]> gcc.gnu.org Git - gcc.git/blame - gcc/ada/freeze.adb
[multiple changes]
[gcc.git] / gcc / ada / freeze.adb
CommitLineData
8dc10d38 1------------------------------------------------------------------------------
70482933
RK
2-- --
3-- GNAT COMPILER COMPONENTS --
4-- --
5-- F R E E Z E --
6-- --
7-- B o d y --
8-- --
748086b7 9-- Copyright (C) 1992-2009, Free Software Foundation, Inc. --
70482933
RK
10-- --
11-- GNAT is free software; you can redistribute it and/or modify it under --
12-- terms of the GNU General Public License as published by the Free Soft- --
748086b7 13-- ware Foundation; either version 3, or (at your option) any later ver- --
70482933
RK
14-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
748086b7
JJ
16-- or FITNESS FOR A PARTICULAR PURPOSE. --
17-- --
18-- You should have received a copy of the GNU General Public License along --
19-- with this program; see file COPYING3. If not see --
20-- <http://www.gnu.org/licenses/>. --
70482933
RK
21-- --
22-- GNAT was originally developed by the GNAT team at New York University. --
71ff80dc 23-- Extensive contributions were provided by Ada Core Technologies Inc. --
70482933
RK
24-- --
25------------------------------------------------------------------------------
26
27with Atree; use Atree;
28with Debug; use Debug;
29with Einfo; use Einfo;
30with Elists; use Elists;
31with Errout; use Errout;
1ce1f005 32with Exp_Ch3; use Exp_Ch3;
70482933 33with Exp_Ch7; use Exp_Ch7;
ce2b6ba5 34with Exp_Disp; use Exp_Disp;
70482933
RK
35with Exp_Pakd; use Exp_Pakd;
36with Exp_Util; use Exp_Util;
fbf5a39b 37with Exp_Tss; use Exp_Tss;
70482933 38with Layout; use Layout;
7d8b9c99 39with Namet; use Namet;
70482933
RK
40with Nlists; use Nlists;
41with Nmake; use Nmake;
42with Opt; use Opt;
43with Restrict; use Restrict;
6e937c1c 44with Rident; use Rident;
70482933 45with Sem; use Sem;
a4100e55 46with Sem_Aux; use Sem_Aux;
70482933
RK
47with Sem_Cat; use Sem_Cat;
48with Sem_Ch6; use Sem_Ch6;
49with Sem_Ch7; use Sem_Ch7;
50with Sem_Ch8; use Sem_Ch8;
51with Sem_Ch13; use Sem_Ch13;
52with Sem_Eval; use Sem_Eval;
53with Sem_Mech; use Sem_Mech;
54with Sem_Prag; use Sem_Prag;
55with Sem_Res; use Sem_Res;
56with Sem_Util; use Sem_Util;
57with Sinfo; use Sinfo;
58with Snames; use Snames;
59with Stand; use Stand;
60with Targparm; use Targparm;
61with Tbuild; use Tbuild;
62with Ttypes; use Ttypes;
63with Uintp; use Uintp;
64with Urealp; use Urealp;
65
66package body Freeze is
67
68 -----------------------
69 -- Local Subprograms --
70 -----------------------
71
72 procedure Adjust_Esize_For_Alignment (Typ : Entity_Id);
73 -- Typ is a type that is being frozen. If no size clause is given,
74 -- but a default Esize has been computed, then this default Esize is
75 -- adjusted up if necessary to be consistent with a given alignment,
76 -- but never to a value greater than Long_Long_Integer'Size. This
77 -- is used for all discrete types and for fixed-point types.
78
79 procedure Build_And_Analyze_Renamed_Body
80 (Decl : Node_Id;
81 New_S : Entity_Id;
82 After : in out Node_Id);
49e90211 83 -- Build body for a renaming declaration, insert in tree and analyze
70482933 84
fbf5a39b
AC
85 procedure Check_Address_Clause (E : Entity_Id);
86 -- Apply legality checks to address clauses for object declarations,
2c9beb8a 87 -- at the point the object is frozen.
fbf5a39b 88
70482933
RK
89 procedure Check_Strict_Alignment (E : Entity_Id);
90 -- E is a base type. If E is tagged or has a component that is aliased
91 -- or tagged or contains something this is aliased or tagged, set
92 -- Strict_Alignment.
93
94 procedure Check_Unsigned_Type (E : Entity_Id);
95 pragma Inline (Check_Unsigned_Type);
96 -- If E is a fixed-point or discrete type, then all the necessary work
97 -- to freeze it is completed except for possible setting of the flag
98 -- Is_Unsigned_Type, which is done by this procedure. The call has no
99 -- effect if the entity E is not a discrete or fixed-point type.
100
101 procedure Freeze_And_Append
102 (Ent : Entity_Id;
103 Loc : Source_Ptr;
104 Result : in out List_Id);
105 -- Freezes Ent using Freeze_Entity, and appends the resulting list of
106 -- nodes to Result, modifying Result from No_List if necessary.
107
108 procedure Freeze_Enumeration_Type (Typ : Entity_Id);
109 -- Freeze enumeration type. The Esize field is set as processing
110 -- proceeds (i.e. set by default when the type is declared and then
111 -- adjusted by rep clauses. What this procedure does is to make sure
112 -- that if a foreign convention is specified, and no specific size
113 -- is given, then the size must be at least Integer'Size.
114
70482933
RK
115 procedure Freeze_Static_Object (E : Entity_Id);
116 -- If an object is frozen which has Is_Statically_Allocated set, then
117 -- all referenced types must also be marked with this flag. This routine
118 -- is in charge of meeting this requirement for the object entity E.
119
120 procedure Freeze_Subprogram (E : Entity_Id);
121 -- Perform freezing actions for a subprogram (create extra formals,
122 -- and set proper default mechanism values). Note that this routine
123 -- is not called for internal subprograms, for which neither of these
124 -- actions is needed (or desirable, we do not want for example to have
125 -- these extra formals present in initialization procedures, where they
126 -- would serve no purpose). In this call E is either a subprogram or
127 -- a subprogram type (i.e. an access to a subprogram).
128
129 function Is_Fully_Defined (T : Entity_Id) return Boolean;
bde58e32 130 -- True if T is not private and has no private components, or has a full
657a9dd9
AC
131 -- view. Used to determine whether the designated type of an access type
132 -- should be frozen when the access type is frozen. This is done when an
133 -- allocator is frozen, or an expression that may involve attributes of
134 -- the designated type. Otherwise freezing the access type does not freeze
135 -- the designated type.
70482933
RK
136
137 procedure Process_Default_Expressions
138 (E : Entity_Id;
139 After : in out Node_Id);
140 -- This procedure is called for each subprogram to complete processing
141 -- of default expressions at the point where all types are known to be
142 -- frozen. The expressions must be analyzed in full, to make sure that
143 -- all error processing is done (they have only been pre-analyzed). If
144 -- the expression is not an entity or literal, its analysis may generate
145 -- code which must not be executed. In that case we build a function
146 -- body to hold that code. This wrapper function serves no other purpose
147 -- (it used to be called to evaluate the default, but now the default is
148 -- inlined at each point of call).
149
150 procedure Set_Component_Alignment_If_Not_Set (Typ : Entity_Id);
151 -- Typ is a record or array type that is being frozen. This routine
152 -- sets the default component alignment from the scope stack values
153 -- if the alignment is otherwise not specified.
154
155 procedure Check_Debug_Info_Needed (T : Entity_Id);
156 -- As each entity is frozen, this routine is called to deal with the
157 -- setting of Debug_Info_Needed for the entity. This flag is set if
158 -- the entity comes from source, or if we are in Debug_Generated_Code
159 -- mode or if the -gnatdV debug flag is set. However, it never sets
1b24ada5
RD
160 -- the flag if Debug_Info_Off is set. This procedure also ensures that
161 -- subsidiary entities have the flag set as required.
70482933 162
c6823a20
EB
163 procedure Undelay_Type (T : Entity_Id);
164 -- T is a type of a component that we know to be an Itype.
165 -- We don't want this to have a Freeze_Node, so ensure it doesn't.
166 -- Do the same for any Full_View or Corresponding_Record_Type.
167
fbf5a39b
AC
168 procedure Warn_Overlay
169 (Expr : Node_Id;
170 Typ : Entity_Id;
171 Nam : Node_Id);
172 -- Expr is the expression for an address clause for entity Nam whose type
173 -- is Typ. If Typ has a default initialization, and there is no explicit
174 -- initialization in the source declaration, check whether the address
175 -- clause might cause overlaying of an entity, and emit a warning on the
176 -- side effect that the initialization will cause.
177
70482933
RK
178 -------------------------------
179 -- Adjust_Esize_For_Alignment --
180 -------------------------------
181
182 procedure Adjust_Esize_For_Alignment (Typ : Entity_Id) is
183 Align : Uint;
184
185 begin
186 if Known_Esize (Typ) and then Known_Alignment (Typ) then
187 Align := Alignment_In_Bits (Typ);
188
189 if Align > Esize (Typ)
190 and then Align <= Standard_Long_Long_Integer_Size
191 then
192 Set_Esize (Typ, Align);
193 end if;
194 end if;
195 end Adjust_Esize_For_Alignment;
196
197 ------------------------------------
198 -- Build_And_Analyze_Renamed_Body --
199 ------------------------------------
200
201 procedure Build_And_Analyze_Renamed_Body
202 (Decl : Node_Id;
203 New_S : Entity_Id;
204 After : in out Node_Id)
205 is
206 Body_Node : constant Node_Id := Build_Renamed_Body (Decl, New_S);
70482933
RK
207 begin
208 Insert_After (After, Body_Node);
209 Mark_Rewrite_Insertion (Body_Node);
210 Analyze (Body_Node);
211 After := Body_Node;
212 end Build_And_Analyze_Renamed_Body;
213
214 ------------------------
215 -- Build_Renamed_Body --
216 ------------------------
217
218 function Build_Renamed_Body
219 (Decl : Node_Id;
fbf5a39b 220 New_S : Entity_Id) return Node_Id
70482933
RK
221 is
222 Loc : constant Source_Ptr := Sloc (New_S);
223 -- We use for the source location of the renamed body, the location
224 -- of the spec entity. It might seem more natural to use the location
225 -- of the renaming declaration itself, but that would be wrong, since
226 -- then the body we create would look as though it was created far
227 -- too late, and this could cause problems with elaboration order
228 -- analysis, particularly in connection with instantiations.
229
230 N : constant Node_Id := Unit_Declaration_Node (New_S);
231 Nam : constant Node_Id := Name (N);
232 Old_S : Entity_Id;
233 Spec : constant Node_Id := New_Copy_Tree (Specification (Decl));
234 Actuals : List_Id := No_List;
235 Call_Node : Node_Id;
236 Call_Name : Node_Id;
237 Body_Node : Node_Id;
238 Formal : Entity_Id;
239 O_Formal : Entity_Id;
240 Param_Spec : Node_Id;
241
def46b54
RD
242 Pref : Node_Id := Empty;
243 -- If the renamed entity is a primitive operation given in prefix form,
244 -- the prefix is the target object and it has to be added as the first
245 -- actual in the generated call.
246
70482933 247 begin
def46b54
RD
248 -- Determine the entity being renamed, which is the target of the call
249 -- statement. If the name is an explicit dereference, this is a renaming
250 -- of a subprogram type rather than a subprogram. The name itself is
251 -- fully analyzed.
70482933
RK
252
253 if Nkind (Nam) = N_Selected_Component then
254 Old_S := Entity (Selector_Name (Nam));
255
256 elsif Nkind (Nam) = N_Explicit_Dereference then
257 Old_S := Etype (Nam);
258
259 elsif Nkind (Nam) = N_Indexed_Component then
70482933
RK
260 if Is_Entity_Name (Prefix (Nam)) then
261 Old_S := Entity (Prefix (Nam));
262 else
263 Old_S := Entity (Selector_Name (Prefix (Nam)));
264 end if;
265
266 elsif Nkind (Nam) = N_Character_Literal then
267 Old_S := Etype (New_S);
268
269 else
270 Old_S := Entity (Nam);
271 end if;
272
273 if Is_Entity_Name (Nam) then
07fc65c4 274
def46b54
RD
275 -- If the renamed entity is a predefined operator, retain full name
276 -- to ensure its visibility.
07fc65c4
GB
277
278 if Ekind (Old_S) = E_Operator
279 and then Nkind (Nam) = N_Expanded_Name
280 then
281 Call_Name := New_Copy (Name (N));
282 else
283 Call_Name := New_Reference_To (Old_S, Loc);
284 end if;
285
70482933 286 else
def46b54
RD
287 if Nkind (Nam) = N_Selected_Component
288 and then Present (First_Formal (Old_S))
289 and then
290 (Is_Controlling_Formal (First_Formal (Old_S))
291 or else Is_Class_Wide_Type (Etype (First_Formal (Old_S))))
292 then
293
294 -- Retrieve the target object, to be added as a first actual
295 -- in the call.
296
297 Call_Name := New_Occurrence_Of (Old_S, Loc);
298 Pref := Prefix (Nam);
299
300 else
301 Call_Name := New_Copy (Name (N));
302 end if;
70482933
RK
303
304 -- The original name may have been overloaded, but
305 -- is fully resolved now.
306
307 Set_Is_Overloaded (Call_Name, False);
308 end if;
309
def46b54
RD
310 -- For simple renamings, subsequent calls can be expanded directly as
311 -- called to the renamed entity. The body must be generated in any case
312 -- for calls they may appear elsewhere.
70482933
RK
313
314 if (Ekind (Old_S) = E_Function
315 or else Ekind (Old_S) = E_Procedure)
316 and then Nkind (Decl) = N_Subprogram_Declaration
317 then
318 Set_Body_To_Inline (Decl, Old_S);
319 end if;
320
321 -- The body generated for this renaming is an internal artifact, and
322 -- does not constitute a freeze point for the called entity.
323
324 Set_Must_Not_Freeze (Call_Name);
325
326 Formal := First_Formal (Defining_Entity (Decl));
327
def46b54
RD
328 if Present (Pref) then
329 declare
330 Pref_Type : constant Entity_Id := Etype (Pref);
331 Form_Type : constant Entity_Id := Etype (First_Formal (Old_S));
332
333 begin
334
335 -- The controlling formal may be an access parameter, or the
e14c931f 336 -- actual may be an access value, so adjust accordingly.
def46b54
RD
337
338 if Is_Access_Type (Pref_Type)
339 and then not Is_Access_Type (Form_Type)
340 then
341 Actuals := New_List
342 (Make_Explicit_Dereference (Loc, Relocate_Node (Pref)));
343
344 elsif Is_Access_Type (Form_Type)
345 and then not Is_Access_Type (Pref)
346 then
347 Actuals := New_List
348 (Make_Attribute_Reference (Loc,
349 Attribute_Name => Name_Access,
350 Prefix => Relocate_Node (Pref)));
351 else
352 Actuals := New_List (Pref);
353 end if;
354 end;
355
356 elsif Present (Formal) then
70482933
RK
357 Actuals := New_List;
358
def46b54
RD
359 else
360 Actuals := No_List;
361 end if;
362
363 if Present (Formal) then
70482933
RK
364 while Present (Formal) loop
365 Append (New_Reference_To (Formal, Loc), Actuals);
366 Next_Formal (Formal);
367 end loop;
368 end if;
369
def46b54
RD
370 -- If the renamed entity is an entry, inherit its profile. For other
371 -- renamings as bodies, both profiles must be subtype conformant, so it
372 -- is not necessary to replace the profile given in the declaration.
373 -- However, default values that are aggregates are rewritten when
374 -- partially analyzed, so we recover the original aggregate to insure
375 -- that subsequent conformity checking works. Similarly, if the default
376 -- expression was constant-folded, recover the original expression.
70482933
RK
377
378 Formal := First_Formal (Defining_Entity (Decl));
379
380 if Present (Formal) then
381 O_Formal := First_Formal (Old_S);
382 Param_Spec := First (Parameter_Specifications (Spec));
383
384 while Present (Formal) loop
385 if Is_Entry (Old_S) then
386
387 if Nkind (Parameter_Type (Param_Spec)) /=
388 N_Access_Definition
389 then
390 Set_Etype (Formal, Etype (O_Formal));
391 Set_Entity (Parameter_Type (Param_Spec), Etype (O_Formal));
392 end if;
393
07fc65c4
GB
394 elsif Nkind (Default_Value (O_Formal)) = N_Aggregate
395 or else Nkind (Original_Node (Default_Value (O_Formal))) /=
396 Nkind (Default_Value (O_Formal))
397 then
70482933
RK
398 Set_Expression (Param_Spec,
399 New_Copy_Tree (Original_Node (Default_Value (O_Formal))));
400 end if;
401
402 Next_Formal (Formal);
403 Next_Formal (O_Formal);
404 Next (Param_Spec);
405 end loop;
406 end if;
407
408 -- If the renamed entity is a function, the generated body contains a
409 -- return statement. Otherwise, build a procedure call. If the entity is
410 -- an entry, subsequent analysis of the call will transform it into the
411 -- proper entry or protected operation call. If the renamed entity is
412 -- a character literal, return it directly.
413
414 if Ekind (Old_S) = E_Function
415 or else Ekind (Old_S) = E_Operator
416 or else (Ekind (Old_S) = E_Subprogram_Type
417 and then Etype (Old_S) /= Standard_Void_Type)
418 then
419 Call_Node :=
86cde7b1 420 Make_Simple_Return_Statement (Loc,
70482933
RK
421 Expression =>
422 Make_Function_Call (Loc,
423 Name => Call_Name,
424 Parameter_Associations => Actuals));
425
426 elsif Ekind (Old_S) = E_Enumeration_Literal then
427 Call_Node :=
86cde7b1 428 Make_Simple_Return_Statement (Loc,
70482933
RK
429 Expression => New_Occurrence_Of (Old_S, Loc));
430
431 elsif Nkind (Nam) = N_Character_Literal then
432 Call_Node :=
86cde7b1 433 Make_Simple_Return_Statement (Loc,
70482933
RK
434 Expression => Call_Name);
435
436 else
437 Call_Node :=
438 Make_Procedure_Call_Statement (Loc,
439 Name => Call_Name,
440 Parameter_Associations => Actuals);
441 end if;
442
49e90211 443 -- Create entities for subprogram body and formals
70482933
RK
444
445 Set_Defining_Unit_Name (Spec,
446 Make_Defining_Identifier (Loc, Chars => Chars (New_S)));
447
448 Param_Spec := First (Parameter_Specifications (Spec));
449
450 while Present (Param_Spec) loop
451 Set_Defining_Identifier (Param_Spec,
452 Make_Defining_Identifier (Loc,
453 Chars => Chars (Defining_Identifier (Param_Spec))));
454 Next (Param_Spec);
455 end loop;
456
457 Body_Node :=
458 Make_Subprogram_Body (Loc,
459 Specification => Spec,
460 Declarations => New_List,
461 Handled_Statement_Sequence =>
462 Make_Handled_Sequence_Of_Statements (Loc,
463 Statements => New_List (Call_Node)));
464
465 if Nkind (Decl) /= N_Subprogram_Declaration then
466 Rewrite (N,
467 Make_Subprogram_Declaration (Loc,
468 Specification => Specification (N)));
469 end if;
470
471 -- Link the body to the entity whose declaration it completes. If
def46b54
RD
472 -- the body is analyzed when the renamed entity is frozen, it may
473 -- be necessary to restore the proper scope (see package Exp_Ch13).
70482933
RK
474
475 if Nkind (N) = N_Subprogram_Renaming_Declaration
476 and then Present (Corresponding_Spec (N))
477 then
478 Set_Corresponding_Spec (Body_Node, Corresponding_Spec (N));
479 else
480 Set_Corresponding_Spec (Body_Node, New_S);
481 end if;
482
483 return Body_Node;
484 end Build_Renamed_Body;
485
fbf5a39b
AC
486 --------------------------
487 -- Check_Address_Clause --
488 --------------------------
489
490 procedure Check_Address_Clause (E : Entity_Id) is
491 Addr : constant Node_Id := Address_Clause (E);
492 Expr : Node_Id;
493 Decl : constant Node_Id := Declaration_Node (E);
494 Typ : constant Entity_Id := Etype (E);
495
496 begin
497 if Present (Addr) then
498 Expr := Expression (Addr);
499
def46b54
RD
500 -- If we have no initialization of any kind, then we don't need to
501 -- place any restrictions on the address clause, because the object
502 -- will be elaborated after the address clause is evaluated. This
503 -- happens if the declaration has no initial expression, or the type
504 -- has no implicit initialization, or the object is imported.
fbf5a39b 505
def46b54
RD
506 -- The same holds for all initialized scalar types and all access
507 -- types. Packed bit arrays of size up to 64 are represented using a
508 -- modular type with an initialization (to zero) and can be processed
509 -- like other initialized scalar types.
fbf5a39b
AC
510
511 -- If the type is controlled, code to attach the object to a
512 -- finalization chain is generated at the point of declaration,
513 -- and therefore the elaboration of the object cannot be delayed:
514 -- the address expression must be a constant.
515
516 if (No (Expression (Decl))
048e5cef 517 and then not Needs_Finalization (Typ)
fbf5a39b
AC
518 and then
519 (not Has_Non_Null_Base_Init_Proc (Typ)
520 or else Is_Imported (E)))
521
522 or else
523 (Present (Expression (Decl))
524 and then Is_Scalar_Type (Typ))
525
526 or else
527 Is_Access_Type (Typ)
528
529 or else
530 (Is_Bit_Packed_Array (Typ)
531 and then
532 Is_Modular_Integer_Type (Packed_Array_Type (Typ)))
533 then
534 null;
535
def46b54
RD
536 -- Otherwise, we require the address clause to be constant because
537 -- the call to the initialization procedure (or the attach code) has
538 -- to happen at the point of the declaration.
f3b57ab0
AC
539 -- Actually the IP call has been moved to the freeze actions
540 -- anyway, so maybe we can relax this restriction???
fbf5a39b
AC
541
542 else
543 Check_Constant_Address_Clause (Expr, E);
f3b57ab0
AC
544
545 -- Has_Delayed_Freeze was set on E when the address clause was
546 -- analyzed. Reset the flag now unless freeze actions were
547 -- attached to it in the mean time.
548
549 if No (Freeze_Node (E)) then
550 Set_Has_Delayed_Freeze (E, False);
551 end if;
fbf5a39b
AC
552 end if;
553
554 if not Error_Posted (Expr)
048e5cef 555 and then not Needs_Finalization (Typ)
fbf5a39b
AC
556 then
557 Warn_Overlay (Expr, Typ, Name (Addr));
558 end if;
559 end if;
560 end Check_Address_Clause;
561
70482933
RK
562 -----------------------------
563 -- Check_Compile_Time_Size --
564 -----------------------------
565
566 procedure Check_Compile_Time_Size (T : Entity_Id) is
567
c6823a20 568 procedure Set_Small_Size (T : Entity_Id; S : Uint);
70482933 569 -- Sets the compile time known size (32 bits or less) in the Esize
c6823a20 570 -- field, of T checking for a size clause that was given which attempts
70482933
RK
571 -- to give a smaller size.
572
573 function Size_Known (T : Entity_Id) return Boolean;
07fc65c4 574 -- Recursive function that does all the work
70482933
RK
575
576 function Static_Discriminated_Components (T : Entity_Id) return Boolean;
577 -- If T is a constrained subtype, its size is not known if any of its
578 -- discriminant constraints is not static and it is not a null record.
fbf5a39b 579 -- The test is conservative and doesn't check that the components are
70482933
RK
580 -- in fact constrained by non-static discriminant values. Could be made
581 -- more precise ???
582
583 --------------------
584 -- Set_Small_Size --
585 --------------------
586
c6823a20 587 procedure Set_Small_Size (T : Entity_Id; S : Uint) is
70482933
RK
588 begin
589 if S > 32 then
590 return;
591
592 elsif Has_Size_Clause (T) then
593 if RM_Size (T) < S then
594 Error_Msg_Uint_1 := S;
595 Error_Msg_NE
d58b9515 596 ("size for& too small, minimum allowed is ^",
70482933
RK
597 Size_Clause (T), T);
598
599 elsif Unknown_Esize (T) then
600 Set_Esize (T, S);
601 end if;
602
603 -- Set sizes if not set already
604
605 else
606 if Unknown_Esize (T) then
607 Set_Esize (T, S);
608 end if;
609
610 if Unknown_RM_Size (T) then
611 Set_RM_Size (T, S);
612 end if;
613 end if;
614 end Set_Small_Size;
615
616 ----------------
617 -- Size_Known --
618 ----------------
619
620 function Size_Known (T : Entity_Id) return Boolean is
621 Index : Entity_Id;
622 Comp : Entity_Id;
623 Ctyp : Entity_Id;
624 Low : Node_Id;
625 High : Node_Id;
626
627 begin
628 if Size_Known_At_Compile_Time (T) then
629 return True;
630
c6a9797e
RD
631 -- Always True for scalar types. This is true even for generic formal
632 -- scalar types. We used to return False in the latter case, but the
633 -- size is known at compile time, even in the template, we just do
634 -- not know the exact size but that's not the point of this routine.
635
70482933
RK
636 elsif Is_Scalar_Type (T)
637 or else Is_Task_Type (T)
638 then
c6a9797e
RD
639 return True;
640
641 -- Array types
70482933
RK
642
643 elsif Is_Array_Type (T) then
c6a9797e
RD
644
645 -- String literals always have known size, and we can set it
646
70482933 647 if Ekind (T) = E_String_Literal_Subtype then
c6823a20
EB
648 Set_Small_Size (T, Component_Size (T)
649 * String_Literal_Length (T));
70482933
RK
650 return True;
651
c6a9797e
RD
652 -- Unconstrained types never have known at compile time size
653
70482933
RK
654 elsif not Is_Constrained (T) then
655 return False;
656
def46b54
RD
657 -- Don't do any recursion on type with error posted, since we may
658 -- have a malformed type that leads us into a loop.
07fc65c4
GB
659
660 elsif Error_Posted (T) then
661 return False;
662
c6a9797e
RD
663 -- Otherwise if component size unknown, then array size unknown
664
70482933
RK
665 elsif not Size_Known (Component_Type (T)) then
666 return False;
667 end if;
668
def46b54
RD
669 -- Check for all indexes static, and also compute possible size
670 -- (in case it is less than 32 and may be packable).
70482933
RK
671
672 declare
673 Esiz : Uint := Component_Size (T);
674 Dim : Uint;
675
676 begin
677 Index := First_Index (T);
70482933
RK
678 while Present (Index) loop
679 if Nkind (Index) = N_Range then
680 Get_Index_Bounds (Index, Low, High);
681
682 elsif Error_Posted (Scalar_Range (Etype (Index))) then
683 return False;
684
685 else
686 Low := Type_Low_Bound (Etype (Index));
687 High := Type_High_Bound (Etype (Index));
688 end if;
689
690 if not Compile_Time_Known_Value (Low)
691 or else not Compile_Time_Known_Value (High)
692 or else Etype (Index) = Any_Type
693 then
694 return False;
695
696 else
697 Dim := Expr_Value (High) - Expr_Value (Low) + 1;
698
699 if Dim >= 0 then
700 Esiz := Esiz * Dim;
701 else
702 Esiz := Uint_0;
703 end if;
704 end if;
705
706 Next_Index (Index);
707 end loop;
708
c6823a20 709 Set_Small_Size (T, Esiz);
70482933
RK
710 return True;
711 end;
712
c6a9797e
RD
713 -- Access types always have known at compile time sizes
714
70482933
RK
715 elsif Is_Access_Type (T) then
716 return True;
717
c6a9797e
RD
718 -- For non-generic private types, go to underlying type if present
719
70482933
RK
720 elsif Is_Private_Type (T)
721 and then not Is_Generic_Type (T)
722 and then Present (Underlying_Type (T))
723 then
def46b54
RD
724 -- Don't do any recursion on type with error posted, since we may
725 -- have a malformed type that leads us into a loop.
07fc65c4
GB
726
727 if Error_Posted (T) then
728 return False;
729 else
730 return Size_Known (Underlying_Type (T));
731 end if;
70482933 732
c6a9797e
RD
733 -- Record types
734
70482933 735 elsif Is_Record_Type (T) then
fbf5a39b
AC
736
737 -- A class-wide type is never considered to have a known size
738
70482933
RK
739 if Is_Class_Wide_Type (T) then
740 return False;
741
fbf5a39b
AC
742 -- A subtype of a variant record must not have non-static
743 -- discriminanted components.
744
745 elsif T /= Base_Type (T)
746 and then not Static_Discriminated_Components (T)
747 then
748 return False;
70482933 749
def46b54
RD
750 -- Don't do any recursion on type with error posted, since we may
751 -- have a malformed type that leads us into a loop.
07fc65c4
GB
752
753 elsif Error_Posted (T) then
754 return False;
fbf5a39b 755 end if;
07fc65c4 756
fbf5a39b 757 -- Now look at the components of the record
70482933 758
fbf5a39b 759 declare
def46b54
RD
760 -- The following two variables are used to keep track of the
761 -- size of packed records if we can tell the size of the packed
762 -- record in the front end. Packed_Size_Known is True if so far
763 -- we can figure out the size. It is initialized to True for a
764 -- packed record, unless the record has discriminants. The
765 -- reason we eliminate the discriminated case is that we don't
766 -- know the way the back end lays out discriminated packed
767 -- records. If Packed_Size_Known is True, then Packed_Size is
768 -- the size in bits so far.
fbf5a39b
AC
769
770 Packed_Size_Known : Boolean :=
771 Is_Packed (T)
772 and then not Has_Discriminants (T);
773
774 Packed_Size : Uint := Uint_0;
775
776 begin
777 -- Test for variant part present
778
779 if Has_Discriminants (T)
780 and then Present (Parent (T))
781 and then Nkind (Parent (T)) = N_Full_Type_Declaration
782 and then Nkind (Type_Definition (Parent (T))) =
783 N_Record_Definition
784 and then not Null_Present (Type_Definition (Parent (T)))
785 and then Present (Variant_Part
786 (Component_List (Type_Definition (Parent (T)))))
787 then
788 -- If variant part is present, and type is unconstrained,
789 -- then we must have defaulted discriminants, or a size
790 -- clause must be present for the type, or else the size
791 -- is definitely not known at compile time.
792
793 if not Is_Constrained (T)
794 and then
795 No (Discriminant_Default_Value
796 (First_Discriminant (T)))
797 and then Unknown_Esize (T)
70482933 798 then
fbf5a39b
AC
799 return False;
800 end if;
801 end if;
70482933 802
fbf5a39b
AC
803 -- Loop through components
804
fea9e956 805 Comp := First_Component_Or_Discriminant (T);
fbf5a39b 806 while Present (Comp) loop
fea9e956 807 Ctyp := Etype (Comp);
fbf5a39b 808
fea9e956
ES
809 -- We do not know the packed size if there is a component
810 -- clause present (we possibly could, but this would only
811 -- help in the case of a record with partial rep clauses.
812 -- That's because in the case of full rep clauses, the
813 -- size gets figured out anyway by a different circuit).
fbf5a39b 814
fea9e956
ES
815 if Present (Component_Clause (Comp)) then
816 Packed_Size_Known := False;
817 end if;
70482933 818
fea9e956
ES
819 -- We need to identify a component that is an array where
820 -- the index type is an enumeration type with non-standard
821 -- representation, and some bound of the type depends on a
822 -- discriminant.
70482933 823
fea9e956 824 -- This is because gigi computes the size by doing a
e14c931f 825 -- substitution of the appropriate discriminant value in
fea9e956
ES
826 -- the size expression for the base type, and gigi is not
827 -- clever enough to evaluate the resulting expression (which
828 -- involves a call to rep_to_pos) at compile time.
fbf5a39b 829
fea9e956
ES
830 -- It would be nice if gigi would either recognize that
831 -- this expression can be computed at compile time, or
832 -- alternatively figured out the size from the subtype
833 -- directly, where all the information is at hand ???
fbf5a39b 834
fea9e956
ES
835 if Is_Array_Type (Etype (Comp))
836 and then Present (Packed_Array_Type (Etype (Comp)))
837 then
838 declare
839 Ocomp : constant Entity_Id :=
840 Original_Record_Component (Comp);
841 OCtyp : constant Entity_Id := Etype (Ocomp);
842 Ind : Node_Id;
843 Indtyp : Entity_Id;
844 Lo, Hi : Node_Id;
70482933 845
fea9e956
ES
846 begin
847 Ind := First_Index (OCtyp);
848 while Present (Ind) loop
849 Indtyp := Etype (Ind);
70482933 850
fea9e956
ES
851 if Is_Enumeration_Type (Indtyp)
852 and then Has_Non_Standard_Rep (Indtyp)
853 then
854 Lo := Type_Low_Bound (Indtyp);
855 Hi := Type_High_Bound (Indtyp);
fbf5a39b 856
fea9e956
ES
857 if Is_Entity_Name (Lo)
858 and then Ekind (Entity (Lo)) = E_Discriminant
859 then
860 return False;
fbf5a39b 861
fea9e956
ES
862 elsif Is_Entity_Name (Hi)
863 and then Ekind (Entity (Hi)) = E_Discriminant
864 then
865 return False;
866 end if;
867 end if;
fbf5a39b 868
fea9e956
ES
869 Next_Index (Ind);
870 end loop;
871 end;
872 end if;
70482933 873
def46b54
RD
874 -- Clearly size of record is not known if the size of one of
875 -- the components is not known.
70482933 876
fea9e956
ES
877 if not Size_Known (Ctyp) then
878 return False;
879 end if;
70482933 880
fea9e956 881 -- Accumulate packed size if possible
70482933 882
fea9e956 883 if Packed_Size_Known then
70482933 884
fea9e956
ES
885 -- We can only deal with elementary types, since for
886 -- non-elementary components, alignment enters into the
887 -- picture, and we don't know enough to handle proper
888 -- alignment in this context. Packed arrays count as
889 -- elementary if the representation is a modular type.
fbf5a39b 890
fea9e956
ES
891 if Is_Elementary_Type (Ctyp)
892 or else (Is_Array_Type (Ctyp)
893 and then Present (Packed_Array_Type (Ctyp))
894 and then Is_Modular_Integer_Type
895 (Packed_Array_Type (Ctyp)))
896 then
897 -- If RM_Size is known and static, then we can
898 -- keep accumulating the packed size.
70482933 899
fea9e956 900 if Known_Static_RM_Size (Ctyp) then
70482933 901
fea9e956
ES
902 -- A little glitch, to be removed sometime ???
903 -- gigi does not understand zero sizes yet.
904
905 if RM_Size (Ctyp) = Uint_0 then
70482933 906 Packed_Size_Known := False;
fea9e956
ES
907
908 -- Normal case where we can keep accumulating the
909 -- packed array size.
910
911 else
912 Packed_Size := Packed_Size + RM_Size (Ctyp);
70482933 913 end if;
fbf5a39b 914
fea9e956
ES
915 -- If we have a field whose RM_Size is not known then
916 -- we can't figure out the packed size here.
fbf5a39b
AC
917
918 else
919 Packed_Size_Known := False;
70482933 920 end if;
fea9e956
ES
921
922 -- If we have a non-elementary type we can't figure out
923 -- the packed array size (alignment issues).
924
925 else
926 Packed_Size_Known := False;
70482933 927 end if;
fbf5a39b 928 end if;
70482933 929
fea9e956 930 Next_Component_Or_Discriminant (Comp);
fbf5a39b 931 end loop;
70482933 932
fbf5a39b 933 if Packed_Size_Known then
c6823a20 934 Set_Small_Size (T, Packed_Size);
fbf5a39b 935 end if;
70482933 936
fbf5a39b
AC
937 return True;
938 end;
70482933 939
c6a9797e
RD
940 -- All other cases, size not known at compile time
941
70482933
RK
942 else
943 return False;
944 end if;
945 end Size_Known;
946
947 -------------------------------------
948 -- Static_Discriminated_Components --
949 -------------------------------------
950
951 function Static_Discriminated_Components
0da2c8ac 952 (T : Entity_Id) return Boolean
70482933
RK
953 is
954 Constraint : Elmt_Id;
955
956 begin
957 if Has_Discriminants (T)
958 and then Present (Discriminant_Constraint (T))
959 and then Present (First_Component (T))
960 then
961 Constraint := First_Elmt (Discriminant_Constraint (T));
70482933
RK
962 while Present (Constraint) loop
963 if not Compile_Time_Known_Value (Node (Constraint)) then
964 return False;
965 end if;
966
967 Next_Elmt (Constraint);
968 end loop;
969 end if;
970
971 return True;
972 end Static_Discriminated_Components;
973
974 -- Start of processing for Check_Compile_Time_Size
975
976 begin
977 Set_Size_Known_At_Compile_Time (T, Size_Known (T));
978 end Check_Compile_Time_Size;
979
980 -----------------------------
981 -- Check_Debug_Info_Needed --
982 -----------------------------
983
984 procedure Check_Debug_Info_Needed (T : Entity_Id) is
985 begin
1b24ada5 986 if Debug_Info_Off (T) then
70482933
RK
987 return;
988
989 elsif Comes_From_Source (T)
990 or else Debug_Generated_Code
991 or else Debug_Flag_VV
1b24ada5 992 or else Needs_Debug_Info (T)
70482933
RK
993 then
994 Set_Debug_Info_Needed (T);
995 end if;
996 end Check_Debug_Info_Needed;
997
998 ----------------------------
999 -- Check_Strict_Alignment --
1000 ----------------------------
1001
1002 procedure Check_Strict_Alignment (E : Entity_Id) is
1003 Comp : Entity_Id;
1004
1005 begin
1006 if Is_Tagged_Type (E) or else Is_Concurrent_Type (E) then
1007 Set_Strict_Alignment (E);
1008
1009 elsif Is_Array_Type (E) then
1010 Set_Strict_Alignment (E, Strict_Alignment (Component_Type (E)));
1011
1012 elsif Is_Record_Type (E) then
1013 if Is_Limited_Record (E) then
1014 Set_Strict_Alignment (E);
1015 return;
1016 end if;
1017
1018 Comp := First_Component (E);
1019
1020 while Present (Comp) loop
1021 if not Is_Type (Comp)
1022 and then (Strict_Alignment (Etype (Comp))
fbf5a39b 1023 or else Is_Aliased (Comp))
70482933
RK
1024 then
1025 Set_Strict_Alignment (E);
1026 return;
1027 end if;
1028
1029 Next_Component (Comp);
1030 end loop;
1031 end if;
1032 end Check_Strict_Alignment;
1033
1034 -------------------------
1035 -- Check_Unsigned_Type --
1036 -------------------------
1037
1038 procedure Check_Unsigned_Type (E : Entity_Id) is
1039 Ancestor : Entity_Id;
1040 Lo_Bound : Node_Id;
1041 Btyp : Entity_Id;
1042
1043 begin
1044 if not Is_Discrete_Or_Fixed_Point_Type (E) then
1045 return;
1046 end if;
1047
1048 -- Do not attempt to analyze case where range was in error
1049
1050 if Error_Posted (Scalar_Range (E)) then
1051 return;
1052 end if;
1053
1054 -- The situation that is non trivial is something like
1055
1056 -- subtype x1 is integer range -10 .. +10;
1057 -- subtype x2 is x1 range 0 .. V1;
1058 -- subtype x3 is x2 range V2 .. V3;
1059 -- subtype x4 is x3 range V4 .. V5;
1060
1061 -- where Vn are variables. Here the base type is signed, but we still
1062 -- know that x4 is unsigned because of the lower bound of x2.
1063
1064 -- The only way to deal with this is to look up the ancestor chain
1065
1066 Ancestor := E;
1067 loop
1068 if Ancestor = Any_Type or else Etype (Ancestor) = Any_Type then
1069 return;
1070 end if;
1071
1072 Lo_Bound := Type_Low_Bound (Ancestor);
1073
1074 if Compile_Time_Known_Value (Lo_Bound) then
1075
1076 if Expr_Rep_Value (Lo_Bound) >= 0 then
1077 Set_Is_Unsigned_Type (E, True);
1078 end if;
1079
1080 return;
1081
1082 else
1083 Ancestor := Ancestor_Subtype (Ancestor);
1084
1085 -- If no ancestor had a static lower bound, go to base type
1086
1087 if No (Ancestor) then
1088
1089 -- Note: the reason we still check for a compile time known
1090 -- value for the base type is that at least in the case of
1091 -- generic formals, we can have bounds that fail this test,
1092 -- and there may be other cases in error situations.
1093
1094 Btyp := Base_Type (E);
1095
1096 if Btyp = Any_Type or else Etype (Btyp) = Any_Type then
1097 return;
1098 end if;
1099
1100 Lo_Bound := Type_Low_Bound (Base_Type (E));
1101
1102 if Compile_Time_Known_Value (Lo_Bound)
1103 and then Expr_Rep_Value (Lo_Bound) >= 0
1104 then
1105 Set_Is_Unsigned_Type (E, True);
1106 end if;
1107
1108 return;
70482933
RK
1109 end if;
1110 end if;
1111 end loop;
1112 end Check_Unsigned_Type;
1113
cfb120b5
AC
1114 -------------------------
1115 -- Is_Atomic_Aggregate --
1116 -------------------------
fbf5a39b 1117
cfb120b5 1118 function Is_Atomic_Aggregate
b0159fbe
AC
1119 (E : Entity_Id;
1120 Typ : Entity_Id) return Boolean
1121 is
fbf5a39b
AC
1122 Loc : constant Source_Ptr := Sloc (E);
1123 New_N : Node_Id;
b0159fbe 1124 Par : Node_Id;
fbf5a39b
AC
1125 Temp : Entity_Id;
1126
1127 begin
b0159fbe
AC
1128 Par := Parent (E);
1129
01957849 1130 -- Array may be qualified, so find outer context
b0159fbe
AC
1131
1132 if Nkind (Par) = N_Qualified_Expression then
1133 Par := Parent (Par);
1134 end if;
1135
fb2e11ee 1136 if Nkind_In (Par, N_Object_Declaration, N_Assignment_Statement)
b0159fbe 1137 and then Comes_From_Source (Par)
fbf5a39b
AC
1138 then
1139 Temp :=
1140 Make_Defining_Identifier (Loc,
1141 New_Internal_Name ('T'));
1142
1143 New_N :=
1144 Make_Object_Declaration (Loc,
1145 Defining_Identifier => Temp,
c6a9797e
RD
1146 Object_Definition => New_Occurrence_Of (Typ, Loc),
1147 Expression => Relocate_Node (E));
b0159fbe 1148 Insert_Before (Par, New_N);
fbf5a39b
AC
1149 Analyze (New_N);
1150
b0159fbe
AC
1151 Set_Expression (Par, New_Occurrence_Of (Temp, Loc));
1152 return True;
fbf5a39b 1153
b0159fbe
AC
1154 else
1155 return False;
fbf5a39b 1156 end if;
cfb120b5 1157 end Is_Atomic_Aggregate;
fbf5a39b 1158
70482933
RK
1159 ----------------
1160 -- Freeze_All --
1161 ----------------
1162
1163 -- Note: the easy coding for this procedure would be to just build a
1164 -- single list of freeze nodes and then insert them and analyze them
1165 -- all at once. This won't work, because the analysis of earlier freeze
1166 -- nodes may recursively freeze types which would otherwise appear later
1167 -- on in the freeze list. So we must analyze and expand the freeze nodes
1168 -- as they are generated.
1169
1170 procedure Freeze_All (From : Entity_Id; After : in out Node_Id) is
1171 Loc : constant Source_Ptr := Sloc (After);
1172 E : Entity_Id;
1173 Decl : Node_Id;
1174
1175 procedure Freeze_All_Ent (From : Entity_Id; After : in out Node_Id);
def46b54
RD
1176 -- This is the internal recursive routine that does freezing of entities
1177 -- (but NOT the analysis of default expressions, which should not be
1178 -- recursive, we don't want to analyze those till we are sure that ALL
1179 -- the types are frozen).
70482933 1180
fbf5a39b
AC
1181 --------------------
1182 -- Freeze_All_Ent --
1183 --------------------
1184
70482933
RK
1185 procedure Freeze_All_Ent
1186 (From : Entity_Id;
1187 After : in out Node_Id)
1188 is
1189 E : Entity_Id;
1190 Flist : List_Id;
1191 Lastn : Node_Id;
1192
1193 procedure Process_Flist;
def46b54
RD
1194 -- If freeze nodes are present, insert and analyze, and reset cursor
1195 -- for next insertion.
70482933 1196
fbf5a39b
AC
1197 -------------------
1198 -- Process_Flist --
1199 -------------------
1200
70482933
RK
1201 procedure Process_Flist is
1202 begin
1203 if Is_Non_Empty_List (Flist) then
1204 Lastn := Next (After);
1205 Insert_List_After_And_Analyze (After, Flist);
1206
1207 if Present (Lastn) then
1208 After := Prev (Lastn);
1209 else
1210 After := Last (List_Containing (After));
1211 end if;
1212 end if;
1213 end Process_Flist;
1214
fbf5a39b
AC
1215 -- Start or processing for Freeze_All_Ent
1216
70482933
RK
1217 begin
1218 E := From;
1219 while Present (E) loop
1220
1221 -- If the entity is an inner package which is not a package
def46b54
RD
1222 -- renaming, then its entities must be frozen at this point. Note
1223 -- that such entities do NOT get frozen at the end of the nested
1224 -- package itself (only library packages freeze).
70482933
RK
1225
1226 -- Same is true for task declarations, where anonymous records
1227 -- created for entry parameters must be frozen.
1228
1229 if Ekind (E) = E_Package
1230 and then No (Renamed_Object (E))
1231 and then not Is_Child_Unit (E)
1232 and then not Is_Frozen (E)
1233 then
7d8b9c99 1234 Push_Scope (E);
70482933
RK
1235 Install_Visible_Declarations (E);
1236 Install_Private_Declarations (E);
1237
1238 Freeze_All (First_Entity (E), After);
1239
1240 End_Package_Scope (E);
1241
1242 elsif Ekind (E) in Task_Kind
1243 and then
1244 (Nkind (Parent (E)) = N_Task_Type_Declaration
fbf5a39b 1245 or else
70482933
RK
1246 Nkind (Parent (E)) = N_Single_Task_Declaration)
1247 then
7d8b9c99 1248 Push_Scope (E);
70482933
RK
1249 Freeze_All (First_Entity (E), After);
1250 End_Scope;
1251
1252 -- For a derived tagged type, we must ensure that all the
def46b54
RD
1253 -- primitive operations of the parent have been frozen, so that
1254 -- their addresses will be in the parent's dispatch table at the
1255 -- point it is inherited.
70482933
RK
1256
1257 elsif Ekind (E) = E_Record_Type
1258 and then Is_Tagged_Type (E)
1259 and then Is_Tagged_Type (Etype (E))
1260 and then Is_Derived_Type (E)
1261 then
1262 declare
1263 Prim_List : constant Elist_Id :=
1264 Primitive_Operations (Etype (E));
fbf5a39b
AC
1265
1266 Prim : Elmt_Id;
1267 Subp : Entity_Id;
70482933
RK
1268
1269 begin
1270 Prim := First_Elmt (Prim_List);
1271
1272 while Present (Prim) loop
1273 Subp := Node (Prim);
1274
1275 if Comes_From_Source (Subp)
1276 and then not Is_Frozen (Subp)
1277 then
1278 Flist := Freeze_Entity (Subp, Loc);
1279 Process_Flist;
1280 end if;
1281
1282 Next_Elmt (Prim);
1283 end loop;
1284 end;
1285 end if;
1286
1287 if not Is_Frozen (E) then
1288 Flist := Freeze_Entity (E, Loc);
1289 Process_Flist;
1290 end if;
1291
def46b54
RD
1292 -- If an incomplete type is still not frozen, this may be a
1293 -- premature freezing because of a body declaration that follows.
1294 -- Indicate where the freezing took place.
fbf5a39b 1295
def46b54
RD
1296 -- If the freezing is caused by the end of the current declarative
1297 -- part, it is a Taft Amendment type, and there is no error.
fbf5a39b
AC
1298
1299 if not Is_Frozen (E)
1300 and then Ekind (E) = E_Incomplete_Type
1301 then
1302 declare
1303 Bod : constant Node_Id := Next (After);
1304
1305 begin
1306 if (Nkind (Bod) = N_Subprogram_Body
1307 or else Nkind (Bod) = N_Entry_Body
1308 or else Nkind (Bod) = N_Package_Body
1309 or else Nkind (Bod) = N_Protected_Body
1310 or else Nkind (Bod) = N_Task_Body
1311 or else Nkind (Bod) in N_Body_Stub)
1312 and then
1313 List_Containing (After) = List_Containing (Parent (E))
1314 then
1315 Error_Msg_Sloc := Sloc (Next (After));
1316 Error_Msg_NE
1317 ("type& is frozen# before its full declaration",
1318 Parent (E), E);
1319 end if;
1320 end;
1321 end if;
1322
70482933
RK
1323 Next_Entity (E);
1324 end loop;
1325 end Freeze_All_Ent;
1326
1327 -- Start of processing for Freeze_All
1328
1329 begin
1330 Freeze_All_Ent (From, After);
1331
1332 -- Now that all types are frozen, we can deal with default expressions
1333 -- that require us to build a default expression functions. This is the
1334 -- point at which such functions are constructed (after all types that
1335 -- might be used in such expressions have been frozen).
fbf5a39b 1336
70482933
RK
1337 -- We also add finalization chains to access types whose designated
1338 -- types are controlled. This is normally done when freezing the type,
1339 -- but this misses recursive type definitions where the later members
c6a9797e 1340 -- of the recursion introduce controlled components.
70482933
RK
1341
1342 -- Loop through entities
1343
1344 E := From;
1345 while Present (E) loop
70482933
RK
1346 if Is_Subprogram (E) then
1347
1348 if not Default_Expressions_Processed (E) then
1349 Process_Default_Expressions (E, After);
1350 end if;
1351
1352 if not Has_Completion (E) then
1353 Decl := Unit_Declaration_Node (E);
1354
1355 if Nkind (Decl) = N_Subprogram_Renaming_Declaration then
1356 Build_And_Analyze_Renamed_Body (Decl, E, After);
1357
1358 elsif Nkind (Decl) = N_Subprogram_Declaration
1359 and then Present (Corresponding_Body (Decl))
1360 and then
1361 Nkind (Unit_Declaration_Node (Corresponding_Body (Decl)))
fbf5a39b 1362 = N_Subprogram_Renaming_Declaration
70482933
RK
1363 then
1364 Build_And_Analyze_Renamed_Body
1365 (Decl, Corresponding_Body (Decl), After);
1366 end if;
1367 end if;
1368
1369 elsif Ekind (E) in Task_Kind
1370 and then
1371 (Nkind (Parent (E)) = N_Task_Type_Declaration
fbf5a39b 1372 or else
70482933
RK
1373 Nkind (Parent (E)) = N_Single_Task_Declaration)
1374 then
1375 declare
1376 Ent : Entity_Id;
70482933
RK
1377 begin
1378 Ent := First_Entity (E);
1379
1380 while Present (Ent) loop
1381
1382 if Is_Entry (Ent)
1383 and then not Default_Expressions_Processed (Ent)
1384 then
1385 Process_Default_Expressions (Ent, After);
1386 end if;
1387
1388 Next_Entity (Ent);
1389 end loop;
1390 end;
1391
1392 elsif Is_Access_Type (E)
1393 and then Comes_From_Source (E)
1394 and then Ekind (Directly_Designated_Type (E)) = E_Incomplete_Type
048e5cef 1395 and then Needs_Finalization (Designated_Type (E))
70482933
RK
1396 and then No (Associated_Final_Chain (E))
1397 then
1398 Build_Final_List (Parent (E), E);
1399 end if;
1400
1401 Next_Entity (E);
1402 end loop;
70482933
RK
1403 end Freeze_All;
1404
1405 -----------------------
1406 -- Freeze_And_Append --
1407 -----------------------
1408
1409 procedure Freeze_And_Append
1410 (Ent : Entity_Id;
1411 Loc : Source_Ptr;
1412 Result : in out List_Id)
1413 is
1414 L : constant List_Id := Freeze_Entity (Ent, Loc);
70482933
RK
1415 begin
1416 if Is_Non_Empty_List (L) then
1417 if Result = No_List then
1418 Result := L;
1419 else
1420 Append_List (L, Result);
1421 end if;
1422 end if;
1423 end Freeze_And_Append;
1424
1425 -------------------
1426 -- Freeze_Before --
1427 -------------------
1428
1429 procedure Freeze_Before (N : Node_Id; T : Entity_Id) is
1430 Freeze_Nodes : constant List_Id := Freeze_Entity (T, Sloc (N));
70482933
RK
1431 begin
1432 if Is_Non_Empty_List (Freeze_Nodes) then
fbf5a39b 1433 Insert_Actions (N, Freeze_Nodes);
70482933
RK
1434 end if;
1435 end Freeze_Before;
1436
1437 -------------------
1438 -- Freeze_Entity --
1439 -------------------
1440
1441 function Freeze_Entity (E : Entity_Id; Loc : Source_Ptr) return List_Id is
c6823a20 1442 Test_E : Entity_Id := E;
70482933
RK
1443 Comp : Entity_Id;
1444 F_Node : Node_Id;
1445 Result : List_Id;
1446 Indx : Node_Id;
1447 Formal : Entity_Id;
1448 Atype : Entity_Id;
1449
4c8a5bb8
AC
1450 Has_Default_Initialization : Boolean := False;
1451 -- This flag gets set to true for a variable with default initialization
1452
70482933 1453 procedure Check_Current_Instance (Comp_Decl : Node_Id);
edd63e9b
ES
1454 -- Check that an Access or Unchecked_Access attribute with a prefix
1455 -- which is the current instance type can only be applied when the type
1456 -- is limited.
70482933 1457
67b3acf8
RD
1458 procedure Check_Suspicious_Modulus (Utype : Entity_Id);
1459 -- Give warning for modulus of 8, 16, 32, or 64 given as an explicit
1460 -- integer literal without an explicit corresponding size clause. The
1461 -- caller has checked that Utype is a modular integer type.
1462
70482933
RK
1463 function After_Last_Declaration return Boolean;
1464 -- If Loc is a freeze_entity that appears after the last declaration
1465 -- in the scope, inhibit error messages on late completion.
1466
1467 procedure Freeze_Record_Type (Rec : Entity_Id);
edd63e9b
ES
1468 -- Freeze each component, handle some representation clauses, and freeze
1469 -- primitive operations if this is a tagged type.
70482933
RK
1470
1471 ----------------------------
1472 -- After_Last_Declaration --
1473 ----------------------------
1474
1475 function After_Last_Declaration return Boolean is
fb2e11ee 1476 Spec : constant Node_Id := Parent (Current_Scope);
70482933
RK
1477 begin
1478 if Nkind (Spec) = N_Package_Specification then
1479 if Present (Private_Declarations (Spec)) then
1480 return Loc >= Sloc (Last (Private_Declarations (Spec)));
70482933
RK
1481 elsif Present (Visible_Declarations (Spec)) then
1482 return Loc >= Sloc (Last (Visible_Declarations (Spec)));
1483 else
1484 return False;
1485 end if;
70482933
RK
1486 else
1487 return False;
1488 end if;
1489 end After_Last_Declaration;
1490
1491 ----------------------------
1492 -- Check_Current_Instance --
1493 ----------------------------
1494
1495 procedure Check_Current_Instance (Comp_Decl : Node_Id) is
1496
32c760e6
ES
1497 Rec_Type : constant Entity_Id :=
1498 Scope (Defining_Identifier (Comp_Decl));
1499
1500 Decl : constant Node_Id := Parent (Rec_Type);
1501
70482933 1502 function Process (N : Node_Id) return Traverse_Result;
49e90211 1503 -- Process routine to apply check to given node
70482933 1504
fbf5a39b
AC
1505 -------------
1506 -- Process --
1507 -------------
1508
70482933
RK
1509 function Process (N : Node_Id) return Traverse_Result is
1510 begin
1511 case Nkind (N) is
1512 when N_Attribute_Reference =>
def46b54 1513 if (Attribute_Name (N) = Name_Access
70482933
RK
1514 or else
1515 Attribute_Name (N) = Name_Unchecked_Access)
1516 and then Is_Entity_Name (Prefix (N))
1517 and then Is_Type (Entity (Prefix (N)))
1518 and then Entity (Prefix (N)) = E
1519 then
1520 Error_Msg_N
1521 ("current instance must be a limited type", Prefix (N));
1522 return Abandon;
1523 else
1524 return OK;
1525 end if;
1526
1527 when others => return OK;
1528 end case;
1529 end Process;
1530
1531 procedure Traverse is new Traverse_Proc (Process);
1532
1533 -- Start of processing for Check_Current_Instance
1534
1535 begin
32c760e6
ES
1536 -- In Ada95, the (imprecise) rule is that the current instance of a
1537 -- limited type is aliased. In Ada2005, limitedness must be explicit:
1538 -- either a tagged type, or a limited record.
1539
1540 if Is_Limited_Type (Rec_Type)
fb2e11ee 1541 and then (Ada_Version < Ada_05 or else Is_Tagged_Type (Rec_Type))
32c760e6
ES
1542 then
1543 return;
1544
1545 elsif Nkind (Decl) = N_Full_Type_Declaration
1546 and then Limited_Present (Type_Definition (Decl))
1547 then
1548 return;
1549
1550 else
1551 Traverse (Comp_Decl);
1552 end if;
70482933
RK
1553 end Check_Current_Instance;
1554
67b3acf8
RD
1555 ------------------------------
1556 -- Check_Suspicious_Modulus --
1557 ------------------------------
1558
1559 procedure Check_Suspicious_Modulus (Utype : Entity_Id) is
1560 Decl : constant Node_Id := Declaration_Node (Underlying_Type (Utype));
1561
1562 begin
1563 if Nkind (Decl) = N_Full_Type_Declaration then
1564 declare
1565 Tdef : constant Node_Id := Type_Definition (Decl);
1566 begin
1567 if Nkind (Tdef) = N_Modular_Type_Definition then
1568 declare
1569 Modulus : constant Node_Id :=
1570 Original_Node (Expression (Tdef));
1571 begin
1572 if Nkind (Modulus) = N_Integer_Literal then
1573 declare
1574 Modv : constant Uint := Intval (Modulus);
1575 Sizv : constant Uint := RM_Size (Utype);
1576
1577 begin
1578 -- First case, modulus and size are the same. This
1579 -- happens if you have something like mod 32, with
1580 -- an explicit size of 32, this is for sure a case
1581 -- where the warning is given, since it is seems
1582 -- very unlikely that someone would want e.g. a
1583 -- five bit type stored in 32 bits. It is much
1584 -- more likely they wanted a 32-bit type.
1585
1586 if Modv = Sizv then
1587 null;
1588
1589 -- Second case, the modulus is 32 or 64 and no
1590 -- size clause is present. This is a less clear
1591 -- case for giving the warning, but in the case
1592 -- of 32/64 (5-bit or 6-bit types) these seem rare
1593 -- enough that it is a likely error (and in any
1594 -- case using 2**5 or 2**6 in these cases seems
1595 -- clearer. We don't include 8 or 16 here, simply
1596 -- because in practice 3-bit and 4-bit types are
1597 -- more common and too many false positives if
1598 -- we warn in these cases.
1599
1600 elsif not Has_Size_Clause (Utype)
1601 and then (Modv = Uint_32 or else Modv = Uint_64)
1602 then
1603 null;
1604
1605 -- No warning needed
1606
1607 else
1608 return;
1609 end if;
1610
1611 -- If we fall through, give warning
1612
1613 Error_Msg_Uint_1 := Modv;
1614 Error_Msg_N
1615 ("?2 '*'*^' may have been intended here",
1616 Modulus);
1617 end;
1618 end if;
1619 end;
1620 end if;
1621 end;
1622 end if;
1623 end Check_Suspicious_Modulus;
1624
70482933
RK
1625 ------------------------
1626 -- Freeze_Record_Type --
1627 ------------------------
1628
1629 procedure Freeze_Record_Type (Rec : Entity_Id) is
1630 Comp : Entity_Id;
fbf5a39b 1631 IR : Node_Id;
70482933 1632 ADC : Node_Id;
c6823a20 1633 Prev : Entity_Id;
70482933 1634
67ce0d7e
RD
1635 Junk : Boolean;
1636 pragma Warnings (Off, Junk);
1637
70482933
RK
1638 Unplaced_Component : Boolean := False;
1639 -- Set True if we find at least one component with no component
1640 -- clause (used to warn about useless Pack pragmas).
1641
1642 Placed_Component : Boolean := False;
1643 -- Set True if we find at least one component with a component
8dc10d38
AC
1644 -- clause (used to warn about useless Bit_Order pragmas, and also
1645 -- to detect cases where Implicit_Packing may have an effect).
1646
1647 All_Scalar_Components : Boolean := True;
1648 -- Set False if we encounter a component of a non-scalar type
1649
1650 Scalar_Component_Total_RM_Size : Uint := Uint_0;
1651 Scalar_Component_Total_Esize : Uint := Uint_0;
1652 -- Accumulates total RM_Size values and total Esize values of all
1653 -- scalar components. Used for processing of Implicit_Packing.
70482933 1654
e18d6a15
JM
1655 function Check_Allocator (N : Node_Id) return Node_Id;
1656 -- If N is an allocator, possibly wrapped in one or more level of
1657 -- qualified expression(s), return the inner allocator node, else
1658 -- return Empty.
19590d70 1659
7d8b9c99
RD
1660 procedure Check_Itype (Typ : Entity_Id);
1661 -- If the component subtype is an access to a constrained subtype of
1662 -- an already frozen type, make the subtype frozen as well. It might
1663 -- otherwise be frozen in the wrong scope, and a freeze node on
1664 -- subtype has no effect. Similarly, if the component subtype is a
1665 -- regular (not protected) access to subprogram, set the anonymous
1666 -- subprogram type to frozen as well, to prevent an out-of-scope
1667 -- freeze node at some eventual point of call. Protected operations
1668 -- are handled elsewhere.
6e059adb 1669
19590d70
GD
1670 ---------------------
1671 -- Check_Allocator --
1672 ---------------------
1673
e18d6a15
JM
1674 function Check_Allocator (N : Node_Id) return Node_Id is
1675 Inner : Node_Id;
19590d70 1676 begin
e18d6a15 1677 Inner := N;
e18d6a15
JM
1678 loop
1679 if Nkind (Inner) = N_Allocator then
1680 return Inner;
e18d6a15
JM
1681 elsif Nkind (Inner) = N_Qualified_Expression then
1682 Inner := Expression (Inner);
e18d6a15
JM
1683 else
1684 return Empty;
1685 end if;
1686 end loop;
19590d70
GD
1687 end Check_Allocator;
1688
6871ba5f
AC
1689 -----------------
1690 -- Check_Itype --
1691 -----------------
1692
7d8b9c99
RD
1693 procedure Check_Itype (Typ : Entity_Id) is
1694 Desig : constant Entity_Id := Designated_Type (Typ);
1695
6e059adb
AC
1696 begin
1697 if not Is_Frozen (Desig)
1698 and then Is_Frozen (Base_Type (Desig))
1699 then
1700 Set_Is_Frozen (Desig);
1701
1702 -- In addition, add an Itype_Reference to ensure that the
7d8b9c99
RD
1703 -- access subtype is elaborated early enough. This cannot be
1704 -- done if the subtype may depend on discriminants.
6e059adb
AC
1705
1706 if Ekind (Comp) = E_Component
1707 and then Is_Itype (Etype (Comp))
1708 and then not Has_Discriminants (Rec)
1709 then
1710 IR := Make_Itype_Reference (Sloc (Comp));
1711 Set_Itype (IR, Desig);
1712
1713 if No (Result) then
1714 Result := New_List (IR);
1715 else
1716 Append (IR, Result);
1717 end if;
1718 end if;
7d8b9c99
RD
1719
1720 elsif Ekind (Typ) = E_Anonymous_Access_Subprogram_Type
1721 and then Convention (Desig) /= Convention_Protected
1722 then
1723 Set_Is_Frozen (Desig);
6e059adb
AC
1724 end if;
1725 end Check_Itype;
1726
1727 -- Start of processing for Freeze_Record_Type
1728
70482933 1729 begin
7d8b9c99
RD
1730 -- If this is a subtype of a controlled type, declared without a
1731 -- constraint, the _controller may not appear in the component list
1732 -- if the parent was not frozen at the point of subtype declaration.
1733 -- Inherit the _controller component now.
fbf5a39b
AC
1734
1735 if Rec /= Base_Type (Rec)
1736 and then Has_Controlled_Component (Rec)
1737 then
1738 if Nkind (Parent (Rec)) = N_Subtype_Declaration
1739 and then Is_Entity_Name (Subtype_Indication (Parent (Rec)))
1740 then
1741 Set_First_Entity (Rec, First_Entity (Base_Type (Rec)));
1742
49e90211 1743 -- If this is an internal type without a declaration, as for
6871ba5f
AC
1744 -- record component, the base type may not yet be frozen, and its
1745 -- controller has not been created. Add an explicit freeze node
49e90211
ES
1746 -- for the itype, so it will be frozen after the base type. This
1747 -- freeze node is used to communicate with the expander, in order
1748 -- to create the controller for the enclosing record, and it is
1749 -- deleted afterwards (see exp_ch3). It must not be created when
1750 -- expansion is off, because it might appear in the wrong context
1751 -- for the back end.
fbf5a39b
AC
1752
1753 elsif Is_Itype (Rec)
1754 and then Has_Delayed_Freeze (Base_Type (Rec))
1755 and then
1756 Nkind (Associated_Node_For_Itype (Rec)) =
49e90211
ES
1757 N_Component_Declaration
1758 and then Expander_Active
fbf5a39b
AC
1759 then
1760 Ensure_Freeze_Node (Rec);
1761 end if;
1762 end if;
1763
49e90211 1764 -- Freeze components and embedded subtypes
70482933
RK
1765
1766 Comp := First_Entity (Rec);
c6823a20 1767 Prev := Empty;
c6823a20 1768 while Present (Comp) loop
70482933 1769
49e90211 1770 -- First handle the (real) component case
70482933
RK
1771
1772 if Ekind (Comp) = E_Component
1773 or else Ekind (Comp) = E_Discriminant
1774 then
70482933
RK
1775 declare
1776 CC : constant Node_Id := Component_Clause (Comp);
1777
1778 begin
c6823a20
EB
1779 -- Freezing a record type freezes the type of each of its
1780 -- components. However, if the type of the component is
1781 -- part of this record, we do not want or need a separate
1782 -- Freeze_Node. Note that Is_Itype is wrong because that's
1783 -- also set in private type cases. We also can't check for
1784 -- the Scope being exactly Rec because of private types and
1785 -- record extensions.
1786
1787 if Is_Itype (Etype (Comp))
1788 and then Is_Record_Type (Underlying_Type
1789 (Scope (Etype (Comp))))
1790 then
1791 Undelay_Type (Etype (Comp));
1792 end if;
1793
1794 Freeze_And_Append (Etype (Comp), Loc, Result);
1795
0da2c8ac
AC
1796 -- Check for error of component clause given for variable
1797 -- sized type. We have to delay this test till this point,
1798 -- since the component type has to be frozen for us to know
1799 -- if it is variable length. We omit this test in a generic
1800 -- context, it will be applied at instantiation time.
1801
70482933
RK
1802 if Present (CC) then
1803 Placed_Component := True;
1804
07fc65c4
GB
1805 if Inside_A_Generic then
1806 null;
1807
7d8b9c99
RD
1808 elsif not
1809 Size_Known_At_Compile_Time
1810 (Underlying_Type (Etype (Comp)))
70482933
RK
1811 then
1812 Error_Msg_N
1813 ("component clause not allowed for variable " &
1814 "length component", CC);
1815 end if;
1816
1817 else
1818 Unplaced_Component := True;
1819 end if;
70482933 1820
0da2c8ac 1821 -- Case of component requires byte alignment
70482933 1822
0da2c8ac 1823 if Must_Be_On_Byte_Boundary (Etype (Comp)) then
70482933 1824
0da2c8ac 1825 -- Set the enclosing record to also require byte align
70482933 1826
0da2c8ac 1827 Set_Must_Be_On_Byte_Boundary (Rec);
70482933 1828
7d8b9c99
RD
1829 -- Check for component clause that is inconsistent with
1830 -- the required byte boundary alignment.
70482933 1831
0da2c8ac
AC
1832 if Present (CC)
1833 and then Normalized_First_Bit (Comp) mod
1834 System_Storage_Unit /= 0
1835 then
1836 Error_Msg_N
1837 ("component & must be byte aligned",
1838 Component_Name (Component_Clause (Comp)));
1839 end if;
1840 end if;
70482933 1841
7d8b9c99
RD
1842 -- If component clause is present, then deal with the non-
1843 -- default bit order case for Ada 95 mode. The required
fea9e956
ES
1844 -- processing for Ada 2005 mode is handled separately after
1845 -- processing all components.
70482933 1846
0da2c8ac
AC
1847 -- We only do this processing for the base type, and in
1848 -- fact that's important, since otherwise if there are
1849 -- record subtypes, we could reverse the bits once for
1850 -- each subtype, which would be incorrect.
70482933 1851
0da2c8ac
AC
1852 if Present (CC)
1853 and then Reverse_Bit_Order (Rec)
1854 and then Ekind (E) = E_Record_Type
fea9e956 1855 and then Ada_Version <= Ada_95
0da2c8ac
AC
1856 then
1857 declare
1858 CFB : constant Uint := Component_Bit_Offset (Comp);
1859 CSZ : constant Uint := Esize (Comp);
1860 CLC : constant Node_Id := Component_Clause (Comp);
1861 Pos : constant Node_Id := Position (CLC);
1862 FB : constant Node_Id := First_Bit (CLC);
1863
1864 Storage_Unit_Offset : constant Uint :=
1865 CFB / System_Storage_Unit;
1866
1867 Start_Bit : constant Uint :=
1868 CFB mod System_Storage_Unit;
1869
1870 begin
1871 -- Cases where field goes over storage unit boundary
1872
1873 if Start_Bit + CSZ > System_Storage_Unit then
70482933 1874
0da2c8ac
AC
1875 -- Allow multi-byte field but generate warning
1876
1877 if Start_Bit mod System_Storage_Unit = 0
1878 and then CSZ mod System_Storage_Unit = 0
1879 then
70482933 1880 Error_Msg_N
0da2c8ac
AC
1881 ("multi-byte field specified with non-standard"
1882 & " Bit_Order?", CLC);
1883
1884 if Bytes_Big_Endian then
1885 Error_Msg_N
1886 ("bytes are not reversed "
1887 & "(component is big-endian)?", CLC);
1888 else
1889 Error_Msg_N
1890 ("bytes are not reversed "
1891 & "(component is little-endian)?", CLC);
1892 end if;
1893
c6084ae0 1894 -- Do not allow non-contiguous field
0da2c8ac 1895
70482933
RK
1896 else
1897 Error_Msg_N
c6084ae0
AC
1898 ("attempt to specify non-contiguous field "
1899 & "not permitted", CLC);
0da2c8ac 1900 Error_Msg_N
c6084ae0
AC
1901 ("\caused by non-standard Bit_Order "
1902 & "specified", CLC);
1903 Error_Msg_N
1904 ("\consider possibility of using "
1905 & "Ada 2005 mode here", CLC);
70482933
RK
1906 end if;
1907
c6084ae0 1908 -- Case where field fits in one storage unit
70482933
RK
1909
1910 else
0da2c8ac 1911 -- Give warning if suspicious component clause
70482933 1912
fea9e956
ES
1913 if Intval (FB) >= System_Storage_Unit
1914 and then Warn_On_Reverse_Bit_Order
1915 then
0da2c8ac
AC
1916 Error_Msg_N
1917 ("?Bit_Order clause does not affect " &
1918 "byte ordering", Pos);
1919 Error_Msg_Uint_1 :=
1920 Intval (Pos) + Intval (FB) /
1921 System_Storage_Unit;
1922 Error_Msg_N
1923 ("?position normalized to ^ before bit " &
1924 "order interpreted", Pos);
1925 end if;
70482933 1926
0da2c8ac
AC
1927 -- Here is where we fix up the Component_Bit_Offset
1928 -- value to account for the reverse bit order.
1929 -- Some examples of what needs to be done are:
70482933 1930
0da2c8ac
AC
1931 -- First_Bit .. Last_Bit Component_Bit_Offset
1932 -- old new old new
70482933 1933
0da2c8ac
AC
1934 -- 0 .. 0 7 .. 7 0 7
1935 -- 0 .. 1 6 .. 7 0 6
1936 -- 0 .. 2 5 .. 7 0 5
1937 -- 0 .. 7 0 .. 7 0 4
70482933 1938
0da2c8ac
AC
1939 -- 1 .. 1 6 .. 6 1 6
1940 -- 1 .. 4 3 .. 6 1 3
1941 -- 4 .. 7 0 .. 3 4 0
70482933 1942
0da2c8ac
AC
1943 -- The general rule is that the first bit is
1944 -- is obtained by subtracting the old ending bit
1945 -- from storage_unit - 1.
70482933 1946
0da2c8ac
AC
1947 Set_Component_Bit_Offset
1948 (Comp,
1949 (Storage_Unit_Offset * System_Storage_Unit) +
1950 (System_Storage_Unit - 1) -
1951 (Start_Bit + CSZ - 1));
70482933 1952
0da2c8ac
AC
1953 Set_Normalized_First_Bit
1954 (Comp,
1955 Component_Bit_Offset (Comp) mod
1956 System_Storage_Unit);
1957 end if;
1958 end;
1959 end if;
1960 end;
70482933
RK
1961 end if;
1962
426d2717 1963 -- Gather data for possible Implicit_Packing later
8dc10d38 1964
426d2717
AC
1965 if not Is_Scalar_Type (Etype (Comp)) then
1966 All_Scalar_Components := False;
1967 else
1968 Scalar_Component_Total_RM_Size :=
1969 Scalar_Component_Total_RM_Size + RM_Size (Etype (Comp));
1970 Scalar_Component_Total_Esize :=
1971 Scalar_Component_Total_Esize + Esize (Etype (Comp));
8dc10d38
AC
1972 end if;
1973
c6823a20
EB
1974 -- If the component is an Itype with Delayed_Freeze and is either
1975 -- a record or array subtype and its base type has not yet been
1976 -- frozen, we must remove this from the entity list of this
1977 -- record and put it on the entity list of the scope of its base
1978 -- type. Note that we know that this is not the type of a
1979 -- component since we cleared Has_Delayed_Freeze for it in the
1980 -- previous loop. Thus this must be the Designated_Type of an
1981 -- access type, which is the type of a component.
1982
1983 if Is_Itype (Comp)
1984 and then Is_Type (Scope (Comp))
1985 and then Is_Composite_Type (Comp)
1986 and then Base_Type (Comp) /= Comp
1987 and then Has_Delayed_Freeze (Comp)
1988 and then not Is_Frozen (Base_Type (Comp))
1989 then
1990 declare
1991 Will_Be_Frozen : Boolean := False;
1b24ada5 1992 S : Entity_Id;
c6823a20
EB
1993
1994 begin
fea9e956
ES
1995 -- We have a pretty bad kludge here. Suppose Rec is subtype
1996 -- being defined in a subprogram that's created as part of
1997 -- the freezing of Rec'Base. In that case, we know that
1998 -- Comp'Base must have already been frozen by the time we
1999 -- get to elaborate this because Gigi doesn't elaborate any
2000 -- bodies until it has elaborated all of the declarative
2001 -- part. But Is_Frozen will not be set at this point because
2002 -- we are processing code in lexical order.
2003
2004 -- We detect this case by going up the Scope chain of Rec
2005 -- and seeing if we have a subprogram scope before reaching
2006 -- the top of the scope chain or that of Comp'Base. If we
2007 -- do, then mark that Comp'Base will actually be frozen. If
2008 -- so, we merely undelay it.
c6823a20 2009
1b24ada5 2010 S := Scope (Rec);
c6823a20
EB
2011 while Present (S) loop
2012 if Is_Subprogram (S) then
2013 Will_Be_Frozen := True;
2014 exit;
2015 elsif S = Scope (Base_Type (Comp)) then
2016 exit;
2017 end if;
2018
2019 S := Scope (S);
2020 end loop;
2021
2022 if Will_Be_Frozen then
2023 Undelay_Type (Comp);
2024 else
2025 if Present (Prev) then
2026 Set_Next_Entity (Prev, Next_Entity (Comp));
2027 else
2028 Set_First_Entity (Rec, Next_Entity (Comp));
2029 end if;
2030
2031 -- Insert in entity list of scope of base type (which
2032 -- must be an enclosing scope, because still unfrozen).
2033
2034 Append_Entity (Comp, Scope (Base_Type (Comp)));
2035 end if;
2036 end;
2037
def46b54
RD
2038 -- If the component is an access type with an allocator as default
2039 -- value, the designated type will be frozen by the corresponding
2040 -- expression in init_proc. In order to place the freeze node for
2041 -- the designated type before that for the current record type,
2042 -- freeze it now.
c6823a20
EB
2043
2044 -- Same process if the component is an array of access types,
2045 -- initialized with an aggregate. If the designated type is
def46b54
RD
2046 -- private, it cannot contain allocators, and it is premature
2047 -- to freeze the type, so we check for this as well.
c6823a20
EB
2048
2049 elsif Is_Access_Type (Etype (Comp))
2050 and then Present (Parent (Comp))
2051 and then Present (Expression (Parent (Comp)))
c6823a20
EB
2052 then
2053 declare
e18d6a15
JM
2054 Alloc : constant Node_Id :=
2055 Check_Allocator (Expression (Parent (Comp)));
c6823a20
EB
2056
2057 begin
e18d6a15 2058 if Present (Alloc) then
19590d70 2059
e18d6a15
JM
2060 -- If component is pointer to a classwide type, freeze
2061 -- the specific type in the expression being allocated.
2062 -- The expression may be a subtype indication, in which
2063 -- case freeze the subtype mark.
c6823a20 2064
e18d6a15
JM
2065 if Is_Class_Wide_Type
2066 (Designated_Type (Etype (Comp)))
0f4cb75c 2067 then
e18d6a15
JM
2068 if Is_Entity_Name (Expression (Alloc)) then
2069 Freeze_And_Append
2070 (Entity (Expression (Alloc)), Loc, Result);
2071 elsif
2072 Nkind (Expression (Alloc)) = N_Subtype_Indication
2073 then
2074 Freeze_And_Append
2075 (Entity (Subtype_Mark (Expression (Alloc))),
2076 Loc, Result);
2077 end if;
0f4cb75c 2078
e18d6a15
JM
2079 elsif Is_Itype (Designated_Type (Etype (Comp))) then
2080 Check_Itype (Etype (Comp));
0f4cb75c 2081
e18d6a15
JM
2082 else
2083 Freeze_And_Append
2084 (Designated_Type (Etype (Comp)), Loc, Result);
2085 end if;
c6823a20
EB
2086 end if;
2087 end;
2088
2089 elsif Is_Access_Type (Etype (Comp))
2090 and then Is_Itype (Designated_Type (Etype (Comp)))
2091 then
7d8b9c99 2092 Check_Itype (Etype (Comp));
c6823a20
EB
2093
2094 elsif Is_Array_Type (Etype (Comp))
2095 and then Is_Access_Type (Component_Type (Etype (Comp)))
2096 and then Present (Parent (Comp))
2097 and then Nkind (Parent (Comp)) = N_Component_Declaration
2098 and then Present (Expression (Parent (Comp)))
2099 and then Nkind (Expression (Parent (Comp))) = N_Aggregate
2100 and then Is_Fully_Defined
2101 (Designated_Type (Component_Type (Etype (Comp))))
2102 then
2103 Freeze_And_Append
2104 (Designated_Type
2105 (Component_Type (Etype (Comp))), Loc, Result);
2106 end if;
2107
2108 Prev := Comp;
70482933
RK
2109 Next_Entity (Comp);
2110 end loop;
2111
fea9e956
ES
2112 -- Deal with pragma Bit_Order
2113
2114 if Reverse_Bit_Order (Rec) and then Base_Type (Rec) = Rec then
2115 if not Placed_Component then
2116 ADC :=
2117 Get_Attribute_Definition_Clause (Rec, Attribute_Bit_Order);
2118 Error_Msg_N
2119 ("?Bit_Order specification has no effect", ADC);
2120 Error_Msg_N
2121 ("\?since no component clauses were specified", ADC);
2122
def46b54
RD
2123 -- Here is where we do Ada 2005 processing for bit order (the Ada
2124 -- 95 case was already taken care of above).
70482933 2125
fea9e956
ES
2126 elsif Ada_Version >= Ada_05 then
2127 Adjust_Record_For_Reverse_Bit_Order (Rec);
2128 end if;
70482933
RK
2129 end if;
2130
1b24ada5
RD
2131 -- Set OK_To_Reorder_Components depending on debug flags
2132
2133 if Rec = Base_Type (Rec)
2134 and then Convention (Rec) = Convention_Ada
2135 then
2136 if (Has_Discriminants (Rec) and then Debug_Flag_Dot_V)
2137 or else
2138 (not Has_Discriminants (Rec) and then Debug_Flag_Dot_R)
2139 then
2140 Set_OK_To_Reorder_Components (Rec);
2141 end if;
2142 end if;
2143
ee094616
RD
2144 -- Check for useless pragma Pack when all components placed. We only
2145 -- do this check for record types, not subtypes, since a subtype may
2146 -- have all its components placed, and it still makes perfectly good
1b24ada5
RD
2147 -- sense to pack other subtypes or the parent type. We do not give
2148 -- this warning if Optimize_Alignment is set to Space, since the
2149 -- pragma Pack does have an effect in this case (it always resets
2150 -- the alignment to one).
70482933 2151
ee094616
RD
2152 if Ekind (Rec) = E_Record_Type
2153 and then Is_Packed (Rec)
70482933 2154 and then not Unplaced_Component
1b24ada5 2155 and then Optimize_Alignment /= 'S'
70482933 2156 then
def46b54
RD
2157 -- Reset packed status. Probably not necessary, but we do it so
2158 -- that there is no chance of the back end doing something strange
2159 -- with this redundant indication of packing.
ee094616 2160
70482933 2161 Set_Is_Packed (Rec, False);
ee094616
RD
2162
2163 -- Give warning if redundant constructs warnings on
2164
2165 if Warn_On_Redundant_Constructs then
2166 Error_Msg_N
2167 ("?pragma Pack has no effect, no unplaced components",
2168 Get_Rep_Pragma (Rec, Name_Pack));
2169 end if;
70482933
RK
2170 end if;
2171
ee094616
RD
2172 -- If this is the record corresponding to a remote type, freeze the
2173 -- remote type here since that is what we are semantically freezing.
2174 -- This prevents the freeze node for that type in an inner scope.
70482933
RK
2175
2176 -- Also, Check for controlled components and unchecked unions.
ee094616
RD
2177 -- Finally, enforce the restriction that access attributes with a
2178 -- current instance prefix can only apply to limited types.
70482933 2179
8dc10d38 2180 if Ekind (Rec) = E_Record_Type then
70482933
RK
2181 if Present (Corresponding_Remote_Type (Rec)) then
2182 Freeze_And_Append
2183 (Corresponding_Remote_Type (Rec), Loc, Result);
2184 end if;
2185
2186 Comp := First_Component (Rec);
70482933
RK
2187 while Present (Comp) loop
2188 if Has_Controlled_Component (Etype (Comp))
2189 or else (Chars (Comp) /= Name_uParent
2190 and then Is_Controlled (Etype (Comp)))
2191 or else (Is_Protected_Type (Etype (Comp))
2192 and then Present
2193 (Corresponding_Record_Type (Etype (Comp)))
2194 and then Has_Controlled_Component
2195 (Corresponding_Record_Type (Etype (Comp))))
2196 then
2197 Set_Has_Controlled_Component (Rec);
2198 exit;
2199 end if;
2200
2201 if Has_Unchecked_Union (Etype (Comp)) then
2202 Set_Has_Unchecked_Union (Rec);
2203 end if;
2204
32c760e6
ES
2205 if Has_Per_Object_Constraint (Comp) then
2206
ee094616
RD
2207 -- Scan component declaration for likely misuses of current
2208 -- instance, either in a constraint or a default expression.
70482933
RK
2209
2210 Check_Current_Instance (Parent (Comp));
2211 end if;
2212
2213 Next_Component (Comp);
2214 end loop;
2215 end if;
2216
2217 Set_Component_Alignment_If_Not_Set (Rec);
2218
ee094616
RD
2219 -- For first subtypes, check if there are any fixed-point fields with
2220 -- component clauses, where we must check the size. This is not done
2221 -- till the freeze point, since for fixed-point types, we do not know
2222 -- the size until the type is frozen. Similar processing applies to
2223 -- bit packed arrays.
70482933
RK
2224
2225 if Is_First_Subtype (Rec) then
2226 Comp := First_Component (Rec);
2227
2228 while Present (Comp) loop
2229 if Present (Component_Clause (Comp))
d05ef0ab
AC
2230 and then (Is_Fixed_Point_Type (Etype (Comp))
2231 or else
2232 Is_Bit_Packed_Array (Etype (Comp)))
70482933
RK
2233 then
2234 Check_Size
d05ef0ab 2235 (Component_Name (Component_Clause (Comp)),
70482933
RK
2236 Etype (Comp),
2237 Esize (Comp),
2238 Junk);
2239 end if;
2240
2241 Next_Component (Comp);
2242 end loop;
2243 end if;
7d8b9c99
RD
2244
2245 -- Generate warning for applying C or C++ convention to a record
2246 -- with discriminants. This is suppressed for the unchecked union
1b24ada5
RD
2247 -- case, since the whole point in this case is interface C. We also
2248 -- do not generate this within instantiations, since we will have
2249 -- generated a message on the template.
7d8b9c99
RD
2250
2251 if Has_Discriminants (E)
2252 and then not Is_Unchecked_Union (E)
7d8b9c99
RD
2253 and then (Convention (E) = Convention_C
2254 or else
2255 Convention (E) = Convention_CPP)
2256 and then Comes_From_Source (E)
1b24ada5
RD
2257 and then not In_Instance
2258 and then not Has_Warnings_Off (E)
2259 and then not Has_Warnings_Off (Base_Type (E))
7d8b9c99
RD
2260 then
2261 declare
2262 Cprag : constant Node_Id := Get_Rep_Pragma (E, Name_Convention);
2263 A2 : Node_Id;
2264
2265 begin
2266 if Present (Cprag) then
2267 A2 := Next (First (Pragma_Argument_Associations (Cprag)));
2268
2269 if Convention (E) = Convention_C then
2270 Error_Msg_N
2271 ("?variant record has no direct equivalent in C", A2);
2272 else
2273 Error_Msg_N
2274 ("?variant record has no direct equivalent in C++", A2);
2275 end if;
2276
2277 Error_Msg_NE
2278 ("\?use of convention for type& is dubious", A2, E);
2279 end if;
2280 end;
2281 end if;
8dc10d38 2282
ce14c577 2283 -- See if Size is too small as is (and implicit packing might help)
8dc10d38 2284
426d2717 2285 if not Is_Packed (Rec)
ce14c577
AC
2286
2287 -- No implicit packing if even one component is explicitly placed
2288
426d2717 2289 and then not Placed_Component
ce14c577
AC
2290
2291 -- Must have size clause and all scalar components
2292
8dc10d38
AC
2293 and then Has_Size_Clause (Rec)
2294 and then All_Scalar_Components
ce14c577
AC
2295
2296 -- Do not try implicit packing on records with discriminants, too
2297 -- complicated, especially in the variant record case.
2298
8dc10d38 2299 and then not Has_Discriminants (Rec)
ce14c577
AC
2300
2301 -- We can implicitly pack if the specified size of the record is
2302 -- less than the sum of the object sizes (no point in packing if
2303 -- this is not the case).
2304
8dc10d38 2305 and then Esize (Rec) < Scalar_Component_Total_Esize
ce14c577
AC
2306
2307 -- And the total RM size cannot be greater than the specified size
2308 -- since otherwise packing will not get us where we have to be!
2309
8dc10d38 2310 and then Esize (Rec) >= Scalar_Component_Total_RM_Size
ce14c577
AC
2311
2312 -- Never do implicit packing in CodePeer mode since we don't do
2313 -- any packing ever in this mode (why not???)
2314
d58b9515 2315 and then not CodePeer_Mode
8dc10d38 2316 then
426d2717
AC
2317 -- If implicit packing enabled, do it
2318
2319 if Implicit_Packing then
2320 Set_Is_Packed (Rec);
2321
2322 -- Otherwise flag the size clause
2323
2324 else
2325 declare
2326 Sz : constant Node_Id := Size_Clause (Rec);
2327 begin
2995ebee 2328 Error_Msg_NE -- CODEFIX
426d2717 2329 ("size given for& too small", Sz, Rec);
2995ebee 2330 Error_Msg_N -- CODEFIX
426d2717
AC
2331 ("\use explicit pragma Pack "
2332 & "or use pragma Implicit_Packing", Sz);
2333 end;
2334 end if;
8dc10d38 2335 end if;
70482933
RK
2336 end Freeze_Record_Type;
2337
2338 -- Start of processing for Freeze_Entity
2339
2340 begin
c6823a20
EB
2341 -- We are going to test for various reasons why this entity need not be
2342 -- frozen here, but in the case of an Itype that's defined within a
2343 -- record, that test actually applies to the record.
2344
2345 if Is_Itype (E) and then Is_Record_Type (Scope (E)) then
2346 Test_E := Scope (E);
2347 elsif Is_Itype (E) and then Present (Underlying_Type (Scope (E)))
2348 and then Is_Record_Type (Underlying_Type (Scope (E)))
2349 then
2350 Test_E := Underlying_Type (Scope (E));
2351 end if;
2352
fbf5a39b 2353 -- Do not freeze if already frozen since we only need one freeze node
70482933
RK
2354
2355 if Is_Frozen (E) then
2356 return No_List;
2357
c6823a20
EB
2358 -- It is improper to freeze an external entity within a generic because
2359 -- its freeze node will appear in a non-valid context. The entity will
2360 -- be frozen in the proper scope after the current generic is analyzed.
70482933 2361
c6823a20 2362 elsif Inside_A_Generic and then External_Ref_In_Generic (Test_E) then
70482933
RK
2363 return No_List;
2364
2365 -- Do not freeze a global entity within an inner scope created during
2366 -- expansion. A call to subprogram E within some internal procedure
2367 -- (a stream attribute for example) might require freezing E, but the
2368 -- freeze node must appear in the same declarative part as E itself.
2369 -- The two-pass elaboration mechanism in gigi guarantees that E will
2370 -- be frozen before the inner call is elaborated. We exclude constants
2371 -- from this test, because deferred constants may be frozen early, and
19590d70
GD
2372 -- must be diagnosed (e.g. in the case of a deferred constant being used
2373 -- in a default expression). If the enclosing subprogram comes from
2374 -- source, or is a generic instance, then the freeze point is the one
2375 -- mandated by the language, and we freeze the entity. A subprogram that
2376 -- is a child unit body that acts as a spec does not have a spec that
2377 -- comes from source, but can only come from source.
70482933 2378
c6823a20
EB
2379 elsif In_Open_Scopes (Scope (Test_E))
2380 and then Scope (Test_E) /= Current_Scope
2381 and then Ekind (Test_E) /= E_Constant
70482933
RK
2382 then
2383 declare
2384 S : Entity_Id := Current_Scope;
2385
2386 begin
2387 while Present (S) loop
2388 if Is_Overloadable (S) then
2389 if Comes_From_Source (S)
2390 or else Is_Generic_Instance (S)
fea9e956 2391 or else Is_Child_Unit (S)
70482933
RK
2392 then
2393 exit;
2394 else
2395 return No_List;
2396 end if;
2397 end if;
2398
2399 S := Scope (S);
2400 end loop;
2401 end;
555360a5
AC
2402
2403 -- Similarly, an inlined instance body may make reference to global
2404 -- entities, but these references cannot be the proper freezing point
def46b54
RD
2405 -- for them, and in the absence of inlining freezing will take place in
2406 -- their own scope. Normally instance bodies are analyzed after the
2407 -- enclosing compilation, and everything has been frozen at the proper
2408 -- place, but with front-end inlining an instance body is compiled
2409 -- before the end of the enclosing scope, and as a result out-of-order
2410 -- freezing must be prevented.
555360a5
AC
2411
2412 elsif Front_End_Inlining
7d8b9c99 2413 and then In_Instance_Body
c6823a20 2414 and then Present (Scope (Test_E))
555360a5
AC
2415 then
2416 declare
c6823a20
EB
2417 S : Entity_Id := Scope (Test_E);
2418
555360a5
AC
2419 begin
2420 while Present (S) loop
2421 if Is_Generic_Instance (S) then
2422 exit;
2423 else
2424 S := Scope (S);
2425 end if;
2426 end loop;
2427
2428 if No (S) then
2429 return No_List;
2430 end if;
2431 end;
70482933
RK
2432 end if;
2433
2434 -- Here to freeze the entity
2435
2436 Result := No_List;
2437 Set_Is_Frozen (E);
2438
2439 -- Case of entity being frozen is other than a type
2440
2441 if not Is_Type (E) then
2442
2443 -- If entity is exported or imported and does not have an external
2444 -- name, now is the time to provide the appropriate default name.
2445 -- Skip this if the entity is stubbed, since we don't need a name
75a64833
AC
2446 -- for any stubbed routine. For the case on intrinsics, if no
2447 -- external name is specified, then calls will be handled in
2448 -- Exp_Intr.Expand_Intrinsic_Call, and no name is needed; if
2449 -- an external name is provided, then Expand_Intrinsic_Call leaves
2450 -- calls in place for expansion by GIGI.
70482933
RK
2451
2452 if (Is_Imported (E) or else Is_Exported (E))
2453 and then No (Interface_Name (E))
2454 and then Convention (E) /= Convention_Stubbed
75a64833 2455 and then Convention (E) /= Convention_Intrinsic
70482933
RK
2456 then
2457 Set_Encoded_Interface_Name
2458 (E, Get_Default_External_Name (E));
fbf5a39b 2459
bbaba73f
EB
2460 -- If entity is an atomic object appearing in a declaration and
2461 -- the expression is an aggregate, assign it to a temporary to
2462 -- ensure that the actual assignment is done atomically rather
2463 -- than component-wise (the assignment to the temp may be done
2464 -- component-wise, but that is harmless).
fbf5a39b
AC
2465
2466 elsif Is_Atomic (E)
2467 and then Nkind (Parent (E)) = N_Object_Declaration
2468 and then Present (Expression (Parent (E)))
bbaba73f 2469 and then Nkind (Expression (Parent (E))) = N_Aggregate
b0159fbe 2470 and then
cfb120b5 2471 Is_Atomic_Aggregate (Expression (Parent (E)), Etype (E))
fbf5a39b 2472 then
b0159fbe 2473 null;
70482933
RK
2474 end if;
2475
2476 -- For a subprogram, freeze all parameter types and also the return
fbf5a39b 2477 -- type (RM 13.14(14)). However skip this for internal subprograms.
70482933 2478 -- This is also the point where any extra formal parameters are
fb2e11ee
AC
2479 -- created since we now know whether the subprogram will use a
2480 -- foreign convention.
70482933
RK
2481
2482 if Is_Subprogram (E) then
70482933 2483 if not Is_Internal (E) then
70482933 2484 declare
6d11af89 2485 F_Type : Entity_Id;
def46b54 2486 R_Type : Entity_Id;
6d11af89 2487 Warn_Node : Node_Id;
70482933 2488
70482933
RK
2489 begin
2490 -- Loop through formals
2491
2492 Formal := First_Formal (E);
70482933 2493 while Present (Formal) loop
70482933
RK
2494 F_Type := Etype (Formal);
2495 Freeze_And_Append (F_Type, Loc, Result);
2496
2497 if Is_Private_Type (F_Type)
2498 and then Is_Private_Type (Base_Type (F_Type))
2499 and then No (Full_View (Base_Type (F_Type)))
2500 and then not Is_Generic_Type (F_Type)
2501 and then not Is_Derived_Type (F_Type)
2502 then
2503 -- If the type of a formal is incomplete, subprogram
2504 -- is being frozen prematurely. Within an instance
2505 -- (but not within a wrapper package) this is an
fb2e11ee 2506 -- artifact of our need to regard the end of an
70482933
RK
2507 -- instantiation as a freeze point. Otherwise it is
2508 -- a definite error.
fbf5a39b 2509
70482933
RK
2510 if In_Instance then
2511 Set_Is_Frozen (E, False);
2512 return No_List;
2513
86cde7b1
RD
2514 elsif not After_Last_Declaration
2515 and then not Freezing_Library_Level_Tagged_Type
2516 then
70482933
RK
2517 Error_Msg_Node_1 := F_Type;
2518 Error_Msg
2519 ("type& must be fully defined before this point",
2520 Loc);
2521 end if;
2522 end if;
2523
def46b54 2524 -- Check suspicious parameter for C function. These tests
1b24ada5 2525 -- apply only to exported/imported subprograms.
70482933 2526
def46b54 2527 if Warn_On_Export_Import
1b24ada5 2528 and then Comes_From_Source (E)
def46b54
RD
2529 and then (Convention (E) = Convention_C
2530 or else
2531 Convention (E) = Convention_CPP)
def46b54 2532 and then (Is_Imported (E) or else Is_Exported (E))
1b24ada5
RD
2533 and then Convention (E) /= Convention (Formal)
2534 and then not Has_Warnings_Off (E)
2535 and then not Has_Warnings_Off (F_Type)
2536 and then not Has_Warnings_Off (Formal)
fbf5a39b 2537 then
b3afa59b
AC
2538 -- Qualify mention of formals with subprogram name
2539
70482933 2540 Error_Msg_Qual_Level := 1;
def46b54
RD
2541
2542 -- Check suspicious use of fat C pointer
2543
2544 if Is_Access_Type (F_Type)
2545 and then Esize (F_Type) > Ttypes.System_Address_Size
2546 then
2547 Error_Msg_N
b3afa59b
AC
2548 ("?type of & does not correspond to C pointer!",
2549 Formal);
def46b54
RD
2550
2551 -- Check suspicious return of boolean
2552
2553 elsif Root_Type (F_Type) = Standard_Boolean
2554 and then Convention (F_Type) = Convention_Ada
67198556
RD
2555 and then not Has_Warnings_Off (F_Type)
2556 and then not Has_Size_Clause (F_Type)
6a2afd13 2557 and then VM_Target = No_VM
def46b54
RD
2558 then
2559 Error_Msg_N
b3afa59b
AC
2560 ("& is an 8-bit Ada Boolean?", Formal);
2561 Error_Msg_N
2562 ("\use appropriate corresponding type in C "
2563 & "(e.g. char)?", Formal);
def46b54
RD
2564
2565 -- Check suspicious tagged type
2566
2567 elsif (Is_Tagged_Type (F_Type)
2568 or else (Is_Access_Type (F_Type)
2569 and then
2570 Is_Tagged_Type
2571 (Designated_Type (F_Type))))
2572 and then Convention (E) = Convention_C
2573 then
2574 Error_Msg_N
e7d72fb9 2575 ("?& involves a tagged type which does not "
def46b54
RD
2576 & "correspond to any C type!", Formal);
2577
2578 -- Check wrong convention subprogram pointer
2579
2580 elsif Ekind (F_Type) = E_Access_Subprogram_Type
2581 and then not Has_Foreign_Convention (F_Type)
2582 then
2583 Error_Msg_N
2584 ("?subprogram pointer & should "
2585 & "have foreign convention!", Formal);
2586 Error_Msg_Sloc := Sloc (F_Type);
2587 Error_Msg_NE
2588 ("\?add Convention pragma to declaration of &#",
2589 Formal, F_Type);
2590 end if;
2591
b3afa59b
AC
2592 -- Turn off name qualification after message output
2593
70482933
RK
2594 Error_Msg_Qual_Level := 0;
2595 end if;
2596
2597 -- Check for unconstrained array in exported foreign
2598 -- convention case.
2599
def46b54 2600 if Has_Foreign_Convention (E)
70482933
RK
2601 and then not Is_Imported (E)
2602 and then Is_Array_Type (F_Type)
2603 and then not Is_Constrained (F_Type)
fbf5a39b 2604 and then Warn_On_Export_Import
70482933
RK
2605 then
2606 Error_Msg_Qual_Level := 1;
6d11af89
AC
2607
2608 -- If this is an inherited operation, place the
2609 -- warning on the derived type declaration, rather
2610 -- than on the original subprogram.
2611
2612 if Nkind (Original_Node (Parent (E))) =
2613 N_Full_Type_Declaration
2614 then
2615 Warn_Node := Parent (E);
2616
2617 if Formal = First_Formal (E) then
2618 Error_Msg_NE
add9f797 2619 ("?in inherited operation&", Warn_Node, E);
6d11af89
AC
2620 end if;
2621 else
2622 Warn_Node := Formal;
2623 end if;
2624
2625 Error_Msg_NE
70482933 2626 ("?type of argument& is unconstrained array",
6d11af89
AC
2627 Warn_Node, Formal);
2628 Error_Msg_NE
70482933 2629 ("?foreign caller must pass bounds explicitly",
6d11af89 2630 Warn_Node, Formal);
70482933
RK
2631 Error_Msg_Qual_Level := 0;
2632 end if;
2633
d8db0bca
JM
2634 if not From_With_Type (F_Type) then
2635 if Is_Access_Type (F_Type) then
2636 F_Type := Designated_Type (F_Type);
2637 end if;
2638
7d8b9c99
RD
2639 -- If the formal is an anonymous_access_to_subprogram
2640 -- freeze the subprogram type as well, to prevent
2641 -- scope anomalies in gigi, because there is no other
2642 -- clear point at which it could be frozen.
2643
93bcda23 2644 if Is_Itype (Etype (Formal))
7d8b9c99
RD
2645 and then Ekind (F_Type) = E_Subprogram_Type
2646 then
57747aec 2647 Freeze_And_Append (F_Type, Loc, Result);
d8db0bca
JM
2648 end if;
2649 end if;
2650
70482933
RK
2651 Next_Formal (Formal);
2652 end loop;
2653
5e39baa6 2654 -- Case of function: similar checks on return type
70482933
RK
2655
2656 if Ekind (E) = E_Function then
def46b54
RD
2657
2658 -- Freeze return type
2659
2660 R_Type := Etype (E);
2661 Freeze_And_Append (R_Type, Loc, Result);
2662
2663 -- Check suspicious return type for C function
70482933 2664
fbf5a39b 2665 if Warn_On_Export_Import
def46b54
RD
2666 and then (Convention (E) = Convention_C
2667 or else
2668 Convention (E) = Convention_CPP)
def46b54 2669 and then (Is_Imported (E) or else Is_Exported (E))
fbf5a39b 2670 then
def46b54
RD
2671 -- Check suspicious return of fat C pointer
2672
2673 if Is_Access_Type (R_Type)
2674 and then Esize (R_Type) > Ttypes.System_Address_Size
1b24ada5
RD
2675 and then not Has_Warnings_Off (E)
2676 and then not Has_Warnings_Off (R_Type)
def46b54
RD
2677 then
2678 Error_Msg_N
2679 ("?return type of& does not "
2680 & "correspond to C pointer!", E);
2681
2682 -- Check suspicious return of boolean
2683
2684 elsif Root_Type (R_Type) = Standard_Boolean
2685 and then Convention (R_Type) = Convention_Ada
6a2afd13 2686 and then VM_Target = No_VM
1b24ada5
RD
2687 and then not Has_Warnings_Off (E)
2688 and then not Has_Warnings_Off (R_Type)
67198556 2689 and then not Has_Size_Clause (R_Type)
def46b54 2690 then
b3afa59b
AC
2691 declare
2692 N : constant Node_Id :=
2693 Result_Definition (Declaration_Node (E));
2694 begin
2695 Error_Msg_NE
2696 ("return type of & is an 8-bit Ada Boolean?",
2697 N, E);
2698 Error_Msg_NE
2699 ("\use appropriate corresponding type in C "
2700 & "(e.g. char)?", N, E);
2701 end;
70482933 2702
def46b54
RD
2703 -- Check suspicious return tagged type
2704
2705 elsif (Is_Tagged_Type (R_Type)
2706 or else (Is_Access_Type (R_Type)
2707 and then
2708 Is_Tagged_Type
2709 (Designated_Type (R_Type))))
2710 and then Convention (E) = Convention_C
1b24ada5
RD
2711 and then not Has_Warnings_Off (E)
2712 and then not Has_Warnings_Off (R_Type)
def46b54
RD
2713 then
2714 Error_Msg_N
2715 ("?return type of & does not "
2716 & "correspond to C type!", E);
2717
2718 -- Check return of wrong convention subprogram pointer
2719
2720 elsif Ekind (R_Type) = E_Access_Subprogram_Type
2721 and then not Has_Foreign_Convention (R_Type)
1b24ada5
RD
2722 and then not Has_Warnings_Off (E)
2723 and then not Has_Warnings_Off (R_Type)
def46b54
RD
2724 then
2725 Error_Msg_N
2726 ("?& should return a foreign "
2727 & "convention subprogram pointer", E);
2728 Error_Msg_Sloc := Sloc (R_Type);
2729 Error_Msg_NE
2730 ("\?add Convention pragma to declaration of& #",
2731 E, R_Type);
2732 end if;
2733 end if;
2734
e7d72fb9
AC
2735 -- Give warning for suspicous return of a result of an
2736 -- unconstrained array type in a foreign convention
2737 -- function.
59366db6 2738
e7d72fb9
AC
2739 if Has_Foreign_Convention (E)
2740
2741 -- We are looking for a return of unconstrained array
2742
2743 and then Is_Array_Type (R_Type)
93bcda23 2744 and then not Is_Constrained (R_Type)
e7d72fb9
AC
2745
2746 -- Exclude imported routines, the warning does not
2747 -- belong on the import, but on the routine definition.
2748
70482933 2749 and then not Is_Imported (E)
e7d72fb9
AC
2750
2751 -- Exclude VM case, since both .NET and JVM can handle
2752 -- return of unconstrained arrays without a problem.
2753
f3b57ab0 2754 and then VM_Target = No_VM
e7d72fb9
AC
2755
2756 -- Check that general warning is enabled, and that it
2757 -- is not suppressed for this particular case.
2758
fbf5a39b 2759 and then Warn_On_Export_Import
1b24ada5 2760 and then not Has_Warnings_Off (E)
93bcda23 2761 and then not Has_Warnings_Off (R_Type)
70482933
RK
2762 then
2763 Error_Msg_N
fbf5a39b 2764 ("?foreign convention function& should not " &
1b24ada5 2765 "return unconstrained array!", E);
70482933
RK
2766 end if;
2767 end if;
2768 end;
2769 end if;
2770
2771 -- Must freeze its parent first if it is a derived subprogram
2772
2773 if Present (Alias (E)) then
2774 Freeze_And_Append (Alias (E), Loc, Result);
2775 end if;
2776
19590d70
GD
2777 -- We don't freeze internal subprograms, because we don't normally
2778 -- want addition of extra formals or mechanism setting to happen
2779 -- for those. However we do pass through predefined dispatching
2780 -- cases, since extra formals may be needed in some cases, such as
2781 -- for the stream 'Input function (build-in-place formals).
2782
2783 if not Is_Internal (E)
2784 or else Is_Predefined_Dispatching_Operation (E)
2785 then
70482933
RK
2786 Freeze_Subprogram (E);
2787 end if;
2788
2789 -- Here for other than a subprogram or type
2790
2791 else
2792 -- If entity has a type, and it is not a generic unit, then
7d8b9c99 2793 -- freeze it first (RM 13.14(10)).
70482933 2794
ac72c9c5 2795 if Present (Etype (E))
70482933
RK
2796 and then Ekind (E) /= E_Generic_Function
2797 then
2798 Freeze_And_Append (Etype (E), Loc, Result);
2799 end if;
2800
2c9beb8a 2801 -- Special processing for objects created by object declaration
70482933
RK
2802
2803 if Nkind (Declaration_Node (E)) = N_Object_Declaration then
2c9beb8a 2804
6823270c
AC
2805 -- Abstract type allowed only for C++ imported variables or
2806 -- constants.
2807
2808 -- Note: we inhibit this check for objects that do not come
2809 -- from source because there is at least one case (the
2810 -- expansion of x'class'input where x is abstract) where we
2811 -- legitimately generate an abstract object.
2812
2813 if Is_Abstract_Type (Etype (E))
2814 and then Comes_From_Source (Parent (E))
2815 and then not (Is_Imported (E)
2816 and then Is_CPP_Class (Etype (E)))
2817 then
2818 Error_Msg_N ("type of object cannot be abstract",
2819 Object_Definition (Parent (E)));
2820
2821 if Is_CPP_Class (Etype (E)) then
2822 Error_Msg_NE ("\} may need a cpp_constructor",
2823 Object_Definition (Parent (E)), Etype (E));
2824 end if;
2825 end if;
2826
2c9beb8a
RD
2827 -- For object created by object declaration, perform required
2828 -- categorization (preelaborate and pure) checks. Defer these
2829 -- checks to freeze time since pragma Import inhibits default
2830 -- initialization and thus pragma Import affects these checks.
2831
70482933 2832 Validate_Object_Declaration (Declaration_Node (E));
2c9beb8a 2833
1ce1f005 2834 -- If there is an address clause, check that it is valid
2c9beb8a 2835
fbf5a39b 2836 Check_Address_Clause (E);
2c9beb8a 2837
1ce1f005
GD
2838 -- If the object needs any kind of default initialization, an
2839 -- error must be issued if No_Default_Initialization applies.
2840 -- The check doesn't apply to imported objects, which are not
2841 -- ever default initialized, and is why the check is deferred
2842 -- until freezing, at which point we know if Import applies.
4fec4e7a
ES
2843 -- Deferred constants are also exempted from this test because
2844 -- their completion is explicit, or through an import pragma.
1ce1f005 2845
4fec4e7a
ES
2846 if Ekind (E) = E_Constant
2847 and then Present (Full_View (E))
2848 then
2849 null;
2850
2851 elsif Comes_From_Source (E)
b6e209b5 2852 and then not Is_Imported (E)
1ce1f005
GD
2853 and then not Has_Init_Expression (Declaration_Node (E))
2854 and then
2855 ((Has_Non_Null_Base_Init_Proc (Etype (E))
2856 and then not No_Initialization (Declaration_Node (E))
2857 and then not Is_Value_Type (Etype (E))
2858 and then not Suppress_Init_Proc (Etype (E)))
2859 or else
2860 (Needs_Simple_Initialization (Etype (E))
2861 and then not Is_Internal (E)))
2862 then
4c8a5bb8 2863 Has_Default_Initialization := True;
1ce1f005
GD
2864 Check_Restriction
2865 (No_Default_Initialization, Declaration_Node (E));
2866 end if;
2867
4c8a5bb8
AC
2868 -- Check that a Thread_Local_Storage variable does not have
2869 -- default initialization, and any explicit initialization must
2870 -- either be the null constant or a static constant.
2871
2872 if Has_Pragma_Thread_Local_Storage (E) then
2873 declare
2874 Decl : constant Node_Id := Declaration_Node (E);
2875 begin
2876 if Has_Default_Initialization
2877 or else
2878 (Has_Init_Expression (Decl)
2879 and then
2880 (No (Expression (Decl))
2881 or else not
2882 (Is_Static_Expression (Expression (Decl))
2883 or else
2884 Nkind (Expression (Decl)) = N_Null)))
2885 then
2886 Error_Msg_NE
2887 ("Thread_Local_Storage variable& is "
2888 & "improperly initialized", Decl, E);
2889 Error_Msg_NE
2890 ("\only allowed initialization is explicit "
2891 & "NULL or static expression", Decl, E);
2892 end if;
2893 end;
2894 end if;
2895
def46b54
RD
2896 -- For imported objects, set Is_Public unless there is also an
2897 -- address clause, which means that there is no external symbol
2898 -- needed for the Import (Is_Public may still be set for other
2899 -- unrelated reasons). Note that we delayed this processing
2900 -- till freeze time so that we can be sure not to set the flag
2901 -- if there is an address clause. If there is such a clause,
2902 -- then the only purpose of the Import pragma is to suppress
2903 -- implicit initialization.
2c9beb8a
RD
2904
2905 if Is_Imported (E)
add9f797 2906 and then No (Address_Clause (E))
2c9beb8a
RD
2907 then
2908 Set_Is_Public (E);
2909 end if;
7d8b9c99
RD
2910
2911 -- For convention C objects of an enumeration type, warn if
2912 -- the size is not integer size and no explicit size given.
2913 -- Skip warning for Boolean, and Character, assume programmer
2914 -- expects 8-bit sizes for these cases.
2915
2916 if (Convention (E) = Convention_C
2917 or else
2918 Convention (E) = Convention_CPP)
2919 and then Is_Enumeration_Type (Etype (E))
2920 and then not Is_Character_Type (Etype (E))
2921 and then not Is_Boolean_Type (Etype (E))
2922 and then Esize (Etype (E)) < Standard_Integer_Size
2923 and then not Has_Size_Clause (E)
2924 then
2925 Error_Msg_Uint_1 := UI_From_Int (Standard_Integer_Size);
2926 Error_Msg_N
2927 ("?convention C enumeration object has size less than ^",
2928 E);
2929 Error_Msg_N ("\?use explicit size clause to set size", E);
2930 end if;
70482933
RK
2931 end if;
2932
2933 -- Check that a constant which has a pragma Volatile[_Components]
7d8b9c99 2934 -- or Atomic[_Components] also has a pragma Import (RM C.6(13)).
70482933
RK
2935
2936 -- Note: Atomic[_Components] also sets Volatile[_Components]
2937
2938 if Ekind (E) = E_Constant
2939 and then (Has_Volatile_Components (E) or else Is_Volatile (E))
2940 and then not Is_Imported (E)
2941 then
2942 -- Make sure we actually have a pragma, and have not merely
2943 -- inherited the indication from elsewhere (e.g. an address
2944 -- clause, which is not good enough in RM terms!)
2945
1d571f3b 2946 if Has_Rep_Pragma (E, Name_Atomic)
91b1417d 2947 or else
1d571f3b 2948 Has_Rep_Pragma (E, Name_Atomic_Components)
70482933
RK
2949 then
2950 Error_Msg_N
91b1417d 2951 ("stand alone atomic constant must be " &
def46b54 2952 "imported (RM C.6(13))", E);
91b1417d 2953
1d571f3b 2954 elsif Has_Rep_Pragma (E, Name_Volatile)
91b1417d 2955 or else
1d571f3b 2956 Has_Rep_Pragma (E, Name_Volatile_Components)
91b1417d
AC
2957 then
2958 Error_Msg_N
2959 ("stand alone volatile constant must be " &
86cde7b1 2960 "imported (RM C.6(13))", E);
70482933
RK
2961 end if;
2962 end if;
2963
2964 -- Static objects require special handling
2965
2966 if (Ekind (E) = E_Constant or else Ekind (E) = E_Variable)
2967 and then Is_Statically_Allocated (E)
2968 then
2969 Freeze_Static_Object (E);
2970 end if;
2971
2972 -- Remaining step is to layout objects
2973
2974 if Ekind (E) = E_Variable
2975 or else
2976 Ekind (E) = E_Constant
2977 or else
2978 Ekind (E) = E_Loop_Parameter
2979 or else
2980 Is_Formal (E)
2981 then
2982 Layout_Object (E);
2983 end if;
2984 end if;
2985
2986 -- Case of a type or subtype being frozen
2987
2988 else
31b5873d
GD
2989 -- We used to check here that a full type must have preelaborable
2990 -- initialization if it completes a private type specified with
2991 -- pragma Preelaborable_Intialization, but that missed cases where
2992 -- the types occur within a generic package, since the freezing
2993 -- that occurs within a containing scope generally skips traversal
2994 -- of a generic unit's declarations (those will be frozen within
2995 -- instances). This check was moved to Analyze_Package_Specification.
3f1ede06 2996
70482933
RK
2997 -- The type may be defined in a generic unit. This can occur when
2998 -- freezing a generic function that returns the type (which is
2999 -- defined in a parent unit). It is clearly meaningless to freeze
3000 -- this type. However, if it is a subtype, its size may be determi-
3001 -- nable and used in subsequent checks, so might as well try to
3002 -- compute it.
3003
3004 if Present (Scope (E))
3005 and then Is_Generic_Unit (Scope (E))
3006 then
3007 Check_Compile_Time_Size (E);
3008 return No_List;
3009 end if;
3010
3011 -- Deal with special cases of freezing for subtype
3012
3013 if E /= Base_Type (E) then
3014
86cde7b1
RD
3015 -- Before we do anything else, a specialized test for the case of
3016 -- a size given for an array where the array needs to be packed,
3017 -- but was not so the size cannot be honored. This would of course
3018 -- be caught by the backend, and indeed we don't catch all cases.
3019 -- The point is that we can give a better error message in those
3020 -- cases that we do catch with the circuitry here. Also if pragma
3021 -- Implicit_Packing is set, this is where the packing occurs.
3022
3023 -- The reason we do this so early is that the processing in the
3024 -- automatic packing case affects the layout of the base type, so
3025 -- it must be done before we freeze the base type.
3026
3027 if Is_Array_Type (E) then
3028 declare
3029 Lo, Hi : Node_Id;
3030 Ctyp : constant Entity_Id := Component_Type (E);
3031
3032 begin
3033 -- Check enabling conditions. These are straightforward
3034 -- except for the test for a limited composite type. This
3035 -- eliminates the rare case of a array of limited components
3036 -- where there are issues of whether or not we can go ahead
3037 -- and pack the array (since we can't freely pack and unpack
3038 -- arrays if they are limited).
3039
3040 -- Note that we check the root type explicitly because the
3041 -- whole point is we are doing this test before we have had
3042 -- a chance to freeze the base type (and it is that freeze
3043 -- action that causes stuff to be inherited).
3044
3045 if Present (Size_Clause (E))
3046 and then Known_Static_Esize (E)
3047 and then not Is_Packed (E)
3048 and then not Has_Pragma_Pack (E)
3049 and then Number_Dimensions (E) = 1
3050 and then not Has_Component_Size_Clause (E)
3051 and then Known_Static_Esize (Ctyp)
3052 and then not Is_Limited_Composite (E)
3053 and then not Is_Packed (Root_Type (E))
3054 and then not Has_Component_Size_Clause (Root_Type (E))
d58b9515 3055 and then not CodePeer_Mode
86cde7b1
RD
3056 then
3057 Get_Index_Bounds (First_Index (E), Lo, Hi);
3058
3059 if Compile_Time_Known_Value (Lo)
3060 and then Compile_Time_Known_Value (Hi)
3061 and then Known_Static_RM_Size (Ctyp)
3062 and then RM_Size (Ctyp) < 64
3063 then
3064 declare
3065 Lov : constant Uint := Expr_Value (Lo);
3066 Hiv : constant Uint := Expr_Value (Hi);
3067 Len : constant Uint := UI_Max
3068 (Uint_0,
3069 Hiv - Lov + 1);
3070 Rsiz : constant Uint := RM_Size (Ctyp);
3071 SZ : constant Node_Id := Size_Clause (E);
3072 Btyp : constant Entity_Id := Base_Type (E);
3073
3074 -- What we are looking for here is the situation where
3075 -- the RM_Size given would be exactly right if there
3076 -- was a pragma Pack (resulting in the component size
3077 -- being the same as the RM_Size). Furthermore, the
3078 -- component type size must be an odd size (not a
5a989c6b
AC
3079 -- multiple of storage unit). If the component RM size
3080 -- is an exact number of storage units that is a power
3081 -- of two, the array is not packed and has a standard
3082 -- representation.
86cde7b1
RD
3083
3084 begin
3085 if RM_Size (E) = Len * Rsiz
3086 and then Rsiz mod System_Storage_Unit /= 0
3087 then
3088 -- For implicit packing mode, just set the
fd366a46 3089 -- component size silently.
86cde7b1
RD
3090
3091 if Implicit_Packing then
3092 Set_Component_Size (Btyp, Rsiz);
3093 Set_Is_Bit_Packed_Array (Btyp);
3094 Set_Is_Packed (Btyp);
3095 Set_Has_Non_Standard_Rep (Btyp);
3096
3097 -- Otherwise give an error message
3098
3099 else
3100 Error_Msg_NE
3101 ("size given for& too small", SZ, E);
3102 Error_Msg_N
3103 ("\use explicit pragma Pack "
3104 & "or use pragma Implicit_Packing", SZ);
3105 end if;
5a989c6b
AC
3106
3107 elsif RM_Size (E) = Len * Rsiz
3108 and then Implicit_Packing
3109 and then
3110 (Rsiz / System_Storage_Unit = 1
3111 or else Rsiz / System_Storage_Unit = 2
3112 or else Rsiz / System_Storage_Unit = 4)
3113 then
3114
3115 -- Not a packed array, but indicate the desired
3116 -- component size, for the back-end.
3117
3118 Set_Component_Size (Btyp, Rsiz);
86cde7b1
RD
3119 end if;
3120 end;
3121 end if;
3122 end if;
3123 end;
3124 end if;
3125
def46b54
RD
3126 -- If ancestor subtype present, freeze that first. Note that this
3127 -- will also get the base type frozen.
70482933
RK
3128
3129 Atype := Ancestor_Subtype (E);
3130
3131 if Present (Atype) then
3132 Freeze_And_Append (Atype, Loc, Result);
3133
def46b54
RD
3134 -- Otherwise freeze the base type of the entity before freezing
3135 -- the entity itself (RM 13.14(15)).
70482933
RK
3136
3137 elsif E /= Base_Type (E) then
3138 Freeze_And_Append (Base_Type (E), Loc, Result);
3139 end if;
3140
fbf5a39b 3141 -- For a derived type, freeze its parent type first (RM 13.14(15))
70482933
RK
3142
3143 elsif Is_Derived_Type (E) then
3144 Freeze_And_Append (Etype (E), Loc, Result);
3145 Freeze_And_Append (First_Subtype (Etype (E)), Loc, Result);
3146 end if;
3147
3148 -- For array type, freeze index types and component type first
fbf5a39b 3149 -- before freezing the array (RM 13.14(15)).
70482933
RK
3150
3151 if Is_Array_Type (E) then
3152 declare
fbf5a39b 3153 Ctyp : constant Entity_Id := Component_Type (E);
70482933
RK
3154
3155 Non_Standard_Enum : Boolean := False;
7d8b9c99
RD
3156 -- Set true if any of the index types is an enumeration type
3157 -- with a non-standard representation.
70482933
RK
3158
3159 begin
3160 Freeze_And_Append (Ctyp, Loc, Result);
3161
3162 Indx := First_Index (E);
3163 while Present (Indx) loop
3164 Freeze_And_Append (Etype (Indx), Loc, Result);
3165
3166 if Is_Enumeration_Type (Etype (Indx))
3167 and then Has_Non_Standard_Rep (Etype (Indx))
3168 then
3169 Non_Standard_Enum := True;
3170 end if;
3171
3172 Next_Index (Indx);
3173 end loop;
3174
07fc65c4 3175 -- Processing that is done only for base types
70482933
RK
3176
3177 if Ekind (E) = E_Array_Type then
07fc65c4
GB
3178
3179 -- Propagate flags for component type
3180
70482933
RK
3181 if Is_Controlled (Component_Type (E))
3182 or else Has_Controlled_Component (Ctyp)
3183 then
3184 Set_Has_Controlled_Component (E);
3185 end if;
3186
3187 if Has_Unchecked_Union (Component_Type (E)) then
3188 Set_Has_Unchecked_Union (E);
3189 end if;
70482933 3190
07fc65c4
GB
3191 -- If packing was requested or if the component size was set
3192 -- explicitly, then see if bit packing is required. This
3193 -- processing is only done for base types, since all the
3194 -- representation aspects involved are type-related. This
3195 -- is not just an optimization, if we start processing the
e14c931f 3196 -- subtypes, they interfere with the settings on the base
07fc65c4
GB
3197 -- type (this is because Is_Packed has a slightly different
3198 -- meaning before and after freezing).
70482933 3199
70482933
RK
3200 declare
3201 Csiz : Uint;
3202 Esiz : Uint;
3203
3204 begin
3205 if (Is_Packed (E) or else Has_Pragma_Pack (E))
3206 and then not Has_Atomic_Components (E)
3207 and then Known_Static_RM_Size (Ctyp)
3208 then
3209 Csiz := UI_Max (RM_Size (Ctyp), 1);
3210
3211 elsif Known_Component_Size (E) then
3212 Csiz := Component_Size (E);
3213
3214 elsif not Known_Static_Esize (Ctyp) then
3215 Csiz := Uint_0;
3216
3217 else
3218 Esiz := Esize (Ctyp);
3219
3220 -- We can set the component size if it is less than
3221 -- 16, rounding it up to the next storage unit size.
3222
3223 if Esiz <= 8 then
3224 Csiz := Uint_8;
3225 elsif Esiz <= 16 then
3226 Csiz := Uint_16;
3227 else
3228 Csiz := Uint_0;
3229 end if;
3230
7d8b9c99
RD
3231 -- Set component size up to match alignment if it
3232 -- would otherwise be less than the alignment. This
3233 -- deals with cases of types whose alignment exceeds
3234 -- their size (padded types).
70482933
RK
3235
3236 if Csiz /= 0 then
3237 declare
3238 A : constant Uint := Alignment_In_Bits (Ctyp);
70482933
RK
3239 begin
3240 if Csiz < A then
3241 Csiz := A;
3242 end if;
3243 end;
3244 end if;
70482933
RK
3245 end if;
3246
86cde7b1
RD
3247 -- Case of component size that may result in packing
3248
70482933 3249 if 1 <= Csiz and then Csiz <= 64 then
86cde7b1
RD
3250 declare
3251 Ent : constant Entity_Id :=
3252 First_Subtype (E);
3253 Pack_Pragma : constant Node_Id :=
3254 Get_Rep_Pragma (Ent, Name_Pack);
3255 Comp_Size_C : constant Node_Id :=
3256 Get_Attribute_Definition_Clause
3257 (Ent, Attribute_Component_Size);
3258 begin
3259 -- Warn if we have pack and component size so that
3260 -- the pack is ignored.
70482933 3261
86cde7b1
RD
3262 -- Note: here we must check for the presence of a
3263 -- component size before checking for a Pack pragma
3264 -- to deal with the case where the array type is a
3265 -- derived type whose parent is currently private.
3266
3267 if Present (Comp_Size_C)
3268 and then Has_Pragma_Pack (Ent)
3269 then
3270 Error_Msg_Sloc := Sloc (Comp_Size_C);
3271 Error_Msg_NE
3272 ("?pragma Pack for& ignored!",
3273 Pack_Pragma, Ent);
3274 Error_Msg_N
3275 ("\?explicit component size given#!",
3276 Pack_Pragma);
3277 end if;
70482933 3278
86cde7b1
RD
3279 -- Set component size if not already set by a
3280 -- component size clause.
70482933 3281
86cde7b1
RD
3282 if not Present (Comp_Size_C) then
3283 Set_Component_Size (E, Csiz);
3284 end if;
fbf5a39b 3285
86cde7b1
RD
3286 -- Check for base type of 8, 16, 32 bits, where an
3287 -- unsigned subtype has a length one less than the
3288 -- base type (e.g. Natural subtype of Integer).
fbf5a39b 3289
86cde7b1
RD
3290 -- In such cases, if a component size was not set
3291 -- explicitly, then generate a warning.
fbf5a39b 3292
86cde7b1
RD
3293 if Has_Pragma_Pack (E)
3294 and then not Present (Comp_Size_C)
3295 and then
3296 (Csiz = 7 or else Csiz = 15 or else Csiz = 31)
3297 and then Esize (Base_Type (Ctyp)) = Csiz + 1
3298 then
3299 Error_Msg_Uint_1 := Csiz;
3300
3301 if Present (Pack_Pragma) then
3302 Error_Msg_N
3303 ("?pragma Pack causes component size "
3304 & "to be ^!", Pack_Pragma);
3305 Error_Msg_N
3306 ("\?use Component_Size to set "
3307 & "desired value!", Pack_Pragma);
3308 end if;
fbf5a39b 3309 end if;
fbf5a39b 3310
86cde7b1
RD
3311 -- Actual packing is not needed for 8, 16, 32, 64.
3312 -- Also not needed for 24 if alignment is 1.
70482933 3313
86cde7b1
RD
3314 if Csiz = 8
3315 or else Csiz = 16
3316 or else Csiz = 32
3317 or else Csiz = 64
3318 or else (Csiz = 24 and then Alignment (Ctyp) = 1)
3319 then
3320 -- Here the array was requested to be packed,
3321 -- but the packing request had no effect, so
3322 -- Is_Packed is reset.
70482933 3323
86cde7b1
RD
3324 -- Note: semantically this means that we lose
3325 -- track of the fact that a derived type
3326 -- inherited a pragma Pack that was non-
3327 -- effective, but that seems fine.
70482933 3328
86cde7b1
RD
3329 -- We regard a Pack pragma as a request to set
3330 -- a representation characteristic, and this
3331 -- request may be ignored.
70482933 3332
86cde7b1 3333 Set_Is_Packed (Base_Type (E), False);
70482933 3334
86cde7b1 3335 -- In all other cases, packing is indeed needed
70482933 3336
86cde7b1
RD
3337 else
3338 Set_Has_Non_Standard_Rep (Base_Type (E));
3339 Set_Is_Bit_Packed_Array (Base_Type (E));
3340 Set_Is_Packed (Base_Type (E));
3341 end if;
3342 end;
70482933
RK
3343 end if;
3344 end;
07fc65c4
GB
3345
3346 -- Processing that is done only for subtypes
3347
3348 else
3349 -- Acquire alignment from base type
3350
3351 if Unknown_Alignment (E) then
3352 Set_Alignment (E, Alignment (Base_Type (E)));
7d8b9c99 3353 Adjust_Esize_Alignment (E);
07fc65c4
GB
3354 end if;
3355 end if;
3356
d05ef0ab
AC
3357 -- For bit-packed arrays, check the size
3358
75a64833 3359 if Is_Bit_Packed_Array (E) and then Known_RM_Size (E) then
d05ef0ab 3360 declare
67ce0d7e
RD
3361 SizC : constant Node_Id := Size_Clause (E);
3362
d05ef0ab 3363 Discard : Boolean;
67ce0d7e 3364 pragma Warnings (Off, Discard);
d05ef0ab
AC
3365
3366 begin
3367 -- It is not clear if it is possible to have no size
7d8b9c99
RD
3368 -- clause at this stage, but it is not worth worrying
3369 -- about. Post error on the entity name in the size
d05ef0ab
AC
3370 -- clause if present, else on the type entity itself.
3371
3372 if Present (SizC) then
7d8b9c99 3373 Check_Size (Name (SizC), E, RM_Size (E), Discard);
d05ef0ab 3374 else
7d8b9c99 3375 Check_Size (E, E, RM_Size (E), Discard);
d05ef0ab
AC
3376 end if;
3377 end;
3378 end if;
3379
70482933
RK
3380 -- If any of the index types was an enumeration type with
3381 -- a non-standard rep clause, then we indicate that the
3382 -- array type is always packed (even if it is not bit packed).
3383
3384 if Non_Standard_Enum then
3385 Set_Has_Non_Standard_Rep (Base_Type (E));
3386 Set_Is_Packed (Base_Type (E));
3387 end if;
70482933 3388
0da2c8ac 3389 Set_Component_Alignment_If_Not_Set (E);
70482933 3390
0da2c8ac
AC
3391 -- If the array is packed, we must create the packed array
3392 -- type to be used to actually implement the type. This is
3393 -- only needed for real array types (not for string literal
3394 -- types, since they are present only for the front end).
70482933 3395
0da2c8ac
AC
3396 if Is_Packed (E)
3397 and then Ekind (E) /= E_String_Literal_Subtype
3398 then
3399 Create_Packed_Array_Type (E);
3400 Freeze_And_Append (Packed_Array_Type (E), Loc, Result);
70482933 3401
0da2c8ac 3402 -- Size information of packed array type is copied to the
fea9e956 3403 -- array type, since this is really the representation. But
def46b54
RD
3404 -- do not override explicit existing size values. If the
3405 -- ancestor subtype is constrained the packed_array_type
3406 -- will be inherited from it, but the size may have been
3407 -- provided already, and must not be overridden either.
fea9e956 3408
def46b54
RD
3409 if not Has_Size_Clause (E)
3410 and then
3411 (No (Ancestor_Subtype (E))
3412 or else not Has_Size_Clause (Ancestor_Subtype (E)))
3413 then
fea9e956
ES
3414 Set_Esize (E, Esize (Packed_Array_Type (E)));
3415 Set_RM_Size (E, RM_Size (Packed_Array_Type (E)));
3416 end if;
70482933 3417
fea9e956
ES
3418 if not Has_Alignment_Clause (E) then
3419 Set_Alignment (E, Alignment (Packed_Array_Type (E)));
3420 end if;
0da2c8ac
AC
3421 end if;
3422
def46b54
RD
3423 -- For non-packed arrays set the alignment of the array to the
3424 -- alignment of the component type if it is unknown. Skip this
3425 -- in atomic case (atomic arrays may need larger alignments).
0da2c8ac
AC
3426
3427 if not Is_Packed (E)
3428 and then Unknown_Alignment (E)
3429 and then Known_Alignment (Ctyp)
3430 and then Known_Static_Component_Size (E)
3431 and then Known_Static_Esize (Ctyp)
3432 and then Esize (Ctyp) = Component_Size (E)
3433 and then not Is_Atomic (E)
3434 then
3435 Set_Alignment (E, Alignment (Component_Type (E)));
3436 end if;
3437 end;
70482933 3438
fbf5a39b
AC
3439 -- For a class-wide type, the corresponding specific type is
3440 -- frozen as well (RM 13.14(15))
70482933
RK
3441
3442 elsif Is_Class_Wide_Type (E) then
3443 Freeze_And_Append (Root_Type (E), Loc, Result);
3444
86cde7b1
RD
3445 -- If the base type of the class-wide type is still incomplete,
3446 -- the class-wide remains unfrozen as well. This is legal when
3447 -- E is the formal of a primitive operation of some other type
3448 -- which is being frozen.
3449
3450 if not Is_Frozen (Root_Type (E)) then
3451 Set_Is_Frozen (E, False);
3452 return Result;
3453 end if;
3454
70482933
RK
3455 -- If the Class_Wide_Type is an Itype (when type is the anonymous
3456 -- parent of a derived type) and it is a library-level entity,
3457 -- generate an itype reference for it. Otherwise, its first
3458 -- explicit reference may be in an inner scope, which will be
3459 -- rejected by the back-end.
3460
3461 if Is_Itype (E)
3462 and then Is_Compilation_Unit (Scope (E))
3463 then
70482933 3464 declare
fbf5a39b 3465 Ref : constant Node_Id := Make_Itype_Reference (Loc);
70482933
RK
3466
3467 begin
3468 Set_Itype (Ref, E);
3469 if No (Result) then
3470 Result := New_List (Ref);
3471 else
3472 Append (Ref, Result);
3473 end if;
3474 end;
3475 end if;
3476
def46b54 3477 -- The equivalent type associated with a class-wide subtype needs
cbae498b 3478 -- to be frozen to ensure that its layout is done.
fbf5a39b
AC
3479
3480 if Ekind (E) = E_Class_Wide_Subtype
3481 and then Present (Equivalent_Type (E))
3482 then
3483 Freeze_And_Append (Equivalent_Type (E), Loc, Result);
3484 end if;
3485
3486 -- For a record (sub)type, freeze all the component types (RM
def46b54
RD
3487 -- 13.14(15). We test for E_Record_(sub)Type here, rather than using
3488 -- Is_Record_Type, because we don't want to attempt the freeze for
3489 -- the case of a private type with record extension (we will do that
3490 -- later when the full type is frozen).
70482933
RK
3491
3492 elsif Ekind (E) = E_Record_Type
fd366a46 3493 or else Ekind (E) = E_Record_Subtype
70482933
RK
3494 then
3495 Freeze_Record_Type (E);
3496
3497 -- For a concurrent type, freeze corresponding record type. This
e14c931f 3498 -- does not correspond to any specific rule in the RM, but the
70482933
RK
3499 -- record type is essentially part of the concurrent type.
3500 -- Freeze as well all local entities. This includes record types
3501 -- created for entry parameter blocks, and whatever local entities
3502 -- may appear in the private part.
3503
3504 elsif Is_Concurrent_Type (E) then
3505 if Present (Corresponding_Record_Type (E)) then
3506 Freeze_And_Append
3507 (Corresponding_Record_Type (E), Loc, Result);
3508 end if;
3509
3510 Comp := First_Entity (E);
70482933
RK
3511 while Present (Comp) loop
3512 if Is_Type (Comp) then
3513 Freeze_And_Append (Comp, Loc, Result);
3514
3515 elsif (Ekind (Comp)) /= E_Function then
c6823a20
EB
3516 if Is_Itype (Etype (Comp))
3517 and then Underlying_Type (Scope (Etype (Comp))) = E
3518 then
3519 Undelay_Type (Etype (Comp));
3520 end if;
3521
70482933
RK
3522 Freeze_And_Append (Etype (Comp), Loc, Result);
3523 end if;
3524
3525 Next_Entity (Comp);
3526 end loop;
3527
ee094616
RD
3528 -- Private types are required to point to the same freeze node as
3529 -- their corresponding full views. The freeze node itself has to
3530 -- point to the partial view of the entity (because from the partial
3531 -- view, we can retrieve the full view, but not the reverse).
3532 -- However, in order to freeze correctly, we need to freeze the full
3533 -- view. If we are freezing at the end of a scope (or within the
3534 -- scope of the private type), the partial and full views will have
3535 -- been swapped, the full view appears first in the entity chain and
3536 -- the swapping mechanism ensures that the pointers are properly set
3537 -- (on scope exit).
3538
3539 -- If we encounter the partial view before the full view (e.g. when
3540 -- freezing from another scope), we freeze the full view, and then
3541 -- set the pointers appropriately since we cannot rely on swapping to
3542 -- fix things up (subtypes in an outer scope might not get swapped).
70482933
RK
3543
3544 elsif Is_Incomplete_Or_Private_Type (E)
3545 and then not Is_Generic_Type (E)
3546 then
86cde7b1
RD
3547 -- The construction of the dispatch table associated with library
3548 -- level tagged types forces freezing of all the primitives of the
3549 -- type, which may cause premature freezing of the partial view.
3550 -- For example:
3551
3552 -- package Pkg is
3553 -- type T is tagged private;
3554 -- type DT is new T with private;
3555 -- procedure Prim (X : in out T; Y : in out DT'class);
3556 -- private
3557 -- type T is tagged null record;
3558 -- Obj : T;
3559 -- type DT is new T with null record;
3560 -- end;
3561
3562 -- In this case the type will be frozen later by the usual
3563 -- mechanism: an object declaration, an instantiation, or the
3564 -- end of a declarative part.
3565
3566 if Is_Library_Level_Tagged_Type (E)
3567 and then not Present (Full_View (E))
3568 then
3569 Set_Is_Frozen (E, False);
3570 return Result;
3571
70482933
RK
3572 -- Case of full view present
3573
86cde7b1 3574 elsif Present (Full_View (E)) then
70482933 3575
ee094616
RD
3576 -- If full view has already been frozen, then no further
3577 -- processing is required
70482933
RK
3578
3579 if Is_Frozen (Full_View (E)) then
3580
3581 Set_Has_Delayed_Freeze (E, False);
3582 Set_Freeze_Node (E, Empty);
3583 Check_Debug_Info_Needed (E);
3584
ee094616
RD
3585 -- Otherwise freeze full view and patch the pointers so that
3586 -- the freeze node will elaborate both views in the back-end.
70482933
RK
3587
3588 else
fbf5a39b
AC
3589 declare
3590 Full : constant Entity_Id := Full_View (E);
70482933 3591
fbf5a39b
AC
3592 begin
3593 if Is_Private_Type (Full)
3594 and then Present (Underlying_Full_View (Full))
3595 then
3596 Freeze_And_Append
3597 (Underlying_Full_View (Full), Loc, Result);
3598 end if;
70482933 3599
fbf5a39b 3600 Freeze_And_Append (Full, Loc, Result);
70482933 3601
fbf5a39b
AC
3602 if Has_Delayed_Freeze (E) then
3603 F_Node := Freeze_Node (Full);
70482933 3604
fbf5a39b
AC
3605 if Present (F_Node) then
3606 Set_Freeze_Node (E, F_Node);
3607 Set_Entity (F_Node, E);
3608
3609 else
def46b54
RD
3610 -- {Incomplete,Private}_Subtypes with Full_Views
3611 -- constrained by discriminants.
fbf5a39b
AC
3612
3613 Set_Has_Delayed_Freeze (E, False);
3614 Set_Freeze_Node (E, Empty);
3615 end if;
70482933 3616 end if;
fbf5a39b 3617 end;
70482933
RK
3618
3619 Check_Debug_Info_Needed (E);
3620 end if;
3621
ee094616
RD
3622 -- AI-117 requires that the convention of a partial view be the
3623 -- same as the convention of the full view. Note that this is a
3624 -- recognized breach of privacy, but it's essential for logical
3625 -- consistency of representation, and the lack of a rule in
3626 -- RM95 was an oversight.
70482933
RK
3627
3628 Set_Convention (E, Convention (Full_View (E)));
3629
3630 Set_Size_Known_At_Compile_Time (E,
3631 Size_Known_At_Compile_Time (Full_View (E)));
3632
3633 -- Size information is copied from the full view to the
def46b54 3634 -- incomplete or private view for consistency.
70482933 3635
ee094616
RD
3636 -- We skip this is the full view is not a type. This is very
3637 -- strange of course, and can only happen as a result of
3638 -- certain illegalities, such as a premature attempt to derive
3639 -- from an incomplete type.
70482933
RK
3640
3641 if Is_Type (Full_View (E)) then
3642 Set_Size_Info (E, Full_View (E));
3643 Set_RM_Size (E, RM_Size (Full_View (E)));
3644 end if;
3645
3646 return Result;
3647
3648 -- Case of no full view present. If entity is derived or subtype,
3649 -- it is safe to freeze, correctness depends on the frozen status
3650 -- of parent. Otherwise it is either premature usage, or a Taft
3651 -- amendment type, so diagnosis is at the point of use and the
3652 -- type might be frozen later.
3653
3654 elsif E /= Base_Type (E)
3655 or else Is_Derived_Type (E)
3656 then
3657 null;
3658
3659 else
3660 Set_Is_Frozen (E, False);
3661 return No_List;
3662 end if;
3663
3664 -- For access subprogram, freeze types of all formals, the return
3665 -- type was already frozen, since it is the Etype of the function.
8aec446b 3666 -- Formal types can be tagged Taft amendment types, but otherwise
205c14b0 3667 -- they cannot be incomplete.
70482933
RK
3668
3669 elsif Ekind (E) = E_Subprogram_Type then
3670 Formal := First_Formal (E);
8aec446b 3671
70482933 3672 while Present (Formal) loop
8aec446b
AC
3673 if Ekind (Etype (Formal)) = E_Incomplete_Type
3674 and then No (Full_View (Etype (Formal)))
3675 and then not Is_Value_Type (Etype (Formal))
3676 then
3677 if Is_Tagged_Type (Etype (Formal)) then
3678 null;
3679 else
3680 Error_Msg_NE
3681 ("invalid use of incomplete type&", E, Etype (Formal));
3682 end if;
3683 end if;
3684
70482933
RK
3685 Freeze_And_Append (Etype (Formal), Loc, Result);
3686 Next_Formal (Formal);
3687 end loop;
3688
70482933
RK
3689 Freeze_Subprogram (E);
3690
ee094616
RD
3691 -- For access to a protected subprogram, freeze the equivalent type
3692 -- (however this is not set if we are not generating code or if this
3693 -- is an anonymous type used just for resolution).
70482933 3694
fea9e956 3695 elsif Is_Access_Protected_Subprogram_Type (E) then
57747aec 3696 if Present (Equivalent_Type (E)) then
d8db0bca
JM
3697 Freeze_And_Append (Equivalent_Type (E), Loc, Result);
3698 end if;
70482933
RK
3699 end if;
3700
3701 -- Generic types are never seen by the back-end, and are also not
3702 -- processed by the expander (since the expander is turned off for
3703 -- generic processing), so we never need freeze nodes for them.
3704
3705 if Is_Generic_Type (E) then
3706 return Result;
3707 end if;
3708
3709 -- Some special processing for non-generic types to complete
3710 -- representation details not known till the freeze point.
3711
3712 if Is_Fixed_Point_Type (E) then
3713 Freeze_Fixed_Point_Type (E);
3714
ee094616
RD
3715 -- Some error checks required for ordinary fixed-point type. Defer
3716 -- these till the freeze-point since we need the small and range
3717 -- values. We only do these checks for base types
fbf5a39b
AC
3718
3719 if Is_Ordinary_Fixed_Point_Type (E)
3720 and then E = Base_Type (E)
3721 then
3722 if Small_Value (E) < Ureal_2_M_80 then
3723 Error_Msg_Name_1 := Name_Small;
3724 Error_Msg_N
7d8b9c99 3725 ("`&''%` too small, minimum allowed is 2.0'*'*(-80)", E);
fbf5a39b
AC
3726
3727 elsif Small_Value (E) > Ureal_2_80 then
3728 Error_Msg_Name_1 := Name_Small;
3729 Error_Msg_N
7d8b9c99 3730 ("`&''%` too large, maximum allowed is 2.0'*'*80", E);
fbf5a39b
AC
3731 end if;
3732
3733 if Expr_Value_R (Type_Low_Bound (E)) < Ureal_M_10_36 then
3734 Error_Msg_Name_1 := Name_First;
3735 Error_Msg_N
7d8b9c99 3736 ("`&''%` too small, minimum allowed is -10.0'*'*36", E);
fbf5a39b
AC
3737 end if;
3738
3739 if Expr_Value_R (Type_High_Bound (E)) > Ureal_10_36 then
3740 Error_Msg_Name_1 := Name_Last;
3741 Error_Msg_N
7d8b9c99 3742 ("`&''%` too large, maximum allowed is 10.0'*'*36", E);
fbf5a39b
AC
3743 end if;
3744 end if;
3745
70482933
RK
3746 elsif Is_Enumeration_Type (E) then
3747 Freeze_Enumeration_Type (E);
3748
3749 elsif Is_Integer_Type (E) then
3750 Adjust_Esize_For_Alignment (E);
3751
79afa047
AC
3752 if Is_Modular_Integer_Type (E)
3753 and then Warn_On_Suspicious_Modulus_Value
3754 then
67b3acf8
RD
3755 Check_Suspicious_Modulus (E);
3756 end if;
3757
edd63e9b
ES
3758 elsif Is_Access_Type (E) then
3759
3760 -- Check restriction for standard storage pool
3761
3762 if No (Associated_Storage_Pool (E)) then
3763 Check_Restriction (No_Standard_Storage_Pools, E);
3764 end if;
3765
3766 -- Deal with error message for pure access type. This is not an
3767 -- error in Ada 2005 if there is no pool (see AI-366).
3768
3769 if Is_Pure_Unit_Access_Type (E)
3770 and then (Ada_Version < Ada_05
c6a9797e 3771 or else not No_Pool_Assigned (E))
edd63e9b
ES
3772 then
3773 Error_Msg_N ("named access type not allowed in pure unit", E);
c6a9797e
RD
3774
3775 if Ada_Version >= Ada_05 then
3776 Error_Msg_N
3777 ("\would be legal if Storage_Size of 0 given?", E);
3778
3779 elsif No_Pool_Assigned (E) then
3780 Error_Msg_N
3781 ("\would be legal in Ada 2005?", E);
3782
3783 else
3784 Error_Msg_N
3785 ("\would be legal in Ada 2005 if "
3786 & "Storage_Size of 0 given?", E);
3787 end if;
edd63e9b 3788 end if;
70482933
RK
3789 end if;
3790
edd63e9b
ES
3791 -- Case of composite types
3792
70482933
RK
3793 if Is_Composite_Type (E) then
3794
edd63e9b
ES
3795 -- AI-117 requires that all new primitives of a tagged type must
3796 -- inherit the convention of the full view of the type. Inherited
3797 -- and overriding operations are defined to inherit the convention
3798 -- of their parent or overridden subprogram (also specified in
ee094616
RD
3799 -- AI-117), which will have occurred earlier (in Derive_Subprogram
3800 -- and New_Overloaded_Entity). Here we set the convention of
3801 -- primitives that are still convention Ada, which will ensure
def46b54
RD
3802 -- that any new primitives inherit the type's convention. Class-
3803 -- wide types can have a foreign convention inherited from their
3804 -- specific type, but are excluded from this since they don't have
3805 -- any associated primitives.
70482933
RK
3806
3807 if Is_Tagged_Type (E)
3808 and then not Is_Class_Wide_Type (E)
3809 and then Convention (E) /= Convention_Ada
3810 then
3811 declare
3812 Prim_List : constant Elist_Id := Primitive_Operations (E);
07fc65c4 3813 Prim : Elmt_Id;
70482933 3814 begin
07fc65c4 3815 Prim := First_Elmt (Prim_List);
70482933
RK
3816 while Present (Prim) loop
3817 if Convention (Node (Prim)) = Convention_Ada then
3818 Set_Convention (Node (Prim), Convention (E));
3819 end if;
3820
3821 Next_Elmt (Prim);
3822 end loop;
3823 end;
3824 end if;
3825 end if;
3826
ee094616
RD
3827 -- Now that all types from which E may depend are frozen, see if the
3828 -- size is known at compile time, if it must be unsigned, or if
7d8b9c99 3829 -- strict alignment is required
70482933
RK
3830
3831 Check_Compile_Time_Size (E);
3832 Check_Unsigned_Type (E);
3833
3834 if Base_Type (E) = E then
3835 Check_Strict_Alignment (E);
3836 end if;
3837
3838 -- Do not allow a size clause for a type which does not have a size
3839 -- that is known at compile time
3840
3841 if Has_Size_Clause (E)
3842 and then not Size_Known_At_Compile_Time (E)
3843 then
e14c931f 3844 -- Suppress this message if errors posted on E, even if we are
07fc65c4
GB
3845 -- in all errors mode, since this is often a junk message
3846
3847 if not Error_Posted (E) then
3848 Error_Msg_N
3849 ("size clause not allowed for variable length type",
3850 Size_Clause (E));
3851 end if;
70482933
RK
3852 end if;
3853
3854 -- Remaining process is to set/verify the representation information,
3855 -- in particular the size and alignment values. This processing is
3856 -- not required for generic types, since generic types do not play
3857 -- any part in code generation, and so the size and alignment values
c6823a20 3858 -- for such types are irrelevant.
70482933
RK
3859
3860 if Is_Generic_Type (E) then
3861 return Result;
3862
3863 -- Otherwise we call the layout procedure
3864
3865 else
3866 Layout_Type (E);
3867 end if;
3868
3869 -- End of freeze processing for type entities
3870 end if;
3871
3872 -- Here is where we logically freeze the current entity. If it has a
3873 -- freeze node, then this is the point at which the freeze node is
3874 -- linked into the result list.
3875
3876 if Has_Delayed_Freeze (E) then
3877
3878 -- If a freeze node is already allocated, use it, otherwise allocate
3879 -- a new one. The preallocation happens in the case of anonymous base
3880 -- types, where we preallocate so that we can set First_Subtype_Link.
3881 -- Note that we reset the Sloc to the current freeze location.
3882
3883 if Present (Freeze_Node (E)) then
3884 F_Node := Freeze_Node (E);
3885 Set_Sloc (F_Node, Loc);
3886
3887 else
3888 F_Node := New_Node (N_Freeze_Entity, Loc);
3889 Set_Freeze_Node (E, F_Node);
3890 Set_Access_Types_To_Process (F_Node, No_Elist);
3891 Set_TSS_Elist (F_Node, No_Elist);
3892 Set_Actions (F_Node, No_List);
3893 end if;
3894
3895 Set_Entity (F_Node, E);
3896
3897 if Result = No_List then
3898 Result := New_List (F_Node);
3899 else
3900 Append (F_Node, Result);
3901 end if;
35ae2ed8
AC
3902
3903 -- A final pass over record types with discriminants. If the type
3904 -- has an incomplete declaration, there may be constrained access
3905 -- subtypes declared elsewhere, which do not depend on the discrimi-
3906 -- nants of the type, and which are used as component types (i.e.
3907 -- the full view is a recursive type). The designated types of these
3908 -- subtypes can only be elaborated after the type itself, and they
3909 -- need an itype reference.
3910
3911 if Ekind (E) = E_Record_Type
3912 and then Has_Discriminants (E)
3913 then
3914 declare
3915 Comp : Entity_Id;
3916 IR : Node_Id;
3917 Typ : Entity_Id;
3918
3919 begin
3920 Comp := First_Component (E);
3921
3922 while Present (Comp) loop
3923 Typ := Etype (Comp);
3924
3925 if Ekind (Comp) = E_Component
3926 and then Is_Access_Type (Typ)
3927 and then Scope (Typ) /= E
3928 and then Base_Type (Designated_Type (Typ)) = E
3929 and then Is_Itype (Designated_Type (Typ))
3930 then
3931 IR := Make_Itype_Reference (Sloc (Comp));
3932 Set_Itype (IR, Designated_Type (Typ));
3933 Append (IR, Result);
3934 end if;
3935
3936 Next_Component (Comp);
3937 end loop;
3938 end;
3939 end if;
70482933
RK
3940 end if;
3941
3942 -- When a type is frozen, the first subtype of the type is frozen as
3943 -- well (RM 13.14(15)). This has to be done after freezing the type,
3944 -- since obviously the first subtype depends on its own base type.
3945
3946 if Is_Type (E) then
3947 Freeze_And_Append (First_Subtype (E), Loc, Result);
3948
3949 -- If we just froze a tagged non-class wide record, then freeze the
3950 -- corresponding class-wide type. This must be done after the tagged
3951 -- type itself is frozen, because the class-wide type refers to the
3952 -- tagged type which generates the class.
3953
3954 if Is_Tagged_Type (E)
3955 and then not Is_Class_Wide_Type (E)
3956 and then Present (Class_Wide_Type (E))
3957 then
3958 Freeze_And_Append (Class_Wide_Type (E), Loc, Result);
3959 end if;
3960 end if;
3961
3962 Check_Debug_Info_Needed (E);
3963
3964 -- Special handling for subprograms
3965
3966 if Is_Subprogram (E) then
3967
3968 -- If subprogram has address clause then reset Is_Public flag, since
3969 -- we do not want the backend to generate external references.
3970
3971 if Present (Address_Clause (E))
3972 and then not Is_Library_Level_Entity (E)
3973 then
3974 Set_Is_Public (E, False);
3975
3976 -- If no address clause and not intrinsic, then for imported
3977 -- subprogram in main unit, generate descriptor if we are in
3978 -- Propagate_Exceptions mode.
3979
3980 elsif Propagate_Exceptions
3981 and then Is_Imported (E)
3982 and then not Is_Intrinsic_Subprogram (E)
3983 and then Convention (E) /= Convention_Stubbed
3984 then
3985 if Result = No_List then
3986 Result := Empty_List;
3987 end if;
70482933 3988 end if;
70482933
RK
3989 end if;
3990
3991 return Result;
3992 end Freeze_Entity;
3993
3994 -----------------------------
3995 -- Freeze_Enumeration_Type --
3996 -----------------------------
3997
3998 procedure Freeze_Enumeration_Type (Typ : Entity_Id) is
3999 begin
d677afa9
ES
4000 -- By default, if no size clause is present, an enumeration type with
4001 -- Convention C is assumed to interface to a C enum, and has integer
4002 -- size. This applies to types. For subtypes, verify that its base
4003 -- type has no size clause either.
4004
70482933
RK
4005 if Has_Foreign_Convention (Typ)
4006 and then not Has_Size_Clause (Typ)
d677afa9 4007 and then not Has_Size_Clause (Base_Type (Typ))
70482933
RK
4008 and then Esize (Typ) < Standard_Integer_Size
4009 then
4010 Init_Esize (Typ, Standard_Integer_Size);
d677afa9 4011
70482933 4012 else
d677afa9
ES
4013 -- If the enumeration type interfaces to C, and it has a size clause
4014 -- that specifies less than int size, it warrants a warning. The
4015 -- user may intend the C type to be an enum or a char, so this is
4016 -- not by itself an error that the Ada compiler can detect, but it
4017 -- it is a worth a heads-up. For Boolean and Character types we
4018 -- assume that the programmer has the proper C type in mind.
4019
4020 if Convention (Typ) = Convention_C
4021 and then Has_Size_Clause (Typ)
4022 and then Esize (Typ) /= Esize (Standard_Integer)
4023 and then not Is_Boolean_Type (Typ)
4024 and then not Is_Character_Type (Typ)
4025 then
4026 Error_Msg_N
4027 ("C enum types have the size of a C int?", Size_Clause (Typ));
4028 end if;
4029
70482933
RK
4030 Adjust_Esize_For_Alignment (Typ);
4031 end if;
4032 end Freeze_Enumeration_Type;
4033
4034 -----------------------
4035 -- Freeze_Expression --
4036 -----------------------
4037
4038 procedure Freeze_Expression (N : Node_Id) is
c6a9797e
RD
4039 In_Spec_Exp : constant Boolean := In_Spec_Expression;
4040 Typ : Entity_Id;
4041 Nam : Entity_Id;
4042 Desig_Typ : Entity_Id;
4043 P : Node_Id;
4044 Parent_P : Node_Id;
70482933
RK
4045
4046 Freeze_Outside : Boolean := False;
4047 -- This flag is set true if the entity must be frozen outside the
4048 -- current subprogram. This happens in the case of expander generated
4049 -- subprograms (_Init_Proc, _Input, _Output, _Read, _Write) which do
4050 -- not freeze all entities like other bodies, but which nevertheless
4051 -- may reference entities that have to be frozen before the body and
4052 -- obviously cannot be frozen inside the body.
4053
4054 function In_Exp_Body (N : Node_Id) return Boolean;
4055 -- Given an N_Handled_Sequence_Of_Statements node N, determines whether
c6823a20 4056 -- it is the handled statement sequence of an expander-generated
7d8b9c99
RD
4057 -- subprogram (init proc, stream subprogram, or renaming as body).
4058 -- If so, this is not a freezing context.
70482933 4059
fbf5a39b
AC
4060 -----------------
4061 -- In_Exp_Body --
4062 -----------------
4063
70482933 4064 function In_Exp_Body (N : Node_Id) return Boolean is
7d8b9c99
RD
4065 P : Node_Id;
4066 Id : Entity_Id;
70482933
RK
4067
4068 begin
4069 if Nkind (N) = N_Subprogram_Body then
4070 P := N;
4071 else
4072 P := Parent (N);
4073 end if;
4074
4075 if Nkind (P) /= N_Subprogram_Body then
4076 return False;
4077
4078 else
7d8b9c99
RD
4079 Id := Defining_Unit_Name (Specification (P));
4080
4081 if Nkind (Id) = N_Defining_Identifier
4082 and then (Is_Init_Proc (Id) or else
4083 Is_TSS (Id, TSS_Stream_Input) or else
4084 Is_TSS (Id, TSS_Stream_Output) or else
4085 Is_TSS (Id, TSS_Stream_Read) or else
4086 Is_TSS (Id, TSS_Stream_Write) or else
4087 Nkind (Original_Node (P)) =
4088 N_Subprogram_Renaming_Declaration)
70482933
RK
4089 then
4090 return True;
4091 else
4092 return False;
4093 end if;
4094 end if;
70482933
RK
4095 end In_Exp_Body;
4096
4097 -- Start of processing for Freeze_Expression
4098
4099 begin
edd63e9b
ES
4100 -- Immediate return if freezing is inhibited. This flag is set by the
4101 -- analyzer to stop freezing on generated expressions that would cause
4102 -- freezing if they were in the source program, but which are not
4103 -- supposed to freeze, since they are created.
70482933
RK
4104
4105 if Must_Not_Freeze (N) then
4106 return;
4107 end if;
4108
4109 -- If expression is non-static, then it does not freeze in a default
4110 -- expression, see section "Handling of Default Expressions" in the
4111 -- spec of package Sem for further details. Note that we have to
4112 -- make sure that we actually have a real expression (if we have
4113 -- a subtype indication, we can't test Is_Static_Expression!)
4114
c6a9797e 4115 if In_Spec_Exp
70482933
RK
4116 and then Nkind (N) in N_Subexpr
4117 and then not Is_Static_Expression (N)
4118 then
4119 return;
4120 end if;
4121
4122 -- Freeze type of expression if not frozen already
4123
fbf5a39b
AC
4124 Typ := Empty;
4125
4126 if Nkind (N) in N_Has_Etype then
4127 if not Is_Frozen (Etype (N)) then
4128 Typ := Etype (N);
4129
4130 -- Base type may be an derived numeric type that is frozen at
4131 -- the point of declaration, but first_subtype is still unfrozen.
4132
4133 elsif not Is_Frozen (First_Subtype (Etype (N))) then
4134 Typ := First_Subtype (Etype (N));
4135 end if;
70482933
RK
4136 end if;
4137
4138 -- For entity name, freeze entity if not frozen already. A special
4139 -- exception occurs for an identifier that did not come from source.
4140 -- We don't let such identifiers freeze a non-internal entity, i.e.
4141 -- an entity that did come from source, since such an identifier was
4142 -- generated by the expander, and cannot have any semantic effect on
4143 -- the freezing semantics. For example, this stops the parameter of
4144 -- an initialization procedure from freezing the variable.
4145
4146 if Is_Entity_Name (N)
4147 and then not Is_Frozen (Entity (N))
4148 and then (Nkind (N) /= N_Identifier
4149 or else Comes_From_Source (N)
4150 or else not Comes_From_Source (Entity (N)))
4151 then
4152 Nam := Entity (N);
70482933
RK
4153 else
4154 Nam := Empty;
4155 end if;
4156
49e90211 4157 -- For an allocator freeze designated type if not frozen already
70482933 4158
ee094616
RD
4159 -- For an aggregate whose component type is an access type, freeze the
4160 -- designated type now, so that its freeze does not appear within the
4161 -- loop that might be created in the expansion of the aggregate. If the
4162 -- designated type is a private type without full view, the expression
4163 -- cannot contain an allocator, so the type is not frozen.
70482933 4164
7aedb36a
AC
4165 -- For a function, we freeze the entity when the subprogram declaration
4166 -- is frozen, but a function call may appear in an initialization proc.
f6cf5b85 4167 -- before the declaration is frozen. We need to generate the extra
7aedb36a 4168 -- formals, if any, to ensure that the expansion of the call includes
2f4f3f3f
AC
4169 -- the proper actuals. This only applies to Ada subprograms, not to
4170 -- imported ones.
7aedb36a 4171
70482933 4172 Desig_Typ := Empty;
70482933 4173
fbf5a39b 4174 case Nkind (N) is
70482933
RK
4175 when N_Allocator =>
4176 Desig_Typ := Designated_Type (Etype (N));
4177
4178 when N_Aggregate =>
4179 if Is_Array_Type (Etype (N))
4180 and then Is_Access_Type (Component_Type (Etype (N)))
4181 then
4182 Desig_Typ := Designated_Type (Component_Type (Etype (N)));
4183 end if;
4184
4185 when N_Selected_Component |
4186 N_Indexed_Component |
4187 N_Slice =>
4188
4189 if Is_Access_Type (Etype (Prefix (N))) then
4190 Desig_Typ := Designated_Type (Etype (Prefix (N)));
4191 end if;
4192
7aedb36a
AC
4193 when N_Identifier =>
4194 if Present (Nam)
4195 and then Ekind (Nam) = E_Function
4196 and then Nkind (Parent (N)) = N_Function_Call
2f4f3f3f 4197 and then Convention (Nam) = Convention_Ada
7aedb36a
AC
4198 then
4199 Create_Extra_Formals (Nam);
4200 end if;
4201
70482933
RK
4202 when others =>
4203 null;
70482933
RK
4204 end case;
4205
4206 if Desig_Typ /= Empty
4207 and then (Is_Frozen (Desig_Typ)
4208 or else (not Is_Fully_Defined (Desig_Typ)))
4209 then
4210 Desig_Typ := Empty;
4211 end if;
4212
4213 -- All done if nothing needs freezing
4214
4215 if No (Typ)
4216 and then No (Nam)
4217 and then No (Desig_Typ)
4218 then
4219 return;
4220 end if;
4221
f6cf5b85 4222 -- Loop for looking at the right place to insert the freeze nodes,
70482933
RK
4223 -- exiting from the loop when it is appropriate to insert the freeze
4224 -- node before the current node P.
4225
f6cf5b85
AC
4226 -- Also checks som special exceptions to the freezing rules. These cases
4227 -- result in a direct return, bypassing the freeze action.
70482933
RK
4228
4229 P := N;
4230 loop
4231 Parent_P := Parent (P);
4232
ee094616
RD
4233 -- If we don't have a parent, then we are not in a well-formed tree.
4234 -- This is an unusual case, but there are some legitimate situations
4235 -- in which this occurs, notably when the expressions in the range of
4236 -- a type declaration are resolved. We simply ignore the freeze
4237 -- request in this case. Is this right ???
70482933
RK
4238
4239 if No (Parent_P) then
4240 return;
4241 end if;
4242
4243 -- See if we have got to an appropriate point in the tree
4244
4245 case Nkind (Parent_P) is
4246
edd63e9b
ES
4247 -- A special test for the exception of (RM 13.14(8)) for the case
4248 -- of per-object expressions (RM 3.8(18)) occurring in component
4249 -- definition or a discrete subtype definition. Note that we test
4250 -- for a component declaration which includes both cases we are
4251 -- interested in, and furthermore the tree does not have explicit
4252 -- nodes for either of these two constructs.
70482933
RK
4253
4254 when N_Component_Declaration =>
4255
4256 -- The case we want to test for here is an identifier that is
4257 -- a per-object expression, this is either a discriminant that
4258 -- appears in a context other than the component declaration
4259 -- or it is a reference to the type of the enclosing construct.
4260
4261 -- For either of these cases, we skip the freezing
4262
c6a9797e 4263 if not In_Spec_Expression
70482933
RK
4264 and then Nkind (N) = N_Identifier
4265 and then (Present (Entity (N)))
4266 then
4267 -- We recognize the discriminant case by just looking for
4268 -- a reference to a discriminant. It can only be one for
4269 -- the enclosing construct. Skip freezing in this case.
4270
4271 if Ekind (Entity (N)) = E_Discriminant then
4272 return;
4273
4274 -- For the case of a reference to the enclosing record,
4275 -- (or task or protected type), we look for a type that
4276 -- matches the current scope.
4277
4278 elsif Entity (N) = Current_Scope then
4279 return;
4280 end if;
4281 end if;
4282
edd63e9b
ES
4283 -- If we have an enumeration literal that appears as the choice in
4284 -- the aggregate of an enumeration representation clause, then
4285 -- freezing does not occur (RM 13.14(10)).
70482933
RK
4286
4287 when N_Enumeration_Representation_Clause =>
4288
4289 -- The case we are looking for is an enumeration literal
4290
4291 if (Nkind (N) = N_Identifier or Nkind (N) = N_Character_Literal)
4292 and then Is_Enumeration_Type (Etype (N))
4293 then
4294 -- If enumeration literal appears directly as the choice,
e14c931f 4295 -- do not freeze (this is the normal non-overloaded case)
70482933
RK
4296
4297 if Nkind (Parent (N)) = N_Component_Association
4298 and then First (Choices (Parent (N))) = N
4299 then
4300 return;
4301
ee094616
RD
4302 -- If enumeration literal appears as the name of function
4303 -- which is the choice, then also do not freeze. This
4304 -- happens in the overloaded literal case, where the
70482933
RK
4305 -- enumeration literal is temporarily changed to a function
4306 -- call for overloading analysis purposes.
4307
4308 elsif Nkind (Parent (N)) = N_Function_Call
4309 and then
4310 Nkind (Parent (Parent (N))) = N_Component_Association
4311 and then
4312 First (Choices (Parent (Parent (N)))) = Parent (N)
4313 then
4314 return;
4315 end if;
4316 end if;
4317
4318 -- Normally if the parent is a handled sequence of statements,
4319 -- then the current node must be a statement, and that is an
4320 -- appropriate place to insert a freeze node.
4321
4322 when N_Handled_Sequence_Of_Statements =>
4323
edd63e9b
ES
4324 -- An exception occurs when the sequence of statements is for
4325 -- an expander generated body that did not do the usual freeze
4326 -- all operation. In this case we usually want to freeze
4327 -- outside this body, not inside it, and we skip past the
4328 -- subprogram body that we are inside.
70482933
RK
4329
4330 if In_Exp_Body (Parent_P) then
4331
4332 -- However, we *do* want to freeze at this point if we have
4333 -- an entity to freeze, and that entity is declared *inside*
4334 -- the body of the expander generated procedure. This case
4335 -- is recognized by the scope of the type, which is either
4336 -- the spec for some enclosing body, or (in the case of
4337 -- init_procs, for which there are no separate specs) the
4338 -- current scope.
4339
4340 declare
4341 Subp : constant Node_Id := Parent (Parent_P);
4342 Cspc : Entity_Id;
4343
4344 begin
4345 if Nkind (Subp) = N_Subprogram_Body then
4346 Cspc := Corresponding_Spec (Subp);
4347
4348 if (Present (Typ) and then Scope (Typ) = Cspc)
4349 or else
4350 (Present (Nam) and then Scope (Nam) = Cspc)
4351 then
4352 exit;
4353
4354 elsif Present (Typ)
4355 and then Scope (Typ) = Current_Scope
4356 and then Current_Scope = Defining_Entity (Subp)
4357 then
4358 exit;
4359 end if;
4360 end if;
4361 end;
4362
4363 -- If not that exception to the exception, then this is
4364 -- where we delay the freeze till outside the body.
4365
4366 Parent_P := Parent (Parent_P);
4367 Freeze_Outside := True;
4368
4369 -- Here if normal case where we are in handled statement
4370 -- sequence and want to do the insertion right there.
4371
4372 else
4373 exit;
4374 end if;
4375
ee094616
RD
4376 -- If parent is a body or a spec or a block, then the current node
4377 -- is a statement or declaration and we can insert the freeze node
4378 -- before it.
70482933
RK
4379
4380 when N_Package_Specification |
4381 N_Package_Body |
4382 N_Subprogram_Body |
4383 N_Task_Body |
4384 N_Protected_Body |
4385 N_Entry_Body |
4386 N_Block_Statement => exit;
4387
4388 -- The expander is allowed to define types in any statements list,
4389 -- so any of the following parent nodes also mark a freezing point
4390 -- if the actual node is in a list of statements or declarations.
4391
4392 when N_Exception_Handler |
4393 N_If_Statement |
4394 N_Elsif_Part |
4395 N_Case_Statement_Alternative |
4396 N_Compilation_Unit_Aux |
4397 N_Selective_Accept |
4398 N_Accept_Alternative |
4399 N_Delay_Alternative |
4400 N_Conditional_Entry_Call |
4401 N_Entry_Call_Alternative |
4402 N_Triggering_Alternative |
4403 N_Abortable_Part |
4404 N_Freeze_Entity =>
4405
4406 exit when Is_List_Member (P);
4407
4408 -- Note: The N_Loop_Statement is a special case. A type that
4409 -- appears in the source can never be frozen in a loop (this
edd63e9b
ES
4410 -- occurs only because of a loop expanded by the expander), so we
4411 -- keep on going. Otherwise we terminate the search. Same is true
ee094616
RD
4412 -- of any entity which comes from source. (if they have predefined
4413 -- type, that type does not appear to come from source, but the
4414 -- entity should not be frozen here).
70482933
RK
4415
4416 when N_Loop_Statement =>
4417 exit when not Comes_From_Source (Etype (N))
4418 and then (No (Nam) or else not Comes_From_Source (Nam));
4419
4420 -- For all other cases, keep looking at parents
4421
4422 when others =>
4423 null;
4424 end case;
4425
4426 -- We fall through the case if we did not yet find the proper
4427 -- place in the free for inserting the freeze node, so climb!
4428
4429 P := Parent_P;
4430 end loop;
4431
edd63e9b
ES
4432 -- If the expression appears in a record or an initialization procedure,
4433 -- the freeze nodes are collected and attached to the current scope, to
4434 -- be inserted and analyzed on exit from the scope, to insure that
4435 -- generated entities appear in the correct scope. If the expression is
4436 -- a default for a discriminant specification, the scope is still void.
4437 -- The expression can also appear in the discriminant part of a private
4438 -- or concurrent type.
70482933 4439
c6823a20 4440 -- If the expression appears in a constrained subcomponent of an
edd63e9b
ES
4441 -- enclosing record declaration, the freeze nodes must be attached to
4442 -- the outer record type so they can eventually be placed in the
c6823a20
EB
4443 -- enclosing declaration list.
4444
ee094616
RD
4445 -- The other case requiring this special handling is if we are in a
4446 -- default expression, since in that case we are about to freeze a
4447 -- static type, and the freeze scope needs to be the outer scope, not
4448 -- the scope of the subprogram with the default parameter.
70482933 4449
c6a9797e
RD
4450 -- For default expressions and other spec expressions in generic units,
4451 -- the Move_Freeze_Nodes mechanism (see sem_ch12.adb) takes care of
4452 -- placing them at the proper place, after the generic unit.
70482933 4453
c6a9797e 4454 if (In_Spec_Exp and not Inside_A_Generic)
70482933
RK
4455 or else Freeze_Outside
4456 or else (Is_Type (Current_Scope)
4457 and then (not Is_Concurrent_Type (Current_Scope)
4458 or else not Has_Completion (Current_Scope)))
4459 or else Ekind (Current_Scope) = E_Void
4460 then
4461 declare
4462 Loc : constant Source_Ptr := Sloc (Current_Scope);
4463 Freeze_Nodes : List_Id := No_List;
c6823a20 4464 Pos : Int := Scope_Stack.Last;
70482933
RK
4465
4466 begin
4467 if Present (Desig_Typ) then
4468 Freeze_And_Append (Desig_Typ, Loc, Freeze_Nodes);
4469 end if;
4470
4471 if Present (Typ) then
4472 Freeze_And_Append (Typ, Loc, Freeze_Nodes);
4473 end if;
4474
4475 if Present (Nam) then
4476 Freeze_And_Append (Nam, Loc, Freeze_Nodes);
4477 end if;
4478
c6823a20
EB
4479 -- The current scope may be that of a constrained component of
4480 -- an enclosing record declaration, which is above the current
4481 -- scope in the scope stack.
4482
4483 if Is_Record_Type (Scope (Current_Scope)) then
4484 Pos := Pos - 1;
4485 end if;
4486
70482933 4487 if Is_Non_Empty_List (Freeze_Nodes) then
c6823a20
EB
4488 if No (Scope_Stack.Table (Pos).Pending_Freeze_Actions) then
4489 Scope_Stack.Table (Pos).Pending_Freeze_Actions :=
70482933
RK
4490 Freeze_Nodes;
4491 else
4492 Append_List (Freeze_Nodes, Scope_Stack.Table
c6823a20 4493 (Pos).Pending_Freeze_Actions);
70482933
RK
4494 end if;
4495 end if;
4496 end;
4497
4498 return;
4499 end if;
4500
4501 -- Now we have the right place to do the freezing. First, a special
c6a9797e
RD
4502 -- adjustment, if we are in spec-expression analysis mode, these freeze
4503 -- actions must not be thrown away (normally all inserted actions are
4504 -- thrown away in this mode. However, the freeze actions are from static
4505 -- expressions and one of the important reasons we are doing this
ee094616 4506 -- special analysis is to get these freeze actions. Therefore we turn
c6a9797e 4507 -- off the In_Spec_Expression mode to propagate these freeze actions.
ee094616 4508 -- This also means they get properly analyzed and expanded.
70482933 4509
c6a9797e 4510 In_Spec_Expression := False;
70482933 4511
fbf5a39b 4512 -- Freeze the designated type of an allocator (RM 13.14(13))
70482933
RK
4513
4514 if Present (Desig_Typ) then
4515 Freeze_Before (P, Desig_Typ);
4516 end if;
4517
fbf5a39b 4518 -- Freeze type of expression (RM 13.14(10)). Note that we took care of
70482933
RK
4519 -- the enumeration representation clause exception in the loop above.
4520
4521 if Present (Typ) then
4522 Freeze_Before (P, Typ);
4523 end if;
4524
fbf5a39b 4525 -- Freeze name if one is present (RM 13.14(11))
70482933
RK
4526
4527 if Present (Nam) then
4528 Freeze_Before (P, Nam);
4529 end if;
4530
c6a9797e
RD
4531 -- Restore In_Spec_Expression flag
4532
4533 In_Spec_Expression := In_Spec_Exp;
70482933
RK
4534 end Freeze_Expression;
4535
4536 -----------------------------
4537 -- Freeze_Fixed_Point_Type --
4538 -----------------------------
4539
edd63e9b
ES
4540 -- Certain fixed-point types and subtypes, including implicit base types
4541 -- and declared first subtypes, have not yet set up a range. This is
4542 -- because the range cannot be set until the Small and Size values are
4543 -- known, and these are not known till the type is frozen.
70482933 4544
edd63e9b
ES
4545 -- To signal this case, Scalar_Range contains an unanalyzed syntactic range
4546 -- whose bounds are unanalyzed real literals. This routine will recognize
4547 -- this case, and transform this range node into a properly typed range
4548 -- with properly analyzed and resolved values.
70482933
RK
4549
4550 procedure Freeze_Fixed_Point_Type (Typ : Entity_Id) is
4551 Rng : constant Node_Id := Scalar_Range (Typ);
4552 Lo : constant Node_Id := Low_Bound (Rng);
4553 Hi : constant Node_Id := High_Bound (Rng);
4554 Btyp : constant Entity_Id := Base_Type (Typ);
4555 Brng : constant Node_Id := Scalar_Range (Btyp);
4556 BLo : constant Node_Id := Low_Bound (Brng);
4557 BHi : constant Node_Id := High_Bound (Brng);
4558 Small : constant Ureal := Small_Value (Typ);
4559 Loval : Ureal;
4560 Hival : Ureal;
4561 Atype : Entity_Id;
4562
4563 Actual_Size : Nat;
4564
4565 function Fsize (Lov, Hiv : Ureal) return Nat;
4566 -- Returns size of type with given bounds. Also leaves these
4567 -- bounds set as the current bounds of the Typ.
4568
0da2c8ac
AC
4569 -----------
4570 -- Fsize --
4571 -----------
4572
70482933
RK
4573 function Fsize (Lov, Hiv : Ureal) return Nat is
4574 begin
4575 Set_Realval (Lo, Lov);
4576 Set_Realval (Hi, Hiv);
4577 return Minimum_Size (Typ);
4578 end Fsize;
4579
0da2c8ac 4580 -- Start of processing for Freeze_Fixed_Point_Type
70482933
RK
4581
4582 begin
4583 -- If Esize of a subtype has not previously been set, set it now
4584
4585 if Unknown_Esize (Typ) then
4586 Atype := Ancestor_Subtype (Typ);
4587
4588 if Present (Atype) then
fbf5a39b 4589 Set_Esize (Typ, Esize (Atype));
70482933 4590 else
fbf5a39b 4591 Set_Esize (Typ, Esize (Base_Type (Typ)));
70482933
RK
4592 end if;
4593 end if;
4594
ee094616
RD
4595 -- Immediate return if the range is already analyzed. This means that
4596 -- the range is already set, and does not need to be computed by this
4597 -- routine.
70482933
RK
4598
4599 if Analyzed (Rng) then
4600 return;
4601 end if;
4602
4603 -- Immediate return if either of the bounds raises Constraint_Error
4604
4605 if Raises_Constraint_Error (Lo)
4606 or else Raises_Constraint_Error (Hi)
4607 then
4608 return;
4609 end if;
4610
4611 Loval := Realval (Lo);
4612 Hival := Realval (Hi);
4613
4614 -- Ordinary fixed-point case
4615
4616 if Is_Ordinary_Fixed_Point_Type (Typ) then
4617
4618 -- For the ordinary fixed-point case, we are allowed to fudge the
ee094616
RD
4619 -- end-points up or down by small. Generally we prefer to fudge up,
4620 -- i.e. widen the bounds for non-model numbers so that the end points
4621 -- are included. However there are cases in which this cannot be
4622 -- done, and indeed cases in which we may need to narrow the bounds.
4623 -- The following circuit makes the decision.
70482933 4624
ee094616
RD
4625 -- Note: our terminology here is that Incl_EP means that the bounds
4626 -- are widened by Small if necessary to include the end points, and
4627 -- Excl_EP means that the bounds are narrowed by Small to exclude the
4628 -- end-points if this reduces the size.
70482933
RK
4629
4630 -- Note that in the Incl case, all we care about is including the
4631 -- end-points. In the Excl case, we want to narrow the bounds as
4632 -- much as permitted by the RM, to give the smallest possible size.
4633
4634 Fudge : declare
4635 Loval_Incl_EP : Ureal;
4636 Hival_Incl_EP : Ureal;
4637
4638 Loval_Excl_EP : Ureal;
4639 Hival_Excl_EP : Ureal;
4640
4641 Size_Incl_EP : Nat;
4642 Size_Excl_EP : Nat;
4643
4644 Model_Num : Ureal;
4645 First_Subt : Entity_Id;
4646 Actual_Lo : Ureal;
4647 Actual_Hi : Ureal;
4648
4649 begin
4650 -- First step. Base types are required to be symmetrical. Right
4651 -- now, the base type range is a copy of the first subtype range.
4652 -- This will be corrected before we are done, but right away we
4653 -- need to deal with the case where both bounds are non-negative.
4654 -- In this case, we set the low bound to the negative of the high
4655 -- bound, to make sure that the size is computed to include the
4656 -- required sign. Note that we do not need to worry about the
4657 -- case of both bounds negative, because the sign will be dealt
4658 -- with anyway. Furthermore we can't just go making such a bound
4659 -- symmetrical, since in a twos-complement system, there is an
e14c931f 4660 -- extra negative value which could not be accommodated on the
70482933
RK
4661 -- positive side.
4662
4663 if Typ = Btyp
4664 and then not UR_Is_Negative (Loval)
4665 and then Hival > Loval
4666 then
4667 Loval := -Hival;
4668 Set_Realval (Lo, Loval);
4669 end if;
4670
4671 -- Compute the fudged bounds. If the number is a model number,
edd63e9b
ES
4672 -- then we do nothing to include it, but we are allowed to backoff
4673 -- to the next adjacent model number when we exclude it. If it is
4674 -- not a model number then we straddle the two values with the
4675 -- model numbers on either side.
70482933
RK
4676
4677 Model_Num := UR_Trunc (Loval / Small) * Small;
4678
4679 if Loval = Model_Num then
4680 Loval_Incl_EP := Model_Num;
4681 else
4682 Loval_Incl_EP := Model_Num - Small;
4683 end if;
4684
4685 -- The low value excluding the end point is Small greater, but
4686 -- we do not do this exclusion if the low value is positive,
4687 -- since it can't help the size and could actually hurt by
4688 -- crossing the high bound.
4689
4690 if UR_Is_Negative (Loval_Incl_EP) then
4691 Loval_Excl_EP := Loval_Incl_EP + Small;
def46b54
RD
4692
4693 -- If the value went from negative to zero, then we have the
4694 -- case where Loval_Incl_EP is the model number just below
4695 -- zero, so we want to stick to the negative value for the
4696 -- base type to maintain the condition that the size will
4697 -- include signed values.
4698
4699 if Typ = Btyp
4700 and then UR_Is_Zero (Loval_Excl_EP)
4701 then
4702 Loval_Excl_EP := Loval_Incl_EP;
4703 end if;
4704
70482933
RK
4705 else
4706 Loval_Excl_EP := Loval_Incl_EP;
4707 end if;
4708
4709 -- Similar processing for upper bound and high value
4710
4711 Model_Num := UR_Trunc (Hival / Small) * Small;
4712
4713 if Hival = Model_Num then
4714 Hival_Incl_EP := Model_Num;
4715 else
4716 Hival_Incl_EP := Model_Num + Small;
4717 end if;
4718
4719 if UR_Is_Positive (Hival_Incl_EP) then
4720 Hival_Excl_EP := Hival_Incl_EP - Small;
4721 else
4722 Hival_Excl_EP := Hival_Incl_EP;
4723 end if;
4724
ee094616
RD
4725 -- One further adjustment is needed. In the case of subtypes, we
4726 -- cannot go outside the range of the base type, or we get
70482933 4727 -- peculiarities, and the base type range is already set. This
ee094616
RD
4728 -- only applies to the Incl values, since clearly the Excl values
4729 -- are already as restricted as they are allowed to be.
70482933
RK
4730
4731 if Typ /= Btyp then
4732 Loval_Incl_EP := UR_Max (Loval_Incl_EP, Realval (BLo));
4733 Hival_Incl_EP := UR_Min (Hival_Incl_EP, Realval (BHi));
4734 end if;
4735
4736 -- Get size including and excluding end points
4737
4738 Size_Incl_EP := Fsize (Loval_Incl_EP, Hival_Incl_EP);
4739 Size_Excl_EP := Fsize (Loval_Excl_EP, Hival_Excl_EP);
4740
4741 -- No need to exclude end-points if it does not reduce size
4742
4743 if Fsize (Loval_Incl_EP, Hival_Excl_EP) = Size_Excl_EP then
4744 Loval_Excl_EP := Loval_Incl_EP;
4745 end if;
4746
4747 if Fsize (Loval_Excl_EP, Hival_Incl_EP) = Size_Excl_EP then
4748 Hival_Excl_EP := Hival_Incl_EP;
4749 end if;
4750
4751 -- Now we set the actual size to be used. We want to use the
4752 -- bounds fudged up to include the end-points but only if this
4753 -- can be done without violating a specifically given size
4754 -- size clause or causing an unacceptable increase in size.
4755
4756 -- Case of size clause given
4757
4758 if Has_Size_Clause (Typ) then
4759
4760 -- Use the inclusive size only if it is consistent with
4761 -- the explicitly specified size.
4762
4763 if Size_Incl_EP <= RM_Size (Typ) then
4764 Actual_Lo := Loval_Incl_EP;
4765 Actual_Hi := Hival_Incl_EP;
4766 Actual_Size := Size_Incl_EP;
4767
4768 -- If the inclusive size is too large, we try excluding
4769 -- the end-points (will be caught later if does not work).
4770
4771 else
4772 Actual_Lo := Loval_Excl_EP;
4773 Actual_Hi := Hival_Excl_EP;
4774 Actual_Size := Size_Excl_EP;
4775 end if;
4776
4777 -- Case of size clause not given
4778
4779 else
4780 -- If we have a base type whose corresponding first subtype
4781 -- has an explicit size that is large enough to include our
4782 -- end-points, then do so. There is no point in working hard
4783 -- to get a base type whose size is smaller than the specified
4784 -- size of the first subtype.
4785
4786 First_Subt := First_Subtype (Typ);
4787
4788 if Has_Size_Clause (First_Subt)
4789 and then Size_Incl_EP <= Esize (First_Subt)
4790 then
4791 Actual_Size := Size_Incl_EP;
4792 Actual_Lo := Loval_Incl_EP;
4793 Actual_Hi := Hival_Incl_EP;
4794
4795 -- If excluding the end-points makes the size smaller and
4796 -- results in a size of 8,16,32,64, then we take the smaller
4797 -- size. For the 64 case, this is compulsory. For the other
4798 -- cases, it seems reasonable. We like to include end points
4799 -- if we can, but not at the expense of moving to the next
4800 -- natural boundary of size.
4801
4802 elsif Size_Incl_EP /= Size_Excl_EP
4803 and then
4804 (Size_Excl_EP = 8 or else
4805 Size_Excl_EP = 16 or else
4806 Size_Excl_EP = 32 or else
4807 Size_Excl_EP = 64)
4808 then
4809 Actual_Size := Size_Excl_EP;
4810 Actual_Lo := Loval_Excl_EP;
4811 Actual_Hi := Hival_Excl_EP;
4812
4813 -- Otherwise we can definitely include the end points
4814
4815 else
4816 Actual_Size := Size_Incl_EP;
4817 Actual_Lo := Loval_Incl_EP;
4818 Actual_Hi := Hival_Incl_EP;
4819 end if;
4820
edd63e9b
ES
4821 -- One pathological case: normally we never fudge a low bound
4822 -- down, since it would seem to increase the size (if it has
4823 -- any effect), but for ranges containing single value, or no
4824 -- values, the high bound can be small too large. Consider:
70482933
RK
4825
4826 -- type t is delta 2.0**(-14)
4827 -- range 131072.0 .. 0;
4828
edd63e9b
ES
4829 -- That lower bound is *just* outside the range of 32 bits, and
4830 -- does need fudging down in this case. Note that the bounds
4831 -- will always have crossed here, since the high bound will be
4832 -- fudged down if necessary, as in the case of:
70482933
RK
4833
4834 -- type t is delta 2.0**(-14)
4835 -- range 131072.0 .. 131072.0;
4836
edd63e9b
ES
4837 -- So we detect the situation by looking for crossed bounds,
4838 -- and if the bounds are crossed, and the low bound is greater
4839 -- than zero, we will always back it off by small, since this
4840 -- is completely harmless.
70482933
RK
4841
4842 if Actual_Lo > Actual_Hi then
4843 if UR_Is_Positive (Actual_Lo) then
4844 Actual_Lo := Loval_Incl_EP - Small;
4845 Actual_Size := Fsize (Actual_Lo, Actual_Hi);
4846
4847 -- And of course, we need to do exactly the same parallel
4848 -- fudge for flat ranges in the negative region.
4849
4850 elsif UR_Is_Negative (Actual_Hi) then
4851 Actual_Hi := Hival_Incl_EP + Small;
4852 Actual_Size := Fsize (Actual_Lo, Actual_Hi);
4853 end if;
4854 end if;
4855 end if;
4856
4857 Set_Realval (Lo, Actual_Lo);
4858 Set_Realval (Hi, Actual_Hi);
4859 end Fudge;
4860
4861 -- For the decimal case, none of this fudging is required, since there
4862 -- are no end-point problems in the decimal case (the end-points are
4863 -- always included).
4864
4865 else
4866 Actual_Size := Fsize (Loval, Hival);
4867 end if;
4868
4869 -- At this stage, the actual size has been calculated and the proper
4870 -- required bounds are stored in the low and high bounds.
4871
4872 if Actual_Size > 64 then
4873 Error_Msg_Uint_1 := UI_From_Int (Actual_Size);
4874 Error_Msg_N
7d8b9c99
RD
4875 ("size required (^) for type& too large, maximum allowed is 64",
4876 Typ);
70482933
RK
4877 Actual_Size := 64;
4878 end if;
4879
4880 -- Check size against explicit given size
4881
4882 if Has_Size_Clause (Typ) then
4883 if Actual_Size > RM_Size (Typ) then
4884 Error_Msg_Uint_1 := RM_Size (Typ);
4885 Error_Msg_Uint_2 := UI_From_Int (Actual_Size);
4886 Error_Msg_NE
7d8b9c99 4887 ("size given (^) for type& too small, minimum allowed is ^",
70482933
RK
4888 Size_Clause (Typ), Typ);
4889
4890 else
4891 Actual_Size := UI_To_Int (Esize (Typ));
4892 end if;
4893
4894 -- Increase size to next natural boundary if no size clause given
4895
4896 else
4897 if Actual_Size <= 8 then
4898 Actual_Size := 8;
4899 elsif Actual_Size <= 16 then
4900 Actual_Size := 16;
4901 elsif Actual_Size <= 32 then
4902 Actual_Size := 32;
4903 else
4904 Actual_Size := 64;
4905 end if;
4906
4907 Init_Esize (Typ, Actual_Size);
4908 Adjust_Esize_For_Alignment (Typ);
4909 end if;
4910
edd63e9b
ES
4911 -- If we have a base type, then expand the bounds so that they extend to
4912 -- the full width of the allocated size in bits, to avoid junk range
4913 -- checks on intermediate computations.
70482933
RK
4914
4915 if Base_Type (Typ) = Typ then
4916 Set_Realval (Lo, -(Small * (Uint_2 ** (Actual_Size - 1))));
4917 Set_Realval (Hi, (Small * (Uint_2 ** (Actual_Size - 1) - 1)));
4918 end if;
4919
4920 -- Final step is to reanalyze the bounds using the proper type
4921 -- and set the Corresponding_Integer_Value fields of the literals.
4922
4923 Set_Etype (Lo, Empty);
4924 Set_Analyzed (Lo, False);
4925 Analyze (Lo);
4926
edd63e9b
ES
4927 -- Resolve with universal fixed if the base type, and the base type if
4928 -- it is a subtype. Note we can't resolve the base type with itself,
4929 -- that would be a reference before definition.
70482933
RK
4930
4931 if Typ = Btyp then
4932 Resolve (Lo, Universal_Fixed);
4933 else
4934 Resolve (Lo, Btyp);
4935 end if;
4936
4937 -- Set corresponding integer value for bound
4938
4939 Set_Corresponding_Integer_Value
4940 (Lo, UR_To_Uint (Realval (Lo) / Small));
4941
4942 -- Similar processing for high bound
4943
4944 Set_Etype (Hi, Empty);
4945 Set_Analyzed (Hi, False);
4946 Analyze (Hi);
4947
4948 if Typ = Btyp then
4949 Resolve (Hi, Universal_Fixed);
4950 else
4951 Resolve (Hi, Btyp);
4952 end if;
4953
4954 Set_Corresponding_Integer_Value
4955 (Hi, UR_To_Uint (Realval (Hi) / Small));
4956
4957 -- Set type of range to correspond to bounds
4958
4959 Set_Etype (Rng, Etype (Lo));
4960
fbf5a39b 4961 -- Set Esize to calculated size if not set already
70482933 4962
fbf5a39b
AC
4963 if Unknown_Esize (Typ) then
4964 Init_Esize (Typ, Actual_Size);
4965 end if;
70482933
RK
4966
4967 -- Set RM_Size if not already set. If already set, check value
4968
4969 declare
4970 Minsiz : constant Uint := UI_From_Int (Minimum_Size (Typ));
4971
4972 begin
4973 if RM_Size (Typ) /= Uint_0 then
4974 if RM_Size (Typ) < Minsiz then
4975 Error_Msg_Uint_1 := RM_Size (Typ);
4976 Error_Msg_Uint_2 := Minsiz;
4977 Error_Msg_NE
7d8b9c99 4978 ("size given (^) for type& too small, minimum allowed is ^",
70482933
RK
4979 Size_Clause (Typ), Typ);
4980 end if;
4981
4982 else
4983 Set_RM_Size (Typ, Minsiz);
4984 end if;
4985 end;
70482933
RK
4986 end Freeze_Fixed_Point_Type;
4987
4988 ------------------
4989 -- Freeze_Itype --
4990 ------------------
4991
4992 procedure Freeze_Itype (T : Entity_Id; N : Node_Id) is
4993 L : List_Id;
4994
4995 begin
4996 Set_Has_Delayed_Freeze (T);
4997 L := Freeze_Entity (T, Sloc (N));
4998
4999 if Is_Non_Empty_List (L) then
5000 Insert_Actions (N, L);
5001 end if;
5002 end Freeze_Itype;
5003
5004 --------------------------
5005 -- Freeze_Static_Object --
5006 --------------------------
5007
5008 procedure Freeze_Static_Object (E : Entity_Id) is
5009
5010 Cannot_Be_Static : exception;
5011 -- Exception raised if the type of a static object cannot be made
5012 -- static. This happens if the type depends on non-global objects.
5013
5014 procedure Ensure_Expression_Is_SA (N : Node_Id);
ee094616
RD
5015 -- Called to ensure that an expression used as part of a type definition
5016 -- is statically allocatable, which means that the expression type is
5017 -- statically allocatable, and the expression is either static, or a
5018 -- reference to a library level constant.
70482933
RK
5019
5020 procedure Ensure_Type_Is_SA (Typ : Entity_Id);
5021 -- Called to mark a type as static, checking that it is possible
5022 -- to set the type as static. If it is not possible, then the
5023 -- exception Cannot_Be_Static is raised.
5024
5025 -----------------------------
5026 -- Ensure_Expression_Is_SA --
5027 -----------------------------
5028
5029 procedure Ensure_Expression_Is_SA (N : Node_Id) is
5030 Ent : Entity_Id;
5031
5032 begin
5033 Ensure_Type_Is_SA (Etype (N));
5034
5035 if Is_Static_Expression (N) then
5036 return;
5037
5038 elsif Nkind (N) = N_Identifier then
5039 Ent := Entity (N);
5040
5041 if Present (Ent)
5042 and then Ekind (Ent) = E_Constant
5043 and then Is_Library_Level_Entity (Ent)
5044 then
5045 return;
5046 end if;
5047 end if;
5048
5049 raise Cannot_Be_Static;
5050 end Ensure_Expression_Is_SA;
5051
5052 -----------------------
5053 -- Ensure_Type_Is_SA --
5054 -----------------------
5055
5056 procedure Ensure_Type_Is_SA (Typ : Entity_Id) is
5057 N : Node_Id;
5058 C : Entity_Id;
5059
5060 begin
5061 -- If type is library level, we are all set
5062
5063 if Is_Library_Level_Entity (Typ) then
5064 return;
5065 end if;
5066
ee094616
RD
5067 -- We are also OK if the type already marked as statically allocated,
5068 -- which means we processed it before.
70482933
RK
5069
5070 if Is_Statically_Allocated (Typ) then
5071 return;
5072 end if;
5073
5074 -- Mark type as statically allocated
5075
5076 Set_Is_Statically_Allocated (Typ);
5077
5078 -- Check that it is safe to statically allocate this type
5079
5080 if Is_Scalar_Type (Typ) or else Is_Real_Type (Typ) then
5081 Ensure_Expression_Is_SA (Type_Low_Bound (Typ));
5082 Ensure_Expression_Is_SA (Type_High_Bound (Typ));
5083
5084 elsif Is_Array_Type (Typ) then
5085 N := First_Index (Typ);
5086 while Present (N) loop
5087 Ensure_Type_Is_SA (Etype (N));
5088 Next_Index (N);
5089 end loop;
5090
5091 Ensure_Type_Is_SA (Component_Type (Typ));
5092
5093 elsif Is_Access_Type (Typ) then
5094 if Ekind (Designated_Type (Typ)) = E_Subprogram_Type then
5095
5096 declare
5097 F : Entity_Id;
5098 T : constant Entity_Id := Etype (Designated_Type (Typ));
5099
5100 begin
5101 if T /= Standard_Void_Type then
5102 Ensure_Type_Is_SA (T);
5103 end if;
5104
5105 F := First_Formal (Designated_Type (Typ));
5106
5107 while Present (F) loop
5108 Ensure_Type_Is_SA (Etype (F));
5109 Next_Formal (F);
5110 end loop;
5111 end;
5112
5113 else
5114 Ensure_Type_Is_SA (Designated_Type (Typ));
5115 end if;
5116
5117 elsif Is_Record_Type (Typ) then
5118 C := First_Entity (Typ);
70482933
RK
5119 while Present (C) loop
5120 if Ekind (C) = E_Discriminant
5121 or else Ekind (C) = E_Component
5122 then
5123 Ensure_Type_Is_SA (Etype (C));
5124
5125 elsif Is_Type (C) then
5126 Ensure_Type_Is_SA (C);
5127 end if;
5128
5129 Next_Entity (C);
5130 end loop;
5131
5132 elsif Ekind (Typ) = E_Subprogram_Type then
5133 Ensure_Type_Is_SA (Etype (Typ));
5134
5135 C := First_Formal (Typ);
5136 while Present (C) loop
5137 Ensure_Type_Is_SA (Etype (C));
5138 Next_Formal (C);
5139 end loop;
5140
5141 else
5142 raise Cannot_Be_Static;
5143 end if;
5144 end Ensure_Type_Is_SA;
5145
5146 -- Start of processing for Freeze_Static_Object
5147
5148 begin
5149 Ensure_Type_Is_SA (Etype (E));
5150
5151 exception
5152 when Cannot_Be_Static =>
5153
09494c32
AC
5154 -- If the object that cannot be static is imported or exported, then
5155 -- issue an error message saying that this object cannot be imported
5156 -- or exported. If it has an address clause it is an overlay in the
5157 -- current partition and the static requirement is not relevant.
5158
5159 if Is_Imported (E) and then No (Address_Clause (E)) then
70482933
RK
5160 Error_Msg_N
5161 ("& cannot be imported (local type is not constant)", E);
5162
5163 -- Otherwise must be exported, something is wrong if compiler
5164 -- is marking something as statically allocated which cannot be).
5165
5166 else pragma Assert (Is_Exported (E));
5167 Error_Msg_N
5168 ("& cannot be exported (local type is not constant)", E);
5169 end if;
5170 end Freeze_Static_Object;
5171
5172 -----------------------
5173 -- Freeze_Subprogram --
5174 -----------------------
5175
5176 procedure Freeze_Subprogram (E : Entity_Id) is
5177 Retype : Entity_Id;
5178 F : Entity_Id;
5179
5180 begin
5181 -- Subprogram may not have an address clause unless it is imported
5182
5183 if Present (Address_Clause (E)) then
5184 if not Is_Imported (E) then
5185 Error_Msg_N
5186 ("address clause can only be given " &
5187 "for imported subprogram",
5188 Name (Address_Clause (E)));
5189 end if;
5190 end if;
5191
91b1417d
AC
5192 -- Reset the Pure indication on an imported subprogram unless an
5193 -- explicit Pure_Function pragma was present. We do this because
ee094616
RD
5194 -- otherwise it is an insidious error to call a non-pure function from
5195 -- pure unit and have calls mysteriously optimized away. What happens
5196 -- here is that the Import can bypass the normal check to ensure that
5197 -- pure units call only pure subprograms.
91b1417d
AC
5198
5199 if Is_Imported (E)
5200 and then Is_Pure (E)
5201 and then not Has_Pragma_Pure_Function (E)
5202 then
5203 Set_Is_Pure (E, False);
5204 end if;
5205
70482933
RK
5206 -- For non-foreign convention subprograms, this is where we create
5207 -- the extra formals (for accessibility level and constrained bit
5208 -- information). We delay this till the freeze point precisely so
5209 -- that we know the convention!
5210
5211 if not Has_Foreign_Convention (E) then
5212 Create_Extra_Formals (E);
5213 Set_Mechanisms (E);
5214
5215 -- If this is convention Ada and a Valued_Procedure, that's odd
5216
5217 if Ekind (E) = E_Procedure
5218 and then Is_Valued_Procedure (E)
5219 and then Convention (E) = Convention_Ada
fbf5a39b 5220 and then Warn_On_Export_Import
70482933
RK
5221 then
5222 Error_Msg_N
5223 ("?Valued_Procedure has no effect for convention Ada", E);
5224 Set_Is_Valued_Procedure (E, False);
5225 end if;
5226
5227 -- Case of foreign convention
5228
5229 else
5230 Set_Mechanisms (E);
5231
fbf5a39b 5232 -- For foreign conventions, warn about return of an
70482933
RK
5233 -- unconstrained array.
5234
5235 -- Note: we *do* allow a return by descriptor for the VMS case,
5236 -- though here there is probably more to be done ???
5237
5238 if Ekind (E) = E_Function then
5239 Retype := Underlying_Type (Etype (E));
5240
5241 -- If no return type, probably some other error, e.g. a
5242 -- missing full declaration, so ignore.
5243
5244 if No (Retype) then
5245 null;
5246
5247 -- If the return type is generic, we have emitted a warning
edd63e9b
ES
5248 -- earlier on, and there is nothing else to check here. Specific
5249 -- instantiations may lead to erroneous behavior.
70482933
RK
5250
5251 elsif Is_Generic_Type (Etype (E)) then
5252 null;
5253
e7d72fb9 5254 -- Display warning if returning unconstrained array
59366db6 5255
70482933
RK
5256 elsif Is_Array_Type (Retype)
5257 and then not Is_Constrained (Retype)
e7d72fb9
AC
5258
5259 -- Exclude cases where descriptor mechanism is set, since the
5260 -- VMS descriptor mechanisms allow such unconstrained returns.
5261
70482933 5262 and then Mechanism (E) not in Descriptor_Codes
e7d72fb9
AC
5263
5264 -- Check appropriate warning is enabled (should we check for
5265 -- Warnings (Off) on specific entities here, probably so???)
5266
fbf5a39b 5267 and then Warn_On_Export_Import
e7d72fb9
AC
5268
5269 -- Exclude the VM case, since return of unconstrained arrays
5270 -- is properly handled in both the JVM and .NET cases.
5271
f3b57ab0 5272 and then VM_Target = No_VM
70482933 5273 then
fbf5a39b
AC
5274 Error_Msg_N
5275 ("?foreign convention function& should not return " &
5276 "unconstrained array", E);
70482933
RK
5277 return;
5278 end if;
5279 end if;
5280
5281 -- If any of the formals for an exported foreign convention
edd63e9b
ES
5282 -- subprogram have defaults, then emit an appropriate warning since
5283 -- this is odd (default cannot be used from non-Ada code)
70482933
RK
5284
5285 if Is_Exported (E) then
5286 F := First_Formal (E);
5287 while Present (F) loop
fbf5a39b
AC
5288 if Warn_On_Export_Import
5289 and then Present (Default_Value (F))
5290 then
70482933
RK
5291 Error_Msg_N
5292 ("?parameter cannot be defaulted in non-Ada call",
5293 Default_Value (F));
5294 end if;
5295
5296 Next_Formal (F);
5297 end loop;
5298 end if;
5299 end if;
5300
e7d72fb9
AC
5301 -- For VMS, descriptor mechanisms for parameters are allowed only for
5302 -- imported/exported subprograms. Moreover, the NCA descriptor is not
5303 -- allowed for parameters of exported subprograms.
70482933
RK
5304
5305 if OpenVMS_On_Target then
7d8b9c99
RD
5306 if Is_Exported (E) then
5307 F := First_Formal (E);
5308 while Present (F) loop
5309 if Mechanism (F) = By_Descriptor_NCA then
5310 Error_Msg_N
5311 ("'N'C'A' descriptor for parameter not permitted", F);
5312 Error_Msg_N
5313 ("\can only be used for imported subprogram", F);
5314 end if;
5315
5316 Next_Formal (F);
5317 end loop;
5318
5319 elsif not Is_Imported (E) then
70482933
RK
5320 F := First_Formal (E);
5321 while Present (F) loop
5322 if Mechanism (F) in Descriptor_Codes then
5323 Error_Msg_N
5324 ("descriptor mechanism for parameter not permitted", F);
5325 Error_Msg_N
7d8b9c99 5326 ("\can only be used for imported/exported subprogram", F);
70482933
RK
5327 end if;
5328
5329 Next_Formal (F);
5330 end loop;
5331 end if;
5332 end if;
edd63e9b
ES
5333
5334 -- Pragma Inline_Always is disallowed for dispatching subprograms
5335 -- because the address of such subprograms is saved in the dispatch
5336 -- table to support dispatching calls, and dispatching calls cannot
5337 -- be inlined. This is consistent with the restriction against using
5338 -- 'Access or 'Address on an Inline_Always subprogram.
5339
def46b54
RD
5340 if Is_Dispatching_Operation (E)
5341 and then Has_Pragma_Inline_Always (E)
5342 then
edd63e9b
ES
5343 Error_Msg_N
5344 ("pragma Inline_Always not allowed for dispatching subprograms", E);
5345 end if;
c6a9797e
RD
5346
5347 -- Because of the implicit representation of inherited predefined
5348 -- operators in the front-end, the overriding status of the operation
5349 -- may be affected when a full view of a type is analyzed, and this is
5350 -- not captured by the analysis of the corresponding type declaration.
5351 -- Therefore the correctness of a not-overriding indicator must be
5352 -- rechecked when the subprogram is frozen.
5353
5354 if Nkind (E) = N_Defining_Operator_Symbol
5355 and then not Error_Posted (Parent (E))
5356 then
5357 Check_Overriding_Indicator (E, Empty, Is_Primitive (E));
5358 end if;
70482933
RK
5359 end Freeze_Subprogram;
5360
15ce9ca2
AC
5361 ----------------------
5362 -- Is_Fully_Defined --
5363 ----------------------
70482933 5364
70482933
RK
5365 function Is_Fully_Defined (T : Entity_Id) return Boolean is
5366 begin
5367 if Ekind (T) = E_Class_Wide_Type then
5368 return Is_Fully_Defined (Etype (T));
657a9dd9
AC
5369
5370 elsif Is_Array_Type (T) then
5371 return Is_Fully_Defined (Component_Type (T));
5372
5373 elsif Is_Record_Type (T)
5374 and not Is_Private_Type (T)
5375 then
ee094616
RD
5376 -- Verify that the record type has no components with private types
5377 -- without completion.
657a9dd9
AC
5378
5379 declare
5380 Comp : Entity_Id;
bde58e32 5381
657a9dd9
AC
5382 begin
5383 Comp := First_Component (T);
5384
5385 while Present (Comp) loop
5386 if not Is_Fully_Defined (Etype (Comp)) then
5387 return False;
5388 end if;
5389
5390 Next_Component (Comp);
5391 end loop;
5392 return True;
5393 end;
5394
86cde7b1
RD
5395 else
5396 return not Is_Private_Type (T)
5397 or else Present (Full_View (Base_Type (T)));
70482933
RK
5398 end if;
5399 end Is_Fully_Defined;
5400
70d904ca 5401 ---------------------------------
70482933
RK
5402 -- Process_Default_Expressions --
5403 ---------------------------------
5404
5405 procedure Process_Default_Expressions
5406 (E : Entity_Id;
5407 After : in out Node_Id)
5408 is
5409 Loc : constant Source_Ptr := Sloc (E);
5410 Dbody : Node_Id;
5411 Formal : Node_Id;
5412 Dcopy : Node_Id;
5413 Dnam : Entity_Id;
5414
5415 begin
5416 Set_Default_Expressions_Processed (E);
5417
ee094616
RD
5418 -- A subprogram instance and its associated anonymous subprogram share
5419 -- their signature. The default expression functions are defined in the
5420 -- wrapper packages for the anonymous subprogram, and should not be
5421 -- generated again for the instance.
70482933
RK
5422
5423 if Is_Generic_Instance (E)
5424 and then Present (Alias (E))
5425 and then Default_Expressions_Processed (Alias (E))
5426 then
5427 return;
5428 end if;
5429
5430 Formal := First_Formal (E);
70482933
RK
5431 while Present (Formal) loop
5432 if Present (Default_Value (Formal)) then
5433
5434 -- We work with a copy of the default expression because we
5435 -- do not want to disturb the original, since this would mess
5436 -- up the conformance checking.
5437
5438 Dcopy := New_Copy_Tree (Default_Value (Formal));
5439
5440 -- The analysis of the expression may generate insert actions,
5441 -- which of course must not be executed. We wrap those actions
5442 -- in a procedure that is not called, and later on eliminated.
5443 -- The following cases have no side-effects, and are analyzed
5444 -- directly.
5445
5446 if Nkind (Dcopy) = N_Identifier
5447 or else Nkind (Dcopy) = N_Expanded_Name
5448 or else Nkind (Dcopy) = N_Integer_Literal
5449 or else (Nkind (Dcopy) = N_Real_Literal
5450 and then not Vax_Float (Etype (Dcopy)))
5451 or else Nkind (Dcopy) = N_Character_Literal
5452 or else Nkind (Dcopy) = N_String_Literal
86cde7b1 5453 or else Known_Null (Dcopy)
70482933
RK
5454 or else (Nkind (Dcopy) = N_Attribute_Reference
5455 and then
5456 Attribute_Name (Dcopy) = Name_Null_Parameter)
70482933
RK
5457 then
5458
5459 -- If there is no default function, we must still do a full
ee094616
RD
5460 -- analyze call on the default value, to ensure that all error
5461 -- checks are performed, e.g. those associated with static
5462 -- evaluation. Note: this branch will always be taken if the
5463 -- analyzer is turned off (but we still need the error checks).
70482933
RK
5464
5465 -- Note: the setting of parent here is to meet the requirement
5466 -- that we can only analyze the expression while attached to
5467 -- the tree. Really the requirement is that the parent chain
5468 -- be set, we don't actually need to be in the tree.
5469
5470 Set_Parent (Dcopy, Declaration_Node (Formal));
5471 Analyze (Dcopy);
5472
5473 -- Default expressions are resolved with their own type if the
5474 -- context is generic, to avoid anomalies with private types.
5475
5476 if Ekind (Scope (E)) = E_Generic_Package then
fbf5a39b 5477 Resolve (Dcopy);
70482933
RK
5478 else
5479 Resolve (Dcopy, Etype (Formal));
5480 end if;
5481
5482 -- If that resolved expression will raise constraint error,
5483 -- then flag the default value as raising constraint error.
5484 -- This allows a proper error message on the calls.
5485
5486 if Raises_Constraint_Error (Dcopy) then
5487 Set_Raises_Constraint_Error (Default_Value (Formal));
5488 end if;
5489
5490 -- If the default is a parameterless call, we use the name of
5491 -- the called function directly, and there is no body to build.
5492
5493 elsif Nkind (Dcopy) = N_Function_Call
5494 and then No (Parameter_Associations (Dcopy))
5495 then
5496 null;
5497
5498 -- Else construct and analyze the body of a wrapper procedure
5499 -- that contains an object declaration to hold the expression.
5500 -- Given that this is done only to complete the analysis, it
5501 -- simpler to build a procedure than a function which might
5502 -- involve secondary stack expansion.
5503
5504 else
5505 Dnam :=
5506 Make_Defining_Identifier (Loc, New_Internal_Name ('D'));
5507
5508 Dbody :=
5509 Make_Subprogram_Body (Loc,
5510 Specification =>
5511 Make_Procedure_Specification (Loc,
5512 Defining_Unit_Name => Dnam),
5513
5514 Declarations => New_List (
5515 Make_Object_Declaration (Loc,
5516 Defining_Identifier =>
5517 Make_Defining_Identifier (Loc,
5518 New_Internal_Name ('T')),
5519 Object_Definition =>
5520 New_Occurrence_Of (Etype (Formal), Loc),
5521 Expression => New_Copy_Tree (Dcopy))),
5522
5523 Handled_Statement_Sequence =>
5524 Make_Handled_Sequence_Of_Statements (Loc,
5525 Statements => New_List));
5526
5527 Set_Scope (Dnam, Scope (E));
5528 Set_Assignment_OK (First (Declarations (Dbody)));
5529 Set_Is_Eliminated (Dnam);
5530 Insert_After (After, Dbody);
5531 Analyze (Dbody);
5532 After := Dbody;
5533 end if;
5534 end if;
5535
5536 Next_Formal (Formal);
5537 end loop;
70482933
RK
5538 end Process_Default_Expressions;
5539
5540 ----------------------------------------
5541 -- Set_Component_Alignment_If_Not_Set --
5542 ----------------------------------------
5543
5544 procedure Set_Component_Alignment_If_Not_Set (Typ : Entity_Id) is
5545 begin
5546 -- Ignore if not base type, subtypes don't need anything
5547
5548 if Typ /= Base_Type (Typ) then
5549 return;
5550 end if;
5551
5552 -- Do not override existing representation
5553
5554 if Is_Packed (Typ) then
5555 return;
5556
5557 elsif Has_Specified_Layout (Typ) then
5558 return;
5559
5560 elsif Component_Alignment (Typ) /= Calign_Default then
5561 return;
5562
5563 else
5564 Set_Component_Alignment
5565 (Typ, Scope_Stack.Table
5566 (Scope_Stack.Last).Component_Alignment_Default);
5567 end if;
5568 end Set_Component_Alignment_If_Not_Set;
5569
c6823a20
EB
5570 ------------------
5571 -- Undelay_Type --
5572 ------------------
5573
5574 procedure Undelay_Type (T : Entity_Id) is
5575 begin
5576 Set_Has_Delayed_Freeze (T, False);
5577 Set_Freeze_Node (T, Empty);
5578
5579 -- Since we don't want T to have a Freeze_Node, we don't want its
5580 -- Full_View or Corresponding_Record_Type to have one either.
5581
5582 -- ??? Fundamentally, this whole handling is a kludge. What we really
ee094616
RD
5583 -- want is to be sure that for an Itype that's part of record R and is a
5584 -- subtype of type T, that it's frozen after the later of the freeze
c6823a20
EB
5585 -- points of R and T. We have no way of doing that directly, so what we
5586 -- do is force most such Itypes to be frozen as part of freezing R via
5587 -- this procedure and only delay the ones that need to be delayed
ee094616
RD
5588 -- (mostly the designated types of access types that are defined as part
5589 -- of the record).
c6823a20
EB
5590
5591 if Is_Private_Type (T)
5592 and then Present (Full_View (T))
5593 and then Is_Itype (Full_View (T))
5594 and then Is_Record_Type (Scope (Full_View (T)))
5595 then
5596 Undelay_Type (Full_View (T));
5597 end if;
5598
5599 if Is_Concurrent_Type (T)
5600 and then Present (Corresponding_Record_Type (T))
5601 and then Is_Itype (Corresponding_Record_Type (T))
5602 and then Is_Record_Type (Scope (Corresponding_Record_Type (T)))
5603 then
5604 Undelay_Type (Corresponding_Record_Type (T));
5605 end if;
5606 end Undelay_Type;
5607
fbf5a39b
AC
5608 ------------------
5609 -- Warn_Overlay --
5610 ------------------
5611
5612 procedure Warn_Overlay
5613 (Expr : Node_Id;
5614 Typ : Entity_Id;
5615 Nam : Entity_Id)
5616 is
5617 Ent : constant Entity_Id := Entity (Nam);
49e90211 5618 -- The object to which the address clause applies
fbf5a39b
AC
5619
5620 Init : Node_Id;
5621 Old : Entity_Id := Empty;
5622 Decl : Node_Id;
5623
5624 begin
5625 -- No warning if address clause overlay warnings are off
5626
5627 if not Address_Clause_Overlay_Warnings then
5628 return;
5629 end if;
5630
5631 -- No warning if there is an explicit initialization
5632
5633 Init := Original_Node (Expression (Declaration_Node (Ent)));
5634
5635 if Present (Init) and then Comes_From_Source (Init) then
5636 return;
5637 end if;
5638
edd63e9b 5639 -- We only give the warning for non-imported entities of a type for
0ac73189
AC
5640 -- which a non-null base init proc is defined, or for objects of access
5641 -- types with implicit null initialization, or when Initialize_Scalars
5642 -- applies and the type is scalar or a string type (the latter being
5643 -- tested for because predefined String types are initialized by inline
5644 -- code rather than by an init_proc).
fbf5a39b
AC
5645
5646 if Present (Expr)
fbf5a39b 5647 and then not Is_Imported (Ent)
0ac73189
AC
5648 and then (Has_Non_Null_Base_Init_Proc (Typ)
5649 or else Is_Access_Type (Typ)
5650 or else (Init_Or_Norm_Scalars
5651 and then (Is_Scalar_Type (Typ)
5652 or else Is_String_Type (Typ))))
fbf5a39b
AC
5653 then
5654 if Nkind (Expr) = N_Attribute_Reference
5655 and then Is_Entity_Name (Prefix (Expr))
5656 then
5657 Old := Entity (Prefix (Expr));
5658
5659 elsif Is_Entity_Name (Expr)
5660 and then Ekind (Entity (Expr)) = E_Constant
5661 then
5662 Decl := Declaration_Node (Entity (Expr));
5663
5664 if Nkind (Decl) = N_Object_Declaration
5665 and then Present (Expression (Decl))
5666 and then Nkind (Expression (Decl)) = N_Attribute_Reference
5667 and then Is_Entity_Name (Prefix (Expression (Decl)))
5668 then
5669 Old := Entity (Prefix (Expression (Decl)));
5670
5671 elsif Nkind (Expr) = N_Function_Call then
5672 return;
5673 end if;
5674
ee094616
RD
5675 -- A function call (most likely to To_Address) is probably not an
5676 -- overlay, so skip warning. Ditto if the function call was inlined
5677 -- and transformed into an entity.
fbf5a39b
AC
5678
5679 elsif Nkind (Original_Node (Expr)) = N_Function_Call then
5680 return;
5681 end if;
5682
5683 Decl := Next (Parent (Expr));
5684
5685 -- If a pragma Import follows, we assume that it is for the current
5686 -- target of the address clause, and skip the warning.
5687
5688 if Present (Decl)
5689 and then Nkind (Decl) = N_Pragma
1b24ada5 5690 and then Pragma_Name (Decl) = Name_Import
fbf5a39b
AC
5691 then
5692 return;
5693 end if;
5694
5695 if Present (Old) then
5696 Error_Msg_Node_2 := Old;
5697 Error_Msg_N
5698 ("default initialization of & may modify &?",
5699 Nam);
5700 else
5701 Error_Msg_N
5702 ("default initialization of & may modify overlaid storage?",
5703 Nam);
5704 end if;
5705
5706 -- Add friendly warning if initialization comes from a packed array
5707 -- component.
5708
5709 if Is_Record_Type (Typ) then
5710 declare
5711 Comp : Entity_Id;
5712
5713 begin
5714 Comp := First_Component (Typ);
5715
5716 while Present (Comp) loop
5717 if Nkind (Parent (Comp)) = N_Component_Declaration
5718 and then Present (Expression (Parent (Comp)))
5719 then
5720 exit;
5721 elsif Is_Array_Type (Etype (Comp))
5722 and then Present (Packed_Array_Type (Etype (Comp)))
5723 then
5724 Error_Msg_NE
3f1ede06
RD
5725 ("\packed array component& " &
5726 "will be initialized to zero?",
5727 Nam, Comp);
fbf5a39b
AC
5728 exit;
5729 else
5730 Next_Component (Comp);
5731 end if;
5732 end loop;
5733 end;
5734 end if;
5735
5736 Error_Msg_N
3f1ede06 5737 ("\use pragma Import for & to " &
86cde7b1 5738 "suppress initialization (RM B.1(24))?",
3f1ede06 5739 Nam);
fbf5a39b
AC
5740 end if;
5741 end Warn_Overlay;
5742
70482933 5743end Freeze;
This page took 3.091095 seconds and 5 git commands to generate.