]> gcc.gnu.org Git - gcc.git/blame - gcc/ada/freeze.adb
re PR debug/40713 (Overlapping .debug_ranges (C++))
[gcc.git] / gcc / ada / freeze.adb
CommitLineData
8dc10d38 1------------------------------------------------------------------------------
70482933
RK
2-- --
3-- GNAT COMPILER COMPONENTS --
4-- --
5-- F R E E Z E --
6-- --
7-- B o d y --
8-- --
748086b7 9-- Copyright (C) 1992-2009, Free Software Foundation, Inc. --
70482933
RK
10-- --
11-- GNAT is free software; you can redistribute it and/or modify it under --
12-- terms of the GNU General Public License as published by the Free Soft- --
748086b7 13-- ware Foundation; either version 3, or (at your option) any later ver- --
70482933
RK
14-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
748086b7
JJ
16-- or FITNESS FOR A PARTICULAR PURPOSE. --
17-- --
18-- You should have received a copy of the GNU General Public License along --
19-- with this program; see file COPYING3. If not see --
20-- <http://www.gnu.org/licenses/>. --
70482933
RK
21-- --
22-- GNAT was originally developed by the GNAT team at New York University. --
71ff80dc 23-- Extensive contributions were provided by Ada Core Technologies Inc. --
70482933
RK
24-- --
25------------------------------------------------------------------------------
26
27with Atree; use Atree;
28with Debug; use Debug;
29with Einfo; use Einfo;
30with Elists; use Elists;
31with Errout; use Errout;
1ce1f005 32with Exp_Ch3; use Exp_Ch3;
70482933 33with Exp_Ch7; use Exp_Ch7;
ce2b6ba5 34with Exp_Disp; use Exp_Disp;
70482933
RK
35with Exp_Pakd; use Exp_Pakd;
36with Exp_Util; use Exp_Util;
fbf5a39b 37with Exp_Tss; use Exp_Tss;
70482933 38with Layout; use Layout;
7d8b9c99 39with Namet; use Namet;
70482933
RK
40with Nlists; use Nlists;
41with Nmake; use Nmake;
42with Opt; use Opt;
43with Restrict; use Restrict;
6e937c1c 44with Rident; use Rident;
70482933 45with Sem; use Sem;
a4100e55 46with Sem_Aux; use Sem_Aux;
70482933
RK
47with Sem_Cat; use Sem_Cat;
48with Sem_Ch6; use Sem_Ch6;
49with Sem_Ch7; use Sem_Ch7;
50with Sem_Ch8; use Sem_Ch8;
51with Sem_Ch13; use Sem_Ch13;
52with Sem_Eval; use Sem_Eval;
53with Sem_Mech; use Sem_Mech;
54with Sem_Prag; use Sem_Prag;
55with Sem_Res; use Sem_Res;
56with Sem_Util; use Sem_Util;
57with Sinfo; use Sinfo;
58with Snames; use Snames;
59with Stand; use Stand;
60with Targparm; use Targparm;
61with Tbuild; use Tbuild;
62with Ttypes; use Ttypes;
63with Uintp; use Uintp;
64with Urealp; use Urealp;
65
66package body Freeze is
67
68 -----------------------
69 -- Local Subprograms --
70 -----------------------
71
72 procedure Adjust_Esize_For_Alignment (Typ : Entity_Id);
73 -- Typ is a type that is being frozen. If no size clause is given,
74 -- but a default Esize has been computed, then this default Esize is
75 -- adjusted up if necessary to be consistent with a given alignment,
76 -- but never to a value greater than Long_Long_Integer'Size. This
77 -- is used for all discrete types and for fixed-point types.
78
79 procedure Build_And_Analyze_Renamed_Body
80 (Decl : Node_Id;
81 New_S : Entity_Id;
82 After : in out Node_Id);
49e90211 83 -- Build body for a renaming declaration, insert in tree and analyze
70482933 84
fbf5a39b
AC
85 procedure Check_Address_Clause (E : Entity_Id);
86 -- Apply legality checks to address clauses for object declarations,
2c9beb8a 87 -- at the point the object is frozen.
fbf5a39b 88
70482933
RK
89 procedure Check_Strict_Alignment (E : Entity_Id);
90 -- E is a base type. If E is tagged or has a component that is aliased
91 -- or tagged or contains something this is aliased or tagged, set
92 -- Strict_Alignment.
93
94 procedure Check_Unsigned_Type (E : Entity_Id);
95 pragma Inline (Check_Unsigned_Type);
96 -- If E is a fixed-point or discrete type, then all the necessary work
97 -- to freeze it is completed except for possible setting of the flag
98 -- Is_Unsigned_Type, which is done by this procedure. The call has no
99 -- effect if the entity E is not a discrete or fixed-point type.
100
101 procedure Freeze_And_Append
102 (Ent : Entity_Id;
103 Loc : Source_Ptr;
104 Result : in out List_Id);
105 -- Freezes Ent using Freeze_Entity, and appends the resulting list of
106 -- nodes to Result, modifying Result from No_List if necessary.
107
108 procedure Freeze_Enumeration_Type (Typ : Entity_Id);
109 -- Freeze enumeration type. The Esize field is set as processing
110 -- proceeds (i.e. set by default when the type is declared and then
111 -- adjusted by rep clauses. What this procedure does is to make sure
112 -- that if a foreign convention is specified, and no specific size
113 -- is given, then the size must be at least Integer'Size.
114
70482933
RK
115 procedure Freeze_Static_Object (E : Entity_Id);
116 -- If an object is frozen which has Is_Statically_Allocated set, then
117 -- all referenced types must also be marked with this flag. This routine
118 -- is in charge of meeting this requirement for the object entity E.
119
120 procedure Freeze_Subprogram (E : Entity_Id);
121 -- Perform freezing actions for a subprogram (create extra formals,
122 -- and set proper default mechanism values). Note that this routine
123 -- is not called for internal subprograms, for which neither of these
124 -- actions is needed (or desirable, we do not want for example to have
125 -- these extra formals present in initialization procedures, where they
126 -- would serve no purpose). In this call E is either a subprogram or
127 -- a subprogram type (i.e. an access to a subprogram).
128
129 function Is_Fully_Defined (T : Entity_Id) return Boolean;
bde58e32 130 -- True if T is not private and has no private components, or has a full
657a9dd9
AC
131 -- view. Used to determine whether the designated type of an access type
132 -- should be frozen when the access type is frozen. This is done when an
133 -- allocator is frozen, or an expression that may involve attributes of
134 -- the designated type. Otherwise freezing the access type does not freeze
135 -- the designated type.
70482933
RK
136
137 procedure Process_Default_Expressions
138 (E : Entity_Id;
139 After : in out Node_Id);
140 -- This procedure is called for each subprogram to complete processing
141 -- of default expressions at the point where all types are known to be
142 -- frozen. The expressions must be analyzed in full, to make sure that
143 -- all error processing is done (they have only been pre-analyzed). If
144 -- the expression is not an entity or literal, its analysis may generate
145 -- code which must not be executed. In that case we build a function
146 -- body to hold that code. This wrapper function serves no other purpose
147 -- (it used to be called to evaluate the default, but now the default is
148 -- inlined at each point of call).
149
150 procedure Set_Component_Alignment_If_Not_Set (Typ : Entity_Id);
151 -- Typ is a record or array type that is being frozen. This routine
152 -- sets the default component alignment from the scope stack values
153 -- if the alignment is otherwise not specified.
154
155 procedure Check_Debug_Info_Needed (T : Entity_Id);
156 -- As each entity is frozen, this routine is called to deal with the
157 -- setting of Debug_Info_Needed for the entity. This flag is set if
158 -- the entity comes from source, or if we are in Debug_Generated_Code
159 -- mode or if the -gnatdV debug flag is set. However, it never sets
1b24ada5
RD
160 -- the flag if Debug_Info_Off is set. This procedure also ensures that
161 -- subsidiary entities have the flag set as required.
70482933 162
c6823a20
EB
163 procedure Undelay_Type (T : Entity_Id);
164 -- T is a type of a component that we know to be an Itype.
165 -- We don't want this to have a Freeze_Node, so ensure it doesn't.
166 -- Do the same for any Full_View or Corresponding_Record_Type.
167
fbf5a39b
AC
168 procedure Warn_Overlay
169 (Expr : Node_Id;
170 Typ : Entity_Id;
171 Nam : Node_Id);
172 -- Expr is the expression for an address clause for entity Nam whose type
173 -- is Typ. If Typ has a default initialization, and there is no explicit
174 -- initialization in the source declaration, check whether the address
175 -- clause might cause overlaying of an entity, and emit a warning on the
176 -- side effect that the initialization will cause.
177
70482933
RK
178 -------------------------------
179 -- Adjust_Esize_For_Alignment --
180 -------------------------------
181
182 procedure Adjust_Esize_For_Alignment (Typ : Entity_Id) is
183 Align : Uint;
184
185 begin
186 if Known_Esize (Typ) and then Known_Alignment (Typ) then
187 Align := Alignment_In_Bits (Typ);
188
189 if Align > Esize (Typ)
190 and then Align <= Standard_Long_Long_Integer_Size
191 then
192 Set_Esize (Typ, Align);
193 end if;
194 end if;
195 end Adjust_Esize_For_Alignment;
196
197 ------------------------------------
198 -- Build_And_Analyze_Renamed_Body --
199 ------------------------------------
200
201 procedure Build_And_Analyze_Renamed_Body
202 (Decl : Node_Id;
203 New_S : Entity_Id;
204 After : in out Node_Id)
205 is
206 Body_Node : constant Node_Id := Build_Renamed_Body (Decl, New_S);
70482933
RK
207 begin
208 Insert_After (After, Body_Node);
209 Mark_Rewrite_Insertion (Body_Node);
210 Analyze (Body_Node);
211 After := Body_Node;
212 end Build_And_Analyze_Renamed_Body;
213
214 ------------------------
215 -- Build_Renamed_Body --
216 ------------------------
217
218 function Build_Renamed_Body
219 (Decl : Node_Id;
fbf5a39b 220 New_S : Entity_Id) return Node_Id
70482933
RK
221 is
222 Loc : constant Source_Ptr := Sloc (New_S);
223 -- We use for the source location of the renamed body, the location
224 -- of the spec entity. It might seem more natural to use the location
225 -- of the renaming declaration itself, but that would be wrong, since
226 -- then the body we create would look as though it was created far
227 -- too late, and this could cause problems with elaboration order
228 -- analysis, particularly in connection with instantiations.
229
230 N : constant Node_Id := Unit_Declaration_Node (New_S);
231 Nam : constant Node_Id := Name (N);
232 Old_S : Entity_Id;
233 Spec : constant Node_Id := New_Copy_Tree (Specification (Decl));
234 Actuals : List_Id := No_List;
235 Call_Node : Node_Id;
236 Call_Name : Node_Id;
237 Body_Node : Node_Id;
238 Formal : Entity_Id;
239 O_Formal : Entity_Id;
240 Param_Spec : Node_Id;
241
def46b54
RD
242 Pref : Node_Id := Empty;
243 -- If the renamed entity is a primitive operation given in prefix form,
244 -- the prefix is the target object and it has to be added as the first
245 -- actual in the generated call.
246
70482933 247 begin
def46b54
RD
248 -- Determine the entity being renamed, which is the target of the call
249 -- statement. If the name is an explicit dereference, this is a renaming
250 -- of a subprogram type rather than a subprogram. The name itself is
251 -- fully analyzed.
70482933
RK
252
253 if Nkind (Nam) = N_Selected_Component then
254 Old_S := Entity (Selector_Name (Nam));
255
256 elsif Nkind (Nam) = N_Explicit_Dereference then
257 Old_S := Etype (Nam);
258
259 elsif Nkind (Nam) = N_Indexed_Component then
70482933
RK
260 if Is_Entity_Name (Prefix (Nam)) then
261 Old_S := Entity (Prefix (Nam));
262 else
263 Old_S := Entity (Selector_Name (Prefix (Nam)));
264 end if;
265
266 elsif Nkind (Nam) = N_Character_Literal then
267 Old_S := Etype (New_S);
268
269 else
270 Old_S := Entity (Nam);
271 end if;
272
273 if Is_Entity_Name (Nam) then
07fc65c4 274
def46b54
RD
275 -- If the renamed entity is a predefined operator, retain full name
276 -- to ensure its visibility.
07fc65c4
GB
277
278 if Ekind (Old_S) = E_Operator
279 and then Nkind (Nam) = N_Expanded_Name
280 then
281 Call_Name := New_Copy (Name (N));
282 else
283 Call_Name := New_Reference_To (Old_S, Loc);
284 end if;
285
70482933 286 else
def46b54
RD
287 if Nkind (Nam) = N_Selected_Component
288 and then Present (First_Formal (Old_S))
289 and then
290 (Is_Controlling_Formal (First_Formal (Old_S))
291 or else Is_Class_Wide_Type (Etype (First_Formal (Old_S))))
292 then
293
294 -- Retrieve the target object, to be added as a first actual
295 -- in the call.
296
297 Call_Name := New_Occurrence_Of (Old_S, Loc);
298 Pref := Prefix (Nam);
299
300 else
301 Call_Name := New_Copy (Name (N));
302 end if;
70482933
RK
303
304 -- The original name may have been overloaded, but
305 -- is fully resolved now.
306
307 Set_Is_Overloaded (Call_Name, False);
308 end if;
309
def46b54
RD
310 -- For simple renamings, subsequent calls can be expanded directly as
311 -- called to the renamed entity. The body must be generated in any case
312 -- for calls they may appear elsewhere.
70482933
RK
313
314 if (Ekind (Old_S) = E_Function
315 or else Ekind (Old_S) = E_Procedure)
316 and then Nkind (Decl) = N_Subprogram_Declaration
317 then
318 Set_Body_To_Inline (Decl, Old_S);
319 end if;
320
321 -- The body generated for this renaming is an internal artifact, and
322 -- does not constitute a freeze point for the called entity.
323
324 Set_Must_Not_Freeze (Call_Name);
325
326 Formal := First_Formal (Defining_Entity (Decl));
327
def46b54
RD
328 if Present (Pref) then
329 declare
330 Pref_Type : constant Entity_Id := Etype (Pref);
331 Form_Type : constant Entity_Id := Etype (First_Formal (Old_S));
332
333 begin
334
335 -- The controlling formal may be an access parameter, or the
e14c931f 336 -- actual may be an access value, so adjust accordingly.
def46b54
RD
337
338 if Is_Access_Type (Pref_Type)
339 and then not Is_Access_Type (Form_Type)
340 then
341 Actuals := New_List
342 (Make_Explicit_Dereference (Loc, Relocate_Node (Pref)));
343
344 elsif Is_Access_Type (Form_Type)
345 and then not Is_Access_Type (Pref)
346 then
347 Actuals := New_List
348 (Make_Attribute_Reference (Loc,
349 Attribute_Name => Name_Access,
350 Prefix => Relocate_Node (Pref)));
351 else
352 Actuals := New_List (Pref);
353 end if;
354 end;
355
356 elsif Present (Formal) then
70482933
RK
357 Actuals := New_List;
358
def46b54
RD
359 else
360 Actuals := No_List;
361 end if;
362
363 if Present (Formal) then
70482933
RK
364 while Present (Formal) loop
365 Append (New_Reference_To (Formal, Loc), Actuals);
366 Next_Formal (Formal);
367 end loop;
368 end if;
369
def46b54
RD
370 -- If the renamed entity is an entry, inherit its profile. For other
371 -- renamings as bodies, both profiles must be subtype conformant, so it
372 -- is not necessary to replace the profile given in the declaration.
373 -- However, default values that are aggregates are rewritten when
374 -- partially analyzed, so we recover the original aggregate to insure
375 -- that subsequent conformity checking works. Similarly, if the default
376 -- expression was constant-folded, recover the original expression.
70482933
RK
377
378 Formal := First_Formal (Defining_Entity (Decl));
379
380 if Present (Formal) then
381 O_Formal := First_Formal (Old_S);
382 Param_Spec := First (Parameter_Specifications (Spec));
383
384 while Present (Formal) loop
385 if Is_Entry (Old_S) then
386
387 if Nkind (Parameter_Type (Param_Spec)) /=
388 N_Access_Definition
389 then
390 Set_Etype (Formal, Etype (O_Formal));
391 Set_Entity (Parameter_Type (Param_Spec), Etype (O_Formal));
392 end if;
393
07fc65c4
GB
394 elsif Nkind (Default_Value (O_Formal)) = N_Aggregate
395 or else Nkind (Original_Node (Default_Value (O_Formal))) /=
396 Nkind (Default_Value (O_Formal))
397 then
70482933
RK
398 Set_Expression (Param_Spec,
399 New_Copy_Tree (Original_Node (Default_Value (O_Formal))));
400 end if;
401
402 Next_Formal (Formal);
403 Next_Formal (O_Formal);
404 Next (Param_Spec);
405 end loop;
406 end if;
407
408 -- If the renamed entity is a function, the generated body contains a
409 -- return statement. Otherwise, build a procedure call. If the entity is
410 -- an entry, subsequent analysis of the call will transform it into the
411 -- proper entry or protected operation call. If the renamed entity is
412 -- a character literal, return it directly.
413
414 if Ekind (Old_S) = E_Function
415 or else Ekind (Old_S) = E_Operator
416 or else (Ekind (Old_S) = E_Subprogram_Type
417 and then Etype (Old_S) /= Standard_Void_Type)
418 then
419 Call_Node :=
86cde7b1 420 Make_Simple_Return_Statement (Loc,
70482933
RK
421 Expression =>
422 Make_Function_Call (Loc,
423 Name => Call_Name,
424 Parameter_Associations => Actuals));
425
426 elsif Ekind (Old_S) = E_Enumeration_Literal then
427 Call_Node :=
86cde7b1 428 Make_Simple_Return_Statement (Loc,
70482933
RK
429 Expression => New_Occurrence_Of (Old_S, Loc));
430
431 elsif Nkind (Nam) = N_Character_Literal then
432 Call_Node :=
86cde7b1 433 Make_Simple_Return_Statement (Loc,
70482933
RK
434 Expression => Call_Name);
435
436 else
437 Call_Node :=
438 Make_Procedure_Call_Statement (Loc,
439 Name => Call_Name,
440 Parameter_Associations => Actuals);
441 end if;
442
49e90211 443 -- Create entities for subprogram body and formals
70482933
RK
444
445 Set_Defining_Unit_Name (Spec,
446 Make_Defining_Identifier (Loc, Chars => Chars (New_S)));
447
448 Param_Spec := First (Parameter_Specifications (Spec));
449
450 while Present (Param_Spec) loop
451 Set_Defining_Identifier (Param_Spec,
452 Make_Defining_Identifier (Loc,
453 Chars => Chars (Defining_Identifier (Param_Spec))));
454 Next (Param_Spec);
455 end loop;
456
457 Body_Node :=
458 Make_Subprogram_Body (Loc,
459 Specification => Spec,
460 Declarations => New_List,
461 Handled_Statement_Sequence =>
462 Make_Handled_Sequence_Of_Statements (Loc,
463 Statements => New_List (Call_Node)));
464
465 if Nkind (Decl) /= N_Subprogram_Declaration then
466 Rewrite (N,
467 Make_Subprogram_Declaration (Loc,
468 Specification => Specification (N)));
469 end if;
470
471 -- Link the body to the entity whose declaration it completes. If
def46b54
RD
472 -- the body is analyzed when the renamed entity is frozen, it may
473 -- be necessary to restore the proper scope (see package Exp_Ch13).
70482933
RK
474
475 if Nkind (N) = N_Subprogram_Renaming_Declaration
476 and then Present (Corresponding_Spec (N))
477 then
478 Set_Corresponding_Spec (Body_Node, Corresponding_Spec (N));
479 else
480 Set_Corresponding_Spec (Body_Node, New_S);
481 end if;
482
483 return Body_Node;
484 end Build_Renamed_Body;
485
fbf5a39b
AC
486 --------------------------
487 -- Check_Address_Clause --
488 --------------------------
489
490 procedure Check_Address_Clause (E : Entity_Id) is
491 Addr : constant Node_Id := Address_Clause (E);
492 Expr : Node_Id;
493 Decl : constant Node_Id := Declaration_Node (E);
494 Typ : constant Entity_Id := Etype (E);
495
496 begin
497 if Present (Addr) then
498 Expr := Expression (Addr);
499
def46b54
RD
500 -- If we have no initialization of any kind, then we don't need to
501 -- place any restrictions on the address clause, because the object
502 -- will be elaborated after the address clause is evaluated. This
503 -- happens if the declaration has no initial expression, or the type
504 -- has no implicit initialization, or the object is imported.
fbf5a39b 505
def46b54
RD
506 -- The same holds for all initialized scalar types and all access
507 -- types. Packed bit arrays of size up to 64 are represented using a
508 -- modular type with an initialization (to zero) and can be processed
509 -- like other initialized scalar types.
fbf5a39b
AC
510
511 -- If the type is controlled, code to attach the object to a
512 -- finalization chain is generated at the point of declaration,
513 -- and therefore the elaboration of the object cannot be delayed:
514 -- the address expression must be a constant.
515
516 if (No (Expression (Decl))
048e5cef 517 and then not Needs_Finalization (Typ)
fbf5a39b
AC
518 and then
519 (not Has_Non_Null_Base_Init_Proc (Typ)
520 or else Is_Imported (E)))
521
522 or else
523 (Present (Expression (Decl))
524 and then Is_Scalar_Type (Typ))
525
526 or else
527 Is_Access_Type (Typ)
528
529 or else
530 (Is_Bit_Packed_Array (Typ)
531 and then
532 Is_Modular_Integer_Type (Packed_Array_Type (Typ)))
533 then
534 null;
535
def46b54
RD
536 -- Otherwise, we require the address clause to be constant because
537 -- the call to the initialization procedure (or the attach code) has
538 -- to happen at the point of the declaration.
f3b57ab0
AC
539 -- Actually the IP call has been moved to the freeze actions
540 -- anyway, so maybe we can relax this restriction???
fbf5a39b
AC
541
542 else
543 Check_Constant_Address_Clause (Expr, E);
f3b57ab0
AC
544
545 -- Has_Delayed_Freeze was set on E when the address clause was
546 -- analyzed. Reset the flag now unless freeze actions were
547 -- attached to it in the mean time.
548
549 if No (Freeze_Node (E)) then
550 Set_Has_Delayed_Freeze (E, False);
551 end if;
fbf5a39b
AC
552 end if;
553
554 if not Error_Posted (Expr)
048e5cef 555 and then not Needs_Finalization (Typ)
fbf5a39b
AC
556 then
557 Warn_Overlay (Expr, Typ, Name (Addr));
558 end if;
559 end if;
560 end Check_Address_Clause;
561
70482933
RK
562 -----------------------------
563 -- Check_Compile_Time_Size --
564 -----------------------------
565
566 procedure Check_Compile_Time_Size (T : Entity_Id) is
567
c6823a20 568 procedure Set_Small_Size (T : Entity_Id; S : Uint);
70482933 569 -- Sets the compile time known size (32 bits or less) in the Esize
c6823a20 570 -- field, of T checking for a size clause that was given which attempts
70482933
RK
571 -- to give a smaller size.
572
573 function Size_Known (T : Entity_Id) return Boolean;
07fc65c4 574 -- Recursive function that does all the work
70482933
RK
575
576 function Static_Discriminated_Components (T : Entity_Id) return Boolean;
577 -- If T is a constrained subtype, its size is not known if any of its
578 -- discriminant constraints is not static and it is not a null record.
fbf5a39b 579 -- The test is conservative and doesn't check that the components are
70482933
RK
580 -- in fact constrained by non-static discriminant values. Could be made
581 -- more precise ???
582
583 --------------------
584 -- Set_Small_Size --
585 --------------------
586
c6823a20 587 procedure Set_Small_Size (T : Entity_Id; S : Uint) is
70482933
RK
588 begin
589 if S > 32 then
590 return;
591
592 elsif Has_Size_Clause (T) then
593 if RM_Size (T) < S then
594 Error_Msg_Uint_1 := S;
595 Error_Msg_NE
7d8b9c99 596 ("size for & too small, minimum allowed is ^",
70482933
RK
597 Size_Clause (T), T);
598
599 elsif Unknown_Esize (T) then
600 Set_Esize (T, S);
601 end if;
602
603 -- Set sizes if not set already
604
605 else
606 if Unknown_Esize (T) then
607 Set_Esize (T, S);
608 end if;
609
610 if Unknown_RM_Size (T) then
611 Set_RM_Size (T, S);
612 end if;
613 end if;
614 end Set_Small_Size;
615
616 ----------------
617 -- Size_Known --
618 ----------------
619
620 function Size_Known (T : Entity_Id) return Boolean is
621 Index : Entity_Id;
622 Comp : Entity_Id;
623 Ctyp : Entity_Id;
624 Low : Node_Id;
625 High : Node_Id;
626
627 begin
628 if Size_Known_At_Compile_Time (T) then
629 return True;
630
c6a9797e
RD
631 -- Always True for scalar types. This is true even for generic formal
632 -- scalar types. We used to return False in the latter case, but the
633 -- size is known at compile time, even in the template, we just do
634 -- not know the exact size but that's not the point of this routine.
635
70482933
RK
636 elsif Is_Scalar_Type (T)
637 or else Is_Task_Type (T)
638 then
c6a9797e
RD
639 return True;
640
641 -- Array types
70482933
RK
642
643 elsif Is_Array_Type (T) then
c6a9797e
RD
644
645 -- String literals always have known size, and we can set it
646
70482933 647 if Ekind (T) = E_String_Literal_Subtype then
c6823a20
EB
648 Set_Small_Size (T, Component_Size (T)
649 * String_Literal_Length (T));
70482933
RK
650 return True;
651
c6a9797e
RD
652 -- Unconstrained types never have known at compile time size
653
70482933
RK
654 elsif not Is_Constrained (T) then
655 return False;
656
def46b54
RD
657 -- Don't do any recursion on type with error posted, since we may
658 -- have a malformed type that leads us into a loop.
07fc65c4
GB
659
660 elsif Error_Posted (T) then
661 return False;
662
c6a9797e
RD
663 -- Otherwise if component size unknown, then array size unknown
664
70482933
RK
665 elsif not Size_Known (Component_Type (T)) then
666 return False;
667 end if;
668
def46b54
RD
669 -- Check for all indexes static, and also compute possible size
670 -- (in case it is less than 32 and may be packable).
70482933
RK
671
672 declare
673 Esiz : Uint := Component_Size (T);
674 Dim : Uint;
675
676 begin
677 Index := First_Index (T);
70482933
RK
678 while Present (Index) loop
679 if Nkind (Index) = N_Range then
680 Get_Index_Bounds (Index, Low, High);
681
682 elsif Error_Posted (Scalar_Range (Etype (Index))) then
683 return False;
684
685 else
686 Low := Type_Low_Bound (Etype (Index));
687 High := Type_High_Bound (Etype (Index));
688 end if;
689
690 if not Compile_Time_Known_Value (Low)
691 or else not Compile_Time_Known_Value (High)
692 or else Etype (Index) = Any_Type
693 then
694 return False;
695
696 else
697 Dim := Expr_Value (High) - Expr_Value (Low) + 1;
698
699 if Dim >= 0 then
700 Esiz := Esiz * Dim;
701 else
702 Esiz := Uint_0;
703 end if;
704 end if;
705
706 Next_Index (Index);
707 end loop;
708
c6823a20 709 Set_Small_Size (T, Esiz);
70482933
RK
710 return True;
711 end;
712
c6a9797e
RD
713 -- Access types always have known at compile time sizes
714
70482933
RK
715 elsif Is_Access_Type (T) then
716 return True;
717
c6a9797e
RD
718 -- For non-generic private types, go to underlying type if present
719
70482933
RK
720 elsif Is_Private_Type (T)
721 and then not Is_Generic_Type (T)
722 and then Present (Underlying_Type (T))
723 then
def46b54
RD
724 -- Don't do any recursion on type with error posted, since we may
725 -- have a malformed type that leads us into a loop.
07fc65c4
GB
726
727 if Error_Posted (T) then
728 return False;
729 else
730 return Size_Known (Underlying_Type (T));
731 end if;
70482933 732
c6a9797e
RD
733 -- Record types
734
70482933 735 elsif Is_Record_Type (T) then
fbf5a39b
AC
736
737 -- A class-wide type is never considered to have a known size
738
70482933
RK
739 if Is_Class_Wide_Type (T) then
740 return False;
741
fbf5a39b
AC
742 -- A subtype of a variant record must not have non-static
743 -- discriminanted components.
744
745 elsif T /= Base_Type (T)
746 and then not Static_Discriminated_Components (T)
747 then
748 return False;
70482933 749
def46b54
RD
750 -- Don't do any recursion on type with error posted, since we may
751 -- have a malformed type that leads us into a loop.
07fc65c4
GB
752
753 elsif Error_Posted (T) then
754 return False;
fbf5a39b 755 end if;
07fc65c4 756
fbf5a39b 757 -- Now look at the components of the record
70482933 758
fbf5a39b 759 declare
def46b54
RD
760 -- The following two variables are used to keep track of the
761 -- size of packed records if we can tell the size of the packed
762 -- record in the front end. Packed_Size_Known is True if so far
763 -- we can figure out the size. It is initialized to True for a
764 -- packed record, unless the record has discriminants. The
765 -- reason we eliminate the discriminated case is that we don't
766 -- know the way the back end lays out discriminated packed
767 -- records. If Packed_Size_Known is True, then Packed_Size is
768 -- the size in bits so far.
fbf5a39b
AC
769
770 Packed_Size_Known : Boolean :=
771 Is_Packed (T)
772 and then not Has_Discriminants (T);
773
774 Packed_Size : Uint := Uint_0;
775
776 begin
777 -- Test for variant part present
778
779 if Has_Discriminants (T)
780 and then Present (Parent (T))
781 and then Nkind (Parent (T)) = N_Full_Type_Declaration
782 and then Nkind (Type_Definition (Parent (T))) =
783 N_Record_Definition
784 and then not Null_Present (Type_Definition (Parent (T)))
785 and then Present (Variant_Part
786 (Component_List (Type_Definition (Parent (T)))))
787 then
788 -- If variant part is present, and type is unconstrained,
789 -- then we must have defaulted discriminants, or a size
790 -- clause must be present for the type, or else the size
791 -- is definitely not known at compile time.
792
793 if not Is_Constrained (T)
794 and then
795 No (Discriminant_Default_Value
796 (First_Discriminant (T)))
797 and then Unknown_Esize (T)
70482933 798 then
fbf5a39b
AC
799 return False;
800 end if;
801 end if;
70482933 802
fbf5a39b
AC
803 -- Loop through components
804
fea9e956 805 Comp := First_Component_Or_Discriminant (T);
fbf5a39b 806 while Present (Comp) loop
fea9e956 807 Ctyp := Etype (Comp);
fbf5a39b 808
fea9e956
ES
809 -- We do not know the packed size if there is a component
810 -- clause present (we possibly could, but this would only
811 -- help in the case of a record with partial rep clauses.
812 -- That's because in the case of full rep clauses, the
813 -- size gets figured out anyway by a different circuit).
fbf5a39b 814
fea9e956
ES
815 if Present (Component_Clause (Comp)) then
816 Packed_Size_Known := False;
817 end if;
70482933 818
fea9e956
ES
819 -- We need to identify a component that is an array where
820 -- the index type is an enumeration type with non-standard
821 -- representation, and some bound of the type depends on a
822 -- discriminant.
70482933 823
fea9e956 824 -- This is because gigi computes the size by doing a
e14c931f 825 -- substitution of the appropriate discriminant value in
fea9e956
ES
826 -- the size expression for the base type, and gigi is not
827 -- clever enough to evaluate the resulting expression (which
828 -- involves a call to rep_to_pos) at compile time.
fbf5a39b 829
fea9e956
ES
830 -- It would be nice if gigi would either recognize that
831 -- this expression can be computed at compile time, or
832 -- alternatively figured out the size from the subtype
833 -- directly, where all the information is at hand ???
fbf5a39b 834
fea9e956
ES
835 if Is_Array_Type (Etype (Comp))
836 and then Present (Packed_Array_Type (Etype (Comp)))
837 then
838 declare
839 Ocomp : constant Entity_Id :=
840 Original_Record_Component (Comp);
841 OCtyp : constant Entity_Id := Etype (Ocomp);
842 Ind : Node_Id;
843 Indtyp : Entity_Id;
844 Lo, Hi : Node_Id;
70482933 845
fea9e956
ES
846 begin
847 Ind := First_Index (OCtyp);
848 while Present (Ind) loop
849 Indtyp := Etype (Ind);
70482933 850
fea9e956
ES
851 if Is_Enumeration_Type (Indtyp)
852 and then Has_Non_Standard_Rep (Indtyp)
853 then
854 Lo := Type_Low_Bound (Indtyp);
855 Hi := Type_High_Bound (Indtyp);
fbf5a39b 856
fea9e956
ES
857 if Is_Entity_Name (Lo)
858 and then Ekind (Entity (Lo)) = E_Discriminant
859 then
860 return False;
fbf5a39b 861
fea9e956
ES
862 elsif Is_Entity_Name (Hi)
863 and then Ekind (Entity (Hi)) = E_Discriminant
864 then
865 return False;
866 end if;
867 end if;
fbf5a39b 868
fea9e956
ES
869 Next_Index (Ind);
870 end loop;
871 end;
872 end if;
70482933 873
def46b54
RD
874 -- Clearly size of record is not known if the size of one of
875 -- the components is not known.
70482933 876
fea9e956
ES
877 if not Size_Known (Ctyp) then
878 return False;
879 end if;
70482933 880
fea9e956 881 -- Accumulate packed size if possible
70482933 882
fea9e956 883 if Packed_Size_Known then
70482933 884
fea9e956
ES
885 -- We can only deal with elementary types, since for
886 -- non-elementary components, alignment enters into the
887 -- picture, and we don't know enough to handle proper
888 -- alignment in this context. Packed arrays count as
889 -- elementary if the representation is a modular type.
fbf5a39b 890
fea9e956
ES
891 if Is_Elementary_Type (Ctyp)
892 or else (Is_Array_Type (Ctyp)
893 and then Present (Packed_Array_Type (Ctyp))
894 and then Is_Modular_Integer_Type
895 (Packed_Array_Type (Ctyp)))
896 then
897 -- If RM_Size is known and static, then we can
898 -- keep accumulating the packed size.
70482933 899
fea9e956 900 if Known_Static_RM_Size (Ctyp) then
70482933 901
fea9e956
ES
902 -- A little glitch, to be removed sometime ???
903 -- gigi does not understand zero sizes yet.
904
905 if RM_Size (Ctyp) = Uint_0 then
70482933 906 Packed_Size_Known := False;
fea9e956
ES
907
908 -- Normal case where we can keep accumulating the
909 -- packed array size.
910
911 else
912 Packed_Size := Packed_Size + RM_Size (Ctyp);
70482933 913 end if;
fbf5a39b 914
fea9e956
ES
915 -- If we have a field whose RM_Size is not known then
916 -- we can't figure out the packed size here.
fbf5a39b
AC
917
918 else
919 Packed_Size_Known := False;
70482933 920 end if;
fea9e956
ES
921
922 -- If we have a non-elementary type we can't figure out
923 -- the packed array size (alignment issues).
924
925 else
926 Packed_Size_Known := False;
70482933 927 end if;
fbf5a39b 928 end if;
70482933 929
fea9e956 930 Next_Component_Or_Discriminant (Comp);
fbf5a39b 931 end loop;
70482933 932
fbf5a39b 933 if Packed_Size_Known then
c6823a20 934 Set_Small_Size (T, Packed_Size);
fbf5a39b 935 end if;
70482933 936
fbf5a39b
AC
937 return True;
938 end;
70482933 939
c6a9797e
RD
940 -- All other cases, size not known at compile time
941
70482933
RK
942 else
943 return False;
944 end if;
945 end Size_Known;
946
947 -------------------------------------
948 -- Static_Discriminated_Components --
949 -------------------------------------
950
951 function Static_Discriminated_Components
0da2c8ac 952 (T : Entity_Id) return Boolean
70482933
RK
953 is
954 Constraint : Elmt_Id;
955
956 begin
957 if Has_Discriminants (T)
958 and then Present (Discriminant_Constraint (T))
959 and then Present (First_Component (T))
960 then
961 Constraint := First_Elmt (Discriminant_Constraint (T));
70482933
RK
962 while Present (Constraint) loop
963 if not Compile_Time_Known_Value (Node (Constraint)) then
964 return False;
965 end if;
966
967 Next_Elmt (Constraint);
968 end loop;
969 end if;
970
971 return True;
972 end Static_Discriminated_Components;
973
974 -- Start of processing for Check_Compile_Time_Size
975
976 begin
977 Set_Size_Known_At_Compile_Time (T, Size_Known (T));
978 end Check_Compile_Time_Size;
979
980 -----------------------------
981 -- Check_Debug_Info_Needed --
982 -----------------------------
983
984 procedure Check_Debug_Info_Needed (T : Entity_Id) is
985 begin
1b24ada5 986 if Debug_Info_Off (T) then
70482933
RK
987 return;
988
989 elsif Comes_From_Source (T)
990 or else Debug_Generated_Code
991 or else Debug_Flag_VV
1b24ada5 992 or else Needs_Debug_Info (T)
70482933
RK
993 then
994 Set_Debug_Info_Needed (T);
995 end if;
996 end Check_Debug_Info_Needed;
997
998 ----------------------------
999 -- Check_Strict_Alignment --
1000 ----------------------------
1001
1002 procedure Check_Strict_Alignment (E : Entity_Id) is
1003 Comp : Entity_Id;
1004
1005 begin
1006 if Is_Tagged_Type (E) or else Is_Concurrent_Type (E) then
1007 Set_Strict_Alignment (E);
1008
1009 elsif Is_Array_Type (E) then
1010 Set_Strict_Alignment (E, Strict_Alignment (Component_Type (E)));
1011
1012 elsif Is_Record_Type (E) then
1013 if Is_Limited_Record (E) then
1014 Set_Strict_Alignment (E);
1015 return;
1016 end if;
1017
1018 Comp := First_Component (E);
1019
1020 while Present (Comp) loop
1021 if not Is_Type (Comp)
1022 and then (Strict_Alignment (Etype (Comp))
fbf5a39b 1023 or else Is_Aliased (Comp))
70482933
RK
1024 then
1025 Set_Strict_Alignment (E);
1026 return;
1027 end if;
1028
1029 Next_Component (Comp);
1030 end loop;
1031 end if;
1032 end Check_Strict_Alignment;
1033
1034 -------------------------
1035 -- Check_Unsigned_Type --
1036 -------------------------
1037
1038 procedure Check_Unsigned_Type (E : Entity_Id) is
1039 Ancestor : Entity_Id;
1040 Lo_Bound : Node_Id;
1041 Btyp : Entity_Id;
1042
1043 begin
1044 if not Is_Discrete_Or_Fixed_Point_Type (E) then
1045 return;
1046 end if;
1047
1048 -- Do not attempt to analyze case where range was in error
1049
1050 if Error_Posted (Scalar_Range (E)) then
1051 return;
1052 end if;
1053
1054 -- The situation that is non trivial is something like
1055
1056 -- subtype x1 is integer range -10 .. +10;
1057 -- subtype x2 is x1 range 0 .. V1;
1058 -- subtype x3 is x2 range V2 .. V3;
1059 -- subtype x4 is x3 range V4 .. V5;
1060
1061 -- where Vn are variables. Here the base type is signed, but we still
1062 -- know that x4 is unsigned because of the lower bound of x2.
1063
1064 -- The only way to deal with this is to look up the ancestor chain
1065
1066 Ancestor := E;
1067 loop
1068 if Ancestor = Any_Type or else Etype (Ancestor) = Any_Type then
1069 return;
1070 end if;
1071
1072 Lo_Bound := Type_Low_Bound (Ancestor);
1073
1074 if Compile_Time_Known_Value (Lo_Bound) then
1075
1076 if Expr_Rep_Value (Lo_Bound) >= 0 then
1077 Set_Is_Unsigned_Type (E, True);
1078 end if;
1079
1080 return;
1081
1082 else
1083 Ancestor := Ancestor_Subtype (Ancestor);
1084
1085 -- If no ancestor had a static lower bound, go to base type
1086
1087 if No (Ancestor) then
1088
1089 -- Note: the reason we still check for a compile time known
1090 -- value for the base type is that at least in the case of
1091 -- generic formals, we can have bounds that fail this test,
1092 -- and there may be other cases in error situations.
1093
1094 Btyp := Base_Type (E);
1095
1096 if Btyp = Any_Type or else Etype (Btyp) = Any_Type then
1097 return;
1098 end if;
1099
1100 Lo_Bound := Type_Low_Bound (Base_Type (E));
1101
1102 if Compile_Time_Known_Value (Lo_Bound)
1103 and then Expr_Rep_Value (Lo_Bound) >= 0
1104 then
1105 Set_Is_Unsigned_Type (E, True);
1106 end if;
1107
1108 return;
70482933
RK
1109 end if;
1110 end if;
1111 end loop;
1112 end Check_Unsigned_Type;
1113
fbf5a39b
AC
1114 -----------------------------
1115 -- Expand_Atomic_Aggregate --
1116 -----------------------------
1117
1118 procedure Expand_Atomic_Aggregate (E : Entity_Id; Typ : Entity_Id) is
1119 Loc : constant Source_Ptr := Sloc (E);
1120 New_N : Node_Id;
1121 Temp : Entity_Id;
1122
1123 begin
1124 if (Nkind (Parent (E)) = N_Object_Declaration
1125 or else Nkind (Parent (E)) = N_Assignment_Statement)
1126 and then Comes_From_Source (Parent (E))
fbf5a39b
AC
1127 then
1128 Temp :=
1129 Make_Defining_Identifier (Loc,
1130 New_Internal_Name ('T'));
1131
1132 New_N :=
1133 Make_Object_Declaration (Loc,
1134 Defining_Identifier => Temp,
c6a9797e
RD
1135 Object_Definition => New_Occurrence_Of (Typ, Loc),
1136 Expression => Relocate_Node (E));
fbf5a39b
AC
1137 Insert_Before (Parent (E), New_N);
1138 Analyze (New_N);
1139
1140 Set_Expression (Parent (E), New_Occurrence_Of (Temp, Loc));
1141
fbf5a39b
AC
1142 end if;
1143 end Expand_Atomic_Aggregate;
1144
70482933
RK
1145 ----------------
1146 -- Freeze_All --
1147 ----------------
1148
1149 -- Note: the easy coding for this procedure would be to just build a
1150 -- single list of freeze nodes and then insert them and analyze them
1151 -- all at once. This won't work, because the analysis of earlier freeze
1152 -- nodes may recursively freeze types which would otherwise appear later
1153 -- on in the freeze list. So we must analyze and expand the freeze nodes
1154 -- as they are generated.
1155
1156 procedure Freeze_All (From : Entity_Id; After : in out Node_Id) is
1157 Loc : constant Source_Ptr := Sloc (After);
1158 E : Entity_Id;
1159 Decl : Node_Id;
1160
1161 procedure Freeze_All_Ent (From : Entity_Id; After : in out Node_Id);
def46b54
RD
1162 -- This is the internal recursive routine that does freezing of entities
1163 -- (but NOT the analysis of default expressions, which should not be
1164 -- recursive, we don't want to analyze those till we are sure that ALL
1165 -- the types are frozen).
70482933 1166
fbf5a39b
AC
1167 --------------------
1168 -- Freeze_All_Ent --
1169 --------------------
1170
70482933
RK
1171 procedure Freeze_All_Ent
1172 (From : Entity_Id;
1173 After : in out Node_Id)
1174 is
1175 E : Entity_Id;
1176 Flist : List_Id;
1177 Lastn : Node_Id;
1178
1179 procedure Process_Flist;
def46b54
RD
1180 -- If freeze nodes are present, insert and analyze, and reset cursor
1181 -- for next insertion.
70482933 1182
fbf5a39b
AC
1183 -------------------
1184 -- Process_Flist --
1185 -------------------
1186
70482933
RK
1187 procedure Process_Flist is
1188 begin
1189 if Is_Non_Empty_List (Flist) then
1190 Lastn := Next (After);
1191 Insert_List_After_And_Analyze (After, Flist);
1192
1193 if Present (Lastn) then
1194 After := Prev (Lastn);
1195 else
1196 After := Last (List_Containing (After));
1197 end if;
1198 end if;
1199 end Process_Flist;
1200
fbf5a39b
AC
1201 -- Start or processing for Freeze_All_Ent
1202
70482933
RK
1203 begin
1204 E := From;
1205 while Present (E) loop
1206
1207 -- If the entity is an inner package which is not a package
def46b54
RD
1208 -- renaming, then its entities must be frozen at this point. Note
1209 -- that such entities do NOT get frozen at the end of the nested
1210 -- package itself (only library packages freeze).
70482933
RK
1211
1212 -- Same is true for task declarations, where anonymous records
1213 -- created for entry parameters must be frozen.
1214
1215 if Ekind (E) = E_Package
1216 and then No (Renamed_Object (E))
1217 and then not Is_Child_Unit (E)
1218 and then not Is_Frozen (E)
1219 then
7d8b9c99 1220 Push_Scope (E);
70482933
RK
1221 Install_Visible_Declarations (E);
1222 Install_Private_Declarations (E);
1223
1224 Freeze_All (First_Entity (E), After);
1225
1226 End_Package_Scope (E);
1227
1228 elsif Ekind (E) in Task_Kind
1229 and then
1230 (Nkind (Parent (E)) = N_Task_Type_Declaration
fbf5a39b 1231 or else
70482933
RK
1232 Nkind (Parent (E)) = N_Single_Task_Declaration)
1233 then
7d8b9c99 1234 Push_Scope (E);
70482933
RK
1235 Freeze_All (First_Entity (E), After);
1236 End_Scope;
1237
1238 -- For a derived tagged type, we must ensure that all the
def46b54
RD
1239 -- primitive operations of the parent have been frozen, so that
1240 -- their addresses will be in the parent's dispatch table at the
1241 -- point it is inherited.
70482933
RK
1242
1243 elsif Ekind (E) = E_Record_Type
1244 and then Is_Tagged_Type (E)
1245 and then Is_Tagged_Type (Etype (E))
1246 and then Is_Derived_Type (E)
1247 then
1248 declare
1249 Prim_List : constant Elist_Id :=
1250 Primitive_Operations (Etype (E));
fbf5a39b
AC
1251
1252 Prim : Elmt_Id;
1253 Subp : Entity_Id;
70482933
RK
1254
1255 begin
1256 Prim := First_Elmt (Prim_List);
1257
1258 while Present (Prim) loop
1259 Subp := Node (Prim);
1260
1261 if Comes_From_Source (Subp)
1262 and then not Is_Frozen (Subp)
1263 then
1264 Flist := Freeze_Entity (Subp, Loc);
1265 Process_Flist;
1266 end if;
1267
1268 Next_Elmt (Prim);
1269 end loop;
1270 end;
1271 end if;
1272
1273 if not Is_Frozen (E) then
1274 Flist := Freeze_Entity (E, Loc);
1275 Process_Flist;
1276 end if;
1277
def46b54
RD
1278 -- If an incomplete type is still not frozen, this may be a
1279 -- premature freezing because of a body declaration that follows.
1280 -- Indicate where the freezing took place.
fbf5a39b 1281
def46b54
RD
1282 -- If the freezing is caused by the end of the current declarative
1283 -- part, it is a Taft Amendment type, and there is no error.
fbf5a39b
AC
1284
1285 if not Is_Frozen (E)
1286 and then Ekind (E) = E_Incomplete_Type
1287 then
1288 declare
1289 Bod : constant Node_Id := Next (After);
1290
1291 begin
1292 if (Nkind (Bod) = N_Subprogram_Body
1293 or else Nkind (Bod) = N_Entry_Body
1294 or else Nkind (Bod) = N_Package_Body
1295 or else Nkind (Bod) = N_Protected_Body
1296 or else Nkind (Bod) = N_Task_Body
1297 or else Nkind (Bod) in N_Body_Stub)
1298 and then
1299 List_Containing (After) = List_Containing (Parent (E))
1300 then
1301 Error_Msg_Sloc := Sloc (Next (After));
1302 Error_Msg_NE
1303 ("type& is frozen# before its full declaration",
1304 Parent (E), E);
1305 end if;
1306 end;
1307 end if;
1308
70482933
RK
1309 Next_Entity (E);
1310 end loop;
1311 end Freeze_All_Ent;
1312
1313 -- Start of processing for Freeze_All
1314
1315 begin
1316 Freeze_All_Ent (From, After);
1317
1318 -- Now that all types are frozen, we can deal with default expressions
1319 -- that require us to build a default expression functions. This is the
1320 -- point at which such functions are constructed (after all types that
1321 -- might be used in such expressions have been frozen).
fbf5a39b 1322
70482933
RK
1323 -- We also add finalization chains to access types whose designated
1324 -- types are controlled. This is normally done when freezing the type,
1325 -- but this misses recursive type definitions where the later members
c6a9797e 1326 -- of the recursion introduce controlled components.
70482933
RK
1327
1328 -- Loop through entities
1329
1330 E := From;
1331 while Present (E) loop
70482933
RK
1332 if Is_Subprogram (E) then
1333
1334 if not Default_Expressions_Processed (E) then
1335 Process_Default_Expressions (E, After);
1336 end if;
1337
1338 if not Has_Completion (E) then
1339 Decl := Unit_Declaration_Node (E);
1340
1341 if Nkind (Decl) = N_Subprogram_Renaming_Declaration then
1342 Build_And_Analyze_Renamed_Body (Decl, E, After);
1343
1344 elsif Nkind (Decl) = N_Subprogram_Declaration
1345 and then Present (Corresponding_Body (Decl))
1346 and then
1347 Nkind (Unit_Declaration_Node (Corresponding_Body (Decl)))
fbf5a39b 1348 = N_Subprogram_Renaming_Declaration
70482933
RK
1349 then
1350 Build_And_Analyze_Renamed_Body
1351 (Decl, Corresponding_Body (Decl), After);
1352 end if;
1353 end if;
1354
1355 elsif Ekind (E) in Task_Kind
1356 and then
1357 (Nkind (Parent (E)) = N_Task_Type_Declaration
fbf5a39b 1358 or else
70482933
RK
1359 Nkind (Parent (E)) = N_Single_Task_Declaration)
1360 then
1361 declare
1362 Ent : Entity_Id;
70482933
RK
1363 begin
1364 Ent := First_Entity (E);
1365
1366 while Present (Ent) loop
1367
1368 if Is_Entry (Ent)
1369 and then not Default_Expressions_Processed (Ent)
1370 then
1371 Process_Default_Expressions (Ent, After);
1372 end if;
1373
1374 Next_Entity (Ent);
1375 end loop;
1376 end;
1377
1378 elsif Is_Access_Type (E)
1379 and then Comes_From_Source (E)
1380 and then Ekind (Directly_Designated_Type (E)) = E_Incomplete_Type
048e5cef 1381 and then Needs_Finalization (Designated_Type (E))
70482933
RK
1382 and then No (Associated_Final_Chain (E))
1383 then
1384 Build_Final_List (Parent (E), E);
1385 end if;
1386
1387 Next_Entity (E);
1388 end loop;
70482933
RK
1389 end Freeze_All;
1390
1391 -----------------------
1392 -- Freeze_And_Append --
1393 -----------------------
1394
1395 procedure Freeze_And_Append
1396 (Ent : Entity_Id;
1397 Loc : Source_Ptr;
1398 Result : in out List_Id)
1399 is
1400 L : constant List_Id := Freeze_Entity (Ent, Loc);
70482933
RK
1401 begin
1402 if Is_Non_Empty_List (L) then
1403 if Result = No_List then
1404 Result := L;
1405 else
1406 Append_List (L, Result);
1407 end if;
1408 end if;
1409 end Freeze_And_Append;
1410
1411 -------------------
1412 -- Freeze_Before --
1413 -------------------
1414
1415 procedure Freeze_Before (N : Node_Id; T : Entity_Id) is
1416 Freeze_Nodes : constant List_Id := Freeze_Entity (T, Sloc (N));
70482933
RK
1417 begin
1418 if Is_Non_Empty_List (Freeze_Nodes) then
fbf5a39b 1419 Insert_Actions (N, Freeze_Nodes);
70482933
RK
1420 end if;
1421 end Freeze_Before;
1422
1423 -------------------
1424 -- Freeze_Entity --
1425 -------------------
1426
1427 function Freeze_Entity (E : Entity_Id; Loc : Source_Ptr) return List_Id is
c6823a20 1428 Test_E : Entity_Id := E;
70482933
RK
1429 Comp : Entity_Id;
1430 F_Node : Node_Id;
1431 Result : List_Id;
1432 Indx : Node_Id;
1433 Formal : Entity_Id;
1434 Atype : Entity_Id;
1435
4c8a5bb8
AC
1436 Has_Default_Initialization : Boolean := False;
1437 -- This flag gets set to true for a variable with default initialization
1438
70482933 1439 procedure Check_Current_Instance (Comp_Decl : Node_Id);
edd63e9b
ES
1440 -- Check that an Access or Unchecked_Access attribute with a prefix
1441 -- which is the current instance type can only be applied when the type
1442 -- is limited.
70482933
RK
1443
1444 function After_Last_Declaration return Boolean;
1445 -- If Loc is a freeze_entity that appears after the last declaration
1446 -- in the scope, inhibit error messages on late completion.
1447
1448 procedure Freeze_Record_Type (Rec : Entity_Id);
edd63e9b
ES
1449 -- Freeze each component, handle some representation clauses, and freeze
1450 -- primitive operations if this is a tagged type.
70482933
RK
1451
1452 ----------------------------
1453 -- After_Last_Declaration --
1454 ----------------------------
1455
1456 function After_Last_Declaration return Boolean is
fbf5a39b 1457 Spec : constant Node_Id := Parent (Current_Scope);
70482933
RK
1458 begin
1459 if Nkind (Spec) = N_Package_Specification then
1460 if Present (Private_Declarations (Spec)) then
1461 return Loc >= Sloc (Last (Private_Declarations (Spec)));
70482933
RK
1462 elsif Present (Visible_Declarations (Spec)) then
1463 return Loc >= Sloc (Last (Visible_Declarations (Spec)));
1464 else
1465 return False;
1466 end if;
70482933
RK
1467 else
1468 return False;
1469 end if;
1470 end After_Last_Declaration;
1471
1472 ----------------------------
1473 -- Check_Current_Instance --
1474 ----------------------------
1475
1476 procedure Check_Current_Instance (Comp_Decl : Node_Id) is
1477
32c760e6
ES
1478 Rec_Type : constant Entity_Id :=
1479 Scope (Defining_Identifier (Comp_Decl));
1480
1481 Decl : constant Node_Id := Parent (Rec_Type);
1482
70482933 1483 function Process (N : Node_Id) return Traverse_Result;
49e90211 1484 -- Process routine to apply check to given node
70482933 1485
fbf5a39b
AC
1486 -------------
1487 -- Process --
1488 -------------
1489
70482933
RK
1490 function Process (N : Node_Id) return Traverse_Result is
1491 begin
1492 case Nkind (N) is
1493 when N_Attribute_Reference =>
def46b54 1494 if (Attribute_Name (N) = Name_Access
70482933
RK
1495 or else
1496 Attribute_Name (N) = Name_Unchecked_Access)
1497 and then Is_Entity_Name (Prefix (N))
1498 and then Is_Type (Entity (Prefix (N)))
1499 and then Entity (Prefix (N)) = E
1500 then
1501 Error_Msg_N
1502 ("current instance must be a limited type", Prefix (N));
1503 return Abandon;
1504 else
1505 return OK;
1506 end if;
1507
1508 when others => return OK;
1509 end case;
1510 end Process;
1511
1512 procedure Traverse is new Traverse_Proc (Process);
1513
1514 -- Start of processing for Check_Current_Instance
1515
1516 begin
32c760e6
ES
1517 -- In Ada95, the (imprecise) rule is that the current instance of a
1518 -- limited type is aliased. In Ada2005, limitedness must be explicit:
1519 -- either a tagged type, or a limited record.
1520
1521 if Is_Limited_Type (Rec_Type)
1522 and then
1523 (Ada_Version < Ada_05
1524 or else Is_Tagged_Type (Rec_Type))
1525 then
1526 return;
1527
1528 elsif Nkind (Decl) = N_Full_Type_Declaration
1529 and then Limited_Present (Type_Definition (Decl))
1530 then
1531 return;
1532
1533 else
1534 Traverse (Comp_Decl);
1535 end if;
70482933
RK
1536 end Check_Current_Instance;
1537
1538 ------------------------
1539 -- Freeze_Record_Type --
1540 ------------------------
1541
1542 procedure Freeze_Record_Type (Rec : Entity_Id) is
1543 Comp : Entity_Id;
fbf5a39b 1544 IR : Node_Id;
70482933 1545 ADC : Node_Id;
c6823a20 1546 Prev : Entity_Id;
70482933 1547
67ce0d7e
RD
1548 Junk : Boolean;
1549 pragma Warnings (Off, Junk);
1550
70482933
RK
1551 Unplaced_Component : Boolean := False;
1552 -- Set True if we find at least one component with no component
1553 -- clause (used to warn about useless Pack pragmas).
1554
1555 Placed_Component : Boolean := False;
1556 -- Set True if we find at least one component with a component
8dc10d38
AC
1557 -- clause (used to warn about useless Bit_Order pragmas, and also
1558 -- to detect cases where Implicit_Packing may have an effect).
1559
1560 All_Scalar_Components : Boolean := True;
1561 -- Set False if we encounter a component of a non-scalar type
1562
1563 Scalar_Component_Total_RM_Size : Uint := Uint_0;
1564 Scalar_Component_Total_Esize : Uint := Uint_0;
1565 -- Accumulates total RM_Size values and total Esize values of all
1566 -- scalar components. Used for processing of Implicit_Packing.
70482933 1567
e18d6a15
JM
1568 function Check_Allocator (N : Node_Id) return Node_Id;
1569 -- If N is an allocator, possibly wrapped in one or more level of
1570 -- qualified expression(s), return the inner allocator node, else
1571 -- return Empty.
19590d70 1572
7d8b9c99
RD
1573 procedure Check_Itype (Typ : Entity_Id);
1574 -- If the component subtype is an access to a constrained subtype of
1575 -- an already frozen type, make the subtype frozen as well. It might
1576 -- otherwise be frozen in the wrong scope, and a freeze node on
1577 -- subtype has no effect. Similarly, if the component subtype is a
1578 -- regular (not protected) access to subprogram, set the anonymous
1579 -- subprogram type to frozen as well, to prevent an out-of-scope
1580 -- freeze node at some eventual point of call. Protected operations
1581 -- are handled elsewhere.
6e059adb 1582
19590d70
GD
1583 ---------------------
1584 -- Check_Allocator --
1585 ---------------------
1586
e18d6a15
JM
1587 function Check_Allocator (N : Node_Id) return Node_Id is
1588 Inner : Node_Id;
19590d70 1589 begin
e18d6a15 1590 Inner := N;
e18d6a15
JM
1591 loop
1592 if Nkind (Inner) = N_Allocator then
1593 return Inner;
e18d6a15
JM
1594 elsif Nkind (Inner) = N_Qualified_Expression then
1595 Inner := Expression (Inner);
e18d6a15
JM
1596 else
1597 return Empty;
1598 end if;
1599 end loop;
19590d70
GD
1600 end Check_Allocator;
1601
6871ba5f
AC
1602 -----------------
1603 -- Check_Itype --
1604 -----------------
1605
7d8b9c99
RD
1606 procedure Check_Itype (Typ : Entity_Id) is
1607 Desig : constant Entity_Id := Designated_Type (Typ);
1608
6e059adb
AC
1609 begin
1610 if not Is_Frozen (Desig)
1611 and then Is_Frozen (Base_Type (Desig))
1612 then
1613 Set_Is_Frozen (Desig);
1614
1615 -- In addition, add an Itype_Reference to ensure that the
7d8b9c99
RD
1616 -- access subtype is elaborated early enough. This cannot be
1617 -- done if the subtype may depend on discriminants.
6e059adb
AC
1618
1619 if Ekind (Comp) = E_Component
1620 and then Is_Itype (Etype (Comp))
1621 and then not Has_Discriminants (Rec)
1622 then
1623 IR := Make_Itype_Reference (Sloc (Comp));
1624 Set_Itype (IR, Desig);
1625
1626 if No (Result) then
1627 Result := New_List (IR);
1628 else
1629 Append (IR, Result);
1630 end if;
1631 end if;
7d8b9c99
RD
1632
1633 elsif Ekind (Typ) = E_Anonymous_Access_Subprogram_Type
1634 and then Convention (Desig) /= Convention_Protected
1635 then
1636 Set_Is_Frozen (Desig);
6e059adb
AC
1637 end if;
1638 end Check_Itype;
1639
1640 -- Start of processing for Freeze_Record_Type
1641
70482933 1642 begin
7d8b9c99
RD
1643 -- If this is a subtype of a controlled type, declared without a
1644 -- constraint, the _controller may not appear in the component list
1645 -- if the parent was not frozen at the point of subtype declaration.
1646 -- Inherit the _controller component now.
fbf5a39b
AC
1647
1648 if Rec /= Base_Type (Rec)
1649 and then Has_Controlled_Component (Rec)
1650 then
1651 if Nkind (Parent (Rec)) = N_Subtype_Declaration
1652 and then Is_Entity_Name (Subtype_Indication (Parent (Rec)))
1653 then
1654 Set_First_Entity (Rec, First_Entity (Base_Type (Rec)));
1655
49e90211 1656 -- If this is an internal type without a declaration, as for
6871ba5f
AC
1657 -- record component, the base type may not yet be frozen, and its
1658 -- controller has not been created. Add an explicit freeze node
49e90211
ES
1659 -- for the itype, so it will be frozen after the base type. This
1660 -- freeze node is used to communicate with the expander, in order
1661 -- to create the controller for the enclosing record, and it is
1662 -- deleted afterwards (see exp_ch3). It must not be created when
1663 -- expansion is off, because it might appear in the wrong context
1664 -- for the back end.
fbf5a39b
AC
1665
1666 elsif Is_Itype (Rec)
1667 and then Has_Delayed_Freeze (Base_Type (Rec))
1668 and then
1669 Nkind (Associated_Node_For_Itype (Rec)) =
49e90211
ES
1670 N_Component_Declaration
1671 and then Expander_Active
fbf5a39b
AC
1672 then
1673 Ensure_Freeze_Node (Rec);
1674 end if;
1675 end if;
1676
49e90211 1677 -- Freeze components and embedded subtypes
70482933
RK
1678
1679 Comp := First_Entity (Rec);
c6823a20 1680 Prev := Empty;
c6823a20 1681 while Present (Comp) loop
70482933 1682
49e90211 1683 -- First handle the (real) component case
70482933
RK
1684
1685 if Ekind (Comp) = E_Component
1686 or else Ekind (Comp) = E_Discriminant
1687 then
70482933
RK
1688 declare
1689 CC : constant Node_Id := Component_Clause (Comp);
1690
1691 begin
c6823a20
EB
1692 -- Freezing a record type freezes the type of each of its
1693 -- components. However, if the type of the component is
1694 -- part of this record, we do not want or need a separate
1695 -- Freeze_Node. Note that Is_Itype is wrong because that's
1696 -- also set in private type cases. We also can't check for
1697 -- the Scope being exactly Rec because of private types and
1698 -- record extensions.
1699
1700 if Is_Itype (Etype (Comp))
1701 and then Is_Record_Type (Underlying_Type
1702 (Scope (Etype (Comp))))
1703 then
1704 Undelay_Type (Etype (Comp));
1705 end if;
1706
1707 Freeze_And_Append (Etype (Comp), Loc, Result);
1708
0da2c8ac
AC
1709 -- Check for error of component clause given for variable
1710 -- sized type. We have to delay this test till this point,
1711 -- since the component type has to be frozen for us to know
1712 -- if it is variable length. We omit this test in a generic
1713 -- context, it will be applied at instantiation time.
1714
70482933
RK
1715 if Present (CC) then
1716 Placed_Component := True;
1717
07fc65c4
GB
1718 if Inside_A_Generic then
1719 null;
1720
7d8b9c99
RD
1721 elsif not
1722 Size_Known_At_Compile_Time
1723 (Underlying_Type (Etype (Comp)))
70482933
RK
1724 then
1725 Error_Msg_N
1726 ("component clause not allowed for variable " &
1727 "length component", CC);
1728 end if;
1729
1730 else
1731 Unplaced_Component := True;
1732 end if;
70482933 1733
0da2c8ac 1734 -- Case of component requires byte alignment
70482933 1735
0da2c8ac 1736 if Must_Be_On_Byte_Boundary (Etype (Comp)) then
70482933 1737
0da2c8ac 1738 -- Set the enclosing record to also require byte align
70482933 1739
0da2c8ac 1740 Set_Must_Be_On_Byte_Boundary (Rec);
70482933 1741
7d8b9c99
RD
1742 -- Check for component clause that is inconsistent with
1743 -- the required byte boundary alignment.
70482933 1744
0da2c8ac
AC
1745 if Present (CC)
1746 and then Normalized_First_Bit (Comp) mod
1747 System_Storage_Unit /= 0
1748 then
1749 Error_Msg_N
1750 ("component & must be byte aligned",
1751 Component_Name (Component_Clause (Comp)));
1752 end if;
1753 end if;
70482933 1754
7d8b9c99
RD
1755 -- If component clause is present, then deal with the non-
1756 -- default bit order case for Ada 95 mode. The required
fea9e956
ES
1757 -- processing for Ada 2005 mode is handled separately after
1758 -- processing all components.
70482933 1759
0da2c8ac
AC
1760 -- We only do this processing for the base type, and in
1761 -- fact that's important, since otherwise if there are
1762 -- record subtypes, we could reverse the bits once for
1763 -- each subtype, which would be incorrect.
70482933 1764
0da2c8ac
AC
1765 if Present (CC)
1766 and then Reverse_Bit_Order (Rec)
1767 and then Ekind (E) = E_Record_Type
fea9e956 1768 and then Ada_Version <= Ada_95
0da2c8ac
AC
1769 then
1770 declare
1771 CFB : constant Uint := Component_Bit_Offset (Comp);
1772 CSZ : constant Uint := Esize (Comp);
1773 CLC : constant Node_Id := Component_Clause (Comp);
1774 Pos : constant Node_Id := Position (CLC);
1775 FB : constant Node_Id := First_Bit (CLC);
1776
1777 Storage_Unit_Offset : constant Uint :=
1778 CFB / System_Storage_Unit;
1779
1780 Start_Bit : constant Uint :=
1781 CFB mod System_Storage_Unit;
1782
1783 begin
1784 -- Cases where field goes over storage unit boundary
1785
1786 if Start_Bit + CSZ > System_Storage_Unit then
70482933 1787
0da2c8ac
AC
1788 -- Allow multi-byte field but generate warning
1789
1790 if Start_Bit mod System_Storage_Unit = 0
1791 and then CSZ mod System_Storage_Unit = 0
1792 then
70482933 1793 Error_Msg_N
0da2c8ac
AC
1794 ("multi-byte field specified with non-standard"
1795 & " Bit_Order?", CLC);
1796
1797 if Bytes_Big_Endian then
1798 Error_Msg_N
1799 ("bytes are not reversed "
1800 & "(component is big-endian)?", CLC);
1801 else
1802 Error_Msg_N
1803 ("bytes are not reversed "
1804 & "(component is little-endian)?", CLC);
1805 end if;
1806
c6084ae0 1807 -- Do not allow non-contiguous field
0da2c8ac 1808
70482933
RK
1809 else
1810 Error_Msg_N
c6084ae0
AC
1811 ("attempt to specify non-contiguous field "
1812 & "not permitted", CLC);
0da2c8ac 1813 Error_Msg_N
c6084ae0
AC
1814 ("\caused by non-standard Bit_Order "
1815 & "specified", CLC);
1816 Error_Msg_N
1817 ("\consider possibility of using "
1818 & "Ada 2005 mode here", CLC);
70482933
RK
1819 end if;
1820
c6084ae0 1821 -- Case where field fits in one storage unit
70482933
RK
1822
1823 else
0da2c8ac 1824 -- Give warning if suspicious component clause
70482933 1825
fea9e956
ES
1826 if Intval (FB) >= System_Storage_Unit
1827 and then Warn_On_Reverse_Bit_Order
1828 then
0da2c8ac
AC
1829 Error_Msg_N
1830 ("?Bit_Order clause does not affect " &
1831 "byte ordering", Pos);
1832 Error_Msg_Uint_1 :=
1833 Intval (Pos) + Intval (FB) /
1834 System_Storage_Unit;
1835 Error_Msg_N
1836 ("?position normalized to ^ before bit " &
1837 "order interpreted", Pos);
1838 end if;
70482933 1839
0da2c8ac
AC
1840 -- Here is where we fix up the Component_Bit_Offset
1841 -- value to account for the reverse bit order.
1842 -- Some examples of what needs to be done are:
70482933 1843
0da2c8ac
AC
1844 -- First_Bit .. Last_Bit Component_Bit_Offset
1845 -- old new old new
70482933 1846
0da2c8ac
AC
1847 -- 0 .. 0 7 .. 7 0 7
1848 -- 0 .. 1 6 .. 7 0 6
1849 -- 0 .. 2 5 .. 7 0 5
1850 -- 0 .. 7 0 .. 7 0 4
70482933 1851
0da2c8ac
AC
1852 -- 1 .. 1 6 .. 6 1 6
1853 -- 1 .. 4 3 .. 6 1 3
1854 -- 4 .. 7 0 .. 3 4 0
70482933 1855
0da2c8ac
AC
1856 -- The general rule is that the first bit is
1857 -- is obtained by subtracting the old ending bit
1858 -- from storage_unit - 1.
70482933 1859
0da2c8ac
AC
1860 Set_Component_Bit_Offset
1861 (Comp,
1862 (Storage_Unit_Offset * System_Storage_Unit) +
1863 (System_Storage_Unit - 1) -
1864 (Start_Bit + CSZ - 1));
70482933 1865
0da2c8ac
AC
1866 Set_Normalized_First_Bit
1867 (Comp,
1868 Component_Bit_Offset (Comp) mod
1869 System_Storage_Unit);
1870 end if;
1871 end;
1872 end if;
1873 end;
70482933
RK
1874 end if;
1875
426d2717 1876 -- Gather data for possible Implicit_Packing later
8dc10d38 1877
426d2717
AC
1878 if not Is_Scalar_Type (Etype (Comp)) then
1879 All_Scalar_Components := False;
1880 else
1881 Scalar_Component_Total_RM_Size :=
1882 Scalar_Component_Total_RM_Size + RM_Size (Etype (Comp));
1883 Scalar_Component_Total_Esize :=
1884 Scalar_Component_Total_Esize + Esize (Etype (Comp));
8dc10d38
AC
1885 end if;
1886
c6823a20
EB
1887 -- If the component is an Itype with Delayed_Freeze and is either
1888 -- a record or array subtype and its base type has not yet been
1889 -- frozen, we must remove this from the entity list of this
1890 -- record and put it on the entity list of the scope of its base
1891 -- type. Note that we know that this is not the type of a
1892 -- component since we cleared Has_Delayed_Freeze for it in the
1893 -- previous loop. Thus this must be the Designated_Type of an
1894 -- access type, which is the type of a component.
1895
1896 if Is_Itype (Comp)
1897 and then Is_Type (Scope (Comp))
1898 and then Is_Composite_Type (Comp)
1899 and then Base_Type (Comp) /= Comp
1900 and then Has_Delayed_Freeze (Comp)
1901 and then not Is_Frozen (Base_Type (Comp))
1902 then
1903 declare
1904 Will_Be_Frozen : Boolean := False;
1b24ada5 1905 S : Entity_Id;
c6823a20
EB
1906
1907 begin
fea9e956
ES
1908 -- We have a pretty bad kludge here. Suppose Rec is subtype
1909 -- being defined in a subprogram that's created as part of
1910 -- the freezing of Rec'Base. In that case, we know that
1911 -- Comp'Base must have already been frozen by the time we
1912 -- get to elaborate this because Gigi doesn't elaborate any
1913 -- bodies until it has elaborated all of the declarative
1914 -- part. But Is_Frozen will not be set at this point because
1915 -- we are processing code in lexical order.
1916
1917 -- We detect this case by going up the Scope chain of Rec
1918 -- and seeing if we have a subprogram scope before reaching
1919 -- the top of the scope chain or that of Comp'Base. If we
1920 -- do, then mark that Comp'Base will actually be frozen. If
1921 -- so, we merely undelay it.
c6823a20 1922
1b24ada5 1923 S := Scope (Rec);
c6823a20
EB
1924 while Present (S) loop
1925 if Is_Subprogram (S) then
1926 Will_Be_Frozen := True;
1927 exit;
1928 elsif S = Scope (Base_Type (Comp)) then
1929 exit;
1930 end if;
1931
1932 S := Scope (S);
1933 end loop;
1934
1935 if Will_Be_Frozen then
1936 Undelay_Type (Comp);
1937 else
1938 if Present (Prev) then
1939 Set_Next_Entity (Prev, Next_Entity (Comp));
1940 else
1941 Set_First_Entity (Rec, Next_Entity (Comp));
1942 end if;
1943
1944 -- Insert in entity list of scope of base type (which
1945 -- must be an enclosing scope, because still unfrozen).
1946
1947 Append_Entity (Comp, Scope (Base_Type (Comp)));
1948 end if;
1949 end;
1950
def46b54
RD
1951 -- If the component is an access type with an allocator as default
1952 -- value, the designated type will be frozen by the corresponding
1953 -- expression in init_proc. In order to place the freeze node for
1954 -- the designated type before that for the current record type,
1955 -- freeze it now.
c6823a20
EB
1956
1957 -- Same process if the component is an array of access types,
1958 -- initialized with an aggregate. If the designated type is
def46b54
RD
1959 -- private, it cannot contain allocators, and it is premature
1960 -- to freeze the type, so we check for this as well.
c6823a20
EB
1961
1962 elsif Is_Access_Type (Etype (Comp))
1963 and then Present (Parent (Comp))
1964 and then Present (Expression (Parent (Comp)))
c6823a20
EB
1965 then
1966 declare
e18d6a15
JM
1967 Alloc : constant Node_Id :=
1968 Check_Allocator (Expression (Parent (Comp)));
c6823a20
EB
1969
1970 begin
e18d6a15 1971 if Present (Alloc) then
19590d70 1972
e18d6a15
JM
1973 -- If component is pointer to a classwide type, freeze
1974 -- the specific type in the expression being allocated.
1975 -- The expression may be a subtype indication, in which
1976 -- case freeze the subtype mark.
c6823a20 1977
e18d6a15
JM
1978 if Is_Class_Wide_Type
1979 (Designated_Type (Etype (Comp)))
0f4cb75c 1980 then
e18d6a15
JM
1981 if Is_Entity_Name (Expression (Alloc)) then
1982 Freeze_And_Append
1983 (Entity (Expression (Alloc)), Loc, Result);
1984 elsif
1985 Nkind (Expression (Alloc)) = N_Subtype_Indication
1986 then
1987 Freeze_And_Append
1988 (Entity (Subtype_Mark (Expression (Alloc))),
1989 Loc, Result);
1990 end if;
0f4cb75c 1991
e18d6a15
JM
1992 elsif Is_Itype (Designated_Type (Etype (Comp))) then
1993 Check_Itype (Etype (Comp));
0f4cb75c 1994
e18d6a15
JM
1995 else
1996 Freeze_And_Append
1997 (Designated_Type (Etype (Comp)), Loc, Result);
1998 end if;
c6823a20
EB
1999 end if;
2000 end;
2001
2002 elsif Is_Access_Type (Etype (Comp))
2003 and then Is_Itype (Designated_Type (Etype (Comp)))
2004 then
7d8b9c99 2005 Check_Itype (Etype (Comp));
c6823a20
EB
2006
2007 elsif Is_Array_Type (Etype (Comp))
2008 and then Is_Access_Type (Component_Type (Etype (Comp)))
2009 and then Present (Parent (Comp))
2010 and then Nkind (Parent (Comp)) = N_Component_Declaration
2011 and then Present (Expression (Parent (Comp)))
2012 and then Nkind (Expression (Parent (Comp))) = N_Aggregate
2013 and then Is_Fully_Defined
2014 (Designated_Type (Component_Type (Etype (Comp))))
2015 then
2016 Freeze_And_Append
2017 (Designated_Type
2018 (Component_Type (Etype (Comp))), Loc, Result);
2019 end if;
2020
2021 Prev := Comp;
70482933
RK
2022 Next_Entity (Comp);
2023 end loop;
2024
fea9e956
ES
2025 -- Deal with pragma Bit_Order
2026
2027 if Reverse_Bit_Order (Rec) and then Base_Type (Rec) = Rec then
2028 if not Placed_Component then
2029 ADC :=
2030 Get_Attribute_Definition_Clause (Rec, Attribute_Bit_Order);
2031 Error_Msg_N
2032 ("?Bit_Order specification has no effect", ADC);
2033 Error_Msg_N
2034 ("\?since no component clauses were specified", ADC);
2035
def46b54
RD
2036 -- Here is where we do Ada 2005 processing for bit order (the Ada
2037 -- 95 case was already taken care of above).
70482933 2038
fea9e956
ES
2039 elsif Ada_Version >= Ada_05 then
2040 Adjust_Record_For_Reverse_Bit_Order (Rec);
2041 end if;
70482933
RK
2042 end if;
2043
1b24ada5
RD
2044 -- Set OK_To_Reorder_Components depending on debug flags
2045
2046 if Rec = Base_Type (Rec)
2047 and then Convention (Rec) = Convention_Ada
2048 then
2049 if (Has_Discriminants (Rec) and then Debug_Flag_Dot_V)
2050 or else
2051 (not Has_Discriminants (Rec) and then Debug_Flag_Dot_R)
2052 then
2053 Set_OK_To_Reorder_Components (Rec);
2054 end if;
2055 end if;
2056
ee094616
RD
2057 -- Check for useless pragma Pack when all components placed. We only
2058 -- do this check for record types, not subtypes, since a subtype may
2059 -- have all its components placed, and it still makes perfectly good
1b24ada5
RD
2060 -- sense to pack other subtypes or the parent type. We do not give
2061 -- this warning if Optimize_Alignment is set to Space, since the
2062 -- pragma Pack does have an effect in this case (it always resets
2063 -- the alignment to one).
70482933 2064
ee094616
RD
2065 if Ekind (Rec) = E_Record_Type
2066 and then Is_Packed (Rec)
70482933 2067 and then not Unplaced_Component
1b24ada5 2068 and then Optimize_Alignment /= 'S'
70482933 2069 then
def46b54
RD
2070 -- Reset packed status. Probably not necessary, but we do it so
2071 -- that there is no chance of the back end doing something strange
2072 -- with this redundant indication of packing.
ee094616 2073
70482933 2074 Set_Is_Packed (Rec, False);
ee094616
RD
2075
2076 -- Give warning if redundant constructs warnings on
2077
2078 if Warn_On_Redundant_Constructs then
2079 Error_Msg_N
2080 ("?pragma Pack has no effect, no unplaced components",
2081 Get_Rep_Pragma (Rec, Name_Pack));
2082 end if;
70482933
RK
2083 end if;
2084
ee094616
RD
2085 -- If this is the record corresponding to a remote type, freeze the
2086 -- remote type here since that is what we are semantically freezing.
2087 -- This prevents the freeze node for that type in an inner scope.
70482933
RK
2088
2089 -- Also, Check for controlled components and unchecked unions.
ee094616
RD
2090 -- Finally, enforce the restriction that access attributes with a
2091 -- current instance prefix can only apply to limited types.
70482933 2092
8dc10d38 2093 if Ekind (Rec) = E_Record_Type then
70482933
RK
2094 if Present (Corresponding_Remote_Type (Rec)) then
2095 Freeze_And_Append
2096 (Corresponding_Remote_Type (Rec), Loc, Result);
2097 end if;
2098
2099 Comp := First_Component (Rec);
70482933
RK
2100 while Present (Comp) loop
2101 if Has_Controlled_Component (Etype (Comp))
2102 or else (Chars (Comp) /= Name_uParent
2103 and then Is_Controlled (Etype (Comp)))
2104 or else (Is_Protected_Type (Etype (Comp))
2105 and then Present
2106 (Corresponding_Record_Type (Etype (Comp)))
2107 and then Has_Controlled_Component
2108 (Corresponding_Record_Type (Etype (Comp))))
2109 then
2110 Set_Has_Controlled_Component (Rec);
2111 exit;
2112 end if;
2113
2114 if Has_Unchecked_Union (Etype (Comp)) then
2115 Set_Has_Unchecked_Union (Rec);
2116 end if;
2117
32c760e6
ES
2118 if Has_Per_Object_Constraint (Comp) then
2119
ee094616
RD
2120 -- Scan component declaration for likely misuses of current
2121 -- instance, either in a constraint or a default expression.
70482933
RK
2122
2123 Check_Current_Instance (Parent (Comp));
2124 end if;
2125
2126 Next_Component (Comp);
2127 end loop;
2128 end if;
2129
2130 Set_Component_Alignment_If_Not_Set (Rec);
2131
ee094616
RD
2132 -- For first subtypes, check if there are any fixed-point fields with
2133 -- component clauses, where we must check the size. This is not done
2134 -- till the freeze point, since for fixed-point types, we do not know
2135 -- the size until the type is frozen. Similar processing applies to
2136 -- bit packed arrays.
70482933
RK
2137
2138 if Is_First_Subtype (Rec) then
2139 Comp := First_Component (Rec);
2140
2141 while Present (Comp) loop
2142 if Present (Component_Clause (Comp))
d05ef0ab
AC
2143 and then (Is_Fixed_Point_Type (Etype (Comp))
2144 or else
2145 Is_Bit_Packed_Array (Etype (Comp)))
70482933
RK
2146 then
2147 Check_Size
d05ef0ab 2148 (Component_Name (Component_Clause (Comp)),
70482933
RK
2149 Etype (Comp),
2150 Esize (Comp),
2151 Junk);
2152 end if;
2153
2154 Next_Component (Comp);
2155 end loop;
2156 end if;
7d8b9c99
RD
2157
2158 -- Generate warning for applying C or C++ convention to a record
2159 -- with discriminants. This is suppressed for the unchecked union
1b24ada5
RD
2160 -- case, since the whole point in this case is interface C. We also
2161 -- do not generate this within instantiations, since we will have
2162 -- generated a message on the template.
7d8b9c99
RD
2163
2164 if Has_Discriminants (E)
2165 and then not Is_Unchecked_Union (E)
7d8b9c99
RD
2166 and then (Convention (E) = Convention_C
2167 or else
2168 Convention (E) = Convention_CPP)
2169 and then Comes_From_Source (E)
1b24ada5
RD
2170 and then not In_Instance
2171 and then not Has_Warnings_Off (E)
2172 and then not Has_Warnings_Off (Base_Type (E))
7d8b9c99
RD
2173 then
2174 declare
2175 Cprag : constant Node_Id := Get_Rep_Pragma (E, Name_Convention);
2176 A2 : Node_Id;
2177
2178 begin
2179 if Present (Cprag) then
2180 A2 := Next (First (Pragma_Argument_Associations (Cprag)));
2181
2182 if Convention (E) = Convention_C then
2183 Error_Msg_N
2184 ("?variant record has no direct equivalent in C", A2);
2185 else
2186 Error_Msg_N
2187 ("?variant record has no direct equivalent in C++", A2);
2188 end if;
2189
2190 Error_Msg_NE
2191 ("\?use of convention for type& is dubious", A2, E);
2192 end if;
2193 end;
2194 end if;
8dc10d38 2195
426d2717 2196 -- See if Implicit_Packing would work
8dc10d38 2197
426d2717
AC
2198 if not Is_Packed (Rec)
2199 and then not Placed_Component
8dc10d38
AC
2200 and then Has_Size_Clause (Rec)
2201 and then All_Scalar_Components
2202 and then not Has_Discriminants (Rec)
2203 and then Esize (Rec) < Scalar_Component_Total_Esize
2204 and then Esize (Rec) >= Scalar_Component_Total_RM_Size
2205 then
426d2717
AC
2206 -- If implicit packing enabled, do it
2207
2208 if Implicit_Packing then
2209 Set_Is_Packed (Rec);
2210
2211 -- Otherwise flag the size clause
2212
2213 else
2214 declare
2215 Sz : constant Node_Id := Size_Clause (Rec);
2216 begin
2995ebee 2217 Error_Msg_NE -- CODEFIX
426d2717 2218 ("size given for& too small", Sz, Rec);
2995ebee 2219 Error_Msg_N -- CODEFIX
426d2717
AC
2220 ("\use explicit pragma Pack "
2221 & "or use pragma Implicit_Packing", Sz);
2222 end;
2223 end if;
8dc10d38 2224 end if;
70482933
RK
2225 end Freeze_Record_Type;
2226
2227 -- Start of processing for Freeze_Entity
2228
2229 begin
c6823a20
EB
2230 -- We are going to test for various reasons why this entity need not be
2231 -- frozen here, but in the case of an Itype that's defined within a
2232 -- record, that test actually applies to the record.
2233
2234 if Is_Itype (E) and then Is_Record_Type (Scope (E)) then
2235 Test_E := Scope (E);
2236 elsif Is_Itype (E) and then Present (Underlying_Type (Scope (E)))
2237 and then Is_Record_Type (Underlying_Type (Scope (E)))
2238 then
2239 Test_E := Underlying_Type (Scope (E));
2240 end if;
2241
fbf5a39b 2242 -- Do not freeze if already frozen since we only need one freeze node
70482933
RK
2243
2244 if Is_Frozen (E) then
2245 return No_List;
2246
c6823a20
EB
2247 -- It is improper to freeze an external entity within a generic because
2248 -- its freeze node will appear in a non-valid context. The entity will
2249 -- be frozen in the proper scope after the current generic is analyzed.
70482933 2250
c6823a20 2251 elsif Inside_A_Generic and then External_Ref_In_Generic (Test_E) then
70482933
RK
2252 return No_List;
2253
2254 -- Do not freeze a global entity within an inner scope created during
2255 -- expansion. A call to subprogram E within some internal procedure
2256 -- (a stream attribute for example) might require freezing E, but the
2257 -- freeze node must appear in the same declarative part as E itself.
2258 -- The two-pass elaboration mechanism in gigi guarantees that E will
2259 -- be frozen before the inner call is elaborated. We exclude constants
2260 -- from this test, because deferred constants may be frozen early, and
19590d70
GD
2261 -- must be diagnosed (e.g. in the case of a deferred constant being used
2262 -- in a default expression). If the enclosing subprogram comes from
2263 -- source, or is a generic instance, then the freeze point is the one
2264 -- mandated by the language, and we freeze the entity. A subprogram that
2265 -- is a child unit body that acts as a spec does not have a spec that
2266 -- comes from source, but can only come from source.
70482933 2267
c6823a20
EB
2268 elsif In_Open_Scopes (Scope (Test_E))
2269 and then Scope (Test_E) /= Current_Scope
2270 and then Ekind (Test_E) /= E_Constant
70482933
RK
2271 then
2272 declare
2273 S : Entity_Id := Current_Scope;
2274
2275 begin
2276 while Present (S) loop
2277 if Is_Overloadable (S) then
2278 if Comes_From_Source (S)
2279 or else Is_Generic_Instance (S)
fea9e956 2280 or else Is_Child_Unit (S)
70482933
RK
2281 then
2282 exit;
2283 else
2284 return No_List;
2285 end if;
2286 end if;
2287
2288 S := Scope (S);
2289 end loop;
2290 end;
555360a5
AC
2291
2292 -- Similarly, an inlined instance body may make reference to global
2293 -- entities, but these references cannot be the proper freezing point
def46b54
RD
2294 -- for them, and in the absence of inlining freezing will take place in
2295 -- their own scope. Normally instance bodies are analyzed after the
2296 -- enclosing compilation, and everything has been frozen at the proper
2297 -- place, but with front-end inlining an instance body is compiled
2298 -- before the end of the enclosing scope, and as a result out-of-order
2299 -- freezing must be prevented.
555360a5
AC
2300
2301 elsif Front_End_Inlining
7d8b9c99 2302 and then In_Instance_Body
c6823a20 2303 and then Present (Scope (Test_E))
555360a5
AC
2304 then
2305 declare
c6823a20
EB
2306 S : Entity_Id := Scope (Test_E);
2307
555360a5
AC
2308 begin
2309 while Present (S) loop
2310 if Is_Generic_Instance (S) then
2311 exit;
2312 else
2313 S := Scope (S);
2314 end if;
2315 end loop;
2316
2317 if No (S) then
2318 return No_List;
2319 end if;
2320 end;
70482933
RK
2321 end if;
2322
2323 -- Here to freeze the entity
2324
2325 Result := No_List;
2326 Set_Is_Frozen (E);
2327
2328 -- Case of entity being frozen is other than a type
2329
2330 if not Is_Type (E) then
2331
2332 -- If entity is exported or imported and does not have an external
2333 -- name, now is the time to provide the appropriate default name.
2334 -- Skip this if the entity is stubbed, since we don't need a name
2335 -- for any stubbed routine.
2336
2337 if (Is_Imported (E) or else Is_Exported (E))
2338 and then No (Interface_Name (E))
2339 and then Convention (E) /= Convention_Stubbed
2340 then
2341 Set_Encoded_Interface_Name
2342 (E, Get_Default_External_Name (E));
fbf5a39b 2343
bbaba73f
EB
2344 -- If entity is an atomic object appearing in a declaration and
2345 -- the expression is an aggregate, assign it to a temporary to
2346 -- ensure that the actual assignment is done atomically rather
2347 -- than component-wise (the assignment to the temp may be done
2348 -- component-wise, but that is harmless).
fbf5a39b
AC
2349
2350 elsif Is_Atomic (E)
2351 and then Nkind (Parent (E)) = N_Object_Declaration
2352 and then Present (Expression (Parent (E)))
bbaba73f 2353 and then Nkind (Expression (Parent (E))) = N_Aggregate
fbf5a39b 2354 then
bbaba73f 2355 Expand_Atomic_Aggregate (Expression (Parent (E)), Etype (E));
70482933
RK
2356 end if;
2357
2358 -- For a subprogram, freeze all parameter types and also the return
fbf5a39b 2359 -- type (RM 13.14(14)). However skip this for internal subprograms.
70482933
RK
2360 -- This is also the point where any extra formal parameters are
2361 -- created since we now know whether the subprogram will use
2362 -- a foreign convention.
2363
2364 if Is_Subprogram (E) then
70482933 2365 if not Is_Internal (E) then
70482933 2366 declare
6d11af89 2367 F_Type : Entity_Id;
def46b54 2368 R_Type : Entity_Id;
6d11af89 2369 Warn_Node : Node_Id;
70482933 2370
70482933
RK
2371 begin
2372 -- Loop through formals
2373
2374 Formal := First_Formal (E);
70482933 2375 while Present (Formal) loop
70482933
RK
2376 F_Type := Etype (Formal);
2377 Freeze_And_Append (F_Type, Loc, Result);
2378
2379 if Is_Private_Type (F_Type)
2380 and then Is_Private_Type (Base_Type (F_Type))
2381 and then No (Full_View (Base_Type (F_Type)))
2382 and then not Is_Generic_Type (F_Type)
2383 and then not Is_Derived_Type (F_Type)
2384 then
2385 -- If the type of a formal is incomplete, subprogram
2386 -- is being frozen prematurely. Within an instance
2387 -- (but not within a wrapper package) this is an
2388 -- an artifact of our need to regard the end of an
2389 -- instantiation as a freeze point. Otherwise it is
2390 -- a definite error.
fbf5a39b 2391
70482933
RK
2392 -- and then not Is_Wrapper_Package (Current_Scope) ???
2393
2394 if In_Instance then
2395 Set_Is_Frozen (E, False);
2396 return No_List;
2397
86cde7b1
RD
2398 elsif not After_Last_Declaration
2399 and then not Freezing_Library_Level_Tagged_Type
2400 then
70482933
RK
2401 Error_Msg_Node_1 := F_Type;
2402 Error_Msg
2403 ("type& must be fully defined before this point",
2404 Loc);
2405 end if;
2406 end if;
2407
def46b54 2408 -- Check suspicious parameter for C function. These tests
1b24ada5 2409 -- apply only to exported/imported subprograms.
70482933 2410
def46b54 2411 if Warn_On_Export_Import
1b24ada5 2412 and then Comes_From_Source (E)
def46b54
RD
2413 and then (Convention (E) = Convention_C
2414 or else
2415 Convention (E) = Convention_CPP)
def46b54 2416 and then (Is_Imported (E) or else Is_Exported (E))
1b24ada5
RD
2417 and then Convention (E) /= Convention (Formal)
2418 and then not Has_Warnings_Off (E)
2419 and then not Has_Warnings_Off (F_Type)
2420 and then not Has_Warnings_Off (Formal)
fbf5a39b 2421 then
70482933 2422 Error_Msg_Qual_Level := 1;
def46b54
RD
2423
2424 -- Check suspicious use of fat C pointer
2425
2426 if Is_Access_Type (F_Type)
2427 and then Esize (F_Type) > Ttypes.System_Address_Size
2428 then
2429 Error_Msg_N
2430 ("?type of & does not correspond "
2431 & "to C pointer!", Formal);
2432
2433 -- Check suspicious return of boolean
2434
2435 elsif Root_Type (F_Type) = Standard_Boolean
2436 and then Convention (F_Type) = Convention_Ada
67198556
RD
2437 and then not Has_Warnings_Off (F_Type)
2438 and then not Has_Size_Clause (F_Type)
def46b54
RD
2439 then
2440 Error_Msg_N
2441 ("?& is an 8-bit Ada Boolean, "
2442 & "use char in C!", Formal);
2443
2444 -- Check suspicious tagged type
2445
2446 elsif (Is_Tagged_Type (F_Type)
2447 or else (Is_Access_Type (F_Type)
2448 and then
2449 Is_Tagged_Type
2450 (Designated_Type (F_Type))))
2451 and then Convention (E) = Convention_C
2452 then
2453 Error_Msg_N
e7d72fb9 2454 ("?& involves a tagged type which does not "
def46b54
RD
2455 & "correspond to any C type!", Formal);
2456
2457 -- Check wrong convention subprogram pointer
2458
2459 elsif Ekind (F_Type) = E_Access_Subprogram_Type
2460 and then not Has_Foreign_Convention (F_Type)
2461 then
2462 Error_Msg_N
2463 ("?subprogram pointer & should "
2464 & "have foreign convention!", Formal);
2465 Error_Msg_Sloc := Sloc (F_Type);
2466 Error_Msg_NE
2467 ("\?add Convention pragma to declaration of &#",
2468 Formal, F_Type);
2469 end if;
2470
70482933
RK
2471 Error_Msg_Qual_Level := 0;
2472 end if;
2473
2474 -- Check for unconstrained array in exported foreign
2475 -- convention case.
2476
def46b54 2477 if Has_Foreign_Convention (E)
70482933
RK
2478 and then not Is_Imported (E)
2479 and then Is_Array_Type (F_Type)
2480 and then not Is_Constrained (F_Type)
fbf5a39b 2481 and then Warn_On_Export_Import
70482933
RK
2482 then
2483 Error_Msg_Qual_Level := 1;
6d11af89
AC
2484
2485 -- If this is an inherited operation, place the
2486 -- warning on the derived type declaration, rather
2487 -- than on the original subprogram.
2488
2489 if Nkind (Original_Node (Parent (E))) =
2490 N_Full_Type_Declaration
2491 then
2492 Warn_Node := Parent (E);
2493
2494 if Formal = First_Formal (E) then
2495 Error_Msg_NE
add9f797 2496 ("?in inherited operation&", Warn_Node, E);
6d11af89
AC
2497 end if;
2498 else
2499 Warn_Node := Formal;
2500 end if;
2501
2502 Error_Msg_NE
70482933 2503 ("?type of argument& is unconstrained array",
6d11af89
AC
2504 Warn_Node, Formal);
2505 Error_Msg_NE
70482933 2506 ("?foreign caller must pass bounds explicitly",
6d11af89 2507 Warn_Node, Formal);
70482933
RK
2508 Error_Msg_Qual_Level := 0;
2509 end if;
2510
d8db0bca
JM
2511 if not From_With_Type (F_Type) then
2512 if Is_Access_Type (F_Type) then
2513 F_Type := Designated_Type (F_Type);
2514 end if;
2515
7d8b9c99
RD
2516 -- If the formal is an anonymous_access_to_subprogram
2517 -- freeze the subprogram type as well, to prevent
2518 -- scope anomalies in gigi, because there is no other
2519 -- clear point at which it could be frozen.
2520
93bcda23 2521 if Is_Itype (Etype (Formal))
7d8b9c99
RD
2522 and then Ekind (F_Type) = E_Subprogram_Type
2523 then
57747aec 2524 Freeze_And_Append (F_Type, Loc, Result);
d8db0bca
JM
2525 end if;
2526 end if;
2527
70482933
RK
2528 Next_Formal (Formal);
2529 end loop;
2530
5e39baa6 2531 -- Case of function: similar checks on return type
70482933
RK
2532
2533 if Ekind (E) = E_Function then
def46b54
RD
2534
2535 -- Freeze return type
2536
2537 R_Type := Etype (E);
2538 Freeze_And_Append (R_Type, Loc, Result);
2539
2540 -- Check suspicious return type for C function
70482933 2541
fbf5a39b 2542 if Warn_On_Export_Import
def46b54
RD
2543 and then (Convention (E) = Convention_C
2544 or else
2545 Convention (E) = Convention_CPP)
def46b54 2546 and then (Is_Imported (E) or else Is_Exported (E))
fbf5a39b 2547 then
def46b54
RD
2548 -- Check suspicious return of fat C pointer
2549
2550 if Is_Access_Type (R_Type)
2551 and then Esize (R_Type) > Ttypes.System_Address_Size
1b24ada5
RD
2552 and then not Has_Warnings_Off (E)
2553 and then not Has_Warnings_Off (R_Type)
def46b54
RD
2554 then
2555 Error_Msg_N
2556 ("?return type of& does not "
2557 & "correspond to C pointer!", E);
2558
2559 -- Check suspicious return of boolean
2560
2561 elsif Root_Type (R_Type) = Standard_Boolean
2562 and then Convention (R_Type) = Convention_Ada
1b24ada5
RD
2563 and then not Has_Warnings_Off (E)
2564 and then not Has_Warnings_Off (R_Type)
67198556 2565 and then not Has_Size_Clause (R_Type)
def46b54
RD
2566 then
2567 Error_Msg_N
2568 ("?return type of & is an 8-bit "
2569 & "Ada Boolean, use char in C!", E);
70482933 2570
def46b54
RD
2571 -- Check suspicious return tagged type
2572
2573 elsif (Is_Tagged_Type (R_Type)
2574 or else (Is_Access_Type (R_Type)
2575 and then
2576 Is_Tagged_Type
2577 (Designated_Type (R_Type))))
2578 and then Convention (E) = Convention_C
1b24ada5
RD
2579 and then not Has_Warnings_Off (E)
2580 and then not Has_Warnings_Off (R_Type)
def46b54
RD
2581 then
2582 Error_Msg_N
2583 ("?return type of & does not "
2584 & "correspond to C type!", E);
2585
2586 -- Check return of wrong convention subprogram pointer
2587
2588 elsif Ekind (R_Type) = E_Access_Subprogram_Type
2589 and then not Has_Foreign_Convention (R_Type)
1b24ada5
RD
2590 and then not Has_Warnings_Off (E)
2591 and then not Has_Warnings_Off (R_Type)
def46b54
RD
2592 then
2593 Error_Msg_N
2594 ("?& should return a foreign "
2595 & "convention subprogram pointer", E);
2596 Error_Msg_Sloc := Sloc (R_Type);
2597 Error_Msg_NE
2598 ("\?add Convention pragma to declaration of& #",
2599 E, R_Type);
2600 end if;
2601 end if;
2602
e7d72fb9
AC
2603 -- Give warning for suspicous return of a result of an
2604 -- unconstrained array type in a foreign convention
2605 -- function.
59366db6 2606
e7d72fb9
AC
2607 if Has_Foreign_Convention (E)
2608
2609 -- We are looking for a return of unconstrained array
2610
2611 and then Is_Array_Type (R_Type)
93bcda23 2612 and then not Is_Constrained (R_Type)
e7d72fb9
AC
2613
2614 -- Exclude imported routines, the warning does not
2615 -- belong on the import, but on the routine definition.
2616
70482933 2617 and then not Is_Imported (E)
e7d72fb9
AC
2618
2619 -- Exclude VM case, since both .NET and JVM can handle
2620 -- return of unconstrained arrays without a problem.
2621
f3b57ab0 2622 and then VM_Target = No_VM
e7d72fb9
AC
2623
2624 -- Check that general warning is enabled, and that it
2625 -- is not suppressed for this particular case.
2626
fbf5a39b 2627 and then Warn_On_Export_Import
1b24ada5 2628 and then not Has_Warnings_Off (E)
93bcda23 2629 and then not Has_Warnings_Off (R_Type)
70482933
RK
2630 then
2631 Error_Msg_N
fbf5a39b 2632 ("?foreign convention function& should not " &
1b24ada5 2633 "return unconstrained array!", E);
70482933
RK
2634 end if;
2635 end if;
2636 end;
2637 end if;
2638
2639 -- Must freeze its parent first if it is a derived subprogram
2640
2641 if Present (Alias (E)) then
2642 Freeze_And_Append (Alias (E), Loc, Result);
2643 end if;
2644
19590d70
GD
2645 -- We don't freeze internal subprograms, because we don't normally
2646 -- want addition of extra formals or mechanism setting to happen
2647 -- for those. However we do pass through predefined dispatching
2648 -- cases, since extra formals may be needed in some cases, such as
2649 -- for the stream 'Input function (build-in-place formals).
2650
2651 if not Is_Internal (E)
2652 or else Is_Predefined_Dispatching_Operation (E)
2653 then
70482933
RK
2654 Freeze_Subprogram (E);
2655 end if;
2656
2657 -- Here for other than a subprogram or type
2658
2659 else
2660 -- If entity has a type, and it is not a generic unit, then
7d8b9c99 2661 -- freeze it first (RM 13.14(10)).
70482933 2662
ac72c9c5 2663 if Present (Etype (E))
70482933
RK
2664 and then Ekind (E) /= E_Generic_Function
2665 then
2666 Freeze_And_Append (Etype (E), Loc, Result);
2667 end if;
2668
2c9beb8a 2669 -- Special processing for objects created by object declaration
70482933
RK
2670
2671 if Nkind (Declaration_Node (E)) = N_Object_Declaration then
2c9beb8a 2672
6823270c
AC
2673 -- Abstract type allowed only for C++ imported variables or
2674 -- constants.
2675
2676 -- Note: we inhibit this check for objects that do not come
2677 -- from source because there is at least one case (the
2678 -- expansion of x'class'input where x is abstract) where we
2679 -- legitimately generate an abstract object.
2680
2681 if Is_Abstract_Type (Etype (E))
2682 and then Comes_From_Source (Parent (E))
2683 and then not (Is_Imported (E)
2684 and then Is_CPP_Class (Etype (E)))
2685 then
2686 Error_Msg_N ("type of object cannot be abstract",
2687 Object_Definition (Parent (E)));
2688
2689 if Is_CPP_Class (Etype (E)) then
2690 Error_Msg_NE ("\} may need a cpp_constructor",
2691 Object_Definition (Parent (E)), Etype (E));
2692 end if;
2693 end if;
2694
2c9beb8a
RD
2695 -- For object created by object declaration, perform required
2696 -- categorization (preelaborate and pure) checks. Defer these
2697 -- checks to freeze time since pragma Import inhibits default
2698 -- initialization and thus pragma Import affects these checks.
2699
70482933 2700 Validate_Object_Declaration (Declaration_Node (E));
2c9beb8a 2701
1ce1f005 2702 -- If there is an address clause, check that it is valid
2c9beb8a 2703
fbf5a39b 2704 Check_Address_Clause (E);
2c9beb8a 2705
1ce1f005
GD
2706 -- If the object needs any kind of default initialization, an
2707 -- error must be issued if No_Default_Initialization applies.
2708 -- The check doesn't apply to imported objects, which are not
2709 -- ever default initialized, and is why the check is deferred
2710 -- until freezing, at which point we know if Import applies.
4fec4e7a
ES
2711 -- Deferred constants are also exempted from this test because
2712 -- their completion is explicit, or through an import pragma.
1ce1f005 2713
4fec4e7a
ES
2714 if Ekind (E) = E_Constant
2715 and then Present (Full_View (E))
2716 then
2717 null;
2718
2719 elsif Comes_From_Source (E)
b6e209b5 2720 and then not Is_Imported (E)
1ce1f005
GD
2721 and then not Has_Init_Expression (Declaration_Node (E))
2722 and then
2723 ((Has_Non_Null_Base_Init_Proc (Etype (E))
2724 and then not No_Initialization (Declaration_Node (E))
2725 and then not Is_Value_Type (Etype (E))
2726 and then not Suppress_Init_Proc (Etype (E)))
2727 or else
2728 (Needs_Simple_Initialization (Etype (E))
2729 and then not Is_Internal (E)))
2730 then
4c8a5bb8 2731 Has_Default_Initialization := True;
1ce1f005
GD
2732 Check_Restriction
2733 (No_Default_Initialization, Declaration_Node (E));
2734 end if;
2735
4c8a5bb8
AC
2736 -- Check that a Thread_Local_Storage variable does not have
2737 -- default initialization, and any explicit initialization must
2738 -- either be the null constant or a static constant.
2739
2740 if Has_Pragma_Thread_Local_Storage (E) then
2741 declare
2742 Decl : constant Node_Id := Declaration_Node (E);
2743 begin
2744 if Has_Default_Initialization
2745 or else
2746 (Has_Init_Expression (Decl)
2747 and then
2748 (No (Expression (Decl))
2749 or else not
2750 (Is_Static_Expression (Expression (Decl))
2751 or else
2752 Nkind (Expression (Decl)) = N_Null)))
2753 then
2754 Error_Msg_NE
2755 ("Thread_Local_Storage variable& is "
2756 & "improperly initialized", Decl, E);
2757 Error_Msg_NE
2758 ("\only allowed initialization is explicit "
2759 & "NULL or static expression", Decl, E);
2760 end if;
2761 end;
2762 end if;
2763
def46b54
RD
2764 -- For imported objects, set Is_Public unless there is also an
2765 -- address clause, which means that there is no external symbol
2766 -- needed for the Import (Is_Public may still be set for other
2767 -- unrelated reasons). Note that we delayed this processing
2768 -- till freeze time so that we can be sure not to set the flag
2769 -- if there is an address clause. If there is such a clause,
2770 -- then the only purpose of the Import pragma is to suppress
2771 -- implicit initialization.
2c9beb8a
RD
2772
2773 if Is_Imported (E)
add9f797 2774 and then No (Address_Clause (E))
2c9beb8a
RD
2775 then
2776 Set_Is_Public (E);
2777 end if;
7d8b9c99
RD
2778
2779 -- For convention C objects of an enumeration type, warn if
2780 -- the size is not integer size and no explicit size given.
2781 -- Skip warning for Boolean, and Character, assume programmer
2782 -- expects 8-bit sizes for these cases.
2783
2784 if (Convention (E) = Convention_C
2785 or else
2786 Convention (E) = Convention_CPP)
2787 and then Is_Enumeration_Type (Etype (E))
2788 and then not Is_Character_Type (Etype (E))
2789 and then not Is_Boolean_Type (Etype (E))
2790 and then Esize (Etype (E)) < Standard_Integer_Size
2791 and then not Has_Size_Clause (E)
2792 then
2793 Error_Msg_Uint_1 := UI_From_Int (Standard_Integer_Size);
2794 Error_Msg_N
2795 ("?convention C enumeration object has size less than ^",
2796 E);
2797 Error_Msg_N ("\?use explicit size clause to set size", E);
2798 end if;
70482933
RK
2799 end if;
2800
2801 -- Check that a constant which has a pragma Volatile[_Components]
7d8b9c99 2802 -- or Atomic[_Components] also has a pragma Import (RM C.6(13)).
70482933
RK
2803
2804 -- Note: Atomic[_Components] also sets Volatile[_Components]
2805
2806 if Ekind (E) = E_Constant
2807 and then (Has_Volatile_Components (E) or else Is_Volatile (E))
2808 and then not Is_Imported (E)
2809 then
2810 -- Make sure we actually have a pragma, and have not merely
2811 -- inherited the indication from elsewhere (e.g. an address
2812 -- clause, which is not good enough in RM terms!)
2813
1d571f3b 2814 if Has_Rep_Pragma (E, Name_Atomic)
91b1417d 2815 or else
1d571f3b 2816 Has_Rep_Pragma (E, Name_Atomic_Components)
70482933
RK
2817 then
2818 Error_Msg_N
91b1417d 2819 ("stand alone atomic constant must be " &
def46b54 2820 "imported (RM C.6(13))", E);
91b1417d 2821
1d571f3b 2822 elsif Has_Rep_Pragma (E, Name_Volatile)
91b1417d 2823 or else
1d571f3b 2824 Has_Rep_Pragma (E, Name_Volatile_Components)
91b1417d
AC
2825 then
2826 Error_Msg_N
2827 ("stand alone volatile constant must be " &
86cde7b1 2828 "imported (RM C.6(13))", E);
70482933
RK
2829 end if;
2830 end if;
2831
2832 -- Static objects require special handling
2833
2834 if (Ekind (E) = E_Constant or else Ekind (E) = E_Variable)
2835 and then Is_Statically_Allocated (E)
2836 then
2837 Freeze_Static_Object (E);
2838 end if;
2839
2840 -- Remaining step is to layout objects
2841
2842 if Ekind (E) = E_Variable
2843 or else
2844 Ekind (E) = E_Constant
2845 or else
2846 Ekind (E) = E_Loop_Parameter
2847 or else
2848 Is_Formal (E)
2849 then
2850 Layout_Object (E);
2851 end if;
2852 end if;
2853
2854 -- Case of a type or subtype being frozen
2855
2856 else
31b5873d
GD
2857 -- We used to check here that a full type must have preelaborable
2858 -- initialization if it completes a private type specified with
2859 -- pragma Preelaborable_Intialization, but that missed cases where
2860 -- the types occur within a generic package, since the freezing
2861 -- that occurs within a containing scope generally skips traversal
2862 -- of a generic unit's declarations (those will be frozen within
2863 -- instances). This check was moved to Analyze_Package_Specification.
3f1ede06 2864
70482933
RK
2865 -- The type may be defined in a generic unit. This can occur when
2866 -- freezing a generic function that returns the type (which is
2867 -- defined in a parent unit). It is clearly meaningless to freeze
2868 -- this type. However, if it is a subtype, its size may be determi-
2869 -- nable and used in subsequent checks, so might as well try to
2870 -- compute it.
2871
2872 if Present (Scope (E))
2873 and then Is_Generic_Unit (Scope (E))
2874 then
2875 Check_Compile_Time_Size (E);
2876 return No_List;
2877 end if;
2878
2879 -- Deal with special cases of freezing for subtype
2880
2881 if E /= Base_Type (E) then
2882
86cde7b1
RD
2883 -- Before we do anything else, a specialized test for the case of
2884 -- a size given for an array where the array needs to be packed,
2885 -- but was not so the size cannot be honored. This would of course
2886 -- be caught by the backend, and indeed we don't catch all cases.
2887 -- The point is that we can give a better error message in those
2888 -- cases that we do catch with the circuitry here. Also if pragma
2889 -- Implicit_Packing is set, this is where the packing occurs.
2890
2891 -- The reason we do this so early is that the processing in the
2892 -- automatic packing case affects the layout of the base type, so
2893 -- it must be done before we freeze the base type.
2894
2895 if Is_Array_Type (E) then
2896 declare
2897 Lo, Hi : Node_Id;
2898 Ctyp : constant Entity_Id := Component_Type (E);
2899
2900 begin
2901 -- Check enabling conditions. These are straightforward
2902 -- except for the test for a limited composite type. This
2903 -- eliminates the rare case of a array of limited components
2904 -- where there are issues of whether or not we can go ahead
2905 -- and pack the array (since we can't freely pack and unpack
2906 -- arrays if they are limited).
2907
2908 -- Note that we check the root type explicitly because the
2909 -- whole point is we are doing this test before we have had
2910 -- a chance to freeze the base type (and it is that freeze
2911 -- action that causes stuff to be inherited).
2912
2913 if Present (Size_Clause (E))
2914 and then Known_Static_Esize (E)
2915 and then not Is_Packed (E)
2916 and then not Has_Pragma_Pack (E)
2917 and then Number_Dimensions (E) = 1
2918 and then not Has_Component_Size_Clause (E)
2919 and then Known_Static_Esize (Ctyp)
2920 and then not Is_Limited_Composite (E)
2921 and then not Is_Packed (Root_Type (E))
2922 and then not Has_Component_Size_Clause (Root_Type (E))
2923 then
2924 Get_Index_Bounds (First_Index (E), Lo, Hi);
2925
2926 if Compile_Time_Known_Value (Lo)
2927 and then Compile_Time_Known_Value (Hi)
2928 and then Known_Static_RM_Size (Ctyp)
2929 and then RM_Size (Ctyp) < 64
2930 then
2931 declare
2932 Lov : constant Uint := Expr_Value (Lo);
2933 Hiv : constant Uint := Expr_Value (Hi);
2934 Len : constant Uint := UI_Max
2935 (Uint_0,
2936 Hiv - Lov + 1);
2937 Rsiz : constant Uint := RM_Size (Ctyp);
2938 SZ : constant Node_Id := Size_Clause (E);
2939 Btyp : constant Entity_Id := Base_Type (E);
2940
2941 -- What we are looking for here is the situation where
2942 -- the RM_Size given would be exactly right if there
2943 -- was a pragma Pack (resulting in the component size
2944 -- being the same as the RM_Size). Furthermore, the
2945 -- component type size must be an odd size (not a
2946 -- multiple of storage unit)
2947
2948 begin
2949 if RM_Size (E) = Len * Rsiz
2950 and then Rsiz mod System_Storage_Unit /= 0
2951 then
2952 -- For implicit packing mode, just set the
fd366a46 2953 -- component size silently.
86cde7b1
RD
2954
2955 if Implicit_Packing then
2956 Set_Component_Size (Btyp, Rsiz);
2957 Set_Is_Bit_Packed_Array (Btyp);
2958 Set_Is_Packed (Btyp);
2959 Set_Has_Non_Standard_Rep (Btyp);
2960
2961 -- Otherwise give an error message
2962
2963 else
2964 Error_Msg_NE
2965 ("size given for& too small", SZ, E);
2966 Error_Msg_N
2967 ("\use explicit pragma Pack "
2968 & "or use pragma Implicit_Packing", SZ);
2969 end if;
2970 end if;
2971 end;
2972 end if;
2973 end if;
2974 end;
2975 end if;
2976
def46b54
RD
2977 -- If ancestor subtype present, freeze that first. Note that this
2978 -- will also get the base type frozen.
70482933
RK
2979
2980 Atype := Ancestor_Subtype (E);
2981
2982 if Present (Atype) then
2983 Freeze_And_Append (Atype, Loc, Result);
2984
def46b54
RD
2985 -- Otherwise freeze the base type of the entity before freezing
2986 -- the entity itself (RM 13.14(15)).
70482933
RK
2987
2988 elsif E /= Base_Type (E) then
2989 Freeze_And_Append (Base_Type (E), Loc, Result);
2990 end if;
2991
fbf5a39b 2992 -- For a derived type, freeze its parent type first (RM 13.14(15))
70482933
RK
2993
2994 elsif Is_Derived_Type (E) then
2995 Freeze_And_Append (Etype (E), Loc, Result);
2996 Freeze_And_Append (First_Subtype (Etype (E)), Loc, Result);
2997 end if;
2998
2999 -- For array type, freeze index types and component type first
fbf5a39b 3000 -- before freezing the array (RM 13.14(15)).
70482933
RK
3001
3002 if Is_Array_Type (E) then
3003 declare
fbf5a39b 3004 Ctyp : constant Entity_Id := Component_Type (E);
70482933
RK
3005
3006 Non_Standard_Enum : Boolean := False;
7d8b9c99
RD
3007 -- Set true if any of the index types is an enumeration type
3008 -- with a non-standard representation.
70482933
RK
3009
3010 begin
3011 Freeze_And_Append (Ctyp, Loc, Result);
3012
3013 Indx := First_Index (E);
3014 while Present (Indx) loop
3015 Freeze_And_Append (Etype (Indx), Loc, Result);
3016
3017 if Is_Enumeration_Type (Etype (Indx))
3018 and then Has_Non_Standard_Rep (Etype (Indx))
3019 then
3020 Non_Standard_Enum := True;
3021 end if;
3022
3023 Next_Index (Indx);
3024 end loop;
3025
07fc65c4 3026 -- Processing that is done only for base types
70482933
RK
3027
3028 if Ekind (E) = E_Array_Type then
07fc65c4
GB
3029
3030 -- Propagate flags for component type
3031
70482933
RK
3032 if Is_Controlled (Component_Type (E))
3033 or else Has_Controlled_Component (Ctyp)
3034 then
3035 Set_Has_Controlled_Component (E);
3036 end if;
3037
3038 if Has_Unchecked_Union (Component_Type (E)) then
3039 Set_Has_Unchecked_Union (E);
3040 end if;
70482933 3041
07fc65c4
GB
3042 -- If packing was requested or if the component size was set
3043 -- explicitly, then see if bit packing is required. This
3044 -- processing is only done for base types, since all the
3045 -- representation aspects involved are type-related. This
3046 -- is not just an optimization, if we start processing the
e14c931f 3047 -- subtypes, they interfere with the settings on the base
07fc65c4
GB
3048 -- type (this is because Is_Packed has a slightly different
3049 -- meaning before and after freezing).
70482933 3050
70482933
RK
3051 declare
3052 Csiz : Uint;
3053 Esiz : Uint;
3054
3055 begin
3056 if (Is_Packed (E) or else Has_Pragma_Pack (E))
3057 and then not Has_Atomic_Components (E)
3058 and then Known_Static_RM_Size (Ctyp)
3059 then
3060 Csiz := UI_Max (RM_Size (Ctyp), 1);
3061
3062 elsif Known_Component_Size (E) then
3063 Csiz := Component_Size (E);
3064
3065 elsif not Known_Static_Esize (Ctyp) then
3066 Csiz := Uint_0;
3067
3068 else
3069 Esiz := Esize (Ctyp);
3070
3071 -- We can set the component size if it is less than
3072 -- 16, rounding it up to the next storage unit size.
3073
3074 if Esiz <= 8 then
3075 Csiz := Uint_8;
3076 elsif Esiz <= 16 then
3077 Csiz := Uint_16;
3078 else
3079 Csiz := Uint_0;
3080 end if;
3081
7d8b9c99
RD
3082 -- Set component size up to match alignment if it
3083 -- would otherwise be less than the alignment. This
3084 -- deals with cases of types whose alignment exceeds
3085 -- their size (padded types).
70482933
RK
3086
3087 if Csiz /= 0 then
3088 declare
3089 A : constant Uint := Alignment_In_Bits (Ctyp);
70482933
RK
3090 begin
3091 if Csiz < A then
3092 Csiz := A;
3093 end if;
3094 end;
3095 end if;
70482933
RK
3096 end if;
3097
86cde7b1
RD
3098 -- Case of component size that may result in packing
3099
70482933 3100 if 1 <= Csiz and then Csiz <= 64 then
86cde7b1
RD
3101 declare
3102 Ent : constant Entity_Id :=
3103 First_Subtype (E);
3104 Pack_Pragma : constant Node_Id :=
3105 Get_Rep_Pragma (Ent, Name_Pack);
3106 Comp_Size_C : constant Node_Id :=
3107 Get_Attribute_Definition_Clause
3108 (Ent, Attribute_Component_Size);
3109 begin
3110 -- Warn if we have pack and component size so that
3111 -- the pack is ignored.
70482933 3112
86cde7b1
RD
3113 -- Note: here we must check for the presence of a
3114 -- component size before checking for a Pack pragma
3115 -- to deal with the case where the array type is a
3116 -- derived type whose parent is currently private.
3117
3118 if Present (Comp_Size_C)
3119 and then Has_Pragma_Pack (Ent)
3120 then
3121 Error_Msg_Sloc := Sloc (Comp_Size_C);
3122 Error_Msg_NE
3123 ("?pragma Pack for& ignored!",
3124 Pack_Pragma, Ent);
3125 Error_Msg_N
3126 ("\?explicit component size given#!",
3127 Pack_Pragma);
3128 end if;
70482933 3129
86cde7b1
RD
3130 -- Set component size if not already set by a
3131 -- component size clause.
70482933 3132
86cde7b1
RD
3133 if not Present (Comp_Size_C) then
3134 Set_Component_Size (E, Csiz);
3135 end if;
fbf5a39b 3136
86cde7b1
RD
3137 -- Check for base type of 8, 16, 32 bits, where an
3138 -- unsigned subtype has a length one less than the
3139 -- base type (e.g. Natural subtype of Integer).
fbf5a39b 3140
86cde7b1
RD
3141 -- In such cases, if a component size was not set
3142 -- explicitly, then generate a warning.
fbf5a39b 3143
86cde7b1
RD
3144 if Has_Pragma_Pack (E)
3145 and then not Present (Comp_Size_C)
3146 and then
3147 (Csiz = 7 or else Csiz = 15 or else Csiz = 31)
3148 and then Esize (Base_Type (Ctyp)) = Csiz + 1
3149 then
3150 Error_Msg_Uint_1 := Csiz;
3151
3152 if Present (Pack_Pragma) then
3153 Error_Msg_N
3154 ("?pragma Pack causes component size "
3155 & "to be ^!", Pack_Pragma);
3156 Error_Msg_N
3157 ("\?use Component_Size to set "
3158 & "desired value!", Pack_Pragma);
3159 end if;
fbf5a39b 3160 end if;
fbf5a39b 3161
86cde7b1
RD
3162 -- Actual packing is not needed for 8, 16, 32, 64.
3163 -- Also not needed for 24 if alignment is 1.
70482933 3164
86cde7b1
RD
3165 if Csiz = 8
3166 or else Csiz = 16
3167 or else Csiz = 32
3168 or else Csiz = 64
3169 or else (Csiz = 24 and then Alignment (Ctyp) = 1)
3170 then
3171 -- Here the array was requested to be packed,
3172 -- but the packing request had no effect, so
3173 -- Is_Packed is reset.
70482933 3174
86cde7b1
RD
3175 -- Note: semantically this means that we lose
3176 -- track of the fact that a derived type
3177 -- inherited a pragma Pack that was non-
3178 -- effective, but that seems fine.
70482933 3179
86cde7b1
RD
3180 -- We regard a Pack pragma as a request to set
3181 -- a representation characteristic, and this
3182 -- request may be ignored.
70482933 3183
86cde7b1 3184 Set_Is_Packed (Base_Type (E), False);
70482933 3185
86cde7b1 3186 -- In all other cases, packing is indeed needed
70482933 3187
86cde7b1
RD
3188 else
3189 Set_Has_Non_Standard_Rep (Base_Type (E));
3190 Set_Is_Bit_Packed_Array (Base_Type (E));
3191 Set_Is_Packed (Base_Type (E));
3192 end if;
3193 end;
70482933
RK
3194 end if;
3195 end;
07fc65c4
GB
3196
3197 -- Processing that is done only for subtypes
3198
3199 else
3200 -- Acquire alignment from base type
3201
3202 if Unknown_Alignment (E) then
3203 Set_Alignment (E, Alignment (Base_Type (E)));
7d8b9c99 3204 Adjust_Esize_Alignment (E);
07fc65c4
GB
3205 end if;
3206 end if;
3207
d05ef0ab
AC
3208 -- For bit-packed arrays, check the size
3209
3210 if Is_Bit_Packed_Array (E)
7d8b9c99 3211 and then Known_RM_Size (E)
d05ef0ab
AC
3212 then
3213 declare
67ce0d7e
RD
3214 SizC : constant Node_Id := Size_Clause (E);
3215
d05ef0ab 3216 Discard : Boolean;
67ce0d7e 3217 pragma Warnings (Off, Discard);
d05ef0ab
AC
3218
3219 begin
3220 -- It is not clear if it is possible to have no size
7d8b9c99
RD
3221 -- clause at this stage, but it is not worth worrying
3222 -- about. Post error on the entity name in the size
d05ef0ab
AC
3223 -- clause if present, else on the type entity itself.
3224
3225 if Present (SizC) then
7d8b9c99 3226 Check_Size (Name (SizC), E, RM_Size (E), Discard);
d05ef0ab 3227 else
7d8b9c99 3228 Check_Size (E, E, RM_Size (E), Discard);
d05ef0ab
AC
3229 end if;
3230 end;
3231 end if;
3232
70482933
RK
3233 -- If any of the index types was an enumeration type with
3234 -- a non-standard rep clause, then we indicate that the
3235 -- array type is always packed (even if it is not bit packed).
3236
3237 if Non_Standard_Enum then
3238 Set_Has_Non_Standard_Rep (Base_Type (E));
3239 Set_Is_Packed (Base_Type (E));
3240 end if;
70482933 3241
0da2c8ac 3242 Set_Component_Alignment_If_Not_Set (E);
70482933 3243
0da2c8ac
AC
3244 -- If the array is packed, we must create the packed array
3245 -- type to be used to actually implement the type. This is
3246 -- only needed for real array types (not for string literal
3247 -- types, since they are present only for the front end).
70482933 3248
0da2c8ac
AC
3249 if Is_Packed (E)
3250 and then Ekind (E) /= E_String_Literal_Subtype
3251 then
3252 Create_Packed_Array_Type (E);
3253 Freeze_And_Append (Packed_Array_Type (E), Loc, Result);
70482933 3254
0da2c8ac 3255 -- Size information of packed array type is copied to the
fea9e956 3256 -- array type, since this is really the representation. But
def46b54
RD
3257 -- do not override explicit existing size values. If the
3258 -- ancestor subtype is constrained the packed_array_type
3259 -- will be inherited from it, but the size may have been
3260 -- provided already, and must not be overridden either.
fea9e956 3261
def46b54
RD
3262 if not Has_Size_Clause (E)
3263 and then
3264 (No (Ancestor_Subtype (E))
3265 or else not Has_Size_Clause (Ancestor_Subtype (E)))
3266 then
fea9e956
ES
3267 Set_Esize (E, Esize (Packed_Array_Type (E)));
3268 Set_RM_Size (E, RM_Size (Packed_Array_Type (E)));
3269 end if;
70482933 3270
fea9e956
ES
3271 if not Has_Alignment_Clause (E) then
3272 Set_Alignment (E, Alignment (Packed_Array_Type (E)));
3273 end if;
0da2c8ac
AC
3274 end if;
3275
def46b54
RD
3276 -- For non-packed arrays set the alignment of the array to the
3277 -- alignment of the component type if it is unknown. Skip this
3278 -- in atomic case (atomic arrays may need larger alignments).
0da2c8ac
AC
3279
3280 if not Is_Packed (E)
3281 and then Unknown_Alignment (E)
3282 and then Known_Alignment (Ctyp)
3283 and then Known_Static_Component_Size (E)
3284 and then Known_Static_Esize (Ctyp)
3285 and then Esize (Ctyp) = Component_Size (E)
3286 and then not Is_Atomic (E)
3287 then
3288 Set_Alignment (E, Alignment (Component_Type (E)));
3289 end if;
3290 end;
70482933 3291
fbf5a39b
AC
3292 -- For a class-wide type, the corresponding specific type is
3293 -- frozen as well (RM 13.14(15))
70482933
RK
3294
3295 elsif Is_Class_Wide_Type (E) then
3296 Freeze_And_Append (Root_Type (E), Loc, Result);
3297
86cde7b1
RD
3298 -- If the base type of the class-wide type is still incomplete,
3299 -- the class-wide remains unfrozen as well. This is legal when
3300 -- E is the formal of a primitive operation of some other type
3301 -- which is being frozen.
3302
3303 if not Is_Frozen (Root_Type (E)) then
3304 Set_Is_Frozen (E, False);
3305 return Result;
3306 end if;
3307
70482933
RK
3308 -- If the Class_Wide_Type is an Itype (when type is the anonymous
3309 -- parent of a derived type) and it is a library-level entity,
3310 -- generate an itype reference for it. Otherwise, its first
3311 -- explicit reference may be in an inner scope, which will be
3312 -- rejected by the back-end.
3313
3314 if Is_Itype (E)
3315 and then Is_Compilation_Unit (Scope (E))
3316 then
70482933 3317 declare
fbf5a39b 3318 Ref : constant Node_Id := Make_Itype_Reference (Loc);
70482933
RK
3319
3320 begin
3321 Set_Itype (Ref, E);
3322 if No (Result) then
3323 Result := New_List (Ref);
3324 else
3325 Append (Ref, Result);
3326 end if;
3327 end;
3328 end if;
3329
def46b54
RD
3330 -- The equivalent type associated with a class-wide subtype needs
3331 -- to be frozen to ensure that its layout is done. Class-wide
3332 -- subtypes are currently only frozen on targets requiring
3333 -- front-end layout (see New_Class_Wide_Subtype and
3334 -- Make_CW_Equivalent_Type in exp_util.adb).
fbf5a39b
AC
3335
3336 if Ekind (E) = E_Class_Wide_Subtype
3337 and then Present (Equivalent_Type (E))
3338 then
3339 Freeze_And_Append (Equivalent_Type (E), Loc, Result);
3340 end if;
3341
3342 -- For a record (sub)type, freeze all the component types (RM
def46b54
RD
3343 -- 13.14(15). We test for E_Record_(sub)Type here, rather than using
3344 -- Is_Record_Type, because we don't want to attempt the freeze for
3345 -- the case of a private type with record extension (we will do that
3346 -- later when the full type is frozen).
70482933
RK
3347
3348 elsif Ekind (E) = E_Record_Type
fd366a46 3349 or else Ekind (E) = E_Record_Subtype
70482933
RK
3350 then
3351 Freeze_Record_Type (E);
3352
3353 -- For a concurrent type, freeze corresponding record type. This
e14c931f 3354 -- does not correspond to any specific rule in the RM, but the
70482933
RK
3355 -- record type is essentially part of the concurrent type.
3356 -- Freeze as well all local entities. This includes record types
3357 -- created for entry parameter blocks, and whatever local entities
3358 -- may appear in the private part.
3359
3360 elsif Is_Concurrent_Type (E) then
3361 if Present (Corresponding_Record_Type (E)) then
3362 Freeze_And_Append
3363 (Corresponding_Record_Type (E), Loc, Result);
3364 end if;
3365
3366 Comp := First_Entity (E);
70482933
RK
3367 while Present (Comp) loop
3368 if Is_Type (Comp) then
3369 Freeze_And_Append (Comp, Loc, Result);
3370
3371 elsif (Ekind (Comp)) /= E_Function then
c6823a20
EB
3372 if Is_Itype (Etype (Comp))
3373 and then Underlying_Type (Scope (Etype (Comp))) = E
3374 then
3375 Undelay_Type (Etype (Comp));
3376 end if;
3377
70482933
RK
3378 Freeze_And_Append (Etype (Comp), Loc, Result);
3379 end if;
3380
3381 Next_Entity (Comp);
3382 end loop;
3383
ee094616
RD
3384 -- Private types are required to point to the same freeze node as
3385 -- their corresponding full views. The freeze node itself has to
3386 -- point to the partial view of the entity (because from the partial
3387 -- view, we can retrieve the full view, but not the reverse).
3388 -- However, in order to freeze correctly, we need to freeze the full
3389 -- view. If we are freezing at the end of a scope (or within the
3390 -- scope of the private type), the partial and full views will have
3391 -- been swapped, the full view appears first in the entity chain and
3392 -- the swapping mechanism ensures that the pointers are properly set
3393 -- (on scope exit).
3394
3395 -- If we encounter the partial view before the full view (e.g. when
3396 -- freezing from another scope), we freeze the full view, and then
3397 -- set the pointers appropriately since we cannot rely on swapping to
3398 -- fix things up (subtypes in an outer scope might not get swapped).
70482933
RK
3399
3400 elsif Is_Incomplete_Or_Private_Type (E)
3401 and then not Is_Generic_Type (E)
3402 then
86cde7b1
RD
3403 -- The construction of the dispatch table associated with library
3404 -- level tagged types forces freezing of all the primitives of the
3405 -- type, which may cause premature freezing of the partial view.
3406 -- For example:
3407
3408 -- package Pkg is
3409 -- type T is tagged private;
3410 -- type DT is new T with private;
3411 -- procedure Prim (X : in out T; Y : in out DT'class);
3412 -- private
3413 -- type T is tagged null record;
3414 -- Obj : T;
3415 -- type DT is new T with null record;
3416 -- end;
3417
3418 -- In this case the type will be frozen later by the usual
3419 -- mechanism: an object declaration, an instantiation, or the
3420 -- end of a declarative part.
3421
3422 if Is_Library_Level_Tagged_Type (E)
3423 and then not Present (Full_View (E))
3424 then
3425 Set_Is_Frozen (E, False);
3426 return Result;
3427
70482933
RK
3428 -- Case of full view present
3429
86cde7b1 3430 elsif Present (Full_View (E)) then
70482933 3431
ee094616
RD
3432 -- If full view has already been frozen, then no further
3433 -- processing is required
70482933
RK
3434
3435 if Is_Frozen (Full_View (E)) then
3436
3437 Set_Has_Delayed_Freeze (E, False);
3438 Set_Freeze_Node (E, Empty);
3439 Check_Debug_Info_Needed (E);
3440
ee094616
RD
3441 -- Otherwise freeze full view and patch the pointers so that
3442 -- the freeze node will elaborate both views in the back-end.
70482933
RK
3443
3444 else
fbf5a39b
AC
3445 declare
3446 Full : constant Entity_Id := Full_View (E);
70482933 3447
fbf5a39b
AC
3448 begin
3449 if Is_Private_Type (Full)
3450 and then Present (Underlying_Full_View (Full))
3451 then
3452 Freeze_And_Append
3453 (Underlying_Full_View (Full), Loc, Result);
3454 end if;
70482933 3455
fbf5a39b 3456 Freeze_And_Append (Full, Loc, Result);
70482933 3457
fbf5a39b
AC
3458 if Has_Delayed_Freeze (E) then
3459 F_Node := Freeze_Node (Full);
70482933 3460
fbf5a39b
AC
3461 if Present (F_Node) then
3462 Set_Freeze_Node (E, F_Node);
3463 Set_Entity (F_Node, E);
3464
3465 else
def46b54
RD
3466 -- {Incomplete,Private}_Subtypes with Full_Views
3467 -- constrained by discriminants.
fbf5a39b
AC
3468
3469 Set_Has_Delayed_Freeze (E, False);
3470 Set_Freeze_Node (E, Empty);
3471 end if;
70482933 3472 end if;
fbf5a39b 3473 end;
70482933
RK
3474
3475 Check_Debug_Info_Needed (E);
3476 end if;
3477
ee094616
RD
3478 -- AI-117 requires that the convention of a partial view be the
3479 -- same as the convention of the full view. Note that this is a
3480 -- recognized breach of privacy, but it's essential for logical
3481 -- consistency of representation, and the lack of a rule in
3482 -- RM95 was an oversight.
70482933
RK
3483
3484 Set_Convention (E, Convention (Full_View (E)));
3485
3486 Set_Size_Known_At_Compile_Time (E,
3487 Size_Known_At_Compile_Time (Full_View (E)));
3488
3489 -- Size information is copied from the full view to the
def46b54 3490 -- incomplete or private view for consistency.
70482933 3491
ee094616
RD
3492 -- We skip this is the full view is not a type. This is very
3493 -- strange of course, and can only happen as a result of
3494 -- certain illegalities, such as a premature attempt to derive
3495 -- from an incomplete type.
70482933
RK
3496
3497 if Is_Type (Full_View (E)) then
3498 Set_Size_Info (E, Full_View (E));
3499 Set_RM_Size (E, RM_Size (Full_View (E)));
3500 end if;
3501
3502 return Result;
3503
3504 -- Case of no full view present. If entity is derived or subtype,
3505 -- it is safe to freeze, correctness depends on the frozen status
3506 -- of parent. Otherwise it is either premature usage, or a Taft
3507 -- amendment type, so diagnosis is at the point of use and the
3508 -- type might be frozen later.
3509
3510 elsif E /= Base_Type (E)
3511 or else Is_Derived_Type (E)
3512 then
3513 null;
3514
3515 else
3516 Set_Is_Frozen (E, False);
3517 return No_List;
3518 end if;
3519
3520 -- For access subprogram, freeze types of all formals, the return
3521 -- type was already frozen, since it is the Etype of the function.
8aec446b 3522 -- Formal types can be tagged Taft amendment types, but otherwise
205c14b0 3523 -- they cannot be incomplete.
70482933
RK
3524
3525 elsif Ekind (E) = E_Subprogram_Type then
3526 Formal := First_Formal (E);
8aec446b 3527
70482933 3528 while Present (Formal) loop
8aec446b
AC
3529 if Ekind (Etype (Formal)) = E_Incomplete_Type
3530 and then No (Full_View (Etype (Formal)))
3531 and then not Is_Value_Type (Etype (Formal))
3532 then
3533 if Is_Tagged_Type (Etype (Formal)) then
3534 null;
3535 else
3536 Error_Msg_NE
3537 ("invalid use of incomplete type&", E, Etype (Formal));
3538 end if;
3539 end if;
3540
70482933
RK
3541 Freeze_And_Append (Etype (Formal), Loc, Result);
3542 Next_Formal (Formal);
3543 end loop;
3544
70482933
RK
3545 Freeze_Subprogram (E);
3546
ee094616
RD
3547 -- For access to a protected subprogram, freeze the equivalent type
3548 -- (however this is not set if we are not generating code or if this
3549 -- is an anonymous type used just for resolution).
70482933 3550
fea9e956 3551 elsif Is_Access_Protected_Subprogram_Type (E) then
57747aec 3552 if Present (Equivalent_Type (E)) then
d8db0bca
JM
3553 Freeze_And_Append (Equivalent_Type (E), Loc, Result);
3554 end if;
70482933
RK
3555 end if;
3556
3557 -- Generic types are never seen by the back-end, and are also not
3558 -- processed by the expander (since the expander is turned off for
3559 -- generic processing), so we never need freeze nodes for them.
3560
3561 if Is_Generic_Type (E) then
3562 return Result;
3563 end if;
3564
3565 -- Some special processing for non-generic types to complete
3566 -- representation details not known till the freeze point.
3567
3568 if Is_Fixed_Point_Type (E) then
3569 Freeze_Fixed_Point_Type (E);
3570
ee094616
RD
3571 -- Some error checks required for ordinary fixed-point type. Defer
3572 -- these till the freeze-point since we need the small and range
3573 -- values. We only do these checks for base types
fbf5a39b
AC
3574
3575 if Is_Ordinary_Fixed_Point_Type (E)
3576 and then E = Base_Type (E)
3577 then
3578 if Small_Value (E) < Ureal_2_M_80 then
3579 Error_Msg_Name_1 := Name_Small;
3580 Error_Msg_N
7d8b9c99 3581 ("`&''%` too small, minimum allowed is 2.0'*'*(-80)", E);
fbf5a39b
AC
3582
3583 elsif Small_Value (E) > Ureal_2_80 then
3584 Error_Msg_Name_1 := Name_Small;
3585 Error_Msg_N
7d8b9c99 3586 ("`&''%` too large, maximum allowed is 2.0'*'*80", E);
fbf5a39b
AC
3587 end if;
3588
3589 if Expr_Value_R (Type_Low_Bound (E)) < Ureal_M_10_36 then
3590 Error_Msg_Name_1 := Name_First;
3591 Error_Msg_N
7d8b9c99 3592 ("`&''%` too small, minimum allowed is -10.0'*'*36", E);
fbf5a39b
AC
3593 end if;
3594
3595 if Expr_Value_R (Type_High_Bound (E)) > Ureal_10_36 then
3596 Error_Msg_Name_1 := Name_Last;
3597 Error_Msg_N
7d8b9c99 3598 ("`&''%` too large, maximum allowed is 10.0'*'*36", E);
fbf5a39b
AC
3599 end if;
3600 end if;
3601
70482933
RK
3602 elsif Is_Enumeration_Type (E) then
3603 Freeze_Enumeration_Type (E);
3604
3605 elsif Is_Integer_Type (E) then
3606 Adjust_Esize_For_Alignment (E);
3607
edd63e9b
ES
3608 elsif Is_Access_Type (E) then
3609
3610 -- Check restriction for standard storage pool
3611
3612 if No (Associated_Storage_Pool (E)) then
3613 Check_Restriction (No_Standard_Storage_Pools, E);
3614 end if;
3615
3616 -- Deal with error message for pure access type. This is not an
3617 -- error in Ada 2005 if there is no pool (see AI-366).
3618
3619 if Is_Pure_Unit_Access_Type (E)
3620 and then (Ada_Version < Ada_05
c6a9797e 3621 or else not No_Pool_Assigned (E))
edd63e9b
ES
3622 then
3623 Error_Msg_N ("named access type not allowed in pure unit", E);
c6a9797e
RD
3624
3625 if Ada_Version >= Ada_05 then
3626 Error_Msg_N
3627 ("\would be legal if Storage_Size of 0 given?", E);
3628
3629 elsif No_Pool_Assigned (E) then
3630 Error_Msg_N
3631 ("\would be legal in Ada 2005?", E);
3632
3633 else
3634 Error_Msg_N
3635 ("\would be legal in Ada 2005 if "
3636 & "Storage_Size of 0 given?", E);
3637 end if;
edd63e9b 3638 end if;
70482933
RK
3639 end if;
3640
edd63e9b
ES
3641 -- Case of composite types
3642
70482933
RK
3643 if Is_Composite_Type (E) then
3644
edd63e9b
ES
3645 -- AI-117 requires that all new primitives of a tagged type must
3646 -- inherit the convention of the full view of the type. Inherited
3647 -- and overriding operations are defined to inherit the convention
3648 -- of their parent or overridden subprogram (also specified in
ee094616
RD
3649 -- AI-117), which will have occurred earlier (in Derive_Subprogram
3650 -- and New_Overloaded_Entity). Here we set the convention of
3651 -- primitives that are still convention Ada, which will ensure
def46b54
RD
3652 -- that any new primitives inherit the type's convention. Class-
3653 -- wide types can have a foreign convention inherited from their
3654 -- specific type, but are excluded from this since they don't have
3655 -- any associated primitives.
70482933
RK
3656
3657 if Is_Tagged_Type (E)
3658 and then not Is_Class_Wide_Type (E)
3659 and then Convention (E) /= Convention_Ada
3660 then
3661 declare
3662 Prim_List : constant Elist_Id := Primitive_Operations (E);
07fc65c4 3663 Prim : Elmt_Id;
70482933 3664 begin
07fc65c4 3665 Prim := First_Elmt (Prim_List);
70482933
RK
3666 while Present (Prim) loop
3667 if Convention (Node (Prim)) = Convention_Ada then
3668 Set_Convention (Node (Prim), Convention (E));
3669 end if;
3670
3671 Next_Elmt (Prim);
3672 end loop;
3673 end;
3674 end if;
3675 end if;
3676
ee094616
RD
3677 -- Now that all types from which E may depend are frozen, see if the
3678 -- size is known at compile time, if it must be unsigned, or if
7d8b9c99 3679 -- strict alignment is required
70482933
RK
3680
3681 Check_Compile_Time_Size (E);
3682 Check_Unsigned_Type (E);
3683
3684 if Base_Type (E) = E then
3685 Check_Strict_Alignment (E);
3686 end if;
3687
3688 -- Do not allow a size clause for a type which does not have a size
3689 -- that is known at compile time
3690
3691 if Has_Size_Clause (E)
3692 and then not Size_Known_At_Compile_Time (E)
3693 then
e14c931f 3694 -- Suppress this message if errors posted on E, even if we are
07fc65c4
GB
3695 -- in all errors mode, since this is often a junk message
3696
3697 if not Error_Posted (E) then
3698 Error_Msg_N
3699 ("size clause not allowed for variable length type",
3700 Size_Clause (E));
3701 end if;
70482933
RK
3702 end if;
3703
3704 -- Remaining process is to set/verify the representation information,
3705 -- in particular the size and alignment values. This processing is
3706 -- not required for generic types, since generic types do not play
3707 -- any part in code generation, and so the size and alignment values
c6823a20 3708 -- for such types are irrelevant.
70482933
RK
3709
3710 if Is_Generic_Type (E) then
3711 return Result;
3712
3713 -- Otherwise we call the layout procedure
3714
3715 else
3716 Layout_Type (E);
3717 end if;
3718
3719 -- End of freeze processing for type entities
3720 end if;
3721
3722 -- Here is where we logically freeze the current entity. If it has a
3723 -- freeze node, then this is the point at which the freeze node is
3724 -- linked into the result list.
3725
3726 if Has_Delayed_Freeze (E) then
3727
3728 -- If a freeze node is already allocated, use it, otherwise allocate
3729 -- a new one. The preallocation happens in the case of anonymous base
3730 -- types, where we preallocate so that we can set First_Subtype_Link.
3731 -- Note that we reset the Sloc to the current freeze location.
3732
3733 if Present (Freeze_Node (E)) then
3734 F_Node := Freeze_Node (E);
3735 Set_Sloc (F_Node, Loc);
3736
3737 else
3738 F_Node := New_Node (N_Freeze_Entity, Loc);
3739 Set_Freeze_Node (E, F_Node);
3740 Set_Access_Types_To_Process (F_Node, No_Elist);
3741 Set_TSS_Elist (F_Node, No_Elist);
3742 Set_Actions (F_Node, No_List);
3743 end if;
3744
3745 Set_Entity (F_Node, E);
3746
3747 if Result = No_List then
3748 Result := New_List (F_Node);
3749 else
3750 Append (F_Node, Result);
3751 end if;
35ae2ed8
AC
3752
3753 -- A final pass over record types with discriminants. If the type
3754 -- has an incomplete declaration, there may be constrained access
3755 -- subtypes declared elsewhere, which do not depend on the discrimi-
3756 -- nants of the type, and which are used as component types (i.e.
3757 -- the full view is a recursive type). The designated types of these
3758 -- subtypes can only be elaborated after the type itself, and they
3759 -- need an itype reference.
3760
3761 if Ekind (E) = E_Record_Type
3762 and then Has_Discriminants (E)
3763 then
3764 declare
3765 Comp : Entity_Id;
3766 IR : Node_Id;
3767 Typ : Entity_Id;
3768
3769 begin
3770 Comp := First_Component (E);
3771
3772 while Present (Comp) loop
3773 Typ := Etype (Comp);
3774
3775 if Ekind (Comp) = E_Component
3776 and then Is_Access_Type (Typ)
3777 and then Scope (Typ) /= E
3778 and then Base_Type (Designated_Type (Typ)) = E
3779 and then Is_Itype (Designated_Type (Typ))
3780 then
3781 IR := Make_Itype_Reference (Sloc (Comp));
3782 Set_Itype (IR, Designated_Type (Typ));
3783 Append (IR, Result);
3784 end if;
3785
3786 Next_Component (Comp);
3787 end loop;
3788 end;
3789 end if;
70482933
RK
3790 end if;
3791
3792 -- When a type is frozen, the first subtype of the type is frozen as
3793 -- well (RM 13.14(15)). This has to be done after freezing the type,
3794 -- since obviously the first subtype depends on its own base type.
3795
3796 if Is_Type (E) then
3797 Freeze_And_Append (First_Subtype (E), Loc, Result);
3798
3799 -- If we just froze a tagged non-class wide record, then freeze the
3800 -- corresponding class-wide type. This must be done after the tagged
3801 -- type itself is frozen, because the class-wide type refers to the
3802 -- tagged type which generates the class.
3803
3804 if Is_Tagged_Type (E)
3805 and then not Is_Class_Wide_Type (E)
3806 and then Present (Class_Wide_Type (E))
3807 then
3808 Freeze_And_Append (Class_Wide_Type (E), Loc, Result);
3809 end if;
3810 end if;
3811
3812 Check_Debug_Info_Needed (E);
3813
3814 -- Special handling for subprograms
3815
3816 if Is_Subprogram (E) then
3817
3818 -- If subprogram has address clause then reset Is_Public flag, since
3819 -- we do not want the backend to generate external references.
3820
3821 if Present (Address_Clause (E))
3822 and then not Is_Library_Level_Entity (E)
3823 then
3824 Set_Is_Public (E, False);
3825
3826 -- If no address clause and not intrinsic, then for imported
3827 -- subprogram in main unit, generate descriptor if we are in
3828 -- Propagate_Exceptions mode.
3829
3830 elsif Propagate_Exceptions
3831 and then Is_Imported (E)
3832 and then not Is_Intrinsic_Subprogram (E)
3833 and then Convention (E) /= Convention_Stubbed
3834 then
3835 if Result = No_List then
3836 Result := Empty_List;
3837 end if;
70482933 3838 end if;
70482933
RK
3839 end if;
3840
3841 return Result;
3842 end Freeze_Entity;
3843
3844 -----------------------------
3845 -- Freeze_Enumeration_Type --
3846 -----------------------------
3847
3848 procedure Freeze_Enumeration_Type (Typ : Entity_Id) is
3849 begin
d677afa9
ES
3850 -- By default, if no size clause is present, an enumeration type with
3851 -- Convention C is assumed to interface to a C enum, and has integer
3852 -- size. This applies to types. For subtypes, verify that its base
3853 -- type has no size clause either.
3854
70482933
RK
3855 if Has_Foreign_Convention (Typ)
3856 and then not Has_Size_Clause (Typ)
d677afa9 3857 and then not Has_Size_Clause (Base_Type (Typ))
70482933
RK
3858 and then Esize (Typ) < Standard_Integer_Size
3859 then
3860 Init_Esize (Typ, Standard_Integer_Size);
d677afa9 3861
70482933 3862 else
d677afa9
ES
3863 -- If the enumeration type interfaces to C, and it has a size clause
3864 -- that specifies less than int size, it warrants a warning. The
3865 -- user may intend the C type to be an enum or a char, so this is
3866 -- not by itself an error that the Ada compiler can detect, but it
3867 -- it is a worth a heads-up. For Boolean and Character types we
3868 -- assume that the programmer has the proper C type in mind.
3869
3870 if Convention (Typ) = Convention_C
3871 and then Has_Size_Clause (Typ)
3872 and then Esize (Typ) /= Esize (Standard_Integer)
3873 and then not Is_Boolean_Type (Typ)
3874 and then not Is_Character_Type (Typ)
3875 then
3876 Error_Msg_N
3877 ("C enum types have the size of a C int?", Size_Clause (Typ));
3878 end if;
3879
70482933
RK
3880 Adjust_Esize_For_Alignment (Typ);
3881 end if;
3882 end Freeze_Enumeration_Type;
3883
3884 -----------------------
3885 -- Freeze_Expression --
3886 -----------------------
3887
3888 procedure Freeze_Expression (N : Node_Id) is
c6a9797e
RD
3889 In_Spec_Exp : constant Boolean := In_Spec_Expression;
3890 Typ : Entity_Id;
3891 Nam : Entity_Id;
3892 Desig_Typ : Entity_Id;
3893 P : Node_Id;
3894 Parent_P : Node_Id;
70482933
RK
3895
3896 Freeze_Outside : Boolean := False;
3897 -- This flag is set true if the entity must be frozen outside the
3898 -- current subprogram. This happens in the case of expander generated
3899 -- subprograms (_Init_Proc, _Input, _Output, _Read, _Write) which do
3900 -- not freeze all entities like other bodies, but which nevertheless
3901 -- may reference entities that have to be frozen before the body and
3902 -- obviously cannot be frozen inside the body.
3903
3904 function In_Exp_Body (N : Node_Id) return Boolean;
3905 -- Given an N_Handled_Sequence_Of_Statements node N, determines whether
c6823a20 3906 -- it is the handled statement sequence of an expander-generated
7d8b9c99
RD
3907 -- subprogram (init proc, stream subprogram, or renaming as body).
3908 -- If so, this is not a freezing context.
70482933 3909
fbf5a39b
AC
3910 -----------------
3911 -- In_Exp_Body --
3912 -----------------
3913
70482933 3914 function In_Exp_Body (N : Node_Id) return Boolean is
7d8b9c99
RD
3915 P : Node_Id;
3916 Id : Entity_Id;
70482933
RK
3917
3918 begin
3919 if Nkind (N) = N_Subprogram_Body then
3920 P := N;
3921 else
3922 P := Parent (N);
3923 end if;
3924
3925 if Nkind (P) /= N_Subprogram_Body then
3926 return False;
3927
3928 else
7d8b9c99
RD
3929 Id := Defining_Unit_Name (Specification (P));
3930
3931 if Nkind (Id) = N_Defining_Identifier
3932 and then (Is_Init_Proc (Id) or else
3933 Is_TSS (Id, TSS_Stream_Input) or else
3934 Is_TSS (Id, TSS_Stream_Output) or else
3935 Is_TSS (Id, TSS_Stream_Read) or else
3936 Is_TSS (Id, TSS_Stream_Write) or else
3937 Nkind (Original_Node (P)) =
3938 N_Subprogram_Renaming_Declaration)
70482933
RK
3939 then
3940 return True;
3941 else
3942 return False;
3943 end if;
3944 end if;
70482933
RK
3945 end In_Exp_Body;
3946
3947 -- Start of processing for Freeze_Expression
3948
3949 begin
edd63e9b
ES
3950 -- Immediate return if freezing is inhibited. This flag is set by the
3951 -- analyzer to stop freezing on generated expressions that would cause
3952 -- freezing if they were in the source program, but which are not
3953 -- supposed to freeze, since they are created.
70482933
RK
3954
3955 if Must_Not_Freeze (N) then
3956 return;
3957 end if;
3958
3959 -- If expression is non-static, then it does not freeze in a default
3960 -- expression, see section "Handling of Default Expressions" in the
3961 -- spec of package Sem for further details. Note that we have to
3962 -- make sure that we actually have a real expression (if we have
3963 -- a subtype indication, we can't test Is_Static_Expression!)
3964
c6a9797e 3965 if In_Spec_Exp
70482933
RK
3966 and then Nkind (N) in N_Subexpr
3967 and then not Is_Static_Expression (N)
3968 then
3969 return;
3970 end if;
3971
3972 -- Freeze type of expression if not frozen already
3973
fbf5a39b
AC
3974 Typ := Empty;
3975
3976 if Nkind (N) in N_Has_Etype then
3977 if not Is_Frozen (Etype (N)) then
3978 Typ := Etype (N);
3979
3980 -- Base type may be an derived numeric type that is frozen at
3981 -- the point of declaration, but first_subtype is still unfrozen.
3982
3983 elsif not Is_Frozen (First_Subtype (Etype (N))) then
3984 Typ := First_Subtype (Etype (N));
3985 end if;
70482933
RK
3986 end if;
3987
3988 -- For entity name, freeze entity if not frozen already. A special
3989 -- exception occurs for an identifier that did not come from source.
3990 -- We don't let such identifiers freeze a non-internal entity, i.e.
3991 -- an entity that did come from source, since such an identifier was
3992 -- generated by the expander, and cannot have any semantic effect on
3993 -- the freezing semantics. For example, this stops the parameter of
3994 -- an initialization procedure from freezing the variable.
3995
3996 if Is_Entity_Name (N)
3997 and then not Is_Frozen (Entity (N))
3998 and then (Nkind (N) /= N_Identifier
3999 or else Comes_From_Source (N)
4000 or else not Comes_From_Source (Entity (N)))
4001 then
4002 Nam := Entity (N);
70482933
RK
4003 else
4004 Nam := Empty;
4005 end if;
4006
49e90211 4007 -- For an allocator freeze designated type if not frozen already
70482933 4008
ee094616
RD
4009 -- For an aggregate whose component type is an access type, freeze the
4010 -- designated type now, so that its freeze does not appear within the
4011 -- loop that might be created in the expansion of the aggregate. If the
4012 -- designated type is a private type without full view, the expression
4013 -- cannot contain an allocator, so the type is not frozen.
70482933 4014
7aedb36a
AC
4015 -- For a function, we freeze the entity when the subprogram declaration
4016 -- is frozen, but a function call may appear in an initialization proc.
f6cf5b85 4017 -- before the declaration is frozen. We need to generate the extra
7aedb36a
AC
4018 -- formals, if any, to ensure that the expansion of the call includes
4019 -- the proper actuals.
4020
70482933 4021 Desig_Typ := Empty;
70482933 4022
fbf5a39b 4023 case Nkind (N) is
70482933
RK
4024 when N_Allocator =>
4025 Desig_Typ := Designated_Type (Etype (N));
4026
4027 when N_Aggregate =>
4028 if Is_Array_Type (Etype (N))
4029 and then Is_Access_Type (Component_Type (Etype (N)))
4030 then
4031 Desig_Typ := Designated_Type (Component_Type (Etype (N)));
4032 end if;
4033
4034 when N_Selected_Component |
4035 N_Indexed_Component |
4036 N_Slice =>
4037
4038 if Is_Access_Type (Etype (Prefix (N))) then
4039 Desig_Typ := Designated_Type (Etype (Prefix (N)));
4040 end if;
4041
7aedb36a
AC
4042 when N_Identifier =>
4043 if Present (Nam)
4044 and then Ekind (Nam) = E_Function
4045 and then Nkind (Parent (N)) = N_Function_Call
4046 then
4047 Create_Extra_Formals (Nam);
4048 end if;
4049
70482933
RK
4050 when others =>
4051 null;
70482933
RK
4052 end case;
4053
4054 if Desig_Typ /= Empty
4055 and then (Is_Frozen (Desig_Typ)
4056 or else (not Is_Fully_Defined (Desig_Typ)))
4057 then
4058 Desig_Typ := Empty;
4059 end if;
4060
4061 -- All done if nothing needs freezing
4062
4063 if No (Typ)
4064 and then No (Nam)
4065 and then No (Desig_Typ)
4066 then
4067 return;
4068 end if;
4069
f6cf5b85 4070 -- Loop for looking at the right place to insert the freeze nodes,
70482933
RK
4071 -- exiting from the loop when it is appropriate to insert the freeze
4072 -- node before the current node P.
4073
f6cf5b85
AC
4074 -- Also checks som special exceptions to the freezing rules. These cases
4075 -- result in a direct return, bypassing the freeze action.
70482933
RK
4076
4077 P := N;
4078 loop
4079 Parent_P := Parent (P);
4080
ee094616
RD
4081 -- If we don't have a parent, then we are not in a well-formed tree.
4082 -- This is an unusual case, but there are some legitimate situations
4083 -- in which this occurs, notably when the expressions in the range of
4084 -- a type declaration are resolved. We simply ignore the freeze
4085 -- request in this case. Is this right ???
70482933
RK
4086
4087 if No (Parent_P) then
4088 return;
4089 end if;
4090
4091 -- See if we have got to an appropriate point in the tree
4092
4093 case Nkind (Parent_P) is
4094
edd63e9b
ES
4095 -- A special test for the exception of (RM 13.14(8)) for the case
4096 -- of per-object expressions (RM 3.8(18)) occurring in component
4097 -- definition or a discrete subtype definition. Note that we test
4098 -- for a component declaration which includes both cases we are
4099 -- interested in, and furthermore the tree does not have explicit
4100 -- nodes for either of these two constructs.
70482933
RK
4101
4102 when N_Component_Declaration =>
4103
4104 -- The case we want to test for here is an identifier that is
4105 -- a per-object expression, this is either a discriminant that
4106 -- appears in a context other than the component declaration
4107 -- or it is a reference to the type of the enclosing construct.
4108
4109 -- For either of these cases, we skip the freezing
4110
c6a9797e 4111 if not In_Spec_Expression
70482933
RK
4112 and then Nkind (N) = N_Identifier
4113 and then (Present (Entity (N)))
4114 then
4115 -- We recognize the discriminant case by just looking for
4116 -- a reference to a discriminant. It can only be one for
4117 -- the enclosing construct. Skip freezing in this case.
4118
4119 if Ekind (Entity (N)) = E_Discriminant then
4120 return;
4121
4122 -- For the case of a reference to the enclosing record,
4123 -- (or task or protected type), we look for a type that
4124 -- matches the current scope.
4125
4126 elsif Entity (N) = Current_Scope then
4127 return;
4128 end if;
4129 end if;
4130
edd63e9b
ES
4131 -- If we have an enumeration literal that appears as the choice in
4132 -- the aggregate of an enumeration representation clause, then
4133 -- freezing does not occur (RM 13.14(10)).
70482933
RK
4134
4135 when N_Enumeration_Representation_Clause =>
4136
4137 -- The case we are looking for is an enumeration literal
4138
4139 if (Nkind (N) = N_Identifier or Nkind (N) = N_Character_Literal)
4140 and then Is_Enumeration_Type (Etype (N))
4141 then
4142 -- If enumeration literal appears directly as the choice,
e14c931f 4143 -- do not freeze (this is the normal non-overloaded case)
70482933
RK
4144
4145 if Nkind (Parent (N)) = N_Component_Association
4146 and then First (Choices (Parent (N))) = N
4147 then
4148 return;
4149
ee094616
RD
4150 -- If enumeration literal appears as the name of function
4151 -- which is the choice, then also do not freeze. This
4152 -- happens in the overloaded literal case, where the
70482933
RK
4153 -- enumeration literal is temporarily changed to a function
4154 -- call for overloading analysis purposes.
4155
4156 elsif Nkind (Parent (N)) = N_Function_Call
4157 and then
4158 Nkind (Parent (Parent (N))) = N_Component_Association
4159 and then
4160 First (Choices (Parent (Parent (N)))) = Parent (N)
4161 then
4162 return;
4163 end if;
4164 end if;
4165
4166 -- Normally if the parent is a handled sequence of statements,
4167 -- then the current node must be a statement, and that is an
4168 -- appropriate place to insert a freeze node.
4169
4170 when N_Handled_Sequence_Of_Statements =>
4171
edd63e9b
ES
4172 -- An exception occurs when the sequence of statements is for
4173 -- an expander generated body that did not do the usual freeze
4174 -- all operation. In this case we usually want to freeze
4175 -- outside this body, not inside it, and we skip past the
4176 -- subprogram body that we are inside.
70482933
RK
4177
4178 if In_Exp_Body (Parent_P) then
4179
4180 -- However, we *do* want to freeze at this point if we have
4181 -- an entity to freeze, and that entity is declared *inside*
4182 -- the body of the expander generated procedure. This case
4183 -- is recognized by the scope of the type, which is either
4184 -- the spec for some enclosing body, or (in the case of
4185 -- init_procs, for which there are no separate specs) the
4186 -- current scope.
4187
4188 declare
4189 Subp : constant Node_Id := Parent (Parent_P);
4190 Cspc : Entity_Id;
4191
4192 begin
4193 if Nkind (Subp) = N_Subprogram_Body then
4194 Cspc := Corresponding_Spec (Subp);
4195
4196 if (Present (Typ) and then Scope (Typ) = Cspc)
4197 or else
4198 (Present (Nam) and then Scope (Nam) = Cspc)
4199 then
4200 exit;
4201
4202 elsif Present (Typ)
4203 and then Scope (Typ) = Current_Scope
4204 and then Current_Scope = Defining_Entity (Subp)
4205 then
4206 exit;
4207 end if;
4208 end if;
4209 end;
4210
4211 -- If not that exception to the exception, then this is
4212 -- where we delay the freeze till outside the body.
4213
4214 Parent_P := Parent (Parent_P);
4215 Freeze_Outside := True;
4216
4217 -- Here if normal case where we are in handled statement
4218 -- sequence and want to do the insertion right there.
4219
4220 else
4221 exit;
4222 end if;
4223
ee094616
RD
4224 -- If parent is a body or a spec or a block, then the current node
4225 -- is a statement or declaration and we can insert the freeze node
4226 -- before it.
70482933
RK
4227
4228 when N_Package_Specification |
4229 N_Package_Body |
4230 N_Subprogram_Body |
4231 N_Task_Body |
4232 N_Protected_Body |
4233 N_Entry_Body |
4234 N_Block_Statement => exit;
4235
4236 -- The expander is allowed to define types in any statements list,
4237 -- so any of the following parent nodes also mark a freezing point
4238 -- if the actual node is in a list of statements or declarations.
4239
4240 when N_Exception_Handler |
4241 N_If_Statement |
4242 N_Elsif_Part |
4243 N_Case_Statement_Alternative |
4244 N_Compilation_Unit_Aux |
4245 N_Selective_Accept |
4246 N_Accept_Alternative |
4247 N_Delay_Alternative |
4248 N_Conditional_Entry_Call |
4249 N_Entry_Call_Alternative |
4250 N_Triggering_Alternative |
4251 N_Abortable_Part |
4252 N_Freeze_Entity =>
4253
4254 exit when Is_List_Member (P);
4255
4256 -- Note: The N_Loop_Statement is a special case. A type that
4257 -- appears in the source can never be frozen in a loop (this
edd63e9b
ES
4258 -- occurs only because of a loop expanded by the expander), so we
4259 -- keep on going. Otherwise we terminate the search. Same is true
ee094616
RD
4260 -- of any entity which comes from source. (if they have predefined
4261 -- type, that type does not appear to come from source, but the
4262 -- entity should not be frozen here).
70482933
RK
4263
4264 when N_Loop_Statement =>
4265 exit when not Comes_From_Source (Etype (N))
4266 and then (No (Nam) or else not Comes_From_Source (Nam));
4267
4268 -- For all other cases, keep looking at parents
4269
4270 when others =>
4271 null;
4272 end case;
4273
4274 -- We fall through the case if we did not yet find the proper
4275 -- place in the free for inserting the freeze node, so climb!
4276
4277 P := Parent_P;
4278 end loop;
4279
edd63e9b
ES
4280 -- If the expression appears in a record or an initialization procedure,
4281 -- the freeze nodes are collected and attached to the current scope, to
4282 -- be inserted and analyzed on exit from the scope, to insure that
4283 -- generated entities appear in the correct scope. If the expression is
4284 -- a default for a discriminant specification, the scope is still void.
4285 -- The expression can also appear in the discriminant part of a private
4286 -- or concurrent type.
70482933 4287
c6823a20 4288 -- If the expression appears in a constrained subcomponent of an
edd63e9b
ES
4289 -- enclosing record declaration, the freeze nodes must be attached to
4290 -- the outer record type so they can eventually be placed in the
c6823a20
EB
4291 -- enclosing declaration list.
4292
ee094616
RD
4293 -- The other case requiring this special handling is if we are in a
4294 -- default expression, since in that case we are about to freeze a
4295 -- static type, and the freeze scope needs to be the outer scope, not
4296 -- the scope of the subprogram with the default parameter.
70482933 4297
c6a9797e
RD
4298 -- For default expressions and other spec expressions in generic units,
4299 -- the Move_Freeze_Nodes mechanism (see sem_ch12.adb) takes care of
4300 -- placing them at the proper place, after the generic unit.
70482933 4301
c6a9797e 4302 if (In_Spec_Exp and not Inside_A_Generic)
70482933
RK
4303 or else Freeze_Outside
4304 or else (Is_Type (Current_Scope)
4305 and then (not Is_Concurrent_Type (Current_Scope)
4306 or else not Has_Completion (Current_Scope)))
4307 or else Ekind (Current_Scope) = E_Void
4308 then
4309 declare
4310 Loc : constant Source_Ptr := Sloc (Current_Scope);
4311 Freeze_Nodes : List_Id := No_List;
c6823a20 4312 Pos : Int := Scope_Stack.Last;
70482933
RK
4313
4314 begin
4315 if Present (Desig_Typ) then
4316 Freeze_And_Append (Desig_Typ, Loc, Freeze_Nodes);
4317 end if;
4318
4319 if Present (Typ) then
4320 Freeze_And_Append (Typ, Loc, Freeze_Nodes);
4321 end if;
4322
4323 if Present (Nam) then
4324 Freeze_And_Append (Nam, Loc, Freeze_Nodes);
4325 end if;
4326
c6823a20
EB
4327 -- The current scope may be that of a constrained component of
4328 -- an enclosing record declaration, which is above the current
4329 -- scope in the scope stack.
4330
4331 if Is_Record_Type (Scope (Current_Scope)) then
4332 Pos := Pos - 1;
4333 end if;
4334
70482933 4335 if Is_Non_Empty_List (Freeze_Nodes) then
c6823a20
EB
4336 if No (Scope_Stack.Table (Pos).Pending_Freeze_Actions) then
4337 Scope_Stack.Table (Pos).Pending_Freeze_Actions :=
70482933
RK
4338 Freeze_Nodes;
4339 else
4340 Append_List (Freeze_Nodes, Scope_Stack.Table
c6823a20 4341 (Pos).Pending_Freeze_Actions);
70482933
RK
4342 end if;
4343 end if;
4344 end;
4345
4346 return;
4347 end if;
4348
4349 -- Now we have the right place to do the freezing. First, a special
c6a9797e
RD
4350 -- adjustment, if we are in spec-expression analysis mode, these freeze
4351 -- actions must not be thrown away (normally all inserted actions are
4352 -- thrown away in this mode. However, the freeze actions are from static
4353 -- expressions and one of the important reasons we are doing this
ee094616 4354 -- special analysis is to get these freeze actions. Therefore we turn
c6a9797e 4355 -- off the In_Spec_Expression mode to propagate these freeze actions.
ee094616 4356 -- This also means they get properly analyzed and expanded.
70482933 4357
c6a9797e 4358 In_Spec_Expression := False;
70482933 4359
fbf5a39b 4360 -- Freeze the designated type of an allocator (RM 13.14(13))
70482933
RK
4361
4362 if Present (Desig_Typ) then
4363 Freeze_Before (P, Desig_Typ);
4364 end if;
4365
fbf5a39b 4366 -- Freeze type of expression (RM 13.14(10)). Note that we took care of
70482933
RK
4367 -- the enumeration representation clause exception in the loop above.
4368
4369 if Present (Typ) then
4370 Freeze_Before (P, Typ);
4371 end if;
4372
fbf5a39b 4373 -- Freeze name if one is present (RM 13.14(11))
70482933
RK
4374
4375 if Present (Nam) then
4376 Freeze_Before (P, Nam);
4377 end if;
4378
c6a9797e
RD
4379 -- Restore In_Spec_Expression flag
4380
4381 In_Spec_Expression := In_Spec_Exp;
70482933
RK
4382 end Freeze_Expression;
4383
4384 -----------------------------
4385 -- Freeze_Fixed_Point_Type --
4386 -----------------------------
4387
edd63e9b
ES
4388 -- Certain fixed-point types and subtypes, including implicit base types
4389 -- and declared first subtypes, have not yet set up a range. This is
4390 -- because the range cannot be set until the Small and Size values are
4391 -- known, and these are not known till the type is frozen.
70482933 4392
edd63e9b
ES
4393 -- To signal this case, Scalar_Range contains an unanalyzed syntactic range
4394 -- whose bounds are unanalyzed real literals. This routine will recognize
4395 -- this case, and transform this range node into a properly typed range
4396 -- with properly analyzed and resolved values.
70482933
RK
4397
4398 procedure Freeze_Fixed_Point_Type (Typ : Entity_Id) is
4399 Rng : constant Node_Id := Scalar_Range (Typ);
4400 Lo : constant Node_Id := Low_Bound (Rng);
4401 Hi : constant Node_Id := High_Bound (Rng);
4402 Btyp : constant Entity_Id := Base_Type (Typ);
4403 Brng : constant Node_Id := Scalar_Range (Btyp);
4404 BLo : constant Node_Id := Low_Bound (Brng);
4405 BHi : constant Node_Id := High_Bound (Brng);
4406 Small : constant Ureal := Small_Value (Typ);
4407 Loval : Ureal;
4408 Hival : Ureal;
4409 Atype : Entity_Id;
4410
4411 Actual_Size : Nat;
4412
4413 function Fsize (Lov, Hiv : Ureal) return Nat;
4414 -- Returns size of type with given bounds. Also leaves these
4415 -- bounds set as the current bounds of the Typ.
4416
0da2c8ac
AC
4417 -----------
4418 -- Fsize --
4419 -----------
4420
70482933
RK
4421 function Fsize (Lov, Hiv : Ureal) return Nat is
4422 begin
4423 Set_Realval (Lo, Lov);
4424 Set_Realval (Hi, Hiv);
4425 return Minimum_Size (Typ);
4426 end Fsize;
4427
0da2c8ac 4428 -- Start of processing for Freeze_Fixed_Point_Type
70482933
RK
4429
4430 begin
4431 -- If Esize of a subtype has not previously been set, set it now
4432
4433 if Unknown_Esize (Typ) then
4434 Atype := Ancestor_Subtype (Typ);
4435
4436 if Present (Atype) then
fbf5a39b 4437 Set_Esize (Typ, Esize (Atype));
70482933 4438 else
fbf5a39b 4439 Set_Esize (Typ, Esize (Base_Type (Typ)));
70482933
RK
4440 end if;
4441 end if;
4442
ee094616
RD
4443 -- Immediate return if the range is already analyzed. This means that
4444 -- the range is already set, and does not need to be computed by this
4445 -- routine.
70482933
RK
4446
4447 if Analyzed (Rng) then
4448 return;
4449 end if;
4450
4451 -- Immediate return if either of the bounds raises Constraint_Error
4452
4453 if Raises_Constraint_Error (Lo)
4454 or else Raises_Constraint_Error (Hi)
4455 then
4456 return;
4457 end if;
4458
4459 Loval := Realval (Lo);
4460 Hival := Realval (Hi);
4461
4462 -- Ordinary fixed-point case
4463
4464 if Is_Ordinary_Fixed_Point_Type (Typ) then
4465
4466 -- For the ordinary fixed-point case, we are allowed to fudge the
ee094616
RD
4467 -- end-points up or down by small. Generally we prefer to fudge up,
4468 -- i.e. widen the bounds for non-model numbers so that the end points
4469 -- are included. However there are cases in which this cannot be
4470 -- done, and indeed cases in which we may need to narrow the bounds.
4471 -- The following circuit makes the decision.
70482933 4472
ee094616
RD
4473 -- Note: our terminology here is that Incl_EP means that the bounds
4474 -- are widened by Small if necessary to include the end points, and
4475 -- Excl_EP means that the bounds are narrowed by Small to exclude the
4476 -- end-points if this reduces the size.
70482933
RK
4477
4478 -- Note that in the Incl case, all we care about is including the
4479 -- end-points. In the Excl case, we want to narrow the bounds as
4480 -- much as permitted by the RM, to give the smallest possible size.
4481
4482 Fudge : declare
4483 Loval_Incl_EP : Ureal;
4484 Hival_Incl_EP : Ureal;
4485
4486 Loval_Excl_EP : Ureal;
4487 Hival_Excl_EP : Ureal;
4488
4489 Size_Incl_EP : Nat;
4490 Size_Excl_EP : Nat;
4491
4492 Model_Num : Ureal;
4493 First_Subt : Entity_Id;
4494 Actual_Lo : Ureal;
4495 Actual_Hi : Ureal;
4496
4497 begin
4498 -- First step. Base types are required to be symmetrical. Right
4499 -- now, the base type range is a copy of the first subtype range.
4500 -- This will be corrected before we are done, but right away we
4501 -- need to deal with the case where both bounds are non-negative.
4502 -- In this case, we set the low bound to the negative of the high
4503 -- bound, to make sure that the size is computed to include the
4504 -- required sign. Note that we do not need to worry about the
4505 -- case of both bounds negative, because the sign will be dealt
4506 -- with anyway. Furthermore we can't just go making such a bound
4507 -- symmetrical, since in a twos-complement system, there is an
e14c931f 4508 -- extra negative value which could not be accommodated on the
70482933
RK
4509 -- positive side.
4510
4511 if Typ = Btyp
4512 and then not UR_Is_Negative (Loval)
4513 and then Hival > Loval
4514 then
4515 Loval := -Hival;
4516 Set_Realval (Lo, Loval);
4517 end if;
4518
4519 -- Compute the fudged bounds. If the number is a model number,
edd63e9b
ES
4520 -- then we do nothing to include it, but we are allowed to backoff
4521 -- to the next adjacent model number when we exclude it. If it is
4522 -- not a model number then we straddle the two values with the
4523 -- model numbers on either side.
70482933
RK
4524
4525 Model_Num := UR_Trunc (Loval / Small) * Small;
4526
4527 if Loval = Model_Num then
4528 Loval_Incl_EP := Model_Num;
4529 else
4530 Loval_Incl_EP := Model_Num - Small;
4531 end if;
4532
4533 -- The low value excluding the end point is Small greater, but
4534 -- we do not do this exclusion if the low value is positive,
4535 -- since it can't help the size and could actually hurt by
4536 -- crossing the high bound.
4537
4538 if UR_Is_Negative (Loval_Incl_EP) then
4539 Loval_Excl_EP := Loval_Incl_EP + Small;
def46b54
RD
4540
4541 -- If the value went from negative to zero, then we have the
4542 -- case where Loval_Incl_EP is the model number just below
4543 -- zero, so we want to stick to the negative value for the
4544 -- base type to maintain the condition that the size will
4545 -- include signed values.
4546
4547 if Typ = Btyp
4548 and then UR_Is_Zero (Loval_Excl_EP)
4549 then
4550 Loval_Excl_EP := Loval_Incl_EP;
4551 end if;
4552
70482933
RK
4553 else
4554 Loval_Excl_EP := Loval_Incl_EP;
4555 end if;
4556
4557 -- Similar processing for upper bound and high value
4558
4559 Model_Num := UR_Trunc (Hival / Small) * Small;
4560
4561 if Hival = Model_Num then
4562 Hival_Incl_EP := Model_Num;
4563 else
4564 Hival_Incl_EP := Model_Num + Small;
4565 end if;
4566
4567 if UR_Is_Positive (Hival_Incl_EP) then
4568 Hival_Excl_EP := Hival_Incl_EP - Small;
4569 else
4570 Hival_Excl_EP := Hival_Incl_EP;
4571 end if;
4572
ee094616
RD
4573 -- One further adjustment is needed. In the case of subtypes, we
4574 -- cannot go outside the range of the base type, or we get
70482933 4575 -- peculiarities, and the base type range is already set. This
ee094616
RD
4576 -- only applies to the Incl values, since clearly the Excl values
4577 -- are already as restricted as they are allowed to be.
70482933
RK
4578
4579 if Typ /= Btyp then
4580 Loval_Incl_EP := UR_Max (Loval_Incl_EP, Realval (BLo));
4581 Hival_Incl_EP := UR_Min (Hival_Incl_EP, Realval (BHi));
4582 end if;
4583
4584 -- Get size including and excluding end points
4585
4586 Size_Incl_EP := Fsize (Loval_Incl_EP, Hival_Incl_EP);
4587 Size_Excl_EP := Fsize (Loval_Excl_EP, Hival_Excl_EP);
4588
4589 -- No need to exclude end-points if it does not reduce size
4590
4591 if Fsize (Loval_Incl_EP, Hival_Excl_EP) = Size_Excl_EP then
4592 Loval_Excl_EP := Loval_Incl_EP;
4593 end if;
4594
4595 if Fsize (Loval_Excl_EP, Hival_Incl_EP) = Size_Excl_EP then
4596 Hival_Excl_EP := Hival_Incl_EP;
4597 end if;
4598
4599 -- Now we set the actual size to be used. We want to use the
4600 -- bounds fudged up to include the end-points but only if this
4601 -- can be done without violating a specifically given size
4602 -- size clause or causing an unacceptable increase in size.
4603
4604 -- Case of size clause given
4605
4606 if Has_Size_Clause (Typ) then
4607
4608 -- Use the inclusive size only if it is consistent with
4609 -- the explicitly specified size.
4610
4611 if Size_Incl_EP <= RM_Size (Typ) then
4612 Actual_Lo := Loval_Incl_EP;
4613 Actual_Hi := Hival_Incl_EP;
4614 Actual_Size := Size_Incl_EP;
4615
4616 -- If the inclusive size is too large, we try excluding
4617 -- the end-points (will be caught later if does not work).
4618
4619 else
4620 Actual_Lo := Loval_Excl_EP;
4621 Actual_Hi := Hival_Excl_EP;
4622 Actual_Size := Size_Excl_EP;
4623 end if;
4624
4625 -- Case of size clause not given
4626
4627 else
4628 -- If we have a base type whose corresponding first subtype
4629 -- has an explicit size that is large enough to include our
4630 -- end-points, then do so. There is no point in working hard
4631 -- to get a base type whose size is smaller than the specified
4632 -- size of the first subtype.
4633
4634 First_Subt := First_Subtype (Typ);
4635
4636 if Has_Size_Clause (First_Subt)
4637 and then Size_Incl_EP <= Esize (First_Subt)
4638 then
4639 Actual_Size := Size_Incl_EP;
4640 Actual_Lo := Loval_Incl_EP;
4641 Actual_Hi := Hival_Incl_EP;
4642
4643 -- If excluding the end-points makes the size smaller and
4644 -- results in a size of 8,16,32,64, then we take the smaller
4645 -- size. For the 64 case, this is compulsory. For the other
4646 -- cases, it seems reasonable. We like to include end points
4647 -- if we can, but not at the expense of moving to the next
4648 -- natural boundary of size.
4649
4650 elsif Size_Incl_EP /= Size_Excl_EP
4651 and then
4652 (Size_Excl_EP = 8 or else
4653 Size_Excl_EP = 16 or else
4654 Size_Excl_EP = 32 or else
4655 Size_Excl_EP = 64)
4656 then
4657 Actual_Size := Size_Excl_EP;
4658 Actual_Lo := Loval_Excl_EP;
4659 Actual_Hi := Hival_Excl_EP;
4660
4661 -- Otherwise we can definitely include the end points
4662
4663 else
4664 Actual_Size := Size_Incl_EP;
4665 Actual_Lo := Loval_Incl_EP;
4666 Actual_Hi := Hival_Incl_EP;
4667 end if;
4668
edd63e9b
ES
4669 -- One pathological case: normally we never fudge a low bound
4670 -- down, since it would seem to increase the size (if it has
4671 -- any effect), but for ranges containing single value, or no
4672 -- values, the high bound can be small too large. Consider:
70482933
RK
4673
4674 -- type t is delta 2.0**(-14)
4675 -- range 131072.0 .. 0;
4676
edd63e9b
ES
4677 -- That lower bound is *just* outside the range of 32 bits, and
4678 -- does need fudging down in this case. Note that the bounds
4679 -- will always have crossed here, since the high bound will be
4680 -- fudged down if necessary, as in the case of:
70482933
RK
4681
4682 -- type t is delta 2.0**(-14)
4683 -- range 131072.0 .. 131072.0;
4684
edd63e9b
ES
4685 -- So we detect the situation by looking for crossed bounds,
4686 -- and if the bounds are crossed, and the low bound is greater
4687 -- than zero, we will always back it off by small, since this
4688 -- is completely harmless.
70482933
RK
4689
4690 if Actual_Lo > Actual_Hi then
4691 if UR_Is_Positive (Actual_Lo) then
4692 Actual_Lo := Loval_Incl_EP - Small;
4693 Actual_Size := Fsize (Actual_Lo, Actual_Hi);
4694
4695 -- And of course, we need to do exactly the same parallel
4696 -- fudge for flat ranges in the negative region.
4697
4698 elsif UR_Is_Negative (Actual_Hi) then
4699 Actual_Hi := Hival_Incl_EP + Small;
4700 Actual_Size := Fsize (Actual_Lo, Actual_Hi);
4701 end if;
4702 end if;
4703 end if;
4704
4705 Set_Realval (Lo, Actual_Lo);
4706 Set_Realval (Hi, Actual_Hi);
4707 end Fudge;
4708
4709 -- For the decimal case, none of this fudging is required, since there
4710 -- are no end-point problems in the decimal case (the end-points are
4711 -- always included).
4712
4713 else
4714 Actual_Size := Fsize (Loval, Hival);
4715 end if;
4716
4717 -- At this stage, the actual size has been calculated and the proper
4718 -- required bounds are stored in the low and high bounds.
4719
4720 if Actual_Size > 64 then
4721 Error_Msg_Uint_1 := UI_From_Int (Actual_Size);
4722 Error_Msg_N
7d8b9c99
RD
4723 ("size required (^) for type& too large, maximum allowed is 64",
4724 Typ);
70482933
RK
4725 Actual_Size := 64;
4726 end if;
4727
4728 -- Check size against explicit given size
4729
4730 if Has_Size_Clause (Typ) then
4731 if Actual_Size > RM_Size (Typ) then
4732 Error_Msg_Uint_1 := RM_Size (Typ);
4733 Error_Msg_Uint_2 := UI_From_Int (Actual_Size);
4734 Error_Msg_NE
7d8b9c99 4735 ("size given (^) for type& too small, minimum allowed is ^",
70482933
RK
4736 Size_Clause (Typ), Typ);
4737
4738 else
4739 Actual_Size := UI_To_Int (Esize (Typ));
4740 end if;
4741
4742 -- Increase size to next natural boundary if no size clause given
4743
4744 else
4745 if Actual_Size <= 8 then
4746 Actual_Size := 8;
4747 elsif Actual_Size <= 16 then
4748 Actual_Size := 16;
4749 elsif Actual_Size <= 32 then
4750 Actual_Size := 32;
4751 else
4752 Actual_Size := 64;
4753 end if;
4754
4755 Init_Esize (Typ, Actual_Size);
4756 Adjust_Esize_For_Alignment (Typ);
4757 end if;
4758
edd63e9b
ES
4759 -- If we have a base type, then expand the bounds so that they extend to
4760 -- the full width of the allocated size in bits, to avoid junk range
4761 -- checks on intermediate computations.
70482933
RK
4762
4763 if Base_Type (Typ) = Typ then
4764 Set_Realval (Lo, -(Small * (Uint_2 ** (Actual_Size - 1))));
4765 Set_Realval (Hi, (Small * (Uint_2 ** (Actual_Size - 1) - 1)));
4766 end if;
4767
4768 -- Final step is to reanalyze the bounds using the proper type
4769 -- and set the Corresponding_Integer_Value fields of the literals.
4770
4771 Set_Etype (Lo, Empty);
4772 Set_Analyzed (Lo, False);
4773 Analyze (Lo);
4774
edd63e9b
ES
4775 -- Resolve with universal fixed if the base type, and the base type if
4776 -- it is a subtype. Note we can't resolve the base type with itself,
4777 -- that would be a reference before definition.
70482933
RK
4778
4779 if Typ = Btyp then
4780 Resolve (Lo, Universal_Fixed);
4781 else
4782 Resolve (Lo, Btyp);
4783 end if;
4784
4785 -- Set corresponding integer value for bound
4786
4787 Set_Corresponding_Integer_Value
4788 (Lo, UR_To_Uint (Realval (Lo) / Small));
4789
4790 -- Similar processing for high bound
4791
4792 Set_Etype (Hi, Empty);
4793 Set_Analyzed (Hi, False);
4794 Analyze (Hi);
4795
4796 if Typ = Btyp then
4797 Resolve (Hi, Universal_Fixed);
4798 else
4799 Resolve (Hi, Btyp);
4800 end if;
4801
4802 Set_Corresponding_Integer_Value
4803 (Hi, UR_To_Uint (Realval (Hi) / Small));
4804
4805 -- Set type of range to correspond to bounds
4806
4807 Set_Etype (Rng, Etype (Lo));
4808
fbf5a39b 4809 -- Set Esize to calculated size if not set already
70482933 4810
fbf5a39b
AC
4811 if Unknown_Esize (Typ) then
4812 Init_Esize (Typ, Actual_Size);
4813 end if;
70482933
RK
4814
4815 -- Set RM_Size if not already set. If already set, check value
4816
4817 declare
4818 Minsiz : constant Uint := UI_From_Int (Minimum_Size (Typ));
4819
4820 begin
4821 if RM_Size (Typ) /= Uint_0 then
4822 if RM_Size (Typ) < Minsiz then
4823 Error_Msg_Uint_1 := RM_Size (Typ);
4824 Error_Msg_Uint_2 := Minsiz;
4825 Error_Msg_NE
7d8b9c99 4826 ("size given (^) for type& too small, minimum allowed is ^",
70482933
RK
4827 Size_Clause (Typ), Typ);
4828 end if;
4829
4830 else
4831 Set_RM_Size (Typ, Minsiz);
4832 end if;
4833 end;
70482933
RK
4834 end Freeze_Fixed_Point_Type;
4835
4836 ------------------
4837 -- Freeze_Itype --
4838 ------------------
4839
4840 procedure Freeze_Itype (T : Entity_Id; N : Node_Id) is
4841 L : List_Id;
4842
4843 begin
4844 Set_Has_Delayed_Freeze (T);
4845 L := Freeze_Entity (T, Sloc (N));
4846
4847 if Is_Non_Empty_List (L) then
4848 Insert_Actions (N, L);
4849 end if;
4850 end Freeze_Itype;
4851
4852 --------------------------
4853 -- Freeze_Static_Object --
4854 --------------------------
4855
4856 procedure Freeze_Static_Object (E : Entity_Id) is
4857
4858 Cannot_Be_Static : exception;
4859 -- Exception raised if the type of a static object cannot be made
4860 -- static. This happens if the type depends on non-global objects.
4861
4862 procedure Ensure_Expression_Is_SA (N : Node_Id);
ee094616
RD
4863 -- Called to ensure that an expression used as part of a type definition
4864 -- is statically allocatable, which means that the expression type is
4865 -- statically allocatable, and the expression is either static, or a
4866 -- reference to a library level constant.
70482933
RK
4867
4868 procedure Ensure_Type_Is_SA (Typ : Entity_Id);
4869 -- Called to mark a type as static, checking that it is possible
4870 -- to set the type as static. If it is not possible, then the
4871 -- exception Cannot_Be_Static is raised.
4872
4873 -----------------------------
4874 -- Ensure_Expression_Is_SA --
4875 -----------------------------
4876
4877 procedure Ensure_Expression_Is_SA (N : Node_Id) is
4878 Ent : Entity_Id;
4879
4880 begin
4881 Ensure_Type_Is_SA (Etype (N));
4882
4883 if Is_Static_Expression (N) then
4884 return;
4885
4886 elsif Nkind (N) = N_Identifier then
4887 Ent := Entity (N);
4888
4889 if Present (Ent)
4890 and then Ekind (Ent) = E_Constant
4891 and then Is_Library_Level_Entity (Ent)
4892 then
4893 return;
4894 end if;
4895 end if;
4896
4897 raise Cannot_Be_Static;
4898 end Ensure_Expression_Is_SA;
4899
4900 -----------------------
4901 -- Ensure_Type_Is_SA --
4902 -----------------------
4903
4904 procedure Ensure_Type_Is_SA (Typ : Entity_Id) is
4905 N : Node_Id;
4906 C : Entity_Id;
4907
4908 begin
4909 -- If type is library level, we are all set
4910
4911 if Is_Library_Level_Entity (Typ) then
4912 return;
4913 end if;
4914
ee094616
RD
4915 -- We are also OK if the type already marked as statically allocated,
4916 -- which means we processed it before.
70482933
RK
4917
4918 if Is_Statically_Allocated (Typ) then
4919 return;
4920 end if;
4921
4922 -- Mark type as statically allocated
4923
4924 Set_Is_Statically_Allocated (Typ);
4925
4926 -- Check that it is safe to statically allocate this type
4927
4928 if Is_Scalar_Type (Typ) or else Is_Real_Type (Typ) then
4929 Ensure_Expression_Is_SA (Type_Low_Bound (Typ));
4930 Ensure_Expression_Is_SA (Type_High_Bound (Typ));
4931
4932 elsif Is_Array_Type (Typ) then
4933 N := First_Index (Typ);
4934 while Present (N) loop
4935 Ensure_Type_Is_SA (Etype (N));
4936 Next_Index (N);
4937 end loop;
4938
4939 Ensure_Type_Is_SA (Component_Type (Typ));
4940
4941 elsif Is_Access_Type (Typ) then
4942 if Ekind (Designated_Type (Typ)) = E_Subprogram_Type then
4943
4944 declare
4945 F : Entity_Id;
4946 T : constant Entity_Id := Etype (Designated_Type (Typ));
4947
4948 begin
4949 if T /= Standard_Void_Type then
4950 Ensure_Type_Is_SA (T);
4951 end if;
4952
4953 F := First_Formal (Designated_Type (Typ));
4954
4955 while Present (F) loop
4956 Ensure_Type_Is_SA (Etype (F));
4957 Next_Formal (F);
4958 end loop;
4959 end;
4960
4961 else
4962 Ensure_Type_Is_SA (Designated_Type (Typ));
4963 end if;
4964
4965 elsif Is_Record_Type (Typ) then
4966 C := First_Entity (Typ);
70482933
RK
4967 while Present (C) loop
4968 if Ekind (C) = E_Discriminant
4969 or else Ekind (C) = E_Component
4970 then
4971 Ensure_Type_Is_SA (Etype (C));
4972
4973 elsif Is_Type (C) then
4974 Ensure_Type_Is_SA (C);
4975 end if;
4976
4977 Next_Entity (C);
4978 end loop;
4979
4980 elsif Ekind (Typ) = E_Subprogram_Type then
4981 Ensure_Type_Is_SA (Etype (Typ));
4982
4983 C := First_Formal (Typ);
4984 while Present (C) loop
4985 Ensure_Type_Is_SA (Etype (C));
4986 Next_Formal (C);
4987 end loop;
4988
4989 else
4990 raise Cannot_Be_Static;
4991 end if;
4992 end Ensure_Type_Is_SA;
4993
4994 -- Start of processing for Freeze_Static_Object
4995
4996 begin
4997 Ensure_Type_Is_SA (Etype (E));
4998
4999 exception
5000 when Cannot_Be_Static =>
5001
5002 -- If the object that cannot be static is imported or exported,
5003 -- then we give an error message saying that this object cannot
5004 -- be imported or exported.
5005
5006 if Is_Imported (E) then
5007 Error_Msg_N
5008 ("& cannot be imported (local type is not constant)", E);
5009
5010 -- Otherwise must be exported, something is wrong if compiler
5011 -- is marking something as statically allocated which cannot be).
5012
5013 else pragma Assert (Is_Exported (E));
5014 Error_Msg_N
5015 ("& cannot be exported (local type is not constant)", E);
5016 end if;
5017 end Freeze_Static_Object;
5018
5019 -----------------------
5020 -- Freeze_Subprogram --
5021 -----------------------
5022
5023 procedure Freeze_Subprogram (E : Entity_Id) is
5024 Retype : Entity_Id;
5025 F : Entity_Id;
5026
5027 begin
5028 -- Subprogram may not have an address clause unless it is imported
5029
5030 if Present (Address_Clause (E)) then
5031 if not Is_Imported (E) then
5032 Error_Msg_N
5033 ("address clause can only be given " &
5034 "for imported subprogram",
5035 Name (Address_Clause (E)));
5036 end if;
5037 end if;
5038
91b1417d
AC
5039 -- Reset the Pure indication on an imported subprogram unless an
5040 -- explicit Pure_Function pragma was present. We do this because
ee094616
RD
5041 -- otherwise it is an insidious error to call a non-pure function from
5042 -- pure unit and have calls mysteriously optimized away. What happens
5043 -- here is that the Import can bypass the normal check to ensure that
5044 -- pure units call only pure subprograms.
91b1417d
AC
5045
5046 if Is_Imported (E)
5047 and then Is_Pure (E)
5048 and then not Has_Pragma_Pure_Function (E)
5049 then
5050 Set_Is_Pure (E, False);
5051 end if;
5052
70482933
RK
5053 -- For non-foreign convention subprograms, this is where we create
5054 -- the extra formals (for accessibility level and constrained bit
5055 -- information). We delay this till the freeze point precisely so
5056 -- that we know the convention!
5057
5058 if not Has_Foreign_Convention (E) then
5059 Create_Extra_Formals (E);
5060 Set_Mechanisms (E);
5061
5062 -- If this is convention Ada and a Valued_Procedure, that's odd
5063
5064 if Ekind (E) = E_Procedure
5065 and then Is_Valued_Procedure (E)
5066 and then Convention (E) = Convention_Ada
fbf5a39b 5067 and then Warn_On_Export_Import
70482933
RK
5068 then
5069 Error_Msg_N
5070 ("?Valued_Procedure has no effect for convention Ada", E);
5071 Set_Is_Valued_Procedure (E, False);
5072 end if;
5073
5074 -- Case of foreign convention
5075
5076 else
5077 Set_Mechanisms (E);
5078
fbf5a39b 5079 -- For foreign conventions, warn about return of an
70482933
RK
5080 -- unconstrained array.
5081
5082 -- Note: we *do* allow a return by descriptor for the VMS case,
5083 -- though here there is probably more to be done ???
5084
5085 if Ekind (E) = E_Function then
5086 Retype := Underlying_Type (Etype (E));
5087
5088 -- If no return type, probably some other error, e.g. a
5089 -- missing full declaration, so ignore.
5090
5091 if No (Retype) then
5092 null;
5093
5094 -- If the return type is generic, we have emitted a warning
edd63e9b
ES
5095 -- earlier on, and there is nothing else to check here. Specific
5096 -- instantiations may lead to erroneous behavior.
70482933
RK
5097
5098 elsif Is_Generic_Type (Etype (E)) then
5099 null;
5100
e7d72fb9 5101 -- Display warning if returning unconstrained array
59366db6 5102
70482933
RK
5103 elsif Is_Array_Type (Retype)
5104 and then not Is_Constrained (Retype)
e7d72fb9
AC
5105
5106 -- Exclude cases where descriptor mechanism is set, since the
5107 -- VMS descriptor mechanisms allow such unconstrained returns.
5108
70482933 5109 and then Mechanism (E) not in Descriptor_Codes
e7d72fb9
AC
5110
5111 -- Check appropriate warning is enabled (should we check for
5112 -- Warnings (Off) on specific entities here, probably so???)
5113
fbf5a39b 5114 and then Warn_On_Export_Import
e7d72fb9
AC
5115
5116 -- Exclude the VM case, since return of unconstrained arrays
5117 -- is properly handled in both the JVM and .NET cases.
5118
f3b57ab0 5119 and then VM_Target = No_VM
70482933 5120 then
fbf5a39b
AC
5121 Error_Msg_N
5122 ("?foreign convention function& should not return " &
5123 "unconstrained array", E);
70482933
RK
5124 return;
5125 end if;
5126 end if;
5127
5128 -- If any of the formals for an exported foreign convention
edd63e9b
ES
5129 -- subprogram have defaults, then emit an appropriate warning since
5130 -- this is odd (default cannot be used from non-Ada code)
70482933
RK
5131
5132 if Is_Exported (E) then
5133 F := First_Formal (E);
5134 while Present (F) loop
fbf5a39b
AC
5135 if Warn_On_Export_Import
5136 and then Present (Default_Value (F))
5137 then
70482933
RK
5138 Error_Msg_N
5139 ("?parameter cannot be defaulted in non-Ada call",
5140 Default_Value (F));
5141 end if;
5142
5143 Next_Formal (F);
5144 end loop;
5145 end if;
5146 end if;
5147
e7d72fb9
AC
5148 -- For VMS, descriptor mechanisms for parameters are allowed only for
5149 -- imported/exported subprograms. Moreover, the NCA descriptor is not
5150 -- allowed for parameters of exported subprograms.
70482933
RK
5151
5152 if OpenVMS_On_Target then
7d8b9c99
RD
5153 if Is_Exported (E) then
5154 F := First_Formal (E);
5155 while Present (F) loop
5156 if Mechanism (F) = By_Descriptor_NCA then
5157 Error_Msg_N
5158 ("'N'C'A' descriptor for parameter not permitted", F);
5159 Error_Msg_N
5160 ("\can only be used for imported subprogram", F);
5161 end if;
5162
5163 Next_Formal (F);
5164 end loop;
5165
5166 elsif not Is_Imported (E) then
70482933
RK
5167 F := First_Formal (E);
5168 while Present (F) loop
5169 if Mechanism (F) in Descriptor_Codes then
5170 Error_Msg_N
5171 ("descriptor mechanism for parameter not permitted", F);
5172 Error_Msg_N
7d8b9c99 5173 ("\can only be used for imported/exported subprogram", F);
70482933
RK
5174 end if;
5175
5176 Next_Formal (F);
5177 end loop;
5178 end if;
5179 end if;
edd63e9b
ES
5180
5181 -- Pragma Inline_Always is disallowed for dispatching subprograms
5182 -- because the address of such subprograms is saved in the dispatch
5183 -- table to support dispatching calls, and dispatching calls cannot
5184 -- be inlined. This is consistent with the restriction against using
5185 -- 'Access or 'Address on an Inline_Always subprogram.
5186
def46b54
RD
5187 if Is_Dispatching_Operation (E)
5188 and then Has_Pragma_Inline_Always (E)
5189 then
edd63e9b
ES
5190 Error_Msg_N
5191 ("pragma Inline_Always not allowed for dispatching subprograms", E);
5192 end if;
c6a9797e
RD
5193
5194 -- Because of the implicit representation of inherited predefined
5195 -- operators in the front-end, the overriding status of the operation
5196 -- may be affected when a full view of a type is analyzed, and this is
5197 -- not captured by the analysis of the corresponding type declaration.
5198 -- Therefore the correctness of a not-overriding indicator must be
5199 -- rechecked when the subprogram is frozen.
5200
5201 if Nkind (E) = N_Defining_Operator_Symbol
5202 and then not Error_Posted (Parent (E))
5203 then
5204 Check_Overriding_Indicator (E, Empty, Is_Primitive (E));
5205 end if;
70482933
RK
5206 end Freeze_Subprogram;
5207
15ce9ca2
AC
5208 ----------------------
5209 -- Is_Fully_Defined --
5210 ----------------------
70482933 5211
70482933
RK
5212 function Is_Fully_Defined (T : Entity_Id) return Boolean is
5213 begin
5214 if Ekind (T) = E_Class_Wide_Type then
5215 return Is_Fully_Defined (Etype (T));
657a9dd9
AC
5216
5217 elsif Is_Array_Type (T) then
5218 return Is_Fully_Defined (Component_Type (T));
5219
5220 elsif Is_Record_Type (T)
5221 and not Is_Private_Type (T)
5222 then
ee094616
RD
5223 -- Verify that the record type has no components with private types
5224 -- without completion.
657a9dd9
AC
5225
5226 declare
5227 Comp : Entity_Id;
bde58e32 5228
657a9dd9
AC
5229 begin
5230 Comp := First_Component (T);
5231
5232 while Present (Comp) loop
5233 if not Is_Fully_Defined (Etype (Comp)) then
5234 return False;
5235 end if;
5236
5237 Next_Component (Comp);
5238 end loop;
5239 return True;
5240 end;
5241
86cde7b1
RD
5242 else
5243 return not Is_Private_Type (T)
5244 or else Present (Full_View (Base_Type (T)));
70482933
RK
5245 end if;
5246 end Is_Fully_Defined;
5247
70d904ca 5248 ---------------------------------
70482933
RK
5249 -- Process_Default_Expressions --
5250 ---------------------------------
5251
5252 procedure Process_Default_Expressions
5253 (E : Entity_Id;
5254 After : in out Node_Id)
5255 is
5256 Loc : constant Source_Ptr := Sloc (E);
5257 Dbody : Node_Id;
5258 Formal : Node_Id;
5259 Dcopy : Node_Id;
5260 Dnam : Entity_Id;
5261
5262 begin
5263 Set_Default_Expressions_Processed (E);
5264
ee094616
RD
5265 -- A subprogram instance and its associated anonymous subprogram share
5266 -- their signature. The default expression functions are defined in the
5267 -- wrapper packages for the anonymous subprogram, and should not be
5268 -- generated again for the instance.
70482933
RK
5269
5270 if Is_Generic_Instance (E)
5271 and then Present (Alias (E))
5272 and then Default_Expressions_Processed (Alias (E))
5273 then
5274 return;
5275 end if;
5276
5277 Formal := First_Formal (E);
70482933
RK
5278 while Present (Formal) loop
5279 if Present (Default_Value (Formal)) then
5280
5281 -- We work with a copy of the default expression because we
5282 -- do not want to disturb the original, since this would mess
5283 -- up the conformance checking.
5284
5285 Dcopy := New_Copy_Tree (Default_Value (Formal));
5286
5287 -- The analysis of the expression may generate insert actions,
5288 -- which of course must not be executed. We wrap those actions
5289 -- in a procedure that is not called, and later on eliminated.
5290 -- The following cases have no side-effects, and are analyzed
5291 -- directly.
5292
5293 if Nkind (Dcopy) = N_Identifier
5294 or else Nkind (Dcopy) = N_Expanded_Name
5295 or else Nkind (Dcopy) = N_Integer_Literal
5296 or else (Nkind (Dcopy) = N_Real_Literal
5297 and then not Vax_Float (Etype (Dcopy)))
5298 or else Nkind (Dcopy) = N_Character_Literal
5299 or else Nkind (Dcopy) = N_String_Literal
86cde7b1 5300 or else Known_Null (Dcopy)
70482933
RK
5301 or else (Nkind (Dcopy) = N_Attribute_Reference
5302 and then
5303 Attribute_Name (Dcopy) = Name_Null_Parameter)
70482933
RK
5304 then
5305
5306 -- If there is no default function, we must still do a full
ee094616
RD
5307 -- analyze call on the default value, to ensure that all error
5308 -- checks are performed, e.g. those associated with static
5309 -- evaluation. Note: this branch will always be taken if the
5310 -- analyzer is turned off (but we still need the error checks).
70482933
RK
5311
5312 -- Note: the setting of parent here is to meet the requirement
5313 -- that we can only analyze the expression while attached to
5314 -- the tree. Really the requirement is that the parent chain
5315 -- be set, we don't actually need to be in the tree.
5316
5317 Set_Parent (Dcopy, Declaration_Node (Formal));
5318 Analyze (Dcopy);
5319
5320 -- Default expressions are resolved with their own type if the
5321 -- context is generic, to avoid anomalies with private types.
5322
5323 if Ekind (Scope (E)) = E_Generic_Package then
fbf5a39b 5324 Resolve (Dcopy);
70482933
RK
5325 else
5326 Resolve (Dcopy, Etype (Formal));
5327 end if;
5328
5329 -- If that resolved expression will raise constraint error,
5330 -- then flag the default value as raising constraint error.
5331 -- This allows a proper error message on the calls.
5332
5333 if Raises_Constraint_Error (Dcopy) then
5334 Set_Raises_Constraint_Error (Default_Value (Formal));
5335 end if;
5336
5337 -- If the default is a parameterless call, we use the name of
5338 -- the called function directly, and there is no body to build.
5339
5340 elsif Nkind (Dcopy) = N_Function_Call
5341 and then No (Parameter_Associations (Dcopy))
5342 then
5343 null;
5344
5345 -- Else construct and analyze the body of a wrapper procedure
5346 -- that contains an object declaration to hold the expression.
5347 -- Given that this is done only to complete the analysis, it
5348 -- simpler to build a procedure than a function which might
5349 -- involve secondary stack expansion.
5350
5351 else
5352 Dnam :=
5353 Make_Defining_Identifier (Loc, New_Internal_Name ('D'));
5354
5355 Dbody :=
5356 Make_Subprogram_Body (Loc,
5357 Specification =>
5358 Make_Procedure_Specification (Loc,
5359 Defining_Unit_Name => Dnam),
5360
5361 Declarations => New_List (
5362 Make_Object_Declaration (Loc,
5363 Defining_Identifier =>
5364 Make_Defining_Identifier (Loc,
5365 New_Internal_Name ('T')),
5366 Object_Definition =>
5367 New_Occurrence_Of (Etype (Formal), Loc),
5368 Expression => New_Copy_Tree (Dcopy))),
5369
5370 Handled_Statement_Sequence =>
5371 Make_Handled_Sequence_Of_Statements (Loc,
5372 Statements => New_List));
5373
5374 Set_Scope (Dnam, Scope (E));
5375 Set_Assignment_OK (First (Declarations (Dbody)));
5376 Set_Is_Eliminated (Dnam);
5377 Insert_After (After, Dbody);
5378 Analyze (Dbody);
5379 After := Dbody;
5380 end if;
5381 end if;
5382
5383 Next_Formal (Formal);
5384 end loop;
70482933
RK
5385 end Process_Default_Expressions;
5386
5387 ----------------------------------------
5388 -- Set_Component_Alignment_If_Not_Set --
5389 ----------------------------------------
5390
5391 procedure Set_Component_Alignment_If_Not_Set (Typ : Entity_Id) is
5392 begin
5393 -- Ignore if not base type, subtypes don't need anything
5394
5395 if Typ /= Base_Type (Typ) then
5396 return;
5397 end if;
5398
5399 -- Do not override existing representation
5400
5401 if Is_Packed (Typ) then
5402 return;
5403
5404 elsif Has_Specified_Layout (Typ) then
5405 return;
5406
5407 elsif Component_Alignment (Typ) /= Calign_Default then
5408 return;
5409
5410 else
5411 Set_Component_Alignment
5412 (Typ, Scope_Stack.Table
5413 (Scope_Stack.Last).Component_Alignment_Default);
5414 end if;
5415 end Set_Component_Alignment_If_Not_Set;
5416
c6823a20
EB
5417 ------------------
5418 -- Undelay_Type --
5419 ------------------
5420
5421 procedure Undelay_Type (T : Entity_Id) is
5422 begin
5423 Set_Has_Delayed_Freeze (T, False);
5424 Set_Freeze_Node (T, Empty);
5425
5426 -- Since we don't want T to have a Freeze_Node, we don't want its
5427 -- Full_View or Corresponding_Record_Type to have one either.
5428
5429 -- ??? Fundamentally, this whole handling is a kludge. What we really
ee094616
RD
5430 -- want is to be sure that for an Itype that's part of record R and is a
5431 -- subtype of type T, that it's frozen after the later of the freeze
c6823a20
EB
5432 -- points of R and T. We have no way of doing that directly, so what we
5433 -- do is force most such Itypes to be frozen as part of freezing R via
5434 -- this procedure and only delay the ones that need to be delayed
ee094616
RD
5435 -- (mostly the designated types of access types that are defined as part
5436 -- of the record).
c6823a20
EB
5437
5438 if Is_Private_Type (T)
5439 and then Present (Full_View (T))
5440 and then Is_Itype (Full_View (T))
5441 and then Is_Record_Type (Scope (Full_View (T)))
5442 then
5443 Undelay_Type (Full_View (T));
5444 end if;
5445
5446 if Is_Concurrent_Type (T)
5447 and then Present (Corresponding_Record_Type (T))
5448 and then Is_Itype (Corresponding_Record_Type (T))
5449 and then Is_Record_Type (Scope (Corresponding_Record_Type (T)))
5450 then
5451 Undelay_Type (Corresponding_Record_Type (T));
5452 end if;
5453 end Undelay_Type;
5454
fbf5a39b
AC
5455 ------------------
5456 -- Warn_Overlay --
5457 ------------------
5458
5459 procedure Warn_Overlay
5460 (Expr : Node_Id;
5461 Typ : Entity_Id;
5462 Nam : Entity_Id)
5463 is
5464 Ent : constant Entity_Id := Entity (Nam);
49e90211 5465 -- The object to which the address clause applies
fbf5a39b
AC
5466
5467 Init : Node_Id;
5468 Old : Entity_Id := Empty;
5469 Decl : Node_Id;
5470
5471 begin
5472 -- No warning if address clause overlay warnings are off
5473
5474 if not Address_Clause_Overlay_Warnings then
5475 return;
5476 end if;
5477
5478 -- No warning if there is an explicit initialization
5479
5480 Init := Original_Node (Expression (Declaration_Node (Ent)));
5481
5482 if Present (Init) and then Comes_From_Source (Init) then
5483 return;
5484 end if;
5485
edd63e9b 5486 -- We only give the warning for non-imported entities of a type for
0ac73189
AC
5487 -- which a non-null base init proc is defined, or for objects of access
5488 -- types with implicit null initialization, or when Initialize_Scalars
5489 -- applies and the type is scalar or a string type (the latter being
5490 -- tested for because predefined String types are initialized by inline
5491 -- code rather than by an init_proc).
fbf5a39b
AC
5492
5493 if Present (Expr)
fbf5a39b 5494 and then not Is_Imported (Ent)
0ac73189
AC
5495 and then (Has_Non_Null_Base_Init_Proc (Typ)
5496 or else Is_Access_Type (Typ)
5497 or else (Init_Or_Norm_Scalars
5498 and then (Is_Scalar_Type (Typ)
5499 or else Is_String_Type (Typ))))
fbf5a39b
AC
5500 then
5501 if Nkind (Expr) = N_Attribute_Reference
5502 and then Is_Entity_Name (Prefix (Expr))
5503 then
5504 Old := Entity (Prefix (Expr));
5505
5506 elsif Is_Entity_Name (Expr)
5507 and then Ekind (Entity (Expr)) = E_Constant
5508 then
5509 Decl := Declaration_Node (Entity (Expr));
5510
5511 if Nkind (Decl) = N_Object_Declaration
5512 and then Present (Expression (Decl))
5513 and then Nkind (Expression (Decl)) = N_Attribute_Reference
5514 and then Is_Entity_Name (Prefix (Expression (Decl)))
5515 then
5516 Old := Entity (Prefix (Expression (Decl)));
5517
5518 elsif Nkind (Expr) = N_Function_Call then
5519 return;
5520 end if;
5521
ee094616
RD
5522 -- A function call (most likely to To_Address) is probably not an
5523 -- overlay, so skip warning. Ditto if the function call was inlined
5524 -- and transformed into an entity.
fbf5a39b
AC
5525
5526 elsif Nkind (Original_Node (Expr)) = N_Function_Call then
5527 return;
5528 end if;
5529
5530 Decl := Next (Parent (Expr));
5531
5532 -- If a pragma Import follows, we assume that it is for the current
5533 -- target of the address clause, and skip the warning.
5534
5535 if Present (Decl)
5536 and then Nkind (Decl) = N_Pragma
1b24ada5 5537 and then Pragma_Name (Decl) = Name_Import
fbf5a39b
AC
5538 then
5539 return;
5540 end if;
5541
5542 if Present (Old) then
5543 Error_Msg_Node_2 := Old;
5544 Error_Msg_N
5545 ("default initialization of & may modify &?",
5546 Nam);
5547 else
5548 Error_Msg_N
5549 ("default initialization of & may modify overlaid storage?",
5550 Nam);
5551 end if;
5552
5553 -- Add friendly warning if initialization comes from a packed array
5554 -- component.
5555
5556 if Is_Record_Type (Typ) then
5557 declare
5558 Comp : Entity_Id;
5559
5560 begin
5561 Comp := First_Component (Typ);
5562
5563 while Present (Comp) loop
5564 if Nkind (Parent (Comp)) = N_Component_Declaration
5565 and then Present (Expression (Parent (Comp)))
5566 then
5567 exit;
5568 elsif Is_Array_Type (Etype (Comp))
5569 and then Present (Packed_Array_Type (Etype (Comp)))
5570 then
5571 Error_Msg_NE
3f1ede06
RD
5572 ("\packed array component& " &
5573 "will be initialized to zero?",
5574 Nam, Comp);
fbf5a39b
AC
5575 exit;
5576 else
5577 Next_Component (Comp);
5578 end if;
5579 end loop;
5580 end;
5581 end if;
5582
5583 Error_Msg_N
3f1ede06 5584 ("\use pragma Import for & to " &
86cde7b1 5585 "suppress initialization (RM B.1(24))?",
3f1ede06 5586 Nam);
fbf5a39b
AC
5587 end if;
5588 end Warn_Overlay;
5589
70482933 5590end Freeze;
This page took 2.272869 seconds and 5 git commands to generate.