]> gcc.gnu.org Git - gcc.git/blame - gcc/ada/freeze.adb
[multiple changes]
[gcc.git] / gcc / ada / freeze.adb
CommitLineData
19590d70 1-----------------------------------------------------------------------------
70482933
RK
2-- --
3-- GNAT COMPILER COMPONENTS --
4-- --
5-- F R E E Z E --
6-- --
7-- B o d y --
8-- --
748086b7 9-- Copyright (C) 1992-2009, Free Software Foundation, Inc. --
70482933
RK
10-- --
11-- GNAT is free software; you can redistribute it and/or modify it under --
12-- terms of the GNU General Public License as published by the Free Soft- --
748086b7 13-- ware Foundation; either version 3, or (at your option) any later ver- --
70482933
RK
14-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
748086b7
JJ
16-- or FITNESS FOR A PARTICULAR PURPOSE. --
17-- --
18-- You should have received a copy of the GNU General Public License along --
19-- with this program; see file COPYING3. If not see --
20-- <http://www.gnu.org/licenses/>. --
70482933
RK
21-- --
22-- GNAT was originally developed by the GNAT team at New York University. --
71ff80dc 23-- Extensive contributions were provided by Ada Core Technologies Inc. --
70482933
RK
24-- --
25------------------------------------------------------------------------------
26
27with Atree; use Atree;
28with Debug; use Debug;
29with Einfo; use Einfo;
30with Elists; use Elists;
31with Errout; use Errout;
1ce1f005 32with Exp_Ch3; use Exp_Ch3;
70482933 33with Exp_Ch7; use Exp_Ch7;
ce2b6ba5 34with Exp_Disp; use Exp_Disp;
70482933
RK
35with Exp_Pakd; use Exp_Pakd;
36with Exp_Util; use Exp_Util;
fbf5a39b 37with Exp_Tss; use Exp_Tss;
70482933 38with Layout; use Layout;
7d8b9c99 39with Namet; use Namet;
70482933
RK
40with Nlists; use Nlists;
41with Nmake; use Nmake;
42with Opt; use Opt;
43with Restrict; use Restrict;
6e937c1c 44with Rident; use Rident;
70482933 45with Sem; use Sem;
a4100e55 46with Sem_Aux; use Sem_Aux;
70482933
RK
47with Sem_Cat; use Sem_Cat;
48with Sem_Ch6; use Sem_Ch6;
49with Sem_Ch7; use Sem_Ch7;
50with Sem_Ch8; use Sem_Ch8;
51with Sem_Ch13; use Sem_Ch13;
52with Sem_Eval; use Sem_Eval;
53with Sem_Mech; use Sem_Mech;
54with Sem_Prag; use Sem_Prag;
55with Sem_Res; use Sem_Res;
56with Sem_Util; use Sem_Util;
57with Sinfo; use Sinfo;
58with Snames; use Snames;
59with Stand; use Stand;
60with Targparm; use Targparm;
61with Tbuild; use Tbuild;
62with Ttypes; use Ttypes;
63with Uintp; use Uintp;
64with Urealp; use Urealp;
65
66package body Freeze is
67
68 -----------------------
69 -- Local Subprograms --
70 -----------------------
71
72 procedure Adjust_Esize_For_Alignment (Typ : Entity_Id);
73 -- Typ is a type that is being frozen. If no size clause is given,
74 -- but a default Esize has been computed, then this default Esize is
75 -- adjusted up if necessary to be consistent with a given alignment,
76 -- but never to a value greater than Long_Long_Integer'Size. This
77 -- is used for all discrete types and for fixed-point types.
78
79 procedure Build_And_Analyze_Renamed_Body
80 (Decl : Node_Id;
81 New_S : Entity_Id;
82 After : in out Node_Id);
49e90211 83 -- Build body for a renaming declaration, insert in tree and analyze
70482933 84
fbf5a39b
AC
85 procedure Check_Address_Clause (E : Entity_Id);
86 -- Apply legality checks to address clauses for object declarations,
2c9beb8a 87 -- at the point the object is frozen.
fbf5a39b 88
70482933
RK
89 procedure Check_Strict_Alignment (E : Entity_Id);
90 -- E is a base type. If E is tagged or has a component that is aliased
91 -- or tagged or contains something this is aliased or tagged, set
92 -- Strict_Alignment.
93
94 procedure Check_Unsigned_Type (E : Entity_Id);
95 pragma Inline (Check_Unsigned_Type);
96 -- If E is a fixed-point or discrete type, then all the necessary work
97 -- to freeze it is completed except for possible setting of the flag
98 -- Is_Unsigned_Type, which is done by this procedure. The call has no
99 -- effect if the entity E is not a discrete or fixed-point type.
100
101 procedure Freeze_And_Append
102 (Ent : Entity_Id;
103 Loc : Source_Ptr;
104 Result : in out List_Id);
105 -- Freezes Ent using Freeze_Entity, and appends the resulting list of
106 -- nodes to Result, modifying Result from No_List if necessary.
107
108 procedure Freeze_Enumeration_Type (Typ : Entity_Id);
109 -- Freeze enumeration type. The Esize field is set as processing
110 -- proceeds (i.e. set by default when the type is declared and then
111 -- adjusted by rep clauses. What this procedure does is to make sure
112 -- that if a foreign convention is specified, and no specific size
113 -- is given, then the size must be at least Integer'Size.
114
70482933
RK
115 procedure Freeze_Static_Object (E : Entity_Id);
116 -- If an object is frozen which has Is_Statically_Allocated set, then
117 -- all referenced types must also be marked with this flag. This routine
118 -- is in charge of meeting this requirement for the object entity E.
119
120 procedure Freeze_Subprogram (E : Entity_Id);
121 -- Perform freezing actions for a subprogram (create extra formals,
122 -- and set proper default mechanism values). Note that this routine
123 -- is not called for internal subprograms, for which neither of these
124 -- actions is needed (or desirable, we do not want for example to have
125 -- these extra formals present in initialization procedures, where they
126 -- would serve no purpose). In this call E is either a subprogram or
127 -- a subprogram type (i.e. an access to a subprogram).
128
129 function Is_Fully_Defined (T : Entity_Id) return Boolean;
bde58e32 130 -- True if T is not private and has no private components, or has a full
657a9dd9
AC
131 -- view. Used to determine whether the designated type of an access type
132 -- should be frozen when the access type is frozen. This is done when an
133 -- allocator is frozen, or an expression that may involve attributes of
134 -- the designated type. Otherwise freezing the access type does not freeze
135 -- the designated type.
70482933
RK
136
137 procedure Process_Default_Expressions
138 (E : Entity_Id;
139 After : in out Node_Id);
140 -- This procedure is called for each subprogram to complete processing
141 -- of default expressions at the point where all types are known to be
142 -- frozen. The expressions must be analyzed in full, to make sure that
143 -- all error processing is done (they have only been pre-analyzed). If
144 -- the expression is not an entity or literal, its analysis may generate
145 -- code which must not be executed. In that case we build a function
146 -- body to hold that code. This wrapper function serves no other purpose
147 -- (it used to be called to evaluate the default, but now the default is
148 -- inlined at each point of call).
149
150 procedure Set_Component_Alignment_If_Not_Set (Typ : Entity_Id);
151 -- Typ is a record or array type that is being frozen. This routine
152 -- sets the default component alignment from the scope stack values
153 -- if the alignment is otherwise not specified.
154
155 procedure Check_Debug_Info_Needed (T : Entity_Id);
156 -- As each entity is frozen, this routine is called to deal with the
157 -- setting of Debug_Info_Needed for the entity. This flag is set if
158 -- the entity comes from source, or if we are in Debug_Generated_Code
159 -- mode or if the -gnatdV debug flag is set. However, it never sets
1b24ada5
RD
160 -- the flag if Debug_Info_Off is set. This procedure also ensures that
161 -- subsidiary entities have the flag set as required.
70482933 162
c6823a20
EB
163 procedure Undelay_Type (T : Entity_Id);
164 -- T is a type of a component that we know to be an Itype.
165 -- We don't want this to have a Freeze_Node, so ensure it doesn't.
166 -- Do the same for any Full_View or Corresponding_Record_Type.
167
fbf5a39b
AC
168 procedure Warn_Overlay
169 (Expr : Node_Id;
170 Typ : Entity_Id;
171 Nam : Node_Id);
172 -- Expr is the expression for an address clause for entity Nam whose type
173 -- is Typ. If Typ has a default initialization, and there is no explicit
174 -- initialization in the source declaration, check whether the address
175 -- clause might cause overlaying of an entity, and emit a warning on the
176 -- side effect that the initialization will cause.
177
70482933
RK
178 -------------------------------
179 -- Adjust_Esize_For_Alignment --
180 -------------------------------
181
182 procedure Adjust_Esize_For_Alignment (Typ : Entity_Id) is
183 Align : Uint;
184
185 begin
186 if Known_Esize (Typ) and then Known_Alignment (Typ) then
187 Align := Alignment_In_Bits (Typ);
188
189 if Align > Esize (Typ)
190 and then Align <= Standard_Long_Long_Integer_Size
191 then
192 Set_Esize (Typ, Align);
193 end if;
194 end if;
195 end Adjust_Esize_For_Alignment;
196
197 ------------------------------------
198 -- Build_And_Analyze_Renamed_Body --
199 ------------------------------------
200
201 procedure Build_And_Analyze_Renamed_Body
202 (Decl : Node_Id;
203 New_S : Entity_Id;
204 After : in out Node_Id)
205 is
206 Body_Node : constant Node_Id := Build_Renamed_Body (Decl, New_S);
70482933
RK
207 begin
208 Insert_After (After, Body_Node);
209 Mark_Rewrite_Insertion (Body_Node);
210 Analyze (Body_Node);
211 After := Body_Node;
212 end Build_And_Analyze_Renamed_Body;
213
214 ------------------------
215 -- Build_Renamed_Body --
216 ------------------------
217
218 function Build_Renamed_Body
219 (Decl : Node_Id;
fbf5a39b 220 New_S : Entity_Id) return Node_Id
70482933
RK
221 is
222 Loc : constant Source_Ptr := Sloc (New_S);
223 -- We use for the source location of the renamed body, the location
224 -- of the spec entity. It might seem more natural to use the location
225 -- of the renaming declaration itself, but that would be wrong, since
226 -- then the body we create would look as though it was created far
227 -- too late, and this could cause problems with elaboration order
228 -- analysis, particularly in connection with instantiations.
229
230 N : constant Node_Id := Unit_Declaration_Node (New_S);
231 Nam : constant Node_Id := Name (N);
232 Old_S : Entity_Id;
233 Spec : constant Node_Id := New_Copy_Tree (Specification (Decl));
234 Actuals : List_Id := No_List;
235 Call_Node : Node_Id;
236 Call_Name : Node_Id;
237 Body_Node : Node_Id;
238 Formal : Entity_Id;
239 O_Formal : Entity_Id;
240 Param_Spec : Node_Id;
241
def46b54
RD
242 Pref : Node_Id := Empty;
243 -- If the renamed entity is a primitive operation given in prefix form,
244 -- the prefix is the target object and it has to be added as the first
245 -- actual in the generated call.
246
70482933 247 begin
def46b54
RD
248 -- Determine the entity being renamed, which is the target of the call
249 -- statement. If the name is an explicit dereference, this is a renaming
250 -- of a subprogram type rather than a subprogram. The name itself is
251 -- fully analyzed.
70482933
RK
252
253 if Nkind (Nam) = N_Selected_Component then
254 Old_S := Entity (Selector_Name (Nam));
255
256 elsif Nkind (Nam) = N_Explicit_Dereference then
257 Old_S := Etype (Nam);
258
259 elsif Nkind (Nam) = N_Indexed_Component then
70482933
RK
260 if Is_Entity_Name (Prefix (Nam)) then
261 Old_S := Entity (Prefix (Nam));
262 else
263 Old_S := Entity (Selector_Name (Prefix (Nam)));
264 end if;
265
266 elsif Nkind (Nam) = N_Character_Literal then
267 Old_S := Etype (New_S);
268
269 else
270 Old_S := Entity (Nam);
271 end if;
272
273 if Is_Entity_Name (Nam) then
07fc65c4 274
def46b54
RD
275 -- If the renamed entity is a predefined operator, retain full name
276 -- to ensure its visibility.
07fc65c4
GB
277
278 if Ekind (Old_S) = E_Operator
279 and then Nkind (Nam) = N_Expanded_Name
280 then
281 Call_Name := New_Copy (Name (N));
282 else
283 Call_Name := New_Reference_To (Old_S, Loc);
284 end if;
285
70482933 286 else
def46b54
RD
287 if Nkind (Nam) = N_Selected_Component
288 and then Present (First_Formal (Old_S))
289 and then
290 (Is_Controlling_Formal (First_Formal (Old_S))
291 or else Is_Class_Wide_Type (Etype (First_Formal (Old_S))))
292 then
293
294 -- Retrieve the target object, to be added as a first actual
295 -- in the call.
296
297 Call_Name := New_Occurrence_Of (Old_S, Loc);
298 Pref := Prefix (Nam);
299
300 else
301 Call_Name := New_Copy (Name (N));
302 end if;
70482933
RK
303
304 -- The original name may have been overloaded, but
305 -- is fully resolved now.
306
307 Set_Is_Overloaded (Call_Name, False);
308 end if;
309
def46b54
RD
310 -- For simple renamings, subsequent calls can be expanded directly as
311 -- called to the renamed entity. The body must be generated in any case
312 -- for calls they may appear elsewhere.
70482933
RK
313
314 if (Ekind (Old_S) = E_Function
315 or else Ekind (Old_S) = E_Procedure)
316 and then Nkind (Decl) = N_Subprogram_Declaration
317 then
318 Set_Body_To_Inline (Decl, Old_S);
319 end if;
320
321 -- The body generated for this renaming is an internal artifact, and
322 -- does not constitute a freeze point for the called entity.
323
324 Set_Must_Not_Freeze (Call_Name);
325
326 Formal := First_Formal (Defining_Entity (Decl));
327
def46b54
RD
328 if Present (Pref) then
329 declare
330 Pref_Type : constant Entity_Id := Etype (Pref);
331 Form_Type : constant Entity_Id := Etype (First_Formal (Old_S));
332
333 begin
334
335 -- The controlling formal may be an access parameter, or the
e14c931f 336 -- actual may be an access value, so adjust accordingly.
def46b54
RD
337
338 if Is_Access_Type (Pref_Type)
339 and then not Is_Access_Type (Form_Type)
340 then
341 Actuals := New_List
342 (Make_Explicit_Dereference (Loc, Relocate_Node (Pref)));
343
344 elsif Is_Access_Type (Form_Type)
345 and then not Is_Access_Type (Pref)
346 then
347 Actuals := New_List
348 (Make_Attribute_Reference (Loc,
349 Attribute_Name => Name_Access,
350 Prefix => Relocate_Node (Pref)));
351 else
352 Actuals := New_List (Pref);
353 end if;
354 end;
355
356 elsif Present (Formal) then
70482933
RK
357 Actuals := New_List;
358
def46b54
RD
359 else
360 Actuals := No_List;
361 end if;
362
363 if Present (Formal) then
70482933
RK
364 while Present (Formal) loop
365 Append (New_Reference_To (Formal, Loc), Actuals);
366 Next_Formal (Formal);
367 end loop;
368 end if;
369
def46b54
RD
370 -- If the renamed entity is an entry, inherit its profile. For other
371 -- renamings as bodies, both profiles must be subtype conformant, so it
372 -- is not necessary to replace the profile given in the declaration.
373 -- However, default values that are aggregates are rewritten when
374 -- partially analyzed, so we recover the original aggregate to insure
375 -- that subsequent conformity checking works. Similarly, if the default
376 -- expression was constant-folded, recover the original expression.
70482933
RK
377
378 Formal := First_Formal (Defining_Entity (Decl));
379
380 if Present (Formal) then
381 O_Formal := First_Formal (Old_S);
382 Param_Spec := First (Parameter_Specifications (Spec));
383
384 while Present (Formal) loop
385 if Is_Entry (Old_S) then
386
387 if Nkind (Parameter_Type (Param_Spec)) /=
388 N_Access_Definition
389 then
390 Set_Etype (Formal, Etype (O_Formal));
391 Set_Entity (Parameter_Type (Param_Spec), Etype (O_Formal));
392 end if;
393
07fc65c4
GB
394 elsif Nkind (Default_Value (O_Formal)) = N_Aggregate
395 or else Nkind (Original_Node (Default_Value (O_Formal))) /=
396 Nkind (Default_Value (O_Formal))
397 then
70482933
RK
398 Set_Expression (Param_Spec,
399 New_Copy_Tree (Original_Node (Default_Value (O_Formal))));
400 end if;
401
402 Next_Formal (Formal);
403 Next_Formal (O_Formal);
404 Next (Param_Spec);
405 end loop;
406 end if;
407
408 -- If the renamed entity is a function, the generated body contains a
409 -- return statement. Otherwise, build a procedure call. If the entity is
410 -- an entry, subsequent analysis of the call will transform it into the
411 -- proper entry or protected operation call. If the renamed entity is
412 -- a character literal, return it directly.
413
414 if Ekind (Old_S) = E_Function
415 or else Ekind (Old_S) = E_Operator
416 or else (Ekind (Old_S) = E_Subprogram_Type
417 and then Etype (Old_S) /= Standard_Void_Type)
418 then
419 Call_Node :=
86cde7b1 420 Make_Simple_Return_Statement (Loc,
70482933
RK
421 Expression =>
422 Make_Function_Call (Loc,
423 Name => Call_Name,
424 Parameter_Associations => Actuals));
425
426 elsif Ekind (Old_S) = E_Enumeration_Literal then
427 Call_Node :=
86cde7b1 428 Make_Simple_Return_Statement (Loc,
70482933
RK
429 Expression => New_Occurrence_Of (Old_S, Loc));
430
431 elsif Nkind (Nam) = N_Character_Literal then
432 Call_Node :=
86cde7b1 433 Make_Simple_Return_Statement (Loc,
70482933
RK
434 Expression => Call_Name);
435
436 else
437 Call_Node :=
438 Make_Procedure_Call_Statement (Loc,
439 Name => Call_Name,
440 Parameter_Associations => Actuals);
441 end if;
442
49e90211 443 -- Create entities for subprogram body and formals
70482933
RK
444
445 Set_Defining_Unit_Name (Spec,
446 Make_Defining_Identifier (Loc, Chars => Chars (New_S)));
447
448 Param_Spec := First (Parameter_Specifications (Spec));
449
450 while Present (Param_Spec) loop
451 Set_Defining_Identifier (Param_Spec,
452 Make_Defining_Identifier (Loc,
453 Chars => Chars (Defining_Identifier (Param_Spec))));
454 Next (Param_Spec);
455 end loop;
456
457 Body_Node :=
458 Make_Subprogram_Body (Loc,
459 Specification => Spec,
460 Declarations => New_List,
461 Handled_Statement_Sequence =>
462 Make_Handled_Sequence_Of_Statements (Loc,
463 Statements => New_List (Call_Node)));
464
465 if Nkind (Decl) /= N_Subprogram_Declaration then
466 Rewrite (N,
467 Make_Subprogram_Declaration (Loc,
468 Specification => Specification (N)));
469 end if;
470
471 -- Link the body to the entity whose declaration it completes. If
def46b54
RD
472 -- the body is analyzed when the renamed entity is frozen, it may
473 -- be necessary to restore the proper scope (see package Exp_Ch13).
70482933
RK
474
475 if Nkind (N) = N_Subprogram_Renaming_Declaration
476 and then Present (Corresponding_Spec (N))
477 then
478 Set_Corresponding_Spec (Body_Node, Corresponding_Spec (N));
479 else
480 Set_Corresponding_Spec (Body_Node, New_S);
481 end if;
482
483 return Body_Node;
484 end Build_Renamed_Body;
485
fbf5a39b
AC
486 --------------------------
487 -- Check_Address_Clause --
488 --------------------------
489
490 procedure Check_Address_Clause (E : Entity_Id) is
491 Addr : constant Node_Id := Address_Clause (E);
492 Expr : Node_Id;
493 Decl : constant Node_Id := Declaration_Node (E);
494 Typ : constant Entity_Id := Etype (E);
495
496 begin
497 if Present (Addr) then
498 Expr := Expression (Addr);
499
def46b54
RD
500 -- If we have no initialization of any kind, then we don't need to
501 -- place any restrictions on the address clause, because the object
502 -- will be elaborated after the address clause is evaluated. This
503 -- happens if the declaration has no initial expression, or the type
504 -- has no implicit initialization, or the object is imported.
fbf5a39b 505
def46b54
RD
506 -- The same holds for all initialized scalar types and all access
507 -- types. Packed bit arrays of size up to 64 are represented using a
508 -- modular type with an initialization (to zero) and can be processed
509 -- like other initialized scalar types.
fbf5a39b
AC
510
511 -- If the type is controlled, code to attach the object to a
512 -- finalization chain is generated at the point of declaration,
513 -- and therefore the elaboration of the object cannot be delayed:
514 -- the address expression must be a constant.
515
516 if (No (Expression (Decl))
048e5cef 517 and then not Needs_Finalization (Typ)
fbf5a39b
AC
518 and then
519 (not Has_Non_Null_Base_Init_Proc (Typ)
520 or else Is_Imported (E)))
521
522 or else
523 (Present (Expression (Decl))
524 and then Is_Scalar_Type (Typ))
525
526 or else
527 Is_Access_Type (Typ)
528
529 or else
530 (Is_Bit_Packed_Array (Typ)
531 and then
532 Is_Modular_Integer_Type (Packed_Array_Type (Typ)))
533 then
534 null;
535
def46b54
RD
536 -- Otherwise, we require the address clause to be constant because
537 -- the call to the initialization procedure (or the attach code) has
538 -- to happen at the point of the declaration.
fbf5a39b
AC
539
540 else
541 Check_Constant_Address_Clause (Expr, E);
542 Set_Has_Delayed_Freeze (E, False);
543 end if;
544
545 if not Error_Posted (Expr)
048e5cef 546 and then not Needs_Finalization (Typ)
fbf5a39b
AC
547 then
548 Warn_Overlay (Expr, Typ, Name (Addr));
549 end if;
550 end if;
551 end Check_Address_Clause;
552
70482933
RK
553 -----------------------------
554 -- Check_Compile_Time_Size --
555 -----------------------------
556
557 procedure Check_Compile_Time_Size (T : Entity_Id) is
558
c6823a20 559 procedure Set_Small_Size (T : Entity_Id; S : Uint);
70482933 560 -- Sets the compile time known size (32 bits or less) in the Esize
c6823a20 561 -- field, of T checking for a size clause that was given which attempts
70482933
RK
562 -- to give a smaller size.
563
564 function Size_Known (T : Entity_Id) return Boolean;
07fc65c4 565 -- Recursive function that does all the work
70482933
RK
566
567 function Static_Discriminated_Components (T : Entity_Id) return Boolean;
568 -- If T is a constrained subtype, its size is not known if any of its
569 -- discriminant constraints is not static and it is not a null record.
fbf5a39b 570 -- The test is conservative and doesn't check that the components are
70482933
RK
571 -- in fact constrained by non-static discriminant values. Could be made
572 -- more precise ???
573
574 --------------------
575 -- Set_Small_Size --
576 --------------------
577
c6823a20 578 procedure Set_Small_Size (T : Entity_Id; S : Uint) is
70482933
RK
579 begin
580 if S > 32 then
581 return;
582
583 elsif Has_Size_Clause (T) then
584 if RM_Size (T) < S then
585 Error_Msg_Uint_1 := S;
586 Error_Msg_NE
7d8b9c99 587 ("size for & too small, minimum allowed is ^",
70482933
RK
588 Size_Clause (T), T);
589
590 elsif Unknown_Esize (T) then
591 Set_Esize (T, S);
592 end if;
593
594 -- Set sizes if not set already
595
596 else
597 if Unknown_Esize (T) then
598 Set_Esize (T, S);
599 end if;
600
601 if Unknown_RM_Size (T) then
602 Set_RM_Size (T, S);
603 end if;
604 end if;
605 end Set_Small_Size;
606
607 ----------------
608 -- Size_Known --
609 ----------------
610
611 function Size_Known (T : Entity_Id) return Boolean is
612 Index : Entity_Id;
613 Comp : Entity_Id;
614 Ctyp : Entity_Id;
615 Low : Node_Id;
616 High : Node_Id;
617
618 begin
619 if Size_Known_At_Compile_Time (T) then
620 return True;
621
c6a9797e
RD
622 -- Always True for scalar types. This is true even for generic formal
623 -- scalar types. We used to return False in the latter case, but the
624 -- size is known at compile time, even in the template, we just do
625 -- not know the exact size but that's not the point of this routine.
626
70482933
RK
627 elsif Is_Scalar_Type (T)
628 or else Is_Task_Type (T)
629 then
c6a9797e
RD
630 return True;
631
632 -- Array types
70482933
RK
633
634 elsif Is_Array_Type (T) then
c6a9797e
RD
635
636 -- String literals always have known size, and we can set it
637
70482933 638 if Ekind (T) = E_String_Literal_Subtype then
c6823a20
EB
639 Set_Small_Size (T, Component_Size (T)
640 * String_Literal_Length (T));
70482933
RK
641 return True;
642
c6a9797e
RD
643 -- Unconstrained types never have known at compile time size
644
70482933
RK
645 elsif not Is_Constrained (T) then
646 return False;
647
def46b54
RD
648 -- Don't do any recursion on type with error posted, since we may
649 -- have a malformed type that leads us into a loop.
07fc65c4
GB
650
651 elsif Error_Posted (T) then
652 return False;
653
c6a9797e
RD
654 -- Otherwise if component size unknown, then array size unknown
655
70482933
RK
656 elsif not Size_Known (Component_Type (T)) then
657 return False;
658 end if;
659
def46b54
RD
660 -- Check for all indexes static, and also compute possible size
661 -- (in case it is less than 32 and may be packable).
70482933
RK
662
663 declare
664 Esiz : Uint := Component_Size (T);
665 Dim : Uint;
666
667 begin
668 Index := First_Index (T);
70482933
RK
669 while Present (Index) loop
670 if Nkind (Index) = N_Range then
671 Get_Index_Bounds (Index, Low, High);
672
673 elsif Error_Posted (Scalar_Range (Etype (Index))) then
674 return False;
675
676 else
677 Low := Type_Low_Bound (Etype (Index));
678 High := Type_High_Bound (Etype (Index));
679 end if;
680
681 if not Compile_Time_Known_Value (Low)
682 or else not Compile_Time_Known_Value (High)
683 or else Etype (Index) = Any_Type
684 then
685 return False;
686
687 else
688 Dim := Expr_Value (High) - Expr_Value (Low) + 1;
689
690 if Dim >= 0 then
691 Esiz := Esiz * Dim;
692 else
693 Esiz := Uint_0;
694 end if;
695 end if;
696
697 Next_Index (Index);
698 end loop;
699
c6823a20 700 Set_Small_Size (T, Esiz);
70482933
RK
701 return True;
702 end;
703
c6a9797e
RD
704 -- Access types always have known at compile time sizes
705
70482933
RK
706 elsif Is_Access_Type (T) then
707 return True;
708
c6a9797e
RD
709 -- For non-generic private types, go to underlying type if present
710
70482933
RK
711 elsif Is_Private_Type (T)
712 and then not Is_Generic_Type (T)
713 and then Present (Underlying_Type (T))
714 then
def46b54
RD
715 -- Don't do any recursion on type with error posted, since we may
716 -- have a malformed type that leads us into a loop.
07fc65c4
GB
717
718 if Error_Posted (T) then
719 return False;
720 else
721 return Size_Known (Underlying_Type (T));
722 end if;
70482933 723
c6a9797e
RD
724 -- Record types
725
70482933 726 elsif Is_Record_Type (T) then
fbf5a39b
AC
727
728 -- A class-wide type is never considered to have a known size
729
70482933
RK
730 if Is_Class_Wide_Type (T) then
731 return False;
732
fbf5a39b
AC
733 -- A subtype of a variant record must not have non-static
734 -- discriminanted components.
735
736 elsif T /= Base_Type (T)
737 and then not Static_Discriminated_Components (T)
738 then
739 return False;
70482933 740
def46b54
RD
741 -- Don't do any recursion on type with error posted, since we may
742 -- have a malformed type that leads us into a loop.
07fc65c4
GB
743
744 elsif Error_Posted (T) then
745 return False;
fbf5a39b 746 end if;
07fc65c4 747
fbf5a39b 748 -- Now look at the components of the record
70482933 749
fbf5a39b 750 declare
def46b54
RD
751 -- The following two variables are used to keep track of the
752 -- size of packed records if we can tell the size of the packed
753 -- record in the front end. Packed_Size_Known is True if so far
754 -- we can figure out the size. It is initialized to True for a
755 -- packed record, unless the record has discriminants. The
756 -- reason we eliminate the discriminated case is that we don't
757 -- know the way the back end lays out discriminated packed
758 -- records. If Packed_Size_Known is True, then Packed_Size is
759 -- the size in bits so far.
fbf5a39b
AC
760
761 Packed_Size_Known : Boolean :=
762 Is_Packed (T)
763 and then not Has_Discriminants (T);
764
765 Packed_Size : Uint := Uint_0;
766
767 begin
768 -- Test for variant part present
769
770 if Has_Discriminants (T)
771 and then Present (Parent (T))
772 and then Nkind (Parent (T)) = N_Full_Type_Declaration
773 and then Nkind (Type_Definition (Parent (T))) =
774 N_Record_Definition
775 and then not Null_Present (Type_Definition (Parent (T)))
776 and then Present (Variant_Part
777 (Component_List (Type_Definition (Parent (T)))))
778 then
779 -- If variant part is present, and type is unconstrained,
780 -- then we must have defaulted discriminants, or a size
781 -- clause must be present for the type, or else the size
782 -- is definitely not known at compile time.
783
784 if not Is_Constrained (T)
785 and then
786 No (Discriminant_Default_Value
787 (First_Discriminant (T)))
788 and then Unknown_Esize (T)
70482933 789 then
fbf5a39b
AC
790 return False;
791 end if;
792 end if;
70482933 793
fbf5a39b
AC
794 -- Loop through components
795
fea9e956 796 Comp := First_Component_Or_Discriminant (T);
fbf5a39b 797 while Present (Comp) loop
fea9e956 798 Ctyp := Etype (Comp);
fbf5a39b 799
fea9e956
ES
800 -- We do not know the packed size if there is a component
801 -- clause present (we possibly could, but this would only
802 -- help in the case of a record with partial rep clauses.
803 -- That's because in the case of full rep clauses, the
804 -- size gets figured out anyway by a different circuit).
fbf5a39b 805
fea9e956
ES
806 if Present (Component_Clause (Comp)) then
807 Packed_Size_Known := False;
808 end if;
70482933 809
fea9e956
ES
810 -- We need to identify a component that is an array where
811 -- the index type is an enumeration type with non-standard
812 -- representation, and some bound of the type depends on a
813 -- discriminant.
70482933 814
fea9e956 815 -- This is because gigi computes the size by doing a
e14c931f 816 -- substitution of the appropriate discriminant value in
fea9e956
ES
817 -- the size expression for the base type, and gigi is not
818 -- clever enough to evaluate the resulting expression (which
819 -- involves a call to rep_to_pos) at compile time.
fbf5a39b 820
fea9e956
ES
821 -- It would be nice if gigi would either recognize that
822 -- this expression can be computed at compile time, or
823 -- alternatively figured out the size from the subtype
824 -- directly, where all the information is at hand ???
fbf5a39b 825
fea9e956
ES
826 if Is_Array_Type (Etype (Comp))
827 and then Present (Packed_Array_Type (Etype (Comp)))
828 then
829 declare
830 Ocomp : constant Entity_Id :=
831 Original_Record_Component (Comp);
832 OCtyp : constant Entity_Id := Etype (Ocomp);
833 Ind : Node_Id;
834 Indtyp : Entity_Id;
835 Lo, Hi : Node_Id;
70482933 836
fea9e956
ES
837 begin
838 Ind := First_Index (OCtyp);
839 while Present (Ind) loop
840 Indtyp := Etype (Ind);
70482933 841
fea9e956
ES
842 if Is_Enumeration_Type (Indtyp)
843 and then Has_Non_Standard_Rep (Indtyp)
844 then
845 Lo := Type_Low_Bound (Indtyp);
846 Hi := Type_High_Bound (Indtyp);
fbf5a39b 847
fea9e956
ES
848 if Is_Entity_Name (Lo)
849 and then Ekind (Entity (Lo)) = E_Discriminant
850 then
851 return False;
fbf5a39b 852
fea9e956
ES
853 elsif Is_Entity_Name (Hi)
854 and then Ekind (Entity (Hi)) = E_Discriminant
855 then
856 return False;
857 end if;
858 end if;
fbf5a39b 859
fea9e956
ES
860 Next_Index (Ind);
861 end loop;
862 end;
863 end if;
70482933 864
def46b54
RD
865 -- Clearly size of record is not known if the size of one of
866 -- the components is not known.
70482933 867
fea9e956
ES
868 if not Size_Known (Ctyp) then
869 return False;
870 end if;
70482933 871
fea9e956 872 -- Accumulate packed size if possible
70482933 873
fea9e956 874 if Packed_Size_Known then
70482933 875
fea9e956
ES
876 -- We can only deal with elementary types, since for
877 -- non-elementary components, alignment enters into the
878 -- picture, and we don't know enough to handle proper
879 -- alignment in this context. Packed arrays count as
880 -- elementary if the representation is a modular type.
fbf5a39b 881
fea9e956
ES
882 if Is_Elementary_Type (Ctyp)
883 or else (Is_Array_Type (Ctyp)
884 and then Present (Packed_Array_Type (Ctyp))
885 and then Is_Modular_Integer_Type
886 (Packed_Array_Type (Ctyp)))
887 then
888 -- If RM_Size is known and static, then we can
889 -- keep accumulating the packed size.
70482933 890
fea9e956 891 if Known_Static_RM_Size (Ctyp) then
70482933 892
fea9e956
ES
893 -- A little glitch, to be removed sometime ???
894 -- gigi does not understand zero sizes yet.
895
896 if RM_Size (Ctyp) = Uint_0 then
70482933 897 Packed_Size_Known := False;
fea9e956
ES
898
899 -- Normal case where we can keep accumulating the
900 -- packed array size.
901
902 else
903 Packed_Size := Packed_Size + RM_Size (Ctyp);
70482933 904 end if;
fbf5a39b 905
fea9e956
ES
906 -- If we have a field whose RM_Size is not known then
907 -- we can't figure out the packed size here.
fbf5a39b
AC
908
909 else
910 Packed_Size_Known := False;
70482933 911 end if;
fea9e956
ES
912
913 -- If we have a non-elementary type we can't figure out
914 -- the packed array size (alignment issues).
915
916 else
917 Packed_Size_Known := False;
70482933 918 end if;
fbf5a39b 919 end if;
70482933 920
fea9e956 921 Next_Component_Or_Discriminant (Comp);
fbf5a39b 922 end loop;
70482933 923
fbf5a39b 924 if Packed_Size_Known then
c6823a20 925 Set_Small_Size (T, Packed_Size);
fbf5a39b 926 end if;
70482933 927
fbf5a39b
AC
928 return True;
929 end;
70482933 930
c6a9797e
RD
931 -- All other cases, size not known at compile time
932
70482933
RK
933 else
934 return False;
935 end if;
936 end Size_Known;
937
938 -------------------------------------
939 -- Static_Discriminated_Components --
940 -------------------------------------
941
942 function Static_Discriminated_Components
0da2c8ac 943 (T : Entity_Id) return Boolean
70482933
RK
944 is
945 Constraint : Elmt_Id;
946
947 begin
948 if Has_Discriminants (T)
949 and then Present (Discriminant_Constraint (T))
950 and then Present (First_Component (T))
951 then
952 Constraint := First_Elmt (Discriminant_Constraint (T));
70482933
RK
953 while Present (Constraint) loop
954 if not Compile_Time_Known_Value (Node (Constraint)) then
955 return False;
956 end if;
957
958 Next_Elmt (Constraint);
959 end loop;
960 end if;
961
962 return True;
963 end Static_Discriminated_Components;
964
965 -- Start of processing for Check_Compile_Time_Size
966
967 begin
968 Set_Size_Known_At_Compile_Time (T, Size_Known (T));
969 end Check_Compile_Time_Size;
970
971 -----------------------------
972 -- Check_Debug_Info_Needed --
973 -----------------------------
974
975 procedure Check_Debug_Info_Needed (T : Entity_Id) is
976 begin
1b24ada5 977 if Debug_Info_Off (T) then
70482933
RK
978 return;
979
980 elsif Comes_From_Source (T)
981 or else Debug_Generated_Code
982 or else Debug_Flag_VV
1b24ada5 983 or else Needs_Debug_Info (T)
70482933
RK
984 then
985 Set_Debug_Info_Needed (T);
986 end if;
987 end Check_Debug_Info_Needed;
988
989 ----------------------------
990 -- Check_Strict_Alignment --
991 ----------------------------
992
993 procedure Check_Strict_Alignment (E : Entity_Id) is
994 Comp : Entity_Id;
995
996 begin
997 if Is_Tagged_Type (E) or else Is_Concurrent_Type (E) then
998 Set_Strict_Alignment (E);
999
1000 elsif Is_Array_Type (E) then
1001 Set_Strict_Alignment (E, Strict_Alignment (Component_Type (E)));
1002
1003 elsif Is_Record_Type (E) then
1004 if Is_Limited_Record (E) then
1005 Set_Strict_Alignment (E);
1006 return;
1007 end if;
1008
1009 Comp := First_Component (E);
1010
1011 while Present (Comp) loop
1012 if not Is_Type (Comp)
1013 and then (Strict_Alignment (Etype (Comp))
fbf5a39b 1014 or else Is_Aliased (Comp))
70482933
RK
1015 then
1016 Set_Strict_Alignment (E);
1017 return;
1018 end if;
1019
1020 Next_Component (Comp);
1021 end loop;
1022 end if;
1023 end Check_Strict_Alignment;
1024
1025 -------------------------
1026 -- Check_Unsigned_Type --
1027 -------------------------
1028
1029 procedure Check_Unsigned_Type (E : Entity_Id) is
1030 Ancestor : Entity_Id;
1031 Lo_Bound : Node_Id;
1032 Btyp : Entity_Id;
1033
1034 begin
1035 if not Is_Discrete_Or_Fixed_Point_Type (E) then
1036 return;
1037 end if;
1038
1039 -- Do not attempt to analyze case where range was in error
1040
1041 if Error_Posted (Scalar_Range (E)) then
1042 return;
1043 end if;
1044
1045 -- The situation that is non trivial is something like
1046
1047 -- subtype x1 is integer range -10 .. +10;
1048 -- subtype x2 is x1 range 0 .. V1;
1049 -- subtype x3 is x2 range V2 .. V3;
1050 -- subtype x4 is x3 range V4 .. V5;
1051
1052 -- where Vn are variables. Here the base type is signed, but we still
1053 -- know that x4 is unsigned because of the lower bound of x2.
1054
1055 -- The only way to deal with this is to look up the ancestor chain
1056
1057 Ancestor := E;
1058 loop
1059 if Ancestor = Any_Type or else Etype (Ancestor) = Any_Type then
1060 return;
1061 end if;
1062
1063 Lo_Bound := Type_Low_Bound (Ancestor);
1064
1065 if Compile_Time_Known_Value (Lo_Bound) then
1066
1067 if Expr_Rep_Value (Lo_Bound) >= 0 then
1068 Set_Is_Unsigned_Type (E, True);
1069 end if;
1070
1071 return;
1072
1073 else
1074 Ancestor := Ancestor_Subtype (Ancestor);
1075
1076 -- If no ancestor had a static lower bound, go to base type
1077
1078 if No (Ancestor) then
1079
1080 -- Note: the reason we still check for a compile time known
1081 -- value for the base type is that at least in the case of
1082 -- generic formals, we can have bounds that fail this test,
1083 -- and there may be other cases in error situations.
1084
1085 Btyp := Base_Type (E);
1086
1087 if Btyp = Any_Type or else Etype (Btyp) = Any_Type then
1088 return;
1089 end if;
1090
1091 Lo_Bound := Type_Low_Bound (Base_Type (E));
1092
1093 if Compile_Time_Known_Value (Lo_Bound)
1094 and then Expr_Rep_Value (Lo_Bound) >= 0
1095 then
1096 Set_Is_Unsigned_Type (E, True);
1097 end if;
1098
1099 return;
70482933
RK
1100 end if;
1101 end if;
1102 end loop;
1103 end Check_Unsigned_Type;
1104
fbf5a39b
AC
1105 -----------------------------
1106 -- Expand_Atomic_Aggregate --
1107 -----------------------------
1108
1109 procedure Expand_Atomic_Aggregate (E : Entity_Id; Typ : Entity_Id) is
1110 Loc : constant Source_Ptr := Sloc (E);
1111 New_N : Node_Id;
1112 Temp : Entity_Id;
1113
1114 begin
1115 if (Nkind (Parent (E)) = N_Object_Declaration
1116 or else Nkind (Parent (E)) = N_Assignment_Statement)
1117 and then Comes_From_Source (Parent (E))
fbf5a39b
AC
1118 then
1119 Temp :=
1120 Make_Defining_Identifier (Loc,
1121 New_Internal_Name ('T'));
1122
1123 New_N :=
1124 Make_Object_Declaration (Loc,
1125 Defining_Identifier => Temp,
c6a9797e
RD
1126 Object_Definition => New_Occurrence_Of (Typ, Loc),
1127 Expression => Relocate_Node (E));
fbf5a39b
AC
1128 Insert_Before (Parent (E), New_N);
1129 Analyze (New_N);
1130
1131 Set_Expression (Parent (E), New_Occurrence_Of (Temp, Loc));
1132
fbf5a39b
AC
1133 end if;
1134 end Expand_Atomic_Aggregate;
1135
70482933
RK
1136 ----------------
1137 -- Freeze_All --
1138 ----------------
1139
1140 -- Note: the easy coding for this procedure would be to just build a
1141 -- single list of freeze nodes and then insert them and analyze them
1142 -- all at once. This won't work, because the analysis of earlier freeze
1143 -- nodes may recursively freeze types which would otherwise appear later
1144 -- on in the freeze list. So we must analyze and expand the freeze nodes
1145 -- as they are generated.
1146
1147 procedure Freeze_All (From : Entity_Id; After : in out Node_Id) is
1148 Loc : constant Source_Ptr := Sloc (After);
1149 E : Entity_Id;
1150 Decl : Node_Id;
1151
1152 procedure Freeze_All_Ent (From : Entity_Id; After : in out Node_Id);
def46b54
RD
1153 -- This is the internal recursive routine that does freezing of entities
1154 -- (but NOT the analysis of default expressions, which should not be
1155 -- recursive, we don't want to analyze those till we are sure that ALL
1156 -- the types are frozen).
70482933 1157
fbf5a39b
AC
1158 --------------------
1159 -- Freeze_All_Ent --
1160 --------------------
1161
70482933
RK
1162 procedure Freeze_All_Ent
1163 (From : Entity_Id;
1164 After : in out Node_Id)
1165 is
1166 E : Entity_Id;
1167 Flist : List_Id;
1168 Lastn : Node_Id;
1169
1170 procedure Process_Flist;
def46b54
RD
1171 -- If freeze nodes are present, insert and analyze, and reset cursor
1172 -- for next insertion.
70482933 1173
fbf5a39b
AC
1174 -------------------
1175 -- Process_Flist --
1176 -------------------
1177
70482933
RK
1178 procedure Process_Flist is
1179 begin
1180 if Is_Non_Empty_List (Flist) then
1181 Lastn := Next (After);
1182 Insert_List_After_And_Analyze (After, Flist);
1183
1184 if Present (Lastn) then
1185 After := Prev (Lastn);
1186 else
1187 After := Last (List_Containing (After));
1188 end if;
1189 end if;
1190 end Process_Flist;
1191
fbf5a39b
AC
1192 -- Start or processing for Freeze_All_Ent
1193
70482933
RK
1194 begin
1195 E := From;
1196 while Present (E) loop
1197
1198 -- If the entity is an inner package which is not a package
def46b54
RD
1199 -- renaming, then its entities must be frozen at this point. Note
1200 -- that such entities do NOT get frozen at the end of the nested
1201 -- package itself (only library packages freeze).
70482933
RK
1202
1203 -- Same is true for task declarations, where anonymous records
1204 -- created for entry parameters must be frozen.
1205
1206 if Ekind (E) = E_Package
1207 and then No (Renamed_Object (E))
1208 and then not Is_Child_Unit (E)
1209 and then not Is_Frozen (E)
1210 then
7d8b9c99 1211 Push_Scope (E);
70482933
RK
1212 Install_Visible_Declarations (E);
1213 Install_Private_Declarations (E);
1214
1215 Freeze_All (First_Entity (E), After);
1216
1217 End_Package_Scope (E);
1218
1219 elsif Ekind (E) in Task_Kind
1220 and then
1221 (Nkind (Parent (E)) = N_Task_Type_Declaration
fbf5a39b 1222 or else
70482933
RK
1223 Nkind (Parent (E)) = N_Single_Task_Declaration)
1224 then
7d8b9c99 1225 Push_Scope (E);
70482933
RK
1226 Freeze_All (First_Entity (E), After);
1227 End_Scope;
1228
1229 -- For a derived tagged type, we must ensure that all the
def46b54
RD
1230 -- primitive operations of the parent have been frozen, so that
1231 -- their addresses will be in the parent's dispatch table at the
1232 -- point it is inherited.
70482933
RK
1233
1234 elsif Ekind (E) = E_Record_Type
1235 and then Is_Tagged_Type (E)
1236 and then Is_Tagged_Type (Etype (E))
1237 and then Is_Derived_Type (E)
1238 then
1239 declare
1240 Prim_List : constant Elist_Id :=
1241 Primitive_Operations (Etype (E));
fbf5a39b
AC
1242
1243 Prim : Elmt_Id;
1244 Subp : Entity_Id;
70482933
RK
1245
1246 begin
1247 Prim := First_Elmt (Prim_List);
1248
1249 while Present (Prim) loop
1250 Subp := Node (Prim);
1251
1252 if Comes_From_Source (Subp)
1253 and then not Is_Frozen (Subp)
1254 then
1255 Flist := Freeze_Entity (Subp, Loc);
1256 Process_Flist;
1257 end if;
1258
1259 Next_Elmt (Prim);
1260 end loop;
1261 end;
1262 end if;
1263
1264 if not Is_Frozen (E) then
1265 Flist := Freeze_Entity (E, Loc);
1266 Process_Flist;
1267 end if;
1268
def46b54
RD
1269 -- If an incomplete type is still not frozen, this may be a
1270 -- premature freezing because of a body declaration that follows.
1271 -- Indicate where the freezing took place.
fbf5a39b 1272
def46b54
RD
1273 -- If the freezing is caused by the end of the current declarative
1274 -- part, it is a Taft Amendment type, and there is no error.
fbf5a39b
AC
1275
1276 if not Is_Frozen (E)
1277 and then Ekind (E) = E_Incomplete_Type
1278 then
1279 declare
1280 Bod : constant Node_Id := Next (After);
1281
1282 begin
1283 if (Nkind (Bod) = N_Subprogram_Body
1284 or else Nkind (Bod) = N_Entry_Body
1285 or else Nkind (Bod) = N_Package_Body
1286 or else Nkind (Bod) = N_Protected_Body
1287 or else Nkind (Bod) = N_Task_Body
1288 or else Nkind (Bod) in N_Body_Stub)
1289 and then
1290 List_Containing (After) = List_Containing (Parent (E))
1291 then
1292 Error_Msg_Sloc := Sloc (Next (After));
1293 Error_Msg_NE
1294 ("type& is frozen# before its full declaration",
1295 Parent (E), E);
1296 end if;
1297 end;
1298 end if;
1299
70482933
RK
1300 Next_Entity (E);
1301 end loop;
1302 end Freeze_All_Ent;
1303
1304 -- Start of processing for Freeze_All
1305
1306 begin
1307 Freeze_All_Ent (From, After);
1308
1309 -- Now that all types are frozen, we can deal with default expressions
1310 -- that require us to build a default expression functions. This is the
1311 -- point at which such functions are constructed (after all types that
1312 -- might be used in such expressions have been frozen).
fbf5a39b 1313
70482933
RK
1314 -- We also add finalization chains to access types whose designated
1315 -- types are controlled. This is normally done when freezing the type,
1316 -- but this misses recursive type definitions where the later members
c6a9797e 1317 -- of the recursion introduce controlled components.
70482933
RK
1318
1319 -- Loop through entities
1320
1321 E := From;
1322 while Present (E) loop
70482933
RK
1323 if Is_Subprogram (E) then
1324
1325 if not Default_Expressions_Processed (E) then
1326 Process_Default_Expressions (E, After);
1327 end if;
1328
1329 if not Has_Completion (E) then
1330 Decl := Unit_Declaration_Node (E);
1331
1332 if Nkind (Decl) = N_Subprogram_Renaming_Declaration then
1333 Build_And_Analyze_Renamed_Body (Decl, E, After);
1334
1335 elsif Nkind (Decl) = N_Subprogram_Declaration
1336 and then Present (Corresponding_Body (Decl))
1337 and then
1338 Nkind (Unit_Declaration_Node (Corresponding_Body (Decl)))
fbf5a39b 1339 = N_Subprogram_Renaming_Declaration
70482933
RK
1340 then
1341 Build_And_Analyze_Renamed_Body
1342 (Decl, Corresponding_Body (Decl), After);
1343 end if;
1344 end if;
1345
1346 elsif Ekind (E) in Task_Kind
1347 and then
1348 (Nkind (Parent (E)) = N_Task_Type_Declaration
fbf5a39b 1349 or else
70482933
RK
1350 Nkind (Parent (E)) = N_Single_Task_Declaration)
1351 then
1352 declare
1353 Ent : Entity_Id;
70482933
RK
1354 begin
1355 Ent := First_Entity (E);
1356
1357 while Present (Ent) loop
1358
1359 if Is_Entry (Ent)
1360 and then not Default_Expressions_Processed (Ent)
1361 then
1362 Process_Default_Expressions (Ent, After);
1363 end if;
1364
1365 Next_Entity (Ent);
1366 end loop;
1367 end;
1368
1369 elsif Is_Access_Type (E)
1370 and then Comes_From_Source (E)
1371 and then Ekind (Directly_Designated_Type (E)) = E_Incomplete_Type
048e5cef 1372 and then Needs_Finalization (Designated_Type (E))
70482933
RK
1373 and then No (Associated_Final_Chain (E))
1374 then
1375 Build_Final_List (Parent (E), E);
1376 end if;
1377
1378 Next_Entity (E);
1379 end loop;
70482933
RK
1380 end Freeze_All;
1381
1382 -----------------------
1383 -- Freeze_And_Append --
1384 -----------------------
1385
1386 procedure Freeze_And_Append
1387 (Ent : Entity_Id;
1388 Loc : Source_Ptr;
1389 Result : in out List_Id)
1390 is
1391 L : constant List_Id := Freeze_Entity (Ent, Loc);
70482933
RK
1392 begin
1393 if Is_Non_Empty_List (L) then
1394 if Result = No_List then
1395 Result := L;
1396 else
1397 Append_List (L, Result);
1398 end if;
1399 end if;
1400 end Freeze_And_Append;
1401
1402 -------------------
1403 -- Freeze_Before --
1404 -------------------
1405
1406 procedure Freeze_Before (N : Node_Id; T : Entity_Id) is
1407 Freeze_Nodes : constant List_Id := Freeze_Entity (T, Sloc (N));
70482933
RK
1408 begin
1409 if Is_Non_Empty_List (Freeze_Nodes) then
fbf5a39b 1410 Insert_Actions (N, Freeze_Nodes);
70482933
RK
1411 end if;
1412 end Freeze_Before;
1413
1414 -------------------
1415 -- Freeze_Entity --
1416 -------------------
1417
1418 function Freeze_Entity (E : Entity_Id; Loc : Source_Ptr) return List_Id is
c6823a20 1419 Test_E : Entity_Id := E;
70482933
RK
1420 Comp : Entity_Id;
1421 F_Node : Node_Id;
1422 Result : List_Id;
1423 Indx : Node_Id;
1424 Formal : Entity_Id;
1425 Atype : Entity_Id;
1426
4c8a5bb8
AC
1427 Has_Default_Initialization : Boolean := False;
1428 -- This flag gets set to true for a variable with default initialization
1429
70482933 1430 procedure Check_Current_Instance (Comp_Decl : Node_Id);
edd63e9b
ES
1431 -- Check that an Access or Unchecked_Access attribute with a prefix
1432 -- which is the current instance type can only be applied when the type
1433 -- is limited.
70482933
RK
1434
1435 function After_Last_Declaration return Boolean;
1436 -- If Loc is a freeze_entity that appears after the last declaration
1437 -- in the scope, inhibit error messages on late completion.
1438
1439 procedure Freeze_Record_Type (Rec : Entity_Id);
edd63e9b
ES
1440 -- Freeze each component, handle some representation clauses, and freeze
1441 -- primitive operations if this is a tagged type.
70482933
RK
1442
1443 ----------------------------
1444 -- After_Last_Declaration --
1445 ----------------------------
1446
1447 function After_Last_Declaration return Boolean is
fbf5a39b 1448 Spec : constant Node_Id := Parent (Current_Scope);
70482933
RK
1449 begin
1450 if Nkind (Spec) = N_Package_Specification then
1451 if Present (Private_Declarations (Spec)) then
1452 return Loc >= Sloc (Last (Private_Declarations (Spec)));
70482933
RK
1453 elsif Present (Visible_Declarations (Spec)) then
1454 return Loc >= Sloc (Last (Visible_Declarations (Spec)));
1455 else
1456 return False;
1457 end if;
70482933
RK
1458 else
1459 return False;
1460 end if;
1461 end After_Last_Declaration;
1462
1463 ----------------------------
1464 -- Check_Current_Instance --
1465 ----------------------------
1466
1467 procedure Check_Current_Instance (Comp_Decl : Node_Id) is
1468
32c760e6
ES
1469 Rec_Type : constant Entity_Id :=
1470 Scope (Defining_Identifier (Comp_Decl));
1471
1472 Decl : constant Node_Id := Parent (Rec_Type);
1473
70482933 1474 function Process (N : Node_Id) return Traverse_Result;
49e90211 1475 -- Process routine to apply check to given node
70482933 1476
fbf5a39b
AC
1477 -------------
1478 -- Process --
1479 -------------
1480
70482933
RK
1481 function Process (N : Node_Id) return Traverse_Result is
1482 begin
1483 case Nkind (N) is
1484 when N_Attribute_Reference =>
def46b54 1485 if (Attribute_Name (N) = Name_Access
70482933
RK
1486 or else
1487 Attribute_Name (N) = Name_Unchecked_Access)
1488 and then Is_Entity_Name (Prefix (N))
1489 and then Is_Type (Entity (Prefix (N)))
1490 and then Entity (Prefix (N)) = E
1491 then
1492 Error_Msg_N
1493 ("current instance must be a limited type", Prefix (N));
1494 return Abandon;
1495 else
1496 return OK;
1497 end if;
1498
1499 when others => return OK;
1500 end case;
1501 end Process;
1502
1503 procedure Traverse is new Traverse_Proc (Process);
1504
1505 -- Start of processing for Check_Current_Instance
1506
1507 begin
32c760e6
ES
1508 -- In Ada95, the (imprecise) rule is that the current instance of a
1509 -- limited type is aliased. In Ada2005, limitedness must be explicit:
1510 -- either a tagged type, or a limited record.
1511
1512 if Is_Limited_Type (Rec_Type)
1513 and then
1514 (Ada_Version < Ada_05
1515 or else Is_Tagged_Type (Rec_Type))
1516 then
1517 return;
1518
1519 elsif Nkind (Decl) = N_Full_Type_Declaration
1520 and then Limited_Present (Type_Definition (Decl))
1521 then
1522 return;
1523
1524 else
1525 Traverse (Comp_Decl);
1526 end if;
70482933
RK
1527 end Check_Current_Instance;
1528
1529 ------------------------
1530 -- Freeze_Record_Type --
1531 ------------------------
1532
1533 procedure Freeze_Record_Type (Rec : Entity_Id) is
1534 Comp : Entity_Id;
fbf5a39b 1535 IR : Node_Id;
70482933 1536 ADC : Node_Id;
c6823a20 1537 Prev : Entity_Id;
70482933 1538
67ce0d7e
RD
1539 Junk : Boolean;
1540 pragma Warnings (Off, Junk);
1541
70482933
RK
1542 Unplaced_Component : Boolean := False;
1543 -- Set True if we find at least one component with no component
1544 -- clause (used to warn about useless Pack pragmas).
1545
1546 Placed_Component : Boolean := False;
1547 -- Set True if we find at least one component with a component
1548 -- clause (used to warn about useless Bit_Order pragmas).
1549
e18d6a15
JM
1550 function Check_Allocator (N : Node_Id) return Node_Id;
1551 -- If N is an allocator, possibly wrapped in one or more level of
1552 -- qualified expression(s), return the inner allocator node, else
1553 -- return Empty.
19590d70 1554
7d8b9c99
RD
1555 procedure Check_Itype (Typ : Entity_Id);
1556 -- If the component subtype is an access to a constrained subtype of
1557 -- an already frozen type, make the subtype frozen as well. It might
1558 -- otherwise be frozen in the wrong scope, and a freeze node on
1559 -- subtype has no effect. Similarly, if the component subtype is a
1560 -- regular (not protected) access to subprogram, set the anonymous
1561 -- subprogram type to frozen as well, to prevent an out-of-scope
1562 -- freeze node at some eventual point of call. Protected operations
1563 -- are handled elsewhere.
6e059adb 1564
19590d70
GD
1565 ---------------------
1566 -- Check_Allocator --
1567 ---------------------
1568
e18d6a15
JM
1569 function Check_Allocator (N : Node_Id) return Node_Id is
1570 Inner : Node_Id;
19590d70 1571 begin
e18d6a15 1572 Inner := N;
e18d6a15
JM
1573 loop
1574 if Nkind (Inner) = N_Allocator then
1575 return Inner;
e18d6a15
JM
1576 elsif Nkind (Inner) = N_Qualified_Expression then
1577 Inner := Expression (Inner);
e18d6a15
JM
1578 else
1579 return Empty;
1580 end if;
1581 end loop;
19590d70
GD
1582 end Check_Allocator;
1583
6871ba5f
AC
1584 -----------------
1585 -- Check_Itype --
1586 -----------------
1587
7d8b9c99
RD
1588 procedure Check_Itype (Typ : Entity_Id) is
1589 Desig : constant Entity_Id := Designated_Type (Typ);
1590
6e059adb
AC
1591 begin
1592 if not Is_Frozen (Desig)
1593 and then Is_Frozen (Base_Type (Desig))
1594 then
1595 Set_Is_Frozen (Desig);
1596
1597 -- In addition, add an Itype_Reference to ensure that the
7d8b9c99
RD
1598 -- access subtype is elaborated early enough. This cannot be
1599 -- done if the subtype may depend on discriminants.
6e059adb
AC
1600
1601 if Ekind (Comp) = E_Component
1602 and then Is_Itype (Etype (Comp))
1603 and then not Has_Discriminants (Rec)
1604 then
1605 IR := Make_Itype_Reference (Sloc (Comp));
1606 Set_Itype (IR, Desig);
1607
1608 if No (Result) then
1609 Result := New_List (IR);
1610 else
1611 Append (IR, Result);
1612 end if;
1613 end if;
7d8b9c99
RD
1614
1615 elsif Ekind (Typ) = E_Anonymous_Access_Subprogram_Type
1616 and then Convention (Desig) /= Convention_Protected
1617 then
1618 Set_Is_Frozen (Desig);
6e059adb
AC
1619 end if;
1620 end Check_Itype;
1621
1622 -- Start of processing for Freeze_Record_Type
1623
70482933 1624 begin
7d8b9c99
RD
1625 -- If this is a subtype of a controlled type, declared without a
1626 -- constraint, the _controller may not appear in the component list
1627 -- if the parent was not frozen at the point of subtype declaration.
1628 -- Inherit the _controller component now.
fbf5a39b
AC
1629
1630 if Rec /= Base_Type (Rec)
1631 and then Has_Controlled_Component (Rec)
1632 then
1633 if Nkind (Parent (Rec)) = N_Subtype_Declaration
1634 and then Is_Entity_Name (Subtype_Indication (Parent (Rec)))
1635 then
1636 Set_First_Entity (Rec, First_Entity (Base_Type (Rec)));
1637
49e90211 1638 -- If this is an internal type without a declaration, as for
6871ba5f
AC
1639 -- record component, the base type may not yet be frozen, and its
1640 -- controller has not been created. Add an explicit freeze node
49e90211
ES
1641 -- for the itype, so it will be frozen after the base type. This
1642 -- freeze node is used to communicate with the expander, in order
1643 -- to create the controller for the enclosing record, and it is
1644 -- deleted afterwards (see exp_ch3). It must not be created when
1645 -- expansion is off, because it might appear in the wrong context
1646 -- for the back end.
fbf5a39b
AC
1647
1648 elsif Is_Itype (Rec)
1649 and then Has_Delayed_Freeze (Base_Type (Rec))
1650 and then
1651 Nkind (Associated_Node_For_Itype (Rec)) =
49e90211
ES
1652 N_Component_Declaration
1653 and then Expander_Active
fbf5a39b
AC
1654 then
1655 Ensure_Freeze_Node (Rec);
1656 end if;
1657 end if;
1658
49e90211 1659 -- Freeze components and embedded subtypes
70482933
RK
1660
1661 Comp := First_Entity (Rec);
c6823a20 1662 Prev := Empty;
c6823a20 1663 while Present (Comp) loop
70482933 1664
49e90211 1665 -- First handle the (real) component case
70482933
RK
1666
1667 if Ekind (Comp) = E_Component
1668 or else Ekind (Comp) = E_Discriminant
1669 then
70482933
RK
1670 declare
1671 CC : constant Node_Id := Component_Clause (Comp);
1672
1673 begin
c6823a20
EB
1674 -- Freezing a record type freezes the type of each of its
1675 -- components. However, if the type of the component is
1676 -- part of this record, we do not want or need a separate
1677 -- Freeze_Node. Note that Is_Itype is wrong because that's
1678 -- also set in private type cases. We also can't check for
1679 -- the Scope being exactly Rec because of private types and
1680 -- record extensions.
1681
1682 if Is_Itype (Etype (Comp))
1683 and then Is_Record_Type (Underlying_Type
1684 (Scope (Etype (Comp))))
1685 then
1686 Undelay_Type (Etype (Comp));
1687 end if;
1688
1689 Freeze_And_Append (Etype (Comp), Loc, Result);
1690
0da2c8ac
AC
1691 -- Check for error of component clause given for variable
1692 -- sized type. We have to delay this test till this point,
1693 -- since the component type has to be frozen for us to know
1694 -- if it is variable length. We omit this test in a generic
1695 -- context, it will be applied at instantiation time.
1696
70482933
RK
1697 if Present (CC) then
1698 Placed_Component := True;
1699
07fc65c4
GB
1700 if Inside_A_Generic then
1701 null;
1702
7d8b9c99
RD
1703 elsif not
1704 Size_Known_At_Compile_Time
1705 (Underlying_Type (Etype (Comp)))
70482933
RK
1706 then
1707 Error_Msg_N
1708 ("component clause not allowed for variable " &
1709 "length component", CC);
1710 end if;
1711
1712 else
1713 Unplaced_Component := True;
1714 end if;
70482933 1715
0da2c8ac 1716 -- Case of component requires byte alignment
70482933 1717
0da2c8ac 1718 if Must_Be_On_Byte_Boundary (Etype (Comp)) then
70482933 1719
0da2c8ac 1720 -- Set the enclosing record to also require byte align
70482933 1721
0da2c8ac 1722 Set_Must_Be_On_Byte_Boundary (Rec);
70482933 1723
7d8b9c99
RD
1724 -- Check for component clause that is inconsistent with
1725 -- the required byte boundary alignment.
70482933 1726
0da2c8ac
AC
1727 if Present (CC)
1728 and then Normalized_First_Bit (Comp) mod
1729 System_Storage_Unit /= 0
1730 then
1731 Error_Msg_N
1732 ("component & must be byte aligned",
1733 Component_Name (Component_Clause (Comp)));
1734 end if;
1735 end if;
70482933 1736
7d8b9c99
RD
1737 -- If component clause is present, then deal with the non-
1738 -- default bit order case for Ada 95 mode. The required
fea9e956
ES
1739 -- processing for Ada 2005 mode is handled separately after
1740 -- processing all components.
70482933 1741
0da2c8ac
AC
1742 -- We only do this processing for the base type, and in
1743 -- fact that's important, since otherwise if there are
1744 -- record subtypes, we could reverse the bits once for
1745 -- each subtype, which would be incorrect.
70482933 1746
0da2c8ac
AC
1747 if Present (CC)
1748 and then Reverse_Bit_Order (Rec)
1749 and then Ekind (E) = E_Record_Type
fea9e956 1750 and then Ada_Version <= Ada_95
0da2c8ac
AC
1751 then
1752 declare
1753 CFB : constant Uint := Component_Bit_Offset (Comp);
1754 CSZ : constant Uint := Esize (Comp);
1755 CLC : constant Node_Id := Component_Clause (Comp);
1756 Pos : constant Node_Id := Position (CLC);
1757 FB : constant Node_Id := First_Bit (CLC);
1758
1759 Storage_Unit_Offset : constant Uint :=
1760 CFB / System_Storage_Unit;
1761
1762 Start_Bit : constant Uint :=
1763 CFB mod System_Storage_Unit;
1764
1765 begin
1766 -- Cases where field goes over storage unit boundary
1767
1768 if Start_Bit + CSZ > System_Storage_Unit then
70482933 1769
0da2c8ac
AC
1770 -- Allow multi-byte field but generate warning
1771
1772 if Start_Bit mod System_Storage_Unit = 0
1773 and then CSZ mod System_Storage_Unit = 0
1774 then
70482933 1775 Error_Msg_N
0da2c8ac
AC
1776 ("multi-byte field specified with non-standard"
1777 & " Bit_Order?", CLC);
1778
1779 if Bytes_Big_Endian then
1780 Error_Msg_N
1781 ("bytes are not reversed "
1782 & "(component is big-endian)?", CLC);
1783 else
1784 Error_Msg_N
1785 ("bytes are not reversed "
1786 & "(component is little-endian)?", CLC);
1787 end if;
1788
c6084ae0 1789 -- Do not allow non-contiguous field
0da2c8ac 1790
70482933
RK
1791 else
1792 Error_Msg_N
c6084ae0
AC
1793 ("attempt to specify non-contiguous field "
1794 & "not permitted", CLC);
0da2c8ac 1795 Error_Msg_N
c6084ae0
AC
1796 ("\caused by non-standard Bit_Order "
1797 & "specified", CLC);
1798 Error_Msg_N
1799 ("\consider possibility of using "
1800 & "Ada 2005 mode here", CLC);
70482933
RK
1801 end if;
1802
c6084ae0 1803 -- Case where field fits in one storage unit
70482933
RK
1804
1805 else
0da2c8ac 1806 -- Give warning if suspicious component clause
70482933 1807
fea9e956
ES
1808 if Intval (FB) >= System_Storage_Unit
1809 and then Warn_On_Reverse_Bit_Order
1810 then
0da2c8ac
AC
1811 Error_Msg_N
1812 ("?Bit_Order clause does not affect " &
1813 "byte ordering", Pos);
1814 Error_Msg_Uint_1 :=
1815 Intval (Pos) + Intval (FB) /
1816 System_Storage_Unit;
1817 Error_Msg_N
1818 ("?position normalized to ^ before bit " &
1819 "order interpreted", Pos);
1820 end if;
70482933 1821
0da2c8ac
AC
1822 -- Here is where we fix up the Component_Bit_Offset
1823 -- value to account for the reverse bit order.
1824 -- Some examples of what needs to be done are:
70482933 1825
0da2c8ac
AC
1826 -- First_Bit .. Last_Bit Component_Bit_Offset
1827 -- old new old new
70482933 1828
0da2c8ac
AC
1829 -- 0 .. 0 7 .. 7 0 7
1830 -- 0 .. 1 6 .. 7 0 6
1831 -- 0 .. 2 5 .. 7 0 5
1832 -- 0 .. 7 0 .. 7 0 4
70482933 1833
0da2c8ac
AC
1834 -- 1 .. 1 6 .. 6 1 6
1835 -- 1 .. 4 3 .. 6 1 3
1836 -- 4 .. 7 0 .. 3 4 0
70482933 1837
0da2c8ac
AC
1838 -- The general rule is that the first bit is
1839 -- is obtained by subtracting the old ending bit
1840 -- from storage_unit - 1.
70482933 1841
0da2c8ac
AC
1842 Set_Component_Bit_Offset
1843 (Comp,
1844 (Storage_Unit_Offset * System_Storage_Unit) +
1845 (System_Storage_Unit - 1) -
1846 (Start_Bit + CSZ - 1));
70482933 1847
0da2c8ac
AC
1848 Set_Normalized_First_Bit
1849 (Comp,
1850 Component_Bit_Offset (Comp) mod
1851 System_Storage_Unit);
1852 end if;
1853 end;
1854 end if;
1855 end;
70482933
RK
1856 end if;
1857
c6823a20
EB
1858 -- If the component is an Itype with Delayed_Freeze and is either
1859 -- a record or array subtype and its base type has not yet been
1860 -- frozen, we must remove this from the entity list of this
1861 -- record and put it on the entity list of the scope of its base
1862 -- type. Note that we know that this is not the type of a
1863 -- component since we cleared Has_Delayed_Freeze for it in the
1864 -- previous loop. Thus this must be the Designated_Type of an
1865 -- access type, which is the type of a component.
1866
1867 if Is_Itype (Comp)
1868 and then Is_Type (Scope (Comp))
1869 and then Is_Composite_Type (Comp)
1870 and then Base_Type (Comp) /= Comp
1871 and then Has_Delayed_Freeze (Comp)
1872 and then not Is_Frozen (Base_Type (Comp))
1873 then
1874 declare
1875 Will_Be_Frozen : Boolean := False;
1b24ada5 1876 S : Entity_Id;
c6823a20
EB
1877
1878 begin
fea9e956
ES
1879 -- We have a pretty bad kludge here. Suppose Rec is subtype
1880 -- being defined in a subprogram that's created as part of
1881 -- the freezing of Rec'Base. In that case, we know that
1882 -- Comp'Base must have already been frozen by the time we
1883 -- get to elaborate this because Gigi doesn't elaborate any
1884 -- bodies until it has elaborated all of the declarative
1885 -- part. But Is_Frozen will not be set at this point because
1886 -- we are processing code in lexical order.
1887
1888 -- We detect this case by going up the Scope chain of Rec
1889 -- and seeing if we have a subprogram scope before reaching
1890 -- the top of the scope chain or that of Comp'Base. If we
1891 -- do, then mark that Comp'Base will actually be frozen. If
1892 -- so, we merely undelay it.
c6823a20 1893
1b24ada5 1894 S := Scope (Rec);
c6823a20
EB
1895 while Present (S) loop
1896 if Is_Subprogram (S) then
1897 Will_Be_Frozen := True;
1898 exit;
1899 elsif S = Scope (Base_Type (Comp)) then
1900 exit;
1901 end if;
1902
1903 S := Scope (S);
1904 end loop;
1905
1906 if Will_Be_Frozen then
1907 Undelay_Type (Comp);
1908 else
1909 if Present (Prev) then
1910 Set_Next_Entity (Prev, Next_Entity (Comp));
1911 else
1912 Set_First_Entity (Rec, Next_Entity (Comp));
1913 end if;
1914
1915 -- Insert in entity list of scope of base type (which
1916 -- must be an enclosing scope, because still unfrozen).
1917
1918 Append_Entity (Comp, Scope (Base_Type (Comp)));
1919 end if;
1920 end;
1921
def46b54
RD
1922 -- If the component is an access type with an allocator as default
1923 -- value, the designated type will be frozen by the corresponding
1924 -- expression in init_proc. In order to place the freeze node for
1925 -- the designated type before that for the current record type,
1926 -- freeze it now.
c6823a20
EB
1927
1928 -- Same process if the component is an array of access types,
1929 -- initialized with an aggregate. If the designated type is
def46b54
RD
1930 -- private, it cannot contain allocators, and it is premature
1931 -- to freeze the type, so we check for this as well.
c6823a20
EB
1932
1933 elsif Is_Access_Type (Etype (Comp))
1934 and then Present (Parent (Comp))
1935 and then Present (Expression (Parent (Comp)))
c6823a20
EB
1936 then
1937 declare
e18d6a15
JM
1938 Alloc : constant Node_Id :=
1939 Check_Allocator (Expression (Parent (Comp)));
c6823a20
EB
1940
1941 begin
e18d6a15 1942 if Present (Alloc) then
19590d70 1943
e18d6a15
JM
1944 -- If component is pointer to a classwide type, freeze
1945 -- the specific type in the expression being allocated.
1946 -- The expression may be a subtype indication, in which
1947 -- case freeze the subtype mark.
c6823a20 1948
e18d6a15
JM
1949 if Is_Class_Wide_Type
1950 (Designated_Type (Etype (Comp)))
0f4cb75c 1951 then
e18d6a15
JM
1952 if Is_Entity_Name (Expression (Alloc)) then
1953 Freeze_And_Append
1954 (Entity (Expression (Alloc)), Loc, Result);
1955 elsif
1956 Nkind (Expression (Alloc)) = N_Subtype_Indication
1957 then
1958 Freeze_And_Append
1959 (Entity (Subtype_Mark (Expression (Alloc))),
1960 Loc, Result);
1961 end if;
0f4cb75c 1962
e18d6a15
JM
1963 elsif Is_Itype (Designated_Type (Etype (Comp))) then
1964 Check_Itype (Etype (Comp));
0f4cb75c 1965
e18d6a15
JM
1966 else
1967 Freeze_And_Append
1968 (Designated_Type (Etype (Comp)), Loc, Result);
1969 end if;
c6823a20
EB
1970 end if;
1971 end;
1972
1973 elsif Is_Access_Type (Etype (Comp))
1974 and then Is_Itype (Designated_Type (Etype (Comp)))
1975 then
7d8b9c99 1976 Check_Itype (Etype (Comp));
c6823a20
EB
1977
1978 elsif Is_Array_Type (Etype (Comp))
1979 and then Is_Access_Type (Component_Type (Etype (Comp)))
1980 and then Present (Parent (Comp))
1981 and then Nkind (Parent (Comp)) = N_Component_Declaration
1982 and then Present (Expression (Parent (Comp)))
1983 and then Nkind (Expression (Parent (Comp))) = N_Aggregate
1984 and then Is_Fully_Defined
1985 (Designated_Type (Component_Type (Etype (Comp))))
1986 then
1987 Freeze_And_Append
1988 (Designated_Type
1989 (Component_Type (Etype (Comp))), Loc, Result);
1990 end if;
1991
1992 Prev := Comp;
70482933
RK
1993 Next_Entity (Comp);
1994 end loop;
1995
fea9e956
ES
1996 -- Deal with pragma Bit_Order
1997
1998 if Reverse_Bit_Order (Rec) and then Base_Type (Rec) = Rec then
1999 if not Placed_Component then
2000 ADC :=
2001 Get_Attribute_Definition_Clause (Rec, Attribute_Bit_Order);
2002 Error_Msg_N
2003 ("?Bit_Order specification has no effect", ADC);
2004 Error_Msg_N
2005 ("\?since no component clauses were specified", ADC);
2006
def46b54
RD
2007 -- Here is where we do Ada 2005 processing for bit order (the Ada
2008 -- 95 case was already taken care of above).
70482933 2009
fea9e956
ES
2010 elsif Ada_Version >= Ada_05 then
2011 Adjust_Record_For_Reverse_Bit_Order (Rec);
2012 end if;
70482933
RK
2013 end if;
2014
1b24ada5
RD
2015 -- Set OK_To_Reorder_Components depending on debug flags
2016
2017 if Rec = Base_Type (Rec)
2018 and then Convention (Rec) = Convention_Ada
2019 then
2020 if (Has_Discriminants (Rec) and then Debug_Flag_Dot_V)
2021 or else
2022 (not Has_Discriminants (Rec) and then Debug_Flag_Dot_R)
2023 then
2024 Set_OK_To_Reorder_Components (Rec);
2025 end if;
2026 end if;
2027
ee094616
RD
2028 -- Check for useless pragma Pack when all components placed. We only
2029 -- do this check for record types, not subtypes, since a subtype may
2030 -- have all its components placed, and it still makes perfectly good
1b24ada5
RD
2031 -- sense to pack other subtypes or the parent type. We do not give
2032 -- this warning if Optimize_Alignment is set to Space, since the
2033 -- pragma Pack does have an effect in this case (it always resets
2034 -- the alignment to one).
70482933 2035
ee094616
RD
2036 if Ekind (Rec) = E_Record_Type
2037 and then Is_Packed (Rec)
70482933 2038 and then not Unplaced_Component
1b24ada5 2039 and then Optimize_Alignment /= 'S'
70482933 2040 then
def46b54
RD
2041 -- Reset packed status. Probably not necessary, but we do it so
2042 -- that there is no chance of the back end doing something strange
2043 -- with this redundant indication of packing.
ee094616 2044
70482933 2045 Set_Is_Packed (Rec, False);
ee094616
RD
2046
2047 -- Give warning if redundant constructs warnings on
2048
2049 if Warn_On_Redundant_Constructs then
2050 Error_Msg_N
2051 ("?pragma Pack has no effect, no unplaced components",
2052 Get_Rep_Pragma (Rec, Name_Pack));
2053 end if;
70482933
RK
2054 end if;
2055
ee094616
RD
2056 -- If this is the record corresponding to a remote type, freeze the
2057 -- remote type here since that is what we are semantically freezing.
2058 -- This prevents the freeze node for that type in an inner scope.
70482933
RK
2059
2060 -- Also, Check for controlled components and unchecked unions.
ee094616
RD
2061 -- Finally, enforce the restriction that access attributes with a
2062 -- current instance prefix can only apply to limited types.
70482933
RK
2063
2064 if Ekind (Rec) = E_Record_Type then
70482933
RK
2065 if Present (Corresponding_Remote_Type (Rec)) then
2066 Freeze_And_Append
2067 (Corresponding_Remote_Type (Rec), Loc, Result);
2068 end if;
2069
2070 Comp := First_Component (Rec);
70482933
RK
2071 while Present (Comp) loop
2072 if Has_Controlled_Component (Etype (Comp))
2073 or else (Chars (Comp) /= Name_uParent
2074 and then Is_Controlled (Etype (Comp)))
2075 or else (Is_Protected_Type (Etype (Comp))
2076 and then Present
2077 (Corresponding_Record_Type (Etype (Comp)))
2078 and then Has_Controlled_Component
2079 (Corresponding_Record_Type (Etype (Comp))))
2080 then
2081 Set_Has_Controlled_Component (Rec);
2082 exit;
2083 end if;
2084
2085 if Has_Unchecked_Union (Etype (Comp)) then
2086 Set_Has_Unchecked_Union (Rec);
2087 end if;
2088
32c760e6
ES
2089 if Has_Per_Object_Constraint (Comp) then
2090
ee094616
RD
2091 -- Scan component declaration for likely misuses of current
2092 -- instance, either in a constraint or a default expression.
70482933
RK
2093
2094 Check_Current_Instance (Parent (Comp));
2095 end if;
2096
2097 Next_Component (Comp);
2098 end loop;
2099 end if;
2100
2101 Set_Component_Alignment_If_Not_Set (Rec);
2102
ee094616
RD
2103 -- For first subtypes, check if there are any fixed-point fields with
2104 -- component clauses, where we must check the size. This is not done
2105 -- till the freeze point, since for fixed-point types, we do not know
2106 -- the size until the type is frozen. Similar processing applies to
2107 -- bit packed arrays.
70482933
RK
2108
2109 if Is_First_Subtype (Rec) then
2110 Comp := First_Component (Rec);
2111
2112 while Present (Comp) loop
2113 if Present (Component_Clause (Comp))
d05ef0ab
AC
2114 and then (Is_Fixed_Point_Type (Etype (Comp))
2115 or else
2116 Is_Bit_Packed_Array (Etype (Comp)))
70482933
RK
2117 then
2118 Check_Size
d05ef0ab 2119 (Component_Name (Component_Clause (Comp)),
70482933
RK
2120 Etype (Comp),
2121 Esize (Comp),
2122 Junk);
2123 end if;
2124
2125 Next_Component (Comp);
2126 end loop;
2127 end if;
7d8b9c99
RD
2128
2129 -- Generate warning for applying C or C++ convention to a record
2130 -- with discriminants. This is suppressed for the unchecked union
1b24ada5
RD
2131 -- case, since the whole point in this case is interface C. We also
2132 -- do not generate this within instantiations, since we will have
2133 -- generated a message on the template.
7d8b9c99
RD
2134
2135 if Has_Discriminants (E)
2136 and then not Is_Unchecked_Union (E)
7d8b9c99
RD
2137 and then (Convention (E) = Convention_C
2138 or else
2139 Convention (E) = Convention_CPP)
2140 and then Comes_From_Source (E)
1b24ada5
RD
2141 and then not In_Instance
2142 and then not Has_Warnings_Off (E)
2143 and then not Has_Warnings_Off (Base_Type (E))
7d8b9c99
RD
2144 then
2145 declare
2146 Cprag : constant Node_Id := Get_Rep_Pragma (E, Name_Convention);
2147 A2 : Node_Id;
2148
2149 begin
2150 if Present (Cprag) then
2151 A2 := Next (First (Pragma_Argument_Associations (Cprag)));
2152
2153 if Convention (E) = Convention_C then
2154 Error_Msg_N
2155 ("?variant record has no direct equivalent in C", A2);
2156 else
2157 Error_Msg_N
2158 ("?variant record has no direct equivalent in C++", A2);
2159 end if;
2160
2161 Error_Msg_NE
2162 ("\?use of convention for type& is dubious", A2, E);
2163 end if;
2164 end;
2165 end if;
70482933
RK
2166 end Freeze_Record_Type;
2167
2168 -- Start of processing for Freeze_Entity
2169
2170 begin
c6823a20
EB
2171 -- We are going to test for various reasons why this entity need not be
2172 -- frozen here, but in the case of an Itype that's defined within a
2173 -- record, that test actually applies to the record.
2174
2175 if Is_Itype (E) and then Is_Record_Type (Scope (E)) then
2176 Test_E := Scope (E);
2177 elsif Is_Itype (E) and then Present (Underlying_Type (Scope (E)))
2178 and then Is_Record_Type (Underlying_Type (Scope (E)))
2179 then
2180 Test_E := Underlying_Type (Scope (E));
2181 end if;
2182
fbf5a39b 2183 -- Do not freeze if already frozen since we only need one freeze node
70482933
RK
2184
2185 if Is_Frozen (E) then
2186 return No_List;
2187
c6823a20
EB
2188 -- It is improper to freeze an external entity within a generic because
2189 -- its freeze node will appear in a non-valid context. The entity will
2190 -- be frozen in the proper scope after the current generic is analyzed.
70482933 2191
c6823a20 2192 elsif Inside_A_Generic and then External_Ref_In_Generic (Test_E) then
70482933
RK
2193 return No_List;
2194
2195 -- Do not freeze a global entity within an inner scope created during
2196 -- expansion. A call to subprogram E within some internal procedure
2197 -- (a stream attribute for example) might require freezing E, but the
2198 -- freeze node must appear in the same declarative part as E itself.
2199 -- The two-pass elaboration mechanism in gigi guarantees that E will
2200 -- be frozen before the inner call is elaborated. We exclude constants
2201 -- from this test, because deferred constants may be frozen early, and
19590d70
GD
2202 -- must be diagnosed (e.g. in the case of a deferred constant being used
2203 -- in a default expression). If the enclosing subprogram comes from
2204 -- source, or is a generic instance, then the freeze point is the one
2205 -- mandated by the language, and we freeze the entity. A subprogram that
2206 -- is a child unit body that acts as a spec does not have a spec that
2207 -- comes from source, but can only come from source.
70482933 2208
c6823a20
EB
2209 elsif In_Open_Scopes (Scope (Test_E))
2210 and then Scope (Test_E) /= Current_Scope
2211 and then Ekind (Test_E) /= E_Constant
70482933
RK
2212 then
2213 declare
2214 S : Entity_Id := Current_Scope;
2215
2216 begin
2217 while Present (S) loop
2218 if Is_Overloadable (S) then
2219 if Comes_From_Source (S)
2220 or else Is_Generic_Instance (S)
fea9e956 2221 or else Is_Child_Unit (S)
70482933
RK
2222 then
2223 exit;
2224 else
2225 return No_List;
2226 end if;
2227 end if;
2228
2229 S := Scope (S);
2230 end loop;
2231 end;
555360a5
AC
2232
2233 -- Similarly, an inlined instance body may make reference to global
2234 -- entities, but these references cannot be the proper freezing point
def46b54
RD
2235 -- for them, and in the absence of inlining freezing will take place in
2236 -- their own scope. Normally instance bodies are analyzed after the
2237 -- enclosing compilation, and everything has been frozen at the proper
2238 -- place, but with front-end inlining an instance body is compiled
2239 -- before the end of the enclosing scope, and as a result out-of-order
2240 -- freezing must be prevented.
555360a5
AC
2241
2242 elsif Front_End_Inlining
7d8b9c99 2243 and then In_Instance_Body
c6823a20 2244 and then Present (Scope (Test_E))
555360a5
AC
2245 then
2246 declare
c6823a20
EB
2247 S : Entity_Id := Scope (Test_E);
2248
555360a5
AC
2249 begin
2250 while Present (S) loop
2251 if Is_Generic_Instance (S) then
2252 exit;
2253 else
2254 S := Scope (S);
2255 end if;
2256 end loop;
2257
2258 if No (S) then
2259 return No_List;
2260 end if;
2261 end;
70482933
RK
2262 end if;
2263
2264 -- Here to freeze the entity
2265
2266 Result := No_List;
2267 Set_Is_Frozen (E);
2268
2269 -- Case of entity being frozen is other than a type
2270
2271 if not Is_Type (E) then
2272
2273 -- If entity is exported or imported and does not have an external
2274 -- name, now is the time to provide the appropriate default name.
2275 -- Skip this if the entity is stubbed, since we don't need a name
2276 -- for any stubbed routine.
2277
2278 if (Is_Imported (E) or else Is_Exported (E))
2279 and then No (Interface_Name (E))
2280 and then Convention (E) /= Convention_Stubbed
2281 then
2282 Set_Encoded_Interface_Name
2283 (E, Get_Default_External_Name (E));
fbf5a39b 2284
bbaba73f
EB
2285 -- If entity is an atomic object appearing in a declaration and
2286 -- the expression is an aggregate, assign it to a temporary to
2287 -- ensure that the actual assignment is done atomically rather
2288 -- than component-wise (the assignment to the temp may be done
2289 -- component-wise, but that is harmless).
fbf5a39b
AC
2290
2291 elsif Is_Atomic (E)
2292 and then Nkind (Parent (E)) = N_Object_Declaration
2293 and then Present (Expression (Parent (E)))
bbaba73f 2294 and then Nkind (Expression (Parent (E))) = N_Aggregate
fbf5a39b 2295 then
bbaba73f 2296 Expand_Atomic_Aggregate (Expression (Parent (E)), Etype (E));
70482933
RK
2297 end if;
2298
2299 -- For a subprogram, freeze all parameter types and also the return
fbf5a39b 2300 -- type (RM 13.14(14)). However skip this for internal subprograms.
70482933
RK
2301 -- This is also the point where any extra formal parameters are
2302 -- created since we now know whether the subprogram will use
2303 -- a foreign convention.
2304
2305 if Is_Subprogram (E) then
70482933 2306 if not Is_Internal (E) then
70482933 2307 declare
6d11af89 2308 F_Type : Entity_Id;
def46b54 2309 R_Type : Entity_Id;
6d11af89 2310 Warn_Node : Node_Id;
70482933 2311
70482933
RK
2312 begin
2313 -- Loop through formals
2314
2315 Formal := First_Formal (E);
70482933 2316 while Present (Formal) loop
70482933
RK
2317 F_Type := Etype (Formal);
2318 Freeze_And_Append (F_Type, Loc, Result);
2319
2320 if Is_Private_Type (F_Type)
2321 and then Is_Private_Type (Base_Type (F_Type))
2322 and then No (Full_View (Base_Type (F_Type)))
2323 and then not Is_Generic_Type (F_Type)
2324 and then not Is_Derived_Type (F_Type)
2325 then
2326 -- If the type of a formal is incomplete, subprogram
2327 -- is being frozen prematurely. Within an instance
2328 -- (but not within a wrapper package) this is an
2329 -- an artifact of our need to regard the end of an
2330 -- instantiation as a freeze point. Otherwise it is
2331 -- a definite error.
fbf5a39b 2332
70482933
RK
2333 -- and then not Is_Wrapper_Package (Current_Scope) ???
2334
2335 if In_Instance then
2336 Set_Is_Frozen (E, False);
2337 return No_List;
2338
86cde7b1
RD
2339 elsif not After_Last_Declaration
2340 and then not Freezing_Library_Level_Tagged_Type
2341 then
70482933
RK
2342 Error_Msg_Node_1 := F_Type;
2343 Error_Msg
2344 ("type& must be fully defined before this point",
2345 Loc);
2346 end if;
2347 end if;
2348
def46b54 2349 -- Check suspicious parameter for C function. These tests
1b24ada5 2350 -- apply only to exported/imported subprograms.
70482933 2351
def46b54 2352 if Warn_On_Export_Import
1b24ada5 2353 and then Comes_From_Source (E)
def46b54
RD
2354 and then (Convention (E) = Convention_C
2355 or else
2356 Convention (E) = Convention_CPP)
def46b54 2357 and then (Is_Imported (E) or else Is_Exported (E))
1b24ada5
RD
2358 and then Convention (E) /= Convention (Formal)
2359 and then not Has_Warnings_Off (E)
2360 and then not Has_Warnings_Off (F_Type)
2361 and then not Has_Warnings_Off (Formal)
fbf5a39b 2362 then
70482933 2363 Error_Msg_Qual_Level := 1;
def46b54
RD
2364
2365 -- Check suspicious use of fat C pointer
2366
2367 if Is_Access_Type (F_Type)
2368 and then Esize (F_Type) > Ttypes.System_Address_Size
2369 then
2370 Error_Msg_N
2371 ("?type of & does not correspond "
2372 & "to C pointer!", Formal);
2373
2374 -- Check suspicious return of boolean
2375
2376 elsif Root_Type (F_Type) = Standard_Boolean
2377 and then Convention (F_Type) = Convention_Ada
67198556
RD
2378 and then not Has_Warnings_Off (F_Type)
2379 and then not Has_Size_Clause (F_Type)
def46b54
RD
2380 then
2381 Error_Msg_N
2382 ("?& is an 8-bit Ada Boolean, "
2383 & "use char in C!", Formal);
2384
2385 -- Check suspicious tagged type
2386
2387 elsif (Is_Tagged_Type (F_Type)
2388 or else (Is_Access_Type (F_Type)
2389 and then
2390 Is_Tagged_Type
2391 (Designated_Type (F_Type))))
2392 and then Convention (E) = Convention_C
2393 then
2394 Error_Msg_N
2395 ("?& is a tagged type which does not "
2396 & "correspond to any C type!", Formal);
2397
2398 -- Check wrong convention subprogram pointer
2399
2400 elsif Ekind (F_Type) = E_Access_Subprogram_Type
2401 and then not Has_Foreign_Convention (F_Type)
2402 then
2403 Error_Msg_N
2404 ("?subprogram pointer & should "
2405 & "have foreign convention!", Formal);
2406 Error_Msg_Sloc := Sloc (F_Type);
2407 Error_Msg_NE
2408 ("\?add Convention pragma to declaration of &#",
2409 Formal, F_Type);
2410 end if;
2411
70482933
RK
2412 Error_Msg_Qual_Level := 0;
2413 end if;
2414
2415 -- Check for unconstrained array in exported foreign
2416 -- convention case.
2417
def46b54 2418 if Has_Foreign_Convention (E)
70482933
RK
2419 and then not Is_Imported (E)
2420 and then Is_Array_Type (F_Type)
2421 and then not Is_Constrained (F_Type)
fbf5a39b 2422 and then Warn_On_Export_Import
70482933
RK
2423 then
2424 Error_Msg_Qual_Level := 1;
6d11af89
AC
2425
2426 -- If this is an inherited operation, place the
2427 -- warning on the derived type declaration, rather
2428 -- than on the original subprogram.
2429
2430 if Nkind (Original_Node (Parent (E))) =
2431 N_Full_Type_Declaration
2432 then
2433 Warn_Node := Parent (E);
2434
2435 if Formal = First_Formal (E) then
2436 Error_Msg_NE
add9f797 2437 ("?in inherited operation&", Warn_Node, E);
6d11af89
AC
2438 end if;
2439 else
2440 Warn_Node := Formal;
2441 end if;
2442
2443 Error_Msg_NE
70482933 2444 ("?type of argument& is unconstrained array",
6d11af89
AC
2445 Warn_Node, Formal);
2446 Error_Msg_NE
70482933 2447 ("?foreign caller must pass bounds explicitly",
6d11af89 2448 Warn_Node, Formal);
70482933
RK
2449 Error_Msg_Qual_Level := 0;
2450 end if;
2451
d8db0bca
JM
2452 if not From_With_Type (F_Type) then
2453 if Is_Access_Type (F_Type) then
2454 F_Type := Designated_Type (F_Type);
2455 end if;
2456
7d8b9c99
RD
2457 -- If the formal is an anonymous_access_to_subprogram
2458 -- freeze the subprogram type as well, to prevent
2459 -- scope anomalies in gigi, because there is no other
2460 -- clear point at which it could be frozen.
2461
93bcda23 2462 if Is_Itype (Etype (Formal))
7d8b9c99
RD
2463 and then Ekind (F_Type) = E_Subprogram_Type
2464 then
57747aec 2465 Freeze_And_Append (F_Type, Loc, Result);
d8db0bca
JM
2466 end if;
2467 end if;
2468
70482933
RK
2469 Next_Formal (Formal);
2470 end loop;
2471
5e39baa6 2472 -- Case of function: similar checks on return type
70482933
RK
2473
2474 if Ekind (E) = E_Function then
def46b54
RD
2475
2476 -- Freeze return type
2477
2478 R_Type := Etype (E);
2479 Freeze_And_Append (R_Type, Loc, Result);
2480
2481 -- Check suspicious return type for C function
70482933 2482
fbf5a39b 2483 if Warn_On_Export_Import
def46b54
RD
2484 and then (Convention (E) = Convention_C
2485 or else
2486 Convention (E) = Convention_CPP)
def46b54 2487 and then (Is_Imported (E) or else Is_Exported (E))
fbf5a39b 2488 then
def46b54
RD
2489 -- Check suspicious return of fat C pointer
2490
2491 if Is_Access_Type (R_Type)
2492 and then Esize (R_Type) > Ttypes.System_Address_Size
1b24ada5
RD
2493 and then not Has_Warnings_Off (E)
2494 and then not Has_Warnings_Off (R_Type)
def46b54
RD
2495 then
2496 Error_Msg_N
2497 ("?return type of& does not "
2498 & "correspond to C pointer!", E);
2499
2500 -- Check suspicious return of boolean
2501
2502 elsif Root_Type (R_Type) = Standard_Boolean
2503 and then Convention (R_Type) = Convention_Ada
1b24ada5
RD
2504 and then not Has_Warnings_Off (E)
2505 and then not Has_Warnings_Off (R_Type)
67198556 2506 and then not Has_Size_Clause (R_Type)
def46b54
RD
2507 then
2508 Error_Msg_N
2509 ("?return type of & is an 8-bit "
2510 & "Ada Boolean, use char in C!", E);
70482933 2511
def46b54
RD
2512 -- Check suspicious return tagged type
2513
2514 elsif (Is_Tagged_Type (R_Type)
2515 or else (Is_Access_Type (R_Type)
2516 and then
2517 Is_Tagged_Type
2518 (Designated_Type (R_Type))))
2519 and then Convention (E) = Convention_C
1b24ada5
RD
2520 and then not Has_Warnings_Off (E)
2521 and then not Has_Warnings_Off (R_Type)
def46b54
RD
2522 then
2523 Error_Msg_N
2524 ("?return type of & does not "
2525 & "correspond to C type!", E);
2526
2527 -- Check return of wrong convention subprogram pointer
2528
2529 elsif Ekind (R_Type) = E_Access_Subprogram_Type
2530 and then not Has_Foreign_Convention (R_Type)
1b24ada5
RD
2531 and then not Has_Warnings_Off (E)
2532 and then not Has_Warnings_Off (R_Type)
def46b54
RD
2533 then
2534 Error_Msg_N
2535 ("?& should return a foreign "
2536 & "convention subprogram pointer", E);
2537 Error_Msg_Sloc := Sloc (R_Type);
2538 Error_Msg_NE
2539 ("\?add Convention pragma to declaration of& #",
2540 E, R_Type);
2541 end if;
2542 end if;
2543
93bcda23
AC
2544 if Is_Array_Type (R_Type)
2545 and then not Is_Constrained (R_Type)
70482933 2546 and then not Is_Imported (E)
def46b54 2547 and then Has_Foreign_Convention (E)
fbf5a39b 2548 and then Warn_On_Export_Import
1b24ada5 2549 and then not Has_Warnings_Off (E)
93bcda23 2550 and then not Has_Warnings_Off (R_Type)
70482933
RK
2551 then
2552 Error_Msg_N
fbf5a39b 2553 ("?foreign convention function& should not " &
1b24ada5 2554 "return unconstrained array!", E);
70482933
RK
2555 end if;
2556 end if;
2557 end;
2558 end if;
2559
2560 -- Must freeze its parent first if it is a derived subprogram
2561
2562 if Present (Alias (E)) then
2563 Freeze_And_Append (Alias (E), Loc, Result);
2564 end if;
2565
19590d70
GD
2566 -- We don't freeze internal subprograms, because we don't normally
2567 -- want addition of extra formals or mechanism setting to happen
2568 -- for those. However we do pass through predefined dispatching
2569 -- cases, since extra formals may be needed in some cases, such as
2570 -- for the stream 'Input function (build-in-place formals).
2571
2572 if not Is_Internal (E)
2573 or else Is_Predefined_Dispatching_Operation (E)
2574 then
70482933
RK
2575 Freeze_Subprogram (E);
2576 end if;
2577
2578 -- Here for other than a subprogram or type
2579
2580 else
2581 -- If entity has a type, and it is not a generic unit, then
7d8b9c99 2582 -- freeze it first (RM 13.14(10)).
70482933 2583
ac72c9c5 2584 if Present (Etype (E))
70482933
RK
2585 and then Ekind (E) /= E_Generic_Function
2586 then
2587 Freeze_And_Append (Etype (E), Loc, Result);
2588 end if;
2589
2c9beb8a 2590 -- Special processing for objects created by object declaration
70482933
RK
2591
2592 if Nkind (Declaration_Node (E)) = N_Object_Declaration then
2c9beb8a
RD
2593
2594 -- For object created by object declaration, perform required
2595 -- categorization (preelaborate and pure) checks. Defer these
2596 -- checks to freeze time since pragma Import inhibits default
2597 -- initialization and thus pragma Import affects these checks.
2598
70482933 2599 Validate_Object_Declaration (Declaration_Node (E));
2c9beb8a 2600
1ce1f005 2601 -- If there is an address clause, check that it is valid
2c9beb8a 2602
fbf5a39b 2603 Check_Address_Clause (E);
2c9beb8a 2604
1ce1f005
GD
2605 -- If the object needs any kind of default initialization, an
2606 -- error must be issued if No_Default_Initialization applies.
2607 -- The check doesn't apply to imported objects, which are not
2608 -- ever default initialized, and is why the check is deferred
2609 -- until freezing, at which point we know if Import applies.
4fec4e7a
ES
2610 -- Deferred constants are also exempted from this test because
2611 -- their completion is explicit, or through an import pragma.
1ce1f005 2612
4fec4e7a
ES
2613 if Ekind (E) = E_Constant
2614 and then Present (Full_View (E))
2615 then
2616 null;
2617
2618 elsif Comes_From_Source (E)
b6e209b5 2619 and then not Is_Imported (E)
1ce1f005
GD
2620 and then not Has_Init_Expression (Declaration_Node (E))
2621 and then
2622 ((Has_Non_Null_Base_Init_Proc (Etype (E))
2623 and then not No_Initialization (Declaration_Node (E))
2624 and then not Is_Value_Type (Etype (E))
2625 and then not Suppress_Init_Proc (Etype (E)))
2626 or else
2627 (Needs_Simple_Initialization (Etype (E))
2628 and then not Is_Internal (E)))
2629 then
4c8a5bb8 2630 Has_Default_Initialization := True;
1ce1f005
GD
2631 Check_Restriction
2632 (No_Default_Initialization, Declaration_Node (E));
2633 end if;
2634
4c8a5bb8
AC
2635 -- Check that a Thread_Local_Storage variable does not have
2636 -- default initialization, and any explicit initialization must
2637 -- either be the null constant or a static constant.
2638
2639 if Has_Pragma_Thread_Local_Storage (E) then
2640 declare
2641 Decl : constant Node_Id := Declaration_Node (E);
2642 begin
2643 if Has_Default_Initialization
2644 or else
2645 (Has_Init_Expression (Decl)
2646 and then
2647 (No (Expression (Decl))
2648 or else not
2649 (Is_Static_Expression (Expression (Decl))
2650 or else
2651 Nkind (Expression (Decl)) = N_Null)))
2652 then
2653 Error_Msg_NE
2654 ("Thread_Local_Storage variable& is "
2655 & "improperly initialized", Decl, E);
2656 Error_Msg_NE
2657 ("\only allowed initialization is explicit "
2658 & "NULL or static expression", Decl, E);
2659 end if;
2660 end;
2661 end if;
2662
def46b54
RD
2663 -- For imported objects, set Is_Public unless there is also an
2664 -- address clause, which means that there is no external symbol
2665 -- needed for the Import (Is_Public may still be set for other
2666 -- unrelated reasons). Note that we delayed this processing
2667 -- till freeze time so that we can be sure not to set the flag
2668 -- if there is an address clause. If there is such a clause,
2669 -- then the only purpose of the Import pragma is to suppress
2670 -- implicit initialization.
2c9beb8a
RD
2671
2672 if Is_Imported (E)
add9f797 2673 and then No (Address_Clause (E))
2c9beb8a
RD
2674 then
2675 Set_Is_Public (E);
2676 end if;
7d8b9c99
RD
2677
2678 -- For convention C objects of an enumeration type, warn if
2679 -- the size is not integer size and no explicit size given.
2680 -- Skip warning for Boolean, and Character, assume programmer
2681 -- expects 8-bit sizes for these cases.
2682
2683 if (Convention (E) = Convention_C
2684 or else
2685 Convention (E) = Convention_CPP)
2686 and then Is_Enumeration_Type (Etype (E))
2687 and then not Is_Character_Type (Etype (E))
2688 and then not Is_Boolean_Type (Etype (E))
2689 and then Esize (Etype (E)) < Standard_Integer_Size
2690 and then not Has_Size_Clause (E)
2691 then
2692 Error_Msg_Uint_1 := UI_From_Int (Standard_Integer_Size);
2693 Error_Msg_N
2694 ("?convention C enumeration object has size less than ^",
2695 E);
2696 Error_Msg_N ("\?use explicit size clause to set size", E);
2697 end if;
70482933
RK
2698 end if;
2699
2700 -- Check that a constant which has a pragma Volatile[_Components]
7d8b9c99 2701 -- or Atomic[_Components] also has a pragma Import (RM C.6(13)).
70482933
RK
2702
2703 -- Note: Atomic[_Components] also sets Volatile[_Components]
2704
2705 if Ekind (E) = E_Constant
2706 and then (Has_Volatile_Components (E) or else Is_Volatile (E))
2707 and then not Is_Imported (E)
2708 then
2709 -- Make sure we actually have a pragma, and have not merely
2710 -- inherited the indication from elsewhere (e.g. an address
2711 -- clause, which is not good enough in RM terms!)
2712
1d571f3b 2713 if Has_Rep_Pragma (E, Name_Atomic)
91b1417d 2714 or else
1d571f3b 2715 Has_Rep_Pragma (E, Name_Atomic_Components)
70482933
RK
2716 then
2717 Error_Msg_N
91b1417d 2718 ("stand alone atomic constant must be " &
def46b54 2719 "imported (RM C.6(13))", E);
91b1417d 2720
1d571f3b 2721 elsif Has_Rep_Pragma (E, Name_Volatile)
91b1417d 2722 or else
1d571f3b 2723 Has_Rep_Pragma (E, Name_Volatile_Components)
91b1417d
AC
2724 then
2725 Error_Msg_N
2726 ("stand alone volatile constant must be " &
86cde7b1 2727 "imported (RM C.6(13))", E);
70482933
RK
2728 end if;
2729 end if;
2730
2731 -- Static objects require special handling
2732
2733 if (Ekind (E) = E_Constant or else Ekind (E) = E_Variable)
2734 and then Is_Statically_Allocated (E)
2735 then
2736 Freeze_Static_Object (E);
2737 end if;
2738
2739 -- Remaining step is to layout objects
2740
2741 if Ekind (E) = E_Variable
2742 or else
2743 Ekind (E) = E_Constant
2744 or else
2745 Ekind (E) = E_Loop_Parameter
2746 or else
2747 Is_Formal (E)
2748 then
2749 Layout_Object (E);
2750 end if;
2751 end if;
2752
2753 -- Case of a type or subtype being frozen
2754
2755 else
31b5873d
GD
2756 -- We used to check here that a full type must have preelaborable
2757 -- initialization if it completes a private type specified with
2758 -- pragma Preelaborable_Intialization, but that missed cases where
2759 -- the types occur within a generic package, since the freezing
2760 -- that occurs within a containing scope generally skips traversal
2761 -- of a generic unit's declarations (those will be frozen within
2762 -- instances). This check was moved to Analyze_Package_Specification.
3f1ede06 2763
70482933
RK
2764 -- The type may be defined in a generic unit. This can occur when
2765 -- freezing a generic function that returns the type (which is
2766 -- defined in a parent unit). It is clearly meaningless to freeze
2767 -- this type. However, if it is a subtype, its size may be determi-
2768 -- nable and used in subsequent checks, so might as well try to
2769 -- compute it.
2770
2771 if Present (Scope (E))
2772 and then Is_Generic_Unit (Scope (E))
2773 then
2774 Check_Compile_Time_Size (E);
2775 return No_List;
2776 end if;
2777
2778 -- Deal with special cases of freezing for subtype
2779
2780 if E /= Base_Type (E) then
2781
86cde7b1
RD
2782 -- Before we do anything else, a specialized test for the case of
2783 -- a size given for an array where the array needs to be packed,
2784 -- but was not so the size cannot be honored. This would of course
2785 -- be caught by the backend, and indeed we don't catch all cases.
2786 -- The point is that we can give a better error message in those
2787 -- cases that we do catch with the circuitry here. Also if pragma
2788 -- Implicit_Packing is set, this is where the packing occurs.
2789
2790 -- The reason we do this so early is that the processing in the
2791 -- automatic packing case affects the layout of the base type, so
2792 -- it must be done before we freeze the base type.
2793
2794 if Is_Array_Type (E) then
2795 declare
2796 Lo, Hi : Node_Id;
2797 Ctyp : constant Entity_Id := Component_Type (E);
2798
2799 begin
2800 -- Check enabling conditions. These are straightforward
2801 -- except for the test for a limited composite type. This
2802 -- eliminates the rare case of a array of limited components
2803 -- where there are issues of whether or not we can go ahead
2804 -- and pack the array (since we can't freely pack and unpack
2805 -- arrays if they are limited).
2806
2807 -- Note that we check the root type explicitly because the
2808 -- whole point is we are doing this test before we have had
2809 -- a chance to freeze the base type (and it is that freeze
2810 -- action that causes stuff to be inherited).
2811
2812 if Present (Size_Clause (E))
2813 and then Known_Static_Esize (E)
2814 and then not Is_Packed (E)
2815 and then not Has_Pragma_Pack (E)
2816 and then Number_Dimensions (E) = 1
2817 and then not Has_Component_Size_Clause (E)
2818 and then Known_Static_Esize (Ctyp)
2819 and then not Is_Limited_Composite (E)
2820 and then not Is_Packed (Root_Type (E))
2821 and then not Has_Component_Size_Clause (Root_Type (E))
2822 then
2823 Get_Index_Bounds (First_Index (E), Lo, Hi);
2824
2825 if Compile_Time_Known_Value (Lo)
2826 and then Compile_Time_Known_Value (Hi)
2827 and then Known_Static_RM_Size (Ctyp)
2828 and then RM_Size (Ctyp) < 64
2829 then
2830 declare
2831 Lov : constant Uint := Expr_Value (Lo);
2832 Hiv : constant Uint := Expr_Value (Hi);
2833 Len : constant Uint := UI_Max
2834 (Uint_0,
2835 Hiv - Lov + 1);
2836 Rsiz : constant Uint := RM_Size (Ctyp);
2837 SZ : constant Node_Id := Size_Clause (E);
2838 Btyp : constant Entity_Id := Base_Type (E);
2839
2840 -- What we are looking for here is the situation where
2841 -- the RM_Size given would be exactly right if there
2842 -- was a pragma Pack (resulting in the component size
2843 -- being the same as the RM_Size). Furthermore, the
2844 -- component type size must be an odd size (not a
2845 -- multiple of storage unit)
2846
2847 begin
2848 if RM_Size (E) = Len * Rsiz
2849 and then Rsiz mod System_Storage_Unit /= 0
2850 then
2851 -- For implicit packing mode, just set the
fd366a46 2852 -- component size silently.
86cde7b1
RD
2853
2854 if Implicit_Packing then
2855 Set_Component_Size (Btyp, Rsiz);
2856 Set_Is_Bit_Packed_Array (Btyp);
2857 Set_Is_Packed (Btyp);
2858 Set_Has_Non_Standard_Rep (Btyp);
2859
2860 -- Otherwise give an error message
2861
2862 else
2863 Error_Msg_NE
2864 ("size given for& too small", SZ, E);
2865 Error_Msg_N
2866 ("\use explicit pragma Pack "
2867 & "or use pragma Implicit_Packing", SZ);
2868 end if;
2869 end if;
2870 end;
2871 end if;
2872 end if;
2873 end;
2874 end if;
2875
def46b54
RD
2876 -- If ancestor subtype present, freeze that first. Note that this
2877 -- will also get the base type frozen.
70482933
RK
2878
2879 Atype := Ancestor_Subtype (E);
2880
2881 if Present (Atype) then
2882 Freeze_And_Append (Atype, Loc, Result);
2883
def46b54
RD
2884 -- Otherwise freeze the base type of the entity before freezing
2885 -- the entity itself (RM 13.14(15)).
70482933
RK
2886
2887 elsif E /= Base_Type (E) then
2888 Freeze_And_Append (Base_Type (E), Loc, Result);
2889 end if;
2890
fbf5a39b 2891 -- For a derived type, freeze its parent type first (RM 13.14(15))
70482933
RK
2892
2893 elsif Is_Derived_Type (E) then
2894 Freeze_And_Append (Etype (E), Loc, Result);
2895 Freeze_And_Append (First_Subtype (Etype (E)), Loc, Result);
2896 end if;
2897
2898 -- For array type, freeze index types and component type first
fbf5a39b 2899 -- before freezing the array (RM 13.14(15)).
70482933
RK
2900
2901 if Is_Array_Type (E) then
2902 declare
fbf5a39b 2903 Ctyp : constant Entity_Id := Component_Type (E);
70482933
RK
2904
2905 Non_Standard_Enum : Boolean := False;
7d8b9c99
RD
2906 -- Set true if any of the index types is an enumeration type
2907 -- with a non-standard representation.
70482933
RK
2908
2909 begin
2910 Freeze_And_Append (Ctyp, Loc, Result);
2911
2912 Indx := First_Index (E);
2913 while Present (Indx) loop
2914 Freeze_And_Append (Etype (Indx), Loc, Result);
2915
2916 if Is_Enumeration_Type (Etype (Indx))
2917 and then Has_Non_Standard_Rep (Etype (Indx))
2918 then
2919 Non_Standard_Enum := True;
2920 end if;
2921
2922 Next_Index (Indx);
2923 end loop;
2924
07fc65c4 2925 -- Processing that is done only for base types
70482933
RK
2926
2927 if Ekind (E) = E_Array_Type then
07fc65c4
GB
2928
2929 -- Propagate flags for component type
2930
70482933
RK
2931 if Is_Controlled (Component_Type (E))
2932 or else Has_Controlled_Component (Ctyp)
2933 then
2934 Set_Has_Controlled_Component (E);
2935 end if;
2936
2937 if Has_Unchecked_Union (Component_Type (E)) then
2938 Set_Has_Unchecked_Union (E);
2939 end if;
70482933 2940
07fc65c4
GB
2941 -- If packing was requested or if the component size was set
2942 -- explicitly, then see if bit packing is required. This
2943 -- processing is only done for base types, since all the
2944 -- representation aspects involved are type-related. This
2945 -- is not just an optimization, if we start processing the
e14c931f 2946 -- subtypes, they interfere with the settings on the base
07fc65c4
GB
2947 -- type (this is because Is_Packed has a slightly different
2948 -- meaning before and after freezing).
70482933 2949
70482933
RK
2950 declare
2951 Csiz : Uint;
2952 Esiz : Uint;
2953
2954 begin
2955 if (Is_Packed (E) or else Has_Pragma_Pack (E))
2956 and then not Has_Atomic_Components (E)
2957 and then Known_Static_RM_Size (Ctyp)
2958 then
2959 Csiz := UI_Max (RM_Size (Ctyp), 1);
2960
2961 elsif Known_Component_Size (E) then
2962 Csiz := Component_Size (E);
2963
2964 elsif not Known_Static_Esize (Ctyp) then
2965 Csiz := Uint_0;
2966
2967 else
2968 Esiz := Esize (Ctyp);
2969
2970 -- We can set the component size if it is less than
2971 -- 16, rounding it up to the next storage unit size.
2972
2973 if Esiz <= 8 then
2974 Csiz := Uint_8;
2975 elsif Esiz <= 16 then
2976 Csiz := Uint_16;
2977 else
2978 Csiz := Uint_0;
2979 end if;
2980
7d8b9c99
RD
2981 -- Set component size up to match alignment if it
2982 -- would otherwise be less than the alignment. This
2983 -- deals with cases of types whose alignment exceeds
2984 -- their size (padded types).
70482933
RK
2985
2986 if Csiz /= 0 then
2987 declare
2988 A : constant Uint := Alignment_In_Bits (Ctyp);
70482933
RK
2989 begin
2990 if Csiz < A then
2991 Csiz := A;
2992 end if;
2993 end;
2994 end if;
70482933
RK
2995 end if;
2996
86cde7b1
RD
2997 -- Case of component size that may result in packing
2998
70482933 2999 if 1 <= Csiz and then Csiz <= 64 then
86cde7b1
RD
3000 declare
3001 Ent : constant Entity_Id :=
3002 First_Subtype (E);
3003 Pack_Pragma : constant Node_Id :=
3004 Get_Rep_Pragma (Ent, Name_Pack);
3005 Comp_Size_C : constant Node_Id :=
3006 Get_Attribute_Definition_Clause
3007 (Ent, Attribute_Component_Size);
3008 begin
3009 -- Warn if we have pack and component size so that
3010 -- the pack is ignored.
70482933 3011
86cde7b1
RD
3012 -- Note: here we must check for the presence of a
3013 -- component size before checking for a Pack pragma
3014 -- to deal with the case where the array type is a
3015 -- derived type whose parent is currently private.
3016
3017 if Present (Comp_Size_C)
3018 and then Has_Pragma_Pack (Ent)
3019 then
3020 Error_Msg_Sloc := Sloc (Comp_Size_C);
3021 Error_Msg_NE
3022 ("?pragma Pack for& ignored!",
3023 Pack_Pragma, Ent);
3024 Error_Msg_N
3025 ("\?explicit component size given#!",
3026 Pack_Pragma);
3027 end if;
70482933 3028
86cde7b1
RD
3029 -- Set component size if not already set by a
3030 -- component size clause.
70482933 3031
86cde7b1
RD
3032 if not Present (Comp_Size_C) then
3033 Set_Component_Size (E, Csiz);
3034 end if;
fbf5a39b 3035
86cde7b1
RD
3036 -- Check for base type of 8, 16, 32 bits, where an
3037 -- unsigned subtype has a length one less than the
3038 -- base type (e.g. Natural subtype of Integer).
fbf5a39b 3039
86cde7b1
RD
3040 -- In such cases, if a component size was not set
3041 -- explicitly, then generate a warning.
fbf5a39b 3042
86cde7b1
RD
3043 if Has_Pragma_Pack (E)
3044 and then not Present (Comp_Size_C)
3045 and then
3046 (Csiz = 7 or else Csiz = 15 or else Csiz = 31)
3047 and then Esize (Base_Type (Ctyp)) = Csiz + 1
3048 then
3049 Error_Msg_Uint_1 := Csiz;
3050
3051 if Present (Pack_Pragma) then
3052 Error_Msg_N
3053 ("?pragma Pack causes component size "
3054 & "to be ^!", Pack_Pragma);
3055 Error_Msg_N
3056 ("\?use Component_Size to set "
3057 & "desired value!", Pack_Pragma);
3058 end if;
fbf5a39b 3059 end if;
fbf5a39b 3060
86cde7b1
RD
3061 -- Actual packing is not needed for 8, 16, 32, 64.
3062 -- Also not needed for 24 if alignment is 1.
70482933 3063
86cde7b1
RD
3064 if Csiz = 8
3065 or else Csiz = 16
3066 or else Csiz = 32
3067 or else Csiz = 64
3068 or else (Csiz = 24 and then Alignment (Ctyp) = 1)
3069 then
3070 -- Here the array was requested to be packed,
3071 -- but the packing request had no effect, so
3072 -- Is_Packed is reset.
70482933 3073
86cde7b1
RD
3074 -- Note: semantically this means that we lose
3075 -- track of the fact that a derived type
3076 -- inherited a pragma Pack that was non-
3077 -- effective, but that seems fine.
70482933 3078
86cde7b1
RD
3079 -- We regard a Pack pragma as a request to set
3080 -- a representation characteristic, and this
3081 -- request may be ignored.
70482933 3082
86cde7b1 3083 Set_Is_Packed (Base_Type (E), False);
70482933 3084
86cde7b1 3085 -- In all other cases, packing is indeed needed
70482933 3086
86cde7b1
RD
3087 else
3088 Set_Has_Non_Standard_Rep (Base_Type (E));
3089 Set_Is_Bit_Packed_Array (Base_Type (E));
3090 Set_Is_Packed (Base_Type (E));
3091 end if;
3092 end;
70482933
RK
3093 end if;
3094 end;
07fc65c4
GB
3095
3096 -- Processing that is done only for subtypes
3097
3098 else
3099 -- Acquire alignment from base type
3100
3101 if Unknown_Alignment (E) then
3102 Set_Alignment (E, Alignment (Base_Type (E)));
7d8b9c99 3103 Adjust_Esize_Alignment (E);
07fc65c4
GB
3104 end if;
3105 end if;
3106
d05ef0ab
AC
3107 -- For bit-packed arrays, check the size
3108
3109 if Is_Bit_Packed_Array (E)
7d8b9c99 3110 and then Known_RM_Size (E)
d05ef0ab
AC
3111 then
3112 declare
67ce0d7e
RD
3113 SizC : constant Node_Id := Size_Clause (E);
3114
d05ef0ab 3115 Discard : Boolean;
67ce0d7e 3116 pragma Warnings (Off, Discard);
d05ef0ab
AC
3117
3118 begin
3119 -- It is not clear if it is possible to have no size
7d8b9c99
RD
3120 -- clause at this stage, but it is not worth worrying
3121 -- about. Post error on the entity name in the size
d05ef0ab
AC
3122 -- clause if present, else on the type entity itself.
3123
3124 if Present (SizC) then
7d8b9c99 3125 Check_Size (Name (SizC), E, RM_Size (E), Discard);
d05ef0ab 3126 else
7d8b9c99 3127 Check_Size (E, E, RM_Size (E), Discard);
d05ef0ab
AC
3128 end if;
3129 end;
3130 end if;
3131
70482933
RK
3132 -- If any of the index types was an enumeration type with
3133 -- a non-standard rep clause, then we indicate that the
3134 -- array type is always packed (even if it is not bit packed).
3135
3136 if Non_Standard_Enum then
3137 Set_Has_Non_Standard_Rep (Base_Type (E));
3138 Set_Is_Packed (Base_Type (E));
3139 end if;
70482933 3140
0da2c8ac 3141 Set_Component_Alignment_If_Not_Set (E);
70482933 3142
0da2c8ac
AC
3143 -- If the array is packed, we must create the packed array
3144 -- type to be used to actually implement the type. This is
3145 -- only needed for real array types (not for string literal
3146 -- types, since they are present only for the front end).
70482933 3147
0da2c8ac
AC
3148 if Is_Packed (E)
3149 and then Ekind (E) /= E_String_Literal_Subtype
3150 then
3151 Create_Packed_Array_Type (E);
3152 Freeze_And_Append (Packed_Array_Type (E), Loc, Result);
70482933 3153
0da2c8ac 3154 -- Size information of packed array type is copied to the
fea9e956 3155 -- array type, since this is really the representation. But
def46b54
RD
3156 -- do not override explicit existing size values. If the
3157 -- ancestor subtype is constrained the packed_array_type
3158 -- will be inherited from it, but the size may have been
3159 -- provided already, and must not be overridden either.
fea9e956 3160
def46b54
RD
3161 if not Has_Size_Clause (E)
3162 and then
3163 (No (Ancestor_Subtype (E))
3164 or else not Has_Size_Clause (Ancestor_Subtype (E)))
3165 then
fea9e956
ES
3166 Set_Esize (E, Esize (Packed_Array_Type (E)));
3167 Set_RM_Size (E, RM_Size (Packed_Array_Type (E)));
3168 end if;
70482933 3169
fea9e956
ES
3170 if not Has_Alignment_Clause (E) then
3171 Set_Alignment (E, Alignment (Packed_Array_Type (E)));
3172 end if;
0da2c8ac
AC
3173 end if;
3174
def46b54
RD
3175 -- For non-packed arrays set the alignment of the array to the
3176 -- alignment of the component type if it is unknown. Skip this
3177 -- in atomic case (atomic arrays may need larger alignments).
0da2c8ac
AC
3178
3179 if not Is_Packed (E)
3180 and then Unknown_Alignment (E)
3181 and then Known_Alignment (Ctyp)
3182 and then Known_Static_Component_Size (E)
3183 and then Known_Static_Esize (Ctyp)
3184 and then Esize (Ctyp) = Component_Size (E)
3185 and then not Is_Atomic (E)
3186 then
3187 Set_Alignment (E, Alignment (Component_Type (E)));
3188 end if;
3189 end;
70482933 3190
fbf5a39b
AC
3191 -- For a class-wide type, the corresponding specific type is
3192 -- frozen as well (RM 13.14(15))
70482933
RK
3193
3194 elsif Is_Class_Wide_Type (E) then
3195 Freeze_And_Append (Root_Type (E), Loc, Result);
3196
86cde7b1
RD
3197 -- If the base type of the class-wide type is still incomplete,
3198 -- the class-wide remains unfrozen as well. This is legal when
3199 -- E is the formal of a primitive operation of some other type
3200 -- which is being frozen.
3201
3202 if not Is_Frozen (Root_Type (E)) then
3203 Set_Is_Frozen (E, False);
3204 return Result;
3205 end if;
3206
70482933
RK
3207 -- If the Class_Wide_Type is an Itype (when type is the anonymous
3208 -- parent of a derived type) and it is a library-level entity,
3209 -- generate an itype reference for it. Otherwise, its first
3210 -- explicit reference may be in an inner scope, which will be
3211 -- rejected by the back-end.
3212
3213 if Is_Itype (E)
3214 and then Is_Compilation_Unit (Scope (E))
3215 then
70482933 3216 declare
fbf5a39b 3217 Ref : constant Node_Id := Make_Itype_Reference (Loc);
70482933
RK
3218
3219 begin
3220 Set_Itype (Ref, E);
3221 if No (Result) then
3222 Result := New_List (Ref);
3223 else
3224 Append (Ref, Result);
3225 end if;
3226 end;
3227 end if;
3228
def46b54
RD
3229 -- The equivalent type associated with a class-wide subtype needs
3230 -- to be frozen to ensure that its layout is done. Class-wide
3231 -- subtypes are currently only frozen on targets requiring
3232 -- front-end layout (see New_Class_Wide_Subtype and
3233 -- Make_CW_Equivalent_Type in exp_util.adb).
fbf5a39b
AC
3234
3235 if Ekind (E) = E_Class_Wide_Subtype
3236 and then Present (Equivalent_Type (E))
3237 then
3238 Freeze_And_Append (Equivalent_Type (E), Loc, Result);
3239 end if;
3240
3241 -- For a record (sub)type, freeze all the component types (RM
def46b54
RD
3242 -- 13.14(15). We test for E_Record_(sub)Type here, rather than using
3243 -- Is_Record_Type, because we don't want to attempt the freeze for
3244 -- the case of a private type with record extension (we will do that
3245 -- later when the full type is frozen).
70482933
RK
3246
3247 elsif Ekind (E) = E_Record_Type
fd366a46 3248 or else Ekind (E) = E_Record_Subtype
70482933
RK
3249 then
3250 Freeze_Record_Type (E);
3251
3252 -- For a concurrent type, freeze corresponding record type. This
e14c931f 3253 -- does not correspond to any specific rule in the RM, but the
70482933
RK
3254 -- record type is essentially part of the concurrent type.
3255 -- Freeze as well all local entities. This includes record types
3256 -- created for entry parameter blocks, and whatever local entities
3257 -- may appear in the private part.
3258
3259 elsif Is_Concurrent_Type (E) then
3260 if Present (Corresponding_Record_Type (E)) then
3261 Freeze_And_Append
3262 (Corresponding_Record_Type (E), Loc, Result);
3263 end if;
3264
3265 Comp := First_Entity (E);
70482933
RK
3266 while Present (Comp) loop
3267 if Is_Type (Comp) then
3268 Freeze_And_Append (Comp, Loc, Result);
3269
3270 elsif (Ekind (Comp)) /= E_Function then
c6823a20
EB
3271 if Is_Itype (Etype (Comp))
3272 and then Underlying_Type (Scope (Etype (Comp))) = E
3273 then
3274 Undelay_Type (Etype (Comp));
3275 end if;
3276
70482933
RK
3277 Freeze_And_Append (Etype (Comp), Loc, Result);
3278 end if;
3279
3280 Next_Entity (Comp);
3281 end loop;
3282
ee094616
RD
3283 -- Private types are required to point to the same freeze node as
3284 -- their corresponding full views. The freeze node itself has to
3285 -- point to the partial view of the entity (because from the partial
3286 -- view, we can retrieve the full view, but not the reverse).
3287 -- However, in order to freeze correctly, we need to freeze the full
3288 -- view. If we are freezing at the end of a scope (or within the
3289 -- scope of the private type), the partial and full views will have
3290 -- been swapped, the full view appears first in the entity chain and
3291 -- the swapping mechanism ensures that the pointers are properly set
3292 -- (on scope exit).
3293
3294 -- If we encounter the partial view before the full view (e.g. when
3295 -- freezing from another scope), we freeze the full view, and then
3296 -- set the pointers appropriately since we cannot rely on swapping to
3297 -- fix things up (subtypes in an outer scope might not get swapped).
70482933
RK
3298
3299 elsif Is_Incomplete_Or_Private_Type (E)
3300 and then not Is_Generic_Type (E)
3301 then
86cde7b1
RD
3302 -- The construction of the dispatch table associated with library
3303 -- level tagged types forces freezing of all the primitives of the
3304 -- type, which may cause premature freezing of the partial view.
3305 -- For example:
3306
3307 -- package Pkg is
3308 -- type T is tagged private;
3309 -- type DT is new T with private;
3310 -- procedure Prim (X : in out T; Y : in out DT'class);
3311 -- private
3312 -- type T is tagged null record;
3313 -- Obj : T;
3314 -- type DT is new T with null record;
3315 -- end;
3316
3317 -- In this case the type will be frozen later by the usual
3318 -- mechanism: an object declaration, an instantiation, or the
3319 -- end of a declarative part.
3320
3321 if Is_Library_Level_Tagged_Type (E)
3322 and then not Present (Full_View (E))
3323 then
3324 Set_Is_Frozen (E, False);
3325 return Result;
3326
70482933
RK
3327 -- Case of full view present
3328
86cde7b1 3329 elsif Present (Full_View (E)) then
70482933 3330
ee094616
RD
3331 -- If full view has already been frozen, then no further
3332 -- processing is required
70482933
RK
3333
3334 if Is_Frozen (Full_View (E)) then
3335
3336 Set_Has_Delayed_Freeze (E, False);
3337 Set_Freeze_Node (E, Empty);
3338 Check_Debug_Info_Needed (E);
3339
ee094616
RD
3340 -- Otherwise freeze full view and patch the pointers so that
3341 -- the freeze node will elaborate both views in the back-end.
70482933
RK
3342
3343 else
fbf5a39b
AC
3344 declare
3345 Full : constant Entity_Id := Full_View (E);
70482933 3346
fbf5a39b
AC
3347 begin
3348 if Is_Private_Type (Full)
3349 and then Present (Underlying_Full_View (Full))
3350 then
3351 Freeze_And_Append
3352 (Underlying_Full_View (Full), Loc, Result);
3353 end if;
70482933 3354
fbf5a39b 3355 Freeze_And_Append (Full, Loc, Result);
70482933 3356
fbf5a39b
AC
3357 if Has_Delayed_Freeze (E) then
3358 F_Node := Freeze_Node (Full);
70482933 3359
fbf5a39b
AC
3360 if Present (F_Node) then
3361 Set_Freeze_Node (E, F_Node);
3362 Set_Entity (F_Node, E);
3363
3364 else
def46b54
RD
3365 -- {Incomplete,Private}_Subtypes with Full_Views
3366 -- constrained by discriminants.
fbf5a39b
AC
3367
3368 Set_Has_Delayed_Freeze (E, False);
3369 Set_Freeze_Node (E, Empty);
3370 end if;
70482933 3371 end if;
fbf5a39b 3372 end;
70482933
RK
3373
3374 Check_Debug_Info_Needed (E);
3375 end if;
3376
ee094616
RD
3377 -- AI-117 requires that the convention of a partial view be the
3378 -- same as the convention of the full view. Note that this is a
3379 -- recognized breach of privacy, but it's essential for logical
3380 -- consistency of representation, and the lack of a rule in
3381 -- RM95 was an oversight.
70482933
RK
3382
3383 Set_Convention (E, Convention (Full_View (E)));
3384
3385 Set_Size_Known_At_Compile_Time (E,
3386 Size_Known_At_Compile_Time (Full_View (E)));
3387
3388 -- Size information is copied from the full view to the
def46b54 3389 -- incomplete or private view for consistency.
70482933 3390
ee094616
RD
3391 -- We skip this is the full view is not a type. This is very
3392 -- strange of course, and can only happen as a result of
3393 -- certain illegalities, such as a premature attempt to derive
3394 -- from an incomplete type.
70482933
RK
3395
3396 if Is_Type (Full_View (E)) then
3397 Set_Size_Info (E, Full_View (E));
3398 Set_RM_Size (E, RM_Size (Full_View (E)));
3399 end if;
3400
3401 return Result;
3402
3403 -- Case of no full view present. If entity is derived or subtype,
3404 -- it is safe to freeze, correctness depends on the frozen status
3405 -- of parent. Otherwise it is either premature usage, or a Taft
3406 -- amendment type, so diagnosis is at the point of use and the
3407 -- type might be frozen later.
3408
3409 elsif E /= Base_Type (E)
3410 or else Is_Derived_Type (E)
3411 then
3412 null;
3413
3414 else
3415 Set_Is_Frozen (E, False);
3416 return No_List;
3417 end if;
3418
3419 -- For access subprogram, freeze types of all formals, the return
3420 -- type was already frozen, since it is the Etype of the function.
8aec446b 3421 -- Formal types can be tagged Taft amendment types, but otherwise
205c14b0 3422 -- they cannot be incomplete.
70482933
RK
3423
3424 elsif Ekind (E) = E_Subprogram_Type then
3425 Formal := First_Formal (E);
8aec446b 3426
70482933 3427 while Present (Formal) loop
8aec446b
AC
3428 if Ekind (Etype (Formal)) = E_Incomplete_Type
3429 and then No (Full_View (Etype (Formal)))
3430 and then not Is_Value_Type (Etype (Formal))
3431 then
3432 if Is_Tagged_Type (Etype (Formal)) then
3433 null;
3434 else
3435 Error_Msg_NE
3436 ("invalid use of incomplete type&", E, Etype (Formal));
3437 end if;
3438 end if;
3439
70482933
RK
3440 Freeze_And_Append (Etype (Formal), Loc, Result);
3441 Next_Formal (Formal);
3442 end loop;
3443
70482933
RK
3444 Freeze_Subprogram (E);
3445
ee094616
RD
3446 -- For access to a protected subprogram, freeze the equivalent type
3447 -- (however this is not set if we are not generating code or if this
3448 -- is an anonymous type used just for resolution).
70482933 3449
fea9e956 3450 elsif Is_Access_Protected_Subprogram_Type (E) then
57747aec 3451 if Present (Equivalent_Type (E)) then
d8db0bca
JM
3452 Freeze_And_Append (Equivalent_Type (E), Loc, Result);
3453 end if;
70482933
RK
3454 end if;
3455
3456 -- Generic types are never seen by the back-end, and are also not
3457 -- processed by the expander (since the expander is turned off for
3458 -- generic processing), so we never need freeze nodes for them.
3459
3460 if Is_Generic_Type (E) then
3461 return Result;
3462 end if;
3463
3464 -- Some special processing for non-generic types to complete
3465 -- representation details not known till the freeze point.
3466
3467 if Is_Fixed_Point_Type (E) then
3468 Freeze_Fixed_Point_Type (E);
3469
ee094616
RD
3470 -- Some error checks required for ordinary fixed-point type. Defer
3471 -- these till the freeze-point since we need the small and range
3472 -- values. We only do these checks for base types
fbf5a39b
AC
3473
3474 if Is_Ordinary_Fixed_Point_Type (E)
3475 and then E = Base_Type (E)
3476 then
3477 if Small_Value (E) < Ureal_2_M_80 then
3478 Error_Msg_Name_1 := Name_Small;
3479 Error_Msg_N
7d8b9c99 3480 ("`&''%` too small, minimum allowed is 2.0'*'*(-80)", E);
fbf5a39b
AC
3481
3482 elsif Small_Value (E) > Ureal_2_80 then
3483 Error_Msg_Name_1 := Name_Small;
3484 Error_Msg_N
7d8b9c99 3485 ("`&''%` too large, maximum allowed is 2.0'*'*80", E);
fbf5a39b
AC
3486 end if;
3487
3488 if Expr_Value_R (Type_Low_Bound (E)) < Ureal_M_10_36 then
3489 Error_Msg_Name_1 := Name_First;
3490 Error_Msg_N
7d8b9c99 3491 ("`&''%` too small, minimum allowed is -10.0'*'*36", E);
fbf5a39b
AC
3492 end if;
3493
3494 if Expr_Value_R (Type_High_Bound (E)) > Ureal_10_36 then
3495 Error_Msg_Name_1 := Name_Last;
3496 Error_Msg_N
7d8b9c99 3497 ("`&''%` too large, maximum allowed is 10.0'*'*36", E);
fbf5a39b
AC
3498 end if;
3499 end if;
3500
70482933
RK
3501 elsif Is_Enumeration_Type (E) then
3502 Freeze_Enumeration_Type (E);
3503
3504 elsif Is_Integer_Type (E) then
3505 Adjust_Esize_For_Alignment (E);
3506
edd63e9b
ES
3507 elsif Is_Access_Type (E) then
3508
3509 -- Check restriction for standard storage pool
3510
3511 if No (Associated_Storage_Pool (E)) then
3512 Check_Restriction (No_Standard_Storage_Pools, E);
3513 end if;
3514
3515 -- Deal with error message for pure access type. This is not an
3516 -- error in Ada 2005 if there is no pool (see AI-366).
3517
3518 if Is_Pure_Unit_Access_Type (E)
3519 and then (Ada_Version < Ada_05
c6a9797e 3520 or else not No_Pool_Assigned (E))
edd63e9b
ES
3521 then
3522 Error_Msg_N ("named access type not allowed in pure unit", E);
c6a9797e
RD
3523
3524 if Ada_Version >= Ada_05 then
3525 Error_Msg_N
3526 ("\would be legal if Storage_Size of 0 given?", E);
3527
3528 elsif No_Pool_Assigned (E) then
3529 Error_Msg_N
3530 ("\would be legal in Ada 2005?", E);
3531
3532 else
3533 Error_Msg_N
3534 ("\would be legal in Ada 2005 if "
3535 & "Storage_Size of 0 given?", E);
3536 end if;
edd63e9b 3537 end if;
70482933
RK
3538 end if;
3539
edd63e9b
ES
3540 -- Case of composite types
3541
70482933
RK
3542 if Is_Composite_Type (E) then
3543
edd63e9b
ES
3544 -- AI-117 requires that all new primitives of a tagged type must
3545 -- inherit the convention of the full view of the type. Inherited
3546 -- and overriding operations are defined to inherit the convention
3547 -- of their parent or overridden subprogram (also specified in
ee094616
RD
3548 -- AI-117), which will have occurred earlier (in Derive_Subprogram
3549 -- and New_Overloaded_Entity). Here we set the convention of
3550 -- primitives that are still convention Ada, which will ensure
def46b54
RD
3551 -- that any new primitives inherit the type's convention. Class-
3552 -- wide types can have a foreign convention inherited from their
3553 -- specific type, but are excluded from this since they don't have
3554 -- any associated primitives.
70482933
RK
3555
3556 if Is_Tagged_Type (E)
3557 and then not Is_Class_Wide_Type (E)
3558 and then Convention (E) /= Convention_Ada
3559 then
3560 declare
3561 Prim_List : constant Elist_Id := Primitive_Operations (E);
07fc65c4 3562 Prim : Elmt_Id;
70482933 3563 begin
07fc65c4 3564 Prim := First_Elmt (Prim_List);
70482933
RK
3565 while Present (Prim) loop
3566 if Convention (Node (Prim)) = Convention_Ada then
3567 Set_Convention (Node (Prim), Convention (E));
3568 end if;
3569
3570 Next_Elmt (Prim);
3571 end loop;
3572 end;
3573 end if;
3574 end if;
3575
ee094616
RD
3576 -- Now that all types from which E may depend are frozen, see if the
3577 -- size is known at compile time, if it must be unsigned, or if
7d8b9c99 3578 -- strict alignment is required
70482933
RK
3579
3580 Check_Compile_Time_Size (E);
3581 Check_Unsigned_Type (E);
3582
3583 if Base_Type (E) = E then
3584 Check_Strict_Alignment (E);
3585 end if;
3586
3587 -- Do not allow a size clause for a type which does not have a size
3588 -- that is known at compile time
3589
3590 if Has_Size_Clause (E)
3591 and then not Size_Known_At_Compile_Time (E)
3592 then
e14c931f 3593 -- Suppress this message if errors posted on E, even if we are
07fc65c4
GB
3594 -- in all errors mode, since this is often a junk message
3595
3596 if not Error_Posted (E) then
3597 Error_Msg_N
3598 ("size clause not allowed for variable length type",
3599 Size_Clause (E));
3600 end if;
70482933
RK
3601 end if;
3602
3603 -- Remaining process is to set/verify the representation information,
3604 -- in particular the size and alignment values. This processing is
3605 -- not required for generic types, since generic types do not play
3606 -- any part in code generation, and so the size and alignment values
c6823a20 3607 -- for such types are irrelevant.
70482933
RK
3608
3609 if Is_Generic_Type (E) then
3610 return Result;
3611
3612 -- Otherwise we call the layout procedure
3613
3614 else
3615 Layout_Type (E);
3616 end if;
3617
3618 -- End of freeze processing for type entities
3619 end if;
3620
3621 -- Here is where we logically freeze the current entity. If it has a
3622 -- freeze node, then this is the point at which the freeze node is
3623 -- linked into the result list.
3624
3625 if Has_Delayed_Freeze (E) then
3626
3627 -- If a freeze node is already allocated, use it, otherwise allocate
3628 -- a new one. The preallocation happens in the case of anonymous base
3629 -- types, where we preallocate so that we can set First_Subtype_Link.
3630 -- Note that we reset the Sloc to the current freeze location.
3631
3632 if Present (Freeze_Node (E)) then
3633 F_Node := Freeze_Node (E);
3634 Set_Sloc (F_Node, Loc);
3635
3636 else
3637 F_Node := New_Node (N_Freeze_Entity, Loc);
3638 Set_Freeze_Node (E, F_Node);
3639 Set_Access_Types_To_Process (F_Node, No_Elist);
3640 Set_TSS_Elist (F_Node, No_Elist);
3641 Set_Actions (F_Node, No_List);
3642 end if;
3643
3644 Set_Entity (F_Node, E);
3645
3646 if Result = No_List then
3647 Result := New_List (F_Node);
3648 else
3649 Append (F_Node, Result);
3650 end if;
35ae2ed8
AC
3651
3652 -- A final pass over record types with discriminants. If the type
3653 -- has an incomplete declaration, there may be constrained access
3654 -- subtypes declared elsewhere, which do not depend on the discrimi-
3655 -- nants of the type, and which are used as component types (i.e.
3656 -- the full view is a recursive type). The designated types of these
3657 -- subtypes can only be elaborated after the type itself, and they
3658 -- need an itype reference.
3659
3660 if Ekind (E) = E_Record_Type
3661 and then Has_Discriminants (E)
3662 then
3663 declare
3664 Comp : Entity_Id;
3665 IR : Node_Id;
3666 Typ : Entity_Id;
3667
3668 begin
3669 Comp := First_Component (E);
3670
3671 while Present (Comp) loop
3672 Typ := Etype (Comp);
3673
3674 if Ekind (Comp) = E_Component
3675 and then Is_Access_Type (Typ)
3676 and then Scope (Typ) /= E
3677 and then Base_Type (Designated_Type (Typ)) = E
3678 and then Is_Itype (Designated_Type (Typ))
3679 then
3680 IR := Make_Itype_Reference (Sloc (Comp));
3681 Set_Itype (IR, Designated_Type (Typ));
3682 Append (IR, Result);
3683 end if;
3684
3685 Next_Component (Comp);
3686 end loop;
3687 end;
3688 end if;
70482933
RK
3689 end if;
3690
3691 -- When a type is frozen, the first subtype of the type is frozen as
3692 -- well (RM 13.14(15)). This has to be done after freezing the type,
3693 -- since obviously the first subtype depends on its own base type.
3694
3695 if Is_Type (E) then
3696 Freeze_And_Append (First_Subtype (E), Loc, Result);
3697
3698 -- If we just froze a tagged non-class wide record, then freeze the
3699 -- corresponding class-wide type. This must be done after the tagged
3700 -- type itself is frozen, because the class-wide type refers to the
3701 -- tagged type which generates the class.
3702
3703 if Is_Tagged_Type (E)
3704 and then not Is_Class_Wide_Type (E)
3705 and then Present (Class_Wide_Type (E))
3706 then
3707 Freeze_And_Append (Class_Wide_Type (E), Loc, Result);
3708 end if;
3709 end if;
3710
3711 Check_Debug_Info_Needed (E);
3712
3713 -- Special handling for subprograms
3714
3715 if Is_Subprogram (E) then
3716
3717 -- If subprogram has address clause then reset Is_Public flag, since
3718 -- we do not want the backend to generate external references.
3719
3720 if Present (Address_Clause (E))
3721 and then not Is_Library_Level_Entity (E)
3722 then
3723 Set_Is_Public (E, False);
3724
3725 -- If no address clause and not intrinsic, then for imported
3726 -- subprogram in main unit, generate descriptor if we are in
3727 -- Propagate_Exceptions mode.
3728
3729 elsif Propagate_Exceptions
3730 and then Is_Imported (E)
3731 and then not Is_Intrinsic_Subprogram (E)
3732 and then Convention (E) /= Convention_Stubbed
3733 then
3734 if Result = No_List then
3735 Result := Empty_List;
3736 end if;
70482933 3737 end if;
70482933
RK
3738 end if;
3739
3740 return Result;
3741 end Freeze_Entity;
3742
3743 -----------------------------
3744 -- Freeze_Enumeration_Type --
3745 -----------------------------
3746
3747 procedure Freeze_Enumeration_Type (Typ : Entity_Id) is
3748 begin
d677afa9
ES
3749 -- By default, if no size clause is present, an enumeration type with
3750 -- Convention C is assumed to interface to a C enum, and has integer
3751 -- size. This applies to types. For subtypes, verify that its base
3752 -- type has no size clause either.
3753
70482933
RK
3754 if Has_Foreign_Convention (Typ)
3755 and then not Has_Size_Clause (Typ)
d677afa9 3756 and then not Has_Size_Clause (Base_Type (Typ))
70482933
RK
3757 and then Esize (Typ) < Standard_Integer_Size
3758 then
3759 Init_Esize (Typ, Standard_Integer_Size);
d677afa9 3760
70482933 3761 else
d677afa9
ES
3762 -- If the enumeration type interfaces to C, and it has a size clause
3763 -- that specifies less than int size, it warrants a warning. The
3764 -- user may intend the C type to be an enum or a char, so this is
3765 -- not by itself an error that the Ada compiler can detect, but it
3766 -- it is a worth a heads-up. For Boolean and Character types we
3767 -- assume that the programmer has the proper C type in mind.
3768
3769 if Convention (Typ) = Convention_C
3770 and then Has_Size_Clause (Typ)
3771 and then Esize (Typ) /= Esize (Standard_Integer)
3772 and then not Is_Boolean_Type (Typ)
3773 and then not Is_Character_Type (Typ)
3774 then
3775 Error_Msg_N
3776 ("C enum types have the size of a C int?", Size_Clause (Typ));
3777 end if;
3778
70482933
RK
3779 Adjust_Esize_For_Alignment (Typ);
3780 end if;
3781 end Freeze_Enumeration_Type;
3782
3783 -----------------------
3784 -- Freeze_Expression --
3785 -----------------------
3786
3787 procedure Freeze_Expression (N : Node_Id) is
c6a9797e
RD
3788 In_Spec_Exp : constant Boolean := In_Spec_Expression;
3789 Typ : Entity_Id;
3790 Nam : Entity_Id;
3791 Desig_Typ : Entity_Id;
3792 P : Node_Id;
3793 Parent_P : Node_Id;
70482933
RK
3794
3795 Freeze_Outside : Boolean := False;
3796 -- This flag is set true if the entity must be frozen outside the
3797 -- current subprogram. This happens in the case of expander generated
3798 -- subprograms (_Init_Proc, _Input, _Output, _Read, _Write) which do
3799 -- not freeze all entities like other bodies, but which nevertheless
3800 -- may reference entities that have to be frozen before the body and
3801 -- obviously cannot be frozen inside the body.
3802
3803 function In_Exp_Body (N : Node_Id) return Boolean;
3804 -- Given an N_Handled_Sequence_Of_Statements node N, determines whether
c6823a20 3805 -- it is the handled statement sequence of an expander-generated
7d8b9c99
RD
3806 -- subprogram (init proc, stream subprogram, or renaming as body).
3807 -- If so, this is not a freezing context.
70482933 3808
fbf5a39b
AC
3809 -----------------
3810 -- In_Exp_Body --
3811 -----------------
3812
70482933 3813 function In_Exp_Body (N : Node_Id) return Boolean is
7d8b9c99
RD
3814 P : Node_Id;
3815 Id : Entity_Id;
70482933
RK
3816
3817 begin
3818 if Nkind (N) = N_Subprogram_Body then
3819 P := N;
3820 else
3821 P := Parent (N);
3822 end if;
3823
3824 if Nkind (P) /= N_Subprogram_Body then
3825 return False;
3826
3827 else
7d8b9c99
RD
3828 Id := Defining_Unit_Name (Specification (P));
3829
3830 if Nkind (Id) = N_Defining_Identifier
3831 and then (Is_Init_Proc (Id) or else
3832 Is_TSS (Id, TSS_Stream_Input) or else
3833 Is_TSS (Id, TSS_Stream_Output) or else
3834 Is_TSS (Id, TSS_Stream_Read) or else
3835 Is_TSS (Id, TSS_Stream_Write) or else
3836 Nkind (Original_Node (P)) =
3837 N_Subprogram_Renaming_Declaration)
70482933
RK
3838 then
3839 return True;
3840 else
3841 return False;
3842 end if;
3843 end if;
70482933
RK
3844 end In_Exp_Body;
3845
3846 -- Start of processing for Freeze_Expression
3847
3848 begin
edd63e9b
ES
3849 -- Immediate return if freezing is inhibited. This flag is set by the
3850 -- analyzer to stop freezing on generated expressions that would cause
3851 -- freezing if they were in the source program, but which are not
3852 -- supposed to freeze, since they are created.
70482933
RK
3853
3854 if Must_Not_Freeze (N) then
3855 return;
3856 end if;
3857
3858 -- If expression is non-static, then it does not freeze in a default
3859 -- expression, see section "Handling of Default Expressions" in the
3860 -- spec of package Sem for further details. Note that we have to
3861 -- make sure that we actually have a real expression (if we have
3862 -- a subtype indication, we can't test Is_Static_Expression!)
3863
c6a9797e 3864 if In_Spec_Exp
70482933
RK
3865 and then Nkind (N) in N_Subexpr
3866 and then not Is_Static_Expression (N)
3867 then
3868 return;
3869 end if;
3870
3871 -- Freeze type of expression if not frozen already
3872
fbf5a39b
AC
3873 Typ := Empty;
3874
3875 if Nkind (N) in N_Has_Etype then
3876 if not Is_Frozen (Etype (N)) then
3877 Typ := Etype (N);
3878
3879 -- Base type may be an derived numeric type that is frozen at
3880 -- the point of declaration, but first_subtype is still unfrozen.
3881
3882 elsif not Is_Frozen (First_Subtype (Etype (N))) then
3883 Typ := First_Subtype (Etype (N));
3884 end if;
70482933
RK
3885 end if;
3886
3887 -- For entity name, freeze entity if not frozen already. A special
3888 -- exception occurs for an identifier that did not come from source.
3889 -- We don't let such identifiers freeze a non-internal entity, i.e.
3890 -- an entity that did come from source, since such an identifier was
3891 -- generated by the expander, and cannot have any semantic effect on
3892 -- the freezing semantics. For example, this stops the parameter of
3893 -- an initialization procedure from freezing the variable.
3894
3895 if Is_Entity_Name (N)
3896 and then not Is_Frozen (Entity (N))
3897 and then (Nkind (N) /= N_Identifier
3898 or else Comes_From_Source (N)
3899 or else not Comes_From_Source (Entity (N)))
3900 then
3901 Nam := Entity (N);
70482933
RK
3902 else
3903 Nam := Empty;
3904 end if;
3905
49e90211 3906 -- For an allocator freeze designated type if not frozen already
70482933 3907
ee094616
RD
3908 -- For an aggregate whose component type is an access type, freeze the
3909 -- designated type now, so that its freeze does not appear within the
3910 -- loop that might be created in the expansion of the aggregate. If the
3911 -- designated type is a private type without full view, the expression
3912 -- cannot contain an allocator, so the type is not frozen.
70482933
RK
3913
3914 Desig_Typ := Empty;
70482933 3915
fbf5a39b 3916 case Nkind (N) is
70482933
RK
3917 when N_Allocator =>
3918 Desig_Typ := Designated_Type (Etype (N));
3919
3920 when N_Aggregate =>
3921 if Is_Array_Type (Etype (N))
3922 and then Is_Access_Type (Component_Type (Etype (N)))
3923 then
3924 Desig_Typ := Designated_Type (Component_Type (Etype (N)));
3925 end if;
3926
3927 when N_Selected_Component |
3928 N_Indexed_Component |
3929 N_Slice =>
3930
3931 if Is_Access_Type (Etype (Prefix (N))) then
3932 Desig_Typ := Designated_Type (Etype (Prefix (N)));
3933 end if;
3934
3935 when others =>
3936 null;
70482933
RK
3937 end case;
3938
3939 if Desig_Typ /= Empty
3940 and then (Is_Frozen (Desig_Typ)
3941 or else (not Is_Fully_Defined (Desig_Typ)))
3942 then
3943 Desig_Typ := Empty;
3944 end if;
3945
3946 -- All done if nothing needs freezing
3947
3948 if No (Typ)
3949 and then No (Nam)
3950 and then No (Desig_Typ)
3951 then
3952 return;
3953 end if;
3954
3955 -- Loop for looking at the right place to insert the freeze nodes
3956 -- exiting from the loop when it is appropriate to insert the freeze
3957 -- node before the current node P.
3958
3959 -- Also checks some special exceptions to the freezing rules. These
3960 -- cases result in a direct return, bypassing the freeze action.
3961
3962 P := N;
3963 loop
3964 Parent_P := Parent (P);
3965
ee094616
RD
3966 -- If we don't have a parent, then we are not in a well-formed tree.
3967 -- This is an unusual case, but there are some legitimate situations
3968 -- in which this occurs, notably when the expressions in the range of
3969 -- a type declaration are resolved. We simply ignore the freeze
3970 -- request in this case. Is this right ???
70482933
RK
3971
3972 if No (Parent_P) then
3973 return;
3974 end if;
3975
3976 -- See if we have got to an appropriate point in the tree
3977
3978 case Nkind (Parent_P) is
3979
edd63e9b
ES
3980 -- A special test for the exception of (RM 13.14(8)) for the case
3981 -- of per-object expressions (RM 3.8(18)) occurring in component
3982 -- definition or a discrete subtype definition. Note that we test
3983 -- for a component declaration which includes both cases we are
3984 -- interested in, and furthermore the tree does not have explicit
3985 -- nodes for either of these two constructs.
70482933
RK
3986
3987 when N_Component_Declaration =>
3988
3989 -- The case we want to test for here is an identifier that is
3990 -- a per-object expression, this is either a discriminant that
3991 -- appears in a context other than the component declaration
3992 -- or it is a reference to the type of the enclosing construct.
3993
3994 -- For either of these cases, we skip the freezing
3995
c6a9797e 3996 if not In_Spec_Expression
70482933
RK
3997 and then Nkind (N) = N_Identifier
3998 and then (Present (Entity (N)))
3999 then
4000 -- We recognize the discriminant case by just looking for
4001 -- a reference to a discriminant. It can only be one for
4002 -- the enclosing construct. Skip freezing in this case.
4003
4004 if Ekind (Entity (N)) = E_Discriminant then
4005 return;
4006
4007 -- For the case of a reference to the enclosing record,
4008 -- (or task or protected type), we look for a type that
4009 -- matches the current scope.
4010
4011 elsif Entity (N) = Current_Scope then
4012 return;
4013 end if;
4014 end if;
4015
edd63e9b
ES
4016 -- If we have an enumeration literal that appears as the choice in
4017 -- the aggregate of an enumeration representation clause, then
4018 -- freezing does not occur (RM 13.14(10)).
70482933
RK
4019
4020 when N_Enumeration_Representation_Clause =>
4021
4022 -- The case we are looking for is an enumeration literal
4023
4024 if (Nkind (N) = N_Identifier or Nkind (N) = N_Character_Literal)
4025 and then Is_Enumeration_Type (Etype (N))
4026 then
4027 -- If enumeration literal appears directly as the choice,
e14c931f 4028 -- do not freeze (this is the normal non-overloaded case)
70482933
RK
4029
4030 if Nkind (Parent (N)) = N_Component_Association
4031 and then First (Choices (Parent (N))) = N
4032 then
4033 return;
4034
ee094616
RD
4035 -- If enumeration literal appears as the name of function
4036 -- which is the choice, then also do not freeze. This
4037 -- happens in the overloaded literal case, where the
70482933
RK
4038 -- enumeration literal is temporarily changed to a function
4039 -- call for overloading analysis purposes.
4040
4041 elsif Nkind (Parent (N)) = N_Function_Call
4042 and then
4043 Nkind (Parent (Parent (N))) = N_Component_Association
4044 and then
4045 First (Choices (Parent (Parent (N)))) = Parent (N)
4046 then
4047 return;
4048 end if;
4049 end if;
4050
4051 -- Normally if the parent is a handled sequence of statements,
4052 -- then the current node must be a statement, and that is an
4053 -- appropriate place to insert a freeze node.
4054
4055 when N_Handled_Sequence_Of_Statements =>
4056
edd63e9b
ES
4057 -- An exception occurs when the sequence of statements is for
4058 -- an expander generated body that did not do the usual freeze
4059 -- all operation. In this case we usually want to freeze
4060 -- outside this body, not inside it, and we skip past the
4061 -- subprogram body that we are inside.
70482933
RK
4062
4063 if In_Exp_Body (Parent_P) then
4064
4065 -- However, we *do* want to freeze at this point if we have
4066 -- an entity to freeze, and that entity is declared *inside*
4067 -- the body of the expander generated procedure. This case
4068 -- is recognized by the scope of the type, which is either
4069 -- the spec for some enclosing body, or (in the case of
4070 -- init_procs, for which there are no separate specs) the
4071 -- current scope.
4072
4073 declare
4074 Subp : constant Node_Id := Parent (Parent_P);
4075 Cspc : Entity_Id;
4076
4077 begin
4078 if Nkind (Subp) = N_Subprogram_Body then
4079 Cspc := Corresponding_Spec (Subp);
4080
4081 if (Present (Typ) and then Scope (Typ) = Cspc)
4082 or else
4083 (Present (Nam) and then Scope (Nam) = Cspc)
4084 then
4085 exit;
4086
4087 elsif Present (Typ)
4088 and then Scope (Typ) = Current_Scope
4089 and then Current_Scope = Defining_Entity (Subp)
4090 then
4091 exit;
4092 end if;
4093 end if;
4094 end;
4095
4096 -- If not that exception to the exception, then this is
4097 -- where we delay the freeze till outside the body.
4098
4099 Parent_P := Parent (Parent_P);
4100 Freeze_Outside := True;
4101
4102 -- Here if normal case where we are in handled statement
4103 -- sequence and want to do the insertion right there.
4104
4105 else
4106 exit;
4107 end if;
4108
ee094616
RD
4109 -- If parent is a body or a spec or a block, then the current node
4110 -- is a statement or declaration and we can insert the freeze node
4111 -- before it.
70482933
RK
4112
4113 when N_Package_Specification |
4114 N_Package_Body |
4115 N_Subprogram_Body |
4116 N_Task_Body |
4117 N_Protected_Body |
4118 N_Entry_Body |
4119 N_Block_Statement => exit;
4120
4121 -- The expander is allowed to define types in any statements list,
4122 -- so any of the following parent nodes also mark a freezing point
4123 -- if the actual node is in a list of statements or declarations.
4124
4125 when N_Exception_Handler |
4126 N_If_Statement |
4127 N_Elsif_Part |
4128 N_Case_Statement_Alternative |
4129 N_Compilation_Unit_Aux |
4130 N_Selective_Accept |
4131 N_Accept_Alternative |
4132 N_Delay_Alternative |
4133 N_Conditional_Entry_Call |
4134 N_Entry_Call_Alternative |
4135 N_Triggering_Alternative |
4136 N_Abortable_Part |
4137 N_Freeze_Entity =>
4138
4139 exit when Is_List_Member (P);
4140
4141 -- Note: The N_Loop_Statement is a special case. A type that
4142 -- appears in the source can never be frozen in a loop (this
edd63e9b
ES
4143 -- occurs only because of a loop expanded by the expander), so we
4144 -- keep on going. Otherwise we terminate the search. Same is true
ee094616
RD
4145 -- of any entity which comes from source. (if they have predefined
4146 -- type, that type does not appear to come from source, but the
4147 -- entity should not be frozen here).
70482933
RK
4148
4149 when N_Loop_Statement =>
4150 exit when not Comes_From_Source (Etype (N))
4151 and then (No (Nam) or else not Comes_From_Source (Nam));
4152
4153 -- For all other cases, keep looking at parents
4154
4155 when others =>
4156 null;
4157 end case;
4158
4159 -- We fall through the case if we did not yet find the proper
4160 -- place in the free for inserting the freeze node, so climb!
4161
4162 P := Parent_P;
4163 end loop;
4164
edd63e9b
ES
4165 -- If the expression appears in a record or an initialization procedure,
4166 -- the freeze nodes are collected and attached to the current scope, to
4167 -- be inserted and analyzed on exit from the scope, to insure that
4168 -- generated entities appear in the correct scope. If the expression is
4169 -- a default for a discriminant specification, the scope is still void.
4170 -- The expression can also appear in the discriminant part of a private
4171 -- or concurrent type.
70482933 4172
c6823a20 4173 -- If the expression appears in a constrained subcomponent of an
edd63e9b
ES
4174 -- enclosing record declaration, the freeze nodes must be attached to
4175 -- the outer record type so they can eventually be placed in the
c6823a20
EB
4176 -- enclosing declaration list.
4177
ee094616
RD
4178 -- The other case requiring this special handling is if we are in a
4179 -- default expression, since in that case we are about to freeze a
4180 -- static type, and the freeze scope needs to be the outer scope, not
4181 -- the scope of the subprogram with the default parameter.
70482933 4182
c6a9797e
RD
4183 -- For default expressions and other spec expressions in generic units,
4184 -- the Move_Freeze_Nodes mechanism (see sem_ch12.adb) takes care of
4185 -- placing them at the proper place, after the generic unit.
70482933 4186
c6a9797e 4187 if (In_Spec_Exp and not Inside_A_Generic)
70482933
RK
4188 or else Freeze_Outside
4189 or else (Is_Type (Current_Scope)
4190 and then (not Is_Concurrent_Type (Current_Scope)
4191 or else not Has_Completion (Current_Scope)))
4192 or else Ekind (Current_Scope) = E_Void
4193 then
4194 declare
4195 Loc : constant Source_Ptr := Sloc (Current_Scope);
4196 Freeze_Nodes : List_Id := No_List;
c6823a20 4197 Pos : Int := Scope_Stack.Last;
70482933
RK
4198
4199 begin
4200 if Present (Desig_Typ) then
4201 Freeze_And_Append (Desig_Typ, Loc, Freeze_Nodes);
4202 end if;
4203
4204 if Present (Typ) then
4205 Freeze_And_Append (Typ, Loc, Freeze_Nodes);
4206 end if;
4207
4208 if Present (Nam) then
4209 Freeze_And_Append (Nam, Loc, Freeze_Nodes);
4210 end if;
4211
c6823a20
EB
4212 -- The current scope may be that of a constrained component of
4213 -- an enclosing record declaration, which is above the current
4214 -- scope in the scope stack.
4215
4216 if Is_Record_Type (Scope (Current_Scope)) then
4217 Pos := Pos - 1;
4218 end if;
4219
70482933 4220 if Is_Non_Empty_List (Freeze_Nodes) then
c6823a20
EB
4221 if No (Scope_Stack.Table (Pos).Pending_Freeze_Actions) then
4222 Scope_Stack.Table (Pos).Pending_Freeze_Actions :=
70482933
RK
4223 Freeze_Nodes;
4224 else
4225 Append_List (Freeze_Nodes, Scope_Stack.Table
c6823a20 4226 (Pos).Pending_Freeze_Actions);
70482933
RK
4227 end if;
4228 end if;
4229 end;
4230
4231 return;
4232 end if;
4233
4234 -- Now we have the right place to do the freezing. First, a special
c6a9797e
RD
4235 -- adjustment, if we are in spec-expression analysis mode, these freeze
4236 -- actions must not be thrown away (normally all inserted actions are
4237 -- thrown away in this mode. However, the freeze actions are from static
4238 -- expressions and one of the important reasons we are doing this
ee094616 4239 -- special analysis is to get these freeze actions. Therefore we turn
c6a9797e 4240 -- off the In_Spec_Expression mode to propagate these freeze actions.
ee094616 4241 -- This also means they get properly analyzed and expanded.
70482933 4242
c6a9797e 4243 In_Spec_Expression := False;
70482933 4244
fbf5a39b 4245 -- Freeze the designated type of an allocator (RM 13.14(13))
70482933
RK
4246
4247 if Present (Desig_Typ) then
4248 Freeze_Before (P, Desig_Typ);
4249 end if;
4250
fbf5a39b 4251 -- Freeze type of expression (RM 13.14(10)). Note that we took care of
70482933
RK
4252 -- the enumeration representation clause exception in the loop above.
4253
4254 if Present (Typ) then
4255 Freeze_Before (P, Typ);
4256 end if;
4257
fbf5a39b 4258 -- Freeze name if one is present (RM 13.14(11))
70482933
RK
4259
4260 if Present (Nam) then
4261 Freeze_Before (P, Nam);
4262 end if;
4263
c6a9797e
RD
4264 -- Restore In_Spec_Expression flag
4265
4266 In_Spec_Expression := In_Spec_Exp;
70482933
RK
4267 end Freeze_Expression;
4268
4269 -----------------------------
4270 -- Freeze_Fixed_Point_Type --
4271 -----------------------------
4272
edd63e9b
ES
4273 -- Certain fixed-point types and subtypes, including implicit base types
4274 -- and declared first subtypes, have not yet set up a range. This is
4275 -- because the range cannot be set until the Small and Size values are
4276 -- known, and these are not known till the type is frozen.
70482933 4277
edd63e9b
ES
4278 -- To signal this case, Scalar_Range contains an unanalyzed syntactic range
4279 -- whose bounds are unanalyzed real literals. This routine will recognize
4280 -- this case, and transform this range node into a properly typed range
4281 -- with properly analyzed and resolved values.
70482933
RK
4282
4283 procedure Freeze_Fixed_Point_Type (Typ : Entity_Id) is
4284 Rng : constant Node_Id := Scalar_Range (Typ);
4285 Lo : constant Node_Id := Low_Bound (Rng);
4286 Hi : constant Node_Id := High_Bound (Rng);
4287 Btyp : constant Entity_Id := Base_Type (Typ);
4288 Brng : constant Node_Id := Scalar_Range (Btyp);
4289 BLo : constant Node_Id := Low_Bound (Brng);
4290 BHi : constant Node_Id := High_Bound (Brng);
4291 Small : constant Ureal := Small_Value (Typ);
4292 Loval : Ureal;
4293 Hival : Ureal;
4294 Atype : Entity_Id;
4295
4296 Actual_Size : Nat;
4297
4298 function Fsize (Lov, Hiv : Ureal) return Nat;
4299 -- Returns size of type with given bounds. Also leaves these
4300 -- bounds set as the current bounds of the Typ.
4301
0da2c8ac
AC
4302 -----------
4303 -- Fsize --
4304 -----------
4305
70482933
RK
4306 function Fsize (Lov, Hiv : Ureal) return Nat is
4307 begin
4308 Set_Realval (Lo, Lov);
4309 Set_Realval (Hi, Hiv);
4310 return Minimum_Size (Typ);
4311 end Fsize;
4312
0da2c8ac 4313 -- Start of processing for Freeze_Fixed_Point_Type
70482933
RK
4314
4315 begin
4316 -- If Esize of a subtype has not previously been set, set it now
4317
4318 if Unknown_Esize (Typ) then
4319 Atype := Ancestor_Subtype (Typ);
4320
4321 if Present (Atype) then
fbf5a39b 4322 Set_Esize (Typ, Esize (Atype));
70482933 4323 else
fbf5a39b 4324 Set_Esize (Typ, Esize (Base_Type (Typ)));
70482933
RK
4325 end if;
4326 end if;
4327
ee094616
RD
4328 -- Immediate return if the range is already analyzed. This means that
4329 -- the range is already set, and does not need to be computed by this
4330 -- routine.
70482933
RK
4331
4332 if Analyzed (Rng) then
4333 return;
4334 end if;
4335
4336 -- Immediate return if either of the bounds raises Constraint_Error
4337
4338 if Raises_Constraint_Error (Lo)
4339 or else Raises_Constraint_Error (Hi)
4340 then
4341 return;
4342 end if;
4343
4344 Loval := Realval (Lo);
4345 Hival := Realval (Hi);
4346
4347 -- Ordinary fixed-point case
4348
4349 if Is_Ordinary_Fixed_Point_Type (Typ) then
4350
4351 -- For the ordinary fixed-point case, we are allowed to fudge the
ee094616
RD
4352 -- end-points up or down by small. Generally we prefer to fudge up,
4353 -- i.e. widen the bounds for non-model numbers so that the end points
4354 -- are included. However there are cases in which this cannot be
4355 -- done, and indeed cases in which we may need to narrow the bounds.
4356 -- The following circuit makes the decision.
70482933 4357
ee094616
RD
4358 -- Note: our terminology here is that Incl_EP means that the bounds
4359 -- are widened by Small if necessary to include the end points, and
4360 -- Excl_EP means that the bounds are narrowed by Small to exclude the
4361 -- end-points if this reduces the size.
70482933
RK
4362
4363 -- Note that in the Incl case, all we care about is including the
4364 -- end-points. In the Excl case, we want to narrow the bounds as
4365 -- much as permitted by the RM, to give the smallest possible size.
4366
4367 Fudge : declare
4368 Loval_Incl_EP : Ureal;
4369 Hival_Incl_EP : Ureal;
4370
4371 Loval_Excl_EP : Ureal;
4372 Hival_Excl_EP : Ureal;
4373
4374 Size_Incl_EP : Nat;
4375 Size_Excl_EP : Nat;
4376
4377 Model_Num : Ureal;
4378 First_Subt : Entity_Id;
4379 Actual_Lo : Ureal;
4380 Actual_Hi : Ureal;
4381
4382 begin
4383 -- First step. Base types are required to be symmetrical. Right
4384 -- now, the base type range is a copy of the first subtype range.
4385 -- This will be corrected before we are done, but right away we
4386 -- need to deal with the case where both bounds are non-negative.
4387 -- In this case, we set the low bound to the negative of the high
4388 -- bound, to make sure that the size is computed to include the
4389 -- required sign. Note that we do not need to worry about the
4390 -- case of both bounds negative, because the sign will be dealt
4391 -- with anyway. Furthermore we can't just go making such a bound
4392 -- symmetrical, since in a twos-complement system, there is an
e14c931f 4393 -- extra negative value which could not be accommodated on the
70482933
RK
4394 -- positive side.
4395
4396 if Typ = Btyp
4397 and then not UR_Is_Negative (Loval)
4398 and then Hival > Loval
4399 then
4400 Loval := -Hival;
4401 Set_Realval (Lo, Loval);
4402 end if;
4403
4404 -- Compute the fudged bounds. If the number is a model number,
edd63e9b
ES
4405 -- then we do nothing to include it, but we are allowed to backoff
4406 -- to the next adjacent model number when we exclude it. If it is
4407 -- not a model number then we straddle the two values with the
4408 -- model numbers on either side.
70482933
RK
4409
4410 Model_Num := UR_Trunc (Loval / Small) * Small;
4411
4412 if Loval = Model_Num then
4413 Loval_Incl_EP := Model_Num;
4414 else
4415 Loval_Incl_EP := Model_Num - Small;
4416 end if;
4417
4418 -- The low value excluding the end point is Small greater, but
4419 -- we do not do this exclusion if the low value is positive,
4420 -- since it can't help the size and could actually hurt by
4421 -- crossing the high bound.
4422
4423 if UR_Is_Negative (Loval_Incl_EP) then
4424 Loval_Excl_EP := Loval_Incl_EP + Small;
def46b54
RD
4425
4426 -- If the value went from negative to zero, then we have the
4427 -- case where Loval_Incl_EP is the model number just below
4428 -- zero, so we want to stick to the negative value for the
4429 -- base type to maintain the condition that the size will
4430 -- include signed values.
4431
4432 if Typ = Btyp
4433 and then UR_Is_Zero (Loval_Excl_EP)
4434 then
4435 Loval_Excl_EP := Loval_Incl_EP;
4436 end if;
4437
70482933
RK
4438 else
4439 Loval_Excl_EP := Loval_Incl_EP;
4440 end if;
4441
4442 -- Similar processing for upper bound and high value
4443
4444 Model_Num := UR_Trunc (Hival / Small) * Small;
4445
4446 if Hival = Model_Num then
4447 Hival_Incl_EP := Model_Num;
4448 else
4449 Hival_Incl_EP := Model_Num + Small;
4450 end if;
4451
4452 if UR_Is_Positive (Hival_Incl_EP) then
4453 Hival_Excl_EP := Hival_Incl_EP - Small;
4454 else
4455 Hival_Excl_EP := Hival_Incl_EP;
4456 end if;
4457
ee094616
RD
4458 -- One further adjustment is needed. In the case of subtypes, we
4459 -- cannot go outside the range of the base type, or we get
70482933 4460 -- peculiarities, and the base type range is already set. This
ee094616
RD
4461 -- only applies to the Incl values, since clearly the Excl values
4462 -- are already as restricted as they are allowed to be.
70482933
RK
4463
4464 if Typ /= Btyp then
4465 Loval_Incl_EP := UR_Max (Loval_Incl_EP, Realval (BLo));
4466 Hival_Incl_EP := UR_Min (Hival_Incl_EP, Realval (BHi));
4467 end if;
4468
4469 -- Get size including and excluding end points
4470
4471 Size_Incl_EP := Fsize (Loval_Incl_EP, Hival_Incl_EP);
4472 Size_Excl_EP := Fsize (Loval_Excl_EP, Hival_Excl_EP);
4473
4474 -- No need to exclude end-points if it does not reduce size
4475
4476 if Fsize (Loval_Incl_EP, Hival_Excl_EP) = Size_Excl_EP then
4477 Loval_Excl_EP := Loval_Incl_EP;
4478 end if;
4479
4480 if Fsize (Loval_Excl_EP, Hival_Incl_EP) = Size_Excl_EP then
4481 Hival_Excl_EP := Hival_Incl_EP;
4482 end if;
4483
4484 -- Now we set the actual size to be used. We want to use the
4485 -- bounds fudged up to include the end-points but only if this
4486 -- can be done without violating a specifically given size
4487 -- size clause or causing an unacceptable increase in size.
4488
4489 -- Case of size clause given
4490
4491 if Has_Size_Clause (Typ) then
4492
4493 -- Use the inclusive size only if it is consistent with
4494 -- the explicitly specified size.
4495
4496 if Size_Incl_EP <= RM_Size (Typ) then
4497 Actual_Lo := Loval_Incl_EP;
4498 Actual_Hi := Hival_Incl_EP;
4499 Actual_Size := Size_Incl_EP;
4500
4501 -- If the inclusive size is too large, we try excluding
4502 -- the end-points (will be caught later if does not work).
4503
4504 else
4505 Actual_Lo := Loval_Excl_EP;
4506 Actual_Hi := Hival_Excl_EP;
4507 Actual_Size := Size_Excl_EP;
4508 end if;
4509
4510 -- Case of size clause not given
4511
4512 else
4513 -- If we have a base type whose corresponding first subtype
4514 -- has an explicit size that is large enough to include our
4515 -- end-points, then do so. There is no point in working hard
4516 -- to get a base type whose size is smaller than the specified
4517 -- size of the first subtype.
4518
4519 First_Subt := First_Subtype (Typ);
4520
4521 if Has_Size_Clause (First_Subt)
4522 and then Size_Incl_EP <= Esize (First_Subt)
4523 then
4524 Actual_Size := Size_Incl_EP;
4525 Actual_Lo := Loval_Incl_EP;
4526 Actual_Hi := Hival_Incl_EP;
4527
4528 -- If excluding the end-points makes the size smaller and
4529 -- results in a size of 8,16,32,64, then we take the smaller
4530 -- size. For the 64 case, this is compulsory. For the other
4531 -- cases, it seems reasonable. We like to include end points
4532 -- if we can, but not at the expense of moving to the next
4533 -- natural boundary of size.
4534
4535 elsif Size_Incl_EP /= Size_Excl_EP
4536 and then
4537 (Size_Excl_EP = 8 or else
4538 Size_Excl_EP = 16 or else
4539 Size_Excl_EP = 32 or else
4540 Size_Excl_EP = 64)
4541 then
4542 Actual_Size := Size_Excl_EP;
4543 Actual_Lo := Loval_Excl_EP;
4544 Actual_Hi := Hival_Excl_EP;
4545
4546 -- Otherwise we can definitely include the end points
4547
4548 else
4549 Actual_Size := Size_Incl_EP;
4550 Actual_Lo := Loval_Incl_EP;
4551 Actual_Hi := Hival_Incl_EP;
4552 end if;
4553
edd63e9b
ES
4554 -- One pathological case: normally we never fudge a low bound
4555 -- down, since it would seem to increase the size (if it has
4556 -- any effect), but for ranges containing single value, or no
4557 -- values, the high bound can be small too large. Consider:
70482933
RK
4558
4559 -- type t is delta 2.0**(-14)
4560 -- range 131072.0 .. 0;
4561
edd63e9b
ES
4562 -- That lower bound is *just* outside the range of 32 bits, and
4563 -- does need fudging down in this case. Note that the bounds
4564 -- will always have crossed here, since the high bound will be
4565 -- fudged down if necessary, as in the case of:
70482933
RK
4566
4567 -- type t is delta 2.0**(-14)
4568 -- range 131072.0 .. 131072.0;
4569
edd63e9b
ES
4570 -- So we detect the situation by looking for crossed bounds,
4571 -- and if the bounds are crossed, and the low bound is greater
4572 -- than zero, we will always back it off by small, since this
4573 -- is completely harmless.
70482933
RK
4574
4575 if Actual_Lo > Actual_Hi then
4576 if UR_Is_Positive (Actual_Lo) then
4577 Actual_Lo := Loval_Incl_EP - Small;
4578 Actual_Size := Fsize (Actual_Lo, Actual_Hi);
4579
4580 -- And of course, we need to do exactly the same parallel
4581 -- fudge for flat ranges in the negative region.
4582
4583 elsif UR_Is_Negative (Actual_Hi) then
4584 Actual_Hi := Hival_Incl_EP + Small;
4585 Actual_Size := Fsize (Actual_Lo, Actual_Hi);
4586 end if;
4587 end if;
4588 end if;
4589
4590 Set_Realval (Lo, Actual_Lo);
4591 Set_Realval (Hi, Actual_Hi);
4592 end Fudge;
4593
4594 -- For the decimal case, none of this fudging is required, since there
4595 -- are no end-point problems in the decimal case (the end-points are
4596 -- always included).
4597
4598 else
4599 Actual_Size := Fsize (Loval, Hival);
4600 end if;
4601
4602 -- At this stage, the actual size has been calculated and the proper
4603 -- required bounds are stored in the low and high bounds.
4604
4605 if Actual_Size > 64 then
4606 Error_Msg_Uint_1 := UI_From_Int (Actual_Size);
4607 Error_Msg_N
7d8b9c99
RD
4608 ("size required (^) for type& too large, maximum allowed is 64",
4609 Typ);
70482933
RK
4610 Actual_Size := 64;
4611 end if;
4612
4613 -- Check size against explicit given size
4614
4615 if Has_Size_Clause (Typ) then
4616 if Actual_Size > RM_Size (Typ) then
4617 Error_Msg_Uint_1 := RM_Size (Typ);
4618 Error_Msg_Uint_2 := UI_From_Int (Actual_Size);
4619 Error_Msg_NE
7d8b9c99 4620 ("size given (^) for type& too small, minimum allowed is ^",
70482933
RK
4621 Size_Clause (Typ), Typ);
4622
4623 else
4624 Actual_Size := UI_To_Int (Esize (Typ));
4625 end if;
4626
4627 -- Increase size to next natural boundary if no size clause given
4628
4629 else
4630 if Actual_Size <= 8 then
4631 Actual_Size := 8;
4632 elsif Actual_Size <= 16 then
4633 Actual_Size := 16;
4634 elsif Actual_Size <= 32 then
4635 Actual_Size := 32;
4636 else
4637 Actual_Size := 64;
4638 end if;
4639
4640 Init_Esize (Typ, Actual_Size);
4641 Adjust_Esize_For_Alignment (Typ);
4642 end if;
4643
edd63e9b
ES
4644 -- If we have a base type, then expand the bounds so that they extend to
4645 -- the full width of the allocated size in bits, to avoid junk range
4646 -- checks on intermediate computations.
70482933
RK
4647
4648 if Base_Type (Typ) = Typ then
4649 Set_Realval (Lo, -(Small * (Uint_2 ** (Actual_Size - 1))));
4650 Set_Realval (Hi, (Small * (Uint_2 ** (Actual_Size - 1) - 1)));
4651 end if;
4652
4653 -- Final step is to reanalyze the bounds using the proper type
4654 -- and set the Corresponding_Integer_Value fields of the literals.
4655
4656 Set_Etype (Lo, Empty);
4657 Set_Analyzed (Lo, False);
4658 Analyze (Lo);
4659
edd63e9b
ES
4660 -- Resolve with universal fixed if the base type, and the base type if
4661 -- it is a subtype. Note we can't resolve the base type with itself,
4662 -- that would be a reference before definition.
70482933
RK
4663
4664 if Typ = Btyp then
4665 Resolve (Lo, Universal_Fixed);
4666 else
4667 Resolve (Lo, Btyp);
4668 end if;
4669
4670 -- Set corresponding integer value for bound
4671
4672 Set_Corresponding_Integer_Value
4673 (Lo, UR_To_Uint (Realval (Lo) / Small));
4674
4675 -- Similar processing for high bound
4676
4677 Set_Etype (Hi, Empty);
4678 Set_Analyzed (Hi, False);
4679 Analyze (Hi);
4680
4681 if Typ = Btyp then
4682 Resolve (Hi, Universal_Fixed);
4683 else
4684 Resolve (Hi, Btyp);
4685 end if;
4686
4687 Set_Corresponding_Integer_Value
4688 (Hi, UR_To_Uint (Realval (Hi) / Small));
4689
4690 -- Set type of range to correspond to bounds
4691
4692 Set_Etype (Rng, Etype (Lo));
4693
fbf5a39b 4694 -- Set Esize to calculated size if not set already
70482933 4695
fbf5a39b
AC
4696 if Unknown_Esize (Typ) then
4697 Init_Esize (Typ, Actual_Size);
4698 end if;
70482933
RK
4699
4700 -- Set RM_Size if not already set. If already set, check value
4701
4702 declare
4703 Minsiz : constant Uint := UI_From_Int (Minimum_Size (Typ));
4704
4705 begin
4706 if RM_Size (Typ) /= Uint_0 then
4707 if RM_Size (Typ) < Minsiz then
4708 Error_Msg_Uint_1 := RM_Size (Typ);
4709 Error_Msg_Uint_2 := Minsiz;
4710 Error_Msg_NE
7d8b9c99 4711 ("size given (^) for type& too small, minimum allowed is ^",
70482933
RK
4712 Size_Clause (Typ), Typ);
4713 end if;
4714
4715 else
4716 Set_RM_Size (Typ, Minsiz);
4717 end if;
4718 end;
70482933
RK
4719 end Freeze_Fixed_Point_Type;
4720
4721 ------------------
4722 -- Freeze_Itype --
4723 ------------------
4724
4725 procedure Freeze_Itype (T : Entity_Id; N : Node_Id) is
4726 L : List_Id;
4727
4728 begin
4729 Set_Has_Delayed_Freeze (T);
4730 L := Freeze_Entity (T, Sloc (N));
4731
4732 if Is_Non_Empty_List (L) then
4733 Insert_Actions (N, L);
4734 end if;
4735 end Freeze_Itype;
4736
4737 --------------------------
4738 -- Freeze_Static_Object --
4739 --------------------------
4740
4741 procedure Freeze_Static_Object (E : Entity_Id) is
4742
4743 Cannot_Be_Static : exception;
4744 -- Exception raised if the type of a static object cannot be made
4745 -- static. This happens if the type depends on non-global objects.
4746
4747 procedure Ensure_Expression_Is_SA (N : Node_Id);
ee094616
RD
4748 -- Called to ensure that an expression used as part of a type definition
4749 -- is statically allocatable, which means that the expression type is
4750 -- statically allocatable, and the expression is either static, or a
4751 -- reference to a library level constant.
70482933
RK
4752
4753 procedure Ensure_Type_Is_SA (Typ : Entity_Id);
4754 -- Called to mark a type as static, checking that it is possible
4755 -- to set the type as static. If it is not possible, then the
4756 -- exception Cannot_Be_Static is raised.
4757
4758 -----------------------------
4759 -- Ensure_Expression_Is_SA --
4760 -----------------------------
4761
4762 procedure Ensure_Expression_Is_SA (N : Node_Id) is
4763 Ent : Entity_Id;
4764
4765 begin
4766 Ensure_Type_Is_SA (Etype (N));
4767
4768 if Is_Static_Expression (N) then
4769 return;
4770
4771 elsif Nkind (N) = N_Identifier then
4772 Ent := Entity (N);
4773
4774 if Present (Ent)
4775 and then Ekind (Ent) = E_Constant
4776 and then Is_Library_Level_Entity (Ent)
4777 then
4778 return;
4779 end if;
4780 end if;
4781
4782 raise Cannot_Be_Static;
4783 end Ensure_Expression_Is_SA;
4784
4785 -----------------------
4786 -- Ensure_Type_Is_SA --
4787 -----------------------
4788
4789 procedure Ensure_Type_Is_SA (Typ : Entity_Id) is
4790 N : Node_Id;
4791 C : Entity_Id;
4792
4793 begin
4794 -- If type is library level, we are all set
4795
4796 if Is_Library_Level_Entity (Typ) then
4797 return;
4798 end if;
4799
ee094616
RD
4800 -- We are also OK if the type already marked as statically allocated,
4801 -- which means we processed it before.
70482933
RK
4802
4803 if Is_Statically_Allocated (Typ) then
4804 return;
4805 end if;
4806
4807 -- Mark type as statically allocated
4808
4809 Set_Is_Statically_Allocated (Typ);
4810
4811 -- Check that it is safe to statically allocate this type
4812
4813 if Is_Scalar_Type (Typ) or else Is_Real_Type (Typ) then
4814 Ensure_Expression_Is_SA (Type_Low_Bound (Typ));
4815 Ensure_Expression_Is_SA (Type_High_Bound (Typ));
4816
4817 elsif Is_Array_Type (Typ) then
4818 N := First_Index (Typ);
4819 while Present (N) loop
4820 Ensure_Type_Is_SA (Etype (N));
4821 Next_Index (N);
4822 end loop;
4823
4824 Ensure_Type_Is_SA (Component_Type (Typ));
4825
4826 elsif Is_Access_Type (Typ) then
4827 if Ekind (Designated_Type (Typ)) = E_Subprogram_Type then
4828
4829 declare
4830 F : Entity_Id;
4831 T : constant Entity_Id := Etype (Designated_Type (Typ));
4832
4833 begin
4834 if T /= Standard_Void_Type then
4835 Ensure_Type_Is_SA (T);
4836 end if;
4837
4838 F := First_Formal (Designated_Type (Typ));
4839
4840 while Present (F) loop
4841 Ensure_Type_Is_SA (Etype (F));
4842 Next_Formal (F);
4843 end loop;
4844 end;
4845
4846 else
4847 Ensure_Type_Is_SA (Designated_Type (Typ));
4848 end if;
4849
4850 elsif Is_Record_Type (Typ) then
4851 C := First_Entity (Typ);
70482933
RK
4852 while Present (C) loop
4853 if Ekind (C) = E_Discriminant
4854 or else Ekind (C) = E_Component
4855 then
4856 Ensure_Type_Is_SA (Etype (C));
4857
4858 elsif Is_Type (C) then
4859 Ensure_Type_Is_SA (C);
4860 end if;
4861
4862 Next_Entity (C);
4863 end loop;
4864
4865 elsif Ekind (Typ) = E_Subprogram_Type then
4866 Ensure_Type_Is_SA (Etype (Typ));
4867
4868 C := First_Formal (Typ);
4869 while Present (C) loop
4870 Ensure_Type_Is_SA (Etype (C));
4871 Next_Formal (C);
4872 end loop;
4873
4874 else
4875 raise Cannot_Be_Static;
4876 end if;
4877 end Ensure_Type_Is_SA;
4878
4879 -- Start of processing for Freeze_Static_Object
4880
4881 begin
4882 Ensure_Type_Is_SA (Etype (E));
4883
4884 exception
4885 when Cannot_Be_Static =>
4886
4887 -- If the object that cannot be static is imported or exported,
4888 -- then we give an error message saying that this object cannot
4889 -- be imported or exported.
4890
4891 if Is_Imported (E) then
4892 Error_Msg_N
4893 ("& cannot be imported (local type is not constant)", E);
4894
4895 -- Otherwise must be exported, something is wrong if compiler
4896 -- is marking something as statically allocated which cannot be).
4897
4898 else pragma Assert (Is_Exported (E));
4899 Error_Msg_N
4900 ("& cannot be exported (local type is not constant)", E);
4901 end if;
4902 end Freeze_Static_Object;
4903
4904 -----------------------
4905 -- Freeze_Subprogram --
4906 -----------------------
4907
4908 procedure Freeze_Subprogram (E : Entity_Id) is
4909 Retype : Entity_Id;
4910 F : Entity_Id;
4911
4912 begin
4913 -- Subprogram may not have an address clause unless it is imported
4914
4915 if Present (Address_Clause (E)) then
4916 if not Is_Imported (E) then
4917 Error_Msg_N
4918 ("address clause can only be given " &
4919 "for imported subprogram",
4920 Name (Address_Clause (E)));
4921 end if;
4922 end if;
4923
91b1417d
AC
4924 -- Reset the Pure indication on an imported subprogram unless an
4925 -- explicit Pure_Function pragma was present. We do this because
ee094616
RD
4926 -- otherwise it is an insidious error to call a non-pure function from
4927 -- pure unit and have calls mysteriously optimized away. What happens
4928 -- here is that the Import can bypass the normal check to ensure that
4929 -- pure units call only pure subprograms.
91b1417d
AC
4930
4931 if Is_Imported (E)
4932 and then Is_Pure (E)
4933 and then not Has_Pragma_Pure_Function (E)
4934 then
4935 Set_Is_Pure (E, False);
4936 end if;
4937
70482933
RK
4938 -- For non-foreign convention subprograms, this is where we create
4939 -- the extra formals (for accessibility level and constrained bit
4940 -- information). We delay this till the freeze point precisely so
4941 -- that we know the convention!
4942
4943 if not Has_Foreign_Convention (E) then
4944 Create_Extra_Formals (E);
4945 Set_Mechanisms (E);
4946
4947 -- If this is convention Ada and a Valued_Procedure, that's odd
4948
4949 if Ekind (E) = E_Procedure
4950 and then Is_Valued_Procedure (E)
4951 and then Convention (E) = Convention_Ada
fbf5a39b 4952 and then Warn_On_Export_Import
70482933
RK
4953 then
4954 Error_Msg_N
4955 ("?Valued_Procedure has no effect for convention Ada", E);
4956 Set_Is_Valued_Procedure (E, False);
4957 end if;
4958
4959 -- Case of foreign convention
4960
4961 else
4962 Set_Mechanisms (E);
4963
fbf5a39b 4964 -- For foreign conventions, warn about return of an
70482933
RK
4965 -- unconstrained array.
4966
4967 -- Note: we *do* allow a return by descriptor for the VMS case,
4968 -- though here there is probably more to be done ???
4969
4970 if Ekind (E) = E_Function then
4971 Retype := Underlying_Type (Etype (E));
4972
4973 -- If no return type, probably some other error, e.g. a
4974 -- missing full declaration, so ignore.
4975
4976 if No (Retype) then
4977 null;
4978
4979 -- If the return type is generic, we have emitted a warning
edd63e9b
ES
4980 -- earlier on, and there is nothing else to check here. Specific
4981 -- instantiations may lead to erroneous behavior.
70482933
RK
4982
4983 elsif Is_Generic_Type (Etype (E)) then
4984 null;
4985
4986 elsif Is_Array_Type (Retype)
4987 and then not Is_Constrained (Retype)
4988 and then Mechanism (E) not in Descriptor_Codes
fbf5a39b 4989 and then Warn_On_Export_Import
70482933 4990 then
fbf5a39b
AC
4991 Error_Msg_N
4992 ("?foreign convention function& should not return " &
4993 "unconstrained array", E);
70482933
RK
4994 return;
4995 end if;
4996 end if;
4997
4998 -- If any of the formals for an exported foreign convention
edd63e9b
ES
4999 -- subprogram have defaults, then emit an appropriate warning since
5000 -- this is odd (default cannot be used from non-Ada code)
70482933
RK
5001
5002 if Is_Exported (E) then
5003 F := First_Formal (E);
5004 while Present (F) loop
fbf5a39b
AC
5005 if Warn_On_Export_Import
5006 and then Present (Default_Value (F))
5007 then
70482933
RK
5008 Error_Msg_N
5009 ("?parameter cannot be defaulted in non-Ada call",
5010 Default_Value (F));
5011 end if;
5012
5013 Next_Formal (F);
5014 end loop;
5015 end if;
5016 end if;
5017
5018 -- For VMS, descriptor mechanisms for parameters are allowed only
7d8b9c99
RD
5019 -- for imported/exported subprograms. Moreover, the NCA descriptor
5020 -- is not allowed for parameters of exported subprograms.
70482933
RK
5021
5022 if OpenVMS_On_Target then
7d8b9c99
RD
5023 if Is_Exported (E) then
5024 F := First_Formal (E);
5025 while Present (F) loop
5026 if Mechanism (F) = By_Descriptor_NCA then
5027 Error_Msg_N
5028 ("'N'C'A' descriptor for parameter not permitted", F);
5029 Error_Msg_N
5030 ("\can only be used for imported subprogram", F);
5031 end if;
5032
5033 Next_Formal (F);
5034 end loop;
5035
5036 elsif not Is_Imported (E) then
70482933
RK
5037 F := First_Formal (E);
5038 while Present (F) loop
5039 if Mechanism (F) in Descriptor_Codes then
5040 Error_Msg_N
5041 ("descriptor mechanism for parameter not permitted", F);
5042 Error_Msg_N
7d8b9c99 5043 ("\can only be used for imported/exported subprogram", F);
70482933
RK
5044 end if;
5045
5046 Next_Formal (F);
5047 end loop;
5048 end if;
5049 end if;
edd63e9b
ES
5050
5051 -- Pragma Inline_Always is disallowed for dispatching subprograms
5052 -- because the address of such subprograms is saved in the dispatch
5053 -- table to support dispatching calls, and dispatching calls cannot
5054 -- be inlined. This is consistent with the restriction against using
5055 -- 'Access or 'Address on an Inline_Always subprogram.
5056
def46b54
RD
5057 if Is_Dispatching_Operation (E)
5058 and then Has_Pragma_Inline_Always (E)
5059 then
edd63e9b
ES
5060 Error_Msg_N
5061 ("pragma Inline_Always not allowed for dispatching subprograms", E);
5062 end if;
c6a9797e
RD
5063
5064 -- Because of the implicit representation of inherited predefined
5065 -- operators in the front-end, the overriding status of the operation
5066 -- may be affected when a full view of a type is analyzed, and this is
5067 -- not captured by the analysis of the corresponding type declaration.
5068 -- Therefore the correctness of a not-overriding indicator must be
5069 -- rechecked when the subprogram is frozen.
5070
5071 if Nkind (E) = N_Defining_Operator_Symbol
5072 and then not Error_Posted (Parent (E))
5073 then
5074 Check_Overriding_Indicator (E, Empty, Is_Primitive (E));
5075 end if;
70482933
RK
5076 end Freeze_Subprogram;
5077
15ce9ca2
AC
5078 ----------------------
5079 -- Is_Fully_Defined --
5080 ----------------------
70482933 5081
70482933
RK
5082 function Is_Fully_Defined (T : Entity_Id) return Boolean is
5083 begin
5084 if Ekind (T) = E_Class_Wide_Type then
5085 return Is_Fully_Defined (Etype (T));
657a9dd9
AC
5086
5087 elsif Is_Array_Type (T) then
5088 return Is_Fully_Defined (Component_Type (T));
5089
5090 elsif Is_Record_Type (T)
5091 and not Is_Private_Type (T)
5092 then
ee094616
RD
5093 -- Verify that the record type has no components with private types
5094 -- without completion.
657a9dd9
AC
5095
5096 declare
5097 Comp : Entity_Id;
bde58e32 5098
657a9dd9
AC
5099 begin
5100 Comp := First_Component (T);
5101
5102 while Present (Comp) loop
5103 if not Is_Fully_Defined (Etype (Comp)) then
5104 return False;
5105 end if;
5106
5107 Next_Component (Comp);
5108 end loop;
5109 return True;
5110 end;
5111
86cde7b1
RD
5112 else
5113 return not Is_Private_Type (T)
5114 or else Present (Full_View (Base_Type (T)));
70482933
RK
5115 end if;
5116 end Is_Fully_Defined;
5117
70d904ca 5118 ---------------------------------
70482933
RK
5119 -- Process_Default_Expressions --
5120 ---------------------------------
5121
5122 procedure Process_Default_Expressions
5123 (E : Entity_Id;
5124 After : in out Node_Id)
5125 is
5126 Loc : constant Source_Ptr := Sloc (E);
5127 Dbody : Node_Id;
5128 Formal : Node_Id;
5129 Dcopy : Node_Id;
5130 Dnam : Entity_Id;
5131
5132 begin
5133 Set_Default_Expressions_Processed (E);
5134
ee094616
RD
5135 -- A subprogram instance and its associated anonymous subprogram share
5136 -- their signature. The default expression functions are defined in the
5137 -- wrapper packages for the anonymous subprogram, and should not be
5138 -- generated again for the instance.
70482933
RK
5139
5140 if Is_Generic_Instance (E)
5141 and then Present (Alias (E))
5142 and then Default_Expressions_Processed (Alias (E))
5143 then
5144 return;
5145 end if;
5146
5147 Formal := First_Formal (E);
70482933
RK
5148 while Present (Formal) loop
5149 if Present (Default_Value (Formal)) then
5150
5151 -- We work with a copy of the default expression because we
5152 -- do not want to disturb the original, since this would mess
5153 -- up the conformance checking.
5154
5155 Dcopy := New_Copy_Tree (Default_Value (Formal));
5156
5157 -- The analysis of the expression may generate insert actions,
5158 -- which of course must not be executed. We wrap those actions
5159 -- in a procedure that is not called, and later on eliminated.
5160 -- The following cases have no side-effects, and are analyzed
5161 -- directly.
5162
5163 if Nkind (Dcopy) = N_Identifier
5164 or else Nkind (Dcopy) = N_Expanded_Name
5165 or else Nkind (Dcopy) = N_Integer_Literal
5166 or else (Nkind (Dcopy) = N_Real_Literal
5167 and then not Vax_Float (Etype (Dcopy)))
5168 or else Nkind (Dcopy) = N_Character_Literal
5169 or else Nkind (Dcopy) = N_String_Literal
86cde7b1 5170 or else Known_Null (Dcopy)
70482933
RK
5171 or else (Nkind (Dcopy) = N_Attribute_Reference
5172 and then
5173 Attribute_Name (Dcopy) = Name_Null_Parameter)
70482933
RK
5174 then
5175
5176 -- If there is no default function, we must still do a full
ee094616
RD
5177 -- analyze call on the default value, to ensure that all error
5178 -- checks are performed, e.g. those associated with static
5179 -- evaluation. Note: this branch will always be taken if the
5180 -- analyzer is turned off (but we still need the error checks).
70482933
RK
5181
5182 -- Note: the setting of parent here is to meet the requirement
5183 -- that we can only analyze the expression while attached to
5184 -- the tree. Really the requirement is that the parent chain
5185 -- be set, we don't actually need to be in the tree.
5186
5187 Set_Parent (Dcopy, Declaration_Node (Formal));
5188 Analyze (Dcopy);
5189
5190 -- Default expressions are resolved with their own type if the
5191 -- context is generic, to avoid anomalies with private types.
5192
5193 if Ekind (Scope (E)) = E_Generic_Package then
fbf5a39b 5194 Resolve (Dcopy);
70482933
RK
5195 else
5196 Resolve (Dcopy, Etype (Formal));
5197 end if;
5198
5199 -- If that resolved expression will raise constraint error,
5200 -- then flag the default value as raising constraint error.
5201 -- This allows a proper error message on the calls.
5202
5203 if Raises_Constraint_Error (Dcopy) then
5204 Set_Raises_Constraint_Error (Default_Value (Formal));
5205 end if;
5206
5207 -- If the default is a parameterless call, we use the name of
5208 -- the called function directly, and there is no body to build.
5209
5210 elsif Nkind (Dcopy) = N_Function_Call
5211 and then No (Parameter_Associations (Dcopy))
5212 then
5213 null;
5214
5215 -- Else construct and analyze the body of a wrapper procedure
5216 -- that contains an object declaration to hold the expression.
5217 -- Given that this is done only to complete the analysis, it
5218 -- simpler to build a procedure than a function which might
5219 -- involve secondary stack expansion.
5220
5221 else
5222 Dnam :=
5223 Make_Defining_Identifier (Loc, New_Internal_Name ('D'));
5224
5225 Dbody :=
5226 Make_Subprogram_Body (Loc,
5227 Specification =>
5228 Make_Procedure_Specification (Loc,
5229 Defining_Unit_Name => Dnam),
5230
5231 Declarations => New_List (
5232 Make_Object_Declaration (Loc,
5233 Defining_Identifier =>
5234 Make_Defining_Identifier (Loc,
5235 New_Internal_Name ('T')),
5236 Object_Definition =>
5237 New_Occurrence_Of (Etype (Formal), Loc),
5238 Expression => New_Copy_Tree (Dcopy))),
5239
5240 Handled_Statement_Sequence =>
5241 Make_Handled_Sequence_Of_Statements (Loc,
5242 Statements => New_List));
5243
5244 Set_Scope (Dnam, Scope (E));
5245 Set_Assignment_OK (First (Declarations (Dbody)));
5246 Set_Is_Eliminated (Dnam);
5247 Insert_After (After, Dbody);
5248 Analyze (Dbody);
5249 After := Dbody;
5250 end if;
5251 end if;
5252
5253 Next_Formal (Formal);
5254 end loop;
70482933
RK
5255 end Process_Default_Expressions;
5256
5257 ----------------------------------------
5258 -- Set_Component_Alignment_If_Not_Set --
5259 ----------------------------------------
5260
5261 procedure Set_Component_Alignment_If_Not_Set (Typ : Entity_Id) is
5262 begin
5263 -- Ignore if not base type, subtypes don't need anything
5264
5265 if Typ /= Base_Type (Typ) then
5266 return;
5267 end if;
5268
5269 -- Do not override existing representation
5270
5271 if Is_Packed (Typ) then
5272 return;
5273
5274 elsif Has_Specified_Layout (Typ) then
5275 return;
5276
5277 elsif Component_Alignment (Typ) /= Calign_Default then
5278 return;
5279
5280 else
5281 Set_Component_Alignment
5282 (Typ, Scope_Stack.Table
5283 (Scope_Stack.Last).Component_Alignment_Default);
5284 end if;
5285 end Set_Component_Alignment_If_Not_Set;
5286
c6823a20
EB
5287 ------------------
5288 -- Undelay_Type --
5289 ------------------
5290
5291 procedure Undelay_Type (T : Entity_Id) is
5292 begin
5293 Set_Has_Delayed_Freeze (T, False);
5294 Set_Freeze_Node (T, Empty);
5295
5296 -- Since we don't want T to have a Freeze_Node, we don't want its
5297 -- Full_View or Corresponding_Record_Type to have one either.
5298
5299 -- ??? Fundamentally, this whole handling is a kludge. What we really
ee094616
RD
5300 -- want is to be sure that for an Itype that's part of record R and is a
5301 -- subtype of type T, that it's frozen after the later of the freeze
c6823a20
EB
5302 -- points of R and T. We have no way of doing that directly, so what we
5303 -- do is force most such Itypes to be frozen as part of freezing R via
5304 -- this procedure and only delay the ones that need to be delayed
ee094616
RD
5305 -- (mostly the designated types of access types that are defined as part
5306 -- of the record).
c6823a20
EB
5307
5308 if Is_Private_Type (T)
5309 and then Present (Full_View (T))
5310 and then Is_Itype (Full_View (T))
5311 and then Is_Record_Type (Scope (Full_View (T)))
5312 then
5313 Undelay_Type (Full_View (T));
5314 end if;
5315
5316 if Is_Concurrent_Type (T)
5317 and then Present (Corresponding_Record_Type (T))
5318 and then Is_Itype (Corresponding_Record_Type (T))
5319 and then Is_Record_Type (Scope (Corresponding_Record_Type (T)))
5320 then
5321 Undelay_Type (Corresponding_Record_Type (T));
5322 end if;
5323 end Undelay_Type;
5324
fbf5a39b
AC
5325 ------------------
5326 -- Warn_Overlay --
5327 ------------------
5328
5329 procedure Warn_Overlay
5330 (Expr : Node_Id;
5331 Typ : Entity_Id;
5332 Nam : Entity_Id)
5333 is
5334 Ent : constant Entity_Id := Entity (Nam);
49e90211 5335 -- The object to which the address clause applies
fbf5a39b
AC
5336
5337 Init : Node_Id;
5338 Old : Entity_Id := Empty;
5339 Decl : Node_Id;
5340
5341 begin
5342 -- No warning if address clause overlay warnings are off
5343
5344 if not Address_Clause_Overlay_Warnings then
5345 return;
5346 end if;
5347
5348 -- No warning if there is an explicit initialization
5349
5350 Init := Original_Node (Expression (Declaration_Node (Ent)));
5351
5352 if Present (Init) and then Comes_From_Source (Init) then
5353 return;
5354 end if;
5355
edd63e9b 5356 -- We only give the warning for non-imported entities of a type for
0ac73189
AC
5357 -- which a non-null base init proc is defined, or for objects of access
5358 -- types with implicit null initialization, or when Initialize_Scalars
5359 -- applies and the type is scalar or a string type (the latter being
5360 -- tested for because predefined String types are initialized by inline
5361 -- code rather than by an init_proc).
fbf5a39b
AC
5362
5363 if Present (Expr)
fbf5a39b 5364 and then not Is_Imported (Ent)
0ac73189
AC
5365 and then (Has_Non_Null_Base_Init_Proc (Typ)
5366 or else Is_Access_Type (Typ)
5367 or else (Init_Or_Norm_Scalars
5368 and then (Is_Scalar_Type (Typ)
5369 or else Is_String_Type (Typ))))
fbf5a39b
AC
5370 then
5371 if Nkind (Expr) = N_Attribute_Reference
5372 and then Is_Entity_Name (Prefix (Expr))
5373 then
5374 Old := Entity (Prefix (Expr));
5375
5376 elsif Is_Entity_Name (Expr)
5377 and then Ekind (Entity (Expr)) = E_Constant
5378 then
5379 Decl := Declaration_Node (Entity (Expr));
5380
5381 if Nkind (Decl) = N_Object_Declaration
5382 and then Present (Expression (Decl))
5383 and then Nkind (Expression (Decl)) = N_Attribute_Reference
5384 and then Is_Entity_Name (Prefix (Expression (Decl)))
5385 then
5386 Old := Entity (Prefix (Expression (Decl)));
5387
5388 elsif Nkind (Expr) = N_Function_Call then
5389 return;
5390 end if;
5391
ee094616
RD
5392 -- A function call (most likely to To_Address) is probably not an
5393 -- overlay, so skip warning. Ditto if the function call was inlined
5394 -- and transformed into an entity.
fbf5a39b
AC
5395
5396 elsif Nkind (Original_Node (Expr)) = N_Function_Call then
5397 return;
5398 end if;
5399
5400 Decl := Next (Parent (Expr));
5401
5402 -- If a pragma Import follows, we assume that it is for the current
5403 -- target of the address clause, and skip the warning.
5404
5405 if Present (Decl)
5406 and then Nkind (Decl) = N_Pragma
1b24ada5 5407 and then Pragma_Name (Decl) = Name_Import
fbf5a39b
AC
5408 then
5409 return;
5410 end if;
5411
5412 if Present (Old) then
5413 Error_Msg_Node_2 := Old;
5414 Error_Msg_N
5415 ("default initialization of & may modify &?",
5416 Nam);
5417 else
5418 Error_Msg_N
5419 ("default initialization of & may modify overlaid storage?",
5420 Nam);
5421 end if;
5422
5423 -- Add friendly warning if initialization comes from a packed array
5424 -- component.
5425
5426 if Is_Record_Type (Typ) then
5427 declare
5428 Comp : Entity_Id;
5429
5430 begin
5431 Comp := First_Component (Typ);
5432
5433 while Present (Comp) loop
5434 if Nkind (Parent (Comp)) = N_Component_Declaration
5435 and then Present (Expression (Parent (Comp)))
5436 then
5437 exit;
5438 elsif Is_Array_Type (Etype (Comp))
5439 and then Present (Packed_Array_Type (Etype (Comp)))
5440 then
5441 Error_Msg_NE
3f1ede06
RD
5442 ("\packed array component& " &
5443 "will be initialized to zero?",
5444 Nam, Comp);
fbf5a39b
AC
5445 exit;
5446 else
5447 Next_Component (Comp);
5448 end if;
5449 end loop;
5450 end;
5451 end if;
5452
5453 Error_Msg_N
3f1ede06 5454 ("\use pragma Import for & to " &
86cde7b1 5455 "suppress initialization (RM B.1(24))?",
3f1ede06 5456 Nam);
fbf5a39b
AC
5457 end if;
5458 end Warn_Overlay;
5459
70482933 5460end Freeze;
This page took 2.532331 seconds and 5 git commands to generate.