]> gcc.gnu.org Git - gcc.git/blame - gcc/ada/freeze.adb
internal_pack_1.f90: Added complex to test case.
[gcc.git] / gcc / ada / freeze.adb
CommitLineData
19590d70 1-----------------------------------------------------------------------------
70482933
RK
2-- --
3-- GNAT COMPILER COMPONENTS --
4-- --
5-- F R E E Z E --
6-- --
7-- B o d y --
8-- --
1b24ada5 9-- Copyright (C) 1992-2008, Free Software Foundation, Inc. --
70482933
RK
10-- --
11-- GNAT is free software; you can redistribute it and/or modify it under --
12-- terms of the GNU General Public License as published by the Free Soft- --
13-- ware Foundation; either version 2, or (at your option) any later ver- --
14-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16-- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17-- for more details. You should have received a copy of the GNU General --
18-- Public License distributed with GNAT; see file COPYING. If not, write --
cb5fee25
KC
19-- to the Free Software Foundation, 51 Franklin Street, Fifth Floor, --
20-- Boston, MA 02110-1301, USA. --
70482933
RK
21-- --
22-- GNAT was originally developed by the GNAT team at New York University. --
71ff80dc 23-- Extensive contributions were provided by Ada Core Technologies Inc. --
70482933
RK
24-- --
25------------------------------------------------------------------------------
26
27with Atree; use Atree;
28with Debug; use Debug;
29with Einfo; use Einfo;
30with Elists; use Elists;
31with Errout; use Errout;
32with Exp_Ch7; use Exp_Ch7;
70482933
RK
33with Exp_Pakd; use Exp_Pakd;
34with Exp_Util; use Exp_Util;
fbf5a39b 35with Exp_Tss; use Exp_Tss;
70482933 36with Layout; use Layout;
07fc65c4 37with Lib.Xref; use Lib.Xref;
7d8b9c99 38with Namet; use Namet;
70482933
RK
39with Nlists; use Nlists;
40with Nmake; use Nmake;
41with Opt; use Opt;
42with Restrict; use Restrict;
6e937c1c 43with Rident; use Rident;
70482933
RK
44with Sem; use Sem;
45with Sem_Cat; use Sem_Cat;
46with Sem_Ch6; use Sem_Ch6;
47with Sem_Ch7; use Sem_Ch7;
48with Sem_Ch8; use Sem_Ch8;
49with Sem_Ch13; use Sem_Ch13;
50with Sem_Eval; use Sem_Eval;
51with Sem_Mech; use Sem_Mech;
52with Sem_Prag; use Sem_Prag;
53with Sem_Res; use Sem_Res;
54with Sem_Util; use Sem_Util;
55with Sinfo; use Sinfo;
56with Snames; use Snames;
57with Stand; use Stand;
58with Targparm; use Targparm;
59with Tbuild; use Tbuild;
60with Ttypes; use Ttypes;
61with Uintp; use Uintp;
62with Urealp; use Urealp;
63
64package body Freeze is
65
66 -----------------------
67 -- Local Subprograms --
68 -----------------------
69
70 procedure Adjust_Esize_For_Alignment (Typ : Entity_Id);
71 -- Typ is a type that is being frozen. If no size clause is given,
72 -- but a default Esize has been computed, then this default Esize is
73 -- adjusted up if necessary to be consistent with a given alignment,
74 -- but never to a value greater than Long_Long_Integer'Size. This
75 -- is used for all discrete types and for fixed-point types.
76
77 procedure Build_And_Analyze_Renamed_Body
78 (Decl : Node_Id;
79 New_S : Entity_Id;
80 After : in out Node_Id);
49e90211 81 -- Build body for a renaming declaration, insert in tree and analyze
70482933 82
fbf5a39b
AC
83 procedure Check_Address_Clause (E : Entity_Id);
84 -- Apply legality checks to address clauses for object declarations,
2c9beb8a 85 -- at the point the object is frozen.
fbf5a39b 86
70482933
RK
87 procedure Check_Strict_Alignment (E : Entity_Id);
88 -- E is a base type. If E is tagged or has a component that is aliased
89 -- or tagged or contains something this is aliased or tagged, set
90 -- Strict_Alignment.
91
92 procedure Check_Unsigned_Type (E : Entity_Id);
93 pragma Inline (Check_Unsigned_Type);
94 -- If E is a fixed-point or discrete type, then all the necessary work
95 -- to freeze it is completed except for possible setting of the flag
96 -- Is_Unsigned_Type, which is done by this procedure. The call has no
97 -- effect if the entity E is not a discrete or fixed-point type.
98
99 procedure Freeze_And_Append
100 (Ent : Entity_Id;
101 Loc : Source_Ptr;
102 Result : in out List_Id);
103 -- Freezes Ent using Freeze_Entity, and appends the resulting list of
104 -- nodes to Result, modifying Result from No_List if necessary.
105
106 procedure Freeze_Enumeration_Type (Typ : Entity_Id);
107 -- Freeze enumeration type. The Esize field is set as processing
108 -- proceeds (i.e. set by default when the type is declared and then
109 -- adjusted by rep clauses. What this procedure does is to make sure
110 -- that if a foreign convention is specified, and no specific size
111 -- is given, then the size must be at least Integer'Size.
112
70482933
RK
113 procedure Freeze_Static_Object (E : Entity_Id);
114 -- If an object is frozen which has Is_Statically_Allocated set, then
115 -- all referenced types must also be marked with this flag. This routine
116 -- is in charge of meeting this requirement for the object entity E.
117
118 procedure Freeze_Subprogram (E : Entity_Id);
119 -- Perform freezing actions for a subprogram (create extra formals,
120 -- and set proper default mechanism values). Note that this routine
121 -- is not called for internal subprograms, for which neither of these
122 -- actions is needed (or desirable, we do not want for example to have
123 -- these extra formals present in initialization procedures, where they
124 -- would serve no purpose). In this call E is either a subprogram or
125 -- a subprogram type (i.e. an access to a subprogram).
126
127 function Is_Fully_Defined (T : Entity_Id) return Boolean;
bde58e32 128 -- True if T is not private and has no private components, or has a full
657a9dd9
AC
129 -- view. Used to determine whether the designated type of an access type
130 -- should be frozen when the access type is frozen. This is done when an
131 -- allocator is frozen, or an expression that may involve attributes of
132 -- the designated type. Otherwise freezing the access type does not freeze
133 -- the designated type.
70482933
RK
134
135 procedure Process_Default_Expressions
136 (E : Entity_Id;
137 After : in out Node_Id);
138 -- This procedure is called for each subprogram to complete processing
139 -- of default expressions at the point where all types are known to be
140 -- frozen. The expressions must be analyzed in full, to make sure that
141 -- all error processing is done (they have only been pre-analyzed). If
142 -- the expression is not an entity or literal, its analysis may generate
143 -- code which must not be executed. In that case we build a function
144 -- body to hold that code. This wrapper function serves no other purpose
145 -- (it used to be called to evaluate the default, but now the default is
146 -- inlined at each point of call).
147
148 procedure Set_Component_Alignment_If_Not_Set (Typ : Entity_Id);
149 -- Typ is a record or array type that is being frozen. This routine
150 -- sets the default component alignment from the scope stack values
151 -- if the alignment is otherwise not specified.
152
153 procedure Check_Debug_Info_Needed (T : Entity_Id);
154 -- As each entity is frozen, this routine is called to deal with the
155 -- setting of Debug_Info_Needed for the entity. This flag is set if
156 -- the entity comes from source, or if we are in Debug_Generated_Code
157 -- mode or if the -gnatdV debug flag is set. However, it never sets
1b24ada5
RD
158 -- the flag if Debug_Info_Off is set. This procedure also ensures that
159 -- subsidiary entities have the flag set as required.
70482933 160
c6823a20
EB
161 procedure Undelay_Type (T : Entity_Id);
162 -- T is a type of a component that we know to be an Itype.
163 -- We don't want this to have a Freeze_Node, so ensure it doesn't.
164 -- Do the same for any Full_View or Corresponding_Record_Type.
165
fbf5a39b
AC
166 procedure Warn_Overlay
167 (Expr : Node_Id;
168 Typ : Entity_Id;
169 Nam : Node_Id);
170 -- Expr is the expression for an address clause for entity Nam whose type
171 -- is Typ. If Typ has a default initialization, and there is no explicit
172 -- initialization in the source declaration, check whether the address
173 -- clause might cause overlaying of an entity, and emit a warning on the
174 -- side effect that the initialization will cause.
175
70482933
RK
176 -------------------------------
177 -- Adjust_Esize_For_Alignment --
178 -------------------------------
179
180 procedure Adjust_Esize_For_Alignment (Typ : Entity_Id) is
181 Align : Uint;
182
183 begin
184 if Known_Esize (Typ) and then Known_Alignment (Typ) then
185 Align := Alignment_In_Bits (Typ);
186
187 if Align > Esize (Typ)
188 and then Align <= Standard_Long_Long_Integer_Size
189 then
190 Set_Esize (Typ, Align);
191 end if;
192 end if;
193 end Adjust_Esize_For_Alignment;
194
195 ------------------------------------
196 -- Build_And_Analyze_Renamed_Body --
197 ------------------------------------
198
199 procedure Build_And_Analyze_Renamed_Body
200 (Decl : Node_Id;
201 New_S : Entity_Id;
202 After : in out Node_Id)
203 is
204 Body_Node : constant Node_Id := Build_Renamed_Body (Decl, New_S);
70482933
RK
205 begin
206 Insert_After (After, Body_Node);
207 Mark_Rewrite_Insertion (Body_Node);
208 Analyze (Body_Node);
209 After := Body_Node;
210 end Build_And_Analyze_Renamed_Body;
211
212 ------------------------
213 -- Build_Renamed_Body --
214 ------------------------
215
216 function Build_Renamed_Body
217 (Decl : Node_Id;
fbf5a39b 218 New_S : Entity_Id) return Node_Id
70482933
RK
219 is
220 Loc : constant Source_Ptr := Sloc (New_S);
221 -- We use for the source location of the renamed body, the location
222 -- of the spec entity. It might seem more natural to use the location
223 -- of the renaming declaration itself, but that would be wrong, since
224 -- then the body we create would look as though it was created far
225 -- too late, and this could cause problems with elaboration order
226 -- analysis, particularly in connection with instantiations.
227
228 N : constant Node_Id := Unit_Declaration_Node (New_S);
229 Nam : constant Node_Id := Name (N);
230 Old_S : Entity_Id;
231 Spec : constant Node_Id := New_Copy_Tree (Specification (Decl));
232 Actuals : List_Id := No_List;
233 Call_Node : Node_Id;
234 Call_Name : Node_Id;
235 Body_Node : Node_Id;
236 Formal : Entity_Id;
237 O_Formal : Entity_Id;
238 Param_Spec : Node_Id;
239
def46b54
RD
240 Pref : Node_Id := Empty;
241 -- If the renamed entity is a primitive operation given in prefix form,
242 -- the prefix is the target object and it has to be added as the first
243 -- actual in the generated call.
244
70482933 245 begin
def46b54
RD
246 -- Determine the entity being renamed, which is the target of the call
247 -- statement. If the name is an explicit dereference, this is a renaming
248 -- of a subprogram type rather than a subprogram. The name itself is
249 -- fully analyzed.
70482933
RK
250
251 if Nkind (Nam) = N_Selected_Component then
252 Old_S := Entity (Selector_Name (Nam));
253
254 elsif Nkind (Nam) = N_Explicit_Dereference then
255 Old_S := Etype (Nam);
256
257 elsif Nkind (Nam) = N_Indexed_Component then
70482933
RK
258 if Is_Entity_Name (Prefix (Nam)) then
259 Old_S := Entity (Prefix (Nam));
260 else
261 Old_S := Entity (Selector_Name (Prefix (Nam)));
262 end if;
263
264 elsif Nkind (Nam) = N_Character_Literal then
265 Old_S := Etype (New_S);
266
267 else
268 Old_S := Entity (Nam);
269 end if;
270
271 if Is_Entity_Name (Nam) then
07fc65c4 272
def46b54
RD
273 -- If the renamed entity is a predefined operator, retain full name
274 -- to ensure its visibility.
07fc65c4
GB
275
276 if Ekind (Old_S) = E_Operator
277 and then Nkind (Nam) = N_Expanded_Name
278 then
279 Call_Name := New_Copy (Name (N));
280 else
281 Call_Name := New_Reference_To (Old_S, Loc);
282 end if;
283
70482933 284 else
def46b54
RD
285 if Nkind (Nam) = N_Selected_Component
286 and then Present (First_Formal (Old_S))
287 and then
288 (Is_Controlling_Formal (First_Formal (Old_S))
289 or else Is_Class_Wide_Type (Etype (First_Formal (Old_S))))
290 then
291
292 -- Retrieve the target object, to be added as a first actual
293 -- in the call.
294
295 Call_Name := New_Occurrence_Of (Old_S, Loc);
296 Pref := Prefix (Nam);
297
298 else
299 Call_Name := New_Copy (Name (N));
300 end if;
70482933
RK
301
302 -- The original name may have been overloaded, but
303 -- is fully resolved now.
304
305 Set_Is_Overloaded (Call_Name, False);
306 end if;
307
def46b54
RD
308 -- For simple renamings, subsequent calls can be expanded directly as
309 -- called to the renamed entity. The body must be generated in any case
310 -- for calls they may appear elsewhere.
70482933
RK
311
312 if (Ekind (Old_S) = E_Function
313 or else Ekind (Old_S) = E_Procedure)
314 and then Nkind (Decl) = N_Subprogram_Declaration
315 then
316 Set_Body_To_Inline (Decl, Old_S);
317 end if;
318
319 -- The body generated for this renaming is an internal artifact, and
320 -- does not constitute a freeze point for the called entity.
321
322 Set_Must_Not_Freeze (Call_Name);
323
324 Formal := First_Formal (Defining_Entity (Decl));
325
def46b54
RD
326 if Present (Pref) then
327 declare
328 Pref_Type : constant Entity_Id := Etype (Pref);
329 Form_Type : constant Entity_Id := Etype (First_Formal (Old_S));
330
331 begin
332
333 -- The controlling formal may be an access parameter, or the
334 -- actual may be an access value, so ajust accordingly.
335
336 if Is_Access_Type (Pref_Type)
337 and then not Is_Access_Type (Form_Type)
338 then
339 Actuals := New_List
340 (Make_Explicit_Dereference (Loc, Relocate_Node (Pref)));
341
342 elsif Is_Access_Type (Form_Type)
343 and then not Is_Access_Type (Pref)
344 then
345 Actuals := New_List
346 (Make_Attribute_Reference (Loc,
347 Attribute_Name => Name_Access,
348 Prefix => Relocate_Node (Pref)));
349 else
350 Actuals := New_List (Pref);
351 end if;
352 end;
353
354 elsif Present (Formal) then
70482933
RK
355 Actuals := New_List;
356
def46b54
RD
357 else
358 Actuals := No_List;
359 end if;
360
361 if Present (Formal) then
70482933
RK
362 while Present (Formal) loop
363 Append (New_Reference_To (Formal, Loc), Actuals);
364 Next_Formal (Formal);
365 end loop;
366 end if;
367
def46b54
RD
368 -- If the renamed entity is an entry, inherit its profile. For other
369 -- renamings as bodies, both profiles must be subtype conformant, so it
370 -- is not necessary to replace the profile given in the declaration.
371 -- However, default values that are aggregates are rewritten when
372 -- partially analyzed, so we recover the original aggregate to insure
373 -- that subsequent conformity checking works. Similarly, if the default
374 -- expression was constant-folded, recover the original expression.
70482933
RK
375
376 Formal := First_Formal (Defining_Entity (Decl));
377
378 if Present (Formal) then
379 O_Formal := First_Formal (Old_S);
380 Param_Spec := First (Parameter_Specifications (Spec));
381
382 while Present (Formal) loop
383 if Is_Entry (Old_S) then
384
385 if Nkind (Parameter_Type (Param_Spec)) /=
386 N_Access_Definition
387 then
388 Set_Etype (Formal, Etype (O_Formal));
389 Set_Entity (Parameter_Type (Param_Spec), Etype (O_Formal));
390 end if;
391
07fc65c4
GB
392 elsif Nkind (Default_Value (O_Formal)) = N_Aggregate
393 or else Nkind (Original_Node (Default_Value (O_Formal))) /=
394 Nkind (Default_Value (O_Formal))
395 then
70482933
RK
396 Set_Expression (Param_Spec,
397 New_Copy_Tree (Original_Node (Default_Value (O_Formal))));
398 end if;
399
400 Next_Formal (Formal);
401 Next_Formal (O_Formal);
402 Next (Param_Spec);
403 end loop;
404 end if;
405
406 -- If the renamed entity is a function, the generated body contains a
407 -- return statement. Otherwise, build a procedure call. If the entity is
408 -- an entry, subsequent analysis of the call will transform it into the
409 -- proper entry or protected operation call. If the renamed entity is
410 -- a character literal, return it directly.
411
412 if Ekind (Old_S) = E_Function
413 or else Ekind (Old_S) = E_Operator
414 or else (Ekind (Old_S) = E_Subprogram_Type
415 and then Etype (Old_S) /= Standard_Void_Type)
416 then
417 Call_Node :=
86cde7b1 418 Make_Simple_Return_Statement (Loc,
70482933
RK
419 Expression =>
420 Make_Function_Call (Loc,
421 Name => Call_Name,
422 Parameter_Associations => Actuals));
423
424 elsif Ekind (Old_S) = E_Enumeration_Literal then
425 Call_Node :=
86cde7b1 426 Make_Simple_Return_Statement (Loc,
70482933
RK
427 Expression => New_Occurrence_Of (Old_S, Loc));
428
429 elsif Nkind (Nam) = N_Character_Literal then
430 Call_Node :=
86cde7b1 431 Make_Simple_Return_Statement (Loc,
70482933
RK
432 Expression => Call_Name);
433
434 else
435 Call_Node :=
436 Make_Procedure_Call_Statement (Loc,
437 Name => Call_Name,
438 Parameter_Associations => Actuals);
439 end if;
440
49e90211 441 -- Create entities for subprogram body and formals
70482933
RK
442
443 Set_Defining_Unit_Name (Spec,
444 Make_Defining_Identifier (Loc, Chars => Chars (New_S)));
445
446 Param_Spec := First (Parameter_Specifications (Spec));
447
448 while Present (Param_Spec) loop
449 Set_Defining_Identifier (Param_Spec,
450 Make_Defining_Identifier (Loc,
451 Chars => Chars (Defining_Identifier (Param_Spec))));
452 Next (Param_Spec);
453 end loop;
454
455 Body_Node :=
456 Make_Subprogram_Body (Loc,
457 Specification => Spec,
458 Declarations => New_List,
459 Handled_Statement_Sequence =>
460 Make_Handled_Sequence_Of_Statements (Loc,
461 Statements => New_List (Call_Node)));
462
463 if Nkind (Decl) /= N_Subprogram_Declaration then
464 Rewrite (N,
465 Make_Subprogram_Declaration (Loc,
466 Specification => Specification (N)));
467 end if;
468
469 -- Link the body to the entity whose declaration it completes. If
def46b54
RD
470 -- the body is analyzed when the renamed entity is frozen, it may
471 -- be necessary to restore the proper scope (see package Exp_Ch13).
70482933
RK
472
473 if Nkind (N) = N_Subprogram_Renaming_Declaration
474 and then Present (Corresponding_Spec (N))
475 then
476 Set_Corresponding_Spec (Body_Node, Corresponding_Spec (N));
477 else
478 Set_Corresponding_Spec (Body_Node, New_S);
479 end if;
480
481 return Body_Node;
482 end Build_Renamed_Body;
483
fbf5a39b
AC
484 --------------------------
485 -- Check_Address_Clause --
486 --------------------------
487
488 procedure Check_Address_Clause (E : Entity_Id) is
489 Addr : constant Node_Id := Address_Clause (E);
490 Expr : Node_Id;
491 Decl : constant Node_Id := Declaration_Node (E);
492 Typ : constant Entity_Id := Etype (E);
493
494 begin
495 if Present (Addr) then
496 Expr := Expression (Addr);
497
def46b54
RD
498 -- If we have no initialization of any kind, then we don't need to
499 -- place any restrictions on the address clause, because the object
500 -- will be elaborated after the address clause is evaluated. This
501 -- happens if the declaration has no initial expression, or the type
502 -- has no implicit initialization, or the object is imported.
fbf5a39b 503
def46b54
RD
504 -- The same holds for all initialized scalar types and all access
505 -- types. Packed bit arrays of size up to 64 are represented using a
506 -- modular type with an initialization (to zero) and can be processed
507 -- like other initialized scalar types.
fbf5a39b
AC
508
509 -- If the type is controlled, code to attach the object to a
510 -- finalization chain is generated at the point of declaration,
511 -- and therefore the elaboration of the object cannot be delayed:
512 -- the address expression must be a constant.
513
514 if (No (Expression (Decl))
515 and then not Controlled_Type (Typ)
516 and then
517 (not Has_Non_Null_Base_Init_Proc (Typ)
518 or else Is_Imported (E)))
519
520 or else
521 (Present (Expression (Decl))
522 and then Is_Scalar_Type (Typ))
523
524 or else
525 Is_Access_Type (Typ)
526
527 or else
528 (Is_Bit_Packed_Array (Typ)
529 and then
530 Is_Modular_Integer_Type (Packed_Array_Type (Typ)))
531 then
532 null;
533
def46b54
RD
534 -- Otherwise, we require the address clause to be constant because
535 -- the call to the initialization procedure (or the attach code) has
536 -- to happen at the point of the declaration.
fbf5a39b
AC
537
538 else
539 Check_Constant_Address_Clause (Expr, E);
540 Set_Has_Delayed_Freeze (E, False);
541 end if;
542
543 if not Error_Posted (Expr)
544 and then not Controlled_Type (Typ)
545 then
546 Warn_Overlay (Expr, Typ, Name (Addr));
547 end if;
548 end if;
549 end Check_Address_Clause;
550
70482933
RK
551 -----------------------------
552 -- Check_Compile_Time_Size --
553 -----------------------------
554
555 procedure Check_Compile_Time_Size (T : Entity_Id) is
556
c6823a20 557 procedure Set_Small_Size (T : Entity_Id; S : Uint);
70482933 558 -- Sets the compile time known size (32 bits or less) in the Esize
c6823a20 559 -- field, of T checking for a size clause that was given which attempts
70482933
RK
560 -- to give a smaller size.
561
562 function Size_Known (T : Entity_Id) return Boolean;
07fc65c4 563 -- Recursive function that does all the work
70482933
RK
564
565 function Static_Discriminated_Components (T : Entity_Id) return Boolean;
566 -- If T is a constrained subtype, its size is not known if any of its
567 -- discriminant constraints is not static and it is not a null record.
fbf5a39b 568 -- The test is conservative and doesn't check that the components are
70482933
RK
569 -- in fact constrained by non-static discriminant values. Could be made
570 -- more precise ???
571
572 --------------------
573 -- Set_Small_Size --
574 --------------------
575
c6823a20 576 procedure Set_Small_Size (T : Entity_Id; S : Uint) is
70482933
RK
577 begin
578 if S > 32 then
579 return;
580
581 elsif Has_Size_Clause (T) then
582 if RM_Size (T) < S then
583 Error_Msg_Uint_1 := S;
584 Error_Msg_NE
7d8b9c99 585 ("size for & too small, minimum allowed is ^",
70482933
RK
586 Size_Clause (T), T);
587
588 elsif Unknown_Esize (T) then
589 Set_Esize (T, S);
590 end if;
591
592 -- Set sizes if not set already
593
594 else
595 if Unknown_Esize (T) then
596 Set_Esize (T, S);
597 end if;
598
599 if Unknown_RM_Size (T) then
600 Set_RM_Size (T, S);
601 end if;
602 end if;
603 end Set_Small_Size;
604
605 ----------------
606 -- Size_Known --
607 ----------------
608
609 function Size_Known (T : Entity_Id) return Boolean is
610 Index : Entity_Id;
611 Comp : Entity_Id;
612 Ctyp : Entity_Id;
613 Low : Node_Id;
614 High : Node_Id;
615
616 begin
617 if Size_Known_At_Compile_Time (T) then
618 return True;
619
70482933
RK
620 elsif Is_Scalar_Type (T)
621 or else Is_Task_Type (T)
622 then
623 return not Is_Generic_Type (T);
624
625 elsif Is_Array_Type (T) then
70482933 626 if Ekind (T) = E_String_Literal_Subtype then
c6823a20
EB
627 Set_Small_Size (T, Component_Size (T)
628 * String_Literal_Length (T));
70482933
RK
629 return True;
630
631 elsif not Is_Constrained (T) then
632 return False;
633
def46b54
RD
634 -- Don't do any recursion on type with error posted, since we may
635 -- have a malformed type that leads us into a loop.
07fc65c4
GB
636
637 elsif Error_Posted (T) then
638 return False;
639
70482933
RK
640 elsif not Size_Known (Component_Type (T)) then
641 return False;
642 end if;
643
def46b54
RD
644 -- Check for all indexes static, and also compute possible size
645 -- (in case it is less than 32 and may be packable).
70482933
RK
646
647 declare
648 Esiz : Uint := Component_Size (T);
649 Dim : Uint;
650
651 begin
652 Index := First_Index (T);
70482933
RK
653 while Present (Index) loop
654 if Nkind (Index) = N_Range then
655 Get_Index_Bounds (Index, Low, High);
656
657 elsif Error_Posted (Scalar_Range (Etype (Index))) then
658 return False;
659
660 else
661 Low := Type_Low_Bound (Etype (Index));
662 High := Type_High_Bound (Etype (Index));
663 end if;
664
665 if not Compile_Time_Known_Value (Low)
666 or else not Compile_Time_Known_Value (High)
667 or else Etype (Index) = Any_Type
668 then
669 return False;
670
671 else
672 Dim := Expr_Value (High) - Expr_Value (Low) + 1;
673
674 if Dim >= 0 then
675 Esiz := Esiz * Dim;
676 else
677 Esiz := Uint_0;
678 end if;
679 end if;
680
681 Next_Index (Index);
682 end loop;
683
c6823a20 684 Set_Small_Size (T, Esiz);
70482933
RK
685 return True;
686 end;
687
688 elsif Is_Access_Type (T) then
689 return True;
690
691 elsif Is_Private_Type (T)
692 and then not Is_Generic_Type (T)
693 and then Present (Underlying_Type (T))
694 then
def46b54
RD
695 -- Don't do any recursion on type with error posted, since we may
696 -- have a malformed type that leads us into a loop.
07fc65c4
GB
697
698 if Error_Posted (T) then
699 return False;
700 else
701 return Size_Known (Underlying_Type (T));
702 end if;
70482933
RK
703
704 elsif Is_Record_Type (T) then
fbf5a39b
AC
705
706 -- A class-wide type is never considered to have a known size
707
70482933
RK
708 if Is_Class_Wide_Type (T) then
709 return False;
710
fbf5a39b
AC
711 -- A subtype of a variant record must not have non-static
712 -- discriminanted components.
713
714 elsif T /= Base_Type (T)
715 and then not Static_Discriminated_Components (T)
716 then
717 return False;
70482933 718
def46b54
RD
719 -- Don't do any recursion on type with error posted, since we may
720 -- have a malformed type that leads us into a loop.
07fc65c4
GB
721
722 elsif Error_Posted (T) then
723 return False;
fbf5a39b 724 end if;
07fc65c4 725
fbf5a39b 726 -- Now look at the components of the record
70482933 727
fbf5a39b 728 declare
def46b54
RD
729 -- The following two variables are used to keep track of the
730 -- size of packed records if we can tell the size of the packed
731 -- record in the front end. Packed_Size_Known is True if so far
732 -- we can figure out the size. It is initialized to True for a
733 -- packed record, unless the record has discriminants. The
734 -- reason we eliminate the discriminated case is that we don't
735 -- know the way the back end lays out discriminated packed
736 -- records. If Packed_Size_Known is True, then Packed_Size is
737 -- the size in bits so far.
fbf5a39b
AC
738
739 Packed_Size_Known : Boolean :=
740 Is_Packed (T)
741 and then not Has_Discriminants (T);
742
743 Packed_Size : Uint := Uint_0;
744
745 begin
746 -- Test for variant part present
747
748 if Has_Discriminants (T)
749 and then Present (Parent (T))
750 and then Nkind (Parent (T)) = N_Full_Type_Declaration
751 and then Nkind (Type_Definition (Parent (T))) =
752 N_Record_Definition
753 and then not Null_Present (Type_Definition (Parent (T)))
754 and then Present (Variant_Part
755 (Component_List (Type_Definition (Parent (T)))))
756 then
757 -- If variant part is present, and type is unconstrained,
758 -- then we must have defaulted discriminants, or a size
759 -- clause must be present for the type, or else the size
760 -- is definitely not known at compile time.
761
762 if not Is_Constrained (T)
763 and then
764 No (Discriminant_Default_Value
765 (First_Discriminant (T)))
766 and then Unknown_Esize (T)
70482933 767 then
fbf5a39b
AC
768 return False;
769 end if;
770 end if;
70482933 771
fbf5a39b
AC
772 -- Loop through components
773
fea9e956 774 Comp := First_Component_Or_Discriminant (T);
fbf5a39b 775 while Present (Comp) loop
fea9e956 776 Ctyp := Etype (Comp);
fbf5a39b 777
fea9e956
ES
778 -- We do not know the packed size if there is a component
779 -- clause present (we possibly could, but this would only
780 -- help in the case of a record with partial rep clauses.
781 -- That's because in the case of full rep clauses, the
782 -- size gets figured out anyway by a different circuit).
fbf5a39b 783
fea9e956
ES
784 if Present (Component_Clause (Comp)) then
785 Packed_Size_Known := False;
786 end if;
70482933 787
fea9e956
ES
788 -- We need to identify a component that is an array where
789 -- the index type is an enumeration type with non-standard
790 -- representation, and some bound of the type depends on a
791 -- discriminant.
70482933 792
fea9e956
ES
793 -- This is because gigi computes the size by doing a
794 -- substituation of the appropriate discriminant value in
795 -- the size expression for the base type, and gigi is not
796 -- clever enough to evaluate the resulting expression (which
797 -- involves a call to rep_to_pos) at compile time.
fbf5a39b 798
fea9e956
ES
799 -- It would be nice if gigi would either recognize that
800 -- this expression can be computed at compile time, or
801 -- alternatively figured out the size from the subtype
802 -- directly, where all the information is at hand ???
fbf5a39b 803
fea9e956
ES
804 if Is_Array_Type (Etype (Comp))
805 and then Present (Packed_Array_Type (Etype (Comp)))
806 then
807 declare
808 Ocomp : constant Entity_Id :=
809 Original_Record_Component (Comp);
810 OCtyp : constant Entity_Id := Etype (Ocomp);
811 Ind : Node_Id;
812 Indtyp : Entity_Id;
813 Lo, Hi : Node_Id;
70482933 814
fea9e956
ES
815 begin
816 Ind := First_Index (OCtyp);
817 while Present (Ind) loop
818 Indtyp := Etype (Ind);
70482933 819
fea9e956
ES
820 if Is_Enumeration_Type (Indtyp)
821 and then Has_Non_Standard_Rep (Indtyp)
822 then
823 Lo := Type_Low_Bound (Indtyp);
824 Hi := Type_High_Bound (Indtyp);
fbf5a39b 825
fea9e956
ES
826 if Is_Entity_Name (Lo)
827 and then Ekind (Entity (Lo)) = E_Discriminant
828 then
829 return False;
fbf5a39b 830
fea9e956
ES
831 elsif Is_Entity_Name (Hi)
832 and then Ekind (Entity (Hi)) = E_Discriminant
833 then
834 return False;
835 end if;
836 end if;
fbf5a39b 837
fea9e956
ES
838 Next_Index (Ind);
839 end loop;
840 end;
841 end if;
70482933 842
def46b54
RD
843 -- Clearly size of record is not known if the size of one of
844 -- the components is not known.
70482933 845
fea9e956
ES
846 if not Size_Known (Ctyp) then
847 return False;
848 end if;
70482933 849
fea9e956 850 -- Accumulate packed size if possible
70482933 851
fea9e956 852 if Packed_Size_Known then
70482933 853
fea9e956
ES
854 -- We can only deal with elementary types, since for
855 -- non-elementary components, alignment enters into the
856 -- picture, and we don't know enough to handle proper
857 -- alignment in this context. Packed arrays count as
858 -- elementary if the representation is a modular type.
fbf5a39b 859
fea9e956
ES
860 if Is_Elementary_Type (Ctyp)
861 or else (Is_Array_Type (Ctyp)
862 and then Present (Packed_Array_Type (Ctyp))
863 and then Is_Modular_Integer_Type
864 (Packed_Array_Type (Ctyp)))
865 then
866 -- If RM_Size is known and static, then we can
867 -- keep accumulating the packed size.
70482933 868
fea9e956 869 if Known_Static_RM_Size (Ctyp) then
70482933 870
fea9e956
ES
871 -- A little glitch, to be removed sometime ???
872 -- gigi does not understand zero sizes yet.
873
874 if RM_Size (Ctyp) = Uint_0 then
70482933 875 Packed_Size_Known := False;
fea9e956
ES
876
877 -- Normal case where we can keep accumulating the
878 -- packed array size.
879
880 else
881 Packed_Size := Packed_Size + RM_Size (Ctyp);
70482933 882 end if;
fbf5a39b 883
fea9e956
ES
884 -- If we have a field whose RM_Size is not known then
885 -- we can't figure out the packed size here.
fbf5a39b
AC
886
887 else
888 Packed_Size_Known := False;
70482933 889 end if;
fea9e956
ES
890
891 -- If we have a non-elementary type we can't figure out
892 -- the packed array size (alignment issues).
893
894 else
895 Packed_Size_Known := False;
70482933 896 end if;
fbf5a39b 897 end if;
70482933 898
fea9e956 899 Next_Component_Or_Discriminant (Comp);
fbf5a39b 900 end loop;
70482933 901
fbf5a39b 902 if Packed_Size_Known then
c6823a20 903 Set_Small_Size (T, Packed_Size);
fbf5a39b 904 end if;
70482933 905
fbf5a39b
AC
906 return True;
907 end;
70482933
RK
908
909 else
910 return False;
911 end if;
912 end Size_Known;
913
914 -------------------------------------
915 -- Static_Discriminated_Components --
916 -------------------------------------
917
918 function Static_Discriminated_Components
0da2c8ac 919 (T : Entity_Id) return Boolean
70482933
RK
920 is
921 Constraint : Elmt_Id;
922
923 begin
924 if Has_Discriminants (T)
925 and then Present (Discriminant_Constraint (T))
926 and then Present (First_Component (T))
927 then
928 Constraint := First_Elmt (Discriminant_Constraint (T));
70482933
RK
929 while Present (Constraint) loop
930 if not Compile_Time_Known_Value (Node (Constraint)) then
931 return False;
932 end if;
933
934 Next_Elmt (Constraint);
935 end loop;
936 end if;
937
938 return True;
939 end Static_Discriminated_Components;
940
941 -- Start of processing for Check_Compile_Time_Size
942
943 begin
944 Set_Size_Known_At_Compile_Time (T, Size_Known (T));
945 end Check_Compile_Time_Size;
946
947 -----------------------------
948 -- Check_Debug_Info_Needed --
949 -----------------------------
950
951 procedure Check_Debug_Info_Needed (T : Entity_Id) is
952 begin
1b24ada5 953 if Debug_Info_Off (T) then
70482933
RK
954 return;
955
956 elsif Comes_From_Source (T)
957 or else Debug_Generated_Code
958 or else Debug_Flag_VV
1b24ada5 959 or else Needs_Debug_Info (T)
70482933
RK
960 then
961 Set_Debug_Info_Needed (T);
962 end if;
963 end Check_Debug_Info_Needed;
964
965 ----------------------------
966 -- Check_Strict_Alignment --
967 ----------------------------
968
969 procedure Check_Strict_Alignment (E : Entity_Id) is
970 Comp : Entity_Id;
971
972 begin
973 if Is_Tagged_Type (E) or else Is_Concurrent_Type (E) then
974 Set_Strict_Alignment (E);
975
976 elsif Is_Array_Type (E) then
977 Set_Strict_Alignment (E, Strict_Alignment (Component_Type (E)));
978
979 elsif Is_Record_Type (E) then
980 if Is_Limited_Record (E) then
981 Set_Strict_Alignment (E);
982 return;
983 end if;
984
985 Comp := First_Component (E);
986
987 while Present (Comp) loop
988 if not Is_Type (Comp)
989 and then (Strict_Alignment (Etype (Comp))
fbf5a39b 990 or else Is_Aliased (Comp))
70482933
RK
991 then
992 Set_Strict_Alignment (E);
993 return;
994 end if;
995
996 Next_Component (Comp);
997 end loop;
998 end if;
999 end Check_Strict_Alignment;
1000
1001 -------------------------
1002 -- Check_Unsigned_Type --
1003 -------------------------
1004
1005 procedure Check_Unsigned_Type (E : Entity_Id) is
1006 Ancestor : Entity_Id;
1007 Lo_Bound : Node_Id;
1008 Btyp : Entity_Id;
1009
1010 begin
1011 if not Is_Discrete_Or_Fixed_Point_Type (E) then
1012 return;
1013 end if;
1014
1015 -- Do not attempt to analyze case where range was in error
1016
1017 if Error_Posted (Scalar_Range (E)) then
1018 return;
1019 end if;
1020
1021 -- The situation that is non trivial is something like
1022
1023 -- subtype x1 is integer range -10 .. +10;
1024 -- subtype x2 is x1 range 0 .. V1;
1025 -- subtype x3 is x2 range V2 .. V3;
1026 -- subtype x4 is x3 range V4 .. V5;
1027
1028 -- where Vn are variables. Here the base type is signed, but we still
1029 -- know that x4 is unsigned because of the lower bound of x2.
1030
1031 -- The only way to deal with this is to look up the ancestor chain
1032
1033 Ancestor := E;
1034 loop
1035 if Ancestor = Any_Type or else Etype (Ancestor) = Any_Type then
1036 return;
1037 end if;
1038
1039 Lo_Bound := Type_Low_Bound (Ancestor);
1040
1041 if Compile_Time_Known_Value (Lo_Bound) then
1042
1043 if Expr_Rep_Value (Lo_Bound) >= 0 then
1044 Set_Is_Unsigned_Type (E, True);
1045 end if;
1046
1047 return;
1048
1049 else
1050 Ancestor := Ancestor_Subtype (Ancestor);
1051
1052 -- If no ancestor had a static lower bound, go to base type
1053
1054 if No (Ancestor) then
1055
1056 -- Note: the reason we still check for a compile time known
1057 -- value for the base type is that at least in the case of
1058 -- generic formals, we can have bounds that fail this test,
1059 -- and there may be other cases in error situations.
1060
1061 Btyp := Base_Type (E);
1062
1063 if Btyp = Any_Type or else Etype (Btyp) = Any_Type then
1064 return;
1065 end if;
1066
1067 Lo_Bound := Type_Low_Bound (Base_Type (E));
1068
1069 if Compile_Time_Known_Value (Lo_Bound)
1070 and then Expr_Rep_Value (Lo_Bound) >= 0
1071 then
1072 Set_Is_Unsigned_Type (E, True);
1073 end if;
1074
1075 return;
70482933
RK
1076 end if;
1077 end if;
1078 end loop;
1079 end Check_Unsigned_Type;
1080
fbf5a39b
AC
1081 -----------------------------
1082 -- Expand_Atomic_Aggregate --
1083 -----------------------------
1084
1085 procedure Expand_Atomic_Aggregate (E : Entity_Id; Typ : Entity_Id) is
1086 Loc : constant Source_Ptr := Sloc (E);
1087 New_N : Node_Id;
1088 Temp : Entity_Id;
1089
1090 begin
1091 if (Nkind (Parent (E)) = N_Object_Declaration
1092 or else Nkind (Parent (E)) = N_Assignment_Statement)
1093 and then Comes_From_Source (Parent (E))
1094 and then Nkind (E) = N_Aggregate
1095 then
1096 Temp :=
1097 Make_Defining_Identifier (Loc,
1098 New_Internal_Name ('T'));
1099
1100 New_N :=
1101 Make_Object_Declaration (Loc,
1102 Defining_Identifier => Temp,
1103 Object_definition => New_Occurrence_Of (Typ, Loc),
1104 Expression => Relocate_Node (E));
1105 Insert_Before (Parent (E), New_N);
1106 Analyze (New_N);
1107
1108 Set_Expression (Parent (E), New_Occurrence_Of (Temp, Loc));
1109
def46b54
RD
1110 -- To prevent the temporary from being constant-folded (which would
1111 -- lead to the same piecemeal assignment on the original target)
1112 -- indicate to the back-end that the temporary is a variable with
1113 -- real storage. See description of this flag in Einfo, and the notes
1114 -- on N_Assignment_Statement and N_Object_Declaration in Sinfo.
fbf5a39b
AC
1115
1116 Set_Is_True_Constant (Temp, False);
1117 end if;
1118 end Expand_Atomic_Aggregate;
1119
70482933
RK
1120 ----------------
1121 -- Freeze_All --
1122 ----------------
1123
1124 -- Note: the easy coding for this procedure would be to just build a
1125 -- single list of freeze nodes and then insert them and analyze them
1126 -- all at once. This won't work, because the analysis of earlier freeze
1127 -- nodes may recursively freeze types which would otherwise appear later
1128 -- on in the freeze list. So we must analyze and expand the freeze nodes
1129 -- as they are generated.
1130
1131 procedure Freeze_All (From : Entity_Id; After : in out Node_Id) is
1132 Loc : constant Source_Ptr := Sloc (After);
1133 E : Entity_Id;
1134 Decl : Node_Id;
1135
1136 procedure Freeze_All_Ent (From : Entity_Id; After : in out Node_Id);
def46b54
RD
1137 -- This is the internal recursive routine that does freezing of entities
1138 -- (but NOT the analysis of default expressions, which should not be
1139 -- recursive, we don't want to analyze those till we are sure that ALL
1140 -- the types are frozen).
70482933 1141
fbf5a39b
AC
1142 --------------------
1143 -- Freeze_All_Ent --
1144 --------------------
1145
70482933
RK
1146 procedure Freeze_All_Ent
1147 (From : Entity_Id;
1148 After : in out Node_Id)
1149 is
1150 E : Entity_Id;
1151 Flist : List_Id;
1152 Lastn : Node_Id;
1153
1154 procedure Process_Flist;
def46b54
RD
1155 -- If freeze nodes are present, insert and analyze, and reset cursor
1156 -- for next insertion.
70482933 1157
fbf5a39b
AC
1158 -------------------
1159 -- Process_Flist --
1160 -------------------
1161
70482933
RK
1162 procedure Process_Flist is
1163 begin
1164 if Is_Non_Empty_List (Flist) then
1165 Lastn := Next (After);
1166 Insert_List_After_And_Analyze (After, Flist);
1167
1168 if Present (Lastn) then
1169 After := Prev (Lastn);
1170 else
1171 After := Last (List_Containing (After));
1172 end if;
1173 end if;
1174 end Process_Flist;
1175
fbf5a39b
AC
1176 -- Start or processing for Freeze_All_Ent
1177
70482933
RK
1178 begin
1179 E := From;
1180 while Present (E) loop
1181
1182 -- If the entity is an inner package which is not a package
def46b54
RD
1183 -- renaming, then its entities must be frozen at this point. Note
1184 -- that such entities do NOT get frozen at the end of the nested
1185 -- package itself (only library packages freeze).
70482933
RK
1186
1187 -- Same is true for task declarations, where anonymous records
1188 -- created for entry parameters must be frozen.
1189
1190 if Ekind (E) = E_Package
1191 and then No (Renamed_Object (E))
1192 and then not Is_Child_Unit (E)
1193 and then not Is_Frozen (E)
1194 then
7d8b9c99 1195 Push_Scope (E);
70482933
RK
1196 Install_Visible_Declarations (E);
1197 Install_Private_Declarations (E);
1198
1199 Freeze_All (First_Entity (E), After);
1200
1201 End_Package_Scope (E);
1202
1203 elsif Ekind (E) in Task_Kind
1204 and then
1205 (Nkind (Parent (E)) = N_Task_Type_Declaration
fbf5a39b 1206 or else
70482933
RK
1207 Nkind (Parent (E)) = N_Single_Task_Declaration)
1208 then
7d8b9c99 1209 Push_Scope (E);
70482933
RK
1210 Freeze_All (First_Entity (E), After);
1211 End_Scope;
1212
1213 -- For a derived tagged type, we must ensure that all the
def46b54
RD
1214 -- primitive operations of the parent have been frozen, so that
1215 -- their addresses will be in the parent's dispatch table at the
1216 -- point it is inherited.
70482933
RK
1217
1218 elsif Ekind (E) = E_Record_Type
1219 and then Is_Tagged_Type (E)
1220 and then Is_Tagged_Type (Etype (E))
1221 and then Is_Derived_Type (E)
1222 then
1223 declare
1224 Prim_List : constant Elist_Id :=
1225 Primitive_Operations (Etype (E));
fbf5a39b
AC
1226
1227 Prim : Elmt_Id;
1228 Subp : Entity_Id;
70482933
RK
1229
1230 begin
1231 Prim := First_Elmt (Prim_List);
1232
1233 while Present (Prim) loop
1234 Subp := Node (Prim);
1235
1236 if Comes_From_Source (Subp)
1237 and then not Is_Frozen (Subp)
1238 then
1239 Flist := Freeze_Entity (Subp, Loc);
1240 Process_Flist;
1241 end if;
1242
1243 Next_Elmt (Prim);
1244 end loop;
1245 end;
1246 end if;
1247
1248 if not Is_Frozen (E) then
1249 Flist := Freeze_Entity (E, Loc);
1250 Process_Flist;
1251 end if;
1252
def46b54
RD
1253 -- If an incomplete type is still not frozen, this may be a
1254 -- premature freezing because of a body declaration that follows.
1255 -- Indicate where the freezing took place.
fbf5a39b 1256
def46b54
RD
1257 -- If the freezing is caused by the end of the current declarative
1258 -- part, it is a Taft Amendment type, and there is no error.
fbf5a39b
AC
1259
1260 if not Is_Frozen (E)
1261 and then Ekind (E) = E_Incomplete_Type
1262 then
1263 declare
1264 Bod : constant Node_Id := Next (After);
1265
1266 begin
1267 if (Nkind (Bod) = N_Subprogram_Body
1268 or else Nkind (Bod) = N_Entry_Body
1269 or else Nkind (Bod) = N_Package_Body
1270 or else Nkind (Bod) = N_Protected_Body
1271 or else Nkind (Bod) = N_Task_Body
1272 or else Nkind (Bod) in N_Body_Stub)
1273 and then
1274 List_Containing (After) = List_Containing (Parent (E))
1275 then
1276 Error_Msg_Sloc := Sloc (Next (After));
1277 Error_Msg_NE
1278 ("type& is frozen# before its full declaration",
1279 Parent (E), E);
1280 end if;
1281 end;
1282 end if;
1283
70482933
RK
1284 Next_Entity (E);
1285 end loop;
1286 end Freeze_All_Ent;
1287
1288 -- Start of processing for Freeze_All
1289
1290 begin
1291 Freeze_All_Ent (From, After);
1292
1293 -- Now that all types are frozen, we can deal with default expressions
1294 -- that require us to build a default expression functions. This is the
1295 -- point at which such functions are constructed (after all types that
1296 -- might be used in such expressions have been frozen).
fbf5a39b 1297
70482933
RK
1298 -- We also add finalization chains to access types whose designated
1299 -- types are controlled. This is normally done when freezing the type,
1300 -- but this misses recursive type definitions where the later members
1301 -- of the recursion introduce controlled components (e.g. 5624-001).
1302
1303 -- Loop through entities
1304
1305 E := From;
1306 while Present (E) loop
70482933
RK
1307 if Is_Subprogram (E) then
1308
1309 if not Default_Expressions_Processed (E) then
1310 Process_Default_Expressions (E, After);
1311 end if;
1312
1313 if not Has_Completion (E) then
1314 Decl := Unit_Declaration_Node (E);
1315
1316 if Nkind (Decl) = N_Subprogram_Renaming_Declaration then
1317 Build_And_Analyze_Renamed_Body (Decl, E, After);
1318
1319 elsif Nkind (Decl) = N_Subprogram_Declaration
1320 and then Present (Corresponding_Body (Decl))
1321 and then
1322 Nkind (Unit_Declaration_Node (Corresponding_Body (Decl)))
fbf5a39b 1323 = N_Subprogram_Renaming_Declaration
70482933
RK
1324 then
1325 Build_And_Analyze_Renamed_Body
1326 (Decl, Corresponding_Body (Decl), After);
1327 end if;
1328 end if;
1329
1330 elsif Ekind (E) in Task_Kind
1331 and then
1332 (Nkind (Parent (E)) = N_Task_Type_Declaration
fbf5a39b 1333 or else
70482933
RK
1334 Nkind (Parent (E)) = N_Single_Task_Declaration)
1335 then
1336 declare
1337 Ent : Entity_Id;
70482933
RK
1338 begin
1339 Ent := First_Entity (E);
1340
1341 while Present (Ent) loop
1342
1343 if Is_Entry (Ent)
1344 and then not Default_Expressions_Processed (Ent)
1345 then
1346 Process_Default_Expressions (Ent, After);
1347 end if;
1348
1349 Next_Entity (Ent);
1350 end loop;
1351 end;
1352
1353 elsif Is_Access_Type (E)
1354 and then Comes_From_Source (E)
1355 and then Ekind (Directly_Designated_Type (E)) = E_Incomplete_Type
1356 and then Controlled_Type (Designated_Type (E))
1357 and then No (Associated_Final_Chain (E))
1358 then
1359 Build_Final_List (Parent (E), E);
1360 end if;
1361
1362 Next_Entity (E);
1363 end loop;
70482933
RK
1364 end Freeze_All;
1365
1366 -----------------------
1367 -- Freeze_And_Append --
1368 -----------------------
1369
1370 procedure Freeze_And_Append
1371 (Ent : Entity_Id;
1372 Loc : Source_Ptr;
1373 Result : in out List_Id)
1374 is
1375 L : constant List_Id := Freeze_Entity (Ent, Loc);
70482933
RK
1376 begin
1377 if Is_Non_Empty_List (L) then
1378 if Result = No_List then
1379 Result := L;
1380 else
1381 Append_List (L, Result);
1382 end if;
1383 end if;
1384 end Freeze_And_Append;
1385
1386 -------------------
1387 -- Freeze_Before --
1388 -------------------
1389
1390 procedure Freeze_Before (N : Node_Id; T : Entity_Id) is
1391 Freeze_Nodes : constant List_Id := Freeze_Entity (T, Sloc (N));
70482933
RK
1392 begin
1393 if Is_Non_Empty_List (Freeze_Nodes) then
fbf5a39b 1394 Insert_Actions (N, Freeze_Nodes);
70482933
RK
1395 end if;
1396 end Freeze_Before;
1397
1398 -------------------
1399 -- Freeze_Entity --
1400 -------------------
1401
1402 function Freeze_Entity (E : Entity_Id; Loc : Source_Ptr) return List_Id is
c6823a20 1403 Test_E : Entity_Id := E;
70482933
RK
1404 Comp : Entity_Id;
1405 F_Node : Node_Id;
1406 Result : List_Id;
1407 Indx : Node_Id;
1408 Formal : Entity_Id;
1409 Atype : Entity_Id;
1410
1411 procedure Check_Current_Instance (Comp_Decl : Node_Id);
edd63e9b
ES
1412 -- Check that an Access or Unchecked_Access attribute with a prefix
1413 -- which is the current instance type can only be applied when the type
1414 -- is limited.
70482933
RK
1415
1416 function After_Last_Declaration return Boolean;
1417 -- If Loc is a freeze_entity that appears after the last declaration
1418 -- in the scope, inhibit error messages on late completion.
1419
1420 procedure Freeze_Record_Type (Rec : Entity_Id);
edd63e9b
ES
1421 -- Freeze each component, handle some representation clauses, and freeze
1422 -- primitive operations if this is a tagged type.
70482933
RK
1423
1424 ----------------------------
1425 -- After_Last_Declaration --
1426 ----------------------------
1427
1428 function After_Last_Declaration return Boolean is
fbf5a39b 1429 Spec : constant Node_Id := Parent (Current_Scope);
70482933
RK
1430 begin
1431 if Nkind (Spec) = N_Package_Specification then
1432 if Present (Private_Declarations (Spec)) then
1433 return Loc >= Sloc (Last (Private_Declarations (Spec)));
70482933
RK
1434 elsif Present (Visible_Declarations (Spec)) then
1435 return Loc >= Sloc (Last (Visible_Declarations (Spec)));
1436 else
1437 return False;
1438 end if;
70482933
RK
1439 else
1440 return False;
1441 end if;
1442 end After_Last_Declaration;
1443
1444 ----------------------------
1445 -- Check_Current_Instance --
1446 ----------------------------
1447
1448 procedure Check_Current_Instance (Comp_Decl : Node_Id) is
1449
32c760e6
ES
1450 Rec_Type : constant Entity_Id :=
1451 Scope (Defining_Identifier (Comp_Decl));
1452
1453 Decl : constant Node_Id := Parent (Rec_Type);
1454
70482933 1455 function Process (N : Node_Id) return Traverse_Result;
49e90211 1456 -- Process routine to apply check to given node
70482933 1457
fbf5a39b
AC
1458 -------------
1459 -- Process --
1460 -------------
1461
70482933
RK
1462 function Process (N : Node_Id) return Traverse_Result is
1463 begin
1464 case Nkind (N) is
1465 when N_Attribute_Reference =>
def46b54 1466 if (Attribute_Name (N) = Name_Access
70482933
RK
1467 or else
1468 Attribute_Name (N) = Name_Unchecked_Access)
1469 and then Is_Entity_Name (Prefix (N))
1470 and then Is_Type (Entity (Prefix (N)))
1471 and then Entity (Prefix (N)) = E
1472 then
1473 Error_Msg_N
1474 ("current instance must be a limited type", Prefix (N));
1475 return Abandon;
1476 else
1477 return OK;
1478 end if;
1479
1480 when others => return OK;
1481 end case;
1482 end Process;
1483
1484 procedure Traverse is new Traverse_Proc (Process);
1485
1486 -- Start of processing for Check_Current_Instance
1487
1488 begin
32c760e6
ES
1489 -- In Ada95, the (imprecise) rule is that the current instance of a
1490 -- limited type is aliased. In Ada2005, limitedness must be explicit:
1491 -- either a tagged type, or a limited record.
1492
1493 if Is_Limited_Type (Rec_Type)
1494 and then
1495 (Ada_Version < Ada_05
1496 or else Is_Tagged_Type (Rec_Type))
1497 then
1498 return;
1499
1500 elsif Nkind (Decl) = N_Full_Type_Declaration
1501 and then Limited_Present (Type_Definition (Decl))
1502 then
1503 return;
1504
1505 else
1506 Traverse (Comp_Decl);
1507 end if;
70482933
RK
1508 end Check_Current_Instance;
1509
1510 ------------------------
1511 -- Freeze_Record_Type --
1512 ------------------------
1513
1514 procedure Freeze_Record_Type (Rec : Entity_Id) is
1515 Comp : Entity_Id;
fbf5a39b 1516 IR : Node_Id;
70482933 1517 ADC : Node_Id;
c6823a20 1518 Prev : Entity_Id;
70482933 1519
67ce0d7e
RD
1520 Junk : Boolean;
1521 pragma Warnings (Off, Junk);
1522
70482933
RK
1523 Unplaced_Component : Boolean := False;
1524 -- Set True if we find at least one component with no component
1525 -- clause (used to warn about useless Pack pragmas).
1526
1527 Placed_Component : Boolean := False;
1528 -- Set True if we find at least one component with a component
1529 -- clause (used to warn about useless Bit_Order pragmas).
1530
e18d6a15
JM
1531 function Check_Allocator (N : Node_Id) return Node_Id;
1532 -- If N is an allocator, possibly wrapped in one or more level of
1533 -- qualified expression(s), return the inner allocator node, else
1534 -- return Empty.
19590d70 1535
7d8b9c99
RD
1536 procedure Check_Itype (Typ : Entity_Id);
1537 -- If the component subtype is an access to a constrained subtype of
1538 -- an already frozen type, make the subtype frozen as well. It might
1539 -- otherwise be frozen in the wrong scope, and a freeze node on
1540 -- subtype has no effect. Similarly, if the component subtype is a
1541 -- regular (not protected) access to subprogram, set the anonymous
1542 -- subprogram type to frozen as well, to prevent an out-of-scope
1543 -- freeze node at some eventual point of call. Protected operations
1544 -- are handled elsewhere.
6e059adb 1545
19590d70
GD
1546 ---------------------
1547 -- Check_Allocator --
1548 ---------------------
1549
e18d6a15
JM
1550 function Check_Allocator (N : Node_Id) return Node_Id is
1551 Inner : Node_Id;
19590d70 1552 begin
e18d6a15 1553 Inner := N;
e18d6a15
JM
1554 loop
1555 if Nkind (Inner) = N_Allocator then
1556 return Inner;
e18d6a15
JM
1557 elsif Nkind (Inner) = N_Qualified_Expression then
1558 Inner := Expression (Inner);
e18d6a15
JM
1559 else
1560 return Empty;
1561 end if;
1562 end loop;
19590d70
GD
1563 end Check_Allocator;
1564
6871ba5f
AC
1565 -----------------
1566 -- Check_Itype --
1567 -----------------
1568
7d8b9c99
RD
1569 procedure Check_Itype (Typ : Entity_Id) is
1570 Desig : constant Entity_Id := Designated_Type (Typ);
1571
6e059adb
AC
1572 begin
1573 if not Is_Frozen (Desig)
1574 and then Is_Frozen (Base_Type (Desig))
1575 then
1576 Set_Is_Frozen (Desig);
1577
1578 -- In addition, add an Itype_Reference to ensure that the
7d8b9c99
RD
1579 -- access subtype is elaborated early enough. This cannot be
1580 -- done if the subtype may depend on discriminants.
6e059adb
AC
1581
1582 if Ekind (Comp) = E_Component
1583 and then Is_Itype (Etype (Comp))
1584 and then not Has_Discriminants (Rec)
1585 then
1586 IR := Make_Itype_Reference (Sloc (Comp));
1587 Set_Itype (IR, Desig);
1588
1589 if No (Result) then
1590 Result := New_List (IR);
1591 else
1592 Append (IR, Result);
1593 end if;
1594 end if;
7d8b9c99
RD
1595
1596 elsif Ekind (Typ) = E_Anonymous_Access_Subprogram_Type
1597 and then Convention (Desig) /= Convention_Protected
1598 then
1599 Set_Is_Frozen (Desig);
6e059adb
AC
1600 end if;
1601 end Check_Itype;
1602
1603 -- Start of processing for Freeze_Record_Type
1604
70482933 1605 begin
7d8b9c99
RD
1606 -- If this is a subtype of a controlled type, declared without a
1607 -- constraint, the _controller may not appear in the component list
1608 -- if the parent was not frozen at the point of subtype declaration.
1609 -- Inherit the _controller component now.
fbf5a39b
AC
1610
1611 if Rec /= Base_Type (Rec)
1612 and then Has_Controlled_Component (Rec)
1613 then
1614 if Nkind (Parent (Rec)) = N_Subtype_Declaration
1615 and then Is_Entity_Name (Subtype_Indication (Parent (Rec)))
1616 then
1617 Set_First_Entity (Rec, First_Entity (Base_Type (Rec)));
1618
49e90211 1619 -- If this is an internal type without a declaration, as for
6871ba5f
AC
1620 -- record component, the base type may not yet be frozen, and its
1621 -- controller has not been created. Add an explicit freeze node
49e90211
ES
1622 -- for the itype, so it will be frozen after the base type. This
1623 -- freeze node is used to communicate with the expander, in order
1624 -- to create the controller for the enclosing record, and it is
1625 -- deleted afterwards (see exp_ch3). It must not be created when
1626 -- expansion is off, because it might appear in the wrong context
1627 -- for the back end.
fbf5a39b
AC
1628
1629 elsif Is_Itype (Rec)
1630 and then Has_Delayed_Freeze (Base_Type (Rec))
1631 and then
1632 Nkind (Associated_Node_For_Itype (Rec)) =
49e90211
ES
1633 N_Component_Declaration
1634 and then Expander_Active
fbf5a39b
AC
1635 then
1636 Ensure_Freeze_Node (Rec);
1637 end if;
1638 end if;
1639
49e90211 1640 -- Freeze components and embedded subtypes
70482933
RK
1641
1642 Comp := First_Entity (Rec);
c6823a20 1643 Prev := Empty;
c6823a20 1644 while Present (Comp) loop
70482933 1645
49e90211 1646 -- First handle the (real) component case
70482933
RK
1647
1648 if Ekind (Comp) = E_Component
1649 or else Ekind (Comp) = E_Discriminant
1650 then
70482933
RK
1651 declare
1652 CC : constant Node_Id := Component_Clause (Comp);
1653
1654 begin
c6823a20
EB
1655 -- Freezing a record type freezes the type of each of its
1656 -- components. However, if the type of the component is
1657 -- part of this record, we do not want or need a separate
1658 -- Freeze_Node. Note that Is_Itype is wrong because that's
1659 -- also set in private type cases. We also can't check for
1660 -- the Scope being exactly Rec because of private types and
1661 -- record extensions.
1662
1663 if Is_Itype (Etype (Comp))
1664 and then Is_Record_Type (Underlying_Type
1665 (Scope (Etype (Comp))))
1666 then
1667 Undelay_Type (Etype (Comp));
1668 end if;
1669
1670 Freeze_And_Append (Etype (Comp), Loc, Result);
1671
0da2c8ac
AC
1672 -- Check for error of component clause given for variable
1673 -- sized type. We have to delay this test till this point,
1674 -- since the component type has to be frozen for us to know
1675 -- if it is variable length. We omit this test in a generic
1676 -- context, it will be applied at instantiation time.
1677
70482933
RK
1678 if Present (CC) then
1679 Placed_Component := True;
1680
07fc65c4
GB
1681 if Inside_A_Generic then
1682 null;
1683
7d8b9c99
RD
1684 elsif not
1685 Size_Known_At_Compile_Time
1686 (Underlying_Type (Etype (Comp)))
70482933
RK
1687 then
1688 Error_Msg_N
1689 ("component clause not allowed for variable " &
1690 "length component", CC);
1691 end if;
1692
1693 else
1694 Unplaced_Component := True;
1695 end if;
70482933 1696
0da2c8ac 1697 -- Case of component requires byte alignment
70482933 1698
0da2c8ac 1699 if Must_Be_On_Byte_Boundary (Etype (Comp)) then
70482933 1700
0da2c8ac 1701 -- Set the enclosing record to also require byte align
70482933 1702
0da2c8ac 1703 Set_Must_Be_On_Byte_Boundary (Rec);
70482933 1704
7d8b9c99
RD
1705 -- Check for component clause that is inconsistent with
1706 -- the required byte boundary alignment.
70482933 1707
0da2c8ac
AC
1708 if Present (CC)
1709 and then Normalized_First_Bit (Comp) mod
1710 System_Storage_Unit /= 0
1711 then
1712 Error_Msg_N
1713 ("component & must be byte aligned",
1714 Component_Name (Component_Clause (Comp)));
1715 end if;
1716 end if;
70482933 1717
7d8b9c99
RD
1718 -- If component clause is present, then deal with the non-
1719 -- default bit order case for Ada 95 mode. The required
fea9e956
ES
1720 -- processing for Ada 2005 mode is handled separately after
1721 -- processing all components.
70482933 1722
0da2c8ac
AC
1723 -- We only do this processing for the base type, and in
1724 -- fact that's important, since otherwise if there are
1725 -- record subtypes, we could reverse the bits once for
1726 -- each subtype, which would be incorrect.
70482933 1727
0da2c8ac
AC
1728 if Present (CC)
1729 and then Reverse_Bit_Order (Rec)
1730 and then Ekind (E) = E_Record_Type
fea9e956 1731 and then Ada_Version <= Ada_95
0da2c8ac
AC
1732 then
1733 declare
1734 CFB : constant Uint := Component_Bit_Offset (Comp);
1735 CSZ : constant Uint := Esize (Comp);
1736 CLC : constant Node_Id := Component_Clause (Comp);
1737 Pos : constant Node_Id := Position (CLC);
1738 FB : constant Node_Id := First_Bit (CLC);
1739
1740 Storage_Unit_Offset : constant Uint :=
1741 CFB / System_Storage_Unit;
1742
1743 Start_Bit : constant Uint :=
1744 CFB mod System_Storage_Unit;
1745
1746 begin
1747 -- Cases where field goes over storage unit boundary
1748
1749 if Start_Bit + CSZ > System_Storage_Unit then
70482933 1750
0da2c8ac
AC
1751 -- Allow multi-byte field but generate warning
1752
1753 if Start_Bit mod System_Storage_Unit = 0
1754 and then CSZ mod System_Storage_Unit = 0
1755 then
70482933 1756 Error_Msg_N
0da2c8ac
AC
1757 ("multi-byte field specified with non-standard"
1758 & " Bit_Order?", CLC);
1759
1760 if Bytes_Big_Endian then
1761 Error_Msg_N
1762 ("bytes are not reversed "
1763 & "(component is big-endian)?", CLC);
1764 else
1765 Error_Msg_N
1766 ("bytes are not reversed "
1767 & "(component is little-endian)?", CLC);
1768 end if;
1769
1770 -- Do not allow non-contiguous field
1771
70482933
RK
1772 else
1773 Error_Msg_N
0da2c8ac
AC
1774 ("attempt to specify non-contiguous field"
1775 & " not permitted", CLC);
1776 Error_Msg_N
1777 ("\(caused by non-standard Bit_Order "
1778 & "specified)", CLC);
70482933
RK
1779 end if;
1780
0da2c8ac 1781 -- Case where field fits in one storage unit
70482933
RK
1782
1783 else
0da2c8ac 1784 -- Give warning if suspicious component clause
70482933 1785
fea9e956
ES
1786 if Intval (FB) >= System_Storage_Unit
1787 and then Warn_On_Reverse_Bit_Order
1788 then
0da2c8ac
AC
1789 Error_Msg_N
1790 ("?Bit_Order clause does not affect " &
1791 "byte ordering", Pos);
1792 Error_Msg_Uint_1 :=
1793 Intval (Pos) + Intval (FB) /
1794 System_Storage_Unit;
1795 Error_Msg_N
1796 ("?position normalized to ^ before bit " &
1797 "order interpreted", Pos);
1798 end if;
70482933 1799
0da2c8ac
AC
1800 -- Here is where we fix up the Component_Bit_Offset
1801 -- value to account for the reverse bit order.
1802 -- Some examples of what needs to be done are:
70482933 1803
0da2c8ac
AC
1804 -- First_Bit .. Last_Bit Component_Bit_Offset
1805 -- old new old new
70482933 1806
0da2c8ac
AC
1807 -- 0 .. 0 7 .. 7 0 7
1808 -- 0 .. 1 6 .. 7 0 6
1809 -- 0 .. 2 5 .. 7 0 5
1810 -- 0 .. 7 0 .. 7 0 4
70482933 1811
0da2c8ac
AC
1812 -- 1 .. 1 6 .. 6 1 6
1813 -- 1 .. 4 3 .. 6 1 3
1814 -- 4 .. 7 0 .. 3 4 0
70482933 1815
0da2c8ac
AC
1816 -- The general rule is that the first bit is
1817 -- is obtained by subtracting the old ending bit
1818 -- from storage_unit - 1.
70482933 1819
0da2c8ac
AC
1820 Set_Component_Bit_Offset
1821 (Comp,
1822 (Storage_Unit_Offset * System_Storage_Unit) +
1823 (System_Storage_Unit - 1) -
1824 (Start_Bit + CSZ - 1));
70482933 1825
0da2c8ac
AC
1826 Set_Normalized_First_Bit
1827 (Comp,
1828 Component_Bit_Offset (Comp) mod
1829 System_Storage_Unit);
1830 end if;
1831 end;
1832 end if;
1833 end;
70482933
RK
1834 end if;
1835
c6823a20
EB
1836 -- If the component is an Itype with Delayed_Freeze and is either
1837 -- a record or array subtype and its base type has not yet been
1838 -- frozen, we must remove this from the entity list of this
1839 -- record and put it on the entity list of the scope of its base
1840 -- type. Note that we know that this is not the type of a
1841 -- component since we cleared Has_Delayed_Freeze for it in the
1842 -- previous loop. Thus this must be the Designated_Type of an
1843 -- access type, which is the type of a component.
1844
1845 if Is_Itype (Comp)
1846 and then Is_Type (Scope (Comp))
1847 and then Is_Composite_Type (Comp)
1848 and then Base_Type (Comp) /= Comp
1849 and then Has_Delayed_Freeze (Comp)
1850 and then not Is_Frozen (Base_Type (Comp))
1851 then
1852 declare
1853 Will_Be_Frozen : Boolean := False;
1b24ada5 1854 S : Entity_Id;
c6823a20
EB
1855
1856 begin
fea9e956
ES
1857 -- We have a pretty bad kludge here. Suppose Rec is subtype
1858 -- being defined in a subprogram that's created as part of
1859 -- the freezing of Rec'Base. In that case, we know that
1860 -- Comp'Base must have already been frozen by the time we
1861 -- get to elaborate this because Gigi doesn't elaborate any
1862 -- bodies until it has elaborated all of the declarative
1863 -- part. But Is_Frozen will not be set at this point because
1864 -- we are processing code in lexical order.
1865
1866 -- We detect this case by going up the Scope chain of Rec
1867 -- and seeing if we have a subprogram scope before reaching
1868 -- the top of the scope chain or that of Comp'Base. If we
1869 -- do, then mark that Comp'Base will actually be frozen. If
1870 -- so, we merely undelay it.
c6823a20 1871
1b24ada5 1872 S := Scope (Rec);
c6823a20
EB
1873 while Present (S) loop
1874 if Is_Subprogram (S) then
1875 Will_Be_Frozen := True;
1876 exit;
1877 elsif S = Scope (Base_Type (Comp)) then
1878 exit;
1879 end if;
1880
1881 S := Scope (S);
1882 end loop;
1883
1884 if Will_Be_Frozen then
1885 Undelay_Type (Comp);
1886 else
1887 if Present (Prev) then
1888 Set_Next_Entity (Prev, Next_Entity (Comp));
1889 else
1890 Set_First_Entity (Rec, Next_Entity (Comp));
1891 end if;
1892
1893 -- Insert in entity list of scope of base type (which
1894 -- must be an enclosing scope, because still unfrozen).
1895
1896 Append_Entity (Comp, Scope (Base_Type (Comp)));
1897 end if;
1898 end;
1899
def46b54
RD
1900 -- If the component is an access type with an allocator as default
1901 -- value, the designated type will be frozen by the corresponding
1902 -- expression in init_proc. In order to place the freeze node for
1903 -- the designated type before that for the current record type,
1904 -- freeze it now.
c6823a20
EB
1905
1906 -- Same process if the component is an array of access types,
1907 -- initialized with an aggregate. If the designated type is
def46b54
RD
1908 -- private, it cannot contain allocators, and it is premature
1909 -- to freeze the type, so we check for this as well.
c6823a20
EB
1910
1911 elsif Is_Access_Type (Etype (Comp))
1912 and then Present (Parent (Comp))
1913 and then Present (Expression (Parent (Comp)))
c6823a20
EB
1914 then
1915 declare
e18d6a15
JM
1916 Alloc : constant Node_Id :=
1917 Check_Allocator (Expression (Parent (Comp)));
c6823a20
EB
1918
1919 begin
e18d6a15 1920 if Present (Alloc) then
19590d70 1921
e18d6a15
JM
1922 -- If component is pointer to a classwide type, freeze
1923 -- the specific type in the expression being allocated.
1924 -- The expression may be a subtype indication, in which
1925 -- case freeze the subtype mark.
c6823a20 1926
e18d6a15
JM
1927 if Is_Class_Wide_Type
1928 (Designated_Type (Etype (Comp)))
0f4cb75c 1929 then
e18d6a15
JM
1930 if Is_Entity_Name (Expression (Alloc)) then
1931 Freeze_And_Append
1932 (Entity (Expression (Alloc)), Loc, Result);
1933 elsif
1934 Nkind (Expression (Alloc)) = N_Subtype_Indication
1935 then
1936 Freeze_And_Append
1937 (Entity (Subtype_Mark (Expression (Alloc))),
1938 Loc, Result);
1939 end if;
0f4cb75c 1940
e18d6a15
JM
1941 elsif Is_Itype (Designated_Type (Etype (Comp))) then
1942 Check_Itype (Etype (Comp));
0f4cb75c 1943
e18d6a15
JM
1944 else
1945 Freeze_And_Append
1946 (Designated_Type (Etype (Comp)), Loc, Result);
1947 end if;
c6823a20
EB
1948 end if;
1949 end;
1950
1951 elsif Is_Access_Type (Etype (Comp))
1952 and then Is_Itype (Designated_Type (Etype (Comp)))
1953 then
7d8b9c99 1954 Check_Itype (Etype (Comp));
c6823a20
EB
1955
1956 elsif Is_Array_Type (Etype (Comp))
1957 and then Is_Access_Type (Component_Type (Etype (Comp)))
1958 and then Present (Parent (Comp))
1959 and then Nkind (Parent (Comp)) = N_Component_Declaration
1960 and then Present (Expression (Parent (Comp)))
1961 and then Nkind (Expression (Parent (Comp))) = N_Aggregate
1962 and then Is_Fully_Defined
1963 (Designated_Type (Component_Type (Etype (Comp))))
1964 then
1965 Freeze_And_Append
1966 (Designated_Type
1967 (Component_Type (Etype (Comp))), Loc, Result);
1968 end if;
1969
1970 Prev := Comp;
70482933
RK
1971 Next_Entity (Comp);
1972 end loop;
1973
fea9e956
ES
1974 -- Deal with pragma Bit_Order
1975
1976 if Reverse_Bit_Order (Rec) and then Base_Type (Rec) = Rec then
1977 if not Placed_Component then
1978 ADC :=
1979 Get_Attribute_Definition_Clause (Rec, Attribute_Bit_Order);
1980 Error_Msg_N
1981 ("?Bit_Order specification has no effect", ADC);
1982 Error_Msg_N
1983 ("\?since no component clauses were specified", ADC);
1984
def46b54
RD
1985 -- Here is where we do Ada 2005 processing for bit order (the Ada
1986 -- 95 case was already taken care of above).
70482933 1987
fea9e956
ES
1988 elsif Ada_Version >= Ada_05 then
1989 Adjust_Record_For_Reverse_Bit_Order (Rec);
1990 end if;
70482933
RK
1991 end if;
1992
1b24ada5
RD
1993 -- Set OK_To_Reorder_Components depending on debug flags
1994
1995 if Rec = Base_Type (Rec)
1996 and then Convention (Rec) = Convention_Ada
1997 then
1998 if (Has_Discriminants (Rec) and then Debug_Flag_Dot_V)
1999 or else
2000 (not Has_Discriminants (Rec) and then Debug_Flag_Dot_R)
2001 then
2002 Set_OK_To_Reorder_Components (Rec);
2003 end if;
2004 end if;
2005
ee094616
RD
2006 -- Check for useless pragma Pack when all components placed. We only
2007 -- do this check for record types, not subtypes, since a subtype may
2008 -- have all its components placed, and it still makes perfectly good
1b24ada5
RD
2009 -- sense to pack other subtypes or the parent type. We do not give
2010 -- this warning if Optimize_Alignment is set to Space, since the
2011 -- pragma Pack does have an effect in this case (it always resets
2012 -- the alignment to one).
70482933 2013
ee094616
RD
2014 if Ekind (Rec) = E_Record_Type
2015 and then Is_Packed (Rec)
70482933 2016 and then not Unplaced_Component
1b24ada5 2017 and then Optimize_Alignment /= 'S'
70482933 2018 then
def46b54
RD
2019 -- Reset packed status. Probably not necessary, but we do it so
2020 -- that there is no chance of the back end doing something strange
2021 -- with this redundant indication of packing.
ee094616 2022
70482933 2023 Set_Is_Packed (Rec, False);
ee094616
RD
2024
2025 -- Give warning if redundant constructs warnings on
2026
2027 if Warn_On_Redundant_Constructs then
2028 Error_Msg_N
2029 ("?pragma Pack has no effect, no unplaced components",
2030 Get_Rep_Pragma (Rec, Name_Pack));
2031 end if;
70482933
RK
2032 end if;
2033
ee094616
RD
2034 -- If this is the record corresponding to a remote type, freeze the
2035 -- remote type here since that is what we are semantically freezing.
2036 -- This prevents the freeze node for that type in an inner scope.
70482933
RK
2037
2038 -- Also, Check for controlled components and unchecked unions.
ee094616
RD
2039 -- Finally, enforce the restriction that access attributes with a
2040 -- current instance prefix can only apply to limited types.
70482933
RK
2041
2042 if Ekind (Rec) = E_Record_Type then
70482933
RK
2043 if Present (Corresponding_Remote_Type (Rec)) then
2044 Freeze_And_Append
2045 (Corresponding_Remote_Type (Rec), Loc, Result);
2046 end if;
2047
2048 Comp := First_Component (Rec);
70482933
RK
2049 while Present (Comp) loop
2050 if Has_Controlled_Component (Etype (Comp))
2051 or else (Chars (Comp) /= Name_uParent
2052 and then Is_Controlled (Etype (Comp)))
2053 or else (Is_Protected_Type (Etype (Comp))
2054 and then Present
2055 (Corresponding_Record_Type (Etype (Comp)))
2056 and then Has_Controlled_Component
2057 (Corresponding_Record_Type (Etype (Comp))))
2058 then
2059 Set_Has_Controlled_Component (Rec);
2060 exit;
2061 end if;
2062
2063 if Has_Unchecked_Union (Etype (Comp)) then
2064 Set_Has_Unchecked_Union (Rec);
2065 end if;
2066
32c760e6
ES
2067 if Has_Per_Object_Constraint (Comp) then
2068
ee094616
RD
2069 -- Scan component declaration for likely misuses of current
2070 -- instance, either in a constraint or a default expression.
70482933
RK
2071
2072 Check_Current_Instance (Parent (Comp));
2073 end if;
2074
2075 Next_Component (Comp);
2076 end loop;
2077 end if;
2078
2079 Set_Component_Alignment_If_Not_Set (Rec);
2080
ee094616
RD
2081 -- For first subtypes, check if there are any fixed-point fields with
2082 -- component clauses, where we must check the size. This is not done
2083 -- till the freeze point, since for fixed-point types, we do not know
2084 -- the size until the type is frozen. Similar processing applies to
2085 -- bit packed arrays.
70482933
RK
2086
2087 if Is_First_Subtype (Rec) then
2088 Comp := First_Component (Rec);
2089
2090 while Present (Comp) loop
2091 if Present (Component_Clause (Comp))
d05ef0ab
AC
2092 and then (Is_Fixed_Point_Type (Etype (Comp))
2093 or else
2094 Is_Bit_Packed_Array (Etype (Comp)))
70482933
RK
2095 then
2096 Check_Size
d05ef0ab 2097 (Component_Name (Component_Clause (Comp)),
70482933
RK
2098 Etype (Comp),
2099 Esize (Comp),
2100 Junk);
2101 end if;
2102
2103 Next_Component (Comp);
2104 end loop;
2105 end if;
7d8b9c99
RD
2106
2107 -- Generate warning for applying C or C++ convention to a record
2108 -- with discriminants. This is suppressed for the unchecked union
1b24ada5
RD
2109 -- case, since the whole point in this case is interface C. We also
2110 -- do not generate this within instantiations, since we will have
2111 -- generated a message on the template.
7d8b9c99
RD
2112
2113 if Has_Discriminants (E)
2114 and then not Is_Unchecked_Union (E)
7d8b9c99
RD
2115 and then (Convention (E) = Convention_C
2116 or else
2117 Convention (E) = Convention_CPP)
2118 and then Comes_From_Source (E)
1b24ada5
RD
2119 and then not In_Instance
2120 and then not Has_Warnings_Off (E)
2121 and then not Has_Warnings_Off (Base_Type (E))
7d8b9c99
RD
2122 then
2123 declare
2124 Cprag : constant Node_Id := Get_Rep_Pragma (E, Name_Convention);
2125 A2 : Node_Id;
2126
2127 begin
2128 if Present (Cprag) then
2129 A2 := Next (First (Pragma_Argument_Associations (Cprag)));
2130
2131 if Convention (E) = Convention_C then
2132 Error_Msg_N
2133 ("?variant record has no direct equivalent in C", A2);
2134 else
2135 Error_Msg_N
2136 ("?variant record has no direct equivalent in C++", A2);
2137 end if;
2138
2139 Error_Msg_NE
2140 ("\?use of convention for type& is dubious", A2, E);
2141 end if;
2142 end;
2143 end if;
70482933
RK
2144 end Freeze_Record_Type;
2145
2146 -- Start of processing for Freeze_Entity
2147
2148 begin
c6823a20
EB
2149 -- We are going to test for various reasons why this entity need not be
2150 -- frozen here, but in the case of an Itype that's defined within a
2151 -- record, that test actually applies to the record.
2152
2153 if Is_Itype (E) and then Is_Record_Type (Scope (E)) then
2154 Test_E := Scope (E);
2155 elsif Is_Itype (E) and then Present (Underlying_Type (Scope (E)))
2156 and then Is_Record_Type (Underlying_Type (Scope (E)))
2157 then
2158 Test_E := Underlying_Type (Scope (E));
2159 end if;
2160
fbf5a39b 2161 -- Do not freeze if already frozen since we only need one freeze node
70482933
RK
2162
2163 if Is_Frozen (E) then
2164 return No_List;
2165
c6823a20
EB
2166 -- It is improper to freeze an external entity within a generic because
2167 -- its freeze node will appear in a non-valid context. The entity will
2168 -- be frozen in the proper scope after the current generic is analyzed.
70482933 2169
c6823a20 2170 elsif Inside_A_Generic and then External_Ref_In_Generic (Test_E) then
70482933
RK
2171 return No_List;
2172
2173 -- Do not freeze a global entity within an inner scope created during
2174 -- expansion. A call to subprogram E within some internal procedure
2175 -- (a stream attribute for example) might require freezing E, but the
2176 -- freeze node must appear in the same declarative part as E itself.
2177 -- The two-pass elaboration mechanism in gigi guarantees that E will
2178 -- be frozen before the inner call is elaborated. We exclude constants
2179 -- from this test, because deferred constants may be frozen early, and
19590d70
GD
2180 -- must be diagnosed (e.g. in the case of a deferred constant being used
2181 -- in a default expression). If the enclosing subprogram comes from
2182 -- source, or is a generic instance, then the freeze point is the one
2183 -- mandated by the language, and we freeze the entity. A subprogram that
2184 -- is a child unit body that acts as a spec does not have a spec that
2185 -- comes from source, but can only come from source.
70482933 2186
c6823a20
EB
2187 elsif In_Open_Scopes (Scope (Test_E))
2188 and then Scope (Test_E) /= Current_Scope
2189 and then Ekind (Test_E) /= E_Constant
70482933
RK
2190 then
2191 declare
2192 S : Entity_Id := Current_Scope;
2193
2194 begin
2195 while Present (S) loop
2196 if Is_Overloadable (S) then
2197 if Comes_From_Source (S)
2198 or else Is_Generic_Instance (S)
fea9e956 2199 or else Is_Child_Unit (S)
70482933
RK
2200 then
2201 exit;
2202 else
2203 return No_List;
2204 end if;
2205 end if;
2206
2207 S := Scope (S);
2208 end loop;
2209 end;
555360a5
AC
2210
2211 -- Similarly, an inlined instance body may make reference to global
2212 -- entities, but these references cannot be the proper freezing point
def46b54
RD
2213 -- for them, and in the absence of inlining freezing will take place in
2214 -- their own scope. Normally instance bodies are analyzed after the
2215 -- enclosing compilation, and everything has been frozen at the proper
2216 -- place, but with front-end inlining an instance body is compiled
2217 -- before the end of the enclosing scope, and as a result out-of-order
2218 -- freezing must be prevented.
555360a5
AC
2219
2220 elsif Front_End_Inlining
7d8b9c99 2221 and then In_Instance_Body
c6823a20 2222 and then Present (Scope (Test_E))
555360a5
AC
2223 then
2224 declare
c6823a20
EB
2225 S : Entity_Id := Scope (Test_E);
2226
555360a5
AC
2227 begin
2228 while Present (S) loop
2229 if Is_Generic_Instance (S) then
2230 exit;
2231 else
2232 S := Scope (S);
2233 end if;
2234 end loop;
2235
2236 if No (S) then
2237 return No_List;
2238 end if;
2239 end;
70482933
RK
2240 end if;
2241
2242 -- Here to freeze the entity
2243
2244 Result := No_List;
2245 Set_Is_Frozen (E);
2246
2247 -- Case of entity being frozen is other than a type
2248
2249 if not Is_Type (E) then
2250
2251 -- If entity is exported or imported and does not have an external
2252 -- name, now is the time to provide the appropriate default name.
2253 -- Skip this if the entity is stubbed, since we don't need a name
2254 -- for any stubbed routine.
2255
2256 if (Is_Imported (E) or else Is_Exported (E))
2257 and then No (Interface_Name (E))
2258 and then Convention (E) /= Convention_Stubbed
2259 then
2260 Set_Encoded_Interface_Name
2261 (E, Get_Default_External_Name (E));
fbf5a39b
AC
2262
2263 -- Special processing for atomic objects appearing in object decls
2264
2265 elsif Is_Atomic (E)
2266 and then Nkind (Parent (E)) = N_Object_Declaration
2267 and then Present (Expression (Parent (E)))
2268 then
2269 declare
2270 Expr : constant Node_Id := Expression (Parent (E));
2271
2272 begin
2273 -- If expression is an aggregate, assign to a temporary to
2274 -- ensure that the actual assignment is done atomically rather
2275 -- than component-wise (the assignment to the temp may be done
7d8b9c99 2276 -- component-wise, but that is harmless).
fbf5a39b
AC
2277
2278 if Nkind (Expr) = N_Aggregate then
2279 Expand_Atomic_Aggregate (Expr, Etype (E));
2280
ee094616
RD
2281 -- If the expression is a reference to a record or array object
2282 -- entity, then reset Is_True_Constant to False so that the
2283 -- compiler will not optimize away the intermediate object,
2284 -- which we need in this case for the same reason (to ensure
2285 -- that the actual assignment is atomic, rather than
2286 -- component-wise).
fbf5a39b
AC
2287
2288 elsif Is_Entity_Name (Expr)
2289 and then (Is_Record_Type (Etype (Expr))
2290 or else
2291 Is_Array_Type (Etype (Expr)))
2292 then
2293 Set_Is_True_Constant (Entity (Expr), False);
2294 end if;
2295 end;
70482933
RK
2296 end if;
2297
2298 -- For a subprogram, freeze all parameter types and also the return
fbf5a39b 2299 -- type (RM 13.14(14)). However skip this for internal subprograms.
70482933
RK
2300 -- This is also the point where any extra formal parameters are
2301 -- created since we now know whether the subprogram will use
2302 -- a foreign convention.
2303
2304 if Is_Subprogram (E) then
70482933 2305 if not Is_Internal (E) then
70482933 2306 declare
6d11af89 2307 F_Type : Entity_Id;
def46b54 2308 R_Type : Entity_Id;
6d11af89 2309 Warn_Node : Node_Id;
70482933 2310
70482933
RK
2311 begin
2312 -- Loop through formals
2313
2314 Formal := First_Formal (E);
70482933 2315 while Present (Formal) loop
70482933
RK
2316 F_Type := Etype (Formal);
2317 Freeze_And_Append (F_Type, Loc, Result);
2318
2319 if Is_Private_Type (F_Type)
2320 and then Is_Private_Type (Base_Type (F_Type))
2321 and then No (Full_View (Base_Type (F_Type)))
2322 and then not Is_Generic_Type (F_Type)
2323 and then not Is_Derived_Type (F_Type)
2324 then
2325 -- If the type of a formal is incomplete, subprogram
2326 -- is being frozen prematurely. Within an instance
2327 -- (but not within a wrapper package) this is an
2328 -- an artifact of our need to regard the end of an
2329 -- instantiation as a freeze point. Otherwise it is
2330 -- a definite error.
fbf5a39b 2331
70482933
RK
2332 -- and then not Is_Wrapper_Package (Current_Scope) ???
2333
2334 if In_Instance then
2335 Set_Is_Frozen (E, False);
2336 return No_List;
2337
86cde7b1
RD
2338 elsif not After_Last_Declaration
2339 and then not Freezing_Library_Level_Tagged_Type
2340 then
70482933
RK
2341 Error_Msg_Node_1 := F_Type;
2342 Error_Msg
2343 ("type& must be fully defined before this point",
2344 Loc);
2345 end if;
2346 end if;
2347
def46b54 2348 -- Check suspicious parameter for C function. These tests
1b24ada5 2349 -- apply only to exported/imported subprograms.
70482933 2350
def46b54 2351 if Warn_On_Export_Import
1b24ada5 2352 and then Comes_From_Source (E)
def46b54
RD
2353 and then (Convention (E) = Convention_C
2354 or else
2355 Convention (E) = Convention_CPP)
def46b54 2356 and then (Is_Imported (E) or else Is_Exported (E))
1b24ada5
RD
2357 and then Convention (E) /= Convention (Formal)
2358 and then not Has_Warnings_Off (E)
2359 and then not Has_Warnings_Off (F_Type)
2360 and then not Has_Warnings_Off (Formal)
fbf5a39b 2361 then
70482933 2362 Error_Msg_Qual_Level := 1;
def46b54
RD
2363
2364 -- Check suspicious use of fat C pointer
2365
2366 if Is_Access_Type (F_Type)
2367 and then Esize (F_Type) > Ttypes.System_Address_Size
2368 then
2369 Error_Msg_N
2370 ("?type of & does not correspond "
2371 & "to C pointer!", Formal);
2372
2373 -- Check suspicious return of boolean
2374
2375 elsif Root_Type (F_Type) = Standard_Boolean
2376 and then Convention (F_Type) = Convention_Ada
2377 then
2378 Error_Msg_N
2379 ("?& is an 8-bit Ada Boolean, "
2380 & "use char in C!", Formal);
2381
2382 -- Check suspicious tagged type
2383
2384 elsif (Is_Tagged_Type (F_Type)
2385 or else (Is_Access_Type (F_Type)
2386 and then
2387 Is_Tagged_Type
2388 (Designated_Type (F_Type))))
2389 and then Convention (E) = Convention_C
2390 then
2391 Error_Msg_N
2392 ("?& is a tagged type which does not "
2393 & "correspond to any C type!", Formal);
2394
2395 -- Check wrong convention subprogram pointer
2396
2397 elsif Ekind (F_Type) = E_Access_Subprogram_Type
2398 and then not Has_Foreign_Convention (F_Type)
2399 then
2400 Error_Msg_N
2401 ("?subprogram pointer & should "
2402 & "have foreign convention!", Formal);
2403 Error_Msg_Sloc := Sloc (F_Type);
2404 Error_Msg_NE
2405 ("\?add Convention pragma to declaration of &#",
2406 Formal, F_Type);
2407 end if;
2408
70482933
RK
2409 Error_Msg_Qual_Level := 0;
2410 end if;
2411
2412 -- Check for unconstrained array in exported foreign
2413 -- convention case.
2414
def46b54 2415 if Has_Foreign_Convention (E)
70482933
RK
2416 and then not Is_Imported (E)
2417 and then Is_Array_Type (F_Type)
2418 and then not Is_Constrained (F_Type)
fbf5a39b 2419 and then Warn_On_Export_Import
70482933
RK
2420 then
2421 Error_Msg_Qual_Level := 1;
6d11af89
AC
2422
2423 -- If this is an inherited operation, place the
2424 -- warning on the derived type declaration, rather
2425 -- than on the original subprogram.
2426
2427 if Nkind (Original_Node (Parent (E))) =
2428 N_Full_Type_Declaration
2429 then
2430 Warn_Node := Parent (E);
2431
2432 if Formal = First_Formal (E) then
2433 Error_Msg_NE
add9f797 2434 ("?in inherited operation&", Warn_Node, E);
6d11af89
AC
2435 end if;
2436 else
2437 Warn_Node := Formal;
2438 end if;
2439
2440 Error_Msg_NE
70482933 2441 ("?type of argument& is unconstrained array",
6d11af89
AC
2442 Warn_Node, Formal);
2443 Error_Msg_NE
70482933 2444 ("?foreign caller must pass bounds explicitly",
6d11af89 2445 Warn_Node, Formal);
70482933
RK
2446 Error_Msg_Qual_Level := 0;
2447 end if;
2448
d8db0bca
JM
2449 -- Ada 2005 (AI-326): Check wrong use of tag incomplete
2450 -- types with unknown discriminants. For example:
2451
2452 -- type T (<>) is tagged;
2453 -- procedure P (X : access T); -- ERROR
2454 -- procedure P (X : T); -- ERROR
2455
2456 if not From_With_Type (F_Type) then
2457 if Is_Access_Type (F_Type) then
2458 F_Type := Designated_Type (F_Type);
2459 end if;
2460
2461 if Ekind (F_Type) = E_Incomplete_Type
2462 and then Is_Tagged_Type (F_Type)
2463 and then not Is_Class_Wide_Type (F_Type)
2464 and then No (Full_View (F_Type))
2465 and then Unknown_Discriminants_Present
2466 (Parent (F_Type))
2467 and then No (Stored_Constraint (F_Type))
2468 then
2469 Error_Msg_N
2470 ("(Ada 2005): invalid use of unconstrained tagged"
2471 & " incomplete type", E);
57747aec 2472
7d8b9c99
RD
2473 -- If the formal is an anonymous_access_to_subprogram
2474 -- freeze the subprogram type as well, to prevent
2475 -- scope anomalies in gigi, because there is no other
2476 -- clear point at which it could be frozen.
2477
2478 elsif Is_Itype (Etype (Formal))
2479 and then Ekind (F_Type) = E_Subprogram_Type
2480 then
57747aec 2481 Freeze_And_Append (F_Type, Loc, Result);
d8db0bca
JM
2482 end if;
2483 end if;
2484
70482933
RK
2485 Next_Formal (Formal);
2486 end loop;
2487
def46b54 2488 -- Case of function
70482933
RK
2489
2490 if Ekind (E) = E_Function then
def46b54
RD
2491
2492 -- Freeze return type
2493
2494 R_Type := Etype (E);
2495 Freeze_And_Append (R_Type, Loc, Result);
2496
2497 -- Check suspicious return type for C function
70482933 2498
fbf5a39b 2499 if Warn_On_Export_Import
def46b54
RD
2500 and then (Convention (E) = Convention_C
2501 or else
2502 Convention (E) = Convention_CPP)
def46b54 2503 and then (Is_Imported (E) or else Is_Exported (E))
fbf5a39b 2504 then
def46b54
RD
2505 -- Check suspicious return of fat C pointer
2506
2507 if Is_Access_Type (R_Type)
2508 and then Esize (R_Type) > Ttypes.System_Address_Size
1b24ada5
RD
2509 and then not Has_Warnings_Off (E)
2510 and then not Has_Warnings_Off (R_Type)
def46b54
RD
2511 then
2512 Error_Msg_N
2513 ("?return type of& does not "
2514 & "correspond to C pointer!", E);
2515
2516 -- Check suspicious return of boolean
2517
2518 elsif Root_Type (R_Type) = Standard_Boolean
2519 and then Convention (R_Type) = Convention_Ada
1b24ada5
RD
2520 and then not Has_Warnings_Off (E)
2521 and then not Has_Warnings_Off (R_Type)
def46b54
RD
2522 then
2523 Error_Msg_N
2524 ("?return type of & is an 8-bit "
2525 & "Ada Boolean, use char in C!", E);
70482933 2526
def46b54
RD
2527 -- Check suspicious return tagged type
2528
2529 elsif (Is_Tagged_Type (R_Type)
2530 or else (Is_Access_Type (R_Type)
2531 and then
2532 Is_Tagged_Type
2533 (Designated_Type (R_Type))))
2534 and then Convention (E) = Convention_C
1b24ada5
RD
2535 and then not Has_Warnings_Off (E)
2536 and then not Has_Warnings_Off (R_Type)
def46b54
RD
2537 then
2538 Error_Msg_N
2539 ("?return type of & does not "
2540 & "correspond to C type!", E);
2541
2542 -- Check return of wrong convention subprogram pointer
2543
2544 elsif Ekind (R_Type) = E_Access_Subprogram_Type
2545 and then not Has_Foreign_Convention (R_Type)
1b24ada5
RD
2546 and then not Has_Warnings_Off (E)
2547 and then not Has_Warnings_Off (R_Type)
def46b54
RD
2548 then
2549 Error_Msg_N
2550 ("?& should return a foreign "
2551 & "convention subprogram pointer", E);
2552 Error_Msg_Sloc := Sloc (R_Type);
2553 Error_Msg_NE
2554 ("\?add Convention pragma to declaration of& #",
2555 E, R_Type);
2556 end if;
2557 end if;
2558
2559 if Is_Array_Type (Etype (E))
70482933
RK
2560 and then not Is_Constrained (Etype (E))
2561 and then not Is_Imported (E)
def46b54 2562 and then Has_Foreign_Convention (E)
fbf5a39b 2563 and then Warn_On_Export_Import
1b24ada5
RD
2564 and then not Has_Warnings_Off (E)
2565 and then not Has_Warnings_Off (Etype (E))
70482933
RK
2566 then
2567 Error_Msg_N
fbf5a39b 2568 ("?foreign convention function& should not " &
1b24ada5 2569 "return unconstrained array!", E);
d8db0bca
JM
2570
2571 -- Ada 2005 (AI-326): Check wrong use of tagged
2572 -- incomplete type
2573 --
2574 -- type T is tagged;
2575 -- function F (X : Boolean) return T; -- ERROR
2576
2577 elsif Ekind (Etype (E)) = E_Incomplete_Type
2578 and then Is_Tagged_Type (Etype (E))
2579 and then No (Full_View (Etype (E)))
7d8b9c99 2580 and then not Is_Value_Type (Etype (E))
d8db0bca
JM
2581 then
2582 Error_Msg_N
2583 ("(Ada 2005): invalid use of tagged incomplete type",
2584 E);
70482933
RK
2585 end if;
2586 end if;
2587 end;
2588 end if;
2589
2590 -- Must freeze its parent first if it is a derived subprogram
2591
2592 if Present (Alias (E)) then
2593 Freeze_And_Append (Alias (E), Loc, Result);
2594 end if;
2595
19590d70
GD
2596 -- We don't freeze internal subprograms, because we don't normally
2597 -- want addition of extra formals or mechanism setting to happen
2598 -- for those. However we do pass through predefined dispatching
2599 -- cases, since extra formals may be needed in some cases, such as
2600 -- for the stream 'Input function (build-in-place formals).
2601
2602 if not Is_Internal (E)
2603 or else Is_Predefined_Dispatching_Operation (E)
2604 then
70482933
RK
2605 Freeze_Subprogram (E);
2606 end if;
2607
2608 -- Here for other than a subprogram or type
2609
2610 else
2611 -- If entity has a type, and it is not a generic unit, then
7d8b9c99 2612 -- freeze it first (RM 13.14(10)).
70482933
RK
2613
2614 if Present (Etype (E))
2615 and then Ekind (E) /= E_Generic_Function
2616 then
2617 Freeze_And_Append (Etype (E), Loc, Result);
2618 end if;
2619
2c9beb8a 2620 -- Special processing for objects created by object declaration
70482933
RK
2621
2622 if Nkind (Declaration_Node (E)) = N_Object_Declaration then
2c9beb8a
RD
2623
2624 -- For object created by object declaration, perform required
2625 -- categorization (preelaborate and pure) checks. Defer these
2626 -- checks to freeze time since pragma Import inhibits default
2627 -- initialization and thus pragma Import affects these checks.
2628
70482933 2629 Validate_Object_Declaration (Declaration_Node (E));
2c9beb8a
RD
2630
2631 -- If there is an address clause, check it is valid
2632
fbf5a39b 2633 Check_Address_Clause (E);
2c9beb8a 2634
def46b54
RD
2635 -- For imported objects, set Is_Public unless there is also an
2636 -- address clause, which means that there is no external symbol
2637 -- needed for the Import (Is_Public may still be set for other
2638 -- unrelated reasons). Note that we delayed this processing
2639 -- till freeze time so that we can be sure not to set the flag
2640 -- if there is an address clause. If there is such a clause,
2641 -- then the only purpose of the Import pragma is to suppress
2642 -- implicit initialization.
2c9beb8a
RD
2643
2644 if Is_Imported (E)
add9f797 2645 and then No (Address_Clause (E))
2c9beb8a
RD
2646 then
2647 Set_Is_Public (E);
2648 end if;
7d8b9c99
RD
2649
2650 -- For convention C objects of an enumeration type, warn if
2651 -- the size is not integer size and no explicit size given.
2652 -- Skip warning for Boolean, and Character, assume programmer
2653 -- expects 8-bit sizes for these cases.
2654
2655 if (Convention (E) = Convention_C
2656 or else
2657 Convention (E) = Convention_CPP)
2658 and then Is_Enumeration_Type (Etype (E))
2659 and then not Is_Character_Type (Etype (E))
2660 and then not Is_Boolean_Type (Etype (E))
2661 and then Esize (Etype (E)) < Standard_Integer_Size
2662 and then not Has_Size_Clause (E)
2663 then
2664 Error_Msg_Uint_1 := UI_From_Int (Standard_Integer_Size);
2665 Error_Msg_N
2666 ("?convention C enumeration object has size less than ^",
2667 E);
2668 Error_Msg_N ("\?use explicit size clause to set size", E);
2669 end if;
70482933
RK
2670 end if;
2671
2672 -- Check that a constant which has a pragma Volatile[_Components]
7d8b9c99 2673 -- or Atomic[_Components] also has a pragma Import (RM C.6(13)).
70482933
RK
2674
2675 -- Note: Atomic[_Components] also sets Volatile[_Components]
2676
2677 if Ekind (E) = E_Constant
2678 and then (Has_Volatile_Components (E) or else Is_Volatile (E))
2679 and then not Is_Imported (E)
2680 then
2681 -- Make sure we actually have a pragma, and have not merely
2682 -- inherited the indication from elsewhere (e.g. an address
2683 -- clause, which is not good enough in RM terms!)
2684
1d571f3b 2685 if Has_Rep_Pragma (E, Name_Atomic)
91b1417d 2686 or else
1d571f3b 2687 Has_Rep_Pragma (E, Name_Atomic_Components)
70482933
RK
2688 then
2689 Error_Msg_N
91b1417d 2690 ("stand alone atomic constant must be " &
def46b54 2691 "imported (RM C.6(13))", E);
91b1417d 2692
1d571f3b 2693 elsif Has_Rep_Pragma (E, Name_Volatile)
91b1417d 2694 or else
1d571f3b 2695 Has_Rep_Pragma (E, Name_Volatile_Components)
91b1417d
AC
2696 then
2697 Error_Msg_N
2698 ("stand alone volatile constant must be " &
86cde7b1 2699 "imported (RM C.6(13))", E);
70482933
RK
2700 end if;
2701 end if;
2702
2703 -- Static objects require special handling
2704
2705 if (Ekind (E) = E_Constant or else Ekind (E) = E_Variable)
2706 and then Is_Statically_Allocated (E)
2707 then
2708 Freeze_Static_Object (E);
2709 end if;
2710
2711 -- Remaining step is to layout objects
2712
2713 if Ekind (E) = E_Variable
2714 or else
2715 Ekind (E) = E_Constant
2716 or else
2717 Ekind (E) = E_Loop_Parameter
2718 or else
2719 Is_Formal (E)
2720 then
2721 Layout_Object (E);
2722 end if;
2723 end if;
2724
2725 -- Case of a type or subtype being frozen
2726
2727 else
31b5873d
GD
2728 -- We used to check here that a full type must have preelaborable
2729 -- initialization if it completes a private type specified with
2730 -- pragma Preelaborable_Intialization, but that missed cases where
2731 -- the types occur within a generic package, since the freezing
2732 -- that occurs within a containing scope generally skips traversal
2733 -- of a generic unit's declarations (those will be frozen within
2734 -- instances). This check was moved to Analyze_Package_Specification.
3f1ede06 2735
70482933
RK
2736 -- The type may be defined in a generic unit. This can occur when
2737 -- freezing a generic function that returns the type (which is
2738 -- defined in a parent unit). It is clearly meaningless to freeze
2739 -- this type. However, if it is a subtype, its size may be determi-
2740 -- nable and used in subsequent checks, so might as well try to
2741 -- compute it.
2742
2743 if Present (Scope (E))
2744 and then Is_Generic_Unit (Scope (E))
2745 then
2746 Check_Compile_Time_Size (E);
2747 return No_List;
2748 end if;
2749
2750 -- Deal with special cases of freezing for subtype
2751
2752 if E /= Base_Type (E) then
2753
86cde7b1
RD
2754 -- Before we do anything else, a specialized test for the case of
2755 -- a size given for an array where the array needs to be packed,
2756 -- but was not so the size cannot be honored. This would of course
2757 -- be caught by the backend, and indeed we don't catch all cases.
2758 -- The point is that we can give a better error message in those
2759 -- cases that we do catch with the circuitry here. Also if pragma
2760 -- Implicit_Packing is set, this is where the packing occurs.
2761
2762 -- The reason we do this so early is that the processing in the
2763 -- automatic packing case affects the layout of the base type, so
2764 -- it must be done before we freeze the base type.
2765
2766 if Is_Array_Type (E) then
2767 declare
2768 Lo, Hi : Node_Id;
2769 Ctyp : constant Entity_Id := Component_Type (E);
2770
2771 begin
2772 -- Check enabling conditions. These are straightforward
2773 -- except for the test for a limited composite type. This
2774 -- eliminates the rare case of a array of limited components
2775 -- where there are issues of whether or not we can go ahead
2776 -- and pack the array (since we can't freely pack and unpack
2777 -- arrays if they are limited).
2778
2779 -- Note that we check the root type explicitly because the
2780 -- whole point is we are doing this test before we have had
2781 -- a chance to freeze the base type (and it is that freeze
2782 -- action that causes stuff to be inherited).
2783
2784 if Present (Size_Clause (E))
2785 and then Known_Static_Esize (E)
2786 and then not Is_Packed (E)
2787 and then not Has_Pragma_Pack (E)
2788 and then Number_Dimensions (E) = 1
2789 and then not Has_Component_Size_Clause (E)
2790 and then Known_Static_Esize (Ctyp)
2791 and then not Is_Limited_Composite (E)
2792 and then not Is_Packed (Root_Type (E))
2793 and then not Has_Component_Size_Clause (Root_Type (E))
2794 then
2795 Get_Index_Bounds (First_Index (E), Lo, Hi);
2796
2797 if Compile_Time_Known_Value (Lo)
2798 and then Compile_Time_Known_Value (Hi)
2799 and then Known_Static_RM_Size (Ctyp)
2800 and then RM_Size (Ctyp) < 64
2801 then
2802 declare
2803 Lov : constant Uint := Expr_Value (Lo);
2804 Hiv : constant Uint := Expr_Value (Hi);
2805 Len : constant Uint := UI_Max
2806 (Uint_0,
2807 Hiv - Lov + 1);
2808 Rsiz : constant Uint := RM_Size (Ctyp);
2809 SZ : constant Node_Id := Size_Clause (E);
2810 Btyp : constant Entity_Id := Base_Type (E);
2811
2812 -- What we are looking for here is the situation where
2813 -- the RM_Size given would be exactly right if there
2814 -- was a pragma Pack (resulting in the component size
2815 -- being the same as the RM_Size). Furthermore, the
2816 -- component type size must be an odd size (not a
2817 -- multiple of storage unit)
2818
2819 begin
2820 if RM_Size (E) = Len * Rsiz
2821 and then Rsiz mod System_Storage_Unit /= 0
2822 then
2823 -- For implicit packing mode, just set the
2824 -- component size silently
2825
2826 if Implicit_Packing then
2827 Set_Component_Size (Btyp, Rsiz);
2828 Set_Is_Bit_Packed_Array (Btyp);
2829 Set_Is_Packed (Btyp);
2830 Set_Has_Non_Standard_Rep (Btyp);
2831
2832 -- Otherwise give an error message
2833
2834 else
2835 Error_Msg_NE
2836 ("size given for& too small", SZ, E);
2837 Error_Msg_N
2838 ("\use explicit pragma Pack "
2839 & "or use pragma Implicit_Packing", SZ);
2840 end if;
2841 end if;
2842 end;
2843 end if;
2844 end if;
2845 end;
2846 end if;
2847
def46b54
RD
2848 -- If ancestor subtype present, freeze that first. Note that this
2849 -- will also get the base type frozen.
70482933
RK
2850
2851 Atype := Ancestor_Subtype (E);
2852
2853 if Present (Atype) then
2854 Freeze_And_Append (Atype, Loc, Result);
2855
def46b54
RD
2856 -- Otherwise freeze the base type of the entity before freezing
2857 -- the entity itself (RM 13.14(15)).
70482933
RK
2858
2859 elsif E /= Base_Type (E) then
2860 Freeze_And_Append (Base_Type (E), Loc, Result);
2861 end if;
2862
fbf5a39b 2863 -- For a derived type, freeze its parent type first (RM 13.14(15))
70482933
RK
2864
2865 elsif Is_Derived_Type (E) then
2866 Freeze_And_Append (Etype (E), Loc, Result);
2867 Freeze_And_Append (First_Subtype (Etype (E)), Loc, Result);
2868 end if;
2869
2870 -- For array type, freeze index types and component type first
fbf5a39b 2871 -- before freezing the array (RM 13.14(15)).
70482933
RK
2872
2873 if Is_Array_Type (E) then
2874 declare
fbf5a39b 2875 Ctyp : constant Entity_Id := Component_Type (E);
70482933
RK
2876
2877 Non_Standard_Enum : Boolean := False;
7d8b9c99
RD
2878 -- Set true if any of the index types is an enumeration type
2879 -- with a non-standard representation.
70482933
RK
2880
2881 begin
2882 Freeze_And_Append (Ctyp, Loc, Result);
2883
2884 Indx := First_Index (E);
2885 while Present (Indx) loop
2886 Freeze_And_Append (Etype (Indx), Loc, Result);
2887
2888 if Is_Enumeration_Type (Etype (Indx))
2889 and then Has_Non_Standard_Rep (Etype (Indx))
2890 then
2891 Non_Standard_Enum := True;
2892 end if;
2893
2894 Next_Index (Indx);
2895 end loop;
2896
07fc65c4 2897 -- Processing that is done only for base types
70482933
RK
2898
2899 if Ekind (E) = E_Array_Type then
07fc65c4
GB
2900
2901 -- Propagate flags for component type
2902
70482933
RK
2903 if Is_Controlled (Component_Type (E))
2904 or else Has_Controlled_Component (Ctyp)
2905 then
2906 Set_Has_Controlled_Component (E);
2907 end if;
2908
2909 if Has_Unchecked_Union (Component_Type (E)) then
2910 Set_Has_Unchecked_Union (E);
2911 end if;
70482933 2912
07fc65c4
GB
2913 -- If packing was requested or if the component size was set
2914 -- explicitly, then see if bit packing is required. This
2915 -- processing is only done for base types, since all the
2916 -- representation aspects involved are type-related. This
2917 -- is not just an optimization, if we start processing the
2918 -- subtypes, they intefere with the settings on the base
2919 -- type (this is because Is_Packed has a slightly different
2920 -- meaning before and after freezing).
70482933 2921
70482933
RK
2922 declare
2923 Csiz : Uint;
2924 Esiz : Uint;
2925
2926 begin
2927 if (Is_Packed (E) or else Has_Pragma_Pack (E))
2928 and then not Has_Atomic_Components (E)
2929 and then Known_Static_RM_Size (Ctyp)
2930 then
2931 Csiz := UI_Max (RM_Size (Ctyp), 1);
2932
2933 elsif Known_Component_Size (E) then
2934 Csiz := Component_Size (E);
2935
2936 elsif not Known_Static_Esize (Ctyp) then
2937 Csiz := Uint_0;
2938
2939 else
2940 Esiz := Esize (Ctyp);
2941
2942 -- We can set the component size if it is less than
2943 -- 16, rounding it up to the next storage unit size.
2944
2945 if Esiz <= 8 then
2946 Csiz := Uint_8;
2947 elsif Esiz <= 16 then
2948 Csiz := Uint_16;
2949 else
2950 Csiz := Uint_0;
2951 end if;
2952
7d8b9c99
RD
2953 -- Set component size up to match alignment if it
2954 -- would otherwise be less than the alignment. This
2955 -- deals with cases of types whose alignment exceeds
2956 -- their size (padded types).
70482933
RK
2957
2958 if Csiz /= 0 then
2959 declare
2960 A : constant Uint := Alignment_In_Bits (Ctyp);
70482933
RK
2961 begin
2962 if Csiz < A then
2963 Csiz := A;
2964 end if;
2965 end;
2966 end if;
70482933
RK
2967 end if;
2968
86cde7b1
RD
2969 -- Case of component size that may result in packing
2970
70482933 2971 if 1 <= Csiz and then Csiz <= 64 then
86cde7b1
RD
2972 declare
2973 Ent : constant Entity_Id :=
2974 First_Subtype (E);
2975 Pack_Pragma : constant Node_Id :=
2976 Get_Rep_Pragma (Ent, Name_Pack);
2977 Comp_Size_C : constant Node_Id :=
2978 Get_Attribute_Definition_Clause
2979 (Ent, Attribute_Component_Size);
2980 begin
2981 -- Warn if we have pack and component size so that
2982 -- the pack is ignored.
70482933 2983
86cde7b1
RD
2984 -- Note: here we must check for the presence of a
2985 -- component size before checking for a Pack pragma
2986 -- to deal with the case where the array type is a
2987 -- derived type whose parent is currently private.
2988
2989 if Present (Comp_Size_C)
2990 and then Has_Pragma_Pack (Ent)
2991 then
2992 Error_Msg_Sloc := Sloc (Comp_Size_C);
2993 Error_Msg_NE
2994 ("?pragma Pack for& ignored!",
2995 Pack_Pragma, Ent);
2996 Error_Msg_N
2997 ("\?explicit component size given#!",
2998 Pack_Pragma);
2999 end if;
70482933 3000
86cde7b1
RD
3001 -- Set component size if not already set by a
3002 -- component size clause.
70482933 3003
86cde7b1
RD
3004 if not Present (Comp_Size_C) then
3005 Set_Component_Size (E, Csiz);
3006 end if;
fbf5a39b 3007
86cde7b1
RD
3008 -- Check for base type of 8, 16, 32 bits, where an
3009 -- unsigned subtype has a length one less than the
3010 -- base type (e.g. Natural subtype of Integer).
fbf5a39b 3011
86cde7b1
RD
3012 -- In such cases, if a component size was not set
3013 -- explicitly, then generate a warning.
fbf5a39b 3014
86cde7b1
RD
3015 if Has_Pragma_Pack (E)
3016 and then not Present (Comp_Size_C)
3017 and then
3018 (Csiz = 7 or else Csiz = 15 or else Csiz = 31)
3019 and then Esize (Base_Type (Ctyp)) = Csiz + 1
3020 then
3021 Error_Msg_Uint_1 := Csiz;
3022
3023 if Present (Pack_Pragma) then
3024 Error_Msg_N
3025 ("?pragma Pack causes component size "
3026 & "to be ^!", Pack_Pragma);
3027 Error_Msg_N
3028 ("\?use Component_Size to set "
3029 & "desired value!", Pack_Pragma);
3030 end if;
fbf5a39b 3031 end if;
fbf5a39b 3032
86cde7b1
RD
3033 -- Actual packing is not needed for 8, 16, 32, 64.
3034 -- Also not needed for 24 if alignment is 1.
70482933 3035
86cde7b1
RD
3036 if Csiz = 8
3037 or else Csiz = 16
3038 or else Csiz = 32
3039 or else Csiz = 64
3040 or else (Csiz = 24 and then Alignment (Ctyp) = 1)
3041 then
3042 -- Here the array was requested to be packed,
3043 -- but the packing request had no effect, so
3044 -- Is_Packed is reset.
70482933 3045
86cde7b1
RD
3046 -- Note: semantically this means that we lose
3047 -- track of the fact that a derived type
3048 -- inherited a pragma Pack that was non-
3049 -- effective, but that seems fine.
70482933 3050
86cde7b1
RD
3051 -- We regard a Pack pragma as a request to set
3052 -- a representation characteristic, and this
3053 -- request may be ignored.
70482933 3054
86cde7b1 3055 Set_Is_Packed (Base_Type (E), False);
70482933 3056
86cde7b1 3057 -- In all other cases, packing is indeed needed
70482933 3058
86cde7b1
RD
3059 else
3060 Set_Has_Non_Standard_Rep (Base_Type (E));
3061 Set_Is_Bit_Packed_Array (Base_Type (E));
3062 Set_Is_Packed (Base_Type (E));
3063 end if;
3064 end;
70482933
RK
3065 end if;
3066 end;
07fc65c4
GB
3067
3068 -- Processing that is done only for subtypes
3069
3070 else
3071 -- Acquire alignment from base type
3072
3073 if Unknown_Alignment (E) then
3074 Set_Alignment (E, Alignment (Base_Type (E)));
7d8b9c99 3075 Adjust_Esize_Alignment (E);
07fc65c4
GB
3076 end if;
3077 end if;
3078
d05ef0ab
AC
3079 -- For bit-packed arrays, check the size
3080
3081 if Is_Bit_Packed_Array (E)
7d8b9c99 3082 and then Known_RM_Size (E)
d05ef0ab
AC
3083 then
3084 declare
67ce0d7e
RD
3085 SizC : constant Node_Id := Size_Clause (E);
3086
d05ef0ab 3087 Discard : Boolean;
67ce0d7e 3088 pragma Warnings (Off, Discard);
d05ef0ab
AC
3089
3090 begin
3091 -- It is not clear if it is possible to have no size
7d8b9c99
RD
3092 -- clause at this stage, but it is not worth worrying
3093 -- about. Post error on the entity name in the size
d05ef0ab
AC
3094 -- clause if present, else on the type entity itself.
3095
3096 if Present (SizC) then
7d8b9c99 3097 Check_Size (Name (SizC), E, RM_Size (E), Discard);
d05ef0ab 3098 else
7d8b9c99 3099 Check_Size (E, E, RM_Size (E), Discard);
d05ef0ab
AC
3100 end if;
3101 end;
3102 end if;
3103
70482933
RK
3104 -- If any of the index types was an enumeration type with
3105 -- a non-standard rep clause, then we indicate that the
3106 -- array type is always packed (even if it is not bit packed).
3107
3108 if Non_Standard_Enum then
3109 Set_Has_Non_Standard_Rep (Base_Type (E));
3110 Set_Is_Packed (Base_Type (E));
3111 end if;
70482933 3112
0da2c8ac 3113 Set_Component_Alignment_If_Not_Set (E);
70482933 3114
0da2c8ac
AC
3115 -- If the array is packed, we must create the packed array
3116 -- type to be used to actually implement the type. This is
3117 -- only needed for real array types (not for string literal
3118 -- types, since they are present only for the front end).
70482933 3119
0da2c8ac
AC
3120 if Is_Packed (E)
3121 and then Ekind (E) /= E_String_Literal_Subtype
3122 then
3123 Create_Packed_Array_Type (E);
3124 Freeze_And_Append (Packed_Array_Type (E), Loc, Result);
70482933 3125
0da2c8ac 3126 -- Size information of packed array type is copied to the
fea9e956 3127 -- array type, since this is really the representation. But
def46b54
RD
3128 -- do not override explicit existing size values. If the
3129 -- ancestor subtype is constrained the packed_array_type
3130 -- will be inherited from it, but the size may have been
3131 -- provided already, and must not be overridden either.
fea9e956 3132
def46b54
RD
3133 if not Has_Size_Clause (E)
3134 and then
3135 (No (Ancestor_Subtype (E))
3136 or else not Has_Size_Clause (Ancestor_Subtype (E)))
3137 then
fea9e956
ES
3138 Set_Esize (E, Esize (Packed_Array_Type (E)));
3139 Set_RM_Size (E, RM_Size (Packed_Array_Type (E)));
3140 end if;
70482933 3141
fea9e956
ES
3142 if not Has_Alignment_Clause (E) then
3143 Set_Alignment (E, Alignment (Packed_Array_Type (E)));
3144 end if;
0da2c8ac
AC
3145 end if;
3146
def46b54
RD
3147 -- For non-packed arrays set the alignment of the array to the
3148 -- alignment of the component type if it is unknown. Skip this
3149 -- in atomic case (atomic arrays may need larger alignments).
0da2c8ac
AC
3150
3151 if not Is_Packed (E)
3152 and then Unknown_Alignment (E)
3153 and then Known_Alignment (Ctyp)
3154 and then Known_Static_Component_Size (E)
3155 and then Known_Static_Esize (Ctyp)
3156 and then Esize (Ctyp) = Component_Size (E)
3157 and then not Is_Atomic (E)
3158 then
3159 Set_Alignment (E, Alignment (Component_Type (E)));
3160 end if;
3161 end;
70482933 3162
fbf5a39b
AC
3163 -- For a class-wide type, the corresponding specific type is
3164 -- frozen as well (RM 13.14(15))
70482933
RK
3165
3166 elsif Is_Class_Wide_Type (E) then
3167 Freeze_And_Append (Root_Type (E), Loc, Result);
3168
86cde7b1
RD
3169 -- If the base type of the class-wide type is still incomplete,
3170 -- the class-wide remains unfrozen as well. This is legal when
3171 -- E is the formal of a primitive operation of some other type
3172 -- which is being frozen.
3173
3174 if not Is_Frozen (Root_Type (E)) then
3175 Set_Is_Frozen (E, False);
3176 return Result;
3177 end if;
3178
70482933
RK
3179 -- If the Class_Wide_Type is an Itype (when type is the anonymous
3180 -- parent of a derived type) and it is a library-level entity,
3181 -- generate an itype reference for it. Otherwise, its first
3182 -- explicit reference may be in an inner scope, which will be
3183 -- rejected by the back-end.
3184
3185 if Is_Itype (E)
3186 and then Is_Compilation_Unit (Scope (E))
3187 then
70482933 3188 declare
fbf5a39b 3189 Ref : constant Node_Id := Make_Itype_Reference (Loc);
70482933
RK
3190
3191 begin
3192 Set_Itype (Ref, E);
3193 if No (Result) then
3194 Result := New_List (Ref);
3195 else
3196 Append (Ref, Result);
3197 end if;
3198 end;
3199 end if;
3200
def46b54
RD
3201 -- The equivalent type associated with a class-wide subtype needs
3202 -- to be frozen to ensure that its layout is done. Class-wide
3203 -- subtypes are currently only frozen on targets requiring
3204 -- front-end layout (see New_Class_Wide_Subtype and
3205 -- Make_CW_Equivalent_Type in exp_util.adb).
fbf5a39b
AC
3206
3207 if Ekind (E) = E_Class_Wide_Subtype
3208 and then Present (Equivalent_Type (E))
3209 then
3210 Freeze_And_Append (Equivalent_Type (E), Loc, Result);
3211 end if;
3212
3213 -- For a record (sub)type, freeze all the component types (RM
def46b54
RD
3214 -- 13.14(15). We test for E_Record_(sub)Type here, rather than using
3215 -- Is_Record_Type, because we don't want to attempt the freeze for
3216 -- the case of a private type with record extension (we will do that
3217 -- later when the full type is frozen).
70482933
RK
3218
3219 elsif Ekind (E) = E_Record_Type
3220 or else Ekind (E) = E_Record_Subtype
3221 then
3222 Freeze_Record_Type (E);
3223
3224 -- For a concurrent type, freeze corresponding record type. This
3225 -- does not correpond to any specific rule in the RM, but the
3226 -- record type is essentially part of the concurrent type.
3227 -- Freeze as well all local entities. This includes record types
3228 -- created for entry parameter blocks, and whatever local entities
3229 -- may appear in the private part.
3230
3231 elsif Is_Concurrent_Type (E) then
3232 if Present (Corresponding_Record_Type (E)) then
3233 Freeze_And_Append
3234 (Corresponding_Record_Type (E), Loc, Result);
3235 end if;
3236
3237 Comp := First_Entity (E);
3238
3239 while Present (Comp) loop
3240 if Is_Type (Comp) then
3241 Freeze_And_Append (Comp, Loc, Result);
3242
3243 elsif (Ekind (Comp)) /= E_Function then
c6823a20
EB
3244 if Is_Itype (Etype (Comp))
3245 and then Underlying_Type (Scope (Etype (Comp))) = E
3246 then
3247 Undelay_Type (Etype (Comp));
3248 end if;
3249
70482933
RK
3250 Freeze_And_Append (Etype (Comp), Loc, Result);
3251 end if;
3252
3253 Next_Entity (Comp);
3254 end loop;
3255
ee094616
RD
3256 -- Private types are required to point to the same freeze node as
3257 -- their corresponding full views. The freeze node itself has to
3258 -- point to the partial view of the entity (because from the partial
3259 -- view, we can retrieve the full view, but not the reverse).
3260 -- However, in order to freeze correctly, we need to freeze the full
3261 -- view. If we are freezing at the end of a scope (or within the
3262 -- scope of the private type), the partial and full views will have
3263 -- been swapped, the full view appears first in the entity chain and
3264 -- the swapping mechanism ensures that the pointers are properly set
3265 -- (on scope exit).
3266
3267 -- If we encounter the partial view before the full view (e.g. when
3268 -- freezing from another scope), we freeze the full view, and then
3269 -- set the pointers appropriately since we cannot rely on swapping to
3270 -- fix things up (subtypes in an outer scope might not get swapped).
70482933
RK
3271
3272 elsif Is_Incomplete_Or_Private_Type (E)
3273 and then not Is_Generic_Type (E)
3274 then
86cde7b1
RD
3275 -- The construction of the dispatch table associated with library
3276 -- level tagged types forces freezing of all the primitives of the
3277 -- type, which may cause premature freezing of the partial view.
3278 -- For example:
3279
3280 -- package Pkg is
3281 -- type T is tagged private;
3282 -- type DT is new T with private;
3283 -- procedure Prim (X : in out T; Y : in out DT'class);
3284 -- private
3285 -- type T is tagged null record;
3286 -- Obj : T;
3287 -- type DT is new T with null record;
3288 -- end;
3289
3290 -- In this case the type will be frozen later by the usual
3291 -- mechanism: an object declaration, an instantiation, or the
3292 -- end of a declarative part.
3293
3294 if Is_Library_Level_Tagged_Type (E)
3295 and then not Present (Full_View (E))
3296 then
3297 Set_Is_Frozen (E, False);
3298 return Result;
3299
70482933
RK
3300 -- Case of full view present
3301
86cde7b1 3302 elsif Present (Full_View (E)) then
70482933 3303
ee094616
RD
3304 -- If full view has already been frozen, then no further
3305 -- processing is required
70482933
RK
3306
3307 if Is_Frozen (Full_View (E)) then
3308
3309 Set_Has_Delayed_Freeze (E, False);
3310 Set_Freeze_Node (E, Empty);
3311 Check_Debug_Info_Needed (E);
3312
ee094616
RD
3313 -- Otherwise freeze full view and patch the pointers so that
3314 -- the freeze node will elaborate both views in the back-end.
70482933
RK
3315
3316 else
fbf5a39b
AC
3317 declare
3318 Full : constant Entity_Id := Full_View (E);
70482933 3319
fbf5a39b
AC
3320 begin
3321 if Is_Private_Type (Full)
3322 and then Present (Underlying_Full_View (Full))
3323 then
3324 Freeze_And_Append
3325 (Underlying_Full_View (Full), Loc, Result);
3326 end if;
70482933 3327
fbf5a39b 3328 Freeze_And_Append (Full, Loc, Result);
70482933 3329
fbf5a39b
AC
3330 if Has_Delayed_Freeze (E) then
3331 F_Node := Freeze_Node (Full);
70482933 3332
fbf5a39b
AC
3333 if Present (F_Node) then
3334 Set_Freeze_Node (E, F_Node);
3335 Set_Entity (F_Node, E);
3336
3337 else
def46b54
RD
3338 -- {Incomplete,Private}_Subtypes with Full_Views
3339 -- constrained by discriminants.
fbf5a39b
AC
3340
3341 Set_Has_Delayed_Freeze (E, False);
3342 Set_Freeze_Node (E, Empty);
3343 end if;
70482933 3344 end if;
fbf5a39b 3345 end;
70482933
RK
3346
3347 Check_Debug_Info_Needed (E);
3348 end if;
3349
ee094616
RD
3350 -- AI-117 requires that the convention of a partial view be the
3351 -- same as the convention of the full view. Note that this is a
3352 -- recognized breach of privacy, but it's essential for logical
3353 -- consistency of representation, and the lack of a rule in
3354 -- RM95 was an oversight.
70482933
RK
3355
3356 Set_Convention (E, Convention (Full_View (E)));
3357
3358 Set_Size_Known_At_Compile_Time (E,
3359 Size_Known_At_Compile_Time (Full_View (E)));
3360
3361 -- Size information is copied from the full view to the
def46b54 3362 -- incomplete or private view for consistency.
70482933 3363
ee094616
RD
3364 -- We skip this is the full view is not a type. This is very
3365 -- strange of course, and can only happen as a result of
3366 -- certain illegalities, such as a premature attempt to derive
3367 -- from an incomplete type.
70482933
RK
3368
3369 if Is_Type (Full_View (E)) then
3370 Set_Size_Info (E, Full_View (E));
3371 Set_RM_Size (E, RM_Size (Full_View (E)));
3372 end if;
3373
3374 return Result;
3375
3376 -- Case of no full view present. If entity is derived or subtype,
3377 -- it is safe to freeze, correctness depends on the frozen status
3378 -- of parent. Otherwise it is either premature usage, or a Taft
3379 -- amendment type, so diagnosis is at the point of use and the
3380 -- type might be frozen later.
3381
3382 elsif E /= Base_Type (E)
3383 or else Is_Derived_Type (E)
3384 then
3385 null;
3386
3387 else
3388 Set_Is_Frozen (E, False);
3389 return No_List;
3390 end if;
3391
3392 -- For access subprogram, freeze types of all formals, the return
3393 -- type was already frozen, since it is the Etype of the function.
3394
3395 elsif Ekind (E) = E_Subprogram_Type then
3396 Formal := First_Formal (E);
3397 while Present (Formal) loop
3398 Freeze_And_Append (Etype (Formal), Loc, Result);
3399 Next_Formal (Formal);
3400 end loop;
3401
70482933
RK
3402 Freeze_Subprogram (E);
3403
3f1ede06 3404 -- Ada 2005 (AI-326): Check wrong use of tag incomplete type
def46b54 3405
d8db0bca
JM
3406 -- type T is tagged;
3407 -- type Acc is access function (X : T) return T; -- ERROR
3408
3409 if Ekind (Etype (E)) = E_Incomplete_Type
3410 and then Is_Tagged_Type (Etype (E))
3411 and then No (Full_View (Etype (E)))
7d8b9c99 3412 and then not Is_Value_Type (Etype (E))
d8db0bca
JM
3413 then
3414 Error_Msg_N
3415 ("(Ada 2005): invalid use of tagged incomplete type", E);
3416 end if;
3417
ee094616
RD
3418 -- For access to a protected subprogram, freeze the equivalent type
3419 -- (however this is not set if we are not generating code or if this
3420 -- is an anonymous type used just for resolution).
70482933 3421
fea9e956 3422 elsif Is_Access_Protected_Subprogram_Type (E) then
d8db0bca
JM
3423
3424 -- AI-326: Check wrong use of tagged incomplete types
3425
3426 -- type T is tagged;
3427 -- type As3D is access protected
3428 -- function (X : Float) return T; -- ERROR
3429
3430 declare
3431 Etyp : Entity_Id;
3432
3433 begin
3434 Etyp := Etype (Directly_Designated_Type (E));
3435
3436 if Is_Class_Wide_Type (Etyp) then
3437 Etyp := Etype (Etyp);
3438 end if;
3439
3440 if Ekind (Etyp) = E_Incomplete_Type
3441 and then Is_Tagged_Type (Etyp)
3442 and then No (Full_View (Etyp))
7d8b9c99 3443 and then not Is_Value_Type (Etype (E))
d8db0bca
JM
3444 then
3445 Error_Msg_N
3446 ("(Ada 2005): invalid use of tagged incomplete type", E);
3447 end if;
3448 end;
3449
57747aec 3450 if Present (Equivalent_Type (E)) then
d8db0bca
JM
3451 Freeze_And_Append (Equivalent_Type (E), Loc, Result);
3452 end if;
70482933
RK
3453 end if;
3454
3455 -- Generic types are never seen by the back-end, and are also not
3456 -- processed by the expander (since the expander is turned off for
3457 -- generic processing), so we never need freeze nodes for them.
3458
3459 if Is_Generic_Type (E) then
3460 return Result;
3461 end if;
3462
3463 -- Some special processing for non-generic types to complete
3464 -- representation details not known till the freeze point.
3465
3466 if Is_Fixed_Point_Type (E) then
3467 Freeze_Fixed_Point_Type (E);
3468
ee094616
RD
3469 -- Some error checks required for ordinary fixed-point type. Defer
3470 -- these till the freeze-point since we need the small and range
3471 -- values. We only do these checks for base types
fbf5a39b
AC
3472
3473 if Is_Ordinary_Fixed_Point_Type (E)
3474 and then E = Base_Type (E)
3475 then
3476 if Small_Value (E) < Ureal_2_M_80 then
3477 Error_Msg_Name_1 := Name_Small;
3478 Error_Msg_N
7d8b9c99 3479 ("`&''%` too small, minimum allowed is 2.0'*'*(-80)", E);
fbf5a39b
AC
3480
3481 elsif Small_Value (E) > Ureal_2_80 then
3482 Error_Msg_Name_1 := Name_Small;
3483 Error_Msg_N
7d8b9c99 3484 ("`&''%` too large, maximum allowed is 2.0'*'*80", E);
fbf5a39b
AC
3485 end if;
3486
3487 if Expr_Value_R (Type_Low_Bound (E)) < Ureal_M_10_36 then
3488 Error_Msg_Name_1 := Name_First;
3489 Error_Msg_N
7d8b9c99 3490 ("`&''%` too small, minimum allowed is -10.0'*'*36", E);
fbf5a39b
AC
3491 end if;
3492
3493 if Expr_Value_R (Type_High_Bound (E)) > Ureal_10_36 then
3494 Error_Msg_Name_1 := Name_Last;
3495 Error_Msg_N
7d8b9c99 3496 ("`&''%` too large, maximum allowed is 10.0'*'*36", E);
fbf5a39b
AC
3497 end if;
3498 end if;
3499
70482933
RK
3500 elsif Is_Enumeration_Type (E) then
3501 Freeze_Enumeration_Type (E);
3502
3503 elsif Is_Integer_Type (E) then
3504 Adjust_Esize_For_Alignment (E);
3505
edd63e9b
ES
3506 elsif Is_Access_Type (E) then
3507
3508 -- Check restriction for standard storage pool
3509
3510 if No (Associated_Storage_Pool (E)) then
3511 Check_Restriction (No_Standard_Storage_Pools, E);
3512 end if;
3513
3514 -- Deal with error message for pure access type. This is not an
3515 -- error in Ada 2005 if there is no pool (see AI-366).
3516
3517 if Is_Pure_Unit_Access_Type (E)
3518 and then (Ada_Version < Ada_05
3519 or else not No_Pool_Assigned (E))
3520 then
3521 Error_Msg_N ("named access type not allowed in pure unit", E);
3522 end if;
70482933
RK
3523 end if;
3524
edd63e9b
ES
3525 -- Case of composite types
3526
70482933
RK
3527 if Is_Composite_Type (E) then
3528
edd63e9b
ES
3529 -- AI-117 requires that all new primitives of a tagged type must
3530 -- inherit the convention of the full view of the type. Inherited
3531 -- and overriding operations are defined to inherit the convention
3532 -- of their parent or overridden subprogram (also specified in
ee094616
RD
3533 -- AI-117), which will have occurred earlier (in Derive_Subprogram
3534 -- and New_Overloaded_Entity). Here we set the convention of
3535 -- primitives that are still convention Ada, which will ensure
def46b54
RD
3536 -- that any new primitives inherit the type's convention. Class-
3537 -- wide types can have a foreign convention inherited from their
3538 -- specific type, but are excluded from this since they don't have
3539 -- any associated primitives.
70482933
RK
3540
3541 if Is_Tagged_Type (E)
3542 and then not Is_Class_Wide_Type (E)
3543 and then Convention (E) /= Convention_Ada
3544 then
3545 declare
3546 Prim_List : constant Elist_Id := Primitive_Operations (E);
07fc65c4 3547 Prim : Elmt_Id;
70482933 3548 begin
07fc65c4 3549 Prim := First_Elmt (Prim_List);
70482933
RK
3550 while Present (Prim) loop
3551 if Convention (Node (Prim)) = Convention_Ada then
3552 Set_Convention (Node (Prim), Convention (E));
3553 end if;
3554
3555 Next_Elmt (Prim);
3556 end loop;
3557 end;
3558 end if;
3559 end if;
3560
07fc65c4
GB
3561 -- Generate primitive operation references for a tagged type
3562
3563 if Is_Tagged_Type (E)
3564 and then not Is_Class_Wide_Type (E)
3565 then
3566 declare
edd63e9b 3567 Prim_List : Elist_Id;
07fc65c4
GB
3568 Prim : Elmt_Id;
3569 Ent : Entity_Id;
add9f797 3570 Aux_E : Entity_Id;
07fc65c4
GB
3571
3572 begin
add9f797
JM
3573 -- Handle subtypes
3574
3575 if Ekind (E) = E_Protected_Subtype
3576 or else Ekind (E) = E_Task_Subtype
3577 then
3578 Aux_E := Etype (E);
3579 else
3580 Aux_E := E;
3581 end if;
3582
edd63e9b
ES
3583 -- Ada 2005 (AI-345): In case of concurrent type generate
3584 -- reference to the wrapper that allow us to dispatch calls
3585 -- through their implemented abstract interface types.
3586
3587 -- The check for Present here is to protect against previously
3588 -- reported critical errors.
3589
add9f797
JM
3590 if Is_Concurrent_Type (Aux_E)
3591 and then Present (Corresponding_Record_Type (Aux_E))
edd63e9b 3592 then
edd63e9b 3593 Prim_List := Primitive_Operations
add9f797 3594 (Corresponding_Record_Type (Aux_E));
edd63e9b 3595 else
add9f797 3596 Prim_List := Primitive_Operations (Aux_E);
edd63e9b
ES
3597 end if;
3598
3599 -- Loop to generate references for primitive operations
3600
ee094616
RD
3601 if Present (Prim_List) then
3602 Prim := First_Elmt (Prim_List);
3603 while Present (Prim) loop
07fc65c4 3604
ee094616
RD
3605 -- If the operation is derived, get the original for
3606 -- cross-reference purposes (it is the original for
3607 -- which we want the xref, and for which the comes
3608 -- from source test needs to be performed).
07fc65c4 3609
ee094616
RD
3610 Ent := Node (Prim);
3611 while Present (Alias (Ent)) loop
3612 Ent := Alias (Ent);
3613 end loop;
07fc65c4 3614
ee094616
RD
3615 Generate_Reference (E, Ent, 'p', Set_Ref => False);
3616 Next_Elmt (Prim);
3617 end loop;
3618 end if;
07fc65c4
GB
3619 end;
3620 end if;
3621
ee094616
RD
3622 -- Now that all types from which E may depend are frozen, see if the
3623 -- size is known at compile time, if it must be unsigned, or if
7d8b9c99 3624 -- strict alignment is required
70482933
RK
3625
3626 Check_Compile_Time_Size (E);
3627 Check_Unsigned_Type (E);
3628
3629 if Base_Type (E) = E then
3630 Check_Strict_Alignment (E);
3631 end if;
3632
3633 -- Do not allow a size clause for a type which does not have a size
3634 -- that is known at compile time
3635
3636 if Has_Size_Clause (E)
3637 and then not Size_Known_At_Compile_Time (E)
3638 then
07fc65c4
GB
3639 -- Supress this message if errors posted on E, even if we are
3640 -- in all errors mode, since this is often a junk message
3641
3642 if not Error_Posted (E) then
3643 Error_Msg_N
3644 ("size clause not allowed for variable length type",
3645 Size_Clause (E));
3646 end if;
70482933
RK
3647 end if;
3648
3649 -- Remaining process is to set/verify the representation information,
3650 -- in particular the size and alignment values. This processing is
3651 -- not required for generic types, since generic types do not play
3652 -- any part in code generation, and so the size and alignment values
c6823a20 3653 -- for such types are irrelevant.
70482933
RK
3654
3655 if Is_Generic_Type (E) then
3656 return Result;
3657
3658 -- Otherwise we call the layout procedure
3659
3660 else
3661 Layout_Type (E);
3662 end if;
3663
3664 -- End of freeze processing for type entities
3665 end if;
3666
3667 -- Here is where we logically freeze the current entity. If it has a
3668 -- freeze node, then this is the point at which the freeze node is
3669 -- linked into the result list.
3670
3671 if Has_Delayed_Freeze (E) then
3672
3673 -- If a freeze node is already allocated, use it, otherwise allocate
3674 -- a new one. The preallocation happens in the case of anonymous base
3675 -- types, where we preallocate so that we can set First_Subtype_Link.
3676 -- Note that we reset the Sloc to the current freeze location.
3677
3678 if Present (Freeze_Node (E)) then
3679 F_Node := Freeze_Node (E);
3680 Set_Sloc (F_Node, Loc);
3681
3682 else
3683 F_Node := New_Node (N_Freeze_Entity, Loc);
3684 Set_Freeze_Node (E, F_Node);
3685 Set_Access_Types_To_Process (F_Node, No_Elist);
3686 Set_TSS_Elist (F_Node, No_Elist);
3687 Set_Actions (F_Node, No_List);
3688 end if;
3689
3690 Set_Entity (F_Node, E);
3691
3692 if Result = No_List then
3693 Result := New_List (F_Node);
3694 else
3695 Append (F_Node, Result);
3696 end if;
35ae2ed8
AC
3697
3698 -- A final pass over record types with discriminants. If the type
3699 -- has an incomplete declaration, there may be constrained access
3700 -- subtypes declared elsewhere, which do not depend on the discrimi-
3701 -- nants of the type, and which are used as component types (i.e.
3702 -- the full view is a recursive type). The designated types of these
3703 -- subtypes can only be elaborated after the type itself, and they
3704 -- need an itype reference.
3705
3706 if Ekind (E) = E_Record_Type
3707 and then Has_Discriminants (E)
3708 then
3709 declare
3710 Comp : Entity_Id;
3711 IR : Node_Id;
3712 Typ : Entity_Id;
3713
3714 begin
3715 Comp := First_Component (E);
3716
3717 while Present (Comp) loop
3718 Typ := Etype (Comp);
3719
3720 if Ekind (Comp) = E_Component
3721 and then Is_Access_Type (Typ)
3722 and then Scope (Typ) /= E
3723 and then Base_Type (Designated_Type (Typ)) = E
3724 and then Is_Itype (Designated_Type (Typ))
3725 then
3726 IR := Make_Itype_Reference (Sloc (Comp));
3727 Set_Itype (IR, Designated_Type (Typ));
3728 Append (IR, Result);
3729 end if;
3730
3731 Next_Component (Comp);
3732 end loop;
3733 end;
3734 end if;
70482933
RK
3735 end if;
3736
3737 -- When a type is frozen, the first subtype of the type is frozen as
3738 -- well (RM 13.14(15)). This has to be done after freezing the type,
3739 -- since obviously the first subtype depends on its own base type.
3740
3741 if Is_Type (E) then
3742 Freeze_And_Append (First_Subtype (E), Loc, Result);
3743
3744 -- If we just froze a tagged non-class wide record, then freeze the
3745 -- corresponding class-wide type. This must be done after the tagged
3746 -- type itself is frozen, because the class-wide type refers to the
3747 -- tagged type which generates the class.
3748
3749 if Is_Tagged_Type (E)
3750 and then not Is_Class_Wide_Type (E)
3751 and then Present (Class_Wide_Type (E))
3752 then
3753 Freeze_And_Append (Class_Wide_Type (E), Loc, Result);
3754 end if;
3755 end if;
3756
3757 Check_Debug_Info_Needed (E);
3758
3759 -- Special handling for subprograms
3760
3761 if Is_Subprogram (E) then
3762
3763 -- If subprogram has address clause then reset Is_Public flag, since
3764 -- we do not want the backend to generate external references.
3765
3766 if Present (Address_Clause (E))
3767 and then not Is_Library_Level_Entity (E)
3768 then
3769 Set_Is_Public (E, False);
3770
3771 -- If no address clause and not intrinsic, then for imported
3772 -- subprogram in main unit, generate descriptor if we are in
3773 -- Propagate_Exceptions mode.
3774
3775 elsif Propagate_Exceptions
3776 and then Is_Imported (E)
3777 and then not Is_Intrinsic_Subprogram (E)
3778 and then Convention (E) /= Convention_Stubbed
3779 then
3780 if Result = No_List then
3781 Result := Empty_List;
3782 end if;
70482933 3783 end if;
70482933
RK
3784 end if;
3785
3786 return Result;
3787 end Freeze_Entity;
3788
3789 -----------------------------
3790 -- Freeze_Enumeration_Type --
3791 -----------------------------
3792
3793 procedure Freeze_Enumeration_Type (Typ : Entity_Id) is
3794 begin
3795 if Has_Foreign_Convention (Typ)
3796 and then not Has_Size_Clause (Typ)
3797 and then Esize (Typ) < Standard_Integer_Size
3798 then
3799 Init_Esize (Typ, Standard_Integer_Size);
70482933
RK
3800 else
3801 Adjust_Esize_For_Alignment (Typ);
3802 end if;
3803 end Freeze_Enumeration_Type;
3804
3805 -----------------------
3806 -- Freeze_Expression --
3807 -----------------------
3808
3809 procedure Freeze_Expression (N : Node_Id) is
3810 In_Def_Exp : constant Boolean := In_Default_Expression;
3811 Typ : Entity_Id;
3812 Nam : Entity_Id;
3813 Desig_Typ : Entity_Id;
3814 P : Node_Id;
3815 Parent_P : Node_Id;
3816
3817 Freeze_Outside : Boolean := False;
3818 -- This flag is set true if the entity must be frozen outside the
3819 -- current subprogram. This happens in the case of expander generated
3820 -- subprograms (_Init_Proc, _Input, _Output, _Read, _Write) which do
3821 -- not freeze all entities like other bodies, but which nevertheless
3822 -- may reference entities that have to be frozen before the body and
3823 -- obviously cannot be frozen inside the body.
3824
3825 function In_Exp_Body (N : Node_Id) return Boolean;
3826 -- Given an N_Handled_Sequence_Of_Statements node N, determines whether
c6823a20 3827 -- it is the handled statement sequence of an expander-generated
7d8b9c99
RD
3828 -- subprogram (init proc, stream subprogram, or renaming as body).
3829 -- If so, this is not a freezing context.
70482933 3830
fbf5a39b
AC
3831 -----------------
3832 -- In_Exp_Body --
3833 -----------------
3834
70482933 3835 function In_Exp_Body (N : Node_Id) return Boolean is
7d8b9c99
RD
3836 P : Node_Id;
3837 Id : Entity_Id;
70482933
RK
3838
3839 begin
3840 if Nkind (N) = N_Subprogram_Body then
3841 P := N;
3842 else
3843 P := Parent (N);
3844 end if;
3845
3846 if Nkind (P) /= N_Subprogram_Body then
3847 return False;
3848
3849 else
7d8b9c99
RD
3850 Id := Defining_Unit_Name (Specification (P));
3851
3852 if Nkind (Id) = N_Defining_Identifier
3853 and then (Is_Init_Proc (Id) or else
3854 Is_TSS (Id, TSS_Stream_Input) or else
3855 Is_TSS (Id, TSS_Stream_Output) or else
3856 Is_TSS (Id, TSS_Stream_Read) or else
3857 Is_TSS (Id, TSS_Stream_Write) or else
3858 Nkind (Original_Node (P)) =
3859 N_Subprogram_Renaming_Declaration)
70482933
RK
3860 then
3861 return True;
3862 else
3863 return False;
3864 end if;
3865 end if;
70482933
RK
3866 end In_Exp_Body;
3867
3868 -- Start of processing for Freeze_Expression
3869
3870 begin
edd63e9b
ES
3871 -- Immediate return if freezing is inhibited. This flag is set by the
3872 -- analyzer to stop freezing on generated expressions that would cause
3873 -- freezing if they were in the source program, but which are not
3874 -- supposed to freeze, since they are created.
70482933
RK
3875
3876 if Must_Not_Freeze (N) then
3877 return;
3878 end if;
3879
3880 -- If expression is non-static, then it does not freeze in a default
3881 -- expression, see section "Handling of Default Expressions" in the
3882 -- spec of package Sem for further details. Note that we have to
3883 -- make sure that we actually have a real expression (if we have
3884 -- a subtype indication, we can't test Is_Static_Expression!)
3885
3886 if In_Def_Exp
3887 and then Nkind (N) in N_Subexpr
3888 and then not Is_Static_Expression (N)
3889 then
3890 return;
3891 end if;
3892
3893 -- Freeze type of expression if not frozen already
3894
fbf5a39b
AC
3895 Typ := Empty;
3896
3897 if Nkind (N) in N_Has_Etype then
3898 if not Is_Frozen (Etype (N)) then
3899 Typ := Etype (N);
3900
3901 -- Base type may be an derived numeric type that is frozen at
3902 -- the point of declaration, but first_subtype is still unfrozen.
3903
3904 elsif not Is_Frozen (First_Subtype (Etype (N))) then
3905 Typ := First_Subtype (Etype (N));
3906 end if;
70482933
RK
3907 end if;
3908
3909 -- For entity name, freeze entity if not frozen already. A special
3910 -- exception occurs for an identifier that did not come from source.
3911 -- We don't let such identifiers freeze a non-internal entity, i.e.
3912 -- an entity that did come from source, since such an identifier was
3913 -- generated by the expander, and cannot have any semantic effect on
3914 -- the freezing semantics. For example, this stops the parameter of
3915 -- an initialization procedure from freezing the variable.
3916
3917 if Is_Entity_Name (N)
3918 and then not Is_Frozen (Entity (N))
3919 and then (Nkind (N) /= N_Identifier
3920 or else Comes_From_Source (N)
3921 or else not Comes_From_Source (Entity (N)))
3922 then
3923 Nam := Entity (N);
70482933
RK
3924 else
3925 Nam := Empty;
3926 end if;
3927
49e90211 3928 -- For an allocator freeze designated type if not frozen already
70482933 3929
ee094616
RD
3930 -- For an aggregate whose component type is an access type, freeze the
3931 -- designated type now, so that its freeze does not appear within the
3932 -- loop that might be created in the expansion of the aggregate. If the
3933 -- designated type is a private type without full view, the expression
3934 -- cannot contain an allocator, so the type is not frozen.
70482933
RK
3935
3936 Desig_Typ := Empty;
70482933 3937
fbf5a39b 3938 case Nkind (N) is
70482933
RK
3939 when N_Allocator =>
3940 Desig_Typ := Designated_Type (Etype (N));
3941
3942 when N_Aggregate =>
3943 if Is_Array_Type (Etype (N))
3944 and then Is_Access_Type (Component_Type (Etype (N)))
3945 then
3946 Desig_Typ := Designated_Type (Component_Type (Etype (N)));
3947 end if;
3948
3949 when N_Selected_Component |
3950 N_Indexed_Component |
3951 N_Slice =>
3952
3953 if Is_Access_Type (Etype (Prefix (N))) then
3954 Desig_Typ := Designated_Type (Etype (Prefix (N)));
3955 end if;
3956
3957 when others =>
3958 null;
70482933
RK
3959 end case;
3960
3961 if Desig_Typ /= Empty
3962 and then (Is_Frozen (Desig_Typ)
3963 or else (not Is_Fully_Defined (Desig_Typ)))
3964 then
3965 Desig_Typ := Empty;
3966 end if;
3967
3968 -- All done if nothing needs freezing
3969
3970 if No (Typ)
3971 and then No (Nam)
3972 and then No (Desig_Typ)
3973 then
3974 return;
3975 end if;
3976
3977 -- Loop for looking at the right place to insert the freeze nodes
3978 -- exiting from the loop when it is appropriate to insert the freeze
3979 -- node before the current node P.
3980
3981 -- Also checks some special exceptions to the freezing rules. These
3982 -- cases result in a direct return, bypassing the freeze action.
3983
3984 P := N;
3985 loop
3986 Parent_P := Parent (P);
3987
ee094616
RD
3988 -- If we don't have a parent, then we are not in a well-formed tree.
3989 -- This is an unusual case, but there are some legitimate situations
3990 -- in which this occurs, notably when the expressions in the range of
3991 -- a type declaration are resolved. We simply ignore the freeze
3992 -- request in this case. Is this right ???
70482933
RK
3993
3994 if No (Parent_P) then
3995 return;
3996 end if;
3997
3998 -- See if we have got to an appropriate point in the tree
3999
4000 case Nkind (Parent_P) is
4001
edd63e9b
ES
4002 -- A special test for the exception of (RM 13.14(8)) for the case
4003 -- of per-object expressions (RM 3.8(18)) occurring in component
4004 -- definition or a discrete subtype definition. Note that we test
4005 -- for a component declaration which includes both cases we are
4006 -- interested in, and furthermore the tree does not have explicit
4007 -- nodes for either of these two constructs.
70482933
RK
4008
4009 when N_Component_Declaration =>
4010
4011 -- The case we want to test for here is an identifier that is
4012 -- a per-object expression, this is either a discriminant that
4013 -- appears in a context other than the component declaration
4014 -- or it is a reference to the type of the enclosing construct.
4015
4016 -- For either of these cases, we skip the freezing
4017
4018 if not In_Default_Expression
4019 and then Nkind (N) = N_Identifier
4020 and then (Present (Entity (N)))
4021 then
4022 -- We recognize the discriminant case by just looking for
4023 -- a reference to a discriminant. It can only be one for
4024 -- the enclosing construct. Skip freezing in this case.
4025
4026 if Ekind (Entity (N)) = E_Discriminant then
4027 return;
4028
4029 -- For the case of a reference to the enclosing record,
4030 -- (or task or protected type), we look for a type that
4031 -- matches the current scope.
4032
4033 elsif Entity (N) = Current_Scope then
4034 return;
4035 end if;
4036 end if;
4037
edd63e9b
ES
4038 -- If we have an enumeration literal that appears as the choice in
4039 -- the aggregate of an enumeration representation clause, then
4040 -- freezing does not occur (RM 13.14(10)).
70482933
RK
4041
4042 when N_Enumeration_Representation_Clause =>
4043
4044 -- The case we are looking for is an enumeration literal
4045
4046 if (Nkind (N) = N_Identifier or Nkind (N) = N_Character_Literal)
4047 and then Is_Enumeration_Type (Etype (N))
4048 then
4049 -- If enumeration literal appears directly as the choice,
4050 -- do not freeze (this is the normal non-overloade case)
4051
4052 if Nkind (Parent (N)) = N_Component_Association
4053 and then First (Choices (Parent (N))) = N
4054 then
4055 return;
4056
ee094616
RD
4057 -- If enumeration literal appears as the name of function
4058 -- which is the choice, then also do not freeze. This
4059 -- happens in the overloaded literal case, where the
70482933
RK
4060 -- enumeration literal is temporarily changed to a function
4061 -- call for overloading analysis purposes.
4062
4063 elsif Nkind (Parent (N)) = N_Function_Call
4064 and then
4065 Nkind (Parent (Parent (N))) = N_Component_Association
4066 and then
4067 First (Choices (Parent (Parent (N)))) = Parent (N)
4068 then
4069 return;
4070 end if;
4071 end if;
4072
4073 -- Normally if the parent is a handled sequence of statements,
4074 -- then the current node must be a statement, and that is an
4075 -- appropriate place to insert a freeze node.
4076
4077 when N_Handled_Sequence_Of_Statements =>
4078
edd63e9b
ES
4079 -- An exception occurs when the sequence of statements is for
4080 -- an expander generated body that did not do the usual freeze
4081 -- all operation. In this case we usually want to freeze
4082 -- outside this body, not inside it, and we skip past the
4083 -- subprogram body that we are inside.
70482933
RK
4084
4085 if In_Exp_Body (Parent_P) then
4086
4087 -- However, we *do* want to freeze at this point if we have
4088 -- an entity to freeze, and that entity is declared *inside*
4089 -- the body of the expander generated procedure. This case
4090 -- is recognized by the scope of the type, which is either
4091 -- the spec for some enclosing body, or (in the case of
4092 -- init_procs, for which there are no separate specs) the
4093 -- current scope.
4094
4095 declare
4096 Subp : constant Node_Id := Parent (Parent_P);
4097 Cspc : Entity_Id;
4098
4099 begin
4100 if Nkind (Subp) = N_Subprogram_Body then
4101 Cspc := Corresponding_Spec (Subp);
4102
4103 if (Present (Typ) and then Scope (Typ) = Cspc)
4104 or else
4105 (Present (Nam) and then Scope (Nam) = Cspc)
4106 then
4107 exit;
4108
4109 elsif Present (Typ)
4110 and then Scope (Typ) = Current_Scope
4111 and then Current_Scope = Defining_Entity (Subp)
4112 then
4113 exit;
4114 end if;
4115 end if;
4116 end;
4117
4118 -- If not that exception to the exception, then this is
4119 -- where we delay the freeze till outside the body.
4120
4121 Parent_P := Parent (Parent_P);
4122 Freeze_Outside := True;
4123
4124 -- Here if normal case where we are in handled statement
4125 -- sequence and want to do the insertion right there.
4126
4127 else
4128 exit;
4129 end if;
4130
ee094616
RD
4131 -- If parent is a body or a spec or a block, then the current node
4132 -- is a statement or declaration and we can insert the freeze node
4133 -- before it.
70482933
RK
4134
4135 when N_Package_Specification |
4136 N_Package_Body |
4137 N_Subprogram_Body |
4138 N_Task_Body |
4139 N_Protected_Body |
4140 N_Entry_Body |
4141 N_Block_Statement => exit;
4142
4143 -- The expander is allowed to define types in any statements list,
4144 -- so any of the following parent nodes also mark a freezing point
4145 -- if the actual node is in a list of statements or declarations.
4146
4147 when N_Exception_Handler |
4148 N_If_Statement |
4149 N_Elsif_Part |
4150 N_Case_Statement_Alternative |
4151 N_Compilation_Unit_Aux |
4152 N_Selective_Accept |
4153 N_Accept_Alternative |
4154 N_Delay_Alternative |
4155 N_Conditional_Entry_Call |
4156 N_Entry_Call_Alternative |
4157 N_Triggering_Alternative |
4158 N_Abortable_Part |
4159 N_Freeze_Entity =>
4160
4161 exit when Is_List_Member (P);
4162
4163 -- Note: The N_Loop_Statement is a special case. A type that
4164 -- appears in the source can never be frozen in a loop (this
edd63e9b
ES
4165 -- occurs only because of a loop expanded by the expander), so we
4166 -- keep on going. Otherwise we terminate the search. Same is true
ee094616
RD
4167 -- of any entity which comes from source. (if they have predefined
4168 -- type, that type does not appear to come from source, but the
4169 -- entity should not be frozen here).
70482933
RK
4170
4171 when N_Loop_Statement =>
4172 exit when not Comes_From_Source (Etype (N))
4173 and then (No (Nam) or else not Comes_From_Source (Nam));
4174
4175 -- For all other cases, keep looking at parents
4176
4177 when others =>
4178 null;
4179 end case;
4180
4181 -- We fall through the case if we did not yet find the proper
4182 -- place in the free for inserting the freeze node, so climb!
4183
4184 P := Parent_P;
4185 end loop;
4186
edd63e9b
ES
4187 -- If the expression appears in a record or an initialization procedure,
4188 -- the freeze nodes are collected and attached to the current scope, to
4189 -- be inserted and analyzed on exit from the scope, to insure that
4190 -- generated entities appear in the correct scope. If the expression is
4191 -- a default for a discriminant specification, the scope is still void.
4192 -- The expression can also appear in the discriminant part of a private
4193 -- or concurrent type.
70482933 4194
c6823a20 4195 -- If the expression appears in a constrained subcomponent of an
edd63e9b
ES
4196 -- enclosing record declaration, the freeze nodes must be attached to
4197 -- the outer record type so they can eventually be placed in the
c6823a20
EB
4198 -- enclosing declaration list.
4199
ee094616
RD
4200 -- The other case requiring this special handling is if we are in a
4201 -- default expression, since in that case we are about to freeze a
4202 -- static type, and the freeze scope needs to be the outer scope, not
4203 -- the scope of the subprogram with the default parameter.
70482933
RK
4204
4205 -- For default expressions in generic units, the Move_Freeze_Nodes
ee094616
RD
4206 -- mechanism (see sem_ch12.adb) takes care of placing them at the proper
4207 -- place, after the generic unit.
70482933
RK
4208
4209 if (In_Def_Exp and not Inside_A_Generic)
4210 or else Freeze_Outside
4211 or else (Is_Type (Current_Scope)
4212 and then (not Is_Concurrent_Type (Current_Scope)
4213 or else not Has_Completion (Current_Scope)))
4214 or else Ekind (Current_Scope) = E_Void
4215 then
4216 declare
4217 Loc : constant Source_Ptr := Sloc (Current_Scope);
4218 Freeze_Nodes : List_Id := No_List;
c6823a20 4219 Pos : Int := Scope_Stack.Last;
70482933
RK
4220
4221 begin
4222 if Present (Desig_Typ) then
4223 Freeze_And_Append (Desig_Typ, Loc, Freeze_Nodes);
4224 end if;
4225
4226 if Present (Typ) then
4227 Freeze_And_Append (Typ, Loc, Freeze_Nodes);
4228 end if;
4229
4230 if Present (Nam) then
4231 Freeze_And_Append (Nam, Loc, Freeze_Nodes);
4232 end if;
4233
c6823a20
EB
4234 -- The current scope may be that of a constrained component of
4235 -- an enclosing record declaration, which is above the current
4236 -- scope in the scope stack.
4237
4238 if Is_Record_Type (Scope (Current_Scope)) then
4239 Pos := Pos - 1;
4240 end if;
4241
70482933 4242 if Is_Non_Empty_List (Freeze_Nodes) then
c6823a20
EB
4243 if No (Scope_Stack.Table (Pos).Pending_Freeze_Actions) then
4244 Scope_Stack.Table (Pos).Pending_Freeze_Actions :=
70482933
RK
4245 Freeze_Nodes;
4246 else
4247 Append_List (Freeze_Nodes, Scope_Stack.Table
c6823a20 4248 (Pos).Pending_Freeze_Actions);
70482933
RK
4249 end if;
4250 end if;
4251 end;
4252
4253 return;
4254 end if;
4255
4256 -- Now we have the right place to do the freezing. First, a special
4257 -- adjustment, if we are in default expression analysis mode, these
ee094616
RD
4258 -- freeze actions must not be thrown away (normally all inserted actions
4259 -- are thrown away in this mode. However, the freeze actions are from
4260 -- static expressions and one of the important reasons we are doing this
4261 -- special analysis is to get these freeze actions. Therefore we turn
4262 -- off the In_Default_Expression mode to propagate these freeze actions.
4263 -- This also means they get properly analyzed and expanded.
70482933
RK
4264
4265 In_Default_Expression := False;
4266
fbf5a39b 4267 -- Freeze the designated type of an allocator (RM 13.14(13))
70482933
RK
4268
4269 if Present (Desig_Typ) then
4270 Freeze_Before (P, Desig_Typ);
4271 end if;
4272
fbf5a39b 4273 -- Freeze type of expression (RM 13.14(10)). Note that we took care of
70482933
RK
4274 -- the enumeration representation clause exception in the loop above.
4275
4276 if Present (Typ) then
4277 Freeze_Before (P, Typ);
4278 end if;
4279
fbf5a39b 4280 -- Freeze name if one is present (RM 13.14(11))
70482933
RK
4281
4282 if Present (Nam) then
4283 Freeze_Before (P, Nam);
4284 end if;
4285
4286 In_Default_Expression := In_Def_Exp;
4287 end Freeze_Expression;
4288
4289 -----------------------------
4290 -- Freeze_Fixed_Point_Type --
4291 -----------------------------
4292
edd63e9b
ES
4293 -- Certain fixed-point types and subtypes, including implicit base types
4294 -- and declared first subtypes, have not yet set up a range. This is
4295 -- because the range cannot be set until the Small and Size values are
4296 -- known, and these are not known till the type is frozen.
70482933 4297
edd63e9b
ES
4298 -- To signal this case, Scalar_Range contains an unanalyzed syntactic range
4299 -- whose bounds are unanalyzed real literals. This routine will recognize
4300 -- this case, and transform this range node into a properly typed range
4301 -- with properly analyzed and resolved values.
70482933
RK
4302
4303 procedure Freeze_Fixed_Point_Type (Typ : Entity_Id) is
4304 Rng : constant Node_Id := Scalar_Range (Typ);
4305 Lo : constant Node_Id := Low_Bound (Rng);
4306 Hi : constant Node_Id := High_Bound (Rng);
4307 Btyp : constant Entity_Id := Base_Type (Typ);
4308 Brng : constant Node_Id := Scalar_Range (Btyp);
4309 BLo : constant Node_Id := Low_Bound (Brng);
4310 BHi : constant Node_Id := High_Bound (Brng);
4311 Small : constant Ureal := Small_Value (Typ);
4312 Loval : Ureal;
4313 Hival : Ureal;
4314 Atype : Entity_Id;
4315
4316 Actual_Size : Nat;
4317
4318 function Fsize (Lov, Hiv : Ureal) return Nat;
4319 -- Returns size of type with given bounds. Also leaves these
4320 -- bounds set as the current bounds of the Typ.
4321
0da2c8ac
AC
4322 -----------
4323 -- Fsize --
4324 -----------
4325
70482933
RK
4326 function Fsize (Lov, Hiv : Ureal) return Nat is
4327 begin
4328 Set_Realval (Lo, Lov);
4329 Set_Realval (Hi, Hiv);
4330 return Minimum_Size (Typ);
4331 end Fsize;
4332
0da2c8ac 4333 -- Start of processing for Freeze_Fixed_Point_Type
70482933
RK
4334
4335 begin
4336 -- If Esize of a subtype has not previously been set, set it now
4337
4338 if Unknown_Esize (Typ) then
4339 Atype := Ancestor_Subtype (Typ);
4340
4341 if Present (Atype) then
fbf5a39b 4342 Set_Esize (Typ, Esize (Atype));
70482933 4343 else
fbf5a39b 4344 Set_Esize (Typ, Esize (Base_Type (Typ)));
70482933
RK
4345 end if;
4346 end if;
4347
ee094616
RD
4348 -- Immediate return if the range is already analyzed. This means that
4349 -- the range is already set, and does not need to be computed by this
4350 -- routine.
70482933
RK
4351
4352 if Analyzed (Rng) then
4353 return;
4354 end if;
4355
4356 -- Immediate return if either of the bounds raises Constraint_Error
4357
4358 if Raises_Constraint_Error (Lo)
4359 or else Raises_Constraint_Error (Hi)
4360 then
4361 return;
4362 end if;
4363
4364 Loval := Realval (Lo);
4365 Hival := Realval (Hi);
4366
4367 -- Ordinary fixed-point case
4368
4369 if Is_Ordinary_Fixed_Point_Type (Typ) then
4370
4371 -- For the ordinary fixed-point case, we are allowed to fudge the
ee094616
RD
4372 -- end-points up or down by small. Generally we prefer to fudge up,
4373 -- i.e. widen the bounds for non-model numbers so that the end points
4374 -- are included. However there are cases in which this cannot be
4375 -- done, and indeed cases in which we may need to narrow the bounds.
4376 -- The following circuit makes the decision.
70482933 4377
ee094616
RD
4378 -- Note: our terminology here is that Incl_EP means that the bounds
4379 -- are widened by Small if necessary to include the end points, and
4380 -- Excl_EP means that the bounds are narrowed by Small to exclude the
4381 -- end-points if this reduces the size.
70482933
RK
4382
4383 -- Note that in the Incl case, all we care about is including the
4384 -- end-points. In the Excl case, we want to narrow the bounds as
4385 -- much as permitted by the RM, to give the smallest possible size.
4386
4387 Fudge : declare
4388 Loval_Incl_EP : Ureal;
4389 Hival_Incl_EP : Ureal;
4390
4391 Loval_Excl_EP : Ureal;
4392 Hival_Excl_EP : Ureal;
4393
4394 Size_Incl_EP : Nat;
4395 Size_Excl_EP : Nat;
4396
4397 Model_Num : Ureal;
4398 First_Subt : Entity_Id;
4399 Actual_Lo : Ureal;
4400 Actual_Hi : Ureal;
4401
4402 begin
4403 -- First step. Base types are required to be symmetrical. Right
4404 -- now, the base type range is a copy of the first subtype range.
4405 -- This will be corrected before we are done, but right away we
4406 -- need to deal with the case where both bounds are non-negative.
4407 -- In this case, we set the low bound to the negative of the high
4408 -- bound, to make sure that the size is computed to include the
4409 -- required sign. Note that we do not need to worry about the
4410 -- case of both bounds negative, because the sign will be dealt
4411 -- with anyway. Furthermore we can't just go making such a bound
4412 -- symmetrical, since in a twos-complement system, there is an
4413 -- extra negative value which could not be accomodated on the
4414 -- positive side.
4415
4416 if Typ = Btyp
4417 and then not UR_Is_Negative (Loval)
4418 and then Hival > Loval
4419 then
4420 Loval := -Hival;
4421 Set_Realval (Lo, Loval);
4422 end if;
4423
4424 -- Compute the fudged bounds. If the number is a model number,
edd63e9b
ES
4425 -- then we do nothing to include it, but we are allowed to backoff
4426 -- to the next adjacent model number when we exclude it. If it is
4427 -- not a model number then we straddle the two values with the
4428 -- model numbers on either side.
70482933
RK
4429
4430 Model_Num := UR_Trunc (Loval / Small) * Small;
4431
4432 if Loval = Model_Num then
4433 Loval_Incl_EP := Model_Num;
4434 else
4435 Loval_Incl_EP := Model_Num - Small;
4436 end if;
4437
4438 -- The low value excluding the end point is Small greater, but
4439 -- we do not do this exclusion if the low value is positive,
4440 -- since it can't help the size and could actually hurt by
4441 -- crossing the high bound.
4442
4443 if UR_Is_Negative (Loval_Incl_EP) then
4444 Loval_Excl_EP := Loval_Incl_EP + Small;
def46b54
RD
4445
4446 -- If the value went from negative to zero, then we have the
4447 -- case where Loval_Incl_EP is the model number just below
4448 -- zero, so we want to stick to the negative value for the
4449 -- base type to maintain the condition that the size will
4450 -- include signed values.
4451
4452 if Typ = Btyp
4453 and then UR_Is_Zero (Loval_Excl_EP)
4454 then
4455 Loval_Excl_EP := Loval_Incl_EP;
4456 end if;
4457
70482933
RK
4458 else
4459 Loval_Excl_EP := Loval_Incl_EP;
4460 end if;
4461
4462 -- Similar processing for upper bound and high value
4463
4464 Model_Num := UR_Trunc (Hival / Small) * Small;
4465
4466 if Hival = Model_Num then
4467 Hival_Incl_EP := Model_Num;
4468 else
4469 Hival_Incl_EP := Model_Num + Small;
4470 end if;
4471
4472 if UR_Is_Positive (Hival_Incl_EP) then
4473 Hival_Excl_EP := Hival_Incl_EP - Small;
4474 else
4475 Hival_Excl_EP := Hival_Incl_EP;
4476 end if;
4477
ee094616
RD
4478 -- One further adjustment is needed. In the case of subtypes, we
4479 -- cannot go outside the range of the base type, or we get
70482933 4480 -- peculiarities, and the base type range is already set. This
ee094616
RD
4481 -- only applies to the Incl values, since clearly the Excl values
4482 -- are already as restricted as they are allowed to be.
70482933
RK
4483
4484 if Typ /= Btyp then
4485 Loval_Incl_EP := UR_Max (Loval_Incl_EP, Realval (BLo));
4486 Hival_Incl_EP := UR_Min (Hival_Incl_EP, Realval (BHi));
4487 end if;
4488
4489 -- Get size including and excluding end points
4490
4491 Size_Incl_EP := Fsize (Loval_Incl_EP, Hival_Incl_EP);
4492 Size_Excl_EP := Fsize (Loval_Excl_EP, Hival_Excl_EP);
4493
4494 -- No need to exclude end-points if it does not reduce size
4495
4496 if Fsize (Loval_Incl_EP, Hival_Excl_EP) = Size_Excl_EP then
4497 Loval_Excl_EP := Loval_Incl_EP;
4498 end if;
4499
4500 if Fsize (Loval_Excl_EP, Hival_Incl_EP) = Size_Excl_EP then
4501 Hival_Excl_EP := Hival_Incl_EP;
4502 end if;
4503
4504 -- Now we set the actual size to be used. We want to use the
4505 -- bounds fudged up to include the end-points but only if this
4506 -- can be done without violating a specifically given size
4507 -- size clause or causing an unacceptable increase in size.
4508
4509 -- Case of size clause given
4510
4511 if Has_Size_Clause (Typ) then
4512
4513 -- Use the inclusive size only if it is consistent with
4514 -- the explicitly specified size.
4515
4516 if Size_Incl_EP <= RM_Size (Typ) then
4517 Actual_Lo := Loval_Incl_EP;
4518 Actual_Hi := Hival_Incl_EP;
4519 Actual_Size := Size_Incl_EP;
4520
4521 -- If the inclusive size is too large, we try excluding
4522 -- the end-points (will be caught later if does not work).
4523
4524 else
4525 Actual_Lo := Loval_Excl_EP;
4526 Actual_Hi := Hival_Excl_EP;
4527 Actual_Size := Size_Excl_EP;
4528 end if;
4529
4530 -- Case of size clause not given
4531
4532 else
4533 -- If we have a base type whose corresponding first subtype
4534 -- has an explicit size that is large enough to include our
4535 -- end-points, then do so. There is no point in working hard
4536 -- to get a base type whose size is smaller than the specified
4537 -- size of the first subtype.
4538
4539 First_Subt := First_Subtype (Typ);
4540
4541 if Has_Size_Clause (First_Subt)
4542 and then Size_Incl_EP <= Esize (First_Subt)
4543 then
4544 Actual_Size := Size_Incl_EP;
4545 Actual_Lo := Loval_Incl_EP;
4546 Actual_Hi := Hival_Incl_EP;
4547
4548 -- If excluding the end-points makes the size smaller and
4549 -- results in a size of 8,16,32,64, then we take the smaller
4550 -- size. For the 64 case, this is compulsory. For the other
4551 -- cases, it seems reasonable. We like to include end points
4552 -- if we can, but not at the expense of moving to the next
4553 -- natural boundary of size.
4554
4555 elsif Size_Incl_EP /= Size_Excl_EP
4556 and then
4557 (Size_Excl_EP = 8 or else
4558 Size_Excl_EP = 16 or else
4559 Size_Excl_EP = 32 or else
4560 Size_Excl_EP = 64)
4561 then
4562 Actual_Size := Size_Excl_EP;
4563 Actual_Lo := Loval_Excl_EP;
4564 Actual_Hi := Hival_Excl_EP;
4565
4566 -- Otherwise we can definitely include the end points
4567
4568 else
4569 Actual_Size := Size_Incl_EP;
4570 Actual_Lo := Loval_Incl_EP;
4571 Actual_Hi := Hival_Incl_EP;
4572 end if;
4573
edd63e9b
ES
4574 -- One pathological case: normally we never fudge a low bound
4575 -- down, since it would seem to increase the size (if it has
4576 -- any effect), but for ranges containing single value, or no
4577 -- values, the high bound can be small too large. Consider:
70482933
RK
4578
4579 -- type t is delta 2.0**(-14)
4580 -- range 131072.0 .. 0;
4581
edd63e9b
ES
4582 -- That lower bound is *just* outside the range of 32 bits, and
4583 -- does need fudging down in this case. Note that the bounds
4584 -- will always have crossed here, since the high bound will be
4585 -- fudged down if necessary, as in the case of:
70482933
RK
4586
4587 -- type t is delta 2.0**(-14)
4588 -- range 131072.0 .. 131072.0;
4589
edd63e9b
ES
4590 -- So we detect the situation by looking for crossed bounds,
4591 -- and if the bounds are crossed, and the low bound is greater
4592 -- than zero, we will always back it off by small, since this
4593 -- is completely harmless.
70482933
RK
4594
4595 if Actual_Lo > Actual_Hi then
4596 if UR_Is_Positive (Actual_Lo) then
4597 Actual_Lo := Loval_Incl_EP - Small;
4598 Actual_Size := Fsize (Actual_Lo, Actual_Hi);
4599
4600 -- And of course, we need to do exactly the same parallel
4601 -- fudge for flat ranges in the negative region.
4602
4603 elsif UR_Is_Negative (Actual_Hi) then
4604 Actual_Hi := Hival_Incl_EP + Small;
4605 Actual_Size := Fsize (Actual_Lo, Actual_Hi);
4606 end if;
4607 end if;
4608 end if;
4609
4610 Set_Realval (Lo, Actual_Lo);
4611 Set_Realval (Hi, Actual_Hi);
4612 end Fudge;
4613
4614 -- For the decimal case, none of this fudging is required, since there
4615 -- are no end-point problems in the decimal case (the end-points are
4616 -- always included).
4617
4618 else
4619 Actual_Size := Fsize (Loval, Hival);
4620 end if;
4621
4622 -- At this stage, the actual size has been calculated and the proper
4623 -- required bounds are stored in the low and high bounds.
4624
4625 if Actual_Size > 64 then
4626 Error_Msg_Uint_1 := UI_From_Int (Actual_Size);
4627 Error_Msg_N
7d8b9c99
RD
4628 ("size required (^) for type& too large, maximum allowed is 64",
4629 Typ);
70482933
RK
4630 Actual_Size := 64;
4631 end if;
4632
4633 -- Check size against explicit given size
4634
4635 if Has_Size_Clause (Typ) then
4636 if Actual_Size > RM_Size (Typ) then
4637 Error_Msg_Uint_1 := RM_Size (Typ);
4638 Error_Msg_Uint_2 := UI_From_Int (Actual_Size);
4639 Error_Msg_NE
7d8b9c99 4640 ("size given (^) for type& too small, minimum allowed is ^",
70482933
RK
4641 Size_Clause (Typ), Typ);
4642
4643 else
4644 Actual_Size := UI_To_Int (Esize (Typ));
4645 end if;
4646
4647 -- Increase size to next natural boundary if no size clause given
4648
4649 else
4650 if Actual_Size <= 8 then
4651 Actual_Size := 8;
4652 elsif Actual_Size <= 16 then
4653 Actual_Size := 16;
4654 elsif Actual_Size <= 32 then
4655 Actual_Size := 32;
4656 else
4657 Actual_Size := 64;
4658 end if;
4659
4660 Init_Esize (Typ, Actual_Size);
4661 Adjust_Esize_For_Alignment (Typ);
4662 end if;
4663
edd63e9b
ES
4664 -- If we have a base type, then expand the bounds so that they extend to
4665 -- the full width of the allocated size in bits, to avoid junk range
4666 -- checks on intermediate computations.
70482933
RK
4667
4668 if Base_Type (Typ) = Typ then
4669 Set_Realval (Lo, -(Small * (Uint_2 ** (Actual_Size - 1))));
4670 Set_Realval (Hi, (Small * (Uint_2 ** (Actual_Size - 1) - 1)));
4671 end if;
4672
4673 -- Final step is to reanalyze the bounds using the proper type
4674 -- and set the Corresponding_Integer_Value fields of the literals.
4675
4676 Set_Etype (Lo, Empty);
4677 Set_Analyzed (Lo, False);
4678 Analyze (Lo);
4679
edd63e9b
ES
4680 -- Resolve with universal fixed if the base type, and the base type if
4681 -- it is a subtype. Note we can't resolve the base type with itself,
4682 -- that would be a reference before definition.
70482933
RK
4683
4684 if Typ = Btyp then
4685 Resolve (Lo, Universal_Fixed);
4686 else
4687 Resolve (Lo, Btyp);
4688 end if;
4689
4690 -- Set corresponding integer value for bound
4691
4692 Set_Corresponding_Integer_Value
4693 (Lo, UR_To_Uint (Realval (Lo) / Small));
4694
4695 -- Similar processing for high bound
4696
4697 Set_Etype (Hi, Empty);
4698 Set_Analyzed (Hi, False);
4699 Analyze (Hi);
4700
4701 if Typ = Btyp then
4702 Resolve (Hi, Universal_Fixed);
4703 else
4704 Resolve (Hi, Btyp);
4705 end if;
4706
4707 Set_Corresponding_Integer_Value
4708 (Hi, UR_To_Uint (Realval (Hi) / Small));
4709
4710 -- Set type of range to correspond to bounds
4711
4712 Set_Etype (Rng, Etype (Lo));
4713
fbf5a39b 4714 -- Set Esize to calculated size if not set already
70482933 4715
fbf5a39b
AC
4716 if Unknown_Esize (Typ) then
4717 Init_Esize (Typ, Actual_Size);
4718 end if;
70482933
RK
4719
4720 -- Set RM_Size if not already set. If already set, check value
4721
4722 declare
4723 Minsiz : constant Uint := UI_From_Int (Minimum_Size (Typ));
4724
4725 begin
4726 if RM_Size (Typ) /= Uint_0 then
4727 if RM_Size (Typ) < Minsiz then
4728 Error_Msg_Uint_1 := RM_Size (Typ);
4729 Error_Msg_Uint_2 := Minsiz;
4730 Error_Msg_NE
7d8b9c99 4731 ("size given (^) for type& too small, minimum allowed is ^",
70482933
RK
4732 Size_Clause (Typ), Typ);
4733 end if;
4734
4735 else
4736 Set_RM_Size (Typ, Minsiz);
4737 end if;
4738 end;
70482933
RK
4739 end Freeze_Fixed_Point_Type;
4740
4741 ------------------
4742 -- Freeze_Itype --
4743 ------------------
4744
4745 procedure Freeze_Itype (T : Entity_Id; N : Node_Id) is
4746 L : List_Id;
4747
4748 begin
4749 Set_Has_Delayed_Freeze (T);
4750 L := Freeze_Entity (T, Sloc (N));
4751
4752 if Is_Non_Empty_List (L) then
4753 Insert_Actions (N, L);
4754 end if;
4755 end Freeze_Itype;
4756
4757 --------------------------
4758 -- Freeze_Static_Object --
4759 --------------------------
4760
4761 procedure Freeze_Static_Object (E : Entity_Id) is
4762
4763 Cannot_Be_Static : exception;
4764 -- Exception raised if the type of a static object cannot be made
4765 -- static. This happens if the type depends on non-global objects.
4766
4767 procedure Ensure_Expression_Is_SA (N : Node_Id);
ee094616
RD
4768 -- Called to ensure that an expression used as part of a type definition
4769 -- is statically allocatable, which means that the expression type is
4770 -- statically allocatable, and the expression is either static, or a
4771 -- reference to a library level constant.
70482933
RK
4772
4773 procedure Ensure_Type_Is_SA (Typ : Entity_Id);
4774 -- Called to mark a type as static, checking that it is possible
4775 -- to set the type as static. If it is not possible, then the
4776 -- exception Cannot_Be_Static is raised.
4777
4778 -----------------------------
4779 -- Ensure_Expression_Is_SA --
4780 -----------------------------
4781
4782 procedure Ensure_Expression_Is_SA (N : Node_Id) is
4783 Ent : Entity_Id;
4784
4785 begin
4786 Ensure_Type_Is_SA (Etype (N));
4787
4788 if Is_Static_Expression (N) then
4789 return;
4790
4791 elsif Nkind (N) = N_Identifier then
4792 Ent := Entity (N);
4793
4794 if Present (Ent)
4795 and then Ekind (Ent) = E_Constant
4796 and then Is_Library_Level_Entity (Ent)
4797 then
4798 return;
4799 end if;
4800 end if;
4801
4802 raise Cannot_Be_Static;
4803 end Ensure_Expression_Is_SA;
4804
4805 -----------------------
4806 -- Ensure_Type_Is_SA --
4807 -----------------------
4808
4809 procedure Ensure_Type_Is_SA (Typ : Entity_Id) is
4810 N : Node_Id;
4811 C : Entity_Id;
4812
4813 begin
4814 -- If type is library level, we are all set
4815
4816 if Is_Library_Level_Entity (Typ) then
4817 return;
4818 end if;
4819
ee094616
RD
4820 -- We are also OK if the type already marked as statically allocated,
4821 -- which means we processed it before.
70482933
RK
4822
4823 if Is_Statically_Allocated (Typ) then
4824 return;
4825 end if;
4826
4827 -- Mark type as statically allocated
4828
4829 Set_Is_Statically_Allocated (Typ);
4830
4831 -- Check that it is safe to statically allocate this type
4832
4833 if Is_Scalar_Type (Typ) or else Is_Real_Type (Typ) then
4834 Ensure_Expression_Is_SA (Type_Low_Bound (Typ));
4835 Ensure_Expression_Is_SA (Type_High_Bound (Typ));
4836
4837 elsif Is_Array_Type (Typ) then
4838 N := First_Index (Typ);
4839 while Present (N) loop
4840 Ensure_Type_Is_SA (Etype (N));
4841 Next_Index (N);
4842 end loop;
4843
4844 Ensure_Type_Is_SA (Component_Type (Typ));
4845
4846 elsif Is_Access_Type (Typ) then
4847 if Ekind (Designated_Type (Typ)) = E_Subprogram_Type then
4848
4849 declare
4850 F : Entity_Id;
4851 T : constant Entity_Id := Etype (Designated_Type (Typ));
4852
4853 begin
4854 if T /= Standard_Void_Type then
4855 Ensure_Type_Is_SA (T);
4856 end if;
4857
4858 F := First_Formal (Designated_Type (Typ));
4859
4860 while Present (F) loop
4861 Ensure_Type_Is_SA (Etype (F));
4862 Next_Formal (F);
4863 end loop;
4864 end;
4865
4866 else
4867 Ensure_Type_Is_SA (Designated_Type (Typ));
4868 end if;
4869
4870 elsif Is_Record_Type (Typ) then
4871 C := First_Entity (Typ);
70482933
RK
4872 while Present (C) loop
4873 if Ekind (C) = E_Discriminant
4874 or else Ekind (C) = E_Component
4875 then
4876 Ensure_Type_Is_SA (Etype (C));
4877
4878 elsif Is_Type (C) then
4879 Ensure_Type_Is_SA (C);
4880 end if;
4881
4882 Next_Entity (C);
4883 end loop;
4884
4885 elsif Ekind (Typ) = E_Subprogram_Type then
4886 Ensure_Type_Is_SA (Etype (Typ));
4887
4888 C := First_Formal (Typ);
4889 while Present (C) loop
4890 Ensure_Type_Is_SA (Etype (C));
4891 Next_Formal (C);
4892 end loop;
4893
4894 else
4895 raise Cannot_Be_Static;
4896 end if;
4897 end Ensure_Type_Is_SA;
4898
4899 -- Start of processing for Freeze_Static_Object
4900
4901 begin
4902 Ensure_Type_Is_SA (Etype (E));
4903
4904 exception
4905 when Cannot_Be_Static =>
4906
4907 -- If the object that cannot be static is imported or exported,
4908 -- then we give an error message saying that this object cannot
4909 -- be imported or exported.
4910
4911 if Is_Imported (E) then
4912 Error_Msg_N
4913 ("& cannot be imported (local type is not constant)", E);
4914
4915 -- Otherwise must be exported, something is wrong if compiler
4916 -- is marking something as statically allocated which cannot be).
4917
4918 else pragma Assert (Is_Exported (E));
4919 Error_Msg_N
4920 ("& cannot be exported (local type is not constant)", E);
4921 end if;
4922 end Freeze_Static_Object;
4923
4924 -----------------------
4925 -- Freeze_Subprogram --
4926 -----------------------
4927
4928 procedure Freeze_Subprogram (E : Entity_Id) is
4929 Retype : Entity_Id;
4930 F : Entity_Id;
4931
4932 begin
4933 -- Subprogram may not have an address clause unless it is imported
4934
4935 if Present (Address_Clause (E)) then
4936 if not Is_Imported (E) then
4937 Error_Msg_N
4938 ("address clause can only be given " &
4939 "for imported subprogram",
4940 Name (Address_Clause (E)));
4941 end if;
4942 end if;
4943
91b1417d
AC
4944 -- Reset the Pure indication on an imported subprogram unless an
4945 -- explicit Pure_Function pragma was present. We do this because
ee094616
RD
4946 -- otherwise it is an insidious error to call a non-pure function from
4947 -- pure unit and have calls mysteriously optimized away. What happens
4948 -- here is that the Import can bypass the normal check to ensure that
4949 -- pure units call only pure subprograms.
91b1417d
AC
4950
4951 if Is_Imported (E)
4952 and then Is_Pure (E)
4953 and then not Has_Pragma_Pure_Function (E)
4954 then
4955 Set_Is_Pure (E, False);
4956 end if;
4957
70482933
RK
4958 -- For non-foreign convention subprograms, this is where we create
4959 -- the extra formals (for accessibility level and constrained bit
4960 -- information). We delay this till the freeze point precisely so
4961 -- that we know the convention!
4962
4963 if not Has_Foreign_Convention (E) then
4964 Create_Extra_Formals (E);
4965 Set_Mechanisms (E);
4966
4967 -- If this is convention Ada and a Valued_Procedure, that's odd
4968
4969 if Ekind (E) = E_Procedure
4970 and then Is_Valued_Procedure (E)
4971 and then Convention (E) = Convention_Ada
fbf5a39b 4972 and then Warn_On_Export_Import
70482933
RK
4973 then
4974 Error_Msg_N
4975 ("?Valued_Procedure has no effect for convention Ada", E);
4976 Set_Is_Valued_Procedure (E, False);
4977 end if;
4978
4979 -- Case of foreign convention
4980
4981 else
4982 Set_Mechanisms (E);
4983
fbf5a39b 4984 -- For foreign conventions, warn about return of an
70482933
RK
4985 -- unconstrained array.
4986
4987 -- Note: we *do* allow a return by descriptor for the VMS case,
4988 -- though here there is probably more to be done ???
4989
4990 if Ekind (E) = E_Function then
4991 Retype := Underlying_Type (Etype (E));
4992
4993 -- If no return type, probably some other error, e.g. a
4994 -- missing full declaration, so ignore.
4995
4996 if No (Retype) then
4997 null;
4998
4999 -- If the return type is generic, we have emitted a warning
edd63e9b
ES
5000 -- earlier on, and there is nothing else to check here. Specific
5001 -- instantiations may lead to erroneous behavior.
70482933
RK
5002
5003 elsif Is_Generic_Type (Etype (E)) then
5004 null;
5005
5006 elsif Is_Array_Type (Retype)
5007 and then not Is_Constrained (Retype)
5008 and then Mechanism (E) not in Descriptor_Codes
fbf5a39b 5009 and then Warn_On_Export_Import
70482933 5010 then
fbf5a39b
AC
5011 Error_Msg_N
5012 ("?foreign convention function& should not return " &
5013 "unconstrained array", E);
70482933
RK
5014 return;
5015 end if;
5016 end if;
5017
5018 -- If any of the formals for an exported foreign convention
edd63e9b
ES
5019 -- subprogram have defaults, then emit an appropriate warning since
5020 -- this is odd (default cannot be used from non-Ada code)
70482933
RK
5021
5022 if Is_Exported (E) then
5023 F := First_Formal (E);
5024 while Present (F) loop
fbf5a39b
AC
5025 if Warn_On_Export_Import
5026 and then Present (Default_Value (F))
5027 then
70482933
RK
5028 Error_Msg_N
5029 ("?parameter cannot be defaulted in non-Ada call",
5030 Default_Value (F));
5031 end if;
5032
5033 Next_Formal (F);
5034 end loop;
5035 end if;
5036 end if;
5037
5038 -- For VMS, descriptor mechanisms for parameters are allowed only
7d8b9c99
RD
5039 -- for imported/exported subprograms. Moreover, the NCA descriptor
5040 -- is not allowed for parameters of exported subprograms.
70482933
RK
5041
5042 if OpenVMS_On_Target then
7d8b9c99
RD
5043 if Is_Exported (E) then
5044 F := First_Formal (E);
5045 while Present (F) loop
5046 if Mechanism (F) = By_Descriptor_NCA then
5047 Error_Msg_N
5048 ("'N'C'A' descriptor for parameter not permitted", F);
5049 Error_Msg_N
5050 ("\can only be used for imported subprogram", F);
5051 end if;
5052
5053 Next_Formal (F);
5054 end loop;
5055
5056 elsif not Is_Imported (E) then
70482933
RK
5057 F := First_Formal (E);
5058 while Present (F) loop
5059 if Mechanism (F) in Descriptor_Codes then
5060 Error_Msg_N
5061 ("descriptor mechanism for parameter not permitted", F);
5062 Error_Msg_N
7d8b9c99 5063 ("\can only be used for imported/exported subprogram", F);
70482933
RK
5064 end if;
5065
5066 Next_Formal (F);
5067 end loop;
5068 end if;
5069 end if;
edd63e9b
ES
5070
5071 -- Pragma Inline_Always is disallowed for dispatching subprograms
5072 -- because the address of such subprograms is saved in the dispatch
5073 -- table to support dispatching calls, and dispatching calls cannot
5074 -- be inlined. This is consistent with the restriction against using
5075 -- 'Access or 'Address on an Inline_Always subprogram.
5076
def46b54
RD
5077 if Is_Dispatching_Operation (E)
5078 and then Has_Pragma_Inline_Always (E)
5079 then
edd63e9b
ES
5080 Error_Msg_N
5081 ("pragma Inline_Always not allowed for dispatching subprograms", E);
5082 end if;
70482933
RK
5083 end Freeze_Subprogram;
5084
15ce9ca2
AC
5085 ----------------------
5086 -- Is_Fully_Defined --
5087 ----------------------
70482933 5088
70482933
RK
5089 function Is_Fully_Defined (T : Entity_Id) return Boolean is
5090 begin
5091 if Ekind (T) = E_Class_Wide_Type then
5092 return Is_Fully_Defined (Etype (T));
657a9dd9
AC
5093
5094 elsif Is_Array_Type (T) then
5095 return Is_Fully_Defined (Component_Type (T));
5096
5097 elsif Is_Record_Type (T)
5098 and not Is_Private_Type (T)
5099 then
ee094616
RD
5100 -- Verify that the record type has no components with private types
5101 -- without completion.
657a9dd9
AC
5102
5103 declare
5104 Comp : Entity_Id;
bde58e32 5105
657a9dd9
AC
5106 begin
5107 Comp := First_Component (T);
5108
5109 while Present (Comp) loop
5110 if not Is_Fully_Defined (Etype (Comp)) then
5111 return False;
5112 end if;
5113
5114 Next_Component (Comp);
5115 end loop;
5116 return True;
5117 end;
5118
86cde7b1
RD
5119 else
5120 return not Is_Private_Type (T)
5121 or else Present (Full_View (Base_Type (T)));
70482933
RK
5122 end if;
5123 end Is_Fully_Defined;
5124
5125 ---------------------------------
5126 -- Process_Default_Expressions --
5127 ---------------------------------
5128
5129 procedure Process_Default_Expressions
5130 (E : Entity_Id;
5131 After : in out Node_Id)
5132 is
5133 Loc : constant Source_Ptr := Sloc (E);
5134 Dbody : Node_Id;
5135 Formal : Node_Id;
5136 Dcopy : Node_Id;
5137 Dnam : Entity_Id;
5138
5139 begin
5140 Set_Default_Expressions_Processed (E);
5141
ee094616
RD
5142 -- A subprogram instance and its associated anonymous subprogram share
5143 -- their signature. The default expression functions are defined in the
5144 -- wrapper packages for the anonymous subprogram, and should not be
5145 -- generated again for the instance.
70482933
RK
5146
5147 if Is_Generic_Instance (E)
5148 and then Present (Alias (E))
5149 and then Default_Expressions_Processed (Alias (E))
5150 then
5151 return;
5152 end if;
5153
5154 Formal := First_Formal (E);
70482933
RK
5155 while Present (Formal) loop
5156 if Present (Default_Value (Formal)) then
5157
5158 -- We work with a copy of the default expression because we
5159 -- do not want to disturb the original, since this would mess
5160 -- up the conformance checking.
5161
5162 Dcopy := New_Copy_Tree (Default_Value (Formal));
5163
5164 -- The analysis of the expression may generate insert actions,
5165 -- which of course must not be executed. We wrap those actions
5166 -- in a procedure that is not called, and later on eliminated.
5167 -- The following cases have no side-effects, and are analyzed
5168 -- directly.
5169
5170 if Nkind (Dcopy) = N_Identifier
5171 or else Nkind (Dcopy) = N_Expanded_Name
5172 or else Nkind (Dcopy) = N_Integer_Literal
5173 or else (Nkind (Dcopy) = N_Real_Literal
5174 and then not Vax_Float (Etype (Dcopy)))
5175 or else Nkind (Dcopy) = N_Character_Literal
5176 or else Nkind (Dcopy) = N_String_Literal
86cde7b1 5177 or else Known_Null (Dcopy)
70482933
RK
5178 or else (Nkind (Dcopy) = N_Attribute_Reference
5179 and then
5180 Attribute_Name (Dcopy) = Name_Null_Parameter)
70482933
RK
5181 then
5182
5183 -- If there is no default function, we must still do a full
ee094616
RD
5184 -- analyze call on the default value, to ensure that all error
5185 -- checks are performed, e.g. those associated with static
5186 -- evaluation. Note: this branch will always be taken if the
5187 -- analyzer is turned off (but we still need the error checks).
70482933
RK
5188
5189 -- Note: the setting of parent here is to meet the requirement
5190 -- that we can only analyze the expression while attached to
5191 -- the tree. Really the requirement is that the parent chain
5192 -- be set, we don't actually need to be in the tree.
5193
5194 Set_Parent (Dcopy, Declaration_Node (Formal));
5195 Analyze (Dcopy);
5196
5197 -- Default expressions are resolved with their own type if the
5198 -- context is generic, to avoid anomalies with private types.
5199
5200 if Ekind (Scope (E)) = E_Generic_Package then
fbf5a39b 5201 Resolve (Dcopy);
70482933
RK
5202 else
5203 Resolve (Dcopy, Etype (Formal));
5204 end if;
5205
5206 -- If that resolved expression will raise constraint error,
5207 -- then flag the default value as raising constraint error.
5208 -- This allows a proper error message on the calls.
5209
5210 if Raises_Constraint_Error (Dcopy) then
5211 Set_Raises_Constraint_Error (Default_Value (Formal));
5212 end if;
5213
5214 -- If the default is a parameterless call, we use the name of
5215 -- the called function directly, and there is no body to build.
5216
5217 elsif Nkind (Dcopy) = N_Function_Call
5218 and then No (Parameter_Associations (Dcopy))
5219 then
5220 null;
5221
5222 -- Else construct and analyze the body of a wrapper procedure
5223 -- that contains an object declaration to hold the expression.
5224 -- Given that this is done only to complete the analysis, it
5225 -- simpler to build a procedure than a function which might
5226 -- involve secondary stack expansion.
5227
5228 else
5229 Dnam :=
5230 Make_Defining_Identifier (Loc, New_Internal_Name ('D'));
5231
5232 Dbody :=
5233 Make_Subprogram_Body (Loc,
5234 Specification =>
5235 Make_Procedure_Specification (Loc,
5236 Defining_Unit_Name => Dnam),
5237
5238 Declarations => New_List (
5239 Make_Object_Declaration (Loc,
5240 Defining_Identifier =>
5241 Make_Defining_Identifier (Loc,
5242 New_Internal_Name ('T')),
5243 Object_Definition =>
5244 New_Occurrence_Of (Etype (Formal), Loc),
5245 Expression => New_Copy_Tree (Dcopy))),
5246
5247 Handled_Statement_Sequence =>
5248 Make_Handled_Sequence_Of_Statements (Loc,
5249 Statements => New_List));
5250
5251 Set_Scope (Dnam, Scope (E));
5252 Set_Assignment_OK (First (Declarations (Dbody)));
5253 Set_Is_Eliminated (Dnam);
5254 Insert_After (After, Dbody);
5255 Analyze (Dbody);
5256 After := Dbody;
5257 end if;
5258 end if;
5259
5260 Next_Formal (Formal);
5261 end loop;
70482933
RK
5262 end Process_Default_Expressions;
5263
5264 ----------------------------------------
5265 -- Set_Component_Alignment_If_Not_Set --
5266 ----------------------------------------
5267
5268 procedure Set_Component_Alignment_If_Not_Set (Typ : Entity_Id) is
5269 begin
5270 -- Ignore if not base type, subtypes don't need anything
5271
5272 if Typ /= Base_Type (Typ) then
5273 return;
5274 end if;
5275
5276 -- Do not override existing representation
5277
5278 if Is_Packed (Typ) then
5279 return;
5280
5281 elsif Has_Specified_Layout (Typ) then
5282 return;
5283
5284 elsif Component_Alignment (Typ) /= Calign_Default then
5285 return;
5286
5287 else
5288 Set_Component_Alignment
5289 (Typ, Scope_Stack.Table
5290 (Scope_Stack.Last).Component_Alignment_Default);
5291 end if;
5292 end Set_Component_Alignment_If_Not_Set;
5293
c6823a20
EB
5294 ------------------
5295 -- Undelay_Type --
5296 ------------------
5297
5298 procedure Undelay_Type (T : Entity_Id) is
5299 begin
5300 Set_Has_Delayed_Freeze (T, False);
5301 Set_Freeze_Node (T, Empty);
5302
5303 -- Since we don't want T to have a Freeze_Node, we don't want its
5304 -- Full_View or Corresponding_Record_Type to have one either.
5305
5306 -- ??? Fundamentally, this whole handling is a kludge. What we really
ee094616
RD
5307 -- want is to be sure that for an Itype that's part of record R and is a
5308 -- subtype of type T, that it's frozen after the later of the freeze
c6823a20
EB
5309 -- points of R and T. We have no way of doing that directly, so what we
5310 -- do is force most such Itypes to be frozen as part of freezing R via
5311 -- this procedure and only delay the ones that need to be delayed
ee094616
RD
5312 -- (mostly the designated types of access types that are defined as part
5313 -- of the record).
c6823a20
EB
5314
5315 if Is_Private_Type (T)
5316 and then Present (Full_View (T))
5317 and then Is_Itype (Full_View (T))
5318 and then Is_Record_Type (Scope (Full_View (T)))
5319 then
5320 Undelay_Type (Full_View (T));
5321 end if;
5322
5323 if Is_Concurrent_Type (T)
5324 and then Present (Corresponding_Record_Type (T))
5325 and then Is_Itype (Corresponding_Record_Type (T))
5326 and then Is_Record_Type (Scope (Corresponding_Record_Type (T)))
5327 then
5328 Undelay_Type (Corresponding_Record_Type (T));
5329 end if;
5330 end Undelay_Type;
5331
fbf5a39b
AC
5332 ------------------
5333 -- Warn_Overlay --
5334 ------------------
5335
5336 procedure Warn_Overlay
5337 (Expr : Node_Id;
5338 Typ : Entity_Id;
5339 Nam : Entity_Id)
5340 is
5341 Ent : constant Entity_Id := Entity (Nam);
49e90211 5342 -- The object to which the address clause applies
fbf5a39b
AC
5343
5344 Init : Node_Id;
5345 Old : Entity_Id := Empty;
5346 Decl : Node_Id;
5347
5348 begin
5349 -- No warning if address clause overlay warnings are off
5350
5351 if not Address_Clause_Overlay_Warnings then
5352 return;
5353 end if;
5354
5355 -- No warning if there is an explicit initialization
5356
5357 Init := Original_Node (Expression (Declaration_Node (Ent)));
5358
5359 if Present (Init) and then Comes_From_Source (Init) then
5360 return;
5361 end if;
5362
edd63e9b
ES
5363 -- We only give the warning for non-imported entities of a type for
5364 -- which a non-null base init proc is defined (or for access types which
5365 -- have implicit null initialization).
fbf5a39b
AC
5366
5367 if Present (Expr)
5368 and then (Has_Non_Null_Base_Init_Proc (Typ)
5369 or else Is_Access_Type (Typ))
5370 and then not Is_Imported (Ent)
5371 then
5372 if Nkind (Expr) = N_Attribute_Reference
5373 and then Is_Entity_Name (Prefix (Expr))
5374 then
5375 Old := Entity (Prefix (Expr));
5376
5377 elsif Is_Entity_Name (Expr)
5378 and then Ekind (Entity (Expr)) = E_Constant
5379 then
5380 Decl := Declaration_Node (Entity (Expr));
5381
5382 if Nkind (Decl) = N_Object_Declaration
5383 and then Present (Expression (Decl))
5384 and then Nkind (Expression (Decl)) = N_Attribute_Reference
5385 and then Is_Entity_Name (Prefix (Expression (Decl)))
5386 then
5387 Old := Entity (Prefix (Expression (Decl)));
5388
5389 elsif Nkind (Expr) = N_Function_Call then
5390 return;
5391 end if;
5392
ee094616
RD
5393 -- A function call (most likely to To_Address) is probably not an
5394 -- overlay, so skip warning. Ditto if the function call was inlined
5395 -- and transformed into an entity.
fbf5a39b
AC
5396
5397 elsif Nkind (Original_Node (Expr)) = N_Function_Call then
5398 return;
5399 end if;
5400
5401 Decl := Next (Parent (Expr));
5402
5403 -- If a pragma Import follows, we assume that it is for the current
5404 -- target of the address clause, and skip the warning.
5405
5406 if Present (Decl)
5407 and then Nkind (Decl) = N_Pragma
1b24ada5 5408 and then Pragma_Name (Decl) = Name_Import
fbf5a39b
AC
5409 then
5410 return;
5411 end if;
5412
5413 if Present (Old) then
5414 Error_Msg_Node_2 := Old;
5415 Error_Msg_N
5416 ("default initialization of & may modify &?",
5417 Nam);
5418 else
5419 Error_Msg_N
5420 ("default initialization of & may modify overlaid storage?",
5421 Nam);
5422 end if;
5423
5424 -- Add friendly warning if initialization comes from a packed array
5425 -- component.
5426
5427 if Is_Record_Type (Typ) then
5428 declare
5429 Comp : Entity_Id;
5430
5431 begin
5432 Comp := First_Component (Typ);
5433
5434 while Present (Comp) loop
5435 if Nkind (Parent (Comp)) = N_Component_Declaration
5436 and then Present (Expression (Parent (Comp)))
5437 then
5438 exit;
5439 elsif Is_Array_Type (Etype (Comp))
5440 and then Present (Packed_Array_Type (Etype (Comp)))
5441 then
5442 Error_Msg_NE
3f1ede06
RD
5443 ("\packed array component& " &
5444 "will be initialized to zero?",
5445 Nam, Comp);
fbf5a39b
AC
5446 exit;
5447 else
5448 Next_Component (Comp);
5449 end if;
5450 end loop;
5451 end;
5452 end if;
5453
5454 Error_Msg_N
3f1ede06 5455 ("\use pragma Import for & to " &
86cde7b1 5456 "suppress initialization (RM B.1(24))?",
3f1ede06 5457 Nam);
fbf5a39b
AC
5458 end if;
5459 end Warn_Overlay;
5460
70482933 5461end Freeze;
This page took 1.955258 seconds and 5 git commands to generate.