]> gcc.gnu.org Git - gcc.git/blame - gcc/ada/exp_aggr.adb
ada: Fix -fdiagnostics-format=json not printing all messages
[gcc.git] / gcc / ada / exp_aggr.adb
CommitLineData
70482933
RK
1------------------------------------------------------------------------------
2-- --
3-- GNAT COMPILER COMPONENTS --
4-- --
5-- E X P _ A G G R --
6-- --
7-- B o d y --
8-- --
cccef051 9-- Copyright (C) 1992-2023, Free Software Foundation, Inc. --
70482933
RK
10-- --
11-- GNAT is free software; you can redistribute it and/or modify it under --
12-- terms of the GNU General Public License as published by the Free Soft- --
b5c84c3c 13-- ware Foundation; either version 3, or (at your option) any later ver- --
70482933
RK
14-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16-- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17-- for more details. You should have received a copy of the GNU General --
b5c84c3c
RD
18-- Public License distributed with GNAT; see file COPYING3. If not, go to --
19-- http://www.gnu.org/licenses for a complete copy of the license. --
70482933
RK
20-- --
21-- GNAT was originally developed by the GNAT team at New York University. --
71ff80dc 22-- Extensive contributions were provided by Ada Core Technologies Inc. --
70482933
RK
23-- --
24------------------------------------------------------------------------------
25
104f58db
BD
26with Aspects; use Aspects;
27with Atree; use Atree;
28with Checks; use Checks;
29with Debug; use Debug;
30with Einfo; use Einfo;
76f9c7f4 31with Einfo.Entities; use Einfo.Entities;
104f58db
BD
32with Einfo.Utils; use Einfo.Utils;
33with Elists; use Elists;
34with Errout; use Errout;
35with Expander; use Expander;
36with Exp_Util; use Exp_Util;
37with Exp_Ch3; use Exp_Ch3;
38with Exp_Ch6; use Exp_Ch6;
39with Exp_Ch7; use Exp_Ch7;
40with Exp_Ch9; use Exp_Ch9;
41with Exp_Disp; use Exp_Disp;
42with Exp_Tss; use Exp_Tss;
43with Freeze; use Freeze;
44with Itypes; use Itypes;
45with Lib; use Lib;
46with Namet; use Namet;
47with Nmake; use Nmake;
48with Nlists; use Nlists;
49with Opt; use Opt;
50with Restrict; use Restrict;
51with Rident; use Rident;
52with Rtsfind; use Rtsfind;
53with Ttypes; use Ttypes;
54with Sem; use Sem;
55with Sem_Aggr; use Sem_Aggr;
56with Sem_Aux; use Sem_Aux;
e1dfbb03 57with Sem_Case; use Sem_Case;
104f58db
BD
58with Sem_Ch3; use Sem_Ch3;
59with Sem_Ch8; use Sem_Ch8;
60with Sem_Ch13; use Sem_Ch13;
61with Sem_Eval; use Sem_Eval;
62with Sem_Mech; use Sem_Mech;
63with Sem_Res; use Sem_Res;
64with Sem_Util; use Sem_Util;
ca4bff3a 65 use Sem_Util.Storage_Model_Support;
104f58db
BD
66with Sinfo; use Sinfo;
67with Sinfo.Nodes; use Sinfo.Nodes;
68with Sinfo.Utils; use Sinfo.Utils;
69with Snames; use Snames;
70with Stand; use Stand;
71with Stringt; use Stringt;
72with Tbuild; use Tbuild;
73with Uintp; use Uintp;
74with Urealp; use Urealp;
bc50ac71 75with Warnsw; use Warnsw;
70482933
RK
76
77package body Exp_Aggr is
78
742084ad
MP
79 function Build_Assignment_With_Temporary
80 (Target : Node_Id;
ca4bff3a 81 Typ : Entity_Id;
742084ad
MP
82 Source : Node_Id) return List_Id;
83 -- Returns a list of actions to assign Source to Target of type Typ using
ca4bff3a 84 -- an extra temporary, which can potentially be large.
742084ad 85
70482933
RK
86 type Case_Bounds is record
87 Choice_Lo : Node_Id;
88 Choice_Hi : Node_Id;
89 Choice_Node : Node_Id;
90 end record;
91
92 type Case_Table_Type is array (Nat range <>) of Case_Bounds;
93 -- Table type used by Check_Case_Choices procedure
94
9eb8d5b4
AC
95 procedure Expand_Delta_Array_Aggregate (N : Node_Id; Deltas : List_Id);
96 procedure Expand_Delta_Record_Aggregate (N : Node_Id; Deltas : List_Id);
745f5698 97 procedure Expand_Container_Aggregate (N : Node_Id);
9eb8d5b4 98
a80b1eb7
EB
99 function Get_Base_Object (N : Node_Id) return Entity_Id;
100 -- Return the base object, i.e. the outermost prefix object, that N refers
101 -- to statically, or Empty if it cannot be determined. The assumption is
102 -- that all dereferences are explicit in the tree rooted at N.
103
df3e68b1
HK
104 function Has_Default_Init_Comps (N : Node_Id) return Boolean;
105 -- N is an aggregate (record or array). Checks the presence of default
106 -- initialization (<>) in any component (Ada 2005: AI-287).
107
fc84947c 108 procedure Initialize_Component
fc84947c
EB
109 (N : Node_Id;
110 Comp : Node_Id;
111 Comp_Typ : Node_Id;
112 Init_Expr : Node_Id;
113 Stmts : List_Id);
c0ceba6c
EB
114 -- Perform the initialization of component Comp with expected type
115 -- Comp_Typ of aggregate N. Init_Expr denotes the initialization
fc84947c
EB
116 -- expression of the component. All generated code is added to Stmts.
117
9f51b855
JM
118 function Is_CCG_Supported_Aggregate (N : Node_Id) return Boolean;
119 -- Return True if aggregate N is located in a context supported by the
120 -- CCG backend; False otherwise.
6031f544 121
df3e68b1
HK
122 function Is_Static_Dispatch_Table_Aggregate (N : Node_Id) return Boolean;
123 -- Returns true if N is an aggregate used to initialize the components
b465ef6f 124 -- of a statically allocated dispatch table.
df3e68b1 125
937e9676
AC
126 function Late_Expansion
127 (N : Node_Id;
128 Typ : Entity_Id;
129 Target : Node_Id) return List_Id;
130 -- This routine implements top-down expansion of nested aggregates. In
131 -- doing so, it avoids the generation of temporaries at each level. N is
132 -- a nested record or array aggregate with the Expansion_Delayed flag.
133 -- Typ is the expected type of the aggregate. Target is a (duplicatable)
134 -- expression that will hold the result of the aggregate expansion.
135
136 function Make_OK_Assignment_Statement
137 (Sloc : Source_Ptr;
138 Name : Node_Id;
139 Expression : Node_Id) return Node_Id;
140 -- This is like Make_Assignment_Statement, except that Assignment_OK
141 -- is set in the left operand. All assignments built by this unit use
142 -- this routine. This is needed to deal with assignments to initialized
143 -- constants that are done in place.
144
3cf3e5c6 145 function Must_Slide
6732c403
ES
146 (Aggr : Node_Id;
147 Obj_Type : Entity_Id;
3cf3e5c6
AC
148 Typ : Entity_Id) return Boolean;
149 -- A static array aggregate in an object declaration can in most cases be
150 -- expanded in place. The one exception is when the aggregate is given
151 -- with component associations that specify different bounds from those of
152 -- the type definition in the object declaration. In this pathological
153 -- case the aggregate must slide, and we must introduce an intermediate
154 -- temporary to hold it.
155 --
156 -- The same holds in an assignment to one-dimensional array of arrays,
157 -- when a component may be given with bounds that differ from those of the
158 -- component type.
159
937e9676
AC
160 function Number_Of_Choices (N : Node_Id) return Nat;
161 -- Returns the number of discrete choices (not including the others choice
162 -- if present) contained in (sub-)aggregate N.
163
70482933
RK
164 procedure Sort_Case_Table (Case_Table : in out Case_Table_Type);
165 -- Sort the Case Table using the Lower Bound of each Choice as the key.
166 -- A simple insertion sort is used since the number of choices in a case
167 -- statement of variant part will usually be small and probably in near
168 -- sorted order.
169
170 ------------------------------------------------------
171 -- Local subprograms for Record Aggregate Expansion --
172 ------------------------------------------------------
173
d4dfb005
BD
174 function Is_Build_In_Place_Aggregate_Return (N : Node_Id) return Boolean;
175 -- True if N is an aggregate (possibly qualified or converted) that is
176 -- being returned from a build-in-place function.
177
df3e68b1 178 function Build_Record_Aggr_Code
f7e6fc47
RD
179 (N : Node_Id;
180 Typ : Entity_Id;
181 Lhs : Node_Id) return List_Id;
df3e68b1
HK
182 -- N is an N_Aggregate or an N_Extension_Aggregate. Typ is the type of the
183 -- aggregate. Target is an expression containing the location on which the
184 -- component by component assignments will take place. Returns the list of
185 -- assignments plus all other adjustments needed for tagged and controlled
203ddcea 186 -- types.
df3e68b1
HK
187
188 procedure Convert_To_Assignments (N : Node_Id; Typ : Entity_Id);
d4dfb005 189 -- Transform a record aggregate into a sequence of assignments performed
64ac53f4 190 -- component by component. N is an N_Aggregate or N_Extension_Aggregate.
d4dfb005 191 -- Typ is the type of the record aggregate.
df3e68b1 192
70482933
RK
193 procedure Expand_Record_Aggregate
194 (N : Node_Id;
195 Orig_Tag : Node_Id := Empty;
196 Parent_Expr : Node_Id := Empty);
197 -- This is the top level procedure for record aggregate expansion.
198 -- Expansion for record aggregates needs expand aggregates for tagged
199 -- record types. Specifically Expand_Record_Aggregate adds the Tag
200 -- field in front of the Component_Association list that was created
201 -- during resolution by Resolve_Record_Aggregate.
202 --
203 -- N is the record aggregate node.
204 -- Orig_Tag is the value of the Tag that has to be provided for this
205 -- specific aggregate. It carries the tag corresponding to the type
206 -- of the outermost aggregate during the recursive expansion
207 -- Parent_Expr is the ancestor part of the original extension
208 -- aggregate
209
fbf5a39b 210 function Has_Mutable_Components (Typ : Entity_Id) return Boolean;
b465ef6f 211 -- Return true if one of the components is of a discriminated type with
fbf5a39b
AC
212 -- defaults. An aggregate for a type with mutable components must be
213 -- expanded into individual assignments.
214
a80b1eb7
EB
215 function In_Place_Assign_OK
216 (N : Node_Id;
217 Target_Object : Entity_Id := Empty) return Boolean;
4ff5aa0c
AC
218 -- Predicate to determine whether an aggregate assignment can be done in
219 -- place, because none of the new values can depend on the components of
220 -- the target of the assignment.
221
07fc65c4
GB
222 procedure Initialize_Discriminants (N : Node_Id; Typ : Entity_Id);
223 -- If the type of the aggregate is a type extension with renamed discrimi-
224 -- nants, we must initialize the hidden discriminants of the parent.
225 -- Otherwise, the target object must not be initialized. The discriminants
226 -- are initialized by calling the initialization procedure for the type.
227 -- This is incorrect if the initialization of other components has any
228 -- side effects. We restrict this call to the case where the parent type
229 -- has a variant part, because this is the only case where the hidden
230 -- discriminants are accessed, namely when calling discriminant checking
231 -- functions of the parent type, and when applying a stream attribute to
232 -- an object of the derived type.
233
70482933 234 -----------------------------------------------------
07fc65c4 235 -- Local Subprograms for Array Aggregate Expansion --
70482933
RK
236 -----------------------------------------------------
237
2fedcc18
EB
238 function Aggr_Assignment_OK_For_Backend (N : Node_Id) return Boolean;
239 -- Returns true if an aggregate assignment can be done by the back end
240
eaf6e63a 241 function Aggr_Size_OK (N : Node_Id) return Boolean;
841dd0f5
AC
242 -- Very large static aggregates present problems to the back-end, and are
243 -- transformed into assignments and loops. This function verifies that the
244 -- total number of components of an aggregate is acceptable for rewriting
74e7891f
RD
245 -- into a purely positional static form. Aggr_Size_OK must be called before
246 -- calling Flatten.
247 --
841dd0f5 248 -- This function also detects and warns about one-component aggregates that
d940c627 249 -- appear in a nonstatic context. Even if the component value is static,
841dd0f5 250 -- such an aggregate must be expanded into an assignment.
643a0839 251
df3e68b1
HK
252 function Backend_Processing_Possible (N : Node_Id) return Boolean;
253 -- This function checks if array aggregate N can be processed directly
b465ef6f 254 -- by the backend. If this is the case, True is returned.
df3e68b1
HK
255
256 function Build_Array_Aggr_Code
257 (N : Node_Id;
258 Ctype : Entity_Id;
259 Index : Node_Id;
260 Into : Node_Id;
261 Scalar_Comp : Boolean;
262 Indexes : List_Id := No_List) return List_Id;
263 -- This recursive routine returns a list of statements containing the
264 -- loops and assignments that are needed for the expansion of the array
265 -- aggregate N.
266 --
267 -- N is the (sub-)aggregate node to be expanded into code. This node has
268 -- been fully analyzed, and its Etype is properly set.
269 --
d74716b3 270 -- Index is the index node corresponding to the array subaggregate N
df3e68b1
HK
271 --
272 -- Into is the target expression into which we are copying the aggregate.
273 -- Note that this node may not have been analyzed yet, and so the Etype
274 -- field may not be set.
275 --
276 -- Scalar_Comp is True if the component type of the aggregate is scalar
277 --
278 -- Indexes is the current list of expressions used to index the object we
279 -- are writing into.
280
6f639c98
ES
281 procedure Convert_Array_Aggr_In_Allocator
282 (Decl : Node_Id;
283 Aggr : Node_Id;
284 Target : Node_Id);
285 -- If the aggregate appears within an allocator and can be expanded in
286 -- place, this routine generates the individual assignments to components
287 -- of the designated object. This is an optimization over the general
288 -- case, where a temporary is first created on the stack and then used to
289 -- construct the allocated object on the heap.
290
07fc65c4 291 procedure Convert_To_Positional
c42006e9
AC
292 (N : Node_Id;
293 Handle_Bit_Packed : Boolean := False);
07fc65c4 294 -- If possible, convert named notation to positional notation. This
3cf3e5c6
AC
295 -- conversion is possible only in some static cases. If the conversion is
296 -- possible, then N is rewritten with the analyzed converted aggregate.
c42006e9 297 -- The parameter Handle_Bit_Packed is usually set False (since we do
3cf3e5c6
AC
298 -- not expect the back end to handle bit packed arrays, so the normal case
299 -- of conversion is pointless), but in the special case of a call from
300 -- Packed_Array_Aggregate_Handled, we set this parameter to True, since
301 -- these are cases we handle in there.
07fc65c4 302
70482933
RK
303 procedure Expand_Array_Aggregate (N : Node_Id);
304 -- This is the top-level routine to perform array aggregate expansion.
305 -- N is the N_Aggregate node to be expanded.
306
dc3af7e2 307 function Is_Two_Dim_Packed_Array (Typ : Entity_Id) return Boolean;
dc3af7e2
AC
308 -- For two-dimensional packed aggregates with constant bounds and constant
309 -- components, it is preferable to pack the inner aggregates because the
310 -- whole matrix can then be presented to the back-end as a one-dimensional
311 -- list of literals. This is much more efficient than expanding into single
2791be24
AC
312 -- component assignments. This function determines if the type Typ is for
313 -- an array that is suitable for this optimization: it returns True if Typ
314 -- is a two dimensional bit packed array with component size 1, 2, or 4.
dc3af7e2 315
c42006e9 316 function Max_Aggregate_Size
eaf6e63a 317 (N : Node_Id;
c42006e9 318 Default_Size : Nat := 5000) return Nat;
eaf6e63a
BD
319 -- Return the max size for a static aggregate N. Return Default_Size if no
320 -- other special criteria trigger.
c42006e9 321
07fc65c4
GB
322 function Packed_Array_Aggregate_Handled (N : Node_Id) return Boolean;
323 -- Given an array aggregate, this function handles the case of a packed
324 -- array aggregate with all constant values, where the aggregate can be
325 -- evaluated at compile time. If this is possible, then N is rewritten
326 -- to be its proper compile time value with all the components properly
50decc81
RD
327 -- assembled. The expression is analyzed and resolved and True is returned.
328 -- If this transformation is not possible, N is unchanged and False is
329 -- returned.
07fc65c4 330
5eeeed5e
AC
331 function Two_Dim_Packed_Array_Handled (N : Node_Id) return Boolean;
332 -- If the type of the aggregate is a two-dimensional bit_packed array
333 -- it may be transformed into an array of bytes with constant values,
334 -- and presented to the back-end as a static value. The function returns
335 -- false if this transformation cannot be performed. THis is similar to,
336 -- and reuses part of the machinery in Packed_Array_Aggregate_Handled.
337
2fedcc18
EB
338 ------------------------------------
339 -- Aggr_Assignment_OK_For_Backend --
340 ------------------------------------
341
342 -- Back-end processing by Gigi/gcc is possible only if all the following
343 -- conditions are met:
344
345 -- 1. N consists of a single OTHERS choice, possibly recursively, or
346 -- of a single choice, possibly recursively, if it is surrounded by
347 -- a qualified expression whose subtype mark is unconstrained.
348
349 -- 2. The array type has no null ranges (the purpose of this is to
350 -- avoid a bogus warning for an out-of-range value).
351
352 -- 3. The array type has no atomic components
353
354 -- 4. The component type is elementary
355
356 -- 5. The component size is a multiple of Storage_Unit
357
358 -- 6. The component size is Storage_Unit or the value is of the form
359 -- M * (1 + A**1 + A**2 + .. A**(K-1)) where A = 2**(Storage_Unit)
360 -- and M in 0 .. A-1. This can also be viewed as K occurrences of
361 -- the Storage_Unit value M, concatenated together.
362
363 -- The ultimate goal is to generate a call to a fast memset routine
364 -- specifically optimized for the target.
365
366 function Aggr_Assignment_OK_For_Backend (N : Node_Id) return Boolean is
2fedcc18
EB
367
368 function Is_OK_Aggregate (Aggr : Node_Id) return Boolean;
369 -- Return true if Aggr is suitable for back-end assignment
370
371 ---------------------
372 -- Is_OK_Aggregate --
373 ---------------------
374
375 function Is_OK_Aggregate (Aggr : Node_Id) return Boolean is
376 Assoc : constant List_Id := Component_Associations (Aggr);
377
378 begin
379 -- An "others" aggregate is most likely OK, but see below
380
381 if Is_Others_Aggregate (Aggr) then
382 null;
383
384 -- An aggregate with a single choice requires a qualified expression
385 -- whose subtype mark is an unconstrained type because we need it to
386 -- have the semantics of an "others" aggregate.
387
388 elsif Nkind (Parent (N)) = N_Qualified_Expression
389 and then not Is_Constrained (Entity (Subtype_Mark (Parent (N))))
390 and then Is_Single_Aggregate (Aggr)
391 then
392 null;
393
394 -- The other cases are not OK
395
396 else
397 return False;
398 end if;
399
400 -- In any case we do not support an iterated association
401
402 return Nkind (First (Assoc)) /= N_Iterated_Component_Association;
403 end Is_OK_Aggregate;
404
7c4f3267
BD
405 Bounds : Range_Nodes;
406 Csiz : Uint := No_Uint;
407 Ctyp : Entity_Id;
408 Expr : Node_Id;
409 Index : Entity_Id;
410 Nunits : Int;
411 Remainder : Uint;
412 Value : Uint;
413
b120ca61
EB
414 -- Start of processing for Aggr_Assignment_OK_For_Backend
415
2fedcc18
EB
416 begin
417 -- Back end doesn't know about <>
418
419 if Has_Default_Init_Comps (N) then
420 return False;
421 end if;
422
423 -- Recurse as far as possible to find the innermost component type
424
425 Ctyp := Etype (N);
426 Expr := N;
427 while Is_Array_Type (Ctyp) loop
428 if Nkind (Expr) /= N_Aggregate
429 or else not Is_OK_Aggregate (Expr)
430 then
431 return False;
432 end if;
433
434 Index := First_Index (Ctyp);
435 while Present (Index) loop
7c4f3267 436 Bounds := Get_Index_Bounds (Index);
2fedcc18 437
7c4f3267 438 if Is_Null_Range (Bounds.First, Bounds.Last) then
2fedcc18
EB
439 return False;
440 end if;
441
442 Next_Index (Index);
443 end loop;
444
445 Expr := Expression (First (Component_Associations (Expr)));
446
447 for J in 1 .. Number_Dimensions (Ctyp) - 1 loop
448 if Nkind (Expr) /= N_Aggregate
449 or else not Is_OK_Aggregate (Expr)
450 then
451 return False;
452 end if;
453
454 Expr := Expression (First (Component_Associations (Expr)));
455 end loop;
456
457 if Has_Atomic_Components (Ctyp) then
458 return False;
459 end if;
460
461 Csiz := Component_Size (Ctyp);
462 Ctyp := Component_Type (Ctyp);
463
b120ca61 464 if Is_Full_Access (Ctyp) then
2fedcc18
EB
465 return False;
466 end if;
467 end loop;
468
469 -- Access types need to be dealt with specially
470
471 if Is_Access_Type (Ctyp) then
472
473 -- Component_Size is not set by Layout_Type if the component
474 -- type is an access type ???
475
476 Csiz := Esize (Ctyp);
477
478 -- Fat pointers are rejected as they are not really elementary
479 -- for the backend.
480
36e38022 481 if No (Csiz) or else Csiz /= System_Address_Size then
2fedcc18
EB
482 return False;
483 end if;
484
485 -- The supported expressions are NULL and constants, others are
486 -- rejected upfront to avoid being analyzed below, which can be
487 -- problematic for some of them, for example allocators.
488
489 if Nkind (Expr) /= N_Null and then not Is_Entity_Name (Expr) then
490 return False;
491 end if;
492
493 -- Scalar types are OK if their size is a multiple of Storage_Unit
494
36e38022 495 elsif Is_Scalar_Type (Ctyp) and then Present (Csiz) then
2fedcc18
EB
496
497 if Csiz mod System_Storage_Unit /= 0 then
498 return False;
499 end if;
500
501 -- Composite types are rejected
502
503 else
504 return False;
505 end if;
506
507 -- If the expression has side effects (e.g. contains calls with
508 -- potential side effects) reject as well. We only preanalyze the
509 -- expression to prevent the removal of intended side effects.
510
511 Preanalyze_And_Resolve (Expr, Ctyp);
512
513 if not Side_Effect_Free (Expr) then
514 return False;
515 end if;
516
517 -- The expression needs to be analyzed if True is returned
518
519 Analyze_And_Resolve (Expr, Ctyp);
520
521 -- Strip away any conversions from the expression as they simply
522 -- qualify the real expression.
523
4a08c95c 524 while Nkind (Expr) in N_Unchecked_Type_Conversion | N_Type_Conversion
2fedcc18
EB
525 loop
526 Expr := Expression (Expr);
527 end loop;
528
529 Nunits := UI_To_Int (Csiz) / System_Storage_Unit;
530
531 if Nunits = 1 then
532 return True;
533 end if;
534
535 if not Compile_Time_Known_Value (Expr) then
536 return False;
537 end if;
538
539 -- The only supported value for floating point is 0.0
540
541 if Is_Floating_Point_Type (Ctyp) then
542 return Expr_Value_R (Expr) = Ureal_0;
543 end if;
544
545 -- For other types, we can look into the value as an integer, which
546 -- means the representation value for enumeration literals.
547
548 Value := Expr_Rep_Value (Expr);
549
550 if Has_Biased_Representation (Ctyp) then
551 Value := Value - Expr_Value (Type_Low_Bound (Ctyp));
552 end if;
553
554 -- Values 0 and -1 immediately satisfy the last check
555
556 if Value = Uint_0 or else Value = Uint_Minus_1 then
557 return True;
558 end if;
559
560 -- We need to work with an unsigned value
561
562 if Value < 0 then
563 Value := Value + 2**(System_Storage_Unit * Nunits);
564 end if;
565
566 Remainder := Value rem 2**System_Storage_Unit;
567
568 for J in 1 .. Nunits - 1 loop
569 Value := Value / 2**System_Storage_Unit;
570
571 if Value rem 2**System_Storage_Unit /= Remainder then
572 return False;
573 end if;
574 end loop;
575
576 return True;
577 end Aggr_Assignment_OK_For_Backend;
578
643a0839
ES
579 ------------------
580 -- Aggr_Size_OK --
581 ------------------
582
eaf6e63a
BD
583 function Aggr_Size_OK (N : Node_Id) return Boolean is
584 Typ : constant Entity_Id := Etype (N);
643a0839
ES
585 Lo : Node_Id;
586 Hi : Node_Id;
587 Indx : Node_Id;
4167b075 588 Size : Uint;
643a0839
ES
589 Lov : Uint;
590 Hiv : Uint;
591
303fbb20
AC
592 Max_Aggr_Size : Nat;
593 -- Determines the maximum size of an array aggregate produced by
594 -- converting named to positional notation (e.g. from others clauses).
595 -- This avoids running away with attempts to convert huge aggregates,
596 -- which hit memory limits in the backend.
643a0839 597
16e764a7 598 function Component_Count (T : Entity_Id) return Nat;
457cee0b 599 -- The limit is applied to the total number of subcomponents that the
643a0839
ES
600 -- aggregate will have, which is the number of static expressions
601 -- that will appear in the flattened array. This requires a recursive
16b05213 602 -- computation of the number of scalar components of the structure.
643a0839
ES
603
604 ---------------------
605 -- Component_Count --
606 ---------------------
607
16e764a7
AC
608 function Component_Count (T : Entity_Id) return Nat is
609 Res : Nat := 0;
643a0839
ES
610 Comp : Entity_Id;
611
612 begin
613 if Is_Scalar_Type (T) then
614 return 1;
615
616 elsif Is_Record_Type (T) then
617 Comp := First_Component (T);
618 while Present (Comp) loop
619 Res := Res + Component_Count (Etype (Comp));
620 Next_Component (Comp);
621 end loop;
622
623 return Res;
624
625 elsif Is_Array_Type (T) then
626 declare
627 Lo : constant Node_Id :=
15f0f591 628 Type_Low_Bound (Etype (First_Index (T)));
643a0839 629 Hi : constant Node_Id :=
15f0f591 630 Type_High_Bound (Etype (First_Index (T)));
643a0839 631
16e764a7 632 Siz : constant Nat := Component_Count (Component_Type (T));
643a0839
ES
633
634 begin
b4213ffd
AC
635 -- Check for superflat arrays, i.e. arrays with such bounds
636 -- as 4 .. 2, to insure that this function never returns a
637 -- meaningless negative value.
638
643a0839
ES
639 if not Compile_Time_Known_Value (Lo)
640 or else not Compile_Time_Known_Value (Hi)
b4213ffd 641 or else Expr_Value (Hi) < Expr_Value (Lo)
643a0839
ES
642 then
643 return 0;
b4213ffd 644
643a0839 645 else
457cee0b
AC
646 -- If the number of components is greater than Int'Last,
647 -- then return Int'Last, so caller will return False (Aggr
648 -- size is not OK). Otherwise, UI_To_Int will crash.
649
650 declare
651 UI : constant Uint :=
16b8ba10 652 (Expr_Value (Hi) - Expr_Value (Lo) + 1) * Siz;
457cee0b
AC
653 begin
654 if UI_Is_In_Int_Range (UI) then
16b8ba10 655 return UI_To_Int (UI);
457cee0b
AC
656 else
657 return Int'Last;
658 end if;
659 end;
643a0839
ES
660 end if;
661 end;
662
663 else
664 -- Can only be a null for an access type
665
666 return 1;
667 end if;
668 end Component_Count;
669
670 -- Start of processing for Aggr_Size_OK
671
672 begin
c42006e9 673 -- We bump the maximum size unless the aggregate has a single component
b9ec8463 674 -- association, which will be more efficient if implemented with a loop.
73b670e3 675 -- The -gnatd_g switch disables this bumping.
b9ec8463 676
73b670e3
BD
677 if (No (Expressions (N))
678 and then No (Next (First (Component_Associations (N)))))
679 or else Debug_Flag_Underscore_G
b9ec8463 680 then
eaf6e63a 681 Max_Aggr_Size := Max_Aggregate_Size (N);
c42006e9 682 else
eaf6e63a 683 Max_Aggr_Size := Max_Aggregate_Size (N, 500_000);
303fbb20
AC
684 end if;
685
4167b075 686 Size := UI_From_Int (Component_Count (Component_Type (Typ)));
643a0839 687
5277cab6 688 Indx := First_Index (Typ);
643a0839
ES
689 while Present (Indx) loop
690 Lo := Type_Low_Bound (Etype (Indx));
691 Hi := Type_High_Bound (Etype (Indx));
692
693 -- Bounds need to be known at compile time
694
695 if not Compile_Time_Known_Value (Lo)
696 or else not Compile_Time_Known_Value (Hi)
697 then
698 return False;
699 end if;
700
701 Lov := Expr_Value (Lo);
702 Hiv := Expr_Value (Hi);
703
704 -- A flat array is always safe
705
706 if Hiv < Lov then
707 return True;
708 end if;
709
86038a88 710 -- One-component aggregates are suspicious, and if the context type
d940c627 711 -- is an object declaration with nonstatic bounds it will trip gcc;
86038a88 712 -- such an aggregate must be expanded into a single assignment.
58fda84d 713
36a66365 714 if Hiv = Lov and then Nkind (Parent (N)) = N_Object_Declaration then
58fda84d
ES
715 declare
716 Index_Type : constant Entity_Id :=
15f0f591
AC
717 Etype
718 (First_Index (Etype (Defining_Identifier (Parent (N)))));
86038a88
RD
719 Indx : Node_Id;
720
58fda84d
ES
721 begin
722 if not Compile_Time_Known_Value (Type_Low_Bound (Index_Type))
36a66365
AC
723 or else not Compile_Time_Known_Value
724 (Type_High_Bound (Index_Type))
58fda84d
ES
725 then
726 if Present (Component_Associations (N)) then
727 Indx :=
00f45f30
AC
728 First
729 (Choice_List (First (Component_Associations (N))));
324ac540 730
58fda84d
ES
731 if Is_Entity_Name (Indx)
732 and then not Is_Type (Entity (Indx))
733 then
734 Error_Msg_N
324ac540
AC
735 ("single component aggregate in "
736 & "non-static context??", Indx);
737 Error_Msg_N ("\maybe subtype name was meant??", Indx);
58fda84d
ES
738 end if;
739 end if;
740
741 return False;
742 end if;
743 end;
744 end if;
745
643a0839
ES
746 declare
747 Rng : constant Uint := Hiv - Lov + 1;
748
749 begin
750 -- Check if size is too large
751
752 if not UI_Is_In_Int_Range (Rng) then
753 return False;
754 end if;
755
4167b075
GD
756 -- Compute the size using universal arithmetic to avoid the
757 -- possibility of overflow on very large aggregates.
643a0839 758
4167b075
GD
759 Size := Size * Rng;
760
761 if Size <= 0
762 or else Size > Max_Aggr_Size
763 then
764 return False;
765 end if;
766 end;
643a0839
ES
767
768 -- Bounds must be in integer range, for later array construction
769
770 if not UI_Is_In_Int_Range (Lov)
771 or else
772 not UI_Is_In_Int_Range (Hiv)
773 then
774 return False;
775 end if;
776
777 Next_Index (Indx);
778 end loop;
779
780 return True;
781 end Aggr_Size_OK;
782
70482933
RK
783 ---------------------------------
784 -- Backend_Processing_Possible --
785 ---------------------------------
786
787 -- Backend processing by Gigi/gcc is possible only if all the following
788 -- conditions are met:
789
790 -- 1. N is fully positional
791
792 -- 2. N is not a bit-packed array aggregate;
793
794 -- 3. The size of N's array type must be known at compile time. Note
795 -- that this implies that the component size is also known
796
797 -- 4. The array type of N does not follow the Fortran layout convention
798 -- or if it does it must be 1 dimensional.
799
0f95b178
JM
800 -- 5. The array component type may not be tagged (which could necessitate
801 -- reassignment of proper tags).
70482933 802
0f95b178
JM
803 -- 6. The array component type must not have unaligned bit components
804
805 -- 7. None of the components of the aggregate may be bit unaligned
806 -- components.
807
808 -- 8. There cannot be delayed components, since we do not know enough
809 -- at this stage to know if back end processing is possible.
810
811 -- 9. There cannot be any discriminated record components, since the
812 -- back end cannot handle this complex case.
91b1417d 813
7f4c1903 814 -- 10. No controlled actions need to be generated for components
a8f59a33 815
7e22a38c
AC
816 -- 11. When generating C code, N must be part of a N_Object_Declaration
817
2d6aa715
AC
818 -- 12. When generating C code, N must not include function calls
819
70482933
RK
820 function Backend_Processing_Possible (N : Node_Id) return Boolean is
821 Typ : constant Entity_Id := Etype (N);
3cf3e5c6 822 -- Typ is the correct constrained array subtype of the aggregate
70482933 823
0f95b178
JM
824 function Component_Check (N : Node_Id; Index : Node_Id) return Boolean;
825 -- This routine checks components of aggregate N, enforcing checks
d74716b3 826 -- 1, 7, 8, 9, 11, and 12. In the multidimensional case, these checks
2d6aa715 827 -- are performed on subaggregates. The Index value is the current index
d74716b3 828 -- being checked in the multidimensional case.
70482933 829
0f95b178
JM
830 ---------------------
831 -- Component_Check --
832 ---------------------
70482933 833
0f95b178 834 function Component_Check (N : Node_Id; Index : Node_Id) return Boolean is
35f4f238
JM
835 function Ultimate_Original_Expression (N : Node_Id) return Node_Id;
836 -- Given a type conversion or an unchecked type conversion N, return
837 -- its innermost original expression.
838
839 ----------------------------------
840 -- Ultimate_Original_Expression --
841 ----------------------------------
842
843 function Ultimate_Original_Expression (N : Node_Id) return Node_Id is
844 Expr : Node_Id := Original_Node (N);
845
846 begin
4a08c95c
AC
847 while Nkind (Expr) in
848 N_Type_Conversion | N_Unchecked_Type_Conversion
35f4f238
JM
849 loop
850 Expr := Original_Node (Expression (Expr));
851 end loop;
852
853 return Expr;
854 end Ultimate_Original_Expression;
855
856 -- Local variables
857
70482933
RK
858 Expr : Node_Id;
859
bbe008b6
HK
860 -- Start of processing for Component_Check
861
70482933 862 begin
0f95b178 863 -- Checks 1: (no component associations)
70482933
RK
864
865 if Present (Component_Associations (N)) then
866 return False;
867 end if;
868
7ec25b2b
AC
869 -- Checks 11: The C code generator cannot handle aggregates that are
870 -- not part of an object declaration.
7e22a38c 871
4ff5aa0c
AC
872 if Modify_Tree_For_C and then not Is_CCG_Supported_Aggregate (N) then
873 return False;
7e22a38c
AC
874 end if;
875
0f95b178
JM
876 -- Checks on components
877
70482933
RK
878 -- Recurse to check subaggregates, which may appear in qualified
879 -- expressions. If delayed, the front-end will have to expand.
d940c627 880 -- If the component is a discriminated record, treat as nonstatic,
5277cab6 881 -- as the back-end cannot handle this properly.
70482933
RK
882
883 Expr := First (Expressions (N));
70482933 884 while Present (Expr) loop
0f95b178
JM
885
886 -- Checks 8: (no delayed components)
887
70482933
RK
888 if Is_Delayed_Aggregate (Expr) then
889 return False;
890 end if;
891
0f95b178
JM
892 -- Checks 9: (no discriminated records)
893
5277cab6
ES
894 if Present (Etype (Expr))
895 and then Is_Record_Type (Etype (Expr))
896 and then Has_Discriminants (Etype (Expr))
897 then
898 return False;
899 end if;
900
0f95b178
JM
901 -- Checks 7. Component must not be bit aligned component
902
903 if Possible_Bit_Aligned_Component (Expr) then
904 return False;
905 end if;
906
2d6aa715
AC
907 -- Checks 12: (no function call)
908
35f4f238
JM
909 if Modify_Tree_For_C
910 and then
911 Nkind (Ultimate_Original_Expression (Expr)) = N_Function_Call
912 then
2d6aa715
AC
913 return False;
914 end if;
915
0f95b178
JM
916 -- Recursion to following indexes for multiple dimension case
917
70482933 918 if Present (Next_Index (Index))
36a66365 919 and then not Component_Check (Expr, Next_Index (Index))
70482933
RK
920 then
921 return False;
922 end if;
923
0f95b178
JM
924 -- All checks for that component finished, on to next
925
70482933
RK
926 Next (Expr);
927 end loop;
928
929 return True;
0f95b178 930 end Component_Check;
70482933
RK
931
932 -- Start of processing for Backend_Processing_Possible
933
934 begin
a8f59a33 935 -- Checks 2 (array not bit packed) and 10 (no controlled actions)
70482933 936
a8f59a33 937 if Is_Bit_Packed_Array (Typ) or else Needs_Finalization (Typ) then
70482933
RK
938 return False;
939 end if;
940
a38ff9b1
ES
941 -- If component is limited, aggregate must be expanded because each
942 -- component assignment must be built in place.
943
51245e2d 944 if Is_Limited_View (Component_Type (Typ)) then
a38ff9b1
ES
945 return False;
946 end if;
947
d74716b3 948 -- Checks 4 (array must not be multidimensional Fortran case)
70482933
RK
949
950 if Convention (Typ) = Convention_Fortran
951 and then Number_Dimensions (Typ) > 1
952 then
953 return False;
954 end if;
955
956 -- Checks 3 (size of array must be known at compile time)
957
958 if not Size_Known_At_Compile_Time (Typ) then
959 return False;
960 end if;
961
0f95b178 962 -- Checks on components
70482933 963
0f95b178 964 if not Component_Check (N, First_Index (Typ)) then
70482933
RK
965 return False;
966 end if;
967
0f95b178 968 -- Checks 5 (if the component type is tagged, then we may need to do
36a66365
AC
969 -- tag adjustments. Perhaps this should be refined to check for any
970 -- component associations that actually need tag adjustment, similar
d4dfb005
BD
971 -- to the test in Component_OK_For_Backend for record aggregates with
972 -- tagged components, but not clear whether it's worthwhile ???; in the
973 -- case of virtual machines (no Tagged_Type_Expansion), object tags are
974 -- handled implicitly).
70482933 975
1f110335
AC
976 if Is_Tagged_Type (Component_Type (Typ))
977 and then Tagged_Type_Expansion
978 then
70482933
RK
979 return False;
980 end if;
981
91b1417d
AC
982 -- Checks 6 (component type must not have bit aligned components)
983
984 if Type_May_Have_Bit_Aligned_Components (Component_Type (Typ)) then
985 return False;
986 end if;
987
70482933
RK
988 -- Backend processing is possible
989
70482933
RK
990 return True;
991 end Backend_Processing_Possible;
992
993 ---------------------------
994 -- Build_Array_Aggr_Code --
995 ---------------------------
996
997 -- The code that we generate from a one dimensional aggregate is
998
d74716b3 999 -- 1. If the subaggregate contains discrete choices we
70482933
RK
1000
1001 -- (a) Sort the discrete choices
1002
1003 -- (b) Otherwise for each discrete choice that specifies a range we
1004 -- emit a loop. If a range specifies a maximum of three values, or
1005 -- we are dealing with an expression we emit a sequence of
1006 -- assignments instead of a loop.
1007
3cf3e5c6 1008 -- (c) Generate the remaining loops to cover the others choice if any
70482933
RK
1009
1010 -- 2. If the aggregate contains positional elements we
1011
8313d0ee 1012 -- (a) Translate the positional elements in a series of assignments
70482933
RK
1013
1014 -- (b) Generate a final loop to cover the others choice if any.
1015 -- Note that this final loop has to be a while loop since the case
1016
1017 -- L : Integer := Integer'Last;
1018 -- H : Integer := Integer'Last;
1019 -- A : array (L .. H) := (1, others =>0);
1020
1021 -- cannot be handled by a for loop. Thus for the following
1022
8313d0ee 1023 -- array (L .. H) := (.. positional elements.., others => E);
70482933
RK
1024
1025 -- we always generate something like:
1026
07fc65c4
GB
1027 -- J : Index_Type := Index_Of_Last_Positional_Element;
1028 -- while J < H loop
1029 -- J := Index_Base'Succ (J)
1030 -- Tmp (J) := E;
70482933
RK
1031 -- end loop;
1032
1033 function Build_Array_Aggr_Code
1034 (N : Node_Id;
c45b6ae0 1035 Ctype : Entity_Id;
70482933
RK
1036 Index : Node_Id;
1037 Into : Node_Id;
1038 Scalar_Comp : Boolean;
df3e68b1 1039 Indexes : List_Id := No_List) return List_Id
70482933
RK
1040 is
1041 Loc : constant Source_Ptr := Sloc (N);
4f061cf2 1042 Typ : constant Entity_Id := Etype (N);
70482933
RK
1043 Index_Base : constant Entity_Id := Base_Type (Etype (Index));
1044 Index_Base_L : constant Node_Id := Type_Low_Bound (Index_Base);
1045 Index_Base_H : constant Node_Id := Type_High_Bound (Index_Base);
1046
1047 function Add (Val : Int; To : Node_Id) return Node_Id;
3cf3e5c6
AC
1048 -- Returns an expression where Val is added to expression To, unless
1049 -- To+Val is provably out of To's base type range. To must be an
1050 -- already analyzed expression.
70482933
RK
1051
1052 function Empty_Range (L, H : Node_Id) return Boolean;
3cf3e5c6 1053 -- Returns True if the range defined by L .. H is certainly empty
70482933
RK
1054
1055 function Equal (L, H : Node_Id) return Boolean;
3cf3e5c6 1056 -- Returns True if L = H for sure
70482933
RK
1057
1058 function Index_Base_Name return Node_Id;
3cf3e5c6 1059 -- Returns a new reference to the index type name
70482933 1060
937e9676
AC
1061 function Gen_Assign
1062 (Ind : Node_Id;
fc84947c 1063 Expr : Node_Id) return List_Id;
d74716b3
AC
1064 -- Ind must be a side-effect-free expression. If the input aggregate N
1065 -- to Build_Loop contains no subaggregates, then this function returns
1066 -- the assignment statement:
70482933 1067 --
deeb1604 1068 -- Into (Indexes, Ind) := Expr;
70482933 1069 --
fc84947c 1070 -- Otherwise we call Build_Code recursively.
c45b6ae0 1071 --
0ab80019
AC
1072 -- Ada 2005 (AI-287): In case of default initialized component, Expr
1073 -- is empty and we generate a call to the corresponding IP subprogram.
70482933
RK
1074
1075 function Gen_Loop (L, H : Node_Id; Expr : Node_Id) return List_Id;
d74716b3
AC
1076 -- Nodes L and H must be side-effect-free expressions. If the input
1077 -- aggregate N to Build_Loop contains no subaggregates, this routine
1078 -- returns the for loop statement:
70482933
RK
1079 --
1080 -- for J in Index_Base'(L) .. Index_Base'(H) loop
deeb1604 1081 -- Into (Indexes, J) := Expr;
70482933
RK
1082 -- end loop;
1083 --
937e9676
AC
1084 -- Otherwise we call Build_Code recursively. As an optimization if the
1085 -- loop covers 3 or fewer scalar elements we generate a sequence of
1086 -- assignments.
00f45f30
AC
1087 -- If the component association that generates the loop comes from an
1088 -- Iterated_Component_Association, the loop parameter has the name of
1089 -- the corresponding parameter in the original construct.
70482933
RK
1090
1091 function Gen_While (L, H : Node_Id; Expr : Node_Id) return List_Id;
d74716b3
AC
1092 -- Nodes L and H must be side-effect-free expressions. If the input
1093 -- aggregate N to Build_Loop contains no subaggregates, this routine
1094 -- returns the while loop statement:
70482933 1095 --
07fc65c4
GB
1096 -- J : Index_Base := L;
1097 -- while J < H loop
1098 -- J := Index_Base'Succ (J);
deeb1604 1099 -- Into (Indexes, J) := Expr;
70482933
RK
1100 -- end loop;
1101 --
fbf5a39b 1102 -- Otherwise we call Build_Code recursively
70482933 1103
59e9bc0b 1104 function Get_Assoc_Expr (Assoc : Node_Id) return Node_Id;
e9999161
AC
1105 -- For an association with a box, use value given by aspect
1106 -- Default_Component_Value of array type if specified, else use
1107 -- value given by aspect Default_Value for component type itself
1108 -- if specified, else return Empty.
59e9bc0b 1109
70482933
RK
1110 function Local_Compile_Time_Known_Value (E : Node_Id) return Boolean;
1111 function Local_Expr_Value (E : Node_Id) return Uint;
1112 -- These two Local routines are used to replace the corresponding ones
1113 -- in sem_eval because while processing the bounds of an aggregate with
1114 -- discrete choices whose index type is an enumeration, we build static
1115 -- expressions not recognized by Compile_Time_Known_Value as such since
1116 -- they have not yet been analyzed and resolved. All the expressions in
1117 -- question are things like Index_Base_Name'Val (Const) which we can
1118 -- easily recognize as being constant.
1119
1120 ---------
1121 -- Add --
1122 ---------
1123
1124 function Add (Val : Int; To : Node_Id) return Node_Id is
1125 Expr_Pos : Node_Id;
1126 Expr : Node_Id;
1127 To_Pos : Node_Id;
fbf5a39b
AC
1128 U_To : Uint;
1129 U_Val : constant Uint := UI_From_Int (Val);
70482933
RK
1130
1131 begin
1132 -- Note: do not try to optimize the case of Val = 0, because
1133 -- we need to build a new node with the proper Sloc value anyway.
1134
1135 -- First test if we can do constant folding
1136
1137 if Local_Compile_Time_Known_Value (To) then
1138 U_To := Local_Expr_Value (To) + Val;
1139
1140 -- Determine if our constant is outside the range of the index.
1141 -- If so return an Empty node. This empty node will be caught
1142 -- by Empty_Range below.
1143
1144 if Compile_Time_Known_Value (Index_Base_L)
1145 and then U_To < Expr_Value (Index_Base_L)
1146 then
1147 return Empty;
1148
1149 elsif Compile_Time_Known_Value (Index_Base_H)
1150 and then U_To > Expr_Value (Index_Base_H)
1151 then
1152 return Empty;
1153 end if;
1154
1155 Expr_Pos := Make_Integer_Literal (Loc, U_To);
1156 Set_Is_Static_Expression (Expr_Pos);
1157
1158 if not Is_Enumeration_Type (Index_Base) then
1159 Expr := Expr_Pos;
1160
1161 -- If we are dealing with enumeration return
1162 -- Index_Base'Val (Expr_Pos)
1163
1164 else
1165 Expr :=
1166 Make_Attribute_Reference
1167 (Loc,
1168 Prefix => Index_Base_Name,
1169 Attribute_Name => Name_Val,
1170 Expressions => New_List (Expr_Pos));
1171 end if;
1172
1173 return Expr;
1174 end if;
1175
1176 -- If we are here no constant folding possible
1177
1178 if not Is_Enumeration_Type (Index_Base) then
1179 Expr :=
1180 Make_Op_Add (Loc,
47c14114
AC
1181 Left_Opnd => Duplicate_Subexpr (To),
1182 Right_Opnd => Make_Integer_Literal (Loc, U_Val));
70482933
RK
1183
1184 -- If we are dealing with enumeration return
1185 -- Index_Base'Val (Index_Base'Pos (To) + Val)
1186
1187 else
1188 To_Pos :=
1189 Make_Attribute_Reference
1190 (Loc,
1191 Prefix => Index_Base_Name,
1192 Attribute_Name => Name_Pos,
1193 Expressions => New_List (Duplicate_Subexpr (To)));
1194
1195 Expr_Pos :=
1196 Make_Op_Add (Loc,
47c14114
AC
1197 Left_Opnd => To_Pos,
1198 Right_Opnd => Make_Integer_Literal (Loc, U_Val));
70482933
RK
1199
1200 Expr :=
1201 Make_Attribute_Reference
1202 (Loc,
1203 Prefix => Index_Base_Name,
1204 Attribute_Name => Name_Val,
1205 Expressions => New_List (Expr_Pos));
1206 end if;
1207
1208 return Expr;
1209 end Add;
1210
1211 -----------------
1212 -- Empty_Range --
1213 -----------------
1214
1215 function Empty_Range (L, H : Node_Id) return Boolean is
1216 Is_Empty : Boolean := False;
1217 Low : Node_Id;
1218 High : Node_Id;
1219
1220 begin
1221 -- First check if L or H were already detected as overflowing the
1222 -- index base range type by function Add above. If this is so Add
1223 -- returns the empty node.
1224
1225 if No (L) or else No (H) then
1226 return True;
1227 end if;
1228
1229 for J in 1 .. 3 loop
1230 case J is
1231
1232 -- L > H range is empty
1233
1234 when 1 =>
1235 Low := L;
1236 High := H;
1237
1238 -- B_L > H range must be empty
1239
1240 when 2 =>
1241 Low := Index_Base_L;
1242 High := H;
1243
1244 -- L > B_H range must be empty
1245
1246 when 3 =>
1247 Low := L;
1248 High := Index_Base_H;
1249 end case;
1250
1251 if Local_Compile_Time_Known_Value (Low)
36a66365
AC
1252 and then
1253 Local_Compile_Time_Known_Value (High)
70482933
RK
1254 then
1255 Is_Empty :=
1256 UI_Gt (Local_Expr_Value (Low), Local_Expr_Value (High));
1257 end if;
1258
1259 exit when Is_Empty;
1260 end loop;
1261
1262 return Is_Empty;
1263 end Empty_Range;
1264
1265 -----------
1266 -- Equal --
1267 -----------
1268
1269 function Equal (L, H : Node_Id) return Boolean is
1270 begin
1271 if L = H then
1272 return True;
1273
1274 elsif Local_Compile_Time_Known_Value (L)
36a66365
AC
1275 and then
1276 Local_Compile_Time_Known_Value (H)
70482933
RK
1277 then
1278 return UI_Eq (Local_Expr_Value (L), Local_Expr_Value (H));
1279 end if;
1280
1281 return False;
1282 end Equal;
1283
1284 ----------------
1285 -- Gen_Assign --
1286 ----------------
1287
937e9676
AC
1288 function Gen_Assign
1289 (Ind : Node_Id;
fc84947c 1290 Expr : Node_Id) return List_Id
937e9676 1291 is
70482933 1292 function Add_Loop_Actions (Lis : List_Id) return List_Id;
937e9676
AC
1293 -- Collect insert_actions generated in the construction of a loop,
1294 -- and prepend them to the sequence of assignments to complete the
1295 -- eventual body of the loop.
1296
70482933
RK
1297 ----------------------
1298 -- Add_Loop_Actions --
1299 ----------------------
1300
1301 function Add_Loop_Actions (Lis : List_Id) return List_Id is
1302 Res : List_Id;
1303
1304 begin
0ab80019 1305 -- Ada 2005 (AI-287): Do nothing else in case of default
6e937c1c 1306 -- initialized component.
c45b6ae0 1307
d8f7b976 1308 if No (Expr) then
c45b6ae0
AC
1309 return Lis;
1310
1311 elsif Nkind (Parent (Expr)) = N_Component_Association
70482933
RK
1312 and then Present (Loop_Actions (Parent (Expr)))
1313 then
1314 Append_List (Lis, Loop_Actions (Parent (Expr)));
1315 Res := Loop_Actions (Parent (Expr));
1316 Set_Loop_Actions (Parent (Expr), No_List);
1317 return Res;
1318
1319 else
1320 return Lis;
1321 end if;
1322 end Add_Loop_Actions;
1323
10edebe7
AC
1324 -- Local variables
1325
1326 Stmts : constant List_Id := New_List;
1327
1328 Comp_Typ : Entity_Id := Empty;
1329 Expr_Q : Node_Id;
1330 Indexed_Comp : Node_Id;
2168d7cc 1331 Init_Call : Node_Id;
10edebe7 1332 New_Indexes : List_Id;
10edebe7 1333
70482933
RK
1334 -- Start of processing for Gen_Assign
1335
1336 begin
deeb1604
AC
1337 if No (Indexes) then
1338 New_Indexes := New_List;
70482933 1339 else
deeb1604 1340 New_Indexes := New_Copy_List_Tree (Indexes);
70482933
RK
1341 end if;
1342
deeb1604 1343 Append_To (New_Indexes, Ind);
70482933 1344
70482933
RK
1345 if Present (Next_Index (Index)) then
1346 return
1347 Add_Loop_Actions (
1348 Build_Array_Aggr_Code
c45b6ae0
AC
1349 (N => Expr,
1350 Ctype => Ctype,
1351 Index => Next_Index (Index),
1352 Into => Into,
1353 Scalar_Comp => Scalar_Comp,
df3e68b1 1354 Indexes => New_Indexes));
70482933
RK
1355 end if;
1356
1357 -- If we get here then we are at a bottom-level (sub-)aggregate
1358
fbf5a39b
AC
1359 Indexed_Comp :=
1360 Checks_Off
1361 (Make_Indexed_Component (Loc,
1362 Prefix => New_Copy_Tree (Into),
deeb1604 1363 Expressions => New_Indexes));
70482933
RK
1364
1365 Set_Assignment_OK (Indexed_Comp);
1366
0ab80019 1367 -- Ada 2005 (AI-287): In case of default initialized component, Expr
6e937c1c 1368 -- is not present (and therefore we also initialize Expr_Q to empty).
c45b6ae0 1369
4f061cf2 1370 Expr_Q := Unqualify (Expr);
70482933 1371
36a66365 1372 if Present (Etype (N)) and then Etype (N) /= Any_Composite then
10edebe7
AC
1373 Comp_Typ := Component_Type (Etype (N));
1374 pragma Assert (Comp_Typ = Ctype); -- AI-287
70482933 1375
deeb1604 1376 elsif Present (Next (First (New_Indexes))) then
70482933 1377
0ab80019 1378 -- Ada 2005 (AI-287): Do nothing in case of default initialized
c45b6ae0
AC
1379 -- component because we have received the component type in
1380 -- the formal parameter Ctype.
6e937c1c
AC
1381
1382 -- ??? Some assert pragmas have been added to check if this new
36a66365 1383 -- formal can be used to replace this code in all cases.
70482933 1384
c45b6ae0 1385 if Present (Expr) then
70482933 1386
36a66365
AC
1387 -- This is a multidimensional array. Recover the component type
1388 -- from the outermost aggregate, because subaggregates do not
1389 -- have an assigned type.
70482933 1390
c45b6ae0 1391 declare
5277cab6 1392 P : Node_Id;
70482933 1393
c45b6ae0 1394 begin
5277cab6 1395 P := Parent (Expr);
c45b6ae0 1396 while Present (P) loop
c45b6ae0
AC
1397 if Nkind (P) = N_Aggregate
1398 and then Present (Etype (P))
1399 then
10edebe7 1400 Comp_Typ := Component_Type (Etype (P));
c45b6ae0
AC
1401 exit;
1402
1403 else
1404 P := Parent (P);
1405 end if;
1406 end loop;
6e937c1c 1407
10edebe7 1408 pragma Assert (Comp_Typ = Ctype); -- AI-287
c45b6ae0
AC
1409 end;
1410 end if;
70482933
RK
1411 end if;
1412
0ab80019 1413 -- Ada 2005 (AI-287): We only analyze the expression in case of non-
6e937c1c 1414 -- default initialized components (otherwise Expr_Q is not present).
c45b6ae0
AC
1415
1416 if Present (Expr_Q)
4a08c95c 1417 and then Nkind (Expr_Q) in N_Aggregate | N_Extension_Aggregate
70482933 1418 then
d7f94401
AC
1419 -- At this stage the Expression may not have been analyzed yet
1420 -- because the array aggregate code has not been updated to use
1421 -- the Expansion_Delayed flag and avoid analysis altogether to
1422 -- solve the same problem (see Resolve_Aggr_Expr). So let us do
1423 -- the analysis of non-array aggregates now in order to get the
1424 -- value of Expansion_Delayed flag for the inner aggregate ???
70482933 1425
6cbd45e4
PMR
1426 -- In the case of an iterated component association, the analysis
1427 -- of the generated loop will analyze the expression in the
1428 -- proper context, in which the loop parameter is visible.
1429
d940c627 1430 if Present (Comp_Typ) and then not Is_Array_Type (Comp_Typ) then
10fdda1c
HK
1431 if Nkind (Parent (Expr_Q)) = N_Iterated_Component_Association
1432 or else Nkind (Parent (Parent ((Expr_Q)))) =
1433 N_Iterated_Component_Association
d940c627
ES
1434 then
1435 null;
1436 else
1437 Analyze_And_Resolve (Expr_Q, Comp_Typ);
1438 end if;
70482933
RK
1439 end if;
1440
1441 if Is_Delayed_Aggregate (Expr_Q) then
3cf3e5c6 1442
308e6f3a 1443 -- This is either a subaggregate of a multidimensional array,
3cf3e5c6
AC
1444 -- or a component of an array type whose component type is
1445 -- also an array. In the latter case, the expression may have
1446 -- component associations that provide different bounds from
1447 -- those of the component type, and sliding must occur. Instead
1448 -- of decomposing the current aggregate assignment, force the
937e9676 1449 -- reanalysis of the assignment, so that a temporary will be
3cf3e5c6
AC
1450 -- generated in the usual fashion, and sliding will take place.
1451
1452 if Nkind (Parent (N)) = N_Assignment_Statement
10edebe7 1453 and then Is_Array_Type (Comp_Typ)
3cf3e5c6 1454 and then Present (Component_Associations (Expr_Q))
6732c403 1455 and then Must_Slide (N, Comp_Typ, Etype (Expr_Q))
3cf3e5c6
AC
1456 then
1457 Set_Expansion_Delayed (Expr_Q, False);
1458 Set_Analyzed (Expr_Q, False);
1459
1460 else
1461 return
1462 Add_Loop_Actions (
df3e68b1 1463 Late_Expansion (Expr_Q, Etype (Expr_Q), Indexed_Comp));
3cf3e5c6 1464 end if;
70482933
RK
1465 end if;
1466 end if;
1467
937e9676 1468 if Present (Expr) then
fc84947c
EB
1469 Initialize_Component
1470 (N => N,
1471 Comp => Indexed_Comp,
1472 Comp_Typ => Comp_Typ,
1473 Init_Expr => Expr,
1474 Stmts => Stmts);
937e9676 1475
0ab80019 1476 -- Ada 2005 (AI-287): In case of default initialized component, call
6e937c1c 1477 -- the initialization subprogram associated with the component type.
3b9fa2df
ES
1478 -- If the component type is an access type, add an explicit null
1479 -- assignment, because for the back-end there is an initialization
1480 -- present for the whole aggregate, and no default initialization
1481 -- will take place.
1482
1483 -- In addition, if the component type is controlled, we must call
1484 -- its Initialize procedure explicitly, because there is no explicit
1485 -- object creation that will invoke it otherwise.
70482933 1486
937e9676 1487 else
3b9fa2df 1488 if Present (Base_Init_Proc (Base_Type (Ctype)))
615cbd95
AC
1489 or else Has_Task (Base_Type (Ctype))
1490 then
10edebe7 1491 Append_List_To (Stmts,
c45b6ae0
AC
1492 Build_Initialization_Call (Loc,
1493 Id_Ref => Indexed_Comp,
1494 Typ => Ctype,
1495 With_Default_Init => True));
3b9fa2df 1496
ffcfb997
ES
1497 -- If the component type has invariants, add an invariant
1498 -- check after the component is default-initialized. It will
1499 -- be analyzed and resolved before the code for initialization
1500 -- of other components.
1501
1502 if Has_Invariants (Ctype) then
1503 Set_Etype (Indexed_Comp, Ctype);
10edebe7 1504 Append_To (Stmts, Make_Invariant_Call (Indexed_Comp));
ffcfb997 1505 end if;
3b9fa2df
ES
1506 end if;
1507
048e5cef 1508 if Needs_Finalization (Ctype) then
2168d7cc 1509 Init_Call :=
37368818
RD
1510 Make_Init_Call
1511 (Obj_Ref => New_Copy_Tree (Indexed_Comp),
2168d7cc
AC
1512 Typ => Ctype);
1513
1514 -- Guard against a missing [Deep_]Initialize when the component
1515 -- type was not properly frozen.
1516
1517 if Present (Init_Call) then
1518 Append_To (Stmts, Init_Call);
1519 end if;
615cbd95 1520 end if;
097826df
GD
1521
1522 -- If Default_Initial_Condition applies to the component type,
1523 -- add a DIC check after the component is default-initialized,
1524 -- as well as after an Initialize procedure is called, in the
1525 -- case of components of a controlled type. It will be analyzed
1526 -- and resolved before the code for initialization of other
1527 -- components.
1528
1529 -- Theoretically this might also be needed for cases where Expr
1530 -- is not empty, but a default init still applies, such as for
1531 -- Default_Value cases, in which case we won't get here. ???
1532
1533 if Has_DIC (Ctype) and then Present (DIC_Procedure (Ctype)) then
1534 Append_To (Stmts,
1535 Build_DIC_Call (Loc, New_Copy_Tree (Indexed_Comp), Ctype));
1536 end if;
70482933
RK
1537 end if;
1538
10edebe7 1539 return Add_Loop_Actions (Stmts);
70482933
RK
1540 end Gen_Assign;
1541
1542 --------------
1543 -- Gen_Loop --
1544 --------------
1545
1546 function Gen_Loop (L, H : Node_Id; Expr : Node_Id) return List_Id is
00f45f30 1547 Is_Iterated_Component : constant Boolean :=
898edf75 1548 Parent_Kind (Expr) = N_Iterated_Component_Association;
00f45f30 1549
e3584606
MP
1550 Ent : Entity_Id;
1551
07fc65c4 1552 L_J : Node_Id;
70482933 1553
240fe2a4
AC
1554 L_L : Node_Id;
1555 -- Index_Base'(L)
1556
1557 L_H : Node_Id;
1558 -- Index_Base'(H)
1559
70482933
RK
1560 L_Range : Node_Id;
1561 -- Index_Base'(L) .. Index_Base'(H)
1562
1563 L_Iteration_Scheme : Node_Id;
07fc65c4 1564 -- L_J in Index_Base'(L) .. Index_Base'(H)
70482933
RK
1565
1566 L_Body : List_Id;
1567 -- The statements to execute in the loop
1568
fbf5a39b
AC
1569 S : constant List_Id := New_List;
1570 -- List of statements
70482933
RK
1571
1572 Tcopy : Node_Id;
1573 -- Copy of expression tree, used for checking purposes
1574
1575 begin
1576 -- If loop bounds define an empty range return the null statement
1577
1578 if Empty_Range (L, H) then
1579 Append_To (S, Make_Null_Statement (Loc));
1580
0ab80019 1581 -- Ada 2005 (AI-287): Nothing else need to be done in case of
6e937c1c 1582 -- default initialized component.
70482933 1583
d8f7b976 1584 if No (Expr) then
c45b6ae0
AC
1585 null;
1586
1587 else
1588 -- The expression must be type-checked even though no component
1589 -- of the aggregate will have this value. This is done only for
1590 -- actual components of the array, not for subaggregates. Do
1591 -- the check on a copy, because the expression may be shared
1592 -- among several choices, some of which might be non-null.
1593
1594 if Present (Etype (N))
1595 and then Is_Array_Type (Etype (N))
1596 and then No (Next_Index (Index))
1597 then
1598 Expander_Mode_Save_And_Set (False);
1599 Tcopy := New_Copy_Tree (Expr);
1600 Set_Parent (Tcopy, N);
4270e945
PT
1601
1602 -- For iterated_component_association analyze and resolve
1603 -- the expression with name of the index parameter visible.
1604 -- To manipulate scopes, we use entity of the implicit loop.
1605
1606 if Is_Iterated_Component then
1607 declare
1608 Index_Parameter : constant Entity_Id :=
1609 Defining_Identifier (Parent (Expr));
1610 begin
1611 Push_Scope (Scope (Index_Parameter));
1612 Enter_Name (Index_Parameter);
1613 Analyze_And_Resolve
1614 (Tcopy, Component_Type (Etype (N)));
1615 End_Scope;
1616 end;
1617
1618 -- For ordinary component association, just analyze and
1619 -- resolve the expression.
1620
1621 else
1622 Analyze_And_Resolve (Tcopy, Component_Type (Etype (N)));
1623 end if;
1624
c45b6ae0
AC
1625 Expander_Mode_Restore;
1626 end if;
70482933
RK
1627 end if;
1628
1629 return S;
1630
00f45f30
AC
1631 -- If loop bounds are the same then generate an assignment, unless
1632 -- the parent construct is an Iterated_Component_Association.
70482933 1633
00f45f30 1634 elsif Equal (L, H) and then not Is_Iterated_Component then
70482933
RK
1635 return Gen_Assign (New_Copy_Tree (L), Expr);
1636
3b9fa2df
ES
1637 -- If H - L <= 2 then generate a sequence of assignments when we are
1638 -- processing the bottom most aggregate and it contains scalar
1639 -- components.
70482933
RK
1640
1641 elsif No (Next_Index (Index))
1642 and then Scalar_Comp
1643 and then Local_Compile_Time_Known_Value (L)
1644 and then Local_Compile_Time_Known_Value (H)
1645 and then Local_Expr_Value (H) - Local_Expr_Value (L) <= 2
00f45f30 1646 and then not Is_Iterated_Component
70482933
RK
1647 then
1648 Append_List_To (S, Gen_Assign (New_Copy_Tree (L), Expr));
1649 Append_List_To (S, Gen_Assign (Add (1, To => L), Expr));
1650
1651 if Local_Expr_Value (H) - Local_Expr_Value (L) = 2 then
1652 Append_List_To (S, Gen_Assign (Add (2, To => L), Expr));
1653 end if;
1654
1655 return S;
1656 end if;
1657
07fc65c4 1658 -- Otherwise construct the loop, starting with the loop index L_J
70482933 1659
00f45f30 1660 if Is_Iterated_Component then
e3584606
MP
1661
1662 -- Create a new scope for the loop variable so that the
1663 -- following Gen_Assign (that ends up calling
1664 -- Preanalyze_And_Resolve) can correctly find it.
1665
1666 Ent := New_Internal_Entity (E_Loop,
1667 Current_Scope, Loc, 'L');
1668 Set_Etype (Ent, Standard_Void_Type);
1669 Set_Parent (Ent, Parent (Parent (Expr)));
1670 Push_Scope (Ent);
1671
72cdccfa
HK
1672 L_J :=
1673 Make_Defining_Identifier (Loc,
1674 Chars => (Chars (Defining_Identifier (Parent (Expr)))));
00f45f30 1675
e3584606
MP
1676 Enter_Name (L_J);
1677
1678 -- The Etype will be set by a later Analyze call.
1679 Set_Etype (L_J, Any_Type);
1680
1681 Mutate_Ekind (L_J, E_Variable);
25e4024c 1682 Set_Is_Not_Self_Hidden (L_J);
e3584606 1683 Set_Scope (L_J, Ent);
00f45f30
AC
1684 else
1685 L_J := Make_Temporary (Loc, 'J', L);
1686 end if;
70482933 1687
240fe2a4
AC
1688 -- Construct "L .. H" in Index_Base. We use a qualified expression
1689 -- for the bound to convert to the index base, but we don't need
1690 -- to do that if we already have the base type at hand.
1691
1692 if Etype (L) = Index_Base then
4eac8834 1693 L_L := New_Copy_Tree (L);
240fe2a4
AC
1694 else
1695 L_L :=
1696 Make_Qualified_Expression (Loc,
1697 Subtype_Mark => Index_Base_Name,
00f45f30 1698 Expression => New_Copy_Tree (L));
240fe2a4
AC
1699 end if;
1700
1701 if Etype (H) = Index_Base then
4eac8834 1702 L_H := New_Copy_Tree (H);
240fe2a4
AC
1703 else
1704 L_H :=
1705 Make_Qualified_Expression (Loc,
1706 Subtype_Mark => Index_Base_Name,
00f45f30 1707 Expression => New_Copy_Tree (H));
240fe2a4 1708 end if;
70482933
RK
1709
1710 L_Range :=
240fe2a4 1711 Make_Range (Loc,
ffcfb997 1712 Low_Bound => L_L,
240fe2a4 1713 High_Bound => L_H);
70482933 1714
07fc65c4 1715 -- Construct "for L_J in Index_Base range L .. H"
70482933
RK
1716
1717 L_Iteration_Scheme :=
8313d0ee 1718 Make_Iteration_Scheme (Loc,
70482933 1719 Loop_Parameter_Specification =>
8313d0ee 1720 Make_Loop_Parameter_Specification (Loc,
07fc65c4 1721 Defining_Identifier => L_J,
70482933
RK
1722 Discrete_Subtype_Definition => L_Range));
1723
1724 -- Construct the statements to execute in the loop body
1725
fc84947c 1726 L_Body := Gen_Assign (New_Occurrence_Of (L_J, Loc), Expr);
70482933
RK
1727
1728 -- Construct the final loop
1729
37368818
RD
1730 Append_To (S,
1731 Make_Implicit_Loop_Statement
1732 (Node => N,
1733 Identifier => Empty,
1734 Iteration_Scheme => L_Iteration_Scheme,
1735 Statements => L_Body));
70482933 1736
e3584606
MP
1737 if Is_Iterated_Component then
1738 End_Scope;
1739 end if;
1740
3b9fa2df
ES
1741 -- A small optimization: if the aggregate is initialized with a box
1742 -- and the component type has no initialization procedure, remove the
1743 -- useless empty loop.
0f95b178
JM
1744
1745 if Nkind (First (S)) = N_Loop_Statement
1746 and then Is_Empty_List (Statements (First (S)))
1747 then
1748 return New_List (Make_Null_Statement (Loc));
1749 else
1750 return S;
1751 end if;
70482933
RK
1752 end Gen_Loop;
1753
1754 ---------------
1755 -- Gen_While --
1756 ---------------
1757
1758 -- The code built is
1759
07fc65c4
GB
1760 -- W_J : Index_Base := L;
1761 -- while W_J < H loop
1762 -- W_J := Index_Base'Succ (W);
70482933
RK
1763 -- L_Body;
1764 -- end loop;
1765
1766 function Gen_While (L, H : Node_Id; Expr : Node_Id) return List_Id is
07fc65c4 1767 W_J : Node_Id;
70482933
RK
1768
1769 W_Decl : Node_Id;
07fc65c4 1770 -- W_J : Base_Type := L;
70482933
RK
1771
1772 W_Iteration_Scheme : Node_Id;
07fc65c4 1773 -- while W_J < H
70482933
RK
1774
1775 W_Index_Succ : Node_Id;
07fc65c4 1776 -- Index_Base'Succ (J)
70482933 1777
fbf5a39b 1778 W_Increment : Node_Id;
07fc65c4 1779 -- W_J := Index_Base'Succ (W)
70482933 1780
fbf5a39b 1781 W_Body : constant List_Id := New_List;
70482933
RK
1782 -- The statements to execute in the loop
1783
fbf5a39b 1784 S : constant List_Id := New_List;
70482933
RK
1785 -- list of statement
1786
1787 begin
1788 -- If loop bounds define an empty range or are equal return null
1789
1790 if Empty_Range (L, H) or else Equal (L, H) then
1791 Append_To (S, Make_Null_Statement (Loc));
1792 return S;
1793 end if;
1794
07fc65c4 1795 -- Build the decl of W_J
70482933 1796
191fcb3a 1797 W_J := Make_Temporary (Loc, 'J', L);
70482933
RK
1798 W_Decl :=
1799 Make_Object_Declaration
1800 (Loc,
07fc65c4 1801 Defining_Identifier => W_J,
70482933
RK
1802 Object_Definition => Index_Base_Name,
1803 Expression => L);
1804
1805 -- Theoretically we should do a New_Copy_Tree (L) here, but we know
1806 -- that in this particular case L is a fresh Expr generated by
1807 -- Add which we are the only ones to use.
1808
1809 Append_To (S, W_Decl);
1810
fbf5a39b 1811 -- Construct " while W_J < H"
70482933
RK
1812
1813 W_Iteration_Scheme :=
1814 Make_Iteration_Scheme
1815 (Loc,
1816 Condition => Make_Op_Lt
1817 (Loc,
e4494292 1818 Left_Opnd => New_Occurrence_Of (W_J, Loc),
70482933
RK
1819 Right_Opnd => New_Copy_Tree (H)));
1820
1821 -- Construct the statements to execute in the loop body
1822
1823 W_Index_Succ :=
1824 Make_Attribute_Reference
1825 (Loc,
1826 Prefix => Index_Base_Name,
1827 Attribute_Name => Name_Succ,
e4494292 1828 Expressions => New_List (New_Occurrence_Of (W_J, Loc)));
70482933
RK
1829
1830 W_Increment :=
1831 Make_OK_Assignment_Statement
1832 (Loc,
e4494292 1833 Name => New_Occurrence_Of (W_J, Loc),
70482933
RK
1834 Expression => W_Index_Succ);
1835
1836 Append_To (W_Body, W_Increment);
937e9676 1837
70482933 1838 Append_List_To (W_Body,
fc84947c 1839 Gen_Assign (New_Occurrence_Of (W_J, Loc), Expr));
70482933
RK
1840
1841 -- Construct the final loop
1842
37368818
RD
1843 Append_To (S,
1844 Make_Implicit_Loop_Statement
1845 (Node => N,
1846 Identifier => Empty,
1847 Iteration_Scheme => W_Iteration_Scheme,
1848 Statements => W_Body));
70482933
RK
1849
1850 return S;
1851 end Gen_While;
1852
59e9bc0b
AC
1853 --------------------
1854 -- Get_Assoc_Expr --
1855 --------------------
1856
c8df2335
EB
1857 -- Duplicate the expression in case we will be generating several loops.
1858 -- As a result the expression is no longer shared between the loops and
1859 -- is reevaluated for each such loop.
1860
59e9bc0b 1861 function Get_Assoc_Expr (Assoc : Node_Id) return Node_Id is
e9999161
AC
1862 Typ : constant Entity_Id := Base_Type (Etype (N));
1863
59e9bc0b
AC
1864 begin
1865 if Box_Present (Assoc) then
d7b2fad2 1866 if Present (Default_Aspect_Component_Value (Typ)) then
c8df2335 1867 return New_Copy_Tree (Default_Aspect_Component_Value (Typ));
d7b2fad2 1868 elsif Needs_Simple_Initialization (Ctype) then
c8df2335 1869 return New_Copy_Tree (Get_Simple_Init_Val (Ctype, N));
59e9bc0b
AC
1870 else
1871 return Empty;
1872 end if;
1873
1874 else
c8df2335
EB
1875 -- The expression will be passed to Gen_Loop, which immediately
1876 -- calls Parent_Kind on it, so we set Parent when it matters.
1877
1878 return
1879 Expr : constant Node_Id := New_Copy_Tree (Expression (Assoc))
1880 do
1881 Copy_Parent (To => Expr, From => Expression (Assoc));
1882 end return;
59e9bc0b
AC
1883 end if;
1884 end Get_Assoc_Expr;
1885
70482933
RK
1886 ---------------------
1887 -- Index_Base_Name --
1888 ---------------------
1889
1890 function Index_Base_Name return Node_Id is
1891 begin
e4494292 1892 return New_Occurrence_Of (Index_Base, Sloc (N));
70482933
RK
1893 end Index_Base_Name;
1894
1895 ------------------------------------
1896 -- Local_Compile_Time_Known_Value --
1897 ------------------------------------
1898
1899 function Local_Compile_Time_Known_Value (E : Node_Id) return Boolean is
1900 begin
1901 return Compile_Time_Known_Value (E)
1902 or else
1903 (Nkind (E) = N_Attribute_Reference
fbf5a39b
AC
1904 and then Attribute_Name (E) = Name_Val
1905 and then Compile_Time_Known_Value (First (Expressions (E))));
70482933
RK
1906 end Local_Compile_Time_Known_Value;
1907
1908 ----------------------
1909 -- Local_Expr_Value --
1910 ----------------------
1911
1912 function Local_Expr_Value (E : Node_Id) return Uint is
1913 begin
1914 if Compile_Time_Known_Value (E) then
1915 return Expr_Value (E);
1916 else
1917 return Expr_Value (First (Expressions (E)));
1918 end if;
1919 end Local_Expr_Value;
1920
937e9676 1921 -- Local variables
70482933 1922
937e9676 1923 New_Code : constant List_Id := New_List;
70482933 1924
10c257af
ES
1925 Aggr_Bounds : constant Range_Nodes :=
1926 Get_Index_Bounds (Aggregate_Bounds (N));
1927 Aggr_L : Node_Id renames Aggr_Bounds.First;
1928 Aggr_H : Node_Id renames Aggr_Bounds.Last;
d74716b3
AC
1929 -- The aggregate bounds of this specific subaggregate. Note that if the
1930 -- code generated by Build_Array_Aggr_Code is executed then these bounds
1931 -- are OK. Otherwise a Constraint_Error would have been raised.
70482933 1932
fbf5a39b
AC
1933 Aggr_Low : constant Node_Id := Duplicate_Subexpr_No_Checks (Aggr_L);
1934 Aggr_High : constant Node_Id := Duplicate_Subexpr_No_Checks (Aggr_H);
7324bf49 1935 -- After Duplicate_Subexpr these are side-effect free
70482933 1936
937e9676
AC
1937 Assoc : Node_Id;
1938 Choice : Node_Id;
1939 Expr : Node_Id;
70482933 1940
7c4f3267
BD
1941 Bounds : Range_Nodes;
1942 Low : Node_Id renames Bounds.First;
1943 High : Node_Id renames Bounds.Last;
1944
70482933
RK
1945 Nb_Choices : Nat := 0;
1946 Table : Case_Table_Type (1 .. Number_Of_Choices (N));
1947 -- Used to sort all the different choice values
1948
1949 Nb_Elements : Int;
1950 -- Number of elements in the positional aggregate
1951
937e9676 1952 Others_Assoc : Node_Id := Empty;
70482933
RK
1953
1954 -- Start of processing for Build_Array_Aggr_Code
1955
1956 begin
8ba0b4cf 1957 -- First before we start, a special case. If we have a bit packed
fbf5a39b
AC
1958 -- array represented as a modular type, then clear the value to
1959 -- zero first, to ensure that unused bits are properly cleared.
1960
fbf5a39b
AC
1961 if Present (Typ)
1962 and then Is_Bit_Packed_Array (Typ)
8ca597af 1963 and then Is_Modular_Integer_Type (Packed_Array_Impl_Type (Typ))
fbf5a39b 1964 then
445514c0
EB
1965 declare
1966 Zero : constant Node_Id := Make_Integer_Literal (Loc, Uint_0);
1967 begin
1968 Analyze_And_Resolve (Zero, Packed_Array_Impl_Type (Typ));
1969 Append_To (New_Code,
1970 Make_Assignment_Statement (Loc,
1971 Name => New_Copy_Tree (Into),
1972 Expression => Unchecked_Convert_To (Typ, Zero)));
1973 end;
fbf5a39b
AC
1974 end if;
1975
0e08f7ab
ES
1976 -- If the component type contains tasks, we need to build a Master
1977 -- entity in the current scope, because it will be needed if build-
1978 -- in-place functions are called in the expanded code.
1979
36a66365 1980 if Nkind (Parent (N)) = N_Object_Declaration and then Has_Task (Typ) then
0e08f7ab
ES
1981 Build_Master_Entity (Defining_Identifier (Parent (N)));
1982 end if;
1983
70482933 1984 -- STEP 1: Process component associations
3b9fa2df 1985
fbf5a39b
AC
1986 -- For those associations that may generate a loop, initialize
1987 -- Loop_Actions to collect inserted actions that may be crated.
70482933 1988
3b9fa2df
ES
1989 -- Skip this if no component associations
1990
70482933
RK
1991 if No (Expressions (N)) then
1992
1993 -- STEP 1 (a): Sort the discrete choices
1994
1995 Assoc := First (Component_Associations (N));
1996 while Present (Assoc) loop
00f45f30 1997 Choice := First (Choice_List (Assoc));
70482933 1998 while Present (Choice) loop
70482933 1999 if Nkind (Choice) = N_Others_Choice then
59e9bc0b 2000 Others_Assoc := Assoc;
70482933
RK
2001 exit;
2002 end if;
2003
7c4f3267 2004 Bounds := Get_Index_Bounds (Choice);
70482933 2005
fbf5a39b
AC
2006 if Low /= High then
2007 Set_Loop_Actions (Assoc, New_List);
2008 end if;
2009
70482933 2010 Nb_Choices := Nb_Choices + 1;
59e9bc0b
AC
2011
2012 Table (Nb_Choices) :=
2013 (Choice_Lo => Low,
2014 Choice_Hi => High,
2015 Choice_Node => Get_Assoc_Expr (Assoc));
2016
70482933
RK
2017 Next (Choice);
2018 end loop;
2019
2020 Next (Assoc);
2021 end loop;
2022
2023 -- If there is more than one set of choices these must be static
2024 -- and we can therefore sort them. Remember that Nb_Choices does not
2025 -- account for an others choice.
2026
2027 if Nb_Choices > 1 then
2028 Sort_Case_Table (Table);
2029 end if;
2030
74580e1b 2031 -- STEP 1 (b): take care of the whole set of discrete choices
70482933
RK
2032
2033 for J in 1 .. Nb_Choices loop
2034 Low := Table (J).Choice_Lo;
2035 High := Table (J).Choice_Hi;
2036 Expr := Table (J).Choice_Node;
70482933
RK
2037 Append_List (Gen_Loop (Low, High, Expr), To => New_Code);
2038 end loop;
2039
2040 -- STEP 1 (c): generate the remaining loops to cover others choice
2041 -- We don't need to generate loops over empty gaps, but if there is
2042 -- a single empty range we must analyze the expression for semantics
2043
59e9bc0b 2044 if Present (Others_Assoc) then
70482933 2045 declare
c8df2335 2046 First : Boolean := True;
70482933
RK
2047
2048 begin
2049 for J in 0 .. Nb_Choices loop
70482933
RK
2050 if J = 0 then
2051 Low := Aggr_Low;
2052 else
2053 Low := Add (1, To => Table (J).Choice_Hi);
2054 end if;
2055
2056 if J = Nb_Choices then
2057 High := Aggr_High;
2058 else
2059 High := Add (-1, To => Table (J + 1).Choice_Lo);
2060 end if;
2061
fbf5a39b 2062 -- If this is an expansion within an init proc, make
c84700e7
ES
2063 -- sure that discriminant references are replaced by
2064 -- the corresponding discriminal.
2065
2066 if Inside_Init_Proc then
2067 if Is_Entity_Name (Low)
2068 and then Ekind (Entity (Low)) = E_Discriminant
2069 then
2070 Set_Entity (Low, Discriminal (Entity (Low)));
2071 end if;
2072
2073 if Is_Entity_Name (High)
2074 and then Ekind (Entity (High)) = E_Discriminant
2075 then
2076 Set_Entity (High, Discriminal (Entity (High)));
2077 end if;
2078 end if;
2079
c8df2335 2080 if First or else not Empty_Range (Low, High) then
70482933 2081 First := False;
6951cbc9 2082 Set_Loop_Actions (Others_Assoc, New_List);
c8df2335
EB
2083 Expr := Get_Assoc_Expr (Others_Assoc);
2084 Append_List (Gen_Loop (Low, High, Expr), To => New_Code);
70482933
RK
2085 end if;
2086 end loop;
2087 end;
2088 end if;
2089
2090 -- STEP 2: Process positional components
2091
2092 else
2093 -- STEP 2 (a): Generate the assignments for each positional element
2094 -- Note that here we have to use Aggr_L rather than Aggr_Low because
2095 -- Aggr_L is analyzed and Add wants an analyzed expression.
2096
2097 Expr := First (Expressions (N));
2098 Nb_Elements := -1;
70482933
RK
2099 while Present (Expr) loop
2100 Nb_Elements := Nb_Elements + 1;
2101 Append_List (Gen_Assign (Add (Nb_Elements, To => Aggr_L), Expr),
2102 To => New_Code);
2103 Next (Expr);
2104 end loop;
2105
02a82539 2106 -- STEP 2 (b): Generate final loop if an others choice is present.
70482933
RK
2107 -- Here Nb_Elements gives the offset of the last positional element.
2108
2109 if Present (Component_Associations (N)) then
2110 Assoc := Last (Component_Associations (N));
70482933 2111
02a82539 2112 if Nkind (Assoc) = N_Iterated_Component_Association then
81e68a19 2113 -- Ada 2022: generate a loop to have a proper scope for
02a82539
ES
2114 -- the identifier that typically appears in the expression.
2115 -- The lower bound of the loop is the position after all
2116 -- previous positional components.
6e937c1c 2117
02a82539
ES
2118 Append_List (Gen_Loop (Add (Nb_Elements + 1, To => Aggr_L),
2119 Aggr_High,
2120 Expression (Assoc)),
2121 To => New_Code);
2122 else
2123 -- Ada 2005 (AI-287)
2124
2125 Append_List (Gen_While (Add (Nb_Elements, To => Aggr_L),
2126 Aggr_High,
2127 Get_Assoc_Expr (Assoc)),
2128 To => New_Code);
2129 end if;
70482933
RK
2130 end if;
2131 end if;
2132
2133 return New_Code;
2134 end Build_Array_Aggr_Code;
2135
742084ad
MP
2136 -------------------------------------
2137 -- Build_Assignment_With_Temporary --
2138 -------------------------------------
2139
2140 function Build_Assignment_With_Temporary
2141 (Target : Node_Id;
ca4bff3a 2142 Typ : Entity_Id;
742084ad
MP
2143 Source : Node_Id) return List_Id
2144 is
2145 Loc : constant Source_Ptr := Sloc (Source);
2146
2147 Aggr_Code : List_Id;
2148 Tmp : Entity_Id;
742084ad
MP
2149
2150 begin
ca4bff3a
EB
2151 Aggr_Code := New_List;
2152
2153 Tmp := Build_Temporary_On_Secondary_Stack (Loc, Typ, Aggr_Code);
2154
742084ad
MP
2155 Append_To (Aggr_Code,
2156 Make_OK_Assignment_Statement (Loc,
ca4bff3a
EB
2157 Name =>
2158 Make_Explicit_Dereference (Loc,
2159 Prefix => New_Occurrence_Of (Tmp, Loc)),
742084ad
MP
2160 Expression => Source));
2161
2162 Append_To (Aggr_Code,
2163 Make_OK_Assignment_Statement (Loc,
2164 Name => Target,
ca4bff3a
EB
2165 Expression =>
2166 Make_Explicit_Dereference (Loc,
2167 Prefix => New_Occurrence_Of (Tmp, Loc))));
2168
742084ad
MP
2169 return Aggr_Code;
2170 end Build_Assignment_With_Temporary;
2171
70482933
RK
2172 ----------------------------
2173 -- Build_Record_Aggr_Code --
2174 ----------------------------
2175
2176 function Build_Record_Aggr_Code
f7e6fc47
RD
2177 (N : Node_Id;
2178 Typ : Entity_Id;
2179 Lhs : Node_Id) return List_Id
70482933
RK
2180 is
2181 Loc : constant Source_Ptr := Sloc (N);
2182 L : constant List_Id := New_List;
70482933
RK
2183 N_Typ : constant Entity_Id := Etype (N);
2184
2185 Comp : Node_Id;
2186 Instr : Node_Id;
2187 Ref : Node_Id;
0f95b178 2188 Target : Entity_Id;
70482933
RK
2189 Comp_Type : Entity_Id;
2190 Selector : Entity_Id;
2191 Comp_Expr : Node_Id;
70482933
RK
2192 Expr_Q : Node_Id;
2193
70482933
RK
2194 Ancestor_Is_Subtype_Mark : Boolean := False;
2195
2196 Init_Typ : Entity_Id := Empty;
5277cab6 2197
df3e68b1
HK
2198 Finalization_Done : Boolean := False;
2199 -- True if Generate_Finalization_Actions has already been called; calls
0f95b178 2200 -- after the first do nothing.
70482933 2201
70482933 2202 function Ancestor_Discriminant_Value (Disc : Entity_Id) return Node_Id;
3b9fa2df
ES
2203 -- Returns the value that the given discriminant of an ancestor type
2204 -- should receive (in the absence of a conflict with the value provided
2205 -- by an ancestor part of an extension aggregate).
70482933
RK
2206
2207 procedure Check_Ancestor_Discriminants (Anc_Typ : Entity_Id);
3b9fa2df
ES
2208 -- Check that each of the discriminant values defined by the ancestor
2209 -- part of an extension aggregate match the corresponding values
2210 -- provided by either an association of the aggregate or by the
2211 -- constraint imposed by a parent type (RM95-4.3.2(8)).
70482933 2212
d8f7b976
ES
2213 function Compatible_Int_Bounds
2214 (Agg_Bounds : Node_Id;
2215 Typ_Bounds : Node_Id) return Boolean;
2216 -- Return true if Agg_Bounds are equal or within Typ_Bounds. It is
2217 -- assumed that both bounds are integer ranges.
2218
df3e68b1 2219 procedure Generate_Finalization_Actions;
0f95b178
JM
2220 -- Deal with the various controlled type data structure initializations
2221 -- (but only if it hasn't been done already).
d8f7b976
ES
2222
2223 function Get_Constraint_Association (T : Entity_Id) return Node_Id;
2224 -- Returns the first discriminant association in the constraint
2225 -- associated with T, if any, otherwise returns Empty.
2226
71129dde
AC
2227 function Get_Explicit_Discriminant_Value (D : Entity_Id) return Node_Id;
2228 -- If the ancestor part is an unconstrained type and further ancestors
2229 -- do not provide discriminants for it, check aggregate components for
2230 -- values of the discriminants.
2231
3e582869
AC
2232 procedure Init_Hidden_Discriminants (Typ : Entity_Id; List : List_Id);
2233 -- If Typ is derived, and constrains discriminants of the parent type,
2234 -- these discriminants are not components of the aggregate, and must be
2feb1f84 2235 -- initialized. The assignments are appended to List. The same is done
10c257af 2236 -- if Typ derives from an already constrained subtype of a discriminated
2feb1f84 2237 -- parent type.
3e582869 2238
71129dde
AC
2239 procedure Init_Stored_Discriminants;
2240 -- If the type is derived and has inherited discriminants, generate
2241 -- explicit assignments for each, using the store constraint of the
2242 -- type. Note that both visible and stored discriminants must be
2243 -- initialized in case the derived type has some renamed and some
2244 -- constrained discriminants.
2245
2246 procedure Init_Visible_Discriminants;
2247 -- If type has discriminants, retrieve their values from aggregate,
2248 -- and generate explicit assignments for each. This does not include
2249 -- discriminants inherited from ancestor, which are handled above.
2250 -- The type of the aggregate is a subtype created ealier using the
2251 -- given values of the discriminant components of the aggregate.
aab45d22 2252
d8f7b976
ES
2253 function Is_Int_Range_Bounds (Bounds : Node_Id) return Boolean;
2254 -- Check whether Bounds is a range node and its lower and higher bounds
2255 -- are integers literals.
7b9d0d69 2256
937e9676
AC
2257 function Replace_Type (Expr : Node_Id) return Traverse_Result;
2258 -- If the aggregate contains a self-reference, traverse each expression
2259 -- to replace a possible self-reference with a reference to the proper
2260 -- component of the target of the assignment.
2261
2262 function Rewrite_Discriminant (Expr : Node_Id) return Traverse_Result;
2263 -- If default expression of a component mentions a discriminant of the
2264 -- type, it must be rewritten as the discriminant of the target object.
2265
2266 ---------------------------------
2267 -- Ancestor_Discriminant_Value --
2268 ---------------------------------
70482933
RK
2269
2270 function Ancestor_Discriminant_Value (Disc : Entity_Id) return Node_Id is
2271 Assoc : Node_Id;
2272 Assoc_Elmt : Elmt_Id;
2273 Aggr_Comp : Entity_Id;
2274 Corresp_Disc : Entity_Id;
2275 Current_Typ : Entity_Id := Base_Type (Typ);
2276 Parent_Typ : Entity_Id;
2277 Parent_Disc : Entity_Id;
2278 Save_Assoc : Node_Id := Empty;
2279
2280 begin
3b9fa2df
ES
2281 -- First check any discriminant associations to see if any of them
2282 -- provide a value for the discriminant.
70482933
RK
2283
2284 if Present (Discriminant_Specifications (Parent (Current_Typ))) then
2285 Assoc := First (Component_Associations (N));
2286 while Present (Assoc) loop
2287 Aggr_Comp := Entity (First (Choices (Assoc)));
2288
2289 if Ekind (Aggr_Comp) = E_Discriminant then
2290 Save_Assoc := Expression (Assoc);
2291
2292 Corresp_Disc := Corresponding_Discriminant (Aggr_Comp);
2293 while Present (Corresp_Disc) loop
3b9fa2df
ES
2294
2295 -- If found a corresponding discriminant then return the
2296 -- value given in the aggregate. (Note: this is not
2297 -- correct in the presence of side effects. ???)
70482933
RK
2298
2299 if Disc = Corresp_Disc then
2300 return Duplicate_Subexpr (Expression (Assoc));
2301 end if;
fbf5a39b 2302
ffcfb997 2303 Corresp_Disc := Corresponding_Discriminant (Corresp_Disc);
70482933
RK
2304 end loop;
2305 end if;
2306
2307 Next (Assoc);
2308 end loop;
2309 end if;
2310
2311 -- No match found in aggregate, so chain up parent types to find
2312 -- a constraint that defines the value of the discriminant.
2313
2314 Parent_Typ := Etype (Current_Typ);
2315 while Current_Typ /= Parent_Typ loop
9013065b
AC
2316 if Has_Discriminants (Parent_Typ)
2317 and then not Has_Unknown_Discriminants (Parent_Typ)
2318 then
70482933
RK
2319 Parent_Disc := First_Discriminant (Parent_Typ);
2320
2321 -- We either get the association from the subtype indication
2322 -- of the type definition itself, or from the discriminant
2323 -- constraint associated with the type entity (which is
2324 -- preferable, but it's not always present ???)
2325
aff557c7 2326 if Is_Empty_Elmt_List (Discriminant_Constraint (Current_Typ))
70482933
RK
2327 then
2328 Assoc := Get_Constraint_Association (Current_Typ);
2329 Assoc_Elmt := No_Elmt;
2330 else
2331 Assoc_Elmt :=
2332 First_Elmt (Discriminant_Constraint (Current_Typ));
2333 Assoc := Node (Assoc_Elmt);
2334 end if;
2335
2336 -- Traverse the discriminants of the parent type looking
2337 -- for one that corresponds.
2338
2339 while Present (Parent_Disc) and then Present (Assoc) loop
2340 Corresp_Disc := Parent_Disc;
2341 while Present (Corresp_Disc)
2342 and then Disc /= Corresp_Disc
2343 loop
ffcfb997 2344 Corresp_Disc := Corresponding_Discriminant (Corresp_Disc);
70482933
RK
2345 end loop;
2346
2347 if Disc = Corresp_Disc then
2348 if Nkind (Assoc) = N_Discriminant_Association then
2349 Assoc := Expression (Assoc);
2350 end if;
2351
e80f0cb0
RD
2352 -- If the located association directly denotes
2353 -- a discriminant, then use the value of a saved
2354 -- association of the aggregate. This is an approach
2355 -- used to handle certain cases involving multiple
2356 -- discriminants mapped to a single discriminant of
2357 -- a descendant. It's not clear how to locate the
2358 -- appropriate discriminant value for such cases. ???
70482933
RK
2359
2360 if Is_Entity_Name (Assoc)
2361 and then Ekind (Entity (Assoc)) = E_Discriminant
2362 then
2363 Assoc := Save_Assoc;
2364 end if;
2365
2366 return Duplicate_Subexpr (Assoc);
2367 end if;
2368
2369 Next_Discriminant (Parent_Disc);
2370
2371 if No (Assoc_Elmt) then
2372 Next (Assoc);
ffcfb997 2373
70482933
RK
2374 else
2375 Next_Elmt (Assoc_Elmt);
ffcfb997 2376
70482933
RK
2377 if Present (Assoc_Elmt) then
2378 Assoc := Node (Assoc_Elmt);
2379 else
2380 Assoc := Empty;
2381 end if;
2382 end if;
2383 end loop;
2384 end if;
2385
2386 Current_Typ := Parent_Typ;
2387 Parent_Typ := Etype (Current_Typ);
2388 end loop;
2389
2390 -- In some cases there's no ancestor value to locate (such as
2391 -- when an ancestor part given by an expression defines the
2392 -- discriminant value).
2393
2394 return Empty;
2395 end Ancestor_Discriminant_Value;
2396
2397 ----------------------------------
2398 -- Check_Ancestor_Discriminants --
2399 ----------------------------------
2400
2401 procedure Check_Ancestor_Discriminants (Anc_Typ : Entity_Id) is
5277cab6 2402 Discr : Entity_Id;
70482933
RK
2403 Disc_Value : Node_Id;
2404 Cond : Node_Id;
2405
2406 begin
5277cab6 2407 Discr := First_Discriminant (Base_Type (Anc_Typ));
70482933
RK
2408 while Present (Discr) loop
2409 Disc_Value := Ancestor_Discriminant_Value (Discr);
2410
2411 if Present (Disc_Value) then
2412 Cond := Make_Op_Ne (Loc,
ffcfb997 2413 Left_Opnd =>
70482933
RK
2414 Make_Selected_Component (Loc,
2415 Prefix => New_Copy_Tree (Target),
2416 Selector_Name => New_Occurrence_Of (Discr, Loc)),
2417 Right_Opnd => Disc_Value);
2418
07fc65c4
GB
2419 Append_To (L,
2420 Make_Raise_Constraint_Error (Loc,
2421 Condition => Cond,
2422 Reason => CE_Discriminant_Check_Failed));
70482933
RK
2423 end if;
2424
2425 Next_Discriminant (Discr);
2426 end loop;
2427 end Check_Ancestor_Discriminants;
2428
d8f7b976
ES
2429 ---------------------------
2430 -- Compatible_Int_Bounds --
2431 ---------------------------
2432
2433 function Compatible_Int_Bounds
2434 (Agg_Bounds : Node_Id;
2435 Typ_Bounds : Node_Id) return Boolean
2436 is
2437 Agg_Lo : constant Uint := Intval (Low_Bound (Agg_Bounds));
2438 Agg_Hi : constant Uint := Intval (High_Bound (Agg_Bounds));
2439 Typ_Lo : constant Uint := Intval (Low_Bound (Typ_Bounds));
2440 Typ_Hi : constant Uint := Intval (High_Bound (Typ_Bounds));
2441 begin
2442 return Typ_Lo <= Agg_Lo and then Agg_Hi <= Typ_Hi;
2443 end Compatible_Int_Bounds;
2444
937e9676
AC
2445 -----------------------------------
2446 -- Generate_Finalization_Actions --
2447 -----------------------------------
2448
2449 procedure Generate_Finalization_Actions is
2450 begin
2451 -- Do the work only the first time this is called
2452
2453 if Finalization_Done then
2454 return;
2455 end if;
2456
2457 Finalization_Done := True;
2458
2459 -- Determine the external finalization list. It is either the
2460 -- finalization list of the outer scope or the one coming from an
2461 -- outer aggregate. When the target is not a temporary, the proper
2462 -- scope is the scope of the target rather than the potentially
2463 -- transient current scope.
2464
2465 if Is_Controlled (Typ) and then Ancestor_Is_Subtype_Mark then
2466 Ref := Convert_To (Init_Typ, New_Copy_Tree (Target));
2467 Set_Assignment_OK (Ref);
2468
2469 Append_To (L,
2470 Make_Procedure_Call_Statement (Loc,
2471 Name =>
2472 New_Occurrence_Of
2473 (Find_Prim_Op (Init_Typ, Name_Initialize), Loc),
2474 Parameter_Associations => New_List (New_Copy_Tree (Ref))));
2475 end if;
2476 end Generate_Finalization_Actions;
2477
70482933
RK
2478 --------------------------------
2479 -- Get_Constraint_Association --
2480 --------------------------------
2481
2482 function Get_Constraint_Association (T : Entity_Id) return Node_Id is
2c17ca0a
AC
2483 Indic : Node_Id;
2484 Typ : Entity_Id;
70482933
RK
2485
2486 begin
2c17ca0a
AC
2487 Typ := T;
2488
598a56c0
ES
2489 -- If type is private, get constraint from full view. This was
2490 -- previously done in an instance context, but is needed whenever
2491 -- the ancestor part has a discriminant, possibly inherited through
2492 -- multiple derivations.
2c17ca0a 2493
598a56c0 2494 if Is_Private_Type (Typ) and then Present (Full_View (Typ)) then
2c17ca0a
AC
2495 Typ := Full_View (Typ);
2496 end if;
2497
2498 Indic := Subtype_Indication (Type_Definition (Parent (Typ)));
2499
598a56c0 2500 -- Verify that the subtype indication carries a constraint
70482933
RK
2501
2502 if Nkind (Indic) = N_Subtype_Indication
2503 and then Present (Constraint (Indic))
2504 then
2505 return First (Constraints (Constraint (Indic)));
2506 end if;
2507
2508 return Empty;
2509 end Get_Constraint_Association;
2510
aab45d22
AC
2511 -------------------------------------
2512 -- Get_Explicit_Discriminant_Value --
2513 -------------------------------------
2514
7893514c
RD
2515 function Get_Explicit_Discriminant_Value
2516 (D : Entity_Id) return Node_Id
aab45d22
AC
2517 is
2518 Assoc : Node_Id;
2519 Choice : Node_Id;
2520 Val : Node_Id;
2521
2522 begin
2523 -- The aggregate has been normalized and all associations have a
2524 -- single choice.
2525
2526 Assoc := First (Component_Associations (N));
2527 while Present (Assoc) loop
2528 Choice := First (Choices (Assoc));
7893514c 2529
aab45d22
AC
2530 if Chars (Choice) = Chars (D) then
2531 Val := Expression (Assoc);
2532 Remove (Assoc);
2533 return Val;
2534 end if;
2535
2536 Next (Assoc);
2537 end loop;
2538
2539 return Empty;
2540 end Get_Explicit_Discriminant_Value;
2541
3e582869
AC
2542 -------------------------------
2543 -- Init_Hidden_Discriminants --
2544 -------------------------------
2545
2546 procedure Init_Hidden_Discriminants (Typ : Entity_Id; List : List_Id) is
a25e72b5
AC
2547 function Is_Completely_Hidden_Discriminant
2548 (Discr : Entity_Id) return Boolean;
2549 -- Determine whether Discr is a completely hidden discriminant of
2550 -- type Typ.
2551
2552 ---------------------------------------
2553 -- Is_Completely_Hidden_Discriminant --
2554 ---------------------------------------
2555
2556 function Is_Completely_Hidden_Discriminant
2557 (Discr : Entity_Id) return Boolean
2558 is
2559 Item : Entity_Id;
2560
2561 begin
2562 -- Use First/Next_Entity as First/Next_Discriminant do not yield
2563 -- completely hidden discriminants.
2564
2565 Item := First_Entity (Typ);
2566 while Present (Item) loop
2567 if Ekind (Item) = E_Discriminant
2568 and then Is_Completely_Hidden (Item)
2569 and then Chars (Original_Record_Component (Item)) =
2570 Chars (Discr)
2571 then
2572 return True;
2573 end if;
2574
2575 Next_Entity (Item);
2576 end loop;
2577
2578 return False;
2579 end Is_Completely_Hidden_Discriminant;
2580
2581 -- Local variables
2582
2583 Base_Typ : Entity_Id;
2584 Discr : Entity_Id;
2585 Discr_Constr : Elmt_Id;
2586 Discr_Init : Node_Id;
2587 Discr_Val : Node_Id;
ddce04b8 2588 In_Aggr_Type : Boolean;
a25e72b5
AC
2589 Par_Typ : Entity_Id;
2590
2591 -- Start of processing for Init_Hidden_Discriminants
3e582869
AC
2592
2593 begin
7b536495
AC
2594 -- The constraints on the hidden discriminants, if present, are kept
2595 -- in the Stored_Constraint list of the type itself, or in that of
ddce04b8
AC
2596 -- the base type. If not in the constraints of the aggregate itself,
2597 -- we examine ancestors to find discriminants that are not renamed
2598 -- by other discriminants but constrained explicitly.
2599
2600 In_Aggr_Type := True;
2feb1f84 2601
a25e72b5
AC
2602 Base_Typ := Base_Type (Typ);
2603 while Is_Derived_Type (Base_Typ)
596f7139 2604 and then
a25e72b5 2605 (Present (Stored_Constraint (Base_Typ))
596f7139
AC
2606 or else
2607 (In_Aggr_Type and then Present (Stored_Constraint (Typ))))
3e582869 2608 loop
a25e72b5 2609 Par_Typ := Etype (Base_Typ);
7b536495 2610
a25e72b5 2611 if not Has_Discriminants (Par_Typ) then
2feb1f84
AC
2612 return;
2613 end if;
3e582869 2614
a25e72b5 2615 Discr := First_Discriminant (Par_Typ);
2feb1f84 2616
bdc193ba 2617 -- We know that one of the stored-constraint lists is present
2feb1f84 2618
a25e72b5
AC
2619 if Present (Stored_Constraint (Base_Typ)) then
2620 Discr_Constr := First_Elmt (Stored_Constraint (Base_Typ));
bdc193ba
AC
2621
2622 -- For private extension, stored constraint may be on full view
2623
a25e72b5
AC
2624 elsif Is_Private_Type (Base_Typ)
2625 and then Present (Full_View (Base_Typ))
2626 and then Present (Stored_Constraint (Full_View (Base_Typ)))
bdc193ba 2627 then
a25e72b5
AC
2628 Discr_Constr :=
2629 First_Elmt (Stored_Constraint (Full_View (Base_Typ)));
bdc193ba 2630
f056076f
BD
2631 -- Otherwise, no discriminant to process
2632
2feb1f84 2633 else
f056076f 2634 Discr_Constr := No_Elmt;
2feb1f84
AC
2635 end if;
2636
a25e72b5
AC
2637 while Present (Discr) and then Present (Discr_Constr) loop
2638 Discr_Val := Node (Discr_Constr);
2639
2640 -- The parent discriminant is renamed in the derived type,
2641 -- nothing to initialize.
3e582869 2642
a25e72b5
AC
2643 -- type Deriv_Typ (Discr : ...)
2644 -- is new Parent_Typ (Discr => Discr);
3e582869 2645
a25e72b5
AC
2646 if Is_Entity_Name (Discr_Val)
2647 and then Ekind (Entity (Discr_Val)) = E_Discriminant
3e582869 2648 then
a25e72b5
AC
2649 null;
2650
2651 -- When the parent discriminant is constrained at the type
2652 -- extension level, it does not appear in the derived type.
2653
2654 -- type Deriv_Typ (Discr : ...)
2655 -- is new Parent_Typ (Discr => Discr,
2656 -- Hidden_Discr => Expression);
3e582869 2657
a25e72b5
AC
2658 elsif Is_Completely_Hidden_Discriminant (Discr) then
2659 null;
2660
2661 -- Otherwise initialize the discriminant
2662
2663 else
2664 Discr_Init :=
3e582869 2665 Make_OK_Assignment_Statement (Loc,
a25e72b5
AC
2666 Name =>
2667 Make_Selected_Component (Loc,
2668 Prefix => New_Copy_Tree (Target),
2669 Selector_Name => New_Occurrence_Of (Discr, Loc)),
2670 Expression => New_Copy_Tree (Discr_Val));
3e582869 2671
a25e72b5 2672 Append_To (List, Discr_Init);
3e582869
AC
2673 end if;
2674
a25e72b5
AC
2675 Next_Elmt (Discr_Constr);
2676 Next_Discriminant (Discr);
3e582869
AC
2677 end loop;
2678
ddce04b8 2679 In_Aggr_Type := False;
a25e72b5 2680 Base_Typ := Base_Type (Par_Typ);
3e582869
AC
2681 end loop;
2682 end Init_Hidden_Discriminants;
2683
71129dde
AC
2684 --------------------------------
2685 -- Init_Visible_Discriminants --
2686 --------------------------------
2687
2688 procedure Init_Visible_Discriminants is
2689 Discriminant : Entity_Id;
2690 Discriminant_Value : Node_Id;
2691
2692 begin
2693 Discriminant := First_Discriminant (Typ);
2694 while Present (Discriminant) loop
2695 Comp_Expr :=
2696 Make_Selected_Component (Loc,
2697 Prefix => New_Copy_Tree (Target),
2698 Selector_Name => New_Occurrence_Of (Discriminant, Loc));
2699
2700 Discriminant_Value :=
2701 Get_Discriminant_Value
2702 (Discriminant, Typ, Discriminant_Constraint (N_Typ));
2703
2704 Instr :=
2705 Make_OK_Assignment_Statement (Loc,
2706 Name => Comp_Expr,
2707 Expression => New_Copy_Tree (Discriminant_Value));
2708
71129dde
AC
2709 Append_To (L, Instr);
2710
2711 Next_Discriminant (Discriminant);
2712 end loop;
2713 end Init_Visible_Discriminants;
2714
2715 -------------------------------
2716 -- Init_Stored_Discriminants --
2717 -------------------------------
2718
2719 procedure Init_Stored_Discriminants is
2720 Discriminant : Entity_Id;
2721 Discriminant_Value : Node_Id;
2722
2723 begin
2724 Discriminant := First_Stored_Discriminant (Typ);
2725 while Present (Discriminant) loop
2726 Comp_Expr :=
2727 Make_Selected_Component (Loc,
2728 Prefix => New_Copy_Tree (Target),
2729 Selector_Name => New_Occurrence_Of (Discriminant, Loc));
2730
2731 Discriminant_Value :=
2732 Get_Discriminant_Value
2733 (Discriminant, N_Typ, Discriminant_Constraint (N_Typ));
2734
2735 Instr :=
2736 Make_OK_Assignment_Statement (Loc,
2737 Name => Comp_Expr,
2738 Expression => New_Copy_Tree (Discriminant_Value));
2739
71129dde
AC
2740 Append_To (L, Instr);
2741
2742 Next_Stored_Discriminant (Discriminant);
2743 end loop;
2744 end Init_Stored_Discriminants;
2745
937e9676
AC
2746 -------------------------
2747 -- Is_Int_Range_Bounds --
2748 -------------------------
2749
2750 function Is_Int_Range_Bounds (Bounds : Node_Id) return Boolean is
2751 begin
2752 return Nkind (Bounds) = N_Range
2753 and then Nkind (Low_Bound (Bounds)) = N_Integer_Literal
2754 and then Nkind (High_Bound (Bounds)) = N_Integer_Literal;
2755 end Is_Int_Range_Bounds;
f2abc637 2756
0f95b178
JM
2757 ------------------
2758 -- Replace_Type --
2759 ------------------
2760
2761 function Replace_Type (Expr : Node_Id) return Traverse_Result is
2762 begin
acf63f8c
ES
2763 -- Note regarding the Root_Type test below: Aggregate components for
2764 -- self-referential types include attribute references to the current
2765 -- instance, of the form: Typ'access, etc.. These references are
2766 -- rewritten as references to the target of the aggregate: the
2767 -- left-hand side of an assignment, the entity in a declaration,
2768 -- or a temporary. Without this test, we would improperly extended
2769 -- this rewriting to attribute references whose prefix was not the
2770 -- type of the aggregate.
2771
0f95b178 2772 if Nkind (Expr) = N_Attribute_Reference
acf63f8c 2773 and then Is_Entity_Name (Prefix (Expr))
0f95b178 2774 and then Is_Type (Entity (Prefix (Expr)))
acf63f8c 2775 and then Root_Type (Etype (N)) = Root_Type (Entity (Prefix (Expr)))
0f95b178
JM
2776 then
2777 if Is_Entity_Name (Lhs) then
304757d2 2778 Rewrite (Prefix (Expr), New_Occurrence_Of (Entity (Lhs), Loc));
0f95b178
JM
2779
2780 else
2781 Rewrite (Expr,
2782 Make_Attribute_Reference (Loc,
2783 Attribute_Name => Name_Unrestricted_Access,
2784 Prefix => New_Copy_Tree (Lhs)));
2785 Set_Analyzed (Parent (Expr), False);
2786 end if;
2787 end if;
2788
2789 return OK;
2790 end Replace_Type;
2791
937e9676
AC
2792 --------------------------
2793 -- Rewrite_Discriminant --
2794 --------------------------
2795
2796 function Rewrite_Discriminant (Expr : Node_Id) return Traverse_Result is
2797 begin
2798 if Is_Entity_Name (Expr)
2799 and then Present (Entity (Expr))
2800 and then Ekind (Entity (Expr)) = E_In_Parameter
2801 and then Present (Discriminal_Link (Entity (Expr)))
2802 and then Scope (Discriminal_Link (Entity (Expr))) =
2803 Base_Type (Etype (N))
2804 then
2805 Rewrite (Expr,
2806 Make_Selected_Component (Loc,
2807 Prefix => New_Copy_Tree (Lhs),
2808 Selector_Name => Make_Identifier (Loc, Chars (Expr))));
b8411279
ES
2809
2810 -- The generated code will be reanalyzed, but if the reference
2811 -- to the discriminant appears within an already analyzed
2812 -- expression (e.g. a conditional) we must set its proper entity
2813 -- now. Context is an initialization procedure.
2814
2815 Analyze (Expr);
937e9676
AC
2816 end if;
2817
2818 return OK;
2819 end Rewrite_Discriminant;
0f95b178 2820
f2abc637
AC
2821 procedure Replace_Discriminants is
2822 new Traverse_Proc (Rewrite_Discriminant);
2823
937e9676
AC
2824 procedure Replace_Self_Reference is
2825 new Traverse_Proc (Replace_Type);
2826
70482933
RK
2827 -- Start of processing for Build_Record_Aggr_Code
2828
2829 begin
0f95b178
JM
2830 if Has_Self_Reference (N) then
2831 Replace_Self_Reference (N);
2832 end if;
2833
2834 -- If the target of the aggregate is class-wide, we must convert it
2835 -- to the actual type of the aggregate, so that the proper components
2836 -- are visible. We know already that the types are compatible.
2837
c0ceba6c 2838 if Present (Etype (Lhs)) and then Is_Class_Wide_Type (Etype (Lhs)) then
0f95b178
JM
2839 Target := Unchecked_Convert_To (Typ, Lhs);
2840 else
2841 Target := Lhs;
2842 end if;
2843
3b9fa2df
ES
2844 -- Deal with the ancestor part of extension aggregates or with the
2845 -- discriminants of the root type.
70482933
RK
2846
2847 if Nkind (N) = N_Extension_Aggregate then
2848 declare
d18dd43c
EB
2849 Ancestor : constant Node_Id := Ancestor_Part (N);
2850 Ancestor_Q : constant Node_Id := Unqualify (Ancestor);
2851
df3e68b1 2852 Assign : List_Id;
70482933
RK
2853
2854 begin
d18dd43c 2855 -- If the ancestor part is a subtype mark T, we generate
fbf5a39b 2856
df3e68b1
HK
2857 -- init-proc (T (tmp)); if T is constrained and
2858 -- init-proc (S (tmp)); where S applies an appropriate
2859 -- constraint if T is unconstrained
70482933 2860
df3e68b1
HK
2861 if Is_Entity_Name (Ancestor)
2862 and then Is_Type (Entity (Ancestor))
2863 then
70482933
RK
2864 Ancestor_Is_Subtype_Mark := True;
2865
df3e68b1
HK
2866 if Is_Constrained (Entity (Ancestor)) then
2867 Init_Typ := Entity (Ancestor);
70482933 2868
3b9fa2df
ES
2869 -- For an ancestor part given by an unconstrained type mark,
2870 -- create a subtype constrained by appropriate corresponding
2871 -- discriminant values coming from either associations of the
2872 -- aggregate or a constraint on a parent type. The subtype will
2873 -- be used to generate the correct default value for the
2874 -- ancestor part.
70482933 2875
df3e68b1 2876 elsif Has_Discriminants (Entity (Ancestor)) then
70482933 2877 declare
df3e68b1 2878 Anc_Typ : constant Entity_Id := Entity (Ancestor);
fbf5a39b
AC
2879 Anc_Constr : constant List_Id := New_List;
2880 Discrim : Entity_Id;
70482933
RK
2881 Disc_Value : Node_Id;
2882 New_Indic : Node_Id;
2883 Subt_Decl : Node_Id;
fbf5a39b 2884
70482933 2885 begin
fbf5a39b 2886 Discrim := First_Discriminant (Anc_Typ);
70482933
RK
2887 while Present (Discrim) loop
2888 Disc_Value := Ancestor_Discriminant_Value (Discrim);
aab45d22
AC
2889
2890 -- If no usable discriminant in ancestors, check
2891 -- whether aggregate has an explicit value for it.
2892
2893 if No (Disc_Value) then
2894 Disc_Value :=
2895 Get_Explicit_Discriminant_Value (Discrim);
2896 end if;
2897
70482933
RK
2898 Append_To (Anc_Constr, Disc_Value);
2899 Next_Discriminant (Discrim);
2900 end loop;
2901
2902 New_Indic :=
2903 Make_Subtype_Indication (Loc,
2904 Subtype_Mark => New_Occurrence_Of (Anc_Typ, Loc),
2905 Constraint =>
2906 Make_Index_Or_Discriminant_Constraint (Loc,
2907 Constraints => Anc_Constr));
2908
2909 Init_Typ := Create_Itype (Ekind (Anc_Typ), N);
2910
2911 Subt_Decl :=
2912 Make_Subtype_Declaration (Loc,
2913 Defining_Identifier => Init_Typ,
2914 Subtype_Indication => New_Indic);
2915
3b9fa2df
ES
2916 -- Itypes must be analyzed with checks off Declaration
2917 -- must have a parent for proper handling of subsidiary
2918 -- actions.
70482933 2919
07fc65c4 2920 Set_Parent (Subt_Decl, N);
70482933
RK
2921 Analyze (Subt_Decl, Suppress => All_Checks);
2922 end;
2923 end if;
2924
2925 Ref := Convert_To (Init_Typ, New_Copy_Tree (Target));
2926 Set_Assignment_OK (Ref);
2927
64425dff 2928 if not Is_Interface (Init_Typ) then
3bb3f6d6
AC
2929 Append_List_To (L,
2930 Build_Initialization_Call (Loc,
2931 Id_Ref => Ref,
2932 Typ => Init_Typ,
2933 In_Init_Proc => Within_Init_Proc,
2934 With_Default_Init => Has_Default_Init_Comps (N)
2935 or else
2936 Has_Task (Base_Type (Init_Typ))));
2937
df3e68b1
HK
2938 if Is_Constrained (Entity (Ancestor))
2939 and then Has_Discriminants (Entity (Ancestor))
3bb3f6d6 2940 then
df3e68b1 2941 Check_Ancestor_Discriminants (Entity (Ancestor));
3bb3f6d6 2942 end if;
f7937111
GD
2943
2944 -- If ancestor type has Default_Initialization_Condition,
2945 -- add a DIC check after the ancestor object is initialized
2946 -- by default.
2947
2948 if Has_DIC (Entity (Ancestor))
2949 and then Present (DIC_Procedure (Entity (Ancestor)))
2950 then
2951 Append_To (L,
2952 Build_DIC_Call
2953 (Loc, New_Copy_Tree (Ref), Entity (Ancestor)));
2954 end if;
70482933
RK
2955 end if;
2956
11795185
JM
2957 -- Handle calls to C++ constructors
2958
df3e68b1
HK
2959 elsif Is_CPP_Constructor_Call (Ancestor) then
2960 Init_Typ := Etype (Ancestor);
11795185
JM
2961 Ref := Convert_To (Init_Typ, New_Copy_Tree (Target));
2962 Set_Assignment_OK (Ref);
2963
2964 Append_List_To (L,
2965 Build_Initialization_Call (Loc,
2966 Id_Ref => Ref,
2967 Typ => Init_Typ,
2968 In_Init_Proc => Within_Init_Proc,
2969 With_Default_Init => Has_Default_Init_Comps (N),
df3e68b1 2970 Constructor_Ref => Ancestor));
11795185 2971
c5ee5ad2
BD
2972 -- Ada 2005 (AI-287): If the ancestor part is an aggregate of
2973 -- limited type, a recursive call expands the ancestor. Note that
2974 -- in the limited case, the ancestor part must be either a
d4dfb005
BD
2975 -- function call (possibly qualified) or aggregate (definitely
2976 -- qualified).
65356e64 2977
df3e68b1 2978 elsif Is_Limited_Type (Etype (Ancestor))
d18dd43c
EB
2979 and then Nkind (Ancestor_Q) in N_Aggregate
2980 | N_Extension_Aggregate
c5ee5ad2 2981 then
7b9d0d69 2982 Append_List_To (L,
f7e6fc47 2983 Build_Record_Aggr_Code
d18dd43c
EB
2984 (N => Ancestor_Q,
2985 Typ => Etype (Ancestor_Q),
f7e6fc47 2986 Lhs => Target));
65356e64 2987
d18dd43c 2988 -- If the ancestor part is an expression E of type T, we generate
3b9fa2df 2989
df3e68b1 2990 -- T (tmp) := E;
3b9fa2df 2991
c5ee5ad2 2992 -- In Ada 2005, this includes the case of a (possibly qualified)
d18dd43c
EB
2993 -- limited function call. The assignment will later be turned into
2994 -- a build-in-place function call (for further details, see
c5ee5ad2 2995 -- Make_Build_In_Place_Call_In_Assignment).
70482933
RK
2996
2997 else
df3e68b1 2998 Init_Typ := Etype (Ancestor);
70482933 2999
7b9d0d69
ES
3000 -- If the ancestor part is an aggregate, force its full
3001 -- expansion, which was delayed.
3002
d18dd43c 3003 if Nkind (Ancestor_Q) in N_Aggregate | N_Extension_Aggregate
7b9d0d69 3004 then
df3e68b1
HK
3005 Set_Analyzed (Ancestor, False);
3006 Set_Analyzed (Expression (Ancestor), False);
7b9d0d69
ES
3007 end if;
3008
3009 Ref := Convert_To (Init_Typ, New_Copy_Tree (Target));
7b9d0d69 3010
7b9d0d69
ES
3011 Assign := New_List (
3012 Make_OK_Assignment_Statement (Loc,
3013 Name => Ref,
df3e68b1 3014 Expression => Ancestor));
70482933 3015
c0ceba6c
EB
3016 -- Arrange for the component to be adjusted if need be (the
3017 -- call will be generated by Make_Tag_Ctrl_Assignment).
70482933 3018
d18dd43c 3019 if Needs_Finalization (Init_Typ)
c0ceba6c 3020 and then not Is_Limited_View (Init_Typ)
3b9fa2df 3021 then
c0ceba6c
EB
3022 Set_No_Finalize_Actions (First (Assign));
3023 else
3024 Set_No_Ctrl_Actions (First (Assign));
70482933
RK
3025 end if;
3026
70482933 3027 Append_To (L,
c0ceba6c 3028 Make_Suppress_Block (Loc, Name_Discriminant_Check, Assign));
70482933
RK
3029
3030 if Has_Discriminants (Init_Typ) then
3031 Check_Ancestor_Discriminants (Init_Typ);
3032 end if;
3033 end if;
3034 end;
3035
376e7d14
AC
3036 -- Generate assignments of hidden discriminants. If the base type is
3037 -- an unchecked union, the discriminants are unknown to the back-end
3038 -- and absent from a value of the type, so assignments for them are
3039 -- not emitted.
3e582869
AC
3040
3041 if Has_Discriminants (Typ)
3042 and then not Is_Unchecked_Union (Base_Type (Typ))
3043 then
3044 Init_Hidden_Discriminants (Typ, L);
3045 end if;
3046
fbf5a39b
AC
3047 -- Normal case (not an extension aggregate)
3048
70482933
RK
3049 else
3050 -- Generate the discriminant expressions, component by component.
3051 -- If the base type is an unchecked union, the discriminants are
3052 -- unknown to the back-end and absent from a value of the type, so
3053 -- assignments for them are not emitted.
3054
3055 if Has_Discriminants (Typ)
3056 and then not Is_Unchecked_Union (Base_Type (Typ))
3057 then
3e582869 3058 Init_Hidden_Discriminants (Typ, L);
d8f7b976
ES
3059
3060 -- Generate discriminant init values for the visible discriminants
70482933 3061
71129dde 3062 Init_Visible_Discriminants;
70482933 3063
71129dde
AC
3064 if Is_Derived_Type (N_Typ) then
3065 Init_Stored_Discriminants;
3066 end if;
70482933
RK
3067 end if;
3068 end if;
3069
28541488
JM
3070 -- For CPP types we generate an implicit call to the C++ default
3071 -- constructor to ensure the proper initialization of the _Tag
3072 -- component.
3073
36a66365 3074 if Is_CPP_Class (Root_Type (Typ)) and then CPP_Num_Prims (Typ) > 0 then
cefce34c 3075 Invoke_Constructor : declare
15f0f591 3076 CPP_Parent : constant Entity_Id := Enclosing_CPP_Parent (Typ);
cefce34c
JM
3077
3078 procedure Invoke_IC_Proc (T : Entity_Id);
3079 -- Recursive routine used to climb to parents. Required because
3080 -- parents must be initialized before descendants to ensure
3081 -- propagation of inherited C++ slots.
3082
3083 --------------------
3084 -- Invoke_IC_Proc --
3085 --------------------
3086
3087 procedure Invoke_IC_Proc (T : Entity_Id) is
3088 begin
3089 -- Avoid generating extra calls. Initialization required
3090 -- only for types defined from the level of derivation of
3091 -- type of the constructor and the type of the aggregate.
3092
3093 if T = CPP_Parent then
3094 return;
3095 end if;
3096
3097 Invoke_IC_Proc (Etype (T));
3098
3099 -- Generate call to the IC routine
3100
3101 if Present (CPP_Init_Proc (T)) then
3102 Append_To (L,
3103 Make_Procedure_Call_Statement (Loc,
ffcfb997 3104 Name => New_Occurrence_Of (CPP_Init_Proc (T), Loc)));
cefce34c
JM
3105 end if;
3106 end Invoke_IC_Proc;
3107
3108 -- Start of processing for Invoke_Constructor
3109
3110 begin
3111 -- Implicit invocation of the C++ constructor
3112
3113 if Nkind (N) = N_Aggregate then
3114 Append_To (L,
3115 Make_Procedure_Call_Statement (Loc,
37368818
RD
3116 Name =>
3117 New_Occurrence_Of (Base_Init_Proc (CPP_Parent), Loc),
cefce34c
JM
3118 Parameter_Associations => New_List (
3119 Unchecked_Convert_To (CPP_Parent,
3120 New_Copy_Tree (Lhs)))));
3121 end if;
3122
3123 Invoke_IC_Proc (Typ);
3124 end Invoke_Constructor;
28541488
JM
3125 end if;
3126
70482933
RK
3127 -- Generate the assignments, component by component
3128
3129 -- tmp.comp1 := Expr1_From_Aggr;
3130 -- tmp.comp2 := Expr2_From_Aggr;
3131 -- ....
3132
3133 Comp := First (Component_Associations (N));
3134 while Present (Comp) loop
b7e429ab 3135 Selector := Entity (First (Choices (Comp)));
df0ac6e1 3136 pragma Assert (Present (Selector));
70482933 3137
236fecbf
JM
3138 -- C++ constructors
3139
3140 if Is_CPP_Constructor_Call (Expression (Comp)) then
3141 Append_List_To (L,
3142 Build_Initialization_Call (Loc,
37368818
RD
3143 Id_Ref =>
3144 Make_Selected_Component (Loc,
3145 Prefix => New_Copy_Tree (Target),
3146 Selector_Name => New_Occurrence_Of (Selector, Loc)),
1c612f29
RD
3147 Typ => Etype (Selector),
3148 Enclos_Type => Typ,
236fecbf 3149 With_Default_Init => True,
1c612f29 3150 Constructor_Ref => Expression (Comp)));
236fecbf 3151
736f9bed
PT
3152 elsif Box_Present (Comp)
3153 and then Needs_Simple_Initialization (Etype (Selector))
3154 then
3155 Comp_Expr :=
3156 Make_Selected_Component (Loc,
3157 Prefix => New_Copy_Tree (Target),
3158 Selector_Name => New_Occurrence_Of (Selector, Loc));
3159
c0ceba6c 3160 Initialize_Component
fc84947c
EB
3161 (N => N,
3162 Comp => Comp_Expr,
736f9bed
PT
3163 Comp_Typ => Etype (Selector),
3164 Init_Expr => Get_Simple_Init_Val
3165 (Typ => Etype (Selector),
3166 N => Comp,
3167 Size =>
3168 (if Known_Esize (Selector)
3169 then Esize (Selector)
3170 else Uint_0)),
3171 Stmts => L);
3172
3b9fa2df 3173 -- Ada 2005 (AI-287): For each default-initialized component generate
52739835 3174 -- a call to the corresponding IP subprogram if available.
65356e64 3175
236fecbf 3176 elsif Box_Present (Comp)
52739835 3177 and then Has_Non_Null_Base_Init_Proc (Etype (Selector))
65356e64 3178 then
5277cab6 3179 if Ekind (Selector) /= E_Discriminant then
df3e68b1 3180 Generate_Finalization_Actions;
5277cab6
ES
3181 end if;
3182
0ab80019
AC
3183 -- Ada 2005 (AI-287): If the component type has tasks then
3184 -- generate the activation chain and master entities (except
3185 -- in case of an allocator because in that case these entities
3186 -- are generated by Build_Task_Allocate_Block_With_Init_Stmts).
c45b6ae0
AC
3187
3188 declare
91b1417d 3189 Ctype : constant Entity_Id := Etype (Selector);
1c612f29
RD
3190 Inside_Allocator : Boolean := False;
3191 P : Node_Id := Parent (N);
c45b6ae0
AC
3192
3193 begin
3194 if Is_Task_Type (Ctype) or else Has_Task (Ctype) then
3195 while Present (P) loop
3196 if Nkind (P) = N_Allocator then
3197 Inside_Allocator := True;
3198 exit;
3199 end if;
3200
3201 P := Parent (P);
3202 end loop;
3203
3204 if not Inside_Init_Proc and not Inside_Allocator then
3205 Build_Activation_Chain_Entity (N);
c45b6ae0
AC
3206 end if;
3207 end if;
3208 end;
3209
65356e64
AC
3210 Append_List_To (L,
3211 Build_Initialization_Call (Loc,
1c612f29
RD
3212 Id_Ref => Make_Selected_Component (Loc,
3213 Prefix => New_Copy_Tree (Target),
3214 Selector_Name =>
3215 New_Occurrence_Of (Selector, Loc)),
3216 Typ => Etype (Selector),
3217 Enclos_Type => Typ,
c45b6ae0 3218 With_Default_Init => True));
65356e64 3219
7b9d0d69 3220 -- Prepare for component assignment
fbf5a39b 3221
236fecbf 3222 elsif Ekind (Selector) /= E_Discriminant
70482933
RK
3223 or else Nkind (N) = N_Extension_Aggregate
3224 then
7b9d0d69 3225 -- All the discriminants have now been assigned
3b9fa2df 3226
7b9d0d69
ES
3227 -- This is now a good moment to initialize and attach all the
3228 -- controllers. Their position may depend on the discriminants.
3229
5277cab6 3230 if Ekind (Selector) /= E_Discriminant then
df3e68b1 3231 Generate_Finalization_Actions;
7b9d0d69
ES
3232 end if;
3233
38171f43 3234 Comp_Type := Underlying_Type (Etype (Selector));
70482933
RK
3235 Comp_Expr :=
3236 Make_Selected_Component (Loc,
3237 Prefix => New_Copy_Tree (Target),
3238 Selector_Name => New_Occurrence_Of (Selector, Loc));
3239
4f061cf2 3240 Expr_Q := Unqualify (Expression (Comp));
70482933 3241
7b9d0d69
ES
3242 -- Now either create the assignment or generate the code for the
3243 -- inner aggregate top-down.
fbf5a39b 3244
70482933 3245 if Is_Delayed_Aggregate (Expr_Q) then
d8f7b976
ES
3246
3247 -- We have the following case of aggregate nesting inside
3248 -- an object declaration:
3249
3250 -- type Arr_Typ is array (Integer range <>) of ...;
3b9fa2df 3251
d8f7b976
ES
3252 -- type Rec_Typ (...) is record
3253 -- Obj_Arr_Typ : Arr_Typ (A .. B);
3254 -- end record;
3b9fa2df 3255
d8f7b976
ES
3256 -- Obj_Rec_Typ : Rec_Typ := (...,
3257 -- Obj_Arr_Typ => (X => (...), Y => (...)));
3258
3259 -- The length of the ranges of the aggregate and Obj_Add_Typ
3260 -- are equal (B - A = Y - X), but they do not coincide (X /=
3261 -- A and B /= Y). This case requires array sliding which is
3262 -- performed in the following manner:
3263
3264 -- subtype Arr_Sub is Arr_Typ (X .. Y);
3265 -- Temp : Arr_Sub;
3266 -- Temp (X) := (...);
3267 -- ...
3268 -- Temp (Y) := (...);
3269 -- Obj_Rec_Typ.Obj_Arr_Typ := Temp;
3270
5277cab6 3271 if Ekind (Comp_Type) = E_Array_Subtype
d8f7b976
ES
3272 and then Is_Int_Range_Bounds (Aggregate_Bounds (Expr_Q))
3273 and then Is_Int_Range_Bounds (First_Index (Comp_Type))
3274 and then not
5277cab6
ES
3275 Compatible_Int_Bounds
3276 (Agg_Bounds => Aggregate_Bounds (Expr_Q),
3277 Typ_Bounds => First_Index (Comp_Type))
d8f7b976 3278 then
5277cab6
ES
3279 -- Create the array subtype with bounds equal to those of
3280 -- the corresponding aggregate.
d8f7b976 3281
5277cab6 3282 declare
191fcb3a 3283 SubE : constant Entity_Id := Make_Temporary (Loc, 'T');
d8f7b976
ES
3284
3285 SubD : constant Node_Id :=
15f0f591
AC
3286 Make_Subtype_Declaration (Loc,
3287 Defining_Identifier => SubE,
3288 Subtype_Indication =>
3289 Make_Subtype_Indication (Loc,
3290 Subtype_Mark =>
e4494292 3291 New_Occurrence_Of (Etype (Comp_Type), Loc),
15f0f591
AC
3292 Constraint =>
3293 Make_Index_Or_Discriminant_Constraint
3294 (Loc,
3295 Constraints => New_List (
3296 New_Copy_Tree
3297 (Aggregate_Bounds (Expr_Q))))));
d8f7b976
ES
3298
3299 -- Create a temporary array of the above subtype which
3300 -- will be used to capture the aggregate assignments.
3301
faf387e1 3302 TmpE : constant Entity_Id := Make_Temporary (Loc, 'A', N);
d8f7b976
ES
3303
3304 TmpD : constant Node_Id :=
15f0f591
AC
3305 Make_Object_Declaration (Loc,
3306 Defining_Identifier => TmpE,
e4494292 3307 Object_Definition => New_Occurrence_Of (SubE, Loc));
d8f7b976
ES
3308
3309 begin
3310 Set_No_Initialization (TmpD);
3311 Append_To (L, SubD);
3312 Append_To (L, TmpD);
3313
5277cab6 3314 -- Expand aggregate into assignments to the temp array
d8f7b976
ES
3315
3316 Append_List_To (L,
3317 Late_Expansion (Expr_Q, Comp_Type,
e4494292 3318 New_Occurrence_Of (TmpE, Loc)));
d8f7b976
ES
3319
3320 -- Slide
3321
3322 Append_To (L,
3323 Make_Assignment_Statement (Loc,
3324 Name => New_Copy_Tree (Comp_Expr),
e4494292 3325 Expression => New_Occurrence_Of (TmpE, Loc)));
d8f7b976
ES
3326 end;
3327
3328 -- Normal case (sliding not required)
3329
3330 else
3331 Append_List_To (L,
df3e68b1 3332 Late_Expansion (Expr_Q, Comp_Type, Comp_Expr));
d8f7b976 3333 end if;
fbf5a39b 3334
5277cab6
ES
3335 -- Expr_Q is not delayed aggregate
3336
70482933 3337 else
f2abc637
AC
3338 if Has_Discriminants (Typ) then
3339 Replace_Discriminants (Expr_Q);
b3f5eef0
AC
3340
3341 -- If the component is an array type that depends on
3342 -- discriminants, and the expression is a single Others
3343 -- clause, create an explicit subtype for it because the
3344 -- backend has troubles recovering the actual bounds.
3345
3346 if Nkind (Expr_Q) = N_Aggregate
3347 and then Is_Array_Type (Comp_Type)
3348 and then Present (Component_Associations (Expr_Q))
3349 then
3350 declare
3351 Assoc : constant Node_Id :=
45ec05e1 3352 First (Component_Associations (Expr_Q));
b3f5eef0
AC
3353 Decl : Node_Id;
3354
3355 begin
f7f8e290
JM
3356 if Present (Assoc)
3357 and then
3358 Nkind (First (Choices (Assoc))) = N_Others_Choice
b3f5eef0
AC
3359 then
3360 Decl :=
3361 Build_Actual_Subtype_Of_Component
3362 (Comp_Type, Comp_Expr);
3363
3364 -- If the component type does not in fact depend on
3365 -- discriminants, the subtype declaration is empty.
3366
3367 if Present (Decl) then
3368 Append_To (L, Decl);
3369 Set_Etype (Comp_Expr, Defining_Entity (Decl));
3370 end if;
3371 end if;
3372 end;
3373 end if;
f2abc637
AC
3374 end if;
3375
c63a2ad6 3376 if Modify_Tree_For_C
a1e1820b
AC
3377 and then Nkind (Expr_Q) = N_Aggregate
3378 and then Is_Array_Type (Etype (Expr_Q))
3379 and then Present (First_Index (Etype (Expr_Q)))
3380 then
3381 declare
0c5c46a9 3382 Expr_Q_Type : constant Entity_Id := Etype (Expr_Q);
a1e1820b
AC
3383 begin
3384 Append_List_To (L,
3385 Build_Array_Aggr_Code
3386 (N => Expr_Q,
3387 Ctype => Component_Type (Expr_Q_Type),
3388 Index => First_Index (Expr_Q_Type),
3389 Into => Comp_Expr,
937e9676
AC
3390 Scalar_Comp =>
3391 Is_Scalar_Type (Component_Type (Expr_Q_Type))));
a1e1820b
AC
3392 end;
3393
3394 else
fc84947c
EB
3395 Initialize_Component
3396 (N => N,
3397 Comp => Comp_Expr,
3398 Comp_Typ => Etype (Selector),
3399 Init_Expr => Expr_Q,
3400 Stmts => L);
70482933
RK
3401 end if;
3402 end if;
fbf5a39b 3403
37368818 3404 -- comment would be good here ???
fbf5a39b
AC
3405
3406 elsif Ekind (Selector) = E_Discriminant
3407 and then Nkind (N) /= N_Extension_Aggregate
3408 and then Nkind (Parent (N)) = N_Component_Association
3409 and then Is_Constrained (Typ)
3410 then
3411 -- We must check that the discriminant value imposed by the
3412 -- context is the same as the value given in the subaggregate,
3413 -- because after the expansion into assignments there is no
3414 -- record on which to perform a regular discriminant check.
3415
3416 declare
3417 D_Val : Elmt_Id;
3418 Disc : Entity_Id;
3419
3420 begin
3421 D_Val := First_Elmt (Discriminant_Constraint (Typ));
3422 Disc := First_Discriminant (Typ);
fbf5a39b
AC
3423 while Chars (Disc) /= Chars (Selector) loop
3424 Next_Discriminant (Disc);
3425 Next_Elmt (D_Val);
3426 end loop;
3427
3428 pragma Assert (Present (D_Val));
3429
0f95b178
JM
3430 -- This check cannot performed for components that are
3431 -- constrained by a current instance, because this is not a
3432 -- value that can be compared with the actual constraint.
3433
3434 if Nkind (Node (D_Val)) /= N_Attribute_Reference
3435 or else not Is_Entity_Name (Prefix (Node (D_Val)))
3436 or else not Is_Type (Entity (Prefix (Node (D_Val))))
3437 then
3438 Append_To (L,
3439 Make_Raise_Constraint_Error (Loc,
3440 Condition =>
3441 Make_Op_Ne (Loc,
37368818 3442 Left_Opnd => New_Copy_Tree (Node (D_Val)),
0f95b178 3443 Right_Opnd => Expression (Comp)),
37368818 3444 Reason => CE_Discriminant_Check_Failed));
0f95b178
JM
3445
3446 else
3b9fa2df
ES
3447 -- Find self-reference in previous discriminant assignment,
3448 -- and replace with proper expression.
0f95b178
JM
3449
3450 declare
3451 Ass : Node_Id;
3452
3453 begin
3454 Ass := First (L);
3455 while Present (Ass) loop
3456 if Nkind (Ass) = N_Assignment_Statement
3457 and then Nkind (Name (Ass)) = N_Selected_Component
3458 and then Chars (Selector_Name (Name (Ass))) =
36a66365 3459 Chars (Disc)
0f95b178
JM
3460 then
3461 Set_Expression
3462 (Ass, New_Copy_Tree (Expression (Comp)));
3463 exit;
3464 end if;
3465 Next (Ass);
3466 end loop;
3467 end;
3468 end if;
fbf5a39b 3469 end;
70482933
RK
3470 end if;
3471
f7937111
GD
3472 -- If the component association was specified with a box and the
3473 -- component type has a Default_Initial_Condition, then generate
3474 -- a call to the DIC procedure.
3475
3476 if Has_DIC (Etype (Selector))
3477 and then Was_Default_Init_Box_Association (Comp)
3478 and then Present (DIC_Procedure (Etype (Selector)))
3479 then
3480 Append_To (L,
3481 Build_DIC_Call (Loc,
3482 Make_Selected_Component (Loc,
3483 Prefix => New_Copy_Tree (Target),
3484 Selector_Name => New_Occurrence_Of (Selector, Loc)),
3485 Etype (Selector)));
3486 end if;
3487
70482933
RK
3488 Next (Comp);
3489 end loop;
3490
28541488
JM
3491 -- For CPP types we generated a call to the C++ default constructor
3492 -- before the components have been initialized to ensure the proper
3493 -- initialization of the _Tag component (see above).
3494
c0ceba6c 3495 if Is_CPP_Class (Typ) then
28541488
JM
3496 null;
3497
c0ceba6c
EB
3498 -- If the type is tagged, the tag needs to be initialized (unless we
3499 -- are in VM-mode where tags are implicit). It is done late in the
3500 -- initialization process because in some cases, we call the init
3501 -- proc of an ancestor which will not leave out the right tag.
3502
1f110335 3503 elsif Is_Tagged_Type (Typ) and then Tagged_Type_Expansion then
70482933 3504 Instr :=
af10c962
EB
3505 Make_Tag_Assignment_From_Type
3506 (Loc, New_Copy_Tree (Target), Base_Type (Typ));
70482933
RK
3507
3508 Append_To (L, Instr);
c5ee5ad2 3509
bdc193ba 3510 -- Ada 2005 (AI-251): If the tagged type has been derived from an
c5ee5ad2
BD
3511 -- abstract interfaces we must also initialize the tags of the
3512 -- secondary dispatch tables.
3513
ce2b6ba5 3514 if Has_Interfaces (Base_Type (Typ)) then
c5ee5ad2 3515 Init_Secondary_Tags
ed323421
AC
3516 (Typ => Base_Type (Typ),
3517 Target => Target,
3518 Stmts_List => L,
fe683ef6 3519 Init_Tags_List => L);
c5ee5ad2 3520 end if;
70482933
RK
3521 end if;
3522
7b9d0d69
ES
3523 -- If the controllers have not been initialized yet (by lack of non-
3524 -- discriminant components), let's do it now.
70482933 3525
df3e68b1 3526 Generate_Finalization_Actions;
70482933 3527
7b9d0d69 3528 return L;
70482933
RK
3529 end Build_Record_Aggr_Code;
3530
3531 -------------------------------
3532 -- Convert_Aggr_In_Allocator --
3533 -------------------------------
3534
fa57ac97
ES
3535 procedure Convert_Aggr_In_Allocator
3536 (Alloc : Node_Id;
3537 Decl : Node_Id;
3538 Aggr : Node_Id)
3539 is
70482933
RK
3540 Loc : constant Source_Ptr := Sloc (Aggr);
3541 Typ : constant Entity_Id := Etype (Aggr);
3542 Temp : constant Entity_Id := Defining_Identifier (Decl);
fbf5a39b
AC
3543
3544 Occ : constant Node_Id :=
15f0f591 3545 Unchecked_Convert_To (Typ,
e4494292 3546 Make_Explicit_Dereference (Loc, New_Occurrence_Of (Temp, Loc)));
70482933 3547
70482933 3548 begin
6f639c98
ES
3549 if Is_Array_Type (Typ) then
3550 Convert_Array_Aggr_In_Allocator (Decl, Aggr, Occ);
3551
3552 elsif Has_Default_Init_Comps (Aggr) then
c45b6ae0
AC
3553 declare
3554 L : constant List_Id := New_List;
3555 Init_Stmts : List_Id;
3556
3557 begin
df3e68b1 3558 Init_Stmts := Late_Expansion (Aggr, Typ, Occ);
c45b6ae0 3559
0f95b178
JM
3560 if Has_Task (Typ) then
3561 Build_Task_Allocate_Block_With_Init_Stmts (L, Aggr, Init_Stmts);
fa57ac97 3562 Insert_Actions (Alloc, L);
0f95b178 3563 else
fa57ac97 3564 Insert_Actions (Alloc, Init_Stmts);
0f95b178 3565 end if;
c45b6ae0
AC
3566 end;
3567
3568 else
df3e68b1 3569 Insert_Actions (Alloc, Late_Expansion (Aggr, Typ, Occ));
c45b6ae0 3570 end if;
70482933
RK
3571 end Convert_Aggr_In_Allocator;
3572
3573 --------------------------------
3574 -- Convert_Aggr_In_Assignment --
3575 --------------------------------
3576
3577 procedure Convert_Aggr_In_Assignment (N : Node_Id) is
4f061cf2 3578 Aggr : constant Node_Id := Unqualify (Expression (N));
3b9fa2df
ES
3579 Typ : constant Entity_Id := Etype (Aggr);
3580 Occ : constant Node_Id := New_Copy_Tree (Name (N));
70482933
RK
3581
3582 begin
df3e68b1 3583 Insert_Actions_After (N, Late_Expansion (Aggr, Typ, Occ));
70482933
RK
3584 end Convert_Aggr_In_Assignment;
3585
3586 ---------------------------------
3587 -- Convert_Aggr_In_Object_Decl --
3588 ---------------------------------
3589
3590 procedure Convert_Aggr_In_Object_Decl (N : Node_Id) is
3591 Obj : constant Entity_Id := Defining_Identifier (N);
4f061cf2 3592 Aggr : constant Node_Id := Unqualify (Expression (N));
70482933
RK
3593 Loc : constant Source_Ptr := Sloc (Aggr);
3594 Typ : constant Entity_Id := Etype (Aggr);
3595 Occ : constant Node_Id := New_Occurrence_Of (Obj, Loc);
3596
fff7a6d9
AC
3597 Has_Transient_Scope : Boolean := False;
3598
fbf5a39b
AC
3599 function Discriminants_Ok return Boolean;
3600 -- If the object type is constrained, the discriminants in the
3601 -- aggregate must be checked against the discriminants of the subtype.
3602 -- This cannot be done using Apply_Discriminant_Checks because after
3603 -- expansion there is no aggregate left to check.
3604
3605 ----------------------
3606 -- Discriminants_Ok --
3607 ----------------------
3608
3609 function Discriminants_Ok return Boolean is
3610 Cond : Node_Id := Empty;
3611 Check : Node_Id;
3612 D : Entity_Id;
3613 Disc1 : Elmt_Id;
3614 Disc2 : Elmt_Id;
3615 Val1 : Node_Id;
3616 Val2 : Node_Id;
3617
3618 begin
3619 D := First_Discriminant (Typ);
3620 Disc1 := First_Elmt (Discriminant_Constraint (Typ));
3621 Disc2 := First_Elmt (Discriminant_Constraint (Etype (Obj)));
fbf5a39b
AC
3622 while Present (Disc1) and then Present (Disc2) loop
3623 Val1 := Node (Disc1);
3624 Val2 := Node (Disc2);
3625
3626 if not Is_OK_Static_Expression (Val1)
3627 or else not Is_OK_Static_Expression (Val2)
3628 then
3629 Check := Make_Op_Ne (Loc,
3630 Left_Opnd => Duplicate_Subexpr (Val1),
3631 Right_Opnd => Duplicate_Subexpr (Val2));
3632
3633 if No (Cond) then
3634 Cond := Check;
3635
3636 else
3637 Cond := Make_Or_Else (Loc,
3638 Left_Opnd => Cond,
3639 Right_Opnd => Check);
3640 end if;
3641
3642 elsif Expr_Value (Val1) /= Expr_Value (Val2) then
3643 Apply_Compile_Time_Constraint_Error (Aggr,
324ac540 3644 Msg => "incorrect value for discriminant&??",
fbf5a39b
AC
3645 Reason => CE_Discriminant_Check_Failed,
3646 Ent => D);
3647 return False;
3648 end if;
3649
3650 Next_Discriminant (D);
3651 Next_Elmt (Disc1);
3652 Next_Elmt (Disc2);
3653 end loop;
3654
d940c627 3655 -- If any discriminant constraint is nonstatic, emit a check
fbf5a39b
AC
3656
3657 if Present (Cond) then
3658 Insert_Action (N,
3659 Make_Raise_Constraint_Error (Loc,
3660 Condition => Cond,
ef1c0511 3661 Reason => CE_Discriminant_Check_Failed));
fbf5a39b
AC
3662 end if;
3663
3664 return True;
3665 end Discriminants_Ok;
3666
3667 -- Start of processing for Convert_Aggr_In_Object_Decl
3668
70482933
RK
3669 begin
3670 Set_Assignment_OK (Occ);
3671
fbf5a39b
AC
3672 if Has_Discriminants (Typ)
3673 and then Typ /= Etype (Obj)
3674 and then Is_Constrained (Etype (Obj))
3675 and then not Discriminants_Ok
3676 then
3677 return;
3678 end if;
3679
0f95b178
JM
3680 -- If the context is an extended return statement, it has its own
3681 -- finalization machinery (i.e. works like a transient scope) and
3682 -- we do not want to create an additional one, because objects on
3683 -- the finalization list of the return must be moved to the caller's
3684 -- finalization list to complete the return.
3685
fff7a6d9 3686 -- Similarly if the aggregate is limited, it is built in place, and the
3b9fa2df
ES
3687 -- controlled components are not assigned to intermediate temporaries
3688 -- so there is no need for a transient scope in this case either.
3689
0f95b178
JM
3690 if Requires_Transient_Scope (Typ)
3691 and then Ekind (Current_Scope) /= E_Return_Statement
3b9fa2df 3692 and then not Is_Limited_Type (Typ)
0f95b178 3693 then
6560f851 3694 Establish_Transient_Scope (Aggr, Manage_Sec_Stack => False);
fff7a6d9 3695 Has_Transient_Scope := True;
6f5c2c4b 3696 end if;
02217452 3697
6f5c2c4b 3698 declare
fff7a6d9
AC
3699 Stmts : constant List_Id := Late_Expansion (Aggr, Typ, Occ);
3700 Stmt : Node_Id;
3701 Param : Node_Id;
3702
6f5c2c4b 3703 begin
fff7a6d9
AC
3704 -- If Obj is already frozen or if N is wrapped in a transient scope,
3705 -- Stmts do not need to be saved in Initialization_Statements since
3706 -- there is no freezing issue.
3707
3708 if Is_Frozen (Obj) or else Has_Transient_Scope then
3709 Insert_Actions_After (N, Stmts);
3710 else
3711 Stmt := Make_Compound_Statement (Sloc (N), Actions => Stmts);
3712 Insert_Action_After (N, Stmt);
3713
3714 -- Insert_Action_After may freeze Obj in which case we should
3715 -- remove the compound statement just created and simply insert
3716 -- Stmts after N.
3717
3718 if Is_Frozen (Obj) then
3719 Remove (Stmt);
3720 Insert_Actions_After (N, Stmts);
3721 else
3722 Set_Initialization_Statements (Obj, Stmt);
3723 end if;
3724 end if;
3725
3726 -- If Typ has controlled components and a call to a Slice_Assign
3727 -- procedure is part of the initialization statements, then we
3728 -- need to initialize the array component since Slice_Assign will
3729 -- need to adjust it.
3730
3731 if Has_Controlled_Component (Typ) then
3732 Stmt := First (Stmts);
3733
3734 while Present (Stmt) loop
3735 if Nkind (Stmt) = N_Procedure_Call_Statement
f82fb002 3736 and then Is_TSS (Entity (Name (Stmt)), TSS_Slice_Assign)
fff7a6d9
AC
3737 then
3738 Param := First (Parameter_Associations (Stmt));
3739 Insert_Actions
3740 (Stmt,
3741 Build_Initialization_Call
3742 (Sloc (N), New_Copy_Tree (Param), Etype (Param)));
3743 end if;
3744
3745 Next (Stmt);
3746 end loop;
3747 end if;
6f5c2c4b 3748 end;
6560f851 3749
70482933 3750 Set_No_Initialization (N);
a671959b
ES
3751
3752 -- After expansion the expression can be removed from the declaration
3753 -- except if the object is class-wide, in which case the aggregate
3754 -- provides the actual type.
3755
3756 if not Is_Class_Wide_Type (Etype (Obj)) then
3757 Set_Expression (N, Empty);
3758 end if;
3759
07fc65c4 3760 Initialize_Discriminants (N, Typ);
70482933
RK
3761 end Convert_Aggr_In_Object_Decl;
3762
6f639c98 3763 -------------------------------------
3b9fa2df 3764 -- Convert_Array_Aggr_In_Allocator --
6f639c98
ES
3765 -------------------------------------
3766
3767 procedure Convert_Array_Aggr_In_Allocator
3768 (Decl : Node_Id;
3769 Aggr : Node_Id;
3770 Target : Node_Id)
3771 is
6f639c98
ES
3772 Typ : constant Entity_Id := Etype (Aggr);
3773 Ctyp : constant Entity_Id := Component_Type (Typ);
2fedcc18
EB
3774 Aggr_Code : List_Id;
3775 New_Aggr : Node_Id;
6f639c98
ES
3776
3777 begin
2fedcc18
EB
3778 -- The target is an explicit dereference of the allocated object
3779
3780 -- If the assignment can be done directly by the back end, then
3781 -- reset Set_Expansion_Delayed and do not expand further.
3782
3783 if not CodePeer_Mode
3784 and then not Modify_Tree_For_C
3785 and then Aggr_Assignment_OK_For_Backend (Aggr)
3786 then
3787 New_Aggr := New_Copy_Tree (Aggr);
3788 Set_Expansion_Delayed (New_Aggr, False);
3789
742084ad
MP
3790 -- In the case of Target's type using the Designated_Storage_Model
3791 -- aspect with a Copy_To procedure, insert a temporary and have the
3792 -- back end handle the assignment to it. Copy the result to the
3793 -- original target.
3794
3795 if Has_Designated_Storage_Model_Aspect
3796 (Etype (Prefix (Expression (Target))))
3797 and then Present (Storage_Model_Copy_To
3798 (Storage_Model_Object
3799 (Etype (Prefix (Expression (Target))))))
3800 then
ca4bff3a
EB
3801 Aggr_Code :=
3802 Build_Assignment_With_Temporary (Target, Typ, New_Aggr);
3803
742084ad
MP
3804 else
3805 Aggr_Code :=
3806 New_List (
3807 Make_OK_Assignment_Statement (Sloc (New_Aggr),
3808 Name => Target,
3809 Expression => New_Aggr));
3810 end if;
6f639c98 3811
2fedcc18
EB
3812 -- Or else, generate component assignments to it, as for an aggregate
3813 -- that appears on the right-hand side of an assignment statement.
2fedcc18
EB
3814 else
3815 Aggr_Code :=
3816 Build_Array_Aggr_Code (Aggr,
3817 Ctype => Ctyp,
3818 Index => First_Index (Typ),
3819 Into => Target,
3820 Scalar_Comp => Is_Scalar_Type (Ctyp));
3821 end if;
6f639c98
ES
3822
3823 Insert_Actions_After (Decl, Aggr_Code);
3824 end Convert_Array_Aggr_In_Allocator;
3825
4ff5aa0c
AC
3826 ------------------------
3827 -- In_Place_Assign_OK --
3828 ------------------------
3829
a80b1eb7
EB
3830 function In_Place_Assign_OK
3831 (N : Node_Id;
3832 Target_Object : Entity_Id := Empty) return Boolean
3833 is
4ff5aa0c
AC
3834 Is_Array : constant Boolean := Is_Array_Type (Etype (N));
3835
a80b1eb7 3836 Aggr_In : Node_Id;
7c4f3267 3837 Aggr_Bounds : Range_Nodes;
a80b1eb7 3838 Obj_In : Node_Id;
7c4f3267 3839 Obj_Bounds : Range_Nodes;
a80b1eb7
EB
3840 Parent_Kind : Node_Kind;
3841 Parent_Node : Node_Id;
4ff5aa0c
AC
3842
3843 function Safe_Aggregate (Aggr : Node_Id) return Boolean;
3844 -- Check recursively that each component of a (sub)aggregate does not
3845 -- depend on the variable being assigned to.
3846
3847 function Safe_Component (Expr : Node_Id) return Boolean;
a80b1eb7
EB
3848 -- Verify that an expression cannot depend on the target being assigned
3849 -- to. Return true for compile-time known values, stand-alone objects,
3850 -- parameters passed by copy, calls to functions that return by copy,
3851 -- selected components thereof only if the aggregate's type is an array,
3852 -- indexed components and slices thereof only if the aggregate's type is
3853 -- a record, and simple expressions involving only these as operands.
3854 -- This is OK whatever the target because, for a component to overlap
3855 -- with the target, it must be either a direct reference to a component
3856 -- of the target, in which case there must be a matching selection or
3857 -- indexation or slicing, or an indirect reference to such a component,
3858 -- which is excluded by the above condition. Additionally, if the target
3859 -- is statically known, return true for arbitrarily nested selections,
3860 -- indexations or slicings, provided that their ultimate prefix is not
3861 -- the target itself.
4ff5aa0c
AC
3862
3863 --------------------
3864 -- Safe_Aggregate --
3865 --------------------
3866
3867 function Safe_Aggregate (Aggr : Node_Id) return Boolean is
3868 Expr : Node_Id;
3869
3870 begin
3871 if Nkind (Parent (Aggr)) = N_Iterated_Component_Association then
3872 return False;
3873 end if;
3874
3875 if Present (Expressions (Aggr)) then
3876 Expr := First (Expressions (Aggr));
3877 while Present (Expr) loop
3878 if Nkind (Expr) = N_Aggregate then
3879 if not Safe_Aggregate (Expr) then
3880 return False;
3881 end if;
3882
3883 elsif not Safe_Component (Expr) then
3884 return False;
3885 end if;
3886
3887 Next (Expr);
3888 end loop;
3889 end if;
3890
3891 if Present (Component_Associations (Aggr)) then
3892 Expr := First (Component_Associations (Aggr));
3893 while Present (Expr) loop
3894 if Nkind (Expression (Expr)) = N_Aggregate then
3895 if not Safe_Aggregate (Expression (Expr)) then
3896 return False;
3897 end if;
3898
bc1146e5
HK
3899 -- If association has a box, no way to determine yet whether
3900 -- default can be assigned in place.
4ff5aa0c
AC
3901
3902 elsif Box_Present (Expr) then
3903 return False;
3904
3905 elsif not Safe_Component (Expression (Expr)) then
3906 return False;
3907 end if;
3908
3909 Next (Expr);
3910 end loop;
3911 end if;
3912
3913 return True;
3914 end Safe_Aggregate;
3915
3916 --------------------
3917 -- Safe_Component --
3918 --------------------
3919
3920 function Safe_Component (Expr : Node_Id) return Boolean is
3921 Comp : Node_Id := Expr;
3922
a80b1eb7
EB
3923 function Check_Component (C : Node_Id; T_OK : Boolean) return Boolean;
3924 -- Do the recursive traversal, after copy. If T_OK is True, return
3925 -- True for a stand-alone object only if the target is statically
3926 -- known and distinct from the object. At the top level, we start
3927 -- with T_OK set to False and set it to True at a deeper level only
3928 -- if we cannot disambiguate the component here without statically
3929 -- knowing the target. Note that this is not optimal, we should do
3930 -- something along the lines of Denotes_Same_Prefix for that.
4ff5aa0c
AC
3931
3932 ---------------------
3933 -- Check_Component --
3934 ---------------------
3935
a80b1eb7
EB
3936 function Check_Component (C : Node_Id; T_OK : Boolean) return Boolean
3937 is
3938
3939 function SDO (E : Entity_Id) return Uint;
3940 -- Return the Scope Depth Of the enclosing dynamic scope of E
3941
3942 ---------
3943 -- SDO --
3944 ---------
3945
3946 function SDO (E : Entity_Id) return Uint is
3947 begin
3948 return Scope_Depth (Enclosing_Dynamic_Scope (E));
3949 end SDO;
3950
3951 -- Start of processing for Check_Component
3952
4ff5aa0c 3953 begin
a80b1eb7 3954 if Is_Overloaded (C) then
4ff5aa0c 3955 return False;
a80b1eb7
EB
3956
3957 elsif Compile_Time_Known_Value (C) then
3958 return True;
4ff5aa0c
AC
3959 end if;
3960
a80b1eb7
EB
3961 case Nkind (C) is
3962 when N_Attribute_Reference =>
3963 return Check_Component (Prefix (C), T_OK);
3964
3965 when N_Function_Call =>
3966 if Nkind (Name (C)) = N_Explicit_Dereference then
3967 return not Returns_By_Ref (Etype (Name (C)));
3968 else
3969 return not Returns_By_Ref (Entity (Name (C)));
3970 end if;
3971
3972 when N_Indexed_Component | N_Slice =>
3973 -- In a target record, these operations cannot determine
3974 -- alone a component so we can recurse whatever the target.
3975 return Check_Component (Prefix (C), T_OK or else Is_Array);
3976
3977 when N_Selected_Component =>
3978 -- In a target array, this operation cannot determine alone
3979 -- a component so we can recurse whatever the target.
3980 return
3981 Check_Component (Prefix (C), T_OK or else not Is_Array);
3982
3983 when N_Type_Conversion | N_Unchecked_Type_Conversion =>
3984 return Check_Component (Expression (C), T_OK);
4ff5aa0c 3985
a80b1eb7
EB
3986 when N_Binary_Op =>
3987 return Check_Component (Left_Opnd (C), T_OK)
3988 and then Check_Component (Right_Opnd (C), T_OK);
4ff5aa0c 3989
a80b1eb7
EB
3990 when N_Unary_Op =>
3991 return Check_Component (Right_Opnd (C), T_OK);
4ff5aa0c 3992
a80b1eb7
EB
3993 when others =>
3994 if Is_Entity_Name (C) and then Is_Object (Entity (C)) then
3995 -- Case of a formal parameter component. It's either
3996 -- trivial if passed by copy or very annoying if not,
3997 -- because in the latter case it's almost equivalent
3998 -- to a dereference, so the path-based disambiguation
3999 -- logic is totally off and we always need the target.
4ff5aa0c 4000
a80b1eb7
EB
4001 if Is_Formal (Entity (C)) then
4002
4003 -- If it is passed by copy, then this is safe
4004
4005 if Mechanism (Entity (C)) = By_Copy then
4006 return True;
4007
4008 -- Otherwise, this is safe if the target is present
4009 -- and is at least as deeply nested as the component.
4010
4011 else
4012 return Present (Target_Object)
4013 and then not Is_Formal (Target_Object)
4014 and then SDO (Target_Object) >= SDO (Entity (C));
4015 end if;
4016
4017 -- For a renamed object, recurse
4018
4019 elsif Present (Renamed_Object (Entity (C))) then
4020 return
4021 Check_Component (Renamed_Object (Entity (C)), T_OK);
4022
4023 -- If this is safe whatever the target, we are done
4024
4025 elsif not T_OK then
4026 return True;
4027
4028 -- If there is no target or the component is the target,
4029 -- this is not safe.
4030
4031 elsif No (Target_Object)
4032 or else Entity (C) = Target_Object
4033 then
4034 return False;
4035
4036 -- Case of a formal parameter target. This is safe if it
4037 -- is at most as deeply nested as the component.
4038
4039 elsif Is_Formal (Target_Object) then
4040 return SDO (Target_Object) <= SDO (Entity (C));
4041
4042 -- For distinct stand-alone objects, this is safe
4043
4044 else
4045 return True;
4046 end if;
4ff5aa0c 4047
a80b1eb7 4048 -- For anything else than an object, this is not safe
4ff5aa0c 4049
a80b1eb7
EB
4050 else
4051 return False;
4052 end if;
4053 end case;
4ff5aa0c
AC
4054 end Check_Component;
4055
4056 -- Start of processing for Safe_Component
4057
4058 begin
4059 -- If the component appears in an association that may correspond
4060 -- to more than one element, it is not analyzed before expansion
4061 -- into assignments, to avoid side effects. We analyze, but do not
4062 -- resolve the copy, to obtain sufficient entity information for
4063 -- the checks that follow. If component is overloaded we assume
4064 -- an unsafe function call.
4065
4066 if not Analyzed (Comp) then
4067 if Is_Overloaded (Expr) then
4068 return False;
4ff5aa0c
AC
4069
4070 elsif Nkind (Expr) = N_Allocator then
4071
4072 -- For now, too complex to analyze
4073
4074 return False;
4075
bc1146e5
HK
4076 elsif Nkind (Parent (Expr)) = N_Iterated_Component_Association then
4077
4078 -- Ditto for iterated component associations, which in general
4079 -- require an enclosing loop and involve nonstatic expressions.
4ff5aa0c
AC
4080
4081 return False;
4082 end if;
4083
4084 Comp := New_Copy_Tree (Expr);
4085 Set_Parent (Comp, Parent (Expr));
4086 Analyze (Comp);
4087 end if;
4088
4089 if Nkind (Comp) = N_Aggregate then
4090 return Safe_Aggregate (Comp);
4091 else
a80b1eb7 4092 return Check_Component (Comp, False);
4ff5aa0c
AC
4093 end if;
4094 end Safe_Component;
4095
4096 -- Start of processing for In_Place_Assign_OK
4097
4098 begin
e67df677 4099 -- By-copy semantic cannot be guaranteed for controlled objects
4ff5aa0c 4100
e67df677 4101 if Needs_Finalization (Etype (N)) then
4ff5aa0c 4102 return False;
a80b1eb7 4103 end if;
4ff5aa0c 4104
a80b1eb7
EB
4105 Parent_Node := Parent (N);
4106 Parent_Kind := Nkind (Parent_Node);
4ff5aa0c 4107
a80b1eb7
EB
4108 if Parent_Kind = N_Qualified_Expression then
4109 Parent_Node := Parent (Parent_Node);
4110 Parent_Kind := Nkind (Parent_Node);
4111 end if;
4ff5aa0c 4112
a80b1eb7
EB
4113 -- On assignment, sliding can take place, so we cannot do the
4114 -- assignment in place unless the bounds of the aggregate are
4115 -- statically equal to those of the target.
4ff5aa0c 4116
a80b1eb7
EB
4117 -- If the aggregate is given by an others choice, the bounds are
4118 -- derived from the left-hand side, and the assignment is safe if
4119 -- the expression is.
4ff5aa0c 4120
a80b1eb7
EB
4121 if Is_Array
4122 and then Present (Component_Associations (N))
4123 and then not Is_Others_Aggregate (N)
4124 then
4ff5aa0c
AC
4125 Aggr_In := First_Index (Etype (N));
4126
d0e9248d
EB
4127 -- Context is an assignment
4128
a80b1eb7
EB
4129 if Parent_Kind = N_Assignment_Statement then
4130 Obj_In := First_Index (Etype (Name (Parent_Node)));
4ff5aa0c 4131
d0e9248d
EB
4132 -- Context is an allocator. Check the bounds of the aggregate against
4133 -- those of the designated type, except in the case where the type is
4134 -- unconstrained (and then we can directly return true, see below).
4135
4136 else pragma Assert (Parent_Kind = N_Allocator);
4137 declare
4138 Desig_Typ : constant Entity_Id :=
4139 Designated_Type (Etype (Parent_Node));
4140 begin
4141 if not Is_Constrained (Desig_Typ) then
4142 return True;
4143 end if;
4ff5aa0c 4144
d0e9248d
EB
4145 Obj_In := First_Index (Desig_Typ);
4146 end;
4ff5aa0c
AC
4147 end if;
4148
4149 while Present (Aggr_In) loop
7c4f3267
BD
4150 Aggr_Bounds := Get_Index_Bounds (Aggr_In);
4151 Obj_Bounds := Get_Index_Bounds (Obj_In);
4ff5aa0c 4152
a80b1eb7
EB
4153 -- We require static bounds for the target and a static matching
4154 -- of low bound for the aggregate.
4155
7c4f3267
BD
4156 if not Compile_Time_Known_Value (Obj_Bounds.First)
4157 or else not Compile_Time_Known_Value (Obj_Bounds.Last)
4158 or else not Compile_Time_Known_Value (Aggr_Bounds.First)
4159 or else Expr_Value (Aggr_Bounds.First) /=
4160 Expr_Value (Obj_Bounds.First)
4ff5aa0c
AC
4161 then
4162 return False;
4163
4164 -- For an assignment statement we require static matching of
4165 -- bounds. Ditto for an allocator whose qualified expression
4166 -- is a constrained type. If the expression in the allocator
4167 -- is an unconstrained array, we accept an upper bound that
4168 -- is not static, to allow for nonstatic expressions of the
4169 -- base type. Clearly there are further possibilities (with
4170 -- diminishing returns) for safely building arrays in place
4171 -- here.
4172
a80b1eb7
EB
4173 elsif Parent_Kind = N_Assignment_Statement
4174 or else Is_Constrained (Etype (Parent_Node))
4ff5aa0c 4175 then
7c4f3267
BD
4176 if not Compile_Time_Known_Value (Aggr_Bounds.Last)
4177 or else Expr_Value (Aggr_Bounds.Last) /=
4178 Expr_Value (Obj_Bounds.Last)
4ff5aa0c
AC
4179 then
4180 return False;
4181 end if;
4182 end if;
4183
4184 Next_Index (Aggr_In);
4185 Next_Index (Obj_In);
4186 end loop;
4187 end if;
4188
a80b1eb7
EB
4189 -- Now check the component values themselves, except for an allocator
4190 -- for which the target is newly allocated memory.
4ff5aa0c 4191
a80b1eb7
EB
4192 if Parent_Kind = N_Allocator then
4193 return True;
4194 else
4195 return Safe_Aggregate (N);
4196 end if;
4ff5aa0c
AC
4197 end In_Place_Assign_OK;
4198
70482933
RK
4199 ----------------------------
4200 -- Convert_To_Assignments --
4201 ----------------------------
4202
4203 procedure Convert_To_Assignments (N : Node_Id; Typ : Entity_Id) is
4204 Loc : constant Source_Ptr := Sloc (N);
39f346aa 4205 T : Entity_Id;
70482933
RK
4206 Temp : Entity_Id;
4207
f29afe5f 4208 Aggr_Code : List_Id;
fbf5a39b
AC
4209 Instr : Node_Id;
4210 Target_Expr : Node_Id;
4211 Parent_Kind : Node_Kind;
4212 Unc_Decl : Boolean := False;
4213 Parent_Node : Node_Id;
70482933
RK
4214
4215 begin
4a08c95c 4216 pragma Assert (Nkind (N) in N_Aggregate | N_Extension_Aggregate);
fa57ac97
ES
4217 pragma Assert (not Is_Static_Dispatch_Table_Aggregate (N));
4218 pragma Assert (Is_Record_Type (Typ));
4219
70482933
RK
4220 Parent_Node := Parent (N);
4221 Parent_Kind := Nkind (Parent_Node);
4222
4223 if Parent_Kind = N_Qualified_Expression then
d4dfb005 4224 -- Check if we are in an unconstrained declaration because in this
70482933 4225 -- case the current delayed expansion mechanism doesn't work when
d4dfb005 4226 -- the declared object size depends on the initializing expr.
70482933 4227
937e9676
AC
4228 Parent_Node := Parent (Parent_Node);
4229 Parent_Kind := Nkind (Parent_Node);
fbf5a39b 4230
937e9676
AC
4231 if Parent_Kind = N_Object_Declaration then
4232 Unc_Decl :=
4233 not Is_Entity_Name (Object_Definition (Parent_Node))
d4dfb005 4234 or else (Nkind (N) = N_Aggregate
3fc40cd7
PMR
4235 and then
4236 Has_Discriminants
4237 (Entity (Object_Definition (Parent_Node))))
937e9676
AC
4238 or else Is_Class_Wide_Type
4239 (Entity (Object_Definition (Parent_Node)));
4240 end if;
70482933
RK
4241 end if;
4242
3b9fa2df
ES
4243 -- Just set the Delay flag in the cases where the transformation will be
4244 -- done top down from above.
fbf5a39b 4245
f037632e 4246 if
fa57ac97 4247 -- Internal aggregate (transformed when expanding the parent)
8196b58e
MP
4248 -- excluding the Container aggregate as these are transformed to
4249 -- procedure call later.
0f95b178 4250
8196b58e
MP
4251 (Parent_Kind in
4252 N_Component_Association | N_Aggregate | N_Extension_Aggregate
4253 and then not Is_Container_Aggregate (Parent_Node))
0f95b178 4254
fa57ac97 4255 -- Allocator (see Convert_Aggr_In_Allocator)
70482933 4256
fa57ac97 4257 or else Parent_Kind = N_Allocator
0f95b178 4258
fa57ac97
ES
4259 -- Object declaration (see Convert_Aggr_In_Object_Decl)
4260
4261 or else (Parent_Kind = N_Object_Declaration and then not Unc_Decl)
4262
4263 -- Safe assignment (see Convert_Aggr_Assignments). So far only the
4264 -- assignments in init procs are taken into account.
4265
4266 or else (Parent_Kind = N_Assignment_Statement
4267 and then Inside_Init_Proc)
4268
bdc193ba
AC
4269 -- (Ada 2005) An inherently limited type in a return statement, which
4270 -- will be handled in a build-in-place fashion, and may be rewritten
4271 -- as an extended return and have its own finalization machinery.
4272 -- In the case of a simple return, the aggregate needs to be delayed
4273 -- until the scope for the return statement has been created, so
4274 -- that any finalization chain will be associated with that scope.
4275 -- For extended returns, we delay expansion to avoid the creation
4276 -- of an unwanted transient scope that could result in premature
a9bbfbd0 4277 -- finalization of the return object (which is built in place
bdc193ba 4278 -- within the caller's scope).
fa57ac97 4279
d4dfb005 4280 or else Is_Build_In_Place_Aggregate_Return (N)
70482933
RK
4281 then
4282 Set_Expansion_Delayed (N);
4283 return;
4284 end if;
4285
a9bbfbd0
AC
4286 -- Otherwise, if a transient scope is required, create it now. If we
4287 -- are within an initialization procedure do not create such, because
4288 -- the target of the assignment must not be declared within a local
4289 -- block, and because cleanup will take place on return from the
4290 -- initialization procedure.
937e9676 4291
a9bbfbd0
AC
4292 -- Should the condition be more restrictive ???
4293
4294 if Requires_Transient_Scope (Typ) and then not Inside_Init_Proc then
6560f851 4295 Establish_Transient_Scope (N, Manage_Sec_Stack => False);
70482933
RK
4296 end if;
4297
bc1146e5
HK
4298 -- If the aggregate is nonlimited, create a temporary, since aggregates
4299 -- have "by copy" semantics. If it is limited and context is an
4ff5aa0c
AC
4300 -- assignment, this is a subaggregate for an enclosing aggregate being
4301 -- expanded. It must be built in place, so use target of the current
4302 -- assignment.
70482933 4303
3b9fa2df 4304 if Is_Limited_Type (Typ)
e67df677 4305 and then Parent_Kind = N_Assignment_Statement
3b9fa2df 4306 then
e67df677
EB
4307 Target_Expr := New_Copy_Tree (Name (Parent_Node));
4308 Insert_Actions (Parent_Node,
df3e68b1 4309 Build_Record_Aggr_Code (N, Typ, Target_Expr));
e67df677 4310 Rewrite (Parent_Node, Make_Null_Statement (Loc));
70482933 4311
a80b1eb7
EB
4312 -- Do not declare a temporary to initialize an aggregate assigned to
4313 -- a target when in-place assignment is possible, i.e. preserving the
4ff5aa0c
AC
4314 -- by-copy semantic of aggregates. This avoids large stack usage and
4315 -- generates more efficient code.
e64ac631 4316
e67df677 4317 elsif Parent_Kind = N_Assignment_Statement
a80b1eb7 4318 and then In_Place_Assign_OK (N, Get_Base_Object (Name (Parent_Node)))
e64ac631 4319 then
e67df677
EB
4320 declare
4321 Lhs : constant Node_Id := Name (Parent_Node);
4322 begin
4323 -- Apply discriminant check if required
4324
4325 if Has_Discriminants (Etype (N)) then
4326 Apply_Discriminant_Check (N, Etype (Lhs), Lhs);
4327 end if;
4328
4329 -- The check just above may have replaced the aggregate with a CE
4330
4a08c95c 4331 if Nkind (N) in N_Aggregate | N_Extension_Aggregate then
e67df677
EB
4332 Target_Expr := New_Copy_Tree (Lhs);
4333 Insert_Actions (Parent_Node,
4334 Build_Record_Aggr_Code (N, Typ, Target_Expr));
4335 Rewrite (Parent_Node, Make_Null_Statement (Loc));
4336 end if;
4337 end;
e64ac631 4338
3b9fa2df 4339 else
faf387e1 4340 Temp := Make_Temporary (Loc, 'A', N);
70482933 4341
39f346aa
ES
4342 -- If the type inherits unknown discriminants, use the view with
4343 -- known discriminants if available.
4344
4345 if Has_Unknown_Discriminants (Typ)
36a66365 4346 and then Present (Underlying_Record_View (Typ))
39f346aa
ES
4347 then
4348 T := Underlying_Record_View (Typ);
4349 else
4350 T := Typ;
4351 end if;
4352
3b9fa2df
ES
4353 Instr :=
4354 Make_Object_Declaration (Loc,
4355 Defining_Identifier => Temp,
39f346aa 4356 Object_Definition => New_Occurrence_Of (T, Loc));
3b9fa2df
ES
4357
4358 Set_No_Initialization (Instr);
4359 Insert_Action (N, Instr);
39f346aa 4360 Initialize_Discriminants (Instr, T);
f29afe5f 4361
3b9fa2df 4362 Target_Expr := New_Occurrence_Of (Temp, Loc);
f29afe5f
AC
4363 Aggr_Code := Build_Record_Aggr_Code (N, T, Target_Expr);
4364
4365 -- Save the last assignment statement associated with the aggregate
4366 -- when building a controlled object. This reference is utilized by
4367 -- the finalization machinery when marking an object as successfully
4368 -- initialized.
4369
4370 if Needs_Finalization (T) then
4371 Set_Last_Aggregate_Assignment (Temp, Last (Aggr_Code));
4372 end if;
4373
4374 Insert_Actions (N, Aggr_Code);
3b9fa2df 4375 Rewrite (N, New_Occurrence_Of (Temp, Loc));
39f346aa 4376 Analyze_And_Resolve (N, T);
3b9fa2df 4377 end if;
70482933
RK
4378 end Convert_To_Assignments;
4379
07fc65c4
GB
4380 ---------------------------
4381 -- Convert_To_Positional --
4382 ---------------------------
4383
4384 procedure Convert_To_Positional
c42006e9
AC
4385 (N : Node_Id;
4386 Handle_Bit_Packed : Boolean := False)
07fc65c4 4387 is
c42006e9 4388 Typ : constant Entity_Id := Etype (N);
b748c3d1 4389 Dims : constant Nat := Number_Dimensions (Typ);
eaf6e63a 4390 Max_Others_Replicate : constant Nat := Max_Aggregate_Size (N);
07fc65c4 4391
0f95b178
JM
4392 Static_Components : Boolean := True;
4393
4394 procedure Check_Static_Components;
3b9fa2df
ES
4395 -- Check whether all components of the aggregate are compile-time known
4396 -- values, and can be passed as is to the back-end without further
4397 -- expansion.
0f95b178 4398
fbf5a39b 4399 function Flatten
b748c3d1
EB
4400 (N : Node_Id;
4401 Dims : Nat;
4402 Ix : Node_Id;
4403 Ixb : Node_Id) return Boolean;
c2ba82ad
EB
4404 -- Convert the aggregate into a purely positional form if possible after
4405 -- checking that the bounds of all dimensions are known to be static.
fbf5a39b 4406
b748c3d1
EB
4407 function Is_Flat (N : Node_Id; Dims : Nat) return Boolean;
4408 -- Return True if the aggregate N is flat (which is not trivial in the
4409 -- case of multidimensional aggregates).
fbf5a39b 4410
b748c3d1 4411 function Is_Static_Element (N : Node_Id; Dims : Nat) return Boolean;
f1e2bf65
EB
4412 -- Return True if N, an element of a component association list, i.e.
4413 -- N_Component_Association or N_Iterated_Component_Association, has a
4414 -- compile-time known value and can be passed as is to the back-end
4415 -- without further expansion.
4416 -- An Iterated_Component_Association is treated as nonstatic in most
4417 -- cases for now, so there are possibilities for optimization.
4418
0f95b178
JM
4419 -----------------------------
4420 -- Check_Static_Components --
4421 -----------------------------
4422
bdc193ba
AC
4423 -- Could use some comments in this body ???
4424
0f95b178 4425 procedure Check_Static_Components is
f1e2bf65
EB
4426 Assoc : Node_Id;
4427 Expr : Node_Id;
0f95b178
JM
4428
4429 begin
4430 Static_Components := True;
4431
4432 if Nkind (N) = N_String_Literal then
4433 null;
4434
4435 elsif Present (Expressions (N)) then
4436 Expr := First (Expressions (N));
4437 while Present (Expr) loop
4438 if Nkind (Expr) /= N_Aggregate
4439 or else not Compile_Time_Known_Aggregate (Expr)
4440 or else Expansion_Delayed (Expr)
4441 then
4442 Static_Components := False;
4443 exit;
4444 end if;
4445
4446 Next (Expr);
4447 end loop;
4448 end if;
4449
4450 if Nkind (N) = N_Aggregate
21d7ef70 4451 and then Present (Component_Associations (N))
0f95b178 4452 then
f1e2bf65
EB
4453 Assoc := First (Component_Associations (N));
4454 while Present (Assoc) loop
b748c3d1 4455 if not Is_Static_Element (Assoc, Dims) then
0f95b178
JM
4456 Static_Components := False;
4457 exit;
4458 end if;
4459
f1e2bf65 4460 Next (Assoc);
0f95b178
JM
4461 end loop;
4462 end if;
4463 end Check_Static_Components;
4464
fbf5a39b
AC
4465 -------------
4466 -- Flatten --
4467 -------------
4468
4469 function Flatten
b748c3d1
EB
4470 (N : Node_Id;
4471 Dims : Nat;
4472 Ix : Node_Id;
4473 Ixb : Node_Id) return Boolean
fbf5a39b
AC
4474 is
4475 Loc : constant Source_Ptr := Sloc (N);
4476 Blo : constant Node_Id := Type_Low_Bound (Etype (Ixb));
4477 Lo : constant Node_Id := Type_Low_Bound (Etype (Ix));
4478 Hi : constant Node_Id := Type_High_Bound (Etype (Ix));
fbf5a39b 4479
b748c3d1
EB
4480 function Cannot_Flatten_Next_Aggr (Expr : Node_Id) return Boolean;
4481 -- Return true if Expr is an aggregate for the next dimension that
4482 -- cannot be recursively flattened.
4483
4484 ------------------------------
4485 -- Cannot_Flatten_Next_Aggr --
4486 ------------------------------
4487
4488 function Cannot_Flatten_Next_Aggr (Expr : Node_Id) return Boolean is
4489 begin
4490 return Nkind (Expr) = N_Aggregate
4491 and then Present (Next_Index (Ix))
4492 and then not
4493 Flatten (Expr, Dims - 1, Next_Index (Ix), Next_Index (Ixb));
4494 end Cannot_Flatten_Next_Aggr;
4495
4496 -- Local variables
4497
4498 Lov : Uint;
4499 Hiv : Uint;
4500 Others_Present : Boolean;
4501
4502 -- Start of processing for Flatten
3f5a8fee 4503
6e937c1c 4504 begin
fbf5a39b
AC
4505 if Nkind (Original_Node (N)) = N_String_Literal then
4506 return True;
4507 end if;
07fc65c4 4508
0f95b178
JM
4509 if not Compile_Time_Known_Value (Lo)
4510 or else not Compile_Time_Known_Value (Hi)
4511 then
4512 return False;
4513 end if;
07fc65c4 4514
fbf5a39b
AC
4515 Lov := Expr_Value (Lo);
4516 Hiv := Expr_Value (Hi);
07fc65c4 4517
3f5a8fee
AC
4518 -- Check if there is an others choice
4519
b748c3d1
EB
4520 Others_Present := False;
4521
3f5a8fee 4522 if Present (Component_Associations (N)) then
10c257af
ES
4523 if Is_Empty_List (Component_Associations (N)) then
4524 -- an expanded null array aggregate
4525 return False;
4526 end if;
4527
3f5a8fee
AC
4528 declare
4529 Assoc : Node_Id;
4530 Choice : Node_Id;
4531
4532 begin
4533 Assoc := First (Component_Associations (N));
4534 while Present (Assoc) loop
9f8d1e5c
AC
4535
4536 -- If this is a box association, flattening is in general
4537 -- not possible because at this point we cannot tell if the
4538 -- default is static or even exists.
4539
4540 if Box_Present (Assoc) then
4541 return False;
00f45f30
AC
4542
4543 elsif Nkind (Assoc) = N_Iterated_Component_Association then
4544 return False;
9f8d1e5c
AC
4545 end if;
4546
00f45f30 4547 Choice := First (Choice_List (Assoc));
3f5a8fee
AC
4548
4549 while Present (Choice) loop
4550 if Nkind (Choice) = N_Others_Choice then
4551 Others_Present := True;
4552 end if;
4553
4554 Next (Choice);
4555 end loop;
4556
4557 Next (Assoc);
4558 end loop;
4559 end;
4560 end if;
4561
4562 -- If the low bound is not known at compile time and others is not
4563 -- present we can proceed since the bounds can be obtained from the
4564 -- aggregate.
4565
fbf5a39b 4566 if Hiv < Lov
36a66365 4567 or else (not Compile_Time_Known_Value (Blo) and then Others_Present)
fbf5a39b
AC
4568 then
4569 return False;
4570 end if;
07fc65c4 4571
3b9fa2df
ES
4572 -- Determine if set of alternatives is suitable for conversion and
4573 -- build an array containing the values in sequence.
07fc65c4 4574
fbf5a39b
AC
4575 declare
4576 Vals : array (UI_To_Int (Lov) .. UI_To_Int (Hiv))
4577 of Node_Id := (others => Empty);
4578 -- The values in the aggregate sorted appropriately
07fc65c4 4579
fbf5a39b
AC
4580 Vlist : List_Id;
4581 -- Same data as Vals in list form
07fc65c4 4582
fbf5a39b
AC
4583 Rep_Count : Nat;
4584 -- Used to validate Max_Others_Replicate limit
07fc65c4 4585
841dd0f5 4586 Elmt : Node_Id;
b748c3d1 4587 Expr : Node_Id;
841dd0f5
AC
4588 Num : Int := UI_To_Int (Lov);
4589 Choice_Index : Int;
4590 Choice : Node_Id;
4591 Lo, Hi : Node_Id;
07fc65c4 4592
fbf5a39b
AC
4593 begin
4594 if Present (Expressions (N)) then
4595 Elmt := First (Expressions (N));
fbf5a39b 4596 while Present (Elmt) loop
b748c3d1
EB
4597 -- In the case of a multidimensional array, check that the
4598 -- aggregate can be recursively flattened.
4599
4600 if Cannot_Flatten_Next_Aggr (Elmt) then
fbf5a39b
AC
4601 return False;
4602 end if;
07fc65c4 4603
f537fc00 4604 -- Duplicate expression for each index it covers
1541ede1
ES
4605
4606 Vals (Num) := New_Copy_Tree (Elmt);
fbf5a39b 4607 Num := Num + 1;
07fc65c4 4608
fbf5a39b
AC
4609 Next (Elmt);
4610 end loop;
4611 end if;
07fc65c4 4612
fbf5a39b
AC
4613 if No (Component_Associations (N)) then
4614 return True;
4615 end if;
07fc65c4 4616
fbf5a39b 4617 Elmt := First (Component_Associations (N));
07fc65c4 4618
b748c3d1
EB
4619 Component_Loop : while Present (Elmt) loop
4620 Expr := Expression (Elmt);
4621
4622 -- In the case of a multidimensional array, check that the
4623 -- aggregate can be recursively flattened.
4624
4625 if Cannot_Flatten_Next_Aggr (Expr) then
fbf5a39b
AC
4626 return False;
4627 end if;
07fc65c4 4628
00f45f30 4629 Choice := First (Choice_List (Elmt));
fbf5a39b
AC
4630 Choice_Loop : while Present (Choice) loop
4631
4632 -- If we have an others choice, fill in the missing elements
4633 -- subject to the limit established by Max_Others_Replicate.
4634
4635 if Nkind (Choice) = N_Others_Choice then
4636 Rep_Count := 0;
4637
64a87aa5
EB
4638 -- If the expression involves a construct that generates
4639 -- a loop, we must generate individual assignments and
4640 -- no flattening is possible.
4641
b748c3d1 4642 if Nkind (Expr) = N_Quantified_Expression then
1f6237e3
ES
4643 return False;
4644 end if;
4645
fbf5a39b
AC
4646 for J in Vals'Range loop
4647 if No (Vals (J)) then
b748c3d1 4648 Vals (J) := New_Copy_Tree (Expr);
fbf5a39b
AC
4649 Rep_Count := Rep_Count + 1;
4650
4651 -- Check for maximum others replication. Note that
4652 -- we skip this test if either of the restrictions
b748c3d1 4653 -- No_Implicit_Loops or No_Elaboration_Code is
8926d369
AC
4654 -- active, if this is a preelaborable unit or
4655 -- a predefined unit, or if the unit must be
4656 -- placed in data memory. This also ensures that
d9819bbd
AC
4657 -- predefined units get the same level of constant
4658 -- folding in Ada 95 and Ada 2005, where their
4659 -- categorization has changed.
fbf5a39b
AC
4660
4661 declare
4662 P : constant Entity_Id :=
89beb653 4663 Cunit_Entity (Current_Sem_Unit);
fbf5a39b
AC
4664
4665 begin
f1e2bf65
EB
4666 -- Check if duplication is always OK and, if so,
4667 -- continue processing.
7f4c1903 4668
b748c3d1
EB
4669 if Restriction_Active (No_Implicit_Loops) then
4670 null;
4671
4672 -- If duplication is not always OK, continue
4673 -- only if either the element is static or is
4674 -- an aggregate (we already know it is OK).
4675
4676 elsif not Is_Static_Element (Elmt, Dims)
4677 and then Nkind (Expr) /= N_Aggregate
4678 then
4679 return False;
4680
4681 -- Check if duplication is OK for elaboration
4682 -- purposes and, if so, continue processing.
4683
4684 elsif Restriction_Active (No_Elaboration_Code)
d9819bbd
AC
4685 or else
4686 (Ekind (Current_Scope) = E_Package
b748c3d1
EB
4687 and then
4688 Static_Elaboration_Desired (Current_Scope))
fbf5a39b
AC
4689 or else Is_Preelaborated (P)
4690 or else (Ekind (P) = E_Package_Body
4691 and then
b748c3d1 4692 Is_Preelaborated (Spec_Entity (P)))
7f4c1903 4693 or else
8ab31c0c 4694 Is_Predefined_Unit (Get_Source_Unit (P))
fbf5a39b
AC
4695 then
4696 null;
6e937c1c 4697
b748c3d1
EB
4698 -- Otherwise, check that the replication count
4699 -- is not too high.
7f4c1903 4700
b748c3d1 4701 elsif Rep_Count > Max_Others_Replicate then
f1e2bf65 4702 return False;
fbf5a39b
AC
4703 end if;
4704 end;
4705 end if;
4706 end loop;
07fc65c4 4707
861e589e
ES
4708 if Rep_Count = 0
4709 and then Warn_On_Redundant_Constructs
4710 then
4711 Error_Msg_N ("there are no others?r?", Elmt);
4712 end if;
4713
fbf5a39b 4714 exit Component_Loop;
07fc65c4 4715
deeb1604 4716 -- Case of a subtype mark, identifier or expanded name
07fc65c4 4717
deeb1604 4718 elsif Is_Entity_Name (Choice)
fbf5a39b
AC
4719 and then Is_Type (Entity (Choice))
4720 then
4721 Lo := Type_Low_Bound (Etype (Choice));
4722 Hi := Type_High_Bound (Etype (Choice));
07fc65c4 4723
fbf5a39b 4724 -- Case of subtype indication
07fc65c4 4725
fbf5a39b
AC
4726 elsif Nkind (Choice) = N_Subtype_Indication then
4727 Lo := Low_Bound (Range_Expression (Constraint (Choice)));
4728 Hi := High_Bound (Range_Expression (Constraint (Choice)));
4729
4730 -- Case of a range
4731
4732 elsif Nkind (Choice) = N_Range then
4733 Lo := Low_Bound (Choice);
4734 Hi := High_Bound (Choice);
4735
4736 -- Normal subexpression case
4737
4738 else pragma Assert (Nkind (Choice) in N_Subexpr);
4739 if not Compile_Time_Known_Value (Choice) then
4740 return False;
4741
4742 else
841dd0f5 4743 Choice_Index := UI_To_Int (Expr_Value (Choice));
bdc193ba 4744
841dd0f5 4745 if Choice_Index in Vals'Range then
b748c3d1 4746 Vals (Choice_Index) := New_Copy_Tree (Expr);
841dd0f5
AC
4747 goto Continue;
4748
bdc193ba
AC
4749 -- Choice is statically out-of-range, will be
4750 -- rewritten to raise Constraint_Error.
841dd0f5 4751
bdc193ba 4752 else
841dd0f5
AC
4753 return False;
4754 end if;
07fc65c4 4755 end if;
fbf5a39b
AC
4756 end if;
4757
64425dff 4758 -- Range cases merge with Lo,Hi set
fbf5a39b
AC
4759
4760 if not Compile_Time_Known_Value (Lo)
4761 or else
4762 not Compile_Time_Known_Value (Hi)
4763 then
4764 return False;
bdc193ba 4765
fbf5a39b
AC
4766 else
4767 for J in UI_To_Int (Expr_Value (Lo)) ..
4768 UI_To_Int (Expr_Value (Hi))
4769 loop
b748c3d1 4770 Vals (J) := New_Copy_Tree (Expr);
fbf5a39b
AC
4771 end loop;
4772 end if;
07fc65c4 4773
fbf5a39b
AC
4774 <<Continue>>
4775 Next (Choice);
4776 end loop Choice_Loop;
07fc65c4 4777
fbf5a39b
AC
4778 Next (Elmt);
4779 end loop Component_Loop;
07fc65c4 4780
fbf5a39b 4781 -- If we get here the conversion is possible
07fc65c4 4782
fbf5a39b
AC
4783 Vlist := New_List;
4784 for J in Vals'Range loop
4785 Append (Vals (J), Vlist);
4786 end loop;
07fc65c4 4787
fbf5a39b
AC
4788 Rewrite (N, Make_Aggregate (Loc, Expressions => Vlist));
4789 Set_Aggregate_Bounds (N, Aggregate_Bounds (Original_Node (N)));
4790 return True;
4791 end;
4792 end Flatten;
07fc65c4 4793
fbf5a39b
AC
4794 -------------
4795 -- Is_Flat --
4796 -------------
07fc65c4 4797
b748c3d1 4798 function Is_Flat (N : Node_Id; Dims : Nat) return Boolean is
fbf5a39b 4799 Elmt : Node_Id;
07fc65c4 4800
fbf5a39b
AC
4801 begin
4802 if Dims = 0 then
4803 return True;
07fc65c4 4804
fbf5a39b
AC
4805 elsif Nkind (N) = N_Aggregate then
4806 if Present (Component_Associations (N)) then
4807 return False;
07fc65c4 4808
fbf5a39b
AC
4809 else
4810 Elmt := First (Expressions (N));
fbf5a39b
AC
4811 while Present (Elmt) loop
4812 if not Is_Flat (Elmt, Dims - 1) then
4813 return False;
07fc65c4 4814 end if;
07fc65c4 4815
fbf5a39b
AC
4816 Next (Elmt);
4817 end loop;
07fc65c4 4818
fbf5a39b
AC
4819 return True;
4820 end if;
4821 else
4822 return True;
4823 end if;
4824 end Is_Flat;
07fc65c4 4825
f1e2bf65
EB
4826 -------------------------
4827 -- Is_Static_Element --
4828 -------------------------
4829
b748c3d1 4830 function Is_Static_Element (N : Node_Id; Dims : Nat) return Boolean is
f1e2bf65
EB
4831 Expr : constant Node_Id := Expression (N);
4832
4833 begin
b748c3d1 4834 -- In most cases the interesting expressions are unambiguously static
f1e2bf65 4835
b748c3d1 4836 if Compile_Time_Known_Value (Expr) then
f1e2bf65
EB
4837 return True;
4838
4839 elsif Nkind (N) = N_Iterated_Component_Association then
4840 return False;
4841
4842 elsif Nkind (Expr) = N_Aggregate
4843 and then Compile_Time_Known_Aggregate (Expr)
4844 and then not Expansion_Delayed (Expr)
4845 then
4846 return True;
4847
b748c3d1
EB
4848 -- However, one may write static expressions that are syntactically
4849 -- ambiguous, so preanalyze the expression before checking it again,
4850 -- but only at the innermost level for a multidimensional array.
4851
4852 elsif Dims = 1 then
4853 Preanalyze_And_Resolve (Expr, Component_Type (Typ));
4854 return Compile_Time_Known_Value (Expr);
4855
f1e2bf65
EB
4856 else
4857 return False;
4858 end if;
4859 end Is_Static_Element;
4860
fbf5a39b 4861 -- Start of processing for Convert_To_Positional
07fc65c4 4862
fbf5a39b 4863 begin
6031f544
AC
4864 -- Only convert to positional when generating C in case of an
4865 -- object declaration, this is the only case where aggregates are
4866 -- supported in C.
4867
9f51b855 4868 if Modify_Tree_For_C and then not Is_CCG_Supported_Aggregate (N) then
6031f544
AC
4869 return;
4870 end if;
4871
0ab80019 4872 -- Ada 2005 (AI-287): Do not convert in case of default initialized
c45b6ae0
AC
4873 -- components because in this case will need to call the corresponding
4874 -- IP procedure.
4875
4876 if Has_Default_Init_Comps (N) then
4877 return;
4878 end if;
4879
d7db3f4f
ES
4880 -- A subaggregate may have been flattened but is not known to be
4881 -- Compile_Time_Known. Set that flag in cases that cannot require
4882 -- elaboration code, so that the aggregate can be used as the
4883 -- initial value of a thread-local variable.
4884
b748c3d1 4885 if Is_Flat (N, Dims) then
2a1838cd
EB
4886 if Static_Array_Aggregate (N) then
4887 Set_Compile_Time_Known_Aggregate (N);
d7db3f4f
ES
4888 end if;
4889
fbf5a39b
AC
4890 return;
4891 end if;
4892
36a66365 4893 if Is_Bit_Packed_Array (Typ) and then not Handle_Bit_Packed then
fbf5a39b
AC
4894 return;
4895 end if;
07fc65c4 4896
3b9fa2df
ES
4897 -- Do not convert to positional if controlled components are involved
4898 -- since these require special processing
07fc65c4 4899
fbf5a39b
AC
4900 if Has_Controlled_Component (Typ) then
4901 return;
4902 end if;
07fc65c4 4903
0f95b178
JM
4904 Check_Static_Components;
4905
4906 -- If the size is known, or all the components are static, try to
4907 -- build a fully positional aggregate.
4908
21d7ef70 4909 -- The size of the type may not be known for an aggregate with
0f95b178
JM
4910 -- discriminated array components, but if the components are static
4911 -- it is still possible to verify statically that the length is
4912 -- compatible with the upper bound of the type, and therefore it is
4913 -- worth flattening such aggregates as well.
4914
eaf6e63a 4915 if Aggr_Size_OK (N)
b748c3d1
EB
4916 and then
4917 Flatten (N, Dims, First_Index (Typ), First_Index (Base_Type (Typ)))
643a0839 4918 then
0f95b178
JM
4919 if Static_Components then
4920 Set_Compile_Time_Known_Aggregate (N);
4921 Set_Expansion_Delayed (N, False);
4922 end if;
4923
07fc65c4 4924 Analyze_And_Resolve (N, Typ);
fbf5a39b 4925 end if;
d9819bbd 4926
d74716b3 4927 -- If Static_Elaboration_Desired has been specified, diagnose aggregates
e6807723
AC
4928 -- that will still require initialization code.
4929
d9819bbd
AC
4930 if (Ekind (Current_Scope) = E_Package
4931 and then Static_Elaboration_Desired (Current_Scope))
4932 and then Nkind (Parent (N)) = N_Object_Declaration
4933 then
4934 declare
4935 Expr : Node_Id;
4936
4937 begin
e6807723 4938 if Nkind (N) = N_Aggregate and then Present (Expressions (N)) then
d9819bbd
AC
4939 Expr := First (Expressions (N));
4940 while Present (Expr) loop
c2ba82ad 4941 if not Compile_Time_Known_Value (Expr) then
8926d369 4942 Error_Msg_N
21d7ef70 4943 ("non-static object requires elaboration code??", N);
d9819bbd
AC
4944 exit;
4945 end if;
8926d369 4946
d9819bbd
AC
4947 Next (Expr);
4948 end loop;
4949
4950 if Present (Component_Associations (N)) then
324ac540 4951 Error_Msg_N ("object requires elaboration code??", N);
d9819bbd
AC
4952 end if;
4953 end if;
4954 end;
4955 end if;
07fc65c4
GB
4956 end Convert_To_Positional;
4957
70482933
RK
4958 ----------------------------
4959 -- Expand_Array_Aggregate --
4960 ----------------------------
4961
4962 -- Array aggregate expansion proceeds as follows:
4963
4964 -- 1. If requested we generate code to perform all the array aggregate
4965 -- bound checks, specifically
4966
4967 -- (a) Check that the index range defined by aggregate bounds is
4968 -- compatible with corresponding index subtype.
4969
4970 -- (b) If an others choice is present check that no aggregate
4971 -- index is outside the bounds of the index constraint.
4972
4973 -- (c) For multidimensional arrays make sure that all subaggregates
4974 -- corresponding to the same dimension have the same bounds.
4975
fbf5a39b 4976 -- 2. Check for packed array aggregate which can be converted to a
b465ef6f 4977 -- constant so that the aggregate disappears completely.
fbf5a39b
AC
4978
4979 -- 3. Check case of nested aggregate. Generally nested aggregates are
4980 -- handled during the processing of the parent aggregate.
4981
4982 -- 4. Check if the aggregate can be statically processed. If this is the
70482933
RK
4983 -- case pass it as is to Gigi. Note that a necessary condition for
4984 -- static processing is that the aggregate be fully positional.
4985
bc1146e5 4986 -- 5. If in-place aggregate expansion is possible (i.e. no need to create
70482933
RK
4987 -- a temporary) then mark the aggregate as such and return. Otherwise
4988 -- create a new temporary and generate the appropriate initialization
4989 -- code.
4990
4991 procedure Expand_Array_Aggregate (N : Node_Id) is
4992 Loc : constant Source_Ptr := Sloc (N);
4993
4994 Typ : constant Entity_Id := Etype (N);
4995 Ctyp : constant Entity_Id := Component_Type (Typ);
07fc65c4 4996 -- Typ is the correct constrained array subtype of the aggregate
70482933
RK
4997 -- Ctyp is the corresponding component type.
4998
4999 Aggr_Dimension : constant Pos := Number_Dimensions (Typ);
3cf3e5c6 5000 -- Number of aggregate index dimensions
70482933
RK
5001
5002 Aggr_Low : array (1 .. Aggr_Dimension) of Node_Id;
5003 Aggr_High : array (1 .. Aggr_Dimension) of Node_Id;
3cf3e5c6 5004 -- Low and High bounds of the constraint for each aggregate index
70482933
RK
5005
5006 Aggr_Index_Typ : array (1 .. Aggr_Dimension) of Entity_Id;
3cf3e5c6 5007 -- The type of each index
70482933 5008
ac43e11e 5009 In_Place_Assign_OK_For_Declaration : Boolean := False;
bc1146e5 5010 -- True if we are to generate an in-place assignment for a declaration
ac43e11e 5011
70482933
RK
5012 Maybe_In_Place_OK : Boolean;
5013 -- If the type is neither controlled nor packed and the aggregate
5014 -- is the expression in an assignment, assignment in place may be
5015 -- possible, provided other conditions are met on the LHS.
5016
07fc65c4 5017 Others_Present : array (1 .. Aggr_Dimension) of Boolean :=
15f0f591 5018 (others => False);
d74716b3
AC
5019 -- If Others_Present (J) is True, then there is an others choice in one
5020 -- of the subaggregates of N at dimension J.
70482933
RK
5021
5022 procedure Build_Constrained_Type (Positional : Boolean);
5023 -- If the subtype is not static or unconstrained, build a constrained
5024 -- type using the computable sizes of the aggregate and its sub-
5025 -- aggregates.
5026
7c4f3267 5027 procedure Check_Bounds (Aggr_Bounds_Node, Index_Bounds_Node : Node_Id);
70482933 5028 -- Checks that the bounds of Aggr_Bounds are within the bounds defined
3424f4c3
PT
5029 -- by Index_Bounds. For null array aggregate (Ada 2022) check that the
5030 -- aggregate bounds define a null range.
70482933
RK
5031
5032 procedure Check_Same_Aggr_Bounds (Sub_Aggr : Node_Id; Dim : Pos);
d74716b3
AC
5033 -- Checks that in a multidimensional array aggregate all subaggregates
5034 -- corresponding to the same dimension have the same bounds. Sub_Aggr is
5035 -- an array subaggregate. Dim is the dimension corresponding to the
5036 -- subaggregate.
70482933
RK
5037
5038 procedure Compute_Others_Present (Sub_Aggr : Node_Id; Dim : Pos);
d74716b3
AC
5039 -- Computes the values of array Others_Present. Sub_Aggr is the array
5040 -- subaggregate we start the computation from. Dim is the dimension
5041 -- corresponding to the subaggregate.
70482933 5042
70482933 5043 procedure Others_Check (Sub_Aggr : Node_Id; Dim : Pos);
d74716b3 5044 -- Checks that if an others choice is present in any subaggregate, no
70482933 5045 -- aggregate index is outside the bounds of the index constraint.
d74716b3
AC
5046 -- Sub_Aggr is an array subaggregate. Dim is the dimension corresponding
5047 -- to the subaggregate.
70482933 5048
8da337c5
AC
5049 function Safe_Left_Hand_Side (N : Node_Id) return Boolean;
5050 -- In addition to Maybe_In_Place_OK, in order for an aggregate to be
5051 -- built directly into the target of the assignment it must be free
6537318f 5052 -- of side effects. N is the LHS of an assignment.
8da337c5 5053
fe43084c
ES
5054 procedure Two_Pass_Aggregate_Expansion (N : Node_Id);
5055 -- If the aggregate consists only of iterated associations then the
5056 -- aggregate is constructed in two steps:
5057 -- a) Build an expression to compute the number of elements
5058 -- generated by each iterator, and use the expression to allocate
5059 -- the destination aggregate.
5060 -- b) Generate the loops corresponding to each iterator to insert
5061 -- the elements in their proper positions.
5062
70482933
RK
5063 ----------------------------
5064 -- Build_Constrained_Type --
5065 ----------------------------
5066
5067 procedure Build_Constrained_Type (Positional : Boolean) is
c8def50f 5068 Agg_Type : constant Entity_Id := Make_Temporary (Loc, 'A');
fbf5a39b 5069 Decl : Node_Id;
c8def50f 5070 Indexes : constant List_Id := New_List;
b3143037 5071 Num : Nat;
fbf5a39b 5072 Sub_Agg : Node_Id;
70482933
RK
5073
5074 begin
70482933
RK
5075 -- If the aggregate is purely positional, all its subaggregates
5076 -- have the same size. We collect the dimensions from the first
5077 -- subaggregate at each level.
5078
5079 if Positional then
5080 Sub_Agg := N;
5081
c8def50f 5082 for D in 1 .. Aggr_Dimension loop
c8c37d2b 5083 Num := List_Length (Expressions (Sub_Agg));
70482933 5084
deeb1604 5085 Append_To (Indexes,
70482933 5086 Make_Range (Loc,
c8def50f 5087 Low_Bound => Make_Integer_Literal (Loc, Uint_1),
191fcb3a 5088 High_Bound => Make_Integer_Literal (Loc, Num)));
c8c37d2b
PT
5089
5090 Sub_Agg := First (Expressions (Sub_Agg));
70482933
RK
5091 end loop;
5092
5093 else
3b9fa2df
ES
5094 -- We know the aggregate type is unconstrained and the aggregate
5095 -- is not processable by the back end, therefore not necessarily
5096 -- positional. Retrieve each dimension bounds (computed earlier).
70482933 5097
c8def50f 5098 for D in 1 .. Aggr_Dimension loop
37368818 5099 Append_To (Indexes,
70482933 5100 Make_Range (Loc,
37368818
RD
5101 Low_Bound => Aggr_Low (D),
5102 High_Bound => Aggr_High (D)));
70482933
RK
5103 end loop;
5104 end if;
5105
5106 Decl :=
5107 Make_Full_Type_Declaration (Loc,
5108 Defining_Identifier => Agg_Type,
bdc193ba 5109 Type_Definition =>
70482933 5110 Make_Constrained_Array_Definition (Loc,
deeb1604
AC
5111 Discrete_Subtype_Definitions => Indexes,
5112 Component_Definition =>
a397db96 5113 Make_Component_Definition (Loc,
a397db96
AC
5114 Subtype_Indication =>
5115 New_Occurrence_Of (Component_Type (Typ), Loc))));
70482933
RK
5116
5117 Insert_Action (N, Decl);
5118 Analyze (Decl);
5119 Set_Etype (N, Agg_Type);
5120 Set_Is_Itype (Agg_Type);
5121 Freeze_Itype (Agg_Type, N);
5122 end Build_Constrained_Type;
5123
5124 ------------------
5125 -- Check_Bounds --
5126 ------------------
5127
7c4f3267
BD
5128 procedure Check_Bounds (Aggr_Bounds_Node, Index_Bounds_Node : Node_Id) is
5129 Aggr_Bounds : constant Range_Nodes :=
5130 Get_Index_Bounds (Aggr_Bounds_Node);
5131 Ind_Bounds : constant Range_Nodes :=
5132 Get_Index_Bounds (Index_Bounds_Node);
70482933 5133
c8def50f 5134 Cond : Node_Id;
70482933
RK
5135
5136 begin
3424f4c3
PT
5137 -- For a null array aggregate check that high bound (i.e., low
5138 -- bound predecessor) exists. Fail if low bound is low bound of
5139 -- base subtype (in all cases, including modular).
5140
5141 if Is_Null_Aggregate (N) then
5142 Insert_Action (N,
5143 Make_Raise_Constraint_Error (Loc,
5144 Condition =>
5145 Make_Op_Eq (Loc,
5146 New_Copy_Tree (Aggr_Bounds.First),
5147 New_Copy_Tree
5148 (Type_Low_Bound (Base_Type (Etype (Ind_Bounds.First))))),
5149 Reason => CE_Range_Check_Failed));
5150 return;
5151 end if;
5152
70482933 5153 -- Generate the following test:
bdc193ba 5154
70482933 5155 -- [constraint_error when
7c4f3267
BD
5156 -- Aggr_Bounds.First <= Aggr_Bounds.Last and then
5157 -- (Aggr_Bounds.First < Ind_Bounds.First
5158 -- or else Aggr_Bounds.Last > Ind_Bounds.Last)]
3b9fa2df 5159
641d3093 5160 -- As an optimization try to see if some tests are trivially vacuous
70482933
RK
5161 -- because we are comparing an expression against itself.
5162
7c4f3267
BD
5163 if Aggr_Bounds.First = Ind_Bounds.First
5164 and then Aggr_Bounds.Last = Ind_Bounds.Last
5165 then
70482933
RK
5166 Cond := Empty;
5167
7c4f3267 5168 elsif Aggr_Bounds.Last = Ind_Bounds.Last then
70482933
RK
5169 Cond :=
5170 Make_Op_Lt (Loc,
7c4f3267
BD
5171 Left_Opnd =>
5172 Duplicate_Subexpr_Move_Checks (Aggr_Bounds.First),
5173 Right_Opnd =>
5174 Duplicate_Subexpr_Move_Checks (Ind_Bounds.First));
70482933 5175
7c4f3267 5176 elsif Aggr_Bounds.First = Ind_Bounds.First then
70482933
RK
5177 Cond :=
5178 Make_Op_Gt (Loc,
7c4f3267
BD
5179 Left_Opnd => Duplicate_Subexpr_Move_Checks (Aggr_Bounds.Last),
5180 Right_Opnd => Duplicate_Subexpr_Move_Checks (Ind_Bounds.Last));
70482933
RK
5181
5182 else
5183 Cond :=
5184 Make_Or_Else (Loc,
5185 Left_Opnd =>
5186 Make_Op_Lt (Loc,
7c4f3267
BD
5187 Left_Opnd =>
5188 Duplicate_Subexpr_Move_Checks (Aggr_Bounds.First),
5189 Right_Opnd =>
5190 Duplicate_Subexpr_Move_Checks (Ind_Bounds.First)),
70482933
RK
5191
5192 Right_Opnd =>
5193 Make_Op_Gt (Loc,
7c4f3267
BD
5194 Left_Opnd => Duplicate_Subexpr (Aggr_Bounds.Last),
5195 Right_Opnd => Duplicate_Subexpr (Ind_Bounds.Last)));
70482933
RK
5196 end if;
5197
5198 if Present (Cond) then
5199 Cond :=
5200 Make_And_Then (Loc,
5201 Left_Opnd =>
5202 Make_Op_Le (Loc,
7c4f3267
BD
5203 Left_Opnd =>
5204 Duplicate_Subexpr_Move_Checks (Aggr_Bounds.First),
5205 Right_Opnd =>
5206 Duplicate_Subexpr_Move_Checks (Aggr_Bounds.Last)),
70482933
RK
5207
5208 Right_Opnd => Cond);
5209
5210 Set_Analyzed (Left_Opnd (Left_Opnd (Cond)), False);
5211 Set_Analyzed (Right_Opnd (Left_Opnd (Cond)), False);
5212 Insert_Action (N,
07fc65c4
GB
5213 Make_Raise_Constraint_Error (Loc,
5214 Condition => Cond,
8fdafe44 5215 Reason => CE_Range_Check_Failed));
70482933
RK
5216 end if;
5217 end Check_Bounds;
5218
5219 ----------------------------
5220 -- Check_Same_Aggr_Bounds --
5221 ----------------------------
5222
5223 procedure Check_Same_Aggr_Bounds (Sub_Aggr : Node_Id; Dim : Pos) is
8ba0b4cf
PT
5224 Sub_Bounds : constant Range_Nodes :=
5225 Get_Index_Bounds (Aggregate_Bounds (Sub_Aggr));
10c257af
ES
5226 Sub_Lo : Node_Id renames Sub_Bounds.First;
5227 Sub_Hi : Node_Id renames Sub_Bounds.Last;
d74716b3 5228 -- The bounds of this specific subaggregate
70482933
RK
5229
5230 Aggr_Lo : constant Node_Id := Aggr_Low (Dim);
5231 Aggr_Hi : constant Node_Id := Aggr_High (Dim);
5232 -- The bounds of the aggregate for this dimension
5233
5234 Ind_Typ : constant Entity_Id := Aggr_Index_Typ (Dim);
3cf3e5c6 5235 -- The index type for this dimension.xxx
70482933 5236
8ba0b4cf 5237 Cond : Node_Id;
fbf5a39b
AC
5238 Assoc : Node_Id;
5239 Expr : Node_Id;
70482933
RK
5240
5241 begin
5242 -- If index checks are on generate the test
3b9fa2df 5243
70482933
RK
5244 -- [constraint_error when
5245 -- Aggr_Lo /= Sub_Lo or else Aggr_Hi /= Sub_Hi]
3b9fa2df 5246
70482933
RK
5247 -- As an optimization try to see if some tests are trivially vacuos
5248 -- because we are comparing an expression against itself. Also for
5249 -- the first dimension the test is trivially vacuous because there
5250 -- is just one aggregate for dimension 1.
5251
5252 if Index_Checks_Suppressed (Ind_Typ) then
5253 Cond := Empty;
5254
bdc193ba 5255 elsif Dim = 1 or else (Aggr_Lo = Sub_Lo and then Aggr_Hi = Sub_Hi)
70482933
RK
5256 then
5257 Cond := Empty;
5258
5259 elsif Aggr_Hi = Sub_Hi then
5260 Cond :=
5261 Make_Op_Ne (Loc,
fbf5a39b
AC
5262 Left_Opnd => Duplicate_Subexpr_Move_Checks (Aggr_Lo),
5263 Right_Opnd => Duplicate_Subexpr_Move_Checks (Sub_Lo));
70482933
RK
5264
5265 elsif Aggr_Lo = Sub_Lo then
5266 Cond :=
5267 Make_Op_Ne (Loc,
fbf5a39b
AC
5268 Left_Opnd => Duplicate_Subexpr_Move_Checks (Aggr_Hi),
5269 Right_Opnd => Duplicate_Subexpr_Move_Checks (Sub_Hi));
70482933
RK
5270
5271 else
5272 Cond :=
5273 Make_Or_Else (Loc,
5274 Left_Opnd =>
5275 Make_Op_Ne (Loc,
fbf5a39b
AC
5276 Left_Opnd => Duplicate_Subexpr_Move_Checks (Aggr_Lo),
5277 Right_Opnd => Duplicate_Subexpr_Move_Checks (Sub_Lo)),
70482933
RK
5278
5279 Right_Opnd =>
5280 Make_Op_Ne (Loc,
5281 Left_Opnd => Duplicate_Subexpr (Aggr_Hi),
5282 Right_Opnd => Duplicate_Subexpr (Sub_Hi)));
5283 end if;
5284
5285 if Present (Cond) then
5286 Insert_Action (N,
07fc65c4
GB
5287 Make_Raise_Constraint_Error (Loc,
5288 Condition => Cond,
5289 Reason => CE_Length_Check_Failed));
70482933
RK
5290 end if;
5291
d74716b3 5292 -- Now look inside the subaggregate to see if there is more work
70482933
RK
5293
5294 if Dim < Aggr_Dimension then
5295
5296 -- Process positional components
5297
5298 if Present (Expressions (Sub_Aggr)) then
5299 Expr := First (Expressions (Sub_Aggr));
5300 while Present (Expr) loop
5301 Check_Same_Aggr_Bounds (Expr, Dim + 1);
5302 Next (Expr);
5303 end loop;
5304 end if;
5305
5306 -- Process component associations
5307
5308 if Present (Component_Associations (Sub_Aggr)) then
5309 Assoc := First (Component_Associations (Sub_Aggr));
5310 while Present (Assoc) loop
5311 Expr := Expression (Assoc);
5312 Check_Same_Aggr_Bounds (Expr, Dim + 1);
5313 Next (Assoc);
5314 end loop;
5315 end if;
5316 end if;
5317 end Check_Same_Aggr_Bounds;
5318
5319 ----------------------------
5320 -- Compute_Others_Present --
5321 ----------------------------
5322
5323 procedure Compute_Others_Present (Sub_Aggr : Node_Id; Dim : Pos) is
fbf5a39b
AC
5324 Assoc : Node_Id;
5325 Expr : Node_Id;
70482933
RK
5326
5327 begin
5328 if Present (Component_Associations (Sub_Aggr)) then
5329 Assoc := Last (Component_Associations (Sub_Aggr));
07fc65c4 5330
10c257af
ES
5331 if Present (Assoc)
5332 and then Nkind (First (Choice_List (Assoc))) = N_Others_Choice
5333 then
70482933 5334 Others_Present (Dim) := True;
e84d25c9
ES
5335
5336 -- An others_clause may be superfluous if previous components
5337 -- cover the full given range of a constrained array. In such
5338 -- a case an others_clause does not contribute any additional
5339 -- components and has not been analyzed. We analyze it now to
5340 -- detect type errors in the expression, even though no code
5341 -- will be generated for it.
5342
5343 if Dim = Aggr_Dimension
5344 and then Nkind (Assoc) /= N_Iterated_Component_Association
5345 and then not Analyzed (Expression (Assoc))
5346 and then not Box_Present (Assoc)
5347 then
5348 Preanalyze_And_Resolve (Expression (Assoc), Ctyp);
5349 end if;
70482933
RK
5350 end if;
5351 end if;
5352
d74716b3 5353 -- Now look inside the subaggregate to see if there is more work
70482933
RK
5354
5355 if Dim < Aggr_Dimension then
5356
5357 -- Process positional components
5358
5359 if Present (Expressions (Sub_Aggr)) then
5360 Expr := First (Expressions (Sub_Aggr));
5361 while Present (Expr) loop
5362 Compute_Others_Present (Expr, Dim + 1);
5363 Next (Expr);
5364 end loop;
5365 end if;
5366
5367 -- Process component associations
5368
5369 if Present (Component_Associations (Sub_Aggr)) then
5370 Assoc := First (Component_Associations (Sub_Aggr));
5371 while Present (Assoc) loop
5372 Expr := Expression (Assoc);
5373 Compute_Others_Present (Expr, Dim + 1);
5374 Next (Assoc);
5375 end loop;
5376 end if;
5377 end if;
5378 end Compute_Others_Present;
5379
70482933
RK
5380 ------------------
5381 -- Others_Check --
5382 ------------------
5383
5384 procedure Others_Check (Sub_Aggr : Node_Id; Dim : Pos) is
5385 Aggr_Lo : constant Node_Id := Aggr_Low (Dim);
5386 Aggr_Hi : constant Node_Id := Aggr_High (Dim);
3cf3e5c6 5387 -- The bounds of the aggregate for this dimension
70482933
RK
5388
5389 Ind_Typ : constant Entity_Id := Aggr_Index_Typ (Dim);
3cf3e5c6 5390 -- The index type for this dimension
70482933
RK
5391
5392 Need_To_Check : Boolean := False;
5393
5394 Choices_Lo : Node_Id := Empty;
5395 Choices_Hi : Node_Id := Empty;
d74716b3 5396 -- The lowest and highest discrete choices for a named subaggregate
70482933
RK
5397
5398 Nb_Choices : Int := -1;
d74716b3 5399 -- The number of discrete non-others choices in this subaggregate
70482933
RK
5400
5401 Nb_Elements : Uint := Uint_0;
5402 -- The number of elements in a positional aggregate
5403
5404 Cond : Node_Id := Empty;
5405
5406 Assoc : Node_Id;
5407 Choice : Node_Id;
5408 Expr : Node_Id;
5409
5410 begin
5411 -- Check if we have an others choice. If we do make sure that this
d74716b3 5412 -- subaggregate contains at least one element in addition to the
70482933
RK
5413 -- others choice.
5414
5415 if Range_Checks_Suppressed (Ind_Typ) then
5416 Need_To_Check := False;
5417
5418 elsif Present (Expressions (Sub_Aggr))
5419 and then Present (Component_Associations (Sub_Aggr))
5420 then
10c257af
ES
5421 Need_To_Check :=
5422 not (Is_Empty_List (Expressions (Sub_Aggr))
5423 and then Is_Empty_List
5424 (Component_Associations (Sub_Aggr)));
70482933
RK
5425
5426 elsif Present (Component_Associations (Sub_Aggr)) then
5427 Assoc := Last (Component_Associations (Sub_Aggr));
5428
00f45f30 5429 if Nkind (First (Choice_List (Assoc))) /= N_Others_Choice then
70482933
RK
5430 Need_To_Check := False;
5431
5432 else
3b9fa2df
ES
5433 -- Count the number of discrete choices. Start with -1 because
5434 -- the others choice does not count.
70482933 5435
bdc193ba
AC
5436 -- Is there some reason we do not use List_Length here ???
5437
70482933
RK
5438 Nb_Choices := -1;
5439 Assoc := First (Component_Associations (Sub_Aggr));
5440 while Present (Assoc) loop
00f45f30 5441 Choice := First (Choice_List (Assoc));
70482933
RK
5442 while Present (Choice) loop
5443 Nb_Choices := Nb_Choices + 1;
5444 Next (Choice);
5445 end loop;
5446
5447 Next (Assoc);
5448 end loop;
5449
5450 -- If there is only an others choice nothing to do
5451
5452 Need_To_Check := (Nb_Choices > 0);
5453 end if;
5454
5455 else
5456 Need_To_Check := False;
5457 end if;
5458
d74716b3 5459 -- If we are dealing with a positional subaggregate with an others
3b9fa2df 5460 -- choice then compute the number or positional elements.
70482933
RK
5461
5462 if Need_To_Check and then Present (Expressions (Sub_Aggr)) then
5463 Expr := First (Expressions (Sub_Aggr));
5464 Nb_Elements := Uint_0;
5465 while Present (Expr) loop
5466 Nb_Elements := Nb_Elements + 1;
5467 Next (Expr);
5468 end loop;
5469
5470 -- If the aggregate contains discrete choices and an others choice
5471 -- compute the smallest and largest discrete choice values.
5472
5473 elsif Need_To_Check then
5474 Compute_Choices_Lo_And_Choices_Hi : declare
07fc65c4 5475
70482933
RK
5476 Table : Case_Table_Type (1 .. Nb_Choices);
5477 -- Used to sort all the different choice values
5478
07fc65c4 5479 J : Pos := 1;
70482933
RK
5480
5481 begin
5482 Assoc := First (Component_Associations (Sub_Aggr));
5483 while Present (Assoc) loop
00f45f30 5484 Choice := First (Choice_List (Assoc));
70482933
RK
5485 while Present (Choice) loop
5486 if Nkind (Choice) = N_Others_Choice then
5487 exit;
5488 end if;
5489
7c4f3267
BD
5490 declare
5491 Bounds : constant Range_Nodes :=
5492 Get_Index_Bounds (Choice);
5493 begin
5494 Table (J).Choice_Lo := Bounds.First;
5495 Table (J).Choice_Hi := Bounds.Last;
5496 end;
70482933 5497
07fc65c4 5498 J := J + 1;
70482933
RK
5499 Next (Choice);
5500 end loop;
5501
5502 Next (Assoc);
5503 end loop;
5504
5505 -- Sort the discrete choices
5506
5507 Sort_Case_Table (Table);
5508
5509 Choices_Lo := Table (1).Choice_Lo;
5510 Choices_Hi := Table (Nb_Choices).Choice_Hi;
5511 end Compute_Choices_Lo_And_Choices_Hi;
5512 end if;
5513
d74716b3 5514 -- If no others choice in this subaggregate, or the aggregate
70482933
RK
5515 -- comprises only an others choice, nothing to do.
5516
5517 if not Need_To_Check then
5518 Cond := Empty;
5519
3b9fa2df
ES
5520 -- If we are dealing with an aggregate containing an others choice
5521 -- and positional components, we generate the following test:
5522
70482933
RK
5523 -- if Ind_Typ'Pos (Aggr_Lo) + (Nb_Elements - 1) >
5524 -- Ind_Typ'Pos (Aggr_Hi)
5525 -- then
5526 -- raise Constraint_Error;
5527 -- end if;
5528
6a987d78
EB
5529 -- in the general case, but the following simpler test:
5530
5531 -- [constraint_error when
5532 -- Aggr_Lo + (Nb_Elements - 1) > Aggr_Hi];
5533
5534 -- instead if the index type is a signed integer.
5535
70482933 5536 elsif Nb_Elements > Uint_0 then
6a987d78
EB
5537 if Nb_Elements = Uint_1 then
5538 Cond :=
5539 Make_Op_Gt (Loc,
5540 Left_Opnd => Duplicate_Subexpr_Move_Checks (Aggr_Lo),
5541 Right_Opnd => Duplicate_Subexpr_Move_Checks (Aggr_Hi));
5542
5543 elsif Is_Signed_Integer_Type (Ind_Typ) then
5544 Cond :=
5545 Make_Op_Gt (Loc,
5546 Left_Opnd =>
5547 Make_Op_Add (Loc,
5548 Left_Opnd => Duplicate_Subexpr_Move_Checks (Aggr_Lo),
5549 Right_Opnd =>
5550 Make_Integer_Literal (Loc, Nb_Elements - 1)),
5551 Right_Opnd => Duplicate_Subexpr_Move_Checks (Aggr_Hi));
70482933 5552
6a987d78
EB
5553 else
5554 Cond :=
5555 Make_Op_Gt (Loc,
5556 Left_Opnd =>
5557 Make_Op_Add (Loc,
5558 Left_Opnd =>
5559 Make_Attribute_Reference (Loc,
5560 Prefix => New_Occurrence_Of (Ind_Typ, Loc),
5561 Attribute_Name => Name_Pos,
5562 Expressions =>
5563 New_List
5564 (Duplicate_Subexpr_Move_Checks (Aggr_Lo))),
5565 Right_Opnd => Make_Integer_Literal (Loc, Nb_Elements - 1)),
5566
5567 Right_Opnd =>
5568 Make_Attribute_Reference (Loc,
5569 Prefix => New_Occurrence_Of (Ind_Typ, Loc),
5570 Attribute_Name => Name_Pos,
5571 Expressions => New_List (
5572 Duplicate_Subexpr_Move_Checks (Aggr_Hi))));
5573 end if;
70482933 5574
3b9fa2df
ES
5575 -- If we are dealing with an aggregate containing an others choice
5576 -- and discrete choices we generate the following test:
5577
70482933
RK
5578 -- [constraint_error when
5579 -- Choices_Lo < Aggr_Lo or else Choices_Hi > Aggr_Hi];
5580
5581 else
5582 Cond :=
5583 Make_Or_Else (Loc,
5584 Left_Opnd =>
5585 Make_Op_Lt (Loc,
bdc193ba
AC
5586 Left_Opnd => Duplicate_Subexpr_Move_Checks (Choices_Lo),
5587 Right_Opnd => Duplicate_Subexpr_Move_Checks (Aggr_Lo)),
70482933
RK
5588
5589 Right_Opnd =>
5590 Make_Op_Gt (Loc,
bdc193ba
AC
5591 Left_Opnd => Duplicate_Subexpr (Choices_Hi),
5592 Right_Opnd => Duplicate_Subexpr (Aggr_Hi)));
70482933
RK
5593 end if;
5594
5595 if Present (Cond) then
5596 Insert_Action (N,
07fc65c4
GB
5597 Make_Raise_Constraint_Error (Loc,
5598 Condition => Cond,
5599 Reason => CE_Length_Check_Failed));
641d3093
TQ
5600 -- Questionable reason code, shouldn't that be a
5601 -- CE_Range_Check_Failed ???
70482933
RK
5602 end if;
5603
d74716b3 5604 -- Now look inside the subaggregate to see if there is more work
70482933
RK
5605
5606 if Dim < Aggr_Dimension then
5607
5608 -- Process positional components
5609
5610 if Present (Expressions (Sub_Aggr)) then
5611 Expr := First (Expressions (Sub_Aggr));
5612 while Present (Expr) loop
5613 Others_Check (Expr, Dim + 1);
5614 Next (Expr);
5615 end loop;
5616 end if;
5617
5618 -- Process component associations
5619
5620 if Present (Component_Associations (Sub_Aggr)) then
5621 Assoc := First (Component_Associations (Sub_Aggr));
5622 while Present (Assoc) loop
5623 Expr := Expression (Assoc);
5624 Others_Check (Expr, Dim + 1);
5625 Next (Assoc);
5626 end loop;
5627 end if;
5628 end if;
5629 end Others_Check;
5630
8da337c5
AC
5631 -------------------------
5632 -- Safe_Left_Hand_Side --
5633 -------------------------
5634
5635 function Safe_Left_Hand_Side (N : Node_Id) return Boolean is
deeb1604
AC
5636 function Is_Safe_Index (Indx : Node_Id) return Boolean;
5637 -- If the left-hand side includes an indexed component, check that
d74716b3 5638 -- the indexes are free of side effects.
deeb1604
AC
5639
5640 -------------------
5641 -- Is_Safe_Index --
5642 -------------------
5643
5644 function Is_Safe_Index (Indx : Node_Id) return Boolean is
5645 begin
5646 if Is_Entity_Name (Indx) then
5647 return True;
5648
5649 elsif Nkind (Indx) = N_Integer_Literal then
5650 return True;
5651
5652 elsif Nkind (Indx) = N_Function_Call
5653 and then Is_Entity_Name (Name (Indx))
36a66365 5654 and then Has_Pragma_Pure_Function (Entity (Name (Indx)))
deeb1604
AC
5655 then
5656 return True;
5657
5658 elsif Nkind (Indx) = N_Type_Conversion
5659 and then Is_Safe_Index (Expression (Indx))
5660 then
5661 return True;
5662
5663 else
5664 return False;
5665 end if;
5666 end Is_Safe_Index;
5667
5668 -- Start of processing for Safe_Left_Hand_Side
5669
8da337c5
AC
5670 begin
5671 if Is_Entity_Name (N) then
5672 return True;
5673
4a08c95c 5674 elsif Nkind (N) in N_Explicit_Dereference | N_Selected_Component
8da337c5
AC
5675 and then Safe_Left_Hand_Side (Prefix (N))
5676 then
5677 return True;
5678
5679 elsif Nkind (N) = N_Indexed_Component
5680 and then Safe_Left_Hand_Side (Prefix (N))
36a66365 5681 and then Is_Safe_Index (First (Expressions (N)))
8da337c5
AC
5682 then
5683 return True;
deeb1604
AC
5684
5685 elsif Nkind (N) = N_Unchecked_Type_Conversion then
5686 return Safe_Left_Hand_Side (Expression (N));
5687
8da337c5
AC
5688 else
5689 return False;
5690 end if;
5691 end Safe_Left_Hand_Side;
5692
fe43084c
ES
5693 ----------------------------------
5694 -- Two_Pass_Aggregate_Expansion --
5695 ----------------------------------
5696
5697 procedure Two_Pass_Aggregate_Expansion (N : Node_Id) is
5698 Loc : constant Source_Ptr := Sloc (N);
5699 Comp_Type : constant Entity_Id := Etype (N);
5700 Index_Id : constant Entity_Id := Make_Temporary (Loc, 'I', N);
5701 Index_Type : constant Entity_Id := Etype (First_Index (Etype (N)));
5702 Size_Id : constant Entity_Id := Make_Temporary (Loc, 'I', N);
5703 TmpE : constant Entity_Id := Make_Temporary (Loc, 'A', N);
5704
5705 Assoc : Node_Id := First (Component_Associations (N));
5706 Incr : Node_Id;
5707 Iter : Node_Id;
5708 New_Comp : Node_Id;
5709 One_Loop : Node_Id;
5710
5711 Size_Expr_Code : List_Id;
5712 Insertion_Code : List_Id := New_List;
5713
5714 begin
5715 Size_Expr_Code := New_List (
5716 Make_Object_Declaration (Loc,
5717 Defining_Identifier => Size_Id,
5718 Object_Definition => New_Occurrence_Of (Standard_Integer, Loc),
5719 Expression => Make_Integer_Literal (Loc, 0)));
5720
5721 -- First pass: execute the iterators to count the number of elements
5722 -- that will be generated.
5723
5724 while Present (Assoc) loop
5725 Iter := Iterator_Specification (Assoc);
5726 Incr := Make_Assignment_Statement (Loc,
5727 Name => New_Occurrence_Of (Size_Id, Loc),
5728 Expression =>
5729 Make_Op_Add (Loc,
5730 Left_Opnd => New_Occurrence_Of (Size_Id, Loc),
5731 Right_Opnd => Make_Integer_Literal (Loc, 1)));
5732
f3561c06 5733 One_Loop := Make_Implicit_Loop_Statement (N,
fe43084c
ES
5734 Iteration_Scheme =>
5735 Make_Iteration_Scheme (Loc,
08613129 5736 Iterator_Specification => New_Copy_Tree (Iter)),
fe43084c
ES
5737 Statements => New_List (Incr));
5738
5739 Append (One_Loop, Size_Expr_Code);
5740 Next (Assoc);
5741 end loop;
5742
5743 Insert_Actions (N, Size_Expr_Code);
5744
5745 -- Build a constrained subtype with the calculated length
5746 -- and declare the proper bounded aggregate object.
5747 -- The index type is some discrete type, so the bounds of the
5748 -- constructed array are computed as T'Val (T'Pos (ineger bound));
5749
5750 declare
5751 Pos_Lo : constant Node_Id :=
5752 Make_Attribute_Reference (Loc,
5753 Prefix => New_Occurrence_Of (Index_Type, Loc),
5754 Attribute_Name => Name_Pos,
5755 Expressions => New_List (
5756 Make_Attribute_Reference (Loc,
5757 Prefix => New_Occurrence_Of (Index_Type, Loc),
5758 Attribute_Name => Name_First)));
5759
5760 Aggr_Lo : constant Node_Id :=
5761 Make_Attribute_Reference (Loc,
5762 Prefix => New_Occurrence_Of (Index_Type, Loc),
5763 Attribute_Name => Name_Val,
5764 Expressions => New_List (New_Copy_Tree (Pos_Lo)));
5765
5766 -- Hi = Index_type'Pos (Lo + Size -1).
5767
5768 Pos_Hi : constant Node_Id :=
5769 Make_Op_Add (Loc,
5770 Left_Opnd => New_Copy_Tree (Pos_Lo),
5771 Right_Opnd =>
5772 Make_Op_Subtract (Loc,
5773 Left_Opnd => New_Occurrence_Of (Size_Id, Loc),
5774 Right_Opnd => Make_Integer_Literal (Loc, 1)));
5775
5776 -- Corresponding index value
5777
5778 Aggr_Hi : constant Node_Id :=
5779 Make_Attribute_Reference (Loc,
5780 Prefix => New_Occurrence_Of (Index_Type, Loc),
5781 Attribute_Name => Name_Val,
5782 Expressions => New_List (New_Copy_Tree (Pos_Hi)));
5783
5784 SubE : constant Entity_Id := Make_Temporary (Loc, 'T');
5785 SubD : constant Node_Id :=
5786 Make_Subtype_Declaration (Loc,
5787 Defining_Identifier => SubE,
5788 Subtype_Indication =>
5789 Make_Subtype_Indication (Loc,
5790 Subtype_Mark =>
5791 New_Occurrence_Of (Etype (Comp_Type), Loc),
5792 Constraint =>
5793 Make_Index_Or_Discriminant_Constraint
5794 (Loc,
5795 Constraints =>
5796 New_List (Make_Range (Loc, Aggr_Lo, Aggr_Hi)))));
5797
5798 -- Create a temporary array of the above subtype which
5799 -- will be used to capture the aggregate assignments.
5800
5801 TmpD : constant Node_Id :=
5802 Make_Object_Declaration (Loc,
5803 Defining_Identifier => TmpE,
5804 Object_Definition => New_Occurrence_Of (SubE, Loc));
5805 begin
5806 Insert_Actions (N, New_List (SubD, TmpD));
5807 end;
5808
5809 -- Second pass: use the iterators to generate the elements of the
5810 -- aggregate. Insertion index starts at Index_Type'First. We
5811 -- assume that the second evaluation of each iterator generates
5812 -- the same number of elements as the first pass, and consider
5813 -- that the execution is erroneous (even if the RM does not state
5814 -- this explicitly) if the number of elements generated differs
5815 -- between first and second pass.
5816
5817 Assoc := First (Component_Associations (N));
5818
5819 -- Initialize insertion position to first array component.
5820
5821 Insertion_Code := New_List (
5822 Make_Object_Declaration (Loc,
5823 Defining_Identifier => Index_Id,
5824 Object_Definition =>
5825 New_Occurrence_Of (Index_Type, Loc),
5826 Expression =>
5827 Make_Attribute_Reference (Loc,
5828 Prefix => New_Occurrence_Of (Index_Type, Loc),
5829 Attribute_Name => Name_First)));
5830
5831 while Present (Assoc) loop
5832 Iter := Iterator_Specification (Assoc);
5833 New_Comp := Make_Assignment_Statement (Loc,
5834 Name =>
5835 Make_Indexed_Component (Loc,
5836 Prefix => New_Occurrence_Of (TmpE, Loc),
5837 Expressions =>
5838 New_List (New_Occurrence_Of (Index_Id, Loc))),
d983abeb 5839 Expression => Copy_Separate_Tree (Expression (Assoc)));
fe43084c
ES
5840
5841 -- Advance index position for insertion.
5842
5843 Incr := Make_Assignment_Statement (Loc,
5844 Name => New_Occurrence_Of (Index_Id, Loc),
5845 Expression =>
5846 Make_Attribute_Reference (Loc,
5847 Prefix =>
5848 New_Occurrence_Of (Index_Type, Loc),
5849 Attribute_Name => Name_Succ,
5850 Expressions =>
5851 New_List (New_Occurrence_Of (Index_Id, Loc))));
5852
8b1a5da3
ES
5853 -- Add guard to skip last increment when upper bound is reached.
5854
5855 Incr := Make_If_Statement (Loc,
5856 Condition =>
5857 Make_Op_Ne (Loc,
5858 Left_Opnd => New_Occurrence_Of (Index_Id, Loc),
5859 Right_Opnd =>
5860 Make_Attribute_Reference (Loc,
5861 Prefix => New_Occurrence_Of (Index_Type, Loc),
5862 Attribute_Name => Name_Last)),
5863 Then_Statements => New_List (Incr));
5864
f3561c06 5865 One_Loop := Make_Implicit_Loop_Statement (N,
fe43084c
ES
5866 Iteration_Scheme =>
5867 Make_Iteration_Scheme (Loc,
08613129 5868 Iterator_Specification => Copy_Separate_Tree (Iter)),
fe43084c
ES
5869 Statements => New_List (New_Comp, Incr));
5870
5871 Append (One_Loop, Insertion_Code);
5872 Next (Assoc);
5873 end loop;
5874
5875 Insert_Actions (N, Insertion_Code);
5876
5877 -- Depending on context this may not work for build-in-place
5878 -- arrays ???
5879
5880 Rewrite (N, New_Occurrence_Of (TmpE, Loc));
5881
5882 end Two_Pass_Aggregate_Expansion;
5883
8da337c5 5884 -- Local variables
70482933
RK
5885
5886 Tmp : Entity_Id;
fbf5a39b 5887 -- Holds the temporary aggregate value
70482933
RK
5888
5889 Tmp_Decl : Node_Id;
fbf5a39b 5890 -- Holds the declaration of Tmp
70482933
RK
5891
5892 Aggr_Code : List_Id;
5893 Parent_Node : Node_Id;
5894 Parent_Kind : Node_Kind;
5895
5896 -- Start of processing for Expand_Array_Aggregate
5897
5898 begin
5899 -- Do not touch the special aggregates of attributes used for Asm calls
5900
5901 if Is_RTE (Ctyp, RE_Asm_Input_Operand)
5902 or else Is_RTE (Ctyp, RE_Asm_Output_Operand)
5903 then
5904 return;
4a1bfefb 5905
fe43084c 5906 elsif Present (Component_Associations (N))
8b1a5da3
ES
5907 and then Nkind (First (Component_Associations (N))) =
5908 N_Iterated_Component_Association
5909 and then
5910 Present (Iterator_Specification (First (Component_Associations (N))))
fe43084c
ES
5911 then
5912 Two_Pass_Aggregate_Expansion (N);
5913 return;
5914
f5655e4a
AC
5915 -- Do not attempt expansion if error already detected. We may reach this
5916 -- point in spite of previous errors when compiling with -gnatq, to
5917 -- force all possible errors (this is the usual ACATS mode).
5918
5919 elsif Error_Posted (N) then
5920 return;
70482933
RK
5921 end if;
5922
07fc65c4 5923 -- If the semantic analyzer has determined that aggregate N will raise
e7c0dd39 5924 -- Constraint_Error at run time, then the aggregate node has been
07fc65c4
GB
5925 -- replaced with an N_Raise_Constraint_Error node and we should
5926 -- never get here.
70482933
RK
5927
5928 pragma Assert (not Raises_Constraint_Error (N));
5929
3cf3e5c6 5930 -- STEP 1a
fbf5a39b
AC
5931
5932 -- Check that the index range defined by aggregate bounds is
5933 -- compatible with corresponding index subtype.
70482933
RK
5934
5935 Index_Compatibility_Check : declare
5936 Aggr_Index_Range : Node_Id := First_Index (Typ);
5937 -- The current aggregate index range
5938
5939 Index_Constraint : Node_Id := First_Index (Etype (Typ));
5940 -- The corresponding index constraint against which we have to
5941 -- check the above aggregate index range.
5942
5943 begin
5944 Compute_Others_Present (N, 1);
5945
5946 for J in 1 .. Aggr_Dimension loop
bdc193ba
AC
5947 -- There is no need to emit a check if an others choice is present
5948 -- for this array aggregate dimension since in this case one of
d74716b3 5949 -- N's subaggregates has taken its bounds from the context and
bdc193ba 5950 -- these bounds must have been checked already. In addition all
d74716b3
AC
5951 -- subaggregates corresponding to the same dimension must all have
5952 -- the same bounds (checked in (c) below).
70482933
RK
5953
5954 if not Range_Checks_Suppressed (Etype (Index_Constraint))
5955 and then not Others_Present (J)
5956 then
3b9fa2df
ES
5957 -- We don't use Checks.Apply_Range_Check here because it emits
5958 -- a spurious check. Namely it checks that the range defined by
d74716b3 5959 -- the aggregate bounds is nonempty. But we know this already
3b9fa2df 5960 -- if we get here.
70482933
RK
5961
5962 Check_Bounds (Aggr_Index_Range, Index_Constraint);
5963 end if;
5964
3b9fa2df
ES
5965 -- Save the low and high bounds of the aggregate index as well as
5966 -- the index type for later use in checks (b) and (c) below.
70482933 5967
10c257af
ES
5968 Get_Index_Bounds
5969 (Aggr_Index_Range, L => Aggr_Low (J), H => Aggr_High (J));
70482933
RK
5970
5971 Aggr_Index_Typ (J) := Etype (Index_Constraint);
5972
5973 Next_Index (Aggr_Index_Range);
5974 Next_Index (Index_Constraint);
5975 end loop;
5976 end Index_Compatibility_Check;
5977
3cf3e5c6 5978 -- STEP 1b
fbf5a39b 5979
3b9fa2df
ES
5980 -- If an others choice is present check that no aggregate index is
5981 -- outside the bounds of the index constraint.
70482933
RK
5982
5983 Others_Check (N, 1);
5984
3cf3e5c6 5985 -- STEP 1c
fbf5a39b
AC
5986
5987 -- For multidimensional arrays make sure that all subaggregates
5988 -- corresponding to the same dimension have the same bounds.
70482933
RK
5989
5990 if Aggr_Dimension > 1 then
5991 Check_Same_Aggr_Bounds (N, 1);
5992 end if;
5993
688a9b51
RD
5994 -- STEP 1d
5995
5996 -- If we have a default component value, or simple initialization is
5997 -- required for the component type, then we replace <> in component
5998 -- associations by the required default value.
5999
6000 declare
6001 Default_Val : Node_Id;
6002 Assoc : Node_Id;
6003
6004 begin
6005 if (Present (Default_Aspect_Component_Value (Typ))
6006 or else Needs_Simple_Initialization (Ctyp))
6007 and then Present (Component_Associations (N))
6008 then
6009 Assoc := First (Component_Associations (N));
6010 while Present (Assoc) loop
6011 if Nkind (Assoc) = N_Component_Association
6012 and then Box_Present (Assoc)
6013 then
6014 Set_Box_Present (Assoc, False);
6015
6016 if Present (Default_Aspect_Component_Value (Typ)) then
6017 Default_Val := Default_Aspect_Component_Value (Typ);
6018 else
6019 Default_Val := Get_Simple_Init_Val (Ctyp, N);
6020 end if;
6021
6022 Set_Expression (Assoc, New_Copy_Tree (Default_Val));
6023 Analyze_And_Resolve (Expression (Assoc), Ctyp);
6024 end if;
6025
6026 Next (Assoc);
6027 end loop;
6028 end if;
6029 end;
6030
3cf3e5c6 6031 -- STEP 2
70482933 6032
3b9fa2df
ES
6033 -- Here we test for is packed array aggregate that we can handle at
6034 -- compile time. If so, return with transformation done. Note that we do
6035 -- this even if the aggregate is nested, because once we have done this
a90bd866 6036 -- processing, there is no more nested aggregate.
fbf5a39b
AC
6037
6038 if Packed_Array_Aggregate_Handled (N) then
6039 return;
6040 end if;
6041
6042 -- At this point we try to convert to positional form
70482933 6043
c42006e9 6044 Convert_To_Positional (N);
70482933 6045
23a9215f 6046 -- If the result is no longer an aggregate (e.g. it may be a string
fbf5a39b
AC
6047 -- literal, or a temporary which has the needed value), then we are
6048 -- done, since there is no longer a nested aggregate.
6049
70482933
RK
6050 if Nkind (N) /= N_Aggregate then
6051 return;
6052
5eeeed5e
AC
6053 -- We are also done if the result is an analyzed aggregate, indicating
6054 -- that Convert_To_Positional succeeded and reanalyzed the rewritten
6055 -- aggregate.
fbf5a39b 6056
dc67cfea 6057 elsif Analyzed (N) and then Is_Rewrite_Substitution (N) then
70482933
RK
6058 return;
6059 end if;
6060
fa57ac97
ES
6061 -- If all aggregate components are compile-time known and the aggregate
6062 -- has been flattened, nothing left to do. The same occurs if the
b465ef6f 6063 -- aggregate is used to initialize the components of a statically
fa57ac97 6064 -- allocated dispatch table.
0f95b178 6065
fa57ac97
ES
6066 if Compile_Time_Known_Aggregate (N)
6067 or else Is_Static_Dispatch_Table_Aggregate (N)
6068 then
0f95b178
JM
6069 Set_Expansion_Delayed (N, False);
6070 return;
6071 end if;
6072
fbf5a39b
AC
6073 -- Now see if back end processing is possible
6074
70482933
RK
6075 if Backend_Processing_Possible (N) then
6076
6077 -- If the aggregate is static but the constraints are not, build
6078 -- a static subtype for the aggregate, so that Gigi can place it
6079 -- in static memory. Perform an unchecked_conversion to the non-
6080 -- static type imposed by the context.
6081
6082 declare
6083 Itype : constant Entity_Id := Etype (N);
6084 Index : Node_Id;
6085 Needs_Type : Boolean := False;
6086
6087 begin
6088 Index := First_Index (Itype);
70482933 6089 while Present (Index) loop
edab6088 6090 if not Is_OK_Static_Subtype (Etype (Index)) then
70482933
RK
6091 Needs_Type := True;
6092 exit;
6093 else
6094 Next_Index (Index);
6095 end if;
6096 end loop;
6097
6098 if Needs_Type then
6099 Build_Constrained_Type (Positional => True);
6100 Rewrite (N, Unchecked_Convert_To (Itype, N));
6101 Analyze (N);
6102 end if;
6103 end;
6104
6105 return;
6106 end if;
6107
3cf3e5c6 6108 -- STEP 3
fbf5a39b 6109
5ed4ba15
AC
6110 -- Delay expansion for nested aggregates: it will be taken care of when
6111 -- the parent aggregate is expanded.
70482933
RK
6112
6113 Parent_Node := Parent (N);
6114 Parent_Kind := Nkind (Parent_Node);
6115
6116 if Parent_Kind = N_Qualified_Expression then
6117 Parent_Node := Parent (Parent_Node);
6118 Parent_Kind := Nkind (Parent_Node);
6119 end if;
6120
6121 if Parent_Kind = N_Aggregate
6122 or else Parent_Kind = N_Extension_Aggregate
6123 or else Parent_Kind = N_Component_Association
6124 or else (Parent_Kind = N_Object_Declaration
4844a259 6125 and then (Needs_Finalization (Typ)
ea588d41 6126 or else Is_Special_Return_Object
4844a259 6127 (Defining_Identifier (Parent_Node))))
70482933
RK
6128 or else (Parent_Kind = N_Assignment_Statement
6129 and then Inside_Init_Proc)
6130 then
2a1838cd
EB
6131 Set_Expansion_Delayed (N, not Static_Array_Aggregate (N));
6132 return;
70482933
RK
6133 end if;
6134
3cf3e5c6 6135 -- STEP 4
70482933 6136
bc1146e5 6137 -- Check whether in-place aggregate expansion is possible
70482933
RK
6138
6139 -- For object declarations we build the aggregate in place, unless
d2a60e59 6140 -- the array is bit-packed.
70482933
RK
6141
6142 -- For assignments we do the assignment in place if all the component
d2a60e59
ES
6143 -- associations have compile-time known values, or are default-
6144 -- initialized limited components, e.g. tasks. For other cases we
f037632e
BD
6145 -- create a temporary. A full analysis for safety of in-place assignment
6146 -- is delicate.
70482933 6147
6f639c98
ES
6148 -- For allocators we assign to the designated object in place if the
6149 -- aggregate meets the same conditions as other in-place assignments.
6150 -- In this case the aggregate may not come from source but was created
6151 -- for default initialization, e.g. with Initialize_Scalars.
6152
70482933 6153 if Requires_Transient_Scope (Typ) then
6560f851 6154 Establish_Transient_Scope (N, Manage_Sec_Stack => False);
70482933
RK
6155 end if;
6156
92a68a04 6157 -- An array of limited components is built in place
d2a60e59
ES
6158
6159 if Is_Limited_Type (Typ) then
6160 Maybe_In_Place_OK := True;
6161
6162 elsif Has_Default_Init_Comps (N) then
c45b6ae0 6163 Maybe_In_Place_OK := False;
6f639c98
ES
6164
6165 elsif Is_Bit_Packed_Array (Typ)
6166 or else Has_Controlled_Component (Typ)
6167 then
6168 Maybe_In_Place_OK := False;
6169
a80b1eb7 6170 elsif Parent_Kind = N_Assignment_Statement then
c45b6ae0 6171 Maybe_In_Place_OK :=
a80b1eb7 6172 In_Place_Assign_OK (N, Get_Base_Object (Name (Parent_Node)));
6f639c98 6173
a80b1eb7
EB
6174 elsif Parent_Kind = N_Allocator then
6175 Maybe_In_Place_OK := In_Place_Assign_OK (N);
6176
6177 else
6178 Maybe_In_Place_OK := False;
c45b6ae0 6179 end if;
70482933 6180
36c73552
AC
6181 -- If this is an array of tasks, it will be expanded into build-in-place
6182 -- assignments. Build an activation chain for the tasks now.
a38ff9b1 6183
c8def50f 6184 if Has_Task (Typ) then
a38ff9b1
ES
6185 Build_Activation_Chain_Entity (N);
6186 end if;
6187
cf6956bb 6188 -- Perform in-place expansion of aggregate in an object declaration.
f3d42000
AC
6189 -- Note: actions generated for the aggregate will be captured in an
6190 -- expression-with-actions statement so that they can be transferred
6191 -- to freeze actions later if there is an address clause for the
6192 -- object. (Note: we don't use a block statement because this would
6193 -- cause generated freeze nodes to be elaborated in the wrong scope).
cf6956bb 6194
d2a60e59
ES
6195 -- Arrays of limited components must be built in place. The code
6196 -- previously excluded controlled components but this is an old
6197 -- oversight: the rules in 7.6 (17) are clear.
5ed4ba15 6198
d4e4e88a 6199 if Comes_From_Source (Parent_Node)
3386e3ae
AC
6200 and then Parent_Kind = N_Object_Declaration
6201 and then Present (Expression (Parent_Node))
6202 and then not
6732c403 6203 Must_Slide (N, Etype (Defining_Identifier (Parent_Node)), Typ)
3386e3ae 6204 and then not Is_Bit_Packed_Array (Typ)
70482933 6205 then
ac43e11e 6206 In_Place_Assign_OK_For_Declaration := True;
5ed4ba15
AC
6207 Tmp := Defining_Identifier (Parent_Node);
6208 Set_No_Initialization (Parent_Node);
6209 Set_Expression (Parent_Node, Empty);
70482933 6210
ac43e11e
AC
6211 -- Set kind and type of the entity, for use in the analysis
6212 -- of the subsequent assignments. If the nominal type is not
70482933
RK
6213 -- constrained, build a subtype from the known bounds of the
6214 -- aggregate. If the declaration has a subtype mark, use it,
6215 -- otherwise use the itype of the aggregate.
6216
2e02ab86 6217 Mutate_Ekind (Tmp, E_Variable);
ac43e11e 6218
70482933
RK
6219 if not Is_Constrained (Typ) then
6220 Build_Constrained_Type (Positional => False);
ac43e11e 6221
5ed4ba15
AC
6222 elsif Is_Entity_Name (Object_Definition (Parent_Node))
6223 and then Is_Constrained (Entity (Object_Definition (Parent_Node)))
70482933 6224 then
5ed4ba15 6225 Set_Etype (Tmp, Entity (Object_Definition (Parent_Node)));
ac43e11e 6226
70482933
RK
6227 else
6228 Set_Size_Known_At_Compile_Time (Typ, False);
6229 Set_Etype (Tmp, Typ);
6230 end if;
6231
a80b1eb7 6232 elsif Maybe_In_Place_OK and then Parent_Kind = N_Allocator then
6f639c98
ES
6233 Set_Expansion_Delayed (N);
6234 return;
6235
d2a60e59
ES
6236 -- Limited arrays in return statements are expanded when
6237 -- enclosing construct is expanded.
6238
6239 elsif Maybe_In_Place_OK
a80b1eb7 6240 and then Parent_Kind = N_Simple_Return_Statement
d2a60e59
ES
6241 then
6242 Set_Expansion_Delayed (N);
6243 return;
6244
6537318f
ES
6245 -- In the remaining cases the aggregate appears in the RHS of an
6246 -- assignment, which may be part of the expansion of an object
41a7b948 6247 -- declaration. If the aggregate is an actual in a call, itself
6537318f 6248 -- possibly in a RHS, building it in the target is not possible.
6f639c98 6249
70482933 6250 elsif Maybe_In_Place_OK
6537318f 6251 and then Nkind (Parent_Node) not in N_Subprogram_Call
a80b1eb7 6252 and then Safe_Left_Hand_Side (Name (Parent_Node))
70482933 6253 then
a80b1eb7 6254 Tmp := Name (Parent_Node);
70482933
RK
6255
6256 if Etype (Tmp) /= Etype (N) then
6257 Apply_Length_Check (N, Etype (Tmp));
fbf5a39b
AC
6258
6259 if Nkind (N) = N_Raise_Constraint_Error then
6260
6261 -- Static error, nothing further to expand
6262
6263 return;
6264 end if;
70482933
RK
6265 end if;
6266
36a66365
AC
6267 -- If a slice assignment has an aggregate with a single others_choice,
6268 -- the assignment can be done in place even if bounds are not static,
6269 -- by converting it into a loop over the discrete range of the slice.
6270
70482933 6271 elsif Maybe_In_Place_OK
a80b1eb7 6272 and then Nkind (Name (Parent_Node)) = N_Slice
36a66365 6273 and then Is_Others_Aggregate (N)
70482933 6274 then
a80b1eb7 6275 Tmp := Name (Parent_Node);
70482933 6276
36a66365
AC
6277 -- Set type of aggregate to be type of lhs in assignment, in order
6278 -- to suppress redundant length checks.
6279
6280 Set_Etype (N, Etype (Tmp));
70482933 6281
fbf5a39b
AC
6282 -- Step 5
6283
bc1146e5 6284 -- In-place aggregate expansion is not possible
fbf5a39b 6285
70482933 6286 else
07fc65c4 6287 Maybe_In_Place_OK := False;
faf387e1 6288 Tmp := Make_Temporary (Loc, 'A', N);
70482933 6289 Tmp_Decl :=
bdc193ba
AC
6290 Make_Object_Declaration (Loc,
6291 Defining_Identifier => Tmp,
6292 Object_Definition => New_Occurrence_Of (Typ, Loc));
70482933
RK
6293 Set_No_Initialization (Tmp_Decl, True);
6294
6295 -- If we are within a loop, the temporary will be pushed on the
6560f851
HK
6296 -- stack at each iteration. If the aggregate is the expression
6297 -- for an allocator, it will be immediately copied to the heap
6298 -- and can be reclaimed at once. We create a transient scope
6299 -- around the aggregate for this purpose.
70482933
RK
6300
6301 if Ekind (Current_Scope) = E_Loop
a80b1eb7 6302 and then Parent_Kind = N_Allocator
70482933 6303 then
6560f851 6304 Establish_Transient_Scope (N, Manage_Sec_Stack => False);
9f6cee82
EB
6305
6306 -- If the parent is an assignment for which no controlled actions
6307 -- should take place, prevent the temporary from being finalized.
6308
6309 elsif Parent_Kind = N_Assignment_Statement
6310 and then No_Ctrl_Actions (Parent_Node)
6311 then
6312 Mutate_Ekind (Tmp, E_Variable);
6313 Set_Is_Ignored_Transient (Tmp);
70482933
RK
6314 end if;
6315
6316 Insert_Action (N, Tmp_Decl);
6317 end if;
6318
36c73552
AC
6319 -- Construct and insert the aggregate code. We can safely suppress index
6320 -- checks because this code is guaranteed not to raise CE on index
6321 -- checks. However we should *not* suppress all checks.
70482933 6322
07fc65c4
GB
6323 declare
6324 Target : Node_Id;
6325
6326 begin
6327 if Nkind (Tmp) = N_Defining_Identifier then
e4494292 6328 Target := New_Occurrence_Of (Tmp, Loc);
07fc65c4
GB
6329
6330 else
d2a60e59
ES
6331 if Has_Default_Init_Comps (N)
6332 and then not Maybe_In_Place_OK
6333 then
0ab80019 6334 -- Ada 2005 (AI-287): This case has not been analyzed???
c45b6ae0 6335
9bc856dd 6336 raise Program_Error;
c45b6ae0
AC
6337 end if;
6338
0da2c8ac 6339 -- Name in assignment is explicit dereference
07fc65c4
GB
6340
6341 Target := New_Copy (Tmp);
6342 end if;
6343
bc1146e5 6344 -- If we are to generate an in-place assignment for a declaration or
ac43e11e
AC
6345 -- an assignment statement, and the assignment can be done directly
6346 -- by the back end, then do not expand further.
6347
bc1146e5 6348 -- ??? We can also do that if in-place expansion is not possible but
ac43e11e
AC
6349 -- then we could go into an infinite recursion.
6350
6351 if (In_Place_Assign_OK_For_Declaration or else Maybe_In_Place_OK)
a1e1820b 6352 and then not CodePeer_Mode
c63a2ad6 6353 and then not Modify_Tree_For_C
ac43e11e 6354 and then not Possible_Bit_Aligned_Component (Target)
6b6bce61 6355 and then not Is_Possibly_Unaligned_Slice (Target)
ac43e11e
AC
6356 and then Aggr_Assignment_OK_For_Backend (N)
6357 then
ac43e11e 6358
742084ad
MP
6359 -- In the case of an assignment using an access with the
6360 -- Designated_Storage_Model aspect with a Copy_To procedure,
6361 -- insert a temporary and have the back end handle the assignment
6362 -- to it. Copy the result to the original target.
6363
6364 if Parent_Kind = N_Assignment_Statement
6365 and then Nkind (Name (Parent_Node)) = N_Explicit_Dereference
6366 and then Has_Designated_Storage_Model_Aspect
6367 (Etype (Prefix (Name (Parent_Node))))
6368 and then Present (Storage_Model_Copy_To
6369 (Storage_Model_Object
6370 (Etype (Prefix (Name (Parent_Node))))))
6371 then
ca4bff3a
EB
6372 Aggr_Code := Build_Assignment_With_Temporary
6373 (Target, Typ, New_Copy_Tree (N));
6374
742084ad
MP
6375 else
6376 if Maybe_In_Place_OK then
6377 return;
6378 end if;
6379
ca4bff3a
EB
6380 Aggr_Code := New_List (
6381 Make_Assignment_Statement (Loc,
6382 Name => Target,
6383 Expression => New_Copy_Tree (N)));
742084ad 6384 end if;
ca4bff3a 6385
d6e8719d 6386 else
ac43e11e
AC
6387 Aggr_Code :=
6388 Build_Array_Aggr_Code (N,
6389 Ctype => Ctyp,
6390 Index => First_Index (Typ),
6391 Into => Target,
6392 Scalar_Comp => Is_Scalar_Type (Ctyp));
6393 end if;
4ac2bbbd
AC
6394
6395 -- Save the last assignment statement associated with the aggregate
6396 -- when building a controlled object. This reference is utilized by
6397 -- the finalization machinery when marking an object as successfully
6398 -- initialized.
6399
6400 if Needs_Finalization (Typ)
6401 and then Is_Entity_Name (Target)
6402 and then Present (Entity (Target))
4a08c95c 6403 and then Ekind (Entity (Target)) in E_Constant | E_Variable
4ac2bbbd
AC
6404 then
6405 Set_Last_Aggregate_Assignment (Entity (Target), Last (Aggr_Code));
6406 end if;
07fc65c4 6407 end;
70482933 6408
6782b1ef
AC
6409 -- If the aggregate is the expression in a declaration, the expanded
6410 -- code must be inserted after it. The defining entity might not come
6411 -- from source if this is part of an inlined body, but the declaration
6412 -- itself will.
fff7a6d9 6413 -- The test below looks very specialized and kludgy???
6782b1ef
AC
6414
6415 if Comes_From_Source (Tmp)
6416 or else
6417 (Nkind (Parent (N)) = N_Object_Declaration
6418 and then Comes_From_Source (Parent (N))
6419 and then Tmp = Defining_Entity (Parent (N)))
6420 then
fff7a6d9 6421 if Parent_Kind /= N_Object_Declaration or else Is_Frozen (Tmp) then
cf6956bb 6422 Insert_Actions_After (Parent_Node, Aggr_Code);
fff7a6d9
AC
6423 else
6424 declare
6425 Comp_Stmt : constant Node_Id :=
6426 Make_Compound_Statement
6427 (Sloc (Parent_Node), Actions => Aggr_Code);
6428 begin
6429 Insert_Action_After (Parent_Node, Comp_Stmt);
6430 Set_Initialization_Statements (Tmp, Comp_Stmt);
6431 end;
6432 end if;
70482933
RK
6433 else
6434 Insert_Actions (N, Aggr_Code);
6435 end if;
6436
07fc65c4
GB
6437 -- If the aggregate has been assigned in place, remove the original
6438 -- assignment.
6439
a80b1eb7
EB
6440 if Parent_Kind = N_Assignment_Statement and then Maybe_In_Place_OK then
6441 Rewrite (Parent_Node, Make_Null_Statement (Loc));
70482933 6442
a80b1eb7
EB
6443 -- Or else, if a temporary was created, replace the aggregate with it
6444
6445 elsif Parent_Kind /= N_Object_Declaration
6446 or else Tmp /= Defining_Identifier (Parent_Node)
70482933
RK
6447 then
6448 Rewrite (N, New_Occurrence_Of (Tmp, Loc));
6449 Analyze_And_Resolve (N, Typ);
6450 end if;
6451 end Expand_Array_Aggregate;
6452
6453 ------------------------
6454 -- Expand_N_Aggregate --
6455 ------------------------
6456
6457 procedure Expand_N_Aggregate (N : Node_Id) is
74580e1b 6458 T : constant Entity_Id := Etype (N);
70482933 6459 begin
354c3840
AC
6460 -- Record aggregate case
6461
74580e1b
PT
6462 if Is_Record_Type (T)
6463 and then not Is_Private_Type (T)
fe3463cc 6464 then
70482933 6465 Expand_Record_Aggregate (N);
354c3840 6466
74580e1b 6467 elsif Has_Aspect (T, Aspect_Aggregate) then
745f5698
ES
6468 Expand_Container_Aggregate (N);
6469
354c3840
AC
6470 -- Array aggregate case
6471
70482933 6472 else
354c3840
AC
6473 -- A special case, if we have a string subtype with bounds 1 .. N,
6474 -- where N is known at compile time, and the aggregate is of the
49eef89f
AC
6475 -- form (others => 'x'), with a single choice and no expressions,
6476 -- and N is less than 80 (an arbitrary limit for now), then replace
6477 -- the aggregate by the equivalent string literal (but do not mark
a90bd866 6478 -- it as static since it is not).
354c3840
AC
6479
6480 -- Note: this entire circuit is redundant with respect to code in
6481 -- Expand_Array_Aggregate that collapses others choices to positional
6482 -- form, but there are two problems with that circuit:
6483
6484 -- a) It is limited to very small cases due to ill-understood
b465ef6f 6485 -- interactions with bootstrapping. That limit is removed by
354c3840
AC
6486 -- use of the No_Implicit_Loops restriction.
6487
77a40ec1 6488 -- b) It incorrectly ends up with the resulting expressions being
354c3840
AC
6489 -- considered static when they are not. For example, the
6490 -- following test should fail:
6491
6492 -- pragma Restrictions (No_Implicit_Loops);
6493 -- package NonSOthers4 is
6494 -- B : constant String (1 .. 6) := (others => 'A');
6495 -- DH : constant String (1 .. 8) := B & "BB";
6496 -- X : Integer;
6497 -- pragma Export (C, X, Link_Name => DH);
6498 -- end;
6499
6500 -- But it succeeds (DH looks static to pragma Export)
6501
a90bd866 6502 -- To be sorted out ???
354c3840
AC
6503
6504 if Present (Component_Associations (N)) then
6505 declare
6506 CA : constant Node_Id := First (Component_Associations (N));
6507 MX : constant := 80;
6508
6509 begin
10c257af
ES
6510 if Present (CA)
6511 and then Nkind (First (Choice_List (CA))) = N_Others_Choice
354c3840 6512 and then Nkind (Expression (CA)) = N_Character_Literal
49eef89f 6513 and then No (Expressions (N))
354c3840
AC
6514 then
6515 declare
53f2aaf0
PT
6516 X : constant Node_Id := First_Index (T);
6517 EC : constant Node_Id := Expression (CA);
6518 CV : constant Uint := Char_Literal_Value (EC);
6519 CC : constant Char_Code := UI_To_CC (CV);
354c3840
AC
6520
6521 begin
6522 if Nkind (X) = N_Range
6523 and then Compile_Time_Known_Value (Low_Bound (X))
6524 and then Expr_Value (Low_Bound (X)) = 1
6525 and then Compile_Time_Known_Value (High_Bound (X))
6526 then
6527 declare
6528 Hi : constant Uint := Expr_Value (High_Bound (X));
6529
6530 begin
6531 if Hi <= MX then
6532 Start_String;
6533
6534 for J in 1 .. UI_To_Int (Hi) loop
53f2aaf0 6535 Store_String_Char (CC);
354c3840
AC
6536 end loop;
6537
6538 Rewrite (N,
6539 Make_String_Literal (Sloc (N),
6540 Strval => End_String));
6541
53f2aaf0
PT
6542 if In_Character_Range (CC) then
6543 null;
6544 elsif In_Wide_Character_Range (CC) then
354c3840 6545 Set_Has_Wide_Character (N);
53f2aaf0
PT
6546 else
6547 Set_Has_Wide_Wide_Character (N);
354c3840
AC
6548 end if;
6549
6550 Analyze_And_Resolve (N, T);
6551 Set_Is_Static_Expression (N, False);
6552 return;
6553 end if;
6554 end;
6555 end if;
6556 end;
6557 end if;
6558 end;
6559 end if;
6560
6561 -- Not that special case, so normal expansion of array aggregate
6562
70482933
RK
6563 Expand_Array_Aggregate (N);
6564 end if;
bdc193ba 6565
fbf5a39b
AC
6566 exception
6567 when RE_Not_Available =>
6568 return;
70482933
RK
6569 end Expand_N_Aggregate;
6570
745f5698
ES
6571 --------------------------------
6572 -- Expand_Container_Aggregate --
6573 --------------------------------
6574
6575 procedure Expand_Container_Aggregate (N : Node_Id) is
ce59f39f
GD
6576 Loc : constant Source_Ptr := Sloc (N);
6577 Typ : constant Entity_Id := Etype (N);
6578 Asp : constant Node_Id := Find_Value_Of_Aspect (Typ, Aspect_Aggregate);
745f5698
ES
6579
6580 Empty_Subp : Node_Id := Empty;
6581 Add_Named_Subp : Node_Id := Empty;
6582 Add_Unnamed_Subp : Node_Id := Empty;
6583 New_Indexed_Subp : Node_Id := Empty;
6584 Assign_Indexed_Subp : Node_Id := Empty;
6585
ce59f39f
GD
6586 Aggr_Code : constant List_Id := New_List;
6587 Temp : constant Entity_Id := Make_Temporary (Loc, 'C', N);
745f5698 6588
4f6ebe2a 6589 Comp : Node_Id;
745f5698 6590 Decl : Node_Id;
08c8883f 6591 Default : Node_Id;
ce59f39f 6592 Init_Stat : Node_Id;
08c8883f
ES
6593 Siz : Int;
6594
13112239
ES
6595 -- The following are used when the size of the aggregate is not
6596 -- static and requires a dynamic evaluation.
6597 Siz_Decl : Node_Id;
6598 Siz_Exp : Node_Id := Empty;
6599 Count_Type : Entity_Id;
6600
08c8883f
ES
6601 function Aggregate_Size return Int;
6602 -- Compute number of entries in aggregate, including choices
13112239 6603 -- that cover a range or subtype, as well as iterated constructs.
08c8883f 6604 -- Return -1 if the size is not known statically, in which case
13112239
ES
6605 -- allocate a default size for the aggregate, or build an expression
6606 -- to estimate the size dynamically.
6607
6608 function Build_Siz_Exp (Comp : Node_Id) return Int;
6609 -- When the aggregate contains a single Iterated_Component_Association
6610 -- or Element_Association with non-static bounds, build an expression
6611 -- to be used as the allocated size of the container. This may be an
6612 -- overestimate if a filter is present, but is a safe approximation.
fe43084c
ES
6613 -- If bounds are dynamic the aggregate is created in two passes, and
6614 -- the first generates a loop for the sole purpose of computing the
41a7b948 6615 -- number of elements that will be generated on the second pass.
ce59f39f 6616
7a21651f
ES
6617 procedure Expand_Iterated_Component (Comp : Node_Id);
6618 -- Handle iterated_component_association and iterated_Element
6619 -- association by generating a loop over the specified range,
6620 -- given either by a loop parameter specification or an iterator
6621 -- specification.
6622
08c8883f
ES
6623 --------------------
6624 -- Aggregate_Size --
6625 --------------------
6626
6627 function Aggregate_Size return Int is
6628 Comp : Node_Id;
6629 Choice : Node_Id;
6630 Lo, Hi : Node_Id;
ef7a3876 6631 Siz : Int;
08c8883f
ES
6632
6633 procedure Add_Range_Size;
13112239
ES
6634 -- Compute number of components specified by a component association
6635 -- given by a range or subtype name.
6636
6637 --------------------
6638 -- Add_Range_Size --
6639 --------------------
08c8883f
ES
6640
6641 procedure Add_Range_Size is
6642 begin
13112239
ES
6643 -- The bounds of the discrete range are integers or enumeration
6644 -- literals
6645
08c8883f
ES
6646 if Nkind (Lo) = N_Integer_Literal then
6647 Siz := Siz + UI_To_Int (Intval (Hi))
13112239
ES
6648 - UI_To_Int (Intval (Lo)) + 1;
6649 else
6650 Siz := Siz + UI_To_Int (Enumeration_Pos (Hi))
6651 - UI_To_Int (Enumeration_Pos (Lo)) + 1;
08c8883f
ES
6652 end if;
6653 end Add_Range_Size;
6654
6655 begin
ef7a3876 6656 -- Aggregate is either all positional or all named
13112239 6657
ef7a3876 6658 Siz := List_Length (Expressions (N));
08c8883f
ES
6659
6660 if Present (Component_Associations (N)) then
6661 Comp := First (Component_Associations (N));
13112239
ES
6662 -- If there is a single component association it can be
6663 -- an iterated component with dynamic bounds or an element
6664 -- iterator over an iterable object. If it is an array
6665 -- we can use the attribute Length to get its size;
6666 -- for a predefined container the function Length plays
6667 -- the same role. There is no available mechanism for
6668 -- user-defined containers. For now we treat all of these
6669 -- as dynamic.
6670
6671 if List_Length (Component_Associations (N)) = 1
6672 and then Nkind (Comp) in N_Iterated_Component_Association |
6673 N_Iterated_Element_Association
6674 then
6675 return Build_Siz_Exp (Comp);
daaf0179
ES
6676 end if;
6677
13112239
ES
6678 -- Otherwise all associations must specify static sizes.
6679
08c8883f
ES
6680 while Present (Comp) loop
6681 Choice := First (Choice_List (Comp));
6682
6683 while Present (Choice) loop
6684 Analyze (Choice);
6685
6686 if Nkind (Choice) = N_Range then
6687 Lo := Low_Bound (Choice);
6688 Hi := High_Bound (Choice);
13112239 6689 Add_Range_Size;
08c8883f
ES
6690
6691 elsif Is_Entity_Name (Choice)
6692 and then Is_Type (Entity (Choice))
6693 then
6694 Lo := Type_Low_Bound (Entity (Choice));
6695 Hi := Type_High_Bound (Entity (Choice));
13112239 6696 Add_Range_Size;
08c8883f
ES
6697
6698 Rewrite (Choice,
6699 Make_Range (Loc,
6700 New_Copy_Tree (Lo),
6701 New_Copy_Tree (Hi)));
6702
6703 else
6704 -- Single choice (syntax excludes a subtype
6705 -- indication).
6706
6707 Siz := Siz + 1;
6708 end if;
6709
6710 Next (Choice);
6711 end loop;
6712 Next (Comp);
6713 end loop;
6714 end if;
6715
6716 return Siz;
6717 end Aggregate_Size;
6718
13112239
ES
6719 -------------------
6720 -- Build_Siz_Exp --
6721 -------------------
6722
6723 function Build_Siz_Exp (Comp : Node_Id) return Int is
6724 Lo, Hi : Node_Id;
6725 begin
6726 if Nkind (Comp) = N_Range then
6727 Lo := Low_Bound (Comp);
6728 Hi := High_Bound (Comp);
6729 Analyze (Lo);
6730 Analyze (Hi);
6731
6732 -- Compute static size when possible.
6733
6734 if Is_Static_Expression (Lo)
6735 and then Is_Static_Expression (Hi)
6736 then
6737 if Nkind (Lo) = N_Integer_Literal then
6738 Siz := UI_To_Int (Intval (Hi)) - UI_To_Int (Intval (Lo)) + 1;
6739 else
6740 Siz := UI_To_Int (Enumeration_Pos (Hi))
6741 - UI_To_Int (Enumeration_Pos (Lo)) + 1;
6742 end if;
6743 return Siz;
6744
6745 else
6746 Siz_Exp :=
6747 Make_Op_Add (Sloc (Comp),
6748 Left_Opnd =>
6749 Make_Op_Subtract (Sloc (Comp),
6750 Left_Opnd => New_Copy_Tree (Hi),
6751 Right_Opnd => New_Copy_Tree (Lo)),
6752 Right_Opnd =>
6753 Make_Integer_Literal (Loc, 1));
6754 return -1;
6755 end if;
6756
6757 elsif Nkind (Comp) = N_Iterated_Component_Association then
6758 return Build_Siz_Exp (First (Discrete_Choices (Comp)));
6759
6760 elsif Nkind (Comp) = N_Iterated_Element_Association then
fe43084c
ES
6761 return -1;
6762
8b1a5da3 6763 -- ??? Need to create code for a loop and add to generated code,
fe43084c
ES
6764 -- as is done for array aggregates with iterated element
6765 -- associations, instead of using Append operations.
13112239
ES
6766
6767 else
6768 return -1;
6769 end if;
6770 end Build_Siz_Exp;
6771
4f6ebe2a
ES
6772 -------------------------------
6773 -- Expand_Iterated_Component --
6774 -------------------------------
6775
6776 procedure Expand_Iterated_Component (Comp : Node_Id) is
6777 Expr : constant Node_Id := Expression (Comp);
4f6ebe2a 6778
c0bab60b
ES
6779 Key_Expr : Node_Id := Empty;
6780 Loop_Id : Entity_Id;
4f6ebe2a
ES
6781 L_Range : Node_Id;
6782 L_Iteration_Scheme : Node_Id;
6783 Loop_Stat : Node_Id;
f3f1debe 6784 Params : List_Id;
4f6ebe2a
ES
6785 Stats : List_Id;
6786
6787 begin
c0bab60b
ES
6788 if Nkind (Comp) = N_Iterated_Element_Association then
6789 Key_Expr := Key_Expression (Comp);
6790
6791 -- We create a new entity as loop identifier in all cases,
6792 -- as is done for generated loops elsewhere, as the loop
6793 -- structure has been previously analyzed.
6794
6795 if Present (Iterator_Specification (Comp)) then
6796
fe43084c 6797 -- Either an Iterator_Specification or a Loop_Parameter_
c0bab60b
ES
6798 -- Specification is present.
6799
6800 L_Iteration_Scheme :=
6801 Make_Iteration_Scheme (Loc,
6802 Iterator_Specification => Iterator_Specification (Comp));
6803 Loop_Id :=
6804 Make_Defining_Identifier (Loc,
6805 Chars => Chars (Defining_Identifier
6806 (Iterator_Specification (Comp))));
6807 Set_Defining_Identifier
6808 (Iterator_Specification (L_Iteration_Scheme), Loop_Id);
6809
6810 else
6811 L_Iteration_Scheme :=
6812 Make_Iteration_Scheme (Loc,
6813 Loop_Parameter_Specification =>
6814 Loop_Parameter_Specification (Comp));
6815 Loop_Id :=
f3f1debe
ES
6816 Make_Defining_Identifier (Loc,
6817 Chars => Chars (Defining_Identifier
6818 (Loop_Parameter_Specification (Comp))));
c0bab60b 6819 Set_Defining_Identifier
f3f1debe
ES
6820 (Loop_Parameter_Specification
6821 (L_Iteration_Scheme), Loop_Id);
c0bab60b 6822 end if;
f3f1debe 6823 else
c0bab60b 6824
f3f1debe 6825 -- Iterated_Component_Association.
8092c199 6826
f3f1debe 6827 if Present (Iterator_Specification (Comp)) then
d983abeb
PT
6828 Loop_Id :=
6829 Make_Defining_Identifier (Loc,
6830 Chars => Chars (Defining_Identifier
6831 (Iterator_Specification (Comp))));
f3f1debe
ES
6832 L_Iteration_Scheme :=
6833 Make_Iteration_Scheme (Loc,
6834 Iterator_Specification => Iterator_Specification (Comp));
6835
6836 else
41a7b948 6837 -- Loop_Parameter_Specification is parsed with a choice list.
f3f1debe
ES
6838 -- where the range is the first (and only) choice.
6839
d983abeb
PT
6840 Loop_Id :=
6841 Make_Defining_Identifier (Loc,
6842 Chars => Chars (Defining_Identifier (Comp)));
f3f1debe
ES
6843 L_Range := Relocate_Node (First (Discrete_Choices (Comp)));
6844
6845 L_Iteration_Scheme :=
6846 Make_Iteration_Scheme (Loc,
6847 Loop_Parameter_Specification =>
6848 Make_Loop_Parameter_Specification (Loc,
6849 Defining_Identifier => Loop_Id,
6850 Discrete_Subtype_Definition => L_Range));
6851 end if;
8092c199 6852 end if;
4f6ebe2a 6853
0b4034c0
GD
6854 -- Build insertion statement. For a positional aggregate, only the
6855 -- expression is needed. For a named aggregate, the loop variable,
6856 -- whose type is that of the key, is an additional parameter for
6857 -- the insertion operation.
c0bab60b
ES
6858 -- If a Key_Expression is present, it serves as the additional
6859 -- parameter. Otherwise the key is given by the loop parameter
6860 -- itself.
4f6ebe2a 6861
13112239
ES
6862 if Present (Add_Unnamed_Subp)
6863 and then No (Add_Named_Subp)
6864 then
4f6ebe2a
ES
6865 Stats := New_List
6866 (Make_Procedure_Call_Statement (Loc,
0b4034c0
GD
6867 Name => New_Occurrence_Of (Entity (Add_Unnamed_Subp), Loc),
6868 Parameter_Associations =>
6869 New_List (New_Occurrence_Of (Temp, Loc),
4f6ebe2a
ES
6870 New_Copy_Tree (Expr))));
6871 else
c0bab60b
ES
6872 -- Named or indexed aggregate, for which a key is present,
6873 -- possibly with a specified key_expression.
6874
6875 if Present (Key_Expr) then
f3f1debe
ES
6876 Params := New_List (New_Occurrence_Of (Temp, Loc),
6877 New_Copy_Tree (Key_Expr),
6878 New_Copy_Tree (Expr));
c0bab60b 6879 else
f3f1debe
ES
6880 Params := New_List (New_Occurrence_Of (Temp, Loc),
6881 New_Occurrence_Of (Loop_Id, Loc),
6882 New_Copy_Tree (Expr));
c0bab60b 6883 end if;
f3f1debe
ES
6884
6885 Stats := New_List
6886 (Make_Procedure_Call_Statement (Loc,
6887 Name => New_Occurrence_Of (Entity (Add_Named_Subp), Loc),
6888 Parameter_Associations => Params));
4f6ebe2a
ES
6889 end if;
6890
d43fbe01
PT
6891 Loop_Stat := Make_Implicit_Loop_Statement
6892 (Node => N,
6893 Identifier => Empty,
6894 Iteration_Scheme => L_Iteration_Scheme,
6895 Statements => Stats);
4f6ebe2a 6896 Append (Loop_Stat, Aggr_Code);
7a21651f 6897
4f6ebe2a
ES
6898 end Expand_Iterated_Component;
6899
00b21aa9 6900 -- Start of processing for Expand_Container_Aggregate
08c8883f 6901
745f5698
ES
6902 begin
6903 Parse_Aspect_Aggregate (Asp,
6904 Empty_Subp, Add_Named_Subp, Add_Unnamed_Subp,
6905 New_Indexed_Subp, Assign_Indexed_Subp);
08c8883f
ES
6906
6907 -- The constructor for bounded containers is a function with
6908 -- a parameter that sets the size of the container. If the
13112239
ES
6909 -- size cannot be determined statically we use a default value
6910 -- or a dynamic expression.
08c8883f
ES
6911
6912 Siz := Aggregate_Size;
7a21651f 6913
08c8883f
ES
6914 if Ekind (Entity (Empty_Subp)) = E_Function
6915 and then Present (First_Formal (Entity (Empty_Subp)))
6916 then
6917 Default := Default_Value (First_Formal (Entity (Empty_Subp)));
13112239
ES
6918
6919 -- If aggregate size is not static, we can use default value
6920 -- of formal parameter for allocation. We assume that this
08c8883f 6921 -- (implementation-dependent) value is static, even though
13112239
ES
6922 -- the AI does not require it.
6923
6924 -- Create declaration for size: a constant literal in the simple
6925 -- case, an expression if iterated component associations may be
6926 -- involved, the default otherwise.
08c8883f 6927
13112239
ES
6928 Count_Type := Etype (First_Formal (Entity (Empty_Subp)));
6929 if Siz = -1 then
6930 if No (Siz_Exp) then
6931 Siz := UI_To_Int (Intval (Default));
6932 Siz_Exp := Make_Integer_Literal (Loc, Siz);
6933
6934 else
6935 Siz_Exp := Make_Type_Conversion (Loc,
6936 Subtype_Mark =>
6937 New_Occurrence_Of (Count_Type, Loc),
6938 Expression => Siz_Exp);
6939 end if;
6940
6941 else
6942 Siz_Exp := Make_Integer_Literal (Loc, Siz);
08c8883f
ES
6943 end if;
6944
13112239
ES
6945 Siz_Decl := Make_Object_Declaration (Loc,
6946 Defining_Identifier => Make_Temporary (Loc, 'S', N),
6947 Object_Definition =>
6948 New_Occurrence_Of (Count_Type, Loc),
6949 Expression => Siz_Exp);
6950 Append (Siz_Decl, Aggr_Code);
6951
6952 if Nkind (Siz_Exp) = N_Integer_Literal then
6953 Init_Stat :=
6954 Make_Object_Declaration (Loc,
6955 Defining_Identifier => Temp,
6956 Object_Definition => New_Occurrence_Of (Typ, Loc),
6957 Expression => Make_Function_Call (Loc,
6958 Name => New_Occurrence_Of (Entity (Empty_Subp), Loc),
6959 Parameter_Associations =>
6960 New_List
6961 (New_Occurrence_Of
6962 (Defining_Identifier (Siz_Decl), Loc))));
6963
6964 else
6965 Init_Stat :=
6966 Make_Object_Declaration (Loc,
6967 Defining_Identifier => Temp,
6968 Object_Definition => New_Occurrence_Of (Typ, Loc),
6969 Expression => Make_Function_Call (Loc,
6970 Name =>
6971 New_Occurrence_Of (Entity (New_Indexed_Subp), Loc),
6972 Parameter_Associations =>
6973 New_List (
6974 Make_Integer_Literal (Loc, 1),
6975 New_Occurrence_Of
6976 (Defining_Identifier (Siz_Decl), Loc))));
6977 end if;
08c8883f
ES
6978
6979 Append (Init_Stat, Aggr_Code);
6980
13112239
ES
6981 -- Size is dynamic: Create declaration for object, and intitialize
6982 -- with a call to the null container, or an assignment to it.
08c8883f
ES
6983
6984 else
6985 Decl :=
6986 Make_Object_Declaration (Loc,
6987 Defining_Identifier => Temp,
6988 Object_Definition => New_Occurrence_Of (Typ, Loc));
6989
6990 Insert_Action (N, Decl);
13112239
ES
6991
6992 -- The Empty entity is either a parameterless function, or
6993 -- a constant.
6994
08c8883f
ES
6995 if Ekind (Entity (Empty_Subp)) = E_Function then
6996 Init_Stat := Make_Assignment_Statement (Loc,
6997 Name => New_Occurrence_Of (Temp, Loc),
6998 Expression => Make_Function_Call (Loc,
6999 Name => New_Occurrence_Of (Entity (Empty_Subp), Loc)));
13112239 7000
08c8883f
ES
7001 else
7002 Init_Stat := Make_Assignment_Statement (Loc,
7003 Name => New_Occurrence_Of (Temp, Loc),
7004 Expression => New_Occurrence_Of (Entity (Empty_Subp), Loc));
7005 end if;
7006
7007 Append (Init_Stat, Aggr_Code);
7008 end if;
745f5698 7009
7a21651f
ES
7010 ---------------------------
7011 -- Positional aggregate --
7012 ---------------------------
745f5698 7013
08c8883f
ES
7014 -- If the aggregate is positional the aspect must include
7015 -- an Add_Unnamed subprogram.
7016
13112239 7017 if Present (Add_Unnamed_Subp) then
4f6ebe2a
ES
7018 if Present (Expressions (N)) then
7019 declare
7020 Insert : constant Entity_Id := Entity (Add_Unnamed_Subp);
7021 Comp : Node_Id;
7022 Stat : Node_Id;
7023
7024 begin
7025 Comp := First (Expressions (N));
7026 while Present (Comp) loop
7027 Stat := Make_Procedure_Call_Statement (Loc,
7028 Name => New_Occurrence_Of (Insert, Loc),
7029 Parameter_Associations =>
7030 New_List (New_Occurrence_Of (Temp, Loc),
0b4034c0 7031 New_Copy_Tree (Comp)));
4f6ebe2a
ES
7032 Append (Stat, Aggr_Code);
7033 Next (Comp);
7034 end loop;
7035 end;
7036 end if;
7037
13112239
ES
7038 -- Indexed aggregates are handled below. Unnamed aggregates
7039 -- such as sets may include iterated component associations.
4f6ebe2a 7040
13112239
ES
7041 if No (New_Indexed_Subp) then
7042 Comp := First (Component_Associations (N));
7043 while Present (Comp) loop
7044 if Nkind (Comp) = N_Iterated_Component_Association then
7045 Expand_Iterated_Component (Comp);
7046 end if;
7047 Next (Comp);
7048 end loop;
7049 end if;
4f6ebe2a 7050
7a21651f
ES
7051 ---------------------
7052 -- Named_Aggregate --
7053 ---------------------
7054
4f6ebe2a 7055 elsif Present (Add_Named_Subp) then
ce59f39f 7056 declare
4f6ebe2a 7057 Insert : constant Entity_Id := Entity (Add_Named_Subp);
ce59f39f 7058 Stat : Node_Id;
4f6ebe2a 7059 Key : Node_Id;
ce59f39f 7060 begin
4f6ebe2a
ES
7061 Comp := First (Component_Associations (N));
7062
0b4034c0 7063 -- Each component association may contain several choices;
4f6ebe2a
ES
7064 -- generate an insertion statement for each.
7065
ce59f39f 7066 while Present (Comp) loop
c0bab60b
ES
7067 if Nkind (Comp) in N_Iterated_Component_Association
7068 | N_Iterated_Element_Association
7069 then
4f6ebe2a
ES
7070 Expand_Iterated_Component (Comp);
7071 else
7072 Key := First (Choices (Comp));
7073
7074 while Present (Key) loop
7075 Stat := Make_Procedure_Call_Statement (Loc,
7076 Name => New_Occurrence_Of (Insert, Loc),
7077 Parameter_Associations =>
7078 New_List (New_Occurrence_Of (Temp, Loc),
0b4034c0
GD
7079 New_Copy_Tree (Key),
7080 New_Copy_Tree (Expression (Comp))));
4f6ebe2a
ES
7081 Append (Stat, Aggr_Code);
7082
7083 Next (Key);
7084 end loop;
7085 end if;
7086
ce59f39f
GD
7087 Next (Comp);
7088 end loop;
7089 end;
08c8883f 7090 end if;
7a21651f
ES
7091
7092 -----------------------
7093 -- Indexed_Aggregate --
7094 -----------------------
7095
08c8883f
ES
7096 -- For an indexed aggregate there must be an Assigned_Indexeed
7097 -- subprogram. Note that unlike array aggregates, a container
7098 -- aggregate must be fully positional or fully indexed. In the
7099 -- first case the expansion has already taken place.
13112239
ES
7100 -- TBA: the keys for an indexed aggregate must provide a dense
7101 -- range with no repetitions.
08c8883f
ES
7102
7103 if Present (Assign_Indexed_Subp)
7104 and then Present (Component_Associations (N))
7105 then
7a21651f
ES
7106 declare
7107 Insert : constant Entity_Id := Entity (Assign_Indexed_Subp);
7108 Index_Type : constant Entity_Id :=
7109 Etype (Next_Formal (First_Formal (Insert)));
7110
7a21651f
ES
7111 function Expand_Range_Component
7112 (Rng : Node_Id;
7113 Expr : Node_Id) return Node_Id;
7114 -- Transform a component assoication with a range into an
7115 -- explicit loop. If the choice is a subtype name, it is
7116 -- rewritten as a range with the corresponding bounds, which
7117 -- are known to be static.
7118
7119 Comp : Node_Id;
7120 Index : Node_Id;
7121 Pos : Int := 0;
7122 Stat : Node_Id;
7123 Key : Node_Id;
7a21651f
ES
7124
7125 -----------------------------
7126 -- Expand_Raange_Component --
7127 -----------------------------
7128
7129 function Expand_Range_Component
7130 (Rng : Node_Id;
7131 Expr : Node_Id) return Node_Id
7132 is
7133 Loop_Id : constant Entity_Id :=
7134 Make_Temporary (Loc, 'T');
7135
7136 L_Iteration_Scheme : Node_Id;
7137 Stats : List_Id;
7138
7139 begin
7140 L_Iteration_Scheme :=
7141 Make_Iteration_Scheme (Loc,
7142 Loop_Parameter_Specification =>
7143 Make_Loop_Parameter_Specification (Loc,
7144 Defining_Identifier => Loop_Id,
7145 Discrete_Subtype_Definition => New_Copy_Tree (Rng)));
7146
7147 Stats := New_List
7148 (Make_Procedure_Call_Statement (Loc,
7149 Name =>
7150 New_Occurrence_Of (Entity (Assign_Indexed_Subp), Loc),
7151 Parameter_Associations =>
7152 New_List (New_Occurrence_Of (Temp, Loc),
7153 New_Occurrence_Of (Loop_Id, Loc),
7154 New_Copy_Tree (Expr))));
7155
7156 return Make_Implicit_Loop_Statement
7157 (Node => N,
7158 Identifier => Empty,
7159 Iteration_Scheme => L_Iteration_Scheme,
7160 Statements => Stats);
7161 end Expand_Range_Component;
7162
7a21651f 7163 begin
08c8883f 7164 if Siz > 0 then
7a21651f
ES
7165
7166 -- Modify the call to the constructor to allocate the
7167 -- required size for the aggregwte : call the provided
7168 -- constructor rather than the Empty aggregate.
7169
d43fbe01 7170 Index := Make_Op_Add (Loc,
7a21651f 7171 Left_Opnd => New_Copy_Tree (Type_Low_Bound (Index_Type)),
08c8883f 7172 Right_Opnd => Make_Integer_Literal (Loc, Siz - 1));
7a21651f
ES
7173
7174 Set_Expression (Init_Stat,
7175 Make_Function_Call (Loc,
7176 Name =>
7177 New_Occurrence_Of (Entity (New_Indexed_Subp), Loc),
7178 Parameter_Associations =>
7179 New_List (
7180 New_Copy_Tree (Type_Low_Bound (Index_Type)),
7181 Index)));
7182 end if;
7183
7184 if Present (Expressions (N)) then
7185 Comp := First (Expressions (N));
7186
7187 while Present (Comp) loop
7188
7189 -- Compute index position for successive components
7190 -- in the list of expressions, and use the indexed
7191 -- assignment procedure for each.
7192
7193 Index := Make_Op_Add (Loc,
7194 Left_Opnd => Type_Low_Bound (Index_Type),
7195 Right_Opnd => Make_Integer_Literal (Loc, Pos));
7196
7197 Stat := Make_Procedure_Call_Statement (Loc,
7198 Name => New_Occurrence_Of (Insert, Loc),
7199 Parameter_Associations =>
7200 New_List (New_Occurrence_Of (Temp, Loc),
7201 Index,
7202 New_Copy_Tree (Comp)));
7203
7204 Pos := Pos + 1;
7205
7206 Append (Stat, Aggr_Code);
7207 Next (Comp);
7208 end loop;
7209 end if;
7210
7211 if Present (Component_Associations (N)) then
7212 Comp := First (Component_Associations (N));
7213
7214 -- The choice may be a static value, or a range with
7215 -- static bounds.
7216
7217 while Present (Comp) loop
7218 if Nkind (Comp) = N_Component_Association then
7219 Key := First (Choices (Comp));
7220 while Present (Key) loop
7221
7222 -- If the expression is a box, the corresponding
7223 -- component (s) is left uninitialized.
7224
7225 if Box_Present (Comp) then
7226 goto Next_Key;
7227
7228 elsif Nkind (Key) = N_Range then
7229
7230 -- Create loop for tne specified range,
7231 -- with copies of the expression.
7232
7233 Stat :=
7234 Expand_Range_Component (Key, Expression (Comp));
7235
7236 else
7237 Stat := Make_Procedure_Call_Statement (Loc,
7238 Name => New_Occurrence_Of
7239 (Entity (Assign_Indexed_Subp), Loc),
7240 Parameter_Associations =>
7241 New_List (New_Occurrence_Of (Temp, Loc),
7242 New_Copy_Tree (Key),
7243 New_Copy_Tree (Expression (Comp))));
7244 end if;
7245
7246 Append (Stat, Aggr_Code);
7247
7248 <<Next_Key>>
7249 Next (Key);
7250 end loop;
08c8883f 7251
7a21651f 7252 else
08c8883f
ES
7253 -- Iterated component association. Discard
7254 -- positional insertion procedure.
7255
7256 Add_Named_Subp := Assign_Indexed_Subp;
7257 Add_Unnamed_Subp := Empty;
7258 Expand_Iterated_Component (Comp);
7a21651f 7259 end if;
08c8883f 7260
7a21651f
ES
7261 Next (Comp);
7262 end loop;
7263 end if;
7264 end;
ce59f39f 7265 end if;
4f6ebe2a 7266
ce59f39f
GD
7267 Insert_Actions (N, Aggr_Code);
7268 Rewrite (N, New_Occurrence_Of (Temp, Loc));
7269 Analyze_And_Resolve (N, Typ);
745f5698
ES
7270 end Expand_Container_Aggregate;
7271
9eb8d5b4
AC
7272 ------------------------------
7273 -- Expand_N_Delta_Aggregate --
7274 ------------------------------
7275
7276 procedure Expand_N_Delta_Aggregate (N : Node_Id) is
9313a26a 7277 Loc : constant Source_Ptr := Sloc (N);
c78efe92 7278 Typ : constant Entity_Id := Etype (Expression (N));
9eb8d5b4
AC
7279 Decl : Node_Id;
7280
7281 begin
9313a26a
AC
7282 Decl :=
7283 Make_Object_Declaration (Loc,
7284 Defining_Identifier => Make_Temporary (Loc, 'T'),
7285 Object_Definition => New_Occurrence_Of (Typ, Loc),
7286 Expression => New_Copy_Tree (Expression (N)));
9eb8d5b4
AC
7287
7288 if Is_Array_Type (Etype (N)) then
7289 Expand_Delta_Array_Aggregate (N, New_List (Decl));
7290 else
7291 Expand_Delta_Record_Aggregate (N, New_List (Decl));
7292 end if;
7293 end Expand_N_Delta_Aggregate;
7294
7295 ----------------------------------
7296 -- Expand_Delta_Array_Aggregate --
7297 ----------------------------------
7298
7299 procedure Expand_Delta_Array_Aggregate (N : Node_Id; Deltas : List_Id) is
9313a26a
AC
7300 Loc : constant Source_Ptr := Sloc (N);
7301 Temp : constant Entity_Id := Defining_Identifier (First (Deltas));
7302 Assoc : Node_Id;
7303
9eb8d5b4
AC
7304 function Generate_Loop (C : Node_Id) return Node_Id;
7305 -- Generate a loop containing individual component assignments for
7306 -- choices that are ranges, subtype indications, subtype names, and
7307 -- iterated component associations.
7308
9313a26a
AC
7309 -------------------
7310 -- Generate_Loop --
7311 -------------------
7312
9eb8d5b4
AC
7313 function Generate_Loop (C : Node_Id) return Node_Id is
7314 Sl : constant Source_Ptr := Sloc (C);
7315 Ix : Entity_Id;
7316
7317 begin
7318 if Nkind (Parent (C)) = N_Iterated_Component_Association then
7319 Ix :=
7320 Make_Defining_Identifier (Loc,
7321 Chars => (Chars (Defining_Identifier (Parent (C)))));
7322 else
7323 Ix := Make_Temporary (Sl, 'I');
7324 end if;
7325
7326 return
f3561c06 7327 Make_Implicit_Loop_Statement (C,
9313a26a
AC
7328 Iteration_Scheme =>
7329 Make_Iteration_Scheme (Sl,
7330 Loop_Parameter_Specification =>
7331 Make_Loop_Parameter_Specification (Sl,
7332 Defining_Identifier => Ix,
7333 Discrete_Subtype_Definition => New_Copy_Tree (C))),
7334
7335 Statements => New_List (
7336 Make_Assignment_Statement (Sl,
7337 Name =>
7338 Make_Indexed_Component (Sl,
9eb8d5b4
AC
7339 Prefix => New_Occurrence_Of (Temp, Sl),
7340 Expressions => New_List (New_Occurrence_Of (Ix, Sl))),
9313a26a
AC
7341 Expression => New_Copy_Tree (Expression (Assoc)))),
7342 End_Label => Empty);
9eb8d5b4
AC
7343 end Generate_Loop;
7344
9313a26a
AC
7345 -- Local variables
7346
7347 Choice : Node_Id;
7348
7349 -- Start of processing for Expand_Delta_Array_Aggregate
7350
9eb8d5b4
AC
7351 begin
7352 Assoc := First (Component_Associations (N));
7353 while Present (Assoc) loop
7354 Choice := First (Choice_List (Assoc));
7355 if Nkind (Assoc) = N_Iterated_Component_Association then
7356 while Present (Choice) loop
7357 Append_To (Deltas, Generate_Loop (Choice));
7358 Next (Choice);
7359 end loop;
7360
7361 else
7362 while Present (Choice) loop
7363
7364 -- Choice can be given by a range, a subtype indication, a
7365 -- subtype name, a scalar value, or an entity.
7366
7367 if Nkind (Choice) = N_Range
7368 or else (Is_Entity_Name (Choice)
9313a26a 7369 and then Is_Type (Entity (Choice)))
9eb8d5b4
AC
7370 then
7371 Append_To (Deltas, Generate_Loop (Choice));
7372
7373 elsif Nkind (Choice) = N_Subtype_Indication then
7374 Append_To (Deltas,
7375 Generate_Loop (Range_Expression (Constraint (Choice))));
7376
7377 else
7378 Append_To (Deltas,
9313a26a
AC
7379 Make_Assignment_Statement (Sloc (Choice),
7380 Name =>
7381 Make_Indexed_Component (Sloc (Choice),
7382 Prefix => New_Occurrence_Of (Temp, Loc),
7383 Expressions => New_List (New_Copy_Tree (Choice))),
7384 Expression => New_Copy_Tree (Expression (Assoc))));
9eb8d5b4
AC
7385 end if;
7386
7387 Next (Choice);
7388 end loop;
7389 end if;
7390
7391 Next (Assoc);
7392 end loop;
7393
7394 Insert_Actions (N, Deltas);
7395 Rewrite (N, New_Occurrence_Of (Temp, Loc));
7396 end Expand_Delta_Array_Aggregate;
7397
7398 -----------------------------------
7399 -- Expand_Delta_Record_Aggregate --
7400 -----------------------------------
7401
7402 procedure Expand_Delta_Record_Aggregate (N : Node_Id; Deltas : List_Id) is
7403 Loc : constant Source_Ptr := Sloc (N);
7404 Temp : constant Entity_Id := Defining_Identifier (First (Deltas));
7405 Assoc : Node_Id;
7406 Choice : Node_Id;
7407
7408 begin
7409 Assoc := First (Component_Associations (N));
7410
7411 while Present (Assoc) loop
7412 Choice := First (Choice_List (Assoc));
7413 while Present (Choice) loop
7414 Append_To (Deltas,
9313a26a
AC
7415 Make_Assignment_Statement (Sloc (Choice),
7416 Name =>
7417 Make_Selected_Component (Sloc (Choice),
7418 Prefix => New_Occurrence_Of (Temp, Loc),
7419 Selector_Name => Make_Identifier (Loc, Chars (Choice))),
7420 Expression => New_Copy_Tree (Expression (Assoc))));
9eb8d5b4
AC
7421 Next (Choice);
7422 end loop;
7423
7424 Next (Assoc);
7425 end loop;
7426
7427 Insert_Actions (N, Deltas);
7428 Rewrite (N, New_Occurrence_Of (Temp, Loc));
7429 end Expand_Delta_Record_Aggregate;
7430
70482933
RK
7431 ----------------------------------
7432 -- Expand_N_Extension_Aggregate --
7433 ----------------------------------
7434
7435 -- If the ancestor part is an expression, add a component association for
7436 -- the parent field. If the type of the ancestor part is not the direct
d4dfb005
BD
7437 -- parent of the expected type, build recursively the needed ancestors.
7438 -- If the ancestor part is a subtype_mark, replace aggregate with a
7439 -- declaration for a temporary of the expected type, followed by
7440 -- individual assignments to the given components.
70482933
RK
7441
7442 procedure Expand_N_Extension_Aggregate (N : Node_Id) is
70482933 7443 A : constant Node_Id := Ancestor_Part (N);
3fc40cd7 7444 Loc : constant Source_Ptr := Sloc (N);
70482933
RK
7445 Typ : constant Entity_Id := Etype (N);
7446
7447 begin
fbf5a39b 7448 -- If the ancestor is a subtype mark, an init proc must be called
70482933
RK
7449 -- on the resulting object which thus has to be materialized in
7450 -- the front-end
7451
7452 if Is_Entity_Name (A) and then Is_Type (Entity (A)) then
7453 Convert_To_Assignments (N, Typ);
7454
7455 -- The extension aggregate is transformed into a record aggregate
7456 -- of the following form (c1 and c2 are inherited components)
7457
7458 -- (Exp with c3 => a, c4 => b)
0877856b 7459 -- ==> (c1 => Exp.c1, c2 => Exp.c2, c3 => a, c4 => b)
70482933
RK
7460
7461 else
7462 Set_Etype (N, Typ);
7463
1f110335 7464 if Tagged_Type_Expansion then
70482933 7465 Expand_Record_Aggregate (N,
a9d8907c
JM
7466 Orig_Tag =>
7467 New_Occurrence_Of
7468 (Node (First_Elmt (Access_Disp_Table (Typ))), Loc),
70482933 7469 Parent_Expr => A);
5c34e9cd
AC
7470
7471 -- No tag is needed in the case of a VM
7472
0f95b178 7473 else
5c34e9cd 7474 Expand_Record_Aggregate (N, Parent_Expr => A);
70482933
RK
7475 end if;
7476 end if;
fbf5a39b
AC
7477
7478 exception
7479 when RE_Not_Available =>
7480 return;
70482933
RK
7481 end Expand_N_Extension_Aggregate;
7482
7483 -----------------------------
7484 -- Expand_Record_Aggregate --
7485 -----------------------------
7486
7487 procedure Expand_Record_Aggregate
7488 (N : Node_Id;
7489 Orig_Tag : Node_Id := Empty;
7490 Parent_Expr : Node_Id := Empty)
7491 is
fbf5a39b
AC
7492 Loc : constant Source_Ptr := Sloc (N);
7493 Comps : constant List_Id := Component_Associations (N);
7494 Typ : constant Entity_Id := Etype (N);
7495 Base_Typ : constant Entity_Id := Base_Type (Typ);
70482933 7496
0f95b178
JM
7497 Static_Components : Boolean := True;
7498 -- Flag to indicate whether all components are compile-time known,
7499 -- and the aggregate can be constructed statically and handled by
d4dfb005 7500 -- the back-end. Set to False by Component_OK_For_Backend.
70482933 7501
54740d7d
AC
7502 procedure Build_Back_End_Aggregate;
7503 -- Build a proper aggregate to be handled by the back-end
7504
f6205414
AC
7505 function Compile_Time_Known_Composite_Value (N : Node_Id) return Boolean;
7506 -- Returns true if N is an expression of composite type which can be
7507 -- fully evaluated at compile time without raising constraint error.
7508 -- Such expressions can be passed as is to Gigi without any expansion.
7509 --
7510 -- This returns true for N_Aggregate with Compile_Time_Known_Aggregate
7511 -- set and constants whose expression is such an aggregate, recursively.
7512
d4dfb005 7513 function Component_OK_For_Backend return Boolean;
b465ef6f 7514 -- Check for presence of a component which makes it impossible for the
0f95b178
JM
7515 -- backend to process the aggregate, thus requiring the use of a series
7516 -- of assignment statements. Cases checked for are a nested aggregate
7517 -- needing Late_Expansion, the presence of a tagged component which may
7518 -- need tag adjustment, and a bit unaligned component reference.
4a76b687
ES
7519 --
7520 -- We also force expansion into assignments if a component is of a
7521 -- mutable type (including a private type with discriminants) because
7522 -- in that case the size of the component to be copied may be smaller
7523 -- than the side of the target, and there is no simple way for gigi
7524 -- to compute the size of the object to be copied.
7525 --
7526 -- NOTE: This is part of the ongoing work to define precisely the
7527 -- interface between front-end and back-end handling of aggregates.
7528 -- In general it is desirable to pass aggregates as they are to gigi,
7529 -- in order to minimize elaboration code. This is one case where the
7530 -- semantics of Ada complicate the analysis and lead to anomalies in
7531 -- the gcc back-end if the aggregate is not expanded into assignments.
d4dfb005
BD
7532 --
7533 -- NOTE: This sets the global Static_Components to False in most, but
7534 -- not all, cases when it returns False.
70482933 7535
9b7924dd
AC
7536 function Has_Per_Object_Constraint (L : List_Id) return Boolean;
7537 -- Return True if any element of L has Has_Per_Object_Constraint set.
7538 -- L should be the Choices component of an N_Component_Association.
7539
57a8057a
AC
7540 function Has_Visible_Private_Ancestor (Id : E) return Boolean;
7541 -- If any ancestor of the current type is private, the aggregate
b465ef6f 7542 -- cannot be built in place. We cannot rely on Has_Private_Ancestor,
57a8057a
AC
7543 -- because it will not be set when type and its parent are in the
7544 -- same scope, and the parent component needs expansion.
7545
7546 function Top_Level_Aggregate (N : Node_Id) return Node_Id;
7547 -- For nested aggregates return the ultimate enclosing aggregate; for
7548 -- non-nested aggregates return N.
7549
54740d7d
AC
7550 ------------------------------
7551 -- Build_Back_End_Aggregate --
7552 ------------------------------
f6205414 7553
54740d7d 7554 procedure Build_Back_End_Aggregate is
4f94fa11
AC
7555 Comp : Entity_Id;
7556 New_Comp : Node_Id;
7557 Tag_Value : Node_Id;
57a8057a
AC
7558
7559 begin
0f95b178
JM
7560 if Nkind (N) = N_Aggregate then
7561
3b9fa2df
ES
7562 -- If the aggregate is static and can be handled by the back-end,
7563 -- nothing left to do.
0f95b178
JM
7564
7565 if Static_Components then
7566 Set_Compile_Time_Known_Aggregate (N);
7567 Set_Expansion_Delayed (N, False);
7568 end if;
7569 end if;
7570
07fc65c4 7571 -- If no discriminants, nothing special to do
70482933 7572
07fc65c4 7573 if not Has_Discriminants (Typ) then
70482933
RK
7574 null;
7575
07fc65c4
GB
7576 -- Case of discriminants present
7577
70482933
RK
7578 elsif Is_Derived_Type (Typ) then
7579
138fc6f1
HK
7580 -- For untagged types, non-stored discriminants are replaced with
7581 -- stored discriminants, which are the ones that gigi uses to
7582 -- describe the type and its components.
70482933 7583
07fc65c4 7584 Generate_Aggregate_For_Derived_Type : declare
fbf5a39b 7585 procedure Prepend_Stored_Values (T : Entity_Id);
3b9fa2df
ES
7586 -- Scan the list of stored discriminants of the type, and add
7587 -- their values to the aggregate being built.
07fc65c4
GB
7588
7589 ---------------------------
fbf5a39b 7590 -- Prepend_Stored_Values --
07fc65c4
GB
7591 ---------------------------
7592
fbf5a39b 7593 procedure Prepend_Stored_Values (T : Entity_Id) is
54740d7d
AC
7594 Discr : Entity_Id;
7595 First_Comp : Node_Id := Empty;
7596
07fc65c4 7597 begin
54740d7d
AC
7598 Discr := First_Stored_Discriminant (T);
7599 while Present (Discr) loop
07fc65c4
GB
7600 New_Comp :=
7601 Make_Component_Association (Loc,
138fc6f1 7602 Choices => New_List (
54740d7d 7603 New_Occurrence_Of (Discr, Loc)),
07fc65c4 7604 Expression =>
bdc193ba
AC
7605 New_Copy_Tree
7606 (Get_Discriminant_Value
54740d7d 7607 (Discr,
07fc65c4
GB
7608 Typ,
7609 Discriminant_Constraint (Typ))));
7610
7611 if No (First_Comp) then
7612 Prepend_To (Component_Associations (N), New_Comp);
7613 else
7614 Insert_After (First_Comp, New_Comp);
7615 end if;
7616
7617 First_Comp := New_Comp;
54740d7d 7618 Next_Stored_Discriminant (Discr);
07fc65c4 7619 end loop;
fbf5a39b 7620 end Prepend_Stored_Values;
07fc65c4 7621
54740d7d
AC
7622 -- Local variables
7623
7624 Constraints : constant List_Id := New_List;
7625
7626 Discr : Entity_Id;
7627 Decl : Node_Id;
7628 Num_Disc : Nat := 0;
81a0f4a3 7629 Num_Stor : Nat := 0;
54740d7d 7630
07fc65c4 7631 -- Start of processing for Generate_Aggregate_For_Derived_Type
70482933
RK
7632
7633 begin
3b9fa2df 7634 -- Remove the associations for the discriminant of derived type
70482933 7635
54740d7d
AC
7636 declare
7637 First_Comp : Node_Id;
70482933 7638
54740d7d
AC
7639 begin
7640 First_Comp := First (Component_Associations (N));
7641 while Present (First_Comp) loop
7642 Comp := First_Comp;
7643 Next (First_Comp);
7644
7645 if Ekind (Entity (First (Choices (Comp)))) =
7646 E_Discriminant
7647 then
7648 Remove (Comp);
7649 Num_Disc := Num_Disc + 1;
7650 end if;
7651 end loop;
7652 end;
70482933 7653
fbf5a39b
AC
7654 -- Insert stored discriminant associations in the correct
7655 -- order. If there are more stored discriminants than new
3b9fa2df
ES
7656 -- discriminants, there is at least one new discriminant that
7657 -- constrains more than one of the stored discriminants. In
7658 -- this case we need to construct a proper subtype of the
7659 -- parent type, in order to supply values to all the
fbf5a39b
AC
7660 -- components. Otherwise there is one-one correspondence
7661 -- between the constraints and the stored discriminants.
70482933 7662
54740d7d
AC
7663 Discr := First_Stored_Discriminant (Base_Type (Typ));
7664 while Present (Discr) loop
81a0f4a3 7665 Num_Stor := Num_Stor + 1;
54740d7d 7666 Next_Stored_Discriminant (Discr);
70482933 7667 end loop;
07fc65c4 7668
fbf5a39b 7669 -- Case of more stored discriminants than new discriminants
07fc65c4 7670
81a0f4a3 7671 if Num_Stor > Num_Disc then
07fc65c4 7672
3b9fa2df
ES
7673 -- Create a proper subtype of the parent type, which is the
7674 -- proper implementation type for the aggregate, and convert
7675 -- it to the intended target type.
07fc65c4 7676
54740d7d
AC
7677 Discr := First_Stored_Discriminant (Base_Type (Typ));
7678 while Present (Discr) loop
07fc65c4 7679 New_Comp :=
37368818
RD
7680 New_Copy_Tree
7681 (Get_Discriminant_Value
54740d7d 7682 (Discr,
bdc193ba
AC
7683 Typ,
7684 Discriminant_Constraint (Typ)));
138fc6f1 7685
07fc65c4 7686 Append (New_Comp, Constraints);
54740d7d 7687 Next_Stored_Discriminant (Discr);
07fc65c4
GB
7688 end loop;
7689
7690 Decl :=
7691 Make_Subtype_Declaration (Loc,
191fcb3a 7692 Defining_Identifier => Make_Temporary (Loc, 'T'),
bdc193ba 7693 Subtype_Indication =>
07fc65c4
GB
7694 Make_Subtype_Indication (Loc,
7695 Subtype_Mark =>
7696 New_Occurrence_Of (Etype (Base_Type (Typ)), Loc),
bdc193ba 7697 Constraint =>
07fc65c4
GB
7698 Make_Index_Or_Discriminant_Constraint
7699 (Loc, Constraints)));
7700
7701 Insert_Action (N, Decl);
fbf5a39b 7702 Prepend_Stored_Values (Base_Type (Typ));
07fc65c4
GB
7703
7704 Set_Etype (N, Defining_Identifier (Decl));
7705 Set_Analyzed (N);
7706
7707 Rewrite (N, Unchecked_Convert_To (Typ, N));
7708 Analyze (N);
7709
7710 -- Case where we do not have fewer new discriminants than
3b9fa2df
ES
7711 -- stored discriminants, so in this case we can simply use the
7712 -- stored discriminants of the subtype.
07fc65c4
GB
7713
7714 else
fbf5a39b 7715 Prepend_Stored_Values (Typ);
07fc65c4
GB
7716 end if;
7717 end Generate_Aggregate_For_Derived_Type;
70482933
RK
7718 end if;
7719
7720 if Is_Tagged_Type (Typ) then
7721
22243c12 7722 -- In the tagged case, _parent and _tag component must be created
70482933 7723
22243c12
RD
7724 -- Reset Null_Present unconditionally. Tagged records always have
7725 -- at least one field (the tag or the parent).
70482933
RK
7726
7727 Set_Null_Record_Present (N, False);
7728
7729 -- When the current aggregate comes from the expansion of an
7730 -- extension aggregate, the parent expr is replaced by an
22243c12 7731 -- aggregate formed by selected components of this expr.
70482933 7732
36a66365 7733 if Present (Parent_Expr) and then Is_Empty_List (Comps) then
5277cab6 7734 Comp := First_Component_Or_Discriminant (Typ);
70482933
RK
7735 while Present (Comp) loop
7736
70482933
RK
7737 -- Skip all expander-generated components
7738
bdc193ba 7739 if not Comes_From_Source (Original_Record_Component (Comp))
70482933
RK
7740 then
7741 null;
7742
7743 else
7744 New_Comp :=
7745 Make_Selected_Component (Loc,
bdc193ba 7746 Prefix =>
70482933
RK
7747 Unchecked_Convert_To (Typ,
7748 Duplicate_Subexpr (Parent_Expr, True)),
70482933
RK
7749 Selector_Name => New_Occurrence_Of (Comp, Loc));
7750
7751 Append_To (Comps,
7752 Make_Component_Association (Loc,
54740d7d
AC
7753 Choices => New_List (
7754 New_Occurrence_Of (Comp, Loc)),
37368818 7755 Expression => New_Comp));
70482933
RK
7756
7757 Analyze_And_Resolve (New_Comp, Etype (Comp));
7758 end if;
7759
5277cab6 7760 Next_Component_Or_Discriminant (Comp);
70482933
RK
7761 end loop;
7762 end if;
7763
7764 -- Compute the value for the Tag now, if the type is a root it
7765 -- will be included in the aggregate right away, otherwise it will
22243c12 7766 -- be propagated to the parent aggregate.
70482933
RK
7767
7768 if Present (Orig_Tag) then
7769 Tag_Value := Orig_Tag;
54740d7d 7770
1f110335 7771 elsif not Tagged_Type_Expansion then
70482933 7772 Tag_Value := Empty;
54740d7d 7773
70482933 7774 else
a9d8907c
JM
7775 Tag_Value :=
7776 New_Occurrence_Of
7777 (Node (First_Elmt (Access_Disp_Table (Typ))), Loc);
70482933
RK
7778 end if;
7779
7780 -- For a derived type, an aggregate for the parent is formed with
7781 -- all the inherited components.
7782
7783 if Is_Derived_Type (Typ) then
70482933
RK
7784 declare
7785 First_Comp : Node_Id;
7786 Parent_Comps : List_Id;
7787 Parent_Aggr : Node_Id;
7788 Parent_Name : Node_Id;
7789
7790 begin
54740d7d 7791 First_Comp := First (Component_Associations (N));
70482933 7792 Parent_Comps := New_List;
567bf449
EB
7793
7794 -- First skip the discriminants
7795
7796 while Present (First_Comp)
7797 and then Ekind (Entity (First (Choices (First_Comp))))
7798 = E_Discriminant
7799 loop
7800 Next (First_Comp);
7801 end loop;
7802
7803 -- Then remove the inherited component association from the
7804 -- aggregate and store them in the parent aggregate
7805
70482933 7806 while Present (First_Comp)
36a66365
AC
7807 and then
7808 Scope (Original_Record_Component
7809 (Entity (First (Choices (First_Comp))))) /=
7810 Base_Typ
70482933
RK
7811 loop
7812 Comp := First_Comp;
7813 Next (First_Comp);
7814 Remove (Comp);
7815 Append (Comp, Parent_Comps);
7816 end loop;
7817
36a66365
AC
7818 Parent_Aggr :=
7819 Make_Aggregate (Loc,
7820 Component_Associations => Parent_Comps);
70482933
RK
7821 Set_Etype (Parent_Aggr, Etype (Base_Type (Typ)));
7822
7823 -- Find the _parent component
7824
7825 Comp := First_Component (Typ);
7826 while Chars (Comp) /= Name_uParent loop
99859ea7 7827 Next_Component (Comp);
70482933
RK
7828 end loop;
7829
7830 Parent_Name := New_Occurrence_Of (Comp, Loc);
7831
7832 -- Insert the parent aggregate
7833
7834 Prepend_To (Component_Associations (N),
7835 Make_Component_Association (Loc,
7836 Choices => New_List (Parent_Name),
7837 Expression => Parent_Aggr));
7838
7839 -- Expand recursively the parent propagating the right Tag
7840
22243c12
RD
7841 Expand_Record_Aggregate
7842 (Parent_Aggr, Tag_Value, Parent_Expr);
1b6897ce
AC
7843
7844 -- The ancestor part may be a nested aggregate that has
7845 -- delayed expansion: recheck now.
7846
d4dfb005 7847 if not Component_OK_For_Backend then
1b6897ce
AC
7848 Convert_To_Assignments (N, Typ);
7849 end if;
70482933
RK
7850 end;
7851
7852 -- For a root type, the tag component is added (unless compiling
0f95b178 7853 -- for the VMs, where tags are implicit).
70482933 7854
1f110335 7855 elsif Tagged_Type_Expansion then
70482933
RK
7856 declare
7857 Tag_Name : constant Node_Id :=
138fc6f1
HK
7858 New_Occurrence_Of
7859 (First_Tag_Component (Typ), Loc);
70482933
RK
7860 Typ_Tag : constant Entity_Id := RTE (RE_Tag);
7861 Conv_Node : constant Node_Id :=
138fc6f1 7862 Unchecked_Convert_To (Typ_Tag, Tag_Value);
70482933
RK
7863
7864 begin
7865 Set_Etype (Conv_Node, Typ_Tag);
7866 Prepend_To (Component_Associations (N),
7867 Make_Component_Association (Loc,
7868 Choices => New_List (Tag_Name),
7869 Expression => Conv_Node));
7870 end;
7871 end if;
7872 end if;
54740d7d
AC
7873 end Build_Back_End_Aggregate;
7874
7875 ----------------------------------------
7876 -- Compile_Time_Known_Composite_Value --
7877 ----------------------------------------
7878
7879 function Compile_Time_Known_Composite_Value
7880 (N : Node_Id) return Boolean
7881 is
7882 begin
7883 -- If we have an entity name, then see if it is the name of a
7884 -- constant and if so, test the corresponding constant value.
7885
7886 if Is_Entity_Name (N) then
7887 declare
7888 E : constant Entity_Id := Entity (N);
7889 V : Node_Id;
7890 begin
7891 if Ekind (E) /= E_Constant then
7892 return False;
7893 else
7894 V := Constant_Value (E);
7895 return Present (V)
7896 and then Compile_Time_Known_Composite_Value (V);
7897 end if;
7898 end;
7899
7900 -- We have a value, see if it is compile time known
7901
7902 else
7903 if Nkind (N) = N_Aggregate then
7904 return Compile_Time_Known_Aggregate (N);
7905 end if;
7906
7907 -- All other types of values are not known at compile time
7908
7909 return False;
7910 end if;
7911
7912 end Compile_Time_Known_Composite_Value;
7913
d4dfb005
BD
7914 ------------------------------
7915 -- Component_OK_For_Backend --
7916 ------------------------------
54740d7d 7917
d4dfb005 7918 function Component_OK_For_Backend return Boolean is
54740d7d
AC
7919 C : Node_Id;
7920 Expr_Q : Node_Id;
7921
7922 begin
54740d7d
AC
7923 C := First (Comps);
7924 while Present (C) loop
7925
7926 -- If the component has box initialization, expansion is needed
7927 -- and component is not ready for backend.
7928
7929 if Box_Present (C) then
d4dfb005 7930 return False;
54740d7d
AC
7931 end if;
7932
4f061cf2 7933 Expr_Q := Unqualify (Expression (C));
54740d7d 7934
f4c26077
ES
7935 -- Return False for array components whose bounds raise
7936 -- constraint error.
7937
7938 declare
61770974 7939 Comp : constant Entity_Id := First (Choices (C));
f4c26077
ES
7940 Indx : Node_Id;
7941
7942 begin
f4c26077
ES
7943 if Present (Etype (Comp))
7944 and then Is_Array_Type (Etype (Comp))
7945 then
7946 Indx := First_Index (Etype (Comp));
f4c26077 7947 while Present (Indx) loop
61770974
HK
7948 if Nkind (Type_Low_Bound (Etype (Indx))) =
7949 N_Raise_Constraint_Error
7950 or else Nkind (Type_High_Bound (Etype (Indx))) =
7951 N_Raise_Constraint_Error
f4c26077
ES
7952 then
7953 return False;
7954 end if;
7955
99859ea7 7956 Next_Index (Indx);
f4c26077
ES
7957 end loop;
7958 end if;
7959 end;
7960
d4dfb005 7961 -- Return False if the aggregate has any associations for tagged
54740d7d
AC
7962 -- components that may require tag adjustment.
7963
7964 -- These are cases where the source expression may have a tag that
7965 -- could differ from the component tag (e.g., can occur for type
7966 -- conversions and formal parameters). (Tag adjustment not needed
7967 -- if Tagged_Type_Expansion because object tags are implicit in
7968 -- the machine.)
7969
7970 if Is_Tagged_Type (Etype (Expr_Q))
61770974
HK
7971 and then
7972 (Nkind (Expr_Q) = N_Type_Conversion
7973 or else
7974 (Is_Entity_Name (Expr_Q)
bb6a856b 7975 and then Is_Formal (Entity (Expr_Q))))
54740d7d
AC
7976 and then Tagged_Type_Expansion
7977 then
7978 Static_Components := False;
d4dfb005 7979 return False;
54740d7d
AC
7980
7981 elsif Is_Delayed_Aggregate (Expr_Q) then
7982 Static_Components := False;
d4dfb005 7983 return False;
54740d7d 7984
1f6237e3
ES
7985 elsif Nkind (Expr_Q) = N_Quantified_Expression then
7986 Static_Components := False;
7987 return False;
7988
54740d7d
AC
7989 elsif Possible_Bit_Aligned_Component (Expr_Q) then
7990 Static_Components := False;
d4dfb005 7991 return False;
54740d7d
AC
7992
7993 elsif Modify_Tree_For_C
7994 and then Nkind (C) = N_Component_Association
7995 and then Has_Per_Object_Constraint (Choices (C))
7996 then
7997 Static_Components := False;
d4dfb005 7998 return False;
54740d7d
AC
7999
8000 elsif Modify_Tree_For_C
8001 and then Nkind (Expr_Q) = N_Identifier
8002 and then Is_Array_Type (Etype (Expr_Q))
8003 then
8004 Static_Components := False;
d4dfb005 8005 return False;
b276ab7a
AC
8006
8007 elsif Modify_Tree_For_C
8008 and then Nkind (Expr_Q) = N_Type_Conversion
8009 and then Is_Array_Type (Etype (Expr_Q))
8010 then
8011 Static_Components := False;
d4dfb005 8012 return False;
54740d7d
AC
8013 end if;
8014
8015 if Is_Elementary_Type (Etype (Expr_Q)) then
8016 if not Compile_Time_Known_Value (Expr_Q) then
8017 Static_Components := False;
8018 end if;
8019
8020 elsif not Compile_Time_Known_Composite_Value (Expr_Q) then
8021 Static_Components := False;
8022
8023 if Is_Private_Type (Etype (Expr_Q))
8024 and then Has_Discriminants (Etype (Expr_Q))
8025 then
d4dfb005 8026 return False;
54740d7d
AC
8027 end if;
8028 end if;
8029
8030 Next (C);
8031 end loop;
8032
d4dfb005
BD
8033 return True;
8034 end Component_OK_For_Backend;
54740d7d
AC
8035
8036 -------------------------------
8037 -- Has_Per_Object_Constraint --
8038 -------------------------------
8039
8040 function Has_Per_Object_Constraint (L : List_Id) return Boolean is
8041 N : Node_Id := First (L);
8042 begin
8043 while Present (N) loop
8044 if Is_Entity_Name (N)
8045 and then Present (Entity (N))
8046 and then Has_Per_Object_Constraint (Entity (N))
8047 then
8048 return True;
8049 end if;
8050
8051 Next (N);
8052 end loop;
8053
8054 return False;
8055 end Has_Per_Object_Constraint;
8056
8057 -----------------------------------
8058 -- Has_Visible_Private_Ancestor --
8059 -----------------------------------
8060
8061 function Has_Visible_Private_Ancestor (Id : E) return Boolean is
8062 R : constant Entity_Id := Root_Type (Id);
8063 T1 : Entity_Id := Id;
8064
8065 begin
8066 loop
8067 if Is_Private_Type (T1) then
8068 return True;
8069
8070 elsif T1 = R then
8071 return False;
8072
8073 else
8074 T1 := Etype (T1);
8075 end if;
8076 end loop;
8077 end Has_Visible_Private_Ancestor;
4f94fa11
AC
8078
8079 -------------------------
8080 -- Top_Level_Aggregate --
8081 -------------------------
8082
8083 function Top_Level_Aggregate (N : Node_Id) return Node_Id is
8084 Aggr : Node_Id;
8085
8086 begin
8087 Aggr := N;
8088 while Present (Parent (Aggr))
4a08c95c
AC
8089 and then Nkind (Parent (Aggr)) in
8090 N_Aggregate | N_Component_Association
4f94fa11
AC
8091 loop
8092 Aggr := Parent (Aggr);
8093 end loop;
8094
8095 return Aggr;
8096 end Top_Level_Aggregate;
8097
8098 -- Local variables
8099
8100 Top_Level_Aggr : constant Node_Id := Top_Level_Aggregate (N);
8101
8102 -- Start of processing for Expand_Record_Aggregate
8103
8104 begin
4f94fa11
AC
8105 -- No special management required for aggregates used to initialize
8106 -- statically allocated dispatch tables
8107
c061e99b 8108 if Is_Static_Dispatch_Table_Aggregate (N) then
4f94fa11 8109 return;
e1dfbb03
SB
8110
8111 -- Case pattern aggregates need to remain as aggregates
8112
8113 elsif Is_Case_Choice_Pattern (N) then
8114 return;
70482933 8115 end if;
0f95b178 8116
8973b987 8117 -- If the pragma Aggregate_Individually_Assign is set, always convert to
efc00a88
PB
8118 -- assignments.
8119
8120 if Aggregate_Individually_Assign then
8121 Convert_To_Assignments (N, Typ);
8122
4f94fa11
AC
8123 -- Ada 2005 (AI-318-2): We need to convert to assignments if components
8124 -- are build-in-place function calls. The assignments will each turn
8125 -- into a build-in-place function call. If components are all static,
d4dfb005 8126 -- we can pass the aggregate to the back end regardless of limitedness.
4f94fa11
AC
8127
8128 -- Extension aggregates, aggregates in extended return statements, and
8129 -- aggregates for C++ imported types must be expanded.
8130
efc00a88 8131 elsif Ada_Version >= Ada_2005 and then Is_Limited_View (Typ) then
4a08c95c
AC
8132 if Nkind (Parent (N)) not in
8133 N_Component_Association | N_Object_Declaration
4f94fa11
AC
8134 then
8135 Convert_To_Assignments (N, Typ);
8136
8137 elsif Nkind (N) = N_Extension_Aggregate
8138 or else Convention (Typ) = Convention_CPP
8139 then
8140 Convert_To_Assignments (N, Typ);
8141
8142 elsif not Size_Known_At_Compile_Time (Typ)
d4dfb005 8143 or else not Component_OK_For_Backend
4f94fa11
AC
8144 or else not Static_Components
8145 then
8146 Convert_To_Assignments (N, Typ);
8147
8148 -- In all other cases, build a proper aggregate to be handled by
23a9215f 8149 -- the back-end.
4f94fa11
AC
8150
8151 else
54740d7d 8152 Build_Back_End_Aggregate;
4f94fa11
AC
8153 end if;
8154
8155 -- Gigi doesn't properly handle temporaries of variable size so we
8156 -- generate it in the front-end
8157
8158 elsif not Size_Known_At_Compile_Time (Typ)
8159 and then Tagged_Type_Expansion
8160 then
8161 Convert_To_Assignments (N, Typ);
8162
8163 -- An aggregate used to initialize a controlled object must be turned
8164 -- into component assignments as the components themselves may require
8165 -- finalization actions such as adjustment.
8166
8167 elsif Needs_Finalization (Typ) then
8168 Convert_To_Assignments (N, Typ);
8169
8170 -- Ada 2005 (AI-287): In case of default initialized components we
8171 -- convert the aggregate into assignments.
8172
8173 elsif Has_Default_Init_Comps (N) then
8174 Convert_To_Assignments (N, Typ);
8175
8176 -- Check components
8177
d4dfb005 8178 elsif not Component_OK_For_Backend then
4f94fa11
AC
8179 Convert_To_Assignments (N, Typ);
8180
8181 -- If an ancestor is private, some components are not inherited and we
8182 -- cannot expand into a record aggregate.
8183
8184 elsif Has_Visible_Private_Ancestor (Typ) then
8185 Convert_To_Assignments (N, Typ);
8186
8187 -- ??? The following was done to compile fxacc00.ads in the ACVCs. Gigi
8188 -- is not able to handle the aggregate for Late_Request.
8189
8190 elsif Is_Tagged_Type (Typ) and then Has_Discriminants (Typ) then
8191 Convert_To_Assignments (N, Typ);
8192
8193 -- If the tagged types covers interface types we need to initialize all
8194 -- hidden components containing pointers to secondary dispatch tables.
8195
8196 elsif Is_Tagged_Type (Typ) and then Has_Interfaces (Typ) then
8197 Convert_To_Assignments (N, Typ);
8198
8199 -- If some components are mutable, the size of the aggregate component
8200 -- may be distinct from the default size of the type component, so
8201 -- we need to expand to insure that the back-end copies the proper
8202 -- size of the data. However, if the aggregate is the initial value of
8203 -- a constant, the target is immutable and might be built statically
8204 -- if components are appropriate.
8205
8206 elsif Has_Mutable_Components (Typ)
8207 and then
8208 (Nkind (Parent (Top_Level_Aggr)) /= N_Object_Declaration
8209 or else not Constant_Present (Parent (Top_Level_Aggr))
8210 or else not Static_Components)
8211 then
8212 Convert_To_Assignments (N, Typ);
8213
8214 -- If the type involved has bit aligned components, then we are not sure
8215 -- that the back end can handle this case correctly.
8216
8217 elsif Type_May_Have_Bit_Aligned_Components (Typ) then
8218 Convert_To_Assignments (N, Typ);
8219
8220 -- When generating C, only generate an aggregate when declaring objects
8221 -- since C does not support aggregates in e.g. assignment statements.
8222
9f51b855 8223 elsif Modify_Tree_For_C and then not Is_CCG_Supported_Aggregate (N) then
4f94fa11
AC
8224 Convert_To_Assignments (N, Typ);
8225
8226 -- In all other cases, build a proper aggregate to be handled by gigi
8227
8228 else
54740d7d 8229 Build_Back_End_Aggregate;
4f94fa11 8230 end if;
70482933
RK
8231 end Expand_Record_Aggregate;
8232
a80b1eb7
EB
8233 ---------------------
8234 -- Get_Base_Object --
8235 ---------------------
8236
8237 function Get_Base_Object (N : Node_Id) return Entity_Id is
8238 R : Node_Id;
8239
8240 begin
8241 R := Get_Referenced_Object (N);
8242
4a08c95c 8243 while Nkind (R) in N_Indexed_Component | N_Selected_Component | N_Slice
a80b1eb7
EB
8244 loop
8245 R := Get_Referenced_Object (Prefix (R));
8246 end loop;
8247
8248 if Is_Entity_Name (R) and then Is_Object (Entity (R)) then
8249 return Entity (R);
8250 else
8251 return Empty;
8252 end if;
8253 end Get_Base_Object;
8254
65356e64
AC
8255 ----------------------------
8256 -- Has_Default_Init_Comps --
8257 ----------------------------
8258
8259 function Has_Default_Init_Comps (N : Node_Id) return Boolean is
b52e1520 8260 Assoc : Node_Id;
c45b6ae0 8261 Expr : Node_Id;
b52e1520 8262 -- Component association and expression, respectively
bdc193ba 8263
65356e64 8264 begin
4a08c95c 8265 pragma Assert (Nkind (N) in N_Aggregate | N_Extension_Aggregate);
c45b6ae0 8266
c5ee5ad2
BD
8267 if Has_Self_Reference (N) then
8268 return True;
8269 end if;
8270
b52e1520
PT
8271 Assoc := First (Component_Associations (N));
8272 while Present (Assoc) loop
8273 -- Each component association has either a box or an expression
c45b6ae0 8274
b52e1520 8275 pragma Assert (Box_Present (Assoc) xor Present (Expression (Assoc)));
65356e64 8276
b52e1520 8277 -- Check if any direct component has default initialized components
c45b6ae0 8278
b52e1520
PT
8279 if Box_Present (Assoc) then
8280 return True;
c45b6ae0 8281
b52e1520 8282 -- Recursive call in case of aggregate expression
c45b6ae0 8283
b52e1520
PT
8284 else
8285 Expr := Expression (Assoc);
8286
8287 if Nkind (Expr) in N_Aggregate | N_Extension_Aggregate
8288 and then Has_Default_Init_Comps (Expr)
8289 then
8290 return True;
8291 end if;
c45b6ae0
AC
8292 end if;
8293
b52e1520 8294 Next (Assoc);
c45b6ae0
AC
8295 end loop;
8296
65356e64
AC
8297 return False;
8298 end Has_Default_Init_Comps;
8299
fc84947c
EB
8300 --------------------------
8301 -- Initialize_Component --
8302 --------------------------
8303
8304 procedure Initialize_Component
fc84947c
EB
8305 (N : Node_Id;
8306 Comp : Node_Id;
8307 Comp_Typ : Node_Id;
8308 Init_Expr : Node_Id;
8309 Stmts : List_Id)
8310 is
8311 Exceptions_OK : constant Boolean :=
8312 not Restriction_Active (No_Exception_Propagation);
8313 Finalization_OK : constant Boolean :=
8314 Present (Comp_Typ)
8315 and then Needs_Finalization (Comp_Typ);
fc84947c
EB
8316 Loc : constant Source_Ptr := Sloc (N);
8317
fc84947c
EB
8318 Blk_Stmts : List_Id;
8319 Init_Stmt : Node_Id;
8320
8321 begin
8322 pragma Assert (Nkind (Init_Expr) in N_Subexpr);
8323
8324 -- Protect the initialization statements from aborts. Generate:
8325
8326 -- Abort_Defer;
8327
8328 if Finalization_OK and Abort_Allowed then
8329 if Exceptions_OK then
8330 Blk_Stmts := New_List;
8331 else
8332 Blk_Stmts := Stmts;
8333 end if;
8334
8335 Append_To (Blk_Stmts, Build_Runtime_Call (Loc, RE_Abort_Defer));
8336
8337 -- Otherwise aborts are not allowed. All generated code is added
8338 -- directly to the input list.
8339
8340 else
8341 Blk_Stmts := Stmts;
8342 end if;
8343
8344 -- Initialize the component. Generate:
8345
8346 -- Comp := Init_Expr;
8347
8348 -- Note that the initialization expression is not duplicated because
8349 -- either only a single component may be initialized by it (record)
8350 -- or it has already been duplicated if need be (array).
8351
8352 Init_Stmt :=
8353 Make_OK_Assignment_Statement (Loc,
8354 Name => New_Copy_Tree (Comp),
8355 Expression => Relocate_Node (Init_Expr));
fc84947c
EB
8356
8357 Append_To (Blk_Stmts, Init_Stmt);
8358
c0ceba6c
EB
8359 -- Arrange for the component to be adjusted if need be (the call will be
8360 -- generated by Make_Tag_Ctrl_Assignment). But, in the case of an array
8361 -- aggregate, controlled subaggregates are not considered because each
8362 -- of their individual elements will receive an adjustment of its own.
fc84947c
EB
8363
8364 if Finalization_OK
c0ceba6c 8365 and then not Is_Limited_View (Comp_Typ)
fc84947c
EB
8366 and then not
8367 (Is_Array_Type (Etype (N))
8368 and then Is_Array_Type (Comp_Typ)
8369 and then Needs_Finalization (Component_Type (Comp_Typ))
8370 and then Nkind (Unqualify (Init_Expr)) = N_Aggregate)
8371 then
c0ceba6c 8372 Set_No_Finalize_Actions (Init_Stmt);
fc84947c 8373
c0ceba6c
EB
8374 -- Or else, only adjust the tag due to a possible view conversion
8375
8376 else
8377 Set_No_Ctrl_Actions (Init_Stmt);
fc84947c 8378
c0ceba6c
EB
8379 if Tagged_Type_Expansion and then Is_Tagged_Type (Comp_Typ) then
8380 Append_To (Blk_Stmts,
8381 Make_Tag_Assignment_From_Type
8382 (Loc, New_Copy_Tree (Comp), Underlying_Type (Comp_Typ)));
fc84947c
EB
8383 end if;
8384 end if;
8385
8386 -- Complete the protection of the initialization statements
8387
8388 if Finalization_OK and Abort_Allowed then
8389
8390 -- Wrap the initialization statements in a block to catch a
8391 -- potential exception. Generate:
8392
8393 -- begin
8394 -- Abort_Defer;
8395 -- Comp := Init_Expr;
8396 -- Comp._tag := Full_TypP;
8397 -- [Deep_]Adjust (Comp);
8398 -- at end
8399 -- Abort_Undefer_Direct;
8400 -- end;
8401
8402 if Exceptions_OK then
8403 Append_To (Stmts,
8404 Build_Abort_Undefer_Block (Loc,
8405 Stmts => Blk_Stmts,
8406 Context => N));
8407
8408 -- Otherwise exceptions are not propagated. Generate:
8409
8410 -- Abort_Defer;
8411 -- Comp := Init_Expr;
8412 -- Comp._tag := Full_TypP;
8413 -- [Deep_]Adjust (Comp);
8414 -- Abort_Undefer;
8415
8416 else
8417 Append_To (Blk_Stmts,
8418 Build_Runtime_Call (Loc, RE_Abort_Undefer));
8419 end if;
8420 end if;
c0ceba6c 8421 end Initialize_Component;
fc84947c 8422
3fc40cd7
PMR
8423 ----------------------------------------
8424 -- Is_Build_In_Place_Aggregate_Return --
8425 ----------------------------------------
8426
8427 function Is_Build_In_Place_Aggregate_Return (N : Node_Id) return Boolean is
8428 P : Node_Id := Parent (N);
8429
8430 begin
8431 while Nkind (P) = N_Qualified_Expression loop
8432 P := Parent (P);
8433 end loop;
8434
8435 if Nkind (P) = N_Simple_Return_Statement then
8436 null;
8437
8438 elsif Nkind (Parent (P)) = N_Extended_Return_Statement then
8439 P := Parent (P);
8440
8441 else
8442 return False;
8443 end if;
8444
8445 return
8446 Is_Build_In_Place_Function
8447 (Return_Applies_To (Return_Statement_Entity (P)));
8448 end Is_Build_In_Place_Aggregate_Return;
8449
70482933
RK
8450 --------------------------
8451 -- Is_Delayed_Aggregate --
8452 --------------------------
8453
8454 function Is_Delayed_Aggregate (N : Node_Id) return Boolean is
4f061cf2 8455 Unqual_N : constant Node_Id := Unqualify (N);
fbf5a39b 8456
70482933 8457 begin
4f061cf2
EB
8458 return Nkind (Unqual_N) in N_Aggregate | N_Extension_Aggregate
8459 and then Expansion_Delayed (Unqual_N);
70482933
RK
8460 end Is_Delayed_Aggregate;
8461
9f51b855
JM
8462 --------------------------------
8463 -- Is_CCG_Supported_Aggregate --
8464 --------------------------------
6031f544 8465
9f51b855
JM
8466 function Is_CCG_Supported_Aggregate
8467 (N : Node_Id) return Boolean
8468 is
4ff5aa0c 8469 P : Node_Id := Parent (N);
2401c98f 8470
6031f544 8471 begin
bc1146e5
HK
8472 -- Aggregates are not supported for nonstandard rep clauses, since they
8473 -- may lead to extra padding fields in CCG.
4ff5aa0c 8474
3bcf8298 8475 if Is_Record_Type (Etype (N))
4ff5aa0c
AC
8476 and then Has_Non_Standard_Rep (Etype (N))
8477 then
8478 return False;
8479 end if;
6031f544 8480
4ff5aa0c 8481 while Present (P) and then Nkind (P) = N_Aggregate loop
6031f544
AC
8482 P := Parent (P);
8483 end loop;
8484
d2d56bba 8485 -- Check cases where aggregates are supported by the CCG backend
9f51b855 8486
4ff5aa0c 8487 if Nkind (P) = N_Object_Declaration then
d2d56bba
JM
8488 declare
8489 P_Typ : constant Entity_Id := Etype (Defining_Identifier (P));
9f51b855 8490
d2d56bba
JM
8491 begin
8492 if Is_Record_Type (P_Typ) then
8493 return True;
8494 else
8495 return Compile_Time_Known_Bounds (P_Typ);
8496 end if;
8497 end;
8498
8499 elsif Nkind (P) = N_Qualified_Expression then
8500 if Nkind (Parent (P)) = N_Object_Declaration then
8501 declare
8502 P_Typ : constant Entity_Id :=
8503 Etype (Defining_Identifier (Parent (P)));
8504 begin
8505 if Is_Record_Type (P_Typ) then
8506 return True;
8507 else
8508 return Compile_Time_Known_Bounds (P_Typ);
8509 end if;
8510 end;
8511
8512 elsif Nkind (Parent (P)) = N_Allocator then
8513 return True;
8514 end if;
9f51b855
JM
8515 end if;
8516
6031f544 8517 return False;
9f51b855 8518 end Is_CCG_Supported_Aggregate;
6031f544 8519
fa57ac97
ES
8520 ----------------------------------------
8521 -- Is_Static_Dispatch_Table_Aggregate --
8522 ----------------------------------------
8523
8524 function Is_Static_Dispatch_Table_Aggregate (N : Node_Id) return Boolean is
8525 Typ : constant Entity_Id := Base_Type (Etype (N));
8526
8527 begin
6214b83b 8528 return Building_Static_Dispatch_Tables
1f110335 8529 and then Tagged_Type_Expansion
fa57ac97
ES
8530
8531 -- Avoid circularity when rebuilding the compiler
8532
3477e0b2
PT
8533 and then not Is_RTU (Cunit_Entity (Get_Source_Unit (N)), Ada_Tags)
8534 and then (Is_RTE (Typ, RE_Dispatch_Table_Wrapper)
fa57ac97 8535 or else
3477e0b2 8536 Is_RTE (Typ, RE_Address_Array)
fa57ac97 8537 or else
3477e0b2 8538 Is_RTE (Typ, RE_Type_Specific_Data)
fa57ac97 8539 or else
3477e0b2 8540 Is_RTE (Typ, RE_Tag_Table)
fa57ac97 8541 or else
3477e0b2 8542 Is_RTE (Typ, RE_Object_Specific_Data)
c7cb99f8 8543 or else
3477e0b2 8544 Is_RTE (Typ, RE_Interface_Data)
fa57ac97 8545 or else
3477e0b2 8546 Is_RTE (Typ, RE_Interfaces_Array)
fa57ac97 8547 or else
3477e0b2 8548 Is_RTE (Typ, RE_Interface_Data_Element));
fa57ac97
ES
8549 end Is_Static_Dispatch_Table_Aggregate;
8550
dc3af7e2
AC
8551 -----------------------------
8552 -- Is_Two_Dim_Packed_Array --
8553 -----------------------------
8554
8555 function Is_Two_Dim_Packed_Array (Typ : Entity_Id) return Boolean is
36e38022 8556 C : constant Uint := Component_Size (Typ);
dc3af7e2
AC
8557 begin
8558 return Number_Dimensions (Typ) = 2
8559 and then Is_Bit_Packed_Array (Typ)
36e38022 8560 and then C in Uint_1 | Uint_2 | Uint_4; -- False if No_Uint
dc3af7e2
AC
8561 end Is_Two_Dim_Packed_Array;
8562
70482933
RK
8563 --------------------
8564 -- Late_Expansion --
8565 --------------------
8566
8567 function Late_Expansion
8568 (N : Node_Id;
8569 Typ : Entity_Id;
df3e68b1 8570 Target : Node_Id) return List_Id
9bc856dd 8571 is
f29afe5f 8572 Aggr_Code : List_Id;
b748c3d1 8573 New_Aggr : Node_Id;
f29afe5f 8574
70482933 8575 begin
b748c3d1
EB
8576 if Is_Array_Type (Typ) then
8577 -- If the assignment can be done directly by the back end, then
8578 -- reset Set_Expansion_Delayed and do not expand further.
8579
8580 if not CodePeer_Mode
8581 and then not Modify_Tree_For_C
8582 and then not Possible_Bit_Aligned_Component (Target)
8583 and then not Is_Possibly_Unaligned_Slice (Target)
8584 and then Aggr_Assignment_OK_For_Backend (N)
8585 then
8586 New_Aggr := New_Copy_Tree (N);
8587 Set_Expansion_Delayed (New_Aggr, False);
8588
8589 Aggr_Code :=
8590 New_List (
8591 Make_OK_Assignment_Statement (Sloc (New_Aggr),
8592 Name => Target,
8593 Expression => New_Aggr));
8594
8595 -- Or else, generate component assignments to it
8596
8597 else
8598 Aggr_Code :=
8599 Build_Array_Aggr_Code
8600 (N => N,
8601 Ctype => Component_Type (Typ),
8602 Index => First_Index (Typ),
8603 Into => Target,
8604 Scalar_Comp => Is_Scalar_Type (Component_Type (Typ)),
8605 Indexes => No_List);
8606 end if;
6031f544 8607
f3bf0d9a
HK
8608 -- Directly or indirectly (e.g. access protected procedure) a record
8609
8610 else
6031f544 8611 Aggr_Code := Build_Record_Aggr_Code (N, Typ, Target);
70482933 8612 end if;
4ac2bbbd
AC
8613
8614 -- Save the last assignment statement associated with the aggregate
8615 -- when building a controlled object. This reference is utilized by
8616 -- the finalization machinery when marking an object as successfully
8617 -- initialized.
8618
8619 if Needs_Finalization (Typ)
8620 and then Is_Entity_Name (Target)
8621 and then Present (Entity (Target))
4a08c95c 8622 and then Ekind (Entity (Target)) in E_Constant | E_Variable
4ac2bbbd
AC
8623 then
8624 Set_Last_Aggregate_Assignment (Entity (Target), Last (Aggr_Code));
8625 end if;
8626
8627 return Aggr_Code;
70482933
RK
8628 end Late_Expansion;
8629
8630 ----------------------------------
8631 -- Make_OK_Assignment_Statement --
8632 ----------------------------------
8633
8634 function Make_OK_Assignment_Statement
8635 (Sloc : Source_Ptr;
8636 Name : Node_Id;
0f95b178 8637 Expression : Node_Id) return Node_Id
70482933
RK
8638 is
8639 begin
8640 Set_Assignment_OK (Name);
8641 return Make_Assignment_Statement (Sloc, Name, Expression);
8642 end Make_OK_Assignment_Statement;
8643
c42006e9
AC
8644 ------------------------
8645 -- Max_Aggregate_Size --
8646 ------------------------
8647
8648 function Max_Aggregate_Size
eaf6e63a
BD
8649 (N : Node_Id;
8650 Default_Size : Nat := 5000) return Nat
8651 is
eaf6e63a
BD
8652 function Use_Small_Size (N : Node_Id) return Boolean;
8653 -- True if we should return a very small size, which means large
8654 -- aggregates will be implemented as a loop when possible (potentially
8655 -- transformed to memset calls).
8656
8657 function Aggr_Context (N : Node_Id) return Node_Id;
8658 -- Return the context in which the aggregate appears, not counting
8659 -- qualified expressions and similar.
8660
bcc15039
PT
8661 ------------------
8662 -- Aggr_Context --
8663 ------------------
8664
eaf6e63a
BD
8665 function Aggr_Context (N : Node_Id) return Node_Id is
8666 Result : Node_Id := Parent (N);
8667 begin
4a08c95c
AC
8668 if Nkind (Result) in N_Qualified_Expression
8669 | N_Type_Conversion
8670 | N_Unchecked_Type_Conversion
8671 | N_If_Expression
8672 | N_Case_Expression
8673 | N_Component_Association
8674 | N_Aggregate
eaf6e63a
BD
8675 then
8676 Result := Aggr_Context (Result);
8677 end if;
8678
8679 return Result;
8680 end Aggr_Context;
8681
bcc15039
PT
8682 --------------------
8683 -- Use_Small_Size --
8684 --------------------
8685
eaf6e63a
BD
8686 function Use_Small_Size (N : Node_Id) return Boolean is
8687 C : constant Node_Id := Aggr_Context (N);
8688 -- The decision depends on the context in which the aggregate occurs,
8689 -- and for variable declarations, whether we are nested inside a
8690 -- subprogram.
8691 begin
8692 case Nkind (C) is
8693 -- True for assignment statements and similar
8694
8695 when N_Assignment_Statement
8696 | N_Simple_Return_Statement
8697 | N_Allocator
8698 | N_Attribute_Reference
8699 =>
8700 return True;
8701
8702 -- True for nested variable declarations. False for library level
8703 -- variables, and for constants (whether or not nested).
8704
8705 when N_Object_Declaration =>
8706 return not Constant_Present (C)
0f3dfe41 8707 and then Is_Subprogram (Current_Scope);
eaf6e63a
BD
8708
8709 -- False for all other contexts
8710
8711 when others =>
8712 return False;
8713 end case;
8714 end Use_Small_Size;
8715
bcc15039
PT
8716 -- Local variables
8717
8718 Typ : constant Entity_Id := Etype (N);
8719
eaf6e63a
BD
8720 -- Start of processing for Max_Aggregate_Size
8721
c42006e9 8722 begin
bcc15039
PT
8723 -- We use a small limit in CodePeer mode where we favor loops instead of
8724 -- thousands of single assignments (from large aggregates).
c42006e9
AC
8725
8726 -- We also increase the limit to 2**24 (about 16 million) if
8727 -- Restrictions (No_Elaboration_Code) or Restrictions
8728 -- (No_Implicit_Loops) is specified, since in either case we are at risk
8729 -- of declaring the program illegal because of this limit. We also
8730 -- increase the limit when Static_Elaboration_Desired, given that this
8731 -- means that objects are intended to be placed in data memory.
8732
8733 -- Same if the aggregate is for a packed two-dimensional array, because
8734 -- if components are static it is much more efficient to construct a
8735 -- one-dimensional equivalent array with static components.
8736
8737 if CodePeer_Mode then
8738 return 100;
8739 elsif Restriction_Active (No_Elaboration_Code)
8740 or else Restriction_Active (No_Implicit_Loops)
8741 or else Is_Two_Dim_Packed_Array (Typ)
8742 or else (Ekind (Current_Scope) = E_Package
8743 and then Static_Elaboration_Desired (Current_Scope))
8744 then
8745 return 2 ** 24;
eaf6e63a 8746 elsif Use_Small_Size (N) then
152f64c2 8747 return 64;
c42006e9 8748 end if;
eaf6e63a
BD
8749
8750 return Default_Size;
c42006e9
AC
8751 end Max_Aggregate_Size;
8752
70482933
RK
8753 -----------------------
8754 -- Number_Of_Choices --
8755 -----------------------
8756
8757 function Number_Of_Choices (N : Node_Id) return Nat is
8758 Assoc : Node_Id;
8759 Choice : Node_Id;
8760
8761 Nb_Choices : Nat := 0;
8762
8763 begin
8764 if Present (Expressions (N)) then
8765 return 0;
8766 end if;
8767
8768 Assoc := First (Component_Associations (N));
8769 while Present (Assoc) loop
00f45f30 8770 Choice := First (Choice_List (Assoc));
70482933 8771 while Present (Choice) loop
70482933
RK
8772 if Nkind (Choice) /= N_Others_Choice then
8773 Nb_Choices := Nb_Choices + 1;
8774 end if;
8775
8776 Next (Choice);
8777 end loop;
8778
8779 Next (Assoc);
8780 end loop;
8781
8782 return Nb_Choices;
8783 end Number_Of_Choices;
8784
07fc65c4
GB
8785 ------------------------------------
8786 -- Packed_Array_Aggregate_Handled --
8787 ------------------------------------
8788
8789 -- The current version of this procedure will handle at compile time
8790 -- any array aggregate that meets these conditions:
8791
5eeeed5e 8792 -- One and two dimensional, bit packed
07fc65c4
GB
8793 -- Underlying packed type is modular type
8794 -- Bounds are within 32-bit Int range
8795 -- All bounds and values are static
8796
a39a553e
AC
8797 -- Note: for now, in the 2-D case, we only handle component sizes of
8798 -- 1, 2, 4 (cases where an integral number of elements occupies a byte).
8799
07fc65c4
GB
8800 function Packed_Array_Aggregate_Handled (N : Node_Id) return Boolean is
8801 Loc : constant Source_Ptr := Sloc (N);
8802 Typ : constant Entity_Id := Etype (N);
8803 Ctyp : constant Entity_Id := Component_Type (Typ);
8804
8805 Not_Handled : exception;
8806 -- Exception raised if this aggregate cannot be handled
8807
8808 begin
5eeeed5e 8809 -- Handle one- or two dimensional bit packed array
07fc65c4
GB
8810
8811 if not Is_Bit_Packed_Array (Typ)
5eeeed5e 8812 or else Number_Dimensions (Typ) > 2
07fc65c4
GB
8813 then
8814 return False;
8815 end if;
8816
5eeeed5e 8817 -- If two-dimensional, check whether it can be folded, and transformed
8ca597af
RD
8818 -- into a one-dimensional aggregate for the Packed_Array_Impl_Type of
8819 -- the original type.
5eeeed5e
AC
8820
8821 if Number_Dimensions (Typ) = 2 then
8822 return Two_Dim_Packed_Array_Handled (N);
8823 end if;
8824
8ca597af 8825 if not Is_Modular_Integer_Type (Packed_Array_Impl_Type (Typ)) then
5eeeed5e
AC
8826 return False;
8827 end if;
8828
78326189 8829 if not Is_Scalar_Type (Ctyp) then
0f95b178
JM
8830 return False;
8831 end if;
8832
07fc65c4
GB
8833 declare
8834 Csiz : constant Nat := UI_To_Int (Component_Size (Typ));
8835
07fc65c4 8836 function Get_Component_Val (N : Node_Id) return Uint;
3b9fa2df
ES
8837 -- Given a expression value N of the component type Ctyp, returns a
8838 -- value of Csiz (component size) bits representing this value. If
d940c627 8839 -- the value is nonstatic or any other reason exists why the value
3b9fa2df 8840 -- cannot be returned, then Not_Handled is raised.
07fc65c4
GB
8841
8842 -----------------------
8843 -- Get_Component_Val --
8844 -----------------------
8845
8846 function Get_Component_Val (N : Node_Id) return Uint is
fb8e3581 8847 Val : Uint;
07fc65c4
GB
8848
8849 begin
8850 -- We have to analyze the expression here before doing any further
8851 -- processing here. The analysis of such expressions is deferred
8852 -- till expansion to prevent some problems of premature analysis.
8853
8854 Analyze_And_Resolve (N, Ctyp);
8855
3b9fa2df
ES
8856 -- Must have a compile time value. String literals have to be
8857 -- converted into temporaries as well, because they cannot easily
8858 -- be converted into their bit representation.
07fc65c4 8859
6b6fcd3e
AC
8860 if not Compile_Time_Known_Value (N)
8861 or else Nkind (N) = N_String_Literal
8862 then
07fc65c4
GB
8863 raise Not_Handled;
8864 end if;
8865
8866 Val := Expr_Rep_Value (N);
8867
8868 -- Adjust for bias, and strip proper number of bits
8869
8870 if Has_Biased_Representation (Ctyp) then
8871 Val := Val - Expr_Value (Type_Low_Bound (Ctyp));
8872 end if;
8873
8874 return Val mod Uint_2 ** Csiz;
8875 end Get_Component_Val;
8876
7c4f3267
BD
8877 Bounds : constant Range_Nodes := Get_Index_Bounds (First_Index (Typ));
8878
07fc65c4
GB
8879 -- Here we know we have a one dimensional bit packed array
8880
8881 begin
07fc65c4
GB
8882 -- Cannot do anything if bounds are dynamic
8883
7c4f3267
BD
8884 if not (Compile_Time_Known_Value (Bounds.First)
8885 and then
8886 Compile_Time_Known_Value (Bounds.Last))
07fc65c4
GB
8887 then
8888 return False;
8889 end if;
8890
7c4f3267
BD
8891 declare
8892 Bounds_Vals : Range_Values;
8893 -- Compile-time known values of bounds
8894 begin
8895 -- Or are silly out of range of int bounds
07fc65c4 8896
7c4f3267
BD
8897 Bounds_Vals.First := Expr_Value (Bounds.First);
8898 Bounds_Vals.Last := Expr_Value (Bounds.Last);
07fc65c4 8899
7c4f3267
BD
8900 if not UI_Is_In_Int_Range (Bounds_Vals.First)
8901 or else
8902 not UI_Is_In_Int_Range (Bounds_Vals.Last)
8903 then
8904 return False;
8905 end if;
07fc65c4 8906
7c4f3267
BD
8907 -- At this stage we have a suitable aggregate for handling at
8908 -- compile time. The only remaining checks are that the values of
8909 -- expressions in the aggregate are compile-time known (checks are
8910 -- performed by Get_Component_Val), and that any subtypes or
8911 -- ranges are statically known.
07fc65c4 8912
7c4f3267
BD
8913 -- If the aggregate is not fully positional at this stage, then
8914 -- convert it to positional form. Either this will fail, in which
8915 -- case we can do nothing, or it will succeed, in which case we
8916 -- have succeeded in handling the aggregate and transforming it
8917 -- into a modular value, or it will stay an aggregate, in which
8918 -- case we have failed to create a packed value for it.
07fc65c4 8919
7c4f3267
BD
8920 if Present (Component_Associations (N)) then
8921 Convert_To_Positional (N, Handle_Bit_Packed => True);
8922 return Nkind (N) /= N_Aggregate;
8923 end if;
07fc65c4 8924
7c4f3267 8925 -- Otherwise we are all positional, so convert to proper value
07fc65c4 8926
7c4f3267
BD
8927 declare
8928 Len : constant Nat :=
8929 Int'Max (0, UI_To_Int (Bounds_Vals.Last) -
8930 UI_To_Int (Bounds_Vals.First) + 1);
8931 -- The length of the array (number of elements)
07fc65c4 8932
7c4f3267
BD
8933 Aggregate_Val : Uint;
8934 -- Value of aggregate. The value is set in the low order bits
8935 -- of this value. For the little-endian case, the values are
8936 -- stored from low-order to high-order and for the big-endian
8937 -- case the values are stored from high order to low order.
8938 -- Note that gigi will take care of the conversions to left
8939 -- justify the value in the big endian case (because of left
8940 -- justified modular type processing), so we do not have to
8941 -- worry about that here.
07fc65c4 8942
7c4f3267
BD
8943 Lit : Node_Id;
8944 -- Integer literal for resulting constructed value
07fc65c4 8945
7c4f3267
BD
8946 Shift : Nat;
8947 -- Shift count from low order for next value
07fc65c4 8948
7c4f3267
BD
8949 Incr : Int;
8950 -- Shift increment for loop
07fc65c4 8951
7c4f3267
BD
8952 Expr : Node_Id;
8953 -- Next expression from positional parameters of aggregate
c9a6b38f 8954
7c4f3267
BD
8955 Left_Justified : Boolean;
8956 -- Set True if we are filling the high order bits of the target
8957 -- value (i.e. the value is left justified).
07fc65c4 8958
7c4f3267
BD
8959 begin
8960 -- For little endian, we fill up the low order bits of the
8961 -- target value. For big endian we fill up the high order bits
8962 -- of the target value (which is a left justified modular
8963 -- value).
68f640f2 8964
7c4f3267 8965 Left_Justified := Bytes_Big_Endian;
c9a6b38f 8966
7c4f3267 8967 -- Switch justification if using -gnatd8
c9a6b38f 8968
7c4f3267
BD
8969 if Debug_Flag_8 then
8970 Left_Justified := not Left_Justified;
8971 end if;
c9a6b38f 8972
7c4f3267 8973 -- Switch justfification if reverse storage order
c9a6b38f 8974
7c4f3267
BD
8975 if Reverse_Storage_Order (Base_Type (Typ)) then
8976 Left_Justified := not Left_Justified;
8977 end if;
07fc65c4 8978
7c4f3267
BD
8979 if Left_Justified then
8980 Shift := Csiz * (Len - 1);
8981 Incr := -Csiz;
8982 else
8983 Shift := 0;
8984 Incr := +Csiz;
8985 end if;
07fc65c4 8986
7c4f3267 8987 -- Loop to set the values
fbf5a39b 8988
7c4f3267
BD
8989 if Len = 0 then
8990 Aggregate_Val := Uint_0;
8991 else
8992 Expr := First (Expressions (N));
8993 Aggregate_Val := Get_Component_Val (Expr) * Uint_2 ** Shift;
8994
8995 for J in 2 .. Len loop
8996 Shift := Shift + Incr;
8997 Next (Expr);
8998 Aggregate_Val :=
8999 Aggregate_Val +
9000 Get_Component_Val (Expr) * Uint_2 ** Shift;
9001 end loop;
9002 end if;
07fc65c4 9003
7c4f3267 9004 -- Now we can rewrite with the proper value
07fc65c4 9005
7c4f3267
BD
9006 Lit := Make_Integer_Literal (Loc, Intval => Aggregate_Val);
9007 Set_Print_In_Hex (Lit);
07fc65c4 9008
7c4f3267
BD
9009 -- Construct the expression using this literal. Note that it
9010 -- is important to qualify the literal with its proper modular
9011 -- type since universal integer does not have the required
9012 -- range and also this is a left justified modular type,
9013 -- which is important in the big-endian case.
07fc65c4 9014
7c4f3267
BD
9015 Rewrite (N,
9016 Unchecked_Convert_To (Typ,
9017 Make_Qualified_Expression (Loc,
9018 Subtype_Mark =>
9019 New_Occurrence_Of (Packed_Array_Impl_Type (Typ), Loc),
9020 Expression => Lit)));
07fc65c4 9021
7c4f3267
BD
9022 Analyze_And_Resolve (N, Typ);
9023 return True;
9024 end;
07fc65c4
GB
9025 end;
9026 end;
9027
9028 exception
9029 when Not_Handled =>
9030 return False;
9031 end Packed_Array_Aggregate_Handled;
9032
fbf5a39b
AC
9033 ----------------------------
9034 -- Has_Mutable_Components --
9035 ----------------------------
9036
9037 function Has_Mutable_Components (Typ : Entity_Id) return Boolean is
9038 Comp : Entity_Id;
bee475e2 9039 Ctyp : Entity_Id;
fbf5a39b
AC
9040
9041 begin
9042 Comp := First_Component (Typ);
fbf5a39b 9043 while Present (Comp) loop
bee475e2
EB
9044 Ctyp := Underlying_Type (Etype (Comp));
9045 if Is_Record_Type (Ctyp)
9046 and then Has_Discriminants (Ctyp)
9047 and then not Is_Constrained (Ctyp)
fbf5a39b
AC
9048 then
9049 return True;
9050 end if;
9051
9052 Next_Component (Comp);
9053 end loop;
9054
9055 return False;
9056 end Has_Mutable_Components;
9057
07fc65c4
GB
9058 ------------------------------
9059 -- Initialize_Discriminants --
9060 ------------------------------
9061
9062 procedure Initialize_Discriminants (N : Node_Id; Typ : Entity_Id) is
9063 Loc : constant Source_Ptr := Sloc (N);
9064 Bas : constant Entity_Id := Base_Type (Typ);
9065 Par : constant Entity_Id := Etype (Bas);
9066 Decl : constant Node_Id := Parent (Par);
9067 Ref : Node_Id;
9068
9069 begin
9070 if Is_Tagged_Type (Bas)
9071 and then Is_Derived_Type (Bas)
9072 and then Has_Discriminants (Par)
9073 and then Has_Discriminants (Bas)
9074 and then Number_Discriminants (Bas) /= Number_Discriminants (Par)
9075 and then Nkind (Decl) = N_Full_Type_Declaration
9076 and then Nkind (Type_Definition (Decl)) = N_Record_Definition
36a66365
AC
9077 and then
9078 Present (Variant_Part (Component_List (Type_Definition (Decl))))
07fc65c4
GB
9079 and then Nkind (N) /= N_Extension_Aggregate
9080 then
9081
fbf5a39b 9082 -- Call init proc to set discriminants.
07fc65c4
GB
9083 -- There should eventually be a special procedure for this ???
9084
e4494292 9085 Ref := New_Occurrence_Of (Defining_Identifier (N), Loc);
07fc65c4
GB
9086 Insert_Actions_After (N,
9087 Build_Initialization_Call (Sloc (N), Ref, Typ));
9088 end if;
9089 end Initialize_Discriminants;
9090
3cf3e5c6
AC
9091 ----------------
9092 -- Must_Slide --
9093 ----------------
9094
9095 function Must_Slide
6732c403
ES
9096 (Aggr : Node_Id;
9097 Obj_Type : Entity_Id;
3cf3e5c6
AC
9098 Typ : Entity_Id) return Boolean
9099 is
3cf3e5c6 9100 begin
3b9fa2df
ES
9101 -- No sliding if the type of the object is not established yet, if it is
9102 -- an unconstrained type whose actual subtype comes from the aggregate,
6732c403
ES
9103 -- or if the two types are identical. If the aggregate contains only
9104 -- an Others_Clause it gets its type from the context and no sliding
9105 -- is involved either.
3cf3e5c6
AC
9106
9107 if not Is_Array_Type (Obj_Type) then
9108 return False;
9109
9110 elsif not Is_Constrained (Obj_Type) then
9111 return False;
9112
9113 elsif Typ = Obj_Type then
9114 return False;
9115
6732c403
ES
9116 elsif Is_Others_Aggregate (Aggr) then
9117 return False;
9118
3cf3e5c6
AC
9119 else
9120 -- Sliding can only occur along the first dimension
6732c403
ES
9121 -- If any the bounds of non-static sliding is required
9122 -- to force potential range checks.
3cf3e5c6 9123
7c4f3267
BD
9124 declare
9125 Bounds1 : constant Range_Nodes :=
9126 Get_Index_Bounds (First_Index (Typ));
9127 Bounds2 : constant Range_Nodes :=
9128 Get_Index_Bounds (First_Index (Obj_Type));
3cf3e5c6 9129
7c4f3267
BD
9130 begin
9131 if not Is_OK_Static_Expression (Bounds1.First) or else
9132 not Is_OK_Static_Expression (Bounds2.First) or else
9133 not Is_OK_Static_Expression (Bounds1.Last) or else
9134 not Is_OK_Static_Expression (Bounds2.Last)
9135 then
6732c403
ES
9136 return True;
9137
7c4f3267
BD
9138 else
9139 return Expr_Value (Bounds1.First) /= Expr_Value (Bounds2.First)
9140 or else
9141 Expr_Value (Bounds1.Last) /= Expr_Value (Bounds2.Last);
9142 end if;
9143 end;
3cf3e5c6
AC
9144 end if;
9145 end Must_Slide;
9146
70482933
RK
9147 ---------------------
9148 -- Sort_Case_Table --
9149 ---------------------
9150
9151 procedure Sort_Case_Table (Case_Table : in out Case_Table_Type) is
fbf5a39b
AC
9152 L : constant Int := Case_Table'First;
9153 U : constant Int := Case_Table'Last;
70482933
RK
9154 K : Int;
9155 J : Int;
9156 T : Case_Bounds;
9157
9158 begin
9159 K := L;
70482933
RK
9160 while K /= U loop
9161 T := Case_Table (K + 1);
70482933 9162
5277cab6 9163 J := K + 1;
70482933
RK
9164 while J /= L
9165 and then Expr_Value (Case_Table (J - 1).Choice_Lo) >
9166 Expr_Value (T.Choice_Lo)
9167 loop
9168 Case_Table (J) := Case_Table (J - 1);
9169 J := J - 1;
9170 end loop;
9171
9172 Case_Table (J) := T;
9173 K := K + 1;
9174 end loop;
9175 end Sort_Case_Table;
9176
0f95b178
JM
9177 ----------------------------
9178 -- Static_Array_Aggregate --
9179 ----------------------------
9180
9181 function Static_Array_Aggregate (N : Node_Id) return Boolean is
2401c98f
HK
9182 function Is_Static_Component (Nod : Node_Id) return Boolean;
9183 -- Return True if Nod has a compile-time known value and can be passed
9184 -- as is to the back-end without further expansion.
2a1838cd
EB
9185
9186 ---------------------------
9187 -- Is_Static_Component --
9188 ---------------------------
9189
2401c98f 9190 function Is_Static_Component (Nod : Node_Id) return Boolean is
2a1838cd 9191 begin
4a08c95c 9192 if Nkind (Nod) in N_Integer_Literal | N_Real_Literal then
2a1838cd
EB
9193 return True;
9194
2401c98f
HK
9195 elsif Is_Entity_Name (Nod)
9196 and then Present (Entity (Nod))
9197 and then Ekind (Entity (Nod)) = E_Enumeration_Literal
2a1838cd
EB
9198 then
9199 return True;
9200
2401c98f
HK
9201 elsif Nkind (Nod) = N_Aggregate
9202 and then Compile_Time_Known_Aggregate (Nod)
2a1838cd
EB
9203 then
9204 return True;
9205
9206 else
9207 return False;
9208 end if;
9209 end Is_Static_Component;
9210
2401c98f
HK
9211 -- Local variables
9212
9213 Bounds : constant Node_Id := Aggregate_Bounds (N);
9214 Typ : constant Entity_Id := Etype (N);
0f95b178 9215
2401c98f
HK
9216 Agg : Node_Id;
9217 Expr : Node_Id;
9218 Lo : Node_Id;
9219 Hi : Node_Id;
0f95b178 9220
2a1838cd
EB
9221 -- Start of processing for Static_Array_Aggregate
9222
0f95b178 9223 begin
2a1838cd 9224 if Is_Packed (Typ) or else Has_Discriminants (Component_Type (Typ)) then
0f95b178
JM
9225 return False;
9226 end if;
9227
9228 if Present (Bounds)
9229 and then Nkind (Bounds) = N_Range
9230 and then Nkind (Low_Bound (Bounds)) = N_Integer_Literal
9231 and then Nkind (High_Bound (Bounds)) = N_Integer_Literal
9232 then
9233 Lo := Low_Bound (Bounds);
9234 Hi := High_Bound (Bounds);
9235
9236 if No (Component_Associations (N)) then
9237
2a1838cd 9238 -- Verify that all components are static
0f95b178
JM
9239
9240 Expr := First (Expressions (N));
9241 while Present (Expr) loop
2a1838cd 9242 if not Is_Static_Component (Expr) then
0f95b178
JM
9243 return False;
9244 end if;
9245
9246 Next (Expr);
9247 end loop;
9248
9249 return True;
9250
9251 else
9252 -- We allow only a single named association, either a static
9253 -- range or an others_clause, with a static expression.
9254
9255 Expr := First (Component_Associations (N));
9256
9257 if Present (Expressions (N)) then
9258 return False;
9259
9260 elsif Present (Next (Expr)) then
9261 return False;
9262
00f45f30 9263 elsif Present (Next (First (Choice_List (Expr)))) then
0f95b178
JM
9264 return False;
9265
9266 else
d7f94401
AC
9267 -- The aggregate is static if all components are literals,
9268 -- or else all its components are static aggregates for the
fc534c1c
ES
9269 -- component type. We also limit the size of a static aggregate
9270 -- to prevent runaway static expressions.
0f95b178 9271
2a1838cd 9272 if not Is_Static_Component (Expression (Expr)) then
0f95b178 9273 return False;
6a2e4f0b 9274 end if;
fc534c1c 9275
eaf6e63a 9276 if not Aggr_Size_OK (N) then
fc534c1c 9277 return False;
0f95b178
JM
9278 end if;
9279
9280 -- Create a positional aggregate with the right number of
9281 -- copies of the expression.
9282
9283 Agg := Make_Aggregate (Sloc (N), New_List, No_List);
9284
9285 for I in UI_To_Int (Intval (Lo)) .. UI_To_Int (Intval (Hi))
9286 loop
37368818 9287 Append_To (Expressions (Agg), New_Copy (Expression (Expr)));
597d7158 9288
9b4b0a1a
GD
9289 -- The copied expression must be analyzed and resolved.
9290 -- Besides setting the type, this ensures that static
9291 -- expressions are appropriately marked as such.
597d7158 9292
9b4b0a1a
GD
9293 Analyze_And_Resolve
9294 (Last (Expressions (Agg)), Component_Type (Typ));
0f95b178
JM
9295 end loop;
9296
9297 Set_Aggregate_Bounds (Agg, Bounds);
9298 Set_Etype (Agg, Typ);
9299 Set_Analyzed (Agg);
9300 Rewrite (N, Agg);
9301 Set_Compile_Time_Known_Aggregate (N);
9302
9303 return True;
9304 end if;
9305 end if;
9306
9307 else
9308 return False;
9309 end if;
9310 end Static_Array_Aggregate;
9b4b0a1a 9311
937e9676
AC
9312 ----------------------------------
9313 -- Two_Dim_Packed_Array_Handled --
9314 ----------------------------------
9315
9316 function Two_Dim_Packed_Array_Handled (N : Node_Id) return Boolean is
9317 Loc : constant Source_Ptr := Sloc (N);
9318 Typ : constant Entity_Id := Etype (N);
9319 Ctyp : constant Entity_Id := Component_Type (Typ);
9320 Comp_Size : constant Int := UI_To_Int (Component_Size (Typ));
9321 Packed_Array : constant Entity_Id :=
9322 Packed_Array_Impl_Type (Base_Type (Typ));
9323
9324 One_Comp : Node_Id;
9325 -- Expression in original aggregate
9326
9327 One_Dim : Node_Id;
9328 -- One-dimensional subaggregate
9329
9330 begin
9331
9332 -- For now, only deal with cases where an integral number of elements
9333 -- fit in a single byte. This includes the most common boolean case.
9334
9335 if not (Comp_Size = 1 or else
9336 Comp_Size = 2 or else
9337 Comp_Size = 4)
9338 then
9339 return False;
9340 end if;
9341
c42006e9 9342 Convert_To_Positional (N, Handle_Bit_Packed => True);
937e9676
AC
9343
9344 -- Verify that all components are static
9345
9346 if Nkind (N) = N_Aggregate
9347 and then Compile_Time_Known_Aggregate (N)
9348 then
9349 null;
9350
9351 -- The aggregate may have been reanalyzed and converted already
9352
9353 elsif Nkind (N) /= N_Aggregate then
9354 return True;
9355
9356 -- If component associations remain, the aggregate is not static
9357
9358 elsif Present (Component_Associations (N)) then
9359 return False;
9360
9361 else
9362 One_Dim := First (Expressions (N));
9363 while Present (One_Dim) loop
9364 if Present (Component_Associations (One_Dim)) then
9365 return False;
9366 end if;
9367
9368 One_Comp := First (Expressions (One_Dim));
9369 while Present (One_Comp) loop
9370 if not Is_OK_Static_Expression (One_Comp) then
9371 return False;
9372 end if;
9373
9374 Next (One_Comp);
9375 end loop;
9376
9377 Next (One_Dim);
9378 end loop;
9379 end if;
9380
9381 -- Two-dimensional aggregate is now fully positional so pack one
9382 -- dimension to create a static one-dimensional array, and rewrite
9383 -- as an unchecked conversion to the original type.
9384
9385 declare
9386 Byte_Size : constant Int := UI_To_Int (Component_Size (Packed_Array));
9387 -- The packed array type is a byte array
9388
9389 Packed_Num : Nat;
9390 -- Number of components accumulated in current byte
9391
9392 Comps : List_Id;
9393 -- Assembled list of packed values for equivalent aggregate
9394
9395 Comp_Val : Uint;
9396 -- Integer value of component
9397
9398 Incr : Int;
9399 -- Step size for packing
9400
9401 Init_Shift : Int;
9402 -- Endian-dependent start position for packing
9403
9404 Shift : Int;
9405 -- Current insertion position
9406
9407 Val : Int;
9408 -- Component of packed array being assembled
9409
9410 begin
9411 Comps := New_List;
9412 Val := 0;
9413 Packed_Num := 0;
9414
64ac53f4 9415 -- Account for endianness. See corresponding comment in
937e9676
AC
9416 -- Packed_Array_Aggregate_Handled concerning the following.
9417
9418 if Bytes_Big_Endian
9419 xor Debug_Flag_8
9420 xor Reverse_Storage_Order (Base_Type (Typ))
9421 then
9422 Init_Shift := Byte_Size - Comp_Size;
9423 Incr := -Comp_Size;
9424 else
9425 Init_Shift := 0;
9426 Incr := +Comp_Size;
9427 end if;
9428
9429 -- Iterate over each subaggregate
9430
9431 Shift := Init_Shift;
9432 One_Dim := First (Expressions (N));
9433 while Present (One_Dim) loop
9434 One_Comp := First (Expressions (One_Dim));
9435 while Present (One_Comp) loop
9436 if Packed_Num = Byte_Size / Comp_Size then
9437
9438 -- Byte is complete, add to list of expressions
9439
9440 Append (Make_Integer_Literal (Sloc (One_Dim), Val), Comps);
9441 Val := 0;
9442 Shift := Init_Shift;
9443 Packed_Num := 0;
9444
9445 else
9446 Comp_Val := Expr_Rep_Value (One_Comp);
9447
9448 -- Adjust for bias, and strip proper number of bits
9449
9450 if Has_Biased_Representation (Ctyp) then
9451 Comp_Val := Comp_Val - Expr_Value (Type_Low_Bound (Ctyp));
9452 end if;
9453
9454 Comp_Val := Comp_Val mod Uint_2 ** Comp_Size;
9455 Val := UI_To_Int (Val + Comp_Val * Uint_2 ** Shift);
9456 Shift := Shift + Incr;
99859ea7 9457 Next (One_Comp);
937e9676
AC
9458 Packed_Num := Packed_Num + 1;
9459 end if;
9460 end loop;
9461
99859ea7 9462 Next (One_Dim);
937e9676
AC
9463 end loop;
9464
9465 if Packed_Num > 0 then
9466
9467 -- Add final incomplete byte if present
9468
9469 Append (Make_Integer_Literal (Sloc (One_Dim), Val), Comps);
9470 end if;
9471
9472 Rewrite (N,
9473 Unchecked_Convert_To (Typ,
9474 Make_Qualified_Expression (Loc,
9475 Subtype_Mark => New_Occurrence_Of (Packed_Array, Loc),
9476 Expression => Make_Aggregate (Loc, Expressions => Comps))));
9477 Analyze_And_Resolve (N);
9478 return True;
9479 end;
9480 end Two_Dim_Packed_Array_Handled;
9481
70482933 9482end Exp_Aggr;
This page took 8.184563 seconds and 5 git commands to generate.