]> gcc.gnu.org Git - gcc.git/blame - gcc/ada/exp_aggr.adb
[multiple changes]
[gcc.git] / gcc / ada / exp_aggr.adb
CommitLineData
70482933
RK
1------------------------------------------------------------------------------
2-- --
3-- GNAT COMPILER COMPONENTS --
4-- --
5-- E X P _ A G G R --
6-- --
7-- B o d y --
8-- --
304757d2 9-- Copyright (C) 1992-2017, Free Software Foundation, Inc. --
70482933
RK
10-- --
11-- GNAT is free software; you can redistribute it and/or modify it under --
12-- terms of the GNU General Public License as published by the Free Soft- --
b5c84c3c 13-- ware Foundation; either version 3, or (at your option) any later ver- --
70482933
RK
14-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16-- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17-- for more details. You should have received a copy of the GNU General --
b5c84c3c
RD
18-- Public License distributed with GNAT; see file COPYING3. If not, go to --
19-- http://www.gnu.org/licenses for a complete copy of the license. --
70482933
RK
20-- --
21-- GNAT was originally developed by the GNAT team at New York University. --
71ff80dc 22-- Extensive contributions were provided by Ada Core Technologies Inc. --
70482933
RK
23-- --
24------------------------------------------------------------------------------
25
26with Atree; use Atree;
27with Checks; use Checks;
07fc65c4 28with Debug; use Debug;
70482933
RK
29with Einfo; use Einfo;
30with Elists; use Elists;
58fda84d 31with Errout; use Errout;
70482933
RK
32with Expander; use Expander;
33with Exp_Util; use Exp_Util;
34with Exp_Ch3; use Exp_Ch3;
4a1bfefb 35with Exp_Ch6; use Exp_Ch6;
70482933 36with Exp_Ch7; use Exp_Ch7;
c45b6ae0 37with Exp_Ch9; use Exp_Ch9;
cefce34c 38with Exp_Disp; use Exp_Disp;
615cbd95 39with Exp_Tss; use Exp_Tss;
70482933 40with Freeze; use Freeze;
70482933 41with Itypes; use Itypes;
07fc65c4 42with Lib; use Lib;
0f95b178 43with Namet; use Namet;
70482933
RK
44with Nmake; use Nmake;
45with Nlists; use Nlists;
c5ee5ad2 46with Opt; use Opt;
70482933 47with Restrict; use Restrict;
6e937c1c 48with Rident; use Rident;
70482933 49with Rtsfind; use Rtsfind;
07fc65c4 50with Ttypes; use Ttypes;
70482933 51with Sem; use Sem;
9f90d123 52with Sem_Aggr; use Sem_Aggr;
a4100e55 53with Sem_Aux; use Sem_Aux;
70482933
RK
54with Sem_Ch3; use Sem_Ch3;
55with Sem_Eval; use Sem_Eval;
56with Sem_Res; use Sem_Res;
57with Sem_Util; use Sem_Util;
58with Sinfo; use Sinfo;
59with Snames; use Snames;
60with Stand; use Stand;
354c3840 61with Stringt; use Stringt;
6465b6a7 62with Targparm; use Targparm;
70482933
RK
63with Tbuild; use Tbuild;
64with Uintp; use Uintp;
65
66package body Exp_Aggr is
67
68 type Case_Bounds is record
69 Choice_Lo : Node_Id;
70 Choice_Hi : Node_Id;
71 Choice_Node : Node_Id;
72 end record;
73
74 type Case_Table_Type is array (Nat range <>) of Case_Bounds;
75 -- Table type used by Check_Case_Choices procedure
76
4ac2bbbd
AC
77 procedure Collect_Initialization_Statements
78 (Obj : Entity_Id;
79 N : Node_Id;
80 Node_After : Node_Id);
81 -- If Obj is not frozen, collect actions inserted after N until, but not
82 -- including, Node_After, for initialization of Obj, and move them to an
83 -- expression with actions, which becomes the Initialization_Statements for
84 -- Obj.
85
9eb8d5b4
AC
86 procedure Expand_Delta_Array_Aggregate (N : Node_Id; Deltas : List_Id);
87 procedure Expand_Delta_Record_Aggregate (N : Node_Id; Deltas : List_Id);
88
df3e68b1
HK
89 function Has_Default_Init_Comps (N : Node_Id) return Boolean;
90 -- N is an aggregate (record or array). Checks the presence of default
91 -- initialization (<>) in any component (Ada 2005: AI-287).
92
6031f544
AC
93 function In_Object_Declaration (N : Node_Id) return Boolean;
94 -- Return True if N is part of an object declaration, False otherwise
95
df3e68b1
HK
96 function Is_Static_Dispatch_Table_Aggregate (N : Node_Id) return Boolean;
97 -- Returns true if N is an aggregate used to initialize the components
b465ef6f 98 -- of a statically allocated dispatch table.
df3e68b1 99
937e9676
AC
100 function Late_Expansion
101 (N : Node_Id;
102 Typ : Entity_Id;
103 Target : Node_Id) return List_Id;
104 -- This routine implements top-down expansion of nested aggregates. In
105 -- doing so, it avoids the generation of temporaries at each level. N is
106 -- a nested record or array aggregate with the Expansion_Delayed flag.
107 -- Typ is the expected type of the aggregate. Target is a (duplicatable)
108 -- expression that will hold the result of the aggregate expansion.
109
110 function Make_OK_Assignment_Statement
111 (Sloc : Source_Ptr;
112 Name : Node_Id;
113 Expression : Node_Id) return Node_Id;
114 -- This is like Make_Assignment_Statement, except that Assignment_OK
115 -- is set in the left operand. All assignments built by this unit use
116 -- this routine. This is needed to deal with assignments to initialized
117 -- constants that are done in place.
118
3cf3e5c6
AC
119 function Must_Slide
120 (Obj_Type : Entity_Id;
121 Typ : Entity_Id) return Boolean;
122 -- A static array aggregate in an object declaration can in most cases be
123 -- expanded in place. The one exception is when the aggregate is given
124 -- with component associations that specify different bounds from those of
125 -- the type definition in the object declaration. In this pathological
126 -- case the aggregate must slide, and we must introduce an intermediate
127 -- temporary to hold it.
128 --
129 -- The same holds in an assignment to one-dimensional array of arrays,
130 -- when a component may be given with bounds that differ from those of the
131 -- component type.
132
937e9676
AC
133 function Number_Of_Choices (N : Node_Id) return Nat;
134 -- Returns the number of discrete choices (not including the others choice
135 -- if present) contained in (sub-)aggregate N.
136
137 procedure Process_Transient_Component
138 (Loc : Source_Ptr;
139 Comp_Typ : Entity_Id;
140 Init_Expr : Node_Id;
141 Fin_Call : out Node_Id;
142 Hook_Clear : out Node_Id;
143 Aggr : Node_Id := Empty;
144 Stmts : List_Id := No_List);
145 -- Subsidiary to the expansion of array and record aggregates. Generate
146 -- part of the necessary code to finalize a transient component. Comp_Typ
147 -- is the component type. Init_Expr is the initialization expression of the
148 -- component which is always a function call. Fin_Call is the finalization
149 -- call used to clean up the transient function result. Hook_Clear is the
150 -- hook reset statement. Aggr and Stmts both control the placement of the
151 -- generated code. Aggr is the related aggregate. If present, all code is
152 -- inserted prior to Aggr using Insert_Action. Stmts is the initialization
153 -- statements of the component. If present, all code is added to Stmts.
154
155 procedure Process_Transient_Component_Completion
156 (Loc : Source_Ptr;
157 Aggr : Node_Id;
158 Fin_Call : Node_Id;
159 Hook_Clear : Node_Id;
160 Stmts : List_Id);
161 -- Subsidiary to the expansion of array and record aggregates. Generate
162 -- part of the necessary code to finalize a transient component. Aggr is
163 -- the related aggregate. Fin_Clear is the finalization call used to clean
164 -- up the transient component. Hook_Clear is the hook reset statment. Stmts
165 -- is the initialization statement list for the component. All generated
166 -- code is added to Stmts.
167
70482933
RK
168 procedure Sort_Case_Table (Case_Table : in out Case_Table_Type);
169 -- Sort the Case Table using the Lower Bound of each Choice as the key.
170 -- A simple insertion sort is used since the number of choices in a case
171 -- statement of variant part will usually be small and probably in near
172 -- sorted order.
173
174 ------------------------------------------------------
175 -- Local subprograms for Record Aggregate Expansion --
176 ------------------------------------------------------
177
df3e68b1 178 function Build_Record_Aggr_Code
f7e6fc47
RD
179 (N : Node_Id;
180 Typ : Entity_Id;
181 Lhs : Node_Id) return List_Id;
df3e68b1
HK
182 -- N is an N_Aggregate or an N_Extension_Aggregate. Typ is the type of the
183 -- aggregate. Target is an expression containing the location on which the
184 -- component by component assignments will take place. Returns the list of
185 -- assignments plus all other adjustments needed for tagged and controlled
203ddcea 186 -- types.
df3e68b1
HK
187
188 procedure Convert_To_Assignments (N : Node_Id; Typ : Entity_Id);
189 -- N is an N_Aggregate or an N_Extension_Aggregate. Typ is the type of the
190 -- aggregate (which can only be a record type, this procedure is only used
191 -- for record types). Transform the given aggregate into a sequence of
192 -- assignments performed component by component.
193
70482933
RK
194 procedure Expand_Record_Aggregate
195 (N : Node_Id;
196 Orig_Tag : Node_Id := Empty;
197 Parent_Expr : Node_Id := Empty);
198 -- This is the top level procedure for record aggregate expansion.
199 -- Expansion for record aggregates needs expand aggregates for tagged
200 -- record types. Specifically Expand_Record_Aggregate adds the Tag
201 -- field in front of the Component_Association list that was created
202 -- during resolution by Resolve_Record_Aggregate.
203 --
204 -- N is the record aggregate node.
205 -- Orig_Tag is the value of the Tag that has to be provided for this
206 -- specific aggregate. It carries the tag corresponding to the type
207 -- of the outermost aggregate during the recursive expansion
208 -- Parent_Expr is the ancestor part of the original extension
209 -- aggregate
210
fbf5a39b 211 function Has_Mutable_Components (Typ : Entity_Id) return Boolean;
b465ef6f 212 -- Return true if one of the components is of a discriminated type with
fbf5a39b
AC
213 -- defaults. An aggregate for a type with mutable components must be
214 -- expanded into individual assignments.
215
07fc65c4
GB
216 procedure Initialize_Discriminants (N : Node_Id; Typ : Entity_Id);
217 -- If the type of the aggregate is a type extension with renamed discrimi-
218 -- nants, we must initialize the hidden discriminants of the parent.
219 -- Otherwise, the target object must not be initialized. The discriminants
220 -- are initialized by calling the initialization procedure for the type.
221 -- This is incorrect if the initialization of other components has any
222 -- side effects. We restrict this call to the case where the parent type
223 -- has a variant part, because this is the only case where the hidden
224 -- discriminants are accessed, namely when calling discriminant checking
225 -- functions of the parent type, and when applying a stream attribute to
226 -- an object of the derived type.
227
70482933 228 -----------------------------------------------------
07fc65c4 229 -- Local Subprograms for Array Aggregate Expansion --
70482933
RK
230 -----------------------------------------------------
231
58fda84d 232 function Aggr_Size_OK (N : Node_Id; Typ : Entity_Id) return Boolean;
841dd0f5
AC
233 -- Very large static aggregates present problems to the back-end, and are
234 -- transformed into assignments and loops. This function verifies that the
235 -- total number of components of an aggregate is acceptable for rewriting
74e7891f
RD
236 -- into a purely positional static form. Aggr_Size_OK must be called before
237 -- calling Flatten.
238 --
841dd0f5
AC
239 -- This function also detects and warns about one-component aggregates that
240 -- appear in a non-static context. Even if the component value is static,
241 -- such an aggregate must be expanded into an assignment.
643a0839 242
df3e68b1
HK
243 function Backend_Processing_Possible (N : Node_Id) return Boolean;
244 -- This function checks if array aggregate N can be processed directly
b465ef6f 245 -- by the backend. If this is the case, True is returned.
df3e68b1
HK
246
247 function Build_Array_Aggr_Code
248 (N : Node_Id;
249 Ctype : Entity_Id;
250 Index : Node_Id;
251 Into : Node_Id;
252 Scalar_Comp : Boolean;
253 Indexes : List_Id := No_List) return List_Id;
254 -- This recursive routine returns a list of statements containing the
255 -- loops and assignments that are needed for the expansion of the array
256 -- aggregate N.
257 --
258 -- N is the (sub-)aggregate node to be expanded into code. This node has
259 -- been fully analyzed, and its Etype is properly set.
260 --
d74716b3 261 -- Index is the index node corresponding to the array subaggregate N
df3e68b1
HK
262 --
263 -- Into is the target expression into which we are copying the aggregate.
264 -- Note that this node may not have been analyzed yet, and so the Etype
265 -- field may not be set.
266 --
267 -- Scalar_Comp is True if the component type of the aggregate is scalar
268 --
269 -- Indexes is the current list of expressions used to index the object we
270 -- are writing into.
271
6f639c98
ES
272 procedure Convert_Array_Aggr_In_Allocator
273 (Decl : Node_Id;
274 Aggr : Node_Id;
275 Target : Node_Id);
276 -- If the aggregate appears within an allocator and can be expanded in
277 -- place, this routine generates the individual assignments to components
278 -- of the designated object. This is an optimization over the general
279 -- case, where a temporary is first created on the stack and then used to
280 -- construct the allocated object on the heap.
281
07fc65c4
GB
282 procedure Convert_To_Positional
283 (N : Node_Id;
fbf5a39b 284 Max_Others_Replicate : Nat := 5;
07fc65c4
GB
285 Handle_Bit_Packed : Boolean := False);
286 -- If possible, convert named notation to positional notation. This
3cf3e5c6
AC
287 -- conversion is possible only in some static cases. If the conversion is
288 -- possible, then N is rewritten with the analyzed converted aggregate.
289 -- The parameter Max_Others_Replicate controls the maximum number of
290 -- values corresponding to an others choice that will be converted to
291 -- positional notation (the default of 5 is the normal limit, and reflects
292 -- the fact that normally the loop is better than a lot of separate
293 -- assignments). Note that this limit gets overridden in any case if
294 -- either of the restrictions No_Elaboration_Code or No_Implicit_Loops is
295 -- set. The parameter Handle_Bit_Packed is usually set False (since we do
296 -- not expect the back end to handle bit packed arrays, so the normal case
297 -- of conversion is pointless), but in the special case of a call from
298 -- Packed_Array_Aggregate_Handled, we set this parameter to True, since
299 -- these are cases we handle in there.
07fc65c4 300
1a779058
AC
301 -- It would seem useful to have a higher default for Max_Others_Replicate,
302 -- but aggregates in the compiler make this impossible: the compiler
303 -- bootstrap fails if Max_Others_Replicate is greater than 25. This
304 -- is unexpected ???
65e78a74 305
70482933
RK
306 procedure Expand_Array_Aggregate (N : Node_Id);
307 -- This is the top-level routine to perform array aggregate expansion.
308 -- N is the N_Aggregate node to be expanded.
309
dc3af7e2 310 function Is_Two_Dim_Packed_Array (Typ : Entity_Id) return Boolean;
dc3af7e2
AC
311 -- For two-dimensional packed aggregates with constant bounds and constant
312 -- components, it is preferable to pack the inner aggregates because the
313 -- whole matrix can then be presented to the back-end as a one-dimensional
314 -- list of literals. This is much more efficient than expanding into single
2791be24
AC
315 -- component assignments. This function determines if the type Typ is for
316 -- an array that is suitable for this optimization: it returns True if Typ
317 -- is a two dimensional bit packed array with component size 1, 2, or 4.
dc3af7e2 318
07fc65c4
GB
319 function Packed_Array_Aggregate_Handled (N : Node_Id) return Boolean;
320 -- Given an array aggregate, this function handles the case of a packed
321 -- array aggregate with all constant values, where the aggregate can be
322 -- evaluated at compile time. If this is possible, then N is rewritten
323 -- to be its proper compile time value with all the components properly
50decc81
RD
324 -- assembled. The expression is analyzed and resolved and True is returned.
325 -- If this transformation is not possible, N is unchanged and False is
326 -- returned.
07fc65c4 327
5eeeed5e
AC
328 function Two_Dim_Packed_Array_Handled (N : Node_Id) return Boolean;
329 -- If the type of the aggregate is a two-dimensional bit_packed array
330 -- it may be transformed into an array of bytes with constant values,
331 -- and presented to the back-end as a static value. The function returns
332 -- false if this transformation cannot be performed. THis is similar to,
333 -- and reuses part of the machinery in Packed_Array_Aggregate_Handled.
334
643a0839
ES
335 ------------------
336 -- Aggr_Size_OK --
337 ------------------
338
58fda84d 339 function Aggr_Size_OK (N : Node_Id; Typ : Entity_Id) return Boolean is
643a0839
ES
340 Lo : Node_Id;
341 Hi : Node_Id;
342 Indx : Node_Id;
343 Siz : Int;
344 Lov : Uint;
345 Hiv : Uint;
346
303fbb20
AC
347 Max_Aggr_Size : Nat;
348 -- Determines the maximum size of an array aggregate produced by
349 -- converting named to positional notation (e.g. from others clauses).
350 -- This avoids running away with attempts to convert huge aggregates,
351 -- which hit memory limits in the backend.
643a0839 352
16e764a7 353 function Component_Count (T : Entity_Id) return Nat;
457cee0b 354 -- The limit is applied to the total number of subcomponents that the
643a0839
ES
355 -- aggregate will have, which is the number of static expressions
356 -- that will appear in the flattened array. This requires a recursive
16b05213 357 -- computation of the number of scalar components of the structure.
643a0839
ES
358
359 ---------------------
360 -- Component_Count --
361 ---------------------
362
16e764a7
AC
363 function Component_Count (T : Entity_Id) return Nat is
364 Res : Nat := 0;
643a0839
ES
365 Comp : Entity_Id;
366
367 begin
368 if Is_Scalar_Type (T) then
369 return 1;
370
371 elsif Is_Record_Type (T) then
372 Comp := First_Component (T);
373 while Present (Comp) loop
374 Res := Res + Component_Count (Etype (Comp));
375 Next_Component (Comp);
376 end loop;
377
378 return Res;
379
380 elsif Is_Array_Type (T) then
381 declare
382 Lo : constant Node_Id :=
15f0f591 383 Type_Low_Bound (Etype (First_Index (T)));
643a0839 384 Hi : constant Node_Id :=
15f0f591 385 Type_High_Bound (Etype (First_Index (T)));
643a0839 386
16e764a7 387 Siz : constant Nat := Component_Count (Component_Type (T));
643a0839
ES
388
389 begin
b4213ffd
AC
390 -- Check for superflat arrays, i.e. arrays with such bounds
391 -- as 4 .. 2, to insure that this function never returns a
392 -- meaningless negative value.
393
643a0839
ES
394 if not Compile_Time_Known_Value (Lo)
395 or else not Compile_Time_Known_Value (Hi)
b4213ffd 396 or else Expr_Value (Hi) < Expr_Value (Lo)
643a0839
ES
397 then
398 return 0;
b4213ffd 399
643a0839 400 else
457cee0b
AC
401 -- If the number of components is greater than Int'Last,
402 -- then return Int'Last, so caller will return False (Aggr
403 -- size is not OK). Otherwise, UI_To_Int will crash.
404
405 declare
406 UI : constant Uint :=
407 Expr_Value (Hi) - Expr_Value (Lo) + 1;
408 begin
409 if UI_Is_In_Int_Range (UI) then
410 return Siz * UI_To_Int (UI);
411 else
412 return Int'Last;
413 end if;
414 end;
643a0839
ES
415 end if;
416 end;
417
418 else
419 -- Can only be a null for an access type
420
421 return 1;
422 end if;
423 end Component_Count;
424
425 -- Start of processing for Aggr_Size_OK
426
427 begin
b9ec8463 428 -- The normal aggregate limit is 50000, but we increase this limit to
303fbb20
AC
429 -- 2**24 (about 16 million) if Restrictions (No_Elaboration_Code) or
430 -- Restrictions (No_Implicit_Loops) is specified, since in either case
431 -- we are at risk of declaring the program illegal because of this
432 -- limit. We also increase the limit when Static_Elaboration_Desired,
433 -- given that this means that objects are intended to be placed in data
434 -- memory.
435
436 -- We also increase the limit if the aggregate is for a packed two-
437 -- dimensional array, because if components are static it is much more
438 -- efficient to construct a one-dimensional equivalent array with static
439 -- components.
440
b9ec8463
AC
441 -- Conversely, we decrease the maximum size if none of the above
442 -- requirements apply, and if the aggregate has a single component
443 -- association, which will be more efficient if implemented with a loop.
444
303fbb20
AC
445 -- Finally, we use a small limit in CodePeer mode where we favor loops
446 -- instead of thousands of single assignments (from large aggregates).
447
b9ec8463 448 Max_Aggr_Size := 50000;
303fbb20
AC
449
450 if CodePeer_Mode then
451 Max_Aggr_Size := 100;
452
453 elsif Restriction_Active (No_Elaboration_Code)
454 or else Restriction_Active (No_Implicit_Loops)
455 or else Is_Two_Dim_Packed_Array (Typ)
36a66365
AC
456 or else (Ekind (Current_Scope) = E_Package
457 and then Static_Elaboration_Desired (Current_Scope))
303fbb20
AC
458 then
459 Max_Aggr_Size := 2 ** 24;
b9ec8463
AC
460
461 elsif No (Expressions (N))
462 and then No (Next (First (Component_Associations (N))))
463 then
464 Max_Aggr_Size := 5000;
303fbb20
AC
465 end if;
466
643a0839 467 Siz := Component_Count (Component_Type (Typ));
643a0839 468
5277cab6 469 Indx := First_Index (Typ);
643a0839
ES
470 while Present (Indx) loop
471 Lo := Type_Low_Bound (Etype (Indx));
472 Hi := Type_High_Bound (Etype (Indx));
473
474 -- Bounds need to be known at compile time
475
476 if not Compile_Time_Known_Value (Lo)
477 or else not Compile_Time_Known_Value (Hi)
478 then
479 return False;
480 end if;
481
482 Lov := Expr_Value (Lo);
483 Hiv := Expr_Value (Hi);
484
485 -- A flat array is always safe
486
487 if Hiv < Lov then
488 return True;
489 end if;
490
86038a88
RD
491 -- One-component aggregates are suspicious, and if the context type
492 -- is an object declaration with non-static bounds it will trip gcc;
493 -- such an aggregate must be expanded into a single assignment.
58fda84d 494
36a66365 495 if Hiv = Lov and then Nkind (Parent (N)) = N_Object_Declaration then
58fda84d
ES
496 declare
497 Index_Type : constant Entity_Id :=
15f0f591
AC
498 Etype
499 (First_Index (Etype (Defining_Identifier (Parent (N)))));
86038a88
RD
500 Indx : Node_Id;
501
58fda84d
ES
502 begin
503 if not Compile_Time_Known_Value (Type_Low_Bound (Index_Type))
36a66365
AC
504 or else not Compile_Time_Known_Value
505 (Type_High_Bound (Index_Type))
58fda84d
ES
506 then
507 if Present (Component_Associations (N)) then
508 Indx :=
00f45f30
AC
509 First
510 (Choice_List (First (Component_Associations (N))));
324ac540 511
58fda84d
ES
512 if Is_Entity_Name (Indx)
513 and then not Is_Type (Entity (Indx))
514 then
515 Error_Msg_N
324ac540
AC
516 ("single component aggregate in "
517 & "non-static context??", Indx);
518 Error_Msg_N ("\maybe subtype name was meant??", Indx);
58fda84d
ES
519 end if;
520 end if;
521
522 return False;
523 end if;
524 end;
525 end if;
526
643a0839
ES
527 declare
528 Rng : constant Uint := Hiv - Lov + 1;
529
530 begin
531 -- Check if size is too large
532
533 if not UI_Is_In_Int_Range (Rng) then
534 return False;
535 end if;
536
537 Siz := Siz * UI_To_Int (Rng);
538 end;
539
540 if Siz <= 0
541 or else Siz > Max_Aggr_Size
542 then
543 return False;
544 end if;
545
546 -- Bounds must be in integer range, for later array construction
547
548 if not UI_Is_In_Int_Range (Lov)
549 or else
550 not UI_Is_In_Int_Range (Hiv)
551 then
552 return False;
553 end if;
554
555 Next_Index (Indx);
556 end loop;
557
558 return True;
559 end Aggr_Size_OK;
560
70482933
RK
561 ---------------------------------
562 -- Backend_Processing_Possible --
563 ---------------------------------
564
565 -- Backend processing by Gigi/gcc is possible only if all the following
566 -- conditions are met:
567
568 -- 1. N is fully positional
569
570 -- 2. N is not a bit-packed array aggregate;
571
572 -- 3. The size of N's array type must be known at compile time. Note
573 -- that this implies that the component size is also known
574
575 -- 4. The array type of N does not follow the Fortran layout convention
576 -- or if it does it must be 1 dimensional.
577
0f95b178
JM
578 -- 5. The array component type may not be tagged (which could necessitate
579 -- reassignment of proper tags).
70482933 580
0f95b178
JM
581 -- 6. The array component type must not have unaligned bit components
582
583 -- 7. None of the components of the aggregate may be bit unaligned
584 -- components.
585
586 -- 8. There cannot be delayed components, since we do not know enough
587 -- at this stage to know if back end processing is possible.
588
589 -- 9. There cannot be any discriminated record components, since the
590 -- back end cannot handle this complex case.
91b1417d 591
7f4c1903 592 -- 10. No controlled actions need to be generated for components
a8f59a33 593
7e22a38c
AC
594 -- 11. When generating C code, N must be part of a N_Object_Declaration
595
2d6aa715
AC
596 -- 12. When generating C code, N must not include function calls
597
70482933
RK
598 function Backend_Processing_Possible (N : Node_Id) return Boolean is
599 Typ : constant Entity_Id := Etype (N);
3cf3e5c6 600 -- Typ is the correct constrained array subtype of the aggregate
70482933 601
0f95b178
JM
602 function Component_Check (N : Node_Id; Index : Node_Id) return Boolean;
603 -- This routine checks components of aggregate N, enforcing checks
d74716b3 604 -- 1, 7, 8, 9, 11, and 12. In the multidimensional case, these checks
2d6aa715 605 -- are performed on subaggregates. The Index value is the current index
d74716b3 606 -- being checked in the multidimensional case.
70482933 607
0f95b178
JM
608 ---------------------
609 -- Component_Check --
610 ---------------------
70482933 611
0f95b178 612 function Component_Check (N : Node_Id; Index : Node_Id) return Boolean is
35f4f238
JM
613 function Ultimate_Original_Expression (N : Node_Id) return Node_Id;
614 -- Given a type conversion or an unchecked type conversion N, return
615 -- its innermost original expression.
616
617 ----------------------------------
618 -- Ultimate_Original_Expression --
619 ----------------------------------
620
621 function Ultimate_Original_Expression (N : Node_Id) return Node_Id is
622 Expr : Node_Id := Original_Node (N);
623
624 begin
625 while Nkind_In (Expr, N_Type_Conversion,
626 N_Unchecked_Type_Conversion)
627 loop
628 Expr := Original_Node (Expression (Expr));
629 end loop;
630
631 return Expr;
632 end Ultimate_Original_Expression;
633
634 -- Local variables
635
70482933
RK
636 Expr : Node_Id;
637
bbe008b6
HK
638 -- Start of processing for Component_Check
639
70482933 640 begin
0f95b178 641 -- Checks 1: (no component associations)
70482933
RK
642
643 if Present (Component_Associations (N)) then
644 return False;
645 end if;
646
7d827255
AC
647 -- Checks 11: The C code generator cannot handle aggregates that
648 -- are not part of an object declaration.
7e22a38c 649
7d827255
AC
650 if Modify_Tree_For_C then
651 declare
652 Par : Node_Id := Parent (N);
653
654 begin
655 -- Skip enclosing nested aggregates and their qualified
656 -- expressions
657
658 while Nkind (Par) = N_Aggregate
659 or else Nkind (Par) = N_Qualified_Expression
660 loop
661 Par := Parent (Par);
662 end loop;
663
664 if Nkind (Par) /= N_Object_Declaration then
665 return False;
666 end if;
667 end;
7e22a38c
AC
668 end if;
669
0f95b178
JM
670 -- Checks on components
671
70482933
RK
672 -- Recurse to check subaggregates, which may appear in qualified
673 -- expressions. If delayed, the front-end will have to expand.
5277cab6
ES
674 -- If the component is a discriminated record, treat as non-static,
675 -- as the back-end cannot handle this properly.
70482933
RK
676
677 Expr := First (Expressions (N));
70482933 678 while Present (Expr) loop
0f95b178
JM
679
680 -- Checks 8: (no delayed components)
681
70482933
RK
682 if Is_Delayed_Aggregate (Expr) then
683 return False;
684 end if;
685
0f95b178
JM
686 -- Checks 9: (no discriminated records)
687
5277cab6
ES
688 if Present (Etype (Expr))
689 and then Is_Record_Type (Etype (Expr))
690 and then Has_Discriminants (Etype (Expr))
691 then
692 return False;
693 end if;
694
0f95b178
JM
695 -- Checks 7. Component must not be bit aligned component
696
697 if Possible_Bit_Aligned_Component (Expr) then
698 return False;
699 end if;
700
2d6aa715
AC
701 -- Checks 12: (no function call)
702
35f4f238
JM
703 if Modify_Tree_For_C
704 and then
705 Nkind (Ultimate_Original_Expression (Expr)) = N_Function_Call
706 then
2d6aa715
AC
707 return False;
708 end if;
709
0f95b178
JM
710 -- Recursion to following indexes for multiple dimension case
711
70482933 712 if Present (Next_Index (Index))
36a66365 713 and then not Component_Check (Expr, Next_Index (Index))
70482933
RK
714 then
715 return False;
716 end if;
717
0f95b178
JM
718 -- All checks for that component finished, on to next
719
70482933
RK
720 Next (Expr);
721 end loop;
722
723 return True;
0f95b178 724 end Component_Check;
70482933
RK
725
726 -- Start of processing for Backend_Processing_Possible
727
728 begin
a8f59a33 729 -- Checks 2 (array not bit packed) and 10 (no controlled actions)
70482933 730
a8f59a33 731 if Is_Bit_Packed_Array (Typ) or else Needs_Finalization (Typ) then
70482933
RK
732 return False;
733 end if;
734
a38ff9b1
ES
735 -- If component is limited, aggregate must be expanded because each
736 -- component assignment must be built in place.
737
51245e2d 738 if Is_Limited_View (Component_Type (Typ)) then
a38ff9b1
ES
739 return False;
740 end if;
741
d74716b3 742 -- Checks 4 (array must not be multidimensional Fortran case)
70482933
RK
743
744 if Convention (Typ) = Convention_Fortran
745 and then Number_Dimensions (Typ) > 1
746 then
747 return False;
748 end if;
749
750 -- Checks 3 (size of array must be known at compile time)
751
752 if not Size_Known_At_Compile_Time (Typ) then
753 return False;
754 end if;
755
0f95b178 756 -- Checks on components
70482933 757
0f95b178 758 if not Component_Check (N, First_Index (Typ)) then
70482933
RK
759 return False;
760 end if;
761
0f95b178 762 -- Checks 5 (if the component type is tagged, then we may need to do
36a66365
AC
763 -- tag adjustments. Perhaps this should be refined to check for any
764 -- component associations that actually need tag adjustment, similar
765 -- to the test in Component_Not_OK_For_Backend for record aggregates
766 -- with tagged components, but not clear whether it's worthwhile ???;
57d3adcd
AC
767 -- in the case of virtual machines (no Tagged_Type_Expansion), object
768 -- tags are handled implicitly).
70482933 769
1f110335
AC
770 if Is_Tagged_Type (Component_Type (Typ))
771 and then Tagged_Type_Expansion
772 then
70482933
RK
773 return False;
774 end if;
775
91b1417d
AC
776 -- Checks 6 (component type must not have bit aligned components)
777
778 if Type_May_Have_Bit_Aligned_Components (Component_Type (Typ)) then
779 return False;
780 end if;
781
70482933
RK
782 -- Backend processing is possible
783
70482933
RK
784 Set_Size_Known_At_Compile_Time (Etype (N), True);
785 return True;
786 end Backend_Processing_Possible;
787
788 ---------------------------
789 -- Build_Array_Aggr_Code --
790 ---------------------------
791
792 -- The code that we generate from a one dimensional aggregate is
793
d74716b3 794 -- 1. If the subaggregate contains discrete choices we
70482933
RK
795
796 -- (a) Sort the discrete choices
797
798 -- (b) Otherwise for each discrete choice that specifies a range we
799 -- emit a loop. If a range specifies a maximum of three values, or
800 -- we are dealing with an expression we emit a sequence of
801 -- assignments instead of a loop.
802
3cf3e5c6 803 -- (c) Generate the remaining loops to cover the others choice if any
70482933
RK
804
805 -- 2. If the aggregate contains positional elements we
806
3cf3e5c6 807 -- (a) translate the positional elements in a series of assignments
70482933
RK
808
809 -- (b) Generate a final loop to cover the others choice if any.
810 -- Note that this final loop has to be a while loop since the case
811
812 -- L : Integer := Integer'Last;
813 -- H : Integer := Integer'Last;
814 -- A : array (L .. H) := (1, others =>0);
815
816 -- cannot be handled by a for loop. Thus for the following
817
818 -- array (L .. H) := (.. positional elements.., others =>E);
819
820 -- we always generate something like:
821
07fc65c4
GB
822 -- J : Index_Type := Index_Of_Last_Positional_Element;
823 -- while J < H loop
824 -- J := Index_Base'Succ (J)
825 -- Tmp (J) := E;
70482933
RK
826 -- end loop;
827
828 function Build_Array_Aggr_Code
829 (N : Node_Id;
c45b6ae0 830 Ctype : Entity_Id;
70482933
RK
831 Index : Node_Id;
832 Into : Node_Id;
833 Scalar_Comp : Boolean;
df3e68b1 834 Indexes : List_Id := No_List) return List_Id
70482933
RK
835 is
836 Loc : constant Source_Ptr := Sloc (N);
837 Index_Base : constant Entity_Id := Base_Type (Etype (Index));
838 Index_Base_L : constant Node_Id := Type_Low_Bound (Index_Base);
839 Index_Base_H : constant Node_Id := Type_High_Bound (Index_Base);
840
841 function Add (Val : Int; To : Node_Id) return Node_Id;
3cf3e5c6
AC
842 -- Returns an expression where Val is added to expression To, unless
843 -- To+Val is provably out of To's base type range. To must be an
844 -- already analyzed expression.
70482933
RK
845
846 function Empty_Range (L, H : Node_Id) return Boolean;
3cf3e5c6 847 -- Returns True if the range defined by L .. H is certainly empty
70482933
RK
848
849 function Equal (L, H : Node_Id) return Boolean;
3cf3e5c6 850 -- Returns True if L = H for sure
70482933
RK
851
852 function Index_Base_Name return Node_Id;
3cf3e5c6 853 -- Returns a new reference to the index type name
70482933 854
937e9676
AC
855 function Gen_Assign
856 (Ind : Node_Id;
857 Expr : Node_Id;
858 In_Loop : Boolean := False) return List_Id;
d74716b3
AC
859 -- Ind must be a side-effect-free expression. If the input aggregate N
860 -- to Build_Loop contains no subaggregates, then this function returns
861 -- the assignment statement:
70482933 862 --
deeb1604 863 -- Into (Indexes, Ind) := Expr;
70482933 864 --
937e9676
AC
865 -- Otherwise we call Build_Code recursively. Flag In_Loop should be set
866 -- when the assignment appears within a generated loop.
c45b6ae0 867 --
0ab80019
AC
868 -- Ada 2005 (AI-287): In case of default initialized component, Expr
869 -- is empty and we generate a call to the corresponding IP subprogram.
70482933
RK
870
871 function Gen_Loop (L, H : Node_Id; Expr : Node_Id) return List_Id;
d74716b3
AC
872 -- Nodes L and H must be side-effect-free expressions. If the input
873 -- aggregate N to Build_Loop contains no subaggregates, this routine
874 -- returns the for loop statement:
70482933
RK
875 --
876 -- for J in Index_Base'(L) .. Index_Base'(H) loop
deeb1604 877 -- Into (Indexes, J) := Expr;
70482933
RK
878 -- end loop;
879 --
937e9676
AC
880 -- Otherwise we call Build_Code recursively. As an optimization if the
881 -- loop covers 3 or fewer scalar elements we generate a sequence of
882 -- assignments.
00f45f30
AC
883 -- If the component association that generates the loop comes from an
884 -- Iterated_Component_Association, the loop parameter has the name of
885 -- the corresponding parameter in the original construct.
70482933
RK
886
887 function Gen_While (L, H : Node_Id; Expr : Node_Id) return List_Id;
d74716b3
AC
888 -- Nodes L and H must be side-effect-free expressions. If the input
889 -- aggregate N to Build_Loop contains no subaggregates, this routine
890 -- returns the while loop statement:
70482933 891 --
07fc65c4
GB
892 -- J : Index_Base := L;
893 -- while J < H loop
894 -- J := Index_Base'Succ (J);
deeb1604 895 -- Into (Indexes, J) := Expr;
70482933
RK
896 -- end loop;
897 --
fbf5a39b 898 -- Otherwise we call Build_Code recursively
70482933 899
59e9bc0b 900 function Get_Assoc_Expr (Assoc : Node_Id) return Node_Id;
e9999161
AC
901 -- For an association with a box, use value given by aspect
902 -- Default_Component_Value of array type if specified, else use
903 -- value given by aspect Default_Value for component type itself
904 -- if specified, else return Empty.
59e9bc0b 905
70482933
RK
906 function Local_Compile_Time_Known_Value (E : Node_Id) return Boolean;
907 function Local_Expr_Value (E : Node_Id) return Uint;
908 -- These two Local routines are used to replace the corresponding ones
909 -- in sem_eval because while processing the bounds of an aggregate with
910 -- discrete choices whose index type is an enumeration, we build static
911 -- expressions not recognized by Compile_Time_Known_Value as such since
912 -- they have not yet been analyzed and resolved. All the expressions in
913 -- question are things like Index_Base_Name'Val (Const) which we can
914 -- easily recognize as being constant.
915
916 ---------
917 -- Add --
918 ---------
919
920 function Add (Val : Int; To : Node_Id) return Node_Id is
921 Expr_Pos : Node_Id;
922 Expr : Node_Id;
923 To_Pos : Node_Id;
fbf5a39b
AC
924 U_To : Uint;
925 U_Val : constant Uint := UI_From_Int (Val);
70482933
RK
926
927 begin
928 -- Note: do not try to optimize the case of Val = 0, because
929 -- we need to build a new node with the proper Sloc value anyway.
930
931 -- First test if we can do constant folding
932
933 if Local_Compile_Time_Known_Value (To) then
934 U_To := Local_Expr_Value (To) + Val;
935
936 -- Determine if our constant is outside the range of the index.
937 -- If so return an Empty node. This empty node will be caught
938 -- by Empty_Range below.
939
940 if Compile_Time_Known_Value (Index_Base_L)
941 and then U_To < Expr_Value (Index_Base_L)
942 then
943 return Empty;
944
945 elsif Compile_Time_Known_Value (Index_Base_H)
946 and then U_To > Expr_Value (Index_Base_H)
947 then
948 return Empty;
949 end if;
950
951 Expr_Pos := Make_Integer_Literal (Loc, U_To);
952 Set_Is_Static_Expression (Expr_Pos);
953
954 if not Is_Enumeration_Type (Index_Base) then
955 Expr := Expr_Pos;
956
957 -- If we are dealing with enumeration return
958 -- Index_Base'Val (Expr_Pos)
959
960 else
961 Expr :=
962 Make_Attribute_Reference
963 (Loc,
964 Prefix => Index_Base_Name,
965 Attribute_Name => Name_Val,
966 Expressions => New_List (Expr_Pos));
967 end if;
968
969 return Expr;
970 end if;
971
972 -- If we are here no constant folding possible
973
974 if not Is_Enumeration_Type (Index_Base) then
975 Expr :=
976 Make_Op_Add (Loc,
47c14114
AC
977 Left_Opnd => Duplicate_Subexpr (To),
978 Right_Opnd => Make_Integer_Literal (Loc, U_Val));
70482933
RK
979
980 -- If we are dealing with enumeration return
981 -- Index_Base'Val (Index_Base'Pos (To) + Val)
982
983 else
984 To_Pos :=
985 Make_Attribute_Reference
986 (Loc,
987 Prefix => Index_Base_Name,
988 Attribute_Name => Name_Pos,
989 Expressions => New_List (Duplicate_Subexpr (To)));
990
991 Expr_Pos :=
992 Make_Op_Add (Loc,
47c14114
AC
993 Left_Opnd => To_Pos,
994 Right_Opnd => Make_Integer_Literal (Loc, U_Val));
70482933
RK
995
996 Expr :=
997 Make_Attribute_Reference
998 (Loc,
999 Prefix => Index_Base_Name,
1000 Attribute_Name => Name_Val,
1001 Expressions => New_List (Expr_Pos));
1002 end if;
1003
1004 return Expr;
1005 end Add;
1006
1007 -----------------
1008 -- Empty_Range --
1009 -----------------
1010
1011 function Empty_Range (L, H : Node_Id) return Boolean is
1012 Is_Empty : Boolean := False;
1013 Low : Node_Id;
1014 High : Node_Id;
1015
1016 begin
1017 -- First check if L or H were already detected as overflowing the
1018 -- index base range type by function Add above. If this is so Add
1019 -- returns the empty node.
1020
1021 if No (L) or else No (H) then
1022 return True;
1023 end if;
1024
1025 for J in 1 .. 3 loop
1026 case J is
1027
1028 -- L > H range is empty
1029
1030 when 1 =>
1031 Low := L;
1032 High := H;
1033
1034 -- B_L > H range must be empty
1035
1036 when 2 =>
1037 Low := Index_Base_L;
1038 High := H;
1039
1040 -- L > B_H range must be empty
1041
1042 when 3 =>
1043 Low := L;
1044 High := Index_Base_H;
1045 end case;
1046
1047 if Local_Compile_Time_Known_Value (Low)
36a66365
AC
1048 and then
1049 Local_Compile_Time_Known_Value (High)
70482933
RK
1050 then
1051 Is_Empty :=
1052 UI_Gt (Local_Expr_Value (Low), Local_Expr_Value (High));
1053 end if;
1054
1055 exit when Is_Empty;
1056 end loop;
1057
1058 return Is_Empty;
1059 end Empty_Range;
1060
1061 -----------
1062 -- Equal --
1063 -----------
1064
1065 function Equal (L, H : Node_Id) return Boolean is
1066 begin
1067 if L = H then
1068 return True;
1069
1070 elsif Local_Compile_Time_Known_Value (L)
36a66365
AC
1071 and then
1072 Local_Compile_Time_Known_Value (H)
70482933
RK
1073 then
1074 return UI_Eq (Local_Expr_Value (L), Local_Expr_Value (H));
1075 end if;
1076
1077 return False;
1078 end Equal;
1079
1080 ----------------
1081 -- Gen_Assign --
1082 ----------------
1083
937e9676
AC
1084 function Gen_Assign
1085 (Ind : Node_Id;
1086 Expr : Node_Id;
1087 In_Loop : Boolean := False) return List_Id
1088 is
70482933 1089 function Add_Loop_Actions (Lis : List_Id) return List_Id;
937e9676
AC
1090 -- Collect insert_actions generated in the construction of a loop,
1091 -- and prepend them to the sequence of assignments to complete the
1092 -- eventual body of the loop.
1093
1094 procedure Initialize_Array_Component
1095 (Arr_Comp : Node_Id;
1096 Comp_Typ : Node_Id;
1097 Init_Expr : Node_Id;
1098 Stmts : List_Id);
1099 -- Perform the initialization of array component Arr_Comp with
1100 -- expected type Comp_Typ. Init_Expr denotes the initialization
1101 -- expression of the array component. All generated code is added
1102 -- to list Stmts.
1103
1104 procedure Initialize_Ctrl_Array_Component
1105 (Arr_Comp : Node_Id;
1106 Comp_Typ : Entity_Id;
1107 Init_Expr : Node_Id;
1108 Stmts : List_Id);
1109 -- Perform the initialization of array component Arr_Comp when its
1110 -- expected type Comp_Typ needs finalization actions. Init_Expr is
1111 -- the initialization expression of the array component. All hook-
1112 -- related declarations are inserted prior to aggregate N. Remaining
1113 -- code is added to list Stmts.
10edebe7 1114
70482933
RK
1115 ----------------------
1116 -- Add_Loop_Actions --
1117 ----------------------
1118
1119 function Add_Loop_Actions (Lis : List_Id) return List_Id is
1120 Res : List_Id;
1121
1122 begin
0ab80019 1123 -- Ada 2005 (AI-287): Do nothing else in case of default
6e937c1c 1124 -- initialized component.
c45b6ae0 1125
d8f7b976 1126 if No (Expr) then
c45b6ae0
AC
1127 return Lis;
1128
1129 elsif Nkind (Parent (Expr)) = N_Component_Association
70482933
RK
1130 and then Present (Loop_Actions (Parent (Expr)))
1131 then
1132 Append_List (Lis, Loop_Actions (Parent (Expr)));
1133 Res := Loop_Actions (Parent (Expr));
1134 Set_Loop_Actions (Parent (Expr), No_List);
1135 return Res;
1136
1137 else
1138 return Lis;
1139 end if;
1140 end Add_Loop_Actions;
1141
937e9676
AC
1142 --------------------------------
1143 -- Initialize_Array_Component --
1144 --------------------------------
10edebe7 1145
937e9676
AC
1146 procedure Initialize_Array_Component
1147 (Arr_Comp : Node_Id;
1148 Comp_Typ : Node_Id;
10edebe7 1149 Init_Expr : Node_Id;
937e9676
AC
1150 Stmts : List_Id)
1151 is
bb072d1c
AC
1152 Exceptions_OK : constant Boolean :=
1153 not Restriction_Active
1154 (No_Exception_Propagation);
1155
1156 Finalization_OK : constant Boolean :=
1157 Present (Comp_Typ)
1158 and then Needs_Finalization (Comp_Typ);
1159
937e9676 1160 Full_Typ : constant Entity_Id := Underlying_Type (Comp_Typ);
2168d7cc 1161 Adj_Call : Node_Id;
bb072d1c 1162 Blk_Stmts : List_Id;
937e9676 1163 Init_Stmt : Node_Id;
10edebe7
AC
1164
1165 begin
bb072d1c
AC
1166 -- Protect the initialization statements from aborts. Generate:
1167
1168 -- Abort_Defer;
1169
1170 if Finalization_OK and Abort_Allowed then
1171 if Exceptions_OK then
1172 Blk_Stmts := New_List;
1173 else
1174 Blk_Stmts := Stmts;
1175 end if;
1176
1177 Append_To (Blk_Stmts, Build_Runtime_Call (Loc, RE_Abort_Defer));
1178
1179 -- Otherwise aborts are not allowed. All generated code is added
1180 -- directly to the input list.
1181
1182 else
1183 Blk_Stmts := Stmts;
1184 end if;
1185
937e9676 1186 -- Initialize the array element. Generate:
10edebe7 1187
937e9676 1188 -- Arr_Comp := Init_Expr;
10edebe7 1189
937e9676
AC
1190 -- Note that the initialization expression is replicated because
1191 -- it has to be reevaluated within a generated loop.
10edebe7 1192
937e9676
AC
1193 Init_Stmt :=
1194 Make_OK_Assignment_Statement (Loc,
1195 Name => New_Copy_Tree (Arr_Comp),
1196 Expression => New_Copy_Tree (Init_Expr));
1197 Set_No_Ctrl_Actions (Init_Stmt);
10edebe7 1198
937e9676
AC
1199 -- If this is an aggregate for an array of arrays, each
1200 -- subaggregate will be expanded as well, and even with
1201 -- No_Ctrl_Actions the assignments of inner components will
1202 -- require attachment in their assignments to temporaries. These
1203 -- temporaries must be finalized for each subaggregate. Generate:
10edebe7 1204
937e9676
AC
1205 -- begin
1206 -- Arr_Comp := Init_Expr;
1207 -- end;
10edebe7 1208
bb072d1c 1209 if Finalization_OK and then Is_Array_Type (Comp_Typ) then
937e9676
AC
1210 Init_Stmt :=
1211 Make_Block_Statement (Loc,
1212 Handled_Statement_Sequence =>
1213 Make_Handled_Sequence_Of_Statements (Loc,
1214 Statements => New_List (Init_Stmt)));
1215 end if;
10edebe7 1216
bb072d1c 1217 Append_To (Blk_Stmts, Init_Stmt);
10edebe7 1218
937e9676 1219 -- Adjust the tag due to a possible view conversion. Generate:
10edebe7 1220
937e9676
AC
1221 -- Arr_Comp._tag := Full_TypP;
1222
1223 if Tagged_Type_Expansion
1224 and then Present (Comp_Typ)
1225 and then Is_Tagged_Type (Comp_Typ)
1226 then
bb072d1c 1227 Append_To (Blk_Stmts,
937e9676
AC
1228 Make_OK_Assignment_Statement (Loc,
1229 Name =>
1230 Make_Selected_Component (Loc,
1231 Prefix => New_Copy_Tree (Arr_Comp),
1232 Selector_Name =>
1233 New_Occurrence_Of
1234 (First_Tag_Component (Full_Typ), Loc)),
1235
1236 Expression =>
1237 Unchecked_Convert_To (RTE (RE_Tag),
1238 New_Occurrence_Of
1239 (Node (First_Elmt (Access_Disp_Table (Full_Typ))),
1240 Loc))));
1241 end if;
10edebe7 1242
937e9676
AC
1243 -- Adjust the array component. Controlled subaggregates are not
1244 -- considered because each of their individual elements will
1245 -- receive an adjustment of its own. Generate:
10edebe7 1246
937e9676 1247 -- [Deep_]Adjust (Arr_Comp);
10edebe7 1248
bb072d1c 1249 if Finalization_OK
937e9676
AC
1250 and then not Is_Limited_Type (Comp_Typ)
1251 and then not
1252 (Is_Array_Type (Comp_Typ)
1253 and then Is_Controlled (Component_Type (Comp_Typ))
1254 and then Nkind (Expr) = N_Aggregate)
1255 then
2168d7cc 1256 Adj_Call :=
937e9676
AC
1257 Make_Adjust_Call
1258 (Obj_Ref => New_Copy_Tree (Arr_Comp),
2168d7cc
AC
1259 Typ => Comp_Typ);
1260
1261 -- Guard against a missing [Deep_]Adjust when the component
1262 -- type was not frozen properly.
1263
1264 if Present (Adj_Call) then
1265 Append_To (Blk_Stmts, Adj_Call);
1266 end if;
937e9676 1267 end if;
bb072d1c
AC
1268
1269 -- Complete the protection of the initialization statements
1270
1271 if Finalization_OK and Abort_Allowed then
1272
1273 -- Wrap the initialization statements in a block to catch a
1274 -- potential exception. Generate:
1275
1276 -- begin
1277 -- Abort_Defer;
1278 -- Arr_Comp := Init_Expr;
1279 -- Arr_Comp._tag := Full_TypP;
1280 -- [Deep_]Adjust (Arr_Comp);
1281 -- at end
1282 -- Abort_Undefer_Direct;
1283 -- end;
1284
1285 if Exceptions_OK then
1286 Append_To (Stmts,
1287 Build_Abort_Undefer_Block (Loc,
1288 Stmts => Blk_Stmts,
1289 Context => N));
1290
1291 -- Otherwise exceptions are not propagated. Generate:
1292
1293 -- Abort_Defer;
1294 -- Arr_Comp := Init_Expr;
1295 -- Arr_Comp._tag := Full_TypP;
1296 -- [Deep_]Adjust (Arr_Comp);
1297 -- Abort_Undefer;
1298
1299 else
1300 Append_To (Blk_Stmts,
1301 Build_Runtime_Call (Loc, RE_Abort_Undefer));
1302 end if;
1303 end if;
937e9676 1304 end Initialize_Array_Component;
10edebe7 1305
937e9676
AC
1306 -------------------------------------
1307 -- Initialize_Ctrl_Array_Component --
1308 -------------------------------------
10edebe7 1309
937e9676
AC
1310 procedure Initialize_Ctrl_Array_Component
1311 (Arr_Comp : Node_Id;
1312 Comp_Typ : Entity_Id;
1313 Init_Expr : Node_Id;
1314 Stmts : List_Id)
1315 is
1316 Act_Aggr : Node_Id;
1317 Act_Stmts : List_Id;
d89ce432 1318 Expr : Node_Id;
937e9676
AC
1319 Fin_Call : Node_Id;
1320 Hook_Clear : Node_Id;
10edebe7 1321
937e9676
AC
1322 In_Place_Expansion : Boolean;
1323 -- Flag set when a nonlimited controlled function call requires
1324 -- in-place expansion.
10edebe7 1325
937e9676 1326 begin
d89ce432
AC
1327 -- Duplicate the initialization expression in case the context is
1328 -- a multi choice list or an "others" choice which plugs various
1329 -- holes in the aggregate. As a result the expression is no longer
1330 -- shared between the various components and is reevaluated for
1331 -- each such component.
1332
1333 Expr := New_Copy_Tree (Init_Expr);
1334 Set_Parent (Expr, Parent (Init_Expr));
1335
937e9676
AC
1336 -- Perform a preliminary analysis and resolution to determine what
1337 -- the initialization expression denotes. An unanalyzed function
1338 -- call may appear as an identifier or an indexed component.
1339
d89ce432
AC
1340 if Nkind_In (Expr, N_Function_Call,
1341 N_Identifier,
1342 N_Indexed_Component)
1343 and then not Analyzed (Expr)
937e9676 1344 then
d89ce432 1345 Preanalyze_And_Resolve (Expr, Comp_Typ);
937e9676
AC
1346 end if;
1347
1348 In_Place_Expansion :=
d89ce432 1349 Nkind (Expr) = N_Function_Call
937e9676
AC
1350 and then not Is_Limited_Type (Comp_Typ);
1351
1352 -- The initialization expression is a controlled function call.
1353 -- Perform in-place removal of side effects to avoid creating a
1354 -- transient scope, which leads to premature finalization.
1355
1356 -- This in-place expansion is not performed for limited transient
1357 -- objects because the initialization is already done in-place.
1358
1359 if In_Place_Expansion then
1360
1361 -- Suppress the removal of side effects by general analysis
1362 -- because this behavior is emulated here. This avoids the
1363 -- generation of a transient scope, which leads to out-of-order
1364 -- adjustment and finalization.
1365
d89ce432 1366 Set_No_Side_Effect_Removal (Expr);
937e9676
AC
1367
1368 -- When the transient component initialization is related to a
1369 -- range or an "others", keep all generated statements within
1370 -- the enclosing loop. This way the controlled function call
1371 -- will be evaluated at each iteration, and its result will be
1372 -- finalized at the end of each iteration.
1373
1374 if In_Loop then
1375 Act_Aggr := Empty;
1376 Act_Stmts := Stmts;
1377
1378 -- Otherwise this is a single component initialization. Hook-
1379 -- related statements are inserted prior to the aggregate.
1380
1381 else
1382 Act_Aggr := N;
1383 Act_Stmts := No_List;
1384 end if;
1385
1386 -- Install all hook-related declarations and prepare the clean
1387 -- up statements.
1388
1389 Process_Transient_Component
1390 (Loc => Loc,
1391 Comp_Typ => Comp_Typ,
d89ce432 1392 Init_Expr => Expr,
937e9676
AC
1393 Fin_Call => Fin_Call,
1394 Hook_Clear => Hook_Clear,
1395 Aggr => Act_Aggr,
1396 Stmts => Act_Stmts);
10edebe7 1397 end if;
937e9676
AC
1398
1399 -- Use the noncontrolled component initialization circuitry to
1400 -- assign the result of the function call to the array element.
1401 -- This also performs subaggregate wrapping, tag adjustment, and
1402 -- [deep] adjustment of the array element.
1403
1404 Initialize_Array_Component
1405 (Arr_Comp => Arr_Comp,
1406 Comp_Typ => Comp_Typ,
d89ce432 1407 Init_Expr => Expr,
937e9676
AC
1408 Stmts => Stmts);
1409
1410 -- At this point the array element is fully initialized. Complete
1411 -- the processing of the controlled array component by finalizing
1412 -- the transient function result.
1413
1414 if In_Place_Expansion then
1415 Process_Transient_Component_Completion
1416 (Loc => Loc,
1417 Aggr => N,
1418 Fin_Call => Fin_Call,
1419 Hook_Clear => Hook_Clear,
1420 Stmts => Stmts);
1421 end if;
1422 end Initialize_Ctrl_Array_Component;
10edebe7
AC
1423
1424 -- Local variables
1425
1426 Stmts : constant List_Id := New_List;
1427
1428 Comp_Typ : Entity_Id := Empty;
1429 Expr_Q : Node_Id;
1430 Indexed_Comp : Node_Id;
2168d7cc 1431 Init_Call : Node_Id;
10edebe7 1432 New_Indexes : List_Id;
10edebe7 1433
70482933
RK
1434 -- Start of processing for Gen_Assign
1435
1436 begin
deeb1604
AC
1437 if No (Indexes) then
1438 New_Indexes := New_List;
70482933 1439 else
deeb1604 1440 New_Indexes := New_Copy_List_Tree (Indexes);
70482933
RK
1441 end if;
1442
deeb1604 1443 Append_To (New_Indexes, Ind);
70482933 1444
70482933
RK
1445 if Present (Next_Index (Index)) then
1446 return
1447 Add_Loop_Actions (
1448 Build_Array_Aggr_Code
c45b6ae0
AC
1449 (N => Expr,
1450 Ctype => Ctype,
1451 Index => Next_Index (Index),
1452 Into => Into,
1453 Scalar_Comp => Scalar_Comp,
df3e68b1 1454 Indexes => New_Indexes));
70482933
RK
1455 end if;
1456
1457 -- If we get here then we are at a bottom-level (sub-)aggregate
1458
fbf5a39b
AC
1459 Indexed_Comp :=
1460 Checks_Off
1461 (Make_Indexed_Component (Loc,
1462 Prefix => New_Copy_Tree (Into),
deeb1604 1463 Expressions => New_Indexes));
70482933
RK
1464
1465 Set_Assignment_OK (Indexed_Comp);
1466
0ab80019 1467 -- Ada 2005 (AI-287): In case of default initialized component, Expr
6e937c1c 1468 -- is not present (and therefore we also initialize Expr_Q to empty).
c45b6ae0 1469
d8f7b976 1470 if No (Expr) then
c45b6ae0
AC
1471 Expr_Q := Empty;
1472 elsif Nkind (Expr) = N_Qualified_Expression then
70482933
RK
1473 Expr_Q := Expression (Expr);
1474 else
1475 Expr_Q := Expr;
1476 end if;
1477
36a66365 1478 if Present (Etype (N)) and then Etype (N) /= Any_Composite then
10edebe7
AC
1479 Comp_Typ := Component_Type (Etype (N));
1480 pragma Assert (Comp_Typ = Ctype); -- AI-287
70482933 1481
deeb1604 1482 elsif Present (Next (First (New_Indexes))) then
70482933 1483
0ab80019 1484 -- Ada 2005 (AI-287): Do nothing in case of default initialized
c45b6ae0
AC
1485 -- component because we have received the component type in
1486 -- the formal parameter Ctype.
6e937c1c
AC
1487
1488 -- ??? Some assert pragmas have been added to check if this new
36a66365 1489 -- formal can be used to replace this code in all cases.
70482933 1490
c45b6ae0 1491 if Present (Expr) then
70482933 1492
36a66365
AC
1493 -- This is a multidimensional array. Recover the component type
1494 -- from the outermost aggregate, because subaggregates do not
1495 -- have an assigned type.
70482933 1496
c45b6ae0 1497 declare
5277cab6 1498 P : Node_Id;
70482933 1499
c45b6ae0 1500 begin
5277cab6 1501 P := Parent (Expr);
c45b6ae0 1502 while Present (P) loop
c45b6ae0
AC
1503 if Nkind (P) = N_Aggregate
1504 and then Present (Etype (P))
1505 then
10edebe7 1506 Comp_Typ := Component_Type (Etype (P));
c45b6ae0
AC
1507 exit;
1508
1509 else
1510 P := Parent (P);
1511 end if;
1512 end loop;
6e937c1c 1513
10edebe7 1514 pragma Assert (Comp_Typ = Ctype); -- AI-287
c45b6ae0
AC
1515 end;
1516 end if;
70482933
RK
1517 end if;
1518
0ab80019 1519 -- Ada 2005 (AI-287): We only analyze the expression in case of non-
6e937c1c 1520 -- default initialized components (otherwise Expr_Q is not present).
c45b6ae0
AC
1521
1522 if Present (Expr_Q)
d7f94401 1523 and then Nkind_In (Expr_Q, N_Aggregate, N_Extension_Aggregate)
70482933 1524 then
d7f94401
AC
1525 -- At this stage the Expression may not have been analyzed yet
1526 -- because the array aggregate code has not been updated to use
1527 -- the Expansion_Delayed flag and avoid analysis altogether to
1528 -- solve the same problem (see Resolve_Aggr_Expr). So let us do
1529 -- the analysis of non-array aggregates now in order to get the
1530 -- value of Expansion_Delayed flag for the inner aggregate ???
70482933 1531
10edebe7
AC
1532 if Present (Comp_Typ) and then not Is_Array_Type (Comp_Typ) then
1533 Analyze_And_Resolve (Expr_Q, Comp_Typ);
70482933
RK
1534 end if;
1535
1536 if Is_Delayed_Aggregate (Expr_Q) then
3cf3e5c6 1537
308e6f3a 1538 -- This is either a subaggregate of a multidimensional array,
3cf3e5c6
AC
1539 -- or a component of an array type whose component type is
1540 -- also an array. In the latter case, the expression may have
1541 -- component associations that provide different bounds from
1542 -- those of the component type, and sliding must occur. Instead
1543 -- of decomposing the current aggregate assignment, force the
937e9676 1544 -- reanalysis of the assignment, so that a temporary will be
3cf3e5c6
AC
1545 -- generated in the usual fashion, and sliding will take place.
1546
1547 if Nkind (Parent (N)) = N_Assignment_Statement
10edebe7 1548 and then Is_Array_Type (Comp_Typ)
3cf3e5c6 1549 and then Present (Component_Associations (Expr_Q))
10edebe7 1550 and then Must_Slide (Comp_Typ, Etype (Expr_Q))
3cf3e5c6
AC
1551 then
1552 Set_Expansion_Delayed (Expr_Q, False);
1553 Set_Analyzed (Expr_Q, False);
1554
1555 else
1556 return
1557 Add_Loop_Actions (
df3e68b1 1558 Late_Expansion (Expr_Q, Etype (Expr_Q), Indexed_Comp));
3cf3e5c6 1559 end if;
70482933
RK
1560 end if;
1561 end if;
1562
937e9676
AC
1563 if Present (Expr) then
1564
1565 -- Handle an initialization expression of a controlled type in
1566 -- case it denotes a function call. In general such a scenario
1567 -- will produce a transient scope, but this will lead to wrong
1568 -- order of initialization, adjustment, and finalization in the
1569 -- context of aggregates.
1570
1571 -- Target (1) := Ctrl_Func_Call;
1572
1573 -- begin -- scope
1574 -- Trans_Obj : ... := Ctrl_Func_Call; -- object
1575 -- Target (1) := Trans_Obj;
1576 -- Finalize (Trans_Obj);
1577 -- end;
1578 -- Target (1)._tag := ...;
1579 -- Adjust (Target (1));
1580
1581 -- In the example above, the call to Finalize occurs too early
1582 -- and as a result it may leave the array component in a bad
1583 -- state. Finalization of the transient object should really
1584 -- happen after adjustment.
1585
1586 -- To avoid this scenario, perform in-place side-effect removal
1587 -- of the function call. This eliminates the transient property
1588 -- of the function result and ensures correct order of actions.
1589
1590 -- Res : ... := Ctrl_Func_Call;
1591 -- Target (1) := Res;
1592 -- Target (1)._tag := ...;
1593 -- Adjust (Target (1));
1594 -- Finalize (Res);
1595
1596 if Present (Comp_Typ)
1597 and then Needs_Finalization (Comp_Typ)
1598 and then Nkind (Expr) /= N_Aggregate
1599 then
1600 Initialize_Ctrl_Array_Component
1601 (Arr_Comp => Indexed_Comp,
1602 Comp_Typ => Comp_Typ,
1603 Init_Expr => Expr,
1604 Stmts => Stmts);
1605
1606 -- Otherwise perform simple component initialization
1607
1608 else
1609 Initialize_Array_Component
1610 (Arr_Comp => Indexed_Comp,
1611 Comp_Typ => Comp_Typ,
1612 Init_Expr => Expr,
1613 Stmts => Stmts);
1614 end if;
1615
0ab80019 1616 -- Ada 2005 (AI-287): In case of default initialized component, call
6e937c1c 1617 -- the initialization subprogram associated with the component type.
3b9fa2df
ES
1618 -- If the component type is an access type, add an explicit null
1619 -- assignment, because for the back-end there is an initialization
1620 -- present for the whole aggregate, and no default initialization
1621 -- will take place.
1622
1623 -- In addition, if the component type is controlled, we must call
1624 -- its Initialize procedure explicitly, because there is no explicit
1625 -- object creation that will invoke it otherwise.
70482933 1626
937e9676 1627 else
3b9fa2df 1628 if Present (Base_Init_Proc (Base_Type (Ctype)))
615cbd95
AC
1629 or else Has_Task (Base_Type (Ctype))
1630 then
10edebe7 1631 Append_List_To (Stmts,
c45b6ae0
AC
1632 Build_Initialization_Call (Loc,
1633 Id_Ref => Indexed_Comp,
1634 Typ => Ctype,
1635 With_Default_Init => True));
3b9fa2df 1636
ffcfb997
ES
1637 -- If the component type has invariants, add an invariant
1638 -- check after the component is default-initialized. It will
1639 -- be analyzed and resolved before the code for initialization
1640 -- of other components.
1641
1642 if Has_Invariants (Ctype) then
1643 Set_Etype (Indexed_Comp, Ctype);
10edebe7 1644 Append_To (Stmts, Make_Invariant_Call (Indexed_Comp));
ffcfb997
ES
1645 end if;
1646
3b9fa2df 1647 elsif Is_Access_Type (Ctype) then
10edebe7 1648 Append_To (Stmts,
ffcfb997 1649 Make_Assignment_Statement (Loc,
10edebe7 1650 Name => New_Copy_Tree (Indexed_Comp),
ffcfb997 1651 Expression => Make_Null (Loc)));
3b9fa2df
ES
1652 end if;
1653
048e5cef 1654 if Needs_Finalization (Ctype) then
2168d7cc 1655 Init_Call :=
37368818
RD
1656 Make_Init_Call
1657 (Obj_Ref => New_Copy_Tree (Indexed_Comp),
2168d7cc
AC
1658 Typ => Ctype);
1659
1660 -- Guard against a missing [Deep_]Initialize when the component
1661 -- type was not properly frozen.
1662
1663 if Present (Init_Call) then
1664 Append_To (Stmts, Init_Call);
1665 end if;
615cbd95 1666 end if;
70482933
RK
1667 end if;
1668
10edebe7 1669 return Add_Loop_Actions (Stmts);
70482933
RK
1670 end Gen_Assign;
1671
1672 --------------
1673 -- Gen_Loop --
1674 --------------
1675
1676 function Gen_Loop (L, H : Node_Id; Expr : Node_Id) return List_Id is
00f45f30
AC
1677 Is_Iterated_Component : constant Boolean :=
1678 Nkind (Parent (Expr)) = N_Iterated_Component_Association;
1679
07fc65c4 1680 L_J : Node_Id;
70482933 1681
240fe2a4
AC
1682 L_L : Node_Id;
1683 -- Index_Base'(L)
1684
1685 L_H : Node_Id;
1686 -- Index_Base'(H)
1687
70482933
RK
1688 L_Range : Node_Id;
1689 -- Index_Base'(L) .. Index_Base'(H)
1690
1691 L_Iteration_Scheme : Node_Id;
07fc65c4 1692 -- L_J in Index_Base'(L) .. Index_Base'(H)
70482933
RK
1693
1694 L_Body : List_Id;
1695 -- The statements to execute in the loop
1696
fbf5a39b
AC
1697 S : constant List_Id := New_List;
1698 -- List of statements
70482933
RK
1699
1700 Tcopy : Node_Id;
1701 -- Copy of expression tree, used for checking purposes
1702
1703 begin
1704 -- If loop bounds define an empty range return the null statement
1705
1706 if Empty_Range (L, H) then
1707 Append_To (S, Make_Null_Statement (Loc));
1708
0ab80019 1709 -- Ada 2005 (AI-287): Nothing else need to be done in case of
6e937c1c 1710 -- default initialized component.
70482933 1711
d8f7b976 1712 if No (Expr) then
c45b6ae0
AC
1713 null;
1714
1715 else
1716 -- The expression must be type-checked even though no component
1717 -- of the aggregate will have this value. This is done only for
1718 -- actual components of the array, not for subaggregates. Do
1719 -- the check on a copy, because the expression may be shared
1720 -- among several choices, some of which might be non-null.
1721
1722 if Present (Etype (N))
1723 and then Is_Array_Type (Etype (N))
1724 and then No (Next_Index (Index))
1725 then
1726 Expander_Mode_Save_And_Set (False);
1727 Tcopy := New_Copy_Tree (Expr);
1728 Set_Parent (Tcopy, N);
1729 Analyze_And_Resolve (Tcopy, Component_Type (Etype (N)));
1730 Expander_Mode_Restore;
1731 end if;
70482933
RK
1732 end if;
1733
1734 return S;
1735
00f45f30
AC
1736 -- If loop bounds are the same then generate an assignment, unless
1737 -- the parent construct is an Iterated_Component_Association.
70482933 1738
00f45f30 1739 elsif Equal (L, H) and then not Is_Iterated_Component then
70482933
RK
1740 return Gen_Assign (New_Copy_Tree (L), Expr);
1741
3b9fa2df
ES
1742 -- If H - L <= 2 then generate a sequence of assignments when we are
1743 -- processing the bottom most aggregate and it contains scalar
1744 -- components.
70482933
RK
1745
1746 elsif No (Next_Index (Index))
1747 and then Scalar_Comp
1748 and then Local_Compile_Time_Known_Value (L)
1749 and then Local_Compile_Time_Known_Value (H)
1750 and then Local_Expr_Value (H) - Local_Expr_Value (L) <= 2
00f45f30 1751 and then not Is_Iterated_Component
70482933
RK
1752 then
1753 Append_List_To (S, Gen_Assign (New_Copy_Tree (L), Expr));
1754 Append_List_To (S, Gen_Assign (Add (1, To => L), Expr));
1755
1756 if Local_Expr_Value (H) - Local_Expr_Value (L) = 2 then
1757 Append_List_To (S, Gen_Assign (Add (2, To => L), Expr));
1758 end if;
1759
1760 return S;
1761 end if;
1762
07fc65c4 1763 -- Otherwise construct the loop, starting with the loop index L_J
70482933 1764
00f45f30 1765 if Is_Iterated_Component then
72cdccfa
HK
1766 L_J :=
1767 Make_Defining_Identifier (Loc,
1768 Chars => (Chars (Defining_Identifier (Parent (Expr)))));
00f45f30
AC
1769
1770 else
1771 L_J := Make_Temporary (Loc, 'J', L);
1772 end if;
70482933 1773
240fe2a4
AC
1774 -- Construct "L .. H" in Index_Base. We use a qualified expression
1775 -- for the bound to convert to the index base, but we don't need
1776 -- to do that if we already have the base type at hand.
1777
1778 if Etype (L) = Index_Base then
1779 L_L := L;
1780 else
1781 L_L :=
1782 Make_Qualified_Expression (Loc,
1783 Subtype_Mark => Index_Base_Name,
00f45f30 1784 Expression => New_Copy_Tree (L));
240fe2a4
AC
1785 end if;
1786
1787 if Etype (H) = Index_Base then
1788 L_H := H;
1789 else
1790 L_H :=
1791 Make_Qualified_Expression (Loc,
1792 Subtype_Mark => Index_Base_Name,
00f45f30 1793 Expression => New_Copy_Tree (H));
240fe2a4 1794 end if;
70482933
RK
1795
1796 L_Range :=
240fe2a4 1797 Make_Range (Loc,
ffcfb997 1798 Low_Bound => L_L,
240fe2a4 1799 High_Bound => L_H);
70482933 1800
07fc65c4 1801 -- Construct "for L_J in Index_Base range L .. H"
70482933
RK
1802
1803 L_Iteration_Scheme :=
1804 Make_Iteration_Scheme
1805 (Loc,
1806 Loop_Parameter_Specification =>
1807 Make_Loop_Parameter_Specification
1808 (Loc,
07fc65c4 1809 Defining_Identifier => L_J,
70482933
RK
1810 Discrete_Subtype_Definition => L_Range));
1811
1812 -- Construct the statements to execute in the loop body
1813
937e9676
AC
1814 L_Body :=
1815 Gen_Assign (New_Occurrence_Of (L_J, Loc), Expr, In_Loop => True);
70482933
RK
1816
1817 -- Construct the final loop
1818
37368818
RD
1819 Append_To (S,
1820 Make_Implicit_Loop_Statement
1821 (Node => N,
1822 Identifier => Empty,
1823 Iteration_Scheme => L_Iteration_Scheme,
1824 Statements => L_Body));
70482933 1825
3b9fa2df
ES
1826 -- A small optimization: if the aggregate is initialized with a box
1827 -- and the component type has no initialization procedure, remove the
1828 -- useless empty loop.
0f95b178
JM
1829
1830 if Nkind (First (S)) = N_Loop_Statement
1831 and then Is_Empty_List (Statements (First (S)))
1832 then
1833 return New_List (Make_Null_Statement (Loc));
1834 else
1835 return S;
1836 end if;
70482933
RK
1837 end Gen_Loop;
1838
1839 ---------------
1840 -- Gen_While --
1841 ---------------
1842
1843 -- The code built is
1844
07fc65c4
GB
1845 -- W_J : Index_Base := L;
1846 -- while W_J < H loop
1847 -- W_J := Index_Base'Succ (W);
70482933
RK
1848 -- L_Body;
1849 -- end loop;
1850
1851 function Gen_While (L, H : Node_Id; Expr : Node_Id) return List_Id is
07fc65c4 1852 W_J : Node_Id;
70482933
RK
1853
1854 W_Decl : Node_Id;
07fc65c4 1855 -- W_J : Base_Type := L;
70482933
RK
1856
1857 W_Iteration_Scheme : Node_Id;
07fc65c4 1858 -- while W_J < H
70482933
RK
1859
1860 W_Index_Succ : Node_Id;
07fc65c4 1861 -- Index_Base'Succ (J)
70482933 1862
fbf5a39b 1863 W_Increment : Node_Id;
07fc65c4 1864 -- W_J := Index_Base'Succ (W)
70482933 1865
fbf5a39b 1866 W_Body : constant List_Id := New_List;
70482933
RK
1867 -- The statements to execute in the loop
1868
fbf5a39b 1869 S : constant List_Id := New_List;
70482933
RK
1870 -- list of statement
1871
1872 begin
1873 -- If loop bounds define an empty range or are equal return null
1874
1875 if Empty_Range (L, H) or else Equal (L, H) then
1876 Append_To (S, Make_Null_Statement (Loc));
1877 return S;
1878 end if;
1879
07fc65c4 1880 -- Build the decl of W_J
70482933 1881
191fcb3a 1882 W_J := Make_Temporary (Loc, 'J', L);
70482933
RK
1883 W_Decl :=
1884 Make_Object_Declaration
1885 (Loc,
07fc65c4 1886 Defining_Identifier => W_J,
70482933
RK
1887 Object_Definition => Index_Base_Name,
1888 Expression => L);
1889
1890 -- Theoretically we should do a New_Copy_Tree (L) here, but we know
1891 -- that in this particular case L is a fresh Expr generated by
1892 -- Add which we are the only ones to use.
1893
1894 Append_To (S, W_Decl);
1895
fbf5a39b 1896 -- Construct " while W_J < H"
70482933
RK
1897
1898 W_Iteration_Scheme :=
1899 Make_Iteration_Scheme
1900 (Loc,
1901 Condition => Make_Op_Lt
1902 (Loc,
e4494292 1903 Left_Opnd => New_Occurrence_Of (W_J, Loc),
70482933
RK
1904 Right_Opnd => New_Copy_Tree (H)));
1905
1906 -- Construct the statements to execute in the loop body
1907
1908 W_Index_Succ :=
1909 Make_Attribute_Reference
1910 (Loc,
1911 Prefix => Index_Base_Name,
1912 Attribute_Name => Name_Succ,
e4494292 1913 Expressions => New_List (New_Occurrence_Of (W_J, Loc)));
70482933
RK
1914
1915 W_Increment :=
1916 Make_OK_Assignment_Statement
1917 (Loc,
e4494292 1918 Name => New_Occurrence_Of (W_J, Loc),
70482933
RK
1919 Expression => W_Index_Succ);
1920
1921 Append_To (W_Body, W_Increment);
937e9676 1922
70482933 1923 Append_List_To (W_Body,
937e9676 1924 Gen_Assign (New_Occurrence_Of (W_J, Loc), Expr, In_Loop => True));
70482933
RK
1925
1926 -- Construct the final loop
1927
37368818
RD
1928 Append_To (S,
1929 Make_Implicit_Loop_Statement
1930 (Node => N,
1931 Identifier => Empty,
1932 Iteration_Scheme => W_Iteration_Scheme,
1933 Statements => W_Body));
70482933
RK
1934
1935 return S;
1936 end Gen_While;
1937
59e9bc0b
AC
1938 --------------------
1939 -- Get_Assoc_Expr --
1940 --------------------
1941
1942 function Get_Assoc_Expr (Assoc : Node_Id) return Node_Id is
e9999161
AC
1943 Typ : constant Entity_Id := Base_Type (Etype (N));
1944
59e9bc0b
AC
1945 begin
1946 if Box_Present (Assoc) then
e9999161
AC
1947 if Is_Scalar_Type (Ctype) then
1948 if Present (Default_Aspect_Component_Value (Typ)) then
1949 return Default_Aspect_Component_Value (Typ);
e9999161
AC
1950 elsif Present (Default_Aspect_Value (Ctype)) then
1951 return Default_Aspect_Value (Ctype);
1952 else
1953 return Empty;
1954 end if;
e0c23ac7 1955
59e9bc0b
AC
1956 else
1957 return Empty;
1958 end if;
1959
1960 else
1961 return Expression (Assoc);
1962 end if;
1963 end Get_Assoc_Expr;
1964
70482933
RK
1965 ---------------------
1966 -- Index_Base_Name --
1967 ---------------------
1968
1969 function Index_Base_Name return Node_Id is
1970 begin
e4494292 1971 return New_Occurrence_Of (Index_Base, Sloc (N));
70482933
RK
1972 end Index_Base_Name;
1973
1974 ------------------------------------
1975 -- Local_Compile_Time_Known_Value --
1976 ------------------------------------
1977
1978 function Local_Compile_Time_Known_Value (E : Node_Id) return Boolean is
1979 begin
1980 return Compile_Time_Known_Value (E)
1981 or else
1982 (Nkind (E) = N_Attribute_Reference
fbf5a39b
AC
1983 and then Attribute_Name (E) = Name_Val
1984 and then Compile_Time_Known_Value (First (Expressions (E))));
70482933
RK
1985 end Local_Compile_Time_Known_Value;
1986
1987 ----------------------
1988 -- Local_Expr_Value --
1989 ----------------------
1990
1991 function Local_Expr_Value (E : Node_Id) return Uint is
1992 begin
1993 if Compile_Time_Known_Value (E) then
1994 return Expr_Value (E);
1995 else
1996 return Expr_Value (First (Expressions (E)));
1997 end if;
1998 end Local_Expr_Value;
1999
937e9676 2000 -- Local variables
70482933 2001
937e9676 2002 New_Code : constant List_Id := New_List;
70482933
RK
2003
2004 Aggr_L : constant Node_Id := Low_Bound (Aggregate_Bounds (N));
2005 Aggr_H : constant Node_Id := High_Bound (Aggregate_Bounds (N));
d74716b3
AC
2006 -- The aggregate bounds of this specific subaggregate. Note that if the
2007 -- code generated by Build_Array_Aggr_Code is executed then these bounds
2008 -- are OK. Otherwise a Constraint_Error would have been raised.
70482933 2009
fbf5a39b
AC
2010 Aggr_Low : constant Node_Id := Duplicate_Subexpr_No_Checks (Aggr_L);
2011 Aggr_High : constant Node_Id := Duplicate_Subexpr_No_Checks (Aggr_H);
7324bf49 2012 -- After Duplicate_Subexpr these are side-effect free
70482933 2013
937e9676
AC
2014 Assoc : Node_Id;
2015 Choice : Node_Id;
2016 Expr : Node_Id;
2017 High : Node_Id;
2018 Low : Node_Id;
2019 Typ : Entity_Id;
70482933
RK
2020
2021 Nb_Choices : Nat := 0;
2022 Table : Case_Table_Type (1 .. Number_Of_Choices (N));
2023 -- Used to sort all the different choice values
2024
2025 Nb_Elements : Int;
2026 -- Number of elements in the positional aggregate
2027
937e9676 2028 Others_Assoc : Node_Id := Empty;
70482933
RK
2029
2030 -- Start of processing for Build_Array_Aggr_Code
2031
2032 begin
fbf5a39b
AC
2033 -- First before we start, a special case. if we have a bit packed
2034 -- array represented as a modular type, then clear the value to
2035 -- zero first, to ensure that unused bits are properly cleared.
2036
2037 Typ := Etype (N);
2038
2039 if Present (Typ)
2040 and then Is_Bit_Packed_Array (Typ)
8ca597af 2041 and then Is_Modular_Integer_Type (Packed_Array_Impl_Type (Typ))
fbf5a39b
AC
2042 then
2043 Append_To (New_Code,
2044 Make_Assignment_Statement (Loc,
37368818 2045 Name => New_Copy_Tree (Into),
fbf5a39b
AC
2046 Expression =>
2047 Unchecked_Convert_To (Typ,
2048 Make_Integer_Literal (Loc, Uint_0))));
2049 end if;
2050
0e08f7ab
ES
2051 -- If the component type contains tasks, we need to build a Master
2052 -- entity in the current scope, because it will be needed if build-
2053 -- in-place functions are called in the expanded code.
2054
36a66365 2055 if Nkind (Parent (N)) = N_Object_Declaration and then Has_Task (Typ) then
0e08f7ab
ES
2056 Build_Master_Entity (Defining_Identifier (Parent (N)));
2057 end if;
2058
70482933 2059 -- STEP 1: Process component associations
3b9fa2df 2060
fbf5a39b
AC
2061 -- For those associations that may generate a loop, initialize
2062 -- Loop_Actions to collect inserted actions that may be crated.
70482933 2063
3b9fa2df
ES
2064 -- Skip this if no component associations
2065
70482933
RK
2066 if No (Expressions (N)) then
2067
2068 -- STEP 1 (a): Sort the discrete choices
2069
2070 Assoc := First (Component_Associations (N));
2071 while Present (Assoc) loop
00f45f30 2072 Choice := First (Choice_List (Assoc));
70482933 2073 while Present (Choice) loop
70482933 2074 if Nkind (Choice) = N_Others_Choice then
fbf5a39b 2075 Set_Loop_Actions (Assoc, New_List);
59e9bc0b 2076 Others_Assoc := Assoc;
70482933
RK
2077 exit;
2078 end if;
2079
2080 Get_Index_Bounds (Choice, Low, High);
2081
fbf5a39b
AC
2082 if Low /= High then
2083 Set_Loop_Actions (Assoc, New_List);
2084 end if;
2085
70482933 2086 Nb_Choices := Nb_Choices + 1;
59e9bc0b
AC
2087
2088 Table (Nb_Choices) :=
2089 (Choice_Lo => Low,
2090 Choice_Hi => High,
2091 Choice_Node => Get_Assoc_Expr (Assoc));
2092
70482933
RK
2093 Next (Choice);
2094 end loop;
2095
2096 Next (Assoc);
2097 end loop;
2098
2099 -- If there is more than one set of choices these must be static
2100 -- and we can therefore sort them. Remember that Nb_Choices does not
2101 -- account for an others choice.
2102
2103 if Nb_Choices > 1 then
2104 Sort_Case_Table (Table);
2105 end if;
2106
3cf3e5c6 2107 -- STEP 1 (b): take care of the whole set of discrete choices
70482933
RK
2108
2109 for J in 1 .. Nb_Choices loop
2110 Low := Table (J).Choice_Lo;
2111 High := Table (J).Choice_Hi;
2112 Expr := Table (J).Choice_Node;
70482933
RK
2113 Append_List (Gen_Loop (Low, High, Expr), To => New_Code);
2114 end loop;
2115
2116 -- STEP 1 (c): generate the remaining loops to cover others choice
2117 -- We don't need to generate loops over empty gaps, but if there is
2118 -- a single empty range we must analyze the expression for semantics
2119
59e9bc0b 2120 if Present (Others_Assoc) then
70482933
RK
2121 declare
2122 First : Boolean := True;
2123
2124 begin
2125 for J in 0 .. Nb_Choices loop
70482933
RK
2126 if J = 0 then
2127 Low := Aggr_Low;
2128 else
2129 Low := Add (1, To => Table (J).Choice_Hi);
2130 end if;
2131
2132 if J = Nb_Choices then
2133 High := Aggr_High;
2134 else
2135 High := Add (-1, To => Table (J + 1).Choice_Lo);
2136 end if;
2137
fbf5a39b 2138 -- If this is an expansion within an init proc, make
c84700e7
ES
2139 -- sure that discriminant references are replaced by
2140 -- the corresponding discriminal.
2141
2142 if Inside_Init_Proc then
2143 if Is_Entity_Name (Low)
2144 and then Ekind (Entity (Low)) = E_Discriminant
2145 then
2146 Set_Entity (Low, Discriminal (Entity (Low)));
2147 end if;
2148
2149 if Is_Entity_Name (High)
2150 and then Ekind (Entity (High)) = E_Discriminant
2151 then
2152 Set_Entity (High, Discriminal (Entity (High)));
2153 end if;
2154 end if;
2155
70482933
RK
2156 if First
2157 or else not Empty_Range (Low, High)
2158 then
2159 First := False;
2160 Append_List
59e9bc0b
AC
2161 (Gen_Loop (Low, High,
2162 Get_Assoc_Expr (Others_Assoc)), To => New_Code);
70482933
RK
2163 end if;
2164 end loop;
2165 end;
2166 end if;
2167
2168 -- STEP 2: Process positional components
2169
2170 else
2171 -- STEP 2 (a): Generate the assignments for each positional element
2172 -- Note that here we have to use Aggr_L rather than Aggr_Low because
2173 -- Aggr_L is analyzed and Add wants an analyzed expression.
2174
2175 Expr := First (Expressions (N));
2176 Nb_Elements := -1;
70482933
RK
2177 while Present (Expr) loop
2178 Nb_Elements := Nb_Elements + 1;
2179 Append_List (Gen_Assign (Add (Nb_Elements, To => Aggr_L), Expr),
2180 To => New_Code);
2181 Next (Expr);
2182 end loop;
2183
2184 -- STEP 2 (b): Generate final loop if an others choice is present
2185 -- Here Nb_Elements gives the offset of the last positional element.
2186
2187 if Present (Component_Associations (N)) then
2188 Assoc := Last (Component_Associations (N));
70482933 2189
0ab80019 2190 -- Ada 2005 (AI-287)
6e937c1c 2191
59e9bc0b
AC
2192 Append_List (Gen_While (Add (Nb_Elements, To => Aggr_L),
2193 Aggr_High,
2194 Get_Assoc_Expr (Assoc)), -- AI-287
2195 To => New_Code);
70482933
RK
2196 end if;
2197 end if;
2198
2199 return New_Code;
2200 end Build_Array_Aggr_Code;
2201
2202 ----------------------------
2203 -- Build_Record_Aggr_Code --
2204 ----------------------------
2205
2206 function Build_Record_Aggr_Code
f7e6fc47
RD
2207 (N : Node_Id;
2208 Typ : Entity_Id;
2209 Lhs : Node_Id) return List_Id
70482933
RK
2210 is
2211 Loc : constant Source_Ptr := Sloc (N);
2212 L : constant List_Id := New_List;
70482933
RK
2213 N_Typ : constant Entity_Id := Etype (N);
2214
2215 Comp : Node_Id;
2216 Instr : Node_Id;
2217 Ref : Node_Id;
0f95b178 2218 Target : Entity_Id;
70482933
RK
2219 Comp_Type : Entity_Id;
2220 Selector : Entity_Id;
2221 Comp_Expr : Node_Id;
70482933
RK
2222 Expr_Q : Node_Id;
2223
70482933
RK
2224 -- If this is an internal aggregate, the External_Final_List is an
2225 -- expression for the controller record of the enclosing type.
3b9fa2df 2226
70482933
RK
2227 -- If the current aggregate has several controlled components, this
2228 -- expression will appear in several calls to attach to the finali-
2229 -- zation list, and it must not be shared.
2230
70482933
RK
2231 Ancestor_Is_Expression : Boolean := False;
2232 Ancestor_Is_Subtype_Mark : Boolean := False;
2233
2234 Init_Typ : Entity_Id := Empty;
5277cab6 2235
df3e68b1
HK
2236 Finalization_Done : Boolean := False;
2237 -- True if Generate_Finalization_Actions has already been called; calls
0f95b178 2238 -- after the first do nothing.
70482933 2239
70482933 2240 function Ancestor_Discriminant_Value (Disc : Entity_Id) return Node_Id;
3b9fa2df
ES
2241 -- Returns the value that the given discriminant of an ancestor type
2242 -- should receive (in the absence of a conflict with the value provided
2243 -- by an ancestor part of an extension aggregate).
70482933
RK
2244
2245 procedure Check_Ancestor_Discriminants (Anc_Typ : Entity_Id);
3b9fa2df
ES
2246 -- Check that each of the discriminant values defined by the ancestor
2247 -- part of an extension aggregate match the corresponding values
2248 -- provided by either an association of the aggregate or by the
2249 -- constraint imposed by a parent type (RM95-4.3.2(8)).
70482933 2250
d8f7b976
ES
2251 function Compatible_Int_Bounds
2252 (Agg_Bounds : Node_Id;
2253 Typ_Bounds : Node_Id) return Boolean;
2254 -- Return true if Agg_Bounds are equal or within Typ_Bounds. It is
2255 -- assumed that both bounds are integer ranges.
2256
df3e68b1 2257 procedure Generate_Finalization_Actions;
0f95b178
JM
2258 -- Deal with the various controlled type data structure initializations
2259 -- (but only if it hasn't been done already).
d8f7b976
ES
2260
2261 function Get_Constraint_Association (T : Entity_Id) return Node_Id;
2262 -- Returns the first discriminant association in the constraint
2263 -- associated with T, if any, otherwise returns Empty.
2264
71129dde
AC
2265 function Get_Explicit_Discriminant_Value (D : Entity_Id) return Node_Id;
2266 -- If the ancestor part is an unconstrained type and further ancestors
2267 -- do not provide discriminants for it, check aggregate components for
2268 -- values of the discriminants.
2269
3e582869
AC
2270 procedure Init_Hidden_Discriminants (Typ : Entity_Id; List : List_Id);
2271 -- If Typ is derived, and constrains discriminants of the parent type,
2272 -- these discriminants are not components of the aggregate, and must be
2feb1f84
AC
2273 -- initialized. The assignments are appended to List. The same is done
2274 -- if Typ derives fron an already constrained subtype of a discriminated
2275 -- parent type.
3e582869 2276
71129dde
AC
2277 procedure Init_Stored_Discriminants;
2278 -- If the type is derived and has inherited discriminants, generate
2279 -- explicit assignments for each, using the store constraint of the
2280 -- type. Note that both visible and stored discriminants must be
2281 -- initialized in case the derived type has some renamed and some
2282 -- constrained discriminants.
2283
2284 procedure Init_Visible_Discriminants;
2285 -- If type has discriminants, retrieve their values from aggregate,
2286 -- and generate explicit assignments for each. This does not include
2287 -- discriminants inherited from ancestor, which are handled above.
2288 -- The type of the aggregate is a subtype created ealier using the
2289 -- given values of the discriminant components of the aggregate.
aab45d22 2290
937e9676
AC
2291 procedure Initialize_Ctrl_Record_Component
2292 (Rec_Comp : Node_Id;
2293 Comp_Typ : Entity_Id;
2294 Init_Expr : Node_Id;
2295 Stmts : List_Id);
2296 -- Perform the initialization of controlled record component Rec_Comp.
2297 -- Comp_Typ is the component type. Init_Expr is the initialization
2298 -- expression for the record component. Hook-related declarations are
2299 -- inserted prior to aggregate N using Insert_Action. All remaining
2300 -- generated code is added to list Stmts.
2301
2302 procedure Initialize_Record_Component
2303 (Rec_Comp : Node_Id;
2304 Comp_Typ : Entity_Id;
2305 Init_Expr : Node_Id;
2306 Stmts : List_Id);
2307 -- Perform the initialization of record component Rec_Comp. Comp_Typ
2308 -- is the component type. Init_Expr is the initialization expression
2309 -- of the record component. All generated code is added to list Stmts.
2310
d8f7b976
ES
2311 function Is_Int_Range_Bounds (Bounds : Node_Id) return Boolean;
2312 -- Check whether Bounds is a range node and its lower and higher bounds
2313 -- are integers literals.
7b9d0d69 2314
937e9676
AC
2315 function Replace_Type (Expr : Node_Id) return Traverse_Result;
2316 -- If the aggregate contains a self-reference, traverse each expression
2317 -- to replace a possible self-reference with a reference to the proper
2318 -- component of the target of the assignment.
2319
2320 function Rewrite_Discriminant (Expr : Node_Id) return Traverse_Result;
2321 -- If default expression of a component mentions a discriminant of the
2322 -- type, it must be rewritten as the discriminant of the target object.
2323
2324 ---------------------------------
2325 -- Ancestor_Discriminant_Value --
2326 ---------------------------------
70482933
RK
2327
2328 function Ancestor_Discriminant_Value (Disc : Entity_Id) return Node_Id is
2329 Assoc : Node_Id;
2330 Assoc_Elmt : Elmt_Id;
2331 Aggr_Comp : Entity_Id;
2332 Corresp_Disc : Entity_Id;
2333 Current_Typ : Entity_Id := Base_Type (Typ);
2334 Parent_Typ : Entity_Id;
2335 Parent_Disc : Entity_Id;
2336 Save_Assoc : Node_Id := Empty;
2337
2338 begin
3b9fa2df
ES
2339 -- First check any discriminant associations to see if any of them
2340 -- provide a value for the discriminant.
70482933
RK
2341
2342 if Present (Discriminant_Specifications (Parent (Current_Typ))) then
2343 Assoc := First (Component_Associations (N));
2344 while Present (Assoc) loop
2345 Aggr_Comp := Entity (First (Choices (Assoc)));
2346
2347 if Ekind (Aggr_Comp) = E_Discriminant then
2348 Save_Assoc := Expression (Assoc);
2349
2350 Corresp_Disc := Corresponding_Discriminant (Aggr_Comp);
2351 while Present (Corresp_Disc) loop
3b9fa2df
ES
2352
2353 -- If found a corresponding discriminant then return the
2354 -- value given in the aggregate. (Note: this is not
2355 -- correct in the presence of side effects. ???)
70482933
RK
2356
2357 if Disc = Corresp_Disc then
2358 return Duplicate_Subexpr (Expression (Assoc));
2359 end if;
fbf5a39b 2360
ffcfb997 2361 Corresp_Disc := Corresponding_Discriminant (Corresp_Disc);
70482933
RK
2362 end loop;
2363 end if;
2364
2365 Next (Assoc);
2366 end loop;
2367 end if;
2368
2369 -- No match found in aggregate, so chain up parent types to find
2370 -- a constraint that defines the value of the discriminant.
2371
2372 Parent_Typ := Etype (Current_Typ);
2373 while Current_Typ /= Parent_Typ loop
9013065b
AC
2374 if Has_Discriminants (Parent_Typ)
2375 and then not Has_Unknown_Discriminants (Parent_Typ)
2376 then
70482933
RK
2377 Parent_Disc := First_Discriminant (Parent_Typ);
2378
2379 -- We either get the association from the subtype indication
2380 -- of the type definition itself, or from the discriminant
2381 -- constraint associated with the type entity (which is
2382 -- preferable, but it's not always present ???)
2383
aff557c7 2384 if Is_Empty_Elmt_List (Discriminant_Constraint (Current_Typ))
70482933
RK
2385 then
2386 Assoc := Get_Constraint_Association (Current_Typ);
2387 Assoc_Elmt := No_Elmt;
2388 else
2389 Assoc_Elmt :=
2390 First_Elmt (Discriminant_Constraint (Current_Typ));
2391 Assoc := Node (Assoc_Elmt);
2392 end if;
2393
2394 -- Traverse the discriminants of the parent type looking
2395 -- for one that corresponds.
2396
2397 while Present (Parent_Disc) and then Present (Assoc) loop
2398 Corresp_Disc := Parent_Disc;
2399 while Present (Corresp_Disc)
2400 and then Disc /= Corresp_Disc
2401 loop
ffcfb997 2402 Corresp_Disc := Corresponding_Discriminant (Corresp_Disc);
70482933
RK
2403 end loop;
2404
2405 if Disc = Corresp_Disc then
2406 if Nkind (Assoc) = N_Discriminant_Association then
2407 Assoc := Expression (Assoc);
2408 end if;
2409
e80f0cb0
RD
2410 -- If the located association directly denotes
2411 -- a discriminant, then use the value of a saved
2412 -- association of the aggregate. This is an approach
2413 -- used to handle certain cases involving multiple
2414 -- discriminants mapped to a single discriminant of
2415 -- a descendant. It's not clear how to locate the
2416 -- appropriate discriminant value for such cases. ???
70482933
RK
2417
2418 if Is_Entity_Name (Assoc)
2419 and then Ekind (Entity (Assoc)) = E_Discriminant
2420 then
2421 Assoc := Save_Assoc;
2422 end if;
2423
2424 return Duplicate_Subexpr (Assoc);
2425 end if;
2426
2427 Next_Discriminant (Parent_Disc);
2428
2429 if No (Assoc_Elmt) then
2430 Next (Assoc);
ffcfb997 2431
70482933
RK
2432 else
2433 Next_Elmt (Assoc_Elmt);
ffcfb997 2434
70482933
RK
2435 if Present (Assoc_Elmt) then
2436 Assoc := Node (Assoc_Elmt);
2437 else
2438 Assoc := Empty;
2439 end if;
2440 end if;
2441 end loop;
2442 end if;
2443
2444 Current_Typ := Parent_Typ;
2445 Parent_Typ := Etype (Current_Typ);
2446 end loop;
2447
2448 -- In some cases there's no ancestor value to locate (such as
2449 -- when an ancestor part given by an expression defines the
2450 -- discriminant value).
2451
2452 return Empty;
2453 end Ancestor_Discriminant_Value;
2454
2455 ----------------------------------
2456 -- Check_Ancestor_Discriminants --
2457 ----------------------------------
2458
2459 procedure Check_Ancestor_Discriminants (Anc_Typ : Entity_Id) is
5277cab6 2460 Discr : Entity_Id;
70482933
RK
2461 Disc_Value : Node_Id;
2462 Cond : Node_Id;
2463
2464 begin
5277cab6 2465 Discr := First_Discriminant (Base_Type (Anc_Typ));
70482933
RK
2466 while Present (Discr) loop
2467 Disc_Value := Ancestor_Discriminant_Value (Discr);
2468
2469 if Present (Disc_Value) then
2470 Cond := Make_Op_Ne (Loc,
ffcfb997 2471 Left_Opnd =>
70482933
RK
2472 Make_Selected_Component (Loc,
2473 Prefix => New_Copy_Tree (Target),
2474 Selector_Name => New_Occurrence_Of (Discr, Loc)),
2475 Right_Opnd => Disc_Value);
2476
07fc65c4
GB
2477 Append_To (L,
2478 Make_Raise_Constraint_Error (Loc,
2479 Condition => Cond,
2480 Reason => CE_Discriminant_Check_Failed));
70482933
RK
2481 end if;
2482
2483 Next_Discriminant (Discr);
2484 end loop;
2485 end Check_Ancestor_Discriminants;
2486
d8f7b976
ES
2487 ---------------------------
2488 -- Compatible_Int_Bounds --
2489 ---------------------------
2490
2491 function Compatible_Int_Bounds
2492 (Agg_Bounds : Node_Id;
2493 Typ_Bounds : Node_Id) return Boolean
2494 is
2495 Agg_Lo : constant Uint := Intval (Low_Bound (Agg_Bounds));
2496 Agg_Hi : constant Uint := Intval (High_Bound (Agg_Bounds));
2497 Typ_Lo : constant Uint := Intval (Low_Bound (Typ_Bounds));
2498 Typ_Hi : constant Uint := Intval (High_Bound (Typ_Bounds));
2499 begin
2500 return Typ_Lo <= Agg_Lo and then Agg_Hi <= Typ_Hi;
2501 end Compatible_Int_Bounds;
2502
937e9676
AC
2503 -----------------------------------
2504 -- Generate_Finalization_Actions --
2505 -----------------------------------
2506
2507 procedure Generate_Finalization_Actions is
2508 begin
2509 -- Do the work only the first time this is called
2510
2511 if Finalization_Done then
2512 return;
2513 end if;
2514
2515 Finalization_Done := True;
2516
2517 -- Determine the external finalization list. It is either the
2518 -- finalization list of the outer scope or the one coming from an
2519 -- outer aggregate. When the target is not a temporary, the proper
2520 -- scope is the scope of the target rather than the potentially
2521 -- transient current scope.
2522
2523 if Is_Controlled (Typ) and then Ancestor_Is_Subtype_Mark then
2524 Ref := Convert_To (Init_Typ, New_Copy_Tree (Target));
2525 Set_Assignment_OK (Ref);
2526
2527 Append_To (L,
2528 Make_Procedure_Call_Statement (Loc,
2529 Name =>
2530 New_Occurrence_Of
2531 (Find_Prim_Op (Init_Typ, Name_Initialize), Loc),
2532 Parameter_Associations => New_List (New_Copy_Tree (Ref))));
2533 end if;
2534 end Generate_Finalization_Actions;
2535
70482933
RK
2536 --------------------------------
2537 -- Get_Constraint_Association --
2538 --------------------------------
2539
2540 function Get_Constraint_Association (T : Entity_Id) return Node_Id is
2c17ca0a
AC
2541 Indic : Node_Id;
2542 Typ : Entity_Id;
70482933
RK
2543
2544 begin
2c17ca0a
AC
2545 Typ := T;
2546
598a56c0
ES
2547 -- If type is private, get constraint from full view. This was
2548 -- previously done in an instance context, but is needed whenever
2549 -- the ancestor part has a discriminant, possibly inherited through
2550 -- multiple derivations.
2c17ca0a 2551
598a56c0 2552 if Is_Private_Type (Typ) and then Present (Full_View (Typ)) then
2c17ca0a
AC
2553 Typ := Full_View (Typ);
2554 end if;
2555
2556 Indic := Subtype_Indication (Type_Definition (Parent (Typ)));
2557
598a56c0 2558 -- Verify that the subtype indication carries a constraint
70482933
RK
2559
2560 if Nkind (Indic) = N_Subtype_Indication
2561 and then Present (Constraint (Indic))
2562 then
2563 return First (Constraints (Constraint (Indic)));
2564 end if;
2565
2566 return Empty;
2567 end Get_Constraint_Association;
2568
aab45d22
AC
2569 -------------------------------------
2570 -- Get_Explicit_Discriminant_Value --
2571 -------------------------------------
2572
7893514c
RD
2573 function Get_Explicit_Discriminant_Value
2574 (D : Entity_Id) return Node_Id
aab45d22
AC
2575 is
2576 Assoc : Node_Id;
2577 Choice : Node_Id;
2578 Val : Node_Id;
2579
2580 begin
2581 -- The aggregate has been normalized and all associations have a
2582 -- single choice.
2583
2584 Assoc := First (Component_Associations (N));
2585 while Present (Assoc) loop
2586 Choice := First (Choices (Assoc));
7893514c 2587
aab45d22
AC
2588 if Chars (Choice) = Chars (D) then
2589 Val := Expression (Assoc);
2590 Remove (Assoc);
2591 return Val;
2592 end if;
2593
2594 Next (Assoc);
2595 end loop;
2596
2597 return Empty;
2598 end Get_Explicit_Discriminant_Value;
2599
3e582869
AC
2600 -------------------------------
2601 -- Init_Hidden_Discriminants --
2602 -------------------------------
2603
2604 procedure Init_Hidden_Discriminants (Typ : Entity_Id; List : List_Id) is
a25e72b5
AC
2605 function Is_Completely_Hidden_Discriminant
2606 (Discr : Entity_Id) return Boolean;
2607 -- Determine whether Discr is a completely hidden discriminant of
2608 -- type Typ.
2609
2610 ---------------------------------------
2611 -- Is_Completely_Hidden_Discriminant --
2612 ---------------------------------------
2613
2614 function Is_Completely_Hidden_Discriminant
2615 (Discr : Entity_Id) return Boolean
2616 is
2617 Item : Entity_Id;
2618
2619 begin
2620 -- Use First/Next_Entity as First/Next_Discriminant do not yield
2621 -- completely hidden discriminants.
2622
2623 Item := First_Entity (Typ);
2624 while Present (Item) loop
2625 if Ekind (Item) = E_Discriminant
2626 and then Is_Completely_Hidden (Item)
2627 and then Chars (Original_Record_Component (Item)) =
2628 Chars (Discr)
2629 then
2630 return True;
2631 end if;
2632
2633 Next_Entity (Item);
2634 end loop;
2635
2636 return False;
2637 end Is_Completely_Hidden_Discriminant;
2638
2639 -- Local variables
2640
2641 Base_Typ : Entity_Id;
2642 Discr : Entity_Id;
2643 Discr_Constr : Elmt_Id;
2644 Discr_Init : Node_Id;
2645 Discr_Val : Node_Id;
ddce04b8 2646 In_Aggr_Type : Boolean;
a25e72b5
AC
2647 Par_Typ : Entity_Id;
2648
2649 -- Start of processing for Init_Hidden_Discriminants
3e582869
AC
2650
2651 begin
7b536495
AC
2652 -- The constraints on the hidden discriminants, if present, are kept
2653 -- in the Stored_Constraint list of the type itself, or in that of
ddce04b8
AC
2654 -- the base type. If not in the constraints of the aggregate itself,
2655 -- we examine ancestors to find discriminants that are not renamed
2656 -- by other discriminants but constrained explicitly.
2657
2658 In_Aggr_Type := True;
2feb1f84 2659
a25e72b5
AC
2660 Base_Typ := Base_Type (Typ);
2661 while Is_Derived_Type (Base_Typ)
596f7139 2662 and then
a25e72b5 2663 (Present (Stored_Constraint (Base_Typ))
596f7139
AC
2664 or else
2665 (In_Aggr_Type and then Present (Stored_Constraint (Typ))))
3e582869 2666 loop
a25e72b5 2667 Par_Typ := Etype (Base_Typ);
7b536495 2668
a25e72b5 2669 if not Has_Discriminants (Par_Typ) then
2feb1f84
AC
2670 return;
2671 end if;
3e582869 2672
a25e72b5 2673 Discr := First_Discriminant (Par_Typ);
2feb1f84 2674
bdc193ba 2675 -- We know that one of the stored-constraint lists is present
2feb1f84 2676
a25e72b5
AC
2677 if Present (Stored_Constraint (Base_Typ)) then
2678 Discr_Constr := First_Elmt (Stored_Constraint (Base_Typ));
bdc193ba
AC
2679
2680 -- For private extension, stored constraint may be on full view
2681
a25e72b5
AC
2682 elsif Is_Private_Type (Base_Typ)
2683 and then Present (Full_View (Base_Typ))
2684 and then Present (Stored_Constraint (Full_View (Base_Typ)))
bdc193ba 2685 then
a25e72b5
AC
2686 Discr_Constr :=
2687 First_Elmt (Stored_Constraint (Full_View (Base_Typ)));
bdc193ba 2688
2feb1f84 2689 else
a25e72b5 2690 Discr_Constr := First_Elmt (Stored_Constraint (Typ));
2feb1f84
AC
2691 end if;
2692
a25e72b5
AC
2693 while Present (Discr) and then Present (Discr_Constr) loop
2694 Discr_Val := Node (Discr_Constr);
2695
2696 -- The parent discriminant is renamed in the derived type,
2697 -- nothing to initialize.
3e582869 2698
a25e72b5
AC
2699 -- type Deriv_Typ (Discr : ...)
2700 -- is new Parent_Typ (Discr => Discr);
3e582869 2701
a25e72b5
AC
2702 if Is_Entity_Name (Discr_Val)
2703 and then Ekind (Entity (Discr_Val)) = E_Discriminant
3e582869 2704 then
a25e72b5
AC
2705 null;
2706
2707 -- When the parent discriminant is constrained at the type
2708 -- extension level, it does not appear in the derived type.
2709
2710 -- type Deriv_Typ (Discr : ...)
2711 -- is new Parent_Typ (Discr => Discr,
2712 -- Hidden_Discr => Expression);
3e582869 2713
a25e72b5
AC
2714 elsif Is_Completely_Hidden_Discriminant (Discr) then
2715 null;
2716
2717 -- Otherwise initialize the discriminant
2718
2719 else
2720 Discr_Init :=
3e582869 2721 Make_OK_Assignment_Statement (Loc,
a25e72b5
AC
2722 Name =>
2723 Make_Selected_Component (Loc,
2724 Prefix => New_Copy_Tree (Target),
2725 Selector_Name => New_Occurrence_Of (Discr, Loc)),
2726 Expression => New_Copy_Tree (Discr_Val));
3e582869 2727
a25e72b5
AC
2728 Set_No_Ctrl_Actions (Discr_Init);
2729 Append_To (List, Discr_Init);
3e582869
AC
2730 end if;
2731
a25e72b5
AC
2732 Next_Elmt (Discr_Constr);
2733 Next_Discriminant (Discr);
3e582869
AC
2734 end loop;
2735
ddce04b8 2736 In_Aggr_Type := False;
a25e72b5 2737 Base_Typ := Base_Type (Par_Typ);
3e582869
AC
2738 end loop;
2739 end Init_Hidden_Discriminants;
2740
71129dde
AC
2741 --------------------------------
2742 -- Init_Visible_Discriminants --
2743 --------------------------------
2744
2745 procedure Init_Visible_Discriminants is
2746 Discriminant : Entity_Id;
2747 Discriminant_Value : Node_Id;
2748
2749 begin
2750 Discriminant := First_Discriminant (Typ);
2751 while Present (Discriminant) loop
2752 Comp_Expr :=
2753 Make_Selected_Component (Loc,
2754 Prefix => New_Copy_Tree (Target),
2755 Selector_Name => New_Occurrence_Of (Discriminant, Loc));
2756
2757 Discriminant_Value :=
2758 Get_Discriminant_Value
2759 (Discriminant, Typ, Discriminant_Constraint (N_Typ));
2760
2761 Instr :=
2762 Make_OK_Assignment_Statement (Loc,
2763 Name => Comp_Expr,
2764 Expression => New_Copy_Tree (Discriminant_Value));
2765
2766 Set_No_Ctrl_Actions (Instr);
2767 Append_To (L, Instr);
2768
2769 Next_Discriminant (Discriminant);
2770 end loop;
2771 end Init_Visible_Discriminants;
2772
2773 -------------------------------
2774 -- Init_Stored_Discriminants --
2775 -------------------------------
2776
2777 procedure Init_Stored_Discriminants is
2778 Discriminant : Entity_Id;
2779 Discriminant_Value : Node_Id;
2780
2781 begin
2782 Discriminant := First_Stored_Discriminant (Typ);
2783 while Present (Discriminant) loop
2784 Comp_Expr :=
2785 Make_Selected_Component (Loc,
2786 Prefix => New_Copy_Tree (Target),
2787 Selector_Name => New_Occurrence_Of (Discriminant, Loc));
2788
2789 Discriminant_Value :=
2790 Get_Discriminant_Value
2791 (Discriminant, N_Typ, Discriminant_Constraint (N_Typ));
2792
2793 Instr :=
2794 Make_OK_Assignment_Statement (Loc,
2795 Name => Comp_Expr,
2796 Expression => New_Copy_Tree (Discriminant_Value));
2797
2798 Set_No_Ctrl_Actions (Instr);
2799 Append_To (L, Instr);
2800
2801 Next_Stored_Discriminant (Discriminant);
2802 end loop;
2803 end Init_Stored_Discriminants;
2804
937e9676
AC
2805 --------------------------------------
2806 -- Initialize_Ctrl_Record_Component --
2807 --------------------------------------
d8f7b976 2808
937e9676
AC
2809 procedure Initialize_Ctrl_Record_Component
2810 (Rec_Comp : Node_Id;
2811 Comp_Typ : Entity_Id;
2812 Init_Expr : Node_Id;
2813 Stmts : List_Id)
2814 is
2815 Fin_Call : Node_Id;
2816 Hook_Clear : Node_Id;
d8f7b976 2817
937e9676
AC
2818 In_Place_Expansion : Boolean;
2819 -- Flag set when a nonlimited controlled function call requires
2820 -- in-place expansion.
0f95b178 2821
7b9d0d69 2822 begin
937e9676
AC
2823 -- Perform a preliminary analysis and resolution to determine what
2824 -- the initialization expression denotes. Unanalyzed function calls
2825 -- may appear as identifiers or indexed components.
2826
2827 if Nkind_In (Init_Expr, N_Function_Call,
2828 N_Identifier,
2829 N_Indexed_Component)
2830 and then not Analyzed (Init_Expr)
2831 then
2832 Preanalyze_And_Resolve (Init_Expr, Comp_Typ);
5277cab6
ES
2833 end if;
2834
937e9676
AC
2835 In_Place_Expansion :=
2836 Nkind (Init_Expr) = N_Function_Call
2837 and then not Is_Limited_Type (Comp_Typ);
7b9d0d69 2838
937e9676
AC
2839 -- The initialization expression is a controlled function call.
2840 -- Perform in-place removal of side effects to avoid creating a
2841 -- transient scope.
7b9d0d69 2842
937e9676
AC
2843 -- This in-place expansion is not performed for limited transient
2844 -- objects because the initialization is already done in place.
df3e68b1 2845
937e9676
AC
2846 if In_Place_Expansion then
2847
2848 -- Suppress the removal of side effects by general analysis
2849 -- because this behavior is emulated here. This avoids the
2850 -- generation of a transient scope, which leads to out-of-order
2851 -- adjustment and finalization.
2852
2853 Set_No_Side_Effect_Removal (Init_Expr);
2854
2855 -- Install all hook-related declarations and prepare the clean up
2856 -- statements.
2857
2858 Process_Transient_Component
2859 (Loc => Loc,
2860 Comp_Typ => Comp_Typ,
2861 Init_Expr => Init_Expr,
2862 Fin_Call => Fin_Call,
2863 Hook_Clear => Hook_Clear,
2864 Aggr => N);
7b9d0d69 2865 end if;
7b9d0d69 2866
937e9676
AC
2867 -- Use the noncontrolled component initialization circuitry to
2868 -- assign the result of the function call to the record component.
2869 -- This also performs tag adjustment and [deep] adjustment of the
2870 -- record component.
2871
2872 Initialize_Record_Component
2873 (Rec_Comp => Rec_Comp,
2874 Comp_Typ => Comp_Typ,
2875 Init_Expr => Init_Expr,
2876 Stmts => Stmts);
2877
2878 -- At this point the record component is fully initialized. Complete
2879 -- the processing of the controlled record component by finalizing
2880 -- the transient function result.
2881
2882 if In_Place_Expansion then
2883 Process_Transient_Component_Completion
2884 (Loc => Loc,
2885 Aggr => N,
2886 Fin_Call => Fin_Call,
2887 Hook_Clear => Hook_Clear,
2888 Stmts => Stmts);
2889 end if;
2890 end Initialize_Ctrl_Record_Component;
f2abc637 2891
937e9676
AC
2892 ---------------------------------
2893 -- Initialize_Record_Component --
2894 ---------------------------------
0f95b178 2895
937e9676
AC
2896 procedure Initialize_Record_Component
2897 (Rec_Comp : Node_Id;
2898 Comp_Typ : Entity_Id;
2899 Init_Expr : Node_Id;
2900 Stmts : List_Id)
2901 is
bb072d1c
AC
2902 Exceptions_OK : constant Boolean :=
2903 not Restriction_Active (No_Exception_Propagation);
2904
2905 Finalization_OK : constant Boolean := Needs_Finalization (Comp_Typ);
2906
937e9676 2907 Full_Typ : constant Entity_Id := Underlying_Type (Comp_Typ);
2168d7cc 2908 Adj_Call : Node_Id;
bb072d1c 2909 Blk_Stmts : List_Id;
937e9676 2910 Init_Stmt : Node_Id;
f2abc637 2911
f2abc637 2912 begin
bb072d1c
AC
2913 -- Protect the initialization statements from aborts. Generate:
2914
2915 -- Abort_Defer;
2916
2917 if Finalization_OK and Abort_Allowed then
2918 if Exceptions_OK then
2919 Blk_Stmts := New_List;
2920 else
2921 Blk_Stmts := Stmts;
2922 end if;
2923
2924 Append_To (Blk_Stmts, Build_Runtime_Call (Loc, RE_Abort_Defer));
2925
2926 -- Otherwise aborts are not allowed. All generated code is added
2927 -- directly to the input list.
2928
2929 else
2930 Blk_Stmts := Stmts;
2931 end if;
2932
937e9676
AC
2933 -- Initialize the record component. Generate:
2934
2935 -- Rec_Comp := Init_Expr;
2936
2937 -- Note that the initialization expression is NOT replicated because
2938 -- only a single component may be initialized by it.
2939
2940 Init_Stmt :=
2941 Make_OK_Assignment_Statement (Loc,
2942 Name => New_Copy_Tree (Rec_Comp),
2943 Expression => Init_Expr);
2944 Set_No_Ctrl_Actions (Init_Stmt);
2945
bb072d1c 2946 Append_To (Blk_Stmts, Init_Stmt);
937e9676
AC
2947
2948 -- Adjust the tag due to a possible view conversion. Generate:
2949
2950 -- Rec_Comp._tag := Full_TypeP;
2951
2952 if Tagged_Type_Expansion and then Is_Tagged_Type (Comp_Typ) then
bb072d1c 2953 Append_To (Blk_Stmts,
937e9676
AC
2954 Make_OK_Assignment_Statement (Loc,
2955 Name =>
2956 Make_Selected_Component (Loc,
2957 Prefix => New_Copy_Tree (Rec_Comp),
2958 Selector_Name =>
2959 New_Occurrence_Of
2960 (First_Tag_Component (Full_Typ), Loc)),
2961
2962 Expression =>
2963 Unchecked_Convert_To (RTE (RE_Tag),
2964 New_Occurrence_Of
2965 (Node (First_Elmt (Access_Disp_Table (Full_Typ))),
2966 Loc))));
2967 end if;
2968
2969 -- Adjust the component. Generate:
2970
2971 -- [Deep_]Adjust (Rec_Comp);
2972
bb072d1c 2973 if Finalization_OK and then not Is_Limited_Type (Comp_Typ) then
2168d7cc 2974 Adj_Call :=
937e9676
AC
2975 Make_Adjust_Call
2976 (Obj_Ref => New_Copy_Tree (Rec_Comp),
2168d7cc
AC
2977 Typ => Comp_Typ);
2978
2979 -- Guard against a missing [Deep_]Adjust when the component type
2980 -- was not properly frozen.
2981
2982 if Present (Adj_Call) then
2983 Append_To (Blk_Stmts, Adj_Call);
2984 end if;
f2abc637 2985 end if;
bb072d1c
AC
2986
2987 -- Complete the protection of the initialization statements
2988
2989 if Finalization_OK and Abort_Allowed then
2990
2991 -- Wrap the initialization statements in a block to catch a
2992 -- potential exception. Generate:
2993
2994 -- begin
2995 -- Abort_Defer;
2996 -- Rec_Comp := Init_Expr;
2997 -- Rec_Comp._tag := Full_TypP;
2998 -- [Deep_]Adjust (Rec_Comp);
2999 -- at end
3000 -- Abort_Undefer_Direct;
3001 -- end;
3002
3003 if Exceptions_OK then
3004 Append_To (Stmts,
3005 Build_Abort_Undefer_Block (Loc,
3006 Stmts => Blk_Stmts,
3007 Context => N));
3008
3009 -- Otherwise exceptions are not propagated. Generate:
3010
3011 -- Abort_Defer;
3012 -- Rec_Comp := Init_Expr;
3013 -- Rec_Comp._tag := Full_TypP;
3014 -- [Deep_]Adjust (Rec_Comp);
3015 -- Abort_Undefer;
3016
3017 else
3018 Append_To (Blk_Stmts,
3019 Build_Runtime_Call (Loc, RE_Abort_Undefer));
3020 end if;
3021 end if;
937e9676 3022 end Initialize_Record_Component;
b3f5eef0 3023
937e9676
AC
3024 -------------------------
3025 -- Is_Int_Range_Bounds --
3026 -------------------------
3027
3028 function Is_Int_Range_Bounds (Bounds : Node_Id) return Boolean is
3029 begin
3030 return Nkind (Bounds) = N_Range
3031 and then Nkind (Low_Bound (Bounds)) = N_Integer_Literal
3032 and then Nkind (High_Bound (Bounds)) = N_Integer_Literal;
3033 end Is_Int_Range_Bounds;
f2abc637 3034
0f95b178
JM
3035 ------------------
3036 -- Replace_Type --
3037 ------------------
3038
3039 function Replace_Type (Expr : Node_Id) return Traverse_Result is
3040 begin
acf63f8c
ES
3041 -- Note regarding the Root_Type test below: Aggregate components for
3042 -- self-referential types include attribute references to the current
3043 -- instance, of the form: Typ'access, etc.. These references are
3044 -- rewritten as references to the target of the aggregate: the
3045 -- left-hand side of an assignment, the entity in a declaration,
3046 -- or a temporary. Without this test, we would improperly extended
3047 -- this rewriting to attribute references whose prefix was not the
3048 -- type of the aggregate.
3049
0f95b178 3050 if Nkind (Expr) = N_Attribute_Reference
acf63f8c 3051 and then Is_Entity_Name (Prefix (Expr))
0f95b178 3052 and then Is_Type (Entity (Prefix (Expr)))
acf63f8c 3053 and then Root_Type (Etype (N)) = Root_Type (Entity (Prefix (Expr)))
0f95b178
JM
3054 then
3055 if Is_Entity_Name (Lhs) then
304757d2 3056 Rewrite (Prefix (Expr), New_Occurrence_Of (Entity (Lhs), Loc));
0f95b178
JM
3057
3058 else
3059 Rewrite (Expr,
3060 Make_Attribute_Reference (Loc,
3061 Attribute_Name => Name_Unrestricted_Access,
3062 Prefix => New_Copy_Tree (Lhs)));
3063 Set_Analyzed (Parent (Expr), False);
3064 end if;
3065 end if;
3066
3067 return OK;
3068 end Replace_Type;
3069
937e9676
AC
3070 --------------------------
3071 -- Rewrite_Discriminant --
3072 --------------------------
3073
3074 function Rewrite_Discriminant (Expr : Node_Id) return Traverse_Result is
3075 begin
3076 if Is_Entity_Name (Expr)
3077 and then Present (Entity (Expr))
3078 and then Ekind (Entity (Expr)) = E_In_Parameter
3079 and then Present (Discriminal_Link (Entity (Expr)))
3080 and then Scope (Discriminal_Link (Entity (Expr))) =
3081 Base_Type (Etype (N))
3082 then
3083 Rewrite (Expr,
3084 Make_Selected_Component (Loc,
3085 Prefix => New_Copy_Tree (Lhs),
3086 Selector_Name => Make_Identifier (Loc, Chars (Expr))));
3087 end if;
3088
3089 return OK;
3090 end Rewrite_Discriminant;
0f95b178 3091
f2abc637
AC
3092 procedure Replace_Discriminants is
3093 new Traverse_Proc (Rewrite_Discriminant);
3094
937e9676
AC
3095 procedure Replace_Self_Reference is
3096 new Traverse_Proc (Replace_Type);
3097
70482933
RK
3098 -- Start of processing for Build_Record_Aggr_Code
3099
3100 begin
0f95b178
JM
3101 if Has_Self_Reference (N) then
3102 Replace_Self_Reference (N);
3103 end if;
3104
3105 -- If the target of the aggregate is class-wide, we must convert it
3106 -- to the actual type of the aggregate, so that the proper components
3107 -- are visible. We know already that the types are compatible.
3108
3109 if Present (Etype (Lhs))
26a43556 3110 and then Is_Class_Wide_Type (Etype (Lhs))
0f95b178
JM
3111 then
3112 Target := Unchecked_Convert_To (Typ, Lhs);
3113 else
3114 Target := Lhs;
3115 end if;
3116
3b9fa2df
ES
3117 -- Deal with the ancestor part of extension aggregates or with the
3118 -- discriminants of the root type.
70482933
RK
3119
3120 if Nkind (N) = N_Extension_Aggregate then
3121 declare
df3e68b1 3122 Ancestor : constant Node_Id := Ancestor_Part (N);
2168d7cc 3123 Adj_Call : Node_Id;
df3e68b1 3124 Assign : List_Id;
70482933
RK
3125
3126 begin
70482933 3127 -- If the ancestor part is a subtype mark "T", we generate
fbf5a39b 3128
df3e68b1
HK
3129 -- init-proc (T (tmp)); if T is constrained and
3130 -- init-proc (S (tmp)); where S applies an appropriate
3131 -- constraint if T is unconstrained
70482933 3132
df3e68b1
HK
3133 if Is_Entity_Name (Ancestor)
3134 and then Is_Type (Entity (Ancestor))
3135 then
70482933
RK
3136 Ancestor_Is_Subtype_Mark := True;
3137
df3e68b1
HK
3138 if Is_Constrained (Entity (Ancestor)) then
3139 Init_Typ := Entity (Ancestor);
70482933 3140
3b9fa2df
ES
3141 -- For an ancestor part given by an unconstrained type mark,
3142 -- create a subtype constrained by appropriate corresponding
3143 -- discriminant values coming from either associations of the
3144 -- aggregate or a constraint on a parent type. The subtype will
3145 -- be used to generate the correct default value for the
3146 -- ancestor part.
70482933 3147
df3e68b1 3148 elsif Has_Discriminants (Entity (Ancestor)) then
70482933 3149 declare
df3e68b1 3150 Anc_Typ : constant Entity_Id := Entity (Ancestor);
fbf5a39b
AC
3151 Anc_Constr : constant List_Id := New_List;
3152 Discrim : Entity_Id;
70482933
RK
3153 Disc_Value : Node_Id;
3154 New_Indic : Node_Id;
3155 Subt_Decl : Node_Id;
fbf5a39b 3156
70482933 3157 begin
fbf5a39b 3158 Discrim := First_Discriminant (Anc_Typ);
70482933
RK
3159 while Present (Discrim) loop
3160 Disc_Value := Ancestor_Discriminant_Value (Discrim);
aab45d22
AC
3161
3162 -- If no usable discriminant in ancestors, check
3163 -- whether aggregate has an explicit value for it.
3164
3165 if No (Disc_Value) then
3166 Disc_Value :=
3167 Get_Explicit_Discriminant_Value (Discrim);
3168 end if;
3169
70482933
RK
3170 Append_To (Anc_Constr, Disc_Value);
3171 Next_Discriminant (Discrim);
3172 end loop;
3173
3174 New_Indic :=
3175 Make_Subtype_Indication (Loc,
3176 Subtype_Mark => New_Occurrence_Of (Anc_Typ, Loc),
3177 Constraint =>
3178 Make_Index_Or_Discriminant_Constraint (Loc,
3179 Constraints => Anc_Constr));
3180
3181 Init_Typ := Create_Itype (Ekind (Anc_Typ), N);
3182
3183 Subt_Decl :=
3184 Make_Subtype_Declaration (Loc,
3185 Defining_Identifier => Init_Typ,
3186 Subtype_Indication => New_Indic);
3187
3b9fa2df
ES
3188 -- Itypes must be analyzed with checks off Declaration
3189 -- must have a parent for proper handling of subsidiary
3190 -- actions.
70482933 3191
07fc65c4 3192 Set_Parent (Subt_Decl, N);
70482933
RK
3193 Analyze (Subt_Decl, Suppress => All_Checks);
3194 end;
3195 end if;
3196
3197 Ref := Convert_To (Init_Typ, New_Copy_Tree (Target));
3198 Set_Assignment_OK (Ref);
3199
64425dff 3200 if not Is_Interface (Init_Typ) then
3bb3f6d6
AC
3201 Append_List_To (L,
3202 Build_Initialization_Call (Loc,
3203 Id_Ref => Ref,
3204 Typ => Init_Typ,
3205 In_Init_Proc => Within_Init_Proc,
3206 With_Default_Init => Has_Default_Init_Comps (N)
3207 or else
3208 Has_Task (Base_Type (Init_Typ))));
3209
df3e68b1
HK
3210 if Is_Constrained (Entity (Ancestor))
3211 and then Has_Discriminants (Entity (Ancestor))
3bb3f6d6 3212 then
df3e68b1 3213 Check_Ancestor_Discriminants (Entity (Ancestor));
3bb3f6d6 3214 end if;
70482933
RK
3215 end if;
3216
11795185
JM
3217 -- Handle calls to C++ constructors
3218
df3e68b1
HK
3219 elsif Is_CPP_Constructor_Call (Ancestor) then
3220 Init_Typ := Etype (Ancestor);
11795185
JM
3221 Ref := Convert_To (Init_Typ, New_Copy_Tree (Target));
3222 Set_Assignment_OK (Ref);
3223
3224 Append_List_To (L,
3225 Build_Initialization_Call (Loc,
3226 Id_Ref => Ref,
3227 Typ => Init_Typ,
3228 In_Init_Proc => Within_Init_Proc,
3229 With_Default_Init => Has_Default_Init_Comps (N),
df3e68b1 3230 Constructor_Ref => Ancestor));
11795185 3231
c5ee5ad2
BD
3232 -- Ada 2005 (AI-287): If the ancestor part is an aggregate of
3233 -- limited type, a recursive call expands the ancestor. Note that
3234 -- in the limited case, the ancestor part must be either a
19590d70
GD
3235 -- function call (possibly qualified, or wrapped in an unchecked
3236 -- conversion) or aggregate (definitely qualified).
bdc193ba 3237
39f346aa
ES
3238 -- The ancestor part can also be a function call (that may be
3239 -- transformed into an explicit dereference) or a qualification
3240 -- of one such.
65356e64 3241
df3e68b1
HK
3242 elsif Is_Limited_Type (Etype (Ancestor))
3243 and then Nkind_In (Unqualify (Ancestor), N_Aggregate,
36a66365 3244 N_Extension_Aggregate)
c5ee5ad2 3245 then
65356e64
AC
3246 Ancestor_Is_Expression := True;
3247
21d7ef70 3248 -- Set up finalization data for enclosing record, because
3b9fa2df
ES
3249 -- controlled subcomponents of the ancestor part will be
3250 -- attached to it.
3251
df3e68b1 3252 Generate_Finalization_Actions;
3b9fa2df 3253
7b9d0d69 3254 Append_List_To (L,
f7e6fc47
RD
3255 Build_Record_Aggr_Code
3256 (N => Unqualify (Ancestor),
3257 Typ => Etype (Unqualify (Ancestor)),
3258 Lhs => Target));
65356e64 3259
70482933 3260 -- If the ancestor part is an expression "E", we generate
3b9fa2df 3261
df3e68b1 3262 -- T (tmp) := E;
3b9fa2df 3263
c5ee5ad2
BD
3264 -- In Ada 2005, this includes the case of a (possibly qualified)
3265 -- limited function call. The assignment will turn into a
3b9fa2df 3266 -- build-in-place function call (for further details, see
c5ee5ad2 3267 -- Make_Build_In_Place_Call_In_Assignment).
70482933
RK
3268
3269 else
3270 Ancestor_Is_Expression := True;
df3e68b1 3271 Init_Typ := Etype (Ancestor);
70482933 3272
7b9d0d69
ES
3273 -- If the ancestor part is an aggregate, force its full
3274 -- expansion, which was delayed.
3275
df3e68b1 3276 if Nkind_In (Unqualify (Ancestor), N_Aggregate,
ffcfb997 3277 N_Extension_Aggregate)
7b9d0d69 3278 then
df3e68b1
HK
3279 Set_Analyzed (Ancestor, False);
3280 Set_Analyzed (Expression (Ancestor), False);
7b9d0d69
ES
3281 end if;
3282
3283 Ref := Convert_To (Init_Typ, New_Copy_Tree (Target));
3284 Set_Assignment_OK (Ref);
3285
376e7d14
AC
3286 -- Make the assignment without usual controlled actions, since
3287 -- we only want to Adjust afterwards, but not to Finalize
3288 -- beforehand. Add manual Adjust when necessary.
7b9d0d69
ES
3289
3290 Assign := New_List (
3291 Make_OK_Assignment_Statement (Loc,
3292 Name => Ref,
df3e68b1 3293 Expression => Ancestor));
7b9d0d69
ES
3294 Set_No_Ctrl_Actions (First (Assign));
3295
3296 -- Assign the tag now to make sure that the dispatching call in
535a8637
AC
3297 -- the subsequent deep_adjust works properly (unless
3298 -- Tagged_Type_Expansion where tags are implicit).
70482933 3299
1f110335 3300 if Tagged_Type_Expansion then
70482933
RK
3301 Instr :=
3302 Make_OK_Assignment_Statement (Loc,
ffcfb997 3303 Name =>
70482933 3304 Make_Selected_Component (Loc,
ffcfb997 3305 Prefix => New_Copy_Tree (Target),
a9d8907c 3306 Selector_Name =>
e4494292 3307 New_Occurrence_Of
a9d8907c 3308 (First_Tag_Component (Base_Type (Typ)), Loc)),
70482933
RK
3309
3310 Expression =>
3311 Unchecked_Convert_To (RTE (RE_Tag),
e4494292 3312 New_Occurrence_Of
a9d8907c
JM
3313 (Node (First_Elmt
3314 (Access_Disp_Table (Base_Type (Typ)))),
3315 Loc)));
70482933
RK
3316
3317 Set_Assignment_OK (Name (Instr));
7b9d0d69 3318 Append_To (Assign, Instr);
0f95b178
JM
3319
3320 -- Ada 2005 (AI-251): If tagged type has progenitors we must
3321 -- also initialize tags of the secondary dispatch tables.
3322
ce2b6ba5 3323 if Has_Interfaces (Base_Type (Typ)) then
0f95b178
JM
3324 Init_Secondary_Tags
3325 (Typ => Base_Type (Typ),
3326 Target => Target,
3327 Stmts_List => Assign);
3328 end if;
70482933
RK
3329 end if;
3330
7b9d0d69 3331 -- Call Adjust manually
70482933 3332
df3e68b1
HK
3333 if Needs_Finalization (Etype (Ancestor))
3334 and then not Is_Limited_Type (Etype (Ancestor))
3b9fa2df 3335 then
2168d7cc 3336 Adj_Call :=
37368818
RD
3337 Make_Adjust_Call
3338 (Obj_Ref => New_Copy_Tree (Ref),
2168d7cc
AC
3339 Typ => Etype (Ancestor));
3340
3341 -- Guard against a missing [Deep_]Adjust when the ancestor
3342 -- type was not properly frozen.
3343
3344 if Present (Adj_Call) then
3345 Append_To (Assign, Adj_Call);
3346 end if;
70482933
RK
3347 end if;
3348
70482933 3349 Append_To (L,
7b9d0d69 3350 Make_Unsuppress_Block (Loc, Name_Discriminant_Check, Assign));
70482933
RK
3351
3352 if Has_Discriminants (Init_Typ) then
3353 Check_Ancestor_Discriminants (Init_Typ);
3354 end if;
3355 end if;
3356 end;
3357
376e7d14
AC
3358 -- Generate assignments of hidden discriminants. If the base type is
3359 -- an unchecked union, the discriminants are unknown to the back-end
3360 -- and absent from a value of the type, so assignments for them are
3361 -- not emitted.
3e582869
AC
3362
3363 if Has_Discriminants (Typ)
3364 and then not Is_Unchecked_Union (Base_Type (Typ))
3365 then
3366 Init_Hidden_Discriminants (Typ, L);
3367 end if;
3368
fbf5a39b
AC
3369 -- Normal case (not an extension aggregate)
3370
70482933
RK
3371 else
3372 -- Generate the discriminant expressions, component by component.
3373 -- If the base type is an unchecked union, the discriminants are
3374 -- unknown to the back-end and absent from a value of the type, so
3375 -- assignments for them are not emitted.
3376
3377 if Has_Discriminants (Typ)
3378 and then not Is_Unchecked_Union (Base_Type (Typ))
3379 then
3e582869 3380 Init_Hidden_Discriminants (Typ, L);
d8f7b976
ES
3381
3382 -- Generate discriminant init values for the visible discriminants
70482933 3383
71129dde 3384 Init_Visible_Discriminants;
70482933 3385
71129dde
AC
3386 if Is_Derived_Type (N_Typ) then
3387 Init_Stored_Discriminants;
3388 end if;
70482933
RK
3389 end if;
3390 end if;
3391
28541488
JM
3392 -- For CPP types we generate an implicit call to the C++ default
3393 -- constructor to ensure the proper initialization of the _Tag
3394 -- component.
3395
36a66365 3396 if Is_CPP_Class (Root_Type (Typ)) and then CPP_Num_Prims (Typ) > 0 then
cefce34c 3397 Invoke_Constructor : declare
15f0f591 3398 CPP_Parent : constant Entity_Id := Enclosing_CPP_Parent (Typ);
cefce34c
JM
3399
3400 procedure Invoke_IC_Proc (T : Entity_Id);
3401 -- Recursive routine used to climb to parents. Required because
3402 -- parents must be initialized before descendants to ensure
3403 -- propagation of inherited C++ slots.
3404
3405 --------------------
3406 -- Invoke_IC_Proc --
3407 --------------------
3408
3409 procedure Invoke_IC_Proc (T : Entity_Id) is
3410 begin
3411 -- Avoid generating extra calls. Initialization required
3412 -- only for types defined from the level of derivation of
3413 -- type of the constructor and the type of the aggregate.
3414
3415 if T = CPP_Parent then
3416 return;
3417 end if;
3418
3419 Invoke_IC_Proc (Etype (T));
3420
3421 -- Generate call to the IC routine
3422
3423 if Present (CPP_Init_Proc (T)) then
3424 Append_To (L,
3425 Make_Procedure_Call_Statement (Loc,
ffcfb997 3426 Name => New_Occurrence_Of (CPP_Init_Proc (T), Loc)));
cefce34c
JM
3427 end if;
3428 end Invoke_IC_Proc;
3429
3430 -- Start of processing for Invoke_Constructor
3431
3432 begin
3433 -- Implicit invocation of the C++ constructor
3434
3435 if Nkind (N) = N_Aggregate then
3436 Append_To (L,
3437 Make_Procedure_Call_Statement (Loc,
37368818
RD
3438 Name =>
3439 New_Occurrence_Of (Base_Init_Proc (CPP_Parent), Loc),
cefce34c
JM
3440 Parameter_Associations => New_List (
3441 Unchecked_Convert_To (CPP_Parent,
3442 New_Copy_Tree (Lhs)))));
3443 end if;
3444
3445 Invoke_IC_Proc (Typ);
3446 end Invoke_Constructor;
28541488
JM
3447 end if;
3448
70482933
RK
3449 -- Generate the assignments, component by component
3450
3451 -- tmp.comp1 := Expr1_From_Aggr;
3452 -- tmp.comp2 := Expr2_From_Aggr;
3453 -- ....
3454
3455 Comp := First (Component_Associations (N));
3456 while Present (Comp) loop
b7e429ab 3457 Selector := Entity (First (Choices (Comp)));
70482933 3458
236fecbf
JM
3459 -- C++ constructors
3460
3461 if Is_CPP_Constructor_Call (Expression (Comp)) then
3462 Append_List_To (L,
3463 Build_Initialization_Call (Loc,
37368818
RD
3464 Id_Ref =>
3465 Make_Selected_Component (Loc,
3466 Prefix => New_Copy_Tree (Target),
3467 Selector_Name => New_Occurrence_Of (Selector, Loc)),
1c612f29
RD
3468 Typ => Etype (Selector),
3469 Enclos_Type => Typ,
236fecbf 3470 With_Default_Init => True,
1c612f29 3471 Constructor_Ref => Expression (Comp)));
236fecbf 3472
3b9fa2df 3473 -- Ada 2005 (AI-287): For each default-initialized component generate
52739835 3474 -- a call to the corresponding IP subprogram if available.
65356e64 3475
236fecbf 3476 elsif Box_Present (Comp)
52739835 3477 and then Has_Non_Null_Base_Init_Proc (Etype (Selector))
65356e64 3478 then
5277cab6 3479 if Ekind (Selector) /= E_Discriminant then
df3e68b1 3480 Generate_Finalization_Actions;
5277cab6
ES
3481 end if;
3482
0ab80019
AC
3483 -- Ada 2005 (AI-287): If the component type has tasks then
3484 -- generate the activation chain and master entities (except
3485 -- in case of an allocator because in that case these entities
3486 -- are generated by Build_Task_Allocate_Block_With_Init_Stmts).
c45b6ae0
AC
3487
3488 declare
91b1417d 3489 Ctype : constant Entity_Id := Etype (Selector);
1c612f29
RD
3490 Inside_Allocator : Boolean := False;
3491 P : Node_Id := Parent (N);
c45b6ae0
AC
3492
3493 begin
3494 if Is_Task_Type (Ctype) or else Has_Task (Ctype) then
3495 while Present (P) loop
3496 if Nkind (P) = N_Allocator then
3497 Inside_Allocator := True;
3498 exit;
3499 end if;
3500
3501 P := Parent (P);
3502 end loop;
3503
3504 if not Inside_Init_Proc and not Inside_Allocator then
3505 Build_Activation_Chain_Entity (N);
c45b6ae0
AC
3506 end if;
3507 end if;
3508 end;
3509
65356e64
AC
3510 Append_List_To (L,
3511 Build_Initialization_Call (Loc,
1c612f29
RD
3512 Id_Ref => Make_Selected_Component (Loc,
3513 Prefix => New_Copy_Tree (Target),
3514 Selector_Name =>
3515 New_Occurrence_Of (Selector, Loc)),
3516 Typ => Etype (Selector),
3517 Enclos_Type => Typ,
c45b6ae0 3518 With_Default_Init => True));
65356e64 3519
7b9d0d69 3520 -- Prepare for component assignment
fbf5a39b 3521
236fecbf 3522 elsif Ekind (Selector) /= E_Discriminant
70482933
RK
3523 or else Nkind (N) = N_Extension_Aggregate
3524 then
7b9d0d69 3525 -- All the discriminants have now been assigned
3b9fa2df 3526
7b9d0d69
ES
3527 -- This is now a good moment to initialize and attach all the
3528 -- controllers. Their position may depend on the discriminants.
3529
5277cab6 3530 if Ekind (Selector) /= E_Discriminant then
df3e68b1 3531 Generate_Finalization_Actions;
7b9d0d69
ES
3532 end if;
3533
38171f43 3534 Comp_Type := Underlying_Type (Etype (Selector));
70482933
RK
3535 Comp_Expr :=
3536 Make_Selected_Component (Loc,
3537 Prefix => New_Copy_Tree (Target),
3538 Selector_Name => New_Occurrence_Of (Selector, Loc));
3539
3540 if Nkind (Expression (Comp)) = N_Qualified_Expression then
3541 Expr_Q := Expression (Expression (Comp));
3542 else
3543 Expr_Q := Expression (Comp);
3544 end if;
3545
7b9d0d69
ES
3546 -- Now either create the assignment or generate the code for the
3547 -- inner aggregate top-down.
fbf5a39b 3548
70482933 3549 if Is_Delayed_Aggregate (Expr_Q) then
d8f7b976
ES
3550
3551 -- We have the following case of aggregate nesting inside
3552 -- an object declaration:
3553
3554 -- type Arr_Typ is array (Integer range <>) of ...;
3b9fa2df 3555
d8f7b976
ES
3556 -- type Rec_Typ (...) is record
3557 -- Obj_Arr_Typ : Arr_Typ (A .. B);
3558 -- end record;
3b9fa2df 3559
d8f7b976
ES
3560 -- Obj_Rec_Typ : Rec_Typ := (...,
3561 -- Obj_Arr_Typ => (X => (...), Y => (...)));
3562
3563 -- The length of the ranges of the aggregate and Obj_Add_Typ
3564 -- are equal (B - A = Y - X), but they do not coincide (X /=
3565 -- A and B /= Y). This case requires array sliding which is
3566 -- performed in the following manner:
3567
3568 -- subtype Arr_Sub is Arr_Typ (X .. Y);
3569 -- Temp : Arr_Sub;
3570 -- Temp (X) := (...);
3571 -- ...
3572 -- Temp (Y) := (...);
3573 -- Obj_Rec_Typ.Obj_Arr_Typ := Temp;
3574
5277cab6 3575 if Ekind (Comp_Type) = E_Array_Subtype
d8f7b976
ES
3576 and then Is_Int_Range_Bounds (Aggregate_Bounds (Expr_Q))
3577 and then Is_Int_Range_Bounds (First_Index (Comp_Type))
3578 and then not
5277cab6
ES
3579 Compatible_Int_Bounds
3580 (Agg_Bounds => Aggregate_Bounds (Expr_Q),
3581 Typ_Bounds => First_Index (Comp_Type))
d8f7b976 3582 then
5277cab6
ES
3583 -- Create the array subtype with bounds equal to those of
3584 -- the corresponding aggregate.
d8f7b976 3585
5277cab6 3586 declare
191fcb3a 3587 SubE : constant Entity_Id := Make_Temporary (Loc, 'T');
d8f7b976
ES
3588
3589 SubD : constant Node_Id :=
15f0f591
AC
3590 Make_Subtype_Declaration (Loc,
3591 Defining_Identifier => SubE,
3592 Subtype_Indication =>
3593 Make_Subtype_Indication (Loc,
3594 Subtype_Mark =>
e4494292 3595 New_Occurrence_Of (Etype (Comp_Type), Loc),
15f0f591
AC
3596 Constraint =>
3597 Make_Index_Or_Discriminant_Constraint
3598 (Loc,
3599 Constraints => New_List (
3600 New_Copy_Tree
3601 (Aggregate_Bounds (Expr_Q))))));
d8f7b976
ES
3602
3603 -- Create a temporary array of the above subtype which
3604 -- will be used to capture the aggregate assignments.
3605
faf387e1 3606 TmpE : constant Entity_Id := Make_Temporary (Loc, 'A', N);
d8f7b976
ES
3607
3608 TmpD : constant Node_Id :=
15f0f591
AC
3609 Make_Object_Declaration (Loc,
3610 Defining_Identifier => TmpE,
e4494292 3611 Object_Definition => New_Occurrence_Of (SubE, Loc));
d8f7b976
ES
3612
3613 begin
3614 Set_No_Initialization (TmpD);
3615 Append_To (L, SubD);
3616 Append_To (L, TmpD);
3617
5277cab6 3618 -- Expand aggregate into assignments to the temp array
d8f7b976
ES
3619
3620 Append_List_To (L,
3621 Late_Expansion (Expr_Q, Comp_Type,
e4494292 3622 New_Occurrence_Of (TmpE, Loc)));
d8f7b976
ES
3623
3624 -- Slide
3625
3626 Append_To (L,
3627 Make_Assignment_Statement (Loc,
3628 Name => New_Copy_Tree (Comp_Expr),
e4494292 3629 Expression => New_Occurrence_Of (TmpE, Loc)));
d8f7b976
ES
3630 end;
3631
3632 -- Normal case (sliding not required)
3633
3634 else
3635 Append_List_To (L,
df3e68b1 3636 Late_Expansion (Expr_Q, Comp_Type, Comp_Expr));
d8f7b976 3637 end if;
fbf5a39b 3638
5277cab6
ES
3639 -- Expr_Q is not delayed aggregate
3640
70482933 3641 else
f2abc637
AC
3642 if Has_Discriminants (Typ) then
3643 Replace_Discriminants (Expr_Q);
b3f5eef0
AC
3644
3645 -- If the component is an array type that depends on
3646 -- discriminants, and the expression is a single Others
3647 -- clause, create an explicit subtype for it because the
3648 -- backend has troubles recovering the actual bounds.
3649
3650 if Nkind (Expr_Q) = N_Aggregate
3651 and then Is_Array_Type (Comp_Type)
3652 and then Present (Component_Associations (Expr_Q))
3653 then
3654 declare
3655 Assoc : constant Node_Id :=
45ec05e1 3656 First (Component_Associations (Expr_Q));
b3f5eef0
AC
3657 Decl : Node_Id;
3658
3659 begin
45ec05e1 3660 if Nkind (First (Choices (Assoc))) = N_Others_Choice
b3f5eef0
AC
3661 then
3662 Decl :=
3663 Build_Actual_Subtype_Of_Component
3664 (Comp_Type, Comp_Expr);
3665
3666 -- If the component type does not in fact depend on
3667 -- discriminants, the subtype declaration is empty.
3668
3669 if Present (Decl) then
3670 Append_To (L, Decl);
3671 Set_Etype (Comp_Expr, Defining_Entity (Decl));
3672 end if;
3673 end if;
3674 end;
3675 end if;
f2abc637
AC
3676 end if;
3677
c63a2ad6 3678 if Modify_Tree_For_C
a1e1820b
AC
3679 and then Nkind (Expr_Q) = N_Aggregate
3680 and then Is_Array_Type (Etype (Expr_Q))
3681 and then Present (First_Index (Etype (Expr_Q)))
3682 then
3683 declare
3684 Expr_Q_Type : constant Node_Id := Etype (Expr_Q);
3685 begin
3686 Append_List_To (L,
3687 Build_Array_Aggr_Code
3688 (N => Expr_Q,
3689 Ctype => Component_Type (Expr_Q_Type),
3690 Index => First_Index (Expr_Q_Type),
3691 Into => Comp_Expr,
937e9676
AC
3692 Scalar_Comp =>
3693 Is_Scalar_Type (Component_Type (Expr_Q_Type))));
a1e1820b
AC
3694 end;
3695
3696 else
937e9676
AC
3697 -- Handle an initialization expression of a controlled type
3698 -- in case it denotes a function call. In general such a
3699 -- scenario will produce a transient scope, but this will
3700 -- lead to wrong order of initialization, adjustment, and
3701 -- finalization in the context of aggregates.
3702
3703 -- Target.Comp := Ctrl_Func_Call;
3704
3705 -- begin -- scope
3706 -- Trans_Obj : ... := Ctrl_Func_Call; -- object
3707 -- Target.Comp := Trans_Obj;
3708 -- Finalize (Trans_Obj);
3709 -- end
3710 -- Target.Comp._tag := ...;
3711 -- Adjust (Target.Comp);
3712
3713 -- In the example above, the call to Finalize occurs too
3714 -- early and as a result it may leave the record component
3715 -- in a bad state. Finalization of the transient object
3716 -- should really happen after adjustment.
3717
3718 -- To avoid this scenario, perform in-place side-effect
3719 -- removal of the function call. This eliminates the
3720 -- transient property of the function result and ensures
3721 -- correct order of actions.
3722
3723 -- Res : ... := Ctrl_Func_Call;
3724 -- Target.Comp := Res;
3725 -- Target.Comp._tag := ...;
3726 -- Adjust (Target.Comp);
3727 -- Finalize (Res);
3728
3729 if Needs_Finalization (Comp_Type)
3730 and then Nkind (Expr_Q) /= N_Aggregate
3731 then
3732 Initialize_Ctrl_Record_Component
3733 (Rec_Comp => Comp_Expr,
3734 Comp_Typ => Etype (Selector),
3735 Init_Expr => Expr_Q,
3736 Stmts => L);
70482933 3737
937e9676 3738 -- Otherwise perform single component initialization
70482933 3739
937e9676
AC
3740 else
3741 Initialize_Record_Component
3742 (Rec_Comp => Comp_Expr,
3743 Comp_Typ => Etype (Selector),
3744 Init_Expr => Expr_Q,
3745 Stmts => L);
3746 end if;
70482933
RK
3747 end if;
3748 end if;
fbf5a39b 3749
37368818 3750 -- comment would be good here ???
fbf5a39b
AC
3751
3752 elsif Ekind (Selector) = E_Discriminant
3753 and then Nkind (N) /= N_Extension_Aggregate
3754 and then Nkind (Parent (N)) = N_Component_Association
3755 and then Is_Constrained (Typ)
3756 then
3757 -- We must check that the discriminant value imposed by the
3758 -- context is the same as the value given in the subaggregate,
3759 -- because after the expansion into assignments there is no
3760 -- record on which to perform a regular discriminant check.
3761
3762 declare
3763 D_Val : Elmt_Id;
3764 Disc : Entity_Id;
3765
3766 begin
3767 D_Val := First_Elmt (Discriminant_Constraint (Typ));
3768 Disc := First_Discriminant (Typ);
fbf5a39b
AC
3769 while Chars (Disc) /= Chars (Selector) loop
3770 Next_Discriminant (Disc);
3771 Next_Elmt (D_Val);
3772 end loop;
3773
3774 pragma Assert (Present (D_Val));
3775
0f95b178
JM
3776 -- This check cannot performed for components that are
3777 -- constrained by a current instance, because this is not a
3778 -- value that can be compared with the actual constraint.
3779
3780 if Nkind (Node (D_Val)) /= N_Attribute_Reference
3781 or else not Is_Entity_Name (Prefix (Node (D_Val)))
3782 or else not Is_Type (Entity (Prefix (Node (D_Val))))
3783 then
3784 Append_To (L,
3785 Make_Raise_Constraint_Error (Loc,
3786 Condition =>
3787 Make_Op_Ne (Loc,
37368818 3788 Left_Opnd => New_Copy_Tree (Node (D_Val)),
0f95b178 3789 Right_Opnd => Expression (Comp)),
37368818 3790 Reason => CE_Discriminant_Check_Failed));
0f95b178
JM
3791
3792 else
3b9fa2df
ES
3793 -- Find self-reference in previous discriminant assignment,
3794 -- and replace with proper expression.
0f95b178
JM
3795
3796 declare
3797 Ass : Node_Id;
3798
3799 begin
3800 Ass := First (L);
3801 while Present (Ass) loop
3802 if Nkind (Ass) = N_Assignment_Statement
3803 and then Nkind (Name (Ass)) = N_Selected_Component
3804 and then Chars (Selector_Name (Name (Ass))) =
36a66365 3805 Chars (Disc)
0f95b178
JM
3806 then
3807 Set_Expression
3808 (Ass, New_Copy_Tree (Expression (Comp)));
3809 exit;
3810 end if;
3811 Next (Ass);
3812 end loop;
3813 end;
3814 end if;
fbf5a39b 3815 end;
70482933
RK
3816 end if;
3817
3818 Next (Comp);
3819 end loop;
3820
bdc193ba
AC
3821 -- If the type is tagged, the tag needs to be initialized (unless we
3822 -- are in VM-mode where tags are implicit). It is done late in the
3823 -- initialization process because in some cases, we call the init
3824 -- proc of an ancestor which will not leave out the right tag.
70482933
RK
3825
3826 if Ancestor_Is_Expression then
3827 null;
3828
28541488
JM
3829 -- For CPP types we generated a call to the C++ default constructor
3830 -- before the components have been initialized to ensure the proper
3831 -- initialization of the _Tag component (see above).
3832
3833 elsif Is_CPP_Class (Typ) then
3834 null;
3835
1f110335 3836 elsif Is_Tagged_Type (Typ) and then Tagged_Type_Expansion then
70482933
RK
3837 Instr :=
3838 Make_OK_Assignment_Statement (Loc,
3839 Name =>
3840 Make_Selected_Component (Loc,
c5ee5ad2 3841 Prefix => New_Copy_Tree (Target),
70482933 3842 Selector_Name =>
e4494292 3843 New_Occurrence_Of
a9d8907c 3844 (First_Tag_Component (Base_Type (Typ)), Loc)),
70482933
RK
3845
3846 Expression =>
3847 Unchecked_Convert_To (RTE (RE_Tag),
e4494292 3848 New_Occurrence_Of
a9d8907c
JM
3849 (Node (First_Elmt (Access_Disp_Table (Base_Type (Typ)))),
3850 Loc)));
70482933
RK
3851
3852 Append_To (L, Instr);
c5ee5ad2 3853
bdc193ba 3854 -- Ada 2005 (AI-251): If the tagged type has been derived from an
c5ee5ad2
BD
3855 -- abstract interfaces we must also initialize the tags of the
3856 -- secondary dispatch tables.
3857
ce2b6ba5 3858 if Has_Interfaces (Base_Type (Typ)) then
c5ee5ad2
BD
3859 Init_Secondary_Tags
3860 (Typ => Base_Type (Typ),
3861 Target => Target,
3862 Stmts_List => L);
3863 end if;
70482933
RK
3864 end if;
3865
7b9d0d69
ES
3866 -- If the controllers have not been initialized yet (by lack of non-
3867 -- discriminant components), let's do it now.
70482933 3868
df3e68b1 3869 Generate_Finalization_Actions;
70482933 3870
7b9d0d69 3871 return L;
70482933
RK
3872 end Build_Record_Aggr_Code;
3873
cf6956bb
AC
3874 ---------------------------------------
3875 -- Collect_Initialization_Statements --
3876 ---------------------------------------
3877
3878 procedure Collect_Initialization_Statements
3879 (Obj : Entity_Id;
3880 N : Node_Id;
3881 Node_After : Node_Id)
3882 is
3883 Loc : constant Source_Ptr := Sloc (N);
ae05cdd6 3884 Init_Actions : constant List_Id := New_List;
cf6956bb 3885 Init_Node : Node_Id;
2ffcbaa5 3886 Comp_Stmt : Node_Id;
ae05cdd6 3887
cf6956bb 3888 begin
3a3af4c3
AC
3889 -- Nothing to do if Obj is already frozen, as in this case we known we
3890 -- won't need to move the initialization statements about later on.
3891
3892 if Is_Frozen (Obj) then
3893 return;
3894 end if;
3895
cf6956bb 3896 Init_Node := N;
cf6956bb
AC
3897 while Next (Init_Node) /= Node_After loop
3898 Append_To (Init_Actions, Remove_Next (Init_Node));
3899 end loop;
3900
3901 if not Is_Empty_List (Init_Actions) then
9dc30a5f 3902 Comp_Stmt := Make_Compound_Statement (Loc, Actions => Init_Actions);
2ffcbaa5
AC
3903 Insert_Action_After (Init_Node, Comp_Stmt);
3904 Set_Initialization_Statements (Obj, Comp_Stmt);
cf6956bb
AC
3905 end if;
3906 end Collect_Initialization_Statements;
3907
70482933
RK
3908 -------------------------------
3909 -- Convert_Aggr_In_Allocator --
3910 -------------------------------
3911
fa57ac97
ES
3912 procedure Convert_Aggr_In_Allocator
3913 (Alloc : Node_Id;
3914 Decl : Node_Id;
3915 Aggr : Node_Id)
3916 is
70482933
RK
3917 Loc : constant Source_Ptr := Sloc (Aggr);
3918 Typ : constant Entity_Id := Etype (Aggr);
3919 Temp : constant Entity_Id := Defining_Identifier (Decl);
fbf5a39b
AC
3920
3921 Occ : constant Node_Id :=
15f0f591 3922 Unchecked_Convert_To (Typ,
e4494292 3923 Make_Explicit_Dereference (Loc, New_Occurrence_Of (Temp, Loc)));
70482933 3924
70482933 3925 begin
6f639c98
ES
3926 if Is_Array_Type (Typ) then
3927 Convert_Array_Aggr_In_Allocator (Decl, Aggr, Occ);
3928
3929 elsif Has_Default_Init_Comps (Aggr) then
c45b6ae0
AC
3930 declare
3931 L : constant List_Id := New_List;
3932 Init_Stmts : List_Id;
3933
3934 begin
df3e68b1 3935 Init_Stmts := Late_Expansion (Aggr, Typ, Occ);
c45b6ae0 3936
0f95b178
JM
3937 if Has_Task (Typ) then
3938 Build_Task_Allocate_Block_With_Init_Stmts (L, Aggr, Init_Stmts);
fa57ac97 3939 Insert_Actions (Alloc, L);
0f95b178 3940 else
fa57ac97 3941 Insert_Actions (Alloc, Init_Stmts);
0f95b178 3942 end if;
c45b6ae0
AC
3943 end;
3944
3945 else
df3e68b1 3946 Insert_Actions (Alloc, Late_Expansion (Aggr, Typ, Occ));
c45b6ae0 3947 end if;
70482933
RK
3948 end Convert_Aggr_In_Allocator;
3949
3950 --------------------------------
3951 -- Convert_Aggr_In_Assignment --
3952 --------------------------------
3953
3954 procedure Convert_Aggr_In_Assignment (N : Node_Id) is
3b9fa2df
ES
3955 Aggr : Node_Id := Expression (N);
3956 Typ : constant Entity_Id := Etype (Aggr);
3957 Occ : constant Node_Id := New_Copy_Tree (Name (N));
70482933
RK
3958
3959 begin
3960 if Nkind (Aggr) = N_Qualified_Expression then
3961 Aggr := Expression (Aggr);
3962 end if;
3963
df3e68b1 3964 Insert_Actions_After (N, Late_Expansion (Aggr, Typ, Occ));
70482933
RK
3965 end Convert_Aggr_In_Assignment;
3966
3967 ---------------------------------
3968 -- Convert_Aggr_In_Object_Decl --
3969 ---------------------------------
3970
3971 procedure Convert_Aggr_In_Object_Decl (N : Node_Id) is
3972 Obj : constant Entity_Id := Defining_Identifier (N);
fbf5a39b 3973 Aggr : Node_Id := Expression (N);
70482933
RK
3974 Loc : constant Source_Ptr := Sloc (Aggr);
3975 Typ : constant Entity_Id := Etype (Aggr);
3976 Occ : constant Node_Id := New_Occurrence_Of (Obj, Loc);
3977
fbf5a39b
AC
3978 function Discriminants_Ok return Boolean;
3979 -- If the object type is constrained, the discriminants in the
3980 -- aggregate must be checked against the discriminants of the subtype.
3981 -- This cannot be done using Apply_Discriminant_Checks because after
3982 -- expansion there is no aggregate left to check.
3983
3984 ----------------------
3985 -- Discriminants_Ok --
3986 ----------------------
3987
3988 function Discriminants_Ok return Boolean is
3989 Cond : Node_Id := Empty;
3990 Check : Node_Id;
3991 D : Entity_Id;
3992 Disc1 : Elmt_Id;
3993 Disc2 : Elmt_Id;
3994 Val1 : Node_Id;
3995 Val2 : Node_Id;
3996
3997 begin
3998 D := First_Discriminant (Typ);
3999 Disc1 := First_Elmt (Discriminant_Constraint (Typ));
4000 Disc2 := First_Elmt (Discriminant_Constraint (Etype (Obj)));
fbf5a39b
AC
4001 while Present (Disc1) and then Present (Disc2) loop
4002 Val1 := Node (Disc1);
4003 Val2 := Node (Disc2);
4004
4005 if not Is_OK_Static_Expression (Val1)
4006 or else not Is_OK_Static_Expression (Val2)
4007 then
4008 Check := Make_Op_Ne (Loc,
4009 Left_Opnd => Duplicate_Subexpr (Val1),
4010 Right_Opnd => Duplicate_Subexpr (Val2));
4011
4012 if No (Cond) then
4013 Cond := Check;
4014
4015 else
4016 Cond := Make_Or_Else (Loc,
4017 Left_Opnd => Cond,
4018 Right_Opnd => Check);
4019 end if;
4020
4021 elsif Expr_Value (Val1) /= Expr_Value (Val2) then
4022 Apply_Compile_Time_Constraint_Error (Aggr,
324ac540 4023 Msg => "incorrect value for discriminant&??",
fbf5a39b
AC
4024 Reason => CE_Discriminant_Check_Failed,
4025 Ent => D);
4026 return False;
4027 end if;
4028
4029 Next_Discriminant (D);
4030 Next_Elmt (Disc1);
4031 Next_Elmt (Disc2);
4032 end loop;
4033
3cf3e5c6 4034 -- If any discriminant constraint is non-static, emit a check
fbf5a39b
AC
4035
4036 if Present (Cond) then
4037 Insert_Action (N,
4038 Make_Raise_Constraint_Error (Loc,
4039 Condition => Cond,
ef1c0511 4040 Reason => CE_Discriminant_Check_Failed));
fbf5a39b
AC
4041 end if;
4042
4043 return True;
4044 end Discriminants_Ok;
4045
4046 -- Start of processing for Convert_Aggr_In_Object_Decl
4047
70482933
RK
4048 begin
4049 Set_Assignment_OK (Occ);
4050
4051 if Nkind (Aggr) = N_Qualified_Expression then
4052 Aggr := Expression (Aggr);
4053 end if;
4054
fbf5a39b
AC
4055 if Has_Discriminants (Typ)
4056 and then Typ /= Etype (Obj)
4057 and then Is_Constrained (Etype (Obj))
4058 and then not Discriminants_Ok
4059 then
4060 return;
4061 end if;
4062
0f95b178
JM
4063 -- If the context is an extended return statement, it has its own
4064 -- finalization machinery (i.e. works like a transient scope) and
4065 -- we do not want to create an additional one, because objects on
4066 -- the finalization list of the return must be moved to the caller's
4067 -- finalization list to complete the return.
4068
3b9fa2df
ES
4069 -- However, if the aggregate is limited, it is built in place, and the
4070 -- controlled components are not assigned to intermediate temporaries
4071 -- so there is no need for a transient scope in this case either.
4072
0f95b178
JM
4073 if Requires_Transient_Scope (Typ)
4074 and then Ekind (Current_Scope) /= E_Return_Statement
3b9fa2df 4075 and then not Is_Limited_Type (Typ)
0f95b178 4076 then
7e5ce5a8
JM
4077 Establish_Transient_Scope
4078 (Aggr,
4079 Sec_Stack =>
4080 Is_Controlled (Typ) or else Has_Controlled_Component (Typ));
6f5c2c4b 4081 end if;
02217452 4082
6f5c2c4b
AC
4083 declare
4084 Node_After : constant Node_Id := Next (N);
6f5c2c4b
AC
4085 begin
4086 Insert_Actions_After (N, Late_Expansion (Aggr, Typ, Occ));
cf6956bb 4087 Collect_Initialization_Statements (Obj, N, Node_After);
6f5c2c4b 4088 end;
70482933 4089 Set_No_Initialization (N);
07fc65c4 4090 Initialize_Discriminants (N, Typ);
70482933
RK
4091 end Convert_Aggr_In_Object_Decl;
4092
6f639c98 4093 -------------------------------------
3b9fa2df 4094 -- Convert_Array_Aggr_In_Allocator --
6f639c98
ES
4095 -------------------------------------
4096
4097 procedure Convert_Array_Aggr_In_Allocator
4098 (Decl : Node_Id;
4099 Aggr : Node_Id;
4100 Target : Node_Id)
4101 is
4102 Aggr_Code : List_Id;
4103 Typ : constant Entity_Id := Etype (Aggr);
4104 Ctyp : constant Entity_Id := Component_Type (Typ);
4105
4106 begin
4107 -- The target is an explicit dereference of the allocated object.
4108 -- Generate component assignments to it, as for an aggregate that
4109 -- appears on the right-hand side of an assignment statement.
4110
4111 Aggr_Code :=
4112 Build_Array_Aggr_Code (Aggr,
4113 Ctype => Ctyp,
4114 Index => First_Index (Typ),
4115 Into => Target,
4116 Scalar_Comp => Is_Scalar_Type (Ctyp));
4117
4118 Insert_Actions_After (Decl, Aggr_Code);
4119 end Convert_Array_Aggr_In_Allocator;
4120
70482933
RK
4121 ----------------------------
4122 -- Convert_To_Assignments --
4123 ----------------------------
4124
4125 procedure Convert_To_Assignments (N : Node_Id; Typ : Entity_Id) is
4126 Loc : constant Source_Ptr := Sloc (N);
39f346aa 4127 T : Entity_Id;
70482933
RK
4128 Temp : Entity_Id;
4129
f29afe5f 4130 Aggr_Code : List_Id;
fbf5a39b
AC
4131 Instr : Node_Id;
4132 Target_Expr : Node_Id;
4133 Parent_Kind : Node_Kind;
4134 Unc_Decl : Boolean := False;
4135 Parent_Node : Node_Id;
70482933
RK
4136
4137 begin
fa57ac97
ES
4138 pragma Assert (not Is_Static_Dispatch_Table_Aggregate (N));
4139 pragma Assert (Is_Record_Type (Typ));
4140
70482933
RK
4141 Parent_Node := Parent (N);
4142 Parent_Kind := Nkind (Parent_Node);
4143
4144 if Parent_Kind = N_Qualified_Expression then
4145
4146 -- Check if we are in a unconstrained declaration because in this
4147 -- case the current delayed expansion mechanism doesn't work when
4148 -- the declared object size depend on the initializing expr.
4149
937e9676
AC
4150 Parent_Node := Parent (Parent_Node);
4151 Parent_Kind := Nkind (Parent_Node);
fbf5a39b 4152
937e9676
AC
4153 if Parent_Kind = N_Object_Declaration then
4154 Unc_Decl :=
4155 not Is_Entity_Name (Object_Definition (Parent_Node))
4156 or else Has_Discriminants
4157 (Entity (Object_Definition (Parent_Node)))
4158 or else Is_Class_Wide_Type
4159 (Entity (Object_Definition (Parent_Node)));
4160 end if;
70482933
RK
4161 end if;
4162
3b9fa2df
ES
4163 -- Just set the Delay flag in the cases where the transformation will be
4164 -- done top down from above.
fbf5a39b 4165
fa57ac97 4166 if False
0f95b178 4167
fa57ac97 4168 -- Internal aggregate (transformed when expanding the parent)
0f95b178 4169
fa57ac97
ES
4170 or else Parent_Kind = N_Aggregate
4171 or else Parent_Kind = N_Extension_Aggregate
4172 or else Parent_Kind = N_Component_Association
0f95b178 4173
fa57ac97 4174 -- Allocator (see Convert_Aggr_In_Allocator)
70482933 4175
fa57ac97 4176 or else Parent_Kind = N_Allocator
0f95b178 4177
fa57ac97
ES
4178 -- Object declaration (see Convert_Aggr_In_Object_Decl)
4179
4180 or else (Parent_Kind = N_Object_Declaration and then not Unc_Decl)
4181
4182 -- Safe assignment (see Convert_Aggr_Assignments). So far only the
4183 -- assignments in init procs are taken into account.
4184
4185 or else (Parent_Kind = N_Assignment_Statement
4186 and then Inside_Init_Proc)
4187
bdc193ba
AC
4188 -- (Ada 2005) An inherently limited type in a return statement, which
4189 -- will be handled in a build-in-place fashion, and may be rewritten
4190 -- as an extended return and have its own finalization machinery.
4191 -- In the case of a simple return, the aggregate needs to be delayed
4192 -- until the scope for the return statement has been created, so
4193 -- that any finalization chain will be associated with that scope.
4194 -- For extended returns, we delay expansion to avoid the creation
4195 -- of an unwanted transient scope that could result in premature
a9bbfbd0 4196 -- finalization of the return object (which is built in place
bdc193ba 4197 -- within the caller's scope).
fa57ac97
ES
4198
4199 or else
51245e2d 4200 (Is_Limited_View (Typ)
3b9fa2df
ES
4201 and then
4202 (Nkind (Parent (Parent_Node)) = N_Extended_Return_Statement
d7f94401 4203 or else Nkind (Parent_Node) = N_Simple_Return_Statement))
70482933
RK
4204 then
4205 Set_Expansion_Delayed (N);
4206 return;
4207 end if;
4208
a9bbfbd0
AC
4209 -- Otherwise, if a transient scope is required, create it now. If we
4210 -- are within an initialization procedure do not create such, because
4211 -- the target of the assignment must not be declared within a local
4212 -- block, and because cleanup will take place on return from the
4213 -- initialization procedure.
937e9676 4214
a9bbfbd0
AC
4215 -- Should the condition be more restrictive ???
4216
4217 if Requires_Transient_Scope (Typ) and then not Inside_Init_Proc then
f29afe5f 4218 Establish_Transient_Scope (N, Sec_Stack => Needs_Finalization (Typ));
70482933
RK
4219 end if;
4220
937e9676 4221 -- If the aggregate is nonlimited, create a temporary. If it is limited
bdc193ba
AC
4222 -- and context is an assignment, this is a subaggregate for an enclosing
4223 -- aggregate being expanded. It must be built in place, so use target of
4224 -- the current assignment.
70482933 4225
3b9fa2df
ES
4226 if Is_Limited_Type (Typ)
4227 and then Nkind (Parent (N)) = N_Assignment_Statement
4228 then
4229 Target_Expr := New_Copy_Tree (Name (Parent (N)));
df3e68b1
HK
4230 Insert_Actions (Parent (N),
4231 Build_Record_Aggr_Code (N, Typ, Target_Expr));
3b9fa2df 4232 Rewrite (Parent (N), Make_Null_Statement (Loc));
70482933 4233
3b9fa2df 4234 else
faf387e1 4235 Temp := Make_Temporary (Loc, 'A', N);
70482933 4236
39f346aa
ES
4237 -- If the type inherits unknown discriminants, use the view with
4238 -- known discriminants if available.
4239
4240 if Has_Unknown_Discriminants (Typ)
36a66365 4241 and then Present (Underlying_Record_View (Typ))
39f346aa
ES
4242 then
4243 T := Underlying_Record_View (Typ);
4244 else
4245 T := Typ;
4246 end if;
4247
3b9fa2df
ES
4248 Instr :=
4249 Make_Object_Declaration (Loc,
4250 Defining_Identifier => Temp,
39f346aa 4251 Object_Definition => New_Occurrence_Of (T, Loc));
3b9fa2df
ES
4252
4253 Set_No_Initialization (Instr);
4254 Insert_Action (N, Instr);
39f346aa 4255 Initialize_Discriminants (Instr, T);
f29afe5f 4256
3b9fa2df 4257 Target_Expr := New_Occurrence_Of (Temp, Loc);
f29afe5f
AC
4258 Aggr_Code := Build_Record_Aggr_Code (N, T, Target_Expr);
4259
4260 -- Save the last assignment statement associated with the aggregate
4261 -- when building a controlled object. This reference is utilized by
4262 -- the finalization machinery when marking an object as successfully
4263 -- initialized.
4264
4265 if Needs_Finalization (T) then
4266 Set_Last_Aggregate_Assignment (Temp, Last (Aggr_Code));
4267 end if;
4268
4269 Insert_Actions (N, Aggr_Code);
3b9fa2df 4270 Rewrite (N, New_Occurrence_Of (Temp, Loc));
39f346aa 4271 Analyze_And_Resolve (N, T);
3b9fa2df 4272 end if;
70482933
RK
4273 end Convert_To_Assignments;
4274
07fc65c4
GB
4275 ---------------------------
4276 -- Convert_To_Positional --
4277 ---------------------------
4278
4279 procedure Convert_To_Positional
4280 (N : Node_Id;
fbf5a39b 4281 Max_Others_Replicate : Nat := 5;
07fc65c4
GB
4282 Handle_Bit_Packed : Boolean := False)
4283 is
fbf5a39b 4284 Typ : constant Entity_Id := Etype (N);
07fc65c4 4285
0f95b178
JM
4286 Static_Components : Boolean := True;
4287
4288 procedure Check_Static_Components;
3b9fa2df
ES
4289 -- Check whether all components of the aggregate are compile-time known
4290 -- values, and can be passed as is to the back-end without further
4291 -- expansion.
be3416c6 4292 -- An Iterated_Component_Association is treated as non-static, but there
b2c1aa8f 4293 -- are possibilities for optimization here.
0f95b178 4294
fbf5a39b 4295 function Flatten
d05ef0ab
AC
4296 (N : Node_Id;
4297 Ix : Node_Id;
4298 Ixb : Node_Id) return Boolean;
3b9fa2df
ES
4299 -- Convert the aggregate into a purely positional form if possible. On
4300 -- entry the bounds of all dimensions are known to be static, and the
4301 -- total number of components is safe enough to expand.
fbf5a39b
AC
4302
4303 function Is_Flat (N : Node_Id; Dims : Int) return Boolean;
64425dff 4304 -- Return True iff the array N is flat (which is not trivial in the case
308e6f3a 4305 -- of multidimensional aggregates).
fbf5a39b 4306
0f95b178
JM
4307 -----------------------------
4308 -- Check_Static_Components --
4309 -----------------------------
4310
bdc193ba
AC
4311 -- Could use some comments in this body ???
4312
0f95b178
JM
4313 procedure Check_Static_Components is
4314 Expr : Node_Id;
4315
4316 begin
4317 Static_Components := True;
4318
4319 if Nkind (N) = N_String_Literal then
4320 null;
4321
4322 elsif Present (Expressions (N)) then
4323 Expr := First (Expressions (N));
4324 while Present (Expr) loop
4325 if Nkind (Expr) /= N_Aggregate
4326 or else not Compile_Time_Known_Aggregate (Expr)
4327 or else Expansion_Delayed (Expr)
4328 then
4329 Static_Components := False;
4330 exit;
4331 end if;
4332
4333 Next (Expr);
4334 end loop;
4335 end if;
4336
4337 if Nkind (N) = N_Aggregate
21d7ef70 4338 and then Present (Component_Associations (N))
0f95b178
JM
4339 then
4340 Expr := First (Component_Associations (N));
4341 while Present (Expr) loop
8da337c5
AC
4342 if Nkind_In (Expression (Expr), N_Integer_Literal,
4343 N_Real_Literal)
4344 then
0f95b178
JM
4345 null;
4346
094cefda
AC
4347 elsif Is_Entity_Name (Expression (Expr))
4348 and then Present (Entity (Expression (Expr)))
4349 and then Ekind (Entity (Expression (Expr))) =
36a66365 4350 E_Enumeration_Literal
094cefda
AC
4351 then
4352 null;
4353
0f95b178 4354 elsif Nkind (Expression (Expr)) /= N_Aggregate
8da337c5 4355 or else not Compile_Time_Known_Aggregate (Expression (Expr))
0f95b178 4356 or else Expansion_Delayed (Expression (Expr))
00f45f30 4357 or else Nkind (Expr) = N_Iterated_Component_Association
0f95b178
JM
4358 then
4359 Static_Components := False;
4360 exit;
4361 end if;
4362
4363 Next (Expr);
4364 end loop;
4365 end if;
4366 end Check_Static_Components;
4367
fbf5a39b
AC
4368 -------------
4369 -- Flatten --
4370 -------------
4371
4372 function Flatten
d05ef0ab
AC
4373 (N : Node_Id;
4374 Ix : Node_Id;
4375 Ixb : Node_Id) return Boolean
fbf5a39b
AC
4376 is
4377 Loc : constant Source_Ptr := Sloc (N);
4378 Blo : constant Node_Id := Type_Low_Bound (Etype (Ixb));
4379 Lo : constant Node_Id := Type_Low_Bound (Etype (Ix));
4380 Hi : constant Node_Id := Type_High_Bound (Etype (Ix));
4381 Lov : Uint;
4382 Hiv : Uint;
4383
3f5a8fee
AC
4384 Others_Present : Boolean := False;
4385
6e937c1c 4386 begin
fbf5a39b
AC
4387 if Nkind (Original_Node (N)) = N_String_Literal then
4388 return True;
4389 end if;
07fc65c4 4390
0f95b178
JM
4391 if not Compile_Time_Known_Value (Lo)
4392 or else not Compile_Time_Known_Value (Hi)
4393 then
4394 return False;
4395 end if;
07fc65c4 4396
fbf5a39b
AC
4397 Lov := Expr_Value (Lo);
4398 Hiv := Expr_Value (Hi);
07fc65c4 4399
3f5a8fee
AC
4400 -- Check if there is an others choice
4401
4402 if Present (Component_Associations (N)) then
4403 declare
4404 Assoc : Node_Id;
4405 Choice : Node_Id;
4406
4407 begin
4408 Assoc := First (Component_Associations (N));
4409 while Present (Assoc) loop
9f8d1e5c
AC
4410
4411 -- If this is a box association, flattening is in general
4412 -- not possible because at this point we cannot tell if the
4413 -- default is static or even exists.
4414
4415 if Box_Present (Assoc) then
4416 return False;
00f45f30
AC
4417
4418 elsif Nkind (Assoc) = N_Iterated_Component_Association then
4419 return False;
9f8d1e5c
AC
4420 end if;
4421
00f45f30 4422 Choice := First (Choice_List (Assoc));
3f5a8fee
AC
4423
4424 while Present (Choice) loop
4425 if Nkind (Choice) = N_Others_Choice then
4426 Others_Present := True;
4427 end if;
4428
4429 Next (Choice);
4430 end loop;
4431
4432 Next (Assoc);
4433 end loop;
4434 end;
4435 end if;
4436
4437 -- If the low bound is not known at compile time and others is not
4438 -- present we can proceed since the bounds can be obtained from the
4439 -- aggregate.
4440
fbf5a39b 4441 if Hiv < Lov
36a66365 4442 or else (not Compile_Time_Known_Value (Blo) and then Others_Present)
fbf5a39b
AC
4443 then
4444 return False;
4445 end if;
07fc65c4 4446
3b9fa2df
ES
4447 -- Determine if set of alternatives is suitable for conversion and
4448 -- build an array containing the values in sequence.
07fc65c4 4449
fbf5a39b
AC
4450 declare
4451 Vals : array (UI_To_Int (Lov) .. UI_To_Int (Hiv))
4452 of Node_Id := (others => Empty);
4453 -- The values in the aggregate sorted appropriately
07fc65c4 4454
fbf5a39b
AC
4455 Vlist : List_Id;
4456 -- Same data as Vals in list form
07fc65c4 4457
fbf5a39b
AC
4458 Rep_Count : Nat;
4459 -- Used to validate Max_Others_Replicate limit
07fc65c4 4460
841dd0f5
AC
4461 Elmt : Node_Id;
4462 Num : Int := UI_To_Int (Lov);
4463 Choice_Index : Int;
4464 Choice : Node_Id;
4465 Lo, Hi : Node_Id;
07fc65c4 4466
fbf5a39b
AC
4467 begin
4468 if Present (Expressions (N)) then
4469 Elmt := First (Expressions (N));
fbf5a39b
AC
4470 while Present (Elmt) loop
4471 if Nkind (Elmt) = N_Aggregate
4472 and then Present (Next_Index (Ix))
4473 and then
d7f94401 4474 not Flatten (Elmt, Next_Index (Ix), Next_Index (Ixb))
fbf5a39b
AC
4475 then
4476 return False;
4477 end if;
07fc65c4 4478
fbf5a39b
AC
4479 Vals (Num) := Relocate_Node (Elmt);
4480 Num := Num + 1;
07fc65c4 4481
fbf5a39b
AC
4482 Next (Elmt);
4483 end loop;
4484 end if;
07fc65c4 4485
fbf5a39b
AC
4486 if No (Component_Associations (N)) then
4487 return True;
4488 end if;
07fc65c4 4489
fbf5a39b 4490 Elmt := First (Component_Associations (N));
07fc65c4 4491
fbf5a39b
AC
4492 if Nkind (Expression (Elmt)) = N_Aggregate then
4493 if Present (Next_Index (Ix))
4494 and then
4495 not Flatten
36a66365 4496 (Expression (Elmt), Next_Index (Ix), Next_Index (Ixb))
fbf5a39b
AC
4497 then
4498 return False;
4499 end if;
4500 end if;
07fc65c4 4501
fbf5a39b 4502 Component_Loop : while Present (Elmt) loop
00f45f30 4503 Choice := First (Choice_List (Elmt));
fbf5a39b
AC
4504 Choice_Loop : while Present (Choice) loop
4505
4506 -- If we have an others choice, fill in the missing elements
4507 -- subject to the limit established by Max_Others_Replicate.
4508
4509 if Nkind (Choice) = N_Others_Choice then
4510 Rep_Count := 0;
4511
4512 for J in Vals'Range loop
4513 if No (Vals (J)) then
4514 Vals (J) := New_Copy_Tree (Expression (Elmt));
4515 Rep_Count := Rep_Count + 1;
4516
4517 -- Check for maximum others replication. Note that
4518 -- we skip this test if either of the restrictions
4519 -- No_Elaboration_Code or No_Implicit_Loops is
8926d369
AC
4520 -- active, if this is a preelaborable unit or
4521 -- a predefined unit, or if the unit must be
4522 -- placed in data memory. This also ensures that
d9819bbd
AC
4523 -- predefined units get the same level of constant
4524 -- folding in Ada 95 and Ada 2005, where their
4525 -- categorization has changed.
fbf5a39b
AC
4526
4527 declare
4528 P : constant Entity_Id :=
15f0f591 4529 Cunit_Entity (Current_Sem_Unit);
fbf5a39b
AC
4530
4531 begin
7f4c1903
AC
4532 -- Check if duplication OK and if so continue
4533 -- processing.
4534
6e937c1c
AC
4535 if Restriction_Active (No_Elaboration_Code)
4536 or else Restriction_Active (No_Implicit_Loops)
d9819bbd
AC
4537 or else
4538 (Ekind (Current_Scope) = E_Package
36a66365
AC
4539 and then Static_Elaboration_Desired
4540 (Current_Scope))
fbf5a39b
AC
4541 or else Is_Preelaborated (P)
4542 or else (Ekind (P) = E_Package_Body
4543 and then
4544 Is_Preelaborated (Spec_Entity (P)))
7f4c1903 4545 or else
8ab31c0c 4546 Is_Predefined_Unit (Get_Source_Unit (P))
fbf5a39b
AC
4547 then
4548 null;
6e937c1c 4549
7f4c1903
AC
4550 -- If duplication not OK, then we return False
4551 -- if the replication count is too high
4552
fbf5a39b
AC
4553 elsif Rep_Count > Max_Others_Replicate then
4554 return False;
7f4c1903
AC
4555
4556 -- Continue on if duplication not OK, but the
4557 -- replication count is not excessive.
4558
4559 else
4560 null;
fbf5a39b
AC
4561 end if;
4562 end;
4563 end if;
4564 end loop;
07fc65c4 4565
fbf5a39b 4566 exit Component_Loop;
07fc65c4 4567
deeb1604 4568 -- Case of a subtype mark, identifier or expanded name
07fc65c4 4569
deeb1604 4570 elsif Is_Entity_Name (Choice)
fbf5a39b
AC
4571 and then Is_Type (Entity (Choice))
4572 then
4573 Lo := Type_Low_Bound (Etype (Choice));
4574 Hi := Type_High_Bound (Etype (Choice));
07fc65c4 4575
fbf5a39b 4576 -- Case of subtype indication
07fc65c4 4577
fbf5a39b
AC
4578 elsif Nkind (Choice) = N_Subtype_Indication then
4579 Lo := Low_Bound (Range_Expression (Constraint (Choice)));
4580 Hi := High_Bound (Range_Expression (Constraint (Choice)));
4581
4582 -- Case of a range
4583
4584 elsif Nkind (Choice) = N_Range then
4585 Lo := Low_Bound (Choice);
4586 Hi := High_Bound (Choice);
4587
4588 -- Normal subexpression case
4589
4590 else pragma Assert (Nkind (Choice) in N_Subexpr);
4591 if not Compile_Time_Known_Value (Choice) then
4592 return False;
4593
4594 else
841dd0f5 4595 Choice_Index := UI_To_Int (Expr_Value (Choice));
bdc193ba 4596
841dd0f5
AC
4597 if Choice_Index in Vals'Range then
4598 Vals (Choice_Index) :=
4599 New_Copy_Tree (Expression (Elmt));
4600 goto Continue;
4601
bdc193ba
AC
4602 -- Choice is statically out-of-range, will be
4603 -- rewritten to raise Constraint_Error.
841dd0f5 4604
bdc193ba 4605 else
841dd0f5
AC
4606 return False;
4607 end if;
07fc65c4 4608 end if;
fbf5a39b
AC
4609 end if;
4610
64425dff 4611 -- Range cases merge with Lo,Hi set
fbf5a39b
AC
4612
4613 if not Compile_Time_Known_Value (Lo)
4614 or else
4615 not Compile_Time_Known_Value (Hi)
4616 then
4617 return False;
bdc193ba 4618
fbf5a39b
AC
4619 else
4620 for J in UI_To_Int (Expr_Value (Lo)) ..
4621 UI_To_Int (Expr_Value (Hi))
4622 loop
4623 Vals (J) := New_Copy_Tree (Expression (Elmt));
4624 end loop;
4625 end if;
07fc65c4 4626
fbf5a39b
AC
4627 <<Continue>>
4628 Next (Choice);
4629 end loop Choice_Loop;
07fc65c4 4630
fbf5a39b
AC
4631 Next (Elmt);
4632 end loop Component_Loop;
07fc65c4 4633
fbf5a39b 4634 -- If we get here the conversion is possible
07fc65c4 4635
fbf5a39b
AC
4636 Vlist := New_List;
4637 for J in Vals'Range loop
4638 Append (Vals (J), Vlist);
4639 end loop;
07fc65c4 4640
fbf5a39b
AC
4641 Rewrite (N, Make_Aggregate (Loc, Expressions => Vlist));
4642 Set_Aggregate_Bounds (N, Aggregate_Bounds (Original_Node (N)));
4643 return True;
4644 end;
4645 end Flatten;
07fc65c4 4646
fbf5a39b
AC
4647 -------------
4648 -- Is_Flat --
4649 -------------
07fc65c4 4650
fbf5a39b
AC
4651 function Is_Flat (N : Node_Id; Dims : Int) return Boolean is
4652 Elmt : Node_Id;
07fc65c4 4653
fbf5a39b
AC
4654 begin
4655 if Dims = 0 then
4656 return True;
07fc65c4 4657
fbf5a39b
AC
4658 elsif Nkind (N) = N_Aggregate then
4659 if Present (Component_Associations (N)) then
4660 return False;
07fc65c4 4661
fbf5a39b
AC
4662 else
4663 Elmt := First (Expressions (N));
fbf5a39b
AC
4664 while Present (Elmt) loop
4665 if not Is_Flat (Elmt, Dims - 1) then
4666 return False;
07fc65c4 4667 end if;
07fc65c4 4668
fbf5a39b
AC
4669 Next (Elmt);
4670 end loop;
07fc65c4 4671
fbf5a39b
AC
4672 return True;
4673 end if;
4674 else
4675 return True;
4676 end if;
4677 end Is_Flat;
07fc65c4 4678
fbf5a39b 4679 -- Start of processing for Convert_To_Positional
07fc65c4 4680
fbf5a39b 4681 begin
6031f544
AC
4682 -- Only convert to positional when generating C in case of an
4683 -- object declaration, this is the only case where aggregates are
4684 -- supported in C.
4685
4686 if Modify_Tree_For_C and then not In_Object_Declaration (N) then
4687 return;
4688 end if;
4689
0ab80019 4690 -- Ada 2005 (AI-287): Do not convert in case of default initialized
c45b6ae0
AC
4691 -- components because in this case will need to call the corresponding
4692 -- IP procedure.
4693
4694 if Has_Default_Init_Comps (N) then
4695 return;
4696 end if;
4697
fbf5a39b
AC
4698 if Is_Flat (N, Number_Dimensions (Typ)) then
4699 return;
4700 end if;
4701
36a66365 4702 if Is_Bit_Packed_Array (Typ) and then not Handle_Bit_Packed then
fbf5a39b
AC
4703 return;
4704 end if;
07fc65c4 4705
3b9fa2df
ES
4706 -- Do not convert to positional if controlled components are involved
4707 -- since these require special processing
07fc65c4 4708
fbf5a39b
AC
4709 if Has_Controlled_Component (Typ) then
4710 return;
4711 end if;
07fc65c4 4712
0f95b178
JM
4713 Check_Static_Components;
4714
4715 -- If the size is known, or all the components are static, try to
4716 -- build a fully positional aggregate.
4717
21d7ef70 4718 -- The size of the type may not be known for an aggregate with
0f95b178
JM
4719 -- discriminated array components, but if the components are static
4720 -- it is still possible to verify statically that the length is
4721 -- compatible with the upper bound of the type, and therefore it is
4722 -- worth flattening such aggregates as well.
4723
4724 -- For now the back-end expands these aggregates into individual
4725 -- assignments to the target anyway, but it is conceivable that
4726 -- it will eventually be able to treat such aggregates statically???
4727
58fda84d 4728 if Aggr_Size_OK (N, Typ)
0f95b178 4729 and then Flatten (N, First_Index (Typ), First_Index (Base_Type (Typ)))
643a0839 4730 then
0f95b178
JM
4731 if Static_Components then
4732 Set_Compile_Time_Known_Aggregate (N);
4733 Set_Expansion_Delayed (N, False);
4734 end if;
4735
07fc65c4 4736 Analyze_And_Resolve (N, Typ);
fbf5a39b 4737 end if;
d9819bbd 4738
d74716b3 4739 -- If Static_Elaboration_Desired has been specified, diagnose aggregates
e6807723
AC
4740 -- that will still require initialization code.
4741
d9819bbd
AC
4742 if (Ekind (Current_Scope) = E_Package
4743 and then Static_Elaboration_Desired (Current_Scope))
4744 and then Nkind (Parent (N)) = N_Object_Declaration
4745 then
4746 declare
4747 Expr : Node_Id;
4748
4749 begin
e6807723 4750 if Nkind (N) = N_Aggregate and then Present (Expressions (N)) then
d9819bbd
AC
4751 Expr := First (Expressions (N));
4752 while Present (Expr) loop
4753 if Nkind_In (Expr, N_Integer_Literal, N_Real_Literal)
4754 or else
4755 (Is_Entity_Name (Expr)
4756 and then Ekind (Entity (Expr)) = E_Enumeration_Literal)
4757 then
4758 null;
8926d369 4759
d9819bbd 4760 else
8926d369 4761 Error_Msg_N
21d7ef70 4762 ("non-static object requires elaboration code??", N);
d9819bbd
AC
4763 exit;
4764 end if;
8926d369 4765
d9819bbd
AC
4766 Next (Expr);
4767 end loop;
4768
4769 if Present (Component_Associations (N)) then
324ac540 4770 Error_Msg_N ("object requires elaboration code??", N);
d9819bbd
AC
4771 end if;
4772 end if;
4773 end;
4774 end if;
07fc65c4
GB
4775 end Convert_To_Positional;
4776
70482933
RK
4777 ----------------------------
4778 -- Expand_Array_Aggregate --
4779 ----------------------------
4780
4781 -- Array aggregate expansion proceeds as follows:
4782
4783 -- 1. If requested we generate code to perform all the array aggregate
4784 -- bound checks, specifically
4785
4786 -- (a) Check that the index range defined by aggregate bounds is
4787 -- compatible with corresponding index subtype.
4788
4789 -- (b) If an others choice is present check that no aggregate
4790 -- index is outside the bounds of the index constraint.
4791
4792 -- (c) For multidimensional arrays make sure that all subaggregates
4793 -- corresponding to the same dimension have the same bounds.
4794
fbf5a39b 4795 -- 2. Check for packed array aggregate which can be converted to a
b465ef6f 4796 -- constant so that the aggregate disappears completely.
fbf5a39b
AC
4797
4798 -- 3. Check case of nested aggregate. Generally nested aggregates are
4799 -- handled during the processing of the parent aggregate.
4800
4801 -- 4. Check if the aggregate can be statically processed. If this is the
70482933
RK
4802 -- case pass it as is to Gigi. Note that a necessary condition for
4803 -- static processing is that the aggregate be fully positional.
4804
fbf5a39b 4805 -- 5. If in place aggregate expansion is possible (i.e. no need to create
70482933
RK
4806 -- a temporary) then mark the aggregate as such and return. Otherwise
4807 -- create a new temporary and generate the appropriate initialization
4808 -- code.
4809
4810 procedure Expand_Array_Aggregate (N : Node_Id) is
4811 Loc : constant Source_Ptr := Sloc (N);
4812
4813 Typ : constant Entity_Id := Etype (N);
4814 Ctyp : constant Entity_Id := Component_Type (Typ);
07fc65c4 4815 -- Typ is the correct constrained array subtype of the aggregate
70482933
RK
4816 -- Ctyp is the corresponding component type.
4817
4818 Aggr_Dimension : constant Pos := Number_Dimensions (Typ);
3cf3e5c6 4819 -- Number of aggregate index dimensions
70482933
RK
4820
4821 Aggr_Low : array (1 .. Aggr_Dimension) of Node_Id;
4822 Aggr_High : array (1 .. Aggr_Dimension) of Node_Id;
3cf3e5c6 4823 -- Low and High bounds of the constraint for each aggregate index
70482933
RK
4824
4825 Aggr_Index_Typ : array (1 .. Aggr_Dimension) of Entity_Id;
3cf3e5c6 4826 -- The type of each index
70482933 4827
ac43e11e
AC
4828 In_Place_Assign_OK_For_Declaration : Boolean := False;
4829 -- True if we are to generate an in place assignment for a declaration
4830
70482933
RK
4831 Maybe_In_Place_OK : Boolean;
4832 -- If the type is neither controlled nor packed and the aggregate
4833 -- is the expression in an assignment, assignment in place may be
4834 -- possible, provided other conditions are met on the LHS.
4835
07fc65c4 4836 Others_Present : array (1 .. Aggr_Dimension) of Boolean :=
15f0f591 4837 (others => False);
d74716b3
AC
4838 -- If Others_Present (J) is True, then there is an others choice in one
4839 -- of the subaggregates of N at dimension J.
70482933 4840
ac43e11e
AC
4841 function Aggr_Assignment_OK_For_Backend (N : Node_Id) return Boolean;
4842 -- Returns true if an aggregate assignment can be done by the back end
4843
70482933
RK
4844 procedure Build_Constrained_Type (Positional : Boolean);
4845 -- If the subtype is not static or unconstrained, build a constrained
4846 -- type using the computable sizes of the aggregate and its sub-
4847 -- aggregates.
4848
4849 procedure Check_Bounds (Aggr_Bounds : Node_Id; Index_Bounds : Node_Id);
4850 -- Checks that the bounds of Aggr_Bounds are within the bounds defined
4851 -- by Index_Bounds.
4852
4853 procedure Check_Same_Aggr_Bounds (Sub_Aggr : Node_Id; Dim : Pos);
d74716b3
AC
4854 -- Checks that in a multidimensional array aggregate all subaggregates
4855 -- corresponding to the same dimension have the same bounds. Sub_Aggr is
4856 -- an array subaggregate. Dim is the dimension corresponding to the
4857 -- subaggregate.
70482933
RK
4858
4859 procedure Compute_Others_Present (Sub_Aggr : Node_Id; Dim : Pos);
d74716b3
AC
4860 -- Computes the values of array Others_Present. Sub_Aggr is the array
4861 -- subaggregate we start the computation from. Dim is the dimension
4862 -- corresponding to the subaggregate.
70482933 4863
70482933
RK
4864 function In_Place_Assign_OK return Boolean;
4865 -- Simple predicate to determine whether an aggregate assignment can
4866 -- be done in place, because none of the new values can depend on the
4867 -- components of the target of the assignment.
4868
4869 procedure Others_Check (Sub_Aggr : Node_Id; Dim : Pos);
d74716b3 4870 -- Checks that if an others choice is present in any subaggregate, no
70482933 4871 -- aggregate index is outside the bounds of the index constraint.
d74716b3
AC
4872 -- Sub_Aggr is an array subaggregate. Dim is the dimension corresponding
4873 -- to the subaggregate.
70482933 4874
8da337c5
AC
4875 function Safe_Left_Hand_Side (N : Node_Id) return Boolean;
4876 -- In addition to Maybe_In_Place_OK, in order for an aggregate to be
4877 -- built directly into the target of the assignment it must be free
d74716b3 4878 -- of side effects.
8da337c5 4879
ac43e11e
AC
4880 ------------------------------------
4881 -- Aggr_Assignment_OK_For_Backend --
4882 ------------------------------------
4883
4884 -- Backend processing by Gigi/gcc is possible only if all the following
4885 -- conditions are met:
4886
4887 -- 1. N consists of a single OTHERS choice, possibly recursively
4888
b7c874a7 4889 -- 2. The array type is not packed
ac43e11e 4890
b7c874a7 4891 -- 3. The array type has no atomic components
ac43e11e 4892
e8cddc3b
AC
4893 -- 4. The array type has no null ranges (the purpose of this is to
4894 -- avoid a bogus warning for an out-of-range value).
e5c4e2bc 4895
e8cddc3b 4896 -- 5. The component type is discrete
b7c874a7
AC
4897
4898 -- 6. The component size is Storage_Unit or the value is of the form
41a58113
RD
4899 -- M * (1 + A**1 + A**2 + .. A**(K-1)) where A = 2**(Storage_Unit)
4900 -- and M in 1 .. A-1. This can also be viewed as K occurrences of
4901 -- the 8-bit value M, concatenated together.
7b2888e6 4902
ac43e11e
AC
4903 -- The ultimate goal is to generate a call to a fast memset routine
4904 -- specifically optimized for the target.
4905
4906 function Aggr_Assignment_OK_For_Backend (N : Node_Id) return Boolean is
4907 Ctyp : Entity_Id;
e8cddc3b 4908 Index : Entity_Id;
ac43e11e 4909 Expr : Node_Id := N;
e8cddc3b
AC
4910 Low : Node_Id;
4911 High : Node_Id;
ac43e11e
AC
4912 Remainder : Uint;
4913 Value : Uint;
4914 Nunits : Nat;
4915
4916 begin
4917 -- Recurse as far as possible to find the innermost component type
4918
4919 Ctyp := Etype (N);
4920 while Is_Array_Type (Ctyp) loop
4921 if Nkind (Expr) /= N_Aggregate
4922 or else not Is_Others_Aggregate (Expr)
4923 then
4924 return False;
4925 end if;
4926
b7c874a7
AC
4927 if Present (Packed_Array_Impl_Type (Ctyp)) then
4928 return False;
4929 end if;
4930
e5c4e2bc
AC
4931 if Has_Atomic_Components (Ctyp) then
4932 return False;
4933 end if;
4934
e8cddc3b
AC
4935 Index := First_Index (Ctyp);
4936 while Present (Index) loop
4937 Get_Index_Bounds (Index, Low, High);
4938
4939 if Is_Null_Range (Low, High) then
4940 return False;
4941 end if;
4942
4943 Next_Index (Index);
4944 end loop;
4945
ac43e11e
AC
4946 Expr := Expression (First (Component_Associations (Expr)));
4947
4948 for J in 1 .. Number_Dimensions (Ctyp) - 1 loop
4949 if Nkind (Expr) /= N_Aggregate
4950 or else not Is_Others_Aggregate (Expr)
4951 then
4952 return False;
4953 end if;
4954
4955 Expr := Expression (First (Component_Associations (Expr)));
4956 end loop;
4957
4958 Ctyp := Component_Type (Ctyp);
7b2888e6 4959
f280dd8f 4960 if Is_Atomic_Or_VFA (Ctyp) then
e5c4e2bc
AC
4961 return False;
4962 end if;
ac43e11e
AC
4963 end loop;
4964
b2c1aa8f
AC
4965 -- An Iterated_Component_Association involves a loop (in most cases)
4966 -- and is never static.
4967
4968 if Nkind (Parent (Expr)) = N_Iterated_Component_Association then
4969 return False;
4970 end if;
4971
e8cddc3b 4972 if not Is_Discrete_Type (Ctyp) then
ac43e11e
AC
4973 return False;
4974 end if;
4975
4976 -- The expression needs to be analyzed if True is returned
4977
4978 Analyze_And_Resolve (Expr, Ctyp);
4979
e8cddc3b
AC
4980 -- The back end uses the Esize as the precision of the type
4981
4982 Nunits := UI_To_Int (Esize (Ctyp)) / System_Storage_Unit;
4983
ac43e11e
AC
4984 if Nunits = 1 then
4985 return True;
4986 end if;
4987
4988 if not Compile_Time_Known_Value (Expr) then
4989 return False;
4990 end if;
4991
4992 Value := Expr_Value (Expr);
4993
4994 if Has_Biased_Representation (Ctyp) then
4995 Value := Value - Expr_Value (Type_Low_Bound (Ctyp));
4996 end if;
4997
e8cddc3b 4998 -- Values 0 and -1 immediately satisfy the last check
ac43e11e
AC
4999
5000 if Value = Uint_0 or else Value = Uint_Minus_1 then
5001 return True;
5002 end if;
5003
5004 -- We need to work with an unsigned value
5005
5006 if Value < 0 then
5007 Value := Value + 2**(System_Storage_Unit * Nunits);
5008 end if;
5009
5010 Remainder := Value rem 2**System_Storage_Unit;
bdc193ba
AC
5011
5012 for J in 1 .. Nunits - 1 loop
ac43e11e
AC
5013 Value := Value / 2**System_Storage_Unit;
5014
5015 if Value rem 2**System_Storage_Unit /= Remainder then
5016 return False;
5017 end if;
5018 end loop;
5019
5020 return True;
5021 end Aggr_Assignment_OK_For_Backend;
5022
70482933
RK
5023 ----------------------------
5024 -- Build_Constrained_Type --
5025 ----------------------------
5026
5027 procedure Build_Constrained_Type (Positional : Boolean) is
fbf5a39b 5028 Loc : constant Source_Ptr := Sloc (N);
191fcb3a 5029 Agg_Type : constant Entity_Id := Make_Temporary (Loc, 'A');
fbf5a39b
AC
5030 Comp : Node_Id;
5031 Decl : Node_Id;
5032 Typ : constant Entity_Id := Etype (N);
deeb1604 5033 Indexes : constant List_Id := New_List;
b3143037 5034 Num : Nat;
fbf5a39b 5035 Sub_Agg : Node_Id;
70482933
RK
5036
5037 begin
70482933
RK
5038 -- If the aggregate is purely positional, all its subaggregates
5039 -- have the same size. We collect the dimensions from the first
5040 -- subaggregate at each level.
5041
5042 if Positional then
5043 Sub_Agg := N;
5044
5045 for D in 1 .. Number_Dimensions (Typ) loop
5277cab6 5046 Sub_Agg := First (Expressions (Sub_Agg));
70482933 5047
5277cab6 5048 Comp := Sub_Agg;
70482933 5049 Num := 0;
70482933
RK
5050 while Present (Comp) loop
5051 Num := Num + 1;
5052 Next (Comp);
5053 end loop;
5054
deeb1604 5055 Append_To (Indexes,
70482933 5056 Make_Range (Loc,
37368818 5057 Low_Bound => Make_Integer_Literal (Loc, 1),
191fcb3a 5058 High_Bound => Make_Integer_Literal (Loc, Num)));
70482933
RK
5059 end loop;
5060
5061 else
3b9fa2df
ES
5062 -- We know the aggregate type is unconstrained and the aggregate
5063 -- is not processable by the back end, therefore not necessarily
5064 -- positional. Retrieve each dimension bounds (computed earlier).
70482933
RK
5065
5066 for D in 1 .. Number_Dimensions (Typ) loop
37368818 5067 Append_To (Indexes,
70482933 5068 Make_Range (Loc,
37368818
RD
5069 Low_Bound => Aggr_Low (D),
5070 High_Bound => Aggr_High (D)));
70482933
RK
5071 end loop;
5072 end if;
5073
5074 Decl :=
5075 Make_Full_Type_Declaration (Loc,
5076 Defining_Identifier => Agg_Type,
bdc193ba 5077 Type_Definition =>
70482933 5078 Make_Constrained_Array_Definition (Loc,
deeb1604
AC
5079 Discrete_Subtype_Definitions => Indexes,
5080 Component_Definition =>
a397db96 5081 Make_Component_Definition (Loc,
deeb1604 5082 Aliased_Present => False,
a397db96
AC
5083 Subtype_Indication =>
5084 New_Occurrence_Of (Component_Type (Typ), Loc))));
70482933
RK
5085
5086 Insert_Action (N, Decl);
5087 Analyze (Decl);
5088 Set_Etype (N, Agg_Type);
5089 Set_Is_Itype (Agg_Type);
5090 Freeze_Itype (Agg_Type, N);
5091 end Build_Constrained_Type;
5092
5093 ------------------
5094 -- Check_Bounds --
5095 ------------------
5096
5097 procedure Check_Bounds (Aggr_Bounds : Node_Id; Index_Bounds : Node_Id) is
5098 Aggr_Lo : Node_Id;
5099 Aggr_Hi : Node_Id;
5100
5101 Ind_Lo : Node_Id;
5102 Ind_Hi : Node_Id;
5103
5104 Cond : Node_Id := Empty;
5105
5106 begin
5107 Get_Index_Bounds (Aggr_Bounds, Aggr_Lo, Aggr_Hi);
5108 Get_Index_Bounds (Index_Bounds, Ind_Lo, Ind_Hi);
5109
5110 -- Generate the following test:
bdc193ba 5111
70482933
RK
5112 -- [constraint_error when
5113 -- Aggr_Lo <= Aggr_Hi and then
5114 -- (Aggr_Lo < Ind_Lo or else Aggr_Hi > Ind_Hi)]
3b9fa2df 5115
641d3093 5116 -- As an optimization try to see if some tests are trivially vacuous
70482933
RK
5117 -- because we are comparing an expression against itself.
5118
5119 if Aggr_Lo = Ind_Lo and then Aggr_Hi = Ind_Hi then
5120 Cond := Empty;
5121
5122 elsif Aggr_Hi = Ind_Hi then
5123 Cond :=
5124 Make_Op_Lt (Loc,
fbf5a39b
AC
5125 Left_Opnd => Duplicate_Subexpr_Move_Checks (Aggr_Lo),
5126 Right_Opnd => Duplicate_Subexpr_Move_Checks (Ind_Lo));
70482933
RK
5127
5128 elsif Aggr_Lo = Ind_Lo then
5129 Cond :=
5130 Make_Op_Gt (Loc,
fbf5a39b
AC
5131 Left_Opnd => Duplicate_Subexpr_Move_Checks (Aggr_Hi),
5132 Right_Opnd => Duplicate_Subexpr_Move_Checks (Ind_Hi));
70482933
RK
5133
5134 else
5135 Cond :=
5136 Make_Or_Else (Loc,
5137 Left_Opnd =>
5138 Make_Op_Lt (Loc,
fbf5a39b
AC
5139 Left_Opnd => Duplicate_Subexpr_Move_Checks (Aggr_Lo),
5140 Right_Opnd => Duplicate_Subexpr_Move_Checks (Ind_Lo)),
70482933
RK
5141
5142 Right_Opnd =>
5143 Make_Op_Gt (Loc,
5144 Left_Opnd => Duplicate_Subexpr (Aggr_Hi),
5145 Right_Opnd => Duplicate_Subexpr (Ind_Hi)));
5146 end if;
5147
5148 if Present (Cond) then
5149 Cond :=
5150 Make_And_Then (Loc,
5151 Left_Opnd =>
5152 Make_Op_Le (Loc,
fbf5a39b
AC
5153 Left_Opnd => Duplicate_Subexpr_Move_Checks (Aggr_Lo),
5154 Right_Opnd => Duplicate_Subexpr_Move_Checks (Aggr_Hi)),
70482933
RK
5155
5156 Right_Opnd => Cond);
5157
5158 Set_Analyzed (Left_Opnd (Left_Opnd (Cond)), False);
5159 Set_Analyzed (Right_Opnd (Left_Opnd (Cond)), False);
5160 Insert_Action (N,
07fc65c4
GB
5161 Make_Raise_Constraint_Error (Loc,
5162 Condition => Cond,
8fdafe44 5163 Reason => CE_Range_Check_Failed));
70482933
RK
5164 end if;
5165 end Check_Bounds;
5166
5167 ----------------------------
5168 -- Check_Same_Aggr_Bounds --
5169 ----------------------------
5170
5171 procedure Check_Same_Aggr_Bounds (Sub_Aggr : Node_Id; Dim : Pos) is
5172 Sub_Lo : constant Node_Id := Low_Bound (Aggregate_Bounds (Sub_Aggr));
5173 Sub_Hi : constant Node_Id := High_Bound (Aggregate_Bounds (Sub_Aggr));
d74716b3 5174 -- The bounds of this specific subaggregate
70482933
RK
5175
5176 Aggr_Lo : constant Node_Id := Aggr_Low (Dim);
5177 Aggr_Hi : constant Node_Id := Aggr_High (Dim);
5178 -- The bounds of the aggregate for this dimension
5179
5180 Ind_Typ : constant Entity_Id := Aggr_Index_Typ (Dim);
3cf3e5c6 5181 -- The index type for this dimension.xxx
70482933 5182
fbf5a39b 5183 Cond : Node_Id := Empty;
fbf5a39b
AC
5184 Assoc : Node_Id;
5185 Expr : Node_Id;
70482933
RK
5186
5187 begin
5188 -- If index checks are on generate the test
3b9fa2df 5189
70482933
RK
5190 -- [constraint_error when
5191 -- Aggr_Lo /= Sub_Lo or else Aggr_Hi /= Sub_Hi]
3b9fa2df 5192
70482933
RK
5193 -- As an optimization try to see if some tests are trivially vacuos
5194 -- because we are comparing an expression against itself. Also for
5195 -- the first dimension the test is trivially vacuous because there
5196 -- is just one aggregate for dimension 1.
5197
5198 if Index_Checks_Suppressed (Ind_Typ) then
5199 Cond := Empty;
5200
bdc193ba 5201 elsif Dim = 1 or else (Aggr_Lo = Sub_Lo and then Aggr_Hi = Sub_Hi)
70482933
RK
5202 then
5203 Cond := Empty;
5204
5205 elsif Aggr_Hi = Sub_Hi then
5206 Cond :=
5207 Make_Op_Ne (Loc,
fbf5a39b
AC
5208 Left_Opnd => Duplicate_Subexpr_Move_Checks (Aggr_Lo),
5209 Right_Opnd => Duplicate_Subexpr_Move_Checks (Sub_Lo));
70482933
RK
5210
5211 elsif Aggr_Lo = Sub_Lo then
5212 Cond :=
5213 Make_Op_Ne (Loc,
fbf5a39b
AC
5214 Left_Opnd => Duplicate_Subexpr_Move_Checks (Aggr_Hi),
5215 Right_Opnd => Duplicate_Subexpr_Move_Checks (Sub_Hi));
70482933
RK
5216
5217 else
5218 Cond :=
5219 Make_Or_Else (Loc,
5220 Left_Opnd =>
5221 Make_Op_Ne (Loc,
fbf5a39b
AC
5222 Left_Opnd => Duplicate_Subexpr_Move_Checks (Aggr_Lo),
5223 Right_Opnd => Duplicate_Subexpr_Move_Checks (Sub_Lo)),
70482933
RK
5224
5225 Right_Opnd =>
5226 Make_Op_Ne (Loc,
5227 Left_Opnd => Duplicate_Subexpr (Aggr_Hi),
5228 Right_Opnd => Duplicate_Subexpr (Sub_Hi)));
5229 end if;
5230
5231 if Present (Cond) then
5232 Insert_Action (N,
07fc65c4
GB
5233 Make_Raise_Constraint_Error (Loc,
5234 Condition => Cond,
5235 Reason => CE_Length_Check_Failed));
70482933
RK
5236 end if;
5237
d74716b3 5238 -- Now look inside the subaggregate to see if there is more work
70482933
RK
5239
5240 if Dim < Aggr_Dimension then
5241
5242 -- Process positional components
5243
5244 if Present (Expressions (Sub_Aggr)) then
5245 Expr := First (Expressions (Sub_Aggr));
5246 while Present (Expr) loop
5247 Check_Same_Aggr_Bounds (Expr, Dim + 1);
5248 Next (Expr);
5249 end loop;
5250 end if;
5251
5252 -- Process component associations
5253
5254 if Present (Component_Associations (Sub_Aggr)) then
5255 Assoc := First (Component_Associations (Sub_Aggr));
5256 while Present (Assoc) loop
5257 Expr := Expression (Assoc);
5258 Check_Same_Aggr_Bounds (Expr, Dim + 1);
5259 Next (Assoc);
5260 end loop;
5261 end if;
5262 end if;
5263 end Check_Same_Aggr_Bounds;
5264
5265 ----------------------------
5266 -- Compute_Others_Present --
5267 ----------------------------
5268
5269 procedure Compute_Others_Present (Sub_Aggr : Node_Id; Dim : Pos) is
fbf5a39b
AC
5270 Assoc : Node_Id;
5271 Expr : Node_Id;
70482933
RK
5272
5273 begin
5274 if Present (Component_Associations (Sub_Aggr)) then
5275 Assoc := Last (Component_Associations (Sub_Aggr));
07fc65c4 5276
00f45f30 5277 if Nkind (First (Choice_List (Assoc))) = N_Others_Choice then
70482933
RK
5278 Others_Present (Dim) := True;
5279 end if;
5280 end if;
5281
d74716b3 5282 -- Now look inside the subaggregate to see if there is more work
70482933
RK
5283
5284 if Dim < Aggr_Dimension then
5285
5286 -- Process positional components
5287
5288 if Present (Expressions (Sub_Aggr)) then
5289 Expr := First (Expressions (Sub_Aggr));
5290 while Present (Expr) loop
5291 Compute_Others_Present (Expr, Dim + 1);
5292 Next (Expr);
5293 end loop;
5294 end if;
5295
5296 -- Process component associations
5297
5298 if Present (Component_Associations (Sub_Aggr)) then
5299 Assoc := First (Component_Associations (Sub_Aggr));
5300 while Present (Assoc) loop
5301 Expr := Expression (Assoc);
5302 Compute_Others_Present (Expr, Dim + 1);
5303 Next (Assoc);
5304 end loop;
5305 end if;
5306 end if;
5307 end Compute_Others_Present;
5308
70482933
RK
5309 ------------------------
5310 -- In_Place_Assign_OK --
5311 ------------------------
5312
5313 function In_Place_Assign_OK return Boolean is
5314 Aggr_In : Node_Id;
5315 Aggr_Lo : Node_Id;
5316 Aggr_Hi : Node_Id;
5317 Obj_In : Node_Id;
5318 Obj_Lo : Node_Id;
5319 Obj_Hi : Node_Id;
5320
5321 function Safe_Aggregate (Aggr : Node_Id) return Boolean;
d74716b3
AC
5322 -- Check recursively that each component of a (sub)aggregate does not
5323 -- depend on the variable being assigned to.
70482933
RK
5324
5325 function Safe_Component (Expr : Node_Id) return Boolean;
5326 -- Verify that an expression cannot depend on the variable being
5327 -- assigned to. Room for improvement here (but less than before).
5328
5329 --------------------
5330 -- Safe_Aggregate --
5331 --------------------
5332
5333 function Safe_Aggregate (Aggr : Node_Id) return Boolean is
5334 Expr : Node_Id;
5335
5336 begin
5337 if Present (Expressions (Aggr)) then
5338 Expr := First (Expressions (Aggr));
70482933
RK
5339 while Present (Expr) loop
5340 if Nkind (Expr) = N_Aggregate then
5341 if not Safe_Aggregate (Expr) then
5342 return False;
5343 end if;
5344
5345 elsif not Safe_Component (Expr) then
5346 return False;
5347 end if;
5348
5349 Next (Expr);
5350 end loop;
5351 end if;
5352
5353 if Present (Component_Associations (Aggr)) then
5354 Expr := First (Component_Associations (Aggr));
70482933
RK
5355 while Present (Expr) loop
5356 if Nkind (Expression (Expr)) = N_Aggregate then
5357 if not Safe_Aggregate (Expression (Expr)) then
5358 return False;
5359 end if;
5360
9f8d1e5c
AC
5361 -- If association has a box, no way to determine yet
5362 -- whether default can be assigned in place.
5363
5364 elsif Box_Present (Expr) then
5365 return False;
5366
70482933
RK
5367 elsif not Safe_Component (Expression (Expr)) then
5368 return False;
5369 end if;
5370
5371 Next (Expr);
5372 end loop;
5373 end if;
5374
5375 return True;
5376 end Safe_Aggregate;
5377
5378 --------------------
5379 -- Safe_Component --
5380 --------------------
5381
5382 function Safe_Component (Expr : Node_Id) return Boolean is
5383 Comp : Node_Id := Expr;
5384
5385 function Check_Component (Comp : Node_Id) return Boolean;
3cf3e5c6 5386 -- Do the recursive traversal, after copy
70482933 5387
fbf5a39b
AC
5388 ---------------------
5389 -- Check_Component --
5390 ---------------------
5391
70482933
RK
5392 function Check_Component (Comp : Node_Id) return Boolean is
5393 begin
5394 if Is_Overloaded (Comp) then
5395 return False;
5396 end if;
5397
5398 return Compile_Time_Known_Value (Comp)
5399
5400 or else (Is_Entity_Name (Comp)
36a66365 5401 and then Present (Entity (Comp))
70482933
RK
5402 and then No (Renamed_Object (Entity (Comp))))
5403
5404 or else (Nkind (Comp) = N_Attribute_Reference
5405 and then Check_Component (Prefix (Comp)))
5406
5407 or else (Nkind (Comp) in N_Binary_Op
5408 and then Check_Component (Left_Opnd (Comp))
5409 and then Check_Component (Right_Opnd (Comp)))
5410
5411 or else (Nkind (Comp) in N_Unary_Op
5412 and then Check_Component (Right_Opnd (Comp)))
5413
5414 or else (Nkind (Comp) = N_Selected_Component
6f639c98
ES
5415 and then Check_Component (Prefix (Comp)))
5416
5417 or else (Nkind (Comp) = N_Unchecked_Type_Conversion
5418 and then Check_Component (Expression (Comp)));
70482933
RK
5419 end Check_Component;
5420
fbf5a39b 5421 -- Start of processing for Safe_Component
70482933
RK
5422
5423 begin
bdc193ba
AC
5424 -- If the component appears in an association that may correspond
5425 -- to more than one element, it is not analyzed before expansion
5426 -- into assignments, to avoid side effects. We analyze, but do not
5427 -- resolve the copy, to obtain sufficient entity information for
5428 -- the checks that follow. If component is overloaded we assume
5429 -- an unsafe function call.
70482933
RK
5430
5431 if not Analyzed (Comp) then
5432 if Is_Overloaded (Expr) then
5433 return False;
07fc65c4
GB
5434
5435 elsif Nkind (Expr) = N_Aggregate
5436 and then not Is_Others_Aggregate (Expr)
5437 then
5438 return False;
5439
5440 elsif Nkind (Expr) = N_Allocator then
3cf3e5c6
AC
5441
5442 -- For now, too complex to analyze
07fc65c4
GB
5443
5444 return False;
70482933
RK
5445 end if;
5446
5447 Comp := New_Copy_Tree (Expr);
07fc65c4 5448 Set_Parent (Comp, Parent (Expr));
70482933
RK
5449 Analyze (Comp);
5450 end if;
5451
07fc65c4
GB
5452 if Nkind (Comp) = N_Aggregate then
5453 return Safe_Aggregate (Comp);
5454 else
5455 return Check_Component (Comp);
5456 end if;
70482933
RK
5457 end Safe_Component;
5458
5459 -- Start of processing for In_Place_Assign_OK
5460
5461 begin
5462 if Present (Component_Associations (N)) then
5463
5464 -- On assignment, sliding can take place, so we cannot do the
5465 -- assignment in place unless the bounds of the aggregate are
5466 -- statically equal to those of the target.
5467
bdc193ba
AC
5468 -- If the aggregate is given by an others choice, the bounds are
5469 -- derived from the left-hand side, and the assignment is safe if
5470 -- the expression is.
70482933 5471
07fc65c4 5472 if Is_Others_Aggregate (N) then
70482933
RK
5473 return
5474 Safe_Component
5475 (Expression (First (Component_Associations (N))));
5476 end if;
5477
5478 Aggr_In := First_Index (Etype (N));
6465b6a7 5479
6f639c98
ES
5480 if Nkind (Parent (N)) = N_Assignment_Statement then
5481 Obj_In := First_Index (Etype (Name (Parent (N))));
5482
5483 else
bdc193ba
AC
5484 -- Context is an allocator. Check bounds of aggregate against
5485 -- given type in qualified expression.
6f639c98
ES
5486
5487 pragma Assert (Nkind (Parent (Parent (N))) = N_Allocator);
5488 Obj_In :=
5489 First_Index (Etype (Entity (Subtype_Mark (Parent (N)))));
5490 end if;
70482933
RK
5491
5492 while Present (Aggr_In) loop
5493 Get_Index_Bounds (Aggr_In, Aggr_Lo, Aggr_Hi);
5494 Get_Index_Bounds (Obj_In, Obj_Lo, Obj_Hi);
5495
5496 if not Compile_Time_Known_Value (Aggr_Lo)
5497 or else not Compile_Time_Known_Value (Aggr_Hi)
5498 or else not Compile_Time_Known_Value (Obj_Lo)
5499 or else not Compile_Time_Known_Value (Obj_Hi)
5500 or else Expr_Value (Aggr_Lo) /= Expr_Value (Obj_Lo)
5501 or else Expr_Value (Aggr_Hi) /= Expr_Value (Obj_Hi)
5502 then
5503 return False;
5504 end if;
5505
5506 Next_Index (Aggr_In);
5507 Next_Index (Obj_In);
5508 end loop;
5509 end if;
5510
3cf3e5c6 5511 -- Now check the component values themselves
70482933
RK
5512
5513 return Safe_Aggregate (N);
5514 end In_Place_Assign_OK;
5515
5516 ------------------
5517 -- Others_Check --
5518 ------------------
5519
5520 procedure Others_Check (Sub_Aggr : Node_Id; Dim : Pos) is
5521 Aggr_Lo : constant Node_Id := Aggr_Low (Dim);
5522 Aggr_Hi : constant Node_Id := Aggr_High (Dim);
3cf3e5c6 5523 -- The bounds of the aggregate for this dimension
70482933
RK
5524
5525 Ind_Typ : constant Entity_Id := Aggr_Index_Typ (Dim);
3cf3e5c6 5526 -- The index type for this dimension
70482933
RK
5527
5528 Need_To_Check : Boolean := False;
5529
5530 Choices_Lo : Node_Id := Empty;
5531 Choices_Hi : Node_Id := Empty;
d74716b3 5532 -- The lowest and highest discrete choices for a named subaggregate
70482933
RK
5533
5534 Nb_Choices : Int := -1;
d74716b3 5535 -- The number of discrete non-others choices in this subaggregate
70482933
RK
5536
5537 Nb_Elements : Uint := Uint_0;
5538 -- The number of elements in a positional aggregate
5539
5540 Cond : Node_Id := Empty;
5541
5542 Assoc : Node_Id;
5543 Choice : Node_Id;
5544 Expr : Node_Id;
5545
5546 begin
5547 -- Check if we have an others choice. If we do make sure that this
d74716b3 5548 -- subaggregate contains at least one element in addition to the
70482933
RK
5549 -- others choice.
5550
5551 if Range_Checks_Suppressed (Ind_Typ) then
5552 Need_To_Check := False;
5553
5554 elsif Present (Expressions (Sub_Aggr))
5555 and then Present (Component_Associations (Sub_Aggr))
5556 then
5557 Need_To_Check := True;
5558
5559 elsif Present (Component_Associations (Sub_Aggr)) then
5560 Assoc := Last (Component_Associations (Sub_Aggr));
5561
00f45f30 5562 if Nkind (First (Choice_List (Assoc))) /= N_Others_Choice then
70482933
RK
5563 Need_To_Check := False;
5564
5565 else
3b9fa2df
ES
5566 -- Count the number of discrete choices. Start with -1 because
5567 -- the others choice does not count.
70482933 5568
bdc193ba
AC
5569 -- Is there some reason we do not use List_Length here ???
5570
70482933
RK
5571 Nb_Choices := -1;
5572 Assoc := First (Component_Associations (Sub_Aggr));
5573 while Present (Assoc) loop
00f45f30 5574 Choice := First (Choice_List (Assoc));
70482933
RK
5575 while Present (Choice) loop
5576 Nb_Choices := Nb_Choices + 1;
5577 Next (Choice);
5578 end loop;
5579
5580 Next (Assoc);
5581 end loop;
5582
5583 -- If there is only an others choice nothing to do
5584
5585 Need_To_Check := (Nb_Choices > 0);
5586 end if;
5587
5588 else
5589 Need_To_Check := False;
5590 end if;
5591
d74716b3 5592 -- If we are dealing with a positional subaggregate with an others
3b9fa2df 5593 -- choice then compute the number or positional elements.
70482933
RK
5594
5595 if Need_To_Check and then Present (Expressions (Sub_Aggr)) then
5596 Expr := First (Expressions (Sub_Aggr));
5597 Nb_Elements := Uint_0;
5598 while Present (Expr) loop
5599 Nb_Elements := Nb_Elements + 1;
5600 Next (Expr);
5601 end loop;
5602
5603 -- If the aggregate contains discrete choices and an others choice
5604 -- compute the smallest and largest discrete choice values.
5605
5606 elsif Need_To_Check then
5607 Compute_Choices_Lo_And_Choices_Hi : declare
07fc65c4 5608
70482933
RK
5609 Table : Case_Table_Type (1 .. Nb_Choices);
5610 -- Used to sort all the different choice values
5611
07fc65c4 5612 J : Pos := 1;
70482933
RK
5613 Low : Node_Id;
5614 High : Node_Id;
5615
5616 begin
5617 Assoc := First (Component_Associations (Sub_Aggr));
5618 while Present (Assoc) loop
00f45f30 5619 Choice := First (Choice_List (Assoc));
70482933
RK
5620 while Present (Choice) loop
5621 if Nkind (Choice) = N_Others_Choice then
5622 exit;
5623 end if;
5624
5625 Get_Index_Bounds (Choice, Low, High);
07fc65c4
GB
5626 Table (J).Choice_Lo := Low;
5627 Table (J).Choice_Hi := High;
70482933 5628
07fc65c4 5629 J := J + 1;
70482933
RK
5630 Next (Choice);
5631 end loop;
5632
5633 Next (Assoc);
5634 end loop;
5635
5636 -- Sort the discrete choices
5637
5638 Sort_Case_Table (Table);
5639
5640 Choices_Lo := Table (1).Choice_Lo;
5641 Choices_Hi := Table (Nb_Choices).Choice_Hi;
5642 end Compute_Choices_Lo_And_Choices_Hi;
5643 end if;
5644
d74716b3 5645 -- If no others choice in this subaggregate, or the aggregate
70482933
RK
5646 -- comprises only an others choice, nothing to do.
5647
5648 if not Need_To_Check then
5649 Cond := Empty;
5650
3b9fa2df
ES
5651 -- If we are dealing with an aggregate containing an others choice
5652 -- and positional components, we generate the following test:
5653
70482933
RK
5654 -- if Ind_Typ'Pos (Aggr_Lo) + (Nb_Elements - 1) >
5655 -- Ind_Typ'Pos (Aggr_Hi)
5656 -- then
5657 -- raise Constraint_Error;
5658 -- end if;
5659
5660 elsif Nb_Elements > Uint_0 then
5661 Cond :=
5662 Make_Op_Gt (Loc,
5663 Left_Opnd =>
5664 Make_Op_Add (Loc,
5665 Left_Opnd =>
5666 Make_Attribute_Reference (Loc,
e4494292 5667 Prefix => New_Occurrence_Of (Ind_Typ, Loc),
70482933
RK
5668 Attribute_Name => Name_Pos,
5669 Expressions =>
fbf5a39b
AC
5670 New_List
5671 (Duplicate_Subexpr_Move_Checks (Aggr_Lo))),
bdc193ba 5672 Right_Opnd => Make_Integer_Literal (Loc, Nb_Elements - 1)),
70482933
RK
5673
5674 Right_Opnd =>
5675 Make_Attribute_Reference (Loc,
e4494292 5676 Prefix => New_Occurrence_Of (Ind_Typ, Loc),
70482933 5677 Attribute_Name => Name_Pos,
fbf5a39b
AC
5678 Expressions => New_List (
5679 Duplicate_Subexpr_Move_Checks (Aggr_Hi))));
70482933 5680
3b9fa2df
ES
5681 -- If we are dealing with an aggregate containing an others choice
5682 -- and discrete choices we generate the following test:
5683
70482933
RK
5684 -- [constraint_error when
5685 -- Choices_Lo < Aggr_Lo or else Choices_Hi > Aggr_Hi];
5686
5687 else
5688 Cond :=
5689 Make_Or_Else (Loc,
5690 Left_Opnd =>
5691 Make_Op_Lt (Loc,
bdc193ba
AC
5692 Left_Opnd => Duplicate_Subexpr_Move_Checks (Choices_Lo),
5693 Right_Opnd => Duplicate_Subexpr_Move_Checks (Aggr_Lo)),
70482933
RK
5694
5695 Right_Opnd =>
5696 Make_Op_Gt (Loc,
bdc193ba
AC
5697 Left_Opnd => Duplicate_Subexpr (Choices_Hi),
5698 Right_Opnd => Duplicate_Subexpr (Aggr_Hi)));
70482933
RK
5699 end if;
5700
5701 if Present (Cond) then
5702 Insert_Action (N,
07fc65c4
GB
5703 Make_Raise_Constraint_Error (Loc,
5704 Condition => Cond,
5705 Reason => CE_Length_Check_Failed));
641d3093
TQ
5706 -- Questionable reason code, shouldn't that be a
5707 -- CE_Range_Check_Failed ???
70482933
RK
5708 end if;
5709
d74716b3 5710 -- Now look inside the subaggregate to see if there is more work
70482933
RK
5711
5712 if Dim < Aggr_Dimension then
5713
5714 -- Process positional components
5715
5716 if Present (Expressions (Sub_Aggr)) then
5717 Expr := First (Expressions (Sub_Aggr));
5718 while Present (Expr) loop
5719 Others_Check (Expr, Dim + 1);
5720 Next (Expr);
5721 end loop;
5722 end if;
5723
5724 -- Process component associations
5725
5726 if Present (Component_Associations (Sub_Aggr)) then
5727 Assoc := First (Component_Associations (Sub_Aggr));
5728 while Present (Assoc) loop
5729 Expr := Expression (Assoc);
5730 Others_Check (Expr, Dim + 1);
5731 Next (Assoc);
5732 end loop;
5733 end if;
5734 end if;
5735 end Others_Check;
5736
8da337c5
AC
5737 -------------------------
5738 -- Safe_Left_Hand_Side --
5739 -------------------------
5740
5741 function Safe_Left_Hand_Side (N : Node_Id) return Boolean is
deeb1604
AC
5742 function Is_Safe_Index (Indx : Node_Id) return Boolean;
5743 -- If the left-hand side includes an indexed component, check that
d74716b3 5744 -- the indexes are free of side effects.
deeb1604
AC
5745
5746 -------------------
5747 -- Is_Safe_Index --
5748 -------------------
5749
5750 function Is_Safe_Index (Indx : Node_Id) return Boolean is
5751 begin
5752 if Is_Entity_Name (Indx) then
5753 return True;
5754
5755 elsif Nkind (Indx) = N_Integer_Literal then
5756 return True;
5757
5758 elsif Nkind (Indx) = N_Function_Call
5759 and then Is_Entity_Name (Name (Indx))
36a66365 5760 and then Has_Pragma_Pure_Function (Entity (Name (Indx)))
deeb1604
AC
5761 then
5762 return True;
5763
5764 elsif Nkind (Indx) = N_Type_Conversion
5765 and then Is_Safe_Index (Expression (Indx))
5766 then
5767 return True;
5768
5769 else
5770 return False;
5771 end if;
5772 end Is_Safe_Index;
5773
5774 -- Start of processing for Safe_Left_Hand_Side
5775
8da337c5
AC
5776 begin
5777 if Is_Entity_Name (N) then
5778 return True;
5779
5780 elsif Nkind_In (N, N_Explicit_Dereference, N_Selected_Component)
5781 and then Safe_Left_Hand_Side (Prefix (N))
5782 then
5783 return True;
5784
5785 elsif Nkind (N) = N_Indexed_Component
5786 and then Safe_Left_Hand_Side (Prefix (N))
36a66365 5787 and then Is_Safe_Index (First (Expressions (N)))
8da337c5
AC
5788 then
5789 return True;
deeb1604
AC
5790
5791 elsif Nkind (N) = N_Unchecked_Type_Conversion then
5792 return Safe_Left_Hand_Side (Expression (N));
5793
8da337c5
AC
5794 else
5795 return False;
5796 end if;
5797 end Safe_Left_Hand_Side;
5798
5799 -- Local variables
70482933
RK
5800
5801 Tmp : Entity_Id;
fbf5a39b 5802 -- Holds the temporary aggregate value
70482933
RK
5803
5804 Tmp_Decl : Node_Id;
fbf5a39b 5805 -- Holds the declaration of Tmp
70482933
RK
5806
5807 Aggr_Code : List_Id;
5808 Parent_Node : Node_Id;
5809 Parent_Kind : Node_Kind;
5810
5811 -- Start of processing for Expand_Array_Aggregate
5812
5813 begin
5814 -- Do not touch the special aggregates of attributes used for Asm calls
5815
5816 if Is_RTE (Ctyp, RE_Asm_Input_Operand)
5817 or else Is_RTE (Ctyp, RE_Asm_Output_Operand)
5818 then
5819 return;
4a1bfefb
AC
5820
5821 -- Do not expand an aggregate for an array type which contains tasks if
5822 -- the aggregate is associated with an unexpanded return statement of a
5823 -- build-in-place function. The aggregate is expanded when the related
5824 -- return statement (rewritten into an extended return) is processed.
5825 -- This delay ensures that any temporaries and initialization code
5826 -- generated for the aggregate appear in the proper return block and
5827 -- use the correct _chain and _master.
5828
5829 elsif Has_Task (Base_Type (Etype (N)))
5830 and then Nkind (Parent (N)) = N_Simple_Return_Statement
5831 and then Is_Build_In_Place_Function
5832 (Return_Applies_To (Return_Statement_Entity (Parent (N))))
5833 then
5834 return;
f5655e4a
AC
5835
5836 -- Do not attempt expansion if error already detected. We may reach this
5837 -- point in spite of previous errors when compiling with -gnatq, to
5838 -- force all possible errors (this is the usual ACATS mode).
5839
5840 elsif Error_Posted (N) then
5841 return;
70482933
RK
5842 end if;
5843
07fc65c4 5844 -- If the semantic analyzer has determined that aggregate N will raise
e7c0dd39 5845 -- Constraint_Error at run time, then the aggregate node has been
07fc65c4
GB
5846 -- replaced with an N_Raise_Constraint_Error node and we should
5847 -- never get here.
70482933
RK
5848
5849 pragma Assert (not Raises_Constraint_Error (N));
5850
3cf3e5c6 5851 -- STEP 1a
fbf5a39b
AC
5852
5853 -- Check that the index range defined by aggregate bounds is
5854 -- compatible with corresponding index subtype.
70482933
RK
5855
5856 Index_Compatibility_Check : declare
5857 Aggr_Index_Range : Node_Id := First_Index (Typ);
5858 -- The current aggregate index range
5859
5860 Index_Constraint : Node_Id := First_Index (Etype (Typ));
5861 -- The corresponding index constraint against which we have to
5862 -- check the above aggregate index range.
5863
5864 begin
5865 Compute_Others_Present (N, 1);
5866
5867 for J in 1 .. Aggr_Dimension loop
bdc193ba
AC
5868 -- There is no need to emit a check if an others choice is present
5869 -- for this array aggregate dimension since in this case one of
d74716b3 5870 -- N's subaggregates has taken its bounds from the context and
bdc193ba 5871 -- these bounds must have been checked already. In addition all
d74716b3
AC
5872 -- subaggregates corresponding to the same dimension must all have
5873 -- the same bounds (checked in (c) below).
70482933
RK
5874
5875 if not Range_Checks_Suppressed (Etype (Index_Constraint))
5876 and then not Others_Present (J)
5877 then
3b9fa2df
ES
5878 -- We don't use Checks.Apply_Range_Check here because it emits
5879 -- a spurious check. Namely it checks that the range defined by
d74716b3 5880 -- the aggregate bounds is nonempty. But we know this already
3b9fa2df 5881 -- if we get here.
70482933
RK
5882
5883 Check_Bounds (Aggr_Index_Range, Index_Constraint);
5884 end if;
5885
3b9fa2df
ES
5886 -- Save the low and high bounds of the aggregate index as well as
5887 -- the index type for later use in checks (b) and (c) below.
70482933
RK
5888
5889 Aggr_Low (J) := Low_Bound (Aggr_Index_Range);
5890 Aggr_High (J) := High_Bound (Aggr_Index_Range);
5891
5892 Aggr_Index_Typ (J) := Etype (Index_Constraint);
5893
5894 Next_Index (Aggr_Index_Range);
5895 Next_Index (Index_Constraint);
5896 end loop;
5897 end Index_Compatibility_Check;
5898
3cf3e5c6 5899 -- STEP 1b
fbf5a39b 5900
3b9fa2df
ES
5901 -- If an others choice is present check that no aggregate index is
5902 -- outside the bounds of the index constraint.
70482933
RK
5903
5904 Others_Check (N, 1);
5905
3cf3e5c6 5906 -- STEP 1c
fbf5a39b
AC
5907
5908 -- For multidimensional arrays make sure that all subaggregates
5909 -- corresponding to the same dimension have the same bounds.
70482933
RK
5910
5911 if Aggr_Dimension > 1 then
5912 Check_Same_Aggr_Bounds (N, 1);
5913 end if;
5914
688a9b51
RD
5915 -- STEP 1d
5916
5917 -- If we have a default component value, or simple initialization is
5918 -- required for the component type, then we replace <> in component
5919 -- associations by the required default value.
5920
5921 declare
5922 Default_Val : Node_Id;
5923 Assoc : Node_Id;
5924
5925 begin
5926 if (Present (Default_Aspect_Component_Value (Typ))
5927 or else Needs_Simple_Initialization (Ctyp))
5928 and then Present (Component_Associations (N))
5929 then
5930 Assoc := First (Component_Associations (N));
5931 while Present (Assoc) loop
5932 if Nkind (Assoc) = N_Component_Association
5933 and then Box_Present (Assoc)
5934 then
5935 Set_Box_Present (Assoc, False);
5936
5937 if Present (Default_Aspect_Component_Value (Typ)) then
5938 Default_Val := Default_Aspect_Component_Value (Typ);
5939 else
5940 Default_Val := Get_Simple_Init_Val (Ctyp, N);
5941 end if;
5942
5943 Set_Expression (Assoc, New_Copy_Tree (Default_Val));
5944 Analyze_And_Resolve (Expression (Assoc), Ctyp);
5945 end if;
5946
5947 Next (Assoc);
5948 end loop;
5949 end if;
5950 end;
5951
3cf3e5c6 5952 -- STEP 2
70482933 5953
3b9fa2df
ES
5954 -- Here we test for is packed array aggregate that we can handle at
5955 -- compile time. If so, return with transformation done. Note that we do
5956 -- this even if the aggregate is nested, because once we have done this
a90bd866 5957 -- processing, there is no more nested aggregate.
fbf5a39b
AC
5958
5959 if Packed_Array_Aggregate_Handled (N) then
5960 return;
5961 end if;
5962
5963 -- At this point we try to convert to positional form
70482933 5964
0f95b178
JM
5965 if Ekind (Current_Scope) = E_Package
5966 and then Static_Elaboration_Desired (Current_Scope)
5967 then
5968 Convert_To_Positional (N, Max_Others_Replicate => 100);
0f95b178
JM
5969 else
5970 Convert_To_Positional (N);
5971 end if;
70482933 5972
fbf5a39b
AC
5973 -- if the result is no longer an aggregate (e.g. it may be a string
5974 -- literal, or a temporary which has the needed value), then we are
5975 -- done, since there is no longer a nested aggregate.
5976
70482933
RK
5977 if Nkind (N) /= N_Aggregate then
5978 return;
5979
5eeeed5e
AC
5980 -- We are also done if the result is an analyzed aggregate, indicating
5981 -- that Convert_To_Positional succeeded and reanalyzed the rewritten
5982 -- aggregate.
fbf5a39b 5983
36a66365 5984 elsif Analyzed (N) and then N /= Original_Node (N) then
70482933
RK
5985 return;
5986 end if;
5987
fa57ac97
ES
5988 -- If all aggregate components are compile-time known and the aggregate
5989 -- has been flattened, nothing left to do. The same occurs if the
b465ef6f 5990 -- aggregate is used to initialize the components of a statically
fa57ac97 5991 -- allocated dispatch table.
0f95b178 5992
fa57ac97
ES
5993 if Compile_Time_Known_Aggregate (N)
5994 or else Is_Static_Dispatch_Table_Aggregate (N)
5995 then
0f95b178
JM
5996 Set_Expansion_Delayed (N, False);
5997 return;
5998 end if;
5999
fbf5a39b
AC
6000 -- Now see if back end processing is possible
6001
70482933
RK
6002 if Backend_Processing_Possible (N) then
6003
6004 -- If the aggregate is static but the constraints are not, build
6005 -- a static subtype for the aggregate, so that Gigi can place it
6006 -- in static memory. Perform an unchecked_conversion to the non-
6007 -- static type imposed by the context.
6008
6009 declare
6010 Itype : constant Entity_Id := Etype (N);
6011 Index : Node_Id;
6012 Needs_Type : Boolean := False;
6013
6014 begin
6015 Index := First_Index (Itype);
70482933 6016 while Present (Index) loop
edab6088 6017 if not Is_OK_Static_Subtype (Etype (Index)) then
70482933
RK
6018 Needs_Type := True;
6019 exit;
6020 else
6021 Next_Index (Index);
6022 end if;
6023 end loop;
6024
6025 if Needs_Type then
6026 Build_Constrained_Type (Positional => True);
6027 Rewrite (N, Unchecked_Convert_To (Itype, N));
6028 Analyze (N);
6029 end if;
6030 end;
6031
6032 return;
6033 end if;
6034
3cf3e5c6 6035 -- STEP 3
fbf5a39b 6036
5ed4ba15
AC
6037 -- Delay expansion for nested aggregates: it will be taken care of when
6038 -- the parent aggregate is expanded.
70482933
RK
6039
6040 Parent_Node := Parent (N);
6041 Parent_Kind := Nkind (Parent_Node);
6042
6043 if Parent_Kind = N_Qualified_Expression then
6044 Parent_Node := Parent (Parent_Node);
6045 Parent_Kind := Nkind (Parent_Node);
6046 end if;
6047
6048 if Parent_Kind = N_Aggregate
6049 or else Parent_Kind = N_Extension_Aggregate
6050 or else Parent_Kind = N_Component_Association
6051 or else (Parent_Kind = N_Object_Declaration
048e5cef 6052 and then Needs_Finalization (Typ))
70482933
RK
6053 or else (Parent_Kind = N_Assignment_Statement
6054 and then Inside_Init_Proc)
6055 then
0f95b178
JM
6056 if Static_Array_Aggregate (N)
6057 or else Compile_Time_Known_Aggregate (N)
6058 then
6059 Set_Expansion_Delayed (N, False);
6060 return;
6061 else
6062 Set_Expansion_Delayed (N);
6063 return;
6064 end if;
70482933
RK
6065 end if;
6066
3cf3e5c6 6067 -- STEP 4
70482933 6068
7f4c1903 6069 -- Look if in place aggregate expansion is possible
70482933
RK
6070
6071 -- For object declarations we build the aggregate in place, unless
6072 -- the array is bit-packed or the component is controlled.
6073
6074 -- For assignments we do the assignment in place if all the component
6075 -- associations have compile-time known values. For other cases we
6076 -- create a temporary. The analysis for safety of on-line assignment
6077 -- is delicate, i.e. we don't know how to do it fully yet ???
6078
6f639c98
ES
6079 -- For allocators we assign to the designated object in place if the
6080 -- aggregate meets the same conditions as other in-place assignments.
6081 -- In this case the aggregate may not come from source but was created
6082 -- for default initialization, e.g. with Initialize_Scalars.
6083
70482933
RK
6084 if Requires_Transient_Scope (Typ) then
6085 Establish_Transient_Scope
6086 (N, Sec_Stack => Has_Controlled_Component (Typ));
6087 end if;
6088
c45b6ae0
AC
6089 if Has_Default_Init_Comps (N) then
6090 Maybe_In_Place_OK := False;
6f639c98
ES
6091
6092 elsif Is_Bit_Packed_Array (Typ)
6093 or else Has_Controlled_Component (Typ)
6094 then
6095 Maybe_In_Place_OK := False;
6096
c45b6ae0
AC
6097 else
6098 Maybe_In_Place_OK :=
6f639c98 6099 (Nkind (Parent (N)) = N_Assignment_Statement
d7f94401 6100 and then In_Place_Assign_OK)
6f639c98 6101
bdc193ba
AC
6102 or else
6103 (Nkind (Parent (Parent (N))) = N_Allocator
6f639c98 6104 and then In_Place_Assign_OK);
c45b6ae0 6105 end if;
70482933 6106
36c73552
AC
6107 -- If this is an array of tasks, it will be expanded into build-in-place
6108 -- assignments. Build an activation chain for the tasks now.
a38ff9b1
ES
6109
6110 if Has_Task (Etype (N)) then
6111 Build_Activation_Chain_Entity (N);
6112 end if;
6113
cf6956bb 6114 -- Perform in-place expansion of aggregate in an object declaration.
f3d42000
AC
6115 -- Note: actions generated for the aggregate will be captured in an
6116 -- expression-with-actions statement so that they can be transferred
6117 -- to freeze actions later if there is an address clause for the
6118 -- object. (Note: we don't use a block statement because this would
6119 -- cause generated freeze nodes to be elaborated in the wrong scope).
cf6956bb 6120
3386e3ae
AC
6121 -- Do not perform in-place expansion for SPARK 05 because aggregates are
6122 -- expected to appear in qualified form. In-place expansion eliminates
6123 -- the qualification and eventually violates this SPARK 05 restiction.
a5d83d61 6124
3386e3ae 6125 -- Should document the rest of the guards ???
5ed4ba15 6126
3386e3ae
AC
6127 if not Has_Default_Init_Comps (N)
6128 and then Comes_From_Source (Parent_Node)
6129 and then Parent_Kind = N_Object_Declaration
6130 and then Present (Expression (Parent_Node))
6131 and then not
6132 Must_Slide (Etype (Defining_Identifier (Parent_Node)), Typ)
6133 and then not Has_Controlled_Component (Typ)
6134 and then not Is_Bit_Packed_Array (Typ)
6135 and then not Restriction_Check_Required (SPARK_05)
70482933 6136 then
ac43e11e 6137 In_Place_Assign_OK_For_Declaration := True;
5ed4ba15
AC
6138 Tmp := Defining_Identifier (Parent_Node);
6139 Set_No_Initialization (Parent_Node);
6140 Set_Expression (Parent_Node, Empty);
70482933 6141
ac43e11e
AC
6142 -- Set kind and type of the entity, for use in the analysis
6143 -- of the subsequent assignments. If the nominal type is not
70482933
RK
6144 -- constrained, build a subtype from the known bounds of the
6145 -- aggregate. If the declaration has a subtype mark, use it,
6146 -- otherwise use the itype of the aggregate.
6147
ac43e11e
AC
6148 Set_Ekind (Tmp, E_Variable);
6149
70482933
RK
6150 if not Is_Constrained (Typ) then
6151 Build_Constrained_Type (Positional => False);
ac43e11e 6152
5ed4ba15
AC
6153 elsif Is_Entity_Name (Object_Definition (Parent_Node))
6154 and then Is_Constrained (Entity (Object_Definition (Parent_Node)))
70482933 6155 then
5ed4ba15 6156 Set_Etype (Tmp, Entity (Object_Definition (Parent_Node)));
ac43e11e 6157
70482933
RK
6158 else
6159 Set_Size_Known_At_Compile_Time (Typ, False);
6160 Set_Etype (Tmp, Typ);
6161 end if;
6162
6f639c98
ES
6163 elsif Maybe_In_Place_OK
6164 and then Nkind (Parent (N)) = N_Qualified_Expression
6165 and then Nkind (Parent (Parent (N))) = N_Allocator
6166 then
6167 Set_Expansion_Delayed (N);
6168 return;
6169
5277cab6 6170 -- In the remaining cases the aggregate is the RHS of an assignment
6f639c98 6171
70482933 6172 elsif Maybe_In_Place_OK
8da337c5 6173 and then Safe_Left_Hand_Side (Name (Parent (N)))
70482933 6174 then
8da337c5 6175 Tmp := Name (Parent (N));
70482933
RK
6176
6177 if Etype (Tmp) /= Etype (N) then
6178 Apply_Length_Check (N, Etype (Tmp));
fbf5a39b
AC
6179
6180 if Nkind (N) = N_Raise_Constraint_Error then
6181
6182 -- Static error, nothing further to expand
6183
6184 return;
6185 end if;
70482933
RK
6186 end if;
6187
36a66365
AC
6188 -- If a slice assignment has an aggregate with a single others_choice,
6189 -- the assignment can be done in place even if bounds are not static,
6190 -- by converting it into a loop over the discrete range of the slice.
6191
70482933
RK
6192 elsif Maybe_In_Place_OK
6193 and then Nkind (Name (Parent (N))) = N_Slice
36a66365 6194 and then Is_Others_Aggregate (N)
70482933 6195 then
36a66365 6196 Tmp := Name (Parent (N));
70482933 6197
36a66365
AC
6198 -- Set type of aggregate to be type of lhs in assignment, in order
6199 -- to suppress redundant length checks.
6200
6201 Set_Etype (N, Etype (Tmp));
70482933 6202
fbf5a39b
AC
6203 -- Step 5
6204
6205 -- In place aggregate expansion is not possible
6206
70482933 6207 else
07fc65c4 6208 Maybe_In_Place_OK := False;
faf387e1 6209 Tmp := Make_Temporary (Loc, 'A', N);
70482933 6210 Tmp_Decl :=
bdc193ba
AC
6211 Make_Object_Declaration (Loc,
6212 Defining_Identifier => Tmp,
6213 Object_Definition => New_Occurrence_Of (Typ, Loc));
70482933
RK
6214 Set_No_Initialization (Tmp_Decl, True);
6215
6216 -- If we are within a loop, the temporary will be pushed on the
36c73552
AC
6217 -- stack at each iteration. If the aggregate is the expression for an
6218 -- allocator, it will be immediately copied to the heap and can
70482933
RK
6219 -- be reclaimed at once. We create a transient scope around the
6220 -- aggregate for this purpose.
6221
6222 if Ekind (Current_Scope) = E_Loop
6223 and then Nkind (Parent (Parent (N))) = N_Allocator
6224 then
6225 Establish_Transient_Scope (N, False);
6226 end if;
6227
6228 Insert_Action (N, Tmp_Decl);
6229 end if;
6230
36c73552
AC
6231 -- Construct and insert the aggregate code. We can safely suppress index
6232 -- checks because this code is guaranteed not to raise CE on index
6233 -- checks. However we should *not* suppress all checks.
70482933 6234
07fc65c4
GB
6235 declare
6236 Target : Node_Id;
6237
6238 begin
6239 if Nkind (Tmp) = N_Defining_Identifier then
e4494292 6240 Target := New_Occurrence_Of (Tmp, Loc);
07fc65c4
GB
6241
6242 else
c45b6ae0
AC
6243 if Has_Default_Init_Comps (N) then
6244
0ab80019 6245 -- Ada 2005 (AI-287): This case has not been analyzed???
c45b6ae0 6246
9bc856dd 6247 raise Program_Error;
c45b6ae0
AC
6248 end if;
6249
0da2c8ac 6250 -- Name in assignment is explicit dereference
07fc65c4
GB
6251
6252 Target := New_Copy (Tmp);
6253 end if;
6254
ac43e11e
AC
6255 -- If we are to generate an in place assignment for a declaration or
6256 -- an assignment statement, and the assignment can be done directly
6257 -- by the back end, then do not expand further.
6258
6259 -- ??? We can also do that if in place expansion is not possible but
6260 -- then we could go into an infinite recursion.
6261
6262 if (In_Place_Assign_OK_For_Declaration or else Maybe_In_Place_OK)
6b6bce61 6263 and then not AAMP_On_Target
a1e1820b 6264 and then not CodePeer_Mode
c63a2ad6 6265 and then not Modify_Tree_For_C
ac43e11e 6266 and then not Possible_Bit_Aligned_Component (Target)
6b6bce61 6267 and then not Is_Possibly_Unaligned_Slice (Target)
ac43e11e
AC
6268 and then Aggr_Assignment_OK_For_Backend (N)
6269 then
6270 if Maybe_In_Place_OK then
6271 return;
6272 end if;
6273
6274 Aggr_Code :=
6275 New_List (
6276 Make_Assignment_Statement (Loc,
6277 Name => Target,
6278 Expression => New_Copy (N)));
ac43e11e 6279
d6e8719d 6280 else
ac43e11e
AC
6281 Aggr_Code :=
6282 Build_Array_Aggr_Code (N,
6283 Ctype => Ctyp,
6284 Index => First_Index (Typ),
6285 Into => Target,
6286 Scalar_Comp => Is_Scalar_Type (Ctyp));
6287 end if;
4ac2bbbd
AC
6288
6289 -- Save the last assignment statement associated with the aggregate
6290 -- when building a controlled object. This reference is utilized by
6291 -- the finalization machinery when marking an object as successfully
6292 -- initialized.
6293
6294 if Needs_Finalization (Typ)
6295 and then Is_Entity_Name (Target)
6296 and then Present (Entity (Target))
6297 and then Ekind_In (Entity (Target), E_Constant, E_Variable)
6298 then
6299 Set_Last_Aggregate_Assignment (Entity (Target), Last (Aggr_Code));
6300 end if;
07fc65c4 6301 end;
70482933 6302
6782b1ef
AC
6303 -- If the aggregate is the expression in a declaration, the expanded
6304 -- code must be inserted after it. The defining entity might not come
6305 -- from source if this is part of an inlined body, but the declaration
6306 -- itself will.
6307
6308 if Comes_From_Source (Tmp)
6309 or else
6310 (Nkind (Parent (N)) = N_Object_Declaration
6311 and then Comes_From_Source (Parent (N))
6312 and then Tmp = Defining_Entity (Parent (N)))
6313 then
cf6956bb
AC
6314 declare
6315 Node_After : constant Node_Id := Next (Parent_Node);
ae05cdd6 6316
cf6956bb
AC
6317 begin
6318 Insert_Actions_After (Parent_Node, Aggr_Code);
6319
6320 if Parent_Kind = N_Object_Declaration then
6321 Collect_Initialization_Statements
6322 (Obj => Tmp, N => Parent_Node, Node_After => Node_After);
6323 end if;
6324 end;
70482933
RK
6325
6326 else
6327 Insert_Actions (N, Aggr_Code);
6328 end if;
6329
07fc65c4
GB
6330 -- If the aggregate has been assigned in place, remove the original
6331 -- assignment.
6332
70482933 6333 if Nkind (Parent (N)) = N_Assignment_Statement
07fc65c4 6334 and then Maybe_In_Place_OK
70482933
RK
6335 then
6336 Rewrite (Parent (N), Make_Null_Statement (Loc));
70482933
RK
6337
6338 elsif Nkind (Parent (N)) /= N_Object_Declaration
6339 or else Tmp /= Defining_Identifier (Parent (N))
6340 then
6341 Rewrite (N, New_Occurrence_Of (Tmp, Loc));
6342 Analyze_And_Resolve (N, Typ);
6343 end if;
6344 end Expand_Array_Aggregate;
6345
6346 ------------------------
6347 -- Expand_N_Aggregate --
6348 ------------------------
6349
6350 procedure Expand_N_Aggregate (N : Node_Id) is
6351 begin
354c3840
AC
6352 -- Record aggregate case
6353
70482933
RK
6354 if Is_Record_Type (Etype (N)) then
6355 Expand_Record_Aggregate (N);
354c3840
AC
6356
6357 -- Array aggregate case
6358
70482933 6359 else
354c3840
AC
6360 -- A special case, if we have a string subtype with bounds 1 .. N,
6361 -- where N is known at compile time, and the aggregate is of the
49eef89f
AC
6362 -- form (others => 'x'), with a single choice and no expressions,
6363 -- and N is less than 80 (an arbitrary limit for now), then replace
6364 -- the aggregate by the equivalent string literal (but do not mark
a90bd866 6365 -- it as static since it is not).
354c3840
AC
6366
6367 -- Note: this entire circuit is redundant with respect to code in
6368 -- Expand_Array_Aggregate that collapses others choices to positional
6369 -- form, but there are two problems with that circuit:
6370
6371 -- a) It is limited to very small cases due to ill-understood
b465ef6f 6372 -- interactions with bootstrapping. That limit is removed by
354c3840
AC
6373 -- use of the No_Implicit_Loops restriction.
6374
77a40ec1 6375 -- b) It incorrectly ends up with the resulting expressions being
354c3840
AC
6376 -- considered static when they are not. For example, the
6377 -- following test should fail:
6378
6379 -- pragma Restrictions (No_Implicit_Loops);
6380 -- package NonSOthers4 is
6381 -- B : constant String (1 .. 6) := (others => 'A');
6382 -- DH : constant String (1 .. 8) := B & "BB";
6383 -- X : Integer;
6384 -- pragma Export (C, X, Link_Name => DH);
6385 -- end;
6386
6387 -- But it succeeds (DH looks static to pragma Export)
6388
a90bd866 6389 -- To be sorted out ???
354c3840
AC
6390
6391 if Present (Component_Associations (N)) then
6392 declare
6393 CA : constant Node_Id := First (Component_Associations (N));
6394 MX : constant := 80;
6395
6396 begin
00f45f30 6397 if Nkind (First (Choice_List (CA))) = N_Others_Choice
354c3840 6398 and then Nkind (Expression (CA)) = N_Character_Literal
49eef89f 6399 and then No (Expressions (N))
354c3840
AC
6400 then
6401 declare
6402 T : constant Entity_Id := Etype (N);
6403 X : constant Node_Id := First_Index (T);
6404 EC : constant Node_Id := Expression (CA);
6405 CV : constant Uint := Char_Literal_Value (EC);
6406 CC : constant Int := UI_To_Int (CV);
6407
6408 begin
6409 if Nkind (X) = N_Range
6410 and then Compile_Time_Known_Value (Low_Bound (X))
6411 and then Expr_Value (Low_Bound (X)) = 1
6412 and then Compile_Time_Known_Value (High_Bound (X))
6413 then
6414 declare
6415 Hi : constant Uint := Expr_Value (High_Bound (X));
6416
6417 begin
6418 if Hi <= MX then
6419 Start_String;
6420
6421 for J in 1 .. UI_To_Int (Hi) loop
6422 Store_String_Char (Char_Code (CC));
6423 end loop;
6424
6425 Rewrite (N,
6426 Make_String_Literal (Sloc (N),
6427 Strval => End_String));
6428
6429 if CC >= Int (2 ** 16) then
6430 Set_Has_Wide_Wide_Character (N);
6431 elsif CC >= Int (2 ** 8) then
6432 Set_Has_Wide_Character (N);
6433 end if;
6434
6435 Analyze_And_Resolve (N, T);
6436 Set_Is_Static_Expression (N, False);
6437 return;
6438 end if;
6439 end;
6440 end if;
6441 end;
6442 end if;
6443 end;
6444 end if;
6445
6446 -- Not that special case, so normal expansion of array aggregate
6447
70482933
RK
6448 Expand_Array_Aggregate (N);
6449 end if;
bdc193ba 6450
fbf5a39b
AC
6451 exception
6452 when RE_Not_Available =>
6453 return;
70482933
RK
6454 end Expand_N_Aggregate;
6455
9eb8d5b4
AC
6456 ------------------------------
6457 -- Expand_N_Delta_Aggregate --
6458 ------------------------------
6459
6460 procedure Expand_N_Delta_Aggregate (N : Node_Id) is
9313a26a
AC
6461 Loc : constant Source_Ptr := Sloc (N);
6462 Typ : constant Entity_Id := Etype (N);
9eb8d5b4
AC
6463 Decl : Node_Id;
6464
6465 begin
9313a26a
AC
6466 Decl :=
6467 Make_Object_Declaration (Loc,
6468 Defining_Identifier => Make_Temporary (Loc, 'T'),
6469 Object_Definition => New_Occurrence_Of (Typ, Loc),
6470 Expression => New_Copy_Tree (Expression (N)));
9eb8d5b4
AC
6471
6472 if Is_Array_Type (Etype (N)) then
6473 Expand_Delta_Array_Aggregate (N, New_List (Decl));
6474 else
6475 Expand_Delta_Record_Aggregate (N, New_List (Decl));
6476 end if;
6477 end Expand_N_Delta_Aggregate;
6478
6479 ----------------------------------
6480 -- Expand_Delta_Array_Aggregate --
6481 ----------------------------------
6482
6483 procedure Expand_Delta_Array_Aggregate (N : Node_Id; Deltas : List_Id) is
9313a26a
AC
6484 Loc : constant Source_Ptr := Sloc (N);
6485 Temp : constant Entity_Id := Defining_Identifier (First (Deltas));
6486 Assoc : Node_Id;
6487
9eb8d5b4
AC
6488 function Generate_Loop (C : Node_Id) return Node_Id;
6489 -- Generate a loop containing individual component assignments for
6490 -- choices that are ranges, subtype indications, subtype names, and
6491 -- iterated component associations.
6492
9313a26a
AC
6493 -------------------
6494 -- Generate_Loop --
6495 -------------------
6496
9eb8d5b4
AC
6497 function Generate_Loop (C : Node_Id) return Node_Id is
6498 Sl : constant Source_Ptr := Sloc (C);
6499 Ix : Entity_Id;
6500
6501 begin
6502 if Nkind (Parent (C)) = N_Iterated_Component_Association then
6503 Ix :=
6504 Make_Defining_Identifier (Loc,
6505 Chars => (Chars (Defining_Identifier (Parent (C)))));
6506 else
6507 Ix := Make_Temporary (Sl, 'I');
6508 end if;
6509
6510 return
6511 Make_Loop_Statement (Loc,
9313a26a
AC
6512 Iteration_Scheme =>
6513 Make_Iteration_Scheme (Sl,
6514 Loop_Parameter_Specification =>
6515 Make_Loop_Parameter_Specification (Sl,
6516 Defining_Identifier => Ix,
6517 Discrete_Subtype_Definition => New_Copy_Tree (C))),
6518
6519 Statements => New_List (
6520 Make_Assignment_Statement (Sl,
6521 Name =>
6522 Make_Indexed_Component (Sl,
9eb8d5b4
AC
6523 Prefix => New_Occurrence_Of (Temp, Sl),
6524 Expressions => New_List (New_Occurrence_Of (Ix, Sl))),
9313a26a
AC
6525 Expression => New_Copy_Tree (Expression (Assoc)))),
6526 End_Label => Empty);
9eb8d5b4
AC
6527 end Generate_Loop;
6528
9313a26a
AC
6529 -- Local variables
6530
6531 Choice : Node_Id;
6532
6533 -- Start of processing for Expand_Delta_Array_Aggregate
6534
9eb8d5b4
AC
6535 begin
6536 Assoc := First (Component_Associations (N));
6537 while Present (Assoc) loop
6538 Choice := First (Choice_List (Assoc));
6539 if Nkind (Assoc) = N_Iterated_Component_Association then
6540 while Present (Choice) loop
6541 Append_To (Deltas, Generate_Loop (Choice));
6542 Next (Choice);
6543 end loop;
6544
6545 else
6546 while Present (Choice) loop
6547
6548 -- Choice can be given by a range, a subtype indication, a
6549 -- subtype name, a scalar value, or an entity.
6550
6551 if Nkind (Choice) = N_Range
6552 or else (Is_Entity_Name (Choice)
9313a26a 6553 and then Is_Type (Entity (Choice)))
9eb8d5b4
AC
6554 then
6555 Append_To (Deltas, Generate_Loop (Choice));
6556
6557 elsif Nkind (Choice) = N_Subtype_Indication then
6558 Append_To (Deltas,
6559 Generate_Loop (Range_Expression (Constraint (Choice))));
6560
6561 else
6562 Append_To (Deltas,
9313a26a
AC
6563 Make_Assignment_Statement (Sloc (Choice),
6564 Name =>
6565 Make_Indexed_Component (Sloc (Choice),
6566 Prefix => New_Occurrence_Of (Temp, Loc),
6567 Expressions => New_List (New_Copy_Tree (Choice))),
6568 Expression => New_Copy_Tree (Expression (Assoc))));
9eb8d5b4
AC
6569 end if;
6570
6571 Next (Choice);
6572 end loop;
6573 end if;
6574
6575 Next (Assoc);
6576 end loop;
6577
6578 Insert_Actions (N, Deltas);
6579 Rewrite (N, New_Occurrence_Of (Temp, Loc));
6580 end Expand_Delta_Array_Aggregate;
6581
6582 -----------------------------------
6583 -- Expand_Delta_Record_Aggregate --
6584 -----------------------------------
6585
6586 procedure Expand_Delta_Record_Aggregate (N : Node_Id; Deltas : List_Id) is
6587 Loc : constant Source_Ptr := Sloc (N);
6588 Temp : constant Entity_Id := Defining_Identifier (First (Deltas));
6589 Assoc : Node_Id;
6590 Choice : Node_Id;
6591
6592 begin
6593 Assoc := First (Component_Associations (N));
6594
6595 while Present (Assoc) loop
6596 Choice := First (Choice_List (Assoc));
6597 while Present (Choice) loop
6598 Append_To (Deltas,
9313a26a
AC
6599 Make_Assignment_Statement (Sloc (Choice),
6600 Name =>
6601 Make_Selected_Component (Sloc (Choice),
6602 Prefix => New_Occurrence_Of (Temp, Loc),
6603 Selector_Name => Make_Identifier (Loc, Chars (Choice))),
6604 Expression => New_Copy_Tree (Expression (Assoc))));
9eb8d5b4
AC
6605 Next (Choice);
6606 end loop;
6607
6608 Next (Assoc);
6609 end loop;
6610
6611 Insert_Actions (N, Deltas);
6612 Rewrite (N, New_Occurrence_Of (Temp, Loc));
6613 end Expand_Delta_Record_Aggregate;
6614
70482933
RK
6615 ----------------------------------
6616 -- Expand_N_Extension_Aggregate --
6617 ----------------------------------
6618
6619 -- If the ancestor part is an expression, add a component association for
6620 -- the parent field. If the type of the ancestor part is not the direct
6621 -- parent of the expected type, build recursively the needed ancestors.
6622 -- If the ancestor part is a subtype_mark, replace aggregate with a decla-
6623 -- ration for a temporary of the expected type, followed by individual
6624 -- assignments to the given components.
6625
6626 procedure Expand_N_Extension_Aggregate (N : Node_Id) is
6627 Loc : constant Source_Ptr := Sloc (N);
6628 A : constant Node_Id := Ancestor_Part (N);
6629 Typ : constant Entity_Id := Etype (N);
6630
6631 begin
fbf5a39b 6632 -- If the ancestor is a subtype mark, an init proc must be called
70482933
RK
6633 -- on the resulting object which thus has to be materialized in
6634 -- the front-end
6635
6636 if Is_Entity_Name (A) and then Is_Type (Entity (A)) then
6637 Convert_To_Assignments (N, Typ);
6638
6639 -- The extension aggregate is transformed into a record aggregate
6640 -- of the following form (c1 and c2 are inherited components)
6641
6642 -- (Exp with c3 => a, c4 => b)
0877856b 6643 -- ==> (c1 => Exp.c1, c2 => Exp.c2, c3 => a, c4 => b)
70482933
RK
6644
6645 else
6646 Set_Etype (N, Typ);
6647
1f110335 6648 if Tagged_Type_Expansion then
70482933 6649 Expand_Record_Aggregate (N,
a9d8907c
JM
6650 Orig_Tag =>
6651 New_Occurrence_Of
6652 (Node (First_Elmt (Access_Disp_Table (Typ))), Loc),
70482933 6653 Parent_Expr => A);
5c34e9cd
AC
6654
6655 -- No tag is needed in the case of a VM
6656
0f95b178 6657 else
5c34e9cd 6658 Expand_Record_Aggregate (N, Parent_Expr => A);
70482933
RK
6659 end if;
6660 end if;
fbf5a39b
AC
6661
6662 exception
6663 when RE_Not_Available =>
6664 return;
70482933
RK
6665 end Expand_N_Extension_Aggregate;
6666
6667 -----------------------------
6668 -- Expand_Record_Aggregate --
6669 -----------------------------
6670
6671 procedure Expand_Record_Aggregate
6672 (N : Node_Id;
6673 Orig_Tag : Node_Id := Empty;
6674 Parent_Expr : Node_Id := Empty)
6675 is
fbf5a39b
AC
6676 Loc : constant Source_Ptr := Sloc (N);
6677 Comps : constant List_Id := Component_Associations (N);
6678 Typ : constant Entity_Id := Etype (N);
6679 Base_Typ : constant Entity_Id := Base_Type (Typ);
70482933 6680
0f95b178
JM
6681 Static_Components : Boolean := True;
6682 -- Flag to indicate whether all components are compile-time known,
6683 -- and the aggregate can be constructed statically and handled by
6684 -- the back-end.
70482933 6685
54740d7d
AC
6686 procedure Build_Back_End_Aggregate;
6687 -- Build a proper aggregate to be handled by the back-end
6688
f6205414
AC
6689 function Compile_Time_Known_Composite_Value (N : Node_Id) return Boolean;
6690 -- Returns true if N is an expression of composite type which can be
6691 -- fully evaluated at compile time without raising constraint error.
6692 -- Such expressions can be passed as is to Gigi without any expansion.
6693 --
6694 -- This returns true for N_Aggregate with Compile_Time_Known_Aggregate
6695 -- set and constants whose expression is such an aggregate, recursively.
6696
0f95b178 6697 function Component_Not_OK_For_Backend return Boolean;
b465ef6f 6698 -- Check for presence of a component which makes it impossible for the
0f95b178
JM
6699 -- backend to process the aggregate, thus requiring the use of a series
6700 -- of assignment statements. Cases checked for are a nested aggregate
6701 -- needing Late_Expansion, the presence of a tagged component which may
6702 -- need tag adjustment, and a bit unaligned component reference.
4a76b687
ES
6703 --
6704 -- We also force expansion into assignments if a component is of a
6705 -- mutable type (including a private type with discriminants) because
6706 -- in that case the size of the component to be copied may be smaller
6707 -- than the side of the target, and there is no simple way for gigi
6708 -- to compute the size of the object to be copied.
6709 --
6710 -- NOTE: This is part of the ongoing work to define precisely the
6711 -- interface between front-end and back-end handling of aggregates.
6712 -- In general it is desirable to pass aggregates as they are to gigi,
6713 -- in order to minimize elaboration code. This is one case where the
6714 -- semantics of Ada complicate the analysis and lead to anomalies in
6715 -- the gcc back-end if the aggregate is not expanded into assignments.
70482933 6716
9b7924dd
AC
6717 function Has_Per_Object_Constraint (L : List_Id) return Boolean;
6718 -- Return True if any element of L has Has_Per_Object_Constraint set.
6719 -- L should be the Choices component of an N_Component_Association.
6720
57a8057a
AC
6721 function Has_Visible_Private_Ancestor (Id : E) return Boolean;
6722 -- If any ancestor of the current type is private, the aggregate
b465ef6f 6723 -- cannot be built in place. We cannot rely on Has_Private_Ancestor,
57a8057a
AC
6724 -- because it will not be set when type and its parent are in the
6725 -- same scope, and the parent component needs expansion.
6726
6727 function Top_Level_Aggregate (N : Node_Id) return Node_Id;
6728 -- For nested aggregates return the ultimate enclosing aggregate; for
6729 -- non-nested aggregates return N.
6730
54740d7d
AC
6731 ------------------------------
6732 -- Build_Back_End_Aggregate --
6733 ------------------------------
f6205414 6734
54740d7d 6735 procedure Build_Back_End_Aggregate is
4f94fa11
AC
6736 Comp : Entity_Id;
6737 New_Comp : Node_Id;
6738 Tag_Value : Node_Id;
57a8057a
AC
6739
6740 begin
0f95b178
JM
6741 if Nkind (N) = N_Aggregate then
6742
3b9fa2df
ES
6743 -- If the aggregate is static and can be handled by the back-end,
6744 -- nothing left to do.
0f95b178
JM
6745
6746 if Static_Components then
6747 Set_Compile_Time_Known_Aggregate (N);
6748 Set_Expansion_Delayed (N, False);
6749 end if;
6750 end if;
6751
07fc65c4 6752 -- If no discriminants, nothing special to do
70482933 6753
07fc65c4 6754 if not Has_Discriminants (Typ) then
70482933
RK
6755 null;
6756
07fc65c4
GB
6757 -- Case of discriminants present
6758
70482933
RK
6759 elsif Is_Derived_Type (Typ) then
6760
138fc6f1
HK
6761 -- For untagged types, non-stored discriminants are replaced with
6762 -- stored discriminants, which are the ones that gigi uses to
6763 -- describe the type and its components.
70482933 6764
07fc65c4 6765 Generate_Aggregate_For_Derived_Type : declare
fbf5a39b 6766 procedure Prepend_Stored_Values (T : Entity_Id);
3b9fa2df
ES
6767 -- Scan the list of stored discriminants of the type, and add
6768 -- their values to the aggregate being built.
07fc65c4
GB
6769
6770 ---------------------------
fbf5a39b 6771 -- Prepend_Stored_Values --
07fc65c4
GB
6772 ---------------------------
6773
fbf5a39b 6774 procedure Prepend_Stored_Values (T : Entity_Id) is
54740d7d
AC
6775 Discr : Entity_Id;
6776 First_Comp : Node_Id := Empty;
6777
07fc65c4 6778 begin
54740d7d
AC
6779 Discr := First_Stored_Discriminant (T);
6780 while Present (Discr) loop
07fc65c4
GB
6781 New_Comp :=
6782 Make_Component_Association (Loc,
138fc6f1 6783 Choices => New_List (
54740d7d 6784 New_Occurrence_Of (Discr, Loc)),
07fc65c4 6785 Expression =>
bdc193ba
AC
6786 New_Copy_Tree
6787 (Get_Discriminant_Value
54740d7d 6788 (Discr,
07fc65c4
GB
6789 Typ,
6790 Discriminant_Constraint (Typ))));
6791
6792 if No (First_Comp) then
6793 Prepend_To (Component_Associations (N), New_Comp);
6794 else
6795 Insert_After (First_Comp, New_Comp);
6796 end if;
6797
6798 First_Comp := New_Comp;
54740d7d 6799 Next_Stored_Discriminant (Discr);
07fc65c4 6800 end loop;
fbf5a39b 6801 end Prepend_Stored_Values;
07fc65c4 6802
54740d7d
AC
6803 -- Local variables
6804
6805 Constraints : constant List_Id := New_List;
6806
6807 Discr : Entity_Id;
6808 Decl : Node_Id;
6809 Num_Disc : Nat := 0;
6810 Num_Gird : Nat := 0;
6811
07fc65c4 6812 -- Start of processing for Generate_Aggregate_For_Derived_Type
70482933
RK
6813
6814 begin
3b9fa2df 6815 -- Remove the associations for the discriminant of derived type
70482933 6816
54740d7d
AC
6817 declare
6818 First_Comp : Node_Id;
70482933 6819
54740d7d
AC
6820 begin
6821 First_Comp := First (Component_Associations (N));
6822 while Present (First_Comp) loop
6823 Comp := First_Comp;
6824 Next (First_Comp);
6825
6826 if Ekind (Entity (First (Choices (Comp)))) =
6827 E_Discriminant
6828 then
6829 Remove (Comp);
6830 Num_Disc := Num_Disc + 1;
6831 end if;
6832 end loop;
6833 end;
70482933 6834
fbf5a39b
AC
6835 -- Insert stored discriminant associations in the correct
6836 -- order. If there are more stored discriminants than new
3b9fa2df
ES
6837 -- discriminants, there is at least one new discriminant that
6838 -- constrains more than one of the stored discriminants. In
6839 -- this case we need to construct a proper subtype of the
6840 -- parent type, in order to supply values to all the
fbf5a39b
AC
6841 -- components. Otherwise there is one-one correspondence
6842 -- between the constraints and the stored discriminants.
70482933 6843
54740d7d
AC
6844 Discr := First_Stored_Discriminant (Base_Type (Typ));
6845 while Present (Discr) loop
07fc65c4 6846 Num_Gird := Num_Gird + 1;
54740d7d 6847 Next_Stored_Discriminant (Discr);
70482933 6848 end loop;
07fc65c4 6849
fbf5a39b 6850 -- Case of more stored discriminants than new discriminants
07fc65c4
GB
6851
6852 if Num_Gird > Num_Disc then
6853
3b9fa2df
ES
6854 -- Create a proper subtype of the parent type, which is the
6855 -- proper implementation type for the aggregate, and convert
6856 -- it to the intended target type.
07fc65c4 6857
54740d7d
AC
6858 Discr := First_Stored_Discriminant (Base_Type (Typ));
6859 while Present (Discr) loop
07fc65c4 6860 New_Comp :=
37368818
RD
6861 New_Copy_Tree
6862 (Get_Discriminant_Value
54740d7d 6863 (Discr,
bdc193ba
AC
6864 Typ,
6865 Discriminant_Constraint (Typ)));
138fc6f1 6866
07fc65c4 6867 Append (New_Comp, Constraints);
54740d7d 6868 Next_Stored_Discriminant (Discr);
07fc65c4
GB
6869 end loop;
6870
6871 Decl :=
6872 Make_Subtype_Declaration (Loc,
191fcb3a 6873 Defining_Identifier => Make_Temporary (Loc, 'T'),
bdc193ba 6874 Subtype_Indication =>
07fc65c4
GB
6875 Make_Subtype_Indication (Loc,
6876 Subtype_Mark =>
6877 New_Occurrence_Of (Etype (Base_Type (Typ)), Loc),
bdc193ba 6878 Constraint =>
07fc65c4
GB
6879 Make_Index_Or_Discriminant_Constraint
6880 (Loc, Constraints)));
6881
6882 Insert_Action (N, Decl);
fbf5a39b 6883 Prepend_Stored_Values (Base_Type (Typ));
07fc65c4
GB
6884
6885 Set_Etype (N, Defining_Identifier (Decl));
6886 Set_Analyzed (N);
6887
6888 Rewrite (N, Unchecked_Convert_To (Typ, N));
6889 Analyze (N);
6890
6891 -- Case where we do not have fewer new discriminants than
3b9fa2df
ES
6892 -- stored discriminants, so in this case we can simply use the
6893 -- stored discriminants of the subtype.
07fc65c4
GB
6894
6895 else
fbf5a39b 6896 Prepend_Stored_Values (Typ);
07fc65c4
GB
6897 end if;
6898 end Generate_Aggregate_For_Derived_Type;
70482933
RK
6899 end if;
6900
6901 if Is_Tagged_Type (Typ) then
6902
22243c12 6903 -- In the tagged case, _parent and _tag component must be created
70482933 6904
22243c12
RD
6905 -- Reset Null_Present unconditionally. Tagged records always have
6906 -- at least one field (the tag or the parent).
70482933
RK
6907
6908 Set_Null_Record_Present (N, False);
6909
6910 -- When the current aggregate comes from the expansion of an
6911 -- extension aggregate, the parent expr is replaced by an
22243c12 6912 -- aggregate formed by selected components of this expr.
70482933 6913
36a66365 6914 if Present (Parent_Expr) and then Is_Empty_List (Comps) then
5277cab6 6915 Comp := First_Component_Or_Discriminant (Typ);
70482933
RK
6916 while Present (Comp) loop
6917
70482933
RK
6918 -- Skip all expander-generated components
6919
bdc193ba 6920 if not Comes_From_Source (Original_Record_Component (Comp))
70482933
RK
6921 then
6922 null;
6923
6924 else
6925 New_Comp :=
6926 Make_Selected_Component (Loc,
bdc193ba 6927 Prefix =>
70482933
RK
6928 Unchecked_Convert_To (Typ,
6929 Duplicate_Subexpr (Parent_Expr, True)),
70482933
RK
6930 Selector_Name => New_Occurrence_Of (Comp, Loc));
6931
6932 Append_To (Comps,
6933 Make_Component_Association (Loc,
54740d7d
AC
6934 Choices => New_List (
6935 New_Occurrence_Of (Comp, Loc)),
37368818 6936 Expression => New_Comp));
70482933
RK
6937
6938 Analyze_And_Resolve (New_Comp, Etype (Comp));
6939 end if;
6940
5277cab6 6941 Next_Component_Or_Discriminant (Comp);
70482933
RK
6942 end loop;
6943 end if;
6944
6945 -- Compute the value for the Tag now, if the type is a root it
6946 -- will be included in the aggregate right away, otherwise it will
22243c12 6947 -- be propagated to the parent aggregate.
70482933
RK
6948
6949 if Present (Orig_Tag) then
6950 Tag_Value := Orig_Tag;
54740d7d 6951
1f110335 6952 elsif not Tagged_Type_Expansion then
70482933 6953 Tag_Value := Empty;
54740d7d 6954
70482933 6955 else
a9d8907c
JM
6956 Tag_Value :=
6957 New_Occurrence_Of
6958 (Node (First_Elmt (Access_Disp_Table (Typ))), Loc);
70482933
RK
6959 end if;
6960
6961 -- For a derived type, an aggregate for the parent is formed with
6962 -- all the inherited components.
6963
6964 if Is_Derived_Type (Typ) then
70482933
RK
6965 declare
6966 First_Comp : Node_Id;
6967 Parent_Comps : List_Id;
6968 Parent_Aggr : Node_Id;
6969 Parent_Name : Node_Id;
6970
6971 begin
6972 -- Remove the inherited component association from the
6973 -- aggregate and store them in the parent aggregate
6974
54740d7d 6975 First_Comp := First (Component_Associations (N));
70482933 6976 Parent_Comps := New_List;
70482933 6977 while Present (First_Comp)
36a66365
AC
6978 and then
6979 Scope (Original_Record_Component
6980 (Entity (First (Choices (First_Comp))))) /=
6981 Base_Typ
70482933
RK
6982 loop
6983 Comp := First_Comp;
6984 Next (First_Comp);
6985 Remove (Comp);
6986 Append (Comp, Parent_Comps);
6987 end loop;
6988
36a66365
AC
6989 Parent_Aggr :=
6990 Make_Aggregate (Loc,
6991 Component_Associations => Parent_Comps);
70482933
RK
6992 Set_Etype (Parent_Aggr, Etype (Base_Type (Typ)));
6993
6994 -- Find the _parent component
6995
6996 Comp := First_Component (Typ);
6997 while Chars (Comp) /= Name_uParent loop
6998 Comp := Next_Component (Comp);
6999 end loop;
7000
7001 Parent_Name := New_Occurrence_Of (Comp, Loc);
7002
7003 -- Insert the parent aggregate
7004
7005 Prepend_To (Component_Associations (N),
7006 Make_Component_Association (Loc,
7007 Choices => New_List (Parent_Name),
7008 Expression => Parent_Aggr));
7009
7010 -- Expand recursively the parent propagating the right Tag
7011
22243c12
RD
7012 Expand_Record_Aggregate
7013 (Parent_Aggr, Tag_Value, Parent_Expr);
1b6897ce
AC
7014
7015 -- The ancestor part may be a nested aggregate that has
7016 -- delayed expansion: recheck now.
7017
7018 if Component_Not_OK_For_Backend then
7019 Convert_To_Assignments (N, Typ);
7020 end if;
70482933
RK
7021 end;
7022
7023 -- For a root type, the tag component is added (unless compiling
0f95b178 7024 -- for the VMs, where tags are implicit).
70482933 7025
1f110335 7026 elsif Tagged_Type_Expansion then
70482933
RK
7027 declare
7028 Tag_Name : constant Node_Id :=
138fc6f1
HK
7029 New_Occurrence_Of
7030 (First_Tag_Component (Typ), Loc);
70482933
RK
7031 Typ_Tag : constant Entity_Id := RTE (RE_Tag);
7032 Conv_Node : constant Node_Id :=
138fc6f1 7033 Unchecked_Convert_To (Typ_Tag, Tag_Value);
70482933
RK
7034
7035 begin
7036 Set_Etype (Conv_Node, Typ_Tag);
7037 Prepend_To (Component_Associations (N),
7038 Make_Component_Association (Loc,
7039 Choices => New_List (Tag_Name),
7040 Expression => Conv_Node));
7041 end;
7042 end if;
7043 end if;
54740d7d
AC
7044 end Build_Back_End_Aggregate;
7045
7046 ----------------------------------------
7047 -- Compile_Time_Known_Composite_Value --
7048 ----------------------------------------
7049
7050 function Compile_Time_Known_Composite_Value
7051 (N : Node_Id) return Boolean
7052 is
7053 begin
7054 -- If we have an entity name, then see if it is the name of a
7055 -- constant and if so, test the corresponding constant value.
7056
7057 if Is_Entity_Name (N) then
7058 declare
7059 E : constant Entity_Id := Entity (N);
7060 V : Node_Id;
7061 begin
7062 if Ekind (E) /= E_Constant then
7063 return False;
7064 else
7065 V := Constant_Value (E);
7066 return Present (V)
7067 and then Compile_Time_Known_Composite_Value (V);
7068 end if;
7069 end;
7070
7071 -- We have a value, see if it is compile time known
7072
7073 else
7074 if Nkind (N) = N_Aggregate then
7075 return Compile_Time_Known_Aggregate (N);
7076 end if;
7077
7078 -- All other types of values are not known at compile time
7079
7080 return False;
7081 end if;
7082
7083 end Compile_Time_Known_Composite_Value;
7084
7085 ----------------------------------
7086 -- Component_Not_OK_For_Backend --
7087 ----------------------------------
7088
7089 function Component_Not_OK_For_Backend return Boolean is
7090 C : Node_Id;
7091 Expr_Q : Node_Id;
7092
7093 begin
7094 if No (Comps) then
7095 return False;
7096 end if;
7097
7098 C := First (Comps);
7099 while Present (C) loop
7100
7101 -- If the component has box initialization, expansion is needed
7102 -- and component is not ready for backend.
7103
7104 if Box_Present (C) then
7105 return True;
7106 end if;
7107
7108 if Nkind (Expression (C)) = N_Qualified_Expression then
7109 Expr_Q := Expression (Expression (C));
7110 else
7111 Expr_Q := Expression (C);
7112 end if;
7113
7114 -- Return true if the aggregate has any associations for tagged
7115 -- components that may require tag adjustment.
7116
7117 -- These are cases where the source expression may have a tag that
7118 -- could differ from the component tag (e.g., can occur for type
7119 -- conversions and formal parameters). (Tag adjustment not needed
7120 -- if Tagged_Type_Expansion because object tags are implicit in
7121 -- the machine.)
7122
7123 if Is_Tagged_Type (Etype (Expr_Q))
7124 and then (Nkind (Expr_Q) = N_Type_Conversion
7125 or else (Is_Entity_Name (Expr_Q)
7126 and then
7127 Ekind (Entity (Expr_Q)) in Formal_Kind))
7128 and then Tagged_Type_Expansion
7129 then
7130 Static_Components := False;
7131 return True;
7132
7133 elsif Is_Delayed_Aggregate (Expr_Q) then
7134 Static_Components := False;
7135 return True;
7136
7137 elsif Possible_Bit_Aligned_Component (Expr_Q) then
7138 Static_Components := False;
7139 return True;
7140
7141 elsif Modify_Tree_For_C
7142 and then Nkind (C) = N_Component_Association
7143 and then Has_Per_Object_Constraint (Choices (C))
7144 then
7145 Static_Components := False;
7146 return True;
7147
7148 elsif Modify_Tree_For_C
7149 and then Nkind (Expr_Q) = N_Identifier
7150 and then Is_Array_Type (Etype (Expr_Q))
7151 then
7152 Static_Components := False;
7153 return True;
b276ab7a
AC
7154
7155 elsif Modify_Tree_For_C
7156 and then Nkind (Expr_Q) = N_Type_Conversion
7157 and then Is_Array_Type (Etype (Expr_Q))
7158 then
7159 Static_Components := False;
7160 return True;
54740d7d
AC
7161 end if;
7162
7163 if Is_Elementary_Type (Etype (Expr_Q)) then
7164 if not Compile_Time_Known_Value (Expr_Q) then
7165 Static_Components := False;
7166 end if;
7167
7168 elsif not Compile_Time_Known_Composite_Value (Expr_Q) then
7169 Static_Components := False;
7170
7171 if Is_Private_Type (Etype (Expr_Q))
7172 and then Has_Discriminants (Etype (Expr_Q))
7173 then
7174 return True;
7175 end if;
7176 end if;
7177
7178 Next (C);
7179 end loop;
7180
7181 return False;
7182 end Component_Not_OK_For_Backend;
7183
7184 -------------------------------
7185 -- Has_Per_Object_Constraint --
7186 -------------------------------
7187
7188 function Has_Per_Object_Constraint (L : List_Id) return Boolean is
7189 N : Node_Id := First (L);
7190 begin
7191 while Present (N) loop
7192 if Is_Entity_Name (N)
7193 and then Present (Entity (N))
7194 and then Has_Per_Object_Constraint (Entity (N))
7195 then
7196 return True;
7197 end if;
7198
7199 Next (N);
7200 end loop;
7201
7202 return False;
7203 end Has_Per_Object_Constraint;
7204
7205 -----------------------------------
7206 -- Has_Visible_Private_Ancestor --
7207 -----------------------------------
7208
7209 function Has_Visible_Private_Ancestor (Id : E) return Boolean is
7210 R : constant Entity_Id := Root_Type (Id);
7211 T1 : Entity_Id := Id;
7212
7213 begin
7214 loop
7215 if Is_Private_Type (T1) then
7216 return True;
7217
7218 elsif T1 = R then
7219 return False;
7220
7221 else
7222 T1 := Etype (T1);
7223 end if;
7224 end loop;
7225 end Has_Visible_Private_Ancestor;
4f94fa11
AC
7226
7227 -------------------------
7228 -- Top_Level_Aggregate --
7229 -------------------------
7230
7231 function Top_Level_Aggregate (N : Node_Id) return Node_Id is
7232 Aggr : Node_Id;
7233
7234 begin
7235 Aggr := N;
7236 while Present (Parent (Aggr))
138fc6f1
HK
7237 and then Nkind_In (Parent (Aggr), N_Aggregate,
7238 N_Component_Association)
4f94fa11
AC
7239 loop
7240 Aggr := Parent (Aggr);
7241 end loop;
7242
7243 return Aggr;
7244 end Top_Level_Aggregate;
7245
7246 -- Local variables
7247
7248 Top_Level_Aggr : constant Node_Id := Top_Level_Aggregate (N);
7249
7250 -- Start of processing for Expand_Record_Aggregate
7251
7252 begin
7253 -- If the aggregate is to be assigned to an atomic/VFA variable, we have
7254 -- to prevent a piecemeal assignment even if the aggregate is to be
7255 -- expanded. We create a temporary for the aggregate, and assign the
7256 -- temporary instead, so that the back end can generate an atomic move
7257 -- for it.
7258
7259 if Is_Atomic_VFA_Aggregate (N) then
7260 return;
7261
7262 -- No special management required for aggregates used to initialize
7263 -- statically allocated dispatch tables
7264
7265 elsif Is_Static_Dispatch_Table_Aggregate (N) then
7266 return;
70482933 7267 end if;
0f95b178 7268
4f94fa11
AC
7269 -- Ada 2005 (AI-318-2): We need to convert to assignments if components
7270 -- are build-in-place function calls. The assignments will each turn
7271 -- into a build-in-place function call. If components are all static,
7272 -- we can pass the aggregate to the backend regardless of limitedness.
7273
7274 -- Extension aggregates, aggregates in extended return statements, and
7275 -- aggregates for C++ imported types must be expanded.
7276
7277 if Ada_Version >= Ada_2005 and then Is_Limited_View (Typ) then
138fc6f1
HK
7278 if not Nkind_In (Parent (N), N_Component_Association,
7279 N_Object_Declaration)
4f94fa11
AC
7280 then
7281 Convert_To_Assignments (N, Typ);
7282
7283 elsif Nkind (N) = N_Extension_Aggregate
7284 or else Convention (Typ) = Convention_CPP
7285 then
7286 Convert_To_Assignments (N, Typ);
7287
7288 elsif not Size_Known_At_Compile_Time (Typ)
7289 or else Component_Not_OK_For_Backend
7290 or else not Static_Components
7291 then
7292 Convert_To_Assignments (N, Typ);
7293
7294 -- In all other cases, build a proper aggregate to be handled by
7295 -- the back-end
7296
7297 else
54740d7d 7298 Build_Back_End_Aggregate;
4f94fa11
AC
7299 end if;
7300
7301 -- Gigi doesn't properly handle temporaries of variable size so we
7302 -- generate it in the front-end
7303
7304 elsif not Size_Known_At_Compile_Time (Typ)
7305 and then Tagged_Type_Expansion
7306 then
7307 Convert_To_Assignments (N, Typ);
7308
7309 -- An aggregate used to initialize a controlled object must be turned
7310 -- into component assignments as the components themselves may require
7311 -- finalization actions such as adjustment.
7312
7313 elsif Needs_Finalization (Typ) then
7314 Convert_To_Assignments (N, Typ);
7315
7316 -- Ada 2005 (AI-287): In case of default initialized components we
7317 -- convert the aggregate into assignments.
7318
7319 elsif Has_Default_Init_Comps (N) then
7320 Convert_To_Assignments (N, Typ);
7321
7322 -- Check components
7323
7324 elsif Component_Not_OK_For_Backend then
7325 Convert_To_Assignments (N, Typ);
7326
7327 -- If an ancestor is private, some components are not inherited and we
7328 -- cannot expand into a record aggregate.
7329
7330 elsif Has_Visible_Private_Ancestor (Typ) then
7331 Convert_To_Assignments (N, Typ);
7332
7333 -- ??? The following was done to compile fxacc00.ads in the ACVCs. Gigi
7334 -- is not able to handle the aggregate for Late_Request.
7335
7336 elsif Is_Tagged_Type (Typ) and then Has_Discriminants (Typ) then
7337 Convert_To_Assignments (N, Typ);
7338
7339 -- If the tagged types covers interface types we need to initialize all
7340 -- hidden components containing pointers to secondary dispatch tables.
7341
7342 elsif Is_Tagged_Type (Typ) and then Has_Interfaces (Typ) then
7343 Convert_To_Assignments (N, Typ);
7344
7345 -- If some components are mutable, the size of the aggregate component
7346 -- may be distinct from the default size of the type component, so
7347 -- we need to expand to insure that the back-end copies the proper
7348 -- size of the data. However, if the aggregate is the initial value of
7349 -- a constant, the target is immutable and might be built statically
7350 -- if components are appropriate.
7351
7352 elsif Has_Mutable_Components (Typ)
7353 and then
7354 (Nkind (Parent (Top_Level_Aggr)) /= N_Object_Declaration
7355 or else not Constant_Present (Parent (Top_Level_Aggr))
7356 or else not Static_Components)
7357 then
7358 Convert_To_Assignments (N, Typ);
7359
7360 -- If the type involved has bit aligned components, then we are not sure
7361 -- that the back end can handle this case correctly.
7362
7363 elsif Type_May_Have_Bit_Aligned_Components (Typ) then
7364 Convert_To_Assignments (N, Typ);
7365
7366 -- When generating C, only generate an aggregate when declaring objects
7367 -- since C does not support aggregates in e.g. assignment statements.
7368
7369 elsif Modify_Tree_For_C and then not In_Object_Declaration (N) then
7370 Convert_To_Assignments (N, Typ);
7371
7372 -- In all other cases, build a proper aggregate to be handled by gigi
7373
7374 else
54740d7d 7375 Build_Back_End_Aggregate;
4f94fa11 7376 end if;
70482933
RK
7377 end Expand_Record_Aggregate;
7378
65356e64
AC
7379 ----------------------------
7380 -- Has_Default_Init_Comps --
7381 ----------------------------
7382
7383 function Has_Default_Init_Comps (N : Node_Id) return Boolean is
d05ef0ab
AC
7384 Comps : constant List_Id := Component_Associations (N);
7385 C : Node_Id;
c45b6ae0 7386 Expr : Node_Id;
bdc193ba 7387
65356e64 7388 begin
d7f94401 7389 pragma Assert (Nkind_In (N, N_Aggregate, N_Extension_Aggregate));
c45b6ae0 7390
65356e64
AC
7391 if No (Comps) then
7392 return False;
7393 end if;
7394
c5ee5ad2
BD
7395 if Has_Self_Reference (N) then
7396 return True;
7397 end if;
7398
c45b6ae0
AC
7399 -- Check if any direct component has default initialized components
7400
65356e64
AC
7401 C := First (Comps);
7402 while Present (C) loop
7403 if Box_Present (C) then
7404 return True;
7405 end if;
7406
7407 Next (C);
7408 end loop;
c45b6ae0
AC
7409
7410 -- Recursive call in case of aggregate expression
7411
7412 C := First (Comps);
7413 while Present (C) loop
7414 Expr := Expression (C);
7415
7416 if Present (Expr)
36a66365 7417 and then Nkind_In (Expr, N_Aggregate, N_Extension_Aggregate)
c45b6ae0
AC
7418 and then Has_Default_Init_Comps (Expr)
7419 then
7420 return True;
7421 end if;
7422
7423 Next (C);
7424 end loop;
7425
65356e64
AC
7426 return False;
7427 end Has_Default_Init_Comps;
7428
70482933
RK
7429 --------------------------
7430 -- Is_Delayed_Aggregate --
7431 --------------------------
7432
7433 function Is_Delayed_Aggregate (N : Node_Id) return Boolean is
fbf5a39b 7434 Node : Node_Id := N;
70482933 7435 Kind : Node_Kind := Nkind (Node);
fbf5a39b 7436
70482933
RK
7437 begin
7438 if Kind = N_Qualified_Expression then
7439 Node := Expression (Node);
7440 Kind := Nkind (Node);
7441 end if;
7442
36a66365 7443 if not Nkind_In (Kind, N_Aggregate, N_Extension_Aggregate) then
70482933
RK
7444 return False;
7445 else
7446 return Expansion_Delayed (Node);
7447 end if;
7448 end Is_Delayed_Aggregate;
7449
6031f544
AC
7450 ---------------------------
7451 -- In_Object_Declaration --
7452 ---------------------------
7453
7454 function In_Object_Declaration (N : Node_Id) return Boolean is
7455 P : Node_Id := Parent (N);
7456 begin
7457 while Present (P) loop
7458 if Nkind (P) = N_Object_Declaration then
7459 return True;
7460 end if;
7461
7462 P := Parent (P);
7463 end loop;
7464
7465 return False;
7466 end In_Object_Declaration;
7467
fa57ac97
ES
7468 ----------------------------------------
7469 -- Is_Static_Dispatch_Table_Aggregate --
7470 ----------------------------------------
7471
7472 function Is_Static_Dispatch_Table_Aggregate (N : Node_Id) return Boolean is
7473 Typ : constant Entity_Id := Base_Type (Etype (N));
7474
7475 begin
7476 return Static_Dispatch_Tables
1f110335 7477 and then Tagged_Type_Expansion
fa57ac97
ES
7478 and then RTU_Loaded (Ada_Tags)
7479
7480 -- Avoid circularity when rebuilding the compiler
7481
7482 and then Cunit_Entity (Get_Source_Unit (N)) /= RTU_Entity (Ada_Tags)
7483 and then (Typ = RTE (RE_Dispatch_Table_Wrapper)
7484 or else
7485 Typ = RTE (RE_Address_Array)
7486 or else
7487 Typ = RTE (RE_Type_Specific_Data)
7488 or else
7489 Typ = RTE (RE_Tag_Table)
7490 or else
7491 (RTE_Available (RE_Interface_Data)
7492 and then Typ = RTE (RE_Interface_Data))
7493 or else
7494 (RTE_Available (RE_Interfaces_Array)
7495 and then Typ = RTE (RE_Interfaces_Array))
7496 or else
7497 (RTE_Available (RE_Interface_Data_Element)
7498 and then Typ = RTE (RE_Interface_Data_Element)));
7499 end Is_Static_Dispatch_Table_Aggregate;
7500
dc3af7e2
AC
7501 -----------------------------
7502 -- Is_Two_Dim_Packed_Array --
7503 -----------------------------
7504
7505 function Is_Two_Dim_Packed_Array (Typ : Entity_Id) return Boolean is
7506 C : constant Int := UI_To_Int (Component_Size (Typ));
7507 begin
7508 return Number_Dimensions (Typ) = 2
7509 and then Is_Bit_Packed_Array (Typ)
2791be24 7510 and then (C = 1 or else C = 2 or else C = 4);
dc3af7e2
AC
7511 end Is_Two_Dim_Packed_Array;
7512
70482933
RK
7513 --------------------
7514 -- Late_Expansion --
7515 --------------------
7516
7517 function Late_Expansion
7518 (N : Node_Id;
7519 Typ : Entity_Id;
df3e68b1 7520 Target : Node_Id) return List_Id
9bc856dd 7521 is
f29afe5f
AC
7522 Aggr_Code : List_Id;
7523
70482933 7524 begin
6031f544 7525 if Is_Array_Type (Etype (N)) then
4ac2bbbd 7526 Aggr_Code :=
70482933 7527 Build_Array_Aggr_Code
c45b6ae0
AC
7528 (N => N,
7529 Ctype => Component_Type (Etype (N)),
7530 Index => First_Index (Typ),
7531 Into => Target,
7532 Scalar_Comp => Is_Scalar_Type (Component_Type (Typ)),
df3e68b1 7533 Indexes => No_List);
6031f544 7534
f3bf0d9a
HK
7535 -- Directly or indirectly (e.g. access protected procedure) a record
7536
7537 else
6031f544 7538 Aggr_Code := Build_Record_Aggr_Code (N, Typ, Target);
70482933 7539 end if;
4ac2bbbd
AC
7540
7541 -- Save the last assignment statement associated with the aggregate
7542 -- when building a controlled object. This reference is utilized by
7543 -- the finalization machinery when marking an object as successfully
7544 -- initialized.
7545
7546 if Needs_Finalization (Typ)
7547 and then Is_Entity_Name (Target)
7548 and then Present (Entity (Target))
7549 and then Ekind_In (Entity (Target), E_Constant, E_Variable)
7550 then
7551 Set_Last_Aggregate_Assignment (Entity (Target), Last (Aggr_Code));
7552 end if;
7553
7554 return Aggr_Code;
70482933
RK
7555 end Late_Expansion;
7556
7557 ----------------------------------
7558 -- Make_OK_Assignment_Statement --
7559 ----------------------------------
7560
7561 function Make_OK_Assignment_Statement
7562 (Sloc : Source_Ptr;
7563 Name : Node_Id;
0f95b178 7564 Expression : Node_Id) return Node_Id
70482933
RK
7565 is
7566 begin
7567 Set_Assignment_OK (Name);
7568 return Make_Assignment_Statement (Sloc, Name, Expression);
7569 end Make_OK_Assignment_Statement;
7570
7571 -----------------------
7572 -- Number_Of_Choices --
7573 -----------------------
7574
7575 function Number_Of_Choices (N : Node_Id) return Nat is
7576 Assoc : Node_Id;
7577 Choice : Node_Id;
7578
7579 Nb_Choices : Nat := 0;
7580
7581 begin
7582 if Present (Expressions (N)) then
7583 return 0;
7584 end if;
7585
7586 Assoc := First (Component_Associations (N));
7587 while Present (Assoc) loop
00f45f30 7588 Choice := First (Choice_List (Assoc));
70482933 7589 while Present (Choice) loop
70482933
RK
7590 if Nkind (Choice) /= N_Others_Choice then
7591 Nb_Choices := Nb_Choices + 1;
7592 end if;
7593
7594 Next (Choice);
7595 end loop;
7596
7597 Next (Assoc);
7598 end loop;
7599
7600 return Nb_Choices;
7601 end Number_Of_Choices;
7602
07fc65c4
GB
7603 ------------------------------------
7604 -- Packed_Array_Aggregate_Handled --
7605 ------------------------------------
7606
7607 -- The current version of this procedure will handle at compile time
7608 -- any array aggregate that meets these conditions:
7609
5eeeed5e 7610 -- One and two dimensional, bit packed
07fc65c4
GB
7611 -- Underlying packed type is modular type
7612 -- Bounds are within 32-bit Int range
7613 -- All bounds and values are static
7614
a39a553e
AC
7615 -- Note: for now, in the 2-D case, we only handle component sizes of
7616 -- 1, 2, 4 (cases where an integral number of elements occupies a byte).
7617
07fc65c4
GB
7618 function Packed_Array_Aggregate_Handled (N : Node_Id) return Boolean is
7619 Loc : constant Source_Ptr := Sloc (N);
7620 Typ : constant Entity_Id := Etype (N);
7621 Ctyp : constant Entity_Id := Component_Type (Typ);
7622
7623 Not_Handled : exception;
7624 -- Exception raised if this aggregate cannot be handled
7625
7626 begin
5eeeed5e 7627 -- Handle one- or two dimensional bit packed array
07fc65c4
GB
7628
7629 if not Is_Bit_Packed_Array (Typ)
5eeeed5e 7630 or else Number_Dimensions (Typ) > 2
07fc65c4
GB
7631 then
7632 return False;
7633 end if;
7634
5eeeed5e 7635 -- If two-dimensional, check whether it can be folded, and transformed
8ca597af
RD
7636 -- into a one-dimensional aggregate for the Packed_Array_Impl_Type of
7637 -- the original type.
5eeeed5e
AC
7638
7639 if Number_Dimensions (Typ) = 2 then
7640 return Two_Dim_Packed_Array_Handled (N);
7641 end if;
7642
8ca597af 7643 if not Is_Modular_Integer_Type (Packed_Array_Impl_Type (Typ)) then
5eeeed5e
AC
7644 return False;
7645 end if;
7646
0f95b178
JM
7647 if not Is_Scalar_Type (Component_Type (Typ))
7648 and then Has_Non_Standard_Rep (Component_Type (Typ))
7649 then
7650 return False;
7651 end if;
7652
07fc65c4
GB
7653 declare
7654 Csiz : constant Nat := UI_To_Int (Component_Size (Typ));
7655
7656 Lo : Node_Id;
7657 Hi : Node_Id;
7658 -- Bounds of index type
7659
7660 Lob : Uint;
7661 Hib : Uint;
7662 -- Values of bounds if compile time known
7663
7664 function Get_Component_Val (N : Node_Id) return Uint;
3b9fa2df
ES
7665 -- Given a expression value N of the component type Ctyp, returns a
7666 -- value of Csiz (component size) bits representing this value. If
7667 -- the value is non-static or any other reason exists why the value
7668 -- cannot be returned, then Not_Handled is raised.
07fc65c4
GB
7669
7670 -----------------------
7671 -- Get_Component_Val --
7672 -----------------------
7673
7674 function Get_Component_Val (N : Node_Id) return Uint is
7675 Val : Uint;
7676
7677 begin
7678 -- We have to analyze the expression here before doing any further
7679 -- processing here. The analysis of such expressions is deferred
7680 -- till expansion to prevent some problems of premature analysis.
7681
7682 Analyze_And_Resolve (N, Ctyp);
7683
3b9fa2df
ES
7684 -- Must have a compile time value. String literals have to be
7685 -- converted into temporaries as well, because they cannot easily
7686 -- be converted into their bit representation.
07fc65c4 7687
6b6fcd3e
AC
7688 if not Compile_Time_Known_Value (N)
7689 or else Nkind (N) = N_String_Literal
7690 then
07fc65c4
GB
7691 raise Not_Handled;
7692 end if;
7693
7694 Val := Expr_Rep_Value (N);
7695
7696 -- Adjust for bias, and strip proper number of bits
7697
7698 if Has_Biased_Representation (Ctyp) then
7699 Val := Val - Expr_Value (Type_Low_Bound (Ctyp));
7700 end if;
7701
7702 return Val mod Uint_2 ** Csiz;
7703 end Get_Component_Val;
7704
7705 -- Here we know we have a one dimensional bit packed array
7706
7707 begin
7708 Get_Index_Bounds (First_Index (Typ), Lo, Hi);
7709
7710 -- Cannot do anything if bounds are dynamic
7711
7712 if not Compile_Time_Known_Value (Lo)
7713 or else
7714 not Compile_Time_Known_Value (Hi)
7715 then
7716 return False;
7717 end if;
7718
7719 -- Or are silly out of range of int bounds
7720
7721 Lob := Expr_Value (Lo);
7722 Hib := Expr_Value (Hi);
7723
7724 if not UI_Is_In_Int_Range (Lob)
7725 or else
7726 not UI_Is_In_Int_Range (Hib)
7727 then
7728 return False;
7729 end if;
7730
3b9fa2df 7731 -- At this stage we have a suitable aggregate for handling at compile
fcf848c4
AC
7732 -- time. The only remaining checks are that the values of expressions
7733 -- in the aggregate are compile-time known (checks are performed by
b465ef6f 7734 -- Get_Component_Val), and that any subtypes or ranges are statically
fcf848c4 7735 -- known.
07fc65c4 7736
3b9fa2df
ES
7737 -- If the aggregate is not fully positional at this stage, then
7738 -- convert it to positional form. Either this will fail, in which
7739 -- case we can do nothing, or it will succeed, in which case we have
5eeeed5e
AC
7740 -- succeeded in handling the aggregate and transforming it into a
7741 -- modular value, or it will stay an aggregate, in which case we
7742 -- have failed to create a packed value for it.
07fc65c4
GB
7743
7744 if Present (Component_Associations (N)) then
7745 Convert_To_Positional
99ba07a3 7746 (N, Max_Others_Replicate => 64, Handle_Bit_Packed => True);
07fc65c4
GB
7747 return Nkind (N) /= N_Aggregate;
7748 end if;
7749
7750 -- Otherwise we are all positional, so convert to proper value
7751
7752 declare
42de0044
AC
7753 Lov : constant Int := UI_To_Int (Lob);
7754 Hiv : constant Int := UI_To_Int (Hib);
07fc65c4
GB
7755
7756 Len : constant Nat := Int'Max (0, Hiv - Lov + 1);
7757 -- The length of the array (number of elements)
7758
7759 Aggregate_Val : Uint;
3b9fa2df
ES
7760 -- Value of aggregate. The value is set in the low order bits of
7761 -- this value. For the little-endian case, the values are stored
7762 -- from low-order to high-order and for the big-endian case the
7763 -- values are stored from high-order to low-order. Note that gigi
7764 -- will take care of the conversions to left justify the value in
7765 -- the big endian case (because of left justified modular type
07fc65c4
GB
7766 -- processing), so we do not have to worry about that here.
7767
7768 Lit : Node_Id;
7769 -- Integer literal for resulting constructed value
7770
7771 Shift : Nat;
7772 -- Shift count from low order for next value
7773
7774 Incr : Int;
7775 -- Shift increment for loop
7776
7777 Expr : Node_Id;
7778 -- Next expression from positional parameters of aggregate
7779
c9a6b38f
AC
7780 Left_Justified : Boolean;
7781 -- Set True if we are filling the high order bits of the target
7782 -- value (i.e. the value is left justified).
7783
07fc65c4 7784 begin
3b9fa2df
ES
7785 -- For little endian, we fill up the low order bits of the target
7786 -- value. For big endian we fill up the high order bits of the
7787 -- target value (which is a left justified modular value).
07fc65c4 7788
c9a6b38f 7789 Left_Justified := Bytes_Big_Endian;
68f640f2 7790
c9a6b38f
AC
7791 -- Switch justification if using -gnatd8
7792
7793 if Debug_Flag_8 then
7794 Left_Justified := not Left_Justified;
7795 end if;
7796
7797 -- Switch justfification if reverse storage order
7798
7799 if Reverse_Storage_Order (Base_Type (Typ)) then
7800 Left_Justified := not Left_Justified;
7801 end if;
7802
7803 if Left_Justified then
07fc65c4
GB
7804 Shift := Csiz * (Len - 1);
7805 Incr := -Csiz;
7806 else
7807 Shift := 0;
7808 Incr := +Csiz;
7809 end if;
7810
7811 -- Loop to set the values
7812
fbf5a39b
AC
7813 if Len = 0 then
7814 Aggregate_Val := Uint_0;
7815 else
7816 Expr := First (Expressions (N));
7817 Aggregate_Val := Get_Component_Val (Expr) * Uint_2 ** Shift;
7818
7819 for J in 2 .. Len loop
7820 Shift := Shift + Incr;
7821 Next (Expr);
7822 Aggregate_Val :=
7823 Aggregate_Val + Get_Component_Val (Expr) * Uint_2 ** Shift;
7824 end loop;
7825 end if;
07fc65c4
GB
7826
7827 -- Now we can rewrite with the proper value
7828
d9819bbd 7829 Lit := Make_Integer_Literal (Loc, Intval => Aggregate_Val);
07fc65c4
GB
7830 Set_Print_In_Hex (Lit);
7831
7832 -- Construct the expression using this literal. Note that it is
7833 -- important to qualify the literal with its proper modular type
7834 -- since universal integer does not have the required range and
7835 -- also this is a left justified modular type, which is important
7836 -- in the big-endian case.
7837
7838 Rewrite (N,
7839 Unchecked_Convert_To (Typ,
7840 Make_Qualified_Expression (Loc,
7841 Subtype_Mark =>
8ca597af 7842 New_Occurrence_Of (Packed_Array_Impl_Type (Typ), Loc),
07fc65c4
GB
7843 Expression => Lit)));
7844
7845 Analyze_And_Resolve (N, Typ);
7846 return True;
7847 end;
7848 end;
7849
7850 exception
7851 when Not_Handled =>
7852 return False;
7853 end Packed_Array_Aggregate_Handled;
7854
fbf5a39b
AC
7855 ----------------------------
7856 -- Has_Mutable_Components --
7857 ----------------------------
7858
7859 function Has_Mutable_Components (Typ : Entity_Id) return Boolean is
7860 Comp : Entity_Id;
7861
7862 begin
7863 Comp := First_Component (Typ);
fbf5a39b
AC
7864 while Present (Comp) loop
7865 if Is_Record_Type (Etype (Comp))
7866 and then Has_Discriminants (Etype (Comp))
7867 and then not Is_Constrained (Etype (Comp))
7868 then
7869 return True;
7870 end if;
7871
7872 Next_Component (Comp);
7873 end loop;
7874
7875 return False;
7876 end Has_Mutable_Components;
7877
07fc65c4
GB
7878 ------------------------------
7879 -- Initialize_Discriminants --
7880 ------------------------------
7881
7882 procedure Initialize_Discriminants (N : Node_Id; Typ : Entity_Id) is
7883 Loc : constant Source_Ptr := Sloc (N);
7884 Bas : constant Entity_Id := Base_Type (Typ);
7885 Par : constant Entity_Id := Etype (Bas);
7886 Decl : constant Node_Id := Parent (Par);
7887 Ref : Node_Id;
7888
7889 begin
7890 if Is_Tagged_Type (Bas)
7891 and then Is_Derived_Type (Bas)
7892 and then Has_Discriminants (Par)
7893 and then Has_Discriminants (Bas)
7894 and then Number_Discriminants (Bas) /= Number_Discriminants (Par)
7895 and then Nkind (Decl) = N_Full_Type_Declaration
7896 and then Nkind (Type_Definition (Decl)) = N_Record_Definition
36a66365
AC
7897 and then
7898 Present (Variant_Part (Component_List (Type_Definition (Decl))))
07fc65c4
GB
7899 and then Nkind (N) /= N_Extension_Aggregate
7900 then
7901
fbf5a39b 7902 -- Call init proc to set discriminants.
07fc65c4
GB
7903 -- There should eventually be a special procedure for this ???
7904
e4494292 7905 Ref := New_Occurrence_Of (Defining_Identifier (N), Loc);
07fc65c4
GB
7906 Insert_Actions_After (N,
7907 Build_Initialization_Call (Sloc (N), Ref, Typ));
7908 end if;
7909 end Initialize_Discriminants;
7910
3cf3e5c6
AC
7911 ----------------
7912 -- Must_Slide --
7913 ----------------
7914
7915 function Must_Slide
7916 (Obj_Type : Entity_Id;
7917 Typ : Entity_Id) return Boolean
7918 is
7919 L1, L2, H1, H2 : Node_Id;
36a66365 7920
3cf3e5c6 7921 begin
3b9fa2df
ES
7922 -- No sliding if the type of the object is not established yet, if it is
7923 -- an unconstrained type whose actual subtype comes from the aggregate,
7924 -- or if the two types are identical.
3cf3e5c6
AC
7925
7926 if not Is_Array_Type (Obj_Type) then
7927 return False;
7928
7929 elsif not Is_Constrained (Obj_Type) then
7930 return False;
7931
7932 elsif Typ = Obj_Type then
7933 return False;
7934
7935 else
7936 -- Sliding can only occur along the first dimension
7937
7938 Get_Index_Bounds (First_Index (Typ), L1, H1);
7939 Get_Index_Bounds (First_Index (Obj_Type), L2, H2);
7940
edab6088
RD
7941 if not Is_OK_Static_Expression (L1) or else
7942 not Is_OK_Static_Expression (L2) or else
7943 not Is_OK_Static_Expression (H1) or else
7944 not Is_OK_Static_Expression (H2)
3cf3e5c6
AC
7945 then
7946 return False;
7947 else
7948 return Expr_Value (L1) /= Expr_Value (L2)
a39a553e
AC
7949 or else
7950 Expr_Value (H1) /= Expr_Value (H2);
3cf3e5c6
AC
7951 end if;
7952 end if;
7953 end Must_Slide;
7954
937e9676
AC
7955 ---------------------------------
7956 -- Process_Transient_Component --
7957 ---------------------------------
5eeeed5e 7958
937e9676
AC
7959 procedure Process_Transient_Component
7960 (Loc : Source_Ptr;
7961 Comp_Typ : Entity_Id;
7962 Init_Expr : Node_Id;
7963 Fin_Call : out Node_Id;
7964 Hook_Clear : out Node_Id;
7965 Aggr : Node_Id := Empty;
7966 Stmts : List_Id := No_List)
7967 is
7968 procedure Add_Item (Item : Node_Id);
7969 -- Insert arbitrary node Item into the tree depending on the values of
7970 -- Aggr and Stmts.
5eeeed5e 7971
937e9676
AC
7972 --------------
7973 -- Add_Item --
7974 --------------
5eeeed5e 7975
937e9676
AC
7976 procedure Add_Item (Item : Node_Id) is
7977 begin
7978 if Present (Aggr) then
7979 Insert_Action (Aggr, Item);
7980 else
7981 pragma Assert (Present (Stmts));
7982 Append_To (Stmts, Item);
7983 end if;
7984 end Add_Item;
7985
7986 -- Local variables
7987
7988 Hook_Assign : Node_Id;
7989 Hook_Decl : Node_Id;
7990 Ptr_Decl : Node_Id;
7991 Res_Decl : Node_Id;
7992 Res_Id : Entity_Id;
7993 Res_Typ : Entity_Id;
7994
7995 -- Start of processing for Process_Transient_Component
5eeeed5e
AC
7996
7997 begin
937e9676
AC
7998 -- Add the access type, which provides a reference to the function
7999 -- result. Generate:
5eeeed5e 8000
937e9676 8001 -- type Res_Typ is access all Comp_Typ;
5eeeed5e 8002
937e9676
AC
8003 Res_Typ := Make_Temporary (Loc, 'A');
8004 Set_Ekind (Res_Typ, E_General_Access_Type);
8005 Set_Directly_Designated_Type (Res_Typ, Comp_Typ);
5eeeed5e 8006
937e9676
AC
8007 Add_Item
8008 (Make_Full_Type_Declaration (Loc,
8009 Defining_Identifier => Res_Typ,
8010 Type_Definition =>
8011 Make_Access_To_Object_Definition (Loc,
8012 All_Present => True,
8013 Subtype_Indication => New_Occurrence_Of (Comp_Typ, Loc))));
5eeeed5e 8014
937e9676
AC
8015 -- Add the temporary which captures the result of the function call.
8016 -- Generate:
5eeeed5e 8017
937e9676 8018 -- Res : constant Res_Typ := Init_Expr'Reference;
5eeeed5e 8019
937e9676
AC
8020 -- Note that this temporary is effectively a transient object because
8021 -- its lifetime is bounded by the current array or record component.
5eeeed5e 8022
937e9676
AC
8023 Res_Id := Make_Temporary (Loc, 'R');
8024 Set_Ekind (Res_Id, E_Constant);
8025 Set_Etype (Res_Id, Res_Typ);
5eeeed5e 8026
937e9676
AC
8027 -- Mark the transient object as successfully processed to avoid double
8028 -- finalization.
5eeeed5e 8029
937e9676 8030 Set_Is_Finalized_Transient (Res_Id);
5eeeed5e 8031
937e9676
AC
8032 -- Signal the general finalization machinery that this transient object
8033 -- should not be considered for finalization actions because its cleanup
8034 -- will be performed by Process_Transient_Component_Completion.
5eeeed5e 8035
937e9676 8036 Set_Is_Ignored_Transient (Res_Id);
5eeeed5e 8037
937e9676
AC
8038 Res_Decl :=
8039 Make_Object_Declaration (Loc,
8040 Defining_Identifier => Res_Id,
8041 Constant_Present => True,
8042 Object_Definition => New_Occurrence_Of (Res_Typ, Loc),
8043 Expression =>
8044 Make_Reference (Loc, New_Copy_Tree (Init_Expr)));
5eeeed5e 8045
937e9676 8046 Add_Item (Res_Decl);
5eeeed5e 8047
937e9676
AC
8048 -- Construct all pieces necessary to hook and finalize the transient
8049 -- result.
5eeeed5e 8050
937e9676
AC
8051 Build_Transient_Object_Statements
8052 (Obj_Decl => Res_Decl,
8053 Fin_Call => Fin_Call,
8054 Hook_Assign => Hook_Assign,
8055 Hook_Clear => Hook_Clear,
8056 Hook_Decl => Hook_Decl,
8057 Ptr_Decl => Ptr_Decl);
5eeeed5e 8058
937e9676
AC
8059 -- Add the access type which provides a reference to the transient
8060 -- result. Generate:
5eeeed5e 8061
937e9676 8062 -- type Ptr_Typ is access all Comp_Typ;
5eeeed5e 8063
937e9676 8064 Add_Item (Ptr_Decl);
5eeeed5e 8065
937e9676
AC
8066 -- Add the temporary which acts as a hook to the transient result.
8067 -- Generate:
5eeeed5e 8068
937e9676 8069 -- Hook : Ptr_Typ := null;
5eeeed5e 8070
937e9676 8071 Add_Item (Hook_Decl);
5eeeed5e 8072
937e9676 8073 -- Attach the transient result to the hook. Generate:
5eeeed5e 8074
937e9676 8075 -- Hook := Ptr_Typ (Res);
5eeeed5e 8076
937e9676 8077 Add_Item (Hook_Assign);
5eeeed5e 8078
937e9676
AC
8079 -- The original initialization expression now references the value of
8080 -- the temporary function result. Generate:
5eeeed5e 8081
937e9676 8082 -- Res.all
5eeeed5e 8083
937e9676
AC
8084 Rewrite (Init_Expr,
8085 Make_Explicit_Dereference (Loc,
8086 Prefix => New_Occurrence_Of (Res_Id, Loc)));
8087 end Process_Transient_Component;
5eeeed5e 8088
937e9676
AC
8089 --------------------------------------------
8090 -- Process_Transient_Component_Completion --
8091 --------------------------------------------
5eeeed5e 8092
937e9676
AC
8093 procedure Process_Transient_Component_Completion
8094 (Loc : Source_Ptr;
8095 Aggr : Node_Id;
8096 Fin_Call : Node_Id;
8097 Hook_Clear : Node_Id;
8098 Stmts : List_Id)
8099 is
8100 Exceptions_OK : constant Boolean :=
8101 not Restriction_Active (No_Exception_Propagation);
5eeeed5e 8102
937e9676 8103 begin
937e9676 8104 pragma Assert (Present (Hook_Clear));
5eeeed5e 8105
937e9676 8106 -- Generate the following code if exception propagation is allowed:
5eeeed5e 8107
937e9676
AC
8108 -- declare
8109 -- Abort : constant Boolean := Triggered_By_Abort;
8110 -- <or>
8111 -- Abort : constant Boolean := False; -- no abort
5eeeed5e 8112
937e9676
AC
8113 -- E : Exception_Occurrence;
8114 -- Raised : Boolean := False;
5eeeed5e 8115
937e9676
AC
8116 -- begin
8117 -- [Abort_Defer;]
5eeeed5e 8118
937e9676
AC
8119 -- begin
8120 -- Hook := null;
8121 -- [Deep_]Finalize (Res.all);
5eeeed5e 8122
937e9676
AC
8123 -- exception
8124 -- when others =>
8125 -- if not Raised then
8126 -- Raised := True;
8127 -- Save_Occurrence (E,
8128 -- Get_Curent_Excep.all.all);
8129 -- end if;
8130 -- end;
5eeeed5e 8131
937e9676 8132 -- [Abort_Undefer;]
5eeeed5e 8133
937e9676
AC
8134 -- if Raised and then not Abort then
8135 -- Raise_From_Controlled_Operation (E);
8136 -- end if;
8137 -- end;
8138
8139 if Exceptions_OK then
8140 Abort_And_Exception : declare
8141 Blk_Decls : constant List_Id := New_List;
8142 Blk_Stmts : constant List_Id := New_List;
2168d7cc 8143 Fin_Stmts : constant List_Id := New_List;
937e9676
AC
8144
8145 Fin_Data : Finalization_Exception_Data;
8146
8147 begin
8148 -- Create the declarations of the two flags and the exception
8149 -- occurrence.
8150
8151 Build_Object_Declarations (Fin_Data, Blk_Decls, Loc);
8152
8153 -- Generate:
8154 -- Abort_Defer;
8155
8156 if Abort_Allowed then
8157 Append_To (Blk_Stmts,
8158 Build_Runtime_Call (Loc, RE_Abort_Defer));
8159 end if;
8160
8161 -- Wrap the hook clear and the finalization call in order to trap
8162 -- a potential exception.
8163
2168d7cc
AC
8164 Append_To (Fin_Stmts, Hook_Clear);
8165
8166 if Present (Fin_Call) then
8167 Append_To (Fin_Stmts, Fin_Call);
8168 end if;
8169
937e9676
AC
8170 Append_To (Blk_Stmts,
8171 Make_Block_Statement (Loc,
8172 Handled_Statement_Sequence =>
8173 Make_Handled_Sequence_Of_Statements (Loc,
2168d7cc 8174 Statements => Fin_Stmts,
937e9676
AC
8175 Exception_Handlers => New_List (
8176 Build_Exception_Handler (Fin_Data)))));
8177
8178 -- Generate:
8179 -- Abort_Undefer;
8180
8181 if Abort_Allowed then
8182 Append_To (Blk_Stmts,
8183 Build_Runtime_Call (Loc, RE_Abort_Undefer));
8184 end if;
8185
8186 -- Reraise the potential exception with a proper "upgrade" to
8187 -- Program_Error if needed.
8188
8189 Append_To (Blk_Stmts, Build_Raise_Statement (Fin_Data));
8190
8191 -- Wrap everything in a block
8192
8193 Append_To (Stmts,
8194 Make_Block_Statement (Loc,
8195 Declarations => Blk_Decls,
8196 Handled_Statement_Sequence =>
8197 Make_Handled_Sequence_Of_Statements (Loc,
8198 Statements => Blk_Stmts)));
8199 end Abort_And_Exception;
8200
8201 -- Generate the following code if exception propagation is not allowed
8202 -- and aborts are allowed:
8203
8204 -- begin
8205 -- Abort_Defer;
8206 -- Hook := null;
8207 -- [Deep_]Finalize (Res.all);
8208 -- at end
bb072d1c 8209 -- Abort_Undefer_Direct;
937e9676
AC
8210 -- end;
8211
8212 elsif Abort_Allowed then
8213 Abort_Only : declare
8214 Blk_Stmts : constant List_Id := New_List;
8215
937e9676
AC
8216 begin
8217 Append_To (Blk_Stmts, Build_Runtime_Call (Loc, RE_Abort_Defer));
8218 Append_To (Blk_Stmts, Hook_Clear);
2168d7cc
AC
8219
8220 if Present (Fin_Call) then
8221 Append_To (Blk_Stmts, Fin_Call);
8222 end if;
937e9676 8223
bb072d1c
AC
8224 Append_To (Stmts,
8225 Build_Abort_Undefer_Block (Loc,
8226 Stmts => Blk_Stmts,
8227 Context => Aggr));
937e9676
AC
8228 end Abort_Only;
8229
8230 -- Otherwise generate:
8231
8232 -- Hook := null;
8233 -- [Deep_]Finalize (Res.all);
8234
8235 else
8236 Append_To (Stmts, Hook_Clear);
2168d7cc
AC
8237
8238 if Present (Fin_Call) then
8239 Append_To (Stmts, Fin_Call);
8240 end if;
937e9676
AC
8241 end if;
8242 end Process_Transient_Component_Completion;
5eeeed5e 8243
70482933
RK
8244 ---------------------
8245 -- Sort_Case_Table --
8246 ---------------------
8247
8248 procedure Sort_Case_Table (Case_Table : in out Case_Table_Type) is
fbf5a39b
AC
8249 L : constant Int := Case_Table'First;
8250 U : constant Int := Case_Table'Last;
70482933
RK
8251 K : Int;
8252 J : Int;
8253 T : Case_Bounds;
8254
8255 begin
8256 K := L;
70482933
RK
8257 while K /= U loop
8258 T := Case_Table (K + 1);
70482933 8259
5277cab6 8260 J := K + 1;
70482933
RK
8261 while J /= L
8262 and then Expr_Value (Case_Table (J - 1).Choice_Lo) >
8263 Expr_Value (T.Choice_Lo)
8264 loop
8265 Case_Table (J) := Case_Table (J - 1);
8266 J := J - 1;
8267 end loop;
8268
8269 Case_Table (J) := T;
8270 K := K + 1;
8271 end loop;
8272 end Sort_Case_Table;
8273
0f95b178
JM
8274 ----------------------------
8275 -- Static_Array_Aggregate --
8276 ----------------------------
8277
8278 function Static_Array_Aggregate (N : Node_Id) return Boolean is
8279 Bounds : constant Node_Id := Aggregate_Bounds (N);
8280
8281 Typ : constant Entity_Id := Etype (N);
8282 Comp_Type : constant Entity_Id := Component_Type (Typ);
8283 Agg : Node_Id;
8284 Expr : Node_Id;
8285 Lo : Node_Id;
8286 Hi : Node_Id;
8287
8288 begin
8289 if Is_Tagged_Type (Typ)
8290 or else Is_Controlled (Typ)
8291 or else Is_Packed (Typ)
8292 then
8293 return False;
8294 end if;
8295
8296 if Present (Bounds)
8297 and then Nkind (Bounds) = N_Range
8298 and then Nkind (Low_Bound (Bounds)) = N_Integer_Literal
8299 and then Nkind (High_Bound (Bounds)) = N_Integer_Literal
8300 then
8301 Lo := Low_Bound (Bounds);
8302 Hi := High_Bound (Bounds);
8303
8304 if No (Component_Associations (N)) then
8305
fa57ac97 8306 -- Verify that all components are static integers
0f95b178
JM
8307
8308 Expr := First (Expressions (N));
8309 while Present (Expr) loop
8310 if Nkind (Expr) /= N_Integer_Literal then
8311 return False;
8312 end if;
8313
8314 Next (Expr);
8315 end loop;
8316
8317 return True;
8318
8319 else
8320 -- We allow only a single named association, either a static
8321 -- range or an others_clause, with a static expression.
8322
8323 Expr := First (Component_Associations (N));
8324
8325 if Present (Expressions (N)) then
8326 return False;
8327
8328 elsif Present (Next (Expr)) then
8329 return False;
8330
00f45f30 8331 elsif Present (Next (First (Choice_List (Expr)))) then
0f95b178
JM
8332 return False;
8333
8334 else
d7f94401
AC
8335 -- The aggregate is static if all components are literals,
8336 -- or else all its components are static aggregates for the
fc534c1c
ES
8337 -- component type. We also limit the size of a static aggregate
8338 -- to prevent runaway static expressions.
0f95b178
JM
8339
8340 if Is_Array_Type (Comp_Type)
8341 or else Is_Record_Type (Comp_Type)
8342 then
8343 if Nkind (Expression (Expr)) /= N_Aggregate
8344 or else
8345 not Compile_Time_Known_Aggregate (Expression (Expr))
8346 then
8347 return False;
8348 end if;
8349
8350 elsif Nkind (Expression (Expr)) /= N_Integer_Literal then
8351 return False;
6a2e4f0b 8352 end if;
fc534c1c 8353
6a2e4f0b 8354 if not Aggr_Size_OK (N, Typ) then
fc534c1c 8355 return False;
0f95b178
JM
8356 end if;
8357
8358 -- Create a positional aggregate with the right number of
8359 -- copies of the expression.
8360
8361 Agg := Make_Aggregate (Sloc (N), New_List, No_List);
8362
8363 for I in UI_To_Int (Intval (Lo)) .. UI_To_Int (Intval (Hi))
8364 loop
37368818 8365 Append_To (Expressions (Agg), New_Copy (Expression (Expr)));
597d7158 8366
9b4b0a1a
GD
8367 -- The copied expression must be analyzed and resolved.
8368 -- Besides setting the type, this ensures that static
8369 -- expressions are appropriately marked as such.
597d7158 8370
9b4b0a1a
GD
8371 Analyze_And_Resolve
8372 (Last (Expressions (Agg)), Component_Type (Typ));
0f95b178
JM
8373 end loop;
8374
8375 Set_Aggregate_Bounds (Agg, Bounds);
8376 Set_Etype (Agg, Typ);
8377 Set_Analyzed (Agg);
8378 Rewrite (N, Agg);
8379 Set_Compile_Time_Known_Aggregate (N);
8380
8381 return True;
8382 end if;
8383 end if;
8384
8385 else
8386 return False;
8387 end if;
8388 end Static_Array_Aggregate;
9b4b0a1a 8389
937e9676
AC
8390 ----------------------------------
8391 -- Two_Dim_Packed_Array_Handled --
8392 ----------------------------------
8393
8394 function Two_Dim_Packed_Array_Handled (N : Node_Id) return Boolean is
8395 Loc : constant Source_Ptr := Sloc (N);
8396 Typ : constant Entity_Id := Etype (N);
8397 Ctyp : constant Entity_Id := Component_Type (Typ);
8398 Comp_Size : constant Int := UI_To_Int (Component_Size (Typ));
8399 Packed_Array : constant Entity_Id :=
8400 Packed_Array_Impl_Type (Base_Type (Typ));
8401
8402 One_Comp : Node_Id;
8403 -- Expression in original aggregate
8404
8405 One_Dim : Node_Id;
8406 -- One-dimensional subaggregate
8407
8408 begin
8409
8410 -- For now, only deal with cases where an integral number of elements
8411 -- fit in a single byte. This includes the most common boolean case.
8412
8413 if not (Comp_Size = 1 or else
8414 Comp_Size = 2 or else
8415 Comp_Size = 4)
8416 then
8417 return False;
8418 end if;
8419
8420 Convert_To_Positional
8421 (N, Max_Others_Replicate => 64, Handle_Bit_Packed => True);
8422
8423 -- Verify that all components are static
8424
8425 if Nkind (N) = N_Aggregate
8426 and then Compile_Time_Known_Aggregate (N)
8427 then
8428 null;
8429
8430 -- The aggregate may have been reanalyzed and converted already
8431
8432 elsif Nkind (N) /= N_Aggregate then
8433 return True;
8434
8435 -- If component associations remain, the aggregate is not static
8436
8437 elsif Present (Component_Associations (N)) then
8438 return False;
8439
8440 else
8441 One_Dim := First (Expressions (N));
8442 while Present (One_Dim) loop
8443 if Present (Component_Associations (One_Dim)) then
8444 return False;
8445 end if;
8446
8447 One_Comp := First (Expressions (One_Dim));
8448 while Present (One_Comp) loop
8449 if not Is_OK_Static_Expression (One_Comp) then
8450 return False;
8451 end if;
8452
8453 Next (One_Comp);
8454 end loop;
8455
8456 Next (One_Dim);
8457 end loop;
8458 end if;
8459
8460 -- Two-dimensional aggregate is now fully positional so pack one
8461 -- dimension to create a static one-dimensional array, and rewrite
8462 -- as an unchecked conversion to the original type.
8463
8464 declare
8465 Byte_Size : constant Int := UI_To_Int (Component_Size (Packed_Array));
8466 -- The packed array type is a byte array
8467
8468 Packed_Num : Nat;
8469 -- Number of components accumulated in current byte
8470
8471 Comps : List_Id;
8472 -- Assembled list of packed values for equivalent aggregate
8473
8474 Comp_Val : Uint;
8475 -- Integer value of component
8476
8477 Incr : Int;
8478 -- Step size for packing
8479
8480 Init_Shift : Int;
8481 -- Endian-dependent start position for packing
8482
8483 Shift : Int;
8484 -- Current insertion position
8485
8486 Val : Int;
8487 -- Component of packed array being assembled
8488
8489 begin
8490 Comps := New_List;
8491 Val := 0;
8492 Packed_Num := 0;
8493
8494 -- Account for endianness. See corresponding comment in
8495 -- Packed_Array_Aggregate_Handled concerning the following.
8496
8497 if Bytes_Big_Endian
8498 xor Debug_Flag_8
8499 xor Reverse_Storage_Order (Base_Type (Typ))
8500 then
8501 Init_Shift := Byte_Size - Comp_Size;
8502 Incr := -Comp_Size;
8503 else
8504 Init_Shift := 0;
8505 Incr := +Comp_Size;
8506 end if;
8507
8508 -- Iterate over each subaggregate
8509
8510 Shift := Init_Shift;
8511 One_Dim := First (Expressions (N));
8512 while Present (One_Dim) loop
8513 One_Comp := First (Expressions (One_Dim));
8514 while Present (One_Comp) loop
8515 if Packed_Num = Byte_Size / Comp_Size then
8516
8517 -- Byte is complete, add to list of expressions
8518
8519 Append (Make_Integer_Literal (Sloc (One_Dim), Val), Comps);
8520 Val := 0;
8521 Shift := Init_Shift;
8522 Packed_Num := 0;
8523
8524 else
8525 Comp_Val := Expr_Rep_Value (One_Comp);
8526
8527 -- Adjust for bias, and strip proper number of bits
8528
8529 if Has_Biased_Representation (Ctyp) then
8530 Comp_Val := Comp_Val - Expr_Value (Type_Low_Bound (Ctyp));
8531 end if;
8532
8533 Comp_Val := Comp_Val mod Uint_2 ** Comp_Size;
8534 Val := UI_To_Int (Val + Comp_Val * Uint_2 ** Shift);
8535 Shift := Shift + Incr;
8536 One_Comp := Next (One_Comp);
8537 Packed_Num := Packed_Num + 1;
8538 end if;
8539 end loop;
8540
8541 One_Dim := Next (One_Dim);
8542 end loop;
8543
8544 if Packed_Num > 0 then
8545
8546 -- Add final incomplete byte if present
8547
8548 Append (Make_Integer_Literal (Sloc (One_Dim), Val), Comps);
8549 end if;
8550
8551 Rewrite (N,
8552 Unchecked_Convert_To (Typ,
8553 Make_Qualified_Expression (Loc,
8554 Subtype_Mark => New_Occurrence_Of (Packed_Array, Loc),
8555 Expression => Make_Aggregate (Loc, Expressions => Comps))));
8556 Analyze_And_Resolve (N);
8557 return True;
8558 end;
8559 end Two_Dim_Packed_Array_Handled;
8560
70482933 8561end Exp_Aggr;
This page took 6.017785 seconds and 5 git commands to generate.