]>
Commit | Line | Data |
---|---|---|
8dc10d38 | 1 | ------------------------------------------------------------------------------ |
70482933 RK |
2 | -- -- |
3 | -- GNAT COMPILER COMPONENTS -- | |
4 | -- -- | |
5 | -- F R E E Z E -- | |
6 | -- -- | |
7 | -- B o d y -- | |
8 | -- -- | |
748086b7 | 9 | -- Copyright (C) 1992-2009, Free Software Foundation, Inc. -- |
70482933 RK |
10 | -- -- |
11 | -- GNAT is free software; you can redistribute it and/or modify it under -- | |
12 | -- terms of the GNU General Public License as published by the Free Soft- -- | |
748086b7 | 13 | -- ware Foundation; either version 3, or (at your option) any later ver- -- |
70482933 RK |
14 | -- sion. GNAT is distributed in the hope that it will be useful, but WITH- -- |
15 | -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY -- | |
748086b7 JJ |
16 | -- or FITNESS FOR A PARTICULAR PURPOSE. -- |
17 | -- -- | |
18 | -- You should have received a copy of the GNU General Public License along -- | |
19 | -- with this program; see file COPYING3. If not see -- | |
20 | -- <http://www.gnu.org/licenses/>. -- | |
70482933 RK |
21 | -- -- |
22 | -- GNAT was originally developed by the GNAT team at New York University. -- | |
71ff80dc | 23 | -- Extensive contributions were provided by Ada Core Technologies Inc. -- |
70482933 RK |
24 | -- -- |
25 | ------------------------------------------------------------------------------ | |
26 | ||
27 | with Atree; use Atree; | |
28 | with Debug; use Debug; | |
29 | with Einfo; use Einfo; | |
30 | with Elists; use Elists; | |
31 | with Errout; use Errout; | |
1ce1f005 | 32 | with Exp_Ch3; use Exp_Ch3; |
70482933 | 33 | with Exp_Ch7; use Exp_Ch7; |
ce2b6ba5 | 34 | with Exp_Disp; use Exp_Disp; |
70482933 RK |
35 | with Exp_Pakd; use Exp_Pakd; |
36 | with Exp_Util; use Exp_Util; | |
fbf5a39b | 37 | with Exp_Tss; use Exp_Tss; |
70482933 | 38 | with Layout; use Layout; |
7d8b9c99 | 39 | with Namet; use Namet; |
70482933 RK |
40 | with Nlists; use Nlists; |
41 | with Nmake; use Nmake; | |
42 | with Opt; use Opt; | |
43 | with Restrict; use Restrict; | |
6e937c1c | 44 | with Rident; use Rident; |
70482933 | 45 | with Sem; use Sem; |
a4100e55 | 46 | with Sem_Aux; use Sem_Aux; |
70482933 RK |
47 | with Sem_Cat; use Sem_Cat; |
48 | with Sem_Ch6; use Sem_Ch6; | |
49 | with Sem_Ch7; use Sem_Ch7; | |
50 | with Sem_Ch8; use Sem_Ch8; | |
51 | with Sem_Ch13; use Sem_Ch13; | |
52 | with Sem_Eval; use Sem_Eval; | |
53 | with Sem_Mech; use Sem_Mech; | |
54 | with Sem_Prag; use Sem_Prag; | |
55 | with Sem_Res; use Sem_Res; | |
56 | with Sem_Util; use Sem_Util; | |
57 | with Sinfo; use Sinfo; | |
58 | with Snames; use Snames; | |
59 | with Stand; use Stand; | |
60 | with Targparm; use Targparm; | |
61 | with Tbuild; use Tbuild; | |
62 | with Ttypes; use Ttypes; | |
63 | with Uintp; use Uintp; | |
64 | with Urealp; use Urealp; | |
65 | ||
66 | package body Freeze is | |
67 | ||
68 | ----------------------- | |
69 | -- Local Subprograms -- | |
70 | ----------------------- | |
71 | ||
72 | procedure Adjust_Esize_For_Alignment (Typ : Entity_Id); | |
73 | -- Typ is a type that is being frozen. If no size clause is given, | |
74 | -- but a default Esize has been computed, then this default Esize is | |
75 | -- adjusted up if necessary to be consistent with a given alignment, | |
76 | -- but never to a value greater than Long_Long_Integer'Size. This | |
77 | -- is used for all discrete types and for fixed-point types. | |
78 | ||
79 | procedure Build_And_Analyze_Renamed_Body | |
80 | (Decl : Node_Id; | |
81 | New_S : Entity_Id; | |
82 | After : in out Node_Id); | |
49e90211 | 83 | -- Build body for a renaming declaration, insert in tree and analyze |
70482933 | 84 | |
fbf5a39b AC |
85 | procedure Check_Address_Clause (E : Entity_Id); |
86 | -- Apply legality checks to address clauses for object declarations, | |
2c9beb8a | 87 | -- at the point the object is frozen. |
fbf5a39b | 88 | |
70482933 RK |
89 | procedure Check_Strict_Alignment (E : Entity_Id); |
90 | -- E is a base type. If E is tagged or has a component that is aliased | |
91 | -- or tagged or contains something this is aliased or tagged, set | |
92 | -- Strict_Alignment. | |
93 | ||
94 | procedure Check_Unsigned_Type (E : Entity_Id); | |
95 | pragma Inline (Check_Unsigned_Type); | |
96 | -- If E is a fixed-point or discrete type, then all the necessary work | |
97 | -- to freeze it is completed except for possible setting of the flag | |
98 | -- Is_Unsigned_Type, which is done by this procedure. The call has no | |
99 | -- effect if the entity E is not a discrete or fixed-point type. | |
100 | ||
101 | procedure Freeze_And_Append | |
102 | (Ent : Entity_Id; | |
103 | Loc : Source_Ptr; | |
104 | Result : in out List_Id); | |
105 | -- Freezes Ent using Freeze_Entity, and appends the resulting list of | |
106 | -- nodes to Result, modifying Result from No_List if necessary. | |
107 | ||
108 | procedure Freeze_Enumeration_Type (Typ : Entity_Id); | |
109 | -- Freeze enumeration type. The Esize field is set as processing | |
110 | -- proceeds (i.e. set by default when the type is declared and then | |
111 | -- adjusted by rep clauses. What this procedure does is to make sure | |
112 | -- that if a foreign convention is specified, and no specific size | |
113 | -- is given, then the size must be at least Integer'Size. | |
114 | ||
70482933 RK |
115 | procedure Freeze_Static_Object (E : Entity_Id); |
116 | -- If an object is frozen which has Is_Statically_Allocated set, then | |
117 | -- all referenced types must also be marked with this flag. This routine | |
118 | -- is in charge of meeting this requirement for the object entity E. | |
119 | ||
120 | procedure Freeze_Subprogram (E : Entity_Id); | |
121 | -- Perform freezing actions for a subprogram (create extra formals, | |
122 | -- and set proper default mechanism values). Note that this routine | |
123 | -- is not called for internal subprograms, for which neither of these | |
124 | -- actions is needed (or desirable, we do not want for example to have | |
125 | -- these extra formals present in initialization procedures, where they | |
126 | -- would serve no purpose). In this call E is either a subprogram or | |
127 | -- a subprogram type (i.e. an access to a subprogram). | |
128 | ||
129 | function Is_Fully_Defined (T : Entity_Id) return Boolean; | |
bde58e32 | 130 | -- True if T is not private and has no private components, or has a full |
657a9dd9 AC |
131 | -- view. Used to determine whether the designated type of an access type |
132 | -- should be frozen when the access type is frozen. This is done when an | |
133 | -- allocator is frozen, or an expression that may involve attributes of | |
134 | -- the designated type. Otherwise freezing the access type does not freeze | |
135 | -- the designated type. | |
70482933 RK |
136 | |
137 | procedure Process_Default_Expressions | |
138 | (E : Entity_Id; | |
139 | After : in out Node_Id); | |
140 | -- This procedure is called for each subprogram to complete processing | |
141 | -- of default expressions at the point where all types are known to be | |
142 | -- frozen. The expressions must be analyzed in full, to make sure that | |
143 | -- all error processing is done (they have only been pre-analyzed). If | |
144 | -- the expression is not an entity or literal, its analysis may generate | |
145 | -- code which must not be executed. In that case we build a function | |
146 | -- body to hold that code. This wrapper function serves no other purpose | |
147 | -- (it used to be called to evaluate the default, but now the default is | |
148 | -- inlined at each point of call). | |
149 | ||
150 | procedure Set_Component_Alignment_If_Not_Set (Typ : Entity_Id); | |
151 | -- Typ is a record or array type that is being frozen. This routine | |
152 | -- sets the default component alignment from the scope stack values | |
153 | -- if the alignment is otherwise not specified. | |
154 | ||
155 | procedure Check_Debug_Info_Needed (T : Entity_Id); | |
156 | -- As each entity is frozen, this routine is called to deal with the | |
157 | -- setting of Debug_Info_Needed for the entity. This flag is set if | |
158 | -- the entity comes from source, or if we are in Debug_Generated_Code | |
159 | -- mode or if the -gnatdV debug flag is set. However, it never sets | |
1b24ada5 RD |
160 | -- the flag if Debug_Info_Off is set. This procedure also ensures that |
161 | -- subsidiary entities have the flag set as required. | |
70482933 | 162 | |
c6823a20 EB |
163 | procedure Undelay_Type (T : Entity_Id); |
164 | -- T is a type of a component that we know to be an Itype. | |
165 | -- We don't want this to have a Freeze_Node, so ensure it doesn't. | |
166 | -- Do the same for any Full_View or Corresponding_Record_Type. | |
167 | ||
fbf5a39b AC |
168 | procedure Warn_Overlay |
169 | (Expr : Node_Id; | |
170 | Typ : Entity_Id; | |
171 | Nam : Node_Id); | |
172 | -- Expr is the expression for an address clause for entity Nam whose type | |
173 | -- is Typ. If Typ has a default initialization, and there is no explicit | |
174 | -- initialization in the source declaration, check whether the address | |
175 | -- clause might cause overlaying of an entity, and emit a warning on the | |
176 | -- side effect that the initialization will cause. | |
177 | ||
70482933 RK |
178 | ------------------------------- |
179 | -- Adjust_Esize_For_Alignment -- | |
180 | ------------------------------- | |
181 | ||
182 | procedure Adjust_Esize_For_Alignment (Typ : Entity_Id) is | |
183 | Align : Uint; | |
184 | ||
185 | begin | |
186 | if Known_Esize (Typ) and then Known_Alignment (Typ) then | |
187 | Align := Alignment_In_Bits (Typ); | |
188 | ||
189 | if Align > Esize (Typ) | |
190 | and then Align <= Standard_Long_Long_Integer_Size | |
191 | then | |
192 | Set_Esize (Typ, Align); | |
193 | end if; | |
194 | end if; | |
195 | end Adjust_Esize_For_Alignment; | |
196 | ||
197 | ------------------------------------ | |
198 | -- Build_And_Analyze_Renamed_Body -- | |
199 | ------------------------------------ | |
200 | ||
201 | procedure Build_And_Analyze_Renamed_Body | |
202 | (Decl : Node_Id; | |
203 | New_S : Entity_Id; | |
204 | After : in out Node_Id) | |
205 | is | |
206 | Body_Node : constant Node_Id := Build_Renamed_Body (Decl, New_S); | |
70482933 RK |
207 | begin |
208 | Insert_After (After, Body_Node); | |
209 | Mark_Rewrite_Insertion (Body_Node); | |
210 | Analyze (Body_Node); | |
211 | After := Body_Node; | |
212 | end Build_And_Analyze_Renamed_Body; | |
213 | ||
214 | ------------------------ | |
215 | -- Build_Renamed_Body -- | |
216 | ------------------------ | |
217 | ||
218 | function Build_Renamed_Body | |
219 | (Decl : Node_Id; | |
fbf5a39b | 220 | New_S : Entity_Id) return Node_Id |
70482933 RK |
221 | is |
222 | Loc : constant Source_Ptr := Sloc (New_S); | |
223 | -- We use for the source location of the renamed body, the location | |
224 | -- of the spec entity. It might seem more natural to use the location | |
225 | -- of the renaming declaration itself, but that would be wrong, since | |
226 | -- then the body we create would look as though it was created far | |
227 | -- too late, and this could cause problems with elaboration order | |
228 | -- analysis, particularly in connection with instantiations. | |
229 | ||
230 | N : constant Node_Id := Unit_Declaration_Node (New_S); | |
231 | Nam : constant Node_Id := Name (N); | |
232 | Old_S : Entity_Id; | |
233 | Spec : constant Node_Id := New_Copy_Tree (Specification (Decl)); | |
234 | Actuals : List_Id := No_List; | |
235 | Call_Node : Node_Id; | |
236 | Call_Name : Node_Id; | |
237 | Body_Node : Node_Id; | |
238 | Formal : Entity_Id; | |
239 | O_Formal : Entity_Id; | |
240 | Param_Spec : Node_Id; | |
241 | ||
def46b54 RD |
242 | Pref : Node_Id := Empty; |
243 | -- If the renamed entity is a primitive operation given in prefix form, | |
244 | -- the prefix is the target object and it has to be added as the first | |
245 | -- actual in the generated call. | |
246 | ||
70482933 | 247 | begin |
def46b54 RD |
248 | -- Determine the entity being renamed, which is the target of the call |
249 | -- statement. If the name is an explicit dereference, this is a renaming | |
250 | -- of a subprogram type rather than a subprogram. The name itself is | |
251 | -- fully analyzed. | |
70482933 RK |
252 | |
253 | if Nkind (Nam) = N_Selected_Component then | |
254 | Old_S := Entity (Selector_Name (Nam)); | |
255 | ||
256 | elsif Nkind (Nam) = N_Explicit_Dereference then | |
257 | Old_S := Etype (Nam); | |
258 | ||
259 | elsif Nkind (Nam) = N_Indexed_Component then | |
70482933 RK |
260 | if Is_Entity_Name (Prefix (Nam)) then |
261 | Old_S := Entity (Prefix (Nam)); | |
262 | else | |
263 | Old_S := Entity (Selector_Name (Prefix (Nam))); | |
264 | end if; | |
265 | ||
266 | elsif Nkind (Nam) = N_Character_Literal then | |
267 | Old_S := Etype (New_S); | |
268 | ||
269 | else | |
270 | Old_S := Entity (Nam); | |
271 | end if; | |
272 | ||
273 | if Is_Entity_Name (Nam) then | |
07fc65c4 | 274 | |
def46b54 RD |
275 | -- If the renamed entity is a predefined operator, retain full name |
276 | -- to ensure its visibility. | |
07fc65c4 GB |
277 | |
278 | if Ekind (Old_S) = E_Operator | |
279 | and then Nkind (Nam) = N_Expanded_Name | |
280 | then | |
281 | Call_Name := New_Copy (Name (N)); | |
282 | else | |
283 | Call_Name := New_Reference_To (Old_S, Loc); | |
284 | end if; | |
285 | ||
70482933 | 286 | else |
def46b54 RD |
287 | if Nkind (Nam) = N_Selected_Component |
288 | and then Present (First_Formal (Old_S)) | |
289 | and then | |
290 | (Is_Controlling_Formal (First_Formal (Old_S)) | |
291 | or else Is_Class_Wide_Type (Etype (First_Formal (Old_S)))) | |
292 | then | |
293 | ||
294 | -- Retrieve the target object, to be added as a first actual | |
295 | -- in the call. | |
296 | ||
297 | Call_Name := New_Occurrence_Of (Old_S, Loc); | |
298 | Pref := Prefix (Nam); | |
299 | ||
300 | else | |
301 | Call_Name := New_Copy (Name (N)); | |
302 | end if; | |
70482933 RK |
303 | |
304 | -- The original name may have been overloaded, but | |
305 | -- is fully resolved now. | |
306 | ||
307 | Set_Is_Overloaded (Call_Name, False); | |
308 | end if; | |
309 | ||
def46b54 RD |
310 | -- For simple renamings, subsequent calls can be expanded directly as |
311 | -- called to the renamed entity. The body must be generated in any case | |
312 | -- for calls they may appear elsewhere. | |
70482933 RK |
313 | |
314 | if (Ekind (Old_S) = E_Function | |
315 | or else Ekind (Old_S) = E_Procedure) | |
316 | and then Nkind (Decl) = N_Subprogram_Declaration | |
317 | then | |
318 | Set_Body_To_Inline (Decl, Old_S); | |
319 | end if; | |
320 | ||
321 | -- The body generated for this renaming is an internal artifact, and | |
322 | -- does not constitute a freeze point for the called entity. | |
323 | ||
324 | Set_Must_Not_Freeze (Call_Name); | |
325 | ||
326 | Formal := First_Formal (Defining_Entity (Decl)); | |
327 | ||
def46b54 RD |
328 | if Present (Pref) then |
329 | declare | |
330 | Pref_Type : constant Entity_Id := Etype (Pref); | |
331 | Form_Type : constant Entity_Id := Etype (First_Formal (Old_S)); | |
332 | ||
333 | begin | |
334 | ||
335 | -- The controlling formal may be an access parameter, or the | |
e14c931f | 336 | -- actual may be an access value, so adjust accordingly. |
def46b54 RD |
337 | |
338 | if Is_Access_Type (Pref_Type) | |
339 | and then not Is_Access_Type (Form_Type) | |
340 | then | |
341 | Actuals := New_List | |
342 | (Make_Explicit_Dereference (Loc, Relocate_Node (Pref))); | |
343 | ||
344 | elsif Is_Access_Type (Form_Type) | |
345 | and then not Is_Access_Type (Pref) | |
346 | then | |
347 | Actuals := New_List | |
348 | (Make_Attribute_Reference (Loc, | |
349 | Attribute_Name => Name_Access, | |
350 | Prefix => Relocate_Node (Pref))); | |
351 | else | |
352 | Actuals := New_List (Pref); | |
353 | end if; | |
354 | end; | |
355 | ||
356 | elsif Present (Formal) then | |
70482933 RK |
357 | Actuals := New_List; |
358 | ||
def46b54 RD |
359 | else |
360 | Actuals := No_List; | |
361 | end if; | |
362 | ||
363 | if Present (Formal) then | |
70482933 RK |
364 | while Present (Formal) loop |
365 | Append (New_Reference_To (Formal, Loc), Actuals); | |
366 | Next_Formal (Formal); | |
367 | end loop; | |
368 | end if; | |
369 | ||
def46b54 RD |
370 | -- If the renamed entity is an entry, inherit its profile. For other |
371 | -- renamings as bodies, both profiles must be subtype conformant, so it | |
372 | -- is not necessary to replace the profile given in the declaration. | |
373 | -- However, default values that are aggregates are rewritten when | |
374 | -- partially analyzed, so we recover the original aggregate to insure | |
375 | -- that subsequent conformity checking works. Similarly, if the default | |
376 | -- expression was constant-folded, recover the original expression. | |
70482933 RK |
377 | |
378 | Formal := First_Formal (Defining_Entity (Decl)); | |
379 | ||
380 | if Present (Formal) then | |
381 | O_Formal := First_Formal (Old_S); | |
382 | Param_Spec := First (Parameter_Specifications (Spec)); | |
383 | ||
384 | while Present (Formal) loop | |
385 | if Is_Entry (Old_S) then | |
386 | ||
387 | if Nkind (Parameter_Type (Param_Spec)) /= | |
388 | N_Access_Definition | |
389 | then | |
390 | Set_Etype (Formal, Etype (O_Formal)); | |
391 | Set_Entity (Parameter_Type (Param_Spec), Etype (O_Formal)); | |
392 | end if; | |
393 | ||
07fc65c4 GB |
394 | elsif Nkind (Default_Value (O_Formal)) = N_Aggregate |
395 | or else Nkind (Original_Node (Default_Value (O_Formal))) /= | |
396 | Nkind (Default_Value (O_Formal)) | |
397 | then | |
70482933 RK |
398 | Set_Expression (Param_Spec, |
399 | New_Copy_Tree (Original_Node (Default_Value (O_Formal)))); | |
400 | end if; | |
401 | ||
402 | Next_Formal (Formal); | |
403 | Next_Formal (O_Formal); | |
404 | Next (Param_Spec); | |
405 | end loop; | |
406 | end if; | |
407 | ||
408 | -- If the renamed entity is a function, the generated body contains a | |
409 | -- return statement. Otherwise, build a procedure call. If the entity is | |
410 | -- an entry, subsequent analysis of the call will transform it into the | |
411 | -- proper entry or protected operation call. If the renamed entity is | |
412 | -- a character literal, return it directly. | |
413 | ||
414 | if Ekind (Old_S) = E_Function | |
415 | or else Ekind (Old_S) = E_Operator | |
416 | or else (Ekind (Old_S) = E_Subprogram_Type | |
417 | and then Etype (Old_S) /= Standard_Void_Type) | |
418 | then | |
419 | Call_Node := | |
86cde7b1 | 420 | Make_Simple_Return_Statement (Loc, |
70482933 RK |
421 | Expression => |
422 | Make_Function_Call (Loc, | |
423 | Name => Call_Name, | |
424 | Parameter_Associations => Actuals)); | |
425 | ||
426 | elsif Ekind (Old_S) = E_Enumeration_Literal then | |
427 | Call_Node := | |
86cde7b1 | 428 | Make_Simple_Return_Statement (Loc, |
70482933 RK |
429 | Expression => New_Occurrence_Of (Old_S, Loc)); |
430 | ||
431 | elsif Nkind (Nam) = N_Character_Literal then | |
432 | Call_Node := | |
86cde7b1 | 433 | Make_Simple_Return_Statement (Loc, |
70482933 RK |
434 | Expression => Call_Name); |
435 | ||
436 | else | |
437 | Call_Node := | |
438 | Make_Procedure_Call_Statement (Loc, | |
439 | Name => Call_Name, | |
440 | Parameter_Associations => Actuals); | |
441 | end if; | |
442 | ||
49e90211 | 443 | -- Create entities for subprogram body and formals |
70482933 RK |
444 | |
445 | Set_Defining_Unit_Name (Spec, | |
446 | Make_Defining_Identifier (Loc, Chars => Chars (New_S))); | |
447 | ||
448 | Param_Spec := First (Parameter_Specifications (Spec)); | |
449 | ||
450 | while Present (Param_Spec) loop | |
451 | Set_Defining_Identifier (Param_Spec, | |
452 | Make_Defining_Identifier (Loc, | |
453 | Chars => Chars (Defining_Identifier (Param_Spec)))); | |
454 | Next (Param_Spec); | |
455 | end loop; | |
456 | ||
457 | Body_Node := | |
458 | Make_Subprogram_Body (Loc, | |
459 | Specification => Spec, | |
460 | Declarations => New_List, | |
461 | Handled_Statement_Sequence => | |
462 | Make_Handled_Sequence_Of_Statements (Loc, | |
463 | Statements => New_List (Call_Node))); | |
464 | ||
465 | if Nkind (Decl) /= N_Subprogram_Declaration then | |
466 | Rewrite (N, | |
467 | Make_Subprogram_Declaration (Loc, | |
468 | Specification => Specification (N))); | |
469 | end if; | |
470 | ||
471 | -- Link the body to the entity whose declaration it completes. If | |
def46b54 RD |
472 | -- the body is analyzed when the renamed entity is frozen, it may |
473 | -- be necessary to restore the proper scope (see package Exp_Ch13). | |
70482933 RK |
474 | |
475 | if Nkind (N) = N_Subprogram_Renaming_Declaration | |
476 | and then Present (Corresponding_Spec (N)) | |
477 | then | |
478 | Set_Corresponding_Spec (Body_Node, Corresponding_Spec (N)); | |
479 | else | |
480 | Set_Corresponding_Spec (Body_Node, New_S); | |
481 | end if; | |
482 | ||
483 | return Body_Node; | |
484 | end Build_Renamed_Body; | |
485 | ||
fbf5a39b AC |
486 | -------------------------- |
487 | -- Check_Address_Clause -- | |
488 | -------------------------- | |
489 | ||
490 | procedure Check_Address_Clause (E : Entity_Id) is | |
491 | Addr : constant Node_Id := Address_Clause (E); | |
492 | Expr : Node_Id; | |
493 | Decl : constant Node_Id := Declaration_Node (E); | |
494 | Typ : constant Entity_Id := Etype (E); | |
495 | ||
496 | begin | |
497 | if Present (Addr) then | |
498 | Expr := Expression (Addr); | |
499 | ||
def46b54 RD |
500 | -- If we have no initialization of any kind, then we don't need to |
501 | -- place any restrictions on the address clause, because the object | |
502 | -- will be elaborated after the address clause is evaluated. This | |
503 | -- happens if the declaration has no initial expression, or the type | |
504 | -- has no implicit initialization, or the object is imported. | |
fbf5a39b | 505 | |
def46b54 RD |
506 | -- The same holds for all initialized scalar types and all access |
507 | -- types. Packed bit arrays of size up to 64 are represented using a | |
508 | -- modular type with an initialization (to zero) and can be processed | |
509 | -- like other initialized scalar types. | |
fbf5a39b AC |
510 | |
511 | -- If the type is controlled, code to attach the object to a | |
512 | -- finalization chain is generated at the point of declaration, | |
513 | -- and therefore the elaboration of the object cannot be delayed: | |
514 | -- the address expression must be a constant. | |
515 | ||
516 | if (No (Expression (Decl)) | |
048e5cef | 517 | and then not Needs_Finalization (Typ) |
fbf5a39b AC |
518 | and then |
519 | (not Has_Non_Null_Base_Init_Proc (Typ) | |
520 | or else Is_Imported (E))) | |
521 | ||
522 | or else | |
523 | (Present (Expression (Decl)) | |
524 | and then Is_Scalar_Type (Typ)) | |
525 | ||
526 | or else | |
527 | Is_Access_Type (Typ) | |
528 | ||
529 | or else | |
530 | (Is_Bit_Packed_Array (Typ) | |
531 | and then | |
532 | Is_Modular_Integer_Type (Packed_Array_Type (Typ))) | |
533 | then | |
534 | null; | |
535 | ||
def46b54 RD |
536 | -- Otherwise, we require the address clause to be constant because |
537 | -- the call to the initialization procedure (or the attach code) has | |
538 | -- to happen at the point of the declaration. | |
f3b57ab0 AC |
539 | -- Actually the IP call has been moved to the freeze actions |
540 | -- anyway, so maybe we can relax this restriction??? | |
fbf5a39b AC |
541 | |
542 | else | |
543 | Check_Constant_Address_Clause (Expr, E); | |
f3b57ab0 AC |
544 | |
545 | -- Has_Delayed_Freeze was set on E when the address clause was | |
546 | -- analyzed. Reset the flag now unless freeze actions were | |
547 | -- attached to it in the mean time. | |
548 | ||
549 | if No (Freeze_Node (E)) then | |
550 | Set_Has_Delayed_Freeze (E, False); | |
551 | end if; | |
fbf5a39b AC |
552 | end if; |
553 | ||
554 | if not Error_Posted (Expr) | |
048e5cef | 555 | and then not Needs_Finalization (Typ) |
fbf5a39b AC |
556 | then |
557 | Warn_Overlay (Expr, Typ, Name (Addr)); | |
558 | end if; | |
559 | end if; | |
560 | end Check_Address_Clause; | |
561 | ||
70482933 RK |
562 | ----------------------------- |
563 | -- Check_Compile_Time_Size -- | |
564 | ----------------------------- | |
565 | ||
566 | procedure Check_Compile_Time_Size (T : Entity_Id) is | |
567 | ||
c6823a20 | 568 | procedure Set_Small_Size (T : Entity_Id; S : Uint); |
70482933 | 569 | -- Sets the compile time known size (32 bits or less) in the Esize |
c6823a20 | 570 | -- field, of T checking for a size clause that was given which attempts |
70482933 RK |
571 | -- to give a smaller size. |
572 | ||
573 | function Size_Known (T : Entity_Id) return Boolean; | |
07fc65c4 | 574 | -- Recursive function that does all the work |
70482933 RK |
575 | |
576 | function Static_Discriminated_Components (T : Entity_Id) return Boolean; | |
577 | -- If T is a constrained subtype, its size is not known if any of its | |
578 | -- discriminant constraints is not static and it is not a null record. | |
fbf5a39b | 579 | -- The test is conservative and doesn't check that the components are |
70482933 RK |
580 | -- in fact constrained by non-static discriminant values. Could be made |
581 | -- more precise ??? | |
582 | ||
583 | -------------------- | |
584 | -- Set_Small_Size -- | |
585 | -------------------- | |
586 | ||
c6823a20 | 587 | procedure Set_Small_Size (T : Entity_Id; S : Uint) is |
70482933 RK |
588 | begin |
589 | if S > 32 then | |
590 | return; | |
591 | ||
592 | elsif Has_Size_Clause (T) then | |
593 | if RM_Size (T) < S then | |
594 | Error_Msg_Uint_1 := S; | |
595 | Error_Msg_NE | |
d58b9515 | 596 | ("size for& too small, minimum allowed is ^", |
70482933 RK |
597 | Size_Clause (T), T); |
598 | ||
599 | elsif Unknown_Esize (T) then | |
600 | Set_Esize (T, S); | |
601 | end if; | |
602 | ||
603 | -- Set sizes if not set already | |
604 | ||
605 | else | |
606 | if Unknown_Esize (T) then | |
607 | Set_Esize (T, S); | |
608 | end if; | |
609 | ||
610 | if Unknown_RM_Size (T) then | |
611 | Set_RM_Size (T, S); | |
612 | end if; | |
613 | end if; | |
614 | end Set_Small_Size; | |
615 | ||
616 | ---------------- | |
617 | -- Size_Known -- | |
618 | ---------------- | |
619 | ||
620 | function Size_Known (T : Entity_Id) return Boolean is | |
621 | Index : Entity_Id; | |
622 | Comp : Entity_Id; | |
623 | Ctyp : Entity_Id; | |
624 | Low : Node_Id; | |
625 | High : Node_Id; | |
626 | ||
627 | begin | |
628 | if Size_Known_At_Compile_Time (T) then | |
629 | return True; | |
630 | ||
c6a9797e RD |
631 | -- Always True for scalar types. This is true even for generic formal |
632 | -- scalar types. We used to return False in the latter case, but the | |
633 | -- size is known at compile time, even in the template, we just do | |
634 | -- not know the exact size but that's not the point of this routine. | |
635 | ||
70482933 RK |
636 | elsif Is_Scalar_Type (T) |
637 | or else Is_Task_Type (T) | |
638 | then | |
c6a9797e RD |
639 | return True; |
640 | ||
641 | -- Array types | |
70482933 RK |
642 | |
643 | elsif Is_Array_Type (T) then | |
c6a9797e RD |
644 | |
645 | -- String literals always have known size, and we can set it | |
646 | ||
70482933 | 647 | if Ekind (T) = E_String_Literal_Subtype then |
c6823a20 EB |
648 | Set_Small_Size (T, Component_Size (T) |
649 | * String_Literal_Length (T)); | |
70482933 RK |
650 | return True; |
651 | ||
c6a9797e RD |
652 | -- Unconstrained types never have known at compile time size |
653 | ||
70482933 RK |
654 | elsif not Is_Constrained (T) then |
655 | return False; | |
656 | ||
def46b54 RD |
657 | -- Don't do any recursion on type with error posted, since we may |
658 | -- have a malformed type that leads us into a loop. | |
07fc65c4 GB |
659 | |
660 | elsif Error_Posted (T) then | |
661 | return False; | |
662 | ||
c6a9797e RD |
663 | -- Otherwise if component size unknown, then array size unknown |
664 | ||
70482933 RK |
665 | elsif not Size_Known (Component_Type (T)) then |
666 | return False; | |
667 | end if; | |
668 | ||
def46b54 RD |
669 | -- Check for all indexes static, and also compute possible size |
670 | -- (in case it is less than 32 and may be packable). | |
70482933 RK |
671 | |
672 | declare | |
673 | Esiz : Uint := Component_Size (T); | |
674 | Dim : Uint; | |
675 | ||
676 | begin | |
677 | Index := First_Index (T); | |
70482933 RK |
678 | while Present (Index) loop |
679 | if Nkind (Index) = N_Range then | |
680 | Get_Index_Bounds (Index, Low, High); | |
681 | ||
682 | elsif Error_Posted (Scalar_Range (Etype (Index))) then | |
683 | return False; | |
684 | ||
685 | else | |
686 | Low := Type_Low_Bound (Etype (Index)); | |
687 | High := Type_High_Bound (Etype (Index)); | |
688 | end if; | |
689 | ||
690 | if not Compile_Time_Known_Value (Low) | |
691 | or else not Compile_Time_Known_Value (High) | |
692 | or else Etype (Index) = Any_Type | |
693 | then | |
694 | return False; | |
695 | ||
696 | else | |
697 | Dim := Expr_Value (High) - Expr_Value (Low) + 1; | |
698 | ||
699 | if Dim >= 0 then | |
700 | Esiz := Esiz * Dim; | |
701 | else | |
702 | Esiz := Uint_0; | |
703 | end if; | |
704 | end if; | |
705 | ||
706 | Next_Index (Index); | |
707 | end loop; | |
708 | ||
c6823a20 | 709 | Set_Small_Size (T, Esiz); |
70482933 RK |
710 | return True; |
711 | end; | |
712 | ||
c6a9797e RD |
713 | -- Access types always have known at compile time sizes |
714 | ||
70482933 RK |
715 | elsif Is_Access_Type (T) then |
716 | return True; | |
717 | ||
c6a9797e RD |
718 | -- For non-generic private types, go to underlying type if present |
719 | ||
70482933 RK |
720 | elsif Is_Private_Type (T) |
721 | and then not Is_Generic_Type (T) | |
722 | and then Present (Underlying_Type (T)) | |
723 | then | |
def46b54 RD |
724 | -- Don't do any recursion on type with error posted, since we may |
725 | -- have a malformed type that leads us into a loop. | |
07fc65c4 GB |
726 | |
727 | if Error_Posted (T) then | |
728 | return False; | |
729 | else | |
730 | return Size_Known (Underlying_Type (T)); | |
731 | end if; | |
70482933 | 732 | |
c6a9797e RD |
733 | -- Record types |
734 | ||
70482933 | 735 | elsif Is_Record_Type (T) then |
fbf5a39b AC |
736 | |
737 | -- A class-wide type is never considered to have a known size | |
738 | ||
70482933 RK |
739 | if Is_Class_Wide_Type (T) then |
740 | return False; | |
741 | ||
fbf5a39b AC |
742 | -- A subtype of a variant record must not have non-static |
743 | -- discriminanted components. | |
744 | ||
745 | elsif T /= Base_Type (T) | |
746 | and then not Static_Discriminated_Components (T) | |
747 | then | |
748 | return False; | |
70482933 | 749 | |
def46b54 RD |
750 | -- Don't do any recursion on type with error posted, since we may |
751 | -- have a malformed type that leads us into a loop. | |
07fc65c4 GB |
752 | |
753 | elsif Error_Posted (T) then | |
754 | return False; | |
fbf5a39b | 755 | end if; |
07fc65c4 | 756 | |
fbf5a39b | 757 | -- Now look at the components of the record |
70482933 | 758 | |
fbf5a39b | 759 | declare |
def46b54 RD |
760 | -- The following two variables are used to keep track of the |
761 | -- size of packed records if we can tell the size of the packed | |
762 | -- record in the front end. Packed_Size_Known is True if so far | |
763 | -- we can figure out the size. It is initialized to True for a | |
764 | -- packed record, unless the record has discriminants. The | |
765 | -- reason we eliminate the discriminated case is that we don't | |
766 | -- know the way the back end lays out discriminated packed | |
767 | -- records. If Packed_Size_Known is True, then Packed_Size is | |
768 | -- the size in bits so far. | |
fbf5a39b AC |
769 | |
770 | Packed_Size_Known : Boolean := | |
771 | Is_Packed (T) | |
772 | and then not Has_Discriminants (T); | |
773 | ||
774 | Packed_Size : Uint := Uint_0; | |
775 | ||
776 | begin | |
777 | -- Test for variant part present | |
778 | ||
779 | if Has_Discriminants (T) | |
780 | and then Present (Parent (T)) | |
781 | and then Nkind (Parent (T)) = N_Full_Type_Declaration | |
782 | and then Nkind (Type_Definition (Parent (T))) = | |
783 | N_Record_Definition | |
784 | and then not Null_Present (Type_Definition (Parent (T))) | |
785 | and then Present (Variant_Part | |
786 | (Component_List (Type_Definition (Parent (T))))) | |
787 | then | |
788 | -- If variant part is present, and type is unconstrained, | |
789 | -- then we must have defaulted discriminants, or a size | |
790 | -- clause must be present for the type, or else the size | |
791 | -- is definitely not known at compile time. | |
792 | ||
793 | if not Is_Constrained (T) | |
794 | and then | |
795 | No (Discriminant_Default_Value | |
796 | (First_Discriminant (T))) | |
797 | and then Unknown_Esize (T) | |
70482933 | 798 | then |
fbf5a39b AC |
799 | return False; |
800 | end if; | |
801 | end if; | |
70482933 | 802 | |
fbf5a39b AC |
803 | -- Loop through components |
804 | ||
fea9e956 | 805 | Comp := First_Component_Or_Discriminant (T); |
fbf5a39b | 806 | while Present (Comp) loop |
fea9e956 | 807 | Ctyp := Etype (Comp); |
fbf5a39b | 808 | |
fea9e956 ES |
809 | -- We do not know the packed size if there is a component |
810 | -- clause present (we possibly could, but this would only | |
811 | -- help in the case of a record with partial rep clauses. | |
812 | -- That's because in the case of full rep clauses, the | |
813 | -- size gets figured out anyway by a different circuit). | |
fbf5a39b | 814 | |
fea9e956 ES |
815 | if Present (Component_Clause (Comp)) then |
816 | Packed_Size_Known := False; | |
817 | end if; | |
70482933 | 818 | |
fea9e956 ES |
819 | -- We need to identify a component that is an array where |
820 | -- the index type is an enumeration type with non-standard | |
821 | -- representation, and some bound of the type depends on a | |
822 | -- discriminant. | |
70482933 | 823 | |
fea9e956 | 824 | -- This is because gigi computes the size by doing a |
e14c931f | 825 | -- substitution of the appropriate discriminant value in |
fea9e956 ES |
826 | -- the size expression for the base type, and gigi is not |
827 | -- clever enough to evaluate the resulting expression (which | |
828 | -- involves a call to rep_to_pos) at compile time. | |
fbf5a39b | 829 | |
fea9e956 ES |
830 | -- It would be nice if gigi would either recognize that |
831 | -- this expression can be computed at compile time, or | |
832 | -- alternatively figured out the size from the subtype | |
833 | -- directly, where all the information is at hand ??? | |
fbf5a39b | 834 | |
fea9e956 ES |
835 | if Is_Array_Type (Etype (Comp)) |
836 | and then Present (Packed_Array_Type (Etype (Comp))) | |
837 | then | |
838 | declare | |
839 | Ocomp : constant Entity_Id := | |
840 | Original_Record_Component (Comp); | |
841 | OCtyp : constant Entity_Id := Etype (Ocomp); | |
842 | Ind : Node_Id; | |
843 | Indtyp : Entity_Id; | |
844 | Lo, Hi : Node_Id; | |
70482933 | 845 | |
fea9e956 ES |
846 | begin |
847 | Ind := First_Index (OCtyp); | |
848 | while Present (Ind) loop | |
849 | Indtyp := Etype (Ind); | |
70482933 | 850 | |
fea9e956 ES |
851 | if Is_Enumeration_Type (Indtyp) |
852 | and then Has_Non_Standard_Rep (Indtyp) | |
853 | then | |
854 | Lo := Type_Low_Bound (Indtyp); | |
855 | Hi := Type_High_Bound (Indtyp); | |
fbf5a39b | 856 | |
fea9e956 ES |
857 | if Is_Entity_Name (Lo) |
858 | and then Ekind (Entity (Lo)) = E_Discriminant | |
859 | then | |
860 | return False; | |
fbf5a39b | 861 | |
fea9e956 ES |
862 | elsif Is_Entity_Name (Hi) |
863 | and then Ekind (Entity (Hi)) = E_Discriminant | |
864 | then | |
865 | return False; | |
866 | end if; | |
867 | end if; | |
fbf5a39b | 868 | |
fea9e956 ES |
869 | Next_Index (Ind); |
870 | end loop; | |
871 | end; | |
872 | end if; | |
70482933 | 873 | |
def46b54 RD |
874 | -- Clearly size of record is not known if the size of one of |
875 | -- the components is not known. | |
70482933 | 876 | |
fea9e956 ES |
877 | if not Size_Known (Ctyp) then |
878 | return False; | |
879 | end if; | |
70482933 | 880 | |
fea9e956 | 881 | -- Accumulate packed size if possible |
70482933 | 882 | |
fea9e956 | 883 | if Packed_Size_Known then |
70482933 | 884 | |
fea9e956 ES |
885 | -- We can only deal with elementary types, since for |
886 | -- non-elementary components, alignment enters into the | |
887 | -- picture, and we don't know enough to handle proper | |
888 | -- alignment in this context. Packed arrays count as | |
889 | -- elementary if the representation is a modular type. | |
fbf5a39b | 890 | |
fea9e956 ES |
891 | if Is_Elementary_Type (Ctyp) |
892 | or else (Is_Array_Type (Ctyp) | |
893 | and then Present (Packed_Array_Type (Ctyp)) | |
894 | and then Is_Modular_Integer_Type | |
895 | (Packed_Array_Type (Ctyp))) | |
896 | then | |
897 | -- If RM_Size is known and static, then we can | |
898 | -- keep accumulating the packed size. | |
70482933 | 899 | |
fea9e956 | 900 | if Known_Static_RM_Size (Ctyp) then |
70482933 | 901 | |
fea9e956 ES |
902 | -- A little glitch, to be removed sometime ??? |
903 | -- gigi does not understand zero sizes yet. | |
904 | ||
905 | if RM_Size (Ctyp) = Uint_0 then | |
70482933 | 906 | Packed_Size_Known := False; |
fea9e956 ES |
907 | |
908 | -- Normal case where we can keep accumulating the | |
909 | -- packed array size. | |
910 | ||
911 | else | |
912 | Packed_Size := Packed_Size + RM_Size (Ctyp); | |
70482933 | 913 | end if; |
fbf5a39b | 914 | |
fea9e956 ES |
915 | -- If we have a field whose RM_Size is not known then |
916 | -- we can't figure out the packed size here. | |
fbf5a39b AC |
917 | |
918 | else | |
919 | Packed_Size_Known := False; | |
70482933 | 920 | end if; |
fea9e956 ES |
921 | |
922 | -- If we have a non-elementary type we can't figure out | |
923 | -- the packed array size (alignment issues). | |
924 | ||
925 | else | |
926 | Packed_Size_Known := False; | |
70482933 | 927 | end if; |
fbf5a39b | 928 | end if; |
70482933 | 929 | |
fea9e956 | 930 | Next_Component_Or_Discriminant (Comp); |
fbf5a39b | 931 | end loop; |
70482933 | 932 | |
fbf5a39b | 933 | if Packed_Size_Known then |
c6823a20 | 934 | Set_Small_Size (T, Packed_Size); |
fbf5a39b | 935 | end if; |
70482933 | 936 | |
fbf5a39b AC |
937 | return True; |
938 | end; | |
70482933 | 939 | |
c6a9797e RD |
940 | -- All other cases, size not known at compile time |
941 | ||
70482933 RK |
942 | else |
943 | return False; | |
944 | end if; | |
945 | end Size_Known; | |
946 | ||
947 | ------------------------------------- | |
948 | -- Static_Discriminated_Components -- | |
949 | ------------------------------------- | |
950 | ||
951 | function Static_Discriminated_Components | |
0da2c8ac | 952 | (T : Entity_Id) return Boolean |
70482933 RK |
953 | is |
954 | Constraint : Elmt_Id; | |
955 | ||
956 | begin | |
957 | if Has_Discriminants (T) | |
958 | and then Present (Discriminant_Constraint (T)) | |
959 | and then Present (First_Component (T)) | |
960 | then | |
961 | Constraint := First_Elmt (Discriminant_Constraint (T)); | |
70482933 RK |
962 | while Present (Constraint) loop |
963 | if not Compile_Time_Known_Value (Node (Constraint)) then | |
964 | return False; | |
965 | end if; | |
966 | ||
967 | Next_Elmt (Constraint); | |
968 | end loop; | |
969 | end if; | |
970 | ||
971 | return True; | |
972 | end Static_Discriminated_Components; | |
973 | ||
974 | -- Start of processing for Check_Compile_Time_Size | |
975 | ||
976 | begin | |
977 | Set_Size_Known_At_Compile_Time (T, Size_Known (T)); | |
978 | end Check_Compile_Time_Size; | |
979 | ||
980 | ----------------------------- | |
981 | -- Check_Debug_Info_Needed -- | |
982 | ----------------------------- | |
983 | ||
984 | procedure Check_Debug_Info_Needed (T : Entity_Id) is | |
985 | begin | |
1b24ada5 | 986 | if Debug_Info_Off (T) then |
70482933 RK |
987 | return; |
988 | ||
989 | elsif Comes_From_Source (T) | |
990 | or else Debug_Generated_Code | |
991 | or else Debug_Flag_VV | |
1b24ada5 | 992 | or else Needs_Debug_Info (T) |
70482933 RK |
993 | then |
994 | Set_Debug_Info_Needed (T); | |
995 | end if; | |
996 | end Check_Debug_Info_Needed; | |
997 | ||
998 | ---------------------------- | |
999 | -- Check_Strict_Alignment -- | |
1000 | ---------------------------- | |
1001 | ||
1002 | procedure Check_Strict_Alignment (E : Entity_Id) is | |
1003 | Comp : Entity_Id; | |
1004 | ||
1005 | begin | |
1006 | if Is_Tagged_Type (E) or else Is_Concurrent_Type (E) then | |
1007 | Set_Strict_Alignment (E); | |
1008 | ||
1009 | elsif Is_Array_Type (E) then | |
1010 | Set_Strict_Alignment (E, Strict_Alignment (Component_Type (E))); | |
1011 | ||
1012 | elsif Is_Record_Type (E) then | |
1013 | if Is_Limited_Record (E) then | |
1014 | Set_Strict_Alignment (E); | |
1015 | return; | |
1016 | end if; | |
1017 | ||
1018 | Comp := First_Component (E); | |
1019 | ||
1020 | while Present (Comp) loop | |
1021 | if not Is_Type (Comp) | |
1022 | and then (Strict_Alignment (Etype (Comp)) | |
fbf5a39b | 1023 | or else Is_Aliased (Comp)) |
70482933 RK |
1024 | then |
1025 | Set_Strict_Alignment (E); | |
1026 | return; | |
1027 | end if; | |
1028 | ||
1029 | Next_Component (Comp); | |
1030 | end loop; | |
1031 | end if; | |
1032 | end Check_Strict_Alignment; | |
1033 | ||
1034 | ------------------------- | |
1035 | -- Check_Unsigned_Type -- | |
1036 | ------------------------- | |
1037 | ||
1038 | procedure Check_Unsigned_Type (E : Entity_Id) is | |
1039 | Ancestor : Entity_Id; | |
1040 | Lo_Bound : Node_Id; | |
1041 | Btyp : Entity_Id; | |
1042 | ||
1043 | begin | |
1044 | if not Is_Discrete_Or_Fixed_Point_Type (E) then | |
1045 | return; | |
1046 | end if; | |
1047 | ||
1048 | -- Do not attempt to analyze case where range was in error | |
1049 | ||
1050 | if Error_Posted (Scalar_Range (E)) then | |
1051 | return; | |
1052 | end if; | |
1053 | ||
1054 | -- The situation that is non trivial is something like | |
1055 | ||
1056 | -- subtype x1 is integer range -10 .. +10; | |
1057 | -- subtype x2 is x1 range 0 .. V1; | |
1058 | -- subtype x3 is x2 range V2 .. V3; | |
1059 | -- subtype x4 is x3 range V4 .. V5; | |
1060 | ||
1061 | -- where Vn are variables. Here the base type is signed, but we still | |
1062 | -- know that x4 is unsigned because of the lower bound of x2. | |
1063 | ||
1064 | -- The only way to deal with this is to look up the ancestor chain | |
1065 | ||
1066 | Ancestor := E; | |
1067 | loop | |
1068 | if Ancestor = Any_Type or else Etype (Ancestor) = Any_Type then | |
1069 | return; | |
1070 | end if; | |
1071 | ||
1072 | Lo_Bound := Type_Low_Bound (Ancestor); | |
1073 | ||
1074 | if Compile_Time_Known_Value (Lo_Bound) then | |
1075 | ||
1076 | if Expr_Rep_Value (Lo_Bound) >= 0 then | |
1077 | Set_Is_Unsigned_Type (E, True); | |
1078 | end if; | |
1079 | ||
1080 | return; | |
1081 | ||
1082 | else | |
1083 | Ancestor := Ancestor_Subtype (Ancestor); | |
1084 | ||
1085 | -- If no ancestor had a static lower bound, go to base type | |
1086 | ||
1087 | if No (Ancestor) then | |
1088 | ||
1089 | -- Note: the reason we still check for a compile time known | |
1090 | -- value for the base type is that at least in the case of | |
1091 | -- generic formals, we can have bounds that fail this test, | |
1092 | -- and there may be other cases in error situations. | |
1093 | ||
1094 | Btyp := Base_Type (E); | |
1095 | ||
1096 | if Btyp = Any_Type or else Etype (Btyp) = Any_Type then | |
1097 | return; | |
1098 | end if; | |
1099 | ||
1100 | Lo_Bound := Type_Low_Bound (Base_Type (E)); | |
1101 | ||
1102 | if Compile_Time_Known_Value (Lo_Bound) | |
1103 | and then Expr_Rep_Value (Lo_Bound) >= 0 | |
1104 | then | |
1105 | Set_Is_Unsigned_Type (E, True); | |
1106 | end if; | |
1107 | ||
1108 | return; | |
70482933 RK |
1109 | end if; |
1110 | end if; | |
1111 | end loop; | |
1112 | end Check_Unsigned_Type; | |
1113 | ||
cfb120b5 AC |
1114 | ------------------------- |
1115 | -- Is_Atomic_Aggregate -- | |
1116 | ------------------------- | |
fbf5a39b | 1117 | |
cfb120b5 | 1118 | function Is_Atomic_Aggregate |
b0159fbe AC |
1119 | (E : Entity_Id; |
1120 | Typ : Entity_Id) return Boolean | |
1121 | is | |
fbf5a39b AC |
1122 | Loc : constant Source_Ptr := Sloc (E); |
1123 | New_N : Node_Id; | |
b0159fbe | 1124 | Par : Node_Id; |
fbf5a39b AC |
1125 | Temp : Entity_Id; |
1126 | ||
1127 | begin | |
b0159fbe AC |
1128 | Par := Parent (E); |
1129 | ||
01957849 | 1130 | -- Array may be qualified, so find outer context |
b0159fbe AC |
1131 | |
1132 | if Nkind (Par) = N_Qualified_Expression then | |
1133 | Par := Parent (Par); | |
1134 | end if; | |
1135 | ||
fb2e11ee | 1136 | if Nkind_In (Par, N_Object_Declaration, N_Assignment_Statement) |
b0159fbe | 1137 | and then Comes_From_Source (Par) |
fbf5a39b AC |
1138 | then |
1139 | Temp := | |
1140 | Make_Defining_Identifier (Loc, | |
1141 | New_Internal_Name ('T')); | |
1142 | ||
1143 | New_N := | |
1144 | Make_Object_Declaration (Loc, | |
1145 | Defining_Identifier => Temp, | |
c6a9797e RD |
1146 | Object_Definition => New_Occurrence_Of (Typ, Loc), |
1147 | Expression => Relocate_Node (E)); | |
b0159fbe | 1148 | Insert_Before (Par, New_N); |
fbf5a39b AC |
1149 | Analyze (New_N); |
1150 | ||
b0159fbe AC |
1151 | Set_Expression (Par, New_Occurrence_Of (Temp, Loc)); |
1152 | return True; | |
fbf5a39b | 1153 | |
b0159fbe AC |
1154 | else |
1155 | return False; | |
fbf5a39b | 1156 | end if; |
cfb120b5 | 1157 | end Is_Atomic_Aggregate; |
fbf5a39b | 1158 | |
70482933 RK |
1159 | ---------------- |
1160 | -- Freeze_All -- | |
1161 | ---------------- | |
1162 | ||
1163 | -- Note: the easy coding for this procedure would be to just build a | |
1164 | -- single list of freeze nodes and then insert them and analyze them | |
1165 | -- all at once. This won't work, because the analysis of earlier freeze | |
1166 | -- nodes may recursively freeze types which would otherwise appear later | |
1167 | -- on in the freeze list. So we must analyze and expand the freeze nodes | |
1168 | -- as they are generated. | |
1169 | ||
1170 | procedure Freeze_All (From : Entity_Id; After : in out Node_Id) is | |
1171 | Loc : constant Source_Ptr := Sloc (After); | |
1172 | E : Entity_Id; | |
1173 | Decl : Node_Id; | |
1174 | ||
1175 | procedure Freeze_All_Ent (From : Entity_Id; After : in out Node_Id); | |
def46b54 RD |
1176 | -- This is the internal recursive routine that does freezing of entities |
1177 | -- (but NOT the analysis of default expressions, which should not be | |
1178 | -- recursive, we don't want to analyze those till we are sure that ALL | |
1179 | -- the types are frozen). | |
70482933 | 1180 | |
fbf5a39b AC |
1181 | -------------------- |
1182 | -- Freeze_All_Ent -- | |
1183 | -------------------- | |
1184 | ||
70482933 RK |
1185 | procedure Freeze_All_Ent |
1186 | (From : Entity_Id; | |
1187 | After : in out Node_Id) | |
1188 | is | |
1189 | E : Entity_Id; | |
1190 | Flist : List_Id; | |
1191 | Lastn : Node_Id; | |
1192 | ||
1193 | procedure Process_Flist; | |
def46b54 RD |
1194 | -- If freeze nodes are present, insert and analyze, and reset cursor |
1195 | -- for next insertion. | |
70482933 | 1196 | |
fbf5a39b AC |
1197 | ------------------- |
1198 | -- Process_Flist -- | |
1199 | ------------------- | |
1200 | ||
70482933 RK |
1201 | procedure Process_Flist is |
1202 | begin | |
1203 | if Is_Non_Empty_List (Flist) then | |
1204 | Lastn := Next (After); | |
1205 | Insert_List_After_And_Analyze (After, Flist); | |
1206 | ||
1207 | if Present (Lastn) then | |
1208 | After := Prev (Lastn); | |
1209 | else | |
1210 | After := Last (List_Containing (After)); | |
1211 | end if; | |
1212 | end if; | |
1213 | end Process_Flist; | |
1214 | ||
fbf5a39b AC |
1215 | -- Start or processing for Freeze_All_Ent |
1216 | ||
70482933 RK |
1217 | begin |
1218 | E := From; | |
1219 | while Present (E) loop | |
1220 | ||
1221 | -- If the entity is an inner package which is not a package | |
def46b54 RD |
1222 | -- renaming, then its entities must be frozen at this point. Note |
1223 | -- that such entities do NOT get frozen at the end of the nested | |
1224 | -- package itself (only library packages freeze). | |
70482933 RK |
1225 | |
1226 | -- Same is true for task declarations, where anonymous records | |
1227 | -- created for entry parameters must be frozen. | |
1228 | ||
1229 | if Ekind (E) = E_Package | |
1230 | and then No (Renamed_Object (E)) | |
1231 | and then not Is_Child_Unit (E) | |
1232 | and then not Is_Frozen (E) | |
1233 | then | |
7d8b9c99 | 1234 | Push_Scope (E); |
70482933 RK |
1235 | Install_Visible_Declarations (E); |
1236 | Install_Private_Declarations (E); | |
1237 | ||
1238 | Freeze_All (First_Entity (E), After); | |
1239 | ||
1240 | End_Package_Scope (E); | |
1241 | ||
1242 | elsif Ekind (E) in Task_Kind | |
1243 | and then | |
1244 | (Nkind (Parent (E)) = N_Task_Type_Declaration | |
fbf5a39b | 1245 | or else |
70482933 RK |
1246 | Nkind (Parent (E)) = N_Single_Task_Declaration) |
1247 | then | |
7d8b9c99 | 1248 | Push_Scope (E); |
70482933 RK |
1249 | Freeze_All (First_Entity (E), After); |
1250 | End_Scope; | |
1251 | ||
1252 | -- For a derived tagged type, we must ensure that all the | |
def46b54 RD |
1253 | -- primitive operations of the parent have been frozen, so that |
1254 | -- their addresses will be in the parent's dispatch table at the | |
1255 | -- point it is inherited. | |
70482933 RK |
1256 | |
1257 | elsif Ekind (E) = E_Record_Type | |
1258 | and then Is_Tagged_Type (E) | |
1259 | and then Is_Tagged_Type (Etype (E)) | |
1260 | and then Is_Derived_Type (E) | |
1261 | then | |
1262 | declare | |
1263 | Prim_List : constant Elist_Id := | |
1264 | Primitive_Operations (Etype (E)); | |
fbf5a39b AC |
1265 | |
1266 | Prim : Elmt_Id; | |
1267 | Subp : Entity_Id; | |
70482933 RK |
1268 | |
1269 | begin | |
1270 | Prim := First_Elmt (Prim_List); | |
1271 | ||
1272 | while Present (Prim) loop | |
1273 | Subp := Node (Prim); | |
1274 | ||
1275 | if Comes_From_Source (Subp) | |
1276 | and then not Is_Frozen (Subp) | |
1277 | then | |
1278 | Flist := Freeze_Entity (Subp, Loc); | |
1279 | Process_Flist; | |
1280 | end if; | |
1281 | ||
1282 | Next_Elmt (Prim); | |
1283 | end loop; | |
1284 | end; | |
1285 | end if; | |
1286 | ||
1287 | if not Is_Frozen (E) then | |
1288 | Flist := Freeze_Entity (E, Loc); | |
1289 | Process_Flist; | |
1290 | end if; | |
1291 | ||
def46b54 RD |
1292 | -- If an incomplete type is still not frozen, this may be a |
1293 | -- premature freezing because of a body declaration that follows. | |
1294 | -- Indicate where the freezing took place. | |
fbf5a39b | 1295 | |
def46b54 RD |
1296 | -- If the freezing is caused by the end of the current declarative |
1297 | -- part, it is a Taft Amendment type, and there is no error. | |
fbf5a39b AC |
1298 | |
1299 | if not Is_Frozen (E) | |
1300 | and then Ekind (E) = E_Incomplete_Type | |
1301 | then | |
1302 | declare | |
1303 | Bod : constant Node_Id := Next (After); | |
1304 | ||
1305 | begin | |
1306 | if (Nkind (Bod) = N_Subprogram_Body | |
1307 | or else Nkind (Bod) = N_Entry_Body | |
1308 | or else Nkind (Bod) = N_Package_Body | |
1309 | or else Nkind (Bod) = N_Protected_Body | |
1310 | or else Nkind (Bod) = N_Task_Body | |
1311 | or else Nkind (Bod) in N_Body_Stub) | |
1312 | and then | |
1313 | List_Containing (After) = List_Containing (Parent (E)) | |
1314 | then | |
1315 | Error_Msg_Sloc := Sloc (Next (After)); | |
1316 | Error_Msg_NE | |
1317 | ("type& is frozen# before its full declaration", | |
1318 | Parent (E), E); | |
1319 | end if; | |
1320 | end; | |
1321 | end if; | |
1322 | ||
70482933 RK |
1323 | Next_Entity (E); |
1324 | end loop; | |
1325 | end Freeze_All_Ent; | |
1326 | ||
1327 | -- Start of processing for Freeze_All | |
1328 | ||
1329 | begin | |
1330 | Freeze_All_Ent (From, After); | |
1331 | ||
1332 | -- Now that all types are frozen, we can deal with default expressions | |
1333 | -- that require us to build a default expression functions. This is the | |
1334 | -- point at which such functions are constructed (after all types that | |
1335 | -- might be used in such expressions have been frozen). | |
fbf5a39b | 1336 | |
70482933 RK |
1337 | -- We also add finalization chains to access types whose designated |
1338 | -- types are controlled. This is normally done when freezing the type, | |
1339 | -- but this misses recursive type definitions where the later members | |
c6a9797e | 1340 | -- of the recursion introduce controlled components. |
70482933 RK |
1341 | |
1342 | -- Loop through entities | |
1343 | ||
1344 | E := From; | |
1345 | while Present (E) loop | |
70482933 RK |
1346 | if Is_Subprogram (E) then |
1347 | ||
1348 | if not Default_Expressions_Processed (E) then | |
1349 | Process_Default_Expressions (E, After); | |
1350 | end if; | |
1351 | ||
1352 | if not Has_Completion (E) then | |
1353 | Decl := Unit_Declaration_Node (E); | |
1354 | ||
1355 | if Nkind (Decl) = N_Subprogram_Renaming_Declaration then | |
1356 | Build_And_Analyze_Renamed_Body (Decl, E, After); | |
1357 | ||
1358 | elsif Nkind (Decl) = N_Subprogram_Declaration | |
1359 | and then Present (Corresponding_Body (Decl)) | |
1360 | and then | |
1361 | Nkind (Unit_Declaration_Node (Corresponding_Body (Decl))) | |
fbf5a39b | 1362 | = N_Subprogram_Renaming_Declaration |
70482933 RK |
1363 | then |
1364 | Build_And_Analyze_Renamed_Body | |
1365 | (Decl, Corresponding_Body (Decl), After); | |
1366 | end if; | |
1367 | end if; | |
1368 | ||
1369 | elsif Ekind (E) in Task_Kind | |
1370 | and then | |
1371 | (Nkind (Parent (E)) = N_Task_Type_Declaration | |
fbf5a39b | 1372 | or else |
70482933 RK |
1373 | Nkind (Parent (E)) = N_Single_Task_Declaration) |
1374 | then | |
1375 | declare | |
1376 | Ent : Entity_Id; | |
70482933 RK |
1377 | begin |
1378 | Ent := First_Entity (E); | |
1379 | ||
1380 | while Present (Ent) loop | |
1381 | ||
1382 | if Is_Entry (Ent) | |
1383 | and then not Default_Expressions_Processed (Ent) | |
1384 | then | |
1385 | Process_Default_Expressions (Ent, After); | |
1386 | end if; | |
1387 | ||
1388 | Next_Entity (Ent); | |
1389 | end loop; | |
1390 | end; | |
1391 | ||
1392 | elsif Is_Access_Type (E) | |
1393 | and then Comes_From_Source (E) | |
1394 | and then Ekind (Directly_Designated_Type (E)) = E_Incomplete_Type | |
048e5cef | 1395 | and then Needs_Finalization (Designated_Type (E)) |
70482933 RK |
1396 | and then No (Associated_Final_Chain (E)) |
1397 | then | |
1398 | Build_Final_List (Parent (E), E); | |
1399 | end if; | |
1400 | ||
1401 | Next_Entity (E); | |
1402 | end loop; | |
70482933 RK |
1403 | end Freeze_All; |
1404 | ||
1405 | ----------------------- | |
1406 | -- Freeze_And_Append -- | |
1407 | ----------------------- | |
1408 | ||
1409 | procedure Freeze_And_Append | |
1410 | (Ent : Entity_Id; | |
1411 | Loc : Source_Ptr; | |
1412 | Result : in out List_Id) | |
1413 | is | |
1414 | L : constant List_Id := Freeze_Entity (Ent, Loc); | |
70482933 RK |
1415 | begin |
1416 | if Is_Non_Empty_List (L) then | |
1417 | if Result = No_List then | |
1418 | Result := L; | |
1419 | else | |
1420 | Append_List (L, Result); | |
1421 | end if; | |
1422 | end if; | |
1423 | end Freeze_And_Append; | |
1424 | ||
1425 | ------------------- | |
1426 | -- Freeze_Before -- | |
1427 | ------------------- | |
1428 | ||
1429 | procedure Freeze_Before (N : Node_Id; T : Entity_Id) is | |
1430 | Freeze_Nodes : constant List_Id := Freeze_Entity (T, Sloc (N)); | |
70482933 RK |
1431 | begin |
1432 | if Is_Non_Empty_List (Freeze_Nodes) then | |
fbf5a39b | 1433 | Insert_Actions (N, Freeze_Nodes); |
70482933 RK |
1434 | end if; |
1435 | end Freeze_Before; | |
1436 | ||
1437 | ------------------- | |
1438 | -- Freeze_Entity -- | |
1439 | ------------------- | |
1440 | ||
1441 | function Freeze_Entity (E : Entity_Id; Loc : Source_Ptr) return List_Id is | |
c6823a20 | 1442 | Test_E : Entity_Id := E; |
70482933 RK |
1443 | Comp : Entity_Id; |
1444 | F_Node : Node_Id; | |
1445 | Result : List_Id; | |
1446 | Indx : Node_Id; | |
1447 | Formal : Entity_Id; | |
1448 | Atype : Entity_Id; | |
1449 | ||
4c8a5bb8 AC |
1450 | Has_Default_Initialization : Boolean := False; |
1451 | -- This flag gets set to true for a variable with default initialization | |
1452 | ||
70482933 | 1453 | procedure Check_Current_Instance (Comp_Decl : Node_Id); |
edd63e9b ES |
1454 | -- Check that an Access or Unchecked_Access attribute with a prefix |
1455 | -- which is the current instance type can only be applied when the type | |
1456 | -- is limited. | |
70482933 | 1457 | |
67b3acf8 RD |
1458 | procedure Check_Suspicious_Modulus (Utype : Entity_Id); |
1459 | -- Give warning for modulus of 8, 16, 32, or 64 given as an explicit | |
1460 | -- integer literal without an explicit corresponding size clause. The | |
1461 | -- caller has checked that Utype is a modular integer type. | |
1462 | ||
70482933 RK |
1463 | function After_Last_Declaration return Boolean; |
1464 | -- If Loc is a freeze_entity that appears after the last declaration | |
1465 | -- in the scope, inhibit error messages on late completion. | |
1466 | ||
1467 | procedure Freeze_Record_Type (Rec : Entity_Id); | |
edd63e9b ES |
1468 | -- Freeze each component, handle some representation clauses, and freeze |
1469 | -- primitive operations if this is a tagged type. | |
70482933 RK |
1470 | |
1471 | ---------------------------- | |
1472 | -- After_Last_Declaration -- | |
1473 | ---------------------------- | |
1474 | ||
1475 | function After_Last_Declaration return Boolean is | |
fb2e11ee | 1476 | Spec : constant Node_Id := Parent (Current_Scope); |
70482933 RK |
1477 | begin |
1478 | if Nkind (Spec) = N_Package_Specification then | |
1479 | if Present (Private_Declarations (Spec)) then | |
1480 | return Loc >= Sloc (Last (Private_Declarations (Spec))); | |
70482933 RK |
1481 | elsif Present (Visible_Declarations (Spec)) then |
1482 | return Loc >= Sloc (Last (Visible_Declarations (Spec))); | |
1483 | else | |
1484 | return False; | |
1485 | end if; | |
70482933 RK |
1486 | else |
1487 | return False; | |
1488 | end if; | |
1489 | end After_Last_Declaration; | |
1490 | ||
1491 | ---------------------------- | |
1492 | -- Check_Current_Instance -- | |
1493 | ---------------------------- | |
1494 | ||
1495 | procedure Check_Current_Instance (Comp_Decl : Node_Id) is | |
1496 | ||
32c760e6 ES |
1497 | Rec_Type : constant Entity_Id := |
1498 | Scope (Defining_Identifier (Comp_Decl)); | |
1499 | ||
1500 | Decl : constant Node_Id := Parent (Rec_Type); | |
1501 | ||
70482933 | 1502 | function Process (N : Node_Id) return Traverse_Result; |
49e90211 | 1503 | -- Process routine to apply check to given node |
70482933 | 1504 | |
fbf5a39b AC |
1505 | ------------- |
1506 | -- Process -- | |
1507 | ------------- | |
1508 | ||
70482933 RK |
1509 | function Process (N : Node_Id) return Traverse_Result is |
1510 | begin | |
1511 | case Nkind (N) is | |
1512 | when N_Attribute_Reference => | |
def46b54 | 1513 | if (Attribute_Name (N) = Name_Access |
70482933 RK |
1514 | or else |
1515 | Attribute_Name (N) = Name_Unchecked_Access) | |
1516 | and then Is_Entity_Name (Prefix (N)) | |
1517 | and then Is_Type (Entity (Prefix (N))) | |
1518 | and then Entity (Prefix (N)) = E | |
1519 | then | |
1520 | Error_Msg_N | |
1521 | ("current instance must be a limited type", Prefix (N)); | |
1522 | return Abandon; | |
1523 | else | |
1524 | return OK; | |
1525 | end if; | |
1526 | ||
1527 | when others => return OK; | |
1528 | end case; | |
1529 | end Process; | |
1530 | ||
1531 | procedure Traverse is new Traverse_Proc (Process); | |
1532 | ||
1533 | -- Start of processing for Check_Current_Instance | |
1534 | ||
1535 | begin | |
32c760e6 ES |
1536 | -- In Ada95, the (imprecise) rule is that the current instance of a |
1537 | -- limited type is aliased. In Ada2005, limitedness must be explicit: | |
1538 | -- either a tagged type, or a limited record. | |
1539 | ||
1540 | if Is_Limited_Type (Rec_Type) | |
fb2e11ee | 1541 | and then (Ada_Version < Ada_05 or else Is_Tagged_Type (Rec_Type)) |
32c760e6 ES |
1542 | then |
1543 | return; | |
1544 | ||
1545 | elsif Nkind (Decl) = N_Full_Type_Declaration | |
1546 | and then Limited_Present (Type_Definition (Decl)) | |
1547 | then | |
1548 | return; | |
1549 | ||
1550 | else | |
1551 | Traverse (Comp_Decl); | |
1552 | end if; | |
70482933 RK |
1553 | end Check_Current_Instance; |
1554 | ||
67b3acf8 RD |
1555 | ------------------------------ |
1556 | -- Check_Suspicious_Modulus -- | |
1557 | ------------------------------ | |
1558 | ||
1559 | procedure Check_Suspicious_Modulus (Utype : Entity_Id) is | |
1560 | Decl : constant Node_Id := Declaration_Node (Underlying_Type (Utype)); | |
1561 | ||
1562 | begin | |
1563 | if Nkind (Decl) = N_Full_Type_Declaration then | |
1564 | declare | |
1565 | Tdef : constant Node_Id := Type_Definition (Decl); | |
1566 | begin | |
1567 | if Nkind (Tdef) = N_Modular_Type_Definition then | |
1568 | declare | |
1569 | Modulus : constant Node_Id := | |
1570 | Original_Node (Expression (Tdef)); | |
1571 | begin | |
1572 | if Nkind (Modulus) = N_Integer_Literal then | |
1573 | declare | |
1574 | Modv : constant Uint := Intval (Modulus); | |
1575 | Sizv : constant Uint := RM_Size (Utype); | |
1576 | ||
1577 | begin | |
1578 | -- First case, modulus and size are the same. This | |
1579 | -- happens if you have something like mod 32, with | |
1580 | -- an explicit size of 32, this is for sure a case | |
1581 | -- where the warning is given, since it is seems | |
1582 | -- very unlikely that someone would want e.g. a | |
1583 | -- five bit type stored in 32 bits. It is much | |
1584 | -- more likely they wanted a 32-bit type. | |
1585 | ||
1586 | if Modv = Sizv then | |
1587 | null; | |
1588 | ||
1589 | -- Second case, the modulus is 32 or 64 and no | |
1590 | -- size clause is present. This is a less clear | |
1591 | -- case for giving the warning, but in the case | |
1592 | -- of 32/64 (5-bit or 6-bit types) these seem rare | |
1593 | -- enough that it is a likely error (and in any | |
1594 | -- case using 2**5 or 2**6 in these cases seems | |
1595 | -- clearer. We don't include 8 or 16 here, simply | |
1596 | -- because in practice 3-bit and 4-bit types are | |
1597 | -- more common and too many false positives if | |
1598 | -- we warn in these cases. | |
1599 | ||
1600 | elsif not Has_Size_Clause (Utype) | |
1601 | and then (Modv = Uint_32 or else Modv = Uint_64) | |
1602 | then | |
1603 | null; | |
1604 | ||
1605 | -- No warning needed | |
1606 | ||
1607 | else | |
1608 | return; | |
1609 | end if; | |
1610 | ||
1611 | -- If we fall through, give warning | |
1612 | ||
1613 | Error_Msg_Uint_1 := Modv; | |
1614 | Error_Msg_N | |
1615 | ("?2 '*'*^' may have been intended here", | |
1616 | Modulus); | |
1617 | end; | |
1618 | end if; | |
1619 | end; | |
1620 | end if; | |
1621 | end; | |
1622 | end if; | |
1623 | end Check_Suspicious_Modulus; | |
1624 | ||
70482933 RK |
1625 | ------------------------ |
1626 | -- Freeze_Record_Type -- | |
1627 | ------------------------ | |
1628 | ||
1629 | procedure Freeze_Record_Type (Rec : Entity_Id) is | |
1630 | Comp : Entity_Id; | |
fbf5a39b | 1631 | IR : Node_Id; |
70482933 | 1632 | ADC : Node_Id; |
c6823a20 | 1633 | Prev : Entity_Id; |
70482933 | 1634 | |
67ce0d7e RD |
1635 | Junk : Boolean; |
1636 | pragma Warnings (Off, Junk); | |
1637 | ||
70482933 RK |
1638 | Unplaced_Component : Boolean := False; |
1639 | -- Set True if we find at least one component with no component | |
1640 | -- clause (used to warn about useless Pack pragmas). | |
1641 | ||
1642 | Placed_Component : Boolean := False; | |
1643 | -- Set True if we find at least one component with a component | |
8dc10d38 AC |
1644 | -- clause (used to warn about useless Bit_Order pragmas, and also |
1645 | -- to detect cases where Implicit_Packing may have an effect). | |
1646 | ||
1647 | All_Scalar_Components : Boolean := True; | |
1648 | -- Set False if we encounter a component of a non-scalar type | |
1649 | ||
1650 | Scalar_Component_Total_RM_Size : Uint := Uint_0; | |
1651 | Scalar_Component_Total_Esize : Uint := Uint_0; | |
1652 | -- Accumulates total RM_Size values and total Esize values of all | |
1653 | -- scalar components. Used for processing of Implicit_Packing. | |
70482933 | 1654 | |
e18d6a15 JM |
1655 | function Check_Allocator (N : Node_Id) return Node_Id; |
1656 | -- If N is an allocator, possibly wrapped in one or more level of | |
1657 | -- qualified expression(s), return the inner allocator node, else | |
1658 | -- return Empty. | |
19590d70 | 1659 | |
7d8b9c99 RD |
1660 | procedure Check_Itype (Typ : Entity_Id); |
1661 | -- If the component subtype is an access to a constrained subtype of | |
1662 | -- an already frozen type, make the subtype frozen as well. It might | |
1663 | -- otherwise be frozen in the wrong scope, and a freeze node on | |
1664 | -- subtype has no effect. Similarly, if the component subtype is a | |
1665 | -- regular (not protected) access to subprogram, set the anonymous | |
1666 | -- subprogram type to frozen as well, to prevent an out-of-scope | |
1667 | -- freeze node at some eventual point of call. Protected operations | |
1668 | -- are handled elsewhere. | |
6e059adb | 1669 | |
19590d70 GD |
1670 | --------------------- |
1671 | -- Check_Allocator -- | |
1672 | --------------------- | |
1673 | ||
e18d6a15 JM |
1674 | function Check_Allocator (N : Node_Id) return Node_Id is |
1675 | Inner : Node_Id; | |
19590d70 | 1676 | begin |
e18d6a15 | 1677 | Inner := N; |
e18d6a15 JM |
1678 | loop |
1679 | if Nkind (Inner) = N_Allocator then | |
1680 | return Inner; | |
e18d6a15 JM |
1681 | elsif Nkind (Inner) = N_Qualified_Expression then |
1682 | Inner := Expression (Inner); | |
e18d6a15 JM |
1683 | else |
1684 | return Empty; | |
1685 | end if; | |
1686 | end loop; | |
19590d70 GD |
1687 | end Check_Allocator; |
1688 | ||
6871ba5f AC |
1689 | ----------------- |
1690 | -- Check_Itype -- | |
1691 | ----------------- | |
1692 | ||
7d8b9c99 RD |
1693 | procedure Check_Itype (Typ : Entity_Id) is |
1694 | Desig : constant Entity_Id := Designated_Type (Typ); | |
1695 | ||
6e059adb AC |
1696 | begin |
1697 | if not Is_Frozen (Desig) | |
1698 | and then Is_Frozen (Base_Type (Desig)) | |
1699 | then | |
1700 | Set_Is_Frozen (Desig); | |
1701 | ||
1702 | -- In addition, add an Itype_Reference to ensure that the | |
7d8b9c99 RD |
1703 | -- access subtype is elaborated early enough. This cannot be |
1704 | -- done if the subtype may depend on discriminants. | |
6e059adb AC |
1705 | |
1706 | if Ekind (Comp) = E_Component | |
1707 | and then Is_Itype (Etype (Comp)) | |
1708 | and then not Has_Discriminants (Rec) | |
1709 | then | |
1710 | IR := Make_Itype_Reference (Sloc (Comp)); | |
1711 | Set_Itype (IR, Desig); | |
1712 | ||
1713 | if No (Result) then | |
1714 | Result := New_List (IR); | |
1715 | else | |
1716 | Append (IR, Result); | |
1717 | end if; | |
1718 | end if; | |
7d8b9c99 RD |
1719 | |
1720 | elsif Ekind (Typ) = E_Anonymous_Access_Subprogram_Type | |
1721 | and then Convention (Desig) /= Convention_Protected | |
1722 | then | |
1723 | Set_Is_Frozen (Desig); | |
6e059adb AC |
1724 | end if; |
1725 | end Check_Itype; | |
1726 | ||
1727 | -- Start of processing for Freeze_Record_Type | |
1728 | ||
70482933 | 1729 | begin |
7d8b9c99 RD |
1730 | -- If this is a subtype of a controlled type, declared without a |
1731 | -- constraint, the _controller may not appear in the component list | |
1732 | -- if the parent was not frozen at the point of subtype declaration. | |
1733 | -- Inherit the _controller component now. | |
fbf5a39b AC |
1734 | |
1735 | if Rec /= Base_Type (Rec) | |
1736 | and then Has_Controlled_Component (Rec) | |
1737 | then | |
1738 | if Nkind (Parent (Rec)) = N_Subtype_Declaration | |
1739 | and then Is_Entity_Name (Subtype_Indication (Parent (Rec))) | |
1740 | then | |
1741 | Set_First_Entity (Rec, First_Entity (Base_Type (Rec))); | |
1742 | ||
49e90211 | 1743 | -- If this is an internal type without a declaration, as for |
6871ba5f AC |
1744 | -- record component, the base type may not yet be frozen, and its |
1745 | -- controller has not been created. Add an explicit freeze node | |
49e90211 ES |
1746 | -- for the itype, so it will be frozen after the base type. This |
1747 | -- freeze node is used to communicate with the expander, in order | |
1748 | -- to create the controller for the enclosing record, and it is | |
1749 | -- deleted afterwards (see exp_ch3). It must not be created when | |
1750 | -- expansion is off, because it might appear in the wrong context | |
1751 | -- for the back end. | |
fbf5a39b AC |
1752 | |
1753 | elsif Is_Itype (Rec) | |
1754 | and then Has_Delayed_Freeze (Base_Type (Rec)) | |
1755 | and then | |
1756 | Nkind (Associated_Node_For_Itype (Rec)) = | |
49e90211 ES |
1757 | N_Component_Declaration |
1758 | and then Expander_Active | |
fbf5a39b AC |
1759 | then |
1760 | Ensure_Freeze_Node (Rec); | |
1761 | end if; | |
1762 | end if; | |
1763 | ||
49e90211 | 1764 | -- Freeze components and embedded subtypes |
70482933 RK |
1765 | |
1766 | Comp := First_Entity (Rec); | |
c6823a20 | 1767 | Prev := Empty; |
c6823a20 | 1768 | while Present (Comp) loop |
70482933 | 1769 | |
49e90211 | 1770 | -- First handle the (real) component case |
70482933 RK |
1771 | |
1772 | if Ekind (Comp) = E_Component | |
1773 | or else Ekind (Comp) = E_Discriminant | |
1774 | then | |
70482933 RK |
1775 | declare |
1776 | CC : constant Node_Id := Component_Clause (Comp); | |
1777 | ||
1778 | begin | |
c6823a20 EB |
1779 | -- Freezing a record type freezes the type of each of its |
1780 | -- components. However, if the type of the component is | |
1781 | -- part of this record, we do not want or need a separate | |
1782 | -- Freeze_Node. Note that Is_Itype is wrong because that's | |
1783 | -- also set in private type cases. We also can't check for | |
1784 | -- the Scope being exactly Rec because of private types and | |
1785 | -- record extensions. | |
1786 | ||
1787 | if Is_Itype (Etype (Comp)) | |
1788 | and then Is_Record_Type (Underlying_Type | |
1789 | (Scope (Etype (Comp)))) | |
1790 | then | |
1791 | Undelay_Type (Etype (Comp)); | |
1792 | end if; | |
1793 | ||
1794 | Freeze_And_Append (Etype (Comp), Loc, Result); | |
1795 | ||
0da2c8ac AC |
1796 | -- Check for error of component clause given for variable |
1797 | -- sized type. We have to delay this test till this point, | |
1798 | -- since the component type has to be frozen for us to know | |
1799 | -- if it is variable length. We omit this test in a generic | |
1800 | -- context, it will be applied at instantiation time. | |
1801 | ||
70482933 RK |
1802 | if Present (CC) then |
1803 | Placed_Component := True; | |
1804 | ||
07fc65c4 GB |
1805 | if Inside_A_Generic then |
1806 | null; | |
1807 | ||
7d8b9c99 RD |
1808 | elsif not |
1809 | Size_Known_At_Compile_Time | |
1810 | (Underlying_Type (Etype (Comp))) | |
70482933 RK |
1811 | then |
1812 | Error_Msg_N | |
1813 | ("component clause not allowed for variable " & | |
1814 | "length component", CC); | |
1815 | end if; | |
1816 | ||
1817 | else | |
1818 | Unplaced_Component := True; | |
1819 | end if; | |
70482933 | 1820 | |
0da2c8ac | 1821 | -- Case of component requires byte alignment |
70482933 | 1822 | |
0da2c8ac | 1823 | if Must_Be_On_Byte_Boundary (Etype (Comp)) then |
70482933 | 1824 | |
0da2c8ac | 1825 | -- Set the enclosing record to also require byte align |
70482933 | 1826 | |
0da2c8ac | 1827 | Set_Must_Be_On_Byte_Boundary (Rec); |
70482933 | 1828 | |
7d8b9c99 RD |
1829 | -- Check for component clause that is inconsistent with |
1830 | -- the required byte boundary alignment. | |
70482933 | 1831 | |
0da2c8ac AC |
1832 | if Present (CC) |
1833 | and then Normalized_First_Bit (Comp) mod | |
1834 | System_Storage_Unit /= 0 | |
1835 | then | |
1836 | Error_Msg_N | |
1837 | ("component & must be byte aligned", | |
1838 | Component_Name (Component_Clause (Comp))); | |
1839 | end if; | |
1840 | end if; | |
70482933 | 1841 | |
7d8b9c99 RD |
1842 | -- If component clause is present, then deal with the non- |
1843 | -- default bit order case for Ada 95 mode. The required | |
fea9e956 ES |
1844 | -- processing for Ada 2005 mode is handled separately after |
1845 | -- processing all components. | |
70482933 | 1846 | |
0da2c8ac AC |
1847 | -- We only do this processing for the base type, and in |
1848 | -- fact that's important, since otherwise if there are | |
1849 | -- record subtypes, we could reverse the bits once for | |
1850 | -- each subtype, which would be incorrect. | |
70482933 | 1851 | |
0da2c8ac AC |
1852 | if Present (CC) |
1853 | and then Reverse_Bit_Order (Rec) | |
1854 | and then Ekind (E) = E_Record_Type | |
fea9e956 | 1855 | and then Ada_Version <= Ada_95 |
0da2c8ac AC |
1856 | then |
1857 | declare | |
1858 | CFB : constant Uint := Component_Bit_Offset (Comp); | |
1859 | CSZ : constant Uint := Esize (Comp); | |
1860 | CLC : constant Node_Id := Component_Clause (Comp); | |
1861 | Pos : constant Node_Id := Position (CLC); | |
1862 | FB : constant Node_Id := First_Bit (CLC); | |
1863 | ||
1864 | Storage_Unit_Offset : constant Uint := | |
1865 | CFB / System_Storage_Unit; | |
1866 | ||
1867 | Start_Bit : constant Uint := | |
1868 | CFB mod System_Storage_Unit; | |
1869 | ||
1870 | begin | |
1871 | -- Cases where field goes over storage unit boundary | |
1872 | ||
1873 | if Start_Bit + CSZ > System_Storage_Unit then | |
70482933 | 1874 | |
0da2c8ac AC |
1875 | -- Allow multi-byte field but generate warning |
1876 | ||
1877 | if Start_Bit mod System_Storage_Unit = 0 | |
1878 | and then CSZ mod System_Storage_Unit = 0 | |
1879 | then | |
70482933 | 1880 | Error_Msg_N |
0da2c8ac AC |
1881 | ("multi-byte field specified with non-standard" |
1882 | & " Bit_Order?", CLC); | |
1883 | ||
1884 | if Bytes_Big_Endian then | |
1885 | Error_Msg_N | |
1886 | ("bytes are not reversed " | |
1887 | & "(component is big-endian)?", CLC); | |
1888 | else | |
1889 | Error_Msg_N | |
1890 | ("bytes are not reversed " | |
1891 | & "(component is little-endian)?", CLC); | |
1892 | end if; | |
1893 | ||
c6084ae0 | 1894 | -- Do not allow non-contiguous field |
0da2c8ac | 1895 | |
70482933 RK |
1896 | else |
1897 | Error_Msg_N | |
c6084ae0 AC |
1898 | ("attempt to specify non-contiguous field " |
1899 | & "not permitted", CLC); | |
0da2c8ac | 1900 | Error_Msg_N |
c6084ae0 AC |
1901 | ("\caused by non-standard Bit_Order " |
1902 | & "specified", CLC); | |
1903 | Error_Msg_N | |
1904 | ("\consider possibility of using " | |
1905 | & "Ada 2005 mode here", CLC); | |
70482933 RK |
1906 | end if; |
1907 | ||
c6084ae0 | 1908 | -- Case where field fits in one storage unit |
70482933 RK |
1909 | |
1910 | else | |
0da2c8ac | 1911 | -- Give warning if suspicious component clause |
70482933 | 1912 | |
fea9e956 ES |
1913 | if Intval (FB) >= System_Storage_Unit |
1914 | and then Warn_On_Reverse_Bit_Order | |
1915 | then | |
0da2c8ac AC |
1916 | Error_Msg_N |
1917 | ("?Bit_Order clause does not affect " & | |
1918 | "byte ordering", Pos); | |
1919 | Error_Msg_Uint_1 := | |
1920 | Intval (Pos) + Intval (FB) / | |
1921 | System_Storage_Unit; | |
1922 | Error_Msg_N | |
1923 | ("?position normalized to ^ before bit " & | |
1924 | "order interpreted", Pos); | |
1925 | end if; | |
70482933 | 1926 | |
0da2c8ac AC |
1927 | -- Here is where we fix up the Component_Bit_Offset |
1928 | -- value to account for the reverse bit order. | |
1929 | -- Some examples of what needs to be done are: | |
70482933 | 1930 | |
0da2c8ac AC |
1931 | -- First_Bit .. Last_Bit Component_Bit_Offset |
1932 | -- old new old new | |
70482933 | 1933 | |
0da2c8ac AC |
1934 | -- 0 .. 0 7 .. 7 0 7 |
1935 | -- 0 .. 1 6 .. 7 0 6 | |
1936 | -- 0 .. 2 5 .. 7 0 5 | |
1937 | -- 0 .. 7 0 .. 7 0 4 | |
70482933 | 1938 | |
0da2c8ac AC |
1939 | -- 1 .. 1 6 .. 6 1 6 |
1940 | -- 1 .. 4 3 .. 6 1 3 | |
1941 | -- 4 .. 7 0 .. 3 4 0 | |
70482933 | 1942 | |
0da2c8ac AC |
1943 | -- The general rule is that the first bit is |
1944 | -- is obtained by subtracting the old ending bit | |
1945 | -- from storage_unit - 1. | |
70482933 | 1946 | |
0da2c8ac AC |
1947 | Set_Component_Bit_Offset |
1948 | (Comp, | |
1949 | (Storage_Unit_Offset * System_Storage_Unit) + | |
1950 | (System_Storage_Unit - 1) - | |
1951 | (Start_Bit + CSZ - 1)); | |
70482933 | 1952 | |
0da2c8ac AC |
1953 | Set_Normalized_First_Bit |
1954 | (Comp, | |
1955 | Component_Bit_Offset (Comp) mod | |
1956 | System_Storage_Unit); | |
1957 | end if; | |
1958 | end; | |
1959 | end if; | |
1960 | end; | |
70482933 RK |
1961 | end if; |
1962 | ||
426d2717 | 1963 | -- Gather data for possible Implicit_Packing later |
8dc10d38 | 1964 | |
426d2717 AC |
1965 | if not Is_Scalar_Type (Etype (Comp)) then |
1966 | All_Scalar_Components := False; | |
1967 | else | |
1968 | Scalar_Component_Total_RM_Size := | |
1969 | Scalar_Component_Total_RM_Size + RM_Size (Etype (Comp)); | |
1970 | Scalar_Component_Total_Esize := | |
1971 | Scalar_Component_Total_Esize + Esize (Etype (Comp)); | |
8dc10d38 AC |
1972 | end if; |
1973 | ||
c6823a20 EB |
1974 | -- If the component is an Itype with Delayed_Freeze and is either |
1975 | -- a record or array subtype and its base type has not yet been | |
1976 | -- frozen, we must remove this from the entity list of this | |
1977 | -- record and put it on the entity list of the scope of its base | |
1978 | -- type. Note that we know that this is not the type of a | |
1979 | -- component since we cleared Has_Delayed_Freeze for it in the | |
1980 | -- previous loop. Thus this must be the Designated_Type of an | |
1981 | -- access type, which is the type of a component. | |
1982 | ||
1983 | if Is_Itype (Comp) | |
1984 | and then Is_Type (Scope (Comp)) | |
1985 | and then Is_Composite_Type (Comp) | |
1986 | and then Base_Type (Comp) /= Comp | |
1987 | and then Has_Delayed_Freeze (Comp) | |
1988 | and then not Is_Frozen (Base_Type (Comp)) | |
1989 | then | |
1990 | declare | |
1991 | Will_Be_Frozen : Boolean := False; | |
1b24ada5 | 1992 | S : Entity_Id; |
c6823a20 EB |
1993 | |
1994 | begin | |
fea9e956 ES |
1995 | -- We have a pretty bad kludge here. Suppose Rec is subtype |
1996 | -- being defined in a subprogram that's created as part of | |
1997 | -- the freezing of Rec'Base. In that case, we know that | |
1998 | -- Comp'Base must have already been frozen by the time we | |
1999 | -- get to elaborate this because Gigi doesn't elaborate any | |
2000 | -- bodies until it has elaborated all of the declarative | |
2001 | -- part. But Is_Frozen will not be set at this point because | |
2002 | -- we are processing code in lexical order. | |
2003 | ||
2004 | -- We detect this case by going up the Scope chain of Rec | |
2005 | -- and seeing if we have a subprogram scope before reaching | |
2006 | -- the top of the scope chain or that of Comp'Base. If we | |
2007 | -- do, then mark that Comp'Base will actually be frozen. If | |
2008 | -- so, we merely undelay it. | |
c6823a20 | 2009 | |
1b24ada5 | 2010 | S := Scope (Rec); |
c6823a20 EB |
2011 | while Present (S) loop |
2012 | if Is_Subprogram (S) then | |
2013 | Will_Be_Frozen := True; | |
2014 | exit; | |
2015 | elsif S = Scope (Base_Type (Comp)) then | |
2016 | exit; | |
2017 | end if; | |
2018 | ||
2019 | S := Scope (S); | |
2020 | end loop; | |
2021 | ||
2022 | if Will_Be_Frozen then | |
2023 | Undelay_Type (Comp); | |
2024 | else | |
2025 | if Present (Prev) then | |
2026 | Set_Next_Entity (Prev, Next_Entity (Comp)); | |
2027 | else | |
2028 | Set_First_Entity (Rec, Next_Entity (Comp)); | |
2029 | end if; | |
2030 | ||
2031 | -- Insert in entity list of scope of base type (which | |
2032 | -- must be an enclosing scope, because still unfrozen). | |
2033 | ||
2034 | Append_Entity (Comp, Scope (Base_Type (Comp))); | |
2035 | end if; | |
2036 | end; | |
2037 | ||
def46b54 RD |
2038 | -- If the component is an access type with an allocator as default |
2039 | -- value, the designated type will be frozen by the corresponding | |
2040 | -- expression in init_proc. In order to place the freeze node for | |
2041 | -- the designated type before that for the current record type, | |
2042 | -- freeze it now. | |
c6823a20 EB |
2043 | |
2044 | -- Same process if the component is an array of access types, | |
2045 | -- initialized with an aggregate. If the designated type is | |
def46b54 RD |
2046 | -- private, it cannot contain allocators, and it is premature |
2047 | -- to freeze the type, so we check for this as well. | |
c6823a20 EB |
2048 | |
2049 | elsif Is_Access_Type (Etype (Comp)) | |
2050 | and then Present (Parent (Comp)) | |
2051 | and then Present (Expression (Parent (Comp))) | |
c6823a20 EB |
2052 | then |
2053 | declare | |
e18d6a15 JM |
2054 | Alloc : constant Node_Id := |
2055 | Check_Allocator (Expression (Parent (Comp))); | |
c6823a20 EB |
2056 | |
2057 | begin | |
e18d6a15 | 2058 | if Present (Alloc) then |
19590d70 | 2059 | |
e18d6a15 JM |
2060 | -- If component is pointer to a classwide type, freeze |
2061 | -- the specific type in the expression being allocated. | |
2062 | -- The expression may be a subtype indication, in which | |
2063 | -- case freeze the subtype mark. | |
c6823a20 | 2064 | |
e18d6a15 JM |
2065 | if Is_Class_Wide_Type |
2066 | (Designated_Type (Etype (Comp))) | |
0f4cb75c | 2067 | then |
e18d6a15 JM |
2068 | if Is_Entity_Name (Expression (Alloc)) then |
2069 | Freeze_And_Append | |
2070 | (Entity (Expression (Alloc)), Loc, Result); | |
2071 | elsif | |
2072 | Nkind (Expression (Alloc)) = N_Subtype_Indication | |
2073 | then | |
2074 | Freeze_And_Append | |
2075 | (Entity (Subtype_Mark (Expression (Alloc))), | |
2076 | Loc, Result); | |
2077 | end if; | |
0f4cb75c | 2078 | |
e18d6a15 JM |
2079 | elsif Is_Itype (Designated_Type (Etype (Comp))) then |
2080 | Check_Itype (Etype (Comp)); | |
0f4cb75c | 2081 | |
e18d6a15 JM |
2082 | else |
2083 | Freeze_And_Append | |
2084 | (Designated_Type (Etype (Comp)), Loc, Result); | |
2085 | end if; | |
c6823a20 EB |
2086 | end if; |
2087 | end; | |
2088 | ||
2089 | elsif Is_Access_Type (Etype (Comp)) | |
2090 | and then Is_Itype (Designated_Type (Etype (Comp))) | |
2091 | then | |
7d8b9c99 | 2092 | Check_Itype (Etype (Comp)); |
c6823a20 EB |
2093 | |
2094 | elsif Is_Array_Type (Etype (Comp)) | |
2095 | and then Is_Access_Type (Component_Type (Etype (Comp))) | |
2096 | and then Present (Parent (Comp)) | |
2097 | and then Nkind (Parent (Comp)) = N_Component_Declaration | |
2098 | and then Present (Expression (Parent (Comp))) | |
2099 | and then Nkind (Expression (Parent (Comp))) = N_Aggregate | |
2100 | and then Is_Fully_Defined | |
2101 | (Designated_Type (Component_Type (Etype (Comp)))) | |
2102 | then | |
2103 | Freeze_And_Append | |
2104 | (Designated_Type | |
2105 | (Component_Type (Etype (Comp))), Loc, Result); | |
2106 | end if; | |
2107 | ||
2108 | Prev := Comp; | |
70482933 RK |
2109 | Next_Entity (Comp); |
2110 | end loop; | |
2111 | ||
fea9e956 ES |
2112 | -- Deal with pragma Bit_Order |
2113 | ||
2114 | if Reverse_Bit_Order (Rec) and then Base_Type (Rec) = Rec then | |
2115 | if not Placed_Component then | |
2116 | ADC := | |
2117 | Get_Attribute_Definition_Clause (Rec, Attribute_Bit_Order); | |
2118 | Error_Msg_N | |
2119 | ("?Bit_Order specification has no effect", ADC); | |
2120 | Error_Msg_N | |
2121 | ("\?since no component clauses were specified", ADC); | |
2122 | ||
def46b54 RD |
2123 | -- Here is where we do Ada 2005 processing for bit order (the Ada |
2124 | -- 95 case was already taken care of above). | |
70482933 | 2125 | |
fea9e956 ES |
2126 | elsif Ada_Version >= Ada_05 then |
2127 | Adjust_Record_For_Reverse_Bit_Order (Rec); | |
2128 | end if; | |
70482933 RK |
2129 | end if; |
2130 | ||
1b24ada5 RD |
2131 | -- Set OK_To_Reorder_Components depending on debug flags |
2132 | ||
2133 | if Rec = Base_Type (Rec) | |
2134 | and then Convention (Rec) = Convention_Ada | |
2135 | then | |
2136 | if (Has_Discriminants (Rec) and then Debug_Flag_Dot_V) | |
2137 | or else | |
2138 | (not Has_Discriminants (Rec) and then Debug_Flag_Dot_R) | |
2139 | then | |
2140 | Set_OK_To_Reorder_Components (Rec); | |
2141 | end if; | |
2142 | end if; | |
2143 | ||
ee094616 RD |
2144 | -- Check for useless pragma Pack when all components placed. We only |
2145 | -- do this check for record types, not subtypes, since a subtype may | |
2146 | -- have all its components placed, and it still makes perfectly good | |
1b24ada5 RD |
2147 | -- sense to pack other subtypes or the parent type. We do not give |
2148 | -- this warning if Optimize_Alignment is set to Space, since the | |
2149 | -- pragma Pack does have an effect in this case (it always resets | |
2150 | -- the alignment to one). | |
70482933 | 2151 | |
ee094616 RD |
2152 | if Ekind (Rec) = E_Record_Type |
2153 | and then Is_Packed (Rec) | |
70482933 | 2154 | and then not Unplaced_Component |
1b24ada5 | 2155 | and then Optimize_Alignment /= 'S' |
70482933 | 2156 | then |
def46b54 RD |
2157 | -- Reset packed status. Probably not necessary, but we do it so |
2158 | -- that there is no chance of the back end doing something strange | |
2159 | -- with this redundant indication of packing. | |
ee094616 | 2160 | |
70482933 | 2161 | Set_Is_Packed (Rec, False); |
ee094616 RD |
2162 | |
2163 | -- Give warning if redundant constructs warnings on | |
2164 | ||
2165 | if Warn_On_Redundant_Constructs then | |
2166 | Error_Msg_N | |
2167 | ("?pragma Pack has no effect, no unplaced components", | |
2168 | Get_Rep_Pragma (Rec, Name_Pack)); | |
2169 | end if; | |
70482933 RK |
2170 | end if; |
2171 | ||
ee094616 RD |
2172 | -- If this is the record corresponding to a remote type, freeze the |
2173 | -- remote type here since that is what we are semantically freezing. | |
2174 | -- This prevents the freeze node for that type in an inner scope. | |
70482933 RK |
2175 | |
2176 | -- Also, Check for controlled components and unchecked unions. | |
ee094616 RD |
2177 | -- Finally, enforce the restriction that access attributes with a |
2178 | -- current instance prefix can only apply to limited types. | |
70482933 | 2179 | |
8dc10d38 | 2180 | if Ekind (Rec) = E_Record_Type then |
70482933 RK |
2181 | if Present (Corresponding_Remote_Type (Rec)) then |
2182 | Freeze_And_Append | |
2183 | (Corresponding_Remote_Type (Rec), Loc, Result); | |
2184 | end if; | |
2185 | ||
2186 | Comp := First_Component (Rec); | |
70482933 RK |
2187 | while Present (Comp) loop |
2188 | if Has_Controlled_Component (Etype (Comp)) | |
2189 | or else (Chars (Comp) /= Name_uParent | |
2190 | and then Is_Controlled (Etype (Comp))) | |
2191 | or else (Is_Protected_Type (Etype (Comp)) | |
2192 | and then Present | |
2193 | (Corresponding_Record_Type (Etype (Comp))) | |
2194 | and then Has_Controlled_Component | |
2195 | (Corresponding_Record_Type (Etype (Comp)))) | |
2196 | then | |
2197 | Set_Has_Controlled_Component (Rec); | |
2198 | exit; | |
2199 | end if; | |
2200 | ||
2201 | if Has_Unchecked_Union (Etype (Comp)) then | |
2202 | Set_Has_Unchecked_Union (Rec); | |
2203 | end if; | |
2204 | ||
32c760e6 ES |
2205 | if Has_Per_Object_Constraint (Comp) then |
2206 | ||
ee094616 RD |
2207 | -- Scan component declaration for likely misuses of current |
2208 | -- instance, either in a constraint or a default expression. | |
70482933 RK |
2209 | |
2210 | Check_Current_Instance (Parent (Comp)); | |
2211 | end if; | |
2212 | ||
2213 | Next_Component (Comp); | |
2214 | end loop; | |
2215 | end if; | |
2216 | ||
2217 | Set_Component_Alignment_If_Not_Set (Rec); | |
2218 | ||
ee094616 RD |
2219 | -- For first subtypes, check if there are any fixed-point fields with |
2220 | -- component clauses, where we must check the size. This is not done | |
2221 | -- till the freeze point, since for fixed-point types, we do not know | |
2222 | -- the size until the type is frozen. Similar processing applies to | |
2223 | -- bit packed arrays. | |
70482933 RK |
2224 | |
2225 | if Is_First_Subtype (Rec) then | |
2226 | Comp := First_Component (Rec); | |
2227 | ||
2228 | while Present (Comp) loop | |
2229 | if Present (Component_Clause (Comp)) | |
d05ef0ab AC |
2230 | and then (Is_Fixed_Point_Type (Etype (Comp)) |
2231 | or else | |
2232 | Is_Bit_Packed_Array (Etype (Comp))) | |
70482933 RK |
2233 | then |
2234 | Check_Size | |
d05ef0ab | 2235 | (Component_Name (Component_Clause (Comp)), |
70482933 RK |
2236 | Etype (Comp), |
2237 | Esize (Comp), | |
2238 | Junk); | |
2239 | end if; | |
2240 | ||
2241 | Next_Component (Comp); | |
2242 | end loop; | |
2243 | end if; | |
7d8b9c99 RD |
2244 | |
2245 | -- Generate warning for applying C or C++ convention to a record | |
2246 | -- with discriminants. This is suppressed for the unchecked union | |
1b24ada5 RD |
2247 | -- case, since the whole point in this case is interface C. We also |
2248 | -- do not generate this within instantiations, since we will have | |
2249 | -- generated a message on the template. | |
7d8b9c99 RD |
2250 | |
2251 | if Has_Discriminants (E) | |
2252 | and then not Is_Unchecked_Union (E) | |
7d8b9c99 RD |
2253 | and then (Convention (E) = Convention_C |
2254 | or else | |
2255 | Convention (E) = Convention_CPP) | |
2256 | and then Comes_From_Source (E) | |
1b24ada5 RD |
2257 | and then not In_Instance |
2258 | and then not Has_Warnings_Off (E) | |
2259 | and then not Has_Warnings_Off (Base_Type (E)) | |
7d8b9c99 RD |
2260 | then |
2261 | declare | |
2262 | Cprag : constant Node_Id := Get_Rep_Pragma (E, Name_Convention); | |
2263 | A2 : Node_Id; | |
2264 | ||
2265 | begin | |
2266 | if Present (Cprag) then | |
2267 | A2 := Next (First (Pragma_Argument_Associations (Cprag))); | |
2268 | ||
2269 | if Convention (E) = Convention_C then | |
2270 | Error_Msg_N | |
2271 | ("?variant record has no direct equivalent in C", A2); | |
2272 | else | |
2273 | Error_Msg_N | |
2274 | ("?variant record has no direct equivalent in C++", A2); | |
2275 | end if; | |
2276 | ||
2277 | Error_Msg_NE | |
2278 | ("\?use of convention for type& is dubious", A2, E); | |
2279 | end if; | |
2280 | end; | |
2281 | end if; | |
8dc10d38 | 2282 | |
ce14c577 | 2283 | -- See if Size is too small as is (and implicit packing might help) |
8dc10d38 | 2284 | |
426d2717 | 2285 | if not Is_Packed (Rec) |
ce14c577 AC |
2286 | |
2287 | -- No implicit packing if even one component is explicitly placed | |
2288 | ||
426d2717 | 2289 | and then not Placed_Component |
ce14c577 AC |
2290 | |
2291 | -- Must have size clause and all scalar components | |
2292 | ||
8dc10d38 AC |
2293 | and then Has_Size_Clause (Rec) |
2294 | and then All_Scalar_Components | |
ce14c577 AC |
2295 | |
2296 | -- Do not try implicit packing on records with discriminants, too | |
2297 | -- complicated, especially in the variant record case. | |
2298 | ||
8dc10d38 | 2299 | and then not Has_Discriminants (Rec) |
ce14c577 AC |
2300 | |
2301 | -- We can implicitly pack if the specified size of the record is | |
2302 | -- less than the sum of the object sizes (no point in packing if | |
2303 | -- this is not the case). | |
2304 | ||
8dc10d38 | 2305 | and then Esize (Rec) < Scalar_Component_Total_Esize |
ce14c577 AC |
2306 | |
2307 | -- And the total RM size cannot be greater than the specified size | |
2308 | -- since otherwise packing will not get us where we have to be! | |
2309 | ||
8dc10d38 | 2310 | and then Esize (Rec) >= Scalar_Component_Total_RM_Size |
ce14c577 AC |
2311 | |
2312 | -- Never do implicit packing in CodePeer mode since we don't do | |
2313 | -- any packing ever in this mode (why not???) | |
2314 | ||
d58b9515 | 2315 | and then not CodePeer_Mode |
8dc10d38 | 2316 | then |
426d2717 AC |
2317 | -- If implicit packing enabled, do it |
2318 | ||
2319 | if Implicit_Packing then | |
2320 | Set_Is_Packed (Rec); | |
2321 | ||
2322 | -- Otherwise flag the size clause | |
2323 | ||
2324 | else | |
2325 | declare | |
2326 | Sz : constant Node_Id := Size_Clause (Rec); | |
2327 | begin | |
2995ebee | 2328 | Error_Msg_NE -- CODEFIX |
426d2717 | 2329 | ("size given for& too small", Sz, Rec); |
2995ebee | 2330 | Error_Msg_N -- CODEFIX |
426d2717 AC |
2331 | ("\use explicit pragma Pack " |
2332 | & "or use pragma Implicit_Packing", Sz); | |
2333 | end; | |
2334 | end if; | |
8dc10d38 | 2335 | end if; |
70482933 RK |
2336 | end Freeze_Record_Type; |
2337 | ||
2338 | -- Start of processing for Freeze_Entity | |
2339 | ||
2340 | begin | |
c6823a20 EB |
2341 | -- We are going to test for various reasons why this entity need not be |
2342 | -- frozen here, but in the case of an Itype that's defined within a | |
2343 | -- record, that test actually applies to the record. | |
2344 | ||
2345 | if Is_Itype (E) and then Is_Record_Type (Scope (E)) then | |
2346 | Test_E := Scope (E); | |
2347 | elsif Is_Itype (E) and then Present (Underlying_Type (Scope (E))) | |
2348 | and then Is_Record_Type (Underlying_Type (Scope (E))) | |
2349 | then | |
2350 | Test_E := Underlying_Type (Scope (E)); | |
2351 | end if; | |
2352 | ||
fbf5a39b | 2353 | -- Do not freeze if already frozen since we only need one freeze node |
70482933 RK |
2354 | |
2355 | if Is_Frozen (E) then | |
2356 | return No_List; | |
2357 | ||
c6823a20 EB |
2358 | -- It is improper to freeze an external entity within a generic because |
2359 | -- its freeze node will appear in a non-valid context. The entity will | |
2360 | -- be frozen in the proper scope after the current generic is analyzed. | |
70482933 | 2361 | |
c6823a20 | 2362 | elsif Inside_A_Generic and then External_Ref_In_Generic (Test_E) then |
70482933 RK |
2363 | return No_List; |
2364 | ||
2365 | -- Do not freeze a global entity within an inner scope created during | |
2366 | -- expansion. A call to subprogram E within some internal procedure | |
2367 | -- (a stream attribute for example) might require freezing E, but the | |
2368 | -- freeze node must appear in the same declarative part as E itself. | |
2369 | -- The two-pass elaboration mechanism in gigi guarantees that E will | |
2370 | -- be frozen before the inner call is elaborated. We exclude constants | |
2371 | -- from this test, because deferred constants may be frozen early, and | |
19590d70 GD |
2372 | -- must be diagnosed (e.g. in the case of a deferred constant being used |
2373 | -- in a default expression). If the enclosing subprogram comes from | |
2374 | -- source, or is a generic instance, then the freeze point is the one | |
2375 | -- mandated by the language, and we freeze the entity. A subprogram that | |
2376 | -- is a child unit body that acts as a spec does not have a spec that | |
2377 | -- comes from source, but can only come from source. | |
70482933 | 2378 | |
c6823a20 EB |
2379 | elsif In_Open_Scopes (Scope (Test_E)) |
2380 | and then Scope (Test_E) /= Current_Scope | |
2381 | and then Ekind (Test_E) /= E_Constant | |
70482933 RK |
2382 | then |
2383 | declare | |
2384 | S : Entity_Id := Current_Scope; | |
2385 | ||
2386 | begin | |
2387 | while Present (S) loop | |
2388 | if Is_Overloadable (S) then | |
2389 | if Comes_From_Source (S) | |
2390 | or else Is_Generic_Instance (S) | |
fea9e956 | 2391 | or else Is_Child_Unit (S) |
70482933 RK |
2392 | then |
2393 | exit; | |
2394 | else | |
2395 | return No_List; | |
2396 | end if; | |
2397 | end if; | |
2398 | ||
2399 | S := Scope (S); | |
2400 | end loop; | |
2401 | end; | |
555360a5 AC |
2402 | |
2403 | -- Similarly, an inlined instance body may make reference to global | |
2404 | -- entities, but these references cannot be the proper freezing point | |
def46b54 RD |
2405 | -- for them, and in the absence of inlining freezing will take place in |
2406 | -- their own scope. Normally instance bodies are analyzed after the | |
2407 | -- enclosing compilation, and everything has been frozen at the proper | |
2408 | -- place, but with front-end inlining an instance body is compiled | |
2409 | -- before the end of the enclosing scope, and as a result out-of-order | |
2410 | -- freezing must be prevented. | |
555360a5 AC |
2411 | |
2412 | elsif Front_End_Inlining | |
7d8b9c99 | 2413 | and then In_Instance_Body |
c6823a20 | 2414 | and then Present (Scope (Test_E)) |
555360a5 AC |
2415 | then |
2416 | declare | |
c6823a20 EB |
2417 | S : Entity_Id := Scope (Test_E); |
2418 | ||
555360a5 AC |
2419 | begin |
2420 | while Present (S) loop | |
2421 | if Is_Generic_Instance (S) then | |
2422 | exit; | |
2423 | else | |
2424 | S := Scope (S); | |
2425 | end if; | |
2426 | end loop; | |
2427 | ||
2428 | if No (S) then | |
2429 | return No_List; | |
2430 | end if; | |
2431 | end; | |
70482933 RK |
2432 | end if; |
2433 | ||
2434 | -- Here to freeze the entity | |
2435 | ||
2436 | Result := No_List; | |
2437 | Set_Is_Frozen (E); | |
2438 | ||
2439 | -- Case of entity being frozen is other than a type | |
2440 | ||
2441 | if not Is_Type (E) then | |
2442 | ||
2443 | -- If entity is exported or imported and does not have an external | |
2444 | -- name, now is the time to provide the appropriate default name. | |
2445 | -- Skip this if the entity is stubbed, since we don't need a name | |
75a64833 AC |
2446 | -- for any stubbed routine. For the case on intrinsics, if no |
2447 | -- external name is specified, then calls will be handled in | |
2448 | -- Exp_Intr.Expand_Intrinsic_Call, and no name is needed; if | |
2449 | -- an external name is provided, then Expand_Intrinsic_Call leaves | |
2450 | -- calls in place for expansion by GIGI. | |
70482933 RK |
2451 | |
2452 | if (Is_Imported (E) or else Is_Exported (E)) | |
2453 | and then No (Interface_Name (E)) | |
2454 | and then Convention (E) /= Convention_Stubbed | |
75a64833 | 2455 | and then Convention (E) /= Convention_Intrinsic |
70482933 RK |
2456 | then |
2457 | Set_Encoded_Interface_Name | |
2458 | (E, Get_Default_External_Name (E)); | |
fbf5a39b | 2459 | |
bbaba73f EB |
2460 | -- If entity is an atomic object appearing in a declaration and |
2461 | -- the expression is an aggregate, assign it to a temporary to | |
2462 | -- ensure that the actual assignment is done atomically rather | |
2463 | -- than component-wise (the assignment to the temp may be done | |
2464 | -- component-wise, but that is harmless). | |
fbf5a39b AC |
2465 | |
2466 | elsif Is_Atomic (E) | |
2467 | and then Nkind (Parent (E)) = N_Object_Declaration | |
2468 | and then Present (Expression (Parent (E))) | |
bbaba73f | 2469 | and then Nkind (Expression (Parent (E))) = N_Aggregate |
b0159fbe | 2470 | and then |
cfb120b5 | 2471 | Is_Atomic_Aggregate (Expression (Parent (E)), Etype (E)) |
fbf5a39b | 2472 | then |
b0159fbe | 2473 | null; |
70482933 RK |
2474 | end if; |
2475 | ||
2476 | -- For a subprogram, freeze all parameter types and also the return | |
fbf5a39b | 2477 | -- type (RM 13.14(14)). However skip this for internal subprograms. |
70482933 | 2478 | -- This is also the point where any extra formal parameters are |
fb2e11ee AC |
2479 | -- created since we now know whether the subprogram will use a |
2480 | -- foreign convention. | |
70482933 RK |
2481 | |
2482 | if Is_Subprogram (E) then | |
70482933 | 2483 | if not Is_Internal (E) then |
70482933 | 2484 | declare |
6d11af89 | 2485 | F_Type : Entity_Id; |
def46b54 | 2486 | R_Type : Entity_Id; |
6d11af89 | 2487 | Warn_Node : Node_Id; |
70482933 | 2488 | |
70482933 RK |
2489 | begin |
2490 | -- Loop through formals | |
2491 | ||
2492 | Formal := First_Formal (E); | |
70482933 | 2493 | while Present (Formal) loop |
70482933 RK |
2494 | F_Type := Etype (Formal); |
2495 | Freeze_And_Append (F_Type, Loc, Result); | |
2496 | ||
2497 | if Is_Private_Type (F_Type) | |
2498 | and then Is_Private_Type (Base_Type (F_Type)) | |
2499 | and then No (Full_View (Base_Type (F_Type))) | |
2500 | and then not Is_Generic_Type (F_Type) | |
2501 | and then not Is_Derived_Type (F_Type) | |
2502 | then | |
2503 | -- If the type of a formal is incomplete, subprogram | |
2504 | -- is being frozen prematurely. Within an instance | |
2505 | -- (but not within a wrapper package) this is an | |
fb2e11ee | 2506 | -- artifact of our need to regard the end of an |
70482933 RK |
2507 | -- instantiation as a freeze point. Otherwise it is |
2508 | -- a definite error. | |
fbf5a39b | 2509 | |
70482933 RK |
2510 | if In_Instance then |
2511 | Set_Is_Frozen (E, False); | |
2512 | return No_List; | |
2513 | ||
86cde7b1 RD |
2514 | elsif not After_Last_Declaration |
2515 | and then not Freezing_Library_Level_Tagged_Type | |
2516 | then | |
70482933 RK |
2517 | Error_Msg_Node_1 := F_Type; |
2518 | Error_Msg | |
2519 | ("type& must be fully defined before this point", | |
2520 | Loc); | |
2521 | end if; | |
2522 | end if; | |
2523 | ||
def46b54 | 2524 | -- Check suspicious parameter for C function. These tests |
1b24ada5 | 2525 | -- apply only to exported/imported subprograms. |
70482933 | 2526 | |
def46b54 | 2527 | if Warn_On_Export_Import |
1b24ada5 | 2528 | and then Comes_From_Source (E) |
def46b54 RD |
2529 | and then (Convention (E) = Convention_C |
2530 | or else | |
2531 | Convention (E) = Convention_CPP) | |
def46b54 | 2532 | and then (Is_Imported (E) or else Is_Exported (E)) |
1b24ada5 RD |
2533 | and then Convention (E) /= Convention (Formal) |
2534 | and then not Has_Warnings_Off (E) | |
2535 | and then not Has_Warnings_Off (F_Type) | |
2536 | and then not Has_Warnings_Off (Formal) | |
fbf5a39b | 2537 | then |
70482933 | 2538 | Error_Msg_Qual_Level := 1; |
def46b54 RD |
2539 | |
2540 | -- Check suspicious use of fat C pointer | |
2541 | ||
2542 | if Is_Access_Type (F_Type) | |
2543 | and then Esize (F_Type) > Ttypes.System_Address_Size | |
2544 | then | |
2545 | Error_Msg_N | |
2546 | ("?type of & does not correspond " | |
2547 | & "to C pointer!", Formal); | |
2548 | ||
2549 | -- Check suspicious return of boolean | |
2550 | ||
2551 | elsif Root_Type (F_Type) = Standard_Boolean | |
2552 | and then Convention (F_Type) = Convention_Ada | |
67198556 RD |
2553 | and then not Has_Warnings_Off (F_Type) |
2554 | and then not Has_Size_Clause (F_Type) | |
def46b54 RD |
2555 | then |
2556 | Error_Msg_N | |
2557 | ("?& is an 8-bit Ada Boolean, " | |
2558 | & "use char in C!", Formal); | |
2559 | ||
2560 | -- Check suspicious tagged type | |
2561 | ||
2562 | elsif (Is_Tagged_Type (F_Type) | |
2563 | or else (Is_Access_Type (F_Type) | |
2564 | and then | |
2565 | Is_Tagged_Type | |
2566 | (Designated_Type (F_Type)))) | |
2567 | and then Convention (E) = Convention_C | |
2568 | then | |
2569 | Error_Msg_N | |
e7d72fb9 | 2570 | ("?& involves a tagged type which does not " |
def46b54 RD |
2571 | & "correspond to any C type!", Formal); |
2572 | ||
2573 | -- Check wrong convention subprogram pointer | |
2574 | ||
2575 | elsif Ekind (F_Type) = E_Access_Subprogram_Type | |
2576 | and then not Has_Foreign_Convention (F_Type) | |
2577 | then | |
2578 | Error_Msg_N | |
2579 | ("?subprogram pointer & should " | |
2580 | & "have foreign convention!", Formal); | |
2581 | Error_Msg_Sloc := Sloc (F_Type); | |
2582 | Error_Msg_NE | |
2583 | ("\?add Convention pragma to declaration of &#", | |
2584 | Formal, F_Type); | |
2585 | end if; | |
2586 | ||
70482933 RK |
2587 | Error_Msg_Qual_Level := 0; |
2588 | end if; | |
2589 | ||
2590 | -- Check for unconstrained array in exported foreign | |
2591 | -- convention case. | |
2592 | ||
def46b54 | 2593 | if Has_Foreign_Convention (E) |
70482933 RK |
2594 | and then not Is_Imported (E) |
2595 | and then Is_Array_Type (F_Type) | |
2596 | and then not Is_Constrained (F_Type) | |
fbf5a39b | 2597 | and then Warn_On_Export_Import |
70482933 RK |
2598 | then |
2599 | Error_Msg_Qual_Level := 1; | |
6d11af89 AC |
2600 | |
2601 | -- If this is an inherited operation, place the | |
2602 | -- warning on the derived type declaration, rather | |
2603 | -- than on the original subprogram. | |
2604 | ||
2605 | if Nkind (Original_Node (Parent (E))) = | |
2606 | N_Full_Type_Declaration | |
2607 | then | |
2608 | Warn_Node := Parent (E); | |
2609 | ||
2610 | if Formal = First_Formal (E) then | |
2611 | Error_Msg_NE | |
add9f797 | 2612 | ("?in inherited operation&", Warn_Node, E); |
6d11af89 AC |
2613 | end if; |
2614 | else | |
2615 | Warn_Node := Formal; | |
2616 | end if; | |
2617 | ||
2618 | Error_Msg_NE | |
70482933 | 2619 | ("?type of argument& is unconstrained array", |
6d11af89 AC |
2620 | Warn_Node, Formal); |
2621 | Error_Msg_NE | |
70482933 | 2622 | ("?foreign caller must pass bounds explicitly", |
6d11af89 | 2623 | Warn_Node, Formal); |
70482933 RK |
2624 | Error_Msg_Qual_Level := 0; |
2625 | end if; | |
2626 | ||
d8db0bca JM |
2627 | if not From_With_Type (F_Type) then |
2628 | if Is_Access_Type (F_Type) then | |
2629 | F_Type := Designated_Type (F_Type); | |
2630 | end if; | |
2631 | ||
7d8b9c99 RD |
2632 | -- If the formal is an anonymous_access_to_subprogram |
2633 | -- freeze the subprogram type as well, to prevent | |
2634 | -- scope anomalies in gigi, because there is no other | |
2635 | -- clear point at which it could be frozen. | |
2636 | ||
93bcda23 | 2637 | if Is_Itype (Etype (Formal)) |
7d8b9c99 RD |
2638 | and then Ekind (F_Type) = E_Subprogram_Type |
2639 | then | |
57747aec | 2640 | Freeze_And_Append (F_Type, Loc, Result); |
d8db0bca JM |
2641 | end if; |
2642 | end if; | |
2643 | ||
70482933 RK |
2644 | Next_Formal (Formal); |
2645 | end loop; | |
2646 | ||
5e39baa6 | 2647 | -- Case of function: similar checks on return type |
70482933 RK |
2648 | |
2649 | if Ekind (E) = E_Function then | |
def46b54 RD |
2650 | |
2651 | -- Freeze return type | |
2652 | ||
2653 | R_Type := Etype (E); | |
2654 | Freeze_And_Append (R_Type, Loc, Result); | |
2655 | ||
2656 | -- Check suspicious return type for C function | |
70482933 | 2657 | |
fbf5a39b | 2658 | if Warn_On_Export_Import |
def46b54 RD |
2659 | and then (Convention (E) = Convention_C |
2660 | or else | |
2661 | Convention (E) = Convention_CPP) | |
def46b54 | 2662 | and then (Is_Imported (E) or else Is_Exported (E)) |
fbf5a39b | 2663 | then |
def46b54 RD |
2664 | -- Check suspicious return of fat C pointer |
2665 | ||
2666 | if Is_Access_Type (R_Type) | |
2667 | and then Esize (R_Type) > Ttypes.System_Address_Size | |
1b24ada5 RD |
2668 | and then not Has_Warnings_Off (E) |
2669 | and then not Has_Warnings_Off (R_Type) | |
def46b54 RD |
2670 | then |
2671 | Error_Msg_N | |
2672 | ("?return type of& does not " | |
2673 | & "correspond to C pointer!", E); | |
2674 | ||
2675 | -- Check suspicious return of boolean | |
2676 | ||
2677 | elsif Root_Type (R_Type) = Standard_Boolean | |
2678 | and then Convention (R_Type) = Convention_Ada | |
1b24ada5 RD |
2679 | and then not Has_Warnings_Off (E) |
2680 | and then not Has_Warnings_Off (R_Type) | |
67198556 | 2681 | and then not Has_Size_Clause (R_Type) |
def46b54 RD |
2682 | then |
2683 | Error_Msg_N | |
2684 | ("?return type of & is an 8-bit " | |
2685 | & "Ada Boolean, use char in C!", E); | |
70482933 | 2686 | |
def46b54 RD |
2687 | -- Check suspicious return tagged type |
2688 | ||
2689 | elsif (Is_Tagged_Type (R_Type) | |
2690 | or else (Is_Access_Type (R_Type) | |
2691 | and then | |
2692 | Is_Tagged_Type | |
2693 | (Designated_Type (R_Type)))) | |
2694 | and then Convention (E) = Convention_C | |
1b24ada5 RD |
2695 | and then not Has_Warnings_Off (E) |
2696 | and then not Has_Warnings_Off (R_Type) | |
def46b54 RD |
2697 | then |
2698 | Error_Msg_N | |
2699 | ("?return type of & does not " | |
2700 | & "correspond to C type!", E); | |
2701 | ||
2702 | -- Check return of wrong convention subprogram pointer | |
2703 | ||
2704 | elsif Ekind (R_Type) = E_Access_Subprogram_Type | |
2705 | and then not Has_Foreign_Convention (R_Type) | |
1b24ada5 RD |
2706 | and then not Has_Warnings_Off (E) |
2707 | and then not Has_Warnings_Off (R_Type) | |
def46b54 RD |
2708 | then |
2709 | Error_Msg_N | |
2710 | ("?& should return a foreign " | |
2711 | & "convention subprogram pointer", E); | |
2712 | Error_Msg_Sloc := Sloc (R_Type); | |
2713 | Error_Msg_NE | |
2714 | ("\?add Convention pragma to declaration of& #", | |
2715 | E, R_Type); | |
2716 | end if; | |
2717 | end if; | |
2718 | ||
e7d72fb9 AC |
2719 | -- Give warning for suspicous return of a result of an |
2720 | -- unconstrained array type in a foreign convention | |
2721 | -- function. | |
59366db6 | 2722 | |
e7d72fb9 AC |
2723 | if Has_Foreign_Convention (E) |
2724 | ||
2725 | -- We are looking for a return of unconstrained array | |
2726 | ||
2727 | and then Is_Array_Type (R_Type) | |
93bcda23 | 2728 | and then not Is_Constrained (R_Type) |
e7d72fb9 AC |
2729 | |
2730 | -- Exclude imported routines, the warning does not | |
2731 | -- belong on the import, but on the routine definition. | |
2732 | ||
70482933 | 2733 | and then not Is_Imported (E) |
e7d72fb9 AC |
2734 | |
2735 | -- Exclude VM case, since both .NET and JVM can handle | |
2736 | -- return of unconstrained arrays without a problem. | |
2737 | ||
f3b57ab0 | 2738 | and then VM_Target = No_VM |
e7d72fb9 AC |
2739 | |
2740 | -- Check that general warning is enabled, and that it | |
2741 | -- is not suppressed for this particular case. | |
2742 | ||
fbf5a39b | 2743 | and then Warn_On_Export_Import |
1b24ada5 | 2744 | and then not Has_Warnings_Off (E) |
93bcda23 | 2745 | and then not Has_Warnings_Off (R_Type) |
70482933 RK |
2746 | then |
2747 | Error_Msg_N | |
fbf5a39b | 2748 | ("?foreign convention function& should not " & |
1b24ada5 | 2749 | "return unconstrained array!", E); |
70482933 RK |
2750 | end if; |
2751 | end if; | |
2752 | end; | |
2753 | end if; | |
2754 | ||
2755 | -- Must freeze its parent first if it is a derived subprogram | |
2756 | ||
2757 | if Present (Alias (E)) then | |
2758 | Freeze_And_Append (Alias (E), Loc, Result); | |
2759 | end if; | |
2760 | ||
19590d70 GD |
2761 | -- We don't freeze internal subprograms, because we don't normally |
2762 | -- want addition of extra formals or mechanism setting to happen | |
2763 | -- for those. However we do pass through predefined dispatching | |
2764 | -- cases, since extra formals may be needed in some cases, such as | |
2765 | -- for the stream 'Input function (build-in-place formals). | |
2766 | ||
2767 | if not Is_Internal (E) | |
2768 | or else Is_Predefined_Dispatching_Operation (E) | |
2769 | then | |
70482933 RK |
2770 | Freeze_Subprogram (E); |
2771 | end if; | |
2772 | ||
2773 | -- Here for other than a subprogram or type | |
2774 | ||
2775 | else | |
2776 | -- If entity has a type, and it is not a generic unit, then | |
7d8b9c99 | 2777 | -- freeze it first (RM 13.14(10)). |
70482933 | 2778 | |
ac72c9c5 | 2779 | if Present (Etype (E)) |
70482933 RK |
2780 | and then Ekind (E) /= E_Generic_Function |
2781 | then | |
2782 | Freeze_And_Append (Etype (E), Loc, Result); | |
2783 | end if; | |
2784 | ||
2c9beb8a | 2785 | -- Special processing for objects created by object declaration |
70482933 RK |
2786 | |
2787 | if Nkind (Declaration_Node (E)) = N_Object_Declaration then | |
2c9beb8a | 2788 | |
6823270c AC |
2789 | -- Abstract type allowed only for C++ imported variables or |
2790 | -- constants. | |
2791 | ||
2792 | -- Note: we inhibit this check for objects that do not come | |
2793 | -- from source because there is at least one case (the | |
2794 | -- expansion of x'class'input where x is abstract) where we | |
2795 | -- legitimately generate an abstract object. | |
2796 | ||
2797 | if Is_Abstract_Type (Etype (E)) | |
2798 | and then Comes_From_Source (Parent (E)) | |
2799 | and then not (Is_Imported (E) | |
2800 | and then Is_CPP_Class (Etype (E))) | |
2801 | then | |
2802 | Error_Msg_N ("type of object cannot be abstract", | |
2803 | Object_Definition (Parent (E))); | |
2804 | ||
2805 | if Is_CPP_Class (Etype (E)) then | |
2806 | Error_Msg_NE ("\} may need a cpp_constructor", | |
2807 | Object_Definition (Parent (E)), Etype (E)); | |
2808 | end if; | |
2809 | end if; | |
2810 | ||
2c9beb8a RD |
2811 | -- For object created by object declaration, perform required |
2812 | -- categorization (preelaborate and pure) checks. Defer these | |
2813 | -- checks to freeze time since pragma Import inhibits default | |
2814 | -- initialization and thus pragma Import affects these checks. | |
2815 | ||
70482933 | 2816 | Validate_Object_Declaration (Declaration_Node (E)); |
2c9beb8a | 2817 | |
1ce1f005 | 2818 | -- If there is an address clause, check that it is valid |
2c9beb8a | 2819 | |
fbf5a39b | 2820 | Check_Address_Clause (E); |
2c9beb8a | 2821 | |
1ce1f005 GD |
2822 | -- If the object needs any kind of default initialization, an |
2823 | -- error must be issued if No_Default_Initialization applies. | |
2824 | -- The check doesn't apply to imported objects, which are not | |
2825 | -- ever default initialized, and is why the check is deferred | |
2826 | -- until freezing, at which point we know if Import applies. | |
4fec4e7a ES |
2827 | -- Deferred constants are also exempted from this test because |
2828 | -- their completion is explicit, or through an import pragma. | |
1ce1f005 | 2829 | |
4fec4e7a ES |
2830 | if Ekind (E) = E_Constant |
2831 | and then Present (Full_View (E)) | |
2832 | then | |
2833 | null; | |
2834 | ||
2835 | elsif Comes_From_Source (E) | |
b6e209b5 | 2836 | and then not Is_Imported (E) |
1ce1f005 GD |
2837 | and then not Has_Init_Expression (Declaration_Node (E)) |
2838 | and then | |
2839 | ((Has_Non_Null_Base_Init_Proc (Etype (E)) | |
2840 | and then not No_Initialization (Declaration_Node (E)) | |
2841 | and then not Is_Value_Type (Etype (E)) | |
2842 | and then not Suppress_Init_Proc (Etype (E))) | |
2843 | or else | |
2844 | (Needs_Simple_Initialization (Etype (E)) | |
2845 | and then not Is_Internal (E))) | |
2846 | then | |
4c8a5bb8 | 2847 | Has_Default_Initialization := True; |
1ce1f005 GD |
2848 | Check_Restriction |
2849 | (No_Default_Initialization, Declaration_Node (E)); | |
2850 | end if; | |
2851 | ||
4c8a5bb8 AC |
2852 | -- Check that a Thread_Local_Storage variable does not have |
2853 | -- default initialization, and any explicit initialization must | |
2854 | -- either be the null constant or a static constant. | |
2855 | ||
2856 | if Has_Pragma_Thread_Local_Storage (E) then | |
2857 | declare | |
2858 | Decl : constant Node_Id := Declaration_Node (E); | |
2859 | begin | |
2860 | if Has_Default_Initialization | |
2861 | or else | |
2862 | (Has_Init_Expression (Decl) | |
2863 | and then | |
2864 | (No (Expression (Decl)) | |
2865 | or else not | |
2866 | (Is_Static_Expression (Expression (Decl)) | |
2867 | or else | |
2868 | Nkind (Expression (Decl)) = N_Null))) | |
2869 | then | |
2870 | Error_Msg_NE | |
2871 | ("Thread_Local_Storage variable& is " | |
2872 | & "improperly initialized", Decl, E); | |
2873 | Error_Msg_NE | |
2874 | ("\only allowed initialization is explicit " | |
2875 | & "NULL or static expression", Decl, E); | |
2876 | end if; | |
2877 | end; | |
2878 | end if; | |
2879 | ||
def46b54 RD |
2880 | -- For imported objects, set Is_Public unless there is also an |
2881 | -- address clause, which means that there is no external symbol | |
2882 | -- needed for the Import (Is_Public may still be set for other | |
2883 | -- unrelated reasons). Note that we delayed this processing | |
2884 | -- till freeze time so that we can be sure not to set the flag | |
2885 | -- if there is an address clause. If there is such a clause, | |
2886 | -- then the only purpose of the Import pragma is to suppress | |
2887 | -- implicit initialization. | |
2c9beb8a RD |
2888 | |
2889 | if Is_Imported (E) | |
add9f797 | 2890 | and then No (Address_Clause (E)) |
2c9beb8a RD |
2891 | then |
2892 | Set_Is_Public (E); | |
2893 | end if; | |
7d8b9c99 RD |
2894 | |
2895 | -- For convention C objects of an enumeration type, warn if | |
2896 | -- the size is not integer size and no explicit size given. | |
2897 | -- Skip warning for Boolean, and Character, assume programmer | |
2898 | -- expects 8-bit sizes for these cases. | |
2899 | ||
2900 | if (Convention (E) = Convention_C | |
2901 | or else | |
2902 | Convention (E) = Convention_CPP) | |
2903 | and then Is_Enumeration_Type (Etype (E)) | |
2904 | and then not Is_Character_Type (Etype (E)) | |
2905 | and then not Is_Boolean_Type (Etype (E)) | |
2906 | and then Esize (Etype (E)) < Standard_Integer_Size | |
2907 | and then not Has_Size_Clause (E) | |
2908 | then | |
2909 | Error_Msg_Uint_1 := UI_From_Int (Standard_Integer_Size); | |
2910 | Error_Msg_N | |
2911 | ("?convention C enumeration object has size less than ^", | |
2912 | E); | |
2913 | Error_Msg_N ("\?use explicit size clause to set size", E); | |
2914 | end if; | |
70482933 RK |
2915 | end if; |
2916 | ||
2917 | -- Check that a constant which has a pragma Volatile[_Components] | |
7d8b9c99 | 2918 | -- or Atomic[_Components] also has a pragma Import (RM C.6(13)). |
70482933 RK |
2919 | |
2920 | -- Note: Atomic[_Components] also sets Volatile[_Components] | |
2921 | ||
2922 | if Ekind (E) = E_Constant | |
2923 | and then (Has_Volatile_Components (E) or else Is_Volatile (E)) | |
2924 | and then not Is_Imported (E) | |
2925 | then | |
2926 | -- Make sure we actually have a pragma, and have not merely | |
2927 | -- inherited the indication from elsewhere (e.g. an address | |
2928 | -- clause, which is not good enough in RM terms!) | |
2929 | ||
1d571f3b | 2930 | if Has_Rep_Pragma (E, Name_Atomic) |
91b1417d | 2931 | or else |
1d571f3b | 2932 | Has_Rep_Pragma (E, Name_Atomic_Components) |
70482933 RK |
2933 | then |
2934 | Error_Msg_N | |
91b1417d | 2935 | ("stand alone atomic constant must be " & |
def46b54 | 2936 | "imported (RM C.6(13))", E); |
91b1417d | 2937 | |
1d571f3b | 2938 | elsif Has_Rep_Pragma (E, Name_Volatile) |
91b1417d | 2939 | or else |
1d571f3b | 2940 | Has_Rep_Pragma (E, Name_Volatile_Components) |
91b1417d AC |
2941 | then |
2942 | Error_Msg_N | |
2943 | ("stand alone volatile constant must be " & | |
86cde7b1 | 2944 | "imported (RM C.6(13))", E); |
70482933 RK |
2945 | end if; |
2946 | end if; | |
2947 | ||
2948 | -- Static objects require special handling | |
2949 | ||
2950 | if (Ekind (E) = E_Constant or else Ekind (E) = E_Variable) | |
2951 | and then Is_Statically_Allocated (E) | |
2952 | then | |
2953 | Freeze_Static_Object (E); | |
2954 | end if; | |
2955 | ||
2956 | -- Remaining step is to layout objects | |
2957 | ||
2958 | if Ekind (E) = E_Variable | |
2959 | or else | |
2960 | Ekind (E) = E_Constant | |
2961 | or else | |
2962 | Ekind (E) = E_Loop_Parameter | |
2963 | or else | |
2964 | Is_Formal (E) | |
2965 | then | |
2966 | Layout_Object (E); | |
2967 | end if; | |
2968 | end if; | |
2969 | ||
2970 | -- Case of a type or subtype being frozen | |
2971 | ||
2972 | else | |
31b5873d GD |
2973 | -- We used to check here that a full type must have preelaborable |
2974 | -- initialization if it completes a private type specified with | |
2975 | -- pragma Preelaborable_Intialization, but that missed cases where | |
2976 | -- the types occur within a generic package, since the freezing | |
2977 | -- that occurs within a containing scope generally skips traversal | |
2978 | -- of a generic unit's declarations (those will be frozen within | |
2979 | -- instances). This check was moved to Analyze_Package_Specification. | |
3f1ede06 | 2980 | |
70482933 RK |
2981 | -- The type may be defined in a generic unit. This can occur when |
2982 | -- freezing a generic function that returns the type (which is | |
2983 | -- defined in a parent unit). It is clearly meaningless to freeze | |
2984 | -- this type. However, if it is a subtype, its size may be determi- | |
2985 | -- nable and used in subsequent checks, so might as well try to | |
2986 | -- compute it. | |
2987 | ||
2988 | if Present (Scope (E)) | |
2989 | and then Is_Generic_Unit (Scope (E)) | |
2990 | then | |
2991 | Check_Compile_Time_Size (E); | |
2992 | return No_List; | |
2993 | end if; | |
2994 | ||
2995 | -- Deal with special cases of freezing for subtype | |
2996 | ||
2997 | if E /= Base_Type (E) then | |
2998 | ||
86cde7b1 RD |
2999 | -- Before we do anything else, a specialized test for the case of |
3000 | -- a size given for an array where the array needs to be packed, | |
3001 | -- but was not so the size cannot be honored. This would of course | |
3002 | -- be caught by the backend, and indeed we don't catch all cases. | |
3003 | -- The point is that we can give a better error message in those | |
3004 | -- cases that we do catch with the circuitry here. Also if pragma | |
3005 | -- Implicit_Packing is set, this is where the packing occurs. | |
3006 | ||
3007 | -- The reason we do this so early is that the processing in the | |
3008 | -- automatic packing case affects the layout of the base type, so | |
3009 | -- it must be done before we freeze the base type. | |
3010 | ||
3011 | if Is_Array_Type (E) then | |
3012 | declare | |
3013 | Lo, Hi : Node_Id; | |
3014 | Ctyp : constant Entity_Id := Component_Type (E); | |
3015 | ||
3016 | begin | |
3017 | -- Check enabling conditions. These are straightforward | |
3018 | -- except for the test for a limited composite type. This | |
3019 | -- eliminates the rare case of a array of limited components | |
3020 | -- where there are issues of whether or not we can go ahead | |
3021 | -- and pack the array (since we can't freely pack and unpack | |
3022 | -- arrays if they are limited). | |
3023 | ||
3024 | -- Note that we check the root type explicitly because the | |
3025 | -- whole point is we are doing this test before we have had | |
3026 | -- a chance to freeze the base type (and it is that freeze | |
3027 | -- action that causes stuff to be inherited). | |
3028 | ||
3029 | if Present (Size_Clause (E)) | |
3030 | and then Known_Static_Esize (E) | |
3031 | and then not Is_Packed (E) | |
3032 | and then not Has_Pragma_Pack (E) | |
3033 | and then Number_Dimensions (E) = 1 | |
3034 | and then not Has_Component_Size_Clause (E) | |
3035 | and then Known_Static_Esize (Ctyp) | |
3036 | and then not Is_Limited_Composite (E) | |
3037 | and then not Is_Packed (Root_Type (E)) | |
3038 | and then not Has_Component_Size_Clause (Root_Type (E)) | |
d58b9515 | 3039 | and then not CodePeer_Mode |
86cde7b1 RD |
3040 | then |
3041 | Get_Index_Bounds (First_Index (E), Lo, Hi); | |
3042 | ||
3043 | if Compile_Time_Known_Value (Lo) | |
3044 | and then Compile_Time_Known_Value (Hi) | |
3045 | and then Known_Static_RM_Size (Ctyp) | |
3046 | and then RM_Size (Ctyp) < 64 | |
3047 | then | |
3048 | declare | |
3049 | Lov : constant Uint := Expr_Value (Lo); | |
3050 | Hiv : constant Uint := Expr_Value (Hi); | |
3051 | Len : constant Uint := UI_Max | |
3052 | (Uint_0, | |
3053 | Hiv - Lov + 1); | |
3054 | Rsiz : constant Uint := RM_Size (Ctyp); | |
3055 | SZ : constant Node_Id := Size_Clause (E); | |
3056 | Btyp : constant Entity_Id := Base_Type (E); | |
3057 | ||
3058 | -- What we are looking for here is the situation where | |
3059 | -- the RM_Size given would be exactly right if there | |
3060 | -- was a pragma Pack (resulting in the component size | |
3061 | -- being the same as the RM_Size). Furthermore, the | |
3062 | -- component type size must be an odd size (not a | |
5a989c6b AC |
3063 | -- multiple of storage unit). If the component RM size |
3064 | -- is an exact number of storage units that is a power | |
3065 | -- of two, the array is not packed and has a standard | |
3066 | -- representation. | |
86cde7b1 RD |
3067 | |
3068 | begin | |
3069 | if RM_Size (E) = Len * Rsiz | |
3070 | and then Rsiz mod System_Storage_Unit /= 0 | |
3071 | then | |
3072 | -- For implicit packing mode, just set the | |
fd366a46 | 3073 | -- component size silently. |
86cde7b1 RD |
3074 | |
3075 | if Implicit_Packing then | |
3076 | Set_Component_Size (Btyp, Rsiz); | |
3077 | Set_Is_Bit_Packed_Array (Btyp); | |
3078 | Set_Is_Packed (Btyp); | |
3079 | Set_Has_Non_Standard_Rep (Btyp); | |
3080 | ||
3081 | -- Otherwise give an error message | |
3082 | ||
3083 | else | |
3084 | Error_Msg_NE | |
3085 | ("size given for& too small", SZ, E); | |
3086 | Error_Msg_N | |
3087 | ("\use explicit pragma Pack " | |
3088 | & "or use pragma Implicit_Packing", SZ); | |
3089 | end if; | |
5a989c6b AC |
3090 | |
3091 | elsif RM_Size (E) = Len * Rsiz | |
3092 | and then Implicit_Packing | |
3093 | and then | |
3094 | (Rsiz / System_Storage_Unit = 1 | |
3095 | or else Rsiz / System_Storage_Unit = 2 | |
3096 | or else Rsiz / System_Storage_Unit = 4) | |
3097 | then | |
3098 | ||
3099 | -- Not a packed array, but indicate the desired | |
3100 | -- component size, for the back-end. | |
3101 | ||
3102 | Set_Component_Size (Btyp, Rsiz); | |
86cde7b1 RD |
3103 | end if; |
3104 | end; | |
3105 | end if; | |
3106 | end if; | |
3107 | end; | |
3108 | end if; | |
3109 | ||
def46b54 RD |
3110 | -- If ancestor subtype present, freeze that first. Note that this |
3111 | -- will also get the base type frozen. | |
70482933 RK |
3112 | |
3113 | Atype := Ancestor_Subtype (E); | |
3114 | ||
3115 | if Present (Atype) then | |
3116 | Freeze_And_Append (Atype, Loc, Result); | |
3117 | ||
def46b54 RD |
3118 | -- Otherwise freeze the base type of the entity before freezing |
3119 | -- the entity itself (RM 13.14(15)). | |
70482933 RK |
3120 | |
3121 | elsif E /= Base_Type (E) then | |
3122 | Freeze_And_Append (Base_Type (E), Loc, Result); | |
3123 | end if; | |
3124 | ||
fbf5a39b | 3125 | -- For a derived type, freeze its parent type first (RM 13.14(15)) |
70482933 RK |
3126 | |
3127 | elsif Is_Derived_Type (E) then | |
3128 | Freeze_And_Append (Etype (E), Loc, Result); | |
3129 | Freeze_And_Append (First_Subtype (Etype (E)), Loc, Result); | |
3130 | end if; | |
3131 | ||
3132 | -- For array type, freeze index types and component type first | |
fbf5a39b | 3133 | -- before freezing the array (RM 13.14(15)). |
70482933 RK |
3134 | |
3135 | if Is_Array_Type (E) then | |
3136 | declare | |
fbf5a39b | 3137 | Ctyp : constant Entity_Id := Component_Type (E); |
70482933 RK |
3138 | |
3139 | Non_Standard_Enum : Boolean := False; | |
7d8b9c99 RD |
3140 | -- Set true if any of the index types is an enumeration type |
3141 | -- with a non-standard representation. | |
70482933 RK |
3142 | |
3143 | begin | |
3144 | Freeze_And_Append (Ctyp, Loc, Result); | |
3145 | ||
3146 | Indx := First_Index (E); | |
3147 | while Present (Indx) loop | |
3148 | Freeze_And_Append (Etype (Indx), Loc, Result); | |
3149 | ||
3150 | if Is_Enumeration_Type (Etype (Indx)) | |
3151 | and then Has_Non_Standard_Rep (Etype (Indx)) | |
3152 | then | |
3153 | Non_Standard_Enum := True; | |
3154 | end if; | |
3155 | ||
3156 | Next_Index (Indx); | |
3157 | end loop; | |
3158 | ||
07fc65c4 | 3159 | -- Processing that is done only for base types |
70482933 RK |
3160 | |
3161 | if Ekind (E) = E_Array_Type then | |
07fc65c4 GB |
3162 | |
3163 | -- Propagate flags for component type | |
3164 | ||
70482933 RK |
3165 | if Is_Controlled (Component_Type (E)) |
3166 | or else Has_Controlled_Component (Ctyp) | |
3167 | then | |
3168 | Set_Has_Controlled_Component (E); | |
3169 | end if; | |
3170 | ||
3171 | if Has_Unchecked_Union (Component_Type (E)) then | |
3172 | Set_Has_Unchecked_Union (E); | |
3173 | end if; | |
70482933 | 3174 | |
07fc65c4 GB |
3175 | -- If packing was requested or if the component size was set |
3176 | -- explicitly, then see if bit packing is required. This | |
3177 | -- processing is only done for base types, since all the | |
3178 | -- representation aspects involved are type-related. This | |
3179 | -- is not just an optimization, if we start processing the | |
e14c931f | 3180 | -- subtypes, they interfere with the settings on the base |
07fc65c4 GB |
3181 | -- type (this is because Is_Packed has a slightly different |
3182 | -- meaning before and after freezing). | |
70482933 | 3183 | |
70482933 RK |
3184 | declare |
3185 | Csiz : Uint; | |
3186 | Esiz : Uint; | |
3187 | ||
3188 | begin | |
3189 | if (Is_Packed (E) or else Has_Pragma_Pack (E)) | |
3190 | and then not Has_Atomic_Components (E) | |
3191 | and then Known_Static_RM_Size (Ctyp) | |
3192 | then | |
3193 | Csiz := UI_Max (RM_Size (Ctyp), 1); | |
3194 | ||
3195 | elsif Known_Component_Size (E) then | |
3196 | Csiz := Component_Size (E); | |
3197 | ||
3198 | elsif not Known_Static_Esize (Ctyp) then | |
3199 | Csiz := Uint_0; | |
3200 | ||
3201 | else | |
3202 | Esiz := Esize (Ctyp); | |
3203 | ||
3204 | -- We can set the component size if it is less than | |
3205 | -- 16, rounding it up to the next storage unit size. | |
3206 | ||
3207 | if Esiz <= 8 then | |
3208 | Csiz := Uint_8; | |
3209 | elsif Esiz <= 16 then | |
3210 | Csiz := Uint_16; | |
3211 | else | |
3212 | Csiz := Uint_0; | |
3213 | end if; | |
3214 | ||
7d8b9c99 RD |
3215 | -- Set component size up to match alignment if it |
3216 | -- would otherwise be less than the alignment. This | |
3217 | -- deals with cases of types whose alignment exceeds | |
3218 | -- their size (padded types). | |
70482933 RK |
3219 | |
3220 | if Csiz /= 0 then | |
3221 | declare | |
3222 | A : constant Uint := Alignment_In_Bits (Ctyp); | |
70482933 RK |
3223 | begin |
3224 | if Csiz < A then | |
3225 | Csiz := A; | |
3226 | end if; | |
3227 | end; | |
3228 | end if; | |
70482933 RK |
3229 | end if; |
3230 | ||
86cde7b1 RD |
3231 | -- Case of component size that may result in packing |
3232 | ||
70482933 | 3233 | if 1 <= Csiz and then Csiz <= 64 then |
86cde7b1 RD |
3234 | declare |
3235 | Ent : constant Entity_Id := | |
3236 | First_Subtype (E); | |
3237 | Pack_Pragma : constant Node_Id := | |
3238 | Get_Rep_Pragma (Ent, Name_Pack); | |
3239 | Comp_Size_C : constant Node_Id := | |
3240 | Get_Attribute_Definition_Clause | |
3241 | (Ent, Attribute_Component_Size); | |
3242 | begin | |
3243 | -- Warn if we have pack and component size so that | |
3244 | -- the pack is ignored. | |
70482933 | 3245 | |
86cde7b1 RD |
3246 | -- Note: here we must check for the presence of a |
3247 | -- component size before checking for a Pack pragma | |
3248 | -- to deal with the case where the array type is a | |
3249 | -- derived type whose parent is currently private. | |
3250 | ||
3251 | if Present (Comp_Size_C) | |
3252 | and then Has_Pragma_Pack (Ent) | |
3253 | then | |
3254 | Error_Msg_Sloc := Sloc (Comp_Size_C); | |
3255 | Error_Msg_NE | |
3256 | ("?pragma Pack for& ignored!", | |
3257 | Pack_Pragma, Ent); | |
3258 | Error_Msg_N | |
3259 | ("\?explicit component size given#!", | |
3260 | Pack_Pragma); | |
3261 | end if; | |
70482933 | 3262 | |
86cde7b1 RD |
3263 | -- Set component size if not already set by a |
3264 | -- component size clause. | |
70482933 | 3265 | |
86cde7b1 RD |
3266 | if not Present (Comp_Size_C) then |
3267 | Set_Component_Size (E, Csiz); | |
3268 | end if; | |
fbf5a39b | 3269 | |
86cde7b1 RD |
3270 | -- Check for base type of 8, 16, 32 bits, where an |
3271 | -- unsigned subtype has a length one less than the | |
3272 | -- base type (e.g. Natural subtype of Integer). | |
fbf5a39b | 3273 | |
86cde7b1 RD |
3274 | -- In such cases, if a component size was not set |
3275 | -- explicitly, then generate a warning. | |
fbf5a39b | 3276 | |
86cde7b1 RD |
3277 | if Has_Pragma_Pack (E) |
3278 | and then not Present (Comp_Size_C) | |
3279 | and then | |
3280 | (Csiz = 7 or else Csiz = 15 or else Csiz = 31) | |
3281 | and then Esize (Base_Type (Ctyp)) = Csiz + 1 | |
3282 | then | |
3283 | Error_Msg_Uint_1 := Csiz; | |
3284 | ||
3285 | if Present (Pack_Pragma) then | |
3286 | Error_Msg_N | |
3287 | ("?pragma Pack causes component size " | |
3288 | & "to be ^!", Pack_Pragma); | |
3289 | Error_Msg_N | |
3290 | ("\?use Component_Size to set " | |
3291 | & "desired value!", Pack_Pragma); | |
3292 | end if; | |
fbf5a39b | 3293 | end if; |
fbf5a39b | 3294 | |
86cde7b1 RD |
3295 | -- Actual packing is not needed for 8, 16, 32, 64. |
3296 | -- Also not needed for 24 if alignment is 1. | |
70482933 | 3297 | |
86cde7b1 RD |
3298 | if Csiz = 8 |
3299 | or else Csiz = 16 | |
3300 | or else Csiz = 32 | |
3301 | or else Csiz = 64 | |
3302 | or else (Csiz = 24 and then Alignment (Ctyp) = 1) | |
3303 | then | |
3304 | -- Here the array was requested to be packed, | |
3305 | -- but the packing request had no effect, so | |
3306 | -- Is_Packed is reset. | |
70482933 | 3307 | |
86cde7b1 RD |
3308 | -- Note: semantically this means that we lose |
3309 | -- track of the fact that a derived type | |
3310 | -- inherited a pragma Pack that was non- | |
3311 | -- effective, but that seems fine. | |
70482933 | 3312 | |
86cde7b1 RD |
3313 | -- We regard a Pack pragma as a request to set |
3314 | -- a representation characteristic, and this | |
3315 | -- request may be ignored. | |
70482933 | 3316 | |
86cde7b1 | 3317 | Set_Is_Packed (Base_Type (E), False); |
70482933 | 3318 | |
86cde7b1 | 3319 | -- In all other cases, packing is indeed needed |
70482933 | 3320 | |
86cde7b1 RD |
3321 | else |
3322 | Set_Has_Non_Standard_Rep (Base_Type (E)); | |
3323 | Set_Is_Bit_Packed_Array (Base_Type (E)); | |
3324 | Set_Is_Packed (Base_Type (E)); | |
3325 | end if; | |
3326 | end; | |
70482933 RK |
3327 | end if; |
3328 | end; | |
07fc65c4 GB |
3329 | |
3330 | -- Processing that is done only for subtypes | |
3331 | ||
3332 | else | |
3333 | -- Acquire alignment from base type | |
3334 | ||
3335 | if Unknown_Alignment (E) then | |
3336 | Set_Alignment (E, Alignment (Base_Type (E))); | |
7d8b9c99 | 3337 | Adjust_Esize_Alignment (E); |
07fc65c4 GB |
3338 | end if; |
3339 | end if; | |
3340 | ||
d05ef0ab AC |
3341 | -- For bit-packed arrays, check the size |
3342 | ||
75a64833 | 3343 | if Is_Bit_Packed_Array (E) and then Known_RM_Size (E) then |
d05ef0ab | 3344 | declare |
67ce0d7e RD |
3345 | SizC : constant Node_Id := Size_Clause (E); |
3346 | ||
d05ef0ab | 3347 | Discard : Boolean; |
67ce0d7e | 3348 | pragma Warnings (Off, Discard); |
d05ef0ab AC |
3349 | |
3350 | begin | |
3351 | -- It is not clear if it is possible to have no size | |
7d8b9c99 RD |
3352 | -- clause at this stage, but it is not worth worrying |
3353 | -- about. Post error on the entity name in the size | |
d05ef0ab AC |
3354 | -- clause if present, else on the type entity itself. |
3355 | ||
3356 | if Present (SizC) then | |
7d8b9c99 | 3357 | Check_Size (Name (SizC), E, RM_Size (E), Discard); |
d05ef0ab | 3358 | else |
7d8b9c99 | 3359 | Check_Size (E, E, RM_Size (E), Discard); |
d05ef0ab AC |
3360 | end if; |
3361 | end; | |
3362 | end if; | |
3363 | ||
70482933 RK |
3364 | -- If any of the index types was an enumeration type with |
3365 | -- a non-standard rep clause, then we indicate that the | |
3366 | -- array type is always packed (even if it is not bit packed). | |
3367 | ||
3368 | if Non_Standard_Enum then | |
3369 | Set_Has_Non_Standard_Rep (Base_Type (E)); | |
3370 | Set_Is_Packed (Base_Type (E)); | |
3371 | end if; | |
70482933 | 3372 | |
0da2c8ac | 3373 | Set_Component_Alignment_If_Not_Set (E); |
70482933 | 3374 | |
0da2c8ac AC |
3375 | -- If the array is packed, we must create the packed array |
3376 | -- type to be used to actually implement the type. This is | |
3377 | -- only needed for real array types (not for string literal | |
3378 | -- types, since they are present only for the front end). | |
70482933 | 3379 | |
0da2c8ac AC |
3380 | if Is_Packed (E) |
3381 | and then Ekind (E) /= E_String_Literal_Subtype | |
3382 | then | |
3383 | Create_Packed_Array_Type (E); | |
3384 | Freeze_And_Append (Packed_Array_Type (E), Loc, Result); | |
70482933 | 3385 | |
0da2c8ac | 3386 | -- Size information of packed array type is copied to the |
fea9e956 | 3387 | -- array type, since this is really the representation. But |
def46b54 RD |
3388 | -- do not override explicit existing size values. If the |
3389 | -- ancestor subtype is constrained the packed_array_type | |
3390 | -- will be inherited from it, but the size may have been | |
3391 | -- provided already, and must not be overridden either. | |
fea9e956 | 3392 | |
def46b54 RD |
3393 | if not Has_Size_Clause (E) |
3394 | and then | |
3395 | (No (Ancestor_Subtype (E)) | |
3396 | or else not Has_Size_Clause (Ancestor_Subtype (E))) | |
3397 | then | |
fea9e956 ES |
3398 | Set_Esize (E, Esize (Packed_Array_Type (E))); |
3399 | Set_RM_Size (E, RM_Size (Packed_Array_Type (E))); | |
3400 | end if; | |
70482933 | 3401 | |
fea9e956 ES |
3402 | if not Has_Alignment_Clause (E) then |
3403 | Set_Alignment (E, Alignment (Packed_Array_Type (E))); | |
3404 | end if; | |
0da2c8ac AC |
3405 | end if; |
3406 | ||
def46b54 RD |
3407 | -- For non-packed arrays set the alignment of the array to the |
3408 | -- alignment of the component type if it is unknown. Skip this | |
3409 | -- in atomic case (atomic arrays may need larger alignments). | |
0da2c8ac AC |
3410 | |
3411 | if not Is_Packed (E) | |
3412 | and then Unknown_Alignment (E) | |
3413 | and then Known_Alignment (Ctyp) | |
3414 | and then Known_Static_Component_Size (E) | |
3415 | and then Known_Static_Esize (Ctyp) | |
3416 | and then Esize (Ctyp) = Component_Size (E) | |
3417 | and then not Is_Atomic (E) | |
3418 | then | |
3419 | Set_Alignment (E, Alignment (Component_Type (E))); | |
3420 | end if; | |
3421 | end; | |
70482933 | 3422 | |
fbf5a39b AC |
3423 | -- For a class-wide type, the corresponding specific type is |
3424 | -- frozen as well (RM 13.14(15)) | |
70482933 RK |
3425 | |
3426 | elsif Is_Class_Wide_Type (E) then | |
3427 | Freeze_And_Append (Root_Type (E), Loc, Result); | |
3428 | ||
86cde7b1 RD |
3429 | -- If the base type of the class-wide type is still incomplete, |
3430 | -- the class-wide remains unfrozen as well. This is legal when | |
3431 | -- E is the formal of a primitive operation of some other type | |
3432 | -- which is being frozen. | |
3433 | ||
3434 | if not Is_Frozen (Root_Type (E)) then | |
3435 | Set_Is_Frozen (E, False); | |
3436 | return Result; | |
3437 | end if; | |
3438 | ||
70482933 RK |
3439 | -- If the Class_Wide_Type is an Itype (when type is the anonymous |
3440 | -- parent of a derived type) and it is a library-level entity, | |
3441 | -- generate an itype reference for it. Otherwise, its first | |
3442 | -- explicit reference may be in an inner scope, which will be | |
3443 | -- rejected by the back-end. | |
3444 | ||
3445 | if Is_Itype (E) | |
3446 | and then Is_Compilation_Unit (Scope (E)) | |
3447 | then | |
70482933 | 3448 | declare |
fbf5a39b | 3449 | Ref : constant Node_Id := Make_Itype_Reference (Loc); |
70482933 RK |
3450 | |
3451 | begin | |
3452 | Set_Itype (Ref, E); | |
3453 | if No (Result) then | |
3454 | Result := New_List (Ref); | |
3455 | else | |
3456 | Append (Ref, Result); | |
3457 | end if; | |
3458 | end; | |
3459 | end if; | |
3460 | ||
def46b54 RD |
3461 | -- The equivalent type associated with a class-wide subtype needs |
3462 | -- to be frozen to ensure that its layout is done. Class-wide | |
3463 | -- subtypes are currently only frozen on targets requiring | |
3464 | -- front-end layout (see New_Class_Wide_Subtype and | |
3465 | -- Make_CW_Equivalent_Type in exp_util.adb). | |
fbf5a39b AC |
3466 | |
3467 | if Ekind (E) = E_Class_Wide_Subtype | |
3468 | and then Present (Equivalent_Type (E)) | |
3469 | then | |
3470 | Freeze_And_Append (Equivalent_Type (E), Loc, Result); | |
3471 | end if; | |
3472 | ||
3473 | -- For a record (sub)type, freeze all the component types (RM | |
def46b54 RD |
3474 | -- 13.14(15). We test for E_Record_(sub)Type here, rather than using |
3475 | -- Is_Record_Type, because we don't want to attempt the freeze for | |
3476 | -- the case of a private type with record extension (we will do that | |
3477 | -- later when the full type is frozen). | |
70482933 RK |
3478 | |
3479 | elsif Ekind (E) = E_Record_Type | |
fd366a46 | 3480 | or else Ekind (E) = E_Record_Subtype |
70482933 RK |
3481 | then |
3482 | Freeze_Record_Type (E); | |
3483 | ||
3484 | -- For a concurrent type, freeze corresponding record type. This | |
e14c931f | 3485 | -- does not correspond to any specific rule in the RM, but the |
70482933 RK |
3486 | -- record type is essentially part of the concurrent type. |
3487 | -- Freeze as well all local entities. This includes record types | |
3488 | -- created for entry parameter blocks, and whatever local entities | |
3489 | -- may appear in the private part. | |
3490 | ||
3491 | elsif Is_Concurrent_Type (E) then | |
3492 | if Present (Corresponding_Record_Type (E)) then | |
3493 | Freeze_And_Append | |
3494 | (Corresponding_Record_Type (E), Loc, Result); | |
3495 | end if; | |
3496 | ||
3497 | Comp := First_Entity (E); | |
70482933 RK |
3498 | while Present (Comp) loop |
3499 | if Is_Type (Comp) then | |
3500 | Freeze_And_Append (Comp, Loc, Result); | |
3501 | ||
3502 | elsif (Ekind (Comp)) /= E_Function then | |
c6823a20 EB |
3503 | if Is_Itype (Etype (Comp)) |
3504 | and then Underlying_Type (Scope (Etype (Comp))) = E | |
3505 | then | |
3506 | Undelay_Type (Etype (Comp)); | |
3507 | end if; | |
3508 | ||
70482933 RK |
3509 | Freeze_And_Append (Etype (Comp), Loc, Result); |
3510 | end if; | |
3511 | ||
3512 | Next_Entity (Comp); | |
3513 | end loop; | |
3514 | ||
ee094616 RD |
3515 | -- Private types are required to point to the same freeze node as |
3516 | -- their corresponding full views. The freeze node itself has to | |
3517 | -- point to the partial view of the entity (because from the partial | |
3518 | -- view, we can retrieve the full view, but not the reverse). | |
3519 | -- However, in order to freeze correctly, we need to freeze the full | |
3520 | -- view. If we are freezing at the end of a scope (or within the | |
3521 | -- scope of the private type), the partial and full views will have | |
3522 | -- been swapped, the full view appears first in the entity chain and | |
3523 | -- the swapping mechanism ensures that the pointers are properly set | |
3524 | -- (on scope exit). | |
3525 | ||
3526 | -- If we encounter the partial view before the full view (e.g. when | |
3527 | -- freezing from another scope), we freeze the full view, and then | |
3528 | -- set the pointers appropriately since we cannot rely on swapping to | |
3529 | -- fix things up (subtypes in an outer scope might not get swapped). | |
70482933 RK |
3530 | |
3531 | elsif Is_Incomplete_Or_Private_Type (E) | |
3532 | and then not Is_Generic_Type (E) | |
3533 | then | |
86cde7b1 RD |
3534 | -- The construction of the dispatch table associated with library |
3535 | -- level tagged types forces freezing of all the primitives of the | |
3536 | -- type, which may cause premature freezing of the partial view. | |
3537 | -- For example: | |
3538 | ||
3539 | -- package Pkg is | |
3540 | -- type T is tagged private; | |
3541 | -- type DT is new T with private; | |
3542 | -- procedure Prim (X : in out T; Y : in out DT'class); | |
3543 | -- private | |
3544 | -- type T is tagged null record; | |
3545 | -- Obj : T; | |
3546 | -- type DT is new T with null record; | |
3547 | -- end; | |
3548 | ||
3549 | -- In this case the type will be frozen later by the usual | |
3550 | -- mechanism: an object declaration, an instantiation, or the | |
3551 | -- end of a declarative part. | |
3552 | ||
3553 | if Is_Library_Level_Tagged_Type (E) | |
3554 | and then not Present (Full_View (E)) | |
3555 | then | |
3556 | Set_Is_Frozen (E, False); | |
3557 | return Result; | |
3558 | ||
70482933 RK |
3559 | -- Case of full view present |
3560 | ||
86cde7b1 | 3561 | elsif Present (Full_View (E)) then |
70482933 | 3562 | |
ee094616 RD |
3563 | -- If full view has already been frozen, then no further |
3564 | -- processing is required | |
70482933 RK |
3565 | |
3566 | if Is_Frozen (Full_View (E)) then | |
3567 | ||
3568 | Set_Has_Delayed_Freeze (E, False); | |
3569 | Set_Freeze_Node (E, Empty); | |
3570 | Check_Debug_Info_Needed (E); | |
3571 | ||
ee094616 RD |
3572 | -- Otherwise freeze full view and patch the pointers so that |
3573 | -- the freeze node will elaborate both views in the back-end. | |
70482933 RK |
3574 | |
3575 | else | |
fbf5a39b AC |
3576 | declare |
3577 | Full : constant Entity_Id := Full_View (E); | |
70482933 | 3578 | |
fbf5a39b AC |
3579 | begin |
3580 | if Is_Private_Type (Full) | |
3581 | and then Present (Underlying_Full_View (Full)) | |
3582 | then | |
3583 | Freeze_And_Append | |
3584 | (Underlying_Full_View (Full), Loc, Result); | |
3585 | end if; | |
70482933 | 3586 | |
fbf5a39b | 3587 | Freeze_And_Append (Full, Loc, Result); |
70482933 | 3588 | |
fbf5a39b AC |
3589 | if Has_Delayed_Freeze (E) then |
3590 | F_Node := Freeze_Node (Full); | |
70482933 | 3591 | |
fbf5a39b AC |
3592 | if Present (F_Node) then |
3593 | Set_Freeze_Node (E, F_Node); | |
3594 | Set_Entity (F_Node, E); | |
3595 | ||
3596 | else | |
def46b54 RD |
3597 | -- {Incomplete,Private}_Subtypes with Full_Views |
3598 | -- constrained by discriminants. | |
fbf5a39b AC |
3599 | |
3600 | Set_Has_Delayed_Freeze (E, False); | |
3601 | Set_Freeze_Node (E, Empty); | |
3602 | end if; | |
70482933 | 3603 | end if; |
fbf5a39b | 3604 | end; |
70482933 RK |
3605 | |
3606 | Check_Debug_Info_Needed (E); | |
3607 | end if; | |
3608 | ||
ee094616 RD |
3609 | -- AI-117 requires that the convention of a partial view be the |
3610 | -- same as the convention of the full view. Note that this is a | |
3611 | -- recognized breach of privacy, but it's essential for logical | |
3612 | -- consistency of representation, and the lack of a rule in | |
3613 | -- RM95 was an oversight. | |
70482933 RK |
3614 | |
3615 | Set_Convention (E, Convention (Full_View (E))); | |
3616 | ||
3617 | Set_Size_Known_At_Compile_Time (E, | |
3618 | Size_Known_At_Compile_Time (Full_View (E))); | |
3619 | ||
3620 | -- Size information is copied from the full view to the | |
def46b54 | 3621 | -- incomplete or private view for consistency. |
70482933 | 3622 | |
ee094616 RD |
3623 | -- We skip this is the full view is not a type. This is very |
3624 | -- strange of course, and can only happen as a result of | |
3625 | -- certain illegalities, such as a premature attempt to derive | |
3626 | -- from an incomplete type. | |
70482933 RK |
3627 | |
3628 | if Is_Type (Full_View (E)) then | |
3629 | Set_Size_Info (E, Full_View (E)); | |
3630 | Set_RM_Size (E, RM_Size (Full_View (E))); | |
3631 | end if; | |
3632 | ||
3633 | return Result; | |
3634 | ||
3635 | -- Case of no full view present. If entity is derived or subtype, | |
3636 | -- it is safe to freeze, correctness depends on the frozen status | |
3637 | -- of parent. Otherwise it is either premature usage, or a Taft | |
3638 | -- amendment type, so diagnosis is at the point of use and the | |
3639 | -- type might be frozen later. | |
3640 | ||
3641 | elsif E /= Base_Type (E) | |
3642 | or else Is_Derived_Type (E) | |
3643 | then | |
3644 | null; | |
3645 | ||
3646 | else | |
3647 | Set_Is_Frozen (E, False); | |
3648 | return No_List; | |
3649 | end if; | |
3650 | ||
3651 | -- For access subprogram, freeze types of all formals, the return | |
3652 | -- type was already frozen, since it is the Etype of the function. | |
8aec446b | 3653 | -- Formal types can be tagged Taft amendment types, but otherwise |
205c14b0 | 3654 | -- they cannot be incomplete. |
70482933 RK |
3655 | |
3656 | elsif Ekind (E) = E_Subprogram_Type then | |
3657 | Formal := First_Formal (E); | |
8aec446b | 3658 | |
70482933 | 3659 | while Present (Formal) loop |
8aec446b AC |
3660 | if Ekind (Etype (Formal)) = E_Incomplete_Type |
3661 | and then No (Full_View (Etype (Formal))) | |
3662 | and then not Is_Value_Type (Etype (Formal)) | |
3663 | then | |
3664 | if Is_Tagged_Type (Etype (Formal)) then | |
3665 | null; | |
3666 | else | |
3667 | Error_Msg_NE | |
3668 | ("invalid use of incomplete type&", E, Etype (Formal)); | |
3669 | end if; | |
3670 | end if; | |
3671 | ||
70482933 RK |
3672 | Freeze_And_Append (Etype (Formal), Loc, Result); |
3673 | Next_Formal (Formal); | |
3674 | end loop; | |
3675 | ||
70482933 RK |
3676 | Freeze_Subprogram (E); |
3677 | ||
ee094616 RD |
3678 | -- For access to a protected subprogram, freeze the equivalent type |
3679 | -- (however this is not set if we are not generating code or if this | |
3680 | -- is an anonymous type used just for resolution). | |
70482933 | 3681 | |
fea9e956 | 3682 | elsif Is_Access_Protected_Subprogram_Type (E) then |
57747aec | 3683 | if Present (Equivalent_Type (E)) then |
d8db0bca JM |
3684 | Freeze_And_Append (Equivalent_Type (E), Loc, Result); |
3685 | end if; | |
70482933 RK |
3686 | end if; |
3687 | ||
3688 | -- Generic types are never seen by the back-end, and are also not | |
3689 | -- processed by the expander (since the expander is turned off for | |
3690 | -- generic processing), so we never need freeze nodes for them. | |
3691 | ||
3692 | if Is_Generic_Type (E) then | |
3693 | return Result; | |
3694 | end if; | |
3695 | ||
3696 | -- Some special processing for non-generic types to complete | |
3697 | -- representation details not known till the freeze point. | |
3698 | ||
3699 | if Is_Fixed_Point_Type (E) then | |
3700 | Freeze_Fixed_Point_Type (E); | |
3701 | ||
ee094616 RD |
3702 | -- Some error checks required for ordinary fixed-point type. Defer |
3703 | -- these till the freeze-point since we need the small and range | |
3704 | -- values. We only do these checks for base types | |
fbf5a39b AC |
3705 | |
3706 | if Is_Ordinary_Fixed_Point_Type (E) | |
3707 | and then E = Base_Type (E) | |
3708 | then | |
3709 | if Small_Value (E) < Ureal_2_M_80 then | |
3710 | Error_Msg_Name_1 := Name_Small; | |
3711 | Error_Msg_N | |
7d8b9c99 | 3712 | ("`&''%` too small, minimum allowed is 2.0'*'*(-80)", E); |
fbf5a39b AC |
3713 | |
3714 | elsif Small_Value (E) > Ureal_2_80 then | |
3715 | Error_Msg_Name_1 := Name_Small; | |
3716 | Error_Msg_N | |
7d8b9c99 | 3717 | ("`&''%` too large, maximum allowed is 2.0'*'*80", E); |
fbf5a39b AC |
3718 | end if; |
3719 | ||
3720 | if Expr_Value_R (Type_Low_Bound (E)) < Ureal_M_10_36 then | |
3721 | Error_Msg_Name_1 := Name_First; | |
3722 | Error_Msg_N | |
7d8b9c99 | 3723 | ("`&''%` too small, minimum allowed is -10.0'*'*36", E); |
fbf5a39b AC |
3724 | end if; |
3725 | ||
3726 | if Expr_Value_R (Type_High_Bound (E)) > Ureal_10_36 then | |
3727 | Error_Msg_Name_1 := Name_Last; | |
3728 | Error_Msg_N | |
7d8b9c99 | 3729 | ("`&''%` too large, maximum allowed is 10.0'*'*36", E); |
fbf5a39b AC |
3730 | end if; |
3731 | end if; | |
3732 | ||
70482933 RK |
3733 | elsif Is_Enumeration_Type (E) then |
3734 | Freeze_Enumeration_Type (E); | |
3735 | ||
3736 | elsif Is_Integer_Type (E) then | |
3737 | Adjust_Esize_For_Alignment (E); | |
3738 | ||
79afa047 AC |
3739 | if Is_Modular_Integer_Type (E) |
3740 | and then Warn_On_Suspicious_Modulus_Value | |
3741 | then | |
67b3acf8 RD |
3742 | Check_Suspicious_Modulus (E); |
3743 | end if; | |
3744 | ||
edd63e9b ES |
3745 | elsif Is_Access_Type (E) then |
3746 | ||
3747 | -- Check restriction for standard storage pool | |
3748 | ||
3749 | if No (Associated_Storage_Pool (E)) then | |
3750 | Check_Restriction (No_Standard_Storage_Pools, E); | |
3751 | end if; | |
3752 | ||
3753 | -- Deal with error message for pure access type. This is not an | |
3754 | -- error in Ada 2005 if there is no pool (see AI-366). | |
3755 | ||
3756 | if Is_Pure_Unit_Access_Type (E) | |
3757 | and then (Ada_Version < Ada_05 | |
c6a9797e | 3758 | or else not No_Pool_Assigned (E)) |
edd63e9b ES |
3759 | then |
3760 | Error_Msg_N ("named access type not allowed in pure unit", E); | |
c6a9797e RD |
3761 | |
3762 | if Ada_Version >= Ada_05 then | |
3763 | Error_Msg_N | |
3764 | ("\would be legal if Storage_Size of 0 given?", E); | |
3765 | ||
3766 | elsif No_Pool_Assigned (E) then | |
3767 | Error_Msg_N | |
3768 | ("\would be legal in Ada 2005?", E); | |
3769 | ||
3770 | else | |
3771 | Error_Msg_N | |
3772 | ("\would be legal in Ada 2005 if " | |
3773 | & "Storage_Size of 0 given?", E); | |
3774 | end if; | |
edd63e9b | 3775 | end if; |
70482933 RK |
3776 | end if; |
3777 | ||
edd63e9b ES |
3778 | -- Case of composite types |
3779 | ||
70482933 RK |
3780 | if Is_Composite_Type (E) then |
3781 | ||
edd63e9b ES |
3782 | -- AI-117 requires that all new primitives of a tagged type must |
3783 | -- inherit the convention of the full view of the type. Inherited | |
3784 | -- and overriding operations are defined to inherit the convention | |
3785 | -- of their parent or overridden subprogram (also specified in | |
ee094616 RD |
3786 | -- AI-117), which will have occurred earlier (in Derive_Subprogram |
3787 | -- and New_Overloaded_Entity). Here we set the convention of | |
3788 | -- primitives that are still convention Ada, which will ensure | |
def46b54 RD |
3789 | -- that any new primitives inherit the type's convention. Class- |
3790 | -- wide types can have a foreign convention inherited from their | |
3791 | -- specific type, but are excluded from this since they don't have | |
3792 | -- any associated primitives. | |
70482933 RK |
3793 | |
3794 | if Is_Tagged_Type (E) | |
3795 | and then not Is_Class_Wide_Type (E) | |
3796 | and then Convention (E) /= Convention_Ada | |
3797 | then | |
3798 | declare | |
3799 | Prim_List : constant Elist_Id := Primitive_Operations (E); | |
07fc65c4 | 3800 | Prim : Elmt_Id; |
70482933 | 3801 | begin |
07fc65c4 | 3802 | Prim := First_Elmt (Prim_List); |
70482933 RK |
3803 | while Present (Prim) loop |
3804 | if Convention (Node (Prim)) = Convention_Ada then | |
3805 | Set_Convention (Node (Prim), Convention (E)); | |
3806 | end if; | |
3807 | ||
3808 | Next_Elmt (Prim); | |
3809 | end loop; | |
3810 | end; | |
3811 | end if; | |
3812 | end if; | |
3813 | ||
ee094616 RD |
3814 | -- Now that all types from which E may depend are frozen, see if the |
3815 | -- size is known at compile time, if it must be unsigned, or if | |
7d8b9c99 | 3816 | -- strict alignment is required |
70482933 RK |
3817 | |
3818 | Check_Compile_Time_Size (E); | |
3819 | Check_Unsigned_Type (E); | |
3820 | ||
3821 | if Base_Type (E) = E then | |
3822 | Check_Strict_Alignment (E); | |
3823 | end if; | |
3824 | ||
3825 | -- Do not allow a size clause for a type which does not have a size | |
3826 | -- that is known at compile time | |
3827 | ||
3828 | if Has_Size_Clause (E) | |
3829 | and then not Size_Known_At_Compile_Time (E) | |
3830 | then | |
e14c931f | 3831 | -- Suppress this message if errors posted on E, even if we are |
07fc65c4 GB |
3832 | -- in all errors mode, since this is often a junk message |
3833 | ||
3834 | if not Error_Posted (E) then | |
3835 | Error_Msg_N | |
3836 | ("size clause not allowed for variable length type", | |
3837 | Size_Clause (E)); | |
3838 | end if; | |
70482933 RK |
3839 | end if; |
3840 | ||
3841 | -- Remaining process is to set/verify the representation information, | |
3842 | -- in particular the size and alignment values. This processing is | |
3843 | -- not required for generic types, since generic types do not play | |
3844 | -- any part in code generation, and so the size and alignment values | |
c6823a20 | 3845 | -- for such types are irrelevant. |
70482933 RK |
3846 | |
3847 | if Is_Generic_Type (E) then | |
3848 | return Result; | |
3849 | ||
3850 | -- Otherwise we call the layout procedure | |
3851 | ||
3852 | else | |
3853 | Layout_Type (E); | |
3854 | end if; | |
3855 | ||
3856 | -- End of freeze processing for type entities | |
3857 | end if; | |
3858 | ||
3859 | -- Here is where we logically freeze the current entity. If it has a | |
3860 | -- freeze node, then this is the point at which the freeze node is | |
3861 | -- linked into the result list. | |
3862 | ||
3863 | if Has_Delayed_Freeze (E) then | |
3864 | ||
3865 | -- If a freeze node is already allocated, use it, otherwise allocate | |
3866 | -- a new one. The preallocation happens in the case of anonymous base | |
3867 | -- types, where we preallocate so that we can set First_Subtype_Link. | |
3868 | -- Note that we reset the Sloc to the current freeze location. | |
3869 | ||
3870 | if Present (Freeze_Node (E)) then | |
3871 | F_Node := Freeze_Node (E); | |
3872 | Set_Sloc (F_Node, Loc); | |
3873 | ||
3874 | else | |
3875 | F_Node := New_Node (N_Freeze_Entity, Loc); | |
3876 | Set_Freeze_Node (E, F_Node); | |
3877 | Set_Access_Types_To_Process (F_Node, No_Elist); | |
3878 | Set_TSS_Elist (F_Node, No_Elist); | |
3879 | Set_Actions (F_Node, No_List); | |
3880 | end if; | |
3881 | ||
3882 | Set_Entity (F_Node, E); | |
3883 | ||
3884 | if Result = No_List then | |
3885 | Result := New_List (F_Node); | |
3886 | else | |
3887 | Append (F_Node, Result); | |
3888 | end if; | |
35ae2ed8 AC |
3889 | |
3890 | -- A final pass over record types with discriminants. If the type | |
3891 | -- has an incomplete declaration, there may be constrained access | |
3892 | -- subtypes declared elsewhere, which do not depend on the discrimi- | |
3893 | -- nants of the type, and which are used as component types (i.e. | |
3894 | -- the full view is a recursive type). The designated types of these | |
3895 | -- subtypes can only be elaborated after the type itself, and they | |
3896 | -- need an itype reference. | |
3897 | ||
3898 | if Ekind (E) = E_Record_Type | |
3899 | and then Has_Discriminants (E) | |
3900 | then | |
3901 | declare | |
3902 | Comp : Entity_Id; | |
3903 | IR : Node_Id; | |
3904 | Typ : Entity_Id; | |
3905 | ||
3906 | begin | |
3907 | Comp := First_Component (E); | |
3908 | ||
3909 | while Present (Comp) loop | |
3910 | Typ := Etype (Comp); | |
3911 | ||
3912 | if Ekind (Comp) = E_Component | |
3913 | and then Is_Access_Type (Typ) | |
3914 | and then Scope (Typ) /= E | |
3915 | and then Base_Type (Designated_Type (Typ)) = E | |
3916 | and then Is_Itype (Designated_Type (Typ)) | |
3917 | then | |
3918 | IR := Make_Itype_Reference (Sloc (Comp)); | |
3919 | Set_Itype (IR, Designated_Type (Typ)); | |
3920 | Append (IR, Result); | |
3921 | end if; | |
3922 | ||
3923 | Next_Component (Comp); | |
3924 | end loop; | |
3925 | end; | |
3926 | end if; | |
70482933 RK |
3927 | end if; |
3928 | ||
3929 | -- When a type is frozen, the first subtype of the type is frozen as | |
3930 | -- well (RM 13.14(15)). This has to be done after freezing the type, | |
3931 | -- since obviously the first subtype depends on its own base type. | |
3932 | ||
3933 | if Is_Type (E) then | |
3934 | Freeze_And_Append (First_Subtype (E), Loc, Result); | |
3935 | ||
3936 | -- If we just froze a tagged non-class wide record, then freeze the | |
3937 | -- corresponding class-wide type. This must be done after the tagged | |
3938 | -- type itself is frozen, because the class-wide type refers to the | |
3939 | -- tagged type which generates the class. | |
3940 | ||
3941 | if Is_Tagged_Type (E) | |
3942 | and then not Is_Class_Wide_Type (E) | |
3943 | and then Present (Class_Wide_Type (E)) | |
3944 | then | |
3945 | Freeze_And_Append (Class_Wide_Type (E), Loc, Result); | |
3946 | end if; | |
3947 | end if; | |
3948 | ||
3949 | Check_Debug_Info_Needed (E); | |
3950 | ||
3951 | -- Special handling for subprograms | |
3952 | ||
3953 | if Is_Subprogram (E) then | |
3954 | ||
3955 | -- If subprogram has address clause then reset Is_Public flag, since | |
3956 | -- we do not want the backend to generate external references. | |
3957 | ||
3958 | if Present (Address_Clause (E)) | |
3959 | and then not Is_Library_Level_Entity (E) | |
3960 | then | |
3961 | Set_Is_Public (E, False); | |
3962 | ||
3963 | -- If no address clause and not intrinsic, then for imported | |
3964 | -- subprogram in main unit, generate descriptor if we are in | |
3965 | -- Propagate_Exceptions mode. | |
3966 | ||
3967 | elsif Propagate_Exceptions | |
3968 | and then Is_Imported (E) | |
3969 | and then not Is_Intrinsic_Subprogram (E) | |
3970 | and then Convention (E) /= Convention_Stubbed | |
3971 | then | |
3972 | if Result = No_List then | |
3973 | Result := Empty_List; | |
3974 | end if; | |
70482933 | 3975 | end if; |
70482933 RK |
3976 | end if; |
3977 | ||
3978 | return Result; | |
3979 | end Freeze_Entity; | |
3980 | ||
3981 | ----------------------------- | |
3982 | -- Freeze_Enumeration_Type -- | |
3983 | ----------------------------- | |
3984 | ||
3985 | procedure Freeze_Enumeration_Type (Typ : Entity_Id) is | |
3986 | begin | |
d677afa9 ES |
3987 | -- By default, if no size clause is present, an enumeration type with |
3988 | -- Convention C is assumed to interface to a C enum, and has integer | |
3989 | -- size. This applies to types. For subtypes, verify that its base | |
3990 | -- type has no size clause either. | |
3991 | ||
70482933 RK |
3992 | if Has_Foreign_Convention (Typ) |
3993 | and then not Has_Size_Clause (Typ) | |
d677afa9 | 3994 | and then not Has_Size_Clause (Base_Type (Typ)) |
70482933 RK |
3995 | and then Esize (Typ) < Standard_Integer_Size |
3996 | then | |
3997 | Init_Esize (Typ, Standard_Integer_Size); | |
d677afa9 | 3998 | |
70482933 | 3999 | else |
d677afa9 ES |
4000 | -- If the enumeration type interfaces to C, and it has a size clause |
4001 | -- that specifies less than int size, it warrants a warning. The | |
4002 | -- user may intend the C type to be an enum or a char, so this is | |
4003 | -- not by itself an error that the Ada compiler can detect, but it | |
4004 | -- it is a worth a heads-up. For Boolean and Character types we | |
4005 | -- assume that the programmer has the proper C type in mind. | |
4006 | ||
4007 | if Convention (Typ) = Convention_C | |
4008 | and then Has_Size_Clause (Typ) | |
4009 | and then Esize (Typ) /= Esize (Standard_Integer) | |
4010 | and then not Is_Boolean_Type (Typ) | |
4011 | and then not Is_Character_Type (Typ) | |
4012 | then | |
4013 | Error_Msg_N | |
4014 | ("C enum types have the size of a C int?", Size_Clause (Typ)); | |
4015 | end if; | |
4016 | ||
70482933 RK |
4017 | Adjust_Esize_For_Alignment (Typ); |
4018 | end if; | |
4019 | end Freeze_Enumeration_Type; | |
4020 | ||
4021 | ----------------------- | |
4022 | -- Freeze_Expression -- | |
4023 | ----------------------- | |
4024 | ||
4025 | procedure Freeze_Expression (N : Node_Id) is | |
c6a9797e RD |
4026 | In_Spec_Exp : constant Boolean := In_Spec_Expression; |
4027 | Typ : Entity_Id; | |
4028 | Nam : Entity_Id; | |
4029 | Desig_Typ : Entity_Id; | |
4030 | P : Node_Id; | |
4031 | Parent_P : Node_Id; | |
70482933 RK |
4032 | |
4033 | Freeze_Outside : Boolean := False; | |
4034 | -- This flag is set true if the entity must be frozen outside the | |
4035 | -- current subprogram. This happens in the case of expander generated | |
4036 | -- subprograms (_Init_Proc, _Input, _Output, _Read, _Write) which do | |
4037 | -- not freeze all entities like other bodies, but which nevertheless | |
4038 | -- may reference entities that have to be frozen before the body and | |
4039 | -- obviously cannot be frozen inside the body. | |
4040 | ||
4041 | function In_Exp_Body (N : Node_Id) return Boolean; | |
4042 | -- Given an N_Handled_Sequence_Of_Statements node N, determines whether | |
c6823a20 | 4043 | -- it is the handled statement sequence of an expander-generated |
7d8b9c99 RD |
4044 | -- subprogram (init proc, stream subprogram, or renaming as body). |
4045 | -- If so, this is not a freezing context. | |
70482933 | 4046 | |
fbf5a39b AC |
4047 | ----------------- |
4048 | -- In_Exp_Body -- | |
4049 | ----------------- | |
4050 | ||
70482933 | 4051 | function In_Exp_Body (N : Node_Id) return Boolean is |
7d8b9c99 RD |
4052 | P : Node_Id; |
4053 | Id : Entity_Id; | |
70482933 RK |
4054 | |
4055 | begin | |
4056 | if Nkind (N) = N_Subprogram_Body then | |
4057 | P := N; | |
4058 | else | |
4059 | P := Parent (N); | |
4060 | end if; | |
4061 | ||
4062 | if Nkind (P) /= N_Subprogram_Body then | |
4063 | return False; | |
4064 | ||
4065 | else | |
7d8b9c99 RD |
4066 | Id := Defining_Unit_Name (Specification (P)); |
4067 | ||
4068 | if Nkind (Id) = N_Defining_Identifier | |
4069 | and then (Is_Init_Proc (Id) or else | |
4070 | Is_TSS (Id, TSS_Stream_Input) or else | |
4071 | Is_TSS (Id, TSS_Stream_Output) or else | |
4072 | Is_TSS (Id, TSS_Stream_Read) or else | |
4073 | Is_TSS (Id, TSS_Stream_Write) or else | |
4074 | Nkind (Original_Node (P)) = | |
4075 | N_Subprogram_Renaming_Declaration) | |
70482933 RK |
4076 | then |
4077 | return True; | |
4078 | else | |
4079 | return False; | |
4080 | end if; | |
4081 | end if; | |
70482933 RK |
4082 | end In_Exp_Body; |
4083 | ||
4084 | -- Start of processing for Freeze_Expression | |
4085 | ||
4086 | begin | |
edd63e9b ES |
4087 | -- Immediate return if freezing is inhibited. This flag is set by the |
4088 | -- analyzer to stop freezing on generated expressions that would cause | |
4089 | -- freezing if they were in the source program, but which are not | |
4090 | -- supposed to freeze, since they are created. | |
70482933 RK |
4091 | |
4092 | if Must_Not_Freeze (N) then | |
4093 | return; | |
4094 | end if; | |
4095 | ||
4096 | -- If expression is non-static, then it does not freeze in a default | |
4097 | -- expression, see section "Handling of Default Expressions" in the | |
4098 | -- spec of package Sem for further details. Note that we have to | |
4099 | -- make sure that we actually have a real expression (if we have | |
4100 | -- a subtype indication, we can't test Is_Static_Expression!) | |
4101 | ||
c6a9797e | 4102 | if In_Spec_Exp |
70482933 RK |
4103 | and then Nkind (N) in N_Subexpr |
4104 | and then not Is_Static_Expression (N) | |
4105 | then | |
4106 | return; | |
4107 | end if; | |
4108 | ||
4109 | -- Freeze type of expression if not frozen already | |
4110 | ||
fbf5a39b AC |
4111 | Typ := Empty; |
4112 | ||
4113 | if Nkind (N) in N_Has_Etype then | |
4114 | if not Is_Frozen (Etype (N)) then | |
4115 | Typ := Etype (N); | |
4116 | ||
4117 | -- Base type may be an derived numeric type that is frozen at | |
4118 | -- the point of declaration, but first_subtype is still unfrozen. | |
4119 | ||
4120 | elsif not Is_Frozen (First_Subtype (Etype (N))) then | |
4121 | Typ := First_Subtype (Etype (N)); | |
4122 | end if; | |
70482933 RK |
4123 | end if; |
4124 | ||
4125 | -- For entity name, freeze entity if not frozen already. A special | |
4126 | -- exception occurs for an identifier that did not come from source. | |
4127 | -- We don't let such identifiers freeze a non-internal entity, i.e. | |
4128 | -- an entity that did come from source, since such an identifier was | |
4129 | -- generated by the expander, and cannot have any semantic effect on | |
4130 | -- the freezing semantics. For example, this stops the parameter of | |
4131 | -- an initialization procedure from freezing the variable. | |
4132 | ||
4133 | if Is_Entity_Name (N) | |
4134 | and then not Is_Frozen (Entity (N)) | |
4135 | and then (Nkind (N) /= N_Identifier | |
4136 | or else Comes_From_Source (N) | |
4137 | or else not Comes_From_Source (Entity (N))) | |
4138 | then | |
4139 | Nam := Entity (N); | |
70482933 RK |
4140 | else |
4141 | Nam := Empty; | |
4142 | end if; | |
4143 | ||
49e90211 | 4144 | -- For an allocator freeze designated type if not frozen already |
70482933 | 4145 | |
ee094616 RD |
4146 | -- For an aggregate whose component type is an access type, freeze the |
4147 | -- designated type now, so that its freeze does not appear within the | |
4148 | -- loop that might be created in the expansion of the aggregate. If the | |
4149 | -- designated type is a private type without full view, the expression | |
4150 | -- cannot contain an allocator, so the type is not frozen. | |
70482933 | 4151 | |
7aedb36a AC |
4152 | -- For a function, we freeze the entity when the subprogram declaration |
4153 | -- is frozen, but a function call may appear in an initialization proc. | |
f6cf5b85 | 4154 | -- before the declaration is frozen. We need to generate the extra |
7aedb36a | 4155 | -- formals, if any, to ensure that the expansion of the call includes |
2f4f3f3f AC |
4156 | -- the proper actuals. This only applies to Ada subprograms, not to |
4157 | -- imported ones. | |
7aedb36a | 4158 | |
70482933 | 4159 | Desig_Typ := Empty; |
70482933 | 4160 | |
fbf5a39b | 4161 | case Nkind (N) is |
70482933 RK |
4162 | when N_Allocator => |
4163 | Desig_Typ := Designated_Type (Etype (N)); | |
4164 | ||
4165 | when N_Aggregate => | |
4166 | if Is_Array_Type (Etype (N)) | |
4167 | and then Is_Access_Type (Component_Type (Etype (N))) | |
4168 | then | |
4169 | Desig_Typ := Designated_Type (Component_Type (Etype (N))); | |
4170 | end if; | |
4171 | ||
4172 | when N_Selected_Component | | |
4173 | N_Indexed_Component | | |
4174 | N_Slice => | |
4175 | ||
4176 | if Is_Access_Type (Etype (Prefix (N))) then | |
4177 | Desig_Typ := Designated_Type (Etype (Prefix (N))); | |
4178 | end if; | |
4179 | ||
7aedb36a AC |
4180 | when N_Identifier => |
4181 | if Present (Nam) | |
4182 | and then Ekind (Nam) = E_Function | |
4183 | and then Nkind (Parent (N)) = N_Function_Call | |
2f4f3f3f | 4184 | and then Convention (Nam) = Convention_Ada |
7aedb36a AC |
4185 | then |
4186 | Create_Extra_Formals (Nam); | |
4187 | end if; | |
4188 | ||
70482933 RK |
4189 | when others => |
4190 | null; | |
70482933 RK |
4191 | end case; |
4192 | ||
4193 | if Desig_Typ /= Empty | |
4194 | and then (Is_Frozen (Desig_Typ) | |
4195 | or else (not Is_Fully_Defined (Desig_Typ))) | |
4196 | then | |
4197 | Desig_Typ := Empty; | |
4198 | end if; | |
4199 | ||
4200 | -- All done if nothing needs freezing | |
4201 | ||
4202 | if No (Typ) | |
4203 | and then No (Nam) | |
4204 | and then No (Desig_Typ) | |
4205 | then | |
4206 | return; | |
4207 | end if; | |
4208 | ||
f6cf5b85 | 4209 | -- Loop for looking at the right place to insert the freeze nodes, |
70482933 RK |
4210 | -- exiting from the loop when it is appropriate to insert the freeze |
4211 | -- node before the current node P. | |
4212 | ||
f6cf5b85 AC |
4213 | -- Also checks som special exceptions to the freezing rules. These cases |
4214 | -- result in a direct return, bypassing the freeze action. | |
70482933 RK |
4215 | |
4216 | P := N; | |
4217 | loop | |
4218 | Parent_P := Parent (P); | |
4219 | ||
ee094616 RD |
4220 | -- If we don't have a parent, then we are not in a well-formed tree. |
4221 | -- This is an unusual case, but there are some legitimate situations | |
4222 | -- in which this occurs, notably when the expressions in the range of | |
4223 | -- a type declaration are resolved. We simply ignore the freeze | |
4224 | -- request in this case. Is this right ??? | |
70482933 RK |
4225 | |
4226 | if No (Parent_P) then | |
4227 | return; | |
4228 | end if; | |
4229 | ||
4230 | -- See if we have got to an appropriate point in the tree | |
4231 | ||
4232 | case Nkind (Parent_P) is | |
4233 | ||
edd63e9b ES |
4234 | -- A special test for the exception of (RM 13.14(8)) for the case |
4235 | -- of per-object expressions (RM 3.8(18)) occurring in component | |
4236 | -- definition or a discrete subtype definition. Note that we test | |
4237 | -- for a component declaration which includes both cases we are | |
4238 | -- interested in, and furthermore the tree does not have explicit | |
4239 | -- nodes for either of these two constructs. | |
70482933 RK |
4240 | |
4241 | when N_Component_Declaration => | |
4242 | ||
4243 | -- The case we want to test for here is an identifier that is | |
4244 | -- a per-object expression, this is either a discriminant that | |
4245 | -- appears in a context other than the component declaration | |
4246 | -- or it is a reference to the type of the enclosing construct. | |
4247 | ||
4248 | -- For either of these cases, we skip the freezing | |
4249 | ||
c6a9797e | 4250 | if not In_Spec_Expression |
70482933 RK |
4251 | and then Nkind (N) = N_Identifier |
4252 | and then (Present (Entity (N))) | |
4253 | then | |
4254 | -- We recognize the discriminant case by just looking for | |
4255 | -- a reference to a discriminant. It can only be one for | |
4256 | -- the enclosing construct. Skip freezing in this case. | |
4257 | ||
4258 | if Ekind (Entity (N)) = E_Discriminant then | |
4259 | return; | |
4260 | ||
4261 | -- For the case of a reference to the enclosing record, | |
4262 | -- (or task or protected type), we look for a type that | |
4263 | -- matches the current scope. | |
4264 | ||
4265 | elsif Entity (N) = Current_Scope then | |
4266 | return; | |
4267 | end if; | |
4268 | end if; | |
4269 | ||
edd63e9b ES |
4270 | -- If we have an enumeration literal that appears as the choice in |
4271 | -- the aggregate of an enumeration representation clause, then | |
4272 | -- freezing does not occur (RM 13.14(10)). | |
70482933 RK |
4273 | |
4274 | when N_Enumeration_Representation_Clause => | |
4275 | ||
4276 | -- The case we are looking for is an enumeration literal | |
4277 | ||
4278 | if (Nkind (N) = N_Identifier or Nkind (N) = N_Character_Literal) | |
4279 | and then Is_Enumeration_Type (Etype (N)) | |
4280 | then | |
4281 | -- If enumeration literal appears directly as the choice, | |
e14c931f | 4282 | -- do not freeze (this is the normal non-overloaded case) |
70482933 RK |
4283 | |
4284 | if Nkind (Parent (N)) = N_Component_Association | |
4285 | and then First (Choices (Parent (N))) = N | |
4286 | then | |
4287 | return; | |
4288 | ||
ee094616 RD |
4289 | -- If enumeration literal appears as the name of function |
4290 | -- which is the choice, then also do not freeze. This | |
4291 | -- happens in the overloaded literal case, where the | |
70482933 RK |
4292 | -- enumeration literal is temporarily changed to a function |
4293 | -- call for overloading analysis purposes. | |
4294 | ||
4295 | elsif Nkind (Parent (N)) = N_Function_Call | |
4296 | and then | |
4297 | Nkind (Parent (Parent (N))) = N_Component_Association | |
4298 | and then | |
4299 | First (Choices (Parent (Parent (N)))) = Parent (N) | |
4300 | then | |
4301 | return; | |
4302 | end if; | |
4303 | end if; | |
4304 | ||
4305 | -- Normally if the parent is a handled sequence of statements, | |
4306 | -- then the current node must be a statement, and that is an | |
4307 | -- appropriate place to insert a freeze node. | |
4308 | ||
4309 | when N_Handled_Sequence_Of_Statements => | |
4310 | ||
edd63e9b ES |
4311 | -- An exception occurs when the sequence of statements is for |
4312 | -- an expander generated body that did not do the usual freeze | |
4313 | -- all operation. In this case we usually want to freeze | |
4314 | -- outside this body, not inside it, and we skip past the | |
4315 | -- subprogram body that we are inside. | |
70482933 RK |
4316 | |
4317 | if In_Exp_Body (Parent_P) then | |
4318 | ||
4319 | -- However, we *do* want to freeze at this point if we have | |
4320 | -- an entity to freeze, and that entity is declared *inside* | |
4321 | -- the body of the expander generated procedure. This case | |
4322 | -- is recognized by the scope of the type, which is either | |
4323 | -- the spec for some enclosing body, or (in the case of | |
4324 | -- init_procs, for which there are no separate specs) the | |
4325 | -- current scope. | |
4326 | ||
4327 | declare | |
4328 | Subp : constant Node_Id := Parent (Parent_P); | |
4329 | Cspc : Entity_Id; | |
4330 | ||
4331 | begin | |
4332 | if Nkind (Subp) = N_Subprogram_Body then | |
4333 | Cspc := Corresponding_Spec (Subp); | |
4334 | ||
4335 | if (Present (Typ) and then Scope (Typ) = Cspc) | |
4336 | or else | |
4337 | (Present (Nam) and then Scope (Nam) = Cspc) | |
4338 | then | |
4339 | exit; | |
4340 | ||
4341 | elsif Present (Typ) | |
4342 | and then Scope (Typ) = Current_Scope | |
4343 | and then Current_Scope = Defining_Entity (Subp) | |
4344 | then | |
4345 | exit; | |
4346 | end if; | |
4347 | end if; | |
4348 | end; | |
4349 | ||
4350 | -- If not that exception to the exception, then this is | |
4351 | -- where we delay the freeze till outside the body. | |
4352 | ||
4353 | Parent_P := Parent (Parent_P); | |
4354 | Freeze_Outside := True; | |
4355 | ||
4356 | -- Here if normal case where we are in handled statement | |
4357 | -- sequence and want to do the insertion right there. | |
4358 | ||
4359 | else | |
4360 | exit; | |
4361 | end if; | |
4362 | ||
ee094616 RD |
4363 | -- If parent is a body or a spec or a block, then the current node |
4364 | -- is a statement or declaration and we can insert the freeze node | |
4365 | -- before it. | |
70482933 RK |
4366 | |
4367 | when N_Package_Specification | | |
4368 | N_Package_Body | | |
4369 | N_Subprogram_Body | | |
4370 | N_Task_Body | | |
4371 | N_Protected_Body | | |
4372 | N_Entry_Body | | |
4373 | N_Block_Statement => exit; | |
4374 | ||
4375 | -- The expander is allowed to define types in any statements list, | |
4376 | -- so any of the following parent nodes also mark a freezing point | |
4377 | -- if the actual node is in a list of statements or declarations. | |
4378 | ||
4379 | when N_Exception_Handler | | |
4380 | N_If_Statement | | |
4381 | N_Elsif_Part | | |
4382 | N_Case_Statement_Alternative | | |
4383 | N_Compilation_Unit_Aux | | |
4384 | N_Selective_Accept | | |
4385 | N_Accept_Alternative | | |
4386 | N_Delay_Alternative | | |
4387 | N_Conditional_Entry_Call | | |
4388 | N_Entry_Call_Alternative | | |
4389 | N_Triggering_Alternative | | |
4390 | N_Abortable_Part | | |
4391 | N_Freeze_Entity => | |
4392 | ||
4393 | exit when Is_List_Member (P); | |
4394 | ||
4395 | -- Note: The N_Loop_Statement is a special case. A type that | |
4396 | -- appears in the source can never be frozen in a loop (this | |
edd63e9b ES |
4397 | -- occurs only because of a loop expanded by the expander), so we |
4398 | -- keep on going. Otherwise we terminate the search. Same is true | |
ee094616 RD |
4399 | -- of any entity which comes from source. (if they have predefined |
4400 | -- type, that type does not appear to come from source, but the | |
4401 | -- entity should not be frozen here). | |
70482933 RK |
4402 | |
4403 | when N_Loop_Statement => | |
4404 | exit when not Comes_From_Source (Etype (N)) | |
4405 | and then (No (Nam) or else not Comes_From_Source (Nam)); | |
4406 | ||
4407 | -- For all other cases, keep looking at parents | |
4408 | ||
4409 | when others => | |
4410 | null; | |
4411 | end case; | |
4412 | ||
4413 | -- We fall through the case if we did not yet find the proper | |
4414 | -- place in the free for inserting the freeze node, so climb! | |
4415 | ||
4416 | P := Parent_P; | |
4417 | end loop; | |
4418 | ||
edd63e9b ES |
4419 | -- If the expression appears in a record or an initialization procedure, |
4420 | -- the freeze nodes are collected and attached to the current scope, to | |
4421 | -- be inserted and analyzed on exit from the scope, to insure that | |
4422 | -- generated entities appear in the correct scope. If the expression is | |
4423 | -- a default for a discriminant specification, the scope is still void. | |
4424 | -- The expression can also appear in the discriminant part of a private | |
4425 | -- or concurrent type. | |
70482933 | 4426 | |
c6823a20 | 4427 | -- If the expression appears in a constrained subcomponent of an |
edd63e9b ES |
4428 | -- enclosing record declaration, the freeze nodes must be attached to |
4429 | -- the outer record type so they can eventually be placed in the | |
c6823a20 EB |
4430 | -- enclosing declaration list. |
4431 | ||
ee094616 RD |
4432 | -- The other case requiring this special handling is if we are in a |
4433 | -- default expression, since in that case we are about to freeze a | |
4434 | -- static type, and the freeze scope needs to be the outer scope, not | |
4435 | -- the scope of the subprogram with the default parameter. | |
70482933 | 4436 | |
c6a9797e RD |
4437 | -- For default expressions and other spec expressions in generic units, |
4438 | -- the Move_Freeze_Nodes mechanism (see sem_ch12.adb) takes care of | |
4439 | -- placing them at the proper place, after the generic unit. | |
70482933 | 4440 | |
c6a9797e | 4441 | if (In_Spec_Exp and not Inside_A_Generic) |
70482933 RK |
4442 | or else Freeze_Outside |
4443 | or else (Is_Type (Current_Scope) | |
4444 | and then (not Is_Concurrent_Type (Current_Scope) | |
4445 | or else not Has_Completion (Current_Scope))) | |
4446 | or else Ekind (Current_Scope) = E_Void | |
4447 | then | |
4448 | declare | |
4449 | Loc : constant Source_Ptr := Sloc (Current_Scope); | |
4450 | Freeze_Nodes : List_Id := No_List; | |
c6823a20 | 4451 | Pos : Int := Scope_Stack.Last; |
70482933 RK |
4452 | |
4453 | begin | |
4454 | if Present (Desig_Typ) then | |
4455 | Freeze_And_Append (Desig_Typ, Loc, Freeze_Nodes); | |
4456 | end if; | |
4457 | ||
4458 | if Present (Typ) then | |
4459 | Freeze_And_Append (Typ, Loc, Freeze_Nodes); | |
4460 | end if; | |
4461 | ||
4462 | if Present (Nam) then | |
4463 | Freeze_And_Append (Nam, Loc, Freeze_Nodes); | |
4464 | end if; | |
4465 | ||
c6823a20 EB |
4466 | -- The current scope may be that of a constrained component of |
4467 | -- an enclosing record declaration, which is above the current | |
4468 | -- scope in the scope stack. | |
4469 | ||
4470 | if Is_Record_Type (Scope (Current_Scope)) then | |
4471 | Pos := Pos - 1; | |
4472 | end if; | |
4473 | ||
70482933 | 4474 | if Is_Non_Empty_List (Freeze_Nodes) then |
c6823a20 EB |
4475 | if No (Scope_Stack.Table (Pos).Pending_Freeze_Actions) then |
4476 | Scope_Stack.Table (Pos).Pending_Freeze_Actions := | |
70482933 RK |
4477 | Freeze_Nodes; |
4478 | else | |
4479 | Append_List (Freeze_Nodes, Scope_Stack.Table | |
c6823a20 | 4480 | (Pos).Pending_Freeze_Actions); |
70482933 RK |
4481 | end if; |
4482 | end if; | |
4483 | end; | |
4484 | ||
4485 | return; | |
4486 | end if; | |
4487 | ||
4488 | -- Now we have the right place to do the freezing. First, a special | |
c6a9797e RD |
4489 | -- adjustment, if we are in spec-expression analysis mode, these freeze |
4490 | -- actions must not be thrown away (normally all inserted actions are | |
4491 | -- thrown away in this mode. However, the freeze actions are from static | |
4492 | -- expressions and one of the important reasons we are doing this | |
ee094616 | 4493 | -- special analysis is to get these freeze actions. Therefore we turn |
c6a9797e | 4494 | -- off the In_Spec_Expression mode to propagate these freeze actions. |
ee094616 | 4495 | -- This also means they get properly analyzed and expanded. |
70482933 | 4496 | |
c6a9797e | 4497 | In_Spec_Expression := False; |
70482933 | 4498 | |
fbf5a39b | 4499 | -- Freeze the designated type of an allocator (RM 13.14(13)) |
70482933 RK |
4500 | |
4501 | if Present (Desig_Typ) then | |
4502 | Freeze_Before (P, Desig_Typ); | |
4503 | end if; | |
4504 | ||
fbf5a39b | 4505 | -- Freeze type of expression (RM 13.14(10)). Note that we took care of |
70482933 RK |
4506 | -- the enumeration representation clause exception in the loop above. |
4507 | ||
4508 | if Present (Typ) then | |
4509 | Freeze_Before (P, Typ); | |
4510 | end if; | |
4511 | ||
fbf5a39b | 4512 | -- Freeze name if one is present (RM 13.14(11)) |
70482933 RK |
4513 | |
4514 | if Present (Nam) then | |
4515 | Freeze_Before (P, Nam); | |
4516 | end if; | |
4517 | ||
c6a9797e RD |
4518 | -- Restore In_Spec_Expression flag |
4519 | ||
4520 | In_Spec_Expression := In_Spec_Exp; | |
70482933 RK |
4521 | end Freeze_Expression; |
4522 | ||
4523 | ----------------------------- | |
4524 | -- Freeze_Fixed_Point_Type -- | |
4525 | ----------------------------- | |
4526 | ||
edd63e9b ES |
4527 | -- Certain fixed-point types and subtypes, including implicit base types |
4528 | -- and declared first subtypes, have not yet set up a range. This is | |
4529 | -- because the range cannot be set until the Small and Size values are | |
4530 | -- known, and these are not known till the type is frozen. | |
70482933 | 4531 | |
edd63e9b ES |
4532 | -- To signal this case, Scalar_Range contains an unanalyzed syntactic range |
4533 | -- whose bounds are unanalyzed real literals. This routine will recognize | |
4534 | -- this case, and transform this range node into a properly typed range | |
4535 | -- with properly analyzed and resolved values. | |
70482933 RK |
4536 | |
4537 | procedure Freeze_Fixed_Point_Type (Typ : Entity_Id) is | |
4538 | Rng : constant Node_Id := Scalar_Range (Typ); | |
4539 | Lo : constant Node_Id := Low_Bound (Rng); | |
4540 | Hi : constant Node_Id := High_Bound (Rng); | |
4541 | Btyp : constant Entity_Id := Base_Type (Typ); | |
4542 | Brng : constant Node_Id := Scalar_Range (Btyp); | |
4543 | BLo : constant Node_Id := Low_Bound (Brng); | |
4544 | BHi : constant Node_Id := High_Bound (Brng); | |
4545 | Small : constant Ureal := Small_Value (Typ); | |
4546 | Loval : Ureal; | |
4547 | Hival : Ureal; | |
4548 | Atype : Entity_Id; | |
4549 | ||
4550 | Actual_Size : Nat; | |
4551 | ||
4552 | function Fsize (Lov, Hiv : Ureal) return Nat; | |
4553 | -- Returns size of type with given bounds. Also leaves these | |
4554 | -- bounds set as the current bounds of the Typ. | |
4555 | ||
0da2c8ac AC |
4556 | ----------- |
4557 | -- Fsize -- | |
4558 | ----------- | |
4559 | ||
70482933 RK |
4560 | function Fsize (Lov, Hiv : Ureal) return Nat is |
4561 | begin | |
4562 | Set_Realval (Lo, Lov); | |
4563 | Set_Realval (Hi, Hiv); | |
4564 | return Minimum_Size (Typ); | |
4565 | end Fsize; | |
4566 | ||
0da2c8ac | 4567 | -- Start of processing for Freeze_Fixed_Point_Type |
70482933 RK |
4568 | |
4569 | begin | |
4570 | -- If Esize of a subtype has not previously been set, set it now | |
4571 | ||
4572 | if Unknown_Esize (Typ) then | |
4573 | Atype := Ancestor_Subtype (Typ); | |
4574 | ||
4575 | if Present (Atype) then | |
fbf5a39b | 4576 | Set_Esize (Typ, Esize (Atype)); |
70482933 | 4577 | else |
fbf5a39b | 4578 | Set_Esize (Typ, Esize (Base_Type (Typ))); |
70482933 RK |
4579 | end if; |
4580 | end if; | |
4581 | ||
ee094616 RD |
4582 | -- Immediate return if the range is already analyzed. This means that |
4583 | -- the range is already set, and does not need to be computed by this | |
4584 | -- routine. | |
70482933 RK |
4585 | |
4586 | if Analyzed (Rng) then | |
4587 | return; | |
4588 | end if; | |
4589 | ||
4590 | -- Immediate return if either of the bounds raises Constraint_Error | |
4591 | ||
4592 | if Raises_Constraint_Error (Lo) | |
4593 | or else Raises_Constraint_Error (Hi) | |
4594 | then | |
4595 | return; | |
4596 | end if; | |
4597 | ||
4598 | Loval := Realval (Lo); | |
4599 | Hival := Realval (Hi); | |
4600 | ||
4601 | -- Ordinary fixed-point case | |
4602 | ||
4603 | if Is_Ordinary_Fixed_Point_Type (Typ) then | |
4604 | ||
4605 | -- For the ordinary fixed-point case, we are allowed to fudge the | |
ee094616 RD |
4606 | -- end-points up or down by small. Generally we prefer to fudge up, |
4607 | -- i.e. widen the bounds for non-model numbers so that the end points | |
4608 | -- are included. However there are cases in which this cannot be | |
4609 | -- done, and indeed cases in which we may need to narrow the bounds. | |
4610 | -- The following circuit makes the decision. | |
70482933 | 4611 | |
ee094616 RD |
4612 | -- Note: our terminology here is that Incl_EP means that the bounds |
4613 | -- are widened by Small if necessary to include the end points, and | |
4614 | -- Excl_EP means that the bounds are narrowed by Small to exclude the | |
4615 | -- end-points if this reduces the size. | |
70482933 RK |
4616 | |
4617 | -- Note that in the Incl case, all we care about is including the | |
4618 | -- end-points. In the Excl case, we want to narrow the bounds as | |
4619 | -- much as permitted by the RM, to give the smallest possible size. | |
4620 | ||
4621 | Fudge : declare | |
4622 | Loval_Incl_EP : Ureal; | |
4623 | Hival_Incl_EP : Ureal; | |
4624 | ||
4625 | Loval_Excl_EP : Ureal; | |
4626 | Hival_Excl_EP : Ureal; | |
4627 | ||
4628 | Size_Incl_EP : Nat; | |
4629 | Size_Excl_EP : Nat; | |
4630 | ||
4631 | Model_Num : Ureal; | |
4632 | First_Subt : Entity_Id; | |
4633 | Actual_Lo : Ureal; | |
4634 | Actual_Hi : Ureal; | |
4635 | ||
4636 | begin | |
4637 | -- First step. Base types are required to be symmetrical. Right | |
4638 | -- now, the base type range is a copy of the first subtype range. | |
4639 | -- This will be corrected before we are done, but right away we | |
4640 | -- need to deal with the case where both bounds are non-negative. | |
4641 | -- In this case, we set the low bound to the negative of the high | |
4642 | -- bound, to make sure that the size is computed to include the | |
4643 | -- required sign. Note that we do not need to worry about the | |
4644 | -- case of both bounds negative, because the sign will be dealt | |
4645 | -- with anyway. Furthermore we can't just go making such a bound | |
4646 | -- symmetrical, since in a twos-complement system, there is an | |
e14c931f | 4647 | -- extra negative value which could not be accommodated on the |
70482933 RK |
4648 | -- positive side. |
4649 | ||
4650 | if Typ = Btyp | |
4651 | and then not UR_Is_Negative (Loval) | |
4652 | and then Hival > Loval | |
4653 | then | |
4654 | Loval := -Hival; | |
4655 | Set_Realval (Lo, Loval); | |
4656 | end if; | |
4657 | ||
4658 | -- Compute the fudged bounds. If the number is a model number, | |
edd63e9b ES |
4659 | -- then we do nothing to include it, but we are allowed to backoff |
4660 | -- to the next adjacent model number when we exclude it. If it is | |
4661 | -- not a model number then we straddle the two values with the | |
4662 | -- model numbers on either side. | |
70482933 RK |
4663 | |
4664 | Model_Num := UR_Trunc (Loval / Small) * Small; | |
4665 | ||
4666 | if Loval = Model_Num then | |
4667 | Loval_Incl_EP := Model_Num; | |
4668 | else | |
4669 | Loval_Incl_EP := Model_Num - Small; | |
4670 | end if; | |
4671 | ||
4672 | -- The low value excluding the end point is Small greater, but | |
4673 | -- we do not do this exclusion if the low value is positive, | |
4674 | -- since it can't help the size and could actually hurt by | |
4675 | -- crossing the high bound. | |
4676 | ||
4677 | if UR_Is_Negative (Loval_Incl_EP) then | |
4678 | Loval_Excl_EP := Loval_Incl_EP + Small; | |
def46b54 RD |
4679 | |
4680 | -- If the value went from negative to zero, then we have the | |
4681 | -- case where Loval_Incl_EP is the model number just below | |
4682 | -- zero, so we want to stick to the negative value for the | |
4683 | -- base type to maintain the condition that the size will | |
4684 | -- include signed values. | |
4685 | ||
4686 | if Typ = Btyp | |
4687 | and then UR_Is_Zero (Loval_Excl_EP) | |
4688 | then | |
4689 | Loval_Excl_EP := Loval_Incl_EP; | |
4690 | end if; | |
4691 | ||
70482933 RK |
4692 | else |
4693 | Loval_Excl_EP := Loval_Incl_EP; | |
4694 | end if; | |
4695 | ||
4696 | -- Similar processing for upper bound and high value | |
4697 | ||
4698 | Model_Num := UR_Trunc (Hival / Small) * Small; | |
4699 | ||
4700 | if Hival = Model_Num then | |
4701 | Hival_Incl_EP := Model_Num; | |
4702 | else | |
4703 | Hival_Incl_EP := Model_Num + Small; | |
4704 | end if; | |
4705 | ||
4706 | if UR_Is_Positive (Hival_Incl_EP) then | |
4707 | Hival_Excl_EP := Hival_Incl_EP - Small; | |
4708 | else | |
4709 | Hival_Excl_EP := Hival_Incl_EP; | |
4710 | end if; | |
4711 | ||
ee094616 RD |
4712 | -- One further adjustment is needed. In the case of subtypes, we |
4713 | -- cannot go outside the range of the base type, or we get | |
70482933 | 4714 | -- peculiarities, and the base type range is already set. This |
ee094616 RD |
4715 | -- only applies to the Incl values, since clearly the Excl values |
4716 | -- are already as restricted as they are allowed to be. | |
70482933 RK |
4717 | |
4718 | if Typ /= Btyp then | |
4719 | Loval_Incl_EP := UR_Max (Loval_Incl_EP, Realval (BLo)); | |
4720 | Hival_Incl_EP := UR_Min (Hival_Incl_EP, Realval (BHi)); | |
4721 | end if; | |
4722 | ||
4723 | -- Get size including and excluding end points | |
4724 | ||
4725 | Size_Incl_EP := Fsize (Loval_Incl_EP, Hival_Incl_EP); | |
4726 | Size_Excl_EP := Fsize (Loval_Excl_EP, Hival_Excl_EP); | |
4727 | ||
4728 | -- No need to exclude end-points if it does not reduce size | |
4729 | ||
4730 | if Fsize (Loval_Incl_EP, Hival_Excl_EP) = Size_Excl_EP then | |
4731 | Loval_Excl_EP := Loval_Incl_EP; | |
4732 | end if; | |
4733 | ||
4734 | if Fsize (Loval_Excl_EP, Hival_Incl_EP) = Size_Excl_EP then | |
4735 | Hival_Excl_EP := Hival_Incl_EP; | |
4736 | end if; | |
4737 | ||
4738 | -- Now we set the actual size to be used. We want to use the | |
4739 | -- bounds fudged up to include the end-points but only if this | |
4740 | -- can be done without violating a specifically given size | |
4741 | -- size clause or causing an unacceptable increase in size. | |
4742 | ||
4743 | -- Case of size clause given | |
4744 | ||
4745 | if Has_Size_Clause (Typ) then | |
4746 | ||
4747 | -- Use the inclusive size only if it is consistent with | |
4748 | -- the explicitly specified size. | |
4749 | ||
4750 | if Size_Incl_EP <= RM_Size (Typ) then | |
4751 | Actual_Lo := Loval_Incl_EP; | |
4752 | Actual_Hi := Hival_Incl_EP; | |
4753 | Actual_Size := Size_Incl_EP; | |
4754 | ||
4755 | -- If the inclusive size is too large, we try excluding | |
4756 | -- the end-points (will be caught later if does not work). | |
4757 | ||
4758 | else | |
4759 | Actual_Lo := Loval_Excl_EP; | |
4760 | Actual_Hi := Hival_Excl_EP; | |
4761 | Actual_Size := Size_Excl_EP; | |
4762 | end if; | |
4763 | ||
4764 | -- Case of size clause not given | |
4765 | ||
4766 | else | |
4767 | -- If we have a base type whose corresponding first subtype | |
4768 | -- has an explicit size that is large enough to include our | |
4769 | -- end-points, then do so. There is no point in working hard | |
4770 | -- to get a base type whose size is smaller than the specified | |
4771 | -- size of the first subtype. | |
4772 | ||
4773 | First_Subt := First_Subtype (Typ); | |
4774 | ||
4775 | if Has_Size_Clause (First_Subt) | |
4776 | and then Size_Incl_EP <= Esize (First_Subt) | |
4777 | then | |
4778 | Actual_Size := Size_Incl_EP; | |
4779 | Actual_Lo := Loval_Incl_EP; | |
4780 | Actual_Hi := Hival_Incl_EP; | |
4781 | ||
4782 | -- If excluding the end-points makes the size smaller and | |
4783 | -- results in a size of 8,16,32,64, then we take the smaller | |
4784 | -- size. For the 64 case, this is compulsory. For the other | |
4785 | -- cases, it seems reasonable. We like to include end points | |
4786 | -- if we can, but not at the expense of moving to the next | |
4787 | -- natural boundary of size. | |
4788 | ||
4789 | elsif Size_Incl_EP /= Size_Excl_EP | |
4790 | and then | |
4791 | (Size_Excl_EP = 8 or else | |
4792 | Size_Excl_EP = 16 or else | |
4793 | Size_Excl_EP = 32 or else | |
4794 | Size_Excl_EP = 64) | |
4795 | then | |
4796 | Actual_Size := Size_Excl_EP; | |
4797 | Actual_Lo := Loval_Excl_EP; | |
4798 | Actual_Hi := Hival_Excl_EP; | |
4799 | ||
4800 | -- Otherwise we can definitely include the end points | |
4801 | ||
4802 | else | |
4803 | Actual_Size := Size_Incl_EP; | |
4804 | Actual_Lo := Loval_Incl_EP; | |
4805 | Actual_Hi := Hival_Incl_EP; | |
4806 | end if; | |
4807 | ||
edd63e9b ES |
4808 | -- One pathological case: normally we never fudge a low bound |
4809 | -- down, since it would seem to increase the size (if it has | |
4810 | -- any effect), but for ranges containing single value, or no | |
4811 | -- values, the high bound can be small too large. Consider: | |
70482933 RK |
4812 | |
4813 | -- type t is delta 2.0**(-14) | |
4814 | -- range 131072.0 .. 0; | |
4815 | ||
edd63e9b ES |
4816 | -- That lower bound is *just* outside the range of 32 bits, and |
4817 | -- does need fudging down in this case. Note that the bounds | |
4818 | -- will always have crossed here, since the high bound will be | |
4819 | -- fudged down if necessary, as in the case of: | |
70482933 RK |
4820 | |
4821 | -- type t is delta 2.0**(-14) | |
4822 | -- range 131072.0 .. 131072.0; | |
4823 | ||
edd63e9b ES |
4824 | -- So we detect the situation by looking for crossed bounds, |
4825 | -- and if the bounds are crossed, and the low bound is greater | |
4826 | -- than zero, we will always back it off by small, since this | |
4827 | -- is completely harmless. | |
70482933 RK |
4828 | |
4829 | if Actual_Lo > Actual_Hi then | |
4830 | if UR_Is_Positive (Actual_Lo) then | |
4831 | Actual_Lo := Loval_Incl_EP - Small; | |
4832 | Actual_Size := Fsize (Actual_Lo, Actual_Hi); | |
4833 | ||
4834 | -- And of course, we need to do exactly the same parallel | |
4835 | -- fudge for flat ranges in the negative region. | |
4836 | ||
4837 | elsif UR_Is_Negative (Actual_Hi) then | |
4838 | Actual_Hi := Hival_Incl_EP + Small; | |
4839 | Actual_Size := Fsize (Actual_Lo, Actual_Hi); | |
4840 | end if; | |
4841 | end if; | |
4842 | end if; | |
4843 | ||
4844 | Set_Realval (Lo, Actual_Lo); | |
4845 | Set_Realval (Hi, Actual_Hi); | |
4846 | end Fudge; | |
4847 | ||
4848 | -- For the decimal case, none of this fudging is required, since there | |
4849 | -- are no end-point problems in the decimal case (the end-points are | |
4850 | -- always included). | |
4851 | ||
4852 | else | |
4853 | Actual_Size := Fsize (Loval, Hival); | |
4854 | end if; | |
4855 | ||
4856 | -- At this stage, the actual size has been calculated and the proper | |
4857 | -- required bounds are stored in the low and high bounds. | |
4858 | ||
4859 | if Actual_Size > 64 then | |
4860 | Error_Msg_Uint_1 := UI_From_Int (Actual_Size); | |
4861 | Error_Msg_N | |
7d8b9c99 RD |
4862 | ("size required (^) for type& too large, maximum allowed is 64", |
4863 | Typ); | |
70482933 RK |
4864 | Actual_Size := 64; |
4865 | end if; | |
4866 | ||
4867 | -- Check size against explicit given size | |
4868 | ||
4869 | if Has_Size_Clause (Typ) then | |
4870 | if Actual_Size > RM_Size (Typ) then | |
4871 | Error_Msg_Uint_1 := RM_Size (Typ); | |
4872 | Error_Msg_Uint_2 := UI_From_Int (Actual_Size); | |
4873 | Error_Msg_NE | |
7d8b9c99 | 4874 | ("size given (^) for type& too small, minimum allowed is ^", |
70482933 RK |
4875 | Size_Clause (Typ), Typ); |
4876 | ||
4877 | else | |
4878 | Actual_Size := UI_To_Int (Esize (Typ)); | |
4879 | end if; | |
4880 | ||
4881 | -- Increase size to next natural boundary if no size clause given | |
4882 | ||
4883 | else | |
4884 | if Actual_Size <= 8 then | |
4885 | Actual_Size := 8; | |
4886 | elsif Actual_Size <= 16 then | |
4887 | Actual_Size := 16; | |
4888 | elsif Actual_Size <= 32 then | |
4889 | Actual_Size := 32; | |
4890 | else | |
4891 | Actual_Size := 64; | |
4892 | end if; | |
4893 | ||
4894 | Init_Esize (Typ, Actual_Size); | |
4895 | Adjust_Esize_For_Alignment (Typ); | |
4896 | end if; | |
4897 | ||
edd63e9b ES |
4898 | -- If we have a base type, then expand the bounds so that they extend to |
4899 | -- the full width of the allocated size in bits, to avoid junk range | |
4900 | -- checks on intermediate computations. | |
70482933 RK |
4901 | |
4902 | if Base_Type (Typ) = Typ then | |
4903 | Set_Realval (Lo, -(Small * (Uint_2 ** (Actual_Size - 1)))); | |
4904 | Set_Realval (Hi, (Small * (Uint_2 ** (Actual_Size - 1) - 1))); | |
4905 | end if; | |
4906 | ||
4907 | -- Final step is to reanalyze the bounds using the proper type | |
4908 | -- and set the Corresponding_Integer_Value fields of the literals. | |
4909 | ||
4910 | Set_Etype (Lo, Empty); | |
4911 | Set_Analyzed (Lo, False); | |
4912 | Analyze (Lo); | |
4913 | ||
edd63e9b ES |
4914 | -- Resolve with universal fixed if the base type, and the base type if |
4915 | -- it is a subtype. Note we can't resolve the base type with itself, | |
4916 | -- that would be a reference before definition. | |
70482933 RK |
4917 | |
4918 | if Typ = Btyp then | |
4919 | Resolve (Lo, Universal_Fixed); | |
4920 | else | |
4921 | Resolve (Lo, Btyp); | |
4922 | end if; | |
4923 | ||
4924 | -- Set corresponding integer value for bound | |
4925 | ||
4926 | Set_Corresponding_Integer_Value | |
4927 | (Lo, UR_To_Uint (Realval (Lo) / Small)); | |
4928 | ||
4929 | -- Similar processing for high bound | |
4930 | ||
4931 | Set_Etype (Hi, Empty); | |
4932 | Set_Analyzed (Hi, False); | |
4933 | Analyze (Hi); | |
4934 | ||
4935 | if Typ = Btyp then | |
4936 | Resolve (Hi, Universal_Fixed); | |
4937 | else | |
4938 | Resolve (Hi, Btyp); | |
4939 | end if; | |
4940 | ||
4941 | Set_Corresponding_Integer_Value | |
4942 | (Hi, UR_To_Uint (Realval (Hi) / Small)); | |
4943 | ||
4944 | -- Set type of range to correspond to bounds | |
4945 | ||
4946 | Set_Etype (Rng, Etype (Lo)); | |
4947 | ||
fbf5a39b | 4948 | -- Set Esize to calculated size if not set already |
70482933 | 4949 | |
fbf5a39b AC |
4950 | if Unknown_Esize (Typ) then |
4951 | Init_Esize (Typ, Actual_Size); | |
4952 | end if; | |
70482933 RK |
4953 | |
4954 | -- Set RM_Size if not already set. If already set, check value | |
4955 | ||
4956 | declare | |
4957 | Minsiz : constant Uint := UI_From_Int (Minimum_Size (Typ)); | |
4958 | ||
4959 | begin | |
4960 | if RM_Size (Typ) /= Uint_0 then | |
4961 | if RM_Size (Typ) < Minsiz then | |
4962 | Error_Msg_Uint_1 := RM_Size (Typ); | |
4963 | Error_Msg_Uint_2 := Minsiz; | |
4964 | Error_Msg_NE | |
7d8b9c99 | 4965 | ("size given (^) for type& too small, minimum allowed is ^", |
70482933 RK |
4966 | Size_Clause (Typ), Typ); |
4967 | end if; | |
4968 | ||
4969 | else | |
4970 | Set_RM_Size (Typ, Minsiz); | |
4971 | end if; | |
4972 | end; | |
70482933 RK |
4973 | end Freeze_Fixed_Point_Type; |
4974 | ||
4975 | ------------------ | |
4976 | -- Freeze_Itype -- | |
4977 | ------------------ | |
4978 | ||
4979 | procedure Freeze_Itype (T : Entity_Id; N : Node_Id) is | |
4980 | L : List_Id; | |
4981 | ||
4982 | begin | |
4983 | Set_Has_Delayed_Freeze (T); | |
4984 | L := Freeze_Entity (T, Sloc (N)); | |
4985 | ||
4986 | if Is_Non_Empty_List (L) then | |
4987 | Insert_Actions (N, L); | |
4988 | end if; | |
4989 | end Freeze_Itype; | |
4990 | ||
4991 | -------------------------- | |
4992 | -- Freeze_Static_Object -- | |
4993 | -------------------------- | |
4994 | ||
4995 | procedure Freeze_Static_Object (E : Entity_Id) is | |
4996 | ||
4997 | Cannot_Be_Static : exception; | |
4998 | -- Exception raised if the type of a static object cannot be made | |
4999 | -- static. This happens if the type depends on non-global objects. | |
5000 | ||
5001 | procedure Ensure_Expression_Is_SA (N : Node_Id); | |
ee094616 RD |
5002 | -- Called to ensure that an expression used as part of a type definition |
5003 | -- is statically allocatable, which means that the expression type is | |
5004 | -- statically allocatable, and the expression is either static, or a | |
5005 | -- reference to a library level constant. | |
70482933 RK |
5006 | |
5007 | procedure Ensure_Type_Is_SA (Typ : Entity_Id); | |
5008 | -- Called to mark a type as static, checking that it is possible | |
5009 | -- to set the type as static. If it is not possible, then the | |
5010 | -- exception Cannot_Be_Static is raised. | |
5011 | ||
5012 | ----------------------------- | |
5013 | -- Ensure_Expression_Is_SA -- | |
5014 | ----------------------------- | |
5015 | ||
5016 | procedure Ensure_Expression_Is_SA (N : Node_Id) is | |
5017 | Ent : Entity_Id; | |
5018 | ||
5019 | begin | |
5020 | Ensure_Type_Is_SA (Etype (N)); | |
5021 | ||
5022 | if Is_Static_Expression (N) then | |
5023 | return; | |
5024 | ||
5025 | elsif Nkind (N) = N_Identifier then | |
5026 | Ent := Entity (N); | |
5027 | ||
5028 | if Present (Ent) | |
5029 | and then Ekind (Ent) = E_Constant | |
5030 | and then Is_Library_Level_Entity (Ent) | |
5031 | then | |
5032 | return; | |
5033 | end if; | |
5034 | end if; | |
5035 | ||
5036 | raise Cannot_Be_Static; | |
5037 | end Ensure_Expression_Is_SA; | |
5038 | ||
5039 | ----------------------- | |
5040 | -- Ensure_Type_Is_SA -- | |
5041 | ----------------------- | |
5042 | ||
5043 | procedure Ensure_Type_Is_SA (Typ : Entity_Id) is | |
5044 | N : Node_Id; | |
5045 | C : Entity_Id; | |
5046 | ||
5047 | begin | |
5048 | -- If type is library level, we are all set | |
5049 | ||
5050 | if Is_Library_Level_Entity (Typ) then | |
5051 | return; | |
5052 | end if; | |
5053 | ||
ee094616 RD |
5054 | -- We are also OK if the type already marked as statically allocated, |
5055 | -- which means we processed it before. | |
70482933 RK |
5056 | |
5057 | if Is_Statically_Allocated (Typ) then | |
5058 | return; | |
5059 | end if; | |
5060 | ||
5061 | -- Mark type as statically allocated | |
5062 | ||
5063 | Set_Is_Statically_Allocated (Typ); | |
5064 | ||
5065 | -- Check that it is safe to statically allocate this type | |
5066 | ||
5067 | if Is_Scalar_Type (Typ) or else Is_Real_Type (Typ) then | |
5068 | Ensure_Expression_Is_SA (Type_Low_Bound (Typ)); | |
5069 | Ensure_Expression_Is_SA (Type_High_Bound (Typ)); | |
5070 | ||
5071 | elsif Is_Array_Type (Typ) then | |
5072 | N := First_Index (Typ); | |
5073 | while Present (N) loop | |
5074 | Ensure_Type_Is_SA (Etype (N)); | |
5075 | Next_Index (N); | |
5076 | end loop; | |
5077 | ||
5078 | Ensure_Type_Is_SA (Component_Type (Typ)); | |
5079 | ||
5080 | elsif Is_Access_Type (Typ) then | |
5081 | if Ekind (Designated_Type (Typ)) = E_Subprogram_Type then | |
5082 | ||
5083 | declare | |
5084 | F : Entity_Id; | |
5085 | T : constant Entity_Id := Etype (Designated_Type (Typ)); | |
5086 | ||
5087 | begin | |
5088 | if T /= Standard_Void_Type then | |
5089 | Ensure_Type_Is_SA (T); | |
5090 | end if; | |
5091 | ||
5092 | F := First_Formal (Designated_Type (Typ)); | |
5093 | ||
5094 | while Present (F) loop | |
5095 | Ensure_Type_Is_SA (Etype (F)); | |
5096 | Next_Formal (F); | |
5097 | end loop; | |
5098 | end; | |
5099 | ||
5100 | else | |
5101 | Ensure_Type_Is_SA (Designated_Type (Typ)); | |
5102 | end if; | |
5103 | ||
5104 | elsif Is_Record_Type (Typ) then | |
5105 | C := First_Entity (Typ); | |
70482933 RK |
5106 | while Present (C) loop |
5107 | if Ekind (C) = E_Discriminant | |
5108 | or else Ekind (C) = E_Component | |
5109 | then | |
5110 | Ensure_Type_Is_SA (Etype (C)); | |
5111 | ||
5112 | elsif Is_Type (C) then | |
5113 | Ensure_Type_Is_SA (C); | |
5114 | end if; | |
5115 | ||
5116 | Next_Entity (C); | |
5117 | end loop; | |
5118 | ||
5119 | elsif Ekind (Typ) = E_Subprogram_Type then | |
5120 | Ensure_Type_Is_SA (Etype (Typ)); | |
5121 | ||
5122 | C := First_Formal (Typ); | |
5123 | while Present (C) loop | |
5124 | Ensure_Type_Is_SA (Etype (C)); | |
5125 | Next_Formal (C); | |
5126 | end loop; | |
5127 | ||
5128 | else | |
5129 | raise Cannot_Be_Static; | |
5130 | end if; | |
5131 | end Ensure_Type_Is_SA; | |
5132 | ||
5133 | -- Start of processing for Freeze_Static_Object | |
5134 | ||
5135 | begin | |
5136 | Ensure_Type_Is_SA (Etype (E)); | |
5137 | ||
5138 | exception | |
5139 | when Cannot_Be_Static => | |
5140 | ||
09494c32 AC |
5141 | -- If the object that cannot be static is imported or exported, then |
5142 | -- issue an error message saying that this object cannot be imported | |
5143 | -- or exported. If it has an address clause it is an overlay in the | |
5144 | -- current partition and the static requirement is not relevant. | |
5145 | ||
5146 | if Is_Imported (E) and then No (Address_Clause (E)) then | |
70482933 RK |
5147 | Error_Msg_N |
5148 | ("& cannot be imported (local type is not constant)", E); | |
5149 | ||
5150 | -- Otherwise must be exported, something is wrong if compiler | |
5151 | -- is marking something as statically allocated which cannot be). | |
5152 | ||
5153 | else pragma Assert (Is_Exported (E)); | |
5154 | Error_Msg_N | |
5155 | ("& cannot be exported (local type is not constant)", E); | |
5156 | end if; | |
5157 | end Freeze_Static_Object; | |
5158 | ||
5159 | ----------------------- | |
5160 | -- Freeze_Subprogram -- | |
5161 | ----------------------- | |
5162 | ||
5163 | procedure Freeze_Subprogram (E : Entity_Id) is | |
5164 | Retype : Entity_Id; | |
5165 | F : Entity_Id; | |
5166 | ||
5167 | begin | |
5168 | -- Subprogram may not have an address clause unless it is imported | |
5169 | ||
5170 | if Present (Address_Clause (E)) then | |
5171 | if not Is_Imported (E) then | |
5172 | Error_Msg_N | |
5173 | ("address clause can only be given " & | |
5174 | "for imported subprogram", | |
5175 | Name (Address_Clause (E))); | |
5176 | end if; | |
5177 | end if; | |
5178 | ||
91b1417d AC |
5179 | -- Reset the Pure indication on an imported subprogram unless an |
5180 | -- explicit Pure_Function pragma was present. We do this because | |
ee094616 RD |
5181 | -- otherwise it is an insidious error to call a non-pure function from |
5182 | -- pure unit and have calls mysteriously optimized away. What happens | |
5183 | -- here is that the Import can bypass the normal check to ensure that | |
5184 | -- pure units call only pure subprograms. | |
91b1417d AC |
5185 | |
5186 | if Is_Imported (E) | |
5187 | and then Is_Pure (E) | |
5188 | and then not Has_Pragma_Pure_Function (E) | |
5189 | then | |
5190 | Set_Is_Pure (E, False); | |
5191 | end if; | |
5192 | ||
70482933 RK |
5193 | -- For non-foreign convention subprograms, this is where we create |
5194 | -- the extra formals (for accessibility level and constrained bit | |
5195 | -- information). We delay this till the freeze point precisely so | |
5196 | -- that we know the convention! | |
5197 | ||
5198 | if not Has_Foreign_Convention (E) then | |
5199 | Create_Extra_Formals (E); | |
5200 | Set_Mechanisms (E); | |
5201 | ||
5202 | -- If this is convention Ada and a Valued_Procedure, that's odd | |
5203 | ||
5204 | if Ekind (E) = E_Procedure | |
5205 | and then Is_Valued_Procedure (E) | |
5206 | and then Convention (E) = Convention_Ada | |
fbf5a39b | 5207 | and then Warn_On_Export_Import |
70482933 RK |
5208 | then |
5209 | Error_Msg_N | |
5210 | ("?Valued_Procedure has no effect for convention Ada", E); | |
5211 | Set_Is_Valued_Procedure (E, False); | |
5212 | end if; | |
5213 | ||
5214 | -- Case of foreign convention | |
5215 | ||
5216 | else | |
5217 | Set_Mechanisms (E); | |
5218 | ||
fbf5a39b | 5219 | -- For foreign conventions, warn about return of an |
70482933 RK |
5220 | -- unconstrained array. |
5221 | ||
5222 | -- Note: we *do* allow a return by descriptor for the VMS case, | |
5223 | -- though here there is probably more to be done ??? | |
5224 | ||
5225 | if Ekind (E) = E_Function then | |
5226 | Retype := Underlying_Type (Etype (E)); | |
5227 | ||
5228 | -- If no return type, probably some other error, e.g. a | |
5229 | -- missing full declaration, so ignore. | |
5230 | ||
5231 | if No (Retype) then | |
5232 | null; | |
5233 | ||
5234 | -- If the return type is generic, we have emitted a warning | |
edd63e9b ES |
5235 | -- earlier on, and there is nothing else to check here. Specific |
5236 | -- instantiations may lead to erroneous behavior. | |
70482933 RK |
5237 | |
5238 | elsif Is_Generic_Type (Etype (E)) then | |
5239 | null; | |
5240 | ||
e7d72fb9 | 5241 | -- Display warning if returning unconstrained array |
59366db6 | 5242 | |
70482933 RK |
5243 | elsif Is_Array_Type (Retype) |
5244 | and then not Is_Constrained (Retype) | |
e7d72fb9 AC |
5245 | |
5246 | -- Exclude cases where descriptor mechanism is set, since the | |
5247 | -- VMS descriptor mechanisms allow such unconstrained returns. | |
5248 | ||
70482933 | 5249 | and then Mechanism (E) not in Descriptor_Codes |
e7d72fb9 AC |
5250 | |
5251 | -- Check appropriate warning is enabled (should we check for | |
5252 | -- Warnings (Off) on specific entities here, probably so???) | |
5253 | ||
fbf5a39b | 5254 | and then Warn_On_Export_Import |
e7d72fb9 AC |
5255 | |
5256 | -- Exclude the VM case, since return of unconstrained arrays | |
5257 | -- is properly handled in both the JVM and .NET cases. | |
5258 | ||
f3b57ab0 | 5259 | and then VM_Target = No_VM |
70482933 | 5260 | then |
fbf5a39b AC |
5261 | Error_Msg_N |
5262 | ("?foreign convention function& should not return " & | |
5263 | "unconstrained array", E); | |
70482933 RK |
5264 | return; |
5265 | end if; | |
5266 | end if; | |
5267 | ||
5268 | -- If any of the formals for an exported foreign convention | |
edd63e9b ES |
5269 | -- subprogram have defaults, then emit an appropriate warning since |
5270 | -- this is odd (default cannot be used from non-Ada code) | |
70482933 RK |
5271 | |
5272 | if Is_Exported (E) then | |
5273 | F := First_Formal (E); | |
5274 | while Present (F) loop | |
fbf5a39b AC |
5275 | if Warn_On_Export_Import |
5276 | and then Present (Default_Value (F)) | |
5277 | then | |
70482933 RK |
5278 | Error_Msg_N |
5279 | ("?parameter cannot be defaulted in non-Ada call", | |
5280 | Default_Value (F)); | |
5281 | end if; | |
5282 | ||
5283 | Next_Formal (F); | |
5284 | end loop; | |
5285 | end if; | |
5286 | end if; | |
5287 | ||
e7d72fb9 AC |
5288 | -- For VMS, descriptor mechanisms for parameters are allowed only for |
5289 | -- imported/exported subprograms. Moreover, the NCA descriptor is not | |
5290 | -- allowed for parameters of exported subprograms. | |
70482933 RK |
5291 | |
5292 | if OpenVMS_On_Target then | |
7d8b9c99 RD |
5293 | if Is_Exported (E) then |
5294 | F := First_Formal (E); | |
5295 | while Present (F) loop | |
5296 | if Mechanism (F) = By_Descriptor_NCA then | |
5297 | Error_Msg_N | |
5298 | ("'N'C'A' descriptor for parameter not permitted", F); | |
5299 | Error_Msg_N | |
5300 | ("\can only be used for imported subprogram", F); | |
5301 | end if; | |
5302 | ||
5303 | Next_Formal (F); | |
5304 | end loop; | |
5305 | ||
5306 | elsif not Is_Imported (E) then | |
70482933 RK |
5307 | F := First_Formal (E); |
5308 | while Present (F) loop | |
5309 | if Mechanism (F) in Descriptor_Codes then | |
5310 | Error_Msg_N | |
5311 | ("descriptor mechanism for parameter not permitted", F); | |
5312 | Error_Msg_N | |
7d8b9c99 | 5313 | ("\can only be used for imported/exported subprogram", F); |
70482933 RK |
5314 | end if; |
5315 | ||
5316 | Next_Formal (F); | |
5317 | end loop; | |
5318 | end if; | |
5319 | end if; | |
edd63e9b ES |
5320 | |
5321 | -- Pragma Inline_Always is disallowed for dispatching subprograms | |
5322 | -- because the address of such subprograms is saved in the dispatch | |
5323 | -- table to support dispatching calls, and dispatching calls cannot | |
5324 | -- be inlined. This is consistent with the restriction against using | |
5325 | -- 'Access or 'Address on an Inline_Always subprogram. | |
5326 | ||
def46b54 RD |
5327 | if Is_Dispatching_Operation (E) |
5328 | and then Has_Pragma_Inline_Always (E) | |
5329 | then | |
edd63e9b ES |
5330 | Error_Msg_N |
5331 | ("pragma Inline_Always not allowed for dispatching subprograms", E); | |
5332 | end if; | |
c6a9797e RD |
5333 | |
5334 | -- Because of the implicit representation of inherited predefined | |
5335 | -- operators in the front-end, the overriding status of the operation | |
5336 | -- may be affected when a full view of a type is analyzed, and this is | |
5337 | -- not captured by the analysis of the corresponding type declaration. | |
5338 | -- Therefore the correctness of a not-overriding indicator must be | |
5339 | -- rechecked when the subprogram is frozen. | |
5340 | ||
5341 | if Nkind (E) = N_Defining_Operator_Symbol | |
5342 | and then not Error_Posted (Parent (E)) | |
5343 | then | |
5344 | Check_Overriding_Indicator (E, Empty, Is_Primitive (E)); | |
5345 | end if; | |
70482933 RK |
5346 | end Freeze_Subprogram; |
5347 | ||
15ce9ca2 AC |
5348 | ---------------------- |
5349 | -- Is_Fully_Defined -- | |
5350 | ---------------------- | |
70482933 | 5351 | |
70482933 RK |
5352 | function Is_Fully_Defined (T : Entity_Id) return Boolean is |
5353 | begin | |
5354 | if Ekind (T) = E_Class_Wide_Type then | |
5355 | return Is_Fully_Defined (Etype (T)); | |
657a9dd9 AC |
5356 | |
5357 | elsif Is_Array_Type (T) then | |
5358 | return Is_Fully_Defined (Component_Type (T)); | |
5359 | ||
5360 | elsif Is_Record_Type (T) | |
5361 | and not Is_Private_Type (T) | |
5362 | then | |
ee094616 RD |
5363 | -- Verify that the record type has no components with private types |
5364 | -- without completion. | |
657a9dd9 AC |
5365 | |
5366 | declare | |
5367 | Comp : Entity_Id; | |
bde58e32 | 5368 | |
657a9dd9 AC |
5369 | begin |
5370 | Comp := First_Component (T); | |
5371 | ||
5372 | while Present (Comp) loop | |
5373 | if not Is_Fully_Defined (Etype (Comp)) then | |
5374 | return False; | |
5375 | end if; | |
5376 | ||
5377 | Next_Component (Comp); | |
5378 | end loop; | |
5379 | return True; | |
5380 | end; | |
5381 | ||
86cde7b1 RD |
5382 | else |
5383 | return not Is_Private_Type (T) | |
5384 | or else Present (Full_View (Base_Type (T))); | |
70482933 RK |
5385 | end if; |
5386 | end Is_Fully_Defined; | |
5387 | ||
70d904ca | 5388 | --------------------------------- |
70482933 RK |
5389 | -- Process_Default_Expressions -- |
5390 | --------------------------------- | |
5391 | ||
5392 | procedure Process_Default_Expressions | |
5393 | (E : Entity_Id; | |
5394 | After : in out Node_Id) | |
5395 | is | |
5396 | Loc : constant Source_Ptr := Sloc (E); | |
5397 | Dbody : Node_Id; | |
5398 | Formal : Node_Id; | |
5399 | Dcopy : Node_Id; | |
5400 | Dnam : Entity_Id; | |
5401 | ||
5402 | begin | |
5403 | Set_Default_Expressions_Processed (E); | |
5404 | ||
ee094616 RD |
5405 | -- A subprogram instance and its associated anonymous subprogram share |
5406 | -- their signature. The default expression functions are defined in the | |
5407 | -- wrapper packages for the anonymous subprogram, and should not be | |
5408 | -- generated again for the instance. | |
70482933 RK |
5409 | |
5410 | if Is_Generic_Instance (E) | |
5411 | and then Present (Alias (E)) | |
5412 | and then Default_Expressions_Processed (Alias (E)) | |
5413 | then | |
5414 | return; | |
5415 | end if; | |
5416 | ||
5417 | Formal := First_Formal (E); | |
70482933 RK |
5418 | while Present (Formal) loop |
5419 | if Present (Default_Value (Formal)) then | |
5420 | ||
5421 | -- We work with a copy of the default expression because we | |
5422 | -- do not want to disturb the original, since this would mess | |
5423 | -- up the conformance checking. | |
5424 | ||
5425 | Dcopy := New_Copy_Tree (Default_Value (Formal)); | |
5426 | ||
5427 | -- The analysis of the expression may generate insert actions, | |
5428 | -- which of course must not be executed. We wrap those actions | |
5429 | -- in a procedure that is not called, and later on eliminated. | |
5430 | -- The following cases have no side-effects, and are analyzed | |
5431 | -- directly. | |
5432 | ||
5433 | if Nkind (Dcopy) = N_Identifier | |
5434 | or else Nkind (Dcopy) = N_Expanded_Name | |
5435 | or else Nkind (Dcopy) = N_Integer_Literal | |
5436 | or else (Nkind (Dcopy) = N_Real_Literal | |
5437 | and then not Vax_Float (Etype (Dcopy))) | |
5438 | or else Nkind (Dcopy) = N_Character_Literal | |
5439 | or else Nkind (Dcopy) = N_String_Literal | |
86cde7b1 | 5440 | or else Known_Null (Dcopy) |
70482933 RK |
5441 | or else (Nkind (Dcopy) = N_Attribute_Reference |
5442 | and then | |
5443 | Attribute_Name (Dcopy) = Name_Null_Parameter) | |
70482933 RK |
5444 | then |
5445 | ||
5446 | -- If there is no default function, we must still do a full | |
ee094616 RD |
5447 | -- analyze call on the default value, to ensure that all error |
5448 | -- checks are performed, e.g. those associated with static | |
5449 | -- evaluation. Note: this branch will always be taken if the | |
5450 | -- analyzer is turned off (but we still need the error checks). | |
70482933 RK |
5451 | |
5452 | -- Note: the setting of parent here is to meet the requirement | |
5453 | -- that we can only analyze the expression while attached to | |
5454 | -- the tree. Really the requirement is that the parent chain | |
5455 | -- be set, we don't actually need to be in the tree. | |
5456 | ||
5457 | Set_Parent (Dcopy, Declaration_Node (Formal)); | |
5458 | Analyze (Dcopy); | |
5459 | ||
5460 | -- Default expressions are resolved with their own type if the | |
5461 | -- context is generic, to avoid anomalies with private types. | |
5462 | ||
5463 | if Ekind (Scope (E)) = E_Generic_Package then | |
fbf5a39b | 5464 | Resolve (Dcopy); |
70482933 RK |
5465 | else |
5466 | Resolve (Dcopy, Etype (Formal)); | |
5467 | end if; | |
5468 | ||
5469 | -- If that resolved expression will raise constraint error, | |
5470 | -- then flag the default value as raising constraint error. | |
5471 | -- This allows a proper error message on the calls. | |
5472 | ||
5473 | if Raises_Constraint_Error (Dcopy) then | |
5474 | Set_Raises_Constraint_Error (Default_Value (Formal)); | |
5475 | end if; | |
5476 | ||
5477 | -- If the default is a parameterless call, we use the name of | |
5478 | -- the called function directly, and there is no body to build. | |
5479 | ||
5480 | elsif Nkind (Dcopy) = N_Function_Call | |
5481 | and then No (Parameter_Associations (Dcopy)) | |
5482 | then | |
5483 | null; | |
5484 | ||
5485 | -- Else construct and analyze the body of a wrapper procedure | |
5486 | -- that contains an object declaration to hold the expression. | |
5487 | -- Given that this is done only to complete the analysis, it | |
5488 | -- simpler to build a procedure than a function which might | |
5489 | -- involve secondary stack expansion. | |
5490 | ||
5491 | else | |
5492 | Dnam := | |
5493 | Make_Defining_Identifier (Loc, New_Internal_Name ('D')); | |
5494 | ||
5495 | Dbody := | |
5496 | Make_Subprogram_Body (Loc, | |
5497 | Specification => | |
5498 | Make_Procedure_Specification (Loc, | |
5499 | Defining_Unit_Name => Dnam), | |
5500 | ||
5501 | Declarations => New_List ( | |
5502 | Make_Object_Declaration (Loc, | |
5503 | Defining_Identifier => | |
5504 | Make_Defining_Identifier (Loc, | |
5505 | New_Internal_Name ('T')), | |
5506 | Object_Definition => | |
5507 | New_Occurrence_Of (Etype (Formal), Loc), | |
5508 | Expression => New_Copy_Tree (Dcopy))), | |
5509 | ||
5510 | Handled_Statement_Sequence => | |
5511 | Make_Handled_Sequence_Of_Statements (Loc, | |
5512 | Statements => New_List)); | |
5513 | ||
5514 | Set_Scope (Dnam, Scope (E)); | |
5515 | Set_Assignment_OK (First (Declarations (Dbody))); | |
5516 | Set_Is_Eliminated (Dnam); | |
5517 | Insert_After (After, Dbody); | |
5518 | Analyze (Dbody); | |
5519 | After := Dbody; | |
5520 | end if; | |
5521 | end if; | |
5522 | ||
5523 | Next_Formal (Formal); | |
5524 | end loop; | |
70482933 RK |
5525 | end Process_Default_Expressions; |
5526 | ||
5527 | ---------------------------------------- | |
5528 | -- Set_Component_Alignment_If_Not_Set -- | |
5529 | ---------------------------------------- | |
5530 | ||
5531 | procedure Set_Component_Alignment_If_Not_Set (Typ : Entity_Id) is | |
5532 | begin | |
5533 | -- Ignore if not base type, subtypes don't need anything | |
5534 | ||
5535 | if Typ /= Base_Type (Typ) then | |
5536 | return; | |
5537 | end if; | |
5538 | ||
5539 | -- Do not override existing representation | |
5540 | ||
5541 | if Is_Packed (Typ) then | |
5542 | return; | |
5543 | ||
5544 | elsif Has_Specified_Layout (Typ) then | |
5545 | return; | |
5546 | ||
5547 | elsif Component_Alignment (Typ) /= Calign_Default then | |
5548 | return; | |
5549 | ||
5550 | else | |
5551 | Set_Component_Alignment | |
5552 | (Typ, Scope_Stack.Table | |
5553 | (Scope_Stack.Last).Component_Alignment_Default); | |
5554 | end if; | |
5555 | end Set_Component_Alignment_If_Not_Set; | |
5556 | ||
c6823a20 EB |
5557 | ------------------ |
5558 | -- Undelay_Type -- | |
5559 | ------------------ | |
5560 | ||
5561 | procedure Undelay_Type (T : Entity_Id) is | |
5562 | begin | |
5563 | Set_Has_Delayed_Freeze (T, False); | |
5564 | Set_Freeze_Node (T, Empty); | |
5565 | ||
5566 | -- Since we don't want T to have a Freeze_Node, we don't want its | |
5567 | -- Full_View or Corresponding_Record_Type to have one either. | |
5568 | ||
5569 | -- ??? Fundamentally, this whole handling is a kludge. What we really | |
ee094616 RD |
5570 | -- want is to be sure that for an Itype that's part of record R and is a |
5571 | -- subtype of type T, that it's frozen after the later of the freeze | |
c6823a20 EB |
5572 | -- points of R and T. We have no way of doing that directly, so what we |
5573 | -- do is force most such Itypes to be frozen as part of freezing R via | |
5574 | -- this procedure and only delay the ones that need to be delayed | |
ee094616 RD |
5575 | -- (mostly the designated types of access types that are defined as part |
5576 | -- of the record). | |
c6823a20 EB |
5577 | |
5578 | if Is_Private_Type (T) | |
5579 | and then Present (Full_View (T)) | |
5580 | and then Is_Itype (Full_View (T)) | |
5581 | and then Is_Record_Type (Scope (Full_View (T))) | |
5582 | then | |
5583 | Undelay_Type (Full_View (T)); | |
5584 | end if; | |
5585 | ||
5586 | if Is_Concurrent_Type (T) | |
5587 | and then Present (Corresponding_Record_Type (T)) | |
5588 | and then Is_Itype (Corresponding_Record_Type (T)) | |
5589 | and then Is_Record_Type (Scope (Corresponding_Record_Type (T))) | |
5590 | then | |
5591 | Undelay_Type (Corresponding_Record_Type (T)); | |
5592 | end if; | |
5593 | end Undelay_Type; | |
5594 | ||
fbf5a39b AC |
5595 | ------------------ |
5596 | -- Warn_Overlay -- | |
5597 | ------------------ | |
5598 | ||
5599 | procedure Warn_Overlay | |
5600 | (Expr : Node_Id; | |
5601 | Typ : Entity_Id; | |
5602 | Nam : Entity_Id) | |
5603 | is | |
5604 | Ent : constant Entity_Id := Entity (Nam); | |
49e90211 | 5605 | -- The object to which the address clause applies |
fbf5a39b AC |
5606 | |
5607 | Init : Node_Id; | |
5608 | Old : Entity_Id := Empty; | |
5609 | Decl : Node_Id; | |
5610 | ||
5611 | begin | |
5612 | -- No warning if address clause overlay warnings are off | |
5613 | ||
5614 | if not Address_Clause_Overlay_Warnings then | |
5615 | return; | |
5616 | end if; | |
5617 | ||
5618 | -- No warning if there is an explicit initialization | |
5619 | ||
5620 | Init := Original_Node (Expression (Declaration_Node (Ent))); | |
5621 | ||
5622 | if Present (Init) and then Comes_From_Source (Init) then | |
5623 | return; | |
5624 | end if; | |
5625 | ||
edd63e9b | 5626 | -- We only give the warning for non-imported entities of a type for |
0ac73189 AC |
5627 | -- which a non-null base init proc is defined, or for objects of access |
5628 | -- types with implicit null initialization, or when Initialize_Scalars | |
5629 | -- applies and the type is scalar or a string type (the latter being | |
5630 | -- tested for because predefined String types are initialized by inline | |
5631 | -- code rather than by an init_proc). | |
fbf5a39b AC |
5632 | |
5633 | if Present (Expr) | |
fbf5a39b | 5634 | and then not Is_Imported (Ent) |
0ac73189 AC |
5635 | and then (Has_Non_Null_Base_Init_Proc (Typ) |
5636 | or else Is_Access_Type (Typ) | |
5637 | or else (Init_Or_Norm_Scalars | |
5638 | and then (Is_Scalar_Type (Typ) | |
5639 | or else Is_String_Type (Typ)))) | |
fbf5a39b AC |
5640 | then |
5641 | if Nkind (Expr) = N_Attribute_Reference | |
5642 | and then Is_Entity_Name (Prefix (Expr)) | |
5643 | then | |
5644 | Old := Entity (Prefix (Expr)); | |
5645 | ||
5646 | elsif Is_Entity_Name (Expr) | |
5647 | and then Ekind (Entity (Expr)) = E_Constant | |
5648 | then | |
5649 | Decl := Declaration_Node (Entity (Expr)); | |
5650 | ||
5651 | if Nkind (Decl) = N_Object_Declaration | |
5652 | and then Present (Expression (Decl)) | |
5653 | and then Nkind (Expression (Decl)) = N_Attribute_Reference | |
5654 | and then Is_Entity_Name (Prefix (Expression (Decl))) | |
5655 | then | |
5656 | Old := Entity (Prefix (Expression (Decl))); | |
5657 | ||
5658 | elsif Nkind (Expr) = N_Function_Call then | |
5659 | return; | |
5660 | end if; | |
5661 | ||
ee094616 RD |
5662 | -- A function call (most likely to To_Address) is probably not an |
5663 | -- overlay, so skip warning. Ditto if the function call was inlined | |
5664 | -- and transformed into an entity. | |
fbf5a39b AC |
5665 | |
5666 | elsif Nkind (Original_Node (Expr)) = N_Function_Call then | |
5667 | return; | |
5668 | end if; | |
5669 | ||
5670 | Decl := Next (Parent (Expr)); | |
5671 | ||
5672 | -- If a pragma Import follows, we assume that it is for the current | |
5673 | -- target of the address clause, and skip the warning. | |
5674 | ||
5675 | if Present (Decl) | |
5676 | and then Nkind (Decl) = N_Pragma | |
1b24ada5 | 5677 | and then Pragma_Name (Decl) = Name_Import |
fbf5a39b AC |
5678 | then |
5679 | return; | |
5680 | end if; | |
5681 | ||
5682 | if Present (Old) then | |
5683 | Error_Msg_Node_2 := Old; | |
5684 | Error_Msg_N | |
5685 | ("default initialization of & may modify &?", | |
5686 | Nam); | |
5687 | else | |
5688 | Error_Msg_N | |
5689 | ("default initialization of & may modify overlaid storage?", | |
5690 | Nam); | |
5691 | end if; | |
5692 | ||
5693 | -- Add friendly warning if initialization comes from a packed array | |
5694 | -- component. | |
5695 | ||
5696 | if Is_Record_Type (Typ) then | |
5697 | declare | |
5698 | Comp : Entity_Id; | |
5699 | ||
5700 | begin | |
5701 | Comp := First_Component (Typ); | |
5702 | ||
5703 | while Present (Comp) loop | |
5704 | if Nkind (Parent (Comp)) = N_Component_Declaration | |
5705 | and then Present (Expression (Parent (Comp))) | |
5706 | then | |
5707 | exit; | |
5708 | elsif Is_Array_Type (Etype (Comp)) | |
5709 | and then Present (Packed_Array_Type (Etype (Comp))) | |
5710 | then | |
5711 | Error_Msg_NE | |
3f1ede06 RD |
5712 | ("\packed array component& " & |
5713 | "will be initialized to zero?", | |
5714 | Nam, Comp); | |
fbf5a39b AC |
5715 | exit; |
5716 | else | |
5717 | Next_Component (Comp); | |
5718 | end if; | |
5719 | end loop; | |
5720 | end; | |
5721 | end if; | |
5722 | ||
5723 | Error_Msg_N | |
3f1ede06 | 5724 | ("\use pragma Import for & to " & |
86cde7b1 | 5725 | "suppress initialization (RM B.1(24))?", |
3f1ede06 | 5726 | Nam); |
fbf5a39b AC |
5727 | end if; |
5728 | end Warn_Overlay; | |
5729 | ||
70482933 | 5730 | end Freeze; |