]> gcc.gnu.org Git - gcc.git/blame - gcc/ada/freeze.adb
impunit.adb: Exclude container helper units not intended for use by users.
[gcc.git] / gcc / ada / freeze.adb
CommitLineData
70482933
RK
1------------------------------------------------------------------------------
2-- --
3-- GNAT COMPILER COMPONENTS --
4-- --
5-- F R E E Z E --
6-- --
7-- B o d y --
8-- --
edd63e9b 9-- Copyright (C) 1992-2005 Free Software Foundation, Inc. --
70482933
RK
10-- --
11-- GNAT is free software; you can redistribute it and/or modify it under --
12-- terms of the GNU General Public License as published by the Free Soft- --
13-- ware Foundation; either version 2, or (at your option) any later ver- --
14-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16-- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17-- for more details. You should have received a copy of the GNU General --
18-- Public License distributed with GNAT; see file COPYING. If not, write --
cb5fee25
KC
19-- to the Free Software Foundation, 51 Franklin Street, Fifth Floor, --
20-- Boston, MA 02110-1301, USA. --
70482933
RK
21-- --
22-- GNAT was originally developed by the GNAT team at New York University. --
71ff80dc 23-- Extensive contributions were provided by Ada Core Technologies Inc. --
70482933
RK
24-- --
25------------------------------------------------------------------------------
26
27with Atree; use Atree;
28with Debug; use Debug;
29with Einfo; use Einfo;
30with Elists; use Elists;
31with Errout; use Errout;
32with Exp_Ch7; use Exp_Ch7;
70482933
RK
33with Exp_Pakd; use Exp_Pakd;
34with Exp_Util; use Exp_Util;
fbf5a39b 35with Exp_Tss; use Exp_Tss;
70482933 36with Layout; use Layout;
07fc65c4 37with Lib.Xref; use Lib.Xref;
70482933
RK
38with Nlists; use Nlists;
39with Nmake; use Nmake;
40with Opt; use Opt;
41with Restrict; use Restrict;
6e937c1c 42with Rident; use Rident;
70482933
RK
43with Sem; use Sem;
44with Sem_Cat; use Sem_Cat;
45with Sem_Ch6; use Sem_Ch6;
46with Sem_Ch7; use Sem_Ch7;
47with Sem_Ch8; use Sem_Ch8;
48with Sem_Ch13; use Sem_Ch13;
49with Sem_Eval; use Sem_Eval;
50with Sem_Mech; use Sem_Mech;
51with Sem_Prag; use Sem_Prag;
52with Sem_Res; use Sem_Res;
53with Sem_Util; use Sem_Util;
54with Sinfo; use Sinfo;
55with Snames; use Snames;
56with Stand; use Stand;
57with Targparm; use Targparm;
58with Tbuild; use Tbuild;
59with Ttypes; use Ttypes;
60with Uintp; use Uintp;
61with Urealp; use Urealp;
62
63package body Freeze is
64
65 -----------------------
66 -- Local Subprograms --
67 -----------------------
68
69 procedure Adjust_Esize_For_Alignment (Typ : Entity_Id);
70 -- Typ is a type that is being frozen. If no size clause is given,
71 -- but a default Esize has been computed, then this default Esize is
72 -- adjusted up if necessary to be consistent with a given alignment,
73 -- but never to a value greater than Long_Long_Integer'Size. This
74 -- is used for all discrete types and for fixed-point types.
75
76 procedure Build_And_Analyze_Renamed_Body
77 (Decl : Node_Id;
78 New_S : Entity_Id;
79 After : in out Node_Id);
49e90211 80 -- Build body for a renaming declaration, insert in tree and analyze
70482933 81
fbf5a39b
AC
82 procedure Check_Address_Clause (E : Entity_Id);
83 -- Apply legality checks to address clauses for object declarations,
2c9beb8a 84 -- at the point the object is frozen.
fbf5a39b 85
70482933
RK
86 procedure Check_Strict_Alignment (E : Entity_Id);
87 -- E is a base type. If E is tagged or has a component that is aliased
88 -- or tagged or contains something this is aliased or tagged, set
89 -- Strict_Alignment.
90
91 procedure Check_Unsigned_Type (E : Entity_Id);
92 pragma Inline (Check_Unsigned_Type);
93 -- If E is a fixed-point or discrete type, then all the necessary work
94 -- to freeze it is completed except for possible setting of the flag
95 -- Is_Unsigned_Type, which is done by this procedure. The call has no
96 -- effect if the entity E is not a discrete or fixed-point type.
97
98 procedure Freeze_And_Append
99 (Ent : Entity_Id;
100 Loc : Source_Ptr;
101 Result : in out List_Id);
102 -- Freezes Ent using Freeze_Entity, and appends the resulting list of
103 -- nodes to Result, modifying Result from No_List if necessary.
104
105 procedure Freeze_Enumeration_Type (Typ : Entity_Id);
106 -- Freeze enumeration type. The Esize field is set as processing
107 -- proceeds (i.e. set by default when the type is declared and then
108 -- adjusted by rep clauses. What this procedure does is to make sure
109 -- that if a foreign convention is specified, and no specific size
110 -- is given, then the size must be at least Integer'Size.
111
70482933
RK
112 procedure Freeze_Static_Object (E : Entity_Id);
113 -- If an object is frozen which has Is_Statically_Allocated set, then
114 -- all referenced types must also be marked with this flag. This routine
115 -- is in charge of meeting this requirement for the object entity E.
116
117 procedure Freeze_Subprogram (E : Entity_Id);
118 -- Perform freezing actions for a subprogram (create extra formals,
119 -- and set proper default mechanism values). Note that this routine
120 -- is not called for internal subprograms, for which neither of these
121 -- actions is needed (or desirable, we do not want for example to have
122 -- these extra formals present in initialization procedures, where they
123 -- would serve no purpose). In this call E is either a subprogram or
124 -- a subprogram type (i.e. an access to a subprogram).
125
126 function Is_Fully_Defined (T : Entity_Id) return Boolean;
bde58e32 127 -- True if T is not private and has no private components, or has a full
657a9dd9
AC
128 -- view. Used to determine whether the designated type of an access type
129 -- should be frozen when the access type is frozen. This is done when an
130 -- allocator is frozen, or an expression that may involve attributes of
131 -- the designated type. Otherwise freezing the access type does not freeze
132 -- the designated type.
70482933
RK
133
134 procedure Process_Default_Expressions
135 (E : Entity_Id;
136 After : in out Node_Id);
137 -- This procedure is called for each subprogram to complete processing
138 -- of default expressions at the point where all types are known to be
139 -- frozen. The expressions must be analyzed in full, to make sure that
140 -- all error processing is done (they have only been pre-analyzed). If
141 -- the expression is not an entity or literal, its analysis may generate
142 -- code which must not be executed. In that case we build a function
143 -- body to hold that code. This wrapper function serves no other purpose
144 -- (it used to be called to evaluate the default, but now the default is
145 -- inlined at each point of call).
146
147 procedure Set_Component_Alignment_If_Not_Set (Typ : Entity_Id);
148 -- Typ is a record or array type that is being frozen. This routine
149 -- sets the default component alignment from the scope stack values
150 -- if the alignment is otherwise not specified.
151
152 procedure Check_Debug_Info_Needed (T : Entity_Id);
153 -- As each entity is frozen, this routine is called to deal with the
154 -- setting of Debug_Info_Needed for the entity. This flag is set if
155 -- the entity comes from source, or if we are in Debug_Generated_Code
156 -- mode or if the -gnatdV debug flag is set. However, it never sets
157 -- the flag if Debug_Info_Off is set.
158
159 procedure Set_Debug_Info_Needed (T : Entity_Id);
160 -- Sets the Debug_Info_Needed flag on entity T if not already set, and
161 -- also on any entities that are needed by T (for an object, the type
162 -- of the object is needed, and for a type, the subsidiary types are
163 -- needed -- see body for details). Never has any effect on T if the
164 -- Debug_Info_Off flag is set.
165
c6823a20
EB
166 procedure Undelay_Type (T : Entity_Id);
167 -- T is a type of a component that we know to be an Itype.
168 -- We don't want this to have a Freeze_Node, so ensure it doesn't.
169 -- Do the same for any Full_View or Corresponding_Record_Type.
170
fbf5a39b
AC
171 procedure Warn_Overlay
172 (Expr : Node_Id;
173 Typ : Entity_Id;
174 Nam : Node_Id);
175 -- Expr is the expression for an address clause for entity Nam whose type
176 -- is Typ. If Typ has a default initialization, and there is no explicit
177 -- initialization in the source declaration, check whether the address
178 -- clause might cause overlaying of an entity, and emit a warning on the
179 -- side effect that the initialization will cause.
180
70482933
RK
181 -------------------------------
182 -- Adjust_Esize_For_Alignment --
183 -------------------------------
184
185 procedure Adjust_Esize_For_Alignment (Typ : Entity_Id) is
186 Align : Uint;
187
188 begin
189 if Known_Esize (Typ) and then Known_Alignment (Typ) then
190 Align := Alignment_In_Bits (Typ);
191
192 if Align > Esize (Typ)
193 and then Align <= Standard_Long_Long_Integer_Size
194 then
195 Set_Esize (Typ, Align);
196 end if;
197 end if;
198 end Adjust_Esize_For_Alignment;
199
200 ------------------------------------
201 -- Build_And_Analyze_Renamed_Body --
202 ------------------------------------
203
204 procedure Build_And_Analyze_Renamed_Body
205 (Decl : Node_Id;
206 New_S : Entity_Id;
207 After : in out Node_Id)
208 is
209 Body_Node : constant Node_Id := Build_Renamed_Body (Decl, New_S);
210
211 begin
212 Insert_After (After, Body_Node);
213 Mark_Rewrite_Insertion (Body_Node);
214 Analyze (Body_Node);
215 After := Body_Node;
216 end Build_And_Analyze_Renamed_Body;
217
218 ------------------------
219 -- Build_Renamed_Body --
220 ------------------------
221
222 function Build_Renamed_Body
223 (Decl : Node_Id;
fbf5a39b 224 New_S : Entity_Id) return Node_Id
70482933
RK
225 is
226 Loc : constant Source_Ptr := Sloc (New_S);
227 -- We use for the source location of the renamed body, the location
228 -- of the spec entity. It might seem more natural to use the location
229 -- of the renaming declaration itself, but that would be wrong, since
230 -- then the body we create would look as though it was created far
231 -- too late, and this could cause problems with elaboration order
232 -- analysis, particularly in connection with instantiations.
233
234 N : constant Node_Id := Unit_Declaration_Node (New_S);
235 Nam : constant Node_Id := Name (N);
236 Old_S : Entity_Id;
237 Spec : constant Node_Id := New_Copy_Tree (Specification (Decl));
238 Actuals : List_Id := No_List;
239 Call_Node : Node_Id;
240 Call_Name : Node_Id;
241 Body_Node : Node_Id;
242 Formal : Entity_Id;
243 O_Formal : Entity_Id;
244 Param_Spec : Node_Id;
245
246 begin
247 -- Determine the entity being renamed, which is the target of the
248 -- call statement. If the name is an explicit dereference, this is
249 -- a renaming of a subprogram type rather than a subprogram. The
250 -- name itself is fully analyzed.
251
252 if Nkind (Nam) = N_Selected_Component then
253 Old_S := Entity (Selector_Name (Nam));
254
255 elsif Nkind (Nam) = N_Explicit_Dereference then
256 Old_S := Etype (Nam);
257
258 elsif Nkind (Nam) = N_Indexed_Component then
70482933
RK
259 if Is_Entity_Name (Prefix (Nam)) then
260 Old_S := Entity (Prefix (Nam));
261 else
262 Old_S := Entity (Selector_Name (Prefix (Nam)));
263 end if;
264
265 elsif Nkind (Nam) = N_Character_Literal then
266 Old_S := Etype (New_S);
267
268 else
269 Old_S := Entity (Nam);
270 end if;
271
272 if Is_Entity_Name (Nam) then
07fc65c4
GB
273
274 -- If the renamed entity is a predefined operator, retain full
275 -- name to ensure its visibility.
276
277 if Ekind (Old_S) = E_Operator
278 and then Nkind (Nam) = N_Expanded_Name
279 then
280 Call_Name := New_Copy (Name (N));
281 else
282 Call_Name := New_Reference_To (Old_S, Loc);
283 end if;
284
70482933
RK
285 else
286 Call_Name := New_Copy (Name (N));
287
288 -- The original name may have been overloaded, but
289 -- is fully resolved now.
290
291 Set_Is_Overloaded (Call_Name, False);
292 end if;
293
294 -- For simple renamings, subsequent calls can be expanded directly
295 -- as called to the renamed entity. The body must be generated in
296 -- any case for calls they may appear elsewhere.
297
298 if (Ekind (Old_S) = E_Function
299 or else Ekind (Old_S) = E_Procedure)
300 and then Nkind (Decl) = N_Subprogram_Declaration
301 then
302 Set_Body_To_Inline (Decl, Old_S);
303 end if;
304
305 -- The body generated for this renaming is an internal artifact, and
306 -- does not constitute a freeze point for the called entity.
307
308 Set_Must_Not_Freeze (Call_Name);
309
310 Formal := First_Formal (Defining_Entity (Decl));
311
312 if Present (Formal) then
313 Actuals := New_List;
314
315 while Present (Formal) loop
316 Append (New_Reference_To (Formal, Loc), Actuals);
317 Next_Formal (Formal);
318 end loop;
319 end if;
320
321 -- If the renamed entity is an entry, inherit its profile. For
322 -- other renamings as bodies, both profiles must be subtype
323 -- conformant, so it is not necessary to replace the profile given
324 -- in the declaration. However, default values that are aggregates
325 -- are rewritten when partially analyzed, so we recover the original
326 -- aggregate to insure that subsequent conformity checking works.
07fc65c4
GB
327 -- Similarly, if the default expression was constant-folded, recover
328 -- the original expression.
70482933
RK
329
330 Formal := First_Formal (Defining_Entity (Decl));
331
332 if Present (Formal) then
333 O_Formal := First_Formal (Old_S);
334 Param_Spec := First (Parameter_Specifications (Spec));
335
336 while Present (Formal) loop
337 if Is_Entry (Old_S) then
338
339 if Nkind (Parameter_Type (Param_Spec)) /=
340 N_Access_Definition
341 then
342 Set_Etype (Formal, Etype (O_Formal));
343 Set_Entity (Parameter_Type (Param_Spec), Etype (O_Formal));
344 end if;
345
07fc65c4
GB
346 elsif Nkind (Default_Value (O_Formal)) = N_Aggregate
347 or else Nkind (Original_Node (Default_Value (O_Formal))) /=
348 Nkind (Default_Value (O_Formal))
349 then
70482933
RK
350 Set_Expression (Param_Spec,
351 New_Copy_Tree (Original_Node (Default_Value (O_Formal))));
352 end if;
353
354 Next_Formal (Formal);
355 Next_Formal (O_Formal);
356 Next (Param_Spec);
357 end loop;
358 end if;
359
360 -- If the renamed entity is a function, the generated body contains a
361 -- return statement. Otherwise, build a procedure call. If the entity is
362 -- an entry, subsequent analysis of the call will transform it into the
363 -- proper entry or protected operation call. If the renamed entity is
364 -- a character literal, return it directly.
365
366 if Ekind (Old_S) = E_Function
367 or else Ekind (Old_S) = E_Operator
368 or else (Ekind (Old_S) = E_Subprogram_Type
369 and then Etype (Old_S) /= Standard_Void_Type)
370 then
371 Call_Node :=
372 Make_Return_Statement (Loc,
373 Expression =>
374 Make_Function_Call (Loc,
375 Name => Call_Name,
376 Parameter_Associations => Actuals));
377
378 elsif Ekind (Old_S) = E_Enumeration_Literal then
379 Call_Node :=
380 Make_Return_Statement (Loc,
381 Expression => New_Occurrence_Of (Old_S, Loc));
382
383 elsif Nkind (Nam) = N_Character_Literal then
384 Call_Node :=
385 Make_Return_Statement (Loc,
386 Expression => Call_Name);
387
388 else
389 Call_Node :=
390 Make_Procedure_Call_Statement (Loc,
391 Name => Call_Name,
392 Parameter_Associations => Actuals);
393 end if;
394
49e90211 395 -- Create entities for subprogram body and formals
70482933
RK
396
397 Set_Defining_Unit_Name (Spec,
398 Make_Defining_Identifier (Loc, Chars => Chars (New_S)));
399
400 Param_Spec := First (Parameter_Specifications (Spec));
401
402 while Present (Param_Spec) loop
403 Set_Defining_Identifier (Param_Spec,
404 Make_Defining_Identifier (Loc,
405 Chars => Chars (Defining_Identifier (Param_Spec))));
406 Next (Param_Spec);
407 end loop;
408
409 Body_Node :=
410 Make_Subprogram_Body (Loc,
411 Specification => Spec,
412 Declarations => New_List,
413 Handled_Statement_Sequence =>
414 Make_Handled_Sequence_Of_Statements (Loc,
415 Statements => New_List (Call_Node)));
416
417 if Nkind (Decl) /= N_Subprogram_Declaration then
418 Rewrite (N,
419 Make_Subprogram_Declaration (Loc,
420 Specification => Specification (N)));
421 end if;
422
423 -- Link the body to the entity whose declaration it completes. If
424 -- the body is analyzed when the renamed entity is frozen, it may be
425 -- necessary to restore the proper scope (see package Exp_Ch13).
426
427 if Nkind (N) = N_Subprogram_Renaming_Declaration
428 and then Present (Corresponding_Spec (N))
429 then
430 Set_Corresponding_Spec (Body_Node, Corresponding_Spec (N));
431 else
432 Set_Corresponding_Spec (Body_Node, New_S);
433 end if;
434
435 return Body_Node;
436 end Build_Renamed_Body;
437
fbf5a39b
AC
438 --------------------------
439 -- Check_Address_Clause --
440 --------------------------
441
442 procedure Check_Address_Clause (E : Entity_Id) is
443 Addr : constant Node_Id := Address_Clause (E);
444 Expr : Node_Id;
445 Decl : constant Node_Id := Declaration_Node (E);
446 Typ : constant Entity_Id := Etype (E);
447
448 begin
449 if Present (Addr) then
450 Expr := Expression (Addr);
451
452 -- If we have no initialization of any kind, then we don't
453 -- need to place any restrictions on the address clause, because
454 -- the object will be elaborated after the address clause is
455 -- evaluated. This happens if the declaration has no initial
456 -- expression, or the type has no implicit initialization, or
457 -- the object is imported.
458
459 -- The same holds for all initialized scalar types and all
460 -- access types. Packed bit arrays of size up to 64 are
461 -- represented using a modular type with an initialization
462 -- (to zero) and can be processed like other initialized
463 -- scalar types.
464
465 -- If the type is controlled, code to attach the object to a
466 -- finalization chain is generated at the point of declaration,
467 -- and therefore the elaboration of the object cannot be delayed:
468 -- the address expression must be a constant.
469
470 if (No (Expression (Decl))
471 and then not Controlled_Type (Typ)
472 and then
473 (not Has_Non_Null_Base_Init_Proc (Typ)
474 or else Is_Imported (E)))
475
476 or else
477 (Present (Expression (Decl))
478 and then Is_Scalar_Type (Typ))
479
480 or else
481 Is_Access_Type (Typ)
482
483 or else
484 (Is_Bit_Packed_Array (Typ)
485 and then
486 Is_Modular_Integer_Type (Packed_Array_Type (Typ)))
487 then
488 null;
489
490 -- Otherwise, we require the address clause to be constant
491 -- because the call to the initialization procedure (or the
492 -- attach code) has to happen at the point of the declaration.
493
494 else
495 Check_Constant_Address_Clause (Expr, E);
496 Set_Has_Delayed_Freeze (E, False);
497 end if;
498
499 if not Error_Posted (Expr)
500 and then not Controlled_Type (Typ)
501 then
502 Warn_Overlay (Expr, Typ, Name (Addr));
503 end if;
504 end if;
505 end Check_Address_Clause;
506
70482933
RK
507 -----------------------------
508 -- Check_Compile_Time_Size --
509 -----------------------------
510
511 procedure Check_Compile_Time_Size (T : Entity_Id) is
512
c6823a20 513 procedure Set_Small_Size (T : Entity_Id; S : Uint);
70482933 514 -- Sets the compile time known size (32 bits or less) in the Esize
c6823a20 515 -- field, of T checking for a size clause that was given which attempts
70482933
RK
516 -- to give a smaller size.
517
518 function Size_Known (T : Entity_Id) return Boolean;
07fc65c4 519 -- Recursive function that does all the work
70482933
RK
520
521 function Static_Discriminated_Components (T : Entity_Id) return Boolean;
522 -- If T is a constrained subtype, its size is not known if any of its
523 -- discriminant constraints is not static and it is not a null record.
fbf5a39b 524 -- The test is conservative and doesn't check that the components are
70482933
RK
525 -- in fact constrained by non-static discriminant values. Could be made
526 -- more precise ???
527
528 --------------------
529 -- Set_Small_Size --
530 --------------------
531
c6823a20 532 procedure Set_Small_Size (T : Entity_Id; S : Uint) is
70482933
RK
533 begin
534 if S > 32 then
535 return;
536
537 elsif Has_Size_Clause (T) then
538 if RM_Size (T) < S then
539 Error_Msg_Uint_1 := S;
540 Error_Msg_NE
541 ("size for & is too small, minimum is ^",
542 Size_Clause (T), T);
543
544 elsif Unknown_Esize (T) then
545 Set_Esize (T, S);
546 end if;
547
548 -- Set sizes if not set already
549
550 else
551 if Unknown_Esize (T) then
552 Set_Esize (T, S);
553 end if;
554
555 if Unknown_RM_Size (T) then
556 Set_RM_Size (T, S);
557 end if;
558 end if;
559 end Set_Small_Size;
560
561 ----------------
562 -- Size_Known --
563 ----------------
564
565 function Size_Known (T : Entity_Id) return Boolean is
566 Index : Entity_Id;
567 Comp : Entity_Id;
568 Ctyp : Entity_Id;
569 Low : Node_Id;
570 High : Node_Id;
571
572 begin
573 if Size_Known_At_Compile_Time (T) then
574 return True;
575
70482933
RK
576 elsif Is_Scalar_Type (T)
577 or else Is_Task_Type (T)
578 then
579 return not Is_Generic_Type (T);
580
581 elsif Is_Array_Type (T) then
70482933 582 if Ekind (T) = E_String_Literal_Subtype then
c6823a20
EB
583 Set_Small_Size (T, Component_Size (T)
584 * String_Literal_Length (T));
70482933
RK
585 return True;
586
587 elsif not Is_Constrained (T) then
588 return False;
589
07fc65c4
GB
590 -- Don't do any recursion on type with error posted, since
591 -- we may have a malformed type that leads us into a loop
592
593 elsif Error_Posted (T) then
594 return False;
595
70482933
RK
596 elsif not Size_Known (Component_Type (T)) then
597 return False;
598 end if;
599
600 -- Check for all indexes static, and also compute possible
601 -- size (in case it is less than 32 and may be packable).
602
603 declare
604 Esiz : Uint := Component_Size (T);
605 Dim : Uint;
606
607 begin
608 Index := First_Index (T);
70482933
RK
609 while Present (Index) loop
610 if Nkind (Index) = N_Range then
611 Get_Index_Bounds (Index, Low, High);
612
613 elsif Error_Posted (Scalar_Range (Etype (Index))) then
614 return False;
615
616 else
617 Low := Type_Low_Bound (Etype (Index));
618 High := Type_High_Bound (Etype (Index));
619 end if;
620
621 if not Compile_Time_Known_Value (Low)
622 or else not Compile_Time_Known_Value (High)
623 or else Etype (Index) = Any_Type
624 then
625 return False;
626
627 else
628 Dim := Expr_Value (High) - Expr_Value (Low) + 1;
629
630 if Dim >= 0 then
631 Esiz := Esiz * Dim;
632 else
633 Esiz := Uint_0;
634 end if;
635 end if;
636
637 Next_Index (Index);
638 end loop;
639
c6823a20 640 Set_Small_Size (T, Esiz);
70482933
RK
641 return True;
642 end;
643
644 elsif Is_Access_Type (T) then
645 return True;
646
647 elsif Is_Private_Type (T)
648 and then not Is_Generic_Type (T)
649 and then Present (Underlying_Type (T))
650 then
07fc65c4
GB
651 -- Don't do any recursion on type with error posted, since
652 -- we may have a malformed type that leads us into a loop
653
654 if Error_Posted (T) then
655 return False;
656 else
657 return Size_Known (Underlying_Type (T));
658 end if;
70482933
RK
659
660 elsif Is_Record_Type (T) then
fbf5a39b
AC
661
662 -- A class-wide type is never considered to have a known size
663
70482933
RK
664 if Is_Class_Wide_Type (T) then
665 return False;
666
fbf5a39b
AC
667 -- A subtype of a variant record must not have non-static
668 -- discriminanted components.
669
670 elsif T /= Base_Type (T)
671 and then not Static_Discriminated_Components (T)
672 then
673 return False;
70482933 674
07fc65c4
GB
675 -- Don't do any recursion on type with error posted, since
676 -- we may have a malformed type that leads us into a loop
677
678 elsif Error_Posted (T) then
679 return False;
fbf5a39b 680 end if;
07fc65c4 681
fbf5a39b 682 -- Now look at the components of the record
70482933 683
fbf5a39b
AC
684 declare
685 -- The following two variables are used to keep track of
686 -- the size of packed records if we can tell the size of
687 -- the packed record in the front end. Packed_Size_Known
688 -- is True if so far we can figure out the size. It is
689 -- initialized to True for a packed record, unless the
690 -- record has discriminants. The reason we eliminate the
691 -- discriminated case is that we don't know the way the
692 -- back end lays out discriminated packed records. If
693 -- Packed_Size_Known is True, then Packed_Size is the
694 -- size in bits so far.
695
696 Packed_Size_Known : Boolean :=
697 Is_Packed (T)
698 and then not Has_Discriminants (T);
699
700 Packed_Size : Uint := Uint_0;
701
702 begin
703 -- Test for variant part present
704
705 if Has_Discriminants (T)
706 and then Present (Parent (T))
707 and then Nkind (Parent (T)) = N_Full_Type_Declaration
708 and then Nkind (Type_Definition (Parent (T))) =
709 N_Record_Definition
710 and then not Null_Present (Type_Definition (Parent (T)))
711 and then Present (Variant_Part
712 (Component_List (Type_Definition (Parent (T)))))
713 then
714 -- If variant part is present, and type is unconstrained,
715 -- then we must have defaulted discriminants, or a size
716 -- clause must be present for the type, or else the size
717 -- is definitely not known at compile time.
718
719 if not Is_Constrained (T)
720 and then
721 No (Discriminant_Default_Value
722 (First_Discriminant (T)))
723 and then Unknown_Esize (T)
70482933 724 then
fbf5a39b
AC
725 return False;
726 end if;
727 end if;
70482933 728
fbf5a39b
AC
729 -- Loop through components
730
731 Comp := First_Entity (T);
732 while Present (Comp) loop
733 if Ekind (Comp) = E_Component
734 or else
735 Ekind (Comp) = E_Discriminant
736 then
737 Ctyp := Etype (Comp);
738
739 -- We do not know the packed size if there is a
740 -- component clause present (we possibly could,
741 -- but this would only help in the case of a record
742 -- with partial rep clauses. That's because in the
743 -- case of full rep clauses, the size gets figured
744 -- out anyway by a different circuit).
745
746 if Present (Component_Clause (Comp)) then
70482933
RK
747 Packed_Size_Known := False;
748 end if;
70482933 749
fbf5a39b
AC
750 -- We need to identify a component that is an array
751 -- where the index type is an enumeration type with
752 -- non-standard representation, and some bound of the
753 -- type depends on a discriminant.
754
755 -- This is because gigi computes the size by doing a
756 -- substituation of the appropriate discriminant value
757 -- in the size expression for the base type, and gigi
758 -- is not clever enough to evaluate the resulting
759 -- expression (which involves a call to rep_to_pos)
760 -- at compile time.
761
762 -- It would be nice if gigi would either recognize that
763 -- this expression can be computed at compile time, or
764 -- alternatively figured out the size from the subtype
765 -- directly, where all the information is at hand ???
766
767 if Is_Array_Type (Etype (Comp))
768 and then Present (Packed_Array_Type (Etype (Comp)))
70482933 769 then
fbf5a39b
AC
770 declare
771 Ocomp : constant Entity_Id :=
772 Original_Record_Component (Comp);
773 OCtyp : constant Entity_Id := Etype (Ocomp);
774 Ind : Node_Id;
775 Indtyp : Entity_Id;
776 Lo, Hi : Node_Id;
70482933 777
fbf5a39b
AC
778 begin
779 Ind := First_Index (OCtyp);
780 while Present (Ind) loop
781 Indtyp := Etype (Ind);
782
783 if Is_Enumeration_Type (Indtyp)
784 and then Has_Non_Standard_Rep (Indtyp)
785 then
786 Lo := Type_Low_Bound (Indtyp);
787 Hi := Type_High_Bound (Indtyp);
788
789 if Is_Entity_Name (Lo)
790 and then
791 Ekind (Entity (Lo)) = E_Discriminant
792 then
793 return False;
794
795 elsif Is_Entity_Name (Hi)
796 and then
797 Ekind (Entity (Hi)) = E_Discriminant
798 then
799 return False;
800 end if;
801 end if;
802
803 Next_Index (Ind);
804 end loop;
805 end;
806 end if;
70482933 807
fbf5a39b
AC
808 -- Clearly size of record is not known if the size of
809 -- one of the components is not known.
70482933 810
fbf5a39b
AC
811 if not Size_Known (Ctyp) then
812 return False;
813 end if;
814
815 -- Accumulate packed size if possible
816
817 if Packed_Size_Known then
818
819 -- We can only deal with elementary types, since for
820 -- non-elementary components, alignment enters into
821 -- the picture, and we don't know enough to handle
822 -- proper alignment in this context. Packed arrays
823 -- count as elementary if the representation is a
824 -- modular type.
70482933 825
fbf5a39b
AC
826 if Is_Elementary_Type (Ctyp)
827 or else (Is_Array_Type (Ctyp)
828 and then
829 Present (Packed_Array_Type (Ctyp))
830 and then
831 Is_Modular_Integer_Type
832 (Packed_Array_Type (Ctyp)))
833 then
70482933
RK
834 -- If RM_Size is known and static, then we can
835 -- keep accumulating the packed size.
836
837 if Known_Static_RM_Size (Ctyp) then
838
839 -- A little glitch, to be removed sometime ???
840 -- gigi does not understand zero sizes yet.
841
842 if RM_Size (Ctyp) = Uint_0 then
843 Packed_Size_Known := False;
70482933 844
fbf5a39b
AC
845 -- Normal case where we can keep accumulating
846 -- the packed array size.
847
848 else
849 Packed_Size := Packed_Size + RM_Size (Ctyp);
850 end if;
70482933
RK
851
852 -- If we have a field whose RM_Size is not known
853 -- then we can't figure out the packed size here.
854
855 else
856 Packed_Size_Known := False;
857 end if;
fbf5a39b
AC
858
859 -- If we have a non-elementary type we can't figure
860 -- out the packed array size (alignment issues).
861
862 else
863 Packed_Size_Known := False;
70482933
RK
864 end if;
865 end if;
fbf5a39b 866 end if;
70482933 867
fbf5a39b
AC
868 Next_Entity (Comp);
869 end loop;
70482933 870
fbf5a39b 871 if Packed_Size_Known then
c6823a20 872 Set_Small_Size (T, Packed_Size);
fbf5a39b 873 end if;
70482933 874
fbf5a39b
AC
875 return True;
876 end;
70482933
RK
877
878 else
879 return False;
880 end if;
881 end Size_Known;
882
883 -------------------------------------
884 -- Static_Discriminated_Components --
885 -------------------------------------
886
887 function Static_Discriminated_Components
0da2c8ac 888 (T : Entity_Id) return Boolean
70482933
RK
889 is
890 Constraint : Elmt_Id;
891
892 begin
893 if Has_Discriminants (T)
894 and then Present (Discriminant_Constraint (T))
895 and then Present (First_Component (T))
896 then
897 Constraint := First_Elmt (Discriminant_Constraint (T));
70482933
RK
898 while Present (Constraint) loop
899 if not Compile_Time_Known_Value (Node (Constraint)) then
900 return False;
901 end if;
902
903 Next_Elmt (Constraint);
904 end loop;
905 end if;
906
907 return True;
908 end Static_Discriminated_Components;
909
910 -- Start of processing for Check_Compile_Time_Size
911
912 begin
913 Set_Size_Known_At_Compile_Time (T, Size_Known (T));
914 end Check_Compile_Time_Size;
915
916 -----------------------------
917 -- Check_Debug_Info_Needed --
918 -----------------------------
919
920 procedure Check_Debug_Info_Needed (T : Entity_Id) is
921 begin
922 if Needs_Debug_Info (T) or else Debug_Info_Off (T) then
923 return;
924
925 elsif Comes_From_Source (T)
926 or else Debug_Generated_Code
927 or else Debug_Flag_VV
928 then
929 Set_Debug_Info_Needed (T);
930 end if;
931 end Check_Debug_Info_Needed;
932
933 ----------------------------
934 -- Check_Strict_Alignment --
935 ----------------------------
936
937 procedure Check_Strict_Alignment (E : Entity_Id) is
938 Comp : Entity_Id;
939
940 begin
941 if Is_Tagged_Type (E) or else Is_Concurrent_Type (E) then
942 Set_Strict_Alignment (E);
943
944 elsif Is_Array_Type (E) then
945 Set_Strict_Alignment (E, Strict_Alignment (Component_Type (E)));
946
947 elsif Is_Record_Type (E) then
948 if Is_Limited_Record (E) then
949 Set_Strict_Alignment (E);
950 return;
951 end if;
952
953 Comp := First_Component (E);
954
955 while Present (Comp) loop
956 if not Is_Type (Comp)
957 and then (Strict_Alignment (Etype (Comp))
fbf5a39b 958 or else Is_Aliased (Comp))
70482933
RK
959 then
960 Set_Strict_Alignment (E);
961 return;
962 end if;
963
964 Next_Component (Comp);
965 end loop;
966 end if;
967 end Check_Strict_Alignment;
968
969 -------------------------
970 -- Check_Unsigned_Type --
971 -------------------------
972
973 procedure Check_Unsigned_Type (E : Entity_Id) is
974 Ancestor : Entity_Id;
975 Lo_Bound : Node_Id;
976 Btyp : Entity_Id;
977
978 begin
979 if not Is_Discrete_Or_Fixed_Point_Type (E) then
980 return;
981 end if;
982
983 -- Do not attempt to analyze case where range was in error
984
985 if Error_Posted (Scalar_Range (E)) then
986 return;
987 end if;
988
989 -- The situation that is non trivial is something like
990
991 -- subtype x1 is integer range -10 .. +10;
992 -- subtype x2 is x1 range 0 .. V1;
993 -- subtype x3 is x2 range V2 .. V3;
994 -- subtype x4 is x3 range V4 .. V5;
995
996 -- where Vn are variables. Here the base type is signed, but we still
997 -- know that x4 is unsigned because of the lower bound of x2.
998
999 -- The only way to deal with this is to look up the ancestor chain
1000
1001 Ancestor := E;
1002 loop
1003 if Ancestor = Any_Type or else Etype (Ancestor) = Any_Type then
1004 return;
1005 end if;
1006
1007 Lo_Bound := Type_Low_Bound (Ancestor);
1008
1009 if Compile_Time_Known_Value (Lo_Bound) then
1010
1011 if Expr_Rep_Value (Lo_Bound) >= 0 then
1012 Set_Is_Unsigned_Type (E, True);
1013 end if;
1014
1015 return;
1016
1017 else
1018 Ancestor := Ancestor_Subtype (Ancestor);
1019
1020 -- If no ancestor had a static lower bound, go to base type
1021
1022 if No (Ancestor) then
1023
1024 -- Note: the reason we still check for a compile time known
1025 -- value for the base type is that at least in the case of
1026 -- generic formals, we can have bounds that fail this test,
1027 -- and there may be other cases in error situations.
1028
1029 Btyp := Base_Type (E);
1030
1031 if Btyp = Any_Type or else Etype (Btyp) = Any_Type then
1032 return;
1033 end if;
1034
1035 Lo_Bound := Type_Low_Bound (Base_Type (E));
1036
1037 if Compile_Time_Known_Value (Lo_Bound)
1038 and then Expr_Rep_Value (Lo_Bound) >= 0
1039 then
1040 Set_Is_Unsigned_Type (E, True);
1041 end if;
1042
1043 return;
70482933
RK
1044 end if;
1045 end if;
1046 end loop;
1047 end Check_Unsigned_Type;
1048
fbf5a39b
AC
1049 -----------------------------
1050 -- Expand_Atomic_Aggregate --
1051 -----------------------------
1052
1053 procedure Expand_Atomic_Aggregate (E : Entity_Id; Typ : Entity_Id) is
1054 Loc : constant Source_Ptr := Sloc (E);
1055 New_N : Node_Id;
1056 Temp : Entity_Id;
1057
1058 begin
1059 if (Nkind (Parent (E)) = N_Object_Declaration
1060 or else Nkind (Parent (E)) = N_Assignment_Statement)
1061 and then Comes_From_Source (Parent (E))
1062 and then Nkind (E) = N_Aggregate
1063 then
1064 Temp :=
1065 Make_Defining_Identifier (Loc,
1066 New_Internal_Name ('T'));
1067
1068 New_N :=
1069 Make_Object_Declaration (Loc,
1070 Defining_Identifier => Temp,
1071 Object_definition => New_Occurrence_Of (Typ, Loc),
1072 Expression => Relocate_Node (E));
1073 Insert_Before (Parent (E), New_N);
1074 Analyze (New_N);
1075
1076 Set_Expression (Parent (E), New_Occurrence_Of (Temp, Loc));
1077
1078 -- To prevent the temporary from being constant-folded (which
1079 -- would lead to the same piecemeal assignment on the original
1080 -- target) indicate to the back-end that the temporary is a
1081 -- variable with real storage. See description of this flag
1082 -- in Einfo, and the notes on N_Assignment_Statement and
1083 -- N_Object_Declaration in Sinfo.
1084
1085 Set_Is_True_Constant (Temp, False);
1086 end if;
1087 end Expand_Atomic_Aggregate;
1088
70482933
RK
1089 ----------------
1090 -- Freeze_All --
1091 ----------------
1092
1093 -- Note: the easy coding for this procedure would be to just build a
1094 -- single list of freeze nodes and then insert them and analyze them
1095 -- all at once. This won't work, because the analysis of earlier freeze
1096 -- nodes may recursively freeze types which would otherwise appear later
1097 -- on in the freeze list. So we must analyze and expand the freeze nodes
1098 -- as they are generated.
1099
1100 procedure Freeze_All (From : Entity_Id; After : in out Node_Id) is
1101 Loc : constant Source_Ptr := Sloc (After);
1102 E : Entity_Id;
1103 Decl : Node_Id;
1104
1105 procedure Freeze_All_Ent (From : Entity_Id; After : in out Node_Id);
1106 -- This is the internal recursive routine that does freezing of
1107 -- entities (but NOT the analysis of default expressions, which
1108 -- should not be recursive, we don't want to analyze those till
1109 -- we are sure that ALL the types are frozen).
1110
fbf5a39b
AC
1111 --------------------
1112 -- Freeze_All_Ent --
1113 --------------------
1114
70482933
RK
1115 procedure Freeze_All_Ent
1116 (From : Entity_Id;
1117 After : in out Node_Id)
1118 is
1119 E : Entity_Id;
1120 Flist : List_Id;
1121 Lastn : Node_Id;
1122
1123 procedure Process_Flist;
1124 -- If freeze nodes are present, insert and analyze, and reset
1125 -- cursor for next insertion.
1126
fbf5a39b
AC
1127 -------------------
1128 -- Process_Flist --
1129 -------------------
1130
70482933
RK
1131 procedure Process_Flist is
1132 begin
1133 if Is_Non_Empty_List (Flist) then
1134 Lastn := Next (After);
1135 Insert_List_After_And_Analyze (After, Flist);
1136
1137 if Present (Lastn) then
1138 After := Prev (Lastn);
1139 else
1140 After := Last (List_Containing (After));
1141 end if;
1142 end if;
1143 end Process_Flist;
1144
fbf5a39b
AC
1145 -- Start or processing for Freeze_All_Ent
1146
70482933
RK
1147 begin
1148 E := From;
1149 while Present (E) loop
1150
1151 -- If the entity is an inner package which is not a package
1152 -- renaming, then its entities must be frozen at this point.
1153 -- Note that such entities do NOT get frozen at the end of
1154 -- the nested package itself (only library packages freeze).
1155
1156 -- Same is true for task declarations, where anonymous records
1157 -- created for entry parameters must be frozen.
1158
1159 if Ekind (E) = E_Package
1160 and then No (Renamed_Object (E))
1161 and then not Is_Child_Unit (E)
1162 and then not Is_Frozen (E)
1163 then
1164 New_Scope (E);
1165 Install_Visible_Declarations (E);
1166 Install_Private_Declarations (E);
1167
1168 Freeze_All (First_Entity (E), After);
1169
1170 End_Package_Scope (E);
1171
1172 elsif Ekind (E) in Task_Kind
1173 and then
1174 (Nkind (Parent (E)) = N_Task_Type_Declaration
fbf5a39b 1175 or else
70482933
RK
1176 Nkind (Parent (E)) = N_Single_Task_Declaration)
1177 then
1178 New_Scope (E);
1179 Freeze_All (First_Entity (E), After);
1180 End_Scope;
1181
1182 -- For a derived tagged type, we must ensure that all the
1183 -- primitive operations of the parent have been frozen, so
1184 -- that their addresses will be in the parent's dispatch table
1185 -- at the point it is inherited.
1186
1187 elsif Ekind (E) = E_Record_Type
1188 and then Is_Tagged_Type (E)
1189 and then Is_Tagged_Type (Etype (E))
1190 and then Is_Derived_Type (E)
1191 then
1192 declare
1193 Prim_List : constant Elist_Id :=
1194 Primitive_Operations (Etype (E));
fbf5a39b
AC
1195
1196 Prim : Elmt_Id;
1197 Subp : Entity_Id;
70482933
RK
1198
1199 begin
1200 Prim := First_Elmt (Prim_List);
1201
1202 while Present (Prim) loop
1203 Subp := Node (Prim);
1204
1205 if Comes_From_Source (Subp)
1206 and then not Is_Frozen (Subp)
1207 then
1208 Flist := Freeze_Entity (Subp, Loc);
1209 Process_Flist;
1210 end if;
1211
1212 Next_Elmt (Prim);
1213 end loop;
1214 end;
1215 end if;
1216
1217 if not Is_Frozen (E) then
1218 Flist := Freeze_Entity (E, Loc);
1219 Process_Flist;
1220 end if;
1221
fbf5a39b
AC
1222 -- If an incomplete type is still not frozen, this may be
1223 -- a premature freezing because of a body declaration that
1224 -- follows. Indicate where the freezing took place.
1225
1226 -- If the freezing is caused by the end of the current
1227 -- declarative part, it is a Taft Amendment type, and there
1228 -- is no error.
1229
1230 if not Is_Frozen (E)
1231 and then Ekind (E) = E_Incomplete_Type
1232 then
1233 declare
1234 Bod : constant Node_Id := Next (After);
1235
1236 begin
1237 if (Nkind (Bod) = N_Subprogram_Body
1238 or else Nkind (Bod) = N_Entry_Body
1239 or else Nkind (Bod) = N_Package_Body
1240 or else Nkind (Bod) = N_Protected_Body
1241 or else Nkind (Bod) = N_Task_Body
1242 or else Nkind (Bod) in N_Body_Stub)
1243 and then
1244 List_Containing (After) = List_Containing (Parent (E))
1245 then
1246 Error_Msg_Sloc := Sloc (Next (After));
1247 Error_Msg_NE
1248 ("type& is frozen# before its full declaration",
1249 Parent (E), E);
1250 end if;
1251 end;
1252 end if;
1253
70482933
RK
1254 Next_Entity (E);
1255 end loop;
1256 end Freeze_All_Ent;
1257
1258 -- Start of processing for Freeze_All
1259
1260 begin
1261 Freeze_All_Ent (From, After);
1262
1263 -- Now that all types are frozen, we can deal with default expressions
1264 -- that require us to build a default expression functions. This is the
1265 -- point at which such functions are constructed (after all types that
1266 -- might be used in such expressions have been frozen).
fbf5a39b 1267
70482933
RK
1268 -- We also add finalization chains to access types whose designated
1269 -- types are controlled. This is normally done when freezing the type,
1270 -- but this misses recursive type definitions where the later members
1271 -- of the recursion introduce controlled components (e.g. 5624-001).
1272
1273 -- Loop through entities
1274
1275 E := From;
1276 while Present (E) loop
70482933
RK
1277 if Is_Subprogram (E) then
1278
1279 if not Default_Expressions_Processed (E) then
1280 Process_Default_Expressions (E, After);
1281 end if;
1282
1283 if not Has_Completion (E) then
1284 Decl := Unit_Declaration_Node (E);
1285
1286 if Nkind (Decl) = N_Subprogram_Renaming_Declaration then
1287 Build_And_Analyze_Renamed_Body (Decl, E, After);
1288
1289 elsif Nkind (Decl) = N_Subprogram_Declaration
1290 and then Present (Corresponding_Body (Decl))
1291 and then
1292 Nkind (Unit_Declaration_Node (Corresponding_Body (Decl)))
fbf5a39b 1293 = N_Subprogram_Renaming_Declaration
70482933
RK
1294 then
1295 Build_And_Analyze_Renamed_Body
1296 (Decl, Corresponding_Body (Decl), After);
1297 end if;
1298 end if;
1299
1300 elsif Ekind (E) in Task_Kind
1301 and then
1302 (Nkind (Parent (E)) = N_Task_Type_Declaration
fbf5a39b 1303 or else
70482933
RK
1304 Nkind (Parent (E)) = N_Single_Task_Declaration)
1305 then
1306 declare
1307 Ent : Entity_Id;
70482933
RK
1308 begin
1309 Ent := First_Entity (E);
1310
1311 while Present (Ent) loop
1312
1313 if Is_Entry (Ent)
1314 and then not Default_Expressions_Processed (Ent)
1315 then
1316 Process_Default_Expressions (Ent, After);
1317 end if;
1318
1319 Next_Entity (Ent);
1320 end loop;
1321 end;
1322
1323 elsif Is_Access_Type (E)
1324 and then Comes_From_Source (E)
1325 and then Ekind (Directly_Designated_Type (E)) = E_Incomplete_Type
1326 and then Controlled_Type (Designated_Type (E))
1327 and then No (Associated_Final_Chain (E))
1328 then
1329 Build_Final_List (Parent (E), E);
1330 end if;
1331
1332 Next_Entity (E);
1333 end loop;
70482933
RK
1334 end Freeze_All;
1335
1336 -----------------------
1337 -- Freeze_And_Append --
1338 -----------------------
1339
1340 procedure Freeze_And_Append
1341 (Ent : Entity_Id;
1342 Loc : Source_Ptr;
1343 Result : in out List_Id)
1344 is
1345 L : constant List_Id := Freeze_Entity (Ent, Loc);
70482933
RK
1346 begin
1347 if Is_Non_Empty_List (L) then
1348 if Result = No_List then
1349 Result := L;
1350 else
1351 Append_List (L, Result);
1352 end if;
1353 end if;
1354 end Freeze_And_Append;
1355
1356 -------------------
1357 -- Freeze_Before --
1358 -------------------
1359
1360 procedure Freeze_Before (N : Node_Id; T : Entity_Id) is
1361 Freeze_Nodes : constant List_Id := Freeze_Entity (T, Sloc (N));
70482933
RK
1362 begin
1363 if Is_Non_Empty_List (Freeze_Nodes) then
fbf5a39b 1364 Insert_Actions (N, Freeze_Nodes);
70482933
RK
1365 end if;
1366 end Freeze_Before;
1367
1368 -------------------
1369 -- Freeze_Entity --
1370 -------------------
1371
1372 function Freeze_Entity (E : Entity_Id; Loc : Source_Ptr) return List_Id is
c6823a20 1373 Test_E : Entity_Id := E;
70482933
RK
1374 Comp : Entity_Id;
1375 F_Node : Node_Id;
1376 Result : List_Id;
1377 Indx : Node_Id;
1378 Formal : Entity_Id;
1379 Atype : Entity_Id;
1380
1381 procedure Check_Current_Instance (Comp_Decl : Node_Id);
edd63e9b
ES
1382 -- Check that an Access or Unchecked_Access attribute with a prefix
1383 -- which is the current instance type can only be applied when the type
1384 -- is limited.
70482933
RK
1385
1386 function After_Last_Declaration return Boolean;
1387 -- If Loc is a freeze_entity that appears after the last declaration
1388 -- in the scope, inhibit error messages on late completion.
1389
1390 procedure Freeze_Record_Type (Rec : Entity_Id);
edd63e9b
ES
1391 -- Freeze each component, handle some representation clauses, and freeze
1392 -- primitive operations if this is a tagged type.
70482933
RK
1393
1394 ----------------------------
1395 -- After_Last_Declaration --
1396 ----------------------------
1397
1398 function After_Last_Declaration return Boolean is
fbf5a39b 1399 Spec : constant Node_Id := Parent (Current_Scope);
70482933
RK
1400
1401 begin
1402 if Nkind (Spec) = N_Package_Specification then
1403 if Present (Private_Declarations (Spec)) then
1404 return Loc >= Sloc (Last (Private_Declarations (Spec)));
1405
1406 elsif Present (Visible_Declarations (Spec)) then
1407 return Loc >= Sloc (Last (Visible_Declarations (Spec)));
1408 else
1409 return False;
1410 end if;
1411
1412 else
1413 return False;
1414 end if;
1415 end After_Last_Declaration;
1416
1417 ----------------------------
1418 -- Check_Current_Instance --
1419 ----------------------------
1420
1421 procedure Check_Current_Instance (Comp_Decl : Node_Id) is
1422
1423 function Process (N : Node_Id) return Traverse_Result;
49e90211 1424 -- Process routine to apply check to given node
70482933 1425
fbf5a39b
AC
1426 -------------
1427 -- Process --
1428 -------------
1429
70482933
RK
1430 function Process (N : Node_Id) return Traverse_Result is
1431 begin
1432 case Nkind (N) is
1433 when N_Attribute_Reference =>
1434 if (Attribute_Name (N) = Name_Access
1435 or else
1436 Attribute_Name (N) = Name_Unchecked_Access)
1437 and then Is_Entity_Name (Prefix (N))
1438 and then Is_Type (Entity (Prefix (N)))
1439 and then Entity (Prefix (N)) = E
1440 then
1441 Error_Msg_N
1442 ("current instance must be a limited type", Prefix (N));
1443 return Abandon;
1444 else
1445 return OK;
1446 end if;
1447
1448 when others => return OK;
1449 end case;
1450 end Process;
1451
1452 procedure Traverse is new Traverse_Proc (Process);
1453
1454 -- Start of processing for Check_Current_Instance
1455
1456 begin
1457 Traverse (Comp_Decl);
1458 end Check_Current_Instance;
1459
1460 ------------------------
1461 -- Freeze_Record_Type --
1462 ------------------------
1463
1464 procedure Freeze_Record_Type (Rec : Entity_Id) is
1465 Comp : Entity_Id;
fbf5a39b 1466 IR : Node_Id;
70482933
RK
1467 Junk : Boolean;
1468 ADC : Node_Id;
c6823a20 1469 Prev : Entity_Id;
70482933
RK
1470
1471 Unplaced_Component : Boolean := False;
1472 -- Set True if we find at least one component with no component
1473 -- clause (used to warn about useless Pack pragmas).
1474
1475 Placed_Component : Boolean := False;
1476 -- Set True if we find at least one component with a component
1477 -- clause (used to warn about useless Bit_Order pragmas).
1478
6e059adb
AC
1479 procedure Check_Itype (Desig : Entity_Id);
1480 -- If the component subtype is an access to a constrained subtype
1481 -- of an already frozen type, make the subtype frozen as well. It
1482 -- might otherwise be frozen in the wrong scope, and a freeze node
1483 -- on subtype has no effect.
1484
6871ba5f
AC
1485 -----------------
1486 -- Check_Itype --
1487 -----------------
1488
6e059adb
AC
1489 procedure Check_Itype (Desig : Entity_Id) is
1490 begin
1491 if not Is_Frozen (Desig)
1492 and then Is_Frozen (Base_Type (Desig))
1493 then
1494 Set_Is_Frozen (Desig);
1495
1496 -- In addition, add an Itype_Reference to ensure that the
1497 -- access subtype is elaborated early enough. This cannot
1498 -- be done if the subtype may depend on discriminants.
1499
1500 if Ekind (Comp) = E_Component
1501 and then Is_Itype (Etype (Comp))
1502 and then not Has_Discriminants (Rec)
1503 then
1504 IR := Make_Itype_Reference (Sloc (Comp));
1505 Set_Itype (IR, Desig);
1506
1507 if No (Result) then
1508 Result := New_List (IR);
1509 else
1510 Append (IR, Result);
1511 end if;
1512 end if;
1513 end if;
1514 end Check_Itype;
1515
1516 -- Start of processing for Freeze_Record_Type
1517
70482933 1518 begin
fbf5a39b
AC
1519 -- If this is a subtype of a controlled type, declared without
1520 -- a constraint, the _controller may not appear in the component
1521 -- list if the parent was not frozen at the point of subtype
1522 -- declaration. Inherit the _controller component now.
1523
1524 if Rec /= Base_Type (Rec)
1525 and then Has_Controlled_Component (Rec)
1526 then
1527 if Nkind (Parent (Rec)) = N_Subtype_Declaration
1528 and then Is_Entity_Name (Subtype_Indication (Parent (Rec)))
1529 then
1530 Set_First_Entity (Rec, First_Entity (Base_Type (Rec)));
1531
49e90211 1532 -- If this is an internal type without a declaration, as for
6871ba5f
AC
1533 -- record component, the base type may not yet be frozen, and its
1534 -- controller has not been created. Add an explicit freeze node
49e90211
ES
1535 -- for the itype, so it will be frozen after the base type. This
1536 -- freeze node is used to communicate with the expander, in order
1537 -- to create the controller for the enclosing record, and it is
1538 -- deleted afterwards (see exp_ch3). It must not be created when
1539 -- expansion is off, because it might appear in the wrong context
1540 -- for the back end.
fbf5a39b
AC
1541
1542 elsif Is_Itype (Rec)
1543 and then Has_Delayed_Freeze (Base_Type (Rec))
1544 and then
1545 Nkind (Associated_Node_For_Itype (Rec)) =
49e90211
ES
1546 N_Component_Declaration
1547 and then Expander_Active
fbf5a39b
AC
1548 then
1549 Ensure_Freeze_Node (Rec);
1550 end if;
1551 end if;
1552
49e90211 1553 -- Freeze components and embedded subtypes
70482933
RK
1554
1555 Comp := First_Entity (Rec);
c6823a20 1556 Prev := Empty;
70482933 1557
c6823a20 1558 while Present (Comp) loop
70482933 1559
49e90211 1560 -- First handle the (real) component case
70482933
RK
1561
1562 if Ekind (Comp) = E_Component
1563 or else Ekind (Comp) = E_Discriminant
1564 then
70482933
RK
1565 declare
1566 CC : constant Node_Id := Component_Clause (Comp);
1567
1568 begin
c6823a20
EB
1569 -- Freezing a record type freezes the type of each of its
1570 -- components. However, if the type of the component is
1571 -- part of this record, we do not want or need a separate
1572 -- Freeze_Node. Note that Is_Itype is wrong because that's
1573 -- also set in private type cases. We also can't check for
1574 -- the Scope being exactly Rec because of private types and
1575 -- record extensions.
1576
1577 if Is_Itype (Etype (Comp))
1578 and then Is_Record_Type (Underlying_Type
1579 (Scope (Etype (Comp))))
1580 then
1581 Undelay_Type (Etype (Comp));
1582 end if;
1583
1584 Freeze_And_Append (Etype (Comp), Loc, Result);
1585
0da2c8ac
AC
1586 -- Check for error of component clause given for variable
1587 -- sized type. We have to delay this test till this point,
1588 -- since the component type has to be frozen for us to know
1589 -- if it is variable length. We omit this test in a generic
1590 -- context, it will be applied at instantiation time.
1591
70482933
RK
1592 if Present (CC) then
1593 Placed_Component := True;
1594
07fc65c4
GB
1595 if Inside_A_Generic then
1596 null;
1597
1598 elsif not Size_Known_At_Compile_Time
70482933 1599 (Underlying_Type (Etype (Comp)))
70482933
RK
1600 then
1601 Error_Msg_N
1602 ("component clause not allowed for variable " &
1603 "length component", CC);
1604 end if;
1605
1606 else
1607 Unplaced_Component := True;
1608 end if;
70482933 1609
0da2c8ac 1610 -- Case of component requires byte alignment
70482933 1611
0da2c8ac 1612 if Must_Be_On_Byte_Boundary (Etype (Comp)) then
70482933 1613
0da2c8ac 1614 -- Set the enclosing record to also require byte align
70482933 1615
0da2c8ac 1616 Set_Must_Be_On_Byte_Boundary (Rec);
70482933 1617
0da2c8ac
AC
1618 -- Check for component clause that is inconsistent
1619 -- with the required byte boundary alignment.
70482933 1620
0da2c8ac
AC
1621 if Present (CC)
1622 and then Normalized_First_Bit (Comp) mod
1623 System_Storage_Unit /= 0
1624 then
1625 Error_Msg_N
1626 ("component & must be byte aligned",
1627 Component_Name (Component_Clause (Comp)));
1628 end if;
1629 end if;
70482933 1630
0da2c8ac
AC
1631 -- If component clause is present, then deal with the
1632 -- non-default bit order case. We cannot do this before
1633 -- the freeze point, because there is no required order
1634 -- for the component clause and the bit_order clause.
70482933 1635
0da2c8ac
AC
1636 -- We only do this processing for the base type, and in
1637 -- fact that's important, since otherwise if there are
1638 -- record subtypes, we could reverse the bits once for
1639 -- each subtype, which would be incorrect.
70482933 1640
0da2c8ac
AC
1641 if Present (CC)
1642 and then Reverse_Bit_Order (Rec)
1643 and then Ekind (E) = E_Record_Type
1644 then
1645 declare
1646 CFB : constant Uint := Component_Bit_Offset (Comp);
1647 CSZ : constant Uint := Esize (Comp);
1648 CLC : constant Node_Id := Component_Clause (Comp);
1649 Pos : constant Node_Id := Position (CLC);
1650 FB : constant Node_Id := First_Bit (CLC);
1651
1652 Storage_Unit_Offset : constant Uint :=
1653 CFB / System_Storage_Unit;
1654
1655 Start_Bit : constant Uint :=
1656 CFB mod System_Storage_Unit;
1657
1658 begin
1659 -- Cases where field goes over storage unit boundary
1660
1661 if Start_Bit + CSZ > System_Storage_Unit then
70482933 1662
0da2c8ac
AC
1663 -- Allow multi-byte field but generate warning
1664
1665 if Start_Bit mod System_Storage_Unit = 0
1666 and then CSZ mod System_Storage_Unit = 0
1667 then
70482933 1668 Error_Msg_N
0da2c8ac
AC
1669 ("multi-byte field specified with non-standard"
1670 & " Bit_Order?", CLC);
1671
1672 if Bytes_Big_Endian then
1673 Error_Msg_N
1674 ("bytes are not reversed "
1675 & "(component is big-endian)?", CLC);
1676 else
1677 Error_Msg_N
1678 ("bytes are not reversed "
1679 & "(component is little-endian)?", CLC);
1680 end if;
1681
1682 -- Do not allow non-contiguous field
1683
70482933
RK
1684 else
1685 Error_Msg_N
0da2c8ac
AC
1686 ("attempt to specify non-contiguous field"
1687 & " not permitted", CLC);
1688 Error_Msg_N
1689 ("\(caused by non-standard Bit_Order "
1690 & "specified)", CLC);
70482933
RK
1691 end if;
1692
0da2c8ac 1693 -- Case where field fits in one storage unit
70482933
RK
1694
1695 else
0da2c8ac 1696 -- Give warning if suspicious component clause
70482933 1697
0da2c8ac
AC
1698 if Intval (FB) >= System_Storage_Unit then
1699 Error_Msg_N
1700 ("?Bit_Order clause does not affect " &
1701 "byte ordering", Pos);
1702 Error_Msg_Uint_1 :=
1703 Intval (Pos) + Intval (FB) /
1704 System_Storage_Unit;
1705 Error_Msg_N
1706 ("?position normalized to ^ before bit " &
1707 "order interpreted", Pos);
1708 end if;
70482933 1709
0da2c8ac
AC
1710 -- Here is where we fix up the Component_Bit_Offset
1711 -- value to account for the reverse bit order.
1712 -- Some examples of what needs to be done are:
70482933 1713
0da2c8ac
AC
1714 -- First_Bit .. Last_Bit Component_Bit_Offset
1715 -- old new old new
70482933 1716
0da2c8ac
AC
1717 -- 0 .. 0 7 .. 7 0 7
1718 -- 0 .. 1 6 .. 7 0 6
1719 -- 0 .. 2 5 .. 7 0 5
1720 -- 0 .. 7 0 .. 7 0 4
70482933 1721
0da2c8ac
AC
1722 -- 1 .. 1 6 .. 6 1 6
1723 -- 1 .. 4 3 .. 6 1 3
1724 -- 4 .. 7 0 .. 3 4 0
70482933 1725
0da2c8ac
AC
1726 -- The general rule is that the first bit is
1727 -- is obtained by subtracting the old ending bit
1728 -- from storage_unit - 1.
70482933 1729
0da2c8ac
AC
1730 Set_Component_Bit_Offset
1731 (Comp,
1732 (Storage_Unit_Offset * System_Storage_Unit) +
1733 (System_Storage_Unit - 1) -
1734 (Start_Bit + CSZ - 1));
70482933 1735
0da2c8ac
AC
1736 Set_Normalized_First_Bit
1737 (Comp,
1738 Component_Bit_Offset (Comp) mod
1739 System_Storage_Unit);
1740 end if;
1741 end;
1742 end if;
1743 end;
70482933
RK
1744 end if;
1745
c6823a20
EB
1746 -- If the component is an Itype with Delayed_Freeze and is either
1747 -- a record or array subtype and its base type has not yet been
1748 -- frozen, we must remove this from the entity list of this
1749 -- record and put it on the entity list of the scope of its base
1750 -- type. Note that we know that this is not the type of a
1751 -- component since we cleared Has_Delayed_Freeze for it in the
1752 -- previous loop. Thus this must be the Designated_Type of an
1753 -- access type, which is the type of a component.
1754
1755 if Is_Itype (Comp)
1756 and then Is_Type (Scope (Comp))
1757 and then Is_Composite_Type (Comp)
1758 and then Base_Type (Comp) /= Comp
1759 and then Has_Delayed_Freeze (Comp)
1760 and then not Is_Frozen (Base_Type (Comp))
1761 then
1762 declare
1763 Will_Be_Frozen : Boolean := False;
1764 S : Entity_Id := Scope (Rec);
1765
1766 begin
1767 -- We have a pretty bad kludge here. Suppose Rec is a
1768 -- subtype being defined in a subprogram that's created
1769 -- as part of the freezing of Rec'Base. In that case,
1770 -- we know that Comp'Base must have already been frozen by
1771 -- the time we get to elaborate this because Gigi doesn't
1772 -- elaborate any bodies until it has elaborated all of the
1773 -- declarative part. But Is_Frozen will not be set at this
1774 -- point because we are processing code in lexical order.
1775
1776 -- We detect this case by going up the Scope chain of
1777 -- Rec and seeing if we have a subprogram scope before
1778 -- reaching the top of the scope chain or that of Comp'Base.
1779 -- If we do, then mark that Comp'Base will actually be
1780 -- frozen. If so, we merely undelay it.
1781
1782 while Present (S) loop
1783 if Is_Subprogram (S) then
1784 Will_Be_Frozen := True;
1785 exit;
1786 elsif S = Scope (Base_Type (Comp)) then
1787 exit;
1788 end if;
1789
1790 S := Scope (S);
1791 end loop;
1792
1793 if Will_Be_Frozen then
1794 Undelay_Type (Comp);
1795 else
1796 if Present (Prev) then
1797 Set_Next_Entity (Prev, Next_Entity (Comp));
1798 else
1799 Set_First_Entity (Rec, Next_Entity (Comp));
1800 end if;
1801
1802 -- Insert in entity list of scope of base type (which
1803 -- must be an enclosing scope, because still unfrozen).
1804
1805 Append_Entity (Comp, Scope (Base_Type (Comp)));
1806 end if;
1807 end;
1808
1809 -- If the component is an access type with an allocator as
1810 -- default value, the designated type will be frozen by the
1811 -- corresponding expression in init_proc. In order to place the
1812 -- freeze node for the designated type before that for the
1813 -- current record type, freeze it now.
1814
1815 -- Same process if the component is an array of access types,
1816 -- initialized with an aggregate. If the designated type is
1817 -- private, it cannot contain allocators, and it is premature to
1818 -- freeze the type, so we check for this as well.
1819
1820 elsif Is_Access_Type (Etype (Comp))
1821 and then Present (Parent (Comp))
1822 and then Present (Expression (Parent (Comp)))
1823 and then Nkind (Expression (Parent (Comp))) = N_Allocator
1824 then
1825 declare
1826 Alloc : constant Node_Id := Expression (Parent (Comp));
1827
1828 begin
1829 -- If component is pointer to a classwide type, freeze
1830 -- the specific type in the expression being allocated.
1831 -- The expression may be a subtype indication, in which
1832 -- case freeze the subtype mark.
1833
1834 if Is_Class_Wide_Type (Designated_Type (Etype (Comp))) then
1835 if Is_Entity_Name (Expression (Alloc)) then
1836 Freeze_And_Append
1837 (Entity (Expression (Alloc)), Loc, Result);
1838 elsif
1839 Nkind (Expression (Alloc)) = N_Subtype_Indication
1840 then
1841 Freeze_And_Append
1842 (Entity (Subtype_Mark (Expression (Alloc))),
1843 Loc, Result);
1844 end if;
1845
1846 elsif Is_Itype (Designated_Type (Etype (Comp))) then
1847 Check_Itype (Designated_Type (Etype (Comp)));
1848
1849 else
1850 Freeze_And_Append
1851 (Designated_Type (Etype (Comp)), Loc, Result);
1852 end if;
1853 end;
1854
1855 elsif Is_Access_Type (Etype (Comp))
1856 and then Is_Itype (Designated_Type (Etype (Comp)))
1857 then
1858 Check_Itype (Designated_Type (Etype (Comp)));
1859
1860 elsif Is_Array_Type (Etype (Comp))
1861 and then Is_Access_Type (Component_Type (Etype (Comp)))
1862 and then Present (Parent (Comp))
1863 and then Nkind (Parent (Comp)) = N_Component_Declaration
1864 and then Present (Expression (Parent (Comp)))
1865 and then Nkind (Expression (Parent (Comp))) = N_Aggregate
1866 and then Is_Fully_Defined
1867 (Designated_Type (Component_Type (Etype (Comp))))
1868 then
1869 Freeze_And_Append
1870 (Designated_Type
1871 (Component_Type (Etype (Comp))), Loc, Result);
1872 end if;
1873
1874 Prev := Comp;
70482933
RK
1875 Next_Entity (Comp);
1876 end loop;
1877
1878 -- Check for useless pragma Bit_Order
1879
1880 if not Placed_Component and then Reverse_Bit_Order (Rec) then
1881 ADC := Get_Attribute_Definition_Clause (Rec, Attribute_Bit_Order);
1882 Error_Msg_N ("?Bit_Order specification has no effect", ADC);
1883 Error_Msg_N ("\?since no component clauses were specified", ADC);
1884 end if;
1885
1886 -- Check for useless pragma Pack when all components placed
1887
1888 if Is_Packed (Rec)
1889 and then not Unplaced_Component
1890 and then Warn_On_Redundant_Constructs
1891 then
1892 Error_Msg_N
1893 ("?pragma Pack has no effect, no unplaced components",
1894 Get_Rep_Pragma (Rec, Name_Pack));
1895 Set_Is_Packed (Rec, False);
1896 end if;
1897
1898 -- If this is the record corresponding to a remote type,
1899 -- freeze the remote type here since that is what we are
fbf5a39b
AC
1900 -- semantically freezing. This prevents having the freeze
1901 -- node for that type in an inner scope.
70482933
RK
1902
1903 -- Also, Check for controlled components and unchecked unions.
1904 -- Finally, enforce the restriction that access attributes with
1905 -- a current instance prefix can only apply to limited types.
1906
1907 if Ekind (Rec) = E_Record_Type then
70482933
RK
1908 if Present (Corresponding_Remote_Type (Rec)) then
1909 Freeze_And_Append
1910 (Corresponding_Remote_Type (Rec), Loc, Result);
1911 end if;
1912
1913 Comp := First_Component (Rec);
70482933
RK
1914 while Present (Comp) loop
1915 if Has_Controlled_Component (Etype (Comp))
1916 or else (Chars (Comp) /= Name_uParent
1917 and then Is_Controlled (Etype (Comp)))
1918 or else (Is_Protected_Type (Etype (Comp))
1919 and then Present
1920 (Corresponding_Record_Type (Etype (Comp)))
1921 and then Has_Controlled_Component
1922 (Corresponding_Record_Type (Etype (Comp))))
1923 then
1924 Set_Has_Controlled_Component (Rec);
1925 exit;
1926 end if;
1927
1928 if Has_Unchecked_Union (Etype (Comp)) then
1929 Set_Has_Unchecked_Union (Rec);
1930 end if;
1931
1932 if Has_Per_Object_Constraint (Comp)
1933 and then not Is_Limited_Type (Rec)
1934 then
1935 -- Scan component declaration for likely misuses of
1936 -- current instance, either in a constraint or in a
1937 -- default expression.
1938
1939 Check_Current_Instance (Parent (Comp));
1940 end if;
1941
1942 Next_Component (Comp);
1943 end loop;
1944 end if;
1945
1946 Set_Component_Alignment_If_Not_Set (Rec);
1947
1948 -- For first subtypes, check if there are any fixed-point
1949 -- fields with component clauses, where we must check the size.
1950 -- This is not done till the freeze point, since for fixed-point
1951 -- types, we do not know the size until the type is frozen.
d05ef0ab 1952 -- Similar processing applies to bit packed arrays.
70482933
RK
1953
1954 if Is_First_Subtype (Rec) then
1955 Comp := First_Component (Rec);
1956
1957 while Present (Comp) loop
1958 if Present (Component_Clause (Comp))
d05ef0ab
AC
1959 and then (Is_Fixed_Point_Type (Etype (Comp))
1960 or else
1961 Is_Bit_Packed_Array (Etype (Comp)))
70482933
RK
1962 then
1963 Check_Size
d05ef0ab 1964 (Component_Name (Component_Clause (Comp)),
70482933
RK
1965 Etype (Comp),
1966 Esize (Comp),
1967 Junk);
1968 end if;
1969
1970 Next_Component (Comp);
1971 end loop;
1972 end if;
1973 end Freeze_Record_Type;
1974
1975 -- Start of processing for Freeze_Entity
1976
1977 begin
c6823a20
EB
1978 -- We are going to test for various reasons why this entity need not be
1979 -- frozen here, but in the case of an Itype that's defined within a
1980 -- record, that test actually applies to the record.
1981
1982 if Is_Itype (E) and then Is_Record_Type (Scope (E)) then
1983 Test_E := Scope (E);
1984 elsif Is_Itype (E) and then Present (Underlying_Type (Scope (E)))
1985 and then Is_Record_Type (Underlying_Type (Scope (E)))
1986 then
1987 Test_E := Underlying_Type (Scope (E));
1988 end if;
1989
fbf5a39b 1990 -- Do not freeze if already frozen since we only need one freeze node
70482933
RK
1991
1992 if Is_Frozen (E) then
1993 return No_List;
1994
c6823a20
EB
1995 -- It is improper to freeze an external entity within a generic because
1996 -- its freeze node will appear in a non-valid context. The entity will
1997 -- be frozen in the proper scope after the current generic is analyzed.
70482933 1998
c6823a20 1999 elsif Inside_A_Generic and then External_Ref_In_Generic (Test_E) then
70482933
RK
2000 return No_List;
2001
2002 -- Do not freeze a global entity within an inner scope created during
2003 -- expansion. A call to subprogram E within some internal procedure
2004 -- (a stream attribute for example) might require freezing E, but the
2005 -- freeze node must appear in the same declarative part as E itself.
2006 -- The two-pass elaboration mechanism in gigi guarantees that E will
2007 -- be frozen before the inner call is elaborated. We exclude constants
2008 -- from this test, because deferred constants may be frozen early, and
2009 -- must be diagnosed (see e.g. 1522-005). If the enclosing subprogram
2010 -- comes from source, or is a generic instance, then the freeze point
2011 -- is the one mandated by the language. and we freze the entity.
2012
c6823a20
EB
2013 elsif In_Open_Scopes (Scope (Test_E))
2014 and then Scope (Test_E) /= Current_Scope
2015 and then Ekind (Test_E) /= E_Constant
70482933
RK
2016 then
2017 declare
2018 S : Entity_Id := Current_Scope;
2019
2020 begin
2021 while Present (S) loop
2022 if Is_Overloadable (S) then
2023 if Comes_From_Source (S)
2024 or else Is_Generic_Instance (S)
2025 then
2026 exit;
2027 else
2028 return No_List;
2029 end if;
2030 end if;
2031
2032 S := Scope (S);
2033 end loop;
2034 end;
555360a5
AC
2035
2036 -- Similarly, an inlined instance body may make reference to global
2037 -- entities, but these references cannot be the proper freezing point
2038 -- for them, and the the absence of inlining freezing will take place
2039 -- in their own scope. Normally instance bodies are analyzed after
2040 -- the enclosing compilation, and everything has been frozen at the
2041 -- proper place, but with front-end inlining an instance body is
2042 -- compiled before the end of the enclosing scope, and as a result
2043 -- out-of-order freezing must be prevented.
2044
2045 elsif Front_End_Inlining
2046 and then In_Instance_Body
c6823a20 2047 and then Present (Scope (Test_E))
555360a5
AC
2048 then
2049 declare
c6823a20
EB
2050 S : Entity_Id := Scope (Test_E);
2051
555360a5
AC
2052 begin
2053 while Present (S) loop
2054 if Is_Generic_Instance (S) then
2055 exit;
2056 else
2057 S := Scope (S);
2058 end if;
2059 end loop;
2060
2061 if No (S) then
2062 return No_List;
2063 end if;
2064 end;
70482933
RK
2065 end if;
2066
2067 -- Here to freeze the entity
2068
2069 Result := No_List;
2070 Set_Is_Frozen (E);
2071
2072 -- Case of entity being frozen is other than a type
2073
2074 if not Is_Type (E) then
2075
2076 -- If entity is exported or imported and does not have an external
2077 -- name, now is the time to provide the appropriate default name.
2078 -- Skip this if the entity is stubbed, since we don't need a name
2079 -- for any stubbed routine.
2080
2081 if (Is_Imported (E) or else Is_Exported (E))
2082 and then No (Interface_Name (E))
2083 and then Convention (E) /= Convention_Stubbed
2084 then
2085 Set_Encoded_Interface_Name
2086 (E, Get_Default_External_Name (E));
fbf5a39b
AC
2087
2088 -- Special processing for atomic objects appearing in object decls
2089
2090 elsif Is_Atomic (E)
2091 and then Nkind (Parent (E)) = N_Object_Declaration
2092 and then Present (Expression (Parent (E)))
2093 then
2094 declare
2095 Expr : constant Node_Id := Expression (Parent (E));
2096
2097 begin
2098 -- If expression is an aggregate, assign to a temporary to
2099 -- ensure that the actual assignment is done atomically rather
2100 -- than component-wise (the assignment to the temp may be done
2101 -- component-wise, but that is harmless.
2102
2103 if Nkind (Expr) = N_Aggregate then
2104 Expand_Atomic_Aggregate (Expr, Etype (E));
2105
2106 -- If the expression is a reference to a record or array
2107 -- object entity, then reset Is_True_Constant to False so
2108 -- that the compiler will not optimize away the intermediate
2109 -- object, which we need in this case for the same reason
2110 -- (to ensure that the actual assignment is atomic, rather
2111 -- than component-wise).
2112
2113 elsif Is_Entity_Name (Expr)
2114 and then (Is_Record_Type (Etype (Expr))
2115 or else
2116 Is_Array_Type (Etype (Expr)))
2117 then
2118 Set_Is_True_Constant (Entity (Expr), False);
2119 end if;
2120 end;
70482933
RK
2121 end if;
2122
2123 -- For a subprogram, freeze all parameter types and also the return
fbf5a39b 2124 -- type (RM 13.14(14)). However skip this for internal subprograms.
70482933
RK
2125 -- This is also the point where any extra formal parameters are
2126 -- created since we now know whether the subprogram will use
2127 -- a foreign convention.
2128
2129 if Is_Subprogram (E) then
70482933 2130 if not Is_Internal (E) then
70482933 2131 declare
6d11af89
AC
2132 F_Type : Entity_Id;
2133 Warn_Node : Node_Id;
70482933
RK
2134
2135 function Is_Fat_C_Ptr_Type (T : Entity_Id) return Boolean;
2136 -- Determines if given type entity is a fat pointer type
2137 -- used as an argument type or return type to a subprogram
2138 -- with C or C++ convention set.
2139
2140 --------------------------
2141 -- Is_Fat_C_Access_Type --
2142 --------------------------
2143
2144 function Is_Fat_C_Ptr_Type (T : Entity_Id) return Boolean is
2145 begin
2146 return (Convention (E) = Convention_C
2147 or else
2148 Convention (E) = Convention_CPP)
2149 and then Is_Access_Type (T)
2150 and then Esize (T) > Ttypes.System_Address_Size;
2151 end Is_Fat_C_Ptr_Type;
2152
2153 begin
2154 -- Loop through formals
2155
2156 Formal := First_Formal (E);
70482933 2157 while Present (Formal) loop
70482933
RK
2158 F_Type := Etype (Formal);
2159 Freeze_And_Append (F_Type, Loc, Result);
2160
2161 if Is_Private_Type (F_Type)
2162 and then Is_Private_Type (Base_Type (F_Type))
2163 and then No (Full_View (Base_Type (F_Type)))
2164 and then not Is_Generic_Type (F_Type)
2165 and then not Is_Derived_Type (F_Type)
2166 then
2167 -- If the type of a formal is incomplete, subprogram
2168 -- is being frozen prematurely. Within an instance
2169 -- (but not within a wrapper package) this is an
2170 -- an artifact of our need to regard the end of an
2171 -- instantiation as a freeze point. Otherwise it is
2172 -- a definite error.
fbf5a39b 2173
70482933
RK
2174 -- and then not Is_Wrapper_Package (Current_Scope) ???
2175
2176 if In_Instance then
2177 Set_Is_Frozen (E, False);
2178 return No_List;
2179
2180 elsif not After_Last_Declaration then
2181 Error_Msg_Node_1 := F_Type;
2182 Error_Msg
2183 ("type& must be fully defined before this point",
2184 Loc);
2185 end if;
2186 end if;
2187
2188 -- Check bad use of fat C pointer
2189
fbf5a39b
AC
2190 if Warn_On_Export_Import and then
2191 Is_Fat_C_Ptr_Type (F_Type)
2192 then
70482933
RK
2193 Error_Msg_Qual_Level := 1;
2194 Error_Msg_N
2195 ("?type of & does not correspond to C pointer",
2196 Formal);
2197 Error_Msg_Qual_Level := 0;
2198 end if;
2199
2200 -- Check for unconstrained array in exported foreign
2201 -- convention case.
2202
2203 if Convention (E) in Foreign_Convention
2204 and then not Is_Imported (E)
2205 and then Is_Array_Type (F_Type)
2206 and then not Is_Constrained (F_Type)
fbf5a39b 2207 and then Warn_On_Export_Import
70482933
RK
2208 then
2209 Error_Msg_Qual_Level := 1;
6d11af89
AC
2210
2211 -- If this is an inherited operation, place the
2212 -- warning on the derived type declaration, rather
2213 -- than on the original subprogram.
2214
2215 if Nkind (Original_Node (Parent (E))) =
2216 N_Full_Type_Declaration
2217 then
2218 Warn_Node := Parent (E);
2219
2220 if Formal = First_Formal (E) then
2221 Error_Msg_NE
2222 ("?in inherited operation&!", Warn_Node, E);
2223 end if;
2224 else
2225 Warn_Node := Formal;
2226 end if;
2227
2228 Error_Msg_NE
70482933 2229 ("?type of argument& is unconstrained array",
6d11af89
AC
2230 Warn_Node, Formal);
2231 Error_Msg_NE
70482933 2232 ("?foreign caller must pass bounds explicitly",
6d11af89 2233 Warn_Node, Formal);
70482933
RK
2234 Error_Msg_Qual_Level := 0;
2235 end if;
2236
d8db0bca
JM
2237 -- Ada 2005 (AI-326): Check wrong use of tag incomplete
2238 -- types with unknown discriminants. For example:
2239
2240 -- type T (<>) is tagged;
2241 -- procedure P (X : access T); -- ERROR
2242 -- procedure P (X : T); -- ERROR
2243
2244 if not From_With_Type (F_Type) then
2245 if Is_Access_Type (F_Type) then
2246 F_Type := Designated_Type (F_Type);
2247 end if;
2248
2249 if Ekind (F_Type) = E_Incomplete_Type
2250 and then Is_Tagged_Type (F_Type)
2251 and then not Is_Class_Wide_Type (F_Type)
2252 and then No (Full_View (F_Type))
2253 and then Unknown_Discriminants_Present
2254 (Parent (F_Type))
2255 and then No (Stored_Constraint (F_Type))
2256 then
2257 Error_Msg_N
2258 ("(Ada 2005): invalid use of unconstrained tagged"
2259 & " incomplete type", E);
2260 end if;
2261 end if;
2262
70482933
RK
2263 Next_Formal (Formal);
2264 end loop;
2265
2266 -- Check return type
2267
2268 if Ekind (E) = E_Function then
2269 Freeze_And_Append (Etype (E), Loc, Result);
2270
fbf5a39b
AC
2271 if Warn_On_Export_Import
2272 and then Is_Fat_C_Ptr_Type (Etype (E))
2273 then
70482933
RK
2274 Error_Msg_N
2275 ("?return type of& does not correspond to C pointer",
2276 E);
2277
2278 elsif Is_Array_Type (Etype (E))
2279 and then not Is_Constrained (Etype (E))
2280 and then not Is_Imported (E)
2281 and then Convention (E) in Foreign_Convention
fbf5a39b 2282 and then Warn_On_Export_Import
70482933
RK
2283 then
2284 Error_Msg_N
fbf5a39b 2285 ("?foreign convention function& should not " &
70482933 2286 "return unconstrained array", E);
d8db0bca
JM
2287
2288 -- Ada 2005 (AI-326): Check wrong use of tagged
2289 -- incomplete type
2290 --
2291 -- type T is tagged;
2292 -- function F (X : Boolean) return T; -- ERROR
2293
2294 elsif Ekind (Etype (E)) = E_Incomplete_Type
2295 and then Is_Tagged_Type (Etype (E))
2296 and then No (Full_View (Etype (E)))
2297 then
2298 Error_Msg_N
2299 ("(Ada 2005): invalid use of tagged incomplete type",
2300 E);
70482933
RK
2301 end if;
2302 end if;
2303 end;
2304 end if;
2305
2306 -- Must freeze its parent first if it is a derived subprogram
2307
2308 if Present (Alias (E)) then
2309 Freeze_And_Append (Alias (E), Loc, Result);
2310 end if;
2311
2312 -- If the return type requires a transient scope, and we are on
2313 -- a target allowing functions to return with a depressed stack
2314 -- pointer, then we mark the function as requiring this treatment.
2315
2316 if Ekind (E) = E_Function
2317 and then Functions_Return_By_DSP_On_Target
2318 and then Requires_Transient_Scope (Etype (E))
2319 then
2320 Set_Function_Returns_With_DSP (E);
2321 end if;
2322
2323 if not Is_Internal (E) then
2324 Freeze_Subprogram (E);
2325 end if;
2326
2327 -- Here for other than a subprogram or type
2328
2329 else
2330 -- If entity has a type, and it is not a generic unit, then
2331 -- freeze it first (RM 13.14(10))
2332
2333 if Present (Etype (E))
2334 and then Ekind (E) /= E_Generic_Function
2335 then
2336 Freeze_And_Append (Etype (E), Loc, Result);
2337 end if;
2338
2c9beb8a 2339 -- Special processing for objects created by object declaration
70482933
RK
2340
2341 if Nkind (Declaration_Node (E)) = N_Object_Declaration then
2c9beb8a
RD
2342
2343 -- For object created by object declaration, perform required
2344 -- categorization (preelaborate and pure) checks. Defer these
2345 -- checks to freeze time since pragma Import inhibits default
2346 -- initialization and thus pragma Import affects these checks.
2347
70482933 2348 Validate_Object_Declaration (Declaration_Node (E));
2c9beb8a
RD
2349
2350 -- If there is an address clause, check it is valid
2351
fbf5a39b 2352 Check_Address_Clause (E);
2c9beb8a
RD
2353
2354 -- For imported objects, set Is_Public unless there is also
2355 -- an address clause, which means that there is no external
2356 -- symbol needed for the Import (Is_Public may still be set
2357 -- for other unrelated reasons). Note that we delayed this
2358 -- processing till freeze time so that we can be sure not
2359 -- to set the flag if there is an address clause. If there
2360 -- is such a clause, then the only purpose of the import
2361 -- pragma is to suppress implicit initialization.
2362
2363 if Is_Imported (E)
2364 and then not Present (Address_Clause (E))
2365 then
2366 Set_Is_Public (E);
2367 end if;
70482933
RK
2368 end if;
2369
2370 -- Check that a constant which has a pragma Volatile[_Components]
2371 -- or Atomic[_Components] also has a pragma Import (RM C.6(13))
2372
2373 -- Note: Atomic[_Components] also sets Volatile[_Components]
2374
2375 if Ekind (E) = E_Constant
2376 and then (Has_Volatile_Components (E) or else Is_Volatile (E))
2377 and then not Is_Imported (E)
2378 then
2379 -- Make sure we actually have a pragma, and have not merely
2380 -- inherited the indication from elsewhere (e.g. an address
2381 -- clause, which is not good enough in RM terms!)
2382
1d571f3b 2383 if Has_Rep_Pragma (E, Name_Atomic)
91b1417d 2384 or else
1d571f3b 2385 Has_Rep_Pragma (E, Name_Atomic_Components)
70482933
RK
2386 then
2387 Error_Msg_N
91b1417d
AC
2388 ("stand alone atomic constant must be " &
2389 "imported ('R'M 'C.6(13))", E);
2390
1d571f3b 2391 elsif Has_Rep_Pragma (E, Name_Volatile)
91b1417d 2392 or else
1d571f3b 2393 Has_Rep_Pragma (E, Name_Volatile_Components)
91b1417d
AC
2394 then
2395 Error_Msg_N
2396 ("stand alone volatile constant must be " &
2397 "imported ('R'M 'C.6(13))", E);
70482933
RK
2398 end if;
2399 end if;
2400
2401 -- Static objects require special handling
2402
2403 if (Ekind (E) = E_Constant or else Ekind (E) = E_Variable)
2404 and then Is_Statically_Allocated (E)
2405 then
2406 Freeze_Static_Object (E);
2407 end if;
2408
2409 -- Remaining step is to layout objects
2410
2411 if Ekind (E) = E_Variable
2412 or else
2413 Ekind (E) = E_Constant
2414 or else
2415 Ekind (E) = E_Loop_Parameter
2416 or else
2417 Is_Formal (E)
2418 then
2419 Layout_Object (E);
2420 end if;
2421 end if;
2422
2423 -- Case of a type or subtype being frozen
2424
2425 else
2426 -- The type may be defined in a generic unit. This can occur when
2427 -- freezing a generic function that returns the type (which is
2428 -- defined in a parent unit). It is clearly meaningless to freeze
2429 -- this type. However, if it is a subtype, its size may be determi-
2430 -- nable and used in subsequent checks, so might as well try to
2431 -- compute it.
2432
2433 if Present (Scope (E))
2434 and then Is_Generic_Unit (Scope (E))
2435 then
2436 Check_Compile_Time_Size (E);
2437 return No_List;
2438 end if;
2439
2440 -- Deal with special cases of freezing for subtype
2441
2442 if E /= Base_Type (E) then
2443
2444 -- If ancestor subtype present, freeze that first.
2445 -- Note that this will also get the base type frozen.
2446
2447 Atype := Ancestor_Subtype (E);
2448
2449 if Present (Atype) then
2450 Freeze_And_Append (Atype, Loc, Result);
2451
2452 -- Otherwise freeze the base type of the entity before
fbf5a39b 2453 -- freezing the entity itself, (RM 13.14(15)).
70482933
RK
2454
2455 elsif E /= Base_Type (E) then
2456 Freeze_And_Append (Base_Type (E), Loc, Result);
2457 end if;
2458
fbf5a39b 2459 -- For a derived type, freeze its parent type first (RM 13.14(15))
70482933
RK
2460
2461 elsif Is_Derived_Type (E) then
2462 Freeze_And_Append (Etype (E), Loc, Result);
2463 Freeze_And_Append (First_Subtype (Etype (E)), Loc, Result);
2464 end if;
2465
2466 -- For array type, freeze index types and component type first
fbf5a39b 2467 -- before freezing the array (RM 13.14(15)).
70482933
RK
2468
2469 if Is_Array_Type (E) then
2470 declare
fbf5a39b
AC
2471 Ctyp : constant Entity_Id := Component_Type (E);
2472 Pnod : Node_Id;
70482933
RK
2473
2474 Non_Standard_Enum : Boolean := False;
2475 -- Set true if any of the index types is an enumeration
2476 -- type with a non-standard representation.
2477
2478 begin
2479 Freeze_And_Append (Ctyp, Loc, Result);
2480
2481 Indx := First_Index (E);
2482 while Present (Indx) loop
2483 Freeze_And_Append (Etype (Indx), Loc, Result);
2484
2485 if Is_Enumeration_Type (Etype (Indx))
2486 and then Has_Non_Standard_Rep (Etype (Indx))
2487 then
2488 Non_Standard_Enum := True;
2489 end if;
2490
2491 Next_Index (Indx);
2492 end loop;
2493
07fc65c4 2494 -- Processing that is done only for base types
70482933
RK
2495
2496 if Ekind (E) = E_Array_Type then
07fc65c4
GB
2497
2498 -- Propagate flags for component type
2499
70482933
RK
2500 if Is_Controlled (Component_Type (E))
2501 or else Has_Controlled_Component (Ctyp)
2502 then
2503 Set_Has_Controlled_Component (E);
2504 end if;
2505
2506 if Has_Unchecked_Union (Component_Type (E)) then
2507 Set_Has_Unchecked_Union (E);
2508 end if;
70482933 2509
07fc65c4
GB
2510 -- If packing was requested or if the component size was set
2511 -- explicitly, then see if bit packing is required. This
2512 -- processing is only done for base types, since all the
2513 -- representation aspects involved are type-related. This
2514 -- is not just an optimization, if we start processing the
2515 -- subtypes, they intefere with the settings on the base
2516 -- type (this is because Is_Packed has a slightly different
2517 -- meaning before and after freezing).
70482933 2518
70482933
RK
2519 declare
2520 Csiz : Uint;
2521 Esiz : Uint;
2522
2523 begin
2524 if (Is_Packed (E) or else Has_Pragma_Pack (E))
2525 and then not Has_Atomic_Components (E)
2526 and then Known_Static_RM_Size (Ctyp)
2527 then
2528 Csiz := UI_Max (RM_Size (Ctyp), 1);
2529
2530 elsif Known_Component_Size (E) then
2531 Csiz := Component_Size (E);
2532
2533 elsif not Known_Static_Esize (Ctyp) then
2534 Csiz := Uint_0;
2535
2536 else
2537 Esiz := Esize (Ctyp);
2538
2539 -- We can set the component size if it is less than
2540 -- 16, rounding it up to the next storage unit size.
2541
2542 if Esiz <= 8 then
2543 Csiz := Uint_8;
2544 elsif Esiz <= 16 then
2545 Csiz := Uint_16;
2546 else
2547 Csiz := Uint_0;
2548 end if;
2549
2550 -- Set component size up to match alignment if
2551 -- it would otherwise be less than the alignment.
2552 -- This deals with cases of types whose alignment
2553 -- exceeds their sizes (padded types).
2554
2555 if Csiz /= 0 then
2556 declare
2557 A : constant Uint := Alignment_In_Bits (Ctyp);
2558
2559 begin
2560 if Csiz < A then
2561 Csiz := A;
2562 end if;
2563 end;
2564 end if;
2565
2566 end if;
2567
2568 if 1 <= Csiz and then Csiz <= 64 then
2569
2570 -- We set the component size for all cases 1-64
2571
2572 Set_Component_Size (Base_Type (E), Csiz);
2573
fbf5a39b
AC
2574 -- Check for base type of 8,16,32 bits, where the
2575 -- subtype has a length one less than the base type
2576 -- and is unsigned (e.g. Natural subtype of Integer)
2577
2578 -- In such cases, if a component size was not set
2579 -- explicitly, then generate a warning.
2580
2581 if Has_Pragma_Pack (E)
2582 and then not Has_Component_Size_Clause (E)
2583 and then
2584 (Csiz = 7 or else Csiz = 15 or else Csiz = 31)
2585 and then Esize (Base_Type (Ctyp)) = Csiz + 1
2586 then
2587 Error_Msg_Uint_1 := Csiz;
2588 Pnod :=
2589 Get_Rep_Pragma (First_Subtype (E), Name_Pack);
2590
2591 if Present (Pnod) then
2592 Error_Msg_N
2593 ("pragma Pack causes component size to be ^?",
2594 Pnod);
2595 Error_Msg_N
2596 ("\use Component_Size to set desired value",
2597 Pnod);
2598 end if;
2599 end if;
2600
70482933
RK
2601 -- Actual packing is not needed for 8,16,32,64
2602 -- Also not needed for 24 if alignment is 1
2603
2604 if Csiz = 8
2605 or else Csiz = 16
2606 or else Csiz = 32
2607 or else Csiz = 64
2608 or else (Csiz = 24 and then Alignment (Ctyp) = 1)
2609 then
2610 -- Here the array was requested to be packed, but
2611 -- the packing request had no effect, so Is_Packed
2612 -- is reset.
2613
2614 -- Note: semantically this means that we lose
2615 -- track of the fact that a derived type inherited
2616 -- a pack pragma that was non-effective, but that
2617 -- seems fine.
2618
2619 -- We regard a Pack pragma as a request to set a
2620 -- representation characteristic, and this request
2621 -- may be ignored.
2622
2623 Set_Is_Packed (Base_Type (E), False);
2624
2625 -- In all other cases, packing is indeed needed
2626
2627 else
2628 Set_Has_Non_Standard_Rep (Base_Type (E));
2629 Set_Is_Bit_Packed_Array (Base_Type (E));
2630 Set_Is_Packed (Base_Type (E));
2631 end if;
2632 end if;
2633 end;
07fc65c4
GB
2634
2635 -- Processing that is done only for subtypes
2636
2637 else
2638 -- Acquire alignment from base type
2639
2640 if Unknown_Alignment (E) then
2641 Set_Alignment (E, Alignment (Base_Type (E)));
2642 end if;
2643 end if;
2644
d05ef0ab
AC
2645 -- For bit-packed arrays, check the size
2646
2647 if Is_Bit_Packed_Array (E)
2648 and then Known_Esize (E)
2649 then
2650 declare
2651 Discard : Boolean;
2652 SizC : constant Node_Id := Size_Clause (E);
2653
2654 begin
2655 -- It is not clear if it is possible to have no size
2656 -- clause at this stage, but this is not worth worrying
2657 -- about. Post the error on the entity name in the size
2658 -- clause if present, else on the type entity itself.
2659
2660 if Present (SizC) then
2661 Check_Size (Name (SizC), E, Esize (E), Discard);
2662 else
2663 Check_Size (E, E, Esize (E), Discard);
2664 end if;
2665 end;
2666 end if;
2667
07fc65c4
GB
2668 -- Check one common case of a size given where the array
2669 -- needs to be packed, but was not so the size cannot be
2670 -- honored. This would of course be caught by the backend,
2671 -- and indeed we don't catch all cases. The point is that
2672 -- we can give a better error message in those cases that
2673 -- we do catch with the circuitry here.
2674
fbf5a39b
AC
2675 declare
2676 Lo, Hi : Node_Id;
2677 Ctyp : constant Entity_Id := Component_Type (E);
07fc65c4 2678
fbf5a39b
AC
2679 begin
2680 if Present (Size_Clause (E))
2681 and then Known_Static_Esize (E)
2682 and then not Is_Bit_Packed_Array (E)
2683 and then not Has_Pragma_Pack (E)
2684 and then Number_Dimensions (E) = 1
2685 and then not Has_Component_Size_Clause (E)
2686 and then Known_Static_Esize (Ctyp)
2687 then
07fc65c4
GB
2688 Get_Index_Bounds (First_Index (E), Lo, Hi);
2689
2690 if Compile_Time_Known_Value (Lo)
2691 and then Compile_Time_Known_Value (Hi)
2692 and then Known_Static_RM_Size (Ctyp)
2693 and then RM_Size (Ctyp) < 64
2694 then
2695 declare
fbf5a39b
AC
2696 Lov : constant Uint := Expr_Value (Lo);
2697 Hiv : constant Uint := Expr_Value (Hi);
2698 Len : constant Uint :=
2699 UI_Max (Uint_0, Hiv - Lov + 1);
2700 Rsiz : constant Uint := RM_Size (Ctyp);
2701
2702 -- What we are looking for here is the situation
2703 -- where the Esize given would be exactly right
2704 -- if there was a pragma Pack (resulting in the
2705 -- component size being the same as the RM_Size).
2706 -- Furthermore, the component type size must be
2707 -- an odd size (not a multiple of storage unit)
07fc65c4
GB
2708
2709 begin
fbf5a39b
AC
2710 if Esize (E) = Len * Rsiz
2711 and then Rsiz mod System_Storage_Unit /= 0
07fc65c4
GB
2712 then
2713 Error_Msg_NE
2714 ("size given for& too small",
2715 Size_Clause (E), E);
2716 Error_Msg_N
2717 ("\explicit pragma Pack is required",
2718 Size_Clause (E));
2719 end if;
2720 end;
2721 end if;
fbf5a39b
AC
2722 end if;
2723 end;
70482933
RK
2724
2725 -- If any of the index types was an enumeration type with
2726 -- a non-standard rep clause, then we indicate that the
2727 -- array type is always packed (even if it is not bit packed).
2728
2729 if Non_Standard_Enum then
2730 Set_Has_Non_Standard_Rep (Base_Type (E));
2731 Set_Is_Packed (Base_Type (E));
2732 end if;
70482933 2733
0da2c8ac 2734 Set_Component_Alignment_If_Not_Set (E);
70482933 2735
0da2c8ac
AC
2736 -- If the array is packed, we must create the packed array
2737 -- type to be used to actually implement the type. This is
2738 -- only needed for real array types (not for string literal
2739 -- types, since they are present only for the front end).
70482933 2740
0da2c8ac
AC
2741 if Is_Packed (E)
2742 and then Ekind (E) /= E_String_Literal_Subtype
2743 then
2744 Create_Packed_Array_Type (E);
2745 Freeze_And_Append (Packed_Array_Type (E), Loc, Result);
70482933 2746
0da2c8ac
AC
2747 -- Size information of packed array type is copied to the
2748 -- array type, since this is really the representation.
70482933 2749
0da2c8ac
AC
2750 Set_Size_Info (E, Packed_Array_Type (E));
2751 Set_RM_Size (E, RM_Size (Packed_Array_Type (E)));
2752 end if;
2753
2754 -- For non-packed arrays set the alignment of the array
2755 -- to the alignment of the component type if it is unknown.
2756 -- Skip this in the atomic case, since atomic arrays may
2757 -- need larger alignments.
2758
2759 if not Is_Packed (E)
2760 and then Unknown_Alignment (E)
2761 and then Known_Alignment (Ctyp)
2762 and then Known_Static_Component_Size (E)
2763 and then Known_Static_Esize (Ctyp)
2764 and then Esize (Ctyp) = Component_Size (E)
2765 and then not Is_Atomic (E)
2766 then
2767 Set_Alignment (E, Alignment (Component_Type (E)));
2768 end if;
2769 end;
70482933 2770
fbf5a39b
AC
2771 -- For a class-wide type, the corresponding specific type is
2772 -- frozen as well (RM 13.14(15))
70482933
RK
2773
2774 elsif Is_Class_Wide_Type (E) then
2775 Freeze_And_Append (Root_Type (E), Loc, Result);
2776
2777 -- If the Class_Wide_Type is an Itype (when type is the anonymous
2778 -- parent of a derived type) and it is a library-level entity,
2779 -- generate an itype reference for it. Otherwise, its first
2780 -- explicit reference may be in an inner scope, which will be
2781 -- rejected by the back-end.
2782
2783 if Is_Itype (E)
2784 and then Is_Compilation_Unit (Scope (E))
2785 then
70482933 2786 declare
fbf5a39b 2787 Ref : constant Node_Id := Make_Itype_Reference (Loc);
70482933
RK
2788
2789 begin
2790 Set_Itype (Ref, E);
2791 if No (Result) then
2792 Result := New_List (Ref);
2793 else
2794 Append (Ref, Result);
2795 end if;
2796 end;
2797 end if;
2798
fbf5a39b
AC
2799 -- The equivalent type associated with a class-wide subtype
2800 -- needs to be frozen to ensure that its layout is done.
2801 -- Class-wide subtypes are currently only frozen on targets
2802 -- requiring front-end layout (see New_Class_Wide_Subtype
2803 -- and Make_CW_Equivalent_Type in exp_util.adb).
2804
2805 if Ekind (E) = E_Class_Wide_Subtype
2806 and then Present (Equivalent_Type (E))
2807 then
2808 Freeze_And_Append (Equivalent_Type (E), Loc, Result);
2809 end if;
2810
2811 -- For a record (sub)type, freeze all the component types (RM
2812 -- 13.14(15). We test for E_Record_(sub)Type here, rather than
70482933
RK
2813 -- using Is_Record_Type, because we don't want to attempt the
2814 -- freeze for the case of a private type with record extension
2815 -- (we will do that later when the full type is frozen).
2816
2817 elsif Ekind (E) = E_Record_Type
2818 or else Ekind (E) = E_Record_Subtype
2819 then
2820 Freeze_Record_Type (E);
2821
2822 -- For a concurrent type, freeze corresponding record type. This
2823 -- does not correpond to any specific rule in the RM, but the
2824 -- record type is essentially part of the concurrent type.
2825 -- Freeze as well all local entities. This includes record types
2826 -- created for entry parameter blocks, and whatever local entities
2827 -- may appear in the private part.
2828
2829 elsif Is_Concurrent_Type (E) then
2830 if Present (Corresponding_Record_Type (E)) then
2831 Freeze_And_Append
2832 (Corresponding_Record_Type (E), Loc, Result);
2833 end if;
2834
2835 Comp := First_Entity (E);
2836
2837 while Present (Comp) loop
2838 if Is_Type (Comp) then
2839 Freeze_And_Append (Comp, Loc, Result);
2840
2841 elsif (Ekind (Comp)) /= E_Function then
c6823a20
EB
2842 if Is_Itype (Etype (Comp))
2843 and then Underlying_Type (Scope (Etype (Comp))) = E
2844 then
2845 Undelay_Type (Etype (Comp));
2846 end if;
2847
70482933
RK
2848 Freeze_And_Append (Etype (Comp), Loc, Result);
2849 end if;
2850
2851 Next_Entity (Comp);
2852 end loop;
2853
2854 -- Private types are required to point to the same freeze node
2855 -- as their corresponding full views. The freeze node itself
2856 -- has to point to the partial view of the entity (because
2857 -- from the partial view, we can retrieve the full view, but
2858 -- not the reverse). However, in order to freeze correctly,
2859 -- we need to freeze the full view. If we are freezing at the
2860 -- end of a scope (or within the scope of the private type),
2861 -- the partial and full views will have been swapped, the
2862 -- full view appears first in the entity chain and the swapping
fbf5a39b 2863 -- mechanism ensures that the pointers are properly set (on
70482933
RK
2864 -- scope exit).
2865
2866 -- If we encounter the partial view before the full view
2867 -- (e.g. when freezing from another scope), we freeze the
2868 -- full view, and then set the pointers appropriately since
2869 -- we cannot rely on swapping to fix things up (subtypes in an
2870 -- outer scope might not get swapped).
2871
2872 elsif Is_Incomplete_Or_Private_Type (E)
2873 and then not Is_Generic_Type (E)
2874 then
2875 -- Case of full view present
2876
2877 if Present (Full_View (E)) then
2878
2879 -- If full view has already been frozen, then no
2880 -- further processing is required
2881
2882 if Is_Frozen (Full_View (E)) then
2883
2884 Set_Has_Delayed_Freeze (E, False);
2885 Set_Freeze_Node (E, Empty);
2886 Check_Debug_Info_Needed (E);
2887
2888 -- Otherwise freeze full view and patch the pointers
fbf5a39b
AC
2889 -- so that the freeze node will elaborate both views
2890 -- in the back-end.
70482933
RK
2891
2892 else
fbf5a39b
AC
2893 declare
2894 Full : constant Entity_Id := Full_View (E);
70482933 2895
fbf5a39b
AC
2896 begin
2897 if Is_Private_Type (Full)
2898 and then Present (Underlying_Full_View (Full))
2899 then
2900 Freeze_And_Append
2901 (Underlying_Full_View (Full), Loc, Result);
2902 end if;
70482933 2903
fbf5a39b 2904 Freeze_And_Append (Full, Loc, Result);
70482933 2905
fbf5a39b
AC
2906 if Has_Delayed_Freeze (E) then
2907 F_Node := Freeze_Node (Full);
70482933 2908
fbf5a39b
AC
2909 if Present (F_Node) then
2910 Set_Freeze_Node (E, F_Node);
2911 Set_Entity (F_Node, E);
2912
2913 else
2914 -- {Incomplete,Private}_Subtypes
2915 -- with Full_Views constrained by discriminants
2916
2917 Set_Has_Delayed_Freeze (E, False);
2918 Set_Freeze_Node (E, Empty);
2919 end if;
70482933 2920 end if;
fbf5a39b 2921 end;
70482933
RK
2922
2923 Check_Debug_Info_Needed (E);
2924 end if;
2925
2926 -- AI-117 requires that the convention of a partial view
2927 -- be the same as the convention of the full view. Note
2928 -- that this is a recognized breach of privacy, but it's
2929 -- essential for logical consistency of representation,
2930 -- and the lack of a rule in RM95 was an oversight.
2931
2932 Set_Convention (E, Convention (Full_View (E)));
2933
2934 Set_Size_Known_At_Compile_Time (E,
2935 Size_Known_At_Compile_Time (Full_View (E)));
2936
2937 -- Size information is copied from the full view to the
2938 -- incomplete or private view for consistency
2939
2940 -- We skip this is the full view is not a type. This is
2941 -- very strange of course, and can only happen as a result
2942 -- of certain illegalities, such as a premature attempt to
2943 -- derive from an incomplete type.
2944
2945 if Is_Type (Full_View (E)) then
2946 Set_Size_Info (E, Full_View (E));
2947 Set_RM_Size (E, RM_Size (Full_View (E)));
2948 end if;
2949
2950 return Result;
2951
2952 -- Case of no full view present. If entity is derived or subtype,
2953 -- it is safe to freeze, correctness depends on the frozen status
2954 -- of parent. Otherwise it is either premature usage, or a Taft
2955 -- amendment type, so diagnosis is at the point of use and the
2956 -- type might be frozen later.
2957
2958 elsif E /= Base_Type (E)
2959 or else Is_Derived_Type (E)
2960 then
2961 null;
2962
2963 else
2964 Set_Is_Frozen (E, False);
2965 return No_List;
2966 end if;
2967
2968 -- For access subprogram, freeze types of all formals, the return
2969 -- type was already frozen, since it is the Etype of the function.
2970
2971 elsif Ekind (E) = E_Subprogram_Type then
2972 Formal := First_Formal (E);
2973 while Present (Formal) loop
2974 Freeze_And_Append (Etype (Formal), Loc, Result);
2975 Next_Formal (Formal);
2976 end loop;
2977
2978 -- If the return type requires a transient scope, and we are on
2979 -- a target allowing functions to return with a depressed stack
2980 -- pointer, then we mark the function as requiring this treatment.
2981
2982 if Functions_Return_By_DSP_On_Target
2983 and then Requires_Transient_Scope (Etype (E))
2984 then
2985 Set_Function_Returns_With_DSP (E);
2986 end if;
2987
2988 Freeze_Subprogram (E);
2989
d8db0bca
JM
2990 -- AI-326: Check wrong use of tag incomplete type
2991 --
2992 -- type T is tagged;
2993 -- type Acc is access function (X : T) return T; -- ERROR
2994
2995 if Ekind (Etype (E)) = E_Incomplete_Type
2996 and then Is_Tagged_Type (Etype (E))
2997 and then No (Full_View (Etype (E)))
2998 then
2999 Error_Msg_N
3000 ("(Ada 2005): invalid use of tagged incomplete type", E);
3001 end if;
3002
70482933
RK
3003 -- For access to a protected subprogram, freeze the equivalent
3004 -- type (however this is not set if we are not generating code)
3005 -- or if this is an anonymous type used just for resolution).
3006
d8db0bca
JM
3007 elsif Ekind (E) = E_Access_Protected_Subprogram_Type then
3008
3009 -- AI-326: Check wrong use of tagged incomplete types
3010
3011 -- type T is tagged;
3012 -- type As3D is access protected
3013 -- function (X : Float) return T; -- ERROR
3014
3015 declare
3016 Etyp : Entity_Id;
3017
3018 begin
3019 Etyp := Etype (Directly_Designated_Type (E));
3020
3021 if Is_Class_Wide_Type (Etyp) then
3022 Etyp := Etype (Etyp);
3023 end if;
3024
3025 if Ekind (Etyp) = E_Incomplete_Type
3026 and then Is_Tagged_Type (Etyp)
3027 and then No (Full_View (Etyp))
3028 then
3029 Error_Msg_N
3030 ("(Ada 2005): invalid use of tagged incomplete type", E);
3031 end if;
3032 end;
3033
3034 if Operating_Mode = Generate_Code
3035 and then Present (Equivalent_Type (E))
3036 then
3037 Freeze_And_Append (Equivalent_Type (E), Loc, Result);
3038 end if;
70482933
RK
3039 end if;
3040
3041 -- Generic types are never seen by the back-end, and are also not
3042 -- processed by the expander (since the expander is turned off for
3043 -- generic processing), so we never need freeze nodes for them.
3044
3045 if Is_Generic_Type (E) then
3046 return Result;
3047 end if;
3048
3049 -- Some special processing for non-generic types to complete
3050 -- representation details not known till the freeze point.
3051
3052 if Is_Fixed_Point_Type (E) then
3053 Freeze_Fixed_Point_Type (E);
3054
fbf5a39b
AC
3055 -- Some error checks required for ordinary fixed-point type.
3056 -- Defer these till the freeze-point since we need the small
3057 -- and range values. We only do these checks for base types
3058
3059 if Is_Ordinary_Fixed_Point_Type (E)
3060 and then E = Base_Type (E)
3061 then
3062 if Small_Value (E) < Ureal_2_M_80 then
3063 Error_Msg_Name_1 := Name_Small;
3064 Error_Msg_N
3065 ("`&''%` is too small, minimum is 2.0'*'*(-80)", E);
3066
3067 elsif Small_Value (E) > Ureal_2_80 then
3068 Error_Msg_Name_1 := Name_Small;
3069 Error_Msg_N
3070 ("`&''%` is too large, maximum is 2.0'*'*80", E);
3071 end if;
3072
3073 if Expr_Value_R (Type_Low_Bound (E)) < Ureal_M_10_36 then
3074 Error_Msg_Name_1 := Name_First;
3075 Error_Msg_N
3076 ("`&''%` is too small, minimum is -10.0'*'*36", E);
3077 end if;
3078
3079 if Expr_Value_R (Type_High_Bound (E)) > Ureal_10_36 then
3080 Error_Msg_Name_1 := Name_Last;
3081 Error_Msg_N
3082 ("`&''%` is too large, maximum is 10.0'*'*36", E);
3083 end if;
3084 end if;
3085
70482933
RK
3086 elsif Is_Enumeration_Type (E) then
3087 Freeze_Enumeration_Type (E);
3088
3089 elsif Is_Integer_Type (E) then
3090 Adjust_Esize_For_Alignment (E);
3091
edd63e9b
ES
3092 elsif Is_Access_Type (E) then
3093
3094 -- Check restriction for standard storage pool
3095
3096 if No (Associated_Storage_Pool (E)) then
3097 Check_Restriction (No_Standard_Storage_Pools, E);
3098 end if;
3099
3100 -- Deal with error message for pure access type. This is not an
3101 -- error in Ada 2005 if there is no pool (see AI-366).
3102
3103 if Is_Pure_Unit_Access_Type (E)
3104 and then (Ada_Version < Ada_05
3105 or else not No_Pool_Assigned (E))
3106 then
3107 Error_Msg_N ("named access type not allowed in pure unit", E);
3108 end if;
70482933
RK
3109 end if;
3110
edd63e9b
ES
3111 -- Case of composite types
3112
70482933
RK
3113 if Is_Composite_Type (E) then
3114
edd63e9b
ES
3115 -- AI-117 requires that all new primitives of a tagged type must
3116 -- inherit the convention of the full view of the type. Inherited
3117 -- and overriding operations are defined to inherit the convention
3118 -- of their parent or overridden subprogram (also specified in
3119 -- AI-117), and that will have occurred earlier (in
3120 -- Derive_Subprogram and New_Overloaded_Entity). Here we set the
3121 -- convention of primitives that are still convention Ada, which
3122 -- will ensure that any new primitives inherit the type's
3123 -- convention. Class-wide types can have a foreign convention
3124 -- inherited from their specific type, but are excluded from this
3125 -- since they don't have any associated primitives.
70482933
RK
3126
3127 if Is_Tagged_Type (E)
3128 and then not Is_Class_Wide_Type (E)
3129 and then Convention (E) /= Convention_Ada
3130 then
3131 declare
3132 Prim_List : constant Elist_Id := Primitive_Operations (E);
07fc65c4 3133 Prim : Elmt_Id;
70482933 3134 begin
07fc65c4 3135 Prim := First_Elmt (Prim_List);
70482933
RK
3136 while Present (Prim) loop
3137 if Convention (Node (Prim)) = Convention_Ada then
3138 Set_Convention (Node (Prim), Convention (E));
3139 end if;
3140
3141 Next_Elmt (Prim);
3142 end loop;
3143 end;
3144 end if;
3145 end if;
3146
07fc65c4
GB
3147 -- Generate primitive operation references for a tagged type
3148
3149 if Is_Tagged_Type (E)
3150 and then not Is_Class_Wide_Type (E)
3151 then
3152 declare
edd63e9b 3153 Prim_List : Elist_Id;
07fc65c4
GB
3154 Prim : Elmt_Id;
3155 Ent : Entity_Id;
3156
3157 begin
edd63e9b
ES
3158 -- Ada 2005 (AI-345): In case of concurrent type generate
3159 -- reference to the wrapper that allow us to dispatch calls
3160 -- through their implemented abstract interface types.
3161
3162 -- The check for Present here is to protect against previously
3163 -- reported critical errors.
3164
3165 if Is_Concurrent_Type (E)
3166 and then Present (Corresponding_Record_Type (E))
3167 then
3168 pragma Assert (not Is_Empty_Elmt_List
3169 (Abstract_Interfaces
3170 (Corresponding_Record_Type (E))));
3171
3172 Prim_List := Primitive_Operations
3173 (Corresponding_Record_Type (E));
3174 else
3175 Prim_List := Primitive_Operations (E);
3176 end if;
3177
3178 -- Loop to generate references for primitive operations
3179
07fc65c4
GB
3180 Prim := First_Elmt (Prim_List);
3181 while Present (Prim) loop
3182 Ent := Node (Prim);
3183
edd63e9b
ES
3184 -- If the operation is derived, get the original for cross-
3185 -- reference purposes (it is the original for which we want
3186 -- the xref, and for which the comes from source test needs
3187 -- to be performed).
07fc65c4
GB
3188
3189 while Present (Alias (Ent)) loop
3190 Ent := Alias (Ent);
3191 end loop;
3192
3193 Generate_Reference (E, Ent, 'p', Set_Ref => False);
3194 Next_Elmt (Prim);
3195 end loop;
3196
3197 -- If we get an exception, then something peculiar has happened
3198 -- probably as a result of a previous error. Since this is only
3199 -- for non-critical cross-references, ignore the error.
3200
3201 exception
3202 when others => null;
3203 end;
3204 end if;
3205
70482933
RK
3206 -- Now that all types from which E may depend are frozen, see
3207 -- if the size is known at compile time, if it must be unsigned,
3208 -- or if strict alignent is required
3209
3210 Check_Compile_Time_Size (E);
3211 Check_Unsigned_Type (E);
3212
3213 if Base_Type (E) = E then
3214 Check_Strict_Alignment (E);
3215 end if;
3216
3217 -- Do not allow a size clause for a type which does not have a size
3218 -- that is known at compile time
3219
3220 if Has_Size_Clause (E)
3221 and then not Size_Known_At_Compile_Time (E)
3222 then
07fc65c4
GB
3223 -- Supress this message if errors posted on E, even if we are
3224 -- in all errors mode, since this is often a junk message
3225
3226 if not Error_Posted (E) then
3227 Error_Msg_N
3228 ("size clause not allowed for variable length type",
3229 Size_Clause (E));
3230 end if;
70482933
RK
3231 end if;
3232
3233 -- Remaining process is to set/verify the representation information,
3234 -- in particular the size and alignment values. This processing is
3235 -- not required for generic types, since generic types do not play
3236 -- any part in code generation, and so the size and alignment values
c6823a20 3237 -- for such types are irrelevant.
70482933
RK
3238
3239 if Is_Generic_Type (E) then
3240 return Result;
3241
3242 -- Otherwise we call the layout procedure
3243
3244 else
3245 Layout_Type (E);
3246 end if;
3247
3248 -- End of freeze processing for type entities
3249 end if;
3250
3251 -- Here is where we logically freeze the current entity. If it has a
3252 -- freeze node, then this is the point at which the freeze node is
3253 -- linked into the result list.
3254
3255 if Has_Delayed_Freeze (E) then
3256
3257 -- If a freeze node is already allocated, use it, otherwise allocate
3258 -- a new one. The preallocation happens in the case of anonymous base
3259 -- types, where we preallocate so that we can set First_Subtype_Link.
3260 -- Note that we reset the Sloc to the current freeze location.
3261
3262 if Present (Freeze_Node (E)) then
3263 F_Node := Freeze_Node (E);
3264 Set_Sloc (F_Node, Loc);
3265
3266 else
3267 F_Node := New_Node (N_Freeze_Entity, Loc);
3268 Set_Freeze_Node (E, F_Node);
3269 Set_Access_Types_To_Process (F_Node, No_Elist);
3270 Set_TSS_Elist (F_Node, No_Elist);
3271 Set_Actions (F_Node, No_List);
3272 end if;
3273
3274 Set_Entity (F_Node, E);
3275
3276 if Result = No_List then
3277 Result := New_List (F_Node);
3278 else
3279 Append (F_Node, Result);
3280 end if;
35ae2ed8
AC
3281
3282 -- A final pass over record types with discriminants. If the type
3283 -- has an incomplete declaration, there may be constrained access
3284 -- subtypes declared elsewhere, which do not depend on the discrimi-
3285 -- nants of the type, and which are used as component types (i.e.
3286 -- the full view is a recursive type). The designated types of these
3287 -- subtypes can only be elaborated after the type itself, and they
3288 -- need an itype reference.
3289
3290 if Ekind (E) = E_Record_Type
3291 and then Has_Discriminants (E)
3292 then
3293 declare
3294 Comp : Entity_Id;
3295 IR : Node_Id;
3296 Typ : Entity_Id;
3297
3298 begin
3299 Comp := First_Component (E);
3300
3301 while Present (Comp) loop
3302 Typ := Etype (Comp);
3303
3304 if Ekind (Comp) = E_Component
3305 and then Is_Access_Type (Typ)
3306 and then Scope (Typ) /= E
3307 and then Base_Type (Designated_Type (Typ)) = E
3308 and then Is_Itype (Designated_Type (Typ))
3309 then
3310 IR := Make_Itype_Reference (Sloc (Comp));
3311 Set_Itype (IR, Designated_Type (Typ));
3312 Append (IR, Result);
3313 end if;
3314
3315 Next_Component (Comp);
3316 end loop;
3317 end;
3318 end if;
70482933
RK
3319 end if;
3320
3321 -- When a type is frozen, the first subtype of the type is frozen as
3322 -- well (RM 13.14(15)). This has to be done after freezing the type,
3323 -- since obviously the first subtype depends on its own base type.
3324
3325 if Is_Type (E) then
3326 Freeze_And_Append (First_Subtype (E), Loc, Result);
3327
3328 -- If we just froze a tagged non-class wide record, then freeze the
3329 -- corresponding class-wide type. This must be done after the tagged
3330 -- type itself is frozen, because the class-wide type refers to the
3331 -- tagged type which generates the class.
3332
3333 if Is_Tagged_Type (E)
3334 and then not Is_Class_Wide_Type (E)
3335 and then Present (Class_Wide_Type (E))
3336 then
3337 Freeze_And_Append (Class_Wide_Type (E), Loc, Result);
3338 end if;
3339 end if;
3340
3341 Check_Debug_Info_Needed (E);
3342
3343 -- Special handling for subprograms
3344
3345 if Is_Subprogram (E) then
3346
3347 -- If subprogram has address clause then reset Is_Public flag, since
3348 -- we do not want the backend to generate external references.
3349
3350 if Present (Address_Clause (E))
3351 and then not Is_Library_Level_Entity (E)
3352 then
3353 Set_Is_Public (E, False);
3354
3355 -- If no address clause and not intrinsic, then for imported
3356 -- subprogram in main unit, generate descriptor if we are in
3357 -- Propagate_Exceptions mode.
3358
3359 elsif Propagate_Exceptions
3360 and then Is_Imported (E)
3361 and then not Is_Intrinsic_Subprogram (E)
3362 and then Convention (E) /= Convention_Stubbed
3363 then
3364 if Result = No_List then
3365 Result := Empty_List;
3366 end if;
70482933 3367 end if;
70482933
RK
3368 end if;
3369
3370 return Result;
3371 end Freeze_Entity;
3372
3373 -----------------------------
3374 -- Freeze_Enumeration_Type --
3375 -----------------------------
3376
3377 procedure Freeze_Enumeration_Type (Typ : Entity_Id) is
3378 begin
3379 if Has_Foreign_Convention (Typ)
3380 and then not Has_Size_Clause (Typ)
3381 and then Esize (Typ) < Standard_Integer_Size
3382 then
3383 Init_Esize (Typ, Standard_Integer_Size);
70482933
RK
3384 else
3385 Adjust_Esize_For_Alignment (Typ);
3386 end if;
3387 end Freeze_Enumeration_Type;
3388
3389 -----------------------
3390 -- Freeze_Expression --
3391 -----------------------
3392
3393 procedure Freeze_Expression (N : Node_Id) is
3394 In_Def_Exp : constant Boolean := In_Default_Expression;
3395 Typ : Entity_Id;
3396 Nam : Entity_Id;
3397 Desig_Typ : Entity_Id;
3398 P : Node_Id;
3399 Parent_P : Node_Id;
3400
3401 Freeze_Outside : Boolean := False;
3402 -- This flag is set true if the entity must be frozen outside the
3403 -- current subprogram. This happens in the case of expander generated
3404 -- subprograms (_Init_Proc, _Input, _Output, _Read, _Write) which do
3405 -- not freeze all entities like other bodies, but which nevertheless
3406 -- may reference entities that have to be frozen before the body and
3407 -- obviously cannot be frozen inside the body.
3408
3409 function In_Exp_Body (N : Node_Id) return Boolean;
3410 -- Given an N_Handled_Sequence_Of_Statements node N, determines whether
c6823a20 3411 -- it is the handled statement sequence of an expander-generated
70482933
RK
3412 -- subprogram (init proc, or stream subprogram). If so, it returns
3413 -- True, otherwise False.
3414
fbf5a39b
AC
3415 -----------------
3416 -- In_Exp_Body --
3417 -----------------
3418
70482933
RK
3419 function In_Exp_Body (N : Node_Id) return Boolean is
3420 P : Node_Id;
3421
3422 begin
3423 if Nkind (N) = N_Subprogram_Body then
3424 P := N;
3425 else
3426 P := Parent (N);
3427 end if;
3428
3429 if Nkind (P) /= N_Subprogram_Body then
3430 return False;
3431
3432 else
3433 P := Defining_Unit_Name (Specification (P));
3434
3435 if Nkind (P) = N_Defining_Identifier
fbf5a39b
AC
3436 and then (Is_Init_Proc (P) or else
3437 Is_TSS (P, TSS_Stream_Input) or else
3438 Is_TSS (P, TSS_Stream_Output) or else
3439 Is_TSS (P, TSS_Stream_Read) or else
3440 Is_TSS (P, TSS_Stream_Write))
70482933
RK
3441 then
3442 return True;
3443 else
3444 return False;
3445 end if;
3446 end if;
70482933
RK
3447 end In_Exp_Body;
3448
3449 -- Start of processing for Freeze_Expression
3450
3451 begin
edd63e9b
ES
3452 -- Immediate return if freezing is inhibited. This flag is set by the
3453 -- analyzer to stop freezing on generated expressions that would cause
3454 -- freezing if they were in the source program, but which are not
3455 -- supposed to freeze, since they are created.
70482933
RK
3456
3457 if Must_Not_Freeze (N) then
3458 return;
3459 end if;
3460
3461 -- If expression is non-static, then it does not freeze in a default
3462 -- expression, see section "Handling of Default Expressions" in the
3463 -- spec of package Sem for further details. Note that we have to
3464 -- make sure that we actually have a real expression (if we have
3465 -- a subtype indication, we can't test Is_Static_Expression!)
3466
3467 if In_Def_Exp
3468 and then Nkind (N) in N_Subexpr
3469 and then not Is_Static_Expression (N)
3470 then
3471 return;
3472 end if;
3473
3474 -- Freeze type of expression if not frozen already
3475
fbf5a39b
AC
3476 Typ := Empty;
3477
3478 if Nkind (N) in N_Has_Etype then
3479 if not Is_Frozen (Etype (N)) then
3480 Typ := Etype (N);
3481
3482 -- Base type may be an derived numeric type that is frozen at
3483 -- the point of declaration, but first_subtype is still unfrozen.
3484
3485 elsif not Is_Frozen (First_Subtype (Etype (N))) then
3486 Typ := First_Subtype (Etype (N));
3487 end if;
70482933
RK
3488 end if;
3489
3490 -- For entity name, freeze entity if not frozen already. A special
3491 -- exception occurs for an identifier that did not come from source.
3492 -- We don't let such identifiers freeze a non-internal entity, i.e.
3493 -- an entity that did come from source, since such an identifier was
3494 -- generated by the expander, and cannot have any semantic effect on
3495 -- the freezing semantics. For example, this stops the parameter of
3496 -- an initialization procedure from freezing the variable.
3497
3498 if Is_Entity_Name (N)
3499 and then not Is_Frozen (Entity (N))
3500 and then (Nkind (N) /= N_Identifier
3501 or else Comes_From_Source (N)
3502 or else not Comes_From_Source (Entity (N)))
3503 then
3504 Nam := Entity (N);
70482933
RK
3505 else
3506 Nam := Empty;
3507 end if;
3508
49e90211 3509 -- For an allocator freeze designated type if not frozen already
70482933
RK
3510
3511 -- For an aggregate whose component type is an access type, freeze
3512 -- the designated type now, so that its freeze does not appear within
3513 -- the loop that might be created in the expansion of the aggregate.
3514 -- If the designated type is a private type without full view, the
3515 -- expression cannot contain an allocator, so the type is not frozen.
3516
3517 Desig_Typ := Empty;
70482933 3518
fbf5a39b 3519 case Nkind (N) is
70482933
RK
3520 when N_Allocator =>
3521 Desig_Typ := Designated_Type (Etype (N));
3522
3523 when N_Aggregate =>
3524 if Is_Array_Type (Etype (N))
3525 and then Is_Access_Type (Component_Type (Etype (N)))
3526 then
3527 Desig_Typ := Designated_Type (Component_Type (Etype (N)));
3528 end if;
3529
3530 when N_Selected_Component |
3531 N_Indexed_Component |
3532 N_Slice =>
3533
3534 if Is_Access_Type (Etype (Prefix (N))) then
3535 Desig_Typ := Designated_Type (Etype (Prefix (N)));
3536 end if;
3537
3538 when others =>
3539 null;
70482933
RK
3540 end case;
3541
3542 if Desig_Typ /= Empty
3543 and then (Is_Frozen (Desig_Typ)
3544 or else (not Is_Fully_Defined (Desig_Typ)))
3545 then
3546 Desig_Typ := Empty;
3547 end if;
3548
3549 -- All done if nothing needs freezing
3550
3551 if No (Typ)
3552 and then No (Nam)
3553 and then No (Desig_Typ)
3554 then
3555 return;
3556 end if;
3557
3558 -- Loop for looking at the right place to insert the freeze nodes
3559 -- exiting from the loop when it is appropriate to insert the freeze
3560 -- node before the current node P.
3561
3562 -- Also checks some special exceptions to the freezing rules. These
3563 -- cases result in a direct return, bypassing the freeze action.
3564
3565 P := N;
3566 loop
3567 Parent_P := Parent (P);
3568
3569 -- If we don't have a parent, then we are not in a well-formed
3570 -- tree. This is an unusual case, but there are some legitimate
3571 -- situations in which this occurs, notably when the expressions
3572 -- in the range of a type declaration are resolved. We simply
3573 -- ignore the freeze request in this case. Is this right ???
3574
3575 if No (Parent_P) then
3576 return;
3577 end if;
3578
3579 -- See if we have got to an appropriate point in the tree
3580
3581 case Nkind (Parent_P) is
3582
edd63e9b
ES
3583 -- A special test for the exception of (RM 13.14(8)) for the case
3584 -- of per-object expressions (RM 3.8(18)) occurring in component
3585 -- definition or a discrete subtype definition. Note that we test
3586 -- for a component declaration which includes both cases we are
3587 -- interested in, and furthermore the tree does not have explicit
3588 -- nodes for either of these two constructs.
70482933
RK
3589
3590 when N_Component_Declaration =>
3591
3592 -- The case we want to test for here is an identifier that is
3593 -- a per-object expression, this is either a discriminant that
3594 -- appears in a context other than the component declaration
3595 -- or it is a reference to the type of the enclosing construct.
3596
3597 -- For either of these cases, we skip the freezing
3598
3599 if not In_Default_Expression
3600 and then Nkind (N) = N_Identifier
3601 and then (Present (Entity (N)))
3602 then
3603 -- We recognize the discriminant case by just looking for
3604 -- a reference to a discriminant. It can only be one for
3605 -- the enclosing construct. Skip freezing in this case.
3606
3607 if Ekind (Entity (N)) = E_Discriminant then
3608 return;
3609
3610 -- For the case of a reference to the enclosing record,
3611 -- (or task or protected type), we look for a type that
3612 -- matches the current scope.
3613
3614 elsif Entity (N) = Current_Scope then
3615 return;
3616 end if;
3617 end if;
3618
edd63e9b
ES
3619 -- If we have an enumeration literal that appears as the choice in
3620 -- the aggregate of an enumeration representation clause, then
3621 -- freezing does not occur (RM 13.14(10)).
70482933
RK
3622
3623 when N_Enumeration_Representation_Clause =>
3624
3625 -- The case we are looking for is an enumeration literal
3626
3627 if (Nkind (N) = N_Identifier or Nkind (N) = N_Character_Literal)
3628 and then Is_Enumeration_Type (Etype (N))
3629 then
3630 -- If enumeration literal appears directly as the choice,
3631 -- do not freeze (this is the normal non-overloade case)
3632
3633 if Nkind (Parent (N)) = N_Component_Association
3634 and then First (Choices (Parent (N))) = N
3635 then
3636 return;
3637
3638 -- If enumeration literal appears as the name of a
3639 -- function which is the choice, then also do not freeze.
3640 -- This happens in the overloaded literal case, where the
3641 -- enumeration literal is temporarily changed to a function
3642 -- call for overloading analysis purposes.
3643
3644 elsif Nkind (Parent (N)) = N_Function_Call
3645 and then
3646 Nkind (Parent (Parent (N))) = N_Component_Association
3647 and then
3648 First (Choices (Parent (Parent (N)))) = Parent (N)
3649 then
3650 return;
3651 end if;
3652 end if;
3653
3654 -- Normally if the parent is a handled sequence of statements,
3655 -- then the current node must be a statement, and that is an
3656 -- appropriate place to insert a freeze node.
3657
3658 when N_Handled_Sequence_Of_Statements =>
3659
edd63e9b
ES
3660 -- An exception occurs when the sequence of statements is for
3661 -- an expander generated body that did not do the usual freeze
3662 -- all operation. In this case we usually want to freeze
3663 -- outside this body, not inside it, and we skip past the
3664 -- subprogram body that we are inside.
70482933
RK
3665
3666 if In_Exp_Body (Parent_P) then
3667
3668 -- However, we *do* want to freeze at this point if we have
3669 -- an entity to freeze, and that entity is declared *inside*
3670 -- the body of the expander generated procedure. This case
3671 -- is recognized by the scope of the type, which is either
3672 -- the spec for some enclosing body, or (in the case of
3673 -- init_procs, for which there are no separate specs) the
3674 -- current scope.
3675
3676 declare
3677 Subp : constant Node_Id := Parent (Parent_P);
3678 Cspc : Entity_Id;
3679
3680 begin
3681 if Nkind (Subp) = N_Subprogram_Body then
3682 Cspc := Corresponding_Spec (Subp);
3683
3684 if (Present (Typ) and then Scope (Typ) = Cspc)
3685 or else
3686 (Present (Nam) and then Scope (Nam) = Cspc)
3687 then
3688 exit;
3689
3690 elsif Present (Typ)
3691 and then Scope (Typ) = Current_Scope
3692 and then Current_Scope = Defining_Entity (Subp)
3693 then
3694 exit;
3695 end if;
3696 end if;
3697 end;
3698
3699 -- If not that exception to the exception, then this is
3700 -- where we delay the freeze till outside the body.
3701
3702 Parent_P := Parent (Parent_P);
3703 Freeze_Outside := True;
3704
3705 -- Here if normal case where we are in handled statement
3706 -- sequence and want to do the insertion right there.
3707
3708 else
3709 exit;
3710 end if;
3711
3712 -- If parent is a body or a spec or a block, then the current
3713 -- node is a statement or declaration and we can insert the
3714 -- freeze node before it.
3715
3716 when N_Package_Specification |
3717 N_Package_Body |
3718 N_Subprogram_Body |
3719 N_Task_Body |
3720 N_Protected_Body |
3721 N_Entry_Body |
3722 N_Block_Statement => exit;
3723
3724 -- The expander is allowed to define types in any statements list,
3725 -- so any of the following parent nodes also mark a freezing point
3726 -- if the actual node is in a list of statements or declarations.
3727
3728 when N_Exception_Handler |
3729 N_If_Statement |
3730 N_Elsif_Part |
3731 N_Case_Statement_Alternative |
3732 N_Compilation_Unit_Aux |
3733 N_Selective_Accept |
3734 N_Accept_Alternative |
3735 N_Delay_Alternative |
3736 N_Conditional_Entry_Call |
3737 N_Entry_Call_Alternative |
3738 N_Triggering_Alternative |
3739 N_Abortable_Part |
3740 N_Freeze_Entity =>
3741
3742 exit when Is_List_Member (P);
3743
3744 -- Note: The N_Loop_Statement is a special case. A type that
3745 -- appears in the source can never be frozen in a loop (this
edd63e9b
ES
3746 -- occurs only because of a loop expanded by the expander), so we
3747 -- keep on going. Otherwise we terminate the search. Same is true
3748 -- of any entity which comes from source. (if they have a
3749 -- predefined type, that type does not appear to come from source,
3750 -- but the entity should not be frozen here).
70482933
RK
3751
3752 when N_Loop_Statement =>
3753 exit when not Comes_From_Source (Etype (N))
3754 and then (No (Nam) or else not Comes_From_Source (Nam));
3755
3756 -- For all other cases, keep looking at parents
3757
3758 when others =>
3759 null;
3760 end case;
3761
3762 -- We fall through the case if we did not yet find the proper
3763 -- place in the free for inserting the freeze node, so climb!
3764
3765 P := Parent_P;
3766 end loop;
3767
edd63e9b
ES
3768 -- If the expression appears in a record or an initialization procedure,
3769 -- the freeze nodes are collected and attached to the current scope, to
3770 -- be inserted and analyzed on exit from the scope, to insure that
3771 -- generated entities appear in the correct scope. If the expression is
3772 -- a default for a discriminant specification, the scope is still void.
3773 -- The expression can also appear in the discriminant part of a private
3774 -- or concurrent type.
70482933 3775
c6823a20 3776 -- If the expression appears in a constrained subcomponent of an
edd63e9b
ES
3777 -- enclosing record declaration, the freeze nodes must be attached to
3778 -- the outer record type so they can eventually be placed in the
c6823a20
EB
3779 -- enclosing declaration list.
3780
70482933
RK
3781 -- The other case requiring this special handling is if we are in
3782 -- a default expression, since in that case we are about to freeze
3783 -- a static type, and the freeze scope needs to be the outer scope,
3784 -- not the scope of the subprogram with the default parameter.
3785
3786 -- For default expressions in generic units, the Move_Freeze_Nodes
3787 -- mechanism (see sem_ch12.adb) takes care of placing them at the
3788 -- proper place, after the generic unit.
3789
3790 if (In_Def_Exp and not Inside_A_Generic)
3791 or else Freeze_Outside
3792 or else (Is_Type (Current_Scope)
3793 and then (not Is_Concurrent_Type (Current_Scope)
3794 or else not Has_Completion (Current_Scope)))
3795 or else Ekind (Current_Scope) = E_Void
3796 then
3797 declare
3798 Loc : constant Source_Ptr := Sloc (Current_Scope);
3799 Freeze_Nodes : List_Id := No_List;
c6823a20 3800 Pos : Int := Scope_Stack.Last;
70482933
RK
3801
3802 begin
3803 if Present (Desig_Typ) then
3804 Freeze_And_Append (Desig_Typ, Loc, Freeze_Nodes);
3805 end if;
3806
3807 if Present (Typ) then
3808 Freeze_And_Append (Typ, Loc, Freeze_Nodes);
3809 end if;
3810
3811 if Present (Nam) then
3812 Freeze_And_Append (Nam, Loc, Freeze_Nodes);
3813 end if;
3814
c6823a20
EB
3815 -- The current scope may be that of a constrained component of
3816 -- an enclosing record declaration, which is above the current
3817 -- scope in the scope stack.
3818
3819 if Is_Record_Type (Scope (Current_Scope)) then
3820 Pos := Pos - 1;
3821 end if;
3822
70482933 3823 if Is_Non_Empty_List (Freeze_Nodes) then
c6823a20
EB
3824 if No (Scope_Stack.Table (Pos).Pending_Freeze_Actions) then
3825 Scope_Stack.Table (Pos).Pending_Freeze_Actions :=
70482933
RK
3826 Freeze_Nodes;
3827 else
3828 Append_List (Freeze_Nodes, Scope_Stack.Table
c6823a20 3829 (Pos).Pending_Freeze_Actions);
70482933
RK
3830 end if;
3831 end if;
3832 end;
3833
3834 return;
3835 end if;
3836
3837 -- Now we have the right place to do the freezing. First, a special
3838 -- adjustment, if we are in default expression analysis mode, these
3839 -- freeze actions must not be thrown away (normally all inserted
3840 -- actions are thrown away in this mode. However, the freeze actions
3841 -- are from static expressions and one of the important reasons we
3842 -- are doing this special analysis is to get these freeze actions.
3843 -- Therefore we turn off the In_Default_Expression mode to propagate
3844 -- these freeze actions. This also means they get properly analyzed
3845 -- and expanded.
3846
3847 In_Default_Expression := False;
3848
fbf5a39b 3849 -- Freeze the designated type of an allocator (RM 13.14(13))
70482933
RK
3850
3851 if Present (Desig_Typ) then
3852 Freeze_Before (P, Desig_Typ);
3853 end if;
3854
fbf5a39b 3855 -- Freeze type of expression (RM 13.14(10)). Note that we took care of
70482933
RK
3856 -- the enumeration representation clause exception in the loop above.
3857
3858 if Present (Typ) then
3859 Freeze_Before (P, Typ);
3860 end if;
3861
fbf5a39b 3862 -- Freeze name if one is present (RM 13.14(11))
70482933
RK
3863
3864 if Present (Nam) then
3865 Freeze_Before (P, Nam);
3866 end if;
3867
3868 In_Default_Expression := In_Def_Exp;
3869 end Freeze_Expression;
3870
3871 -----------------------------
3872 -- Freeze_Fixed_Point_Type --
3873 -----------------------------
3874
edd63e9b
ES
3875 -- Certain fixed-point types and subtypes, including implicit base types
3876 -- and declared first subtypes, have not yet set up a range. This is
3877 -- because the range cannot be set until the Small and Size values are
3878 -- known, and these are not known till the type is frozen.
70482933 3879
edd63e9b
ES
3880 -- To signal this case, Scalar_Range contains an unanalyzed syntactic range
3881 -- whose bounds are unanalyzed real literals. This routine will recognize
3882 -- this case, and transform this range node into a properly typed range
3883 -- with properly analyzed and resolved values.
70482933
RK
3884
3885 procedure Freeze_Fixed_Point_Type (Typ : Entity_Id) is
3886 Rng : constant Node_Id := Scalar_Range (Typ);
3887 Lo : constant Node_Id := Low_Bound (Rng);
3888 Hi : constant Node_Id := High_Bound (Rng);
3889 Btyp : constant Entity_Id := Base_Type (Typ);
3890 Brng : constant Node_Id := Scalar_Range (Btyp);
3891 BLo : constant Node_Id := Low_Bound (Brng);
3892 BHi : constant Node_Id := High_Bound (Brng);
3893 Small : constant Ureal := Small_Value (Typ);
3894 Loval : Ureal;
3895 Hival : Ureal;
3896 Atype : Entity_Id;
3897
3898 Actual_Size : Nat;
3899
3900 function Fsize (Lov, Hiv : Ureal) return Nat;
3901 -- Returns size of type with given bounds. Also leaves these
3902 -- bounds set as the current bounds of the Typ.
3903
0da2c8ac
AC
3904 -----------
3905 -- Fsize --
3906 -----------
3907
70482933
RK
3908 function Fsize (Lov, Hiv : Ureal) return Nat is
3909 begin
3910 Set_Realval (Lo, Lov);
3911 Set_Realval (Hi, Hiv);
3912 return Minimum_Size (Typ);
3913 end Fsize;
3914
0da2c8ac 3915 -- Start of processing for Freeze_Fixed_Point_Type
70482933
RK
3916
3917 begin
3918 -- If Esize of a subtype has not previously been set, set it now
3919
3920 if Unknown_Esize (Typ) then
3921 Atype := Ancestor_Subtype (Typ);
3922
3923 if Present (Atype) then
fbf5a39b 3924 Set_Esize (Typ, Esize (Atype));
70482933 3925 else
fbf5a39b 3926 Set_Esize (Typ, Esize (Base_Type (Typ)));
70482933
RK
3927 end if;
3928 end if;
3929
3930 -- Immediate return if the range is already analyzed. This means
3931 -- that the range is already set, and does not need to be computed
3932 -- by this routine.
3933
3934 if Analyzed (Rng) then
3935 return;
3936 end if;
3937
3938 -- Immediate return if either of the bounds raises Constraint_Error
3939
3940 if Raises_Constraint_Error (Lo)
3941 or else Raises_Constraint_Error (Hi)
3942 then
3943 return;
3944 end if;
3945
3946 Loval := Realval (Lo);
3947 Hival := Realval (Hi);
3948
3949 -- Ordinary fixed-point case
3950
3951 if Is_Ordinary_Fixed_Point_Type (Typ) then
3952
3953 -- For the ordinary fixed-point case, we are allowed to fudge the
3954 -- end-points up or down by small. Generally we prefer to fudge
3955 -- up, i.e. widen the bounds for non-model numbers so that the
3956 -- end points are included. However there are cases in which this
3957 -- cannot be done, and indeed cases in which we may need to narrow
3958 -- the bounds. The following circuit makes the decision.
3959
3960 -- Note: our terminology here is that Incl_EP means that the
3961 -- bounds are widened by Small if necessary to include the end
3962 -- points, and Excl_EP means that the bounds are narrowed by
3963 -- Small to exclude the end-points if this reduces the size.
3964
3965 -- Note that in the Incl case, all we care about is including the
3966 -- end-points. In the Excl case, we want to narrow the bounds as
3967 -- much as permitted by the RM, to give the smallest possible size.
3968
3969 Fudge : declare
3970 Loval_Incl_EP : Ureal;
3971 Hival_Incl_EP : Ureal;
3972
3973 Loval_Excl_EP : Ureal;
3974 Hival_Excl_EP : Ureal;
3975
3976 Size_Incl_EP : Nat;
3977 Size_Excl_EP : Nat;
3978
3979 Model_Num : Ureal;
3980 First_Subt : Entity_Id;
3981 Actual_Lo : Ureal;
3982 Actual_Hi : Ureal;
3983
3984 begin
3985 -- First step. Base types are required to be symmetrical. Right
3986 -- now, the base type range is a copy of the first subtype range.
3987 -- This will be corrected before we are done, but right away we
3988 -- need to deal with the case where both bounds are non-negative.
3989 -- In this case, we set the low bound to the negative of the high
3990 -- bound, to make sure that the size is computed to include the
3991 -- required sign. Note that we do not need to worry about the
3992 -- case of both bounds negative, because the sign will be dealt
3993 -- with anyway. Furthermore we can't just go making such a bound
3994 -- symmetrical, since in a twos-complement system, there is an
3995 -- extra negative value which could not be accomodated on the
3996 -- positive side.
3997
3998 if Typ = Btyp
3999 and then not UR_Is_Negative (Loval)
4000 and then Hival > Loval
4001 then
4002 Loval := -Hival;
4003 Set_Realval (Lo, Loval);
4004 end if;
4005
4006 -- Compute the fudged bounds. If the number is a model number,
edd63e9b
ES
4007 -- then we do nothing to include it, but we are allowed to backoff
4008 -- to the next adjacent model number when we exclude it. If it is
4009 -- not a model number then we straddle the two values with the
4010 -- model numbers on either side.
70482933
RK
4011
4012 Model_Num := UR_Trunc (Loval / Small) * Small;
4013
4014 if Loval = Model_Num then
4015 Loval_Incl_EP := Model_Num;
4016 else
4017 Loval_Incl_EP := Model_Num - Small;
4018 end if;
4019
4020 -- The low value excluding the end point is Small greater, but
4021 -- we do not do this exclusion if the low value is positive,
4022 -- since it can't help the size and could actually hurt by
4023 -- crossing the high bound.
4024
4025 if UR_Is_Negative (Loval_Incl_EP) then
4026 Loval_Excl_EP := Loval_Incl_EP + Small;
4027 else
4028 Loval_Excl_EP := Loval_Incl_EP;
4029 end if;
4030
4031 -- Similar processing for upper bound and high value
4032
4033 Model_Num := UR_Trunc (Hival / Small) * Small;
4034
4035 if Hival = Model_Num then
4036 Hival_Incl_EP := Model_Num;
4037 else
4038 Hival_Incl_EP := Model_Num + Small;
4039 end if;
4040
4041 if UR_Is_Positive (Hival_Incl_EP) then
4042 Hival_Excl_EP := Hival_Incl_EP - Small;
4043 else
4044 Hival_Excl_EP := Hival_Incl_EP;
4045 end if;
4046
4047 -- One further adjustment is needed. In the case of subtypes,
4048 -- we cannot go outside the range of the base type, or we get
4049 -- peculiarities, and the base type range is already set. This
4050 -- only applies to the Incl values, since clearly the Excl
4051 -- values are already as restricted as they are allowed to be.
4052
4053 if Typ /= Btyp then
4054 Loval_Incl_EP := UR_Max (Loval_Incl_EP, Realval (BLo));
4055 Hival_Incl_EP := UR_Min (Hival_Incl_EP, Realval (BHi));
4056 end if;
4057
4058 -- Get size including and excluding end points
4059
4060 Size_Incl_EP := Fsize (Loval_Incl_EP, Hival_Incl_EP);
4061 Size_Excl_EP := Fsize (Loval_Excl_EP, Hival_Excl_EP);
4062
4063 -- No need to exclude end-points if it does not reduce size
4064
4065 if Fsize (Loval_Incl_EP, Hival_Excl_EP) = Size_Excl_EP then
4066 Loval_Excl_EP := Loval_Incl_EP;
4067 end if;
4068
4069 if Fsize (Loval_Excl_EP, Hival_Incl_EP) = Size_Excl_EP then
4070 Hival_Excl_EP := Hival_Incl_EP;
4071 end if;
4072
4073 -- Now we set the actual size to be used. We want to use the
4074 -- bounds fudged up to include the end-points but only if this
4075 -- can be done without violating a specifically given size
4076 -- size clause or causing an unacceptable increase in size.
4077
4078 -- Case of size clause given
4079
4080 if Has_Size_Clause (Typ) then
4081
4082 -- Use the inclusive size only if it is consistent with
4083 -- the explicitly specified size.
4084
4085 if Size_Incl_EP <= RM_Size (Typ) then
4086 Actual_Lo := Loval_Incl_EP;
4087 Actual_Hi := Hival_Incl_EP;
4088 Actual_Size := Size_Incl_EP;
4089
4090 -- If the inclusive size is too large, we try excluding
4091 -- the end-points (will be caught later if does not work).
4092
4093 else
4094 Actual_Lo := Loval_Excl_EP;
4095 Actual_Hi := Hival_Excl_EP;
4096 Actual_Size := Size_Excl_EP;
4097 end if;
4098
4099 -- Case of size clause not given
4100
4101 else
4102 -- If we have a base type whose corresponding first subtype
4103 -- has an explicit size that is large enough to include our
4104 -- end-points, then do so. There is no point in working hard
4105 -- to get a base type whose size is smaller than the specified
4106 -- size of the first subtype.
4107
4108 First_Subt := First_Subtype (Typ);
4109
4110 if Has_Size_Clause (First_Subt)
4111 and then Size_Incl_EP <= Esize (First_Subt)
4112 then
4113 Actual_Size := Size_Incl_EP;
4114 Actual_Lo := Loval_Incl_EP;
4115 Actual_Hi := Hival_Incl_EP;
4116
4117 -- If excluding the end-points makes the size smaller and
4118 -- results in a size of 8,16,32,64, then we take the smaller
4119 -- size. For the 64 case, this is compulsory. For the other
4120 -- cases, it seems reasonable. We like to include end points
4121 -- if we can, but not at the expense of moving to the next
4122 -- natural boundary of size.
4123
4124 elsif Size_Incl_EP /= Size_Excl_EP
4125 and then
4126 (Size_Excl_EP = 8 or else
4127 Size_Excl_EP = 16 or else
4128 Size_Excl_EP = 32 or else
4129 Size_Excl_EP = 64)
4130 then
4131 Actual_Size := Size_Excl_EP;
4132 Actual_Lo := Loval_Excl_EP;
4133 Actual_Hi := Hival_Excl_EP;
4134
4135 -- Otherwise we can definitely include the end points
4136
4137 else
4138 Actual_Size := Size_Incl_EP;
4139 Actual_Lo := Loval_Incl_EP;
4140 Actual_Hi := Hival_Incl_EP;
4141 end if;
4142
edd63e9b
ES
4143 -- One pathological case: normally we never fudge a low bound
4144 -- down, since it would seem to increase the size (if it has
4145 -- any effect), but for ranges containing single value, or no
4146 -- values, the high bound can be small too large. Consider:
70482933
RK
4147
4148 -- type t is delta 2.0**(-14)
4149 -- range 131072.0 .. 0;
4150
edd63e9b
ES
4151 -- That lower bound is *just* outside the range of 32 bits, and
4152 -- does need fudging down in this case. Note that the bounds
4153 -- will always have crossed here, since the high bound will be
4154 -- fudged down if necessary, as in the case of:
70482933
RK
4155
4156 -- type t is delta 2.0**(-14)
4157 -- range 131072.0 .. 131072.0;
4158
edd63e9b
ES
4159 -- So we detect the situation by looking for crossed bounds,
4160 -- and if the bounds are crossed, and the low bound is greater
4161 -- than zero, we will always back it off by small, since this
4162 -- is completely harmless.
70482933
RK
4163
4164 if Actual_Lo > Actual_Hi then
4165 if UR_Is_Positive (Actual_Lo) then
4166 Actual_Lo := Loval_Incl_EP - Small;
4167 Actual_Size := Fsize (Actual_Lo, Actual_Hi);
4168
4169 -- And of course, we need to do exactly the same parallel
4170 -- fudge for flat ranges in the negative region.
4171
4172 elsif UR_Is_Negative (Actual_Hi) then
4173 Actual_Hi := Hival_Incl_EP + Small;
4174 Actual_Size := Fsize (Actual_Lo, Actual_Hi);
4175 end if;
4176 end if;
4177 end if;
4178
4179 Set_Realval (Lo, Actual_Lo);
4180 Set_Realval (Hi, Actual_Hi);
4181 end Fudge;
4182
4183 -- For the decimal case, none of this fudging is required, since there
4184 -- are no end-point problems in the decimal case (the end-points are
4185 -- always included).
4186
4187 else
4188 Actual_Size := Fsize (Loval, Hival);
4189 end if;
4190
4191 -- At this stage, the actual size has been calculated and the proper
4192 -- required bounds are stored in the low and high bounds.
4193
4194 if Actual_Size > 64 then
4195 Error_Msg_Uint_1 := UI_From_Int (Actual_Size);
4196 Error_Msg_N
4197 ("size required (^) for type& too large, maximum is 64", Typ);
4198 Actual_Size := 64;
4199 end if;
4200
4201 -- Check size against explicit given size
4202
4203 if Has_Size_Clause (Typ) then
4204 if Actual_Size > RM_Size (Typ) then
4205 Error_Msg_Uint_1 := RM_Size (Typ);
4206 Error_Msg_Uint_2 := UI_From_Int (Actual_Size);
4207 Error_Msg_NE
4208 ("size given (^) for type& too small, minimum is ^",
4209 Size_Clause (Typ), Typ);
4210
4211 else
4212 Actual_Size := UI_To_Int (Esize (Typ));
4213 end if;
4214
4215 -- Increase size to next natural boundary if no size clause given
4216
4217 else
4218 if Actual_Size <= 8 then
4219 Actual_Size := 8;
4220 elsif Actual_Size <= 16 then
4221 Actual_Size := 16;
4222 elsif Actual_Size <= 32 then
4223 Actual_Size := 32;
4224 else
4225 Actual_Size := 64;
4226 end if;
4227
4228 Init_Esize (Typ, Actual_Size);
4229 Adjust_Esize_For_Alignment (Typ);
4230 end if;
4231
edd63e9b
ES
4232 -- If we have a base type, then expand the bounds so that they extend to
4233 -- the full width of the allocated size in bits, to avoid junk range
4234 -- checks on intermediate computations.
70482933
RK
4235
4236 if Base_Type (Typ) = Typ then
4237 Set_Realval (Lo, -(Small * (Uint_2 ** (Actual_Size - 1))));
4238 Set_Realval (Hi, (Small * (Uint_2 ** (Actual_Size - 1) - 1)));
4239 end if;
4240
4241 -- Final step is to reanalyze the bounds using the proper type
4242 -- and set the Corresponding_Integer_Value fields of the literals.
4243
4244 Set_Etype (Lo, Empty);
4245 Set_Analyzed (Lo, False);
4246 Analyze (Lo);
4247
edd63e9b
ES
4248 -- Resolve with universal fixed if the base type, and the base type if
4249 -- it is a subtype. Note we can't resolve the base type with itself,
4250 -- that would be a reference before definition.
70482933
RK
4251
4252 if Typ = Btyp then
4253 Resolve (Lo, Universal_Fixed);
4254 else
4255 Resolve (Lo, Btyp);
4256 end if;
4257
4258 -- Set corresponding integer value for bound
4259
4260 Set_Corresponding_Integer_Value
4261 (Lo, UR_To_Uint (Realval (Lo) / Small));
4262
4263 -- Similar processing for high bound
4264
4265 Set_Etype (Hi, Empty);
4266 Set_Analyzed (Hi, False);
4267 Analyze (Hi);
4268
4269 if Typ = Btyp then
4270 Resolve (Hi, Universal_Fixed);
4271 else
4272 Resolve (Hi, Btyp);
4273 end if;
4274
4275 Set_Corresponding_Integer_Value
4276 (Hi, UR_To_Uint (Realval (Hi) / Small));
4277
4278 -- Set type of range to correspond to bounds
4279
4280 Set_Etype (Rng, Etype (Lo));
4281
fbf5a39b 4282 -- Set Esize to calculated size if not set already
70482933 4283
fbf5a39b
AC
4284 if Unknown_Esize (Typ) then
4285 Init_Esize (Typ, Actual_Size);
4286 end if;
70482933
RK
4287
4288 -- Set RM_Size if not already set. If already set, check value
4289
4290 declare
4291 Minsiz : constant Uint := UI_From_Int (Minimum_Size (Typ));
4292
4293 begin
4294 if RM_Size (Typ) /= Uint_0 then
4295 if RM_Size (Typ) < Minsiz then
4296 Error_Msg_Uint_1 := RM_Size (Typ);
4297 Error_Msg_Uint_2 := Minsiz;
4298 Error_Msg_NE
4299 ("size given (^) for type& too small, minimum is ^",
4300 Size_Clause (Typ), Typ);
4301 end if;
4302
4303 else
4304 Set_RM_Size (Typ, Minsiz);
4305 end if;
4306 end;
70482933
RK
4307 end Freeze_Fixed_Point_Type;
4308
4309 ------------------
4310 -- Freeze_Itype --
4311 ------------------
4312
4313 procedure Freeze_Itype (T : Entity_Id; N : Node_Id) is
4314 L : List_Id;
4315
4316 begin
4317 Set_Has_Delayed_Freeze (T);
4318 L := Freeze_Entity (T, Sloc (N));
4319
4320 if Is_Non_Empty_List (L) then
4321 Insert_Actions (N, L);
4322 end if;
4323 end Freeze_Itype;
4324
4325 --------------------------
4326 -- Freeze_Static_Object --
4327 --------------------------
4328
4329 procedure Freeze_Static_Object (E : Entity_Id) is
4330
4331 Cannot_Be_Static : exception;
4332 -- Exception raised if the type of a static object cannot be made
4333 -- static. This happens if the type depends on non-global objects.
4334
4335 procedure Ensure_Expression_Is_SA (N : Node_Id);
4336 -- Called to ensure that an expression used as part of a type
4337 -- definition is statically allocatable, which means that the type
4338 -- of the expression is statically allocatable, and the expression
4339 -- is either static, or a reference to a library level constant.
4340
4341 procedure Ensure_Type_Is_SA (Typ : Entity_Id);
4342 -- Called to mark a type as static, checking that it is possible
4343 -- to set the type as static. If it is not possible, then the
4344 -- exception Cannot_Be_Static is raised.
4345
4346 -----------------------------
4347 -- Ensure_Expression_Is_SA --
4348 -----------------------------
4349
4350 procedure Ensure_Expression_Is_SA (N : Node_Id) is
4351 Ent : Entity_Id;
4352
4353 begin
4354 Ensure_Type_Is_SA (Etype (N));
4355
4356 if Is_Static_Expression (N) then
4357 return;
4358
4359 elsif Nkind (N) = N_Identifier then
4360 Ent := Entity (N);
4361
4362 if Present (Ent)
4363 and then Ekind (Ent) = E_Constant
4364 and then Is_Library_Level_Entity (Ent)
4365 then
4366 return;
4367 end if;
4368 end if;
4369
4370 raise Cannot_Be_Static;
4371 end Ensure_Expression_Is_SA;
4372
4373 -----------------------
4374 -- Ensure_Type_Is_SA --
4375 -----------------------
4376
4377 procedure Ensure_Type_Is_SA (Typ : Entity_Id) is
4378 N : Node_Id;
4379 C : Entity_Id;
4380
4381 begin
4382 -- If type is library level, we are all set
4383
4384 if Is_Library_Level_Entity (Typ) then
4385 return;
4386 end if;
4387
4388 -- We are also OK if the type is already marked as statically
4389 -- allocated, which means we processed it before.
4390
4391 if Is_Statically_Allocated (Typ) then
4392 return;
4393 end if;
4394
4395 -- Mark type as statically allocated
4396
4397 Set_Is_Statically_Allocated (Typ);
4398
4399 -- Check that it is safe to statically allocate this type
4400
4401 if Is_Scalar_Type (Typ) or else Is_Real_Type (Typ) then
4402 Ensure_Expression_Is_SA (Type_Low_Bound (Typ));
4403 Ensure_Expression_Is_SA (Type_High_Bound (Typ));
4404
4405 elsif Is_Array_Type (Typ) then
4406 N := First_Index (Typ);
4407 while Present (N) loop
4408 Ensure_Type_Is_SA (Etype (N));
4409 Next_Index (N);
4410 end loop;
4411
4412 Ensure_Type_Is_SA (Component_Type (Typ));
4413
4414 elsif Is_Access_Type (Typ) then
4415 if Ekind (Designated_Type (Typ)) = E_Subprogram_Type then
4416
4417 declare
4418 F : Entity_Id;
4419 T : constant Entity_Id := Etype (Designated_Type (Typ));
4420
4421 begin
4422 if T /= Standard_Void_Type then
4423 Ensure_Type_Is_SA (T);
4424 end if;
4425
4426 F := First_Formal (Designated_Type (Typ));
4427
4428 while Present (F) loop
4429 Ensure_Type_Is_SA (Etype (F));
4430 Next_Formal (F);
4431 end loop;
4432 end;
4433
4434 else
4435 Ensure_Type_Is_SA (Designated_Type (Typ));
4436 end if;
4437
4438 elsif Is_Record_Type (Typ) then
4439 C := First_Entity (Typ);
4440
4441 while Present (C) loop
4442 if Ekind (C) = E_Discriminant
4443 or else Ekind (C) = E_Component
4444 then
4445 Ensure_Type_Is_SA (Etype (C));
4446
4447 elsif Is_Type (C) then
4448 Ensure_Type_Is_SA (C);
4449 end if;
4450
4451 Next_Entity (C);
4452 end loop;
4453
4454 elsif Ekind (Typ) = E_Subprogram_Type then
4455 Ensure_Type_Is_SA (Etype (Typ));
4456
4457 C := First_Formal (Typ);
4458 while Present (C) loop
4459 Ensure_Type_Is_SA (Etype (C));
4460 Next_Formal (C);
4461 end loop;
4462
4463 else
4464 raise Cannot_Be_Static;
4465 end if;
4466 end Ensure_Type_Is_SA;
4467
4468 -- Start of processing for Freeze_Static_Object
4469
4470 begin
4471 Ensure_Type_Is_SA (Etype (E));
4472
edd63e9b
ES
4473 -- Reset True_Constant flag, since something strange is going on with
4474 -- the scoping here, and our simple value tracing may not be sufficient
4475 -- for this indication to be reliable. We kill the Constant_Value
4476 -- indication for the same reason.
fbf5a39b
AC
4477
4478 Set_Is_True_Constant (E, False);
4479 Set_Current_Value (E, Empty);
4480
70482933
RK
4481 exception
4482 when Cannot_Be_Static =>
4483
4484 -- If the object that cannot be static is imported or exported,
4485 -- then we give an error message saying that this object cannot
4486 -- be imported or exported.
4487
4488 if Is_Imported (E) then
4489 Error_Msg_N
4490 ("& cannot be imported (local type is not constant)", E);
4491
4492 -- Otherwise must be exported, something is wrong if compiler
4493 -- is marking something as statically allocated which cannot be).
4494
4495 else pragma Assert (Is_Exported (E));
4496 Error_Msg_N
4497 ("& cannot be exported (local type is not constant)", E);
4498 end if;
4499 end Freeze_Static_Object;
4500
4501 -----------------------
4502 -- Freeze_Subprogram --
4503 -----------------------
4504
4505 procedure Freeze_Subprogram (E : Entity_Id) is
4506 Retype : Entity_Id;
4507 F : Entity_Id;
4508
4509 begin
4510 -- Subprogram may not have an address clause unless it is imported
4511
4512 if Present (Address_Clause (E)) then
4513 if not Is_Imported (E) then
4514 Error_Msg_N
4515 ("address clause can only be given " &
4516 "for imported subprogram",
4517 Name (Address_Clause (E)));
4518 end if;
4519 end if;
4520
91b1417d
AC
4521 -- Reset the Pure indication on an imported subprogram unless an
4522 -- explicit Pure_Function pragma was present. We do this because
4523 -- otherwise it is an insidious error to call a non-pure function
edd63e9b
ES
4524 -- from pure unit and have calls mysteriously optimized away. What
4525 -- happens here is that the Import can bypass the normal check to
4526 -- ensure that pure units call only pure subprograms.
91b1417d
AC
4527
4528 if Is_Imported (E)
4529 and then Is_Pure (E)
4530 and then not Has_Pragma_Pure_Function (E)
4531 then
4532 Set_Is_Pure (E, False);
4533 end if;
4534
70482933
RK
4535 -- For non-foreign convention subprograms, this is where we create
4536 -- the extra formals (for accessibility level and constrained bit
4537 -- information). We delay this till the freeze point precisely so
4538 -- that we know the convention!
4539
4540 if not Has_Foreign_Convention (E) then
4541 Create_Extra_Formals (E);
4542 Set_Mechanisms (E);
4543
4544 -- If this is convention Ada and a Valued_Procedure, that's odd
4545
4546 if Ekind (E) = E_Procedure
4547 and then Is_Valued_Procedure (E)
4548 and then Convention (E) = Convention_Ada
fbf5a39b 4549 and then Warn_On_Export_Import
70482933
RK
4550 then
4551 Error_Msg_N
4552 ("?Valued_Procedure has no effect for convention Ada", E);
4553 Set_Is_Valued_Procedure (E, False);
4554 end if;
4555
4556 -- Case of foreign convention
4557
4558 else
4559 Set_Mechanisms (E);
4560
fbf5a39b 4561 -- For foreign conventions, warn about return of an
70482933
RK
4562 -- unconstrained array.
4563
4564 -- Note: we *do* allow a return by descriptor for the VMS case,
4565 -- though here there is probably more to be done ???
4566
4567 if Ekind (E) = E_Function then
4568 Retype := Underlying_Type (Etype (E));
4569
4570 -- If no return type, probably some other error, e.g. a
4571 -- missing full declaration, so ignore.
4572
4573 if No (Retype) then
4574 null;
4575
4576 -- If the return type is generic, we have emitted a warning
edd63e9b
ES
4577 -- earlier on, and there is nothing else to check here. Specific
4578 -- instantiations may lead to erroneous behavior.
70482933
RK
4579
4580 elsif Is_Generic_Type (Etype (E)) then
4581 null;
4582
4583 elsif Is_Array_Type (Retype)
4584 and then not Is_Constrained (Retype)
4585 and then Mechanism (E) not in Descriptor_Codes
fbf5a39b 4586 and then Warn_On_Export_Import
70482933 4587 then
fbf5a39b
AC
4588 Error_Msg_N
4589 ("?foreign convention function& should not return " &
4590 "unconstrained array", E);
70482933
RK
4591 return;
4592 end if;
4593 end if;
4594
4595 -- If any of the formals for an exported foreign convention
edd63e9b
ES
4596 -- subprogram have defaults, then emit an appropriate warning since
4597 -- this is odd (default cannot be used from non-Ada code)
70482933
RK
4598
4599 if Is_Exported (E) then
4600 F := First_Formal (E);
4601 while Present (F) loop
fbf5a39b
AC
4602 if Warn_On_Export_Import
4603 and then Present (Default_Value (F))
4604 then
70482933
RK
4605 Error_Msg_N
4606 ("?parameter cannot be defaulted in non-Ada call",
4607 Default_Value (F));
4608 end if;
4609
4610 Next_Formal (F);
4611 end loop;
4612 end if;
4613 end if;
4614
4615 -- For VMS, descriptor mechanisms for parameters are allowed only
4616 -- for imported subprograms.
4617
4618 if OpenVMS_On_Target then
4619 if not Is_Imported (E) then
4620 F := First_Formal (E);
4621 while Present (F) loop
4622 if Mechanism (F) in Descriptor_Codes then
4623 Error_Msg_N
4624 ("descriptor mechanism for parameter not permitted", F);
4625 Error_Msg_N
4626 ("\can only be used for imported subprogram", F);
4627 end if;
4628
4629 Next_Formal (F);
4630 end loop;
4631 end if;
4632 end if;
edd63e9b
ES
4633
4634 -- Pragma Inline_Always is disallowed for dispatching subprograms
4635 -- because the address of such subprograms is saved in the dispatch
4636 -- table to support dispatching calls, and dispatching calls cannot
4637 -- be inlined. This is consistent with the restriction against using
4638 -- 'Access or 'Address on an Inline_Always subprogram.
4639
4640 if Is_Dispatching_Operation (E) and then Is_Always_Inlined (E) then
4641 Error_Msg_N
4642 ("pragma Inline_Always not allowed for dispatching subprograms", E);
4643 end if;
70482933
RK
4644 end Freeze_Subprogram;
4645
15ce9ca2
AC
4646 ----------------------
4647 -- Is_Fully_Defined --
4648 ----------------------
70482933 4649
70482933
RK
4650 function Is_Fully_Defined (T : Entity_Id) return Boolean is
4651 begin
4652 if Ekind (T) = E_Class_Wide_Type then
4653 return Is_Fully_Defined (Etype (T));
657a9dd9
AC
4654
4655 elsif Is_Array_Type (T) then
4656 return Is_Fully_Defined (Component_Type (T));
4657
4658 elsif Is_Record_Type (T)
4659 and not Is_Private_Type (T)
4660 then
657a9dd9
AC
4661 -- Verify that the record type has no components with
4662 -- private types without completion.
4663
4664 declare
4665 Comp : Entity_Id;
bde58e32 4666
657a9dd9
AC
4667 begin
4668 Comp := First_Component (T);
4669
4670 while Present (Comp) loop
4671 if not Is_Fully_Defined (Etype (Comp)) then
4672 return False;
4673 end if;
4674
4675 Next_Component (Comp);
4676 end loop;
4677 return True;
4678 end;
4679
4680 else return not Is_Private_Type (T)
4681 or else Present (Full_View (Base_Type (T)));
70482933
RK
4682 end if;
4683 end Is_Fully_Defined;
4684
4685 ---------------------------------
4686 -- Process_Default_Expressions --
4687 ---------------------------------
4688
4689 procedure Process_Default_Expressions
4690 (E : Entity_Id;
4691 After : in out Node_Id)
4692 is
4693 Loc : constant Source_Ptr := Sloc (E);
4694 Dbody : Node_Id;
4695 Formal : Node_Id;
4696 Dcopy : Node_Id;
4697 Dnam : Entity_Id;
4698
4699 begin
4700 Set_Default_Expressions_Processed (E);
4701
4702 -- A subprogram instance and its associated anonymous subprogram
4703 -- share their signature. The default expression functions are defined
4704 -- in the wrapper packages for the anonymous subprogram, and should
4705 -- not be generated again for the instance.
4706
4707 if Is_Generic_Instance (E)
4708 and then Present (Alias (E))
4709 and then Default_Expressions_Processed (Alias (E))
4710 then
4711 return;
4712 end if;
4713
4714 Formal := First_Formal (E);
4715
4716 while Present (Formal) loop
4717 if Present (Default_Value (Formal)) then
4718
4719 -- We work with a copy of the default expression because we
4720 -- do not want to disturb the original, since this would mess
4721 -- up the conformance checking.
4722
4723 Dcopy := New_Copy_Tree (Default_Value (Formal));
4724
4725 -- The analysis of the expression may generate insert actions,
4726 -- which of course must not be executed. We wrap those actions
4727 -- in a procedure that is not called, and later on eliminated.
4728 -- The following cases have no side-effects, and are analyzed
4729 -- directly.
4730
4731 if Nkind (Dcopy) = N_Identifier
4732 or else Nkind (Dcopy) = N_Expanded_Name
4733 or else Nkind (Dcopy) = N_Integer_Literal
4734 or else (Nkind (Dcopy) = N_Real_Literal
4735 and then not Vax_Float (Etype (Dcopy)))
4736 or else Nkind (Dcopy) = N_Character_Literal
4737 or else Nkind (Dcopy) = N_String_Literal
4738 or else Nkind (Dcopy) = N_Null
4739 or else (Nkind (Dcopy) = N_Attribute_Reference
4740 and then
4741 Attribute_Name (Dcopy) = Name_Null_Parameter)
70482933
RK
4742 then
4743
4744 -- If there is no default function, we must still do a full
4745 -- analyze call on the default value, to ensure that all
4746 -- error checks are performed, e.g. those associated with
4747 -- static evaluation. Note that this branch will always be
4748 -- taken if the analyzer is turned off (but we still need the
4749 -- error checks).
4750
4751 -- Note: the setting of parent here is to meet the requirement
4752 -- that we can only analyze the expression while attached to
4753 -- the tree. Really the requirement is that the parent chain
4754 -- be set, we don't actually need to be in the tree.
4755
4756 Set_Parent (Dcopy, Declaration_Node (Formal));
4757 Analyze (Dcopy);
4758
4759 -- Default expressions are resolved with their own type if the
4760 -- context is generic, to avoid anomalies with private types.
4761
4762 if Ekind (Scope (E)) = E_Generic_Package then
fbf5a39b 4763 Resolve (Dcopy);
70482933
RK
4764 else
4765 Resolve (Dcopy, Etype (Formal));
4766 end if;
4767
4768 -- If that resolved expression will raise constraint error,
4769 -- then flag the default value as raising constraint error.
4770 -- This allows a proper error message on the calls.
4771
4772 if Raises_Constraint_Error (Dcopy) then
4773 Set_Raises_Constraint_Error (Default_Value (Formal));
4774 end if;
4775
4776 -- If the default is a parameterless call, we use the name of
4777 -- the called function directly, and there is no body to build.
4778
4779 elsif Nkind (Dcopy) = N_Function_Call
4780 and then No (Parameter_Associations (Dcopy))
4781 then
4782 null;
4783
4784 -- Else construct and analyze the body of a wrapper procedure
4785 -- that contains an object declaration to hold the expression.
4786 -- Given that this is done only to complete the analysis, it
4787 -- simpler to build a procedure than a function which might
4788 -- involve secondary stack expansion.
4789
4790 else
4791 Dnam :=
4792 Make_Defining_Identifier (Loc, New_Internal_Name ('D'));
4793
4794 Dbody :=
4795 Make_Subprogram_Body (Loc,
4796 Specification =>
4797 Make_Procedure_Specification (Loc,
4798 Defining_Unit_Name => Dnam),
4799
4800 Declarations => New_List (
4801 Make_Object_Declaration (Loc,
4802 Defining_Identifier =>
4803 Make_Defining_Identifier (Loc,
4804 New_Internal_Name ('T')),
4805 Object_Definition =>
4806 New_Occurrence_Of (Etype (Formal), Loc),
4807 Expression => New_Copy_Tree (Dcopy))),
4808
4809 Handled_Statement_Sequence =>
4810 Make_Handled_Sequence_Of_Statements (Loc,
4811 Statements => New_List));
4812
4813 Set_Scope (Dnam, Scope (E));
4814 Set_Assignment_OK (First (Declarations (Dbody)));
4815 Set_Is_Eliminated (Dnam);
4816 Insert_After (After, Dbody);
4817 Analyze (Dbody);
4818 After := Dbody;
4819 end if;
4820 end if;
4821
4822 Next_Formal (Formal);
4823 end loop;
4824
4825 end Process_Default_Expressions;
4826
4827 ----------------------------------------
4828 -- Set_Component_Alignment_If_Not_Set --
4829 ----------------------------------------
4830
4831 procedure Set_Component_Alignment_If_Not_Set (Typ : Entity_Id) is
4832 begin
4833 -- Ignore if not base type, subtypes don't need anything
4834
4835 if Typ /= Base_Type (Typ) then
4836 return;
4837 end if;
4838
4839 -- Do not override existing representation
4840
4841 if Is_Packed (Typ) then
4842 return;
4843
4844 elsif Has_Specified_Layout (Typ) then
4845 return;
4846
4847 elsif Component_Alignment (Typ) /= Calign_Default then
4848 return;
4849
4850 else
4851 Set_Component_Alignment
4852 (Typ, Scope_Stack.Table
4853 (Scope_Stack.Last).Component_Alignment_Default);
4854 end if;
4855 end Set_Component_Alignment_If_Not_Set;
4856
4857 ---------------------------
4858 -- Set_Debug_Info_Needed --
4859 ---------------------------
4860
4861 procedure Set_Debug_Info_Needed (T : Entity_Id) is
4862 begin
4863 if No (T)
4864 or else Needs_Debug_Info (T)
4865 or else Debug_Info_Off (T)
4866 then
4867 return;
4868 else
4869 Set_Needs_Debug_Info (T);
4870 end if;
4871
4872 if Is_Object (T) then
4873 Set_Debug_Info_Needed (Etype (T));
4874
4875 elsif Is_Type (T) then
4876 Set_Debug_Info_Needed (Etype (T));
4877
4878 if Is_Record_Type (T) then
4879 declare
4880 Ent : Entity_Id := First_Entity (T);
4881 begin
4882 while Present (Ent) loop
4883 Set_Debug_Info_Needed (Ent);
4884 Next_Entity (Ent);
4885 end loop;
4886 end;
4887
4888 elsif Is_Array_Type (T) then
4889 Set_Debug_Info_Needed (Component_Type (T));
4890
4891 declare
4892 Indx : Node_Id := First_Index (T);
4893 begin
4894 while Present (Indx) loop
4895 Set_Debug_Info_Needed (Etype (Indx));
4896 Indx := Next_Index (Indx);
4897 end loop;
4898 end;
4899
4900 if Is_Packed (T) then
4901 Set_Debug_Info_Needed (Packed_Array_Type (T));
4902 end if;
4903
4904 elsif Is_Access_Type (T) then
4905 Set_Debug_Info_Needed (Directly_Designated_Type (T));
4906
4907 elsif Is_Private_Type (T) then
4908 Set_Debug_Info_Needed (Full_View (T));
4909
4910 elsif Is_Protected_Type (T) then
4911 Set_Debug_Info_Needed (Corresponding_Record_Type (T));
4912 end if;
4913 end if;
70482933
RK
4914 end Set_Debug_Info_Needed;
4915
c6823a20
EB
4916 ------------------
4917 -- Undelay_Type --
4918 ------------------
4919
4920 procedure Undelay_Type (T : Entity_Id) is
4921 begin
4922 Set_Has_Delayed_Freeze (T, False);
4923 Set_Freeze_Node (T, Empty);
4924
4925 -- Since we don't want T to have a Freeze_Node, we don't want its
4926 -- Full_View or Corresponding_Record_Type to have one either.
4927
4928 -- ??? Fundamentally, this whole handling is a kludge. What we really
4929 -- want is to be sure that for an Itype that's part of record R and is
4930 -- a subtype of type T, that it's frozen after the later of the freeze
4931 -- points of R and T. We have no way of doing that directly, so what we
4932 -- do is force most such Itypes to be frozen as part of freezing R via
4933 -- this procedure and only delay the ones that need to be delayed
4934 -- (mostly the designated types of access types that are defined as
4935 -- part of the record).
4936
4937 if Is_Private_Type (T)
4938 and then Present (Full_View (T))
4939 and then Is_Itype (Full_View (T))
4940 and then Is_Record_Type (Scope (Full_View (T)))
4941 then
4942 Undelay_Type (Full_View (T));
4943 end if;
4944
4945 if Is_Concurrent_Type (T)
4946 and then Present (Corresponding_Record_Type (T))
4947 and then Is_Itype (Corresponding_Record_Type (T))
4948 and then Is_Record_Type (Scope (Corresponding_Record_Type (T)))
4949 then
4950 Undelay_Type (Corresponding_Record_Type (T));
4951 end if;
4952 end Undelay_Type;
4953
fbf5a39b
AC
4954 ------------------
4955 -- Warn_Overlay --
4956 ------------------
4957
4958 procedure Warn_Overlay
4959 (Expr : Node_Id;
4960 Typ : Entity_Id;
4961 Nam : Entity_Id)
4962 is
4963 Ent : constant Entity_Id := Entity (Nam);
49e90211 4964 -- The object to which the address clause applies
fbf5a39b
AC
4965
4966 Init : Node_Id;
4967 Old : Entity_Id := Empty;
4968 Decl : Node_Id;
4969
4970 begin
4971 -- No warning if address clause overlay warnings are off
4972
4973 if not Address_Clause_Overlay_Warnings then
4974 return;
4975 end if;
4976
4977 -- No warning if there is an explicit initialization
4978
4979 Init := Original_Node (Expression (Declaration_Node (Ent)));
4980
4981 if Present (Init) and then Comes_From_Source (Init) then
4982 return;
4983 end if;
4984
edd63e9b
ES
4985 -- We only give the warning for non-imported entities of a type for
4986 -- which a non-null base init proc is defined (or for access types which
4987 -- have implicit null initialization).
fbf5a39b
AC
4988
4989 if Present (Expr)
4990 and then (Has_Non_Null_Base_Init_Proc (Typ)
4991 or else Is_Access_Type (Typ))
4992 and then not Is_Imported (Ent)
4993 then
4994 if Nkind (Expr) = N_Attribute_Reference
4995 and then Is_Entity_Name (Prefix (Expr))
4996 then
4997 Old := Entity (Prefix (Expr));
4998
4999 elsif Is_Entity_Name (Expr)
5000 and then Ekind (Entity (Expr)) = E_Constant
5001 then
5002 Decl := Declaration_Node (Entity (Expr));
5003
5004 if Nkind (Decl) = N_Object_Declaration
5005 and then Present (Expression (Decl))
5006 and then Nkind (Expression (Decl)) = N_Attribute_Reference
5007 and then Is_Entity_Name (Prefix (Expression (Decl)))
5008 then
5009 Old := Entity (Prefix (Expression (Decl)));
5010
5011 elsif Nkind (Expr) = N_Function_Call then
5012 return;
5013 end if;
5014
5015 -- A function call (most likely to To_Address) is probably not
5016 -- an overlay, so skip warning. Ditto if the function call was
5017 -- inlined and transformed into an entity.
5018
5019 elsif Nkind (Original_Node (Expr)) = N_Function_Call then
5020 return;
5021 end if;
5022
5023 Decl := Next (Parent (Expr));
5024
5025 -- If a pragma Import follows, we assume that it is for the current
5026 -- target of the address clause, and skip the warning.
5027
5028 if Present (Decl)
5029 and then Nkind (Decl) = N_Pragma
5030 and then Chars (Decl) = Name_Import
5031 then
5032 return;
5033 end if;
5034
5035 if Present (Old) then
5036 Error_Msg_Node_2 := Old;
5037 Error_Msg_N
5038 ("default initialization of & may modify &?",
5039 Nam);
5040 else
5041 Error_Msg_N
5042 ("default initialization of & may modify overlaid storage?",
5043 Nam);
5044 end if;
5045
5046 -- Add friendly warning if initialization comes from a packed array
5047 -- component.
5048
5049 if Is_Record_Type (Typ) then
5050 declare
5051 Comp : Entity_Id;
5052
5053 begin
5054 Comp := First_Component (Typ);
5055
5056 while Present (Comp) loop
5057 if Nkind (Parent (Comp)) = N_Component_Declaration
5058 and then Present (Expression (Parent (Comp)))
5059 then
5060 exit;
5061 elsif Is_Array_Type (Etype (Comp))
5062 and then Present (Packed_Array_Type (Etype (Comp)))
5063 then
5064 Error_Msg_NE
5065 ("packed array component& will be initialized to zero?",
5066 Nam, Comp);
5067 exit;
5068 else
5069 Next_Component (Comp);
5070 end if;
5071 end loop;
5072 end;
5073 end if;
5074
5075 Error_Msg_N
5076 ("use pragma Import for & to " &
5077 "suppress initialization ('R'M B.1(24))?",
5078 Nam);
5079 end if;
5080 end Warn_Overlay;
5081
70482933 5082end Freeze;
This page took 1.364738 seconds and 5 git commands to generate.