]> gcc.gnu.org Git - gcc.git/blame - gcc/ada/freeze.adb
[multiple changes]
[gcc.git] / gcc / ada / freeze.adb
CommitLineData
8dc10d38 1------------------------------------------------------------------------------
70482933
RK
2-- --
3-- GNAT COMPILER COMPONENTS --
4-- --
5-- F R E E Z E --
6-- --
7-- B o d y --
8-- --
748086b7 9-- Copyright (C) 1992-2009, Free Software Foundation, Inc. --
70482933
RK
10-- --
11-- GNAT is free software; you can redistribute it and/or modify it under --
12-- terms of the GNU General Public License as published by the Free Soft- --
748086b7 13-- ware Foundation; either version 3, or (at your option) any later ver- --
70482933
RK
14-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
748086b7
JJ
16-- or FITNESS FOR A PARTICULAR PURPOSE. --
17-- --
18-- You should have received a copy of the GNU General Public License along --
19-- with this program; see file COPYING3. If not see --
20-- <http://www.gnu.org/licenses/>. --
70482933
RK
21-- --
22-- GNAT was originally developed by the GNAT team at New York University. --
71ff80dc 23-- Extensive contributions were provided by Ada Core Technologies Inc. --
70482933
RK
24-- --
25------------------------------------------------------------------------------
26
27with Atree; use Atree;
28with Debug; use Debug;
29with Einfo; use Einfo;
30with Elists; use Elists;
31with Errout; use Errout;
1ce1f005 32with Exp_Ch3; use Exp_Ch3;
70482933 33with Exp_Ch7; use Exp_Ch7;
ce2b6ba5 34with Exp_Disp; use Exp_Disp;
70482933
RK
35with Exp_Pakd; use Exp_Pakd;
36with Exp_Util; use Exp_Util;
fbf5a39b 37with Exp_Tss; use Exp_Tss;
70482933 38with Layout; use Layout;
7d8b9c99 39with Namet; use Namet;
70482933
RK
40with Nlists; use Nlists;
41with Nmake; use Nmake;
42with Opt; use Opt;
43with Restrict; use Restrict;
6e937c1c 44with Rident; use Rident;
70482933 45with Sem; use Sem;
a4100e55 46with Sem_Aux; use Sem_Aux;
70482933
RK
47with Sem_Cat; use Sem_Cat;
48with Sem_Ch6; use Sem_Ch6;
49with Sem_Ch7; use Sem_Ch7;
50with Sem_Ch8; use Sem_Ch8;
51with Sem_Ch13; use Sem_Ch13;
52with Sem_Eval; use Sem_Eval;
53with Sem_Mech; use Sem_Mech;
54with Sem_Prag; use Sem_Prag;
55with Sem_Res; use Sem_Res;
56with Sem_Util; use Sem_Util;
57with Sinfo; use Sinfo;
58with Snames; use Snames;
59with Stand; use Stand;
60with Targparm; use Targparm;
61with Tbuild; use Tbuild;
62with Ttypes; use Ttypes;
63with Uintp; use Uintp;
64with Urealp; use Urealp;
65
66package body Freeze is
67
68 -----------------------
69 -- Local Subprograms --
70 -----------------------
71
72 procedure Adjust_Esize_For_Alignment (Typ : Entity_Id);
73 -- Typ is a type that is being frozen. If no size clause is given,
74 -- but a default Esize has been computed, then this default Esize is
75 -- adjusted up if necessary to be consistent with a given alignment,
76 -- but never to a value greater than Long_Long_Integer'Size. This
77 -- is used for all discrete types and for fixed-point types.
78
79 procedure Build_And_Analyze_Renamed_Body
80 (Decl : Node_Id;
81 New_S : Entity_Id;
82 After : in out Node_Id);
49e90211 83 -- Build body for a renaming declaration, insert in tree and analyze
70482933 84
fbf5a39b
AC
85 procedure Check_Address_Clause (E : Entity_Id);
86 -- Apply legality checks to address clauses for object declarations,
2c9beb8a 87 -- at the point the object is frozen.
fbf5a39b 88
70482933
RK
89 procedure Check_Strict_Alignment (E : Entity_Id);
90 -- E is a base type. If E is tagged or has a component that is aliased
91 -- or tagged or contains something this is aliased or tagged, set
92 -- Strict_Alignment.
93
94 procedure Check_Unsigned_Type (E : Entity_Id);
95 pragma Inline (Check_Unsigned_Type);
96 -- If E is a fixed-point or discrete type, then all the necessary work
97 -- to freeze it is completed except for possible setting of the flag
98 -- Is_Unsigned_Type, which is done by this procedure. The call has no
99 -- effect if the entity E is not a discrete or fixed-point type.
100
101 procedure Freeze_And_Append
102 (Ent : Entity_Id;
103 Loc : Source_Ptr;
104 Result : in out List_Id);
105 -- Freezes Ent using Freeze_Entity, and appends the resulting list of
106 -- nodes to Result, modifying Result from No_List if necessary.
107
108 procedure Freeze_Enumeration_Type (Typ : Entity_Id);
109 -- Freeze enumeration type. The Esize field is set as processing
110 -- proceeds (i.e. set by default when the type is declared and then
111 -- adjusted by rep clauses. What this procedure does is to make sure
112 -- that if a foreign convention is specified, and no specific size
113 -- is given, then the size must be at least Integer'Size.
114
70482933
RK
115 procedure Freeze_Static_Object (E : Entity_Id);
116 -- If an object is frozen which has Is_Statically_Allocated set, then
117 -- all referenced types must also be marked with this flag. This routine
118 -- is in charge of meeting this requirement for the object entity E.
119
120 procedure Freeze_Subprogram (E : Entity_Id);
121 -- Perform freezing actions for a subprogram (create extra formals,
122 -- and set proper default mechanism values). Note that this routine
123 -- is not called for internal subprograms, for which neither of these
124 -- actions is needed (or desirable, we do not want for example to have
125 -- these extra formals present in initialization procedures, where they
126 -- would serve no purpose). In this call E is either a subprogram or
127 -- a subprogram type (i.e. an access to a subprogram).
128
129 function Is_Fully_Defined (T : Entity_Id) return Boolean;
bde58e32 130 -- True if T is not private and has no private components, or has a full
657a9dd9
AC
131 -- view. Used to determine whether the designated type of an access type
132 -- should be frozen when the access type is frozen. This is done when an
133 -- allocator is frozen, or an expression that may involve attributes of
134 -- the designated type. Otherwise freezing the access type does not freeze
135 -- the designated type.
70482933
RK
136
137 procedure Process_Default_Expressions
138 (E : Entity_Id;
139 After : in out Node_Id);
140 -- This procedure is called for each subprogram to complete processing
141 -- of default expressions at the point where all types are known to be
142 -- frozen. The expressions must be analyzed in full, to make sure that
143 -- all error processing is done (they have only been pre-analyzed). If
144 -- the expression is not an entity or literal, its analysis may generate
145 -- code which must not be executed. In that case we build a function
146 -- body to hold that code. This wrapper function serves no other purpose
147 -- (it used to be called to evaluate the default, but now the default is
148 -- inlined at each point of call).
149
150 procedure Set_Component_Alignment_If_Not_Set (Typ : Entity_Id);
151 -- Typ is a record or array type that is being frozen. This routine
152 -- sets the default component alignment from the scope stack values
153 -- if the alignment is otherwise not specified.
154
155 procedure Check_Debug_Info_Needed (T : Entity_Id);
156 -- As each entity is frozen, this routine is called to deal with the
157 -- setting of Debug_Info_Needed for the entity. This flag is set if
158 -- the entity comes from source, or if we are in Debug_Generated_Code
159 -- mode or if the -gnatdV debug flag is set. However, it never sets
1b24ada5
RD
160 -- the flag if Debug_Info_Off is set. This procedure also ensures that
161 -- subsidiary entities have the flag set as required.
70482933 162
c6823a20
EB
163 procedure Undelay_Type (T : Entity_Id);
164 -- T is a type of a component that we know to be an Itype.
165 -- We don't want this to have a Freeze_Node, so ensure it doesn't.
166 -- Do the same for any Full_View or Corresponding_Record_Type.
167
fbf5a39b
AC
168 procedure Warn_Overlay
169 (Expr : Node_Id;
170 Typ : Entity_Id;
171 Nam : Node_Id);
172 -- Expr is the expression for an address clause for entity Nam whose type
173 -- is Typ. If Typ has a default initialization, and there is no explicit
174 -- initialization in the source declaration, check whether the address
175 -- clause might cause overlaying of an entity, and emit a warning on the
176 -- side effect that the initialization will cause.
177
70482933
RK
178 -------------------------------
179 -- Adjust_Esize_For_Alignment --
180 -------------------------------
181
182 procedure Adjust_Esize_For_Alignment (Typ : Entity_Id) is
183 Align : Uint;
184
185 begin
186 if Known_Esize (Typ) and then Known_Alignment (Typ) then
187 Align := Alignment_In_Bits (Typ);
188
189 if Align > Esize (Typ)
190 and then Align <= Standard_Long_Long_Integer_Size
191 then
192 Set_Esize (Typ, Align);
193 end if;
194 end if;
195 end Adjust_Esize_For_Alignment;
196
197 ------------------------------------
198 -- Build_And_Analyze_Renamed_Body --
199 ------------------------------------
200
201 procedure Build_And_Analyze_Renamed_Body
202 (Decl : Node_Id;
203 New_S : Entity_Id;
204 After : in out Node_Id)
205 is
206 Body_Node : constant Node_Id := Build_Renamed_Body (Decl, New_S);
70482933
RK
207 begin
208 Insert_After (After, Body_Node);
209 Mark_Rewrite_Insertion (Body_Node);
210 Analyze (Body_Node);
211 After := Body_Node;
212 end Build_And_Analyze_Renamed_Body;
213
214 ------------------------
215 -- Build_Renamed_Body --
216 ------------------------
217
218 function Build_Renamed_Body
219 (Decl : Node_Id;
fbf5a39b 220 New_S : Entity_Id) return Node_Id
70482933
RK
221 is
222 Loc : constant Source_Ptr := Sloc (New_S);
223 -- We use for the source location of the renamed body, the location
224 -- of the spec entity. It might seem more natural to use the location
225 -- of the renaming declaration itself, but that would be wrong, since
226 -- then the body we create would look as though it was created far
227 -- too late, and this could cause problems with elaboration order
228 -- analysis, particularly in connection with instantiations.
229
230 N : constant Node_Id := Unit_Declaration_Node (New_S);
231 Nam : constant Node_Id := Name (N);
232 Old_S : Entity_Id;
233 Spec : constant Node_Id := New_Copy_Tree (Specification (Decl));
234 Actuals : List_Id := No_List;
235 Call_Node : Node_Id;
236 Call_Name : Node_Id;
237 Body_Node : Node_Id;
238 Formal : Entity_Id;
239 O_Formal : Entity_Id;
240 Param_Spec : Node_Id;
241
def46b54
RD
242 Pref : Node_Id := Empty;
243 -- If the renamed entity is a primitive operation given in prefix form,
244 -- the prefix is the target object and it has to be added as the first
245 -- actual in the generated call.
246
70482933 247 begin
def46b54
RD
248 -- Determine the entity being renamed, which is the target of the call
249 -- statement. If the name is an explicit dereference, this is a renaming
250 -- of a subprogram type rather than a subprogram. The name itself is
251 -- fully analyzed.
70482933
RK
252
253 if Nkind (Nam) = N_Selected_Component then
254 Old_S := Entity (Selector_Name (Nam));
255
256 elsif Nkind (Nam) = N_Explicit_Dereference then
257 Old_S := Etype (Nam);
258
259 elsif Nkind (Nam) = N_Indexed_Component then
70482933
RK
260 if Is_Entity_Name (Prefix (Nam)) then
261 Old_S := Entity (Prefix (Nam));
262 else
263 Old_S := Entity (Selector_Name (Prefix (Nam)));
264 end if;
265
266 elsif Nkind (Nam) = N_Character_Literal then
267 Old_S := Etype (New_S);
268
269 else
270 Old_S := Entity (Nam);
271 end if;
272
273 if Is_Entity_Name (Nam) then
07fc65c4 274
def46b54
RD
275 -- If the renamed entity is a predefined operator, retain full name
276 -- to ensure its visibility.
07fc65c4
GB
277
278 if Ekind (Old_S) = E_Operator
279 and then Nkind (Nam) = N_Expanded_Name
280 then
281 Call_Name := New_Copy (Name (N));
282 else
283 Call_Name := New_Reference_To (Old_S, Loc);
284 end if;
285
70482933 286 else
def46b54
RD
287 if Nkind (Nam) = N_Selected_Component
288 and then Present (First_Formal (Old_S))
289 and then
290 (Is_Controlling_Formal (First_Formal (Old_S))
291 or else Is_Class_Wide_Type (Etype (First_Formal (Old_S))))
292 then
293
294 -- Retrieve the target object, to be added as a first actual
295 -- in the call.
296
297 Call_Name := New_Occurrence_Of (Old_S, Loc);
298 Pref := Prefix (Nam);
299
300 else
301 Call_Name := New_Copy (Name (N));
302 end if;
70482933
RK
303
304 -- The original name may have been overloaded, but
305 -- is fully resolved now.
306
307 Set_Is_Overloaded (Call_Name, False);
308 end if;
309
def46b54
RD
310 -- For simple renamings, subsequent calls can be expanded directly as
311 -- called to the renamed entity. The body must be generated in any case
312 -- for calls they may appear elsewhere.
70482933
RK
313
314 if (Ekind (Old_S) = E_Function
315 or else Ekind (Old_S) = E_Procedure)
316 and then Nkind (Decl) = N_Subprogram_Declaration
317 then
318 Set_Body_To_Inline (Decl, Old_S);
319 end if;
320
321 -- The body generated for this renaming is an internal artifact, and
322 -- does not constitute a freeze point for the called entity.
323
324 Set_Must_Not_Freeze (Call_Name);
325
326 Formal := First_Formal (Defining_Entity (Decl));
327
def46b54
RD
328 if Present (Pref) then
329 declare
330 Pref_Type : constant Entity_Id := Etype (Pref);
331 Form_Type : constant Entity_Id := Etype (First_Formal (Old_S));
332
333 begin
334
335 -- The controlling formal may be an access parameter, or the
e14c931f 336 -- actual may be an access value, so adjust accordingly.
def46b54
RD
337
338 if Is_Access_Type (Pref_Type)
339 and then not Is_Access_Type (Form_Type)
340 then
341 Actuals := New_List
342 (Make_Explicit_Dereference (Loc, Relocate_Node (Pref)));
343
344 elsif Is_Access_Type (Form_Type)
345 and then not Is_Access_Type (Pref)
346 then
347 Actuals := New_List
348 (Make_Attribute_Reference (Loc,
349 Attribute_Name => Name_Access,
350 Prefix => Relocate_Node (Pref)));
351 else
352 Actuals := New_List (Pref);
353 end if;
354 end;
355
356 elsif Present (Formal) then
70482933
RK
357 Actuals := New_List;
358
def46b54
RD
359 else
360 Actuals := No_List;
361 end if;
362
363 if Present (Formal) then
70482933
RK
364 while Present (Formal) loop
365 Append (New_Reference_To (Formal, Loc), Actuals);
366 Next_Formal (Formal);
367 end loop;
368 end if;
369
def46b54
RD
370 -- If the renamed entity is an entry, inherit its profile. For other
371 -- renamings as bodies, both profiles must be subtype conformant, so it
372 -- is not necessary to replace the profile given in the declaration.
373 -- However, default values that are aggregates are rewritten when
374 -- partially analyzed, so we recover the original aggregate to insure
375 -- that subsequent conformity checking works. Similarly, if the default
376 -- expression was constant-folded, recover the original expression.
70482933
RK
377
378 Formal := First_Formal (Defining_Entity (Decl));
379
380 if Present (Formal) then
381 O_Formal := First_Formal (Old_S);
382 Param_Spec := First (Parameter_Specifications (Spec));
383
384 while Present (Formal) loop
385 if Is_Entry (Old_S) then
386
387 if Nkind (Parameter_Type (Param_Spec)) /=
388 N_Access_Definition
389 then
390 Set_Etype (Formal, Etype (O_Formal));
391 Set_Entity (Parameter_Type (Param_Spec), Etype (O_Formal));
392 end if;
393
07fc65c4
GB
394 elsif Nkind (Default_Value (O_Formal)) = N_Aggregate
395 or else Nkind (Original_Node (Default_Value (O_Formal))) /=
396 Nkind (Default_Value (O_Formal))
397 then
70482933
RK
398 Set_Expression (Param_Spec,
399 New_Copy_Tree (Original_Node (Default_Value (O_Formal))));
400 end if;
401
402 Next_Formal (Formal);
403 Next_Formal (O_Formal);
404 Next (Param_Spec);
405 end loop;
406 end if;
407
408 -- If the renamed entity is a function, the generated body contains a
409 -- return statement. Otherwise, build a procedure call. If the entity is
410 -- an entry, subsequent analysis of the call will transform it into the
411 -- proper entry or protected operation call. If the renamed entity is
412 -- a character literal, return it directly.
413
414 if Ekind (Old_S) = E_Function
415 or else Ekind (Old_S) = E_Operator
416 or else (Ekind (Old_S) = E_Subprogram_Type
417 and then Etype (Old_S) /= Standard_Void_Type)
418 then
419 Call_Node :=
86cde7b1 420 Make_Simple_Return_Statement (Loc,
70482933
RK
421 Expression =>
422 Make_Function_Call (Loc,
423 Name => Call_Name,
424 Parameter_Associations => Actuals));
425
426 elsif Ekind (Old_S) = E_Enumeration_Literal then
427 Call_Node :=
86cde7b1 428 Make_Simple_Return_Statement (Loc,
70482933
RK
429 Expression => New_Occurrence_Of (Old_S, Loc));
430
431 elsif Nkind (Nam) = N_Character_Literal then
432 Call_Node :=
86cde7b1 433 Make_Simple_Return_Statement (Loc,
70482933
RK
434 Expression => Call_Name);
435
436 else
437 Call_Node :=
438 Make_Procedure_Call_Statement (Loc,
439 Name => Call_Name,
440 Parameter_Associations => Actuals);
441 end if;
442
49e90211 443 -- Create entities for subprogram body and formals
70482933
RK
444
445 Set_Defining_Unit_Name (Spec,
446 Make_Defining_Identifier (Loc, Chars => Chars (New_S)));
447
448 Param_Spec := First (Parameter_Specifications (Spec));
449
450 while Present (Param_Spec) loop
451 Set_Defining_Identifier (Param_Spec,
452 Make_Defining_Identifier (Loc,
453 Chars => Chars (Defining_Identifier (Param_Spec))));
454 Next (Param_Spec);
455 end loop;
456
457 Body_Node :=
458 Make_Subprogram_Body (Loc,
459 Specification => Spec,
460 Declarations => New_List,
461 Handled_Statement_Sequence =>
462 Make_Handled_Sequence_Of_Statements (Loc,
463 Statements => New_List (Call_Node)));
464
465 if Nkind (Decl) /= N_Subprogram_Declaration then
466 Rewrite (N,
467 Make_Subprogram_Declaration (Loc,
468 Specification => Specification (N)));
469 end if;
470
471 -- Link the body to the entity whose declaration it completes. If
def46b54
RD
472 -- the body is analyzed when the renamed entity is frozen, it may
473 -- be necessary to restore the proper scope (see package Exp_Ch13).
70482933
RK
474
475 if Nkind (N) = N_Subprogram_Renaming_Declaration
476 and then Present (Corresponding_Spec (N))
477 then
478 Set_Corresponding_Spec (Body_Node, Corresponding_Spec (N));
479 else
480 Set_Corresponding_Spec (Body_Node, New_S);
481 end if;
482
483 return Body_Node;
484 end Build_Renamed_Body;
485
fbf5a39b
AC
486 --------------------------
487 -- Check_Address_Clause --
488 --------------------------
489
490 procedure Check_Address_Clause (E : Entity_Id) is
491 Addr : constant Node_Id := Address_Clause (E);
492 Expr : Node_Id;
493 Decl : constant Node_Id := Declaration_Node (E);
494 Typ : constant Entity_Id := Etype (E);
495
496 begin
497 if Present (Addr) then
498 Expr := Expression (Addr);
499
def46b54
RD
500 -- If we have no initialization of any kind, then we don't need to
501 -- place any restrictions on the address clause, because the object
502 -- will be elaborated after the address clause is evaluated. This
503 -- happens if the declaration has no initial expression, or the type
504 -- has no implicit initialization, or the object is imported.
fbf5a39b 505
def46b54
RD
506 -- The same holds for all initialized scalar types and all access
507 -- types. Packed bit arrays of size up to 64 are represented using a
508 -- modular type with an initialization (to zero) and can be processed
509 -- like other initialized scalar types.
fbf5a39b
AC
510
511 -- If the type is controlled, code to attach the object to a
512 -- finalization chain is generated at the point of declaration,
513 -- and therefore the elaboration of the object cannot be delayed:
514 -- the address expression must be a constant.
515
516 if (No (Expression (Decl))
048e5cef 517 and then not Needs_Finalization (Typ)
fbf5a39b
AC
518 and then
519 (not Has_Non_Null_Base_Init_Proc (Typ)
520 or else Is_Imported (E)))
521
522 or else
523 (Present (Expression (Decl))
524 and then Is_Scalar_Type (Typ))
525
526 or else
527 Is_Access_Type (Typ)
528
529 or else
530 (Is_Bit_Packed_Array (Typ)
531 and then
532 Is_Modular_Integer_Type (Packed_Array_Type (Typ)))
533 then
534 null;
535
def46b54
RD
536 -- Otherwise, we require the address clause to be constant because
537 -- the call to the initialization procedure (or the attach code) has
538 -- to happen at the point of the declaration.
f3b57ab0
AC
539 -- Actually the IP call has been moved to the freeze actions
540 -- anyway, so maybe we can relax this restriction???
fbf5a39b
AC
541
542 else
543 Check_Constant_Address_Clause (Expr, E);
f3b57ab0
AC
544
545 -- Has_Delayed_Freeze was set on E when the address clause was
546 -- analyzed. Reset the flag now unless freeze actions were
547 -- attached to it in the mean time.
548
549 if No (Freeze_Node (E)) then
550 Set_Has_Delayed_Freeze (E, False);
551 end if;
fbf5a39b
AC
552 end if;
553
554 if not Error_Posted (Expr)
048e5cef 555 and then not Needs_Finalization (Typ)
fbf5a39b
AC
556 then
557 Warn_Overlay (Expr, Typ, Name (Addr));
558 end if;
559 end if;
560 end Check_Address_Clause;
561
70482933
RK
562 -----------------------------
563 -- Check_Compile_Time_Size --
564 -----------------------------
565
566 procedure Check_Compile_Time_Size (T : Entity_Id) is
567
c6823a20 568 procedure Set_Small_Size (T : Entity_Id; S : Uint);
70482933 569 -- Sets the compile time known size (32 bits or less) in the Esize
c6823a20 570 -- field, of T checking for a size clause that was given which attempts
70482933
RK
571 -- to give a smaller size.
572
573 function Size_Known (T : Entity_Id) return Boolean;
07fc65c4 574 -- Recursive function that does all the work
70482933
RK
575
576 function Static_Discriminated_Components (T : Entity_Id) return Boolean;
577 -- If T is a constrained subtype, its size is not known if any of its
578 -- discriminant constraints is not static and it is not a null record.
fbf5a39b 579 -- The test is conservative and doesn't check that the components are
70482933
RK
580 -- in fact constrained by non-static discriminant values. Could be made
581 -- more precise ???
582
583 --------------------
584 -- Set_Small_Size --
585 --------------------
586
c6823a20 587 procedure Set_Small_Size (T : Entity_Id; S : Uint) is
70482933
RK
588 begin
589 if S > 32 then
590 return;
591
592 elsif Has_Size_Clause (T) then
593 if RM_Size (T) < S then
594 Error_Msg_Uint_1 := S;
595 Error_Msg_NE
7d8b9c99 596 ("size for & too small, minimum allowed is ^",
70482933
RK
597 Size_Clause (T), T);
598
599 elsif Unknown_Esize (T) then
600 Set_Esize (T, S);
601 end if;
602
603 -- Set sizes if not set already
604
605 else
606 if Unknown_Esize (T) then
607 Set_Esize (T, S);
608 end if;
609
610 if Unknown_RM_Size (T) then
611 Set_RM_Size (T, S);
612 end if;
613 end if;
614 end Set_Small_Size;
615
616 ----------------
617 -- Size_Known --
618 ----------------
619
620 function Size_Known (T : Entity_Id) return Boolean is
621 Index : Entity_Id;
622 Comp : Entity_Id;
623 Ctyp : Entity_Id;
624 Low : Node_Id;
625 High : Node_Id;
626
627 begin
628 if Size_Known_At_Compile_Time (T) then
629 return True;
630
c6a9797e
RD
631 -- Always True for scalar types. This is true even for generic formal
632 -- scalar types. We used to return False in the latter case, but the
633 -- size is known at compile time, even in the template, we just do
634 -- not know the exact size but that's not the point of this routine.
635
70482933
RK
636 elsif Is_Scalar_Type (T)
637 or else Is_Task_Type (T)
638 then
c6a9797e
RD
639 return True;
640
641 -- Array types
70482933
RK
642
643 elsif Is_Array_Type (T) then
c6a9797e
RD
644
645 -- String literals always have known size, and we can set it
646
70482933 647 if Ekind (T) = E_String_Literal_Subtype then
c6823a20
EB
648 Set_Small_Size (T, Component_Size (T)
649 * String_Literal_Length (T));
70482933
RK
650 return True;
651
c6a9797e
RD
652 -- Unconstrained types never have known at compile time size
653
70482933
RK
654 elsif not Is_Constrained (T) then
655 return False;
656
def46b54
RD
657 -- Don't do any recursion on type with error posted, since we may
658 -- have a malformed type that leads us into a loop.
07fc65c4
GB
659
660 elsif Error_Posted (T) then
661 return False;
662
c6a9797e
RD
663 -- Otherwise if component size unknown, then array size unknown
664
70482933
RK
665 elsif not Size_Known (Component_Type (T)) then
666 return False;
667 end if;
668
def46b54
RD
669 -- Check for all indexes static, and also compute possible size
670 -- (in case it is less than 32 and may be packable).
70482933
RK
671
672 declare
673 Esiz : Uint := Component_Size (T);
674 Dim : Uint;
675
676 begin
677 Index := First_Index (T);
70482933
RK
678 while Present (Index) loop
679 if Nkind (Index) = N_Range then
680 Get_Index_Bounds (Index, Low, High);
681
682 elsif Error_Posted (Scalar_Range (Etype (Index))) then
683 return False;
684
685 else
686 Low := Type_Low_Bound (Etype (Index));
687 High := Type_High_Bound (Etype (Index));
688 end if;
689
690 if not Compile_Time_Known_Value (Low)
691 or else not Compile_Time_Known_Value (High)
692 or else Etype (Index) = Any_Type
693 then
694 return False;
695
696 else
697 Dim := Expr_Value (High) - Expr_Value (Low) + 1;
698
699 if Dim >= 0 then
700 Esiz := Esiz * Dim;
701 else
702 Esiz := Uint_0;
703 end if;
704 end if;
705
706 Next_Index (Index);
707 end loop;
708
c6823a20 709 Set_Small_Size (T, Esiz);
70482933
RK
710 return True;
711 end;
712
c6a9797e
RD
713 -- Access types always have known at compile time sizes
714
70482933
RK
715 elsif Is_Access_Type (T) then
716 return True;
717
c6a9797e
RD
718 -- For non-generic private types, go to underlying type if present
719
70482933
RK
720 elsif Is_Private_Type (T)
721 and then not Is_Generic_Type (T)
722 and then Present (Underlying_Type (T))
723 then
def46b54
RD
724 -- Don't do any recursion on type with error posted, since we may
725 -- have a malformed type that leads us into a loop.
07fc65c4
GB
726
727 if Error_Posted (T) then
728 return False;
729 else
730 return Size_Known (Underlying_Type (T));
731 end if;
70482933 732
c6a9797e
RD
733 -- Record types
734
70482933 735 elsif Is_Record_Type (T) then
fbf5a39b
AC
736
737 -- A class-wide type is never considered to have a known size
738
70482933
RK
739 if Is_Class_Wide_Type (T) then
740 return False;
741
fbf5a39b
AC
742 -- A subtype of a variant record must not have non-static
743 -- discriminanted components.
744
745 elsif T /= Base_Type (T)
746 and then not Static_Discriminated_Components (T)
747 then
748 return False;
70482933 749
def46b54
RD
750 -- Don't do any recursion on type with error posted, since we may
751 -- have a malformed type that leads us into a loop.
07fc65c4
GB
752
753 elsif Error_Posted (T) then
754 return False;
fbf5a39b 755 end if;
07fc65c4 756
fbf5a39b 757 -- Now look at the components of the record
70482933 758
fbf5a39b 759 declare
def46b54
RD
760 -- The following two variables are used to keep track of the
761 -- size of packed records if we can tell the size of the packed
762 -- record in the front end. Packed_Size_Known is True if so far
763 -- we can figure out the size. It is initialized to True for a
764 -- packed record, unless the record has discriminants. The
765 -- reason we eliminate the discriminated case is that we don't
766 -- know the way the back end lays out discriminated packed
767 -- records. If Packed_Size_Known is True, then Packed_Size is
768 -- the size in bits so far.
fbf5a39b
AC
769
770 Packed_Size_Known : Boolean :=
771 Is_Packed (T)
772 and then not Has_Discriminants (T);
773
774 Packed_Size : Uint := Uint_0;
775
776 begin
777 -- Test for variant part present
778
779 if Has_Discriminants (T)
780 and then Present (Parent (T))
781 and then Nkind (Parent (T)) = N_Full_Type_Declaration
782 and then Nkind (Type_Definition (Parent (T))) =
783 N_Record_Definition
784 and then not Null_Present (Type_Definition (Parent (T)))
785 and then Present (Variant_Part
786 (Component_List (Type_Definition (Parent (T)))))
787 then
788 -- If variant part is present, and type is unconstrained,
789 -- then we must have defaulted discriminants, or a size
790 -- clause must be present for the type, or else the size
791 -- is definitely not known at compile time.
792
793 if not Is_Constrained (T)
794 and then
795 No (Discriminant_Default_Value
796 (First_Discriminant (T)))
797 and then Unknown_Esize (T)
70482933 798 then
fbf5a39b
AC
799 return False;
800 end if;
801 end if;
70482933 802
fbf5a39b
AC
803 -- Loop through components
804
fea9e956 805 Comp := First_Component_Or_Discriminant (T);
fbf5a39b 806 while Present (Comp) loop
fea9e956 807 Ctyp := Etype (Comp);
fbf5a39b 808
fea9e956
ES
809 -- We do not know the packed size if there is a component
810 -- clause present (we possibly could, but this would only
811 -- help in the case of a record with partial rep clauses.
812 -- That's because in the case of full rep clauses, the
813 -- size gets figured out anyway by a different circuit).
fbf5a39b 814
fea9e956
ES
815 if Present (Component_Clause (Comp)) then
816 Packed_Size_Known := False;
817 end if;
70482933 818
fea9e956
ES
819 -- We need to identify a component that is an array where
820 -- the index type is an enumeration type with non-standard
821 -- representation, and some bound of the type depends on a
822 -- discriminant.
70482933 823
fea9e956 824 -- This is because gigi computes the size by doing a
e14c931f 825 -- substitution of the appropriate discriminant value in
fea9e956
ES
826 -- the size expression for the base type, and gigi is not
827 -- clever enough to evaluate the resulting expression (which
828 -- involves a call to rep_to_pos) at compile time.
fbf5a39b 829
fea9e956
ES
830 -- It would be nice if gigi would either recognize that
831 -- this expression can be computed at compile time, or
832 -- alternatively figured out the size from the subtype
833 -- directly, where all the information is at hand ???
fbf5a39b 834
fea9e956
ES
835 if Is_Array_Type (Etype (Comp))
836 and then Present (Packed_Array_Type (Etype (Comp)))
837 then
838 declare
839 Ocomp : constant Entity_Id :=
840 Original_Record_Component (Comp);
841 OCtyp : constant Entity_Id := Etype (Ocomp);
842 Ind : Node_Id;
843 Indtyp : Entity_Id;
844 Lo, Hi : Node_Id;
70482933 845
fea9e956
ES
846 begin
847 Ind := First_Index (OCtyp);
848 while Present (Ind) loop
849 Indtyp := Etype (Ind);
70482933 850
fea9e956
ES
851 if Is_Enumeration_Type (Indtyp)
852 and then Has_Non_Standard_Rep (Indtyp)
853 then
854 Lo := Type_Low_Bound (Indtyp);
855 Hi := Type_High_Bound (Indtyp);
fbf5a39b 856
fea9e956
ES
857 if Is_Entity_Name (Lo)
858 and then Ekind (Entity (Lo)) = E_Discriminant
859 then
860 return False;
fbf5a39b 861
fea9e956
ES
862 elsif Is_Entity_Name (Hi)
863 and then Ekind (Entity (Hi)) = E_Discriminant
864 then
865 return False;
866 end if;
867 end if;
fbf5a39b 868
fea9e956
ES
869 Next_Index (Ind);
870 end loop;
871 end;
872 end if;
70482933 873
def46b54
RD
874 -- Clearly size of record is not known if the size of one of
875 -- the components is not known.
70482933 876
fea9e956
ES
877 if not Size_Known (Ctyp) then
878 return False;
879 end if;
70482933 880
fea9e956 881 -- Accumulate packed size if possible
70482933 882
fea9e956 883 if Packed_Size_Known then
70482933 884
fea9e956
ES
885 -- We can only deal with elementary types, since for
886 -- non-elementary components, alignment enters into the
887 -- picture, and we don't know enough to handle proper
888 -- alignment in this context. Packed arrays count as
889 -- elementary if the representation is a modular type.
fbf5a39b 890
fea9e956
ES
891 if Is_Elementary_Type (Ctyp)
892 or else (Is_Array_Type (Ctyp)
893 and then Present (Packed_Array_Type (Ctyp))
894 and then Is_Modular_Integer_Type
895 (Packed_Array_Type (Ctyp)))
896 then
897 -- If RM_Size is known and static, then we can
898 -- keep accumulating the packed size.
70482933 899
fea9e956 900 if Known_Static_RM_Size (Ctyp) then
70482933 901
fea9e956
ES
902 -- A little glitch, to be removed sometime ???
903 -- gigi does not understand zero sizes yet.
904
905 if RM_Size (Ctyp) = Uint_0 then
70482933 906 Packed_Size_Known := False;
fea9e956
ES
907
908 -- Normal case where we can keep accumulating the
909 -- packed array size.
910
911 else
912 Packed_Size := Packed_Size + RM_Size (Ctyp);
70482933 913 end if;
fbf5a39b 914
fea9e956
ES
915 -- If we have a field whose RM_Size is not known then
916 -- we can't figure out the packed size here.
fbf5a39b
AC
917
918 else
919 Packed_Size_Known := False;
70482933 920 end if;
fea9e956
ES
921
922 -- If we have a non-elementary type we can't figure out
923 -- the packed array size (alignment issues).
924
925 else
926 Packed_Size_Known := False;
70482933 927 end if;
fbf5a39b 928 end if;
70482933 929
fea9e956 930 Next_Component_Or_Discriminant (Comp);
fbf5a39b 931 end loop;
70482933 932
fbf5a39b 933 if Packed_Size_Known then
c6823a20 934 Set_Small_Size (T, Packed_Size);
fbf5a39b 935 end if;
70482933 936
fbf5a39b
AC
937 return True;
938 end;
70482933 939
c6a9797e
RD
940 -- All other cases, size not known at compile time
941
70482933
RK
942 else
943 return False;
944 end if;
945 end Size_Known;
946
947 -------------------------------------
948 -- Static_Discriminated_Components --
949 -------------------------------------
950
951 function Static_Discriminated_Components
0da2c8ac 952 (T : Entity_Id) return Boolean
70482933
RK
953 is
954 Constraint : Elmt_Id;
955
956 begin
957 if Has_Discriminants (T)
958 and then Present (Discriminant_Constraint (T))
959 and then Present (First_Component (T))
960 then
961 Constraint := First_Elmt (Discriminant_Constraint (T));
70482933
RK
962 while Present (Constraint) loop
963 if not Compile_Time_Known_Value (Node (Constraint)) then
964 return False;
965 end if;
966
967 Next_Elmt (Constraint);
968 end loop;
969 end if;
970
971 return True;
972 end Static_Discriminated_Components;
973
974 -- Start of processing for Check_Compile_Time_Size
975
976 begin
977 Set_Size_Known_At_Compile_Time (T, Size_Known (T));
978 end Check_Compile_Time_Size;
979
980 -----------------------------
981 -- Check_Debug_Info_Needed --
982 -----------------------------
983
984 procedure Check_Debug_Info_Needed (T : Entity_Id) is
985 begin
1b24ada5 986 if Debug_Info_Off (T) then
70482933
RK
987 return;
988
989 elsif Comes_From_Source (T)
990 or else Debug_Generated_Code
991 or else Debug_Flag_VV
1b24ada5 992 or else Needs_Debug_Info (T)
70482933
RK
993 then
994 Set_Debug_Info_Needed (T);
995 end if;
996 end Check_Debug_Info_Needed;
997
998 ----------------------------
999 -- Check_Strict_Alignment --
1000 ----------------------------
1001
1002 procedure Check_Strict_Alignment (E : Entity_Id) is
1003 Comp : Entity_Id;
1004
1005 begin
1006 if Is_Tagged_Type (E) or else Is_Concurrent_Type (E) then
1007 Set_Strict_Alignment (E);
1008
1009 elsif Is_Array_Type (E) then
1010 Set_Strict_Alignment (E, Strict_Alignment (Component_Type (E)));
1011
1012 elsif Is_Record_Type (E) then
1013 if Is_Limited_Record (E) then
1014 Set_Strict_Alignment (E);
1015 return;
1016 end if;
1017
1018 Comp := First_Component (E);
1019
1020 while Present (Comp) loop
1021 if not Is_Type (Comp)
1022 and then (Strict_Alignment (Etype (Comp))
fbf5a39b 1023 or else Is_Aliased (Comp))
70482933
RK
1024 then
1025 Set_Strict_Alignment (E);
1026 return;
1027 end if;
1028
1029 Next_Component (Comp);
1030 end loop;
1031 end if;
1032 end Check_Strict_Alignment;
1033
1034 -------------------------
1035 -- Check_Unsigned_Type --
1036 -------------------------
1037
1038 procedure Check_Unsigned_Type (E : Entity_Id) is
1039 Ancestor : Entity_Id;
1040 Lo_Bound : Node_Id;
1041 Btyp : Entity_Id;
1042
1043 begin
1044 if not Is_Discrete_Or_Fixed_Point_Type (E) then
1045 return;
1046 end if;
1047
1048 -- Do not attempt to analyze case where range was in error
1049
1050 if Error_Posted (Scalar_Range (E)) then
1051 return;
1052 end if;
1053
1054 -- The situation that is non trivial is something like
1055
1056 -- subtype x1 is integer range -10 .. +10;
1057 -- subtype x2 is x1 range 0 .. V1;
1058 -- subtype x3 is x2 range V2 .. V3;
1059 -- subtype x4 is x3 range V4 .. V5;
1060
1061 -- where Vn are variables. Here the base type is signed, but we still
1062 -- know that x4 is unsigned because of the lower bound of x2.
1063
1064 -- The only way to deal with this is to look up the ancestor chain
1065
1066 Ancestor := E;
1067 loop
1068 if Ancestor = Any_Type or else Etype (Ancestor) = Any_Type then
1069 return;
1070 end if;
1071
1072 Lo_Bound := Type_Low_Bound (Ancestor);
1073
1074 if Compile_Time_Known_Value (Lo_Bound) then
1075
1076 if Expr_Rep_Value (Lo_Bound) >= 0 then
1077 Set_Is_Unsigned_Type (E, True);
1078 end if;
1079
1080 return;
1081
1082 else
1083 Ancestor := Ancestor_Subtype (Ancestor);
1084
1085 -- If no ancestor had a static lower bound, go to base type
1086
1087 if No (Ancestor) then
1088
1089 -- Note: the reason we still check for a compile time known
1090 -- value for the base type is that at least in the case of
1091 -- generic formals, we can have bounds that fail this test,
1092 -- and there may be other cases in error situations.
1093
1094 Btyp := Base_Type (E);
1095
1096 if Btyp = Any_Type or else Etype (Btyp) = Any_Type then
1097 return;
1098 end if;
1099
1100 Lo_Bound := Type_Low_Bound (Base_Type (E));
1101
1102 if Compile_Time_Known_Value (Lo_Bound)
1103 and then Expr_Rep_Value (Lo_Bound) >= 0
1104 then
1105 Set_Is_Unsigned_Type (E, True);
1106 end if;
1107
1108 return;
70482933
RK
1109 end if;
1110 end if;
1111 end loop;
1112 end Check_Unsigned_Type;
1113
cfb120b5
AC
1114 -------------------------
1115 -- Is_Atomic_Aggregate --
1116 -------------------------
fbf5a39b 1117
cfb120b5 1118 function Is_Atomic_Aggregate
b0159fbe
AC
1119 (E : Entity_Id;
1120 Typ : Entity_Id) return Boolean
1121 is
fbf5a39b
AC
1122 Loc : constant Source_Ptr := Sloc (E);
1123 New_N : Node_Id;
b0159fbe 1124 Par : Node_Id;
fbf5a39b
AC
1125 Temp : Entity_Id;
1126
1127 begin
b0159fbe
AC
1128 Par := Parent (E);
1129
01957849 1130 -- Array may be qualified, so find outer context
b0159fbe
AC
1131
1132 if Nkind (Par) = N_Qualified_Expression then
1133 Par := Parent (Par);
1134 end if;
1135
fb2e11ee 1136 if Nkind_In (Par, N_Object_Declaration, N_Assignment_Statement)
b0159fbe 1137 and then Comes_From_Source (Par)
fbf5a39b
AC
1138 then
1139 Temp :=
1140 Make_Defining_Identifier (Loc,
1141 New_Internal_Name ('T'));
1142
1143 New_N :=
1144 Make_Object_Declaration (Loc,
1145 Defining_Identifier => Temp,
c6a9797e
RD
1146 Object_Definition => New_Occurrence_Of (Typ, Loc),
1147 Expression => Relocate_Node (E));
b0159fbe 1148 Insert_Before (Par, New_N);
fbf5a39b
AC
1149 Analyze (New_N);
1150
b0159fbe
AC
1151 Set_Expression (Par, New_Occurrence_Of (Temp, Loc));
1152 return True;
fbf5a39b 1153
b0159fbe
AC
1154 else
1155 return False;
fbf5a39b 1156 end if;
cfb120b5 1157 end Is_Atomic_Aggregate;
fbf5a39b 1158
70482933
RK
1159 ----------------
1160 -- Freeze_All --
1161 ----------------
1162
1163 -- Note: the easy coding for this procedure would be to just build a
1164 -- single list of freeze nodes and then insert them and analyze them
1165 -- all at once. This won't work, because the analysis of earlier freeze
1166 -- nodes may recursively freeze types which would otherwise appear later
1167 -- on in the freeze list. So we must analyze and expand the freeze nodes
1168 -- as they are generated.
1169
1170 procedure Freeze_All (From : Entity_Id; After : in out Node_Id) is
1171 Loc : constant Source_Ptr := Sloc (After);
1172 E : Entity_Id;
1173 Decl : Node_Id;
1174
1175 procedure Freeze_All_Ent (From : Entity_Id; After : in out Node_Id);
def46b54
RD
1176 -- This is the internal recursive routine that does freezing of entities
1177 -- (but NOT the analysis of default expressions, which should not be
1178 -- recursive, we don't want to analyze those till we are sure that ALL
1179 -- the types are frozen).
70482933 1180
fbf5a39b
AC
1181 --------------------
1182 -- Freeze_All_Ent --
1183 --------------------
1184
70482933
RK
1185 procedure Freeze_All_Ent
1186 (From : Entity_Id;
1187 After : in out Node_Id)
1188 is
1189 E : Entity_Id;
1190 Flist : List_Id;
1191 Lastn : Node_Id;
1192
1193 procedure Process_Flist;
def46b54
RD
1194 -- If freeze nodes are present, insert and analyze, and reset cursor
1195 -- for next insertion.
70482933 1196
fbf5a39b
AC
1197 -------------------
1198 -- Process_Flist --
1199 -------------------
1200
70482933
RK
1201 procedure Process_Flist is
1202 begin
1203 if Is_Non_Empty_List (Flist) then
1204 Lastn := Next (After);
1205 Insert_List_After_And_Analyze (After, Flist);
1206
1207 if Present (Lastn) then
1208 After := Prev (Lastn);
1209 else
1210 After := Last (List_Containing (After));
1211 end if;
1212 end if;
1213 end Process_Flist;
1214
fbf5a39b
AC
1215 -- Start or processing for Freeze_All_Ent
1216
70482933
RK
1217 begin
1218 E := From;
1219 while Present (E) loop
1220
1221 -- If the entity is an inner package which is not a package
def46b54
RD
1222 -- renaming, then its entities must be frozen at this point. Note
1223 -- that such entities do NOT get frozen at the end of the nested
1224 -- package itself (only library packages freeze).
70482933
RK
1225
1226 -- Same is true for task declarations, where anonymous records
1227 -- created for entry parameters must be frozen.
1228
1229 if Ekind (E) = E_Package
1230 and then No (Renamed_Object (E))
1231 and then not Is_Child_Unit (E)
1232 and then not Is_Frozen (E)
1233 then
7d8b9c99 1234 Push_Scope (E);
70482933
RK
1235 Install_Visible_Declarations (E);
1236 Install_Private_Declarations (E);
1237
1238 Freeze_All (First_Entity (E), After);
1239
1240 End_Package_Scope (E);
1241
1242 elsif Ekind (E) in Task_Kind
1243 and then
1244 (Nkind (Parent (E)) = N_Task_Type_Declaration
fbf5a39b 1245 or else
70482933
RK
1246 Nkind (Parent (E)) = N_Single_Task_Declaration)
1247 then
7d8b9c99 1248 Push_Scope (E);
70482933
RK
1249 Freeze_All (First_Entity (E), After);
1250 End_Scope;
1251
1252 -- For a derived tagged type, we must ensure that all the
def46b54
RD
1253 -- primitive operations of the parent have been frozen, so that
1254 -- their addresses will be in the parent's dispatch table at the
1255 -- point it is inherited.
70482933
RK
1256
1257 elsif Ekind (E) = E_Record_Type
1258 and then Is_Tagged_Type (E)
1259 and then Is_Tagged_Type (Etype (E))
1260 and then Is_Derived_Type (E)
1261 then
1262 declare
1263 Prim_List : constant Elist_Id :=
1264 Primitive_Operations (Etype (E));
fbf5a39b
AC
1265
1266 Prim : Elmt_Id;
1267 Subp : Entity_Id;
70482933
RK
1268
1269 begin
1270 Prim := First_Elmt (Prim_List);
1271
1272 while Present (Prim) loop
1273 Subp := Node (Prim);
1274
1275 if Comes_From_Source (Subp)
1276 and then not Is_Frozen (Subp)
1277 then
1278 Flist := Freeze_Entity (Subp, Loc);
1279 Process_Flist;
1280 end if;
1281
1282 Next_Elmt (Prim);
1283 end loop;
1284 end;
1285 end if;
1286
1287 if not Is_Frozen (E) then
1288 Flist := Freeze_Entity (E, Loc);
1289 Process_Flist;
1290 end if;
1291
def46b54
RD
1292 -- If an incomplete type is still not frozen, this may be a
1293 -- premature freezing because of a body declaration that follows.
1294 -- Indicate where the freezing took place.
fbf5a39b 1295
def46b54
RD
1296 -- If the freezing is caused by the end of the current declarative
1297 -- part, it is a Taft Amendment type, and there is no error.
fbf5a39b
AC
1298
1299 if not Is_Frozen (E)
1300 and then Ekind (E) = E_Incomplete_Type
1301 then
1302 declare
1303 Bod : constant Node_Id := Next (After);
1304
1305 begin
1306 if (Nkind (Bod) = N_Subprogram_Body
1307 or else Nkind (Bod) = N_Entry_Body
1308 or else Nkind (Bod) = N_Package_Body
1309 or else Nkind (Bod) = N_Protected_Body
1310 or else Nkind (Bod) = N_Task_Body
1311 or else Nkind (Bod) in N_Body_Stub)
1312 and then
1313 List_Containing (After) = List_Containing (Parent (E))
1314 then
1315 Error_Msg_Sloc := Sloc (Next (After));
1316 Error_Msg_NE
1317 ("type& is frozen# before its full declaration",
1318 Parent (E), E);
1319 end if;
1320 end;
1321 end if;
1322
70482933
RK
1323 Next_Entity (E);
1324 end loop;
1325 end Freeze_All_Ent;
1326
1327 -- Start of processing for Freeze_All
1328
1329 begin
1330 Freeze_All_Ent (From, After);
1331
1332 -- Now that all types are frozen, we can deal with default expressions
1333 -- that require us to build a default expression functions. This is the
1334 -- point at which such functions are constructed (after all types that
1335 -- might be used in such expressions have been frozen).
fbf5a39b 1336
70482933
RK
1337 -- We also add finalization chains to access types whose designated
1338 -- types are controlled. This is normally done when freezing the type,
1339 -- but this misses recursive type definitions where the later members
c6a9797e 1340 -- of the recursion introduce controlled components.
70482933
RK
1341
1342 -- Loop through entities
1343
1344 E := From;
1345 while Present (E) loop
70482933
RK
1346 if Is_Subprogram (E) then
1347
1348 if not Default_Expressions_Processed (E) then
1349 Process_Default_Expressions (E, After);
1350 end if;
1351
1352 if not Has_Completion (E) then
1353 Decl := Unit_Declaration_Node (E);
1354
1355 if Nkind (Decl) = N_Subprogram_Renaming_Declaration then
1356 Build_And_Analyze_Renamed_Body (Decl, E, After);
1357
1358 elsif Nkind (Decl) = N_Subprogram_Declaration
1359 and then Present (Corresponding_Body (Decl))
1360 and then
1361 Nkind (Unit_Declaration_Node (Corresponding_Body (Decl)))
fbf5a39b 1362 = N_Subprogram_Renaming_Declaration
70482933
RK
1363 then
1364 Build_And_Analyze_Renamed_Body
1365 (Decl, Corresponding_Body (Decl), After);
1366 end if;
1367 end if;
1368
1369 elsif Ekind (E) in Task_Kind
1370 and then
1371 (Nkind (Parent (E)) = N_Task_Type_Declaration
fbf5a39b 1372 or else
70482933
RK
1373 Nkind (Parent (E)) = N_Single_Task_Declaration)
1374 then
1375 declare
1376 Ent : Entity_Id;
70482933
RK
1377 begin
1378 Ent := First_Entity (E);
1379
1380 while Present (Ent) loop
1381
1382 if Is_Entry (Ent)
1383 and then not Default_Expressions_Processed (Ent)
1384 then
1385 Process_Default_Expressions (Ent, After);
1386 end if;
1387
1388 Next_Entity (Ent);
1389 end loop;
1390 end;
1391
1392 elsif Is_Access_Type (E)
1393 and then Comes_From_Source (E)
1394 and then Ekind (Directly_Designated_Type (E)) = E_Incomplete_Type
048e5cef 1395 and then Needs_Finalization (Designated_Type (E))
70482933
RK
1396 and then No (Associated_Final_Chain (E))
1397 then
1398 Build_Final_List (Parent (E), E);
1399 end if;
1400
1401 Next_Entity (E);
1402 end loop;
70482933
RK
1403 end Freeze_All;
1404
1405 -----------------------
1406 -- Freeze_And_Append --
1407 -----------------------
1408
1409 procedure Freeze_And_Append
1410 (Ent : Entity_Id;
1411 Loc : Source_Ptr;
1412 Result : in out List_Id)
1413 is
1414 L : constant List_Id := Freeze_Entity (Ent, Loc);
70482933
RK
1415 begin
1416 if Is_Non_Empty_List (L) then
1417 if Result = No_List then
1418 Result := L;
1419 else
1420 Append_List (L, Result);
1421 end if;
1422 end if;
1423 end Freeze_And_Append;
1424
1425 -------------------
1426 -- Freeze_Before --
1427 -------------------
1428
1429 procedure Freeze_Before (N : Node_Id; T : Entity_Id) is
1430 Freeze_Nodes : constant List_Id := Freeze_Entity (T, Sloc (N));
70482933
RK
1431 begin
1432 if Is_Non_Empty_List (Freeze_Nodes) then
fbf5a39b 1433 Insert_Actions (N, Freeze_Nodes);
70482933
RK
1434 end if;
1435 end Freeze_Before;
1436
1437 -------------------
1438 -- Freeze_Entity --
1439 -------------------
1440
1441 function Freeze_Entity (E : Entity_Id; Loc : Source_Ptr) return List_Id is
c6823a20 1442 Test_E : Entity_Id := E;
70482933
RK
1443 Comp : Entity_Id;
1444 F_Node : Node_Id;
1445 Result : List_Id;
1446 Indx : Node_Id;
1447 Formal : Entity_Id;
1448 Atype : Entity_Id;
1449
4c8a5bb8
AC
1450 Has_Default_Initialization : Boolean := False;
1451 -- This flag gets set to true for a variable with default initialization
1452
70482933 1453 procedure Check_Current_Instance (Comp_Decl : Node_Id);
edd63e9b
ES
1454 -- Check that an Access or Unchecked_Access attribute with a prefix
1455 -- which is the current instance type can only be applied when the type
1456 -- is limited.
70482933 1457
67b3acf8
RD
1458 procedure Check_Suspicious_Modulus (Utype : Entity_Id);
1459 -- Give warning for modulus of 8, 16, 32, or 64 given as an explicit
1460 -- integer literal without an explicit corresponding size clause. The
1461 -- caller has checked that Utype is a modular integer type.
1462
70482933
RK
1463 function After_Last_Declaration return Boolean;
1464 -- If Loc is a freeze_entity that appears after the last declaration
1465 -- in the scope, inhibit error messages on late completion.
1466
1467 procedure Freeze_Record_Type (Rec : Entity_Id);
edd63e9b
ES
1468 -- Freeze each component, handle some representation clauses, and freeze
1469 -- primitive operations if this is a tagged type.
70482933
RK
1470
1471 ----------------------------
1472 -- After_Last_Declaration --
1473 ----------------------------
1474
1475 function After_Last_Declaration return Boolean is
fb2e11ee 1476 Spec : constant Node_Id := Parent (Current_Scope);
70482933
RK
1477 begin
1478 if Nkind (Spec) = N_Package_Specification then
1479 if Present (Private_Declarations (Spec)) then
1480 return Loc >= Sloc (Last (Private_Declarations (Spec)));
70482933
RK
1481 elsif Present (Visible_Declarations (Spec)) then
1482 return Loc >= Sloc (Last (Visible_Declarations (Spec)));
1483 else
1484 return False;
1485 end if;
70482933
RK
1486 else
1487 return False;
1488 end if;
1489 end After_Last_Declaration;
1490
1491 ----------------------------
1492 -- Check_Current_Instance --
1493 ----------------------------
1494
1495 procedure Check_Current_Instance (Comp_Decl : Node_Id) is
1496
32c760e6
ES
1497 Rec_Type : constant Entity_Id :=
1498 Scope (Defining_Identifier (Comp_Decl));
1499
1500 Decl : constant Node_Id := Parent (Rec_Type);
1501
70482933 1502 function Process (N : Node_Id) return Traverse_Result;
49e90211 1503 -- Process routine to apply check to given node
70482933 1504
fbf5a39b
AC
1505 -------------
1506 -- Process --
1507 -------------
1508
70482933
RK
1509 function Process (N : Node_Id) return Traverse_Result is
1510 begin
1511 case Nkind (N) is
1512 when N_Attribute_Reference =>
def46b54 1513 if (Attribute_Name (N) = Name_Access
70482933
RK
1514 or else
1515 Attribute_Name (N) = Name_Unchecked_Access)
1516 and then Is_Entity_Name (Prefix (N))
1517 and then Is_Type (Entity (Prefix (N)))
1518 and then Entity (Prefix (N)) = E
1519 then
1520 Error_Msg_N
1521 ("current instance must be a limited type", Prefix (N));
1522 return Abandon;
1523 else
1524 return OK;
1525 end if;
1526
1527 when others => return OK;
1528 end case;
1529 end Process;
1530
1531 procedure Traverse is new Traverse_Proc (Process);
1532
1533 -- Start of processing for Check_Current_Instance
1534
1535 begin
32c760e6
ES
1536 -- In Ada95, the (imprecise) rule is that the current instance of a
1537 -- limited type is aliased. In Ada2005, limitedness must be explicit:
1538 -- either a tagged type, or a limited record.
1539
1540 if Is_Limited_Type (Rec_Type)
fb2e11ee 1541 and then (Ada_Version < Ada_05 or else Is_Tagged_Type (Rec_Type))
32c760e6
ES
1542 then
1543 return;
1544
1545 elsif Nkind (Decl) = N_Full_Type_Declaration
1546 and then Limited_Present (Type_Definition (Decl))
1547 then
1548 return;
1549
1550 else
1551 Traverse (Comp_Decl);
1552 end if;
70482933
RK
1553 end Check_Current_Instance;
1554
67b3acf8
RD
1555 ------------------------------
1556 -- Check_Suspicious_Modulus --
1557 ------------------------------
1558
1559 procedure Check_Suspicious_Modulus (Utype : Entity_Id) is
1560 Decl : constant Node_Id := Declaration_Node (Underlying_Type (Utype));
1561
1562 begin
1563 if Nkind (Decl) = N_Full_Type_Declaration then
1564 declare
1565 Tdef : constant Node_Id := Type_Definition (Decl);
1566 begin
1567 if Nkind (Tdef) = N_Modular_Type_Definition then
1568 declare
1569 Modulus : constant Node_Id :=
1570 Original_Node (Expression (Tdef));
1571 begin
1572 if Nkind (Modulus) = N_Integer_Literal then
1573 declare
1574 Modv : constant Uint := Intval (Modulus);
1575 Sizv : constant Uint := RM_Size (Utype);
1576
1577 begin
1578 -- First case, modulus and size are the same. This
1579 -- happens if you have something like mod 32, with
1580 -- an explicit size of 32, this is for sure a case
1581 -- where the warning is given, since it is seems
1582 -- very unlikely that someone would want e.g. a
1583 -- five bit type stored in 32 bits. It is much
1584 -- more likely they wanted a 32-bit type.
1585
1586 if Modv = Sizv then
1587 null;
1588
1589 -- Second case, the modulus is 32 or 64 and no
1590 -- size clause is present. This is a less clear
1591 -- case for giving the warning, but in the case
1592 -- of 32/64 (5-bit or 6-bit types) these seem rare
1593 -- enough that it is a likely error (and in any
1594 -- case using 2**5 or 2**6 in these cases seems
1595 -- clearer. We don't include 8 or 16 here, simply
1596 -- because in practice 3-bit and 4-bit types are
1597 -- more common and too many false positives if
1598 -- we warn in these cases.
1599
1600 elsif not Has_Size_Clause (Utype)
1601 and then (Modv = Uint_32 or else Modv = Uint_64)
1602 then
1603 null;
1604
1605 -- No warning needed
1606
1607 else
1608 return;
1609 end if;
1610
1611 -- If we fall through, give warning
1612
1613 Error_Msg_Uint_1 := Modv;
1614 Error_Msg_N
1615 ("?2 '*'*^' may have been intended here",
1616 Modulus);
1617 end;
1618 end if;
1619 end;
1620 end if;
1621 end;
1622 end if;
1623 end Check_Suspicious_Modulus;
1624
70482933
RK
1625 ------------------------
1626 -- Freeze_Record_Type --
1627 ------------------------
1628
1629 procedure Freeze_Record_Type (Rec : Entity_Id) is
1630 Comp : Entity_Id;
fbf5a39b 1631 IR : Node_Id;
70482933 1632 ADC : Node_Id;
c6823a20 1633 Prev : Entity_Id;
70482933 1634
67ce0d7e
RD
1635 Junk : Boolean;
1636 pragma Warnings (Off, Junk);
1637
70482933
RK
1638 Unplaced_Component : Boolean := False;
1639 -- Set True if we find at least one component with no component
1640 -- clause (used to warn about useless Pack pragmas).
1641
1642 Placed_Component : Boolean := False;
1643 -- Set True if we find at least one component with a component
8dc10d38
AC
1644 -- clause (used to warn about useless Bit_Order pragmas, and also
1645 -- to detect cases where Implicit_Packing may have an effect).
1646
1647 All_Scalar_Components : Boolean := True;
1648 -- Set False if we encounter a component of a non-scalar type
1649
1650 Scalar_Component_Total_RM_Size : Uint := Uint_0;
1651 Scalar_Component_Total_Esize : Uint := Uint_0;
1652 -- Accumulates total RM_Size values and total Esize values of all
1653 -- scalar components. Used for processing of Implicit_Packing.
70482933 1654
e18d6a15
JM
1655 function Check_Allocator (N : Node_Id) return Node_Id;
1656 -- If N is an allocator, possibly wrapped in one or more level of
1657 -- qualified expression(s), return the inner allocator node, else
1658 -- return Empty.
19590d70 1659
7d8b9c99
RD
1660 procedure Check_Itype (Typ : Entity_Id);
1661 -- If the component subtype is an access to a constrained subtype of
1662 -- an already frozen type, make the subtype frozen as well. It might
1663 -- otherwise be frozen in the wrong scope, and a freeze node on
1664 -- subtype has no effect. Similarly, if the component subtype is a
1665 -- regular (not protected) access to subprogram, set the anonymous
1666 -- subprogram type to frozen as well, to prevent an out-of-scope
1667 -- freeze node at some eventual point of call. Protected operations
1668 -- are handled elsewhere.
6e059adb 1669
19590d70
GD
1670 ---------------------
1671 -- Check_Allocator --
1672 ---------------------
1673
e18d6a15
JM
1674 function Check_Allocator (N : Node_Id) return Node_Id is
1675 Inner : Node_Id;
19590d70 1676 begin
e18d6a15 1677 Inner := N;
e18d6a15
JM
1678 loop
1679 if Nkind (Inner) = N_Allocator then
1680 return Inner;
e18d6a15
JM
1681 elsif Nkind (Inner) = N_Qualified_Expression then
1682 Inner := Expression (Inner);
e18d6a15
JM
1683 else
1684 return Empty;
1685 end if;
1686 end loop;
19590d70
GD
1687 end Check_Allocator;
1688
6871ba5f
AC
1689 -----------------
1690 -- Check_Itype --
1691 -----------------
1692
7d8b9c99
RD
1693 procedure Check_Itype (Typ : Entity_Id) is
1694 Desig : constant Entity_Id := Designated_Type (Typ);
1695
6e059adb
AC
1696 begin
1697 if not Is_Frozen (Desig)
1698 and then Is_Frozen (Base_Type (Desig))
1699 then
1700 Set_Is_Frozen (Desig);
1701
1702 -- In addition, add an Itype_Reference to ensure that the
7d8b9c99
RD
1703 -- access subtype is elaborated early enough. This cannot be
1704 -- done if the subtype may depend on discriminants.
6e059adb
AC
1705
1706 if Ekind (Comp) = E_Component
1707 and then Is_Itype (Etype (Comp))
1708 and then not Has_Discriminants (Rec)
1709 then
1710 IR := Make_Itype_Reference (Sloc (Comp));
1711 Set_Itype (IR, Desig);
1712
1713 if No (Result) then
1714 Result := New_List (IR);
1715 else
1716 Append (IR, Result);
1717 end if;
1718 end if;
7d8b9c99
RD
1719
1720 elsif Ekind (Typ) = E_Anonymous_Access_Subprogram_Type
1721 and then Convention (Desig) /= Convention_Protected
1722 then
1723 Set_Is_Frozen (Desig);
6e059adb
AC
1724 end if;
1725 end Check_Itype;
1726
1727 -- Start of processing for Freeze_Record_Type
1728
70482933 1729 begin
7d8b9c99
RD
1730 -- If this is a subtype of a controlled type, declared without a
1731 -- constraint, the _controller may not appear in the component list
1732 -- if the parent was not frozen at the point of subtype declaration.
1733 -- Inherit the _controller component now.
fbf5a39b
AC
1734
1735 if Rec /= Base_Type (Rec)
1736 and then Has_Controlled_Component (Rec)
1737 then
1738 if Nkind (Parent (Rec)) = N_Subtype_Declaration
1739 and then Is_Entity_Name (Subtype_Indication (Parent (Rec)))
1740 then
1741 Set_First_Entity (Rec, First_Entity (Base_Type (Rec)));
1742
49e90211 1743 -- If this is an internal type without a declaration, as for
6871ba5f
AC
1744 -- record component, the base type may not yet be frozen, and its
1745 -- controller has not been created. Add an explicit freeze node
49e90211
ES
1746 -- for the itype, so it will be frozen after the base type. This
1747 -- freeze node is used to communicate with the expander, in order
1748 -- to create the controller for the enclosing record, and it is
1749 -- deleted afterwards (see exp_ch3). It must not be created when
1750 -- expansion is off, because it might appear in the wrong context
1751 -- for the back end.
fbf5a39b
AC
1752
1753 elsif Is_Itype (Rec)
1754 and then Has_Delayed_Freeze (Base_Type (Rec))
1755 and then
1756 Nkind (Associated_Node_For_Itype (Rec)) =
49e90211
ES
1757 N_Component_Declaration
1758 and then Expander_Active
fbf5a39b
AC
1759 then
1760 Ensure_Freeze_Node (Rec);
1761 end if;
1762 end if;
1763
49e90211 1764 -- Freeze components and embedded subtypes
70482933
RK
1765
1766 Comp := First_Entity (Rec);
c6823a20 1767 Prev := Empty;
c6823a20 1768 while Present (Comp) loop
70482933 1769
49e90211 1770 -- First handle the (real) component case
70482933
RK
1771
1772 if Ekind (Comp) = E_Component
1773 or else Ekind (Comp) = E_Discriminant
1774 then
70482933
RK
1775 declare
1776 CC : constant Node_Id := Component_Clause (Comp);
1777
1778 begin
c6823a20
EB
1779 -- Freezing a record type freezes the type of each of its
1780 -- components. However, if the type of the component is
1781 -- part of this record, we do not want or need a separate
1782 -- Freeze_Node. Note that Is_Itype is wrong because that's
1783 -- also set in private type cases. We also can't check for
1784 -- the Scope being exactly Rec because of private types and
1785 -- record extensions.
1786
1787 if Is_Itype (Etype (Comp))
1788 and then Is_Record_Type (Underlying_Type
1789 (Scope (Etype (Comp))))
1790 then
1791 Undelay_Type (Etype (Comp));
1792 end if;
1793
1794 Freeze_And_Append (Etype (Comp), Loc, Result);
1795
0da2c8ac
AC
1796 -- Check for error of component clause given for variable
1797 -- sized type. We have to delay this test till this point,
1798 -- since the component type has to be frozen for us to know
1799 -- if it is variable length. We omit this test in a generic
1800 -- context, it will be applied at instantiation time.
1801
70482933
RK
1802 if Present (CC) then
1803 Placed_Component := True;
1804
07fc65c4
GB
1805 if Inside_A_Generic then
1806 null;
1807
7d8b9c99
RD
1808 elsif not
1809 Size_Known_At_Compile_Time
1810 (Underlying_Type (Etype (Comp)))
70482933
RK
1811 then
1812 Error_Msg_N
1813 ("component clause not allowed for variable " &
1814 "length component", CC);
1815 end if;
1816
1817 else
1818 Unplaced_Component := True;
1819 end if;
70482933 1820
0da2c8ac 1821 -- Case of component requires byte alignment
70482933 1822
0da2c8ac 1823 if Must_Be_On_Byte_Boundary (Etype (Comp)) then
70482933 1824
0da2c8ac 1825 -- Set the enclosing record to also require byte align
70482933 1826
0da2c8ac 1827 Set_Must_Be_On_Byte_Boundary (Rec);
70482933 1828
7d8b9c99
RD
1829 -- Check for component clause that is inconsistent with
1830 -- the required byte boundary alignment.
70482933 1831
0da2c8ac
AC
1832 if Present (CC)
1833 and then Normalized_First_Bit (Comp) mod
1834 System_Storage_Unit /= 0
1835 then
1836 Error_Msg_N
1837 ("component & must be byte aligned",
1838 Component_Name (Component_Clause (Comp)));
1839 end if;
1840 end if;
70482933 1841
7d8b9c99
RD
1842 -- If component clause is present, then deal with the non-
1843 -- default bit order case for Ada 95 mode. The required
fea9e956
ES
1844 -- processing for Ada 2005 mode is handled separately after
1845 -- processing all components.
70482933 1846
0da2c8ac
AC
1847 -- We only do this processing for the base type, and in
1848 -- fact that's important, since otherwise if there are
1849 -- record subtypes, we could reverse the bits once for
1850 -- each subtype, which would be incorrect.
70482933 1851
0da2c8ac
AC
1852 if Present (CC)
1853 and then Reverse_Bit_Order (Rec)
1854 and then Ekind (E) = E_Record_Type
fea9e956 1855 and then Ada_Version <= Ada_95
0da2c8ac
AC
1856 then
1857 declare
1858 CFB : constant Uint := Component_Bit_Offset (Comp);
1859 CSZ : constant Uint := Esize (Comp);
1860 CLC : constant Node_Id := Component_Clause (Comp);
1861 Pos : constant Node_Id := Position (CLC);
1862 FB : constant Node_Id := First_Bit (CLC);
1863
1864 Storage_Unit_Offset : constant Uint :=
1865 CFB / System_Storage_Unit;
1866
1867 Start_Bit : constant Uint :=
1868 CFB mod System_Storage_Unit;
1869
1870 begin
1871 -- Cases where field goes over storage unit boundary
1872
1873 if Start_Bit + CSZ > System_Storage_Unit then
70482933 1874
0da2c8ac
AC
1875 -- Allow multi-byte field but generate warning
1876
1877 if Start_Bit mod System_Storage_Unit = 0
1878 and then CSZ mod System_Storage_Unit = 0
1879 then
70482933 1880 Error_Msg_N
0da2c8ac
AC
1881 ("multi-byte field specified with non-standard"
1882 & " Bit_Order?", CLC);
1883
1884 if Bytes_Big_Endian then
1885 Error_Msg_N
1886 ("bytes are not reversed "
1887 & "(component is big-endian)?", CLC);
1888 else
1889 Error_Msg_N
1890 ("bytes are not reversed "
1891 & "(component is little-endian)?", CLC);
1892 end if;
1893
c6084ae0 1894 -- Do not allow non-contiguous field
0da2c8ac 1895
70482933
RK
1896 else
1897 Error_Msg_N
c6084ae0
AC
1898 ("attempt to specify non-contiguous field "
1899 & "not permitted", CLC);
0da2c8ac 1900 Error_Msg_N
c6084ae0
AC
1901 ("\caused by non-standard Bit_Order "
1902 & "specified", CLC);
1903 Error_Msg_N
1904 ("\consider possibility of using "
1905 & "Ada 2005 mode here", CLC);
70482933
RK
1906 end if;
1907
c6084ae0 1908 -- Case where field fits in one storage unit
70482933
RK
1909
1910 else
0da2c8ac 1911 -- Give warning if suspicious component clause
70482933 1912
fea9e956
ES
1913 if Intval (FB) >= System_Storage_Unit
1914 and then Warn_On_Reverse_Bit_Order
1915 then
0da2c8ac
AC
1916 Error_Msg_N
1917 ("?Bit_Order clause does not affect " &
1918 "byte ordering", Pos);
1919 Error_Msg_Uint_1 :=
1920 Intval (Pos) + Intval (FB) /
1921 System_Storage_Unit;
1922 Error_Msg_N
1923 ("?position normalized to ^ before bit " &
1924 "order interpreted", Pos);
1925 end if;
70482933 1926
0da2c8ac
AC
1927 -- Here is where we fix up the Component_Bit_Offset
1928 -- value to account for the reverse bit order.
1929 -- Some examples of what needs to be done are:
70482933 1930
0da2c8ac
AC
1931 -- First_Bit .. Last_Bit Component_Bit_Offset
1932 -- old new old new
70482933 1933
0da2c8ac
AC
1934 -- 0 .. 0 7 .. 7 0 7
1935 -- 0 .. 1 6 .. 7 0 6
1936 -- 0 .. 2 5 .. 7 0 5
1937 -- 0 .. 7 0 .. 7 0 4
70482933 1938
0da2c8ac
AC
1939 -- 1 .. 1 6 .. 6 1 6
1940 -- 1 .. 4 3 .. 6 1 3
1941 -- 4 .. 7 0 .. 3 4 0
70482933 1942
0da2c8ac
AC
1943 -- The general rule is that the first bit is
1944 -- is obtained by subtracting the old ending bit
1945 -- from storage_unit - 1.
70482933 1946
0da2c8ac
AC
1947 Set_Component_Bit_Offset
1948 (Comp,
1949 (Storage_Unit_Offset * System_Storage_Unit) +
1950 (System_Storage_Unit - 1) -
1951 (Start_Bit + CSZ - 1));
70482933 1952
0da2c8ac
AC
1953 Set_Normalized_First_Bit
1954 (Comp,
1955 Component_Bit_Offset (Comp) mod
1956 System_Storage_Unit);
1957 end if;
1958 end;
1959 end if;
1960 end;
70482933
RK
1961 end if;
1962
426d2717 1963 -- Gather data for possible Implicit_Packing later
8dc10d38 1964
426d2717
AC
1965 if not Is_Scalar_Type (Etype (Comp)) then
1966 All_Scalar_Components := False;
1967 else
1968 Scalar_Component_Total_RM_Size :=
1969 Scalar_Component_Total_RM_Size + RM_Size (Etype (Comp));
1970 Scalar_Component_Total_Esize :=
1971 Scalar_Component_Total_Esize + Esize (Etype (Comp));
8dc10d38
AC
1972 end if;
1973
c6823a20
EB
1974 -- If the component is an Itype with Delayed_Freeze and is either
1975 -- a record or array subtype and its base type has not yet been
1976 -- frozen, we must remove this from the entity list of this
1977 -- record and put it on the entity list of the scope of its base
1978 -- type. Note that we know that this is not the type of a
1979 -- component since we cleared Has_Delayed_Freeze for it in the
1980 -- previous loop. Thus this must be the Designated_Type of an
1981 -- access type, which is the type of a component.
1982
1983 if Is_Itype (Comp)
1984 and then Is_Type (Scope (Comp))
1985 and then Is_Composite_Type (Comp)
1986 and then Base_Type (Comp) /= Comp
1987 and then Has_Delayed_Freeze (Comp)
1988 and then not Is_Frozen (Base_Type (Comp))
1989 then
1990 declare
1991 Will_Be_Frozen : Boolean := False;
1b24ada5 1992 S : Entity_Id;
c6823a20
EB
1993
1994 begin
fea9e956
ES
1995 -- We have a pretty bad kludge here. Suppose Rec is subtype
1996 -- being defined in a subprogram that's created as part of
1997 -- the freezing of Rec'Base. In that case, we know that
1998 -- Comp'Base must have already been frozen by the time we
1999 -- get to elaborate this because Gigi doesn't elaborate any
2000 -- bodies until it has elaborated all of the declarative
2001 -- part. But Is_Frozen will not be set at this point because
2002 -- we are processing code in lexical order.
2003
2004 -- We detect this case by going up the Scope chain of Rec
2005 -- and seeing if we have a subprogram scope before reaching
2006 -- the top of the scope chain or that of Comp'Base. If we
2007 -- do, then mark that Comp'Base will actually be frozen. If
2008 -- so, we merely undelay it.
c6823a20 2009
1b24ada5 2010 S := Scope (Rec);
c6823a20
EB
2011 while Present (S) loop
2012 if Is_Subprogram (S) then
2013 Will_Be_Frozen := True;
2014 exit;
2015 elsif S = Scope (Base_Type (Comp)) then
2016 exit;
2017 end if;
2018
2019 S := Scope (S);
2020 end loop;
2021
2022 if Will_Be_Frozen then
2023 Undelay_Type (Comp);
2024 else
2025 if Present (Prev) then
2026 Set_Next_Entity (Prev, Next_Entity (Comp));
2027 else
2028 Set_First_Entity (Rec, Next_Entity (Comp));
2029 end if;
2030
2031 -- Insert in entity list of scope of base type (which
2032 -- must be an enclosing scope, because still unfrozen).
2033
2034 Append_Entity (Comp, Scope (Base_Type (Comp)));
2035 end if;
2036 end;
2037
def46b54
RD
2038 -- If the component is an access type with an allocator as default
2039 -- value, the designated type will be frozen by the corresponding
2040 -- expression in init_proc. In order to place the freeze node for
2041 -- the designated type before that for the current record type,
2042 -- freeze it now.
c6823a20
EB
2043
2044 -- Same process if the component is an array of access types,
2045 -- initialized with an aggregate. If the designated type is
def46b54
RD
2046 -- private, it cannot contain allocators, and it is premature
2047 -- to freeze the type, so we check for this as well.
c6823a20
EB
2048
2049 elsif Is_Access_Type (Etype (Comp))
2050 and then Present (Parent (Comp))
2051 and then Present (Expression (Parent (Comp)))
c6823a20
EB
2052 then
2053 declare
e18d6a15
JM
2054 Alloc : constant Node_Id :=
2055 Check_Allocator (Expression (Parent (Comp)));
c6823a20
EB
2056
2057 begin
e18d6a15 2058 if Present (Alloc) then
19590d70 2059
e18d6a15
JM
2060 -- If component is pointer to a classwide type, freeze
2061 -- the specific type in the expression being allocated.
2062 -- The expression may be a subtype indication, in which
2063 -- case freeze the subtype mark.
c6823a20 2064
e18d6a15
JM
2065 if Is_Class_Wide_Type
2066 (Designated_Type (Etype (Comp)))
0f4cb75c 2067 then
e18d6a15
JM
2068 if Is_Entity_Name (Expression (Alloc)) then
2069 Freeze_And_Append
2070 (Entity (Expression (Alloc)), Loc, Result);
2071 elsif
2072 Nkind (Expression (Alloc)) = N_Subtype_Indication
2073 then
2074 Freeze_And_Append
2075 (Entity (Subtype_Mark (Expression (Alloc))),
2076 Loc, Result);
2077 end if;
0f4cb75c 2078
e18d6a15
JM
2079 elsif Is_Itype (Designated_Type (Etype (Comp))) then
2080 Check_Itype (Etype (Comp));
0f4cb75c 2081
e18d6a15
JM
2082 else
2083 Freeze_And_Append
2084 (Designated_Type (Etype (Comp)), Loc, Result);
2085 end if;
c6823a20
EB
2086 end if;
2087 end;
2088
2089 elsif Is_Access_Type (Etype (Comp))
2090 and then Is_Itype (Designated_Type (Etype (Comp)))
2091 then
7d8b9c99 2092 Check_Itype (Etype (Comp));
c6823a20
EB
2093
2094 elsif Is_Array_Type (Etype (Comp))
2095 and then Is_Access_Type (Component_Type (Etype (Comp)))
2096 and then Present (Parent (Comp))
2097 and then Nkind (Parent (Comp)) = N_Component_Declaration
2098 and then Present (Expression (Parent (Comp)))
2099 and then Nkind (Expression (Parent (Comp))) = N_Aggregate
2100 and then Is_Fully_Defined
2101 (Designated_Type (Component_Type (Etype (Comp))))
2102 then
2103 Freeze_And_Append
2104 (Designated_Type
2105 (Component_Type (Etype (Comp))), Loc, Result);
2106 end if;
2107
2108 Prev := Comp;
70482933
RK
2109 Next_Entity (Comp);
2110 end loop;
2111
fea9e956
ES
2112 -- Deal with pragma Bit_Order
2113
2114 if Reverse_Bit_Order (Rec) and then Base_Type (Rec) = Rec then
2115 if not Placed_Component then
2116 ADC :=
2117 Get_Attribute_Definition_Clause (Rec, Attribute_Bit_Order);
2118 Error_Msg_N
2119 ("?Bit_Order specification has no effect", ADC);
2120 Error_Msg_N
2121 ("\?since no component clauses were specified", ADC);
2122
def46b54
RD
2123 -- Here is where we do Ada 2005 processing for bit order (the Ada
2124 -- 95 case was already taken care of above).
70482933 2125
fea9e956
ES
2126 elsif Ada_Version >= Ada_05 then
2127 Adjust_Record_For_Reverse_Bit_Order (Rec);
2128 end if;
70482933
RK
2129 end if;
2130
1b24ada5
RD
2131 -- Set OK_To_Reorder_Components depending on debug flags
2132
2133 if Rec = Base_Type (Rec)
2134 and then Convention (Rec) = Convention_Ada
2135 then
2136 if (Has_Discriminants (Rec) and then Debug_Flag_Dot_V)
2137 or else
2138 (not Has_Discriminants (Rec) and then Debug_Flag_Dot_R)
2139 then
2140 Set_OK_To_Reorder_Components (Rec);
2141 end if;
2142 end if;
2143
ee094616
RD
2144 -- Check for useless pragma Pack when all components placed. We only
2145 -- do this check for record types, not subtypes, since a subtype may
2146 -- have all its components placed, and it still makes perfectly good
1b24ada5
RD
2147 -- sense to pack other subtypes or the parent type. We do not give
2148 -- this warning if Optimize_Alignment is set to Space, since the
2149 -- pragma Pack does have an effect in this case (it always resets
2150 -- the alignment to one).
70482933 2151
ee094616
RD
2152 if Ekind (Rec) = E_Record_Type
2153 and then Is_Packed (Rec)
70482933 2154 and then not Unplaced_Component
1b24ada5 2155 and then Optimize_Alignment /= 'S'
70482933 2156 then
def46b54
RD
2157 -- Reset packed status. Probably not necessary, but we do it so
2158 -- that there is no chance of the back end doing something strange
2159 -- with this redundant indication of packing.
ee094616 2160
70482933 2161 Set_Is_Packed (Rec, False);
ee094616
RD
2162
2163 -- Give warning if redundant constructs warnings on
2164
2165 if Warn_On_Redundant_Constructs then
2166 Error_Msg_N
2167 ("?pragma Pack has no effect, no unplaced components",
2168 Get_Rep_Pragma (Rec, Name_Pack));
2169 end if;
70482933
RK
2170 end if;
2171
ee094616
RD
2172 -- If this is the record corresponding to a remote type, freeze the
2173 -- remote type here since that is what we are semantically freezing.
2174 -- This prevents the freeze node for that type in an inner scope.
70482933
RK
2175
2176 -- Also, Check for controlled components and unchecked unions.
ee094616
RD
2177 -- Finally, enforce the restriction that access attributes with a
2178 -- current instance prefix can only apply to limited types.
70482933 2179
8dc10d38 2180 if Ekind (Rec) = E_Record_Type then
70482933
RK
2181 if Present (Corresponding_Remote_Type (Rec)) then
2182 Freeze_And_Append
2183 (Corresponding_Remote_Type (Rec), Loc, Result);
2184 end if;
2185
2186 Comp := First_Component (Rec);
70482933
RK
2187 while Present (Comp) loop
2188 if Has_Controlled_Component (Etype (Comp))
2189 or else (Chars (Comp) /= Name_uParent
2190 and then Is_Controlled (Etype (Comp)))
2191 or else (Is_Protected_Type (Etype (Comp))
2192 and then Present
2193 (Corresponding_Record_Type (Etype (Comp)))
2194 and then Has_Controlled_Component
2195 (Corresponding_Record_Type (Etype (Comp))))
2196 then
2197 Set_Has_Controlled_Component (Rec);
2198 exit;
2199 end if;
2200
2201 if Has_Unchecked_Union (Etype (Comp)) then
2202 Set_Has_Unchecked_Union (Rec);
2203 end if;
2204
32c760e6
ES
2205 if Has_Per_Object_Constraint (Comp) then
2206
ee094616
RD
2207 -- Scan component declaration for likely misuses of current
2208 -- instance, either in a constraint or a default expression.
70482933
RK
2209
2210 Check_Current_Instance (Parent (Comp));
2211 end if;
2212
2213 Next_Component (Comp);
2214 end loop;
2215 end if;
2216
2217 Set_Component_Alignment_If_Not_Set (Rec);
2218
ee094616
RD
2219 -- For first subtypes, check if there are any fixed-point fields with
2220 -- component clauses, where we must check the size. This is not done
2221 -- till the freeze point, since for fixed-point types, we do not know
2222 -- the size until the type is frozen. Similar processing applies to
2223 -- bit packed arrays.
70482933
RK
2224
2225 if Is_First_Subtype (Rec) then
2226 Comp := First_Component (Rec);
2227
2228 while Present (Comp) loop
2229 if Present (Component_Clause (Comp))
d05ef0ab
AC
2230 and then (Is_Fixed_Point_Type (Etype (Comp))
2231 or else
2232 Is_Bit_Packed_Array (Etype (Comp)))
70482933
RK
2233 then
2234 Check_Size
d05ef0ab 2235 (Component_Name (Component_Clause (Comp)),
70482933
RK
2236 Etype (Comp),
2237 Esize (Comp),
2238 Junk);
2239 end if;
2240
2241 Next_Component (Comp);
2242 end loop;
2243 end if;
7d8b9c99
RD
2244
2245 -- Generate warning for applying C or C++ convention to a record
2246 -- with discriminants. This is suppressed for the unchecked union
1b24ada5
RD
2247 -- case, since the whole point in this case is interface C. We also
2248 -- do not generate this within instantiations, since we will have
2249 -- generated a message on the template.
7d8b9c99
RD
2250
2251 if Has_Discriminants (E)
2252 and then not Is_Unchecked_Union (E)
7d8b9c99
RD
2253 and then (Convention (E) = Convention_C
2254 or else
2255 Convention (E) = Convention_CPP)
2256 and then Comes_From_Source (E)
1b24ada5
RD
2257 and then not In_Instance
2258 and then not Has_Warnings_Off (E)
2259 and then not Has_Warnings_Off (Base_Type (E))
7d8b9c99
RD
2260 then
2261 declare
2262 Cprag : constant Node_Id := Get_Rep_Pragma (E, Name_Convention);
2263 A2 : Node_Id;
2264
2265 begin
2266 if Present (Cprag) then
2267 A2 := Next (First (Pragma_Argument_Associations (Cprag)));
2268
2269 if Convention (E) = Convention_C then
2270 Error_Msg_N
2271 ("?variant record has no direct equivalent in C", A2);
2272 else
2273 Error_Msg_N
2274 ("?variant record has no direct equivalent in C++", A2);
2275 end if;
2276
2277 Error_Msg_NE
2278 ("\?use of convention for type& is dubious", A2, E);
2279 end if;
2280 end;
2281 end if;
8dc10d38 2282
426d2717 2283 -- See if Implicit_Packing would work
8dc10d38 2284
426d2717
AC
2285 if not Is_Packed (Rec)
2286 and then not Placed_Component
8dc10d38
AC
2287 and then Has_Size_Clause (Rec)
2288 and then All_Scalar_Components
2289 and then not Has_Discriminants (Rec)
2290 and then Esize (Rec) < Scalar_Component_Total_Esize
2291 and then Esize (Rec) >= Scalar_Component_Total_RM_Size
2292 then
426d2717
AC
2293 -- If implicit packing enabled, do it
2294
2295 if Implicit_Packing then
2296 Set_Is_Packed (Rec);
2297
2298 -- Otherwise flag the size clause
2299
2300 else
2301 declare
2302 Sz : constant Node_Id := Size_Clause (Rec);
2303 begin
2995ebee 2304 Error_Msg_NE -- CODEFIX
426d2717 2305 ("size given for& too small", Sz, Rec);
2995ebee 2306 Error_Msg_N -- CODEFIX
426d2717
AC
2307 ("\use explicit pragma Pack "
2308 & "or use pragma Implicit_Packing", Sz);
2309 end;
2310 end if;
8dc10d38 2311 end if;
70482933
RK
2312 end Freeze_Record_Type;
2313
2314 -- Start of processing for Freeze_Entity
2315
2316 begin
c6823a20
EB
2317 -- We are going to test for various reasons why this entity need not be
2318 -- frozen here, but in the case of an Itype that's defined within a
2319 -- record, that test actually applies to the record.
2320
2321 if Is_Itype (E) and then Is_Record_Type (Scope (E)) then
2322 Test_E := Scope (E);
2323 elsif Is_Itype (E) and then Present (Underlying_Type (Scope (E)))
2324 and then Is_Record_Type (Underlying_Type (Scope (E)))
2325 then
2326 Test_E := Underlying_Type (Scope (E));
2327 end if;
2328
fbf5a39b 2329 -- Do not freeze if already frozen since we only need one freeze node
70482933
RK
2330
2331 if Is_Frozen (E) then
2332 return No_List;
2333
c6823a20
EB
2334 -- It is improper to freeze an external entity within a generic because
2335 -- its freeze node will appear in a non-valid context. The entity will
2336 -- be frozen in the proper scope after the current generic is analyzed.
70482933 2337
c6823a20 2338 elsif Inside_A_Generic and then External_Ref_In_Generic (Test_E) then
70482933
RK
2339 return No_List;
2340
2341 -- Do not freeze a global entity within an inner scope created during
2342 -- expansion. A call to subprogram E within some internal procedure
2343 -- (a stream attribute for example) might require freezing E, but the
2344 -- freeze node must appear in the same declarative part as E itself.
2345 -- The two-pass elaboration mechanism in gigi guarantees that E will
2346 -- be frozen before the inner call is elaborated. We exclude constants
2347 -- from this test, because deferred constants may be frozen early, and
19590d70
GD
2348 -- must be diagnosed (e.g. in the case of a deferred constant being used
2349 -- in a default expression). If the enclosing subprogram comes from
2350 -- source, or is a generic instance, then the freeze point is the one
2351 -- mandated by the language, and we freeze the entity. A subprogram that
2352 -- is a child unit body that acts as a spec does not have a spec that
2353 -- comes from source, but can only come from source.
70482933 2354
c6823a20
EB
2355 elsif In_Open_Scopes (Scope (Test_E))
2356 and then Scope (Test_E) /= Current_Scope
2357 and then Ekind (Test_E) /= E_Constant
70482933
RK
2358 then
2359 declare
2360 S : Entity_Id := Current_Scope;
2361
2362 begin
2363 while Present (S) loop
2364 if Is_Overloadable (S) then
2365 if Comes_From_Source (S)
2366 or else Is_Generic_Instance (S)
fea9e956 2367 or else Is_Child_Unit (S)
70482933
RK
2368 then
2369 exit;
2370 else
2371 return No_List;
2372 end if;
2373 end if;
2374
2375 S := Scope (S);
2376 end loop;
2377 end;
555360a5
AC
2378
2379 -- Similarly, an inlined instance body may make reference to global
2380 -- entities, but these references cannot be the proper freezing point
def46b54
RD
2381 -- for them, and in the absence of inlining freezing will take place in
2382 -- their own scope. Normally instance bodies are analyzed after the
2383 -- enclosing compilation, and everything has been frozen at the proper
2384 -- place, but with front-end inlining an instance body is compiled
2385 -- before the end of the enclosing scope, and as a result out-of-order
2386 -- freezing must be prevented.
555360a5
AC
2387
2388 elsif Front_End_Inlining
7d8b9c99 2389 and then In_Instance_Body
c6823a20 2390 and then Present (Scope (Test_E))
555360a5
AC
2391 then
2392 declare
c6823a20
EB
2393 S : Entity_Id := Scope (Test_E);
2394
555360a5
AC
2395 begin
2396 while Present (S) loop
2397 if Is_Generic_Instance (S) then
2398 exit;
2399 else
2400 S := Scope (S);
2401 end if;
2402 end loop;
2403
2404 if No (S) then
2405 return No_List;
2406 end if;
2407 end;
70482933
RK
2408 end if;
2409
2410 -- Here to freeze the entity
2411
2412 Result := No_List;
2413 Set_Is_Frozen (E);
2414
2415 -- Case of entity being frozen is other than a type
2416
2417 if not Is_Type (E) then
2418
2419 -- If entity is exported or imported and does not have an external
2420 -- name, now is the time to provide the appropriate default name.
2421 -- Skip this if the entity is stubbed, since we don't need a name
2422 -- for any stubbed routine.
2423
2424 if (Is_Imported (E) or else Is_Exported (E))
2425 and then No (Interface_Name (E))
2426 and then Convention (E) /= Convention_Stubbed
2427 then
2428 Set_Encoded_Interface_Name
2429 (E, Get_Default_External_Name (E));
fbf5a39b 2430
bbaba73f
EB
2431 -- If entity is an atomic object appearing in a declaration and
2432 -- the expression is an aggregate, assign it to a temporary to
2433 -- ensure that the actual assignment is done atomically rather
2434 -- than component-wise (the assignment to the temp may be done
2435 -- component-wise, but that is harmless).
fbf5a39b
AC
2436
2437 elsif Is_Atomic (E)
2438 and then Nkind (Parent (E)) = N_Object_Declaration
2439 and then Present (Expression (Parent (E)))
bbaba73f 2440 and then Nkind (Expression (Parent (E))) = N_Aggregate
b0159fbe 2441 and then
cfb120b5 2442 Is_Atomic_Aggregate (Expression (Parent (E)), Etype (E))
fbf5a39b 2443 then
b0159fbe 2444 null;
70482933
RK
2445 end if;
2446
2447 -- For a subprogram, freeze all parameter types and also the return
fbf5a39b 2448 -- type (RM 13.14(14)). However skip this for internal subprograms.
70482933 2449 -- This is also the point where any extra formal parameters are
fb2e11ee
AC
2450 -- created since we now know whether the subprogram will use a
2451 -- foreign convention.
70482933
RK
2452
2453 if Is_Subprogram (E) then
70482933 2454 if not Is_Internal (E) then
70482933 2455 declare
6d11af89 2456 F_Type : Entity_Id;
def46b54 2457 R_Type : Entity_Id;
6d11af89 2458 Warn_Node : Node_Id;
70482933 2459
70482933
RK
2460 begin
2461 -- Loop through formals
2462
2463 Formal := First_Formal (E);
70482933 2464 while Present (Formal) loop
70482933
RK
2465 F_Type := Etype (Formal);
2466 Freeze_And_Append (F_Type, Loc, Result);
2467
2468 if Is_Private_Type (F_Type)
2469 and then Is_Private_Type (Base_Type (F_Type))
2470 and then No (Full_View (Base_Type (F_Type)))
2471 and then not Is_Generic_Type (F_Type)
2472 and then not Is_Derived_Type (F_Type)
2473 then
2474 -- If the type of a formal is incomplete, subprogram
2475 -- is being frozen prematurely. Within an instance
2476 -- (but not within a wrapper package) this is an
fb2e11ee 2477 -- artifact of our need to regard the end of an
70482933
RK
2478 -- instantiation as a freeze point. Otherwise it is
2479 -- a definite error.
fbf5a39b 2480
70482933
RK
2481 if In_Instance then
2482 Set_Is_Frozen (E, False);
2483 return No_List;
2484
86cde7b1
RD
2485 elsif not After_Last_Declaration
2486 and then not Freezing_Library_Level_Tagged_Type
2487 then
70482933
RK
2488 Error_Msg_Node_1 := F_Type;
2489 Error_Msg
2490 ("type& must be fully defined before this point",
2491 Loc);
2492 end if;
2493 end if;
2494
def46b54 2495 -- Check suspicious parameter for C function. These tests
1b24ada5 2496 -- apply only to exported/imported subprograms.
70482933 2497
def46b54 2498 if Warn_On_Export_Import
1b24ada5 2499 and then Comes_From_Source (E)
def46b54
RD
2500 and then (Convention (E) = Convention_C
2501 or else
2502 Convention (E) = Convention_CPP)
def46b54 2503 and then (Is_Imported (E) or else Is_Exported (E))
1b24ada5
RD
2504 and then Convention (E) /= Convention (Formal)
2505 and then not Has_Warnings_Off (E)
2506 and then not Has_Warnings_Off (F_Type)
2507 and then not Has_Warnings_Off (Formal)
fbf5a39b 2508 then
70482933 2509 Error_Msg_Qual_Level := 1;
def46b54
RD
2510
2511 -- Check suspicious use of fat C pointer
2512
2513 if Is_Access_Type (F_Type)
2514 and then Esize (F_Type) > Ttypes.System_Address_Size
2515 then
2516 Error_Msg_N
2517 ("?type of & does not correspond "
2518 & "to C pointer!", Formal);
2519
2520 -- Check suspicious return of boolean
2521
2522 elsif Root_Type (F_Type) = Standard_Boolean
2523 and then Convention (F_Type) = Convention_Ada
67198556
RD
2524 and then not Has_Warnings_Off (F_Type)
2525 and then not Has_Size_Clause (F_Type)
def46b54
RD
2526 then
2527 Error_Msg_N
2528 ("?& is an 8-bit Ada Boolean, "
2529 & "use char in C!", Formal);
2530
2531 -- Check suspicious tagged type
2532
2533 elsif (Is_Tagged_Type (F_Type)
2534 or else (Is_Access_Type (F_Type)
2535 and then
2536 Is_Tagged_Type
2537 (Designated_Type (F_Type))))
2538 and then Convention (E) = Convention_C
2539 then
2540 Error_Msg_N
e7d72fb9 2541 ("?& involves a tagged type which does not "
def46b54
RD
2542 & "correspond to any C type!", Formal);
2543
2544 -- Check wrong convention subprogram pointer
2545
2546 elsif Ekind (F_Type) = E_Access_Subprogram_Type
2547 and then not Has_Foreign_Convention (F_Type)
2548 then
2549 Error_Msg_N
2550 ("?subprogram pointer & should "
2551 & "have foreign convention!", Formal);
2552 Error_Msg_Sloc := Sloc (F_Type);
2553 Error_Msg_NE
2554 ("\?add Convention pragma to declaration of &#",
2555 Formal, F_Type);
2556 end if;
2557
70482933
RK
2558 Error_Msg_Qual_Level := 0;
2559 end if;
2560
2561 -- Check for unconstrained array in exported foreign
2562 -- convention case.
2563
def46b54 2564 if Has_Foreign_Convention (E)
70482933
RK
2565 and then not Is_Imported (E)
2566 and then Is_Array_Type (F_Type)
2567 and then not Is_Constrained (F_Type)
fbf5a39b 2568 and then Warn_On_Export_Import
70482933
RK
2569 then
2570 Error_Msg_Qual_Level := 1;
6d11af89
AC
2571
2572 -- If this is an inherited operation, place the
2573 -- warning on the derived type declaration, rather
2574 -- than on the original subprogram.
2575
2576 if Nkind (Original_Node (Parent (E))) =
2577 N_Full_Type_Declaration
2578 then
2579 Warn_Node := Parent (E);
2580
2581 if Formal = First_Formal (E) then
2582 Error_Msg_NE
add9f797 2583 ("?in inherited operation&", Warn_Node, E);
6d11af89
AC
2584 end if;
2585 else
2586 Warn_Node := Formal;
2587 end if;
2588
2589 Error_Msg_NE
70482933 2590 ("?type of argument& is unconstrained array",
6d11af89
AC
2591 Warn_Node, Formal);
2592 Error_Msg_NE
70482933 2593 ("?foreign caller must pass bounds explicitly",
6d11af89 2594 Warn_Node, Formal);
70482933
RK
2595 Error_Msg_Qual_Level := 0;
2596 end if;
2597
d8db0bca
JM
2598 if not From_With_Type (F_Type) then
2599 if Is_Access_Type (F_Type) then
2600 F_Type := Designated_Type (F_Type);
2601 end if;
2602
7d8b9c99
RD
2603 -- If the formal is an anonymous_access_to_subprogram
2604 -- freeze the subprogram type as well, to prevent
2605 -- scope anomalies in gigi, because there is no other
2606 -- clear point at which it could be frozen.
2607
93bcda23 2608 if Is_Itype (Etype (Formal))
7d8b9c99
RD
2609 and then Ekind (F_Type) = E_Subprogram_Type
2610 then
57747aec 2611 Freeze_And_Append (F_Type, Loc, Result);
d8db0bca
JM
2612 end if;
2613 end if;
2614
70482933
RK
2615 Next_Formal (Formal);
2616 end loop;
2617
5e39baa6 2618 -- Case of function: similar checks on return type
70482933
RK
2619
2620 if Ekind (E) = E_Function then
def46b54
RD
2621
2622 -- Freeze return type
2623
2624 R_Type := Etype (E);
2625 Freeze_And_Append (R_Type, Loc, Result);
2626
2627 -- Check suspicious return type for C function
70482933 2628
fbf5a39b 2629 if Warn_On_Export_Import
def46b54
RD
2630 and then (Convention (E) = Convention_C
2631 or else
2632 Convention (E) = Convention_CPP)
def46b54 2633 and then (Is_Imported (E) or else Is_Exported (E))
fbf5a39b 2634 then
def46b54
RD
2635 -- Check suspicious return of fat C pointer
2636
2637 if Is_Access_Type (R_Type)
2638 and then Esize (R_Type) > Ttypes.System_Address_Size
1b24ada5
RD
2639 and then not Has_Warnings_Off (E)
2640 and then not Has_Warnings_Off (R_Type)
def46b54
RD
2641 then
2642 Error_Msg_N
2643 ("?return type of& does not "
2644 & "correspond to C pointer!", E);
2645
2646 -- Check suspicious return of boolean
2647
2648 elsif Root_Type (R_Type) = Standard_Boolean
2649 and then Convention (R_Type) = Convention_Ada
1b24ada5
RD
2650 and then not Has_Warnings_Off (E)
2651 and then not Has_Warnings_Off (R_Type)
67198556 2652 and then not Has_Size_Clause (R_Type)
def46b54
RD
2653 then
2654 Error_Msg_N
2655 ("?return type of & is an 8-bit "
2656 & "Ada Boolean, use char in C!", E);
70482933 2657
def46b54
RD
2658 -- Check suspicious return tagged type
2659
2660 elsif (Is_Tagged_Type (R_Type)
2661 or else (Is_Access_Type (R_Type)
2662 and then
2663 Is_Tagged_Type
2664 (Designated_Type (R_Type))))
2665 and then Convention (E) = Convention_C
1b24ada5
RD
2666 and then not Has_Warnings_Off (E)
2667 and then not Has_Warnings_Off (R_Type)
def46b54
RD
2668 then
2669 Error_Msg_N
2670 ("?return type of & does not "
2671 & "correspond to C type!", E);
2672
2673 -- Check return of wrong convention subprogram pointer
2674
2675 elsif Ekind (R_Type) = E_Access_Subprogram_Type
2676 and then not Has_Foreign_Convention (R_Type)
1b24ada5
RD
2677 and then not Has_Warnings_Off (E)
2678 and then not Has_Warnings_Off (R_Type)
def46b54
RD
2679 then
2680 Error_Msg_N
2681 ("?& should return a foreign "
2682 & "convention subprogram pointer", E);
2683 Error_Msg_Sloc := Sloc (R_Type);
2684 Error_Msg_NE
2685 ("\?add Convention pragma to declaration of& #",
2686 E, R_Type);
2687 end if;
2688 end if;
2689
e7d72fb9
AC
2690 -- Give warning for suspicous return of a result of an
2691 -- unconstrained array type in a foreign convention
2692 -- function.
59366db6 2693
e7d72fb9
AC
2694 if Has_Foreign_Convention (E)
2695
2696 -- We are looking for a return of unconstrained array
2697
2698 and then Is_Array_Type (R_Type)
93bcda23 2699 and then not Is_Constrained (R_Type)
e7d72fb9
AC
2700
2701 -- Exclude imported routines, the warning does not
2702 -- belong on the import, but on the routine definition.
2703
70482933 2704 and then not Is_Imported (E)
e7d72fb9
AC
2705
2706 -- Exclude VM case, since both .NET and JVM can handle
2707 -- return of unconstrained arrays without a problem.
2708
f3b57ab0 2709 and then VM_Target = No_VM
e7d72fb9
AC
2710
2711 -- Check that general warning is enabled, and that it
2712 -- is not suppressed for this particular case.
2713
fbf5a39b 2714 and then Warn_On_Export_Import
1b24ada5 2715 and then not Has_Warnings_Off (E)
93bcda23 2716 and then not Has_Warnings_Off (R_Type)
70482933
RK
2717 then
2718 Error_Msg_N
fbf5a39b 2719 ("?foreign convention function& should not " &
1b24ada5 2720 "return unconstrained array!", E);
70482933
RK
2721 end if;
2722 end if;
2723 end;
2724 end if;
2725
2726 -- Must freeze its parent first if it is a derived subprogram
2727
2728 if Present (Alias (E)) then
2729 Freeze_And_Append (Alias (E), Loc, Result);
2730 end if;
2731
19590d70
GD
2732 -- We don't freeze internal subprograms, because we don't normally
2733 -- want addition of extra formals or mechanism setting to happen
2734 -- for those. However we do pass through predefined dispatching
2735 -- cases, since extra formals may be needed in some cases, such as
2736 -- for the stream 'Input function (build-in-place formals).
2737
2738 if not Is_Internal (E)
2739 or else Is_Predefined_Dispatching_Operation (E)
2740 then
70482933
RK
2741 Freeze_Subprogram (E);
2742 end if;
2743
2744 -- Here for other than a subprogram or type
2745
2746 else
2747 -- If entity has a type, and it is not a generic unit, then
7d8b9c99 2748 -- freeze it first (RM 13.14(10)).
70482933 2749
ac72c9c5 2750 if Present (Etype (E))
70482933
RK
2751 and then Ekind (E) /= E_Generic_Function
2752 then
2753 Freeze_And_Append (Etype (E), Loc, Result);
2754 end if;
2755
2c9beb8a 2756 -- Special processing for objects created by object declaration
70482933
RK
2757
2758 if Nkind (Declaration_Node (E)) = N_Object_Declaration then
2c9beb8a 2759
6823270c
AC
2760 -- Abstract type allowed only for C++ imported variables or
2761 -- constants.
2762
2763 -- Note: we inhibit this check for objects that do not come
2764 -- from source because there is at least one case (the
2765 -- expansion of x'class'input where x is abstract) where we
2766 -- legitimately generate an abstract object.
2767
2768 if Is_Abstract_Type (Etype (E))
2769 and then Comes_From_Source (Parent (E))
2770 and then not (Is_Imported (E)
2771 and then Is_CPP_Class (Etype (E)))
2772 then
2773 Error_Msg_N ("type of object cannot be abstract",
2774 Object_Definition (Parent (E)));
2775
2776 if Is_CPP_Class (Etype (E)) then
2777 Error_Msg_NE ("\} may need a cpp_constructor",
2778 Object_Definition (Parent (E)), Etype (E));
2779 end if;
2780 end if;
2781
2c9beb8a
RD
2782 -- For object created by object declaration, perform required
2783 -- categorization (preelaborate and pure) checks. Defer these
2784 -- checks to freeze time since pragma Import inhibits default
2785 -- initialization and thus pragma Import affects these checks.
2786
70482933 2787 Validate_Object_Declaration (Declaration_Node (E));
2c9beb8a 2788
1ce1f005 2789 -- If there is an address clause, check that it is valid
2c9beb8a 2790
fbf5a39b 2791 Check_Address_Clause (E);
2c9beb8a 2792
1ce1f005
GD
2793 -- If the object needs any kind of default initialization, an
2794 -- error must be issued if No_Default_Initialization applies.
2795 -- The check doesn't apply to imported objects, which are not
2796 -- ever default initialized, and is why the check is deferred
2797 -- until freezing, at which point we know if Import applies.
4fec4e7a
ES
2798 -- Deferred constants are also exempted from this test because
2799 -- their completion is explicit, or through an import pragma.
1ce1f005 2800
4fec4e7a
ES
2801 if Ekind (E) = E_Constant
2802 and then Present (Full_View (E))
2803 then
2804 null;
2805
2806 elsif Comes_From_Source (E)
b6e209b5 2807 and then not Is_Imported (E)
1ce1f005
GD
2808 and then not Has_Init_Expression (Declaration_Node (E))
2809 and then
2810 ((Has_Non_Null_Base_Init_Proc (Etype (E))
2811 and then not No_Initialization (Declaration_Node (E))
2812 and then not Is_Value_Type (Etype (E))
2813 and then not Suppress_Init_Proc (Etype (E)))
2814 or else
2815 (Needs_Simple_Initialization (Etype (E))
2816 and then not Is_Internal (E)))
2817 then
4c8a5bb8 2818 Has_Default_Initialization := True;
1ce1f005
GD
2819 Check_Restriction
2820 (No_Default_Initialization, Declaration_Node (E));
2821 end if;
2822
4c8a5bb8
AC
2823 -- Check that a Thread_Local_Storage variable does not have
2824 -- default initialization, and any explicit initialization must
2825 -- either be the null constant or a static constant.
2826
2827 if Has_Pragma_Thread_Local_Storage (E) then
2828 declare
2829 Decl : constant Node_Id := Declaration_Node (E);
2830 begin
2831 if Has_Default_Initialization
2832 or else
2833 (Has_Init_Expression (Decl)
2834 and then
2835 (No (Expression (Decl))
2836 or else not
2837 (Is_Static_Expression (Expression (Decl))
2838 or else
2839 Nkind (Expression (Decl)) = N_Null)))
2840 then
2841 Error_Msg_NE
2842 ("Thread_Local_Storage variable& is "
2843 & "improperly initialized", Decl, E);
2844 Error_Msg_NE
2845 ("\only allowed initialization is explicit "
2846 & "NULL or static expression", Decl, E);
2847 end if;
2848 end;
2849 end if;
2850
def46b54
RD
2851 -- For imported objects, set Is_Public unless there is also an
2852 -- address clause, which means that there is no external symbol
2853 -- needed for the Import (Is_Public may still be set for other
2854 -- unrelated reasons). Note that we delayed this processing
2855 -- till freeze time so that we can be sure not to set the flag
2856 -- if there is an address clause. If there is such a clause,
2857 -- then the only purpose of the Import pragma is to suppress
2858 -- implicit initialization.
2c9beb8a
RD
2859
2860 if Is_Imported (E)
add9f797 2861 and then No (Address_Clause (E))
2c9beb8a
RD
2862 then
2863 Set_Is_Public (E);
2864 end if;
7d8b9c99
RD
2865
2866 -- For convention C objects of an enumeration type, warn if
2867 -- the size is not integer size and no explicit size given.
2868 -- Skip warning for Boolean, and Character, assume programmer
2869 -- expects 8-bit sizes for these cases.
2870
2871 if (Convention (E) = Convention_C
2872 or else
2873 Convention (E) = Convention_CPP)
2874 and then Is_Enumeration_Type (Etype (E))
2875 and then not Is_Character_Type (Etype (E))
2876 and then not Is_Boolean_Type (Etype (E))
2877 and then Esize (Etype (E)) < Standard_Integer_Size
2878 and then not Has_Size_Clause (E)
2879 then
2880 Error_Msg_Uint_1 := UI_From_Int (Standard_Integer_Size);
2881 Error_Msg_N
2882 ("?convention C enumeration object has size less than ^",
2883 E);
2884 Error_Msg_N ("\?use explicit size clause to set size", E);
2885 end if;
70482933
RK
2886 end if;
2887
2888 -- Check that a constant which has a pragma Volatile[_Components]
7d8b9c99 2889 -- or Atomic[_Components] also has a pragma Import (RM C.6(13)).
70482933
RK
2890
2891 -- Note: Atomic[_Components] also sets Volatile[_Components]
2892
2893 if Ekind (E) = E_Constant
2894 and then (Has_Volatile_Components (E) or else Is_Volatile (E))
2895 and then not Is_Imported (E)
2896 then
2897 -- Make sure we actually have a pragma, and have not merely
2898 -- inherited the indication from elsewhere (e.g. an address
2899 -- clause, which is not good enough in RM terms!)
2900
1d571f3b 2901 if Has_Rep_Pragma (E, Name_Atomic)
91b1417d 2902 or else
1d571f3b 2903 Has_Rep_Pragma (E, Name_Atomic_Components)
70482933
RK
2904 then
2905 Error_Msg_N
91b1417d 2906 ("stand alone atomic constant must be " &
def46b54 2907 "imported (RM C.6(13))", E);
91b1417d 2908
1d571f3b 2909 elsif Has_Rep_Pragma (E, Name_Volatile)
91b1417d 2910 or else
1d571f3b 2911 Has_Rep_Pragma (E, Name_Volatile_Components)
91b1417d
AC
2912 then
2913 Error_Msg_N
2914 ("stand alone volatile constant must be " &
86cde7b1 2915 "imported (RM C.6(13))", E);
70482933
RK
2916 end if;
2917 end if;
2918
2919 -- Static objects require special handling
2920
2921 if (Ekind (E) = E_Constant or else Ekind (E) = E_Variable)
2922 and then Is_Statically_Allocated (E)
2923 then
2924 Freeze_Static_Object (E);
2925 end if;
2926
2927 -- Remaining step is to layout objects
2928
2929 if Ekind (E) = E_Variable
2930 or else
2931 Ekind (E) = E_Constant
2932 or else
2933 Ekind (E) = E_Loop_Parameter
2934 or else
2935 Is_Formal (E)
2936 then
2937 Layout_Object (E);
2938 end if;
2939 end if;
2940
2941 -- Case of a type or subtype being frozen
2942
2943 else
31b5873d
GD
2944 -- We used to check here that a full type must have preelaborable
2945 -- initialization if it completes a private type specified with
2946 -- pragma Preelaborable_Intialization, but that missed cases where
2947 -- the types occur within a generic package, since the freezing
2948 -- that occurs within a containing scope generally skips traversal
2949 -- of a generic unit's declarations (those will be frozen within
2950 -- instances). This check was moved to Analyze_Package_Specification.
3f1ede06 2951
70482933
RK
2952 -- The type may be defined in a generic unit. This can occur when
2953 -- freezing a generic function that returns the type (which is
2954 -- defined in a parent unit). It is clearly meaningless to freeze
2955 -- this type. However, if it is a subtype, its size may be determi-
2956 -- nable and used in subsequent checks, so might as well try to
2957 -- compute it.
2958
2959 if Present (Scope (E))
2960 and then Is_Generic_Unit (Scope (E))
2961 then
2962 Check_Compile_Time_Size (E);
2963 return No_List;
2964 end if;
2965
2966 -- Deal with special cases of freezing for subtype
2967
2968 if E /= Base_Type (E) then
2969
86cde7b1
RD
2970 -- Before we do anything else, a specialized test for the case of
2971 -- a size given for an array where the array needs to be packed,
2972 -- but was not so the size cannot be honored. This would of course
2973 -- be caught by the backend, and indeed we don't catch all cases.
2974 -- The point is that we can give a better error message in those
2975 -- cases that we do catch with the circuitry here. Also if pragma
2976 -- Implicit_Packing is set, this is where the packing occurs.
2977
2978 -- The reason we do this so early is that the processing in the
2979 -- automatic packing case affects the layout of the base type, so
2980 -- it must be done before we freeze the base type.
2981
2982 if Is_Array_Type (E) then
2983 declare
2984 Lo, Hi : Node_Id;
2985 Ctyp : constant Entity_Id := Component_Type (E);
2986
2987 begin
2988 -- Check enabling conditions. These are straightforward
2989 -- except for the test for a limited composite type. This
2990 -- eliminates the rare case of a array of limited components
2991 -- where there are issues of whether or not we can go ahead
2992 -- and pack the array (since we can't freely pack and unpack
2993 -- arrays if they are limited).
2994
2995 -- Note that we check the root type explicitly because the
2996 -- whole point is we are doing this test before we have had
2997 -- a chance to freeze the base type (and it is that freeze
2998 -- action that causes stuff to be inherited).
2999
3000 if Present (Size_Clause (E))
3001 and then Known_Static_Esize (E)
3002 and then not Is_Packed (E)
3003 and then not Has_Pragma_Pack (E)
3004 and then Number_Dimensions (E) = 1
3005 and then not Has_Component_Size_Clause (E)
3006 and then Known_Static_Esize (Ctyp)
3007 and then not Is_Limited_Composite (E)
3008 and then not Is_Packed (Root_Type (E))
3009 and then not Has_Component_Size_Clause (Root_Type (E))
3010 then
3011 Get_Index_Bounds (First_Index (E), Lo, Hi);
3012
3013 if Compile_Time_Known_Value (Lo)
3014 and then Compile_Time_Known_Value (Hi)
3015 and then Known_Static_RM_Size (Ctyp)
3016 and then RM_Size (Ctyp) < 64
3017 then
3018 declare
3019 Lov : constant Uint := Expr_Value (Lo);
3020 Hiv : constant Uint := Expr_Value (Hi);
3021 Len : constant Uint := UI_Max
3022 (Uint_0,
3023 Hiv - Lov + 1);
3024 Rsiz : constant Uint := RM_Size (Ctyp);
3025 SZ : constant Node_Id := Size_Clause (E);
3026 Btyp : constant Entity_Id := Base_Type (E);
3027
3028 -- What we are looking for here is the situation where
3029 -- the RM_Size given would be exactly right if there
3030 -- was a pragma Pack (resulting in the component size
3031 -- being the same as the RM_Size). Furthermore, the
3032 -- component type size must be an odd size (not a
5a989c6b
AC
3033 -- multiple of storage unit). If the component RM size
3034 -- is an exact number of storage units that is a power
3035 -- of two, the array is not packed and has a standard
3036 -- representation.
86cde7b1
RD
3037
3038 begin
3039 if RM_Size (E) = Len * Rsiz
3040 and then Rsiz mod System_Storage_Unit /= 0
3041 then
3042 -- For implicit packing mode, just set the
fd366a46 3043 -- component size silently.
86cde7b1
RD
3044
3045 if Implicit_Packing then
3046 Set_Component_Size (Btyp, Rsiz);
3047 Set_Is_Bit_Packed_Array (Btyp);
3048 Set_Is_Packed (Btyp);
3049 Set_Has_Non_Standard_Rep (Btyp);
3050
3051 -- Otherwise give an error message
3052
3053 else
3054 Error_Msg_NE
3055 ("size given for& too small", SZ, E);
3056 Error_Msg_N
3057 ("\use explicit pragma Pack "
3058 & "or use pragma Implicit_Packing", SZ);
3059 end if;
5a989c6b
AC
3060
3061 elsif RM_Size (E) = Len * Rsiz
3062 and then Implicit_Packing
3063 and then
3064 (Rsiz / System_Storage_Unit = 1
3065 or else Rsiz / System_Storage_Unit = 2
3066 or else Rsiz / System_Storage_Unit = 4)
3067 then
3068
3069 -- Not a packed array, but indicate the desired
3070 -- component size, for the back-end.
3071
3072 Set_Component_Size (Btyp, Rsiz);
86cde7b1
RD
3073 end if;
3074 end;
3075 end if;
3076 end if;
3077 end;
3078 end if;
3079
def46b54
RD
3080 -- If ancestor subtype present, freeze that first. Note that this
3081 -- will also get the base type frozen.
70482933
RK
3082
3083 Atype := Ancestor_Subtype (E);
3084
3085 if Present (Atype) then
3086 Freeze_And_Append (Atype, Loc, Result);
3087
def46b54
RD
3088 -- Otherwise freeze the base type of the entity before freezing
3089 -- the entity itself (RM 13.14(15)).
70482933
RK
3090
3091 elsif E /= Base_Type (E) then
3092 Freeze_And_Append (Base_Type (E), Loc, Result);
3093 end if;
3094
fbf5a39b 3095 -- For a derived type, freeze its parent type first (RM 13.14(15))
70482933
RK
3096
3097 elsif Is_Derived_Type (E) then
3098 Freeze_And_Append (Etype (E), Loc, Result);
3099 Freeze_And_Append (First_Subtype (Etype (E)), Loc, Result);
3100 end if;
3101
3102 -- For array type, freeze index types and component type first
fbf5a39b 3103 -- before freezing the array (RM 13.14(15)).
70482933
RK
3104
3105 if Is_Array_Type (E) then
3106 declare
fbf5a39b 3107 Ctyp : constant Entity_Id := Component_Type (E);
70482933
RK
3108
3109 Non_Standard_Enum : Boolean := False;
7d8b9c99
RD
3110 -- Set true if any of the index types is an enumeration type
3111 -- with a non-standard representation.
70482933
RK
3112
3113 begin
3114 Freeze_And_Append (Ctyp, Loc, Result);
3115
3116 Indx := First_Index (E);
3117 while Present (Indx) loop
3118 Freeze_And_Append (Etype (Indx), Loc, Result);
3119
3120 if Is_Enumeration_Type (Etype (Indx))
3121 and then Has_Non_Standard_Rep (Etype (Indx))
3122 then
3123 Non_Standard_Enum := True;
3124 end if;
3125
3126 Next_Index (Indx);
3127 end loop;
3128
07fc65c4 3129 -- Processing that is done only for base types
70482933
RK
3130
3131 if Ekind (E) = E_Array_Type then
07fc65c4
GB
3132
3133 -- Propagate flags for component type
3134
70482933
RK
3135 if Is_Controlled (Component_Type (E))
3136 or else Has_Controlled_Component (Ctyp)
3137 then
3138 Set_Has_Controlled_Component (E);
3139 end if;
3140
3141 if Has_Unchecked_Union (Component_Type (E)) then
3142 Set_Has_Unchecked_Union (E);
3143 end if;
70482933 3144
07fc65c4
GB
3145 -- If packing was requested or if the component size was set
3146 -- explicitly, then see if bit packing is required. This
3147 -- processing is only done for base types, since all the
3148 -- representation aspects involved are type-related. This
3149 -- is not just an optimization, if we start processing the
e14c931f 3150 -- subtypes, they interfere with the settings on the base
07fc65c4
GB
3151 -- type (this is because Is_Packed has a slightly different
3152 -- meaning before and after freezing).
70482933 3153
70482933
RK
3154 declare
3155 Csiz : Uint;
3156 Esiz : Uint;
3157
3158 begin
3159 if (Is_Packed (E) or else Has_Pragma_Pack (E))
3160 and then not Has_Atomic_Components (E)
3161 and then Known_Static_RM_Size (Ctyp)
3162 then
3163 Csiz := UI_Max (RM_Size (Ctyp), 1);
3164
3165 elsif Known_Component_Size (E) then
3166 Csiz := Component_Size (E);
3167
3168 elsif not Known_Static_Esize (Ctyp) then
3169 Csiz := Uint_0;
3170
3171 else
3172 Esiz := Esize (Ctyp);
3173
3174 -- We can set the component size if it is less than
3175 -- 16, rounding it up to the next storage unit size.
3176
3177 if Esiz <= 8 then
3178 Csiz := Uint_8;
3179 elsif Esiz <= 16 then
3180 Csiz := Uint_16;
3181 else
3182 Csiz := Uint_0;
3183 end if;
3184
7d8b9c99
RD
3185 -- Set component size up to match alignment if it
3186 -- would otherwise be less than the alignment. This
3187 -- deals with cases of types whose alignment exceeds
3188 -- their size (padded types).
70482933
RK
3189
3190 if Csiz /= 0 then
3191 declare
3192 A : constant Uint := Alignment_In_Bits (Ctyp);
70482933
RK
3193 begin
3194 if Csiz < A then
3195 Csiz := A;
3196 end if;
3197 end;
3198 end if;
70482933
RK
3199 end if;
3200
86cde7b1
RD
3201 -- Case of component size that may result in packing
3202
70482933 3203 if 1 <= Csiz and then Csiz <= 64 then
86cde7b1
RD
3204 declare
3205 Ent : constant Entity_Id :=
3206 First_Subtype (E);
3207 Pack_Pragma : constant Node_Id :=
3208 Get_Rep_Pragma (Ent, Name_Pack);
3209 Comp_Size_C : constant Node_Id :=
3210 Get_Attribute_Definition_Clause
3211 (Ent, Attribute_Component_Size);
3212 begin
3213 -- Warn if we have pack and component size so that
3214 -- the pack is ignored.
70482933 3215
86cde7b1
RD
3216 -- Note: here we must check for the presence of a
3217 -- component size before checking for a Pack pragma
3218 -- to deal with the case where the array type is a
3219 -- derived type whose parent is currently private.
3220
3221 if Present (Comp_Size_C)
3222 and then Has_Pragma_Pack (Ent)
3223 then
3224 Error_Msg_Sloc := Sloc (Comp_Size_C);
3225 Error_Msg_NE
3226 ("?pragma Pack for& ignored!",
3227 Pack_Pragma, Ent);
3228 Error_Msg_N
3229 ("\?explicit component size given#!",
3230 Pack_Pragma);
3231 end if;
70482933 3232
86cde7b1
RD
3233 -- Set component size if not already set by a
3234 -- component size clause.
70482933 3235
86cde7b1
RD
3236 if not Present (Comp_Size_C) then
3237 Set_Component_Size (E, Csiz);
3238 end if;
fbf5a39b 3239
86cde7b1
RD
3240 -- Check for base type of 8, 16, 32 bits, where an
3241 -- unsigned subtype has a length one less than the
3242 -- base type (e.g. Natural subtype of Integer).
fbf5a39b 3243
86cde7b1
RD
3244 -- In such cases, if a component size was not set
3245 -- explicitly, then generate a warning.
fbf5a39b 3246
86cde7b1
RD
3247 if Has_Pragma_Pack (E)
3248 and then not Present (Comp_Size_C)
3249 and then
3250 (Csiz = 7 or else Csiz = 15 or else Csiz = 31)
3251 and then Esize (Base_Type (Ctyp)) = Csiz + 1
3252 then
3253 Error_Msg_Uint_1 := Csiz;
3254
3255 if Present (Pack_Pragma) then
3256 Error_Msg_N
3257 ("?pragma Pack causes component size "
3258 & "to be ^!", Pack_Pragma);
3259 Error_Msg_N
3260 ("\?use Component_Size to set "
3261 & "desired value!", Pack_Pragma);
3262 end if;
fbf5a39b 3263 end if;
fbf5a39b 3264
86cde7b1
RD
3265 -- Actual packing is not needed for 8, 16, 32, 64.
3266 -- Also not needed for 24 if alignment is 1.
70482933 3267
86cde7b1
RD
3268 if Csiz = 8
3269 or else Csiz = 16
3270 or else Csiz = 32
3271 or else Csiz = 64
3272 or else (Csiz = 24 and then Alignment (Ctyp) = 1)
3273 then
3274 -- Here the array was requested to be packed,
3275 -- but the packing request had no effect, so
3276 -- Is_Packed is reset.
70482933 3277
86cde7b1
RD
3278 -- Note: semantically this means that we lose
3279 -- track of the fact that a derived type
3280 -- inherited a pragma Pack that was non-
3281 -- effective, but that seems fine.
70482933 3282
86cde7b1
RD
3283 -- We regard a Pack pragma as a request to set
3284 -- a representation characteristic, and this
3285 -- request may be ignored.
70482933 3286
86cde7b1 3287 Set_Is_Packed (Base_Type (E), False);
70482933 3288
86cde7b1 3289 -- In all other cases, packing is indeed needed
70482933 3290
86cde7b1
RD
3291 else
3292 Set_Has_Non_Standard_Rep (Base_Type (E));
3293 Set_Is_Bit_Packed_Array (Base_Type (E));
3294 Set_Is_Packed (Base_Type (E));
3295 end if;
3296 end;
70482933
RK
3297 end if;
3298 end;
07fc65c4
GB
3299
3300 -- Processing that is done only for subtypes
3301
3302 else
3303 -- Acquire alignment from base type
3304
3305 if Unknown_Alignment (E) then
3306 Set_Alignment (E, Alignment (Base_Type (E)));
7d8b9c99 3307 Adjust_Esize_Alignment (E);
07fc65c4
GB
3308 end if;
3309 end if;
3310
d05ef0ab
AC
3311 -- For bit-packed arrays, check the size
3312
3313 if Is_Bit_Packed_Array (E)
7d8b9c99 3314 and then Known_RM_Size (E)
d05ef0ab
AC
3315 then
3316 declare
67ce0d7e
RD
3317 SizC : constant Node_Id := Size_Clause (E);
3318
d05ef0ab 3319 Discard : Boolean;
67ce0d7e 3320 pragma Warnings (Off, Discard);
d05ef0ab
AC
3321
3322 begin
3323 -- It is not clear if it is possible to have no size
7d8b9c99
RD
3324 -- clause at this stage, but it is not worth worrying
3325 -- about. Post error on the entity name in the size
d05ef0ab
AC
3326 -- clause if present, else on the type entity itself.
3327
3328 if Present (SizC) then
7d8b9c99 3329 Check_Size (Name (SizC), E, RM_Size (E), Discard);
d05ef0ab 3330 else
7d8b9c99 3331 Check_Size (E, E, RM_Size (E), Discard);
d05ef0ab
AC
3332 end if;
3333 end;
3334 end if;
3335
70482933
RK
3336 -- If any of the index types was an enumeration type with
3337 -- a non-standard rep clause, then we indicate that the
3338 -- array type is always packed (even if it is not bit packed).
3339
3340 if Non_Standard_Enum then
3341 Set_Has_Non_Standard_Rep (Base_Type (E));
3342 Set_Is_Packed (Base_Type (E));
3343 end if;
70482933 3344
0da2c8ac 3345 Set_Component_Alignment_If_Not_Set (E);
70482933 3346
0da2c8ac
AC
3347 -- If the array is packed, we must create the packed array
3348 -- type to be used to actually implement the type. This is
3349 -- only needed for real array types (not for string literal
3350 -- types, since they are present only for the front end).
70482933 3351
0da2c8ac
AC
3352 if Is_Packed (E)
3353 and then Ekind (E) /= E_String_Literal_Subtype
3354 then
3355 Create_Packed_Array_Type (E);
3356 Freeze_And_Append (Packed_Array_Type (E), Loc, Result);
70482933 3357
0da2c8ac 3358 -- Size information of packed array type is copied to the
fea9e956 3359 -- array type, since this is really the representation. But
def46b54
RD
3360 -- do not override explicit existing size values. If the
3361 -- ancestor subtype is constrained the packed_array_type
3362 -- will be inherited from it, but the size may have been
3363 -- provided already, and must not be overridden either.
fea9e956 3364
def46b54
RD
3365 if not Has_Size_Clause (E)
3366 and then
3367 (No (Ancestor_Subtype (E))
3368 or else not Has_Size_Clause (Ancestor_Subtype (E)))
3369 then
fea9e956
ES
3370 Set_Esize (E, Esize (Packed_Array_Type (E)));
3371 Set_RM_Size (E, RM_Size (Packed_Array_Type (E)));
3372 end if;
70482933 3373
fea9e956
ES
3374 if not Has_Alignment_Clause (E) then
3375 Set_Alignment (E, Alignment (Packed_Array_Type (E)));
3376 end if;
0da2c8ac
AC
3377 end if;
3378
def46b54
RD
3379 -- For non-packed arrays set the alignment of the array to the
3380 -- alignment of the component type if it is unknown. Skip this
3381 -- in atomic case (atomic arrays may need larger alignments).
0da2c8ac
AC
3382
3383 if not Is_Packed (E)
3384 and then Unknown_Alignment (E)
3385 and then Known_Alignment (Ctyp)
3386 and then Known_Static_Component_Size (E)
3387 and then Known_Static_Esize (Ctyp)
3388 and then Esize (Ctyp) = Component_Size (E)
3389 and then not Is_Atomic (E)
3390 then
3391 Set_Alignment (E, Alignment (Component_Type (E)));
3392 end if;
3393 end;
70482933 3394
fbf5a39b
AC
3395 -- For a class-wide type, the corresponding specific type is
3396 -- frozen as well (RM 13.14(15))
70482933
RK
3397
3398 elsif Is_Class_Wide_Type (E) then
3399 Freeze_And_Append (Root_Type (E), Loc, Result);
3400
86cde7b1
RD
3401 -- If the base type of the class-wide type is still incomplete,
3402 -- the class-wide remains unfrozen as well. This is legal when
3403 -- E is the formal of a primitive operation of some other type
3404 -- which is being frozen.
3405
3406 if not Is_Frozen (Root_Type (E)) then
3407 Set_Is_Frozen (E, False);
3408 return Result;
3409 end if;
3410
70482933
RK
3411 -- If the Class_Wide_Type is an Itype (when type is the anonymous
3412 -- parent of a derived type) and it is a library-level entity,
3413 -- generate an itype reference for it. Otherwise, its first
3414 -- explicit reference may be in an inner scope, which will be
3415 -- rejected by the back-end.
3416
3417 if Is_Itype (E)
3418 and then Is_Compilation_Unit (Scope (E))
3419 then
70482933 3420 declare
fbf5a39b 3421 Ref : constant Node_Id := Make_Itype_Reference (Loc);
70482933
RK
3422
3423 begin
3424 Set_Itype (Ref, E);
3425 if No (Result) then
3426 Result := New_List (Ref);
3427 else
3428 Append (Ref, Result);
3429 end if;
3430 end;
3431 end if;
3432
def46b54
RD
3433 -- The equivalent type associated with a class-wide subtype needs
3434 -- to be frozen to ensure that its layout is done. Class-wide
3435 -- subtypes are currently only frozen on targets requiring
3436 -- front-end layout (see New_Class_Wide_Subtype and
3437 -- Make_CW_Equivalent_Type in exp_util.adb).
fbf5a39b
AC
3438
3439 if Ekind (E) = E_Class_Wide_Subtype
3440 and then Present (Equivalent_Type (E))
3441 then
3442 Freeze_And_Append (Equivalent_Type (E), Loc, Result);
3443 end if;
3444
3445 -- For a record (sub)type, freeze all the component types (RM
def46b54
RD
3446 -- 13.14(15). We test for E_Record_(sub)Type here, rather than using
3447 -- Is_Record_Type, because we don't want to attempt the freeze for
3448 -- the case of a private type with record extension (we will do that
3449 -- later when the full type is frozen).
70482933
RK
3450
3451 elsif Ekind (E) = E_Record_Type
fd366a46 3452 or else Ekind (E) = E_Record_Subtype
70482933
RK
3453 then
3454 Freeze_Record_Type (E);
3455
3456 -- For a concurrent type, freeze corresponding record type. This
e14c931f 3457 -- does not correspond to any specific rule in the RM, but the
70482933
RK
3458 -- record type is essentially part of the concurrent type.
3459 -- Freeze as well all local entities. This includes record types
3460 -- created for entry parameter blocks, and whatever local entities
3461 -- may appear in the private part.
3462
3463 elsif Is_Concurrent_Type (E) then
3464 if Present (Corresponding_Record_Type (E)) then
3465 Freeze_And_Append
3466 (Corresponding_Record_Type (E), Loc, Result);
3467 end if;
3468
3469 Comp := First_Entity (E);
70482933
RK
3470 while Present (Comp) loop
3471 if Is_Type (Comp) then
3472 Freeze_And_Append (Comp, Loc, Result);
3473
3474 elsif (Ekind (Comp)) /= E_Function then
c6823a20
EB
3475 if Is_Itype (Etype (Comp))
3476 and then Underlying_Type (Scope (Etype (Comp))) = E
3477 then
3478 Undelay_Type (Etype (Comp));
3479 end if;
3480
70482933
RK
3481 Freeze_And_Append (Etype (Comp), Loc, Result);
3482 end if;
3483
3484 Next_Entity (Comp);
3485 end loop;
3486
ee094616
RD
3487 -- Private types are required to point to the same freeze node as
3488 -- their corresponding full views. The freeze node itself has to
3489 -- point to the partial view of the entity (because from the partial
3490 -- view, we can retrieve the full view, but not the reverse).
3491 -- However, in order to freeze correctly, we need to freeze the full
3492 -- view. If we are freezing at the end of a scope (or within the
3493 -- scope of the private type), the partial and full views will have
3494 -- been swapped, the full view appears first in the entity chain and
3495 -- the swapping mechanism ensures that the pointers are properly set
3496 -- (on scope exit).
3497
3498 -- If we encounter the partial view before the full view (e.g. when
3499 -- freezing from another scope), we freeze the full view, and then
3500 -- set the pointers appropriately since we cannot rely on swapping to
3501 -- fix things up (subtypes in an outer scope might not get swapped).
70482933
RK
3502
3503 elsif Is_Incomplete_Or_Private_Type (E)
3504 and then not Is_Generic_Type (E)
3505 then
86cde7b1
RD
3506 -- The construction of the dispatch table associated with library
3507 -- level tagged types forces freezing of all the primitives of the
3508 -- type, which may cause premature freezing of the partial view.
3509 -- For example:
3510
3511 -- package Pkg is
3512 -- type T is tagged private;
3513 -- type DT is new T with private;
3514 -- procedure Prim (X : in out T; Y : in out DT'class);
3515 -- private
3516 -- type T is tagged null record;
3517 -- Obj : T;
3518 -- type DT is new T with null record;
3519 -- end;
3520
3521 -- In this case the type will be frozen later by the usual
3522 -- mechanism: an object declaration, an instantiation, or the
3523 -- end of a declarative part.
3524
3525 if Is_Library_Level_Tagged_Type (E)
3526 and then not Present (Full_View (E))
3527 then
3528 Set_Is_Frozen (E, False);
3529 return Result;
3530
70482933
RK
3531 -- Case of full view present
3532
86cde7b1 3533 elsif Present (Full_View (E)) then
70482933 3534
ee094616
RD
3535 -- If full view has already been frozen, then no further
3536 -- processing is required
70482933
RK
3537
3538 if Is_Frozen (Full_View (E)) then
3539
3540 Set_Has_Delayed_Freeze (E, False);
3541 Set_Freeze_Node (E, Empty);
3542 Check_Debug_Info_Needed (E);
3543
ee094616
RD
3544 -- Otherwise freeze full view and patch the pointers so that
3545 -- the freeze node will elaborate both views in the back-end.
70482933
RK
3546
3547 else
fbf5a39b
AC
3548 declare
3549 Full : constant Entity_Id := Full_View (E);
70482933 3550
fbf5a39b
AC
3551 begin
3552 if Is_Private_Type (Full)
3553 and then Present (Underlying_Full_View (Full))
3554 then
3555 Freeze_And_Append
3556 (Underlying_Full_View (Full), Loc, Result);
3557 end if;
70482933 3558
fbf5a39b 3559 Freeze_And_Append (Full, Loc, Result);
70482933 3560
fbf5a39b
AC
3561 if Has_Delayed_Freeze (E) then
3562 F_Node := Freeze_Node (Full);
70482933 3563
fbf5a39b
AC
3564 if Present (F_Node) then
3565 Set_Freeze_Node (E, F_Node);
3566 Set_Entity (F_Node, E);
3567
3568 else
def46b54
RD
3569 -- {Incomplete,Private}_Subtypes with Full_Views
3570 -- constrained by discriminants.
fbf5a39b
AC
3571
3572 Set_Has_Delayed_Freeze (E, False);
3573 Set_Freeze_Node (E, Empty);
3574 end if;
70482933 3575 end if;
fbf5a39b 3576 end;
70482933
RK
3577
3578 Check_Debug_Info_Needed (E);
3579 end if;
3580
ee094616
RD
3581 -- AI-117 requires that the convention of a partial view be the
3582 -- same as the convention of the full view. Note that this is a
3583 -- recognized breach of privacy, but it's essential for logical
3584 -- consistency of representation, and the lack of a rule in
3585 -- RM95 was an oversight.
70482933
RK
3586
3587 Set_Convention (E, Convention (Full_View (E)));
3588
3589 Set_Size_Known_At_Compile_Time (E,
3590 Size_Known_At_Compile_Time (Full_View (E)));
3591
3592 -- Size information is copied from the full view to the
def46b54 3593 -- incomplete or private view for consistency.
70482933 3594
ee094616
RD
3595 -- We skip this is the full view is not a type. This is very
3596 -- strange of course, and can only happen as a result of
3597 -- certain illegalities, such as a premature attempt to derive
3598 -- from an incomplete type.
70482933
RK
3599
3600 if Is_Type (Full_View (E)) then
3601 Set_Size_Info (E, Full_View (E));
3602 Set_RM_Size (E, RM_Size (Full_View (E)));
3603 end if;
3604
3605 return Result;
3606
3607 -- Case of no full view present. If entity is derived or subtype,
3608 -- it is safe to freeze, correctness depends on the frozen status
3609 -- of parent. Otherwise it is either premature usage, or a Taft
3610 -- amendment type, so diagnosis is at the point of use and the
3611 -- type might be frozen later.
3612
3613 elsif E /= Base_Type (E)
3614 or else Is_Derived_Type (E)
3615 then
3616 null;
3617
3618 else
3619 Set_Is_Frozen (E, False);
3620 return No_List;
3621 end if;
3622
3623 -- For access subprogram, freeze types of all formals, the return
3624 -- type was already frozen, since it is the Etype of the function.
8aec446b 3625 -- Formal types can be tagged Taft amendment types, but otherwise
205c14b0 3626 -- they cannot be incomplete.
70482933
RK
3627
3628 elsif Ekind (E) = E_Subprogram_Type then
3629 Formal := First_Formal (E);
8aec446b 3630
70482933 3631 while Present (Formal) loop
8aec446b
AC
3632 if Ekind (Etype (Formal)) = E_Incomplete_Type
3633 and then No (Full_View (Etype (Formal)))
3634 and then not Is_Value_Type (Etype (Formal))
3635 then
3636 if Is_Tagged_Type (Etype (Formal)) then
3637 null;
3638 else
3639 Error_Msg_NE
3640 ("invalid use of incomplete type&", E, Etype (Formal));
3641 end if;
3642 end if;
3643
70482933
RK
3644 Freeze_And_Append (Etype (Formal), Loc, Result);
3645 Next_Formal (Formal);
3646 end loop;
3647
70482933
RK
3648 Freeze_Subprogram (E);
3649
ee094616
RD
3650 -- For access to a protected subprogram, freeze the equivalent type
3651 -- (however this is not set if we are not generating code or if this
3652 -- is an anonymous type used just for resolution).
70482933 3653
fea9e956 3654 elsif Is_Access_Protected_Subprogram_Type (E) then
57747aec 3655 if Present (Equivalent_Type (E)) then
d8db0bca
JM
3656 Freeze_And_Append (Equivalent_Type (E), Loc, Result);
3657 end if;
70482933
RK
3658 end if;
3659
3660 -- Generic types are never seen by the back-end, and are also not
3661 -- processed by the expander (since the expander is turned off for
3662 -- generic processing), so we never need freeze nodes for them.
3663
3664 if Is_Generic_Type (E) then
3665 return Result;
3666 end if;
3667
3668 -- Some special processing for non-generic types to complete
3669 -- representation details not known till the freeze point.
3670
3671 if Is_Fixed_Point_Type (E) then
3672 Freeze_Fixed_Point_Type (E);
3673
ee094616
RD
3674 -- Some error checks required for ordinary fixed-point type. Defer
3675 -- these till the freeze-point since we need the small and range
3676 -- values. We only do these checks for base types
fbf5a39b
AC
3677
3678 if Is_Ordinary_Fixed_Point_Type (E)
3679 and then E = Base_Type (E)
3680 then
3681 if Small_Value (E) < Ureal_2_M_80 then
3682 Error_Msg_Name_1 := Name_Small;
3683 Error_Msg_N
7d8b9c99 3684 ("`&''%` too small, minimum allowed is 2.0'*'*(-80)", E);
fbf5a39b
AC
3685
3686 elsif Small_Value (E) > Ureal_2_80 then
3687 Error_Msg_Name_1 := Name_Small;
3688 Error_Msg_N
7d8b9c99 3689 ("`&''%` too large, maximum allowed is 2.0'*'*80", E);
fbf5a39b
AC
3690 end if;
3691
3692 if Expr_Value_R (Type_Low_Bound (E)) < Ureal_M_10_36 then
3693 Error_Msg_Name_1 := Name_First;
3694 Error_Msg_N
7d8b9c99 3695 ("`&''%` too small, minimum allowed is -10.0'*'*36", E);
fbf5a39b
AC
3696 end if;
3697
3698 if Expr_Value_R (Type_High_Bound (E)) > Ureal_10_36 then
3699 Error_Msg_Name_1 := Name_Last;
3700 Error_Msg_N
7d8b9c99 3701 ("`&''%` too large, maximum allowed is 10.0'*'*36", E);
fbf5a39b
AC
3702 end if;
3703 end if;
3704
70482933
RK
3705 elsif Is_Enumeration_Type (E) then
3706 Freeze_Enumeration_Type (E);
3707
3708 elsif Is_Integer_Type (E) then
3709 Adjust_Esize_For_Alignment (E);
3710
79afa047
AC
3711 if Is_Modular_Integer_Type (E)
3712 and then Warn_On_Suspicious_Modulus_Value
3713 then
67b3acf8
RD
3714 Check_Suspicious_Modulus (E);
3715 end if;
3716
edd63e9b
ES
3717 elsif Is_Access_Type (E) then
3718
3719 -- Check restriction for standard storage pool
3720
3721 if No (Associated_Storage_Pool (E)) then
3722 Check_Restriction (No_Standard_Storage_Pools, E);
3723 end if;
3724
3725 -- Deal with error message for pure access type. This is not an
3726 -- error in Ada 2005 if there is no pool (see AI-366).
3727
3728 if Is_Pure_Unit_Access_Type (E)
3729 and then (Ada_Version < Ada_05
c6a9797e 3730 or else not No_Pool_Assigned (E))
edd63e9b
ES
3731 then
3732 Error_Msg_N ("named access type not allowed in pure unit", E);
c6a9797e
RD
3733
3734 if Ada_Version >= Ada_05 then
3735 Error_Msg_N
3736 ("\would be legal if Storage_Size of 0 given?", E);
3737
3738 elsif No_Pool_Assigned (E) then
3739 Error_Msg_N
3740 ("\would be legal in Ada 2005?", E);
3741
3742 else
3743 Error_Msg_N
3744 ("\would be legal in Ada 2005 if "
3745 & "Storage_Size of 0 given?", E);
3746 end if;
edd63e9b 3747 end if;
70482933
RK
3748 end if;
3749
edd63e9b
ES
3750 -- Case of composite types
3751
70482933
RK
3752 if Is_Composite_Type (E) then
3753
edd63e9b
ES
3754 -- AI-117 requires that all new primitives of a tagged type must
3755 -- inherit the convention of the full view of the type. Inherited
3756 -- and overriding operations are defined to inherit the convention
3757 -- of their parent or overridden subprogram (also specified in
ee094616
RD
3758 -- AI-117), which will have occurred earlier (in Derive_Subprogram
3759 -- and New_Overloaded_Entity). Here we set the convention of
3760 -- primitives that are still convention Ada, which will ensure
def46b54
RD
3761 -- that any new primitives inherit the type's convention. Class-
3762 -- wide types can have a foreign convention inherited from their
3763 -- specific type, but are excluded from this since they don't have
3764 -- any associated primitives.
70482933
RK
3765
3766 if Is_Tagged_Type (E)
3767 and then not Is_Class_Wide_Type (E)
3768 and then Convention (E) /= Convention_Ada
3769 then
3770 declare
3771 Prim_List : constant Elist_Id := Primitive_Operations (E);
07fc65c4 3772 Prim : Elmt_Id;
70482933 3773 begin
07fc65c4 3774 Prim := First_Elmt (Prim_List);
70482933
RK
3775 while Present (Prim) loop
3776 if Convention (Node (Prim)) = Convention_Ada then
3777 Set_Convention (Node (Prim), Convention (E));
3778 end if;
3779
3780 Next_Elmt (Prim);
3781 end loop;
3782 end;
3783 end if;
3784 end if;
3785
ee094616
RD
3786 -- Now that all types from which E may depend are frozen, see if the
3787 -- size is known at compile time, if it must be unsigned, or if
7d8b9c99 3788 -- strict alignment is required
70482933
RK
3789
3790 Check_Compile_Time_Size (E);
3791 Check_Unsigned_Type (E);
3792
3793 if Base_Type (E) = E then
3794 Check_Strict_Alignment (E);
3795 end if;
3796
3797 -- Do not allow a size clause for a type which does not have a size
3798 -- that is known at compile time
3799
3800 if Has_Size_Clause (E)
3801 and then not Size_Known_At_Compile_Time (E)
3802 then
e14c931f 3803 -- Suppress this message if errors posted on E, even if we are
07fc65c4
GB
3804 -- in all errors mode, since this is often a junk message
3805
3806 if not Error_Posted (E) then
3807 Error_Msg_N
3808 ("size clause not allowed for variable length type",
3809 Size_Clause (E));
3810 end if;
70482933
RK
3811 end if;
3812
3813 -- Remaining process is to set/verify the representation information,
3814 -- in particular the size and alignment values. This processing is
3815 -- not required for generic types, since generic types do not play
3816 -- any part in code generation, and so the size and alignment values
c6823a20 3817 -- for such types are irrelevant.
70482933
RK
3818
3819 if Is_Generic_Type (E) then
3820 return Result;
3821
3822 -- Otherwise we call the layout procedure
3823
3824 else
3825 Layout_Type (E);
3826 end if;
3827
3828 -- End of freeze processing for type entities
3829 end if;
3830
3831 -- Here is where we logically freeze the current entity. If it has a
3832 -- freeze node, then this is the point at which the freeze node is
3833 -- linked into the result list.
3834
3835 if Has_Delayed_Freeze (E) then
3836
3837 -- If a freeze node is already allocated, use it, otherwise allocate
3838 -- a new one. The preallocation happens in the case of anonymous base
3839 -- types, where we preallocate so that we can set First_Subtype_Link.
3840 -- Note that we reset the Sloc to the current freeze location.
3841
3842 if Present (Freeze_Node (E)) then
3843 F_Node := Freeze_Node (E);
3844 Set_Sloc (F_Node, Loc);
3845
3846 else
3847 F_Node := New_Node (N_Freeze_Entity, Loc);
3848 Set_Freeze_Node (E, F_Node);
3849 Set_Access_Types_To_Process (F_Node, No_Elist);
3850 Set_TSS_Elist (F_Node, No_Elist);
3851 Set_Actions (F_Node, No_List);
3852 end if;
3853
3854 Set_Entity (F_Node, E);
3855
3856 if Result = No_List then
3857 Result := New_List (F_Node);
3858 else
3859 Append (F_Node, Result);
3860 end if;
35ae2ed8
AC
3861
3862 -- A final pass over record types with discriminants. If the type
3863 -- has an incomplete declaration, there may be constrained access
3864 -- subtypes declared elsewhere, which do not depend on the discrimi-
3865 -- nants of the type, and which are used as component types (i.e.
3866 -- the full view is a recursive type). The designated types of these
3867 -- subtypes can only be elaborated after the type itself, and they
3868 -- need an itype reference.
3869
3870 if Ekind (E) = E_Record_Type
3871 and then Has_Discriminants (E)
3872 then
3873 declare
3874 Comp : Entity_Id;
3875 IR : Node_Id;
3876 Typ : Entity_Id;
3877
3878 begin
3879 Comp := First_Component (E);
3880
3881 while Present (Comp) loop
3882 Typ := Etype (Comp);
3883
3884 if Ekind (Comp) = E_Component
3885 and then Is_Access_Type (Typ)
3886 and then Scope (Typ) /= E
3887 and then Base_Type (Designated_Type (Typ)) = E
3888 and then Is_Itype (Designated_Type (Typ))
3889 then
3890 IR := Make_Itype_Reference (Sloc (Comp));
3891 Set_Itype (IR, Designated_Type (Typ));
3892 Append (IR, Result);
3893 end if;
3894
3895 Next_Component (Comp);
3896 end loop;
3897 end;
3898 end if;
70482933
RK
3899 end if;
3900
3901 -- When a type is frozen, the first subtype of the type is frozen as
3902 -- well (RM 13.14(15)). This has to be done after freezing the type,
3903 -- since obviously the first subtype depends on its own base type.
3904
3905 if Is_Type (E) then
3906 Freeze_And_Append (First_Subtype (E), Loc, Result);
3907
3908 -- If we just froze a tagged non-class wide record, then freeze the
3909 -- corresponding class-wide type. This must be done after the tagged
3910 -- type itself is frozen, because the class-wide type refers to the
3911 -- tagged type which generates the class.
3912
3913 if Is_Tagged_Type (E)
3914 and then not Is_Class_Wide_Type (E)
3915 and then Present (Class_Wide_Type (E))
3916 then
3917 Freeze_And_Append (Class_Wide_Type (E), Loc, Result);
3918 end if;
3919 end if;
3920
3921 Check_Debug_Info_Needed (E);
3922
3923 -- Special handling for subprograms
3924
3925 if Is_Subprogram (E) then
3926
3927 -- If subprogram has address clause then reset Is_Public flag, since
3928 -- we do not want the backend to generate external references.
3929
3930 if Present (Address_Clause (E))
3931 and then not Is_Library_Level_Entity (E)
3932 then
3933 Set_Is_Public (E, False);
3934
3935 -- If no address clause and not intrinsic, then for imported
3936 -- subprogram in main unit, generate descriptor if we are in
3937 -- Propagate_Exceptions mode.
3938
3939 elsif Propagate_Exceptions
3940 and then Is_Imported (E)
3941 and then not Is_Intrinsic_Subprogram (E)
3942 and then Convention (E) /= Convention_Stubbed
3943 then
3944 if Result = No_List then
3945 Result := Empty_List;
3946 end if;
70482933 3947 end if;
70482933
RK
3948 end if;
3949
3950 return Result;
3951 end Freeze_Entity;
3952
3953 -----------------------------
3954 -- Freeze_Enumeration_Type --
3955 -----------------------------
3956
3957 procedure Freeze_Enumeration_Type (Typ : Entity_Id) is
3958 begin
d677afa9
ES
3959 -- By default, if no size clause is present, an enumeration type with
3960 -- Convention C is assumed to interface to a C enum, and has integer
3961 -- size. This applies to types. For subtypes, verify that its base
3962 -- type has no size clause either.
3963
70482933
RK
3964 if Has_Foreign_Convention (Typ)
3965 and then not Has_Size_Clause (Typ)
d677afa9 3966 and then not Has_Size_Clause (Base_Type (Typ))
70482933
RK
3967 and then Esize (Typ) < Standard_Integer_Size
3968 then
3969 Init_Esize (Typ, Standard_Integer_Size);
d677afa9 3970
70482933 3971 else
d677afa9
ES
3972 -- If the enumeration type interfaces to C, and it has a size clause
3973 -- that specifies less than int size, it warrants a warning. The
3974 -- user may intend the C type to be an enum or a char, so this is
3975 -- not by itself an error that the Ada compiler can detect, but it
3976 -- it is a worth a heads-up. For Boolean and Character types we
3977 -- assume that the programmer has the proper C type in mind.
3978
3979 if Convention (Typ) = Convention_C
3980 and then Has_Size_Clause (Typ)
3981 and then Esize (Typ) /= Esize (Standard_Integer)
3982 and then not Is_Boolean_Type (Typ)
3983 and then not Is_Character_Type (Typ)
3984 then
3985 Error_Msg_N
3986 ("C enum types have the size of a C int?", Size_Clause (Typ));
3987 end if;
3988
70482933
RK
3989 Adjust_Esize_For_Alignment (Typ);
3990 end if;
3991 end Freeze_Enumeration_Type;
3992
3993 -----------------------
3994 -- Freeze_Expression --
3995 -----------------------
3996
3997 procedure Freeze_Expression (N : Node_Id) is
c6a9797e
RD
3998 In_Spec_Exp : constant Boolean := In_Spec_Expression;
3999 Typ : Entity_Id;
4000 Nam : Entity_Id;
4001 Desig_Typ : Entity_Id;
4002 P : Node_Id;
4003 Parent_P : Node_Id;
70482933
RK
4004
4005 Freeze_Outside : Boolean := False;
4006 -- This flag is set true if the entity must be frozen outside the
4007 -- current subprogram. This happens in the case of expander generated
4008 -- subprograms (_Init_Proc, _Input, _Output, _Read, _Write) which do
4009 -- not freeze all entities like other bodies, but which nevertheless
4010 -- may reference entities that have to be frozen before the body and
4011 -- obviously cannot be frozen inside the body.
4012
4013 function In_Exp_Body (N : Node_Id) return Boolean;
4014 -- Given an N_Handled_Sequence_Of_Statements node N, determines whether
c6823a20 4015 -- it is the handled statement sequence of an expander-generated
7d8b9c99
RD
4016 -- subprogram (init proc, stream subprogram, or renaming as body).
4017 -- If so, this is not a freezing context.
70482933 4018
fbf5a39b
AC
4019 -----------------
4020 -- In_Exp_Body --
4021 -----------------
4022
70482933 4023 function In_Exp_Body (N : Node_Id) return Boolean is
7d8b9c99
RD
4024 P : Node_Id;
4025 Id : Entity_Id;
70482933
RK
4026
4027 begin
4028 if Nkind (N) = N_Subprogram_Body then
4029 P := N;
4030 else
4031 P := Parent (N);
4032 end if;
4033
4034 if Nkind (P) /= N_Subprogram_Body then
4035 return False;
4036
4037 else
7d8b9c99
RD
4038 Id := Defining_Unit_Name (Specification (P));
4039
4040 if Nkind (Id) = N_Defining_Identifier
4041 and then (Is_Init_Proc (Id) or else
4042 Is_TSS (Id, TSS_Stream_Input) or else
4043 Is_TSS (Id, TSS_Stream_Output) or else
4044 Is_TSS (Id, TSS_Stream_Read) or else
4045 Is_TSS (Id, TSS_Stream_Write) or else
4046 Nkind (Original_Node (P)) =
4047 N_Subprogram_Renaming_Declaration)
70482933
RK
4048 then
4049 return True;
4050 else
4051 return False;
4052 end if;
4053 end if;
70482933
RK
4054 end In_Exp_Body;
4055
4056 -- Start of processing for Freeze_Expression
4057
4058 begin
edd63e9b
ES
4059 -- Immediate return if freezing is inhibited. This flag is set by the
4060 -- analyzer to stop freezing on generated expressions that would cause
4061 -- freezing if they were in the source program, but which are not
4062 -- supposed to freeze, since they are created.
70482933
RK
4063
4064 if Must_Not_Freeze (N) then
4065 return;
4066 end if;
4067
4068 -- If expression is non-static, then it does not freeze in a default
4069 -- expression, see section "Handling of Default Expressions" in the
4070 -- spec of package Sem for further details. Note that we have to
4071 -- make sure that we actually have a real expression (if we have
4072 -- a subtype indication, we can't test Is_Static_Expression!)
4073
c6a9797e 4074 if In_Spec_Exp
70482933
RK
4075 and then Nkind (N) in N_Subexpr
4076 and then not Is_Static_Expression (N)
4077 then
4078 return;
4079 end if;
4080
4081 -- Freeze type of expression if not frozen already
4082
fbf5a39b
AC
4083 Typ := Empty;
4084
4085 if Nkind (N) in N_Has_Etype then
4086 if not Is_Frozen (Etype (N)) then
4087 Typ := Etype (N);
4088
4089 -- Base type may be an derived numeric type that is frozen at
4090 -- the point of declaration, but first_subtype is still unfrozen.
4091
4092 elsif not Is_Frozen (First_Subtype (Etype (N))) then
4093 Typ := First_Subtype (Etype (N));
4094 end if;
70482933
RK
4095 end if;
4096
4097 -- For entity name, freeze entity if not frozen already. A special
4098 -- exception occurs for an identifier that did not come from source.
4099 -- We don't let such identifiers freeze a non-internal entity, i.e.
4100 -- an entity that did come from source, since such an identifier was
4101 -- generated by the expander, and cannot have any semantic effect on
4102 -- the freezing semantics. For example, this stops the parameter of
4103 -- an initialization procedure from freezing the variable.
4104
4105 if Is_Entity_Name (N)
4106 and then not Is_Frozen (Entity (N))
4107 and then (Nkind (N) /= N_Identifier
4108 or else Comes_From_Source (N)
4109 or else not Comes_From_Source (Entity (N)))
4110 then
4111 Nam := Entity (N);
70482933
RK
4112 else
4113 Nam := Empty;
4114 end if;
4115
49e90211 4116 -- For an allocator freeze designated type if not frozen already
70482933 4117
ee094616
RD
4118 -- For an aggregate whose component type is an access type, freeze the
4119 -- designated type now, so that its freeze does not appear within the
4120 -- loop that might be created in the expansion of the aggregate. If the
4121 -- designated type is a private type without full view, the expression
4122 -- cannot contain an allocator, so the type is not frozen.
70482933 4123
7aedb36a
AC
4124 -- For a function, we freeze the entity when the subprogram declaration
4125 -- is frozen, but a function call may appear in an initialization proc.
f6cf5b85 4126 -- before the declaration is frozen. We need to generate the extra
7aedb36a
AC
4127 -- formals, if any, to ensure that the expansion of the call includes
4128 -- the proper actuals.
4129
70482933 4130 Desig_Typ := Empty;
70482933 4131
fbf5a39b 4132 case Nkind (N) is
70482933
RK
4133 when N_Allocator =>
4134 Desig_Typ := Designated_Type (Etype (N));
4135
4136 when N_Aggregate =>
4137 if Is_Array_Type (Etype (N))
4138 and then Is_Access_Type (Component_Type (Etype (N)))
4139 then
4140 Desig_Typ := Designated_Type (Component_Type (Etype (N)));
4141 end if;
4142
4143 when N_Selected_Component |
4144 N_Indexed_Component |
4145 N_Slice =>
4146
4147 if Is_Access_Type (Etype (Prefix (N))) then
4148 Desig_Typ := Designated_Type (Etype (Prefix (N)));
4149 end if;
4150
7aedb36a
AC
4151 when N_Identifier =>
4152 if Present (Nam)
4153 and then Ekind (Nam) = E_Function
4154 and then Nkind (Parent (N)) = N_Function_Call
4155 then
4156 Create_Extra_Formals (Nam);
4157 end if;
4158
70482933
RK
4159 when others =>
4160 null;
70482933
RK
4161 end case;
4162
4163 if Desig_Typ /= Empty
4164 and then (Is_Frozen (Desig_Typ)
4165 or else (not Is_Fully_Defined (Desig_Typ)))
4166 then
4167 Desig_Typ := Empty;
4168 end if;
4169
4170 -- All done if nothing needs freezing
4171
4172 if No (Typ)
4173 and then No (Nam)
4174 and then No (Desig_Typ)
4175 then
4176 return;
4177 end if;
4178
f6cf5b85 4179 -- Loop for looking at the right place to insert the freeze nodes,
70482933
RK
4180 -- exiting from the loop when it is appropriate to insert the freeze
4181 -- node before the current node P.
4182
f6cf5b85
AC
4183 -- Also checks som special exceptions to the freezing rules. These cases
4184 -- result in a direct return, bypassing the freeze action.
70482933
RK
4185
4186 P := N;
4187 loop
4188 Parent_P := Parent (P);
4189
ee094616
RD
4190 -- If we don't have a parent, then we are not in a well-formed tree.
4191 -- This is an unusual case, but there are some legitimate situations
4192 -- in which this occurs, notably when the expressions in the range of
4193 -- a type declaration are resolved. We simply ignore the freeze
4194 -- request in this case. Is this right ???
70482933
RK
4195
4196 if No (Parent_P) then
4197 return;
4198 end if;
4199
4200 -- See if we have got to an appropriate point in the tree
4201
4202 case Nkind (Parent_P) is
4203
edd63e9b
ES
4204 -- A special test for the exception of (RM 13.14(8)) for the case
4205 -- of per-object expressions (RM 3.8(18)) occurring in component
4206 -- definition or a discrete subtype definition. Note that we test
4207 -- for a component declaration which includes both cases we are
4208 -- interested in, and furthermore the tree does not have explicit
4209 -- nodes for either of these two constructs.
70482933
RK
4210
4211 when N_Component_Declaration =>
4212
4213 -- The case we want to test for here is an identifier that is
4214 -- a per-object expression, this is either a discriminant that
4215 -- appears in a context other than the component declaration
4216 -- or it is a reference to the type of the enclosing construct.
4217
4218 -- For either of these cases, we skip the freezing
4219
c6a9797e 4220 if not In_Spec_Expression
70482933
RK
4221 and then Nkind (N) = N_Identifier
4222 and then (Present (Entity (N)))
4223 then
4224 -- We recognize the discriminant case by just looking for
4225 -- a reference to a discriminant. It can only be one for
4226 -- the enclosing construct. Skip freezing in this case.
4227
4228 if Ekind (Entity (N)) = E_Discriminant then
4229 return;
4230
4231 -- For the case of a reference to the enclosing record,
4232 -- (or task or protected type), we look for a type that
4233 -- matches the current scope.
4234
4235 elsif Entity (N) = Current_Scope then
4236 return;
4237 end if;
4238 end if;
4239
edd63e9b
ES
4240 -- If we have an enumeration literal that appears as the choice in
4241 -- the aggregate of an enumeration representation clause, then
4242 -- freezing does not occur (RM 13.14(10)).
70482933
RK
4243
4244 when N_Enumeration_Representation_Clause =>
4245
4246 -- The case we are looking for is an enumeration literal
4247
4248 if (Nkind (N) = N_Identifier or Nkind (N) = N_Character_Literal)
4249 and then Is_Enumeration_Type (Etype (N))
4250 then
4251 -- If enumeration literal appears directly as the choice,
e14c931f 4252 -- do not freeze (this is the normal non-overloaded case)
70482933
RK
4253
4254 if Nkind (Parent (N)) = N_Component_Association
4255 and then First (Choices (Parent (N))) = N
4256 then
4257 return;
4258
ee094616
RD
4259 -- If enumeration literal appears as the name of function
4260 -- which is the choice, then also do not freeze. This
4261 -- happens in the overloaded literal case, where the
70482933
RK
4262 -- enumeration literal is temporarily changed to a function
4263 -- call for overloading analysis purposes.
4264
4265 elsif Nkind (Parent (N)) = N_Function_Call
4266 and then
4267 Nkind (Parent (Parent (N))) = N_Component_Association
4268 and then
4269 First (Choices (Parent (Parent (N)))) = Parent (N)
4270 then
4271 return;
4272 end if;
4273 end if;
4274
4275 -- Normally if the parent is a handled sequence of statements,
4276 -- then the current node must be a statement, and that is an
4277 -- appropriate place to insert a freeze node.
4278
4279 when N_Handled_Sequence_Of_Statements =>
4280
edd63e9b
ES
4281 -- An exception occurs when the sequence of statements is for
4282 -- an expander generated body that did not do the usual freeze
4283 -- all operation. In this case we usually want to freeze
4284 -- outside this body, not inside it, and we skip past the
4285 -- subprogram body that we are inside.
70482933
RK
4286
4287 if In_Exp_Body (Parent_P) then
4288
4289 -- However, we *do* want to freeze at this point if we have
4290 -- an entity to freeze, and that entity is declared *inside*
4291 -- the body of the expander generated procedure. This case
4292 -- is recognized by the scope of the type, which is either
4293 -- the spec for some enclosing body, or (in the case of
4294 -- init_procs, for which there are no separate specs) the
4295 -- current scope.
4296
4297 declare
4298 Subp : constant Node_Id := Parent (Parent_P);
4299 Cspc : Entity_Id;
4300
4301 begin
4302 if Nkind (Subp) = N_Subprogram_Body then
4303 Cspc := Corresponding_Spec (Subp);
4304
4305 if (Present (Typ) and then Scope (Typ) = Cspc)
4306 or else
4307 (Present (Nam) and then Scope (Nam) = Cspc)
4308 then
4309 exit;
4310
4311 elsif Present (Typ)
4312 and then Scope (Typ) = Current_Scope
4313 and then Current_Scope = Defining_Entity (Subp)
4314 then
4315 exit;
4316 end if;
4317 end if;
4318 end;
4319
4320 -- If not that exception to the exception, then this is
4321 -- where we delay the freeze till outside the body.
4322
4323 Parent_P := Parent (Parent_P);
4324 Freeze_Outside := True;
4325
4326 -- Here if normal case where we are in handled statement
4327 -- sequence and want to do the insertion right there.
4328
4329 else
4330 exit;
4331 end if;
4332
ee094616
RD
4333 -- If parent is a body or a spec or a block, then the current node
4334 -- is a statement or declaration and we can insert the freeze node
4335 -- before it.
70482933
RK
4336
4337 when N_Package_Specification |
4338 N_Package_Body |
4339 N_Subprogram_Body |
4340 N_Task_Body |
4341 N_Protected_Body |
4342 N_Entry_Body |
4343 N_Block_Statement => exit;
4344
4345 -- The expander is allowed to define types in any statements list,
4346 -- so any of the following parent nodes also mark a freezing point
4347 -- if the actual node is in a list of statements or declarations.
4348
4349 when N_Exception_Handler |
4350 N_If_Statement |
4351 N_Elsif_Part |
4352 N_Case_Statement_Alternative |
4353 N_Compilation_Unit_Aux |
4354 N_Selective_Accept |
4355 N_Accept_Alternative |
4356 N_Delay_Alternative |
4357 N_Conditional_Entry_Call |
4358 N_Entry_Call_Alternative |
4359 N_Triggering_Alternative |
4360 N_Abortable_Part |
4361 N_Freeze_Entity =>
4362
4363 exit when Is_List_Member (P);
4364
4365 -- Note: The N_Loop_Statement is a special case. A type that
4366 -- appears in the source can never be frozen in a loop (this
edd63e9b
ES
4367 -- occurs only because of a loop expanded by the expander), so we
4368 -- keep on going. Otherwise we terminate the search. Same is true
ee094616
RD
4369 -- of any entity which comes from source. (if they have predefined
4370 -- type, that type does not appear to come from source, but the
4371 -- entity should not be frozen here).
70482933
RK
4372
4373 when N_Loop_Statement =>
4374 exit when not Comes_From_Source (Etype (N))
4375 and then (No (Nam) or else not Comes_From_Source (Nam));
4376
4377 -- For all other cases, keep looking at parents
4378
4379 when others =>
4380 null;
4381 end case;
4382
4383 -- We fall through the case if we did not yet find the proper
4384 -- place in the free for inserting the freeze node, so climb!
4385
4386 P := Parent_P;
4387 end loop;
4388
edd63e9b
ES
4389 -- If the expression appears in a record or an initialization procedure,
4390 -- the freeze nodes are collected and attached to the current scope, to
4391 -- be inserted and analyzed on exit from the scope, to insure that
4392 -- generated entities appear in the correct scope. If the expression is
4393 -- a default for a discriminant specification, the scope is still void.
4394 -- The expression can also appear in the discriminant part of a private
4395 -- or concurrent type.
70482933 4396
c6823a20 4397 -- If the expression appears in a constrained subcomponent of an
edd63e9b
ES
4398 -- enclosing record declaration, the freeze nodes must be attached to
4399 -- the outer record type so they can eventually be placed in the
c6823a20
EB
4400 -- enclosing declaration list.
4401
ee094616
RD
4402 -- The other case requiring this special handling is if we are in a
4403 -- default expression, since in that case we are about to freeze a
4404 -- static type, and the freeze scope needs to be the outer scope, not
4405 -- the scope of the subprogram with the default parameter.
70482933 4406
c6a9797e
RD
4407 -- For default expressions and other spec expressions in generic units,
4408 -- the Move_Freeze_Nodes mechanism (see sem_ch12.adb) takes care of
4409 -- placing them at the proper place, after the generic unit.
70482933 4410
c6a9797e 4411 if (In_Spec_Exp and not Inside_A_Generic)
70482933
RK
4412 or else Freeze_Outside
4413 or else (Is_Type (Current_Scope)
4414 and then (not Is_Concurrent_Type (Current_Scope)
4415 or else not Has_Completion (Current_Scope)))
4416 or else Ekind (Current_Scope) = E_Void
4417 then
4418 declare
4419 Loc : constant Source_Ptr := Sloc (Current_Scope);
4420 Freeze_Nodes : List_Id := No_List;
c6823a20 4421 Pos : Int := Scope_Stack.Last;
70482933
RK
4422
4423 begin
4424 if Present (Desig_Typ) then
4425 Freeze_And_Append (Desig_Typ, Loc, Freeze_Nodes);
4426 end if;
4427
4428 if Present (Typ) then
4429 Freeze_And_Append (Typ, Loc, Freeze_Nodes);
4430 end if;
4431
4432 if Present (Nam) then
4433 Freeze_And_Append (Nam, Loc, Freeze_Nodes);
4434 end if;
4435
c6823a20
EB
4436 -- The current scope may be that of a constrained component of
4437 -- an enclosing record declaration, which is above the current
4438 -- scope in the scope stack.
4439
4440 if Is_Record_Type (Scope (Current_Scope)) then
4441 Pos := Pos - 1;
4442 end if;
4443
70482933 4444 if Is_Non_Empty_List (Freeze_Nodes) then
c6823a20
EB
4445 if No (Scope_Stack.Table (Pos).Pending_Freeze_Actions) then
4446 Scope_Stack.Table (Pos).Pending_Freeze_Actions :=
70482933
RK
4447 Freeze_Nodes;
4448 else
4449 Append_List (Freeze_Nodes, Scope_Stack.Table
c6823a20 4450 (Pos).Pending_Freeze_Actions);
70482933
RK
4451 end if;
4452 end if;
4453 end;
4454
4455 return;
4456 end if;
4457
4458 -- Now we have the right place to do the freezing. First, a special
c6a9797e
RD
4459 -- adjustment, if we are in spec-expression analysis mode, these freeze
4460 -- actions must not be thrown away (normally all inserted actions are
4461 -- thrown away in this mode. However, the freeze actions are from static
4462 -- expressions and one of the important reasons we are doing this
ee094616 4463 -- special analysis is to get these freeze actions. Therefore we turn
c6a9797e 4464 -- off the In_Spec_Expression mode to propagate these freeze actions.
ee094616 4465 -- This also means they get properly analyzed and expanded.
70482933 4466
c6a9797e 4467 In_Spec_Expression := False;
70482933 4468
fbf5a39b 4469 -- Freeze the designated type of an allocator (RM 13.14(13))
70482933
RK
4470
4471 if Present (Desig_Typ) then
4472 Freeze_Before (P, Desig_Typ);
4473 end if;
4474
fbf5a39b 4475 -- Freeze type of expression (RM 13.14(10)). Note that we took care of
70482933
RK
4476 -- the enumeration representation clause exception in the loop above.
4477
4478 if Present (Typ) then
4479 Freeze_Before (P, Typ);
4480 end if;
4481
fbf5a39b 4482 -- Freeze name if one is present (RM 13.14(11))
70482933
RK
4483
4484 if Present (Nam) then
4485 Freeze_Before (P, Nam);
4486 end if;
4487
c6a9797e
RD
4488 -- Restore In_Spec_Expression flag
4489
4490 In_Spec_Expression := In_Spec_Exp;
70482933
RK
4491 end Freeze_Expression;
4492
4493 -----------------------------
4494 -- Freeze_Fixed_Point_Type --
4495 -----------------------------
4496
edd63e9b
ES
4497 -- Certain fixed-point types and subtypes, including implicit base types
4498 -- and declared first subtypes, have not yet set up a range. This is
4499 -- because the range cannot be set until the Small and Size values are
4500 -- known, and these are not known till the type is frozen.
70482933 4501
edd63e9b
ES
4502 -- To signal this case, Scalar_Range contains an unanalyzed syntactic range
4503 -- whose bounds are unanalyzed real literals. This routine will recognize
4504 -- this case, and transform this range node into a properly typed range
4505 -- with properly analyzed and resolved values.
70482933
RK
4506
4507 procedure Freeze_Fixed_Point_Type (Typ : Entity_Id) is
4508 Rng : constant Node_Id := Scalar_Range (Typ);
4509 Lo : constant Node_Id := Low_Bound (Rng);
4510 Hi : constant Node_Id := High_Bound (Rng);
4511 Btyp : constant Entity_Id := Base_Type (Typ);
4512 Brng : constant Node_Id := Scalar_Range (Btyp);
4513 BLo : constant Node_Id := Low_Bound (Brng);
4514 BHi : constant Node_Id := High_Bound (Brng);
4515 Small : constant Ureal := Small_Value (Typ);
4516 Loval : Ureal;
4517 Hival : Ureal;
4518 Atype : Entity_Id;
4519
4520 Actual_Size : Nat;
4521
4522 function Fsize (Lov, Hiv : Ureal) return Nat;
4523 -- Returns size of type with given bounds. Also leaves these
4524 -- bounds set as the current bounds of the Typ.
4525
0da2c8ac
AC
4526 -----------
4527 -- Fsize --
4528 -----------
4529
70482933
RK
4530 function Fsize (Lov, Hiv : Ureal) return Nat is
4531 begin
4532 Set_Realval (Lo, Lov);
4533 Set_Realval (Hi, Hiv);
4534 return Minimum_Size (Typ);
4535 end Fsize;
4536
0da2c8ac 4537 -- Start of processing for Freeze_Fixed_Point_Type
70482933
RK
4538
4539 begin
4540 -- If Esize of a subtype has not previously been set, set it now
4541
4542 if Unknown_Esize (Typ) then
4543 Atype := Ancestor_Subtype (Typ);
4544
4545 if Present (Atype) then
fbf5a39b 4546 Set_Esize (Typ, Esize (Atype));
70482933 4547 else
fbf5a39b 4548 Set_Esize (Typ, Esize (Base_Type (Typ)));
70482933
RK
4549 end if;
4550 end if;
4551
ee094616
RD
4552 -- Immediate return if the range is already analyzed. This means that
4553 -- the range is already set, and does not need to be computed by this
4554 -- routine.
70482933
RK
4555
4556 if Analyzed (Rng) then
4557 return;
4558 end if;
4559
4560 -- Immediate return if either of the bounds raises Constraint_Error
4561
4562 if Raises_Constraint_Error (Lo)
4563 or else Raises_Constraint_Error (Hi)
4564 then
4565 return;
4566 end if;
4567
4568 Loval := Realval (Lo);
4569 Hival := Realval (Hi);
4570
4571 -- Ordinary fixed-point case
4572
4573 if Is_Ordinary_Fixed_Point_Type (Typ) then
4574
4575 -- For the ordinary fixed-point case, we are allowed to fudge the
ee094616
RD
4576 -- end-points up or down by small. Generally we prefer to fudge up,
4577 -- i.e. widen the bounds for non-model numbers so that the end points
4578 -- are included. However there are cases in which this cannot be
4579 -- done, and indeed cases in which we may need to narrow the bounds.
4580 -- The following circuit makes the decision.
70482933 4581
ee094616
RD
4582 -- Note: our terminology here is that Incl_EP means that the bounds
4583 -- are widened by Small if necessary to include the end points, and
4584 -- Excl_EP means that the bounds are narrowed by Small to exclude the
4585 -- end-points if this reduces the size.
70482933
RK
4586
4587 -- Note that in the Incl case, all we care about is including the
4588 -- end-points. In the Excl case, we want to narrow the bounds as
4589 -- much as permitted by the RM, to give the smallest possible size.
4590
4591 Fudge : declare
4592 Loval_Incl_EP : Ureal;
4593 Hival_Incl_EP : Ureal;
4594
4595 Loval_Excl_EP : Ureal;
4596 Hival_Excl_EP : Ureal;
4597
4598 Size_Incl_EP : Nat;
4599 Size_Excl_EP : Nat;
4600
4601 Model_Num : Ureal;
4602 First_Subt : Entity_Id;
4603 Actual_Lo : Ureal;
4604 Actual_Hi : Ureal;
4605
4606 begin
4607 -- First step. Base types are required to be symmetrical. Right
4608 -- now, the base type range is a copy of the first subtype range.
4609 -- This will be corrected before we are done, but right away we
4610 -- need to deal with the case where both bounds are non-negative.
4611 -- In this case, we set the low bound to the negative of the high
4612 -- bound, to make sure that the size is computed to include the
4613 -- required sign. Note that we do not need to worry about the
4614 -- case of both bounds negative, because the sign will be dealt
4615 -- with anyway. Furthermore we can't just go making such a bound
4616 -- symmetrical, since in a twos-complement system, there is an
e14c931f 4617 -- extra negative value which could not be accommodated on the
70482933
RK
4618 -- positive side.
4619
4620 if Typ = Btyp
4621 and then not UR_Is_Negative (Loval)
4622 and then Hival > Loval
4623 then
4624 Loval := -Hival;
4625 Set_Realval (Lo, Loval);
4626 end if;
4627
4628 -- Compute the fudged bounds. If the number is a model number,
edd63e9b
ES
4629 -- then we do nothing to include it, but we are allowed to backoff
4630 -- to the next adjacent model number when we exclude it. If it is
4631 -- not a model number then we straddle the two values with the
4632 -- model numbers on either side.
70482933
RK
4633
4634 Model_Num := UR_Trunc (Loval / Small) * Small;
4635
4636 if Loval = Model_Num then
4637 Loval_Incl_EP := Model_Num;
4638 else
4639 Loval_Incl_EP := Model_Num - Small;
4640 end if;
4641
4642 -- The low value excluding the end point is Small greater, but
4643 -- we do not do this exclusion if the low value is positive,
4644 -- since it can't help the size and could actually hurt by
4645 -- crossing the high bound.
4646
4647 if UR_Is_Negative (Loval_Incl_EP) then
4648 Loval_Excl_EP := Loval_Incl_EP + Small;
def46b54
RD
4649
4650 -- If the value went from negative to zero, then we have the
4651 -- case where Loval_Incl_EP is the model number just below
4652 -- zero, so we want to stick to the negative value for the
4653 -- base type to maintain the condition that the size will
4654 -- include signed values.
4655
4656 if Typ = Btyp
4657 and then UR_Is_Zero (Loval_Excl_EP)
4658 then
4659 Loval_Excl_EP := Loval_Incl_EP;
4660 end if;
4661
70482933
RK
4662 else
4663 Loval_Excl_EP := Loval_Incl_EP;
4664 end if;
4665
4666 -- Similar processing for upper bound and high value
4667
4668 Model_Num := UR_Trunc (Hival / Small) * Small;
4669
4670 if Hival = Model_Num then
4671 Hival_Incl_EP := Model_Num;
4672 else
4673 Hival_Incl_EP := Model_Num + Small;
4674 end if;
4675
4676 if UR_Is_Positive (Hival_Incl_EP) then
4677 Hival_Excl_EP := Hival_Incl_EP - Small;
4678 else
4679 Hival_Excl_EP := Hival_Incl_EP;
4680 end if;
4681
ee094616
RD
4682 -- One further adjustment is needed. In the case of subtypes, we
4683 -- cannot go outside the range of the base type, or we get
70482933 4684 -- peculiarities, and the base type range is already set. This
ee094616
RD
4685 -- only applies to the Incl values, since clearly the Excl values
4686 -- are already as restricted as they are allowed to be.
70482933
RK
4687
4688 if Typ /= Btyp then
4689 Loval_Incl_EP := UR_Max (Loval_Incl_EP, Realval (BLo));
4690 Hival_Incl_EP := UR_Min (Hival_Incl_EP, Realval (BHi));
4691 end if;
4692
4693 -- Get size including and excluding end points
4694
4695 Size_Incl_EP := Fsize (Loval_Incl_EP, Hival_Incl_EP);
4696 Size_Excl_EP := Fsize (Loval_Excl_EP, Hival_Excl_EP);
4697
4698 -- No need to exclude end-points if it does not reduce size
4699
4700 if Fsize (Loval_Incl_EP, Hival_Excl_EP) = Size_Excl_EP then
4701 Loval_Excl_EP := Loval_Incl_EP;
4702 end if;
4703
4704 if Fsize (Loval_Excl_EP, Hival_Incl_EP) = Size_Excl_EP then
4705 Hival_Excl_EP := Hival_Incl_EP;
4706 end if;
4707
4708 -- Now we set the actual size to be used. We want to use the
4709 -- bounds fudged up to include the end-points but only if this
4710 -- can be done without violating a specifically given size
4711 -- size clause or causing an unacceptable increase in size.
4712
4713 -- Case of size clause given
4714
4715 if Has_Size_Clause (Typ) then
4716
4717 -- Use the inclusive size only if it is consistent with
4718 -- the explicitly specified size.
4719
4720 if Size_Incl_EP <= RM_Size (Typ) then
4721 Actual_Lo := Loval_Incl_EP;
4722 Actual_Hi := Hival_Incl_EP;
4723 Actual_Size := Size_Incl_EP;
4724
4725 -- If the inclusive size is too large, we try excluding
4726 -- the end-points (will be caught later if does not work).
4727
4728 else
4729 Actual_Lo := Loval_Excl_EP;
4730 Actual_Hi := Hival_Excl_EP;
4731 Actual_Size := Size_Excl_EP;
4732 end if;
4733
4734 -- Case of size clause not given
4735
4736 else
4737 -- If we have a base type whose corresponding first subtype
4738 -- has an explicit size that is large enough to include our
4739 -- end-points, then do so. There is no point in working hard
4740 -- to get a base type whose size is smaller than the specified
4741 -- size of the first subtype.
4742
4743 First_Subt := First_Subtype (Typ);
4744
4745 if Has_Size_Clause (First_Subt)
4746 and then Size_Incl_EP <= Esize (First_Subt)
4747 then
4748 Actual_Size := Size_Incl_EP;
4749 Actual_Lo := Loval_Incl_EP;
4750 Actual_Hi := Hival_Incl_EP;
4751
4752 -- If excluding the end-points makes the size smaller and
4753 -- results in a size of 8,16,32,64, then we take the smaller
4754 -- size. For the 64 case, this is compulsory. For the other
4755 -- cases, it seems reasonable. We like to include end points
4756 -- if we can, but not at the expense of moving to the next
4757 -- natural boundary of size.
4758
4759 elsif Size_Incl_EP /= Size_Excl_EP
4760 and then
4761 (Size_Excl_EP = 8 or else
4762 Size_Excl_EP = 16 or else
4763 Size_Excl_EP = 32 or else
4764 Size_Excl_EP = 64)
4765 then
4766 Actual_Size := Size_Excl_EP;
4767 Actual_Lo := Loval_Excl_EP;
4768 Actual_Hi := Hival_Excl_EP;
4769
4770 -- Otherwise we can definitely include the end points
4771
4772 else
4773 Actual_Size := Size_Incl_EP;
4774 Actual_Lo := Loval_Incl_EP;
4775 Actual_Hi := Hival_Incl_EP;
4776 end if;
4777
edd63e9b
ES
4778 -- One pathological case: normally we never fudge a low bound
4779 -- down, since it would seem to increase the size (if it has
4780 -- any effect), but for ranges containing single value, or no
4781 -- values, the high bound can be small too large. Consider:
70482933
RK
4782
4783 -- type t is delta 2.0**(-14)
4784 -- range 131072.0 .. 0;
4785
edd63e9b
ES
4786 -- That lower bound is *just* outside the range of 32 bits, and
4787 -- does need fudging down in this case. Note that the bounds
4788 -- will always have crossed here, since the high bound will be
4789 -- fudged down if necessary, as in the case of:
70482933
RK
4790
4791 -- type t is delta 2.0**(-14)
4792 -- range 131072.0 .. 131072.0;
4793
edd63e9b
ES
4794 -- So we detect the situation by looking for crossed bounds,
4795 -- and if the bounds are crossed, and the low bound is greater
4796 -- than zero, we will always back it off by small, since this
4797 -- is completely harmless.
70482933
RK
4798
4799 if Actual_Lo > Actual_Hi then
4800 if UR_Is_Positive (Actual_Lo) then
4801 Actual_Lo := Loval_Incl_EP - Small;
4802 Actual_Size := Fsize (Actual_Lo, Actual_Hi);
4803
4804 -- And of course, we need to do exactly the same parallel
4805 -- fudge for flat ranges in the negative region.
4806
4807 elsif UR_Is_Negative (Actual_Hi) then
4808 Actual_Hi := Hival_Incl_EP + Small;
4809 Actual_Size := Fsize (Actual_Lo, Actual_Hi);
4810 end if;
4811 end if;
4812 end if;
4813
4814 Set_Realval (Lo, Actual_Lo);
4815 Set_Realval (Hi, Actual_Hi);
4816 end Fudge;
4817
4818 -- For the decimal case, none of this fudging is required, since there
4819 -- are no end-point problems in the decimal case (the end-points are
4820 -- always included).
4821
4822 else
4823 Actual_Size := Fsize (Loval, Hival);
4824 end if;
4825
4826 -- At this stage, the actual size has been calculated and the proper
4827 -- required bounds are stored in the low and high bounds.
4828
4829 if Actual_Size > 64 then
4830 Error_Msg_Uint_1 := UI_From_Int (Actual_Size);
4831 Error_Msg_N
7d8b9c99
RD
4832 ("size required (^) for type& too large, maximum allowed is 64",
4833 Typ);
70482933
RK
4834 Actual_Size := 64;
4835 end if;
4836
4837 -- Check size against explicit given size
4838
4839 if Has_Size_Clause (Typ) then
4840 if Actual_Size > RM_Size (Typ) then
4841 Error_Msg_Uint_1 := RM_Size (Typ);
4842 Error_Msg_Uint_2 := UI_From_Int (Actual_Size);
4843 Error_Msg_NE
7d8b9c99 4844 ("size given (^) for type& too small, minimum allowed is ^",
70482933
RK
4845 Size_Clause (Typ), Typ);
4846
4847 else
4848 Actual_Size := UI_To_Int (Esize (Typ));
4849 end if;
4850
4851 -- Increase size to next natural boundary if no size clause given
4852
4853 else
4854 if Actual_Size <= 8 then
4855 Actual_Size := 8;
4856 elsif Actual_Size <= 16 then
4857 Actual_Size := 16;
4858 elsif Actual_Size <= 32 then
4859 Actual_Size := 32;
4860 else
4861 Actual_Size := 64;
4862 end if;
4863
4864 Init_Esize (Typ, Actual_Size);
4865 Adjust_Esize_For_Alignment (Typ);
4866 end if;
4867
edd63e9b
ES
4868 -- If we have a base type, then expand the bounds so that they extend to
4869 -- the full width of the allocated size in bits, to avoid junk range
4870 -- checks on intermediate computations.
70482933
RK
4871
4872 if Base_Type (Typ) = Typ then
4873 Set_Realval (Lo, -(Small * (Uint_2 ** (Actual_Size - 1))));
4874 Set_Realval (Hi, (Small * (Uint_2 ** (Actual_Size - 1) - 1)));
4875 end if;
4876
4877 -- Final step is to reanalyze the bounds using the proper type
4878 -- and set the Corresponding_Integer_Value fields of the literals.
4879
4880 Set_Etype (Lo, Empty);
4881 Set_Analyzed (Lo, False);
4882 Analyze (Lo);
4883
edd63e9b
ES
4884 -- Resolve with universal fixed if the base type, and the base type if
4885 -- it is a subtype. Note we can't resolve the base type with itself,
4886 -- that would be a reference before definition.
70482933
RK
4887
4888 if Typ = Btyp then
4889 Resolve (Lo, Universal_Fixed);
4890 else
4891 Resolve (Lo, Btyp);
4892 end if;
4893
4894 -- Set corresponding integer value for bound
4895
4896 Set_Corresponding_Integer_Value
4897 (Lo, UR_To_Uint (Realval (Lo) / Small));
4898
4899 -- Similar processing for high bound
4900
4901 Set_Etype (Hi, Empty);
4902 Set_Analyzed (Hi, False);
4903 Analyze (Hi);
4904
4905 if Typ = Btyp then
4906 Resolve (Hi, Universal_Fixed);
4907 else
4908 Resolve (Hi, Btyp);
4909 end if;
4910
4911 Set_Corresponding_Integer_Value
4912 (Hi, UR_To_Uint (Realval (Hi) / Small));
4913
4914 -- Set type of range to correspond to bounds
4915
4916 Set_Etype (Rng, Etype (Lo));
4917
fbf5a39b 4918 -- Set Esize to calculated size if not set already
70482933 4919
fbf5a39b
AC
4920 if Unknown_Esize (Typ) then
4921 Init_Esize (Typ, Actual_Size);
4922 end if;
70482933
RK
4923
4924 -- Set RM_Size if not already set. If already set, check value
4925
4926 declare
4927 Minsiz : constant Uint := UI_From_Int (Minimum_Size (Typ));
4928
4929 begin
4930 if RM_Size (Typ) /= Uint_0 then
4931 if RM_Size (Typ) < Minsiz then
4932 Error_Msg_Uint_1 := RM_Size (Typ);
4933 Error_Msg_Uint_2 := Minsiz;
4934 Error_Msg_NE
7d8b9c99 4935 ("size given (^) for type& too small, minimum allowed is ^",
70482933
RK
4936 Size_Clause (Typ), Typ);
4937 end if;
4938
4939 else
4940 Set_RM_Size (Typ, Minsiz);
4941 end if;
4942 end;
70482933
RK
4943 end Freeze_Fixed_Point_Type;
4944
4945 ------------------
4946 -- Freeze_Itype --
4947 ------------------
4948
4949 procedure Freeze_Itype (T : Entity_Id; N : Node_Id) is
4950 L : List_Id;
4951
4952 begin
4953 Set_Has_Delayed_Freeze (T);
4954 L := Freeze_Entity (T, Sloc (N));
4955
4956 if Is_Non_Empty_List (L) then
4957 Insert_Actions (N, L);
4958 end if;
4959 end Freeze_Itype;
4960
4961 --------------------------
4962 -- Freeze_Static_Object --
4963 --------------------------
4964
4965 procedure Freeze_Static_Object (E : Entity_Id) is
4966
4967 Cannot_Be_Static : exception;
4968 -- Exception raised if the type of a static object cannot be made
4969 -- static. This happens if the type depends on non-global objects.
4970
4971 procedure Ensure_Expression_Is_SA (N : Node_Id);
ee094616
RD
4972 -- Called to ensure that an expression used as part of a type definition
4973 -- is statically allocatable, which means that the expression type is
4974 -- statically allocatable, and the expression is either static, or a
4975 -- reference to a library level constant.
70482933
RK
4976
4977 procedure Ensure_Type_Is_SA (Typ : Entity_Id);
4978 -- Called to mark a type as static, checking that it is possible
4979 -- to set the type as static. If it is not possible, then the
4980 -- exception Cannot_Be_Static is raised.
4981
4982 -----------------------------
4983 -- Ensure_Expression_Is_SA --
4984 -----------------------------
4985
4986 procedure Ensure_Expression_Is_SA (N : Node_Id) is
4987 Ent : Entity_Id;
4988
4989 begin
4990 Ensure_Type_Is_SA (Etype (N));
4991
4992 if Is_Static_Expression (N) then
4993 return;
4994
4995 elsif Nkind (N) = N_Identifier then
4996 Ent := Entity (N);
4997
4998 if Present (Ent)
4999 and then Ekind (Ent) = E_Constant
5000 and then Is_Library_Level_Entity (Ent)
5001 then
5002 return;
5003 end if;
5004 end if;
5005
5006 raise Cannot_Be_Static;
5007 end Ensure_Expression_Is_SA;
5008
5009 -----------------------
5010 -- Ensure_Type_Is_SA --
5011 -----------------------
5012
5013 procedure Ensure_Type_Is_SA (Typ : Entity_Id) is
5014 N : Node_Id;
5015 C : Entity_Id;
5016
5017 begin
5018 -- If type is library level, we are all set
5019
5020 if Is_Library_Level_Entity (Typ) then
5021 return;
5022 end if;
5023
ee094616
RD
5024 -- We are also OK if the type already marked as statically allocated,
5025 -- which means we processed it before.
70482933
RK
5026
5027 if Is_Statically_Allocated (Typ) then
5028 return;
5029 end if;
5030
5031 -- Mark type as statically allocated
5032
5033 Set_Is_Statically_Allocated (Typ);
5034
5035 -- Check that it is safe to statically allocate this type
5036
5037 if Is_Scalar_Type (Typ) or else Is_Real_Type (Typ) then
5038 Ensure_Expression_Is_SA (Type_Low_Bound (Typ));
5039 Ensure_Expression_Is_SA (Type_High_Bound (Typ));
5040
5041 elsif Is_Array_Type (Typ) then
5042 N := First_Index (Typ);
5043 while Present (N) loop
5044 Ensure_Type_Is_SA (Etype (N));
5045 Next_Index (N);
5046 end loop;
5047
5048 Ensure_Type_Is_SA (Component_Type (Typ));
5049
5050 elsif Is_Access_Type (Typ) then
5051 if Ekind (Designated_Type (Typ)) = E_Subprogram_Type then
5052
5053 declare
5054 F : Entity_Id;
5055 T : constant Entity_Id := Etype (Designated_Type (Typ));
5056
5057 begin
5058 if T /= Standard_Void_Type then
5059 Ensure_Type_Is_SA (T);
5060 end if;
5061
5062 F := First_Formal (Designated_Type (Typ));
5063
5064 while Present (F) loop
5065 Ensure_Type_Is_SA (Etype (F));
5066 Next_Formal (F);
5067 end loop;
5068 end;
5069
5070 else
5071 Ensure_Type_Is_SA (Designated_Type (Typ));
5072 end if;
5073
5074 elsif Is_Record_Type (Typ) then
5075 C := First_Entity (Typ);
70482933
RK
5076 while Present (C) loop
5077 if Ekind (C) = E_Discriminant
5078 or else Ekind (C) = E_Component
5079 then
5080 Ensure_Type_Is_SA (Etype (C));
5081
5082 elsif Is_Type (C) then
5083 Ensure_Type_Is_SA (C);
5084 end if;
5085
5086 Next_Entity (C);
5087 end loop;
5088
5089 elsif Ekind (Typ) = E_Subprogram_Type then
5090 Ensure_Type_Is_SA (Etype (Typ));
5091
5092 C := First_Formal (Typ);
5093 while Present (C) loop
5094 Ensure_Type_Is_SA (Etype (C));
5095 Next_Formal (C);
5096 end loop;
5097
5098 else
5099 raise Cannot_Be_Static;
5100 end if;
5101 end Ensure_Type_Is_SA;
5102
5103 -- Start of processing for Freeze_Static_Object
5104
5105 begin
5106 Ensure_Type_Is_SA (Etype (E));
5107
5108 exception
5109 when Cannot_Be_Static =>
5110
5111 -- If the object that cannot be static is imported or exported,
5112 -- then we give an error message saying that this object cannot
9d0c3761
AC
5113 -- be imported or exported. If it has an address clause it is
5114 -- an overlay in the current partition and the static requirement
5115 -- is not relevant.
70482933 5116
9d0c3761
AC
5117 if Is_Imported (E)
5118 and then No (Address_Clause (E))
5119 then
70482933
RK
5120 Error_Msg_N
5121 ("& cannot be imported (local type is not constant)", E);
5122
5123 -- Otherwise must be exported, something is wrong if compiler
5124 -- is marking something as statically allocated which cannot be).
5125
5126 else pragma Assert (Is_Exported (E));
5127 Error_Msg_N
5128 ("& cannot be exported (local type is not constant)", E);
5129 end if;
5130 end Freeze_Static_Object;
5131
5132 -----------------------
5133 -- Freeze_Subprogram --
5134 -----------------------
5135
5136 procedure Freeze_Subprogram (E : Entity_Id) is
5137 Retype : Entity_Id;
5138 F : Entity_Id;
5139
5140 begin
5141 -- Subprogram may not have an address clause unless it is imported
5142
5143 if Present (Address_Clause (E)) then
5144 if not Is_Imported (E) then
5145 Error_Msg_N
5146 ("address clause can only be given " &
5147 "for imported subprogram",
5148 Name (Address_Clause (E)));
5149 end if;
5150 end if;
5151
91b1417d
AC
5152 -- Reset the Pure indication on an imported subprogram unless an
5153 -- explicit Pure_Function pragma was present. We do this because
ee094616
RD
5154 -- otherwise it is an insidious error to call a non-pure function from
5155 -- pure unit and have calls mysteriously optimized away. What happens
5156 -- here is that the Import can bypass the normal check to ensure that
5157 -- pure units call only pure subprograms.
91b1417d
AC
5158
5159 if Is_Imported (E)
5160 and then Is_Pure (E)
5161 and then not Has_Pragma_Pure_Function (E)
5162 then
5163 Set_Is_Pure (E, False);
5164 end if;
5165
70482933
RK
5166 -- For non-foreign convention subprograms, this is where we create
5167 -- the extra formals (for accessibility level and constrained bit
5168 -- information). We delay this till the freeze point precisely so
5169 -- that we know the convention!
5170
5171 if not Has_Foreign_Convention (E) then
5172 Create_Extra_Formals (E);
5173 Set_Mechanisms (E);
5174
5175 -- If this is convention Ada and a Valued_Procedure, that's odd
5176
5177 if Ekind (E) = E_Procedure
5178 and then Is_Valued_Procedure (E)
5179 and then Convention (E) = Convention_Ada
fbf5a39b 5180 and then Warn_On_Export_Import
70482933
RK
5181 then
5182 Error_Msg_N
5183 ("?Valued_Procedure has no effect for convention Ada", E);
5184 Set_Is_Valued_Procedure (E, False);
5185 end if;
5186
5187 -- Case of foreign convention
5188
5189 else
5190 Set_Mechanisms (E);
5191
fbf5a39b 5192 -- For foreign conventions, warn about return of an
70482933
RK
5193 -- unconstrained array.
5194
5195 -- Note: we *do* allow a return by descriptor for the VMS case,
5196 -- though here there is probably more to be done ???
5197
5198 if Ekind (E) = E_Function then
5199 Retype := Underlying_Type (Etype (E));
5200
5201 -- If no return type, probably some other error, e.g. a
5202 -- missing full declaration, so ignore.
5203
5204 if No (Retype) then
5205 null;
5206
5207 -- If the return type is generic, we have emitted a warning
edd63e9b
ES
5208 -- earlier on, and there is nothing else to check here. Specific
5209 -- instantiations may lead to erroneous behavior.
70482933
RK
5210
5211 elsif Is_Generic_Type (Etype (E)) then
5212 null;
5213
e7d72fb9 5214 -- Display warning if returning unconstrained array
59366db6 5215
70482933
RK
5216 elsif Is_Array_Type (Retype)
5217 and then not Is_Constrained (Retype)
e7d72fb9
AC
5218
5219 -- Exclude cases where descriptor mechanism is set, since the
5220 -- VMS descriptor mechanisms allow such unconstrained returns.
5221
70482933 5222 and then Mechanism (E) not in Descriptor_Codes
e7d72fb9
AC
5223
5224 -- Check appropriate warning is enabled (should we check for
5225 -- Warnings (Off) on specific entities here, probably so???)
5226
fbf5a39b 5227 and then Warn_On_Export_Import
e7d72fb9
AC
5228
5229 -- Exclude the VM case, since return of unconstrained arrays
5230 -- is properly handled in both the JVM and .NET cases.
5231
f3b57ab0 5232 and then VM_Target = No_VM
70482933 5233 then
fbf5a39b
AC
5234 Error_Msg_N
5235 ("?foreign convention function& should not return " &
5236 "unconstrained array", E);
70482933
RK
5237 return;
5238 end if;
5239 end if;
5240
5241 -- If any of the formals for an exported foreign convention
edd63e9b
ES
5242 -- subprogram have defaults, then emit an appropriate warning since
5243 -- this is odd (default cannot be used from non-Ada code)
70482933
RK
5244
5245 if Is_Exported (E) then
5246 F := First_Formal (E);
5247 while Present (F) loop
fbf5a39b
AC
5248 if Warn_On_Export_Import
5249 and then Present (Default_Value (F))
5250 then
70482933
RK
5251 Error_Msg_N
5252 ("?parameter cannot be defaulted in non-Ada call",
5253 Default_Value (F));
5254 end if;
5255
5256 Next_Formal (F);
5257 end loop;
5258 end if;
5259 end if;
5260
e7d72fb9
AC
5261 -- For VMS, descriptor mechanisms for parameters are allowed only for
5262 -- imported/exported subprograms. Moreover, the NCA descriptor is not
5263 -- allowed for parameters of exported subprograms.
70482933
RK
5264
5265 if OpenVMS_On_Target then
7d8b9c99
RD
5266 if Is_Exported (E) then
5267 F := First_Formal (E);
5268 while Present (F) loop
5269 if Mechanism (F) = By_Descriptor_NCA then
5270 Error_Msg_N
5271 ("'N'C'A' descriptor for parameter not permitted", F);
5272 Error_Msg_N
5273 ("\can only be used for imported subprogram", F);
5274 end if;
5275
5276 Next_Formal (F);
5277 end loop;
5278
5279 elsif not Is_Imported (E) then
70482933
RK
5280 F := First_Formal (E);
5281 while Present (F) loop
5282 if Mechanism (F) in Descriptor_Codes then
5283 Error_Msg_N
5284 ("descriptor mechanism for parameter not permitted", F);
5285 Error_Msg_N
7d8b9c99 5286 ("\can only be used for imported/exported subprogram", F);
70482933
RK
5287 end if;
5288
5289 Next_Formal (F);
5290 end loop;
5291 end if;
5292 end if;
edd63e9b
ES
5293
5294 -- Pragma Inline_Always is disallowed for dispatching subprograms
5295 -- because the address of such subprograms is saved in the dispatch
5296 -- table to support dispatching calls, and dispatching calls cannot
5297 -- be inlined. This is consistent with the restriction against using
5298 -- 'Access or 'Address on an Inline_Always subprogram.
5299
def46b54
RD
5300 if Is_Dispatching_Operation (E)
5301 and then Has_Pragma_Inline_Always (E)
5302 then
edd63e9b
ES
5303 Error_Msg_N
5304 ("pragma Inline_Always not allowed for dispatching subprograms", E);
5305 end if;
c6a9797e
RD
5306
5307 -- Because of the implicit representation of inherited predefined
5308 -- operators in the front-end, the overriding status of the operation
5309 -- may be affected when a full view of a type is analyzed, and this is
5310 -- not captured by the analysis of the corresponding type declaration.
5311 -- Therefore the correctness of a not-overriding indicator must be
5312 -- rechecked when the subprogram is frozen.
5313
5314 if Nkind (E) = N_Defining_Operator_Symbol
5315 and then not Error_Posted (Parent (E))
5316 then
5317 Check_Overriding_Indicator (E, Empty, Is_Primitive (E));
5318 end if;
70482933
RK
5319 end Freeze_Subprogram;
5320
15ce9ca2
AC
5321 ----------------------
5322 -- Is_Fully_Defined --
5323 ----------------------
70482933 5324
70482933
RK
5325 function Is_Fully_Defined (T : Entity_Id) return Boolean is
5326 begin
5327 if Ekind (T) = E_Class_Wide_Type then
5328 return Is_Fully_Defined (Etype (T));
657a9dd9
AC
5329
5330 elsif Is_Array_Type (T) then
5331 return Is_Fully_Defined (Component_Type (T));
5332
5333 elsif Is_Record_Type (T)
5334 and not Is_Private_Type (T)
5335 then
ee094616
RD
5336 -- Verify that the record type has no components with private types
5337 -- without completion.
657a9dd9
AC
5338
5339 declare
5340 Comp : Entity_Id;
bde58e32 5341
657a9dd9
AC
5342 begin
5343 Comp := First_Component (T);
5344
5345 while Present (Comp) loop
5346 if not Is_Fully_Defined (Etype (Comp)) then
5347 return False;
5348 end if;
5349
5350 Next_Component (Comp);
5351 end loop;
5352 return True;
5353 end;
5354
86cde7b1
RD
5355 else
5356 return not Is_Private_Type (T)
5357 or else Present (Full_View (Base_Type (T)));
70482933
RK
5358 end if;
5359 end Is_Fully_Defined;
5360
70d904ca 5361 ---------------------------------
70482933
RK
5362 -- Process_Default_Expressions --
5363 ---------------------------------
5364
5365 procedure Process_Default_Expressions
5366 (E : Entity_Id;
5367 After : in out Node_Id)
5368 is
5369 Loc : constant Source_Ptr := Sloc (E);
5370 Dbody : Node_Id;
5371 Formal : Node_Id;
5372 Dcopy : Node_Id;
5373 Dnam : Entity_Id;
5374
5375 begin
5376 Set_Default_Expressions_Processed (E);
5377
ee094616
RD
5378 -- A subprogram instance and its associated anonymous subprogram share
5379 -- their signature. The default expression functions are defined in the
5380 -- wrapper packages for the anonymous subprogram, and should not be
5381 -- generated again for the instance.
70482933
RK
5382
5383 if Is_Generic_Instance (E)
5384 and then Present (Alias (E))
5385 and then Default_Expressions_Processed (Alias (E))
5386 then
5387 return;
5388 end if;
5389
5390 Formal := First_Formal (E);
70482933
RK
5391 while Present (Formal) loop
5392 if Present (Default_Value (Formal)) then
5393
5394 -- We work with a copy of the default expression because we
5395 -- do not want to disturb the original, since this would mess
5396 -- up the conformance checking.
5397
5398 Dcopy := New_Copy_Tree (Default_Value (Formal));
5399
5400 -- The analysis of the expression may generate insert actions,
5401 -- which of course must not be executed. We wrap those actions
5402 -- in a procedure that is not called, and later on eliminated.
5403 -- The following cases have no side-effects, and are analyzed
5404 -- directly.
5405
5406 if Nkind (Dcopy) = N_Identifier
5407 or else Nkind (Dcopy) = N_Expanded_Name
5408 or else Nkind (Dcopy) = N_Integer_Literal
5409 or else (Nkind (Dcopy) = N_Real_Literal
5410 and then not Vax_Float (Etype (Dcopy)))
5411 or else Nkind (Dcopy) = N_Character_Literal
5412 or else Nkind (Dcopy) = N_String_Literal
86cde7b1 5413 or else Known_Null (Dcopy)
70482933
RK
5414 or else (Nkind (Dcopy) = N_Attribute_Reference
5415 and then
5416 Attribute_Name (Dcopy) = Name_Null_Parameter)
70482933
RK
5417 then
5418
5419 -- If there is no default function, we must still do a full
ee094616
RD
5420 -- analyze call on the default value, to ensure that all error
5421 -- checks are performed, e.g. those associated with static
5422 -- evaluation. Note: this branch will always be taken if the
5423 -- analyzer is turned off (but we still need the error checks).
70482933
RK
5424
5425 -- Note: the setting of parent here is to meet the requirement
5426 -- that we can only analyze the expression while attached to
5427 -- the tree. Really the requirement is that the parent chain
5428 -- be set, we don't actually need to be in the tree.
5429
5430 Set_Parent (Dcopy, Declaration_Node (Formal));
5431 Analyze (Dcopy);
5432
5433 -- Default expressions are resolved with their own type if the
5434 -- context is generic, to avoid anomalies with private types.
5435
5436 if Ekind (Scope (E)) = E_Generic_Package then
fbf5a39b 5437 Resolve (Dcopy);
70482933
RK
5438 else
5439 Resolve (Dcopy, Etype (Formal));
5440 end if;
5441
5442 -- If that resolved expression will raise constraint error,
5443 -- then flag the default value as raising constraint error.
5444 -- This allows a proper error message on the calls.
5445
5446 if Raises_Constraint_Error (Dcopy) then
5447 Set_Raises_Constraint_Error (Default_Value (Formal));
5448 end if;
5449
5450 -- If the default is a parameterless call, we use the name of
5451 -- the called function directly, and there is no body to build.
5452
5453 elsif Nkind (Dcopy) = N_Function_Call
5454 and then No (Parameter_Associations (Dcopy))
5455 then
5456 null;
5457
5458 -- Else construct and analyze the body of a wrapper procedure
5459 -- that contains an object declaration to hold the expression.
5460 -- Given that this is done only to complete the analysis, it
5461 -- simpler to build a procedure than a function which might
5462 -- involve secondary stack expansion.
5463
5464 else
5465 Dnam :=
5466 Make_Defining_Identifier (Loc, New_Internal_Name ('D'));
5467
5468 Dbody :=
5469 Make_Subprogram_Body (Loc,
5470 Specification =>
5471 Make_Procedure_Specification (Loc,
5472 Defining_Unit_Name => Dnam),
5473
5474 Declarations => New_List (
5475 Make_Object_Declaration (Loc,
5476 Defining_Identifier =>
5477 Make_Defining_Identifier (Loc,
5478 New_Internal_Name ('T')),
5479 Object_Definition =>
5480 New_Occurrence_Of (Etype (Formal), Loc),
5481 Expression => New_Copy_Tree (Dcopy))),
5482
5483 Handled_Statement_Sequence =>
5484 Make_Handled_Sequence_Of_Statements (Loc,
5485 Statements => New_List));
5486
5487 Set_Scope (Dnam, Scope (E));
5488 Set_Assignment_OK (First (Declarations (Dbody)));
5489 Set_Is_Eliminated (Dnam);
5490 Insert_After (After, Dbody);
5491 Analyze (Dbody);
5492 After := Dbody;
5493 end if;
5494 end if;
5495
5496 Next_Formal (Formal);
5497 end loop;
70482933
RK
5498 end Process_Default_Expressions;
5499
5500 ----------------------------------------
5501 -- Set_Component_Alignment_If_Not_Set --
5502 ----------------------------------------
5503
5504 procedure Set_Component_Alignment_If_Not_Set (Typ : Entity_Id) is
5505 begin
5506 -- Ignore if not base type, subtypes don't need anything
5507
5508 if Typ /= Base_Type (Typ) then
5509 return;
5510 end if;
5511
5512 -- Do not override existing representation
5513
5514 if Is_Packed (Typ) then
5515 return;
5516
5517 elsif Has_Specified_Layout (Typ) then
5518 return;
5519
5520 elsif Component_Alignment (Typ) /= Calign_Default then
5521 return;
5522
5523 else
5524 Set_Component_Alignment
5525 (Typ, Scope_Stack.Table
5526 (Scope_Stack.Last).Component_Alignment_Default);
5527 end if;
5528 end Set_Component_Alignment_If_Not_Set;
5529
c6823a20
EB
5530 ------------------
5531 -- Undelay_Type --
5532 ------------------
5533
5534 procedure Undelay_Type (T : Entity_Id) is
5535 begin
5536 Set_Has_Delayed_Freeze (T, False);
5537 Set_Freeze_Node (T, Empty);
5538
5539 -- Since we don't want T to have a Freeze_Node, we don't want its
5540 -- Full_View or Corresponding_Record_Type to have one either.
5541
5542 -- ??? Fundamentally, this whole handling is a kludge. What we really
ee094616
RD
5543 -- want is to be sure that for an Itype that's part of record R and is a
5544 -- subtype of type T, that it's frozen after the later of the freeze
c6823a20
EB
5545 -- points of R and T. We have no way of doing that directly, so what we
5546 -- do is force most such Itypes to be frozen as part of freezing R via
5547 -- this procedure and only delay the ones that need to be delayed
ee094616
RD
5548 -- (mostly the designated types of access types that are defined as part
5549 -- of the record).
c6823a20
EB
5550
5551 if Is_Private_Type (T)
5552 and then Present (Full_View (T))
5553 and then Is_Itype (Full_View (T))
5554 and then Is_Record_Type (Scope (Full_View (T)))
5555 then
5556 Undelay_Type (Full_View (T));
5557 end if;
5558
5559 if Is_Concurrent_Type (T)
5560 and then Present (Corresponding_Record_Type (T))
5561 and then Is_Itype (Corresponding_Record_Type (T))
5562 and then Is_Record_Type (Scope (Corresponding_Record_Type (T)))
5563 then
5564 Undelay_Type (Corresponding_Record_Type (T));
5565 end if;
5566 end Undelay_Type;
5567
fbf5a39b
AC
5568 ------------------
5569 -- Warn_Overlay --
5570 ------------------
5571
5572 procedure Warn_Overlay
5573 (Expr : Node_Id;
5574 Typ : Entity_Id;
5575 Nam : Entity_Id)
5576 is
5577 Ent : constant Entity_Id := Entity (Nam);
49e90211 5578 -- The object to which the address clause applies
fbf5a39b
AC
5579
5580 Init : Node_Id;
5581 Old : Entity_Id := Empty;
5582 Decl : Node_Id;
5583
5584 begin
5585 -- No warning if address clause overlay warnings are off
5586
5587 if not Address_Clause_Overlay_Warnings then
5588 return;
5589 end if;
5590
5591 -- No warning if there is an explicit initialization
5592
5593 Init := Original_Node (Expression (Declaration_Node (Ent)));
5594
5595 if Present (Init) and then Comes_From_Source (Init) then
5596 return;
5597 end if;
5598
edd63e9b 5599 -- We only give the warning for non-imported entities of a type for
0ac73189
AC
5600 -- which a non-null base init proc is defined, or for objects of access
5601 -- types with implicit null initialization, or when Initialize_Scalars
5602 -- applies and the type is scalar or a string type (the latter being
5603 -- tested for because predefined String types are initialized by inline
5604 -- code rather than by an init_proc).
fbf5a39b
AC
5605
5606 if Present (Expr)
fbf5a39b 5607 and then not Is_Imported (Ent)
0ac73189
AC
5608 and then (Has_Non_Null_Base_Init_Proc (Typ)
5609 or else Is_Access_Type (Typ)
5610 or else (Init_Or_Norm_Scalars
5611 and then (Is_Scalar_Type (Typ)
5612 or else Is_String_Type (Typ))))
fbf5a39b
AC
5613 then
5614 if Nkind (Expr) = N_Attribute_Reference
5615 and then Is_Entity_Name (Prefix (Expr))
5616 then
5617 Old := Entity (Prefix (Expr));
5618
5619 elsif Is_Entity_Name (Expr)
5620 and then Ekind (Entity (Expr)) = E_Constant
5621 then
5622 Decl := Declaration_Node (Entity (Expr));
5623
5624 if Nkind (Decl) = N_Object_Declaration
5625 and then Present (Expression (Decl))
5626 and then Nkind (Expression (Decl)) = N_Attribute_Reference
5627 and then Is_Entity_Name (Prefix (Expression (Decl)))
5628 then
5629 Old := Entity (Prefix (Expression (Decl)));
5630
5631 elsif Nkind (Expr) = N_Function_Call then
5632 return;
5633 end if;
5634
ee094616
RD
5635 -- A function call (most likely to To_Address) is probably not an
5636 -- overlay, so skip warning. Ditto if the function call was inlined
5637 -- and transformed into an entity.
fbf5a39b
AC
5638
5639 elsif Nkind (Original_Node (Expr)) = N_Function_Call then
5640 return;
5641 end if;
5642
5643 Decl := Next (Parent (Expr));
5644
5645 -- If a pragma Import follows, we assume that it is for the current
5646 -- target of the address clause, and skip the warning.
5647
5648 if Present (Decl)
5649 and then Nkind (Decl) = N_Pragma
1b24ada5 5650 and then Pragma_Name (Decl) = Name_Import
fbf5a39b
AC
5651 then
5652 return;
5653 end if;
5654
5655 if Present (Old) then
5656 Error_Msg_Node_2 := Old;
5657 Error_Msg_N
5658 ("default initialization of & may modify &?",
5659 Nam);
5660 else
5661 Error_Msg_N
5662 ("default initialization of & may modify overlaid storage?",
5663 Nam);
5664 end if;
5665
5666 -- Add friendly warning if initialization comes from a packed array
5667 -- component.
5668
5669 if Is_Record_Type (Typ) then
5670 declare
5671 Comp : Entity_Id;
5672
5673 begin
5674 Comp := First_Component (Typ);
5675
5676 while Present (Comp) loop
5677 if Nkind (Parent (Comp)) = N_Component_Declaration
5678 and then Present (Expression (Parent (Comp)))
5679 then
5680 exit;
5681 elsif Is_Array_Type (Etype (Comp))
5682 and then Present (Packed_Array_Type (Etype (Comp)))
5683 then
5684 Error_Msg_NE
3f1ede06
RD
5685 ("\packed array component& " &
5686 "will be initialized to zero?",
5687 Nam, Comp);
fbf5a39b
AC
5688 exit;
5689 else
5690 Next_Component (Comp);
5691 end if;
5692 end loop;
5693 end;
5694 end if;
5695
5696 Error_Msg_N
3f1ede06 5697 ("\use pragma Import for & to " &
86cde7b1 5698 "suppress initialization (RM B.1(24))?",
3f1ede06 5699 Nam);
fbf5a39b
AC
5700 end if;
5701 end Warn_Overlay;
5702
70482933 5703end Freeze;
This page took 2.571605 seconds and 5 git commands to generate.