b 3856 end if;
70482933 3857
c159409f 3858 Freeze_And_Append (Full, N, Result);
70482933 3859
fbf5a39b
AC
3860 if Has_Delayed_Freeze (E) then
3861 F_Node := Freeze_Node (Full);
70482933 3862
fbf5a39b
AC
3863 if Present (F_Node) then
3864 Set_Freeze_Node (E, F_Node);
3865 Set_Entity (F_Node, E);
3866
3867 else
def46b54
RD
3868 -- {Incomplete,Private}_Subtypes with Full_Views
3869 -- constrained by discriminants.
fbf5a39b
AC
3870
3871 Set_Has_Delayed_Freeze (E, False);
3872 Set_Freeze_Node (E, Empty);
3873 end if;
70482933 3874 end if;
fbf5a39b 3875 end;
70482933
RK
3876
3877 Check_Debug_Info_Needed (E);
3878 end if;
3879
ee094616
RD
3880 -- AI-117 requires that the convention of a partial view be the
3881 -- same as the convention of the full view. Note that this is a
3882 -- recognized breach of privacy, but it's essential for logical
3883 -- consistency of representation, and the lack of a rule in
3884 -- RM95 was an oversight.
70482933
RK
3885
3886 Set_Convention (E, Convention (Full_View (E)));
3887
3888 Set_Size_Known_At_Compile_Time (E,
3889 Size_Known_At_Compile_Time (Full_View (E)));
3890
3891 -- Size information is copied from the full view to the
def46b54 3892 -- incomplete or private view for consistency.
70482933 3893
ee094616
RD
3894 -- We skip this is the full view is not a type. This is very
3895 -- strange of course, and can only happen as a result of
3896 -- certain illegalities, such as a premature attempt to derive
3897 -- from an incomplete type.
70482933
RK
3898
3899 if Is_Type (Full_View (E)) then
3900 Set_Size_Info (E, Full_View (E));
3901 Set_RM_Size (E, RM_Size (Full_View (E)));
3902 end if;
3903
3904 return Result;
3905
3906 -- Case of no full view present. If entity is derived or subtype,
3907 -- it is safe to freeze, correctness depends on the frozen status
3908 -- of parent. Otherwise it is either premature usage, or a Taft
3909 -- amendment type, so diagnosis is at the point of use and the
3910 -- type might be frozen later.
3911
3912 elsif E /= Base_Type (E)
3913 or else Is_Derived_Type (E)
3914 then
3915 null;
3916
3917 else
3918 Set_Is_Frozen (E, False);
3919 return No_List;
3920 end if;
3921
3922 -- For access subprogram, freeze types of all formals, the return
3923 -- type was already frozen, since it is the Etype of the function.
8aec446b 3924 -- Formal types can be tagged Taft amendment types, but otherwise
205c14b0 3925 -- they cannot be incomplete.
70482933
RK
3926
3927 elsif Ekind (E) = E_Subprogram_Type then
3928 Formal := First_Formal (E);
3929 while Present (Formal) loop
8aec446b
AC
3930 if Ekind (Etype (Formal)) = E_Incomplete_Type
3931 and then No (Full_View (Etype (Formal)))
3932 and then not Is_Value_Type (Etype (Formal))
3933 then
3934 if Is_Tagged_Type (Etype (Formal)) then
3935 null;
dd386db0 3936
3cae7f14 3937 -- AI05-151: Incomplete types are allowed in access to
dd386db0
AC
3938 -- subprogram specifications.
3939
3940 elsif Ada_Version < Ada_2012 then
8aec446b
AC
3941 Error_Msg_NE
3942 ("invalid use of incomplete type&", E, Etype (Formal));
3943 end if;
3944 end if;
3945
c159409f 3946 Freeze_And_Append (Etype (Formal), N, Result);
70482933
RK
3947 Next_Formal (Formal);
3948 end loop;
3949
70482933
RK
3950 Freeze_Subprogram (E);
3951
ee094616
RD
3952 -- For access to a protected subprogram, freeze the equivalent type
3953 -- (however this is not set if we are not generating code or if this
3954 -- is an anonymous type used just for resolution).
70482933 3955
fea9e956 3956 elsif Is_Access_Protected_Subprogram_Type (E) then
57747aec 3957 if Present (Equivalent_Type (E)) then
c159409f 3958 Freeze_And_Append (Equivalent_Type (E), N, Result);
d8db0bca 3959 end if;
70482933
RK
3960 end if;
3961
3962 -- Generic types are never seen by the back-end, and are also not
3963 -- processed by the expander (since the expander is turned off for
3964 -- generic processing), so we never need freeze nodes for them.
3965
3966 if Is_Generic_Type (E) then
3967 return Result;
3968 end if;
3969
3970 -- Some special processing for non-generic types to complete
3971 -- representation details not known till the freeze point.
3972
3973 if Is_Fixed_Point_Type (E) then
3974 Freeze_Fixed_Point_Type (E);
3975
ee094616
RD
3976 -- Some error checks required for ordinary fixed-point type. Defer
3977 -- these till the freeze-point since we need the small and range
3978 -- values. We only do these checks for base types
fbf5a39b 3979
d347f572 3980 if Is_Ordinary_Fixed_Point_Type (E) and then Is_Base_Type (E) then
fbf5a39b
AC
3981 if Small_Value (E) < Ureal_2_M_80 then
3982 Error_Msg_Name_1 := Name_Small;
3983 Error_Msg_N
7d8b9c99 3984 ("`&''%` too small, minimum allowed is 2.0'*'*(-80)", E);
fbf5a39b
AC
3985
3986 elsif Small_Value (E) > Ureal_2_80 then
3987 Error_Msg_Name_1 := Name_Small;
3988 Error_Msg_N
7d8b9c99 3989 ("`&''%` too large, maximum allowed is 2.0'*'*80", E);
fbf5a39b
AC
3990 end if;
3991
3992 if Expr_Value_R (Type_Low_Bound (E)) < Ureal_M_10_36 then
3993 Error_Msg_Name_1 := Name_First;
3994 Error_Msg_N
7d8b9c99 3995 ("`&''%` too small, minimum allowed is -10.0'*'*36", E);
fbf5a39b
AC
3996 end if;
3997
3998 if Expr_Value_R (Type_High_Bound (E)) > Ureal_10_36 then
3999 Error_Msg_Name_1 := Name_Last;
4000 Error_Msg_N
7d8b9c99 4001 ("`&''%` too large, maximum allowed is 10.0'*'*36", E);
fbf5a39b
AC
4002 end if;
4003 end if;
4004
70482933
RK
4005 elsif Is_Enumeration_Type (E) then
4006 Freeze_Enumeration_Type (E);
4007
4008 elsif Is_Integer_Type (E) then
4009 Adjust_Esize_For_Alignment (E);
4010
79afa047
AC
4011 if Is_Modular_Integer_Type (E)
4012 and then Warn_On_Suspicious_Modulus_Value
4013 then
67b3acf8
RD
4014 Check_Suspicious_Modulus (E);
4015 end if;
4016
edd63e9b
ES
4017 elsif Is_Access_Type (E) then
4018
fab2daeb
AC
4019 -- If a pragma Default_Storage_Pool applies, and this type has no
4020 -- Storage_Pool or Storage_Size clause (which must have occurred
4021 -- before the freezing point), then use the default. This applies
4022 -- only to base types.
4023
4024 if Present (Default_Pool)
d347f572 4025 and then Is_Base_Type (E)
fab2daeb
AC
4026 and then not Has_Storage_Size_Clause (E)
4027 and then No (Associated_Storage_Pool (E))
4028 then
4029 -- Case of pragma Default_Storage_Pool (null)
4030
4031 if Nkind (Default_Pool) = N_Null then
4032 Set_No_Pool_Assigned (E);
4033
4034 -- Case of pragma Default_Storage_Pool (storage_pool_NAME)
4035
4036 else
4037 Set_Associated_Storage_Pool (E, Entity (Default_Pool));
4038 end if;
4039 end if;
4040
edd63e9b
ES
4041 -- Check restriction for standard storage pool
4042
4043 if No (Associated_Storage_Pool (E)) then
4044 Check_Restriction (No_Standard_Storage_Pools, E);
4045 end if;
4046
4047 -- Deal with error message for pure access type. This is not an
4048 -- error in Ada 2005 if there is no pool (see AI-366).
4049
4050 if Is_Pure_Unit_Access_Type (E)
0791fbe9 4051 and then (Ada_Version < Ada_2005
2c1b72d7 4052 or else not No_Pool_Assigned (E))
edd63e9b
ES
4053 then
4054 Error_Msg_N ("named access type not allowed in pure unit", E);
c6a9797e 4055
0791fbe9 4056 if Ada_Version >= Ada_2005 then
c6a9797e
RD
4057 Error_Msg_N
4058 ("\would be legal if Storage_Size of 0 given?", E);
4059
4060 elsif No_Pool_Assigned (E) then
4061 Error_Msg_N
4062 ("\would be legal in Ada 2005?", E);
4063
4064 else
4065 Error_Msg_N
4066 ("\would be legal in Ada 2005 if "
4067 & "Storage_Size of 0 given?", E);
4068 end if;
edd63e9b 4069 end if;
70482933
RK
4070 end if;
4071
edd63e9b
ES
4072 -- Case of composite types
4073
70482933
RK
4074 if Is_Composite_Type (E) then
4075
edd63e9b
ES
4076 -- AI-117 requires that all new primitives of a tagged type must
4077 -- inherit the convention of the full view of the type. Inherited
4078 -- and overriding operations are defined to inherit the convention
4079 -- of their parent or overridden subprogram (also specified in
ee094616
RD
4080 -- AI-117), which will have occurred earlier (in Derive_Subprogram
4081 -- and New_Overloaded_Entity). Here we set the convention of
4082 -- primitives that are still convention Ada, which will ensure
def46b54
RD
4083 -- that any new primitives inherit the type's convention. Class-
4084 -- wide types can have a foreign convention inherited from their
4085 -- specific type, but are excluded from this since they don't have
4086 -- any associated primitives.
70482933
RK
4087
4088 if Is_Tagged_Type (E)
4089 and then not Is_Class_Wide_Type (E)
4090 and then Convention (E) /= Convention_Ada
4091 then
4092 declare
4093 Prim_List : constant Elist_Id := Primitive_Operations (E);
07fc65c4 4094 Prim : Elmt_Id;
3cae7f14 4095
70482933 4096 begin
07fc65c4 4097 Prim := First_Elmt (Prim_List);
70482933
RK
4098 while Present (Prim) loop
4099 if Convention (Node (Prim)) = Convention_Ada then
4100 Set_Convention (Node (Prim), Convention (E));
4101 end if;
4102
4103 Next_Elmt (Prim);
4104 end loop;
4105 end;
4106 end if;
a8551b5f
AC
4107
4108 -- If the type is a simple storage pool type, then this is where
4109 -- we attempt to locate and validate its Allocate, Deallocate, and
4110 -- Storage_Size operations (the first is required, and the latter
4111 -- two are optional). We also verify that the full type for a
4112 -- private type is allowed to be a simple storage pool type.
4113
4114 if Present (Get_Rep_Pragma (E, Name_Simple_Storage_Pool))
4115 and then (Is_Base_Type (E) or else Has_Private_Declaration (E))
4116 then
4117
4118 -- If the type is marked Has_Private_Declaration, then this is
4119 -- a full type for a private type that was specified with the
4120 -- pragma Simple_Storage_Pool, and here we ensure that the
4121 -- pragma is allowed for the full type (for example, it can't
4122 -- be an array type, or a nonlimited record type).
4123
4124 if Has_Private_Declaration (E) then
4125 if (not Is_Record_Type (E)
4126 or else not Is_Immutably_Limited_Type (E))
4127 and then not Is_Private_Type (E)
4128 then
4129 Error_Msg_Name_1 := Name_Simple_Storage_Pool;
4130
4131 Error_Msg_N
4132 ("pragma% can only apply to full type that is an " &
4133 "explicitly limited type", E);
4134 end if;
4135 end if;
4136
4137 Validate_Simple_Pool_Ops : declare
4138 Pool_Type : Entity_Id renames E;
4139 Address_Type : constant Entity_Id := RTE (RE_Address);
4140 Stg_Cnt_Type : constant Entity_Id := RTE (RE_Storage_Count);
4141
4142 procedure Validate_Simple_Pool_Op_Formal
4143 (Pool_Op : Entity_Id;
4144 Pool_Op_Formal : in out Entity_Id;
4145 Expected_Mode : Formal_Kind;
4146 Expected_Type : Entity_Id;
4147 Formal_Name : String;
4148 OK_Formal : in out Boolean);
4149 -- Validate one formal Pool_Op_Formal of the candidate pool
4150 -- operation Pool_Op. The formal must be of Expected_Type
4151 -- and have mode Expected_Mode. OK_Formal will be set to
4152 -- False if the formal doesn't match. If OK_Formal is False
4153 -- on entry, then the formal will effectively be ignored
4154 -- (because validation of the pool op has already failed).
4155 -- Upon return, Pool_Op_Formal will be updated to the next
4156 -- formal, if any.
4157
4158 procedure Validate_Simple_Pool_Operation (Op_Name : Name_Id);
4159 -- Search for and validate a simple pool operation with the
4160 -- name Op_Name. If the name is Allocate, then there must be
4161 -- exactly one such primitive operation for the simple pool
4162 -- type. If the name is Deallocate or Storage_Size, then
4163 -- there can be at most one such primitive operation. The
4164 -- profile of the located primitive must conform to what
4165 -- is expected for each operation.
4166
4167 ------------------------------------
4168 -- Validate_Simple_Pool_Op_Formal --
4169 ------------------------------------
4170
4171 procedure Validate_Simple_Pool_Op_Formal
4172 (Pool_Op : Entity_Id;
4173 Pool_Op_Formal : in out Entity_Id;
4174 Expected_Mode : Formal_Kind;
4175 Expected_Type : Entity_Id;
4176 Formal_Name : String;
4177 OK_Formal : in out Boolean)
4178 is
4179 begin
4180 -- If OK_Formal is False on entry, then simply ignore
4181 -- the formal, because an earlier formal has already
4182 -- been flagged.
4183
4184 if not OK_Formal then
4185 return;
4186
4187 -- If no formal is passed in, then issue an error for a
4188 -- missing formal.
4189
4190 elsif not Present (Pool_Op_Formal) then
4191 Error_Msg_NE
4192 ("simple storage pool op missing formal " &
4193 Formal_Name & " of type&", Pool_Op, Expected_Type);
4194 OK_Formal := False;
4195
4196 return;
4197 end if;
4198
4199 if Etype (Pool_Op_Formal) /= Expected_Type then
4200 -- If the pool type was expected for this formal, then
4201 -- this will not be considered a candidate operation
4202 -- for the simple pool, so we unset OK_Formal so that
4203 -- the op and any later formals will be ignored.
4204
4205 if Expected_Type = Pool_Type then
4206 OK_Formal := False;
4207
4208 return;
4209
4210 else
4211 Error_Msg_NE
4212 ("wrong type for formal " & Formal_Name &
4213 " of simple storage pool op; expected type&",
4214 Pool_Op_Formal, Expected_Type);
4215 end if;
4216 end if;
4217
4218 -- Issue error if formal's mode is not the expected one
4219
4220 if Ekind (Pool_Op_Formal) /= Expected_Mode then
4221 Error_Msg_N
4222 ("wrong mode for formal of simple storage pool op",
4223 Pool_Op_Formal);
4224 end if;
4225
4226 -- Advance to the next formal
4227
4228 Next_Formal (Pool_Op_Formal);
4229 end Validate_Simple_Pool_Op_Formal;
4230
4231 ------------------------------------
4232 -- Validate_Simple_Pool_Operation --
4233 ------------------------------------
4234
4235 procedure Validate_Simple_Pool_Operation
4236 (Op_Name : Name_Id)
4237 is
4238 Op : Entity_Id;
4239 Found_Op : Entity_Id := Empty;
4240 Formal : Entity_Id;
4241 Is_OK : Boolean;
4242
4243 begin
4244 pragma Assert
4245 (Op_Name = Name_Allocate
4246 or else Op_Name = Name_Deallocate
4247 or else Op_Name = Name_Storage_Size);
4248
4249 Error_Msg_Name_1 := Op_Name;
4250
4251 -- For each homonym declared immediately in the scope
4252 -- of the simple storage pool type, determine whether
4253 -- the homonym is an operation of the pool type, and,
4254 -- if so, check that its profile is as expected for
4255 -- a simple pool operation of that name.
4256
4257 Op := Get_Name_Entity_Id (Op_Name);
4258 while Present (Op) loop
4259 if Ekind_In (Op, E_Function, E_Procedure)
4260 and then Scope (Op) = Current_Scope
4261 then
4262 Formal := First_Entity (Op);
4263
4264 Is_OK := True;
4265
4266 -- The first parameter must be of the pool type
4267 -- in order for the operation to qualify.
4268
4269 if Op_Name = Name_Storage_Size then
4270 Validate_Simple_Pool_Op_Formal
4271 (Op, Formal, E_In_Parameter, Pool_Type,
4272 "Pool", Is_OK);
4273
4274 else
4275 Validate_Simple_Pool_Op_Formal
4276 (Op, Formal, E_In_Out_Parameter, Pool_Type,
4277 "Pool", Is_OK);
4278 end if;
4279
4280 -- If another operation with this name has already
4281 -- been located for the type, then flag an error,
4282 -- since we only allow the type to have a single
4283 -- such primitive.
4284
4285 if Present (Found_Op) and then Is_OK then
4286 Error_Msg_NE
4287 ("only one % operation allowed for " &
4288 "simple storage pool type&", Op, Pool_Type);
4289 end if;
4290
4291 -- In the case of Allocate and Deallocate, a formal
4292 -- of type System.Address is required.
4293
4294 if Op_Name = Name_Allocate then
4295 Validate_Simple_Pool_Op_Formal
4296 (Op, Formal, E_Out_Parameter,
4297 Address_Type, "Storage_Address", Is_OK);
4298
4299 elsif Op_Name = Name_Deallocate then
4300 Validate_Simple_Pool_Op_Formal
4301 (Op, Formal, E_In_Parameter,
4302 Address_Type, "Storage_Address", Is_OK);
4303 end if;
4304
4305 -- In the case of Allocate and Deallocate, formals
4306 -- of type Storage_Count are required as the third
4307 -- and fourth parameters.
4308
4309 if Op_Name /= Name_Storage_Size then
4310 Validate_Simple_Pool_Op_Formal
4311 (Op, Formal, E_In_Parameter,
4312 Stg_Cnt_Type, "Size_In_Storage_Units", Is_OK);
4313
4314 Validate_Simple_Pool_Op_Formal
4315 (Op, Formal, E_In_Parameter,
4316 Stg_Cnt_Type, "Alignment", Is_OK);
4317 end if;
4318
4319 -- If no mismatched formals have been found (Is_OK)
4320 -- and no excess formals are present, then this
4321 -- operation has been validated, so record it.
4322
4323 if not Present (Formal) and then Is_OK then
4324 Found_Op := Op;
4325 end if;
4326 end if;
4327
4328 Op := Homonym (Op);
4329 end loop;
4330
4331 -- There must be a valid Allocate operation for the type,
4332 -- so issue an error if none was found.
4333
4334 if Op_Name = Name_Allocate
4335 and then not Present (Found_Op)
4336 then
4337 Error_Msg_N ("missing % operation for simple " &
4338 "storage pool type", Pool_Type);
4339
4340 elsif Present (Found_Op) then
4341 -- Simple pool operations can't be abstract
4342
4343 if Is_Abstract_Subprogram (Found_Op) then
4344 Error_Msg_N
4345 ("simple storage pool operation must not be " &
4346 "abstract", Found_Op);
4347 end if;
4348
4349 -- The Storage_Size operation must be a function with
4350 -- Storage_Count as its result type.
4351
4352 if Op_Name = Name_Storage_Size then
4353 if Ekind (Found_Op) = E_Procedure then
4354 Error_Msg_N
4355 ("% operation must be a function", Found_Op);
4356
4357 elsif Etype (Found_Op) /= Stg_Cnt_Type then
4358 Error_Msg_NE
4359 ("wrong result type for%, expected type&",
4360 Found_Op, Stg_Cnt_Type);
4361 end if;
4362
4363 -- Allocate and Deallocate must be procedures
4364
4365 elsif Ekind (Found_Op) = E_Function then
4366 Error_Msg_N
4367 ("% operation must be a procedure", Found_Op);
4368 end if;
4369 end if;
4370 end Validate_Simple_Pool_Operation;
4371
4372 -- Start of processing for Validate_Simple_Pool_Ops
4373
4374 begin
4375 Validate_Simple_Pool_Operation (Name_Allocate);
4376
4377 Validate_Simple_Pool_Operation (Name_Deallocate);
4378
4379 Validate_Simple_Pool_Operation (Name_Storage_Size);
4380 end Validate_Simple_Pool_Ops;
4381 end if;
70482933
RK
4382 end if;
4383
ee094616
RD
4384 -- Now that all types from which E may depend are frozen, see if the
4385 -- size is known at compile time, if it must be unsigned, or if
7d8b9c99 4386 -- strict alignment is required
70482933
RK
4387
4388 Check_Compile_Time_Size (E);
4389 Check_Unsigned_Type (E);
4390
4391 if Base_Type (E) = E then
4392 Check_Strict_Alignment (E);
4393 end if;
4394
4395 -- Do not allow a size clause for a type which does not have a size
4396 -- that is known at compile time
4397
4398 if Has_Size_Clause (E)
4399 and then not Size_Known_At_Compile_Time (E)
4400 then
e14c931f 4401 -- Suppress this message if errors posted on E, even if we are
07fc65c4
GB
4402 -- in all errors mode, since this is often a junk message
4403
4404 if not Error_Posted (E) then
4405 Error_Msg_N
4406 ("size clause not allowed for variable length type",
4407 Size_Clause (E));
4408 end if;
70482933
RK
4409 end if;
4410
a01b9df6
AC
4411 -- Now we set/verify the representation information, in particular
4412 -- the size and alignment values. This processing is not required for
4413 -- generic types, since generic types do not play any part in code
4414 -- generation, and so the size and alignment values for such types
4415 -- are irrelevant.
70482933
RK
4416
4417 if Is_Generic_Type (E) then
4418 return Result;
4419
4420 -- Otherwise we call the layout procedure
4421
4422 else
4423 Layout_Type (E);
4424 end if;
a01b9df6 4425
cc570be6
AC
4426 -- If this is an access to subprogram whose designated type is itself
4427 -- a subprogram type, the return type of this anonymous subprogram
4428 -- type must be decorated as well.
4429
4430 if Ekind (E) = E_Anonymous_Access_Subprogram_Type
4431 and then Ekind (Designated_Type (E)) = E_Subprogram_Type
4432 then
4433 Layout_Type (Etype (Designated_Type (E)));
4434 end if;
4435
a01b9df6
AC
4436 -- If the type has a Defaut_Value/Default_Component_Value aspect,
4437 -- this is where we analye the expression (after the type is frozen,
4438 -- since in the case of Default_Value, we are analyzing with the
4439 -- type itself, and we treat Default_Component_Value similarly for
4440 -- the sake of uniformity.
4441
4442 if Is_First_Subtype (E) and then Has_Default_Aspect (E) then
4443 declare
37da997b
RD
4444 Nam : Name_Id;
4445 Exp : Node_Id;
4446 Typ : Entity_Id;
a01b9df6
AC
4447
4448 begin
4449 if Is_Scalar_Type (E) then
4450 Nam := Name_Default_Value;
4451 Typ := E;
6d9e03cb 4452 Exp := Default_Aspect_Value (Typ);
a01b9df6
AC
4453 else
4454 Nam := Name_Default_Component_Value;
4455 Typ := Component_Type (E);
37da997b 4456 Exp := Default_Aspect_Component_Value (E);
a01b9df6
AC
4457 end if;
4458
a01b9df6
AC
4459 Analyze_And_Resolve (Exp, Typ);
4460
4461 if Etype (Exp) /= Any_Type then
4462 if not Is_Static_Expression (Exp) then
4463 Error_Msg_Name_1 := Nam;
4464 Flag_Non_Static_Expr
4465 ("aspect% requires static expression", Exp);
4466 end if;
4467 end if;
4468 end;
4469 end if;
70482933
RK
4470
4471 -- End of freeze processing for type entities
4472 end if;
4473
4474 -- Here is where we logically freeze the current entity. If it has a
4475 -- freeze node, then this is the point at which the freeze node is
4476 -- linked into the result list.
4477
4478 if Has_Delayed_Freeze (E) then
4479
4480 -- If a freeze node is already allocated, use it, otherwise allocate
4481 -- a new one. The preallocation happens in the case of anonymous base
4482 -- types, where we preallocate so that we can set First_Subtype_Link.
4483 -- Note that we reset the Sloc to the current freeze location.
4484
4485 if Present (Freeze_Node (E)) then
4486 F_Node := Freeze_Node (E);
4487 Set_Sloc (F_Node, Loc);
4488
4489 else
4490 F_Node := New_Node (N_Freeze_Entity, Loc);
4491 Set_Freeze_Node (E, F_Node);
4492 Set_Access_Types_To_Process (F_Node, No_Elist);
4493 Set_TSS_Elist (F_Node, No_Elist);
4494 Set_Actions (F_Node, No_List);
4495 end if;
4496
4497 Set_Entity (F_Node, E);
90878b12 4498 Add_To_Result (F_Node);
35ae2ed8
AC
4499
4500 -- A final pass over record types with discriminants. If the type
4501 -- has an incomplete declaration, there may be constrained access
4502 -- subtypes declared elsewhere, which do not depend on the discrimi-
4503 -- nants of the type, and which are used as component types (i.e.
4504 -- the full view is a recursive type). The designated types of these
4505 -- subtypes can only be elaborated after the type itself, and they
4506 -- need an itype reference.
4507
4508 if Ekind (E) = E_Record_Type
4509 and then Has_Discriminants (E)
4510 then
4511 declare
4512 Comp : Entity_Id;
4513 IR : Node_Id;
4514 Typ : Entity_Id;
4515
4516 begin
4517 Comp := First_Component (E);
35ae2ed8
AC
4518 while Present (Comp) loop
4519 Typ := Etype (Comp);
4520
4521 if Ekind (Comp) = E_Component
4522 and then Is_Access_Type (Typ)
4523 and then Scope (Typ) /= E
4524 and then Base_Type (Designated_Type (Typ)) = E
4525 and then Is_Itype (Designated_Type (Typ))
4526 then
4527 IR := Make_Itype_Reference (Sloc (Comp));
4528 Set_Itype (IR, Designated_Type (Typ));
4529 Append (IR, Result);
4530 end if;
4531
4532 Next_Component (Comp);
4533 end loop;
4534 end;
4535 end if;
70482933
RK
4536 end if;
4537
4538 -- When a type is frozen, the first subtype of the type is frozen as
4539 -- well (RM 13.14(15)). This has to be done after freezing the type,
4540 -- since obviously the first subtype depends on its own base type.
4541
4542 if Is_Type (E) then
c159409f 4543 Freeze_And_Append (First_Subtype (E), N, Result);
70482933
RK
4544
4545 -- If we just froze a tagged non-class wide record, then freeze the
4546 -- corresponding class-wide type. This must be done after the tagged
4547 -- type itself is frozen, because the class-wide type refers to the
4548 -- tagged type which generates the class.
4549
4550 if Is_Tagged_Type (E)
4551 and then not Is_Class_Wide_Type (E)
4552 and then Present (Class_Wide_Type (E))
4553 then
c159409f 4554 Freeze_And_Append (Class_Wide_Type (E), N, Result);
70482933
RK
4555 end if;
4556 end if;
4557
4558 Check_Debug_Info_Needed (E);
4559
4560 -- Special handling for subprograms
4561
4562 if Is_Subprogram (E) then
4563
4564 -- If subprogram has address clause then reset Is_Public flag, since
4565 -- we do not want the backend to generate external references.
4566
4567 if Present (Address_Clause (E))
4568 and then not Is_Library_Level_Entity (E)
4569 then
4570 Set_Is_Public (E, False);
4571
4572 -- If no address clause and not intrinsic, then for imported
4573 -- subprogram in main unit, generate descriptor if we are in
4574 -- Propagate_Exceptions mode.
4575
90878b12
AC
4576 -- This is very odd code, it makes a null result, why ???
4577
70482933
RK
4578 elsif Propagate_Exceptions
4579 and then Is_Imported (E)
4580 and then not Is_Intrinsic_Subprogram (E)
4581 and then Convention (E) /= Convention_Stubbed
4582 then
4583 if Result = No_List then
4584 Result := Empty_List;
4585 end if;
70482933 4586 end if;
70482933
RK
4587 end if;
4588
4589 return Result;
4590 end Freeze_Entity;
4591
4592 -----------------------------
4593 -- Freeze_Enumeration_Type --
4594 -----------------------------
4595
4596 procedure Freeze_Enumeration_Type (Typ : Entity_Id) is
4597 begin
d677afa9
ES
4598 -- By default, if no size clause is present, an enumeration type with
4599 -- Convention C is assumed to interface to a C enum, and has integer
4600 -- size. This applies to types. For subtypes, verify that its base
be482a8c
AC
4601 -- type has no size clause either. Treat other foreign conventions
4602 -- in the same way, and also make sure alignment is set right.
d677afa9 4603
70482933
RK
4604 if Has_Foreign_Convention (Typ)
4605 and then not Has_Size_Clause (Typ)
d677afa9 4606 and then not Has_Size_Clause (Base_Type (Typ))
70482933
RK
4607 and then Esize (Typ) < Standard_Integer_Size
4608 then
4609 Init_Esize (Typ, Standard_Integer_Size);
be482a8c 4610 Set_Alignment (Typ, Alignment (Standard_Integer));
d677afa9 4611
70482933 4612 else
d677afa9
ES
4613 -- If the enumeration type interfaces to C, and it has a size clause
4614 -- that specifies less than int size, it warrants a warning. The
4615 -- user may intend the C type to be an enum or a char, so this is
4616 -- not by itself an error that the Ada compiler can detect, but it
4617 -- it is a worth a heads-up. For Boolean and Character types we
4618 -- assume that the programmer has the proper C type in mind.
4619
4620 if Convention (Typ) = Convention_C
4621 and then Has_Size_Clause (Typ)
4622 and then Esize (Typ) /= Esize (Standard_Integer)
4623 and then not Is_Boolean_Type (Typ)
4624 and then not Is_Character_Type (Typ)
4625 then
4626 Error_Msg_N
4627 ("C enum types have the size of a C int?", Size_Clause (Typ));
4628 end if;
4629
70482933
RK
4630 Adjust_Esize_For_Alignment (Typ);
4631 end if;
4632 end Freeze_Enumeration_Type;
4633
4634 -----------------------
4635 -- Freeze_Expression --
4636 -----------------------
4637
4638 procedure Freeze_Expression (N : Node_Id) is
c6a9797e
RD
4639 In_Spec_Exp : constant Boolean := In_Spec_Expression;
4640 Typ : Entity_Id;
4641 Nam : Entity_Id;
4642 Desig_Typ : Entity_Id;
4643 P : Node_Id;
4644 Parent_P : Node_Id;
70482933
RK
4645
4646 Freeze_Outside : Boolean := False;
4647 -- This flag is set true if the entity must be frozen outside the
4648 -- current subprogram. This happens in the case of expander generated
4649 -- subprograms (_Init_Proc, _Input, _Output, _Read, _Write) which do
4650 -- not freeze all entities like other bodies, but which nevertheless
4651 -- may reference entities that have to be frozen before the body and
4652 -- obviously cannot be frozen inside the body.
4653
4654 function In_Exp_Body (N : Node_Id) return Boolean;
4655 -- Given an N_Handled_Sequence_Of_Statements node N, determines whether
c6823a20 4656 -- it is the handled statement sequence of an expander-generated
7d8b9c99
RD
4657 -- subprogram (init proc, stream subprogram, or renaming as body).
4658 -- If so, this is not a freezing context.
70482933 4659
fbf5a39b
AC
4660 -----------------
4661 -- In_Exp_Body --
4662 -----------------
4663
70482933 4664 function In_Exp_Body (N : Node_Id) return Boolean is
7d8b9c99
RD
4665 P : Node_Id;
4666 Id : Entity_Id;
70482933
RK
4667
4668 begin
4669 if Nkind (N) = N_Subprogram_Body then
4670 P := N;
4671 else
4672 P := Parent (N);
4673 end if;
4674
4675 if Nkind (P) /= N_Subprogram_Body then
4676 return False;
4677
4678 else
7d8b9c99
RD
4679 Id := Defining_Unit_Name (Specification (P));
4680
4681 if Nkind (Id) = N_Defining_Identifier
4682 and then (Is_Init_Proc (Id) or else
4683 Is_TSS (Id, TSS_Stream_Input) or else
4684 Is_TSS (Id, TSS_Stream_Output) or else
4685 Is_TSS (Id, TSS_Stream_Read) or else
4686 Is_TSS (Id, TSS_Stream_Write) or else
4687 Nkind (Original_Node (P)) =
4688 N_Subprogram_Renaming_Declaration)
70482933
RK
4689 then
4690 return True;
4691 else
4692 return False;
4693 end if;
4694 end if;
70482933
RK
4695 end In_Exp_Body;
4696
4697 -- Start of processing for Freeze_Expression
4698
4699 begin
edd63e9b
ES
4700 -- Immediate return if freezing is inhibited. This flag is set by the
4701 -- analyzer to stop freezing on generated expressions that would cause
4702 -- freezing if they were in the source program, but which are not
4703 -- supposed to freeze, since they are created.
70482933
RK
4704
4705 if Must_Not_Freeze (N) then
4706 return;
4707 end if;
4708
4709 -- If expression is non-static, then it does not freeze in a default
4710 -- expression, see section "Handling of Default Expressions" in the
fe58fea7
AC
4711 -- spec of package Sem for further details. Note that we have to make
4712 -- sure that we actually have a real expression (if we have a subtype
4713 -- indication, we can't test Is_Static_Expression!) However, we exclude
4714 -- the case of the prefix of an attribute of a static scalar subtype
4715 -- from this early return, because static subtype attributes should
4716 -- always cause freezing, even in default expressions, but the attribute
4717 -- may not have been marked as static yet (because in Resolve_Attribute,
4718 -- the call to Eval_Attribute follows the call of Freeze_Expression on
4719 -- the prefix).
70482933 4720
c6a9797e 4721 if In_Spec_Exp
70482933
RK
4722 and then Nkind (N) in N_Subexpr
4723 and then not Is_Static_Expression (N)
fe58fea7
AC
4724 and then (Nkind (Parent (N)) /= N_Attribute_Reference
4725 or else not (Is_Entity_Name (N)
4726 and then Is_Type (Entity (N))
4727 and then Is_Static_Subtype (Entity (N))))
70482933
RK
4728 then
4729 return;
4730 end if;
4731
4732 -- Freeze type of expression if not frozen already
4733
fbf5a39b
AC
4734 Typ := Empty;
4735
4736 if Nkind (N) in N_Has_Etype then
4737 if not Is_Frozen (Etype (N)) then
4738 Typ := Etype (N);
4739
4740 -- Base type may be an derived numeric type that is frozen at
4741 -- the point of declaration, but first_subtype is still unfrozen.
4742
4743 elsif not Is_Frozen (First_Subtype (Etype (N))) then
4744 Typ := First_Subtype (Etype (N));
4745 end if;
70482933
RK
4746 end if;
4747
4748 -- For entity name, freeze entity if not frozen already. A special
4749 -- exception occurs for an identifier that did not come from source.
4750 -- We don't let such identifiers freeze a non-internal entity, i.e.
4751 -- an entity that did come from source, since such an identifier was
4752 -- generated by the expander, and cannot have any semantic effect on
4753 -- the freezing semantics. For example, this stops the parameter of
4754 -- an initialization procedure from freezing the variable.
4755
4756 if Is_Entity_Name (N)
4757 and then not Is_Frozen (Entity (N))
4758 and then (Nkind (N) /= N_Identifier
4759 or else Comes_From_Source (N)
4760 or else not Comes_From_Source (Entity (N)))
4761 then
4762 Nam := Entity (N);
70482933
RK
4763 else
4764 Nam := Empty;
4765 end if;
4766
49e90211 4767 -- For an allocator freeze designated type if not frozen already
70482933 4768
ee094616
RD
4769 -- For an aggregate whose component type is an access type, freeze the
4770 -- designated type now, so that its freeze does not appear within the
4771 -- loop that might be created in the expansion of the aggregate. If the
4772 -- designated type is a private type without full view, the expression
4773 -- cannot contain an allocator, so the type is not frozen.
70482933 4774
7aedb36a
AC
4775 -- For a function, we freeze the entity when the subprogram declaration
4776 -- is frozen, but a function call may appear in an initialization proc.
f6cf5b85 4777 -- before the declaration is frozen. We need to generate the extra
7aedb36a 4778 -- formals, if any, to ensure that the expansion of the call includes
2f4f3f3f
AC
4779 -- the proper actuals. This only applies to Ada subprograms, not to
4780 -- imported ones.
7aedb36a 4781
70482933 4782 Desig_Typ := Empty;
70482933 4783
fbf5a39b 4784 case Nkind (N) is
70482933
RK
4785 when N_Allocator =>
4786 Desig_Typ := Designated_Type (Etype (N));
4787
4788 when N_Aggregate =>
4789 if Is_Array_Type (Etype (N))
4790 and then Is_Access_Type (Component_Type (Etype (N)))
4791 then
4792 Desig_Typ := Designated_Type (Component_Type (Etype (N)));
4793 end if;
4794
4795 when N_Selected_Component |
4796 N_Indexed_Component |
4797 N_Slice =>
4798
4799 if Is_Access_Type (Etype (Prefix (N))) then
4800 Desig_Typ := Designated_Type (Etype (Prefix (N)));
4801 end if;
4802
7aedb36a
AC
4803 when N_Identifier =>
4804 if Present (Nam)
4805 and then Ekind (Nam) = E_Function
4806 and then Nkind (Parent (N)) = N_Function_Call
2f4f3f3f 4807 and then Convention (Nam) = Convention_Ada
7aedb36a
AC
4808 then
4809 Create_Extra_Formals (Nam);
4810 end if;
4811
70482933
RK
4812 when others =>
4813 null;
70482933
RK
4814 end case;
4815
4816 if Desig_Typ /= Empty
4817 and then (Is_Frozen (Desig_Typ)
4818 or else (not Is_Fully_Defined (Desig_Typ)))
4819 then
4820 Desig_Typ := Empty;
4821 end if;
4822
4823 -- All done if nothing needs freezing
4824
4825 if No (Typ)
4826 and then No (Nam)
4827 and then No (Desig_Typ)
4828 then
4829 return;
4830 end if;
4831
f6cf5b85 4832 -- Loop for looking at the right place to insert the freeze nodes,
70482933
RK
4833 -- exiting from the loop when it is appropriate to insert the freeze
4834 -- node before the current node P.
4835
bce79204
AC
4836 -- Also checks some special exceptions to the freezing rules. These
4837 -- cases result in a direct return, bypassing the freeze action.
70482933
RK
4838
4839 P := N;
4840 loop
4841 Parent_P := Parent (P);
4842
ee094616
RD
4843 -- If we don't have a parent, then we are not in a well-formed tree.
4844 -- This is an unusual case, but there are some legitimate situations
4845 -- in which this occurs, notably when the expressions in the range of
4846 -- a type declaration are resolved. We simply ignore the freeze
4847 -- request in this case. Is this right ???
70482933
RK
4848
4849 if No (Parent_P) then
4850 return;
4851 end if;
4852
4853 -- See if we have got to an appropriate point in the tree
4854
4855 case Nkind (Parent_P) is
4856
edd63e9b
ES
4857 -- A special test for the exception of (RM 13.14(8)) for the case
4858 -- of per-object expressions (RM 3.8(18)) occurring in component
4859 -- definition or a discrete subtype definition. Note that we test
4860 -- for a component declaration which includes both cases we are
4861 -- interested in, and furthermore the tree does not have explicit
4862 -- nodes for either of these two constructs.
70482933
RK
4863
4864 when N_Component_Declaration =>
4865
4866 -- The case we want to test for here is an identifier that is
4867 -- a per-object expression, this is either a discriminant that
4868 -- appears in a context other than the component declaration
4869 -- or it is a reference to the type of the enclosing construct.
4870
4871 -- For either of these cases, we skip the freezing
4872
c6a9797e 4873 if not In_Spec_Expression
70482933
RK
4874 and then Nkind (N) = N_Identifier
4875 and then (Present (Entity (N)))
4876 then
4877 -- We recognize the discriminant case by just looking for
4878 -- a reference to a discriminant. It can only be one for
4879 -- the enclosing construct. Skip freezing in this case.
4880
4881 if Ekind (Entity (N)) = E_Discriminant then
4882 return;
4883
4884 -- For the case of a reference to the enclosing record,
4885 -- (or task or protected type), we look for a type that
4886 -- matches the current scope.
4887
4888 elsif Entity (N) = Current_Scope then
4889 return;
4890 end if;
4891 end if;
4892
edd63e9b
ES
4893 -- If we have an enumeration literal that appears as the choice in
4894 -- the aggregate of an enumeration representation clause, then
4895 -- freezing does not occur (RM 13.14(10)).
70482933
RK
4896
4897 when N_Enumeration_Representation_Clause =>
4898
4899 -- The case we are looking for is an enumeration literal
4900
4901 if (Nkind (N) = N_Identifier or Nkind (N) = N_Character_Literal)
4902 and then Is_Enumeration_Type (Etype (N))
4903 then
4904 -- If enumeration literal appears directly as the choice,
e14c931f 4905 -- do not freeze (this is the normal non-overloaded case)
70482933
RK
4906
4907 if Nkind (Parent (N)) = N_Component_Association
4908 and then First (Choices (Parent (N))) = N
4909 then
4910 return;
4911
ee094616
RD
4912 -- If enumeration literal appears as the name of function
4913 -- which is the choice, then also do not freeze. This
4914 -- happens in the overloaded literal case, where the
70482933
RK
4915 -- enumeration literal is temporarily changed to a function
4916 -- call for overloading analysis purposes.
4917
4918 elsif Nkind (Parent (N)) = N_Function_Call
4919 and then
4920 Nkind (Parent (Parent (N))) = N_Component_Association
4921 and then
4922 First (Choices (Parent (Parent (N)))) = Parent (N)
4923 then
4924 return;
4925 end if;
4926 end if;
4927
4928 -- Normally if the parent is a handled sequence of statements,
4929 -- then the current node must be a statement, and that is an
4930 -- appropriate place to insert a freeze node.
4931
4932 when N_Handled_Sequence_Of_Statements =>
4933
edd63e9b
ES
4934 -- An exception occurs when the sequence of statements is for
4935 -- an expander generated body that did not do the usual freeze
4936 -- all operation. In this case we usually want to freeze
4937 -- outside this body, not inside it, and we skip past the
4938 -- subprogram body that we are inside.
70482933
RK
4939
4940 if In_Exp_Body (Parent_P) then
4941
4942 -- However, we *do* want to freeze at this point if we have
4943 -- an entity to freeze, and that entity is declared *inside*
4944 -- the body of the expander generated procedure. This case
4945 -- is recognized by the scope of the type, which is either
4946 -- the spec for some enclosing body, or (in the case of
4947 -- init_procs, for which there are no separate specs) the
4948 -- current scope.
4949
4950 declare
4951 Subp : constant Node_Id := Parent (Parent_P);
4952 Cspc : Entity_Id;
4953
4954 begin
4955 if Nkind (Subp) = N_Subprogram_Body then
4956 Cspc := Corresponding_Spec (Subp);
4957
4958 if (Present (Typ) and then Scope (Typ) = Cspc)
4959 or else
4960 (Present (Nam) and then Scope (Nam) = Cspc)
4961 then
4962 exit;
4963
4964 elsif Present (Typ)
4965 and then Scope (Typ) = Current_Scope
4966 and then Current_Scope = Defining_Entity (Subp)
4967 then
4968 exit;
4969 end if;
4970 end if;
4971 end;
4972
4973 -- If not that exception to the exception, then this is
4974 -- where we delay the freeze till outside the body.
4975
4976 Parent_P := Parent (Parent_P);
4977 Freeze_Outside := True;
4978
4979 -- Here if normal case where we are in handled statement
4980 -- sequence and want to do the insertion right there.
4981
4982 else
4983 exit;
4984 end if;
4985
ee094616
RD
4986 -- If parent is a body or a spec or a block, then the current node
4987 -- is a statement or declaration and we can insert the freeze node
4988 -- before it.
70482933 4989
8b3c6430
AC
4990 when N_Block_Statement |
4991 N_Entry_Body |
70482933 4992 N_Package_Body |
8b3c6430 4993 N_Package_Specification |
70482933 4994 N_Protected_Body |
8b3c6430
AC
4995 N_Subprogram_Body |
4996 N_Task_Body => exit;
70482933
RK
4997
4998 -- The expander is allowed to define types in any statements list,
4999 -- so any of the following parent nodes also mark a freezing point
5000 -- if the actual node is in a list of statements or declarations.
5001
8b3c6430
AC
5002 when N_Abortable_Part |
5003 N_Accept_Alternative |
5004 N_And_Then |
70482933
RK
5005 N_Case_Statement_Alternative |
5006 N_Compilation_Unit_Aux |
70482933 5007 N_Conditional_Entry_Call |
8b3c6430
AC
5008 N_Delay_Alternative |
5009 N_Elsif_Part |
70482933 5010 N_Entry_Call_Alternative |
8b3c6430
AC
5011 N_Exception_Handler |
5012 N_Extended_Return_Statement |
5013 N_Freeze_Entity |
5014 N_If_Statement |
bce79204 5015 N_Or_Else |
8b3c6430
AC
5016 N_Selective_Accept |
5017 N_Triggering_Alternative =>
70482933
RK
5018
5019 exit when Is_List_Member (P);
5020
5021 -- Note: The N_Loop_Statement is a special case. A type that
5022 -- appears in the source can never be frozen in a loop (this
edd63e9b
ES
5023 -- occurs only because of a loop expanded by the expander), so we
5024 -- keep on going. Otherwise we terminate the search. Same is true
ee094616
RD
5025 -- of any entity which comes from source. (if they have predefined
5026 -- type, that type does not appear to come from source, but the
5027 -- entity should not be frozen here).
70482933
RK
5028
5029 when N_Loop_Statement =>
5030 exit when not Comes_From_Source (Etype (N))
5031 and then (No (Nam) or else not Comes_From_Source (Nam));
5032
5033 -- For all other cases, keep looking at parents
5034
5035 when others =>
5036 null;
5037 end case;
5038
5039 -- We fall through the case if we did not yet find the proper
5040 -- place in the free for inserting the freeze node, so climb!
5041
5042 P := Parent_P;
5043 end loop;
5044
edd63e9b
ES
5045 -- If the expression appears in a record or an initialization procedure,
5046 -- the freeze nodes are collected and attached to the current scope, to
5047 -- be inserted and analyzed on exit from the scope, to insure that
5048 -- generated entities appear in the correct scope. If the expression is
5049 -- a default for a discriminant specification, the scope is still void.
5050 -- The expression can also appear in the discriminant part of a private
5051 -- or concurrent type.
70482933 5052
c6823a20 5053 -- If the expression appears in a constrained subcomponent of an
edd63e9b
ES
5054 -- enclosing record declaration, the freeze nodes must be attached to
5055 -- the outer record type so they can eventually be placed in the
c6823a20
EB
5056 -- enclosing declaration list.
5057
ee094616
RD
5058 -- The other case requiring this special handling is if we are in a
5059 -- default expression, since in that case we are about to freeze a
5060 -- static type, and the freeze scope needs to be the outer scope, not
5061 -- the scope of the subprogram with the default parameter.
70482933 5062
c6a9797e
RD
5063 -- For default expressions and other spec expressions in generic units,
5064 -- the Move_Freeze_Nodes mechanism (see sem_ch12.adb) takes care of
5065 -- placing them at the proper place, after the generic unit.
70482933 5066
c6a9797e 5067 if (In_Spec_Exp and not Inside_A_Generic)
70482933
RK
5068 or else Freeze_Outside
5069 or else (Is_Type (Current_Scope)
5070 and then (not Is_Concurrent_Type (Current_Scope)
5071 or else not Has_Completion (Current_Scope)))
5072 or else Ekind (Current_Scope) = E_Void
5073 then
5074 declare
c159409f
AC
5075 N : constant Node_Id := Current_Scope;
5076 Freeze_Nodes : List_Id := No_List;
5077 Pos : Int := Scope_Stack.Last;
70482933
RK
5078
5079 begin
5080 if Present (Desig_Typ) then
c159409f 5081 Freeze_And_Append (Desig_Typ, N, Freeze_Nodes);
70482933
RK
5082 end if;
5083
5084 if Present (Typ) then
c159409f 5085 Freeze_And_Append (Typ, N, Freeze_Nodes);
70482933
RK
5086 end if;
5087
5088 if Present (Nam) then
c159409f 5089 Freeze_And_Append (Nam, N, Freeze_Nodes);
70482933
RK
5090 end if;
5091
c6823a20
EB
5092 -- The current scope may be that of a constrained component of
5093 -- an enclosing record declaration, which is above the current
5094 -- scope in the scope stack.
6191e212
AC
5095 -- If the expression is within a top-level pragma, as for a pre-
5096 -- condition on a library-level subprogram, nothing to do.
c6823a20 5097
6191e212
AC
5098 if not Is_Compilation_Unit (Current_Scope)
5099 and then Is_Record_Type (Scope (Current_Scope))
5100 then
c6823a20
EB
5101 Pos := Pos - 1;
5102 end if;
5103
70482933 5104 if Is_Non_Empty_List (Freeze_Nodes) then
c6823a20
EB
5105 if No (Scope_Stack.Table (Pos).Pending_Freeze_Actions) then
5106 Scope_Stack.Table (Pos).Pending_Freeze_Actions :=
c159409f 5107 Freeze_Nodes;
70482933 5108 else
cd5a9750
AC
5109 Append_List (Freeze_Nodes,
5110 Scope_Stack.Table (Pos).Pending_Freeze_Actions);
70482933
RK
5111 end if;
5112 end if;
5113 end;
5114
5115 return;
5116 end if;
5117
5118 -- Now we have the right place to do the freezing. First, a special
c6a9797e
RD
5119 -- adjustment, if we are in spec-expression analysis mode, these freeze
5120 -- actions must not be thrown away (normally all inserted actions are
5121 -- thrown away in this mode. However, the freeze actions are from static
5122 -- expressions and one of the important reasons we are doing this
ee094616 5123 -- special analysis is to get these freeze actions. Therefore we turn
c6a9797e 5124 -- off the In_Spec_Expression mode to propagate these freeze actions.
ee094616 5125 -- This also means they get properly analyzed and expanded.
70482933 5126
c6a9797e 5127 In_Spec_Expression := False;
70482933 5128
fbf5a39b 5129 -- Freeze the designated type of an allocator (RM 13.14(13))
70482933
RK
5130
5131 if Present (Desig_Typ) then
5132 Freeze_Before (P, Desig_Typ);
5133 end if;
5134
fbf5a39b 5135 -- Freeze type of expression (RM 13.14(10)). Note that we took care of
70482933
RK
5136 -- the enumeration representation clause exception in the loop above.
5137
5138 if Present (Typ) then
5139 Freeze_Before (P, Typ);
5140 end if;
5141
fbf5a39b 5142 -- Freeze name if one is present (RM 13.14(11))
70482933
RK
5143
5144 if Present (Nam) then
5145 Freeze_Before (P, Nam);
5146 end if;
5147
c6a9797e
RD
5148 -- Restore In_Spec_Expression flag
5149
5150 In_Spec_Expression := In_Spec_Exp;
70482933
RK
5151 end Freeze_Expression;
5152
5153 -----------------------------
5154 -- Freeze_Fixed_Point_Type --
5155 -----------------------------
5156
edd63e9b
ES
5157 -- Certain fixed-point types and subtypes, including implicit base types
5158 -- and declared first subtypes, have not yet set up a range. This is
5159 -- because the range cannot be set until the Small and Size values are
5160 -- known, and these are not known till the type is frozen.
70482933 5161
edd63e9b
ES
5162 -- To signal this case, Scalar_Range contains an unanalyzed syntactic range
5163 -- whose bounds are unanalyzed real literals. This routine will recognize
5164 -- this case, and transform this range node into a properly typed range
5165 -- with properly analyzed and resolved values.
70482933
RK
5166
5167 procedure Freeze_Fixed_Point_Type (Typ : Entity_Id) is
5168 Rng : constant Node_Id := Scalar_Range (Typ);
5169 Lo : constant Node_Id := Low_Bound (Rng);
5170 Hi : constant Node_Id := High_Bound (Rng);
5171 Btyp : constant Entity_Id := Base_Type (Typ);
5172 Brng : constant Node_Id := Scalar_Range (Btyp);
5173 BLo : constant Node_Id := Low_Bound (Brng);
5174 BHi : constant Node_Id := High_Bound (Brng);
5175 Small : constant Ureal := Small_Value (Typ);
5176 Loval : Ureal;
5177 Hival : Ureal;
5178 Atype : Entity_Id;
5179
5180 Actual_Size : Nat;
5181
5182 function Fsize (Lov, Hiv : Ureal) return Nat;
5183 -- Returns size of type with given bounds. Also leaves these
5184 -- bounds set as the current bounds of the Typ.
5185
0da2c8ac
AC
5186 -----------
5187 -- Fsize --
5188 -----------
5189
70482933
RK
5190 function Fsize (Lov, Hiv : Ureal) return Nat is
5191 begin
5192 Set_Realval (Lo, Lov);
5193 Set_Realval (Hi, Hiv);
5194 return Minimum_Size (Typ);
5195 end Fsize;
5196
0da2c8ac 5197 -- Start of processing for Freeze_Fixed_Point_Type
70482933
RK
5198
5199 begin
5200 -- If Esize of a subtype has not previously been set, set it now
5201
5202 if Unknown_Esize (Typ) then
5203 Atype := Ancestor_Subtype (Typ);
5204
5205 if Present (Atype) then
fbf5a39b 5206 Set_Esize (Typ, Esize (Atype));
70482933 5207 else
fbf5a39b 5208 Set_Esize (Typ, Esize (Base_Type (Typ)));
70482933
RK
5209 end if;
5210 end if;
5211
ee094616
RD
5212 -- Immediate return if the range is already analyzed. This means that
5213 -- the range is already set, and does not need to be computed by this
5214 -- routine.
70482933
RK
5215
5216 if Analyzed (Rng) then
5217 return;
5218 end if;
5219
5220 -- Immediate return if either of the bounds raises Constraint_Error
5221
5222 if Raises_Constraint_Error (Lo)
5223 or else Raises_Constraint_Error (Hi)
5224 then
5225 return;
5226 end if;
5227
5228 Loval := Realval (Lo);
5229 Hival := Realval (Hi);
5230
5231 -- Ordinary fixed-point case
5232
5233 if Is_Ordinary_Fixed_Point_Type (Typ) then
5234
5235 -- For the ordinary fixed-point case, we are allowed to fudge the
ee094616
RD
5236 -- end-points up or down by small. Generally we prefer to fudge up,
5237 -- i.e. widen the bounds for non-model numbers so that the end points
5238 -- are included. However there are cases in which this cannot be
5239 -- done, and indeed cases in which we may need to narrow the bounds.
5240 -- The following circuit makes the decision.
70482933 5241
ee094616
RD
5242 -- Note: our terminology here is that Incl_EP means that the bounds
5243 -- are widened by Small if necessary to include the end points, and
5244 -- Excl_EP means that the bounds are narrowed by Small to exclude the
5245 -- end-points if this reduces the size.
70482933
RK
5246
5247 -- Note that in the Incl case, all we care about is including the
5248 -- end-points. In the Excl case, we want to narrow the bounds as
5249 -- much as permitted by the RM, to give the smallest possible size.
5250
5251 Fudge : declare
5252 Loval_Incl_EP : Ureal;
5253 Hival_Incl_EP : Ureal;
5254
5255 Loval_Excl_EP : Ureal;
5256 Hival_Excl_EP : Ureal;
5257
5258 Size_Incl_EP : Nat;
5259 Size_Excl_EP : Nat;
5260
5261 Model_Num : Ureal;
5262 First_Subt : Entity_Id;
5263 Actual_Lo : Ureal;
5264 Actual_Hi : Ureal;
5265
5266 begin
5267 -- First step. Base types are required to be symmetrical. Right
5268 -- now, the base type range is a copy of the first subtype range.
5269 -- This will be corrected before we are done, but right away we
5270 -- need to deal with the case where both bounds are non-negative.
5271 -- In this case, we set the low bound to the negative of the high
5272 -- bound, to make sure that the size is computed to include the
5273 -- required sign. Note that we do not need to worry about the
5274 -- case of both bounds negative, because the sign will be dealt
5275 -- with anyway. Furthermore we can't just go making such a bound
5276 -- symmetrical, since in a twos-complement system, there is an
e14c931f 5277 -- extra negative value which could not be accommodated on the
70482933
RK
5278 -- positive side.
5279
5280 if Typ = Btyp
5281 and then not UR_Is_Negative (Loval)
5282 and then Hival > Loval
5283 then
5284 Loval := -Hival;
5285 Set_Realval (Lo, Loval);
5286 end if;
5287
5288 -- Compute the fudged bounds. If the number is a model number,
edd63e9b
ES
5289 -- then we do nothing to include it, but we are allowed to backoff
5290 -- to the next adjacent model number when we exclude it. If it is
5291 -- not a model number then we straddle the two values with the
5292 -- model numbers on either side.
70482933
RK
5293
5294 Model_Num := UR_Trunc (Loval / Small) * Small;
5295
5296 if Loval = Model_Num then
5297 Loval_Incl_EP := Model_Num;
5298 else
5299 Loval_Incl_EP := Model_Num - Small;
5300 end if;
5301
5302 -- The low value excluding the end point is Small greater, but
5303 -- we do not do this exclusion if the low value is positive,
5304 -- since it can't help the size and could actually hurt by
5305 -- crossing the high bound.
5306
5307 if UR_Is_Negative (Loval_Incl_EP) then
5308 Loval_Excl_EP := Loval_Incl_EP + Small;
def46b54
RD
5309
5310 -- If the value went from negative to zero, then we have the
5311 -- case where Loval_Incl_EP is the model number just below
5312 -- zero, so we want to stick to the negative value for the
5313 -- base type to maintain the condition that the size will
5314 -- include signed values.
5315
5316 if Typ = Btyp
5317 and then UR_Is_Zero (Loval_Excl_EP)
5318 then
5319 Loval_Excl_EP := Loval_Incl_EP;
5320 end if;
5321
70482933
RK
5322 else
5323 Loval_Excl_EP := Loval_Incl_EP;
5324 end if;
5325
5326 -- Similar processing for upper bound and high value
5327
5328 Model_Num := UR_Trunc (Hival / Small) * Small;
5329
5330 if Hival = Model_Num then
5331 Hival_Incl_EP := Model_Num;
5332 else
5333 Hival_Incl_EP := Model_Num + Small;
5334 end if;
5335
5336 if UR_Is_Positive (Hival_Incl_EP) then
5337 Hival_Excl_EP := Hival_Incl_EP - Small;
5338 else
5339 Hival_Excl_EP := Hival_Incl_EP;
5340 end if;
5341
ee094616
RD
5342 -- One further adjustment is needed. In the case of subtypes, we
5343 -- cannot go outside the range of the base type, or we get
70482933 5344 -- peculiarities, and the base type range is already set. This
ee094616
RD
5345 -- only applies to the Incl values, since clearly the Excl values
5346 -- are already as restricted as they are allowed to be.
70482933
RK
5347
5348 if Typ /= Btyp then
5349 Loval_Incl_EP := UR_Max (Loval_Incl_EP, Realval (BLo));
5350 Hival_Incl_EP := UR_Min (Hival_Incl_EP, Realval (BHi));
5351 end if;
5352
5353 -- Get size including and excluding end points
5354
5355 Size_Incl_EP := Fsize (Loval_Incl_EP, Hival_Incl_EP);
5356 Size_Excl_EP := Fsize (Loval_Excl_EP, Hival_Excl_EP);
5357
5358 -- No need to exclude end-points if it does not reduce size
5359
5360 if Fsize (Loval_Incl_EP, Hival_Excl_EP) = Size_Excl_EP then
5361 Loval_Excl_EP := Loval_Incl_EP;
5362 end if;
5363
5364 if Fsize (Loval_Excl_EP, Hival_Incl_EP) = Size_Excl_EP then
5365 Hival_Excl_EP := Hival_Incl_EP;
5366 end if;
5367
5368 -- Now we set the actual size to be used. We want to use the
5369 -- bounds fudged up to include the end-points but only if this
5370 -- can be done without violating a specifically given size
5371 -- size clause or causing an unacceptable increase in size.
5372
5373 -- Case of size clause given
5374
5375 if Has_Size_Clause (Typ) then
5376
5377 -- Use the inclusive size only if it is consistent with
5378 -- the explicitly specified size.
5379
5380 if Size_Incl_EP <= RM_Size (Typ) then
5381 Actual_Lo := Loval_Incl_EP;
5382 Actual_Hi := Hival_Incl_EP;
5383 Actual_Size := Size_Incl_EP;
5384
5385 -- If the inclusive size is too large, we try excluding
5386 -- the end-points (will be caught later if does not work).
5387
5388 else
5389 Actual_Lo := Loval_Excl_EP;
5390 Actual_Hi := Hival_Excl_EP;
5391 Actual_Size := Size_Excl_EP;
5392 end if;
5393
5394 -- Case of size clause not given
5395
5396 else
5397 -- If we have a base type whose corresponding first subtype
5398 -- has an explicit size that is large enough to include our
5399 -- end-points, then do so. There is no point in working hard
5400 -- to get a base type whose size is smaller than the specified
5401 -- size of the first subtype.
5402
5403 First_Subt := First_Subtype (Typ);
5404
5405 if Has_Size_Clause (First_Subt)
5406 and then Size_Incl_EP <= Esize (First_Subt)
5407 then
5408 Actual_Size := Size_Incl_EP;
5409 Actual_Lo := Loval_Incl_EP;
5410 Actual_Hi := Hival_Incl_EP;
5411
5412 -- If excluding the end-points makes the size smaller and
5413 -- results in a size of 8,16,32,64, then we take the smaller
5414 -- size. For the 64 case, this is compulsory. For the other
5415 -- cases, it seems reasonable. We like to include end points
5416 -- if we can, but not at the expense of moving to the next
5417 -- natural boundary of size.
5418
5419 elsif Size_Incl_EP /= Size_Excl_EP
094cefda 5420 and then Addressable (Size_Excl_EP)
70482933
RK
5421 then
5422 Actual_Size := Size_Excl_EP;
5423 Actual_Lo := Loval_Excl_EP;
5424 Actual_Hi := Hival_Excl_EP;
5425
5426 -- Otherwise we can definitely include the end points
5427
5428 else
5429 Actual_Size := Size_Incl_EP;
5430 Actual_Lo := Loval_Incl_EP;
5431 Actual_Hi := Hival_Incl_EP;
5432 end if;
5433
edd63e9b
ES
5434 -- One pathological case: normally we never fudge a low bound
5435 -- down, since it would seem to increase the size (if it has
5436 -- any effect), but for ranges containing single value, or no
5437 -- values, the high bound can be small too large. Consider:
70482933
RK
5438
5439 -- type t is delta 2.0**(-14)
5440 -- range 131072.0 .. 0;
5441
edd63e9b
ES
5442 -- That lower bound is *just* outside the range of 32 bits, and
5443 -- does need fudging down in this case. Note that the bounds
5444 -- will always have crossed here, since the high bound will be
5445 -- fudged down if necessary, as in the case of:
70482933
RK
5446
5447 -- type t is delta 2.0**(-14)
5448 -- range 131072.0 .. 131072.0;
5449
edd63e9b
ES
5450 -- So we detect the situation by looking for crossed bounds,
5451 -- and if the bounds are crossed, and the low bound is greater
5452 -- than zero, we will always back it off by small, since this
5453 -- is completely harmless.
70482933
RK
5454
5455 if Actual_Lo > Actual_Hi then
5456 if UR_Is_Positive (Actual_Lo) then
5457 Actual_Lo := Loval_Incl_EP - Small;
5458 Actual_Size := Fsize (Actual_Lo, Actual_Hi);
5459
5460 -- And of course, we need to do exactly the same parallel
5461 -- fudge for flat ranges in the negative region.
5462
5463 elsif UR_Is_Negative (Actual_Hi) then
5464 Actual_Hi := Hival_Incl_EP + Small;
5465 Actual_Size := Fsize (Actual_Lo, Actual_Hi);
5466 end if;
5467 end if;
5468 end if;
5469
5470 Set_Realval (Lo, Actual_Lo);
5471 Set_Realval (Hi, Actual_Hi);
5472 end Fudge;
5473
5474 -- For the decimal case, none of this fudging is required, since there
5475 -- are no end-point problems in the decimal case (the end-points are
5476 -- always included).
5477
5478 else
5479 Actual_Size := Fsize (Loval, Hival);
5480 end if;
5481
5482 -- At this stage, the actual size has been calculated and the proper
5483 -- required bounds are stored in the low and high bounds.
5484
5485 if Actual_Size > 64 then
5486 Error_Msg_Uint_1 := UI_From_Int (Actual_Size);
5487 Error_Msg_N
7d8b9c99
RD
5488 ("size required (^) for type& too large, maximum allowed is 64",
5489 Typ);
70482933
RK
5490 Actual_Size := 64;
5491 end if;
5492
5493 -- Check size against explicit given size
5494
5495 if Has_Size_Clause (Typ) then
5496 if Actual_Size > RM_Size (Typ) then
5497 Error_Msg_Uint_1 := RM_Size (Typ);
5498 Error_Msg_Uint_2 := UI_From_Int (Actual_Size);
5499 Error_Msg_NE
7d8b9c99 5500 ("size given (^) for type& too small, minimum allowed is ^",
70482933
RK
5501 Size_Clause (Typ), Typ);
5502
5503 else
5504 Actual_Size := UI_To_Int (Esize (Typ));
5505 end if;
5506
5507 -- Increase size to next natural boundary if no size clause given
5508
5509 else
5510 if Actual_Size <= 8 then
5511 Actual_Size := 8;
5512 elsif Actual_Size <= 16 then
5513 Actual_Size := 16;
5514 elsif Actual_Size <= 32 then
5515 Actual_Size := 32;
5516 else
5517 Actual_Size := 64;
5518 end if;
5519
5520 Init_Esize (Typ, Actual_Size);
5521 Adjust_Esize_For_Alignment (Typ);
5522 end if;
5523
edd63e9b
ES
5524 -- If we have a base type, then expand the bounds so that they extend to
5525 -- the full width of the allocated size in bits, to avoid junk range
5526 -- checks on intermediate computations.
70482933
RK
5527
5528 if Base_Type (Typ) = Typ then
5529 Set_Realval (Lo, -(Small * (Uint_2 ** (Actual_Size - 1))));
5530 Set_Realval (Hi, (Small * (Uint_2 ** (Actual_Size - 1) - 1)));
5531 end if;
5532
5533 -- Final step is to reanalyze the bounds using the proper type
5534 -- and set the Corresponding_Integer_Value fields of the literals.
5535
5536 Set_Etype (Lo, Empty);
5537 Set_Analyzed (Lo, False);
5538 Analyze (Lo);
5539
edd63e9b
ES
5540 -- Resolve with universal fixed if the base type, and the base type if
5541 -- it is a subtype. Note we can't resolve the base type with itself,
5542 -- that would be a reference before definition.
70482933
RK
5543
5544 if Typ = Btyp then
5545 Resolve (Lo, Universal_Fixed);
5546 else
5547 Resolve (Lo, Btyp);
5548 end if;
5549
5550 -- Set corresponding integer value for bound
5551
5552 Set_Corresponding_Integer_Value
5553 (Lo, UR_To_Uint (Realval (Lo) / Small));
5554
5555 -- Similar processing for high bound
5556
5557 Set_Etype (Hi, Empty);
5558 Set_Analyzed (Hi, False);
5559 Analyze (Hi);
5560
5561 if Typ = Btyp then
5562 Resolve (Hi, Universal_Fixed);
5563 else
5564 Resolve (Hi, Btyp);
5565 end if;
5566
5567 Set_Corresponding_Integer_Value
5568 (Hi, UR_To_Uint (Realval (Hi) / Small));
5569
5570 -- Set type of range to correspond to bounds
5571
5572 Set_Etype (Rng, Etype (Lo));
5573
fbf5a39b 5574 -- Set Esize to calculated size if not set already
70482933 5575
fbf5a39b
AC
5576 if Unknown_Esize (Typ) then
5577 Init_Esize (Typ, Actual_Size);
5578 end if;
70482933
RK
5579
5580 -- Set RM_Size if not already set. If already set, check value
5581
5582 declare
5583 Minsiz : constant Uint := UI_From_Int (Minimum_Size (Typ));
5584
5585 begin
5586 if RM_Size (Typ) /= Uint_0 then
5587 if RM_Size (Typ) < Minsiz then
5588 Error_Msg_Uint_1 := RM_Size (Typ);
5589 Error_Msg_Uint_2 := Minsiz;
5590 Error_Msg_NE
7d8b9c99 5591 ("size given (^) for type& too small, minimum allowed is ^",
70482933
RK
5592 Size_Clause (Typ), Typ);
5593 end if;
5594
5595 else
5596 Set_RM_Size (Typ, Minsiz);
5597 end if;
5598 end;
70482933
RK
5599 end Freeze_Fixed_Point_Type;
5600
5601 ------------------
5602 -- Freeze_Itype --
5603 ------------------
5604
5605 procedure Freeze_Itype (T : Entity_Id; N : Node_Id) is
5606 L : List_Id;
5607
5608 begin
5609 Set_Has_Delayed_Freeze (T);
c159409f 5610 L := Freeze_Entity (T, N);
70482933
RK
5611
5612 if Is_Non_Empty_List (L) then
5613 Insert_Actions (N, L);
5614 end if;
5615 end Freeze_Itype;
5616
5617 --------------------------
5618 -- Freeze_Static_Object --
5619 --------------------------
5620
5621 procedure Freeze_Static_Object (E : Entity_Id) is
5622
5623 Cannot_Be_Static : exception;
5624 -- Exception raised if the type of a static object cannot be made
5625 -- static. This happens if the type depends on non-global objects.
5626
5627 procedure Ensure_Expression_Is_SA (N : Node_Id);
ee094616
RD
5628 -- Called to ensure that an expression used as part of a type definition
5629 -- is statically allocatable, which means that the expression type is
5630 -- statically allocatable, and the expression is either static, or a
5631 -- reference to a library level constant.
70482933
RK
5632
5633 procedure Ensure_Type_Is_SA (Typ : Entity_Id);
5634 -- Called to mark a type as static, checking that it is possible
5635 -- to set the type as static. If it is not possible, then the
5636 -- exception Cannot_Be_Static is raised.
5637
5638 -----------------------------
5639 -- Ensure_Expression_Is_SA --
5640 -----------------------------
5641
5642 procedure Ensure_Expression_Is_SA (N : Node_Id) is
5643 Ent : Entity_Id;
5644
5645 begin
5646 Ensure_Type_Is_SA (Etype (N));
5647
5648 if Is_Static_Expression (N) then
5649 return;
5650
5651 elsif Nkind (N) = N_Identifier then
5652 Ent := Entity (N);
5653
5654 if Present (Ent)
5655 and then Ekind (Ent) = E_Constant
5656 and then Is_Library_Level_Entity (Ent)
5657 then
5658 return;
5659 end if;
5660 end if;
5661
5662 raise Cannot_Be_Static;
5663 end Ensure_Expression_Is_SA;
5664
5665 -----------------------
5666 -- Ensure_Type_Is_SA --
5667 -----------------------
5668
5669 procedure Ensure_Type_Is_SA (Typ : Entity_Id) is
5670 N : Node_Id;
5671 C : Entity_Id;
5672
5673 begin
5674 -- If type is library level, we are all set
5675
5676 if Is_Library_Level_Entity (Typ) then
5677 return;
5678 end if;
5679
ee094616
RD
5680 -- We are also OK if the type already marked as statically allocated,
5681 -- which means we processed it before.
70482933
RK
5682
5683 if Is_Statically_Allocated (Typ) then
5684 return;
5685 end if;
5686
5687 -- Mark type as statically allocated
5688
5689 Set_Is_Statically_Allocated (Typ);
5690
5691 -- Check that it is safe to statically allocate this type
5692
5693 if Is_Scalar_Type (Typ) or else Is_Real_Type (Typ) then
5694 Ensure_Expression_Is_SA (Type_Low_Bound (Typ));
5695 Ensure_Expression_Is_SA (Type_High_Bound (Typ));
5696
5697 elsif Is_Array_Type (Typ) then
5698 N := First_Index (Typ);
5699 while Present (N) loop
5700 Ensure_Type_Is_SA (Etype (N));
5701 Next_Index (N);
5702 end loop;
5703
5704 Ensure_Type_Is_SA (Component_Type (Typ));
5705
5706 elsif Is_Access_Type (Typ) then
5707 if Ekind (Designated_Type (Typ)) = E_Subprogram_Type then
5708
5709 declare
5710 F : Entity_Id;
5711 T : constant Entity_Id := Etype (Designated_Type (Typ));
5712
5713 begin
5714 if T /= Standard_Void_Type then
5715 Ensure_Type_Is_SA (T);
5716 end if;
5717
5718 F := First_Formal (Designated_Type (Typ));
70482933
RK
5719 while Present (F) loop
5720 Ensure_Type_Is_SA (Etype (F));
5721 Next_Formal (F);
5722 end loop;
5723 end;
5724
5725 else
5726 Ensure_Type_Is_SA (Designated_Type (Typ));
5727 end if;
5728
5729 elsif Is_Record_Type (Typ) then
5730 C := First_Entity (Typ);
70482933
RK
5731 while Present (C) loop
5732 if Ekind (C) = E_Discriminant
5733 or else Ekind (C) = E_Component
5734 then
5735 Ensure_Type_Is_SA (Etype (C));
5736
5737 elsif Is_Type (C) then
5738 Ensure_Type_Is_SA (C);
5739 end if;
5740
5741 Next_Entity (C);
5742 end loop;
5743
5744 elsif Ekind (Typ) = E_Subprogram_Type then
5745 Ensure_Type_Is_SA (Etype (Typ));
5746
5747 C := First_Formal (Typ);
5748 while Present (C) loop
5749 Ensure_Type_Is_SA (Etype (C));
5750 Next_Formal (C);
5751 end loop;
5752
5753 else
5754 raise Cannot_Be_Static;
5755 end if;
5756 end Ensure_Type_Is_SA;
5757
5758 -- Start of processing for Freeze_Static_Object
5759
5760 begin
5761 Ensure_Type_Is_SA (Etype (E));
5762
5763 exception
5764 when Cannot_Be_Static =>
5765
09494c32
AC
5766 -- If the object that cannot be static is imported or exported, then
5767 -- issue an error message saying that this object cannot be imported
5768 -- or exported. If it has an address clause it is an overlay in the
5769 -- current partition and the static requirement is not relevant.
d606f1df 5770 -- Do not issue any error message when ignoring rep clauses.
09494c32 5771
d606f1df
AC
5772 if Ignore_Rep_Clauses then
5773 null;
5774
5775 elsif Is_Imported (E) then
5776 if No (Address_Clause (E)) then
5777 Error_Msg_N
5778 ("& cannot be imported (local type is not constant)", E);
5779 end if;
70482933
RK
5780
5781 -- Otherwise must be exported, something is wrong if compiler
5782 -- is marking something as statically allocated which cannot be).
5783
5784 else pragma Assert (Is_Exported (E));
5785 Error_Msg_N
5786 ("& cannot be exported (local type is not constant)", E);
5787 end if;
5788 end Freeze_Static_Object;
5789
5790 -----------------------
5791 -- Freeze_Subprogram --
5792 -----------------------
5793
5794 procedure Freeze_Subprogram (E : Entity_Id) is
5795 Retype : Entity_Id;
5796 F : Entity_Id;
5797
5798 begin
5799 -- Subprogram may not have an address clause unless it is imported
5800
5801 if Present (Address_Clause (E)) then
5802 if not Is_Imported (E) then
5803 Error_Msg_N
5804 ("address clause can only be given " &
5805 "for imported subprogram",
5806 Name (Address_Clause (E)));
5807 end if;
5808 end if;
5809
91b1417d
AC
5810 -- Reset the Pure indication on an imported subprogram unless an
5811 -- explicit Pure_Function pragma was present. We do this because
ee094616
RD
5812 -- otherwise it is an insidious error to call a non-pure function from
5813 -- pure unit and have calls mysteriously optimized away. What happens
5814 -- here is that the Import can bypass the normal check to ensure that
5815 -- pure units call only pure subprograms.
91b1417d
AC
5816
5817 if Is_Imported (E)
5818 and then Is_Pure (E)
5819 and then not Has_Pragma_Pure_Function (E)
5820 then
5821 Set_Is_Pure (E, False);
5822 end if;
5823
70482933
RK
5824 -- For non-foreign convention subprograms, this is where we create
5825 -- the extra formals (for accessibility level and constrained bit
5826 -- information). We delay this till the freeze point precisely so
5827 -- that we know the convention!
5828
5829 if not Has_Foreign_Convention (E) then
5830 Create_Extra_Formals (E);
5831 Set_Mechanisms (E);
5832
5833 -- If this is convention Ada and a Valued_Procedure, that's odd
5834
5835 if Ekind (E) = E_Procedure
5836 and then Is_Valued_Procedure (E)
5837 and then Convention (E) = Convention_Ada
fbf5a39b 5838 and then Warn_On_Export_Import
70482933
RK
5839 then
5840 Error_Msg_N
5841 ("?Valued_Procedure has no effect for convention Ada", E);
5842 Set_Is_Valued_Procedure (E, False);
5843 end if;
5844
5845 -- Case of foreign convention
5846
5847 else
5848 Set_Mechanisms (E);
5849
fbf5a39b 5850 -- For foreign conventions, warn about return of an
70482933
RK
5851 -- unconstrained array.
5852
5853 -- Note: we *do* allow a return by descriptor for the VMS case,
5854 -- though here there is probably more to be done ???
5855
5856 if Ekind (E) = E_Function then
5857 Retype := Underlying_Type (Etype (E));
5858
5859 -- If no return type, probably some other error, e.g. a
5860 -- missing full declaration, so ignore.
5861
5862 if No (Retype) then
5863 null;
5864
5865 -- If the return type is generic, we have emitted a warning
edd63e9b
ES
5866 -- earlier on, and there is nothing else to check here. Specific
5867 -- instantiations may lead to erroneous behavior.
70482933
RK
5868
5869 elsif Is_Generic_Type (Etype (E)) then
5870 null;
5871
e7d72fb9 5872 -- Display warning if returning unconstrained array
59366db6 5873
70482933
RK
5874 elsif Is_Array_Type (Retype)
5875 and then not Is_Constrained (Retype)
e7d72fb9 5876
2c1b72d7
AC
5877 -- Exclude cases where descriptor mechanism is set, since the
5878 -- VMS descriptor mechanisms allow such unconstrained returns.
e7d72fb9 5879
70482933 5880 and then Mechanism (E) not in Descriptor_Codes
e7d72fb9 5881
df3e68b1
HK
5882 -- Check appropriate warning is enabled (should we check for
5883 -- Warnings (Off) on specific entities here, probably so???)
e7d72fb9 5884
fbf5a39b 5885 and then Warn_On_Export_Import
e7d72fb9 5886
2c1b72d7
AC
5887 -- Exclude the VM case, since return of unconstrained arrays
5888 -- is properly handled in both the JVM and .NET cases.
e7d72fb9 5889
f3b57ab0 5890 and then VM_Target = No_VM
70482933 5891 then
fbf5a39b
AC
5892 Error_Msg_N
5893 ("?foreign convention function& should not return " &
5894 "unconstrained array", E);
70482933
RK
5895 return;
5896 end if;
5897 end if;
5898
5899 -- If any of the formals for an exported foreign convention
edd63e9b
ES
5900 -- subprogram have defaults, then emit an appropriate warning since
5901 -- this is odd (default cannot be used from non-Ada code)
70482933
RK
5902
5903 if Is_Exported (E) then
5904 F := First_Formal (E);
5905 while Present (F) loop
fbf5a39b
AC
5906 if Warn_On_Export_Import
5907 and then Present (Default_Value (F))
5908 then
70482933
RK
5909 Error_Msg_N
5910 ("?parameter cannot be defaulted in non-Ada call",
5911 Default_Value (F));
5912 end if;
5913
5914 Next_Formal (F);
5915 end loop;
5916 end if;
5917 end if;
5918
e7d72fb9
AC
5919 -- For VMS, descriptor mechanisms for parameters are allowed only for
5920 -- imported/exported subprograms. Moreover, the NCA descriptor is not
5921 -- allowed for parameters of exported subprograms.
70482933
RK
5922
5923 if OpenVMS_On_Target then
7d8b9c99
RD
5924 if Is_Exported (E) then
5925 F := First_Formal (E);
5926 while Present (F) loop
5927 if Mechanism (F) = By_Descriptor_NCA then
5928 Error_Msg_N
5929 ("'N'C'A' descriptor for parameter not permitted", F);
5930 Error_Msg_N
5931 ("\can only be used for imported subprogram", F);
5932 end if;
5933
5934 Next_Formal (F);
5935 end loop;
5936
5937 elsif not Is_Imported (E) then
70482933
RK
5938 F := First_Formal (E);
5939 while Present (F) loop
5940 if Mechanism (F) in Descriptor_Codes then
5941 Error_Msg_N
5942 ("descriptor mechanism for parameter not permitted", F);
5943 Error_Msg_N
7d8b9c99 5944 ("\can only be used for imported/exported subprogram", F);
70482933
RK
5945 end if;
5946
5947 Next_Formal (F);
5948 end loop;
5949 end if;
5950 end if;
edd63e9b
ES
5951
5952 -- Pragma Inline_Always is disallowed for dispatching subprograms
5953 -- because the address of such subprograms is saved in the dispatch
5954 -- table to support dispatching calls, and dispatching calls cannot
5955 -- be inlined. This is consistent with the restriction against using
5956 -- 'Access or 'Address on an Inline_Always subprogram.
5957
def46b54
RD
5958 if Is_Dispatching_Operation (E)
5959 and then Has_Pragma_Inline_Always (E)
5960 then
edd63e9b
ES
5961 Error_Msg_N
5962 ("pragma Inline_Always not allowed for dispatching subprograms", E);
5963 end if;
c6a9797e
RD
5964
5965 -- Because of the implicit representation of inherited predefined
5966 -- operators in the front-end, the overriding status of the operation
5967 -- may be affected when a full view of a type is analyzed, and this is
5968 -- not captured by the analysis of the corresponding type declaration.
5969 -- Therefore the correctness of a not-overriding indicator must be
5970 -- rechecked when the subprogram is frozen.
5971
5972 if Nkind (E) = N_Defining_Operator_Symbol
5973 and then not Error_Posted (Parent (E))
5974 then
5975 Check_Overriding_Indicator (E, Empty, Is_Primitive (E));
5976 end if;
70482933
RK
5977 end Freeze_Subprogram;
5978
15ce9ca2
AC
5979 ----------------------
5980 -- Is_Fully_Defined --
5981 ----------------------
70482933 5982
70482933
RK
5983 function Is_Fully_Defined (T : Entity_Id) return Boolean is
5984 begin
5985 if Ekind (T) = E_Class_Wide_Type then
5986 return Is_Fully_Defined (Etype (T));
657a9dd9
AC
5987
5988 elsif Is_Array_Type (T) then
5989 return Is_Fully_Defined (Component_Type (T));
5990
5991 elsif Is_Record_Type (T)
5992 and not Is_Private_Type (T)
5993 then
ee094616
RD
5994 -- Verify that the record type has no components with private types
5995 -- without completion.
657a9dd9
AC
5996
5997 declare
5998 Comp : Entity_Id;
bde58e32 5999
657a9dd9
AC
6000 begin
6001 Comp := First_Component (T);
657a9dd9
AC
6002 while Present (Comp) loop
6003 if not Is_Fully_Defined (Etype (Comp)) then
6004 return False;
6005 end if;
6006
6007 Next_Component (Comp);
6008 end loop;
6009 return True;
6010 end;
6011
30537990 6012 -- For the designated type of an access to subprogram, all types in
4519314c
AC
6013 -- the profile must be fully defined.
6014
6015 elsif Ekind (T) = E_Subprogram_Type then
6016 declare
6017 F : Entity_Id;
6018
6019 begin
6020 F := First_Formal (T);
6021 while Present (F) loop
6022 if not Is_Fully_Defined (Etype (F)) then
6023 return False;
6024 end if;
6025
6026 Next_Formal (F);
6027 end loop;
6028
6029 return Is_Fully_Defined (Etype (T));
6030 end;
6031
86cde7b1
RD
6032 else
6033 return not Is_Private_Type (T)
6034 or else Present (Full_View (Base_Type (T)));
70482933
RK
6035 end if;
6036 end Is_Fully_Defined;
6037
70d904ca 6038 ---------------------------------
70482933
RK
6039 -- Process_Default_Expressions --
6040 ---------------------------------
6041
6042 procedure Process_Default_Expressions
6043 (E : Entity_Id;
6044 After : in out Node_Id)
6045 is
6046 Loc : constant Source_Ptr := Sloc (E);
6047 Dbody : Node_Id;
6048 Formal : Node_Id;
6049 Dcopy : Node_Id;
6050 Dnam : Entity_Id;
6051
6052 begin
6053 Set_Default_Expressions_Processed (E);
6054
ee094616
RD
6055 -- A subprogram instance and its associated anonymous subprogram share
6056 -- their signature. The default expression functions are defined in the
6057 -- wrapper packages for the anonymous subprogram, and should not be
6058 -- generated again for the instance.
70482933
RK
6059
6060 if Is_Generic_Instance (E)
6061 and then Present (Alias (E))
6062 and then Default_Expressions_Processed (Alias (E))
6063 then
6064 return;
6065 end if;
6066
6067 Formal := First_Formal (E);
70482933
RK
6068 while Present (Formal) loop
6069 if Present (Default_Value (Formal)) then
6070
6071 -- We work with a copy of the default expression because we
6072 -- do not want to disturb the original, since this would mess
6073 -- up the conformance checking.
6074
6075 Dcopy := New_Copy_Tree (Default_Value (Formal));
6076
6077 -- The analysis of the expression may generate insert actions,
6078 -- which of course must not be executed. We wrap those actions
6079 -- in a procedure that is not called, and later on eliminated.
6080 -- The following cases have no side-effects, and are analyzed
6081 -- directly.
6082
6083 if Nkind (Dcopy) = N_Identifier
6084 or else Nkind (Dcopy) = N_Expanded_Name
6085 or else Nkind (Dcopy) = N_Integer_Literal
6086 or else (Nkind (Dcopy) = N_Real_Literal
6087 and then not Vax_Float (Etype (Dcopy)))
6088 or else Nkind (Dcopy) = N_Character_Literal
6089 or else Nkind (Dcopy) = N_String_Literal
86cde7b1 6090 or else Known_Null (Dcopy)
70482933
RK
6091 or else (Nkind (Dcopy) = N_Attribute_Reference
6092 and then
6093 Attribute_Name (Dcopy) = Name_Null_Parameter)
70482933
RK
6094 then
6095
6096 -- If there is no default function, we must still do a full
ee094616
RD
6097 -- analyze call on the default value, to ensure that all error
6098 -- checks are performed, e.g. those associated with static
6099 -- evaluation. Note: this branch will always be taken if the
6100 -- analyzer is turned off (but we still need the error checks).
70482933
RK
6101
6102 -- Note: the setting of parent here is to meet the requirement
6103 -- that we can only analyze the expression while attached to
6104 -- the tree. Really the requirement is that the parent chain
6105 -- be set, we don't actually need to be in the tree.
6106
6107 Set_Parent (Dcopy, Declaration_Node (Formal));
6108 Analyze (Dcopy);
6109
6110 -- Default expressions are resolved with their own type if the
6111 -- context is generic, to avoid anomalies with private types.
6112
6113 if Ekind (Scope (E)) = E_Generic_Package then
fbf5a39b 6114 Resolve (Dcopy);
70482933
RK
6115 else
6116 Resolve (Dcopy, Etype (Formal));
6117 end if;
6118
6119 -- If that resolved expression will raise constraint error,
6120 -- then flag the default value as raising constraint error.
6121 -- This allows a proper error message on the calls.
6122
6123 if Raises_Constraint_Error (Dcopy) then
6124 Set_Raises_Constraint_Error (Default_Value (Formal));
6125 end if;
6126
6127 -- If the default is a parameterless call, we use the name of
6128 -- the called function directly, and there is no body to build.
6129
6130 elsif Nkind (Dcopy) = N_Function_Call
6131 and then No (Parameter_Associations (Dcopy))
6132 then
6133 null;
6134
6135 -- Else construct and analyze the body of a wrapper procedure
6136 -- that contains an object declaration to hold the expression.
6137 -- Given that this is done only to complete the analysis, it
6138 -- simpler to build a procedure than a function which might
6139 -- involve secondary stack expansion.
6140
6141 else
b29def53 6142 Dnam := Make_Temporary (Loc, 'D');
70482933
RK
6143
6144 Dbody :=
6145 Make_Subprogram_Body (Loc,
6146 Specification =>
6147 Make_Procedure_Specification (Loc,
6148 Defining_Unit_Name => Dnam),
6149
6150 Declarations => New_List (
6151 Make_Object_Declaration (Loc,
2c1b72d7
AC
6152 Defining_Identifier => Make_Temporary (Loc, 'T'),
6153 Object_Definition =>
df3e68b1 6154 New_Occurrence_Of (Etype (Formal), Loc),
2c1b72d7 6155 Expression => New_Copy_Tree (Dcopy))),
70482933
RK
6156
6157 Handled_Statement_Sequence =>
6158 Make_Handled_Sequence_Of_Statements (Loc,
2c1b72d7 6159 Statements => Empty_List));
70482933
RK
6160
6161 Set_Scope (Dnam, Scope (E));
6162 Set_Assignment_OK (First (Declarations (Dbody)));
6163 Set_Is_Eliminated (Dnam);
6164 Insert_After (After, Dbody);
6165 Analyze (Dbody);
6166 After := Dbody;
6167 end if;
6168 end if;
6169
6170 Next_Formal (Formal);
6171 end loop;
70482933
RK
6172 end Process_Default_Expressions;
6173
6174 ----------------------------------------
6175 -- Set_Component_Alignment_If_Not_Set --
6176 ----------------------------------------
6177
6178 procedure Set_Component_Alignment_If_Not_Set (Typ : Entity_Id) is
6179 begin
6180 -- Ignore if not base type, subtypes don't need anything
6181
6182 if Typ /= Base_Type (Typ) then
6183 return;
6184 end if;
6185
6186 -- Do not override existing representation
6187
6188 if Is_Packed (Typ) then
6189 return;
6190
6191 elsif Has_Specified_Layout (Typ) then
6192 return;
6193
6194 elsif Component_Alignment (Typ) /= Calign_Default then
6195 return;
6196
6197 else
6198 Set_Component_Alignment
6199 (Typ, Scope_Stack.Table
6200 (Scope_Stack.Last).Component_Alignment_Default);
6201 end if;
6202 end Set_Component_Alignment_If_Not_Set;
6203
c6823a20
EB
6204 ------------------
6205 -- Undelay_Type --
6206 ------------------
6207
6208 procedure Undelay_Type (T : Entity_Id) is
6209 begin
6210 Set_Has_Delayed_Freeze (T, False);
6211 Set_Freeze_Node (T, Empty);
6212
6213 -- Since we don't want T to have a Freeze_Node, we don't want its
6214 -- Full_View or Corresponding_Record_Type to have one either.
6215
6216 -- ??? Fundamentally, this whole handling is a kludge. What we really
ee094616
RD
6217 -- want is to be sure that for an Itype that's part of record R and is a
6218 -- subtype of type T, that it's frozen after the later of the freeze
c6823a20
EB
6219 -- points of R and T. We have no way of doing that directly, so what we
6220 -- do is force most such Itypes to be frozen as part of freezing R via
6221 -- this procedure and only delay the ones that need to be delayed
ee094616
RD
6222 -- (mostly the designated types of access types that are defined as part
6223 -- of the record).
c6823a20
EB
6224
6225 if Is_Private_Type (T)
6226 and then Present (Full_View (T))
6227 and then Is_Itype (Full_View (T))
6228 and then Is_Record_Type (Scope (Full_View (T)))
6229 then
6230 Undelay_Type (Full_View (T));
6231 end if;
6232
6233 if Is_Concurrent_Type (T)
6234 and then Present (Corresponding_Record_Type (T))
6235 and then Is_Itype (Corresponding_Record_Type (T))
6236 and then Is_Record_Type (Scope (Corresponding_Record_Type (T)))
6237 then
6238 Undelay_Type (Corresponding_Record_Type (T));
6239 end if;
6240 end Undelay_Type;
6241
fbf5a39b
AC
6242 ------------------
6243 -- Warn_Overlay --
6244 ------------------
6245
6246 procedure Warn_Overlay
6247 (Expr : Node_Id;
6248 Typ : Entity_Id;
6249 Nam : Entity_Id)
6250 is
6251 Ent : constant Entity_Id := Entity (Nam);
49e90211 6252 -- The object to which the address clause applies
fbf5a39b
AC
6253
6254 Init : Node_Id;
6255 Old : Entity_Id := Empty;
6256 Decl : Node_Id;
6257
6258 begin
6259 -- No warning if address clause overlay warnings are off
6260
6261 if not Address_Clause_Overlay_Warnings then
6262 return;
6263 end if;
6264
6265 -- No warning if there is an explicit initialization
6266
6267 Init := Original_Node (Expression (Declaration_Node (Ent)));
6268
6269 if Present (Init) and then Comes_From_Source (Init) then
6270 return;
6271 end if;
6272
edd63e9b 6273 -- We only give the warning for non-imported entities of a type for
0ac73189 6274 -- which a non-null base init proc is defined, or for objects of access
a5d83d61 6275 -- types with implicit null initialization, or when Normalize_Scalars
0ac73189
AC
6276 -- applies and the type is scalar or a string type (the latter being
6277 -- tested for because predefined String types are initialized by inline
a5d83d61
AC
6278 -- code rather than by an init_proc). Note that we do not give the
6279 -- warning for Initialize_Scalars, since we suppressed initialization
e526d0c7 6280 -- in this case. Also, do not warn if Suppress_Initialization is set.
fbf5a39b
AC
6281
6282 if Present (Expr)
fbf5a39b 6283 and then not Is_Imported (Ent)
e526d0c7 6284 and then not Initialization_Suppressed (Typ)
0ac73189 6285 and then (Has_Non_Null_Base_Init_Proc (Typ)
e526d0c7
AC
6286 or else Is_Access_Type (Typ)
6287 or else (Normalize_Scalars
6288 and then (Is_Scalar_Type (Typ)
6289 or else Is_String_Type (Typ))))
fbf5a39b
AC
6290 then
6291 if Nkind (Expr) = N_Attribute_Reference
6292 and then Is_Entity_Name (Prefix (Expr))
6293 then
6294 Old := Entity (Prefix (Expr));
6295
6296 elsif Is_Entity_Name (Expr)
6297 and then Ekind (Entity (Expr)) = E_Constant
6298 then
6299 Decl := Declaration_Node (Entity (Expr));
6300
6301 if Nkind (Decl) = N_Object_Declaration
6302 and then Present (Expression (Decl))
6303 and then Nkind (Expression (Decl)) = N_Attribute_Reference
6304 and then Is_Entity_Name (Prefix (Expression (Decl)))
6305 then
6306 Old := Entity (Prefix (Expression (Decl)));
6307
6308 elsif Nkind (Expr) = N_Function_Call then
6309 return;
6310 end if;
6311
ee094616
RD
6312 -- A function call (most likely to To_Address) is probably not an
6313 -- overlay, so skip warning. Ditto if the function call was inlined
6314 -- and transformed into an entity.
fbf5a39b
AC
6315
6316 elsif Nkind (Original_Node (Expr)) = N_Function_Call then
6317 return;
6318 end if;
6319
6320 Decl := Next (Parent (Expr));
6321
6322 -- If a pragma Import follows, we assume that it is for the current
6323 -- target of the address clause, and skip the warning.
6324
6325 if Present (Decl)
6326 and then Nkind (Decl) = N_Pragma
1b24ada5 6327 and then Pragma_Name (Decl) = Name_Import
fbf5a39b
AC
6328 then
6329 return;
6330 end if;
6331
6332 if Present (Old) then
6333 Error_Msg_Node_2 := Old;
6334 Error_Msg_N
6335 ("default initialization of & may modify &?",
6336 Nam);
6337 else
6338 Error_Msg_N
6339 ("default initialization of & may modify overlaid storage?",
6340 Nam);
6341 end if;
6342
6343 -- Add friendly warning if initialization comes from a packed array
6344 -- component.
6345
6346 if Is_Record_Type (Typ) then
6347 declare
6348 Comp : Entity_Id;
6349
6350 begin
6351 Comp := First_Component (Typ);
fbf5a39b
AC
6352 while Present (Comp) loop
6353 if Nkind (Parent (Comp)) = N_Component_Declaration
6354 and then Present (Expression (Parent (Comp)))
6355 then
6356 exit;
6357 elsif Is_Array_Type (Etype (Comp))
6358 and then Present (Packed_Array_Type (Etype (Comp)))
6359 then
6360 Error_Msg_NE
3f1ede06
RD
6361 ("\packed array component& " &
6362 "will be initialized to zero?",
6363 Nam, Comp);
fbf5a39b
AC
6364 exit;
6365 else
6366 Next_Component (Comp);
6367 end if;
6368 end loop;
6369 end;
6370 end if;
6371
6372 Error_Msg_N
3f1ede06 6373 ("\use pragma Import for & to " &
86cde7b1 6374 "suppress initialization (RM B.1(24))?",
3f1ede06 6375 Nam);
fbf5a39b
AC
6376 end if;
6377 end Warn_Overlay;
6378
70482933 6379end Freeze;
This page took 3.801384 seconds and 5 git commands to generate.