]>
Commit | Line | Data |
---|---|---|
70482933 RK |
1 | /**************************************************************************** |
2 | * * | |
3 | * GNAT COMPILER COMPONENTS * | |
4 | * * | |
984bc4c3 | 5 | * D E C L * |
70482933 RK |
6 | * * |
7 | * C Implementation File * | |
8 | * * | |
fbf5a39b | 9 | * Copyright (C) 1992-2003, Free Software Foundation, Inc. * |
70482933 RK |
10 | * * |
11 | * GNAT is free software; you can redistribute it and/or modify it under * | |
12 | * terms of the GNU General Public License as published by the Free Soft- * | |
13 | * ware Foundation; either version 2, or (at your option) any later ver- * | |
14 | * sion. GNAT is distributed in the hope that it will be useful, but WITH- * | |
15 | * OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY * | |
16 | * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * | |
17 | * for more details. You should have received a copy of the GNU General * | |
18 | * Public License distributed with GNAT; see file COPYING. If not, write * | |
19 | * to the Free Software Foundation, 59 Temple Place - Suite 330, Boston, * | |
20 | * MA 02111-1307, USA. * | |
21 | * * | |
22 | * GNAT was originally developed by the GNAT team at New York University. * | |
71ff80dc | 23 | * Extensive contributions were provided by Ada Core Technologies Inc. * |
70482933 RK |
24 | * * |
25 | ****************************************************************************/ | |
26 | ||
27 | #include "config.h" | |
28 | #include "system.h" | |
4977bab6 ZW |
29 | #include "coretypes.h" |
30 | #include "tm.h" | |
70482933 RK |
31 | #include "tree.h" |
32 | #include "flags.h" | |
33 | #include "toplev.h" | |
34 | #include "convert.h" | |
35 | #include "ggc.h" | |
36 | #include "obstack.h" | |
37 | ||
38 | #include "ada.h" | |
39 | #include "types.h" | |
40 | #include "atree.h" | |
41 | #include "elists.h" | |
42 | #include "namet.h" | |
43 | #include "nlists.h" | |
44 | #include "repinfo.h" | |
45 | #include "snames.h" | |
46 | #include "stringt.h" | |
47 | #include "uintp.h" | |
48 | #include "fe.h" | |
49 | #include "sinfo.h" | |
50 | #include "einfo.h" | |
51 | #include "ada-tree.h" | |
52 | #include "gigi.h" | |
53 | ||
54 | /* Setting this to 1 suppresses hashing of types. */ | |
55 | extern int debug_no_type_hash; | |
56 | ||
57 | /* Provide default values for the macros controlling stack checking. | |
58 | This is copied from GCC's expr.h. */ | |
59 | ||
60 | #ifndef STACK_CHECK_BUILTIN | |
61 | #define STACK_CHECK_BUILTIN 0 | |
62 | #endif | |
63 | #ifndef STACK_CHECK_PROBE_INTERVAL | |
64 | #define STACK_CHECK_PROBE_INTERVAL 4096 | |
65 | #endif | |
66 | #ifndef STACK_CHECK_MAX_FRAME_SIZE | |
67 | #define STACK_CHECK_MAX_FRAME_SIZE \ | |
68 | (STACK_CHECK_PROBE_INTERVAL - UNITS_PER_WORD) | |
69 | #endif | |
70 | #ifndef STACK_CHECK_MAX_VAR_SIZE | |
71 | #define STACK_CHECK_MAX_VAR_SIZE (STACK_CHECK_MAX_FRAME_SIZE / 100) | |
72 | #endif | |
73 | ||
74 | /* These two variables are used to defer recursively expanding incomplete | |
75 | types while we are processing a record or subprogram type. */ | |
76 | ||
77 | static int defer_incomplete_level = 0; | |
78 | static struct incomplete | |
79 | { | |
80 | struct incomplete *next; | |
81 | tree old_type; | |
82 | Entity_Id full_type; | |
83 | } *defer_incomplete_list = 0; | |
84 | ||
85 | static tree substitution_list PARAMS ((Entity_Id, Entity_Id, | |
86 | tree, int)); | |
87 | static int allocatable_size_p PARAMS ((tree, int)); | |
88 | static struct attrib *build_attr_list PARAMS ((Entity_Id)); | |
89 | static tree elaborate_expression PARAMS ((Node_Id, Entity_Id, tree, | |
90 | int, int, int)); | |
fbf5a39b | 91 | static int is_variable_size PARAMS ((tree)); |
70482933 RK |
92 | static tree elaborate_expression_1 PARAMS ((Node_Id, Entity_Id, tree, |
93 | tree, int, int)); | |
94 | static tree make_packable_type PARAMS ((tree)); | |
95 | static tree maybe_pad_type PARAMS ((tree, tree, unsigned int, | |
96 | Entity_Id, const char *, int, | |
97 | int, int)); | |
98 | static tree gnat_to_gnu_field PARAMS ((Entity_Id, tree, int, int)); | |
99 | static void components_to_record PARAMS ((tree, Node_Id, tree, int, | |
100 | int, tree *, int, int)); | |
101 | static int compare_field_bitpos PARAMS ((const PTR, const PTR)); | |
102 | static Uint annotate_value PARAMS ((tree)); | |
103 | static void annotate_rep PARAMS ((Entity_Id, tree)); | |
07fc65c4 GB |
104 | static tree compute_field_positions PARAMS ((tree, tree, tree, tree, |
105 | unsigned int)); | |
70482933 RK |
106 | static tree validate_size PARAMS ((Uint, tree, Entity_Id, |
107 | enum tree_code, int, int)); | |
108 | static void set_rm_size PARAMS ((Uint, tree, Entity_Id)); | |
109 | static tree make_type_from_size PARAMS ((tree, tree, int)); | |
110 | static unsigned int validate_alignment PARAMS ((Uint, Entity_Id, | |
111 | unsigned int)); | |
112 | static void check_ok_for_atomic PARAMS ((tree, Entity_Id, int)); | |
113 | \f | |
114 | /* Given GNAT_ENTITY, an entity in the incoming GNAT tree, return a | |
115 | GCC type corresponding to that entity. GNAT_ENTITY is assumed to | |
116 | refer to an Ada type. */ | |
117 | ||
118 | tree | |
119 | gnat_to_gnu_type (gnat_entity) | |
120 | Entity_Id gnat_entity; | |
121 | { | |
122 | tree gnu_decl; | |
123 | ||
124 | /* Convert the ada entity type into a GCC TYPE_DECL node. */ | |
125 | gnu_decl = gnat_to_gnu_entity (gnat_entity, NULL_TREE, 0); | |
126 | if (TREE_CODE (gnu_decl) != TYPE_DECL) | |
127 | gigi_abort (101); | |
128 | ||
129 | return TREE_TYPE (gnu_decl); | |
130 | } | |
131 | \f | |
132 | /* Given GNAT_ENTITY, a GNAT defining identifier node, which denotes some Ada | |
133 | entity, this routine returns the equivalent GCC tree for that entity | |
134 | (an ..._DECL node) and associates the ..._DECL node with the input GNAT | |
135 | defining identifier. | |
136 | ||
137 | If GNAT_ENTITY is a variable or a constant declaration, GNU_EXPR gives its | |
138 | initial value (in GCC tree form). This is optional for variables. | |
139 | For renamed entities, GNU_EXPR gives the object being renamed. | |
140 | ||
141 | DEFINITION is nonzero if this call is intended for a definition. This is | |
142 | used for separate compilation where it necessary to know whether an | |
143 | external declaration or a definition should be created if the GCC equivalent | |
144 | was not created previously. The value of 1 is normally used for a non-zero | |
145 | DEFINITION, but a value of 2 is used in special circumstances, defined in | |
146 | the code. */ | |
147 | ||
148 | tree | |
149 | gnat_to_gnu_entity (gnat_entity, gnu_expr, definition) | |
150 | Entity_Id gnat_entity; | |
151 | tree gnu_expr; | |
152 | int definition; | |
153 | { | |
154 | tree gnu_entity_id; | |
155 | tree gnu_type = 0; | |
156 | /* Contains the gnu XXXX_DECL tree node which is equivalent to the input | |
157 | GNAT tree. This node will be associated with the GNAT node by calling | |
158 | the save_gnu_tree routine at the end of the `switch' statement. */ | |
159 | tree gnu_decl = 0; | |
160 | /* Nonzero if we have already saved gnu_decl as a gnat association. */ | |
161 | int saved = 0; | |
162 | /* Nonzero if we incremented defer_incomplete_level. */ | |
163 | int this_deferred = 0; | |
164 | /* Nonzero if we incremented force_global. */ | |
165 | int this_global = 0; | |
166 | /* Nonzero if we should check to see if elaborated during processing. */ | |
167 | int maybe_present = 0; | |
168 | /* Nonzero if we made GNU_DECL and its type here. */ | |
169 | int this_made_decl = 0; | |
170 | struct attrib *attr_list = 0; | |
171 | int debug_info_p = (Needs_Debug_Info (gnat_entity) | |
172 | || debug_info_level == DINFO_LEVEL_VERBOSE); | |
173 | Entity_Kind kind = Ekind (gnat_entity); | |
174 | Entity_Id gnat_temp; | |
175 | unsigned int esize | |
176 | = ((Known_Esize (gnat_entity) | |
177 | && UI_Is_In_Int_Range (Esize (gnat_entity))) | |
178 | ? MIN (UI_To_Int (Esize (gnat_entity)), | |
179 | IN (kind, Float_Kind) | |
180 | ? LONG_DOUBLE_TYPE_SIZE | |
181 | : IN (kind, Access_Kind) ? POINTER_SIZE * 2 | |
182 | : LONG_LONG_TYPE_SIZE) | |
183 | : LONG_LONG_TYPE_SIZE); | |
184 | tree gnu_size = 0; | |
185 | int imported_p | |
186 | = ((Is_Imported (gnat_entity) && No (Address_Clause (gnat_entity))) | |
187 | || From_With_Type (gnat_entity)); | |
188 | unsigned int align = 0; | |
189 | ||
190 | /* Since a use of an Itype is a definition, process it as such if it | |
191 | is not in a with'ed unit. */ | |
192 | ||
193 | if (! definition && Is_Itype (gnat_entity) | |
194 | && ! present_gnu_tree (gnat_entity) | |
195 | && In_Extended_Main_Code_Unit (gnat_entity)) | |
196 | { | |
197 | /* Ensure that we are in a subprogram mentioned in the Scope | |
198 | chain of this entity, our current scope is global, | |
199 | or that we encountered a task or entry (where we can't currently | |
200 | accurately check scoping). */ | |
201 | if (current_function_decl == 0 | |
202 | || DECL_ELABORATION_PROC_P (current_function_decl)) | |
203 | { | |
204 | process_type (gnat_entity); | |
205 | return get_gnu_tree (gnat_entity); | |
206 | } | |
207 | ||
208 | for (gnat_temp = Scope (gnat_entity); | |
209 | Present (gnat_temp); gnat_temp = Scope (gnat_temp)) | |
210 | { | |
211 | if (Is_Type (gnat_temp)) | |
212 | gnat_temp = Underlying_Type (gnat_temp); | |
213 | ||
214 | if (Ekind (gnat_temp) == E_Subprogram_Body) | |
215 | gnat_temp | |
216 | = Corresponding_Spec (Parent (Declaration_Node (gnat_temp))); | |
217 | ||
218 | if (IN (Ekind (gnat_temp), Subprogram_Kind) | |
219 | && Present (Protected_Body_Subprogram (gnat_temp))) | |
220 | gnat_temp = Protected_Body_Subprogram (gnat_temp); | |
221 | ||
222 | if (Ekind (gnat_temp) == E_Entry | |
223 | || Ekind (gnat_temp) == E_Entry_Family | |
224 | || Ekind (gnat_temp) == E_Task_Type | |
225 | || (IN (Ekind (gnat_temp), Subprogram_Kind) | |
226 | && present_gnu_tree (gnat_temp) | |
227 | && (current_function_decl | |
228 | == gnat_to_gnu_entity (gnat_temp, NULL_TREE, 0)))) | |
229 | { | |
230 | process_type (gnat_entity); | |
231 | return get_gnu_tree (gnat_entity); | |
232 | } | |
233 | } | |
234 | ||
235 | /* gigi abort 122 means that the entity "gnat_entity" has an incorrect | |
236 | scope, i.e. that its scope does not correspond to the subprogram | |
237 | in which it is declared */ | |
238 | gigi_abort (122); | |
239 | } | |
240 | ||
241 | /* If this is entity 0, something went badly wrong. */ | |
242 | if (gnat_entity == 0) | |
243 | gigi_abort (102); | |
244 | ||
245 | /* If we've already processed this entity, return what we got last time. | |
246 | If we are defining the node, we should not have already processed it. | |
247 | In that case, we will abort below when we try to save a new GCC tree for | |
248 | this object. We also need to handle the case of getting a dummy type | |
249 | when a Full_View exists. */ | |
250 | ||
251 | if (present_gnu_tree (gnat_entity) | |
252 | && (! definition | |
253 | || (Is_Type (gnat_entity) && imported_p))) | |
254 | { | |
255 | gnu_decl = get_gnu_tree (gnat_entity); | |
256 | ||
257 | if (TREE_CODE (gnu_decl) == TYPE_DECL | |
258 | && TYPE_IS_DUMMY_P (TREE_TYPE (gnu_decl)) | |
259 | && IN (kind, Incomplete_Or_Private_Kind) | |
260 | && Present (Full_View (gnat_entity))) | |
261 | { | |
262 | gnu_decl = gnat_to_gnu_entity (Full_View (gnat_entity), | |
263 | NULL_TREE, 0); | |
264 | ||
265 | save_gnu_tree (gnat_entity, NULL_TREE, 0); | |
266 | save_gnu_tree (gnat_entity, gnu_decl, 0); | |
267 | } | |
268 | ||
269 | return gnu_decl; | |
270 | } | |
271 | ||
272 | /* If this is a numeric or enumeral type, or an access type, a nonzero | |
273 | Esize must be specified unless it was specified by the programmer. */ | |
274 | if ((IN (kind, Numeric_Kind) || IN (kind, Enumeration_Kind) | |
275 | || (IN (kind, Access_Kind) | |
276 | && kind != E_Access_Protected_Subprogram_Type | |
277 | && kind != E_Access_Subtype)) | |
278 | && Unknown_Esize (gnat_entity) | |
279 | && ! Has_Size_Clause (gnat_entity)) | |
280 | gigi_abort (109); | |
281 | ||
282 | /* Likewise, RM_Size must be specified for all discrete and fixed-point | |
283 | types. */ | |
284 | if (IN (kind, Discrete_Or_Fixed_Point_Kind) | |
285 | && Unknown_RM_Size (gnat_entity)) | |
286 | gigi_abort (123); | |
287 | ||
288 | /* Get the name of the entity and set up the line number and filename of | |
289 | the original definition for use in any decl we make. */ | |
290 | ||
291 | gnu_entity_id = get_entity_name (gnat_entity); | |
292 | set_lineno (gnat_entity, 0); | |
293 | ||
294 | /* If we get here, it means we have not yet done anything with this | |
295 | entity. If we are not defining it here, it must be external, | |
296 | otherwise we should have defined it already. */ | |
297 | if (! definition && ! Is_Public (gnat_entity) | |
298 | && ! type_annotate_only | |
299 | && kind != E_Discriminant && kind != E_Component | |
300 | && kind != E_Label | |
301 | && ! (kind == E_Constant && Present (Full_View (gnat_entity))) | |
302 | #if 1 | |
303 | && !IN (kind, Type_Kind) | |
304 | #endif | |
305 | ) | |
306 | gigi_abort (116); | |
307 | ||
308 | /* For cases when we are not defining (i.e., we are referencing from | |
309 | another compilation unit) Public entities, show we are at global level | |
310 | for the purpose of computing sizes. Don't do this for components or | |
311 | discriminants since the relevant test is whether or not the record is | |
312 | being defined. */ | |
313 | if (! definition && Is_Public (gnat_entity) | |
314 | && ! Is_Statically_Allocated (gnat_entity) | |
315 | && kind != E_Discriminant && kind != E_Component) | |
316 | force_global++, this_global = 1; | |
317 | ||
318 | /* Handle any attributes. */ | |
319 | if (Has_Gigi_Rep_Item (gnat_entity)) | |
320 | attr_list = build_attr_list (gnat_entity); | |
321 | ||
322 | switch (kind) | |
323 | { | |
324 | case E_Constant: | |
325 | /* If this is a use of a deferred constant, get its full | |
326 | declaration. */ | |
327 | if (! definition && Present (Full_View (gnat_entity))) | |
328 | { | |
329 | gnu_decl = gnat_to_gnu_entity (Full_View (gnat_entity), | |
330 | gnu_expr, definition); | |
331 | saved = 1; | |
332 | break; | |
333 | } | |
334 | ||
335 | /* If we have an external constant that we are not defining, | |
336 | get the expression that is was defined to represent. We | |
337 | may throw that expression away later if it is not a | |
fbf5a39b AC |
338 | constant. |
339 | Do not retrieve the expression if it is an aggregate, because | |
340 | in complex instantiation contexts it may not be expanded */ | |
341 | ||
70482933 RK |
342 | if (! definition |
343 | && Present (Expression (Declaration_Node (gnat_entity))) | |
fbf5a39b AC |
344 | && ! No_Initialization (Declaration_Node (gnat_entity)) |
345 | && Nkind (Expression (Declaration_Node (gnat_entity))) | |
346 | != N_Aggregate) | |
70482933 RK |
347 | gnu_expr = gnat_to_gnu (Expression (Declaration_Node (gnat_entity))); |
348 | ||
349 | /* Ignore deferred constant definitions; they are processed fully in the | |
350 | front-end. For deferred constant references, get the full | |
351 | definition. On the other hand, constants that are renamings are | |
352 | handled like variable renamings. If No_Initialization is set, this is | |
353 | not a deferred constant but a constant whose value is built | |
354 | manually. */ | |
355 | ||
356 | if (definition && gnu_expr == 0 | |
357 | && ! No_Initialization (Declaration_Node (gnat_entity)) | |
358 | && No (Renamed_Object (gnat_entity))) | |
359 | { | |
360 | gnu_decl = error_mark_node; | |
361 | saved = 1; | |
362 | break; | |
363 | } | |
364 | else if (! definition && IN (kind, Incomplete_Or_Private_Kind) | |
365 | && Present (Full_View (gnat_entity))) | |
366 | { | |
367 | gnu_decl = gnat_to_gnu_entity (Full_View (gnat_entity), | |
368 | NULL_TREE, 0); | |
369 | saved = 1; | |
370 | break; | |
371 | } | |
372 | ||
373 | goto object; | |
374 | ||
375 | case E_Exception: | |
376 | /* If this is not a VMS exception, treat it as a normal object. | |
377 | Otherwise, make an object at the specific address of character | |
378 | type, point to it, and convert it to integer, and mask off | |
379 | the lower 3 bits. */ | |
380 | if (! Is_VMS_Exception (gnat_entity)) | |
381 | goto object; | |
382 | ||
383 | /* Allocate the global object that we use to get the value of the | |
384 | exception. */ | |
385 | gnu_decl = create_var_decl (gnu_entity_id, | |
386 | (Present (Interface_Name (gnat_entity)) | |
387 | ? create_concat_name (gnat_entity, 0) | |
388 | : NULL_TREE), | |
389 | char_type_node, NULL_TREE, 0, 0, 1, 1, | |
390 | 0); | |
391 | ||
392 | /* Now return the expression giving the desired value. */ | |
393 | gnu_decl | |
394 | = build_binary_op (BIT_AND_EXPR, integer_type_node, | |
395 | convert (integer_type_node, | |
396 | build_unary_op (ADDR_EXPR, NULL_TREE, | |
397 | gnu_decl)), | |
398 | build_unary_op (NEGATE_EXPR, integer_type_node, | |
399 | build_int_2 (7, 0))); | |
400 | ||
401 | save_gnu_tree (gnat_entity, gnu_decl, 1); | |
402 | saved = 1; | |
403 | break; | |
404 | ||
405 | case E_Discriminant: | |
406 | case E_Component: | |
407 | { | |
408 | /* The GNAT record where the component was defined. */ | |
409 | Entity_Id gnat_record = Underlying_Type (Scope (gnat_entity)); | |
410 | ||
411 | /* If the variable is an inherited record component (in the case of | |
412 | extended record types), just return the inherited entity, which | |
413 | must be a FIELD_DECL. Likewise for discriminants. | |
414 | For discriminants of untagged records which have explicit | |
fbf5a39b AC |
415 | stored discriminants, return the entity for the corresponding |
416 | stored discriminant. Also use Original_Record_Component | |
70482933 RK |
417 | if the record has a private extension. */ |
418 | ||
419 | if ((Base_Type (gnat_record) == gnat_record | |
fbf5a39b | 420 | || Ekind (Scope (gnat_entity)) == E_Private_Subtype |
70482933 RK |
421 | || Ekind (Scope (gnat_entity)) == E_Record_Subtype_With_Private |
422 | || Ekind (Scope (gnat_entity)) == E_Record_Type_With_Private) | |
423 | && Present (Original_Record_Component (gnat_entity)) | |
424 | && Original_Record_Component (gnat_entity) != gnat_entity) | |
425 | { | |
426 | gnu_decl | |
427 | = gnat_to_gnu_entity (Original_Record_Component (gnat_entity), | |
428 | gnu_expr, definition); | |
429 | saved = 1; | |
430 | break; | |
431 | } | |
432 | ||
fbf5a39b | 433 | /* If the enclosing record has explicit stored discriminants, |
70482933 RK |
434 | then it is an untagged record. If the Corresponding_Discriminant |
435 | is not empty then this must be a renamed discriminant and its | |
436 | Original_Record_Component must point to the corresponding explicit | |
fbf5a39b | 437 | stored discriminant (i.e., we should have taken the previous |
70482933 RK |
438 | branch). */ |
439 | ||
440 | else if (Present (Corresponding_Discriminant (gnat_entity)) | |
441 | && Is_Tagged_Type (gnat_record)) | |
442 | { | |
fbf5a39b | 443 | /* A tagged record has no explicit stored discriminants. */ |
70482933 RK |
444 | |
445 | if (First_Discriminant (gnat_record) | |
fbf5a39b | 446 | != First_Stored_Discriminant (gnat_record)) |
70482933 RK |
447 | gigi_abort (119); |
448 | ||
449 | gnu_decl | |
450 | = gnat_to_gnu_entity (Corresponding_Discriminant (gnat_entity), | |
451 | gnu_expr, definition); | |
452 | saved = 1; | |
453 | break; | |
454 | } | |
455 | ||
fbf5a39b | 456 | /* If the enclosing record has explicit stored discriminants, |
70482933 RK |
457 | then it is an untagged record. If the Corresponding_Discriminant |
458 | is not empty then this must be a renamed discriminant and its | |
459 | Original_Record_Component must point to the corresponding explicit | |
fbf5a39b | 460 | stored discriminant (i.e., we should have taken the first |
70482933 RK |
461 | branch). */ |
462 | ||
463 | else if (Present (Corresponding_Discriminant (gnat_entity)) | |
464 | && (First_Discriminant (gnat_record) | |
fbf5a39b | 465 | != First_Stored_Discriminant (gnat_record))) |
70482933 RK |
466 | gigi_abort (120); |
467 | ||
468 | /* Otherwise, if we are not defining this and we have no GCC type | |
469 | for the containing record, make one for it. Then we should | |
470 | have made our own equivalent. */ | |
471 | else if (! definition && ! present_gnu_tree (gnat_record)) | |
472 | { | |
473 | /* ??? If this is in a record whose scope is a protected | |
474 | type and we have an Original_Record_Component, use it. | |
475 | This is a workaround for major problems in protected type | |
476 | handling. */ | |
fbf5a39b AC |
477 | |
478 | Entity_Id Scop = Scope (Scope (gnat_entity)); | |
479 | if ((Is_Protected_Type (Scop) | |
480 | || (Is_Private_Type (Scop) | |
481 | && Present (Full_View (Scop)) | |
482 | && Is_Protected_Type (Full_View (Scop)))) | |
70482933 | 483 | && Present (Original_Record_Component (gnat_entity))) |
fbf5a39b | 484 | { |
70482933 RK |
485 | gnu_decl |
486 | = gnat_to_gnu_entity (Original_Record_Component | |
487 | (gnat_entity), | |
488 | gnu_expr, definition); | |
489 | saved = 1; | |
490 | break; | |
491 | } | |
492 | ||
493 | gnat_to_gnu_entity (Scope (gnat_entity), NULL_TREE, 0); | |
494 | gnu_decl = get_gnu_tree (gnat_entity); | |
495 | saved = 1; | |
496 | break; | |
497 | } | |
498 | ||
499 | /* Here we have no GCC type and this is a reference rather than a | |
500 | definition. This should never happen. Most likely the cause is a | |
501 | reference before declaration in the gnat tree for gnat_entity. */ | |
502 | else | |
503 | gigi_abort (103); | |
504 | } | |
505 | ||
506 | case E_Loop_Parameter: | |
507 | case E_Out_Parameter: | |
508 | case E_Variable: | |
509 | ||
510 | /* Simple variables, loop variables, OUT parameters, and exceptions. */ | |
511 | object: | |
512 | { | |
513 | int used_by_ref = 0; | |
514 | int const_flag | |
515 | = ((kind == E_Constant || kind == E_Variable) | |
516 | && ! Is_Statically_Allocated (gnat_entity) | |
517 | && Is_True_Constant (gnat_entity) | |
518 | && (((Nkind (Declaration_Node (gnat_entity)) | |
519 | == N_Object_Declaration) | |
520 | && Present (Expression (Declaration_Node (gnat_entity)))) | |
521 | || Present (Renamed_Object (gnat_entity)))); | |
522 | int inner_const_flag = const_flag; | |
523 | int static_p = Is_Statically_Allocated (gnat_entity); | |
524 | tree gnu_ext_name = NULL_TREE; | |
525 | ||
526 | if (Present (Renamed_Object (gnat_entity)) && ! definition) | |
527 | { | |
528 | if (kind == E_Exception) | |
529 | gnu_expr = gnat_to_gnu_entity (Renamed_Entity (gnat_entity), | |
530 | NULL_TREE, 0); | |
531 | else | |
532 | gnu_expr = gnat_to_gnu (Renamed_Object (gnat_entity)); | |
533 | } | |
534 | ||
535 | /* Get the type after elaborating the renamed object. */ | |
536 | gnu_type = gnat_to_gnu_type (Etype (gnat_entity)); | |
537 | ||
538 | /* If this is a loop variable, its type should be the base type. | |
539 | This is because the code for processing a loop determines whether | |
540 | a normal loop end test can be done by comparing the bounds of the | |
541 | loop against those of the base type, which is presumed to be the | |
542 | size used for computation. But this is not correct when the size | |
543 | of the subtype is smaller than the type. */ | |
544 | if (kind == E_Loop_Parameter) | |
545 | gnu_type = get_base_type (gnu_type); | |
546 | ||
547 | /* Reject non-renamed objects whose types are unconstrained arrays or | |
548 | any object whose type is a dummy type or VOID_TYPE. */ | |
549 | ||
550 | if ((TREE_CODE (gnu_type) == UNCONSTRAINED_ARRAY_TYPE | |
551 | && No (Renamed_Object (gnat_entity))) | |
552 | || TYPE_IS_DUMMY_P (gnu_type) | |
553 | || TREE_CODE (gnu_type) == VOID_TYPE) | |
554 | { | |
555 | if (type_annotate_only) | |
556 | return error_mark_node; | |
557 | else | |
558 | gigi_abort (104); | |
559 | } | |
560 | ||
561 | /* If we are defining the object, see if it has a Size value and | |
562 | validate it if so. Then get the new type, if any. */ | |
563 | if (definition) | |
564 | gnu_size = validate_size (Esize (gnat_entity), gnu_type, | |
565 | gnat_entity, VAR_DECL, 0, | |
566 | Has_Size_Clause (gnat_entity)); | |
567 | ||
568 | if (gnu_size != 0) | |
569 | { | |
570 | gnu_type | |
571 | = make_type_from_size (gnu_type, gnu_size, | |
572 | Has_Biased_Representation (gnat_entity)); | |
573 | ||
574 | if (operand_equal_p (TYPE_SIZE (gnu_type), gnu_size, 0)) | |
575 | gnu_size = 0; | |
576 | } | |
577 | ||
578 | /* If this object has self-referential size, it must be a record with | |
579 | a default value. We are supposed to allocate an object of the | |
580 | maximum size in this case unless it is a constant with an | |
581 | initializing expression, in which case we can get the size from | |
582 | that. Note that the resulting size may still be a variable, so | |
583 | this may end up with an indirect allocation. */ | |
584 | ||
585 | if (No (Renamed_Object (gnat_entity)) | |
fbf5a39b | 586 | && CONTAINS_PLACEHOLDER_P (TYPE_SIZE (gnu_type))) |
70482933 RK |
587 | { |
588 | if (gnu_expr != 0 && kind == E_Constant) | |
589 | { | |
590 | gnu_size = TYPE_SIZE (TREE_TYPE (gnu_expr)); | |
fbf5a39b AC |
591 | if (CONTAINS_PLACEHOLDER_P (gnu_size)) |
592 | gnu_size = build (WITH_RECORD_EXPR, bitsizetype, | |
593 | gnu_size, gnu_expr); | |
70482933 RK |
594 | } |
595 | ||
596 | /* We may have no GNU_EXPR because No_Initialization is | |
597 | set even though there's an Expression. */ | |
598 | else if (kind == E_Constant | |
599 | && (Nkind (Declaration_Node (gnat_entity)) | |
600 | == N_Object_Declaration) | |
601 | && Present (Expression (Declaration_Node (gnat_entity)))) | |
602 | gnu_size | |
603 | = TYPE_SIZE (gnat_to_gnu_type | |
604 | (Etype | |
605 | (Expression (Declaration_Node (gnat_entity))))); | |
606 | else | |
607 | gnu_size = max_size (TYPE_SIZE (gnu_type), 1); | |
608 | } | |
609 | ||
fbf5a39b AC |
610 | /* If the size is zero bytes, make it one byte since some linkers have |
611 | trouble with zero-sized objects. If the object will have a | |
612 | template, that will make it nonzero so don't bother. Also avoid | |
613 | doing that for an object renaming or an object with an address | |
614 | clause, as we would lose useful information on the view size | |
615 | (e.g. for null array slices) and we are not allocating the object | |
616 | here anyway. */ | |
70482933 RK |
617 | if (((gnu_size != 0 && integer_zerop (gnu_size)) |
618 | || (TYPE_SIZE (gnu_type) != 0 | |
619 | && integer_zerop (TYPE_SIZE (gnu_type)))) | |
620 | && (! Is_Constr_Subt_For_UN_Aliased (Etype (gnat_entity)) | |
fbf5a39b AC |
621 | || ! Is_Array_Type (Etype (gnat_entity))) |
622 | && ! Present (Renamed_Object (gnat_entity)) | |
623 | && ! Present (Address_Clause (gnat_entity))) | |
70482933 RK |
624 | gnu_size = bitsize_unit_node; |
625 | ||
626 | /* If an alignment is specified, use it if valid. Note that | |
627 | exceptions are objects but don't have alignments. */ | |
628 | if (kind != E_Exception && Known_Alignment (gnat_entity)) | |
629 | { | |
630 | if (No (Alignment (gnat_entity))) | |
631 | gigi_abort (125); | |
632 | ||
633 | align | |
634 | = validate_alignment (Alignment (gnat_entity), gnat_entity, | |
635 | TYPE_ALIGN (gnu_type)); | |
636 | } | |
637 | ||
638 | /* If this is an atomic object with no specified size and alignment, | |
639 | but where the size of the type is a constant, set the alignment to | |
640 | the lowest power of two greater than the size, or to the | |
641 | biggest meaningful alignment, whichever is smaller. */ | |
642 | ||
643 | if (Is_Atomic (gnat_entity) && gnu_size == 0 && align == 0 | |
644 | && TREE_CODE (TYPE_SIZE (gnu_type)) == INTEGER_CST) | |
645 | { | |
646 | if (! host_integerp (TYPE_SIZE (gnu_type), 1) | |
647 | || 0 <= compare_tree_int (TYPE_SIZE (gnu_type), | |
648 | BIGGEST_ALIGNMENT)) | |
649 | align = BIGGEST_ALIGNMENT; | |
650 | else | |
651 | align = ((unsigned int) 1 | |
652 | << (floor_log2 (tree_low_cst | |
653 | (TYPE_SIZE (gnu_type), 1) - 1) | |
654 | + 1)); | |
655 | } | |
656 | ||
70482933 RK |
657 | /* If the object is set to have atomic components, find the component |
658 | type and validate it. | |
659 | ||
660 | ??? Note that we ignore Has_Volatile_Components on objects; it's | |
661 | not at all clear what to do in that case. */ | |
662 | ||
663 | if (Has_Atomic_Components (gnat_entity)) | |
664 | { | |
665 | tree gnu_inner | |
666 | = (TREE_CODE (gnu_type) == ARRAY_TYPE | |
667 | ? TREE_TYPE (gnu_type) : gnu_type); | |
668 | ||
669 | while (TREE_CODE (gnu_inner) == ARRAY_TYPE | |
670 | && TYPE_MULTI_ARRAY_P (gnu_inner)) | |
671 | gnu_inner = TREE_TYPE (gnu_inner); | |
672 | ||
673 | check_ok_for_atomic (gnu_inner, gnat_entity, 1); | |
674 | } | |
675 | ||
07fc65c4 GB |
676 | /* Now check if the type of the object allows atomic access. Note |
677 | that we must test the type, even if this object has size and | |
678 | alignment to allow such access, because we will be going | |
679 | inside the padded record to assign to the object. We could fix | |
680 | this by always copying via an intermediate value, but it's not | |
681 | clear it's worth the effort. */ | |
682 | if (Is_Atomic (gnat_entity)) | |
683 | check_ok_for_atomic (gnu_type, gnat_entity, 0); | |
684 | ||
70482933 RK |
685 | /* If this is an aliased object with an unconstrained nominal subtype, |
686 | make a type that includes the template. */ | |
687 | if (Is_Constr_Subt_For_UN_Aliased (Etype (gnat_entity)) | |
688 | && Is_Array_Type (Etype (gnat_entity)) | |
689 | && ! type_annotate_only) | |
690 | { | |
691 | tree gnu_fat | |
692 | = TREE_TYPE (gnat_to_gnu_type (Base_Type (Etype (gnat_entity)))); | |
693 | tree gnu_temp_type | |
694 | = TREE_TYPE (TREE_TYPE (TREE_CHAIN (TYPE_FIELDS (gnu_fat)))); | |
695 | ||
696 | gnu_type | |
697 | = build_unc_object_type (gnu_temp_type, gnu_type, | |
698 | concat_id_with_name (gnu_entity_id, | |
699 | "UNC")); | |
700 | } | |
701 | ||
fbf5a39b AC |
702 | #ifdef MINIMUM_ATOMIC_ALIGNMENT |
703 | /* If the size is a constant and no alignment is specified, force | |
704 | the alignment to be the minimum valid atomic alignment. The | |
705 | restriction on constant size avoids problems with variable-size | |
706 | temporaries; if the size is variable, there's no issue with | |
707 | atomic access. Also don't do this for a constant, since it isn't | |
708 | necessary and can interfere with constant replacement. Finally, | |
709 | do not do it for Out parameters since that creates an | |
710 | size inconsistency with In parameters. */ | |
711 | if (align == 0 && MINIMUM_ATOMIC_ALIGNMENT > TYPE_ALIGN (gnu_type) | |
712 | && ! FLOAT_TYPE_P (gnu_type) | |
713 | && ! const_flag && No (Renamed_Object (gnat_entity)) | |
714 | && ! imported_p && No (Address_Clause (gnat_entity)) | |
715 | && kind != E_Out_Parameter | |
716 | && (gnu_size != 0 ? TREE_CODE (gnu_size) == INTEGER_CST | |
717 | : TREE_CODE (TYPE_SIZE (gnu_type)) == INTEGER_CST)) | |
718 | align = MINIMUM_ATOMIC_ALIGNMENT; | |
719 | #endif | |
720 | ||
721 | /* Make a new type with the desired size and alignment, if needed. */ | |
722 | gnu_type = maybe_pad_type (gnu_type, gnu_size, align, | |
723 | gnat_entity, "PAD", 0, definition, 1); | |
724 | ||
725 | /* Make a volatile version of this object's type if we are to | |
726 | make the object volatile. Note that 13.3(19) says that we | |
727 | should treat other types of objects as volatile as well. */ | |
728 | if ((Treat_As_Volatile (gnat_entity) | |
729 | || Is_Exported (gnat_entity) | |
730 | || Is_Imported (gnat_entity) | |
731 | || Present (Address_Clause (gnat_entity))) | |
732 | && ! TYPE_VOLATILE (gnu_type)) | |
733 | gnu_type = build_qualified_type (gnu_type, | |
734 | (TYPE_QUALS (gnu_type) | |
735 | | TYPE_QUAL_VOLATILE)); | |
736 | ||
70482933 RK |
737 | /* Convert the expression to the type of the object except in the |
738 | case where the object's type is unconstrained or the object's type | |
739 | is a padded record whose field is of self-referential size. In | |
740 | the former case, converting will generate unnecessary evaluations | |
741 | of the CONSTRUCTOR to compute the size and in the latter case, we | |
742 | want to only copy the actual data. */ | |
743 | if (gnu_expr != 0 | |
744 | && TREE_CODE (gnu_type) != UNCONSTRAINED_ARRAY_TYPE | |
fbf5a39b | 745 | && ! CONTAINS_PLACEHOLDER_P (TYPE_SIZE (gnu_type)) |
70482933 RK |
746 | && ! (TREE_CODE (gnu_type) == RECORD_TYPE |
747 | && TYPE_IS_PADDING_P (gnu_type) | |
fbf5a39b | 748 | && (CONTAINS_PLACEHOLDER_P |
70482933 RK |
749 | (TYPE_SIZE (TREE_TYPE (TYPE_FIELDS (gnu_type))))))) |
750 | gnu_expr = convert (gnu_type, gnu_expr); | |
751 | ||
752 | /* See if this is a renaming. If this is a constant renaming, | |
753 | treat it as a normal variable whose initial value is what | |
754 | is being renamed. We cannot do this if the type is | |
755 | unconstrained or class-wide. | |
756 | ||
757 | Otherwise, if what we are renaming is a reference, we can simply | |
758 | return a stabilized version of that reference, after forcing | |
759 | any SAVE_EXPRs to be evaluated. But, if this is at global level, | |
760 | we can only do this if we know no SAVE_EXPRs will be made. | |
761 | Otherwise, make this into a constant pointer to the object we are | |
762 | to rename. */ | |
763 | ||
764 | if (Present (Renamed_Object (gnat_entity))) | |
765 | { | |
766 | /* If the renamed object had padding, strip off the reference | |
767 | to the inner object and reset our type. */ | |
768 | if (TREE_CODE (gnu_expr) == COMPONENT_REF | |
769 | && (TREE_CODE (TREE_TYPE (TREE_OPERAND (gnu_expr, 0))) | |
770 | == RECORD_TYPE) | |
771 | && (TYPE_IS_PADDING_P | |
772 | (TREE_TYPE (TREE_OPERAND (gnu_expr, 0))))) | |
773 | { | |
774 | gnu_expr = TREE_OPERAND (gnu_expr, 0); | |
775 | gnu_type = TREE_TYPE (gnu_expr); | |
776 | } | |
777 | ||
778 | if (const_flag | |
779 | && TREE_CODE (gnu_type) != UNCONSTRAINED_ARRAY_TYPE | |
780 | && TYPE_MODE (gnu_type) != BLKmode | |
781 | && Ekind (Etype (gnat_entity)) != E_Class_Wide_Type | |
782 | && !Is_Array_Type (Etype (gnat_entity))) | |
783 | ; | |
784 | ||
785 | /* If this is a declaration or reference, we can just use that | |
786 | declaration or reference as this entity. */ | |
787 | else if ((DECL_P (gnu_expr) | |
788 | || TREE_CODE_CLASS (TREE_CODE (gnu_expr)) == 'r') | |
789 | && ! Materialize_Entity (gnat_entity) | |
790 | && (! global_bindings_p () | |
791 | || (staticp (gnu_expr) | |
792 | && ! TREE_SIDE_EFFECTS (gnu_expr)))) | |
793 | { | |
794 | set_lineno (gnat_entity, ! global_bindings_p ()); | |
795 | gnu_decl = gnat_stabilize_reference (gnu_expr, 1); | |
796 | save_gnu_tree (gnat_entity, gnu_decl, 1); | |
797 | saved = 1; | |
798 | ||
799 | if (! global_bindings_p ()) | |
800 | expand_expr_stmt (build1 (CONVERT_EXPR, void_type_node, | |
801 | gnu_decl)); | |
802 | break; | |
803 | } | |
804 | else | |
805 | { | |
806 | inner_const_flag = TREE_READONLY (gnu_expr); | |
807 | const_flag = 1; | |
808 | gnu_type = build_reference_type (gnu_type); | |
809 | gnu_expr = build_unary_op (ADDR_EXPR, gnu_type, gnu_expr); | |
810 | gnu_size = 0; | |
811 | used_by_ref = 1; | |
812 | } | |
813 | } | |
814 | ||
815 | /* If this is an aliased object whose nominal subtype is unconstrained, | |
816 | the object is a record that contains both the template and | |
817 | the object. If there is an initializer, it will have already | |
818 | been converted to the right type, but we need to create the | |
819 | template if there is no initializer. */ | |
820 | else if (definition && TREE_CODE (gnu_type) == RECORD_TYPE | |
fbf5a39b AC |
821 | && (TYPE_CONTAINS_TEMPLATE_P (gnu_type) |
822 | /* Beware that padding might have been introduced | |
823 | via maybe_pad_type above. */ | |
824 | || (TYPE_IS_PADDING_P (gnu_type) | |
825 | && TREE_CODE (TREE_TYPE (TYPE_FIELDS (gnu_type))) | |
826 | == RECORD_TYPE | |
827 | && TYPE_CONTAINS_TEMPLATE_P | |
828 | (TREE_TYPE (TYPE_FIELDS (gnu_type))))) | |
70482933 | 829 | && gnu_expr == 0) |
fbf5a39b AC |
830 | { |
831 | tree template_field | |
832 | = TYPE_IS_PADDING_P (gnu_type) | |
833 | ? TYPE_FIELDS (TREE_TYPE (TYPE_FIELDS (gnu_type))) | |
834 | : TYPE_FIELDS (gnu_type); | |
835 | ||
836 | gnu_expr | |
837 | = gnat_build_constructor | |
70482933 RK |
838 | (gnu_type, |
839 | tree_cons | |
fbf5a39b AC |
840 | (template_field, |
841 | build_template (TREE_TYPE (template_field), | |
842 | TREE_TYPE (TREE_CHAIN (template_field)), | |
843 | NULL_TREE), | |
70482933 | 844 | NULL_TREE)); |
fbf5a39b | 845 | } |
70482933 RK |
846 | |
847 | /* If this is a pointer and it does not have an initializing | |
fbf5a39b AC |
848 | expression, initialize it to NULL, unless the obect is |
849 | imported. */ | |
70482933 RK |
850 | if (definition |
851 | && (POINTER_TYPE_P (gnu_type) || TYPE_FAT_POINTER_P (gnu_type)) | |
fbf5a39b | 852 | && !Is_Imported (gnat_entity) |
70482933 RK |
853 | && gnu_expr == 0) |
854 | gnu_expr = integer_zero_node; | |
855 | ||
856 | /* If we are defining the object and it has an Address clause we must | |
857 | get the address expression from the saved GCC tree for the | |
858 | object if the object has a Freeze_Node. Otherwise, we elaborate | |
859 | the address expression here since the front-end has guaranteed | |
860 | in that case that the elaboration has no effects. Note that | |
861 | only the latter mechanism is currently in use. */ | |
862 | if (definition && Present (Address_Clause (gnat_entity))) | |
863 | { | |
864 | tree gnu_address | |
865 | = (present_gnu_tree (gnat_entity) ? get_gnu_tree (gnat_entity) | |
866 | : gnat_to_gnu (Expression (Address_Clause (gnat_entity)))); | |
867 | ||
868 | save_gnu_tree (gnat_entity, NULL_TREE, 0); | |
869 | ||
870 | /* Ignore the size. It's either meaningless or was handled | |
871 | above. */ | |
872 | gnu_size = 0; | |
873 | gnu_type = build_reference_type (gnu_type); | |
874 | gnu_address = convert (gnu_type, gnu_address); | |
875 | used_by_ref = 1; | |
876 | const_flag = ! Is_Public (gnat_entity); | |
877 | ||
878 | /* If we don't have an initializing expression for the underlying | |
879 | variable, the initializing expression for the pointer is the | |
880 | specified address. Otherwise, we have to make a COMPOUND_EXPR | |
881 | to assign both the address and the initial value. */ | |
882 | if (gnu_expr == 0) | |
883 | gnu_expr = gnu_address; | |
884 | else | |
885 | gnu_expr | |
886 | = build (COMPOUND_EXPR, gnu_type, | |
887 | build_binary_op | |
888 | (MODIFY_EXPR, NULL_TREE, | |
889 | build_unary_op (INDIRECT_REF, NULL_TREE, | |
890 | gnu_address), | |
891 | gnu_expr), | |
892 | gnu_address); | |
893 | } | |
894 | ||
895 | /* If it has an address clause and we are not defining it, mark it | |
896 | as an indirect object. Likewise for Stdcall objects that are | |
897 | imported. */ | |
898 | if ((! definition && Present (Address_Clause (gnat_entity))) | |
899 | || (Is_Imported (gnat_entity) | |
900 | && Convention (gnat_entity) == Convention_Stdcall)) | |
901 | { | |
902 | gnu_type = build_reference_type (gnu_type); | |
903 | gnu_size = 0; | |
904 | used_by_ref = 1; | |
905 | } | |
906 | ||
907 | /* If we are at top level and this object is of variable size, | |
908 | make the actual type a hidden pointer to the real type and | |
909 | make the initializer be a memory allocation and initialization. | |
910 | Likewise for objects we aren't defining (presumed to be | |
911 | external references from other packages), but there we do | |
912 | not set up an initialization. | |
913 | ||
914 | If the object's size overflows, make an allocator too, so that | |
915 | Storage_Error gets raised. Note that we will never free | |
916 | such memory, so we presume it never will get allocated. */ | |
917 | ||
918 | if (! allocatable_size_p (TYPE_SIZE_UNIT (gnu_type), | |
919 | global_bindings_p () || ! definition | |
920 | || static_p) | |
921 | || (gnu_size != 0 | |
922 | && ! allocatable_size_p (gnu_size, | |
923 | global_bindings_p () || ! definition | |
924 | || static_p))) | |
925 | { | |
926 | gnu_type = build_reference_type (gnu_type); | |
927 | gnu_size = 0; | |
928 | used_by_ref = 1; | |
929 | const_flag = 1; | |
930 | ||
931 | /* Get the data part of GNU_EXPR in case this was a | |
932 | aliased object whose nominal subtype is unconstrained. | |
933 | In that case the pointer above will be a thin pointer and | |
934 | build_allocator will automatically make the template and | |
935 | constructor already made above. */ | |
936 | ||
937 | if (definition) | |
938 | { | |
939 | tree gnu_alloc_type = TREE_TYPE (gnu_type); | |
940 | ||
941 | if (TREE_CODE (gnu_alloc_type) == RECORD_TYPE | |
942 | && TYPE_CONTAINS_TEMPLATE_P (gnu_alloc_type)) | |
943 | { | |
944 | gnu_alloc_type | |
945 | = TREE_TYPE (TREE_CHAIN (TYPE_FIELDS (gnu_alloc_type))); | |
946 | gnu_expr | |
947 | = build_component_ref | |
948 | (gnu_expr, NULL_TREE, | |
949 | TREE_CHAIN (TYPE_FIELDS (TREE_TYPE (gnu_expr)))); | |
950 | } | |
951 | ||
952 | if (TREE_CODE (TYPE_SIZE_UNIT (gnu_alloc_type)) == INTEGER_CST | |
953 | && TREE_CONSTANT_OVERFLOW (TYPE_SIZE_UNIT (gnu_alloc_type)) | |
954 | && ! Is_Imported (gnat_entity)) | |
955 | post_error ("Storage_Error will be raised at run-time?", | |
956 | gnat_entity); | |
957 | ||
958 | gnu_expr = build_allocator (gnu_alloc_type, gnu_expr, | |
fbf5a39b | 959 | gnu_type, 0, 0, gnat_entity); |
70482933 RK |
960 | } |
961 | else | |
962 | { | |
963 | gnu_expr = 0; | |
964 | const_flag = 0; | |
965 | } | |
966 | } | |
967 | ||
968 | /* If this object would go into the stack and has an alignment | |
969 | larger than the default largest alignment, make a variable | |
970 | to hold the "aligning type" with a modified initial value, | |
971 | if any, then point to it and make that the value of this | |
972 | variable, which is now indirect. */ | |
973 | ||
974 | if (! global_bindings_p () && ! static_p && definition | |
975 | && ! imported_p && TYPE_ALIGN (gnu_type) > BIGGEST_ALIGNMENT) | |
976 | { | |
977 | tree gnu_new_type | |
978 | = make_aligning_type (gnu_type, TYPE_ALIGN (gnu_type), | |
979 | TYPE_SIZE_UNIT (gnu_type)); | |
980 | tree gnu_new_var; | |
981 | ||
70482933 RK |
982 | set_lineno (gnat_entity, 1); |
983 | gnu_new_var | |
984 | = create_var_decl (create_concat_name (gnat_entity, "ALIGN"), | |
985 | NULL_TREE, gnu_new_type, gnu_expr, | |
986 | 0, 0, 0, 0, 0); | |
987 | ||
fbf5a39b AC |
988 | if (gnu_expr != 0) |
989 | expand_expr_stmt | |
990 | (build_binary_op | |
991 | (MODIFY_EXPR, NULL_TREE, | |
992 | build_component_ref (gnu_new_var, NULL_TREE, | |
993 | TYPE_FIELDS (gnu_new_type)), | |
994 | gnu_expr)); | |
995 | ||
70482933 RK |
996 | gnu_type = build_reference_type (gnu_type); |
997 | gnu_expr | |
998 | = build_unary_op | |
999 | (ADDR_EXPR, gnu_type, | |
1000 | build_component_ref (gnu_new_var, NULL_TREE, | |
1001 | TYPE_FIELDS (gnu_new_type))); | |
1002 | ||
1003 | gnu_size = 0; | |
1004 | used_by_ref = 1; | |
1005 | const_flag = 1; | |
1006 | } | |
1007 | ||
1008 | /* Convert the expression to the type of the object except in the | |
1009 | case where the object's type is unconstrained or the object's type | |
1010 | is a padded record whose field is of self-referential size. In | |
1011 | the former case, converting will generate unnecessary evaluations | |
1012 | of the CONSTRUCTOR to compute the size and in the latter case, we | |
1013 | want to only copy the actual data. */ | |
1014 | if (gnu_expr != 0 | |
1015 | && TREE_CODE (gnu_type) != UNCONSTRAINED_ARRAY_TYPE | |
fbf5a39b | 1016 | && ! CONTAINS_PLACEHOLDER_P (TYPE_SIZE (gnu_type)) |
70482933 RK |
1017 | && ! (TREE_CODE (gnu_type) == RECORD_TYPE |
1018 | && TYPE_IS_PADDING_P (gnu_type) | |
fbf5a39b | 1019 | && (CONTAINS_PLACEHOLDER_P |
70482933 RK |
1020 | (TYPE_SIZE (TREE_TYPE (TYPE_FIELDS (gnu_type))))))) |
1021 | gnu_expr = convert (gnu_type, gnu_expr); | |
1022 | ||
1023 | /* This name is external or there was a name specified, use it. | |
1024 | Don't use the Interface_Name if there is an address clause. | |
1025 | (see CD30005). */ | |
1026 | if ((Present (Interface_Name (gnat_entity)) | |
1027 | && No (Address_Clause (gnat_entity))) | |
1028 | || (Is_Public (gnat_entity) | |
1029 | && (! Is_Imported (gnat_entity) || Is_Exported (gnat_entity)))) | |
1030 | gnu_ext_name = create_concat_name (gnat_entity, 0); | |
1031 | ||
1032 | if (const_flag) | |
1033 | gnu_type = build_qualified_type (gnu_type, (TYPE_QUALS (gnu_type) | |
1034 | | TYPE_QUAL_CONST)); | |
1035 | ||
1036 | /* If this is constant initialized to a static constant and the | |
1037 | object has an aggregrate type, force it to be statically | |
1038 | allocated. */ | |
1039 | if (const_flag && gnu_expr && TREE_CONSTANT (gnu_expr) | |
1040 | && host_integerp (TYPE_SIZE_UNIT (gnu_type), 1) | |
1041 | && (AGGREGATE_TYPE_P (gnu_type) | |
1042 | && ! (TREE_CODE (gnu_type) == RECORD_TYPE | |
1043 | && TYPE_IS_PADDING_P (gnu_type)))) | |
1044 | static_p = 1; | |
1045 | ||
1046 | set_lineno (gnat_entity, ! global_bindings_p ()); | |
1047 | gnu_decl = create_var_decl (gnu_entity_id, gnu_ext_name, gnu_type, | |
1048 | gnu_expr, const_flag, | |
1049 | Is_Public (gnat_entity), | |
1050 | imported_p || !definition, | |
1051 | static_p, attr_list); | |
1052 | ||
1053 | DECL_BY_REF_P (gnu_decl) = used_by_ref; | |
1054 | DECL_POINTS_TO_READONLY_P (gnu_decl) = used_by_ref && inner_const_flag; | |
1055 | ||
1056 | if (definition && DECL_SIZE (gnu_decl) != 0 | |
1057 | && gnu_block_stack != 0 | |
1058 | && TREE_VALUE (gnu_block_stack) != 0 | |
1059 | && (TREE_CODE (DECL_SIZE (gnu_decl)) != INTEGER_CST | |
1060 | || (flag_stack_check && ! STACK_CHECK_BUILTIN | |
1061 | && 0 < compare_tree_int (DECL_SIZE_UNIT (gnu_decl), | |
1062 | STACK_CHECK_MAX_VAR_SIZE)))) | |
1063 | update_setjmp_buf (TREE_VALUE (gnu_block_stack)); | |
1064 | ||
c2d7fe59 RK |
1065 | /* If this is a public constant or we're not optimizing and we're not |
1066 | making a VAR_DECL for it, make one just for export or debugger | |
1067 | use. Likewise if the address is taken or if the object or type is | |
1068 | aliased. */ | |
70482933 RK |
1069 | if (definition && TREE_CODE (gnu_decl) == CONST_DECL |
1070 | && (Is_Public (gnat_entity) | |
c2d7fe59 | 1071 | || optimize == 0 |
70482933 RK |
1072 | || Address_Taken (gnat_entity) |
1073 | || Is_Aliased (gnat_entity) | |
1074 | || Is_Aliased (Etype (gnat_entity)))) | |
fbf5a39b | 1075 | SET_DECL_CONST_CORRESPONDING_VAR (gnu_decl, |
e2500fed | 1076 | create_var_decl (gnu_entity_id, gnu_ext_name, gnu_type, |
70482933 | 1077 | gnu_expr, 0, Is_Public (gnat_entity), 0, |
e2500fed | 1078 | static_p, 0)); |
70482933 | 1079 | |
70482933 RK |
1080 | /* If this is declared in a block that contains an block with an |
1081 | exception handler, we must force this variable in memory to | |
1082 | suppress an invalid optimization. */ | |
07fc65c4 GB |
1083 | if (Has_Nested_Block_With_Handler (Scope (gnat_entity)) |
1084 | && Exception_Mechanism != GCC_ZCX) | |
70482933 | 1085 | { |
dffd7eb6 | 1086 | gnat_mark_addressable (gnu_decl); |
70482933 RK |
1087 | flush_addressof (gnu_decl); |
1088 | } | |
1089 | ||
1090 | /* Back-annotate the Alignment of the object if not already in the | |
79503fdd GB |
1091 | tree. Likewise for Esize if the object is of a constant size. |
1092 | But if the "object" is actually a pointer to an object, the | |
1093 | alignment and size are the same as teh type, so don't back-annotate | |
1094 | the values for the pointer. */ | |
1095 | if (! used_by_ref && Unknown_Alignment (gnat_entity)) | |
70482933 RK |
1096 | Set_Alignment (gnat_entity, |
1097 | UI_From_Int (DECL_ALIGN (gnu_decl) / BITS_PER_UNIT)); | |
1098 | ||
79503fdd | 1099 | if (! used_by_ref && Unknown_Esize (gnat_entity) |
70482933 RK |
1100 | && DECL_SIZE (gnu_decl) != 0) |
1101 | { | |
1102 | tree gnu_back_size = DECL_SIZE (gnu_decl); | |
1103 | ||
1104 | if (TREE_CODE (TREE_TYPE (gnu_decl)) == RECORD_TYPE | |
1105 | && TYPE_CONTAINS_TEMPLATE_P (TREE_TYPE (gnu_decl))) | |
1106 | gnu_back_size | |
1107 | = TYPE_SIZE (TREE_TYPE (TREE_CHAIN | |
1108 | (TYPE_FIELDS (TREE_TYPE (gnu_decl))))); | |
1109 | ||
1110 | Set_Esize (gnat_entity, annotate_value (gnu_back_size)); | |
1111 | } | |
1112 | } | |
1113 | break; | |
1114 | ||
1115 | case E_Void: | |
1116 | /* Return a TYPE_DECL for "void" that we previously made. */ | |
1117 | gnu_decl = void_type_decl_node; | |
1118 | break; | |
1119 | ||
1120 | case E_Enumeration_Type: | |
1121 | /* A special case, for the types Character and Wide_Character in | |
1122 | Standard, we do not list all the literals. So if the literals | |
1123 | are not specified, make this an unsigned type. */ | |
1124 | if (No (First_Literal (gnat_entity))) | |
1125 | { | |
1126 | gnu_type = make_unsigned_type (esize); | |
1127 | break; | |
1128 | } | |
1129 | ||
1130 | /* Normal case of non-character type, or non-Standard character type */ | |
1131 | { | |
1132 | /* Here we have a list of enumeral constants in First_Literal. | |
1133 | We make a CONST_DECL for each and build into GNU_LITERAL_LIST | |
1134 | the list to be places into TYPE_FIELDS. Each node in the list | |
1135 | is a TREE_LIST node whose TREE_VALUE is the literal name | |
1136 | and whose TREE_PURPOSE is the value of the literal. | |
1137 | ||
1138 | Esize contains the number of bits needed to represent the enumeral | |
1139 | type, Type_Low_Bound also points to the first literal and | |
1140 | Type_High_Bound points to the last literal. */ | |
1141 | ||
1142 | Entity_Id gnat_literal; | |
1143 | tree gnu_literal_list = NULL_TREE; | |
1144 | ||
1145 | if (Is_Unsigned_Type (gnat_entity)) | |
1146 | gnu_type = make_unsigned_type (esize); | |
1147 | else | |
1148 | gnu_type = make_signed_type (esize); | |
1149 | ||
1150 | TREE_SET_CODE (gnu_type, ENUMERAL_TYPE); | |
1151 | ||
1152 | for (gnat_literal = First_Literal (gnat_entity); | |
1153 | Present (gnat_literal); | |
1154 | gnat_literal = Next_Literal (gnat_literal)) | |
1155 | { | |
1156 | tree gnu_value = UI_To_gnu (Enumeration_Rep (gnat_literal), | |
1157 | gnu_type); | |
1158 | tree gnu_literal | |
1159 | = create_var_decl (get_entity_name (gnat_literal), | |
1160 | 0, gnu_type, gnu_value, 1, 0, 0, 0, 0); | |
1161 | ||
1162 | save_gnu_tree (gnat_literal, gnu_literal, 0); | |
1163 | gnu_literal_list = tree_cons (DECL_NAME (gnu_literal), | |
1164 | gnu_value, gnu_literal_list); | |
1165 | } | |
1166 | ||
1167 | TYPE_FIELDS (gnu_type) = nreverse (gnu_literal_list); | |
1168 | ||
1169 | /* Note that the bounds are updated at the end of this function | |
1170 | because to avoid an infinite recursion when we get the bounds of | |
1171 | this type, since those bounds are objects of this type. */ | |
1172 | } | |
1173 | break; | |
1174 | ||
1175 | case E_Signed_Integer_Type: | |
1176 | case E_Ordinary_Fixed_Point_Type: | |
1177 | case E_Decimal_Fixed_Point_Type: | |
1178 | /* For integer types, just make a signed type the appropriate number | |
1179 | of bits. */ | |
1180 | gnu_type = make_signed_type (esize); | |
1181 | break; | |
1182 | ||
1183 | case E_Modular_Integer_Type: | |
1184 | /* For modular types, make the unsigned type of the proper number of | |
1185 | bits and then set up the modulus, if required. */ | |
1186 | { | |
1187 | enum machine_mode mode; | |
1188 | tree gnu_modulus; | |
1189 | tree gnu_high = 0; | |
1190 | ||
1191 | if (Is_Packed_Array_Type (gnat_entity)) | |
1192 | esize = UI_To_Int (RM_Size (gnat_entity)); | |
1193 | ||
1194 | /* Find the smallest mode at least ESIZE bits wide and make a class | |
1195 | using that mode. */ | |
1196 | ||
1197 | for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); | |
1198 | GET_MODE_BITSIZE (mode) < esize; | |
1199 | mode = GET_MODE_WIDER_MODE (mode)) | |
1200 | ; | |
1201 | ||
1202 | gnu_type = make_unsigned_type (GET_MODE_BITSIZE (mode)); | |
1203 | TYPE_PACKED_ARRAY_TYPE_P (gnu_type) | |
1204 | = Is_Packed_Array_Type (gnat_entity); | |
1205 | ||
1206 | /* Get the modulus in this type. If it overflows, assume it is because | |
1207 | it is equal to 2**Esize. Note that there is no overflow checking | |
1208 | done on unsigned type, so we detect the overflow by looking for | |
1209 | a modulus of zero, which is otherwise invalid. */ | |
1210 | gnu_modulus = UI_To_gnu (Modulus (gnat_entity), gnu_type); | |
1211 | ||
1212 | if (! integer_zerop (gnu_modulus)) | |
1213 | { | |
1214 | TYPE_MODULAR_P (gnu_type) = 1; | |
e2500fed | 1215 | SET_TYPE_MODULUS (gnu_type, gnu_modulus); |
70482933 RK |
1216 | gnu_high = fold (build (MINUS_EXPR, gnu_type, gnu_modulus, |
1217 | convert (gnu_type, integer_one_node))); | |
1218 | } | |
1219 | ||
1220 | /* If we have to set TYPE_PRECISION different from its natural value, | |
1221 | make a subtype to do do. Likewise if there is a modulus and | |
1222 | it is not one greater than TYPE_MAX_VALUE. */ | |
1223 | if (TYPE_PRECISION (gnu_type) != esize | |
1224 | || (TYPE_MODULAR_P (gnu_type) | |
1225 | && ! tree_int_cst_equal (TYPE_MAX_VALUE (gnu_type), gnu_high))) | |
1226 | { | |
1227 | tree gnu_subtype = make_node (INTEGER_TYPE); | |
1228 | ||
1229 | TYPE_NAME (gnu_type) = create_concat_name (gnat_entity, "UMT"); | |
1230 | TREE_TYPE (gnu_subtype) = gnu_type; | |
1231 | TYPE_MIN_VALUE (gnu_subtype) = TYPE_MIN_VALUE (gnu_type); | |
1232 | TYPE_MAX_VALUE (gnu_subtype) | |
1233 | = TYPE_MODULAR_P (gnu_type) | |
1234 | ? gnu_high : TYPE_MAX_VALUE (gnu_type); | |
1235 | TYPE_PRECISION (gnu_subtype) = esize; | |
1236 | TREE_UNSIGNED (gnu_subtype) = 1; | |
1237 | TYPE_EXTRA_SUBTYPE_P (gnu_subtype) = 1; | |
1238 | TYPE_PACKED_ARRAY_TYPE_P (gnu_subtype) | |
1239 | = Is_Packed_Array_Type (gnat_entity); | |
1240 | layout_type (gnu_subtype); | |
1241 | ||
1242 | gnu_type = gnu_subtype; | |
1243 | } | |
1244 | } | |
1245 | break; | |
1246 | ||
1247 | case E_Signed_Integer_Subtype: | |
1248 | case E_Enumeration_Subtype: | |
1249 | case E_Modular_Integer_Subtype: | |
1250 | case E_Ordinary_Fixed_Point_Subtype: | |
1251 | case E_Decimal_Fixed_Point_Subtype: | |
1252 | ||
1253 | /* For integral subtypes, we make a new INTEGER_TYPE. Note | |
1254 | that we do not want to call build_range_type since we would | |
1255 | like each subtype node to be distinct. This will be important | |
1256 | when memory aliasing is implemented. | |
1257 | ||
1258 | The TREE_TYPE field of the INTEGER_TYPE we make points to the | |
1259 | parent type; this fact is used by the arithmetic conversion | |
1260 | functions. | |
1261 | ||
1262 | We elaborate the Ancestor_Subtype if it is not in the current | |
1263 | unit and one of our bounds is non-static. We do this to ensure | |
1264 | consistent naming in the case where several subtypes share the same | |
1265 | bounds by always elaborating the first such subtype first, thus | |
1266 | using its name. */ | |
1267 | ||
1268 | if (definition == 0 | |
1269 | && Present (Ancestor_Subtype (gnat_entity)) | |
1270 | && ! In_Extended_Main_Code_Unit (Ancestor_Subtype (gnat_entity)) | |
1271 | && (! Compile_Time_Known_Value (Type_Low_Bound (gnat_entity)) | |
1272 | || ! Compile_Time_Known_Value (Type_High_Bound (gnat_entity)))) | |
1273 | gnat_to_gnu_entity (Ancestor_Subtype (gnat_entity), | |
1274 | gnu_expr, definition); | |
1275 | ||
1276 | gnu_type = make_node (INTEGER_TYPE); | |
1277 | if (Is_Packed_Array_Type (gnat_entity)) | |
1278 | { | |
70482933 RK |
1279 | esize = UI_To_Int (RM_Size (gnat_entity)); |
1280 | TYPE_PACKED_ARRAY_TYPE_P (gnu_type) = 1; | |
1281 | } | |
1282 | ||
1283 | TYPE_PRECISION (gnu_type) = esize; | |
1284 | TREE_TYPE (gnu_type) = get_unpadded_type (Etype (gnat_entity)); | |
1285 | ||
1286 | TYPE_MIN_VALUE (gnu_type) | |
1287 | = convert (TREE_TYPE (gnu_type), | |
1288 | elaborate_expression (Type_Low_Bound (gnat_entity), | |
1289 | gnat_entity, | |
1290 | get_identifier ("L"), definition, 1, | |
1291 | Needs_Debug_Info (gnat_entity))); | |
1292 | ||
1293 | TYPE_MAX_VALUE (gnu_type) | |
1294 | = convert (TREE_TYPE (gnu_type), | |
1295 | elaborate_expression (Type_High_Bound (gnat_entity), | |
1296 | gnat_entity, | |
1297 | get_identifier ("U"), definition, 1, | |
1298 | Needs_Debug_Info (gnat_entity))); | |
1299 | ||
1300 | /* One of the above calls might have caused us to be elaborated, | |
1301 | so don't blow up if so. */ | |
1302 | if (present_gnu_tree (gnat_entity)) | |
1303 | { | |
1304 | maybe_present = 1; | |
1305 | break; | |
1306 | } | |
1307 | ||
1308 | TYPE_BIASED_REPRESENTATION_P (gnu_type) | |
1309 | = Has_Biased_Representation (gnat_entity); | |
1310 | ||
1311 | /* This should be an unsigned type if the lower bound is constant | |
1312 | and non-negative or if the base type is unsigned; a signed type | |
1313 | otherwise. */ | |
1314 | TREE_UNSIGNED (gnu_type) | |
1315 | = (TREE_UNSIGNED (TREE_TYPE (gnu_type)) | |
1316 | || (TREE_CODE (TYPE_MIN_VALUE (gnu_type)) == INTEGER_CST | |
1317 | && TREE_INT_CST_HIGH (TYPE_MIN_VALUE (gnu_type)) >= 0) | |
1318 | || TYPE_BIASED_REPRESENTATION_P (gnu_type) | |
1319 | || Is_Unsigned_Type (gnat_entity)); | |
1320 | ||
1321 | layout_type (gnu_type); | |
1322 | ||
1323 | if (Is_Packed_Array_Type (gnat_entity) && BYTES_BIG_ENDIAN) | |
1324 | { | |
1325 | tree gnu_field_type = gnu_type; | |
1326 | tree gnu_field; | |
1327 | ||
1328 | TYPE_RM_SIZE_INT (gnu_field_type) | |
1329 | = UI_To_gnu (RM_Size (gnat_entity), bitsizetype); | |
1330 | gnu_type = make_node (RECORD_TYPE); | |
1331 | TYPE_NAME (gnu_type) = create_concat_name (gnat_entity, "LJM"); | |
1332 | TYPE_ALIGN (gnu_type) = TYPE_ALIGN (gnu_field_type); | |
1333 | TYPE_PACKED (gnu_type) = 1; | |
1334 | gnu_field = create_field_decl (get_identifier ("OBJECT"), | |
1335 | gnu_field_type, gnu_type, 1, 0, 0, 1), | |
1336 | finish_record_type (gnu_type, gnu_field, 0, 0); | |
1337 | TYPE_LEFT_JUSTIFIED_MODULAR_P (gnu_type) = 1; | |
e2500fed | 1338 | SET_TYPE_ADA_SIZE (gnu_type, bitsize_int (esize)); |
70482933 RK |
1339 | } |
1340 | ||
1341 | break; | |
1342 | ||
1343 | case E_Floating_Point_Type: | |
1344 | /* If this is a VAX floating-point type, use an integer of the proper | |
1345 | size. All the operations will be handled with ASM statements. */ | |
1346 | if (Vax_Float (gnat_entity)) | |
1347 | { | |
1348 | gnu_type = make_signed_type (esize); | |
1349 | TYPE_VAX_FLOATING_POINT_P (gnu_type) = 1; | |
fbf5a39b | 1350 | SET_TYPE_DIGITS_VALUE (gnu_type, |
e2500fed | 1351 | UI_To_Int (Digits_Value (gnat_entity))); |
70482933 RK |
1352 | break; |
1353 | } | |
1354 | ||
1355 | /* The type of the Low and High bounds can be our type if this is | |
1356 | a type from Standard, so set them at the end of the function. */ | |
1357 | gnu_type = make_node (REAL_TYPE); | |
1358 | TYPE_PRECISION (gnu_type) = esize; | |
1359 | layout_type (gnu_type); | |
1360 | break; | |
1361 | ||
1362 | case E_Floating_Point_Subtype: | |
1363 | if (Vax_Float (gnat_entity)) | |
1364 | { | |
1365 | gnu_type = gnat_to_gnu_type (Etype (gnat_entity)); | |
1366 | break; | |
1367 | } | |
1368 | ||
1369 | { | |
1370 | enum machine_mode mode; | |
1371 | ||
1372 | if (definition == 0 | |
1373 | && Present (Ancestor_Subtype (gnat_entity)) | |
1374 | && ! In_Extended_Main_Code_Unit (Ancestor_Subtype (gnat_entity)) | |
1375 | && (! Compile_Time_Known_Value (Type_Low_Bound (gnat_entity)) | |
1376 | || ! Compile_Time_Known_Value (Type_High_Bound (gnat_entity)))) | |
1377 | gnat_to_gnu_entity (Ancestor_Subtype (gnat_entity), | |
1378 | gnu_expr, definition); | |
1379 | ||
1380 | for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT); | |
1381 | (GET_MODE_WIDER_MODE (mode) != VOIDmode | |
1382 | && GET_MODE_BITSIZE (GET_MODE_WIDER_MODE (mode)) <= esize); | |
1383 | mode = GET_MODE_WIDER_MODE (mode)) | |
1384 | ; | |
1385 | ||
1386 | gnu_type = make_node (REAL_TYPE); | |
1387 | TREE_TYPE (gnu_type) = get_unpadded_type (Etype (gnat_entity)); | |
1388 | TYPE_PRECISION (gnu_type) = GET_MODE_BITSIZE (mode); | |
1389 | ||
1390 | TYPE_MIN_VALUE (gnu_type) | |
1391 | = convert (TREE_TYPE (gnu_type), | |
1392 | elaborate_expression (Type_Low_Bound (gnat_entity), | |
1393 | gnat_entity, get_identifier ("L"), | |
1394 | definition, 1, | |
1395 | Needs_Debug_Info (gnat_entity))); | |
1396 | ||
1397 | TYPE_MAX_VALUE (gnu_type) | |
1398 | = convert (TREE_TYPE (gnu_type), | |
1399 | elaborate_expression (Type_High_Bound (gnat_entity), | |
1400 | gnat_entity, get_identifier ("U"), | |
1401 | definition, 1, | |
1402 | Needs_Debug_Info (gnat_entity))); | |
1403 | ||
1404 | /* One of the above calls might have caused us to be elaborated, | |
1405 | so don't blow up if so. */ | |
1406 | if (present_gnu_tree (gnat_entity)) | |
1407 | { | |
1408 | maybe_present = 1; | |
1409 | break; | |
1410 | } | |
1411 | ||
1412 | layout_type (gnu_type); | |
1413 | } | |
1414 | break; | |
1415 | ||
1416 | /* Array and String Types and Subtypes | |
1417 | ||
1418 | Unconstrained array types are represented by E_Array_Type and | |
1419 | constrained array types are represented by E_Array_Subtype. There | |
1420 | are no actual objects of an unconstrained array type; all we have | |
1421 | are pointers to that type. | |
1422 | ||
1423 | The following fields are defined on array types and subtypes: | |
1424 | ||
1425 | Component_Type Component type of the array. | |
1426 | Number_Dimensions Number of dimensions (an int). | |
1427 | First_Index Type of first index. */ | |
1428 | ||
1429 | case E_String_Type: | |
1430 | case E_Array_Type: | |
1431 | { | |
1432 | tree gnu_template_fields = NULL_TREE; | |
1433 | tree gnu_template_type = make_node (RECORD_TYPE); | |
1434 | tree gnu_ptr_template = build_pointer_type (gnu_template_type); | |
1435 | tree gnu_fat_type = make_node (RECORD_TYPE); | |
1436 | int ndim = Number_Dimensions (gnat_entity); | |
1437 | int firstdim | |
1438 | = (Convention (gnat_entity) == Convention_Fortran) ? ndim - 1 : 0; | |
1439 | int nextdim | |
1440 | = (Convention (gnat_entity) == Convention_Fortran) ? - 1 : 1; | |
1441 | tree *gnu_index_types = (tree *) alloca (ndim * sizeof (tree *)); | |
1442 | tree *gnu_temp_fields = (tree *) alloca (ndim * sizeof (tree *)); | |
1443 | tree gnu_comp_size = 0; | |
1444 | tree gnu_max_size = size_one_node; | |
1445 | tree gnu_max_size_unit; | |
1446 | int index; | |
1447 | Entity_Id gnat_ind_subtype; | |
1448 | Entity_Id gnat_ind_base_subtype; | |
1449 | tree gnu_template_reference; | |
1450 | tree tem; | |
1451 | ||
1452 | TYPE_NAME (gnu_template_type) | |
1453 | = create_concat_name (gnat_entity, "XUB"); | |
1454 | TYPE_NAME (gnu_fat_type) = create_concat_name (gnat_entity, "XUP"); | |
1455 | TYPE_IS_FAT_POINTER_P (gnu_fat_type) = 1; | |
1456 | TREE_READONLY (gnu_template_type) = 1; | |
1457 | ||
1458 | /* Make a node for the array. If we are not defining the array | |
1459 | suppress expanding incomplete types and save the node as the type | |
1460 | for GNAT_ENTITY. */ | |
1461 | gnu_type = make_node (UNCONSTRAINED_ARRAY_TYPE); | |
1462 | if (! definition) | |
1463 | { | |
1464 | defer_incomplete_level++; | |
1465 | this_deferred = this_made_decl = 1; | |
1466 | gnu_decl = create_type_decl (gnu_entity_id, gnu_type, attr_list, | |
1467 | ! Comes_From_Source (gnat_entity), | |
1468 | debug_info_p); | |
1469 | save_gnu_tree (gnat_entity, gnu_decl, 0); | |
1470 | saved = 1; | |
1471 | } | |
1472 | ||
1473 | /* Build the fat pointer type. Use a "void *" object instead of | |
1474 | a pointer to the array type since we don't have the array type | |
1475 | yet (it will reference the fat pointer via the bounds). */ | |
1476 | tem = chainon (chainon (NULL_TREE, | |
1477 | create_field_decl (get_identifier ("P_ARRAY"), | |
1478 | ptr_void_type_node, | |
1479 | gnu_fat_type, 0, 0, 0, 0)), | |
1480 | create_field_decl (get_identifier ("P_BOUNDS"), | |
1481 | gnu_ptr_template, | |
1482 | gnu_fat_type, 0, 0, 0, 0)); | |
1483 | ||
1484 | /* Make sure we can put this into a register. */ | |
1485 | TYPE_ALIGN (gnu_fat_type) = MIN (BIGGEST_ALIGNMENT, 2 * POINTER_SIZE); | |
1486 | finish_record_type (gnu_fat_type, tem, 0, 1); | |
1487 | ||
1488 | /* Build a reference to the template from a PLACEHOLDER_EXPR that | |
1489 | is the fat pointer. This will be used to access the individual | |
1490 | fields once we build them. */ | |
1491 | tem = build (COMPONENT_REF, gnu_ptr_template, | |
1492 | build (PLACEHOLDER_EXPR, gnu_fat_type), | |
1493 | TREE_CHAIN (TYPE_FIELDS (gnu_fat_type))); | |
1494 | gnu_template_reference | |
1495 | = build_unary_op (INDIRECT_REF, gnu_template_type, tem); | |
1496 | TREE_READONLY (gnu_template_reference) = 1; | |
1497 | ||
1498 | /* Now create the GCC type for each index and add the fields for | |
1499 | that index to the template. */ | |
1500 | for (index = firstdim, gnat_ind_subtype = First_Index (gnat_entity), | |
1501 | gnat_ind_base_subtype | |
1502 | = First_Index (Implementation_Base_Type (gnat_entity)); | |
1503 | index < ndim && index >= 0; | |
1504 | index += nextdim, | |
1505 | gnat_ind_subtype = Next_Index (gnat_ind_subtype), | |
1506 | gnat_ind_base_subtype = Next_Index (gnat_ind_base_subtype)) | |
1507 | { | |
1508 | char field_name[10]; | |
1509 | tree gnu_ind_subtype | |
1510 | = get_unpadded_type (Base_Type (Etype (gnat_ind_subtype))); | |
1511 | tree gnu_base_subtype | |
1512 | = get_unpadded_type (Etype (gnat_ind_base_subtype)); | |
1513 | tree gnu_base_min | |
1514 | = convert (sizetype, TYPE_MIN_VALUE (gnu_base_subtype)); | |
1515 | tree gnu_base_max | |
1516 | = convert (sizetype, TYPE_MAX_VALUE (gnu_base_subtype)); | |
1517 | tree gnu_min_field, gnu_max_field, gnu_min, gnu_max; | |
1518 | ||
1519 | /* Make the FIELD_DECLs for the minimum and maximum of this | |
1520 | type and then make extractions of that field from the | |
1521 | template. */ | |
1522 | set_lineno (gnat_entity, 0); | |
1523 | sprintf (field_name, "LB%d", index); | |
1524 | gnu_min_field = create_field_decl (get_identifier (field_name), | |
1525 | gnu_ind_subtype, | |
1526 | gnu_template_type, 0, 0, 0, 0); | |
1527 | field_name[0] = 'U'; | |
1528 | gnu_max_field = create_field_decl (get_identifier (field_name), | |
1529 | gnu_ind_subtype, | |
1530 | gnu_template_type, 0, 0, 0, 0); | |
1531 | ||
1532 | gnu_temp_fields[index] = chainon (gnu_min_field, gnu_max_field); | |
1533 | ||
1534 | /* We can't use build_component_ref here since the template | |
1535 | type isn't complete yet. */ | |
1536 | gnu_min = build (COMPONENT_REF, gnu_ind_subtype, | |
1537 | gnu_template_reference, gnu_min_field); | |
1538 | gnu_max = build (COMPONENT_REF, gnu_ind_subtype, | |
1539 | gnu_template_reference, gnu_max_field); | |
1540 | TREE_READONLY (gnu_min) = TREE_READONLY (gnu_max) = 1; | |
1541 | ||
1542 | /* Make a range type with the new ranges, but using | |
1543 | the Ada subtype. Then we convert to sizetype. */ | |
1544 | gnu_index_types[index] | |
1545 | = create_index_type (convert (sizetype, gnu_min), | |
1546 | convert (sizetype, gnu_max), | |
1547 | build_range_type (gnu_ind_subtype, | |
1548 | gnu_min, gnu_max)); | |
1549 | /* Update the maximum size of the array, in elements. */ | |
1550 | gnu_max_size | |
1551 | = size_binop (MULT_EXPR, gnu_max_size, | |
1552 | size_binop (PLUS_EXPR, size_one_node, | |
1553 | size_binop (MINUS_EXPR, gnu_base_max, | |
1554 | gnu_base_min))); | |
1555 | ||
70482933 RK |
1556 | TYPE_NAME (gnu_index_types[index]) |
1557 | = create_concat_name (gnat_entity, field_name); | |
1558 | } | |
1559 | ||
1560 | for (index = 0; index < ndim; index++) | |
1561 | gnu_template_fields | |
1562 | = chainon (gnu_template_fields, gnu_temp_fields[index]); | |
1563 | ||
1564 | /* Install all the fields into the template. */ | |
1565 | finish_record_type (gnu_template_type, gnu_template_fields, 0, 0); | |
1566 | TREE_READONLY (gnu_template_type) = 1; | |
1567 | ||
1568 | /* Now make the array of arrays and update the pointer to the array | |
1569 | in the fat pointer. Note that it is the first field. */ | |
1570 | ||
1571 | tem = gnat_to_gnu_type (Component_Type (gnat_entity)); | |
1572 | ||
1573 | /* Get and validate any specified Component_Size, but if Packed, | |
1574 | ignore it since the front end will have taken care of it. Also, | |
1575 | allow sizes not a multiple of Storage_Unit if packed. */ | |
1576 | gnu_comp_size | |
1577 | = validate_size (Component_Size (gnat_entity), tem, | |
1578 | gnat_entity, | |
1579 | (Is_Bit_Packed_Array (gnat_entity) | |
1580 | ? TYPE_DECL : VAR_DECL), 1, | |
1581 | Has_Component_Size_Clause (gnat_entity)); | |
1582 | ||
1583 | if (Has_Atomic_Components (gnat_entity)) | |
1584 | check_ok_for_atomic (tem, gnat_entity, 1); | |
1585 | ||
1586 | /* If the component type is a RECORD_TYPE that has a self-referential | |
1587 | size, use the maxium size. */ | |
1588 | if (gnu_comp_size == 0 && TREE_CODE (tem) == RECORD_TYPE | |
fbf5a39b | 1589 | && CONTAINS_PLACEHOLDER_P (TYPE_SIZE (tem))) |
70482933 RK |
1590 | gnu_comp_size = max_size (TYPE_SIZE (tem), 1); |
1591 | ||
1592 | if (! Is_Bit_Packed_Array (gnat_entity) && gnu_comp_size != 0) | |
1593 | { | |
1594 | tem = make_type_from_size (tem, gnu_comp_size, 0); | |
1595 | tem = maybe_pad_type (tem, gnu_comp_size, 0, gnat_entity, | |
1596 | "C_PAD", 0, definition, 1); | |
1597 | } | |
1598 | ||
1599 | if (Has_Volatile_Components (gnat_entity)) | |
1600 | tem = build_qualified_type (tem, | |
1601 | TYPE_QUALS (tem) | TYPE_QUAL_VOLATILE); | |
1602 | ||
1603 | /* If Component_Size is not already specified, annotate it with the | |
1604 | size of the component. */ | |
1605 | if (Unknown_Component_Size (gnat_entity)) | |
1606 | Set_Component_Size (gnat_entity, annotate_value (TYPE_SIZE (tem))); | |
1607 | ||
1608 | gnu_max_size_unit = size_binop (MAX_EXPR, size_zero_node, | |
1609 | size_binop (MULT_EXPR, gnu_max_size, | |
1610 | TYPE_SIZE_UNIT (tem))); | |
1611 | gnu_max_size = size_binop (MAX_EXPR, bitsize_zero_node, | |
1612 | size_binop (MULT_EXPR, | |
1613 | convert (bitsizetype, | |
1614 | gnu_max_size), | |
1615 | TYPE_SIZE (tem))); | |
1616 | ||
1617 | for (index = ndim - 1; index >= 0; index--) | |
1618 | { | |
1619 | tem = build_array_type (tem, gnu_index_types[index]); | |
1620 | TYPE_MULTI_ARRAY_P (tem) = (index > 0); | |
fbf5a39b AC |
1621 | |
1622 | /* ??? For now, we say that any component of aggregate type is | |
1623 | addressable because the front end may take 'Reference of it. | |
1624 | But we have to make it addressable if it must be passed by | |
1625 | reference or it that is the default. */ | |
70482933 | 1626 | TYPE_NONALIASED_COMPONENT (tem) |
fbf5a39b AC |
1627 | = (! Has_Aliased_Components (gnat_entity) |
1628 | && ! AGGREGATE_TYPE_P (TREE_TYPE (tem))); | |
70482933 RK |
1629 | } |
1630 | ||
1631 | /* If an alignment is specified, use it if valid. But ignore it for | |
1632 | types that represent the unpacked base type for packed arrays. */ | |
1633 | if (No (Packed_Array_Type (gnat_entity)) | |
1634 | && Known_Alignment (gnat_entity)) | |
1635 | { | |
1636 | if (No (Alignment (gnat_entity))) | |
1637 | gigi_abort (124); | |
1638 | ||
1639 | TYPE_ALIGN (tem) | |
1640 | = validate_alignment (Alignment (gnat_entity), gnat_entity, | |
1641 | TYPE_ALIGN (tem)); | |
1642 | } | |
1643 | ||
1644 | TYPE_CONVENTION_FORTRAN_P (tem) | |
1645 | = (Convention (gnat_entity) == Convention_Fortran); | |
1646 | TREE_TYPE (TYPE_FIELDS (gnu_fat_type)) = build_pointer_type (tem); | |
1647 | ||
1648 | /* The result type is an UNCONSTRAINED_ARRAY_TYPE that indicates the | |
1649 | corresponding fat pointer. */ | |
1650 | TREE_TYPE (gnu_type) = TYPE_POINTER_TO (gnu_type) | |
1651 | = TYPE_REFERENCE_TO (gnu_type) = gnu_fat_type; | |
1652 | TYPE_MODE (gnu_type) = BLKmode; | |
1653 | TYPE_ALIGN (gnu_type) = TYPE_ALIGN (tem); | |
e2500fed | 1654 | SET_TYPE_UNCONSTRAINED_ARRAY (gnu_fat_type, gnu_type); |
70482933 RK |
1655 | |
1656 | /* If the maximum size doesn't overflow, use it. */ | |
1657 | if (TREE_CODE (gnu_max_size) == INTEGER_CST | |
1658 | && ! TREE_OVERFLOW (gnu_max_size)) | |
07fc65c4 GB |
1659 | TYPE_SIZE (tem) |
1660 | = size_binop (MIN_EXPR, gnu_max_size, TYPE_SIZE (tem)); | |
1661 | if (TREE_CODE (gnu_max_size_unit) == INTEGER_CST | |
1662 | && ! TREE_OVERFLOW (gnu_max_size_unit)) | |
1663 | TYPE_SIZE_UNIT (tem) | |
1664 | = size_binop (MIN_EXPR, gnu_max_size_unit, | |
1665 | TYPE_SIZE_UNIT (tem)); | |
70482933 RK |
1666 | |
1667 | create_type_decl (create_concat_name (gnat_entity, "XUA"), | |
1668 | tem, 0, ! Comes_From_Source (gnat_entity), | |
1669 | debug_info_p); | |
1670 | rest_of_type_compilation (gnu_fat_type, global_bindings_p ()); | |
1671 | ||
70482933 RK |
1672 | /* Create a record type for the object and its template and |
1673 | set the template at a negative offset. */ | |
1674 | tem = build_unc_object_type (gnu_template_type, tem, | |
1675 | create_concat_name (gnat_entity, "XUT")); | |
1676 | DECL_FIELD_OFFSET (TYPE_FIELDS (tem)) | |
1677 | = size_binop (MINUS_EXPR, size_zero_node, | |
1678 | byte_position (TREE_CHAIN (TYPE_FIELDS (tem)))); | |
1679 | DECL_FIELD_OFFSET (TREE_CHAIN (TYPE_FIELDS (tem))) = size_zero_node; | |
1680 | DECL_FIELD_BIT_OFFSET (TREE_CHAIN (TYPE_FIELDS (tem))) | |
1681 | = bitsize_zero_node; | |
e2500fed | 1682 | SET_TYPE_UNCONSTRAINED_ARRAY (tem, gnu_type); |
70482933 RK |
1683 | TYPE_OBJECT_RECORD_TYPE (gnu_type) = tem; |
1684 | ||
1685 | /* Give the thin pointer type a name. */ | |
1686 | create_type_decl (create_concat_name (gnat_entity, "XUX"), | |
1687 | build_pointer_type (tem), 0, | |
1688 | ! Comes_From_Source (gnat_entity), debug_info_p); | |
1689 | } | |
1690 | break; | |
1691 | ||
1692 | case E_String_Subtype: | |
1693 | case E_Array_Subtype: | |
1694 | ||
1695 | /* This is the actual data type for array variables. Multidimensional | |
1696 | arrays are implemented in the gnu tree as arrays of arrays. Note | |
1697 | that for the moment arrays which have sparse enumeration subtypes as | |
1698 | index components create sparse arrays, which is obviously space | |
1699 | inefficient but so much easier to code for now. | |
1700 | ||
1701 | Also note that the subtype never refers to the unconstrained | |
1702 | array type, which is somewhat at variance with Ada semantics. | |
1703 | ||
1704 | First check to see if this is simply a renaming of the array | |
1705 | type. If so, the result is the array type. */ | |
1706 | ||
1707 | gnu_type = gnat_to_gnu_type (Etype (gnat_entity)); | |
1708 | if (! Is_Constrained (gnat_entity)) | |
1709 | break; | |
1710 | else | |
1711 | { | |
1712 | int index; | |
1713 | int array_dim = Number_Dimensions (gnat_entity); | |
1714 | int first_dim | |
1715 | = ((Convention (gnat_entity) == Convention_Fortran) | |
1716 | ? array_dim - 1 : 0); | |
1717 | int next_dim | |
1718 | = (Convention (gnat_entity) == Convention_Fortran) ? -1 : 1; | |
1719 | Entity_Id gnat_ind_subtype; | |
1720 | Entity_Id gnat_ind_base_subtype; | |
1721 | tree gnu_base_type = gnu_type; | |
1722 | tree *gnu_index_type = (tree *) alloca (array_dim * sizeof (tree *)); | |
1723 | tree gnu_comp_size = 0; | |
1724 | tree gnu_max_size = size_one_node; | |
1725 | tree gnu_max_size_unit; | |
1726 | int need_index_type_struct = 0; | |
1727 | int max_overflow = 0; | |
1728 | ||
1729 | /* First create the gnu types for each index. Create types for | |
1730 | debugging information to point to the index types if the | |
1731 | are not integer types, have variable bounds, or are | |
1732 | wider than sizetype. */ | |
1733 | ||
1734 | for (index = first_dim, gnat_ind_subtype = First_Index (gnat_entity), | |
1735 | gnat_ind_base_subtype | |
1736 | = First_Index (Implementation_Base_Type (gnat_entity)); | |
1737 | index < array_dim && index >= 0; | |
1738 | index += next_dim, | |
1739 | gnat_ind_subtype = Next_Index (gnat_ind_subtype), | |
1740 | gnat_ind_base_subtype = Next_Index (gnat_ind_base_subtype)) | |
1741 | { | |
1742 | tree gnu_index_subtype | |
1743 | = get_unpadded_type (Etype (gnat_ind_subtype)); | |
1744 | tree gnu_min | |
1745 | = convert (sizetype, TYPE_MIN_VALUE (gnu_index_subtype)); | |
1746 | tree gnu_max | |
1747 | = convert (sizetype, TYPE_MAX_VALUE (gnu_index_subtype)); | |
1748 | tree gnu_base_subtype | |
1749 | = get_unpadded_type (Etype (gnat_ind_base_subtype)); | |
1750 | tree gnu_base_min | |
1751 | = convert (sizetype, TYPE_MIN_VALUE (gnu_base_subtype)); | |
1752 | tree gnu_base_max | |
1753 | = convert (sizetype, TYPE_MAX_VALUE (gnu_base_subtype)); | |
1754 | tree gnu_base_type = get_base_type (gnu_base_subtype); | |
1755 | tree gnu_base_base_min | |
1756 | = convert (sizetype, TYPE_MIN_VALUE (gnu_base_type)); | |
1757 | tree gnu_base_base_max | |
1758 | = convert (sizetype, TYPE_MAX_VALUE (gnu_base_type)); | |
1759 | tree gnu_high; | |
1760 | tree gnu_this_max; | |
1761 | ||
1762 | /* If the minimum and maximum values both overflow in | |
1763 | SIZETYPE, but the difference in the original type | |
1764 | does not overflow in SIZETYPE, ignore the overflow | |
1765 | indications. */ | |
1766 | if ((TYPE_PRECISION (gnu_index_subtype) | |
1767 | > TYPE_PRECISION (sizetype)) | |
1768 | && TREE_CODE (gnu_min) == INTEGER_CST | |
1769 | && TREE_CODE (gnu_max) == INTEGER_CST | |
1770 | && TREE_OVERFLOW (gnu_min) && TREE_OVERFLOW (gnu_max) | |
1771 | && (! TREE_OVERFLOW | |
1772 | (fold (build (MINUS_EXPR, gnu_index_subtype, | |
1773 | TYPE_MAX_VALUE (gnu_index_subtype), | |
1774 | TYPE_MIN_VALUE (gnu_index_subtype)))))) | |
1775 | TREE_OVERFLOW (gnu_min) = TREE_OVERFLOW (gnu_max) | |
1776 | = TREE_CONSTANT_OVERFLOW (gnu_min) | |
1777 | = TREE_CONSTANT_OVERFLOW (gnu_max) = 0; | |
1778 | ||
1779 | /* Similarly, if the range is null, use bounds of 1..0 for | |
1780 | the sizetype bounds. */ | |
1781 | else if ((TYPE_PRECISION (gnu_index_subtype) | |
1782 | > TYPE_PRECISION (sizetype)) | |
1783 | && TREE_CODE (gnu_min) == INTEGER_CST | |
1784 | && TREE_CODE (gnu_max) == INTEGER_CST | |
1785 | && (TREE_OVERFLOW (gnu_min) || TREE_OVERFLOW (gnu_max)) | |
1786 | && tree_int_cst_lt (TYPE_MAX_VALUE (gnu_index_subtype), | |
1787 | TYPE_MIN_VALUE (gnu_index_subtype))) | |
1788 | gnu_min = size_one_node, gnu_max = size_zero_node; | |
1789 | ||
1790 | /* Now compute the size of this bound. We need to provide | |
1791 | GCC with an upper bound to use but have to deal with the | |
1792 | "superflat" case. There are three ways to do this. If we | |
1793 | can prove that the array can never be superflat, we can | |
1794 | just use the high bound of the index subtype. If we can | |
1795 | prove that the low bound minus one can't overflow, we | |
1796 | can do this as MAX (hb, lb - 1). Otherwise, we have to use | |
1797 | the expression hb >= lb ? hb : lb - 1. */ | |
1798 | gnu_high = size_binop (MINUS_EXPR, gnu_min, size_one_node); | |
1799 | ||
1800 | /* See if the base array type is already flat. If it is, we | |
1801 | are probably compiling an ACVC test, but it will cause the | |
1802 | code below to malfunction if we don't handle it specially. */ | |
1803 | if (TREE_CODE (gnu_base_min) == INTEGER_CST | |
1804 | && TREE_CODE (gnu_base_max) == INTEGER_CST | |
1805 | && ! TREE_CONSTANT_OVERFLOW (gnu_base_min) | |
1806 | && ! TREE_CONSTANT_OVERFLOW (gnu_base_max) | |
1807 | && tree_int_cst_lt (gnu_base_max, gnu_base_min)) | |
1808 | gnu_high = size_zero_node, gnu_min = size_one_node; | |
1809 | ||
1810 | /* If gnu_high is now an integer which overflowed, the array | |
1811 | cannot be superflat. */ | |
1812 | else if (TREE_CODE (gnu_high) == INTEGER_CST | |
1813 | && TREE_OVERFLOW (gnu_high)) | |
1814 | gnu_high = gnu_max; | |
1815 | else if (TREE_UNSIGNED (gnu_base_subtype) | |
1816 | || TREE_CODE (gnu_high) == INTEGER_CST) | |
1817 | gnu_high = size_binop (MAX_EXPR, gnu_max, gnu_high); | |
1818 | else | |
1819 | gnu_high | |
1820 | = build_cond_expr | |
1821 | (sizetype, build_binary_op (GE_EXPR, integer_type_node, | |
1822 | gnu_max, gnu_min), | |
1823 | gnu_max, gnu_high); | |
1824 | ||
1825 | gnu_index_type[index] | |
1826 | = create_index_type (gnu_min, gnu_high, gnu_index_subtype); | |
1827 | ||
1828 | /* Also compute the maximum size of the array. Here we | |
1829 | see if any constraint on the index type of the base type | |
1830 | can be used in the case of self-referential bound on | |
1831 | the index type of the subtype. We look for a non-"infinite" | |
1832 | and non-self-referential bound from any type involved and | |
1833 | handle each bound separately. */ | |
1834 | ||
1835 | if ((TREE_CODE (gnu_min) == INTEGER_CST | |
1836 | && ! TREE_OVERFLOW (gnu_min) | |
1837 | && ! operand_equal_p (gnu_min, gnu_base_base_min, 0)) | |
fbf5a39b | 1838 | || ! CONTAINS_PLACEHOLDER_P (gnu_min)) |
70482933 RK |
1839 | gnu_base_min = gnu_min; |
1840 | ||
1841 | if ((TREE_CODE (gnu_max) == INTEGER_CST | |
1842 | && ! TREE_OVERFLOW (gnu_max) | |
1843 | && ! operand_equal_p (gnu_max, gnu_base_base_max, 0)) | |
fbf5a39b | 1844 | || ! CONTAINS_PLACEHOLDER_P (gnu_max)) |
70482933 RK |
1845 | gnu_base_max = gnu_max; |
1846 | ||
1847 | if ((TREE_CODE (gnu_base_min) == INTEGER_CST | |
1848 | && TREE_CONSTANT_OVERFLOW (gnu_base_min)) | |
1849 | || operand_equal_p (gnu_base_min, gnu_base_base_min, 0) | |
1850 | || (TREE_CODE (gnu_base_max) == INTEGER_CST | |
1851 | && TREE_CONSTANT_OVERFLOW (gnu_base_max)) | |
1852 | || operand_equal_p (gnu_base_max, gnu_base_base_max, 0)) | |
1853 | max_overflow = 1; | |
1854 | ||
1855 | gnu_base_min = size_binop (MAX_EXPR, gnu_base_min, gnu_min); | |
1856 | gnu_base_max = size_binop (MIN_EXPR, gnu_base_max, gnu_max); | |
1857 | ||
1858 | gnu_this_max | |
1859 | = size_binop (MAX_EXPR, | |
1860 | size_binop (PLUS_EXPR, size_one_node, | |
1861 | size_binop (MINUS_EXPR, gnu_base_max, | |
1862 | gnu_base_min)), | |
1863 | size_zero_node); | |
1864 | ||
1865 | if (TREE_CODE (gnu_this_max) == INTEGER_CST | |
1866 | && TREE_CONSTANT_OVERFLOW (gnu_this_max)) | |
1867 | max_overflow = 1; | |
1868 | ||
1869 | gnu_max_size | |
1870 | = size_binop (MULT_EXPR, gnu_max_size, gnu_this_max); | |
1871 | ||
1872 | if (! integer_onep (TYPE_MIN_VALUE (gnu_index_subtype)) | |
1873 | || (TREE_CODE (TYPE_MAX_VALUE (gnu_index_subtype)) | |
1874 | != INTEGER_CST) | |
1875 | || TREE_CODE (gnu_index_subtype) != INTEGER_TYPE | |
1876 | || (TREE_TYPE (gnu_index_subtype) != 0 | |
1877 | && (TREE_CODE (TREE_TYPE (gnu_index_subtype)) | |
1878 | != INTEGER_TYPE)) | |
1879 | || TYPE_BIASED_REPRESENTATION_P (gnu_index_subtype) | |
1880 | || (TYPE_PRECISION (gnu_index_subtype) | |
1881 | > TYPE_PRECISION (sizetype))) | |
1882 | need_index_type_struct = 1; | |
1883 | } | |
1884 | ||
1885 | /* Then flatten: create the array of arrays. */ | |
1886 | ||
1887 | gnu_type = gnat_to_gnu_type (Component_Type (gnat_entity)); | |
1888 | ||
1889 | /* One of the above calls might have caused us to be elaborated, | |
1890 | so don't blow up if so. */ | |
1891 | if (present_gnu_tree (gnat_entity)) | |
1892 | { | |
1893 | maybe_present = 1; | |
1894 | break; | |
1895 | } | |
1896 | ||
1897 | /* Get and validate any specified Component_Size, but if Packed, | |
1898 | ignore it since the front end will have taken care of it. Also, | |
1899 | allow sizes not a multiple of Storage_Unit if packed. */ | |
1900 | gnu_comp_size | |
1901 | = validate_size (Component_Size (gnat_entity), gnu_type, | |
1902 | gnat_entity, | |
1903 | (Is_Bit_Packed_Array (gnat_entity) | |
1904 | ? TYPE_DECL : VAR_DECL), | |
1905 | 1, Has_Component_Size_Clause (gnat_entity)); | |
1906 | ||
1907 | /* If the component type is a RECORD_TYPE that has a self-referential | |
1908 | size, use the maxium size. */ | |
1909 | if (gnu_comp_size == 0 && TREE_CODE (gnu_type) == RECORD_TYPE | |
fbf5a39b | 1910 | && CONTAINS_PLACEHOLDER_P (TYPE_SIZE (gnu_type))) |
70482933 RK |
1911 | gnu_comp_size = max_size (TYPE_SIZE (gnu_type), 1); |
1912 | ||
1913 | if (! Is_Bit_Packed_Array (gnat_entity) && gnu_comp_size != 0) | |
1914 | { | |
1915 | gnu_type = make_type_from_size (gnu_type, gnu_comp_size, 0); | |
1916 | gnu_type = maybe_pad_type (gnu_type, gnu_comp_size, 0, | |
1917 | gnat_entity, "C_PAD", 0, | |
1918 | definition, 1); | |
1919 | } | |
1920 | ||
1921 | if (Has_Volatile_Components (Base_Type (gnat_entity))) | |
1922 | gnu_type = build_qualified_type (gnu_type, | |
1923 | (TYPE_QUALS (gnu_type) | |
1924 | | TYPE_QUAL_VOLATILE)); | |
1925 | ||
1926 | gnu_max_size_unit = size_binop (MULT_EXPR, gnu_max_size, | |
1927 | TYPE_SIZE_UNIT (gnu_type)); | |
1928 | gnu_max_size = size_binop (MULT_EXPR, | |
1929 | convert (bitsizetype, gnu_max_size), | |
1930 | TYPE_SIZE (gnu_type)); | |
1931 | ||
1932 | /* We don't want any array types shared for two reasons: first, | |
1933 | we want to keep differently-named types distinct; second, | |
1934 | setting TYPE_MULTI_ARRAY_TYPE of one type can clobber | |
1935 | another. */ | |
1936 | debug_no_type_hash = 1; | |
1937 | for (index = array_dim - 1; index >= 0; index --) | |
1938 | { | |
1939 | gnu_type = build_array_type (gnu_type, gnu_index_type[index]); | |
1940 | TYPE_MULTI_ARRAY_P (gnu_type) = (index > 0); | |
fbf5a39b AC |
1941 | /* ??? For now, we say that any component of aggregate type is |
1942 | addressable because the front end may take 'Reference. | |
1943 | But we have to make it addressable if it must be passed by | |
1944 | reference or it that is the default. */ | |
70482933 | 1945 | TYPE_NONALIASED_COMPONENT (gnu_type) |
fbf5a39b AC |
1946 | = (! Has_Aliased_Components (gnat_entity) |
1947 | && ! AGGREGATE_TYPE_P (TREE_TYPE (gnu_type))); | |
70482933 RK |
1948 | } |
1949 | ||
1950 | /* If we are at file level and this is a multi-dimensional array, we | |
1951 | need to make a variable corresponding to the stride of the | |
1952 | inner dimensions. */ | |
1953 | if (global_bindings_p () && array_dim > 1) | |
1954 | { | |
1955 | tree gnu_str_name = get_identifier ("ST"); | |
1956 | tree gnu_arr_type; | |
1957 | ||
1958 | for (gnu_arr_type = TREE_TYPE (gnu_type); | |
1959 | TREE_CODE (gnu_arr_type) == ARRAY_TYPE; | |
1960 | gnu_arr_type = TREE_TYPE (gnu_arr_type), | |
1961 | gnu_str_name = concat_id_with_name (gnu_str_name, "ST")) | |
1962 | { | |
1963 | TYPE_SIZE (gnu_arr_type) | |
1964 | = elaborate_expression_1 (gnat_entity, gnat_entity, | |
1965 | TYPE_SIZE (gnu_arr_type), | |
1966 | gnu_str_name, definition, 0); | |
1967 | TYPE_SIZE_UNIT (gnu_arr_type) | |
1968 | = elaborate_expression_1 | |
1969 | (gnat_entity, gnat_entity, TYPE_SIZE_UNIT (gnu_arr_type), | |
1970 | concat_id_with_name (gnu_str_name, "U"), definition, 0); | |
1971 | } | |
1972 | } | |
1973 | ||
1974 | /* If we need to write out a record type giving the names of | |
1975 | the bounds, do it now. */ | |
1976 | if (need_index_type_struct && debug_info_p) | |
1977 | { | |
1978 | tree gnu_bound_rec_type = make_node (RECORD_TYPE); | |
1979 | tree gnu_field_list = 0; | |
1980 | tree gnu_field; | |
1981 | ||
1982 | TYPE_NAME (gnu_bound_rec_type) | |
1983 | = create_concat_name (gnat_entity, "XA"); | |
1984 | ||
1985 | for (index = array_dim - 1; index >= 0; index--) | |
1986 | { | |
1987 | tree gnu_type_name | |
1988 | = TYPE_NAME (TYPE_INDEX_TYPE (gnu_index_type[index])); | |
1989 | ||
1990 | if (TREE_CODE (gnu_type_name) == TYPE_DECL) | |
1991 | gnu_type_name = DECL_NAME (gnu_type_name); | |
1992 | ||
1993 | gnu_field = create_field_decl (gnu_type_name, | |
1994 | integer_type_node, | |
1995 | gnu_bound_rec_type, | |
1996 | 0, NULL_TREE, NULL_TREE, 0); | |
1997 | TREE_CHAIN (gnu_field) = gnu_field_list; | |
1998 | gnu_field_list = gnu_field; | |
1999 | } | |
2000 | ||
2001 | finish_record_type (gnu_bound_rec_type, gnu_field_list, 0, 0); | |
2002 | } | |
2003 | ||
2004 | debug_no_type_hash = 0; | |
2005 | TYPE_CONVENTION_FORTRAN_P (gnu_type) | |
2006 | = (Convention (gnat_entity) == Convention_Fortran); | |
2007 | ||
2008 | /* If our size depends on a placeholder and the maximum size doesn't | |
2009 | overflow, use it. */ | |
fbf5a39b | 2010 | if (CONTAINS_PLACEHOLDER_P (TYPE_SIZE (gnu_type)) |
70482933 RK |
2011 | && ! (TREE_CODE (gnu_max_size) == INTEGER_CST |
2012 | && TREE_OVERFLOW (gnu_max_size)) | |
07fc65c4 GB |
2013 | && ! (TREE_CODE (gnu_max_size_unit) == INTEGER_CST |
2014 | && TREE_OVERFLOW (gnu_max_size_unit)) | |
70482933 RK |
2015 | && ! max_overflow) |
2016 | { | |
2017 | TYPE_SIZE (gnu_type) = size_binop (MIN_EXPR, gnu_max_size, | |
2018 | TYPE_SIZE (gnu_type)); | |
2019 | TYPE_SIZE_UNIT (gnu_type) | |
2020 | = size_binop (MIN_EXPR, gnu_max_size_unit, | |
2021 | TYPE_SIZE_UNIT (gnu_type)); | |
2022 | } | |
2023 | ||
2024 | /* Set our alias set to that of our base type. This gives all | |
2025 | array subtypes the same alias set. */ | |
2026 | TYPE_ALIAS_SET (gnu_type) = get_alias_set (gnu_base_type); | |
2027 | record_component_aliases (gnu_type); | |
2028 | } | |
2029 | ||
2030 | /* If this is a packed type, make this type the same as the packed | |
2031 | array type, but do some adjusting in the type first. */ | |
2032 | ||
2033 | if (Present (Packed_Array_Type (gnat_entity))) | |
2034 | { | |
2035 | Entity_Id gnat_index; | |
2036 | tree gnu_inner_type; | |
2037 | ||
2038 | /* First finish the type we had been making so that we output | |
2039 | debugging information for it */ | |
2040 | gnu_type = build_qualified_type (gnu_type, | |
2041 | (TYPE_QUALS (gnu_type) | |
2042 | | (TYPE_QUAL_VOLATILE | |
fbf5a39b | 2043 | * Treat_As_Volatile (gnat_entity)))); |
70482933 RK |
2044 | set_lineno (gnat_entity, 0); |
2045 | gnu_decl = create_type_decl (gnu_entity_id, gnu_type, attr_list, | |
2046 | ! Comes_From_Source (gnat_entity), | |
2047 | debug_info_p); | |
2048 | if (! Comes_From_Source (gnat_entity)) | |
2049 | DECL_ARTIFICIAL (gnu_decl) = 1; | |
2050 | ||
2051 | /* Save it as our equivalent in case the call below elaborates | |
2052 | this type again. */ | |
2053 | save_gnu_tree (gnat_entity, gnu_decl, 0); | |
2054 | ||
2055 | gnu_decl = gnat_to_gnu_entity (Packed_Array_Type (gnat_entity), | |
2056 | NULL_TREE, 0); | |
2057 | this_made_decl = 1; | |
2058 | gnu_inner_type = gnu_type = TREE_TYPE (gnu_decl); | |
2059 | save_gnu_tree (gnat_entity, NULL_TREE, 0); | |
2060 | ||
07fc65c4 GB |
2061 | while (TREE_CODE (gnu_inner_type) == RECORD_TYPE |
2062 | && (TYPE_LEFT_JUSTIFIED_MODULAR_P (gnu_inner_type) | |
2063 | || TYPE_IS_PADDING_P (gnu_inner_type))) | |
70482933 RK |
2064 | gnu_inner_type = TREE_TYPE (TYPE_FIELDS (gnu_inner_type)); |
2065 | ||
2066 | /* We need to point the type we just made to our index type so | |
2067 | the actual bounds can be put into a template. */ | |
2068 | ||
2069 | if ((TREE_CODE (gnu_inner_type) == ARRAY_TYPE | |
2070 | && TYPE_ACTUAL_BOUNDS (gnu_inner_type) == 0) | |
2071 | || (TREE_CODE (gnu_inner_type) == INTEGER_TYPE | |
2072 | && ! TYPE_HAS_ACTUAL_BOUNDS_P (gnu_inner_type))) | |
2073 | { | |
2074 | if (TREE_CODE (gnu_inner_type) == INTEGER_TYPE) | |
2075 | { | |
2076 | /* The TYPE_ACTUAL_BOUNDS field is also used for the modulus. | |
2077 | If it is, we need to make another type. */ | |
2078 | if (TYPE_MODULAR_P (gnu_inner_type)) | |
2079 | { | |
2080 | tree gnu_subtype; | |
2081 | ||
2082 | gnu_subtype = make_node (INTEGER_TYPE); | |
2083 | ||
2084 | TREE_TYPE (gnu_subtype) = gnu_inner_type; | |
2085 | TYPE_MIN_VALUE (gnu_subtype) | |
2086 | = TYPE_MIN_VALUE (gnu_inner_type); | |
2087 | TYPE_MAX_VALUE (gnu_subtype) | |
2088 | = TYPE_MAX_VALUE (gnu_inner_type); | |
2089 | TYPE_PRECISION (gnu_subtype) | |
2090 | = TYPE_PRECISION (gnu_inner_type); | |
2091 | TREE_UNSIGNED (gnu_subtype) | |
2092 | = TREE_UNSIGNED (gnu_inner_type); | |
2093 | TYPE_EXTRA_SUBTYPE_P (gnu_subtype) = 1; | |
2094 | layout_type (gnu_subtype); | |
2095 | ||
2096 | gnu_inner_type = gnu_subtype; | |
2097 | } | |
2098 | ||
2099 | TYPE_HAS_ACTUAL_BOUNDS_P (gnu_inner_type) = 1; | |
2100 | } | |
2101 | ||
e2500fed | 2102 | SET_TYPE_ACTUAL_BOUNDS (gnu_inner_type, NULL_TREE); |
70482933 RK |
2103 | |
2104 | for (gnat_index = First_Index (gnat_entity); | |
2105 | Present (gnat_index); gnat_index = Next_Index (gnat_index)) | |
e2500fed GK |
2106 | SET_TYPE_ACTUAL_BOUNDS (gnu_inner_type, |
2107 | tree_cons (NULL_TREE, | |
70482933 | 2108 | get_unpadded_type (Etype (gnat_index)), |
e2500fed | 2109 | TYPE_ACTUAL_BOUNDS (gnu_inner_type))); |
70482933 RK |
2110 | |
2111 | if (Convention (gnat_entity) != Convention_Fortran) | |
e2500fed GK |
2112 | SET_TYPE_ACTUAL_BOUNDS (gnu_inner_type, |
2113 | nreverse (TYPE_ACTUAL_BOUNDS (gnu_inner_type))); | |
70482933 RK |
2114 | |
2115 | if (TREE_CODE (gnu_type) == RECORD_TYPE | |
2116 | && TYPE_LEFT_JUSTIFIED_MODULAR_P (gnu_type)) | |
2117 | TREE_TYPE (TYPE_FIELDS (gnu_type)) = gnu_inner_type; | |
2118 | } | |
2119 | } | |
2120 | ||
2121 | /* Abort if packed array with no packed array type field set. */ | |
2122 | else if (Is_Packed (gnat_entity)) | |
2123 | gigi_abort (107); | |
2124 | ||
2125 | break; | |
2126 | ||
2127 | case E_String_Literal_Subtype: | |
2128 | /* Create the type for a string literal. */ | |
2129 | { | |
2130 | Entity_Id gnat_full_type | |
2131 | = (IN (Ekind (Etype (gnat_entity)), Private_Kind) | |
2132 | && Present (Full_View (Etype (gnat_entity))) | |
2133 | ? Full_View (Etype (gnat_entity)) : Etype (gnat_entity)); | |
2134 | tree gnu_string_type = get_unpadded_type (gnat_full_type); | |
2135 | tree gnu_string_array_type | |
2136 | = TREE_TYPE (TREE_TYPE (TYPE_FIELDS (TREE_TYPE (gnu_string_type)))); | |
2137 | tree gnu_string_index_type | |
fbf5a39b AC |
2138 | = get_base_type (TREE_TYPE (TYPE_INDEX_TYPE |
2139 | (TYPE_DOMAIN (gnu_string_array_type)))); | |
70482933 RK |
2140 | tree gnu_lower_bound |
2141 | = convert (gnu_string_index_type, | |
2142 | gnat_to_gnu (String_Literal_Low_Bound (gnat_entity))); | |
2143 | int length = UI_To_Int (String_Literal_Length (gnat_entity)); | |
2144 | tree gnu_length = ssize_int (length - 1); | |
2145 | tree gnu_upper_bound | |
2146 | = build_binary_op (PLUS_EXPR, gnu_string_index_type, | |
2147 | gnu_lower_bound, | |
2148 | convert (gnu_string_index_type, gnu_length)); | |
2149 | tree gnu_range_type | |
2150 | = build_range_type (gnu_string_index_type, | |
2151 | gnu_lower_bound, gnu_upper_bound); | |
2152 | tree gnu_index_type | |
2153 | = create_index_type (convert (sizetype, | |
2154 | TYPE_MIN_VALUE (gnu_range_type)), | |
2155 | convert (sizetype, | |
2156 | TYPE_MAX_VALUE (gnu_range_type)), | |
2157 | gnu_range_type); | |
2158 | ||
2159 | gnu_type | |
2160 | = build_array_type (gnat_to_gnu_type (Component_Type (gnat_entity)), | |
2161 | gnu_index_type); | |
2162 | } | |
2163 | break; | |
2164 | ||
2165 | /* Record Types and Subtypes | |
2166 | ||
2167 | The following fields are defined on record types: | |
2168 | ||
2169 | Has_Discriminants True if the record has discriminants | |
2170 | First_Discriminant Points to head of list of discriminants | |
2171 | First_Entity Points to head of list of fields | |
2172 | Is_Tagged_Type True if the record is tagged | |
2173 | ||
2174 | Implementation of Ada records and discriminated records: | |
2175 | ||
2176 | A record type definition is transformed into the equivalent of a C | |
2177 | struct definition. The fields that are the discriminants which are | |
2178 | found in the Full_Type_Declaration node and the elements of the | |
2179 | Component_List found in the Record_Type_Definition node. The | |
2180 | Component_List can be a recursive structure since each Variant of | |
2181 | the Variant_Part of the Component_List has a Component_List. | |
2182 | ||
2183 | Processing of a record type definition comprises starting the list of | |
2184 | field declarations here from the discriminants and the calling the | |
2185 | function components_to_record to add the rest of the fields from the | |
2186 | component list and return the gnu type node. The function | |
2187 | components_to_record will call itself recursively as it traverses | |
2188 | the tree. */ | |
2189 | ||
2190 | case E_Record_Type: | |
70482933 RK |
2191 | if (Has_Complex_Representation (gnat_entity)) |
2192 | { | |
2193 | gnu_type | |
2194 | = build_complex_type | |
2195 | (get_unpadded_type | |
2196 | (Etype (Defining_Entity | |
2197 | (First (Component_Items | |
2198 | (Component_List | |
2199 | (Type_Definition | |
2200 | (Declaration_Node (gnat_entity))))))))); | |
2201 | ||
07fc65c4 | 2202 | break; |
70482933 | 2203 | } |
70482933 RK |
2204 | |
2205 | { | |
2206 | Node_Id full_definition = Declaration_Node (gnat_entity); | |
2207 | Node_Id record_definition = Type_Definition (full_definition); | |
2208 | Entity_Id gnat_field; | |
2209 | tree gnu_field; | |
2210 | tree gnu_field_list = NULL_TREE; | |
2211 | tree gnu_get_parent; | |
2212 | int packed = (Is_Packed (gnat_entity) ? 1 | |
2213 | : (Component_Alignment (gnat_entity) | |
2214 | == Calign_Storage_Unit) ? -1 | |
2215 | : 0); | |
2216 | int has_rep = Has_Specified_Layout (gnat_entity); | |
2217 | int all_rep = has_rep; | |
2218 | int is_extension | |
2219 | = (Is_Tagged_Type (gnat_entity) | |
2220 | && Nkind (record_definition) == N_Derived_Type_Definition); | |
2221 | ||
2222 | /* See if all fields have a rep clause. Stop when we find one | |
2223 | that doesn't. */ | |
2224 | for (gnat_field = First_Entity (gnat_entity); | |
2225 | Present (gnat_field) && all_rep; | |
2226 | gnat_field = Next_Entity (gnat_field)) | |
2227 | if ((Ekind (gnat_field) == E_Component | |
2228 | || Ekind (gnat_field) == E_Discriminant) | |
2229 | && No (Component_Clause (gnat_field))) | |
2230 | all_rep = 0; | |
2231 | ||
2232 | /* If this is a record extension, go a level further to find the | |
2233 | record definition. Also, verify we have a Parent_Subtype. */ | |
2234 | if (is_extension) | |
2235 | { | |
2236 | if (! type_annotate_only | |
2237 | || Present (Record_Extension_Part (record_definition))) | |
2238 | record_definition = Record_Extension_Part (record_definition); | |
2239 | ||
2240 | if (! type_annotate_only && No (Parent_Subtype (gnat_entity))) | |
2241 | gigi_abort (121); | |
2242 | } | |
2243 | ||
2244 | /* Make a node for the record. If we are not defining the record, | |
2245 | suppress expanding incomplete types and save the node as the type | |
fbf5a39b AC |
2246 | for GNAT_ENTITY. We use the same RECORD_TYPE as for a dummy type |
2247 | and reset TYPE_DUMMY_P to show it's no longer a dummy. | |
2248 | ||
2249 | It is very tempting to delay resetting this bit until we are done | |
2250 | with completing the type, e.g. to let possible intermediate | |
2251 | elaboration of access types designating the record know it is not | |
2252 | complete and arrange for update_pointer_to to fix things up later. | |
2253 | ||
2254 | It would be wrong, however, because dummy types are expected only | |
2255 | to be created for Ada incomplete or private types, which is not | |
2256 | what we have here. Doing so would make other parts of gigi think | |
2257 | we are dealing with a really incomplete or private type, and have | |
2258 | nasty side effects, typically on the generation of the associated | |
2259 | debugging information. */ | |
70482933 RK |
2260 | gnu_type = make_dummy_type (gnat_entity); |
2261 | TYPE_DUMMY_P (gnu_type) = 0; | |
fbf5a39b | 2262 | |
70482933 RK |
2263 | if (TREE_CODE (TYPE_NAME (gnu_type)) == TYPE_DECL && debug_info_p) |
2264 | DECL_IGNORED_P (TYPE_NAME (gnu_type)) = 0; | |
2265 | ||
2266 | TYPE_ALIGN (gnu_type) = 0; | |
2267 | TYPE_PACKED (gnu_type) = packed != 0 || has_rep; | |
2268 | ||
2269 | if (! definition) | |
2270 | { | |
2271 | defer_incomplete_level++; | |
2272 | this_deferred = 1; | |
2273 | set_lineno (gnat_entity, 0); | |
2274 | gnu_decl = create_type_decl (gnu_entity_id, gnu_type, attr_list, | |
2275 | ! Comes_From_Source (gnat_entity), | |
2276 | debug_info_p); | |
2277 | save_gnu_tree (gnat_entity, gnu_decl, 0); | |
2278 | this_made_decl = saved = 1; | |
2279 | } | |
2280 | ||
2281 | /* If both a size and rep clause was specified, put the size in | |
2282 | the record type now so that it can get the proper mode. */ | |
2283 | if (has_rep && Known_Esize (gnat_entity)) | |
2284 | TYPE_SIZE (gnu_type) = UI_To_gnu (Esize (gnat_entity), sizetype); | |
2285 | ||
2286 | /* Always set the alignment here so that it can be used to | |
2287 | set the mode, if it is making the alignment stricter. If | |
2288 | it is invalid, it will be checked again below. If this is to | |
fbf5a39b AC |
2289 | be Atomic, choose a default alignment of a word unless we know |
2290 | the size and it's smaller. */ | |
70482933 RK |
2291 | if (Known_Alignment (gnat_entity)) |
2292 | TYPE_ALIGN (gnu_type) | |
2293 | = validate_alignment (Alignment (gnat_entity), gnat_entity, 0); | |
2294 | else if (Is_Atomic (gnat_entity)) | |
fbf5a39b AC |
2295 | TYPE_ALIGN (gnu_type) |
2296 | = (esize >= BITS_PER_WORD ? BITS_PER_WORD | |
2297 | : 1 << ((floor_log2 (esize) - 1) + 1)); | |
70482933 RK |
2298 | |
2299 | /* If we have a Parent_Subtype, make a field for the parent. If | |
2300 | this record has rep clauses, force the position to zero. */ | |
2301 | if (Present (Parent_Subtype (gnat_entity))) | |
2302 | { | |
2303 | tree gnu_parent; | |
2304 | ||
2305 | /* A major complexity here is that the parent subtype will | |
2306 | reference our discriminants. But those must reference | |
2307 | the parent component of this record. So here we will | |
2308 | initialize each of those components to a COMPONENT_REF. | |
2309 | The first operand of that COMPONENT_REF is another | |
2310 | COMPONENT_REF which will be filled in below, once | |
2311 | the parent type can be safely built. */ | |
2312 | ||
2313 | gnu_get_parent = build (COMPONENT_REF, void_type_node, | |
2314 | build (PLACEHOLDER_EXPR, gnu_type), | |
2315 | build_decl (FIELD_DECL, NULL_TREE, | |
2316 | NULL_TREE)); | |
2317 | ||
2318 | if (Has_Discriminants (gnat_entity)) | |
fbf5a39b | 2319 | for (gnat_field = First_Stored_Discriminant (gnat_entity); |
70482933 | 2320 | Present (gnat_field); |
fbf5a39b | 2321 | gnat_field = Next_Stored_Discriminant (gnat_field)) |
70482933 RK |
2322 | if (Present (Corresponding_Discriminant (gnat_field))) |
2323 | save_gnu_tree | |
2324 | (gnat_field, | |
2325 | build (COMPONENT_REF, | |
2326 | get_unpadded_type (Etype (gnat_field)), | |
2327 | gnu_get_parent, | |
2328 | gnat_to_gnu_entity (Corresponding_Discriminant | |
2329 | (gnat_field), | |
2330 | NULL_TREE, 0)), | |
2331 | 1); | |
2332 | ||
2333 | gnu_parent = gnat_to_gnu_type (Parent_Subtype (gnat_entity)); | |
2334 | ||
2335 | gnu_field_list | |
2336 | = create_field_decl (get_identifier | |
2337 | (Get_Name_String (Name_uParent)), | |
2338 | gnu_parent, gnu_type, 0, | |
2339 | has_rep ? TYPE_SIZE (gnu_parent) : 0, | |
2340 | has_rep ? bitsize_zero_node : 0, 1); | |
2341 | DECL_INTERNAL_P (gnu_field_list) = 1; | |
2342 | ||
2343 | TREE_TYPE (gnu_get_parent) = gnu_parent; | |
2344 | TREE_OPERAND (gnu_get_parent, 1) = gnu_field_list; | |
2345 | } | |
2346 | ||
2347 | /* Add the fields for the discriminants into the record. */ | |
2348 | if (! Is_Unchecked_Union (gnat_entity) | |
2349 | && Has_Discriminants (gnat_entity)) | |
fbf5a39b | 2350 | for (gnat_field = First_Stored_Discriminant (gnat_entity); |
70482933 | 2351 | Present (gnat_field); |
fbf5a39b | 2352 | gnat_field = Next_Stored_Discriminant (gnat_field)) |
70482933 RK |
2353 | { |
2354 | /* If this is a record extension and this discriminant | |
2355 | is the renaming of another discriminant, we've already | |
2356 | handled the discriminant above. */ | |
2357 | if (Present (Parent_Subtype (gnat_entity)) | |
2358 | && Present (Corresponding_Discriminant (gnat_field))) | |
2359 | continue; | |
2360 | ||
2361 | gnu_field | |
2362 | = gnat_to_gnu_field (gnat_field, gnu_type, packed, definition); | |
2363 | ||
2364 | /* Make an expression using a PLACEHOLDER_EXPR from the | |
2365 | FIELD_DECL node just created and link that with the | |
2366 | corresponding GNAT defining identifier. Then add to the | |
2367 | list of fields. */ | |
2368 | save_gnu_tree (gnat_field, | |
2369 | build (COMPONENT_REF, TREE_TYPE (gnu_field), | |
2370 | build (PLACEHOLDER_EXPR, | |
2371 | DECL_CONTEXT (gnu_field)), | |
2372 | gnu_field), | |
2373 | 1); | |
2374 | ||
2375 | TREE_CHAIN (gnu_field) = gnu_field_list; | |
2376 | gnu_field_list = gnu_field; | |
2377 | } | |
2378 | ||
2379 | /* Put the discriminants into the record (backwards), so we can | |
2380 | know the appropriate discriminant to use for the names of the | |
2381 | variants. */ | |
2382 | TYPE_FIELDS (gnu_type) = gnu_field_list; | |
2383 | ||
2384 | /* Add the listed fields into the record and finish up. */ | |
2385 | components_to_record (gnu_type, Component_List (record_definition), | |
2386 | gnu_field_list, packed, definition, 0, | |
2387 | 0, all_rep); | |
2388 | ||
fbf5a39b | 2389 | TYPE_VOLATILE (gnu_type) = Treat_As_Volatile (gnat_entity); |
70482933 RK |
2390 | TYPE_BY_REFERENCE_P (gnu_type) = Is_By_Reference_Type (gnat_entity); |
2391 | ||
2392 | /* If this is an extension type, reset the tree for any | |
2393 | inherited discriminants. Also remove the PLACEHOLDER_EXPR | |
2394 | for non-inherited discriminants. */ | |
2395 | if (! Is_Unchecked_Union (gnat_entity) | |
2396 | && Has_Discriminants (gnat_entity)) | |
fbf5a39b | 2397 | for (gnat_field = First_Stored_Discriminant (gnat_entity); |
70482933 | 2398 | Present (gnat_field); |
fbf5a39b | 2399 | gnat_field = Next_Stored_Discriminant (gnat_field)) |
70482933 RK |
2400 | { |
2401 | if (Present (Parent_Subtype (gnat_entity)) | |
2402 | && Present (Corresponding_Discriminant (gnat_field))) | |
2403 | save_gnu_tree (gnat_field, NULL_TREE, 0); | |
2404 | else | |
2405 | { | |
2406 | gnu_field = get_gnu_tree (gnat_field); | |
2407 | save_gnu_tree (gnat_field, NULL_TREE, 0); | |
2408 | save_gnu_tree (gnat_field, TREE_OPERAND (gnu_field, 1), 0); | |
2409 | } | |
2410 | } | |
2411 | ||
2412 | /* If it is a tagged record force the type to BLKmode to insure | |
2413 | that these objects will always be placed in memory. Do the | |
2414 | same thing for limited record types. */ | |
70482933 RK |
2415 | if (Is_Tagged_Type (gnat_entity) || Is_Limited_Record (gnat_entity)) |
2416 | TYPE_MODE (gnu_type) = BLKmode; | |
2417 | ||
fbf5a39b AC |
2418 | /* If this is a derived type, we must make the alias set of this type |
2419 | the same as that of the type we are derived from. We assume here | |
2420 | that the other type is already frozen. */ | |
2421 | if (Etype (gnat_entity) != gnat_entity | |
2422 | && ! (Is_Private_Type (Etype (gnat_entity)) | |
2423 | && Full_View (Etype (gnat_entity)) == gnat_entity)) | |
2424 | { | |
2425 | TYPE_ALIAS_SET (gnu_type) | |
2426 | = get_alias_set (gnat_to_gnu_type (Etype (gnat_entity))); | |
2427 | record_component_aliases (gnu_type); | |
2428 | } | |
2429 | ||
70482933 RK |
2430 | /* Fill in locations of fields. */ |
2431 | annotate_rep (gnat_entity, gnu_type); | |
2432 | ||
2433 | /* If there are any entities in the chain corresponding to | |
2434 | components that we did not elaborate, ensure we elaborate their | |
2435 | types if they are Itypes. */ | |
2436 | for (gnat_temp = First_Entity (gnat_entity); | |
2437 | Present (gnat_temp); gnat_temp = Next_Entity (gnat_temp)) | |
2438 | if ((Ekind (gnat_temp) == E_Component | |
2439 | || Ekind (gnat_temp) == E_Discriminant) | |
2440 | && Is_Itype (Etype (gnat_temp)) | |
2441 | && ! present_gnu_tree (gnat_temp)) | |
2442 | gnat_to_gnu_entity (Etype (gnat_temp), NULL_TREE, 0); | |
2443 | } | |
2444 | break; | |
2445 | ||
2446 | case E_Class_Wide_Subtype: | |
2447 | /* If an equivalent type is present, that is what we should use. | |
2448 | Otherwise, fall through to handle this like a record subtype | |
2449 | since it may have constraints. */ | |
2450 | ||
2451 | if (Present (Equivalent_Type (gnat_entity))) | |
2452 | { | |
fbf5a39b AC |
2453 | gnu_decl = gnat_to_gnu_entity (Equivalent_Type (gnat_entity), |
2454 | NULL_TREE, 0); | |
70482933 RK |
2455 | maybe_present = 1; |
2456 | break; | |
2457 | } | |
2458 | ||
2459 | /* ... fall through ... */ | |
2460 | ||
2461 | case E_Record_Subtype: | |
2462 | ||
2463 | /* If Cloned_Subtype is Present it means this record subtype has | |
2464 | identical layout to that type or subtype and we should use | |
2465 | that GCC type for this one. The front end guarantees that | |
2466 | the component list is shared. */ | |
2467 | if (Present (Cloned_Subtype (gnat_entity))) | |
2468 | { | |
2469 | gnu_decl = gnat_to_gnu_entity (Cloned_Subtype (gnat_entity), | |
2470 | NULL_TREE, 0); | |
2471 | maybe_present = 1; | |
2472 | } | |
2473 | ||
2474 | /* Otherwise, first ensure the base type is elaborated. Then, if we are | |
2475 | changing the type, make a new type with each field having the | |
2476 | type of the field in the new subtype but having the position | |
2477 | computed by transforming every discriminant reference according | |
2478 | to the constraints. We don't see any difference between | |
2479 | private and nonprivate type here since derivations from types should | |
2480 | have been deferred until the completion of the private type. */ | |
2481 | else | |
2482 | { | |
2483 | Entity_Id gnat_base_type = Implementation_Base_Type (gnat_entity); | |
2484 | tree gnu_base_type; | |
2485 | tree gnu_orig_type; | |
2486 | ||
2487 | if (! definition) | |
2488 | defer_incomplete_level++, this_deferred = 1; | |
2489 | ||
2490 | /* Get the base type initially for its alignment and sizes. But | |
2491 | if it is a padded type, we do all the other work with the | |
2492 | unpadded type. */ | |
2493 | gnu_type = gnu_orig_type = gnu_base_type | |
2494 | = gnat_to_gnu_type (gnat_base_type); | |
2495 | ||
2496 | if (TREE_CODE (gnu_type) == RECORD_TYPE | |
2497 | && TYPE_IS_PADDING_P (gnu_type)) | |
2498 | gnu_type = gnu_orig_type = TREE_TYPE (TYPE_FIELDS (gnu_type)); | |
2499 | ||
2500 | if (present_gnu_tree (gnat_entity)) | |
2501 | { | |
2502 | maybe_present = 1; | |
2503 | break; | |
2504 | } | |
2505 | ||
2506 | /* When the type has discriminants, and these discriminants | |
2507 | affect the shape of what it built, factor them in. | |
2508 | ||
2509 | If we are making a subtype of an Unchecked_Union (must be an | |
2510 | Itype), just return the type. | |
2511 | ||
2512 | We can't just use Is_Constrained because private subtypes without | |
2513 | discriminants of full types with discriminants with default | |
2514 | expressions are Is_Constrained but aren't constrained! */ | |
2515 | ||
2516 | if (IN (Ekind (gnat_base_type), Record_Kind) | |
2517 | && ! Is_For_Access_Subtype (gnat_entity) | |
2518 | && ! Is_Unchecked_Union (gnat_base_type) | |
2519 | && Is_Constrained (gnat_entity) | |
fbf5a39b | 2520 | && Stored_Constraint (gnat_entity) != No_Elist |
70482933 RK |
2521 | && Present (Discriminant_Constraint (gnat_entity))) |
2522 | { | |
2523 | Entity_Id gnat_field; | |
2524 | Entity_Id gnat_root_type; | |
2525 | tree gnu_field_list = 0; | |
2526 | tree gnu_pos_list | |
2527 | = compute_field_positions (gnu_orig_type, NULL_TREE, | |
07fc65c4 GB |
2528 | size_zero_node, bitsize_zero_node, |
2529 | BIGGEST_ALIGNMENT); | |
70482933 RK |
2530 | tree gnu_subst_list |
2531 | = substitution_list (gnat_entity, gnat_base_type, NULL_TREE, | |
2532 | definition); | |
2533 | tree gnu_temp; | |
2534 | ||
2535 | /* If this is a derived type, we may be seeing fields from any | |
2536 | original records, so add those positions and discriminant | |
2537 | substitutions to our lists. */ | |
2538 | for (gnat_root_type = gnat_base_type; | |
2539 | Underlying_Type (Etype (gnat_root_type)) != gnat_root_type; | |
2540 | gnat_root_type = Underlying_Type (Etype (gnat_root_type))) | |
2541 | { | |
2542 | gnu_pos_list | |
2543 | = compute_field_positions | |
2544 | (gnat_to_gnu_type (Etype (gnat_root_type)), | |
07fc65c4 GB |
2545 | gnu_pos_list, size_zero_node, bitsize_zero_node, |
2546 | BIGGEST_ALIGNMENT); | |
70482933 RK |
2547 | |
2548 | if (Present (Parent_Subtype (gnat_root_type))) | |
2549 | gnu_subst_list | |
2550 | = substitution_list (Parent_Subtype (gnat_root_type), | |
2551 | Empty, gnu_subst_list, definition); | |
2552 | } | |
2553 | ||
2554 | gnu_type = make_node (RECORD_TYPE); | |
2555 | TYPE_NAME (gnu_type) = gnu_entity_id; | |
2556 | TYPE_STUB_DECL (gnu_type) | |
2557 | = pushdecl (build_decl (TYPE_DECL, NULL_TREE, gnu_type)); | |
2558 | TYPE_ALIGN (gnu_type) = TYPE_ALIGN (gnu_base_type); | |
2559 | ||
2560 | for (gnat_field = First_Entity (gnat_entity); | |
2561 | Present (gnat_field); gnat_field = Next_Entity (gnat_field)) | |
2562 | if (Ekind (gnat_field) == E_Component | |
2563 | || Ekind (gnat_field) == E_Discriminant) | |
2564 | { | |
2565 | tree gnu_old_field | |
2566 | = gnat_to_gnu_entity | |
2567 | (Original_Record_Component (gnat_field), NULL_TREE, 0); | |
2568 | tree gnu_offset | |
2569 | = TREE_VALUE (purpose_member (gnu_old_field, | |
2570 | gnu_pos_list)); | |
2571 | tree gnu_pos = TREE_PURPOSE (gnu_offset); | |
07fc65c4 | 2572 | tree gnu_bitpos = TREE_VALUE (TREE_VALUE (gnu_offset)); |
70482933 RK |
2573 | tree gnu_field_type |
2574 | = gnat_to_gnu_type (Etype (gnat_field)); | |
2575 | tree gnu_size = TYPE_SIZE (gnu_field_type); | |
2576 | tree gnu_new_pos = 0; | |
07fc65c4 GB |
2577 | unsigned int offset_align |
2578 | = tree_low_cst (TREE_PURPOSE (TREE_VALUE (gnu_offset)), | |
2579 | 1); | |
70482933 RK |
2580 | tree gnu_field; |
2581 | ||
2582 | /* If there was a component clause, the field types must be | |
2583 | the same for the type and subtype, so copy the data from | |
2584 | the old field to avoid recomputation here. */ | |
2585 | if (Present (Component_Clause | |
2586 | (Original_Record_Component (gnat_field)))) | |
2587 | { | |
2588 | gnu_size = DECL_SIZE (gnu_old_field); | |
2589 | gnu_field_type = TREE_TYPE (gnu_old_field); | |
2590 | } | |
2591 | ||
2592 | /* If this was a bitfield, get the size from the old field. | |
2593 | Also ensure the type can be placed into a bitfield. */ | |
2594 | else if (DECL_BIT_FIELD (gnu_old_field)) | |
2595 | { | |
2596 | gnu_size = DECL_SIZE (gnu_old_field); | |
2597 | if (TYPE_MODE (gnu_field_type) == BLKmode | |
2598 | && TREE_CODE (gnu_field_type) == RECORD_TYPE | |
2599 | && host_integerp (TYPE_SIZE (gnu_field_type), 1)) | |
2600 | gnu_field_type = make_packable_type (gnu_field_type); | |
2601 | } | |
2602 | ||
fbf5a39b | 2603 | if (CONTAINS_PLACEHOLDER_P (gnu_pos)) |
70482933 RK |
2604 | for (gnu_temp = gnu_subst_list; |
2605 | gnu_temp; gnu_temp = TREE_CHAIN (gnu_temp)) | |
2606 | gnu_pos = substitute_in_expr (gnu_pos, | |
2607 | TREE_PURPOSE (gnu_temp), | |
2608 | TREE_VALUE (gnu_temp)); | |
2609 | ||
2610 | /* If the size is now a constant, we can set it as the | |
2611 | size of the field when we make it. Otherwise, we need | |
2612 | to deal with it specially. */ | |
2613 | if (TREE_CONSTANT (gnu_pos)) | |
2614 | gnu_new_pos = bit_from_pos (gnu_pos, gnu_bitpos); | |
2615 | ||
2616 | gnu_field | |
2617 | = create_field_decl | |
2618 | (DECL_NAME (gnu_old_field), gnu_field_type, gnu_type, | |
2619 | 0, gnu_size, gnu_new_pos, | |
2620 | ! DECL_NONADDRESSABLE_P (gnu_old_field)); | |
2621 | ||
2622 | if (! TREE_CONSTANT (gnu_pos)) | |
2623 | { | |
07fc65c4 | 2624 | normalize_offset (&gnu_pos, &gnu_bitpos, offset_align); |
70482933 RK |
2625 | DECL_FIELD_OFFSET (gnu_field) = gnu_pos; |
2626 | DECL_FIELD_BIT_OFFSET (gnu_field) = gnu_bitpos; | |
07fc65c4 | 2627 | SET_DECL_OFFSET_ALIGN (gnu_field, offset_align); |
70482933 RK |
2628 | DECL_SIZE (gnu_field) = gnu_size; |
2629 | DECL_SIZE_UNIT (gnu_field) | |
2630 | = convert (sizetype, | |
2631 | size_binop (CEIL_DIV_EXPR, gnu_size, | |
2632 | bitsize_unit_node)); | |
2633 | layout_decl (gnu_field, DECL_OFFSET_ALIGN (gnu_field)); | |
2634 | } | |
2635 | ||
2636 | DECL_INTERNAL_P (gnu_field) | |
2637 | = DECL_INTERNAL_P (gnu_old_field); | |
e2500fed GK |
2638 | SET_DECL_ORIGINAL_FIELD (gnu_field, |
2639 | (DECL_ORIGINAL_FIELD (gnu_old_field) != 0 | |
fbf5a39b | 2640 | ? DECL_ORIGINAL_FIELD (gnu_old_field) |
e2500fed | 2641 | : gnu_old_field)); |
70482933 RK |
2642 | DECL_DISCRIMINANT_NUMBER (gnu_field) |
2643 | = DECL_DISCRIMINANT_NUMBER (gnu_old_field); | |
2644 | TREE_THIS_VOLATILE (gnu_field) | |
2645 | = TREE_THIS_VOLATILE (gnu_old_field); | |
2646 | TREE_CHAIN (gnu_field) = gnu_field_list; | |
2647 | gnu_field_list = gnu_field; | |
2648 | save_gnu_tree (gnat_field, gnu_field, 0); | |
2649 | } | |
2650 | ||
2651 | finish_record_type (gnu_type, nreverse (gnu_field_list), 1, 0); | |
2652 | ||
2653 | /* Now set the size, alignment and alias set of the new type to | |
2654 | match that of the old one, doing any substitutions, as | |
2655 | above. */ | |
70482933 RK |
2656 | TYPE_ALIGN (gnu_type) = TYPE_ALIGN (gnu_base_type); |
2657 | TYPE_SIZE (gnu_type) = TYPE_SIZE (gnu_base_type); | |
2658 | TYPE_SIZE_UNIT (gnu_type) = TYPE_SIZE_UNIT (gnu_base_type); | |
e2500fed | 2659 | SET_TYPE_ADA_SIZE (gnu_type, TYPE_ADA_SIZE (gnu_base_type)); |
fbf5a39b AC |
2660 | TYPE_ALIAS_SET (gnu_type) = get_alias_set (gnu_base_type); |
2661 | record_component_aliases (gnu_type); | |
70482933 | 2662 | |
fbf5a39b | 2663 | if (CONTAINS_PLACEHOLDER_P (TYPE_SIZE (gnu_type))) |
70482933 RK |
2664 | for (gnu_temp = gnu_subst_list; |
2665 | gnu_temp; gnu_temp = TREE_CHAIN (gnu_temp)) | |
2666 | TYPE_SIZE (gnu_type) | |
2667 | = substitute_in_expr (TYPE_SIZE (gnu_type), | |
2668 | TREE_PURPOSE (gnu_temp), | |
2669 | TREE_VALUE (gnu_temp)); | |
2670 | ||
fbf5a39b | 2671 | if (CONTAINS_PLACEHOLDER_P (TYPE_SIZE_UNIT (gnu_type))) |
70482933 RK |
2672 | for (gnu_temp = gnu_subst_list; |
2673 | gnu_temp; gnu_temp = TREE_CHAIN (gnu_temp)) | |
2674 | TYPE_SIZE_UNIT (gnu_type) | |
2675 | = substitute_in_expr (TYPE_SIZE_UNIT (gnu_type), | |
2676 | TREE_PURPOSE (gnu_temp), | |
2677 | TREE_VALUE (gnu_temp)); | |
2678 | ||
2679 | if (TYPE_ADA_SIZE (gnu_type) != 0 | |
fbf5a39b | 2680 | && CONTAINS_PLACEHOLDER_P (TYPE_ADA_SIZE (gnu_type))) |
70482933 RK |
2681 | for (gnu_temp = gnu_subst_list; |
2682 | gnu_temp; gnu_temp = TREE_CHAIN (gnu_temp)) | |
e2500fed GK |
2683 | SET_TYPE_ADA_SIZE (gnu_type, |
2684 | substitute_in_expr (TYPE_ADA_SIZE (gnu_type), | |
70482933 | 2685 | TREE_PURPOSE (gnu_temp), |
e2500fed | 2686 | TREE_VALUE (gnu_temp))); |
70482933 RK |
2687 | |
2688 | /* Recompute the mode of this record type now that we know its | |
2689 | actual size. */ | |
2690 | compute_record_mode (gnu_type); | |
2691 | ||
2692 | /* Fill in locations of fields. */ | |
2693 | annotate_rep (gnat_entity, gnu_type); | |
2694 | } | |
2695 | ||
2696 | /* If we've made a new type, record it and make an XVS type to show | |
2697 | what this is a subtype of. Some debuggers require the XVS | |
2698 | type to be output first, so do it in that order. */ | |
2699 | if (gnu_type != gnu_orig_type) | |
2700 | { | |
2701 | if (debug_info_p) | |
2702 | { | |
2703 | tree gnu_subtype_marker = make_node (RECORD_TYPE); | |
2704 | tree gnu_orig_name = TYPE_NAME (gnu_orig_type); | |
2705 | ||
2706 | if (TREE_CODE (gnu_orig_name) == TYPE_DECL) | |
2707 | gnu_orig_name = DECL_NAME (gnu_orig_name); | |
2708 | ||
2709 | TYPE_NAME (gnu_subtype_marker) | |
2710 | = create_concat_name (gnat_entity, "XVS"); | |
2711 | finish_record_type (gnu_subtype_marker, | |
2712 | create_field_decl (gnu_orig_name, | |
2713 | integer_type_node, | |
2714 | gnu_subtype_marker, | |
2715 | 0, NULL_TREE, | |
2716 | NULL_TREE, 0), | |
2717 | 0, 0); | |
2718 | } | |
2719 | ||
fbf5a39b | 2720 | TYPE_VOLATILE (gnu_type) = Treat_As_Volatile (gnat_entity); |
70482933 RK |
2721 | TYPE_NAME (gnu_type) = gnu_entity_id; |
2722 | TYPE_STUB_DECL (gnu_type) | |
2723 | = pushdecl (build_decl (TYPE_DECL, TYPE_NAME (gnu_type), | |
2724 | gnu_type)); | |
2725 | DECL_ARTIFICIAL (TYPE_STUB_DECL (gnu_type)) = 1; | |
2726 | DECL_IGNORED_P (TYPE_STUB_DECL (gnu_type)) = ! debug_info_p; | |
2727 | rest_of_type_compilation (gnu_type, global_bindings_p ()); | |
2728 | } | |
2729 | ||
2730 | /* Otherwise, go down all the components in the new type and | |
2731 | make them equivalent to those in the base type. */ | |
2732 | else | |
2733 | for (gnat_temp = First_Entity (gnat_entity); Present (gnat_temp); | |
2734 | gnat_temp = Next_Entity (gnat_temp)) | |
2735 | if ((Ekind (gnat_temp) == E_Discriminant | |
2736 | && ! Is_Unchecked_Union (gnat_base_type)) | |
2737 | || Ekind (gnat_temp) == E_Component) | |
2738 | save_gnu_tree (gnat_temp, | |
2739 | get_gnu_tree | |
2740 | (Original_Record_Component (gnat_temp)), 0); | |
2741 | } | |
2742 | break; | |
2743 | ||
2744 | case E_Access_Subprogram_Type: | |
2745 | /* If we are not defining this entity, and we have incomplete | |
2746 | entities being processed above us, make a dummy type and | |
2747 | fill it in later. */ | |
2748 | if (! definition && defer_incomplete_level != 0) | |
2749 | { | |
2750 | struct incomplete *p | |
2751 | = (struct incomplete *) xmalloc (sizeof (struct incomplete)); | |
2752 | ||
2753 | gnu_type | |
2754 | = build_pointer_type | |
2755 | (make_dummy_type (Directly_Designated_Type (gnat_entity))); | |
2756 | gnu_decl = create_type_decl (gnu_entity_id, gnu_type, attr_list, | |
2757 | ! Comes_From_Source (gnat_entity), | |
2758 | debug_info_p); | |
2759 | save_gnu_tree (gnat_entity, gnu_decl, 0); | |
2760 | this_made_decl = saved = 1; | |
2761 | ||
2762 | p->old_type = TREE_TYPE (gnu_type); | |
2763 | p->full_type = Directly_Designated_Type (gnat_entity); | |
2764 | p->next = defer_incomplete_list; | |
2765 | defer_incomplete_list = p; | |
2766 | break; | |
2767 | } | |
2768 | ||
2769 | /* ... fall through ... */ | |
2770 | ||
2771 | case E_Allocator_Type: | |
2772 | case E_Access_Type: | |
2773 | case E_Access_Attribute_Type: | |
2774 | case E_Anonymous_Access_Type: | |
2775 | case E_General_Access_Type: | |
2776 | { | |
2777 | Entity_Id gnat_desig_type = Directly_Designated_Type (gnat_entity); | |
2778 | Entity_Id gnat_desig_full | |
2779 | = ((IN (Ekind (Etype (gnat_desig_type)), | |
2780 | Incomplete_Or_Private_Kind)) | |
2781 | ? Full_View (gnat_desig_type) : 0); | |
2782 | /* We want to know if we'll be seeing the freeze node for any | |
2783 | incomplete type we may be pointing to. */ | |
2784 | int in_main_unit | |
2785 | = (Present (gnat_desig_full) | |
2786 | ? In_Extended_Main_Code_Unit (gnat_desig_full) | |
2787 | : In_Extended_Main_Code_Unit (gnat_desig_type)); | |
2788 | int got_fat_p = 0; | |
2789 | int made_dummy = 0; | |
7a3a8c06 | 2790 | tree gnu_desig_type = 0; |
70482933 RK |
2791 | |
2792 | if (No (gnat_desig_full) | |
2793 | && (Ekind (gnat_desig_type) == E_Class_Wide_Type | |
2794 | || (Ekind (gnat_desig_type) == E_Class_Wide_Subtype | |
2795 | && Present (Equivalent_Type (gnat_desig_type))))) | |
2796 | { | |
2797 | if (Present (Equivalent_Type (gnat_desig_type))) | |
2798 | { | |
2799 | gnat_desig_full = Equivalent_Type (gnat_desig_type); | |
2800 | if (IN (Ekind (gnat_desig_full), Incomplete_Or_Private_Kind)) | |
2801 | gnat_desig_full = Full_View (gnat_desig_full); | |
2802 | } | |
2803 | else if (IN (Ekind (Root_Type (gnat_desig_type)), | |
2804 | Incomplete_Or_Private_Kind)) | |
2805 | gnat_desig_full = Full_View (Root_Type (gnat_desig_type)); | |
2806 | } | |
2807 | ||
2808 | if (Present (gnat_desig_full) && Is_Concurrent_Type (gnat_desig_full)) | |
2809 | gnat_desig_full = Corresponding_Record_Type (gnat_desig_full); | |
2810 | ||
2811 | /* If either the designated type or its full view is an | |
2812 | unconstrained array subtype, replace it with the type it's a | |
2813 | subtype of. This avoids problems with multiple copies of | |
2814 | unconstrained array types. */ | |
2815 | if (Ekind (gnat_desig_type) == E_Array_Subtype | |
2816 | && ! Is_Constrained (gnat_desig_type)) | |
2817 | gnat_desig_type = Etype (gnat_desig_type); | |
2818 | if (Present (gnat_desig_full) | |
2819 | && Ekind (gnat_desig_full) == E_Array_Subtype | |
2820 | && ! Is_Constrained (gnat_desig_full)) | |
2821 | gnat_desig_full = Etype (gnat_desig_full); | |
2822 | ||
07fc65c4 GB |
2823 | /* If the designated type is a subtype of an incomplete record type, |
2824 | use the parent type to avoid order of elaboration issues. This | |
2825 | can lose some code efficiency, but there is no alternative. */ | |
2826 | if (Present (gnat_desig_full) | |
2827 | && Ekind (gnat_desig_full) == E_Record_Subtype | |
2828 | && Ekind (Etype (gnat_desig_full)) == E_Record_Type) | |
2829 | gnat_desig_full = Etype (gnat_desig_full); | |
2830 | ||
70482933 RK |
2831 | /* If we are pointing to an incomplete type whose completion is an |
2832 | unconstrained array, make a fat pointer type instead of a pointer | |
2833 | to VOID. The two types in our fields will be pointers to VOID and | |
2834 | will be replaced in update_pointer_to. Similiarly, if the type | |
2835 | itself is a dummy type or an unconstrained array. Also make | |
2836 | a dummy TYPE_OBJECT_RECORD_TYPE in case we have any thin | |
2837 | pointers to it. */ | |
2838 | ||
2839 | if ((Present (gnat_desig_full) | |
2840 | && Is_Array_Type (gnat_desig_full) | |
2841 | && ! Is_Constrained (gnat_desig_full)) | |
2842 | || (present_gnu_tree (gnat_desig_type) | |
2843 | && TYPE_IS_DUMMY_P (TREE_TYPE | |
2844 | (get_gnu_tree (gnat_desig_type))) | |
2845 | && Is_Array_Type (gnat_desig_type) | |
2846 | && ! Is_Constrained (gnat_desig_type)) | |
2847 | || (present_gnu_tree (gnat_desig_type) | |
2848 | && (TREE_CODE (TREE_TYPE (get_gnu_tree (gnat_desig_type))) | |
2849 | == UNCONSTRAINED_ARRAY_TYPE) | |
2850 | && (TYPE_POINTER_TO (TREE_TYPE | |
2851 | (get_gnu_tree (gnat_desig_type))) | |
2852 | == 0)) | |
2853 | || (No (gnat_desig_full) && ! in_main_unit | |
2854 | && defer_incomplete_level != 0 | |
2855 | && ! present_gnu_tree (gnat_desig_type) | |
2856 | && Is_Array_Type (gnat_desig_type) | |
2857 | && ! Is_Constrained (gnat_desig_type))) | |
2858 | { | |
2859 | tree gnu_old | |
2860 | = (present_gnu_tree (gnat_desig_type) | |
2861 | ? gnat_to_gnu_type (gnat_desig_type) | |
2862 | : make_dummy_type (gnat_desig_type)); | |
2863 | tree fields; | |
2864 | ||
2865 | /* Show the dummy we get will be a fat pointer. */ | |
2866 | got_fat_p = made_dummy = 1; | |
2867 | ||
2868 | /* If the call above got something that has a pointer, that | |
2869 | pointer is our type. This could have happened either | |
2870 | because the type was elaborated or because somebody | |
2871 | else executed the code below. */ | |
2872 | gnu_type = TYPE_POINTER_TO (gnu_old); | |
2873 | if (gnu_type == 0) | |
2874 | { | |
2875 | gnu_type = make_node (RECORD_TYPE); | |
e2500fed | 2876 | SET_TYPE_UNCONSTRAINED_ARRAY (gnu_type, gnu_old); |
70482933 RK |
2877 | TYPE_POINTER_TO (gnu_old) = gnu_type; |
2878 | ||
2879 | set_lineno (gnat_entity, 0); | |
2880 | fields | |
2881 | = chainon (chainon (NULL_TREE, | |
2882 | create_field_decl | |
2883 | (get_identifier ("P_ARRAY"), | |
2884 | ptr_void_type_node, gnu_type, | |
2885 | 0, 0, 0, 0)), | |
2886 | create_field_decl (get_identifier ("P_BOUNDS"), | |
2887 | ptr_void_type_node, | |
2888 | gnu_type, 0, 0, 0, 0)); | |
2889 | ||
2890 | /* Make sure we can place this into a register. */ | |
2891 | TYPE_ALIGN (gnu_type) | |
2892 | = MIN (BIGGEST_ALIGNMENT, 2 * POINTER_SIZE); | |
2893 | TYPE_IS_FAT_POINTER_P (gnu_type) = 1; | |
2894 | finish_record_type (gnu_type, fields, 0, 1); | |
2895 | ||
2896 | TYPE_OBJECT_RECORD_TYPE (gnu_old) = make_node (RECORD_TYPE); | |
2897 | TYPE_NAME (TYPE_OBJECT_RECORD_TYPE (gnu_old)) | |
2898 | = concat_id_with_name (get_entity_name (gnat_desig_type), | |
2899 | "XUT"); | |
2900 | TYPE_DUMMY_P (TYPE_OBJECT_RECORD_TYPE (gnu_old)) = 1; | |
2901 | } | |
2902 | } | |
2903 | ||
2904 | /* If we already know what the full type is, use it. */ | |
2905 | else if (Present (gnat_desig_full) | |
2906 | && present_gnu_tree (gnat_desig_full)) | |
7a3a8c06 | 2907 | gnu_desig_type = TREE_TYPE (get_gnu_tree (gnat_desig_full)); |
70482933 RK |
2908 | |
2909 | /* Get the type of the thing we are to point to and build a pointer | |
2910 | to it. If it is a reference to an incomplete or private type with a | |
2911 | full view that is a record, make a dummy type node and get the | |
2912 | actual type later when we have verified it is safe. */ | |
2913 | else if (! in_main_unit | |
2914 | && ! present_gnu_tree (gnat_desig_type) | |
2915 | && Present (gnat_desig_full) | |
2916 | && ! present_gnu_tree (gnat_desig_full) | |
2917 | && Is_Record_Type (gnat_desig_full)) | |
2918 | { | |
7a3a8c06 | 2919 | gnu_desig_type = make_dummy_type (gnat_desig_type); |
70482933 RK |
2920 | made_dummy = 1; |
2921 | } | |
2922 | ||
2923 | /* Likewise if we are pointing to a record or array and we are to defer | |
2924 | elaborating incomplete types. We do this since this access type | |
2925 | may be the full view of some private type. Note that the | |
2926 | unconstrained array case is handled above. */ | |
2927 | else if ((! in_main_unit || imported_p) && defer_incomplete_level != 0 | |
2928 | && ! present_gnu_tree (gnat_desig_type) | |
2929 | && ((Is_Record_Type (gnat_desig_type) | |
2930 | || Is_Array_Type (gnat_desig_type)) | |
2931 | || (Present (gnat_desig_full) | |
2932 | && (Is_Record_Type (gnat_desig_full) | |
2933 | || Is_Array_Type (gnat_desig_full))))) | |
2934 | { | |
7a3a8c06 | 2935 | gnu_desig_type = make_dummy_type (gnat_desig_type); |
70482933 RK |
2936 | made_dummy = 1; |
2937 | } | |
2938 | else if (gnat_desig_type == gnat_entity) | |
2939 | { | |
2940 | gnu_type = build_pointer_type (make_node (VOID_TYPE)); | |
2941 | TREE_TYPE (gnu_type) = TYPE_POINTER_TO (gnu_type) = gnu_type; | |
2942 | } | |
2943 | else | |
7a3a8c06 | 2944 | gnu_desig_type = gnat_to_gnu_type (gnat_desig_type); |
70482933 RK |
2945 | |
2946 | /* It is possible that the above call to gnat_to_gnu_type resolved our | |
2947 | type. If so, just return it. */ | |
2948 | if (present_gnu_tree (gnat_entity)) | |
2949 | { | |
2950 | maybe_present = 1; | |
2951 | break; | |
2952 | } | |
2953 | ||
fbf5a39b AC |
2954 | /* If we have a GCC type for the designated type, possibly modify it |
2955 | if we are pointing only to constant objects and then make a pointer | |
2956 | to it. Don't do this for unconstrained arrays. */ | |
7a3a8c06 RK |
2957 | if (gnu_type == 0 && gnu_desig_type != 0) |
2958 | { | |
2959 | if (Is_Access_Constant (gnat_entity) | |
2960 | && TREE_CODE (gnu_desig_type) != UNCONSTRAINED_ARRAY_TYPE) | |
fbf5a39b AC |
2961 | { |
2962 | gnu_desig_type | |
2963 | = build_qualified_type | |
2964 | (gnu_desig_type, | |
2965 | TYPE_QUALS (gnu_desig_type) | TYPE_QUAL_CONST); | |
2966 | ||
2967 | /* Some extra processing is required if we are building a | |
2968 | pointer to an incomplete type (in the GCC sense). We might | |
2969 | have such a type if we just made a dummy, or directly out | |
2970 | of the call to gnat_to_gnu_type above if we are processing | |
2971 | an access type for a record component designating the | |
2972 | record type itself. */ | |
2973 | if (! COMPLETE_TYPE_P (gnu_desig_type)) | |
2974 | { | |
2975 | /* We must ensure that the pointer to variant we make will | |
2976 | be processed by update_pointer_to when the initial type | |
2977 | is completed. Pretend we made a dummy and let further | |
2978 | processing act as usual. */ | |
2979 | made_dummy = 1; | |
2980 | ||
2981 | /* We must ensure that update_pointer_to will not retrieve | |
2982 | the dummy variant when building a properly qualified | |
2983 | version of the complete type. We take advantage of the | |
2984 | fact that get_qualified_type is requiring TYPE_NAMEs to | |
2985 | match to influence build_qualified_type and then also | |
2986 | update_pointer_to here. */ | |
2987 | TYPE_NAME (gnu_desig_type) | |
2988 | = create_concat_name (gnat_desig_type, "INCOMPLETE_CST"); | |
2989 | } | |
2990 | } | |
7a3a8c06 RK |
2991 | |
2992 | gnu_type = build_pointer_type (gnu_desig_type); | |
2993 | } | |
2994 | ||
70482933 RK |
2995 | /* If we are not defining this object and we made a dummy pointer, |
2996 | save our current definition, evaluate the actual type, and replace | |
2997 | the tentative type we made with the actual one. If we are to defer | |
2998 | actually looking up the actual type, make an entry in the | |
2999 | deferred list. */ | |
3000 | ||
3001 | if (! in_main_unit && made_dummy) | |
3002 | { | |
3003 | tree gnu_old_type | |
3004 | = TYPE_FAT_POINTER_P (gnu_type) | |
3005 | ? TYPE_UNCONSTRAINED_ARRAY (gnu_type) : TREE_TYPE (gnu_type); | |
3006 | ||
3007 | if (esize == POINTER_SIZE | |
3008 | && (got_fat_p || TYPE_FAT_POINTER_P (gnu_type))) | |
3009 | gnu_type | |
3010 | = build_pointer_type | |
3011 | (TYPE_OBJECT_RECORD_TYPE | |
3012 | (TYPE_UNCONSTRAINED_ARRAY (gnu_type))); | |
3013 | ||
3014 | gnu_decl = create_type_decl (gnu_entity_id, gnu_type, attr_list, | |
3015 | ! Comes_From_Source (gnat_entity), | |
3016 | debug_info_p); | |
3017 | save_gnu_tree (gnat_entity, gnu_decl, 0); | |
3018 | this_made_decl = saved = 1; | |
3019 | ||
3020 | if (defer_incomplete_level == 0) | |
fbf5a39b AC |
3021 | { |
3022 | update_pointer_to (TYPE_MAIN_VARIANT (gnu_old_type), | |
3023 | gnat_to_gnu_type (gnat_desig_type)); | |
3024 | /* Note that the call to gnat_to_gnu_type here might have | |
3025 | updated gnu_old_type directly, in which case it is not a | |
3026 | dummy type any more when we get into update_pointer_to. | |
3027 | ||
3028 | This may happen for instance when the designated type is a | |
3029 | record type, because their elaboration starts with an | |
3030 | initial node from make_dummy_type, which may yield the same | |
3031 | node as the one we got. | |
3032 | ||
3033 | Besides, variants of this non-dummy type might have been | |
3034 | created along the way. update_pointer_to is expected to | |
3035 | properly take care of those situations. */ | |
3036 | } | |
70482933 RK |
3037 | else |
3038 | { | |
3039 | struct incomplete *p | |
3040 | = (struct incomplete *) xmalloc (sizeof (struct incomplete)); | |
3041 | ||
3042 | p->old_type = gnu_old_type; | |
3043 | p->full_type = gnat_desig_type; | |
3044 | p->next = defer_incomplete_list; | |
3045 | defer_incomplete_list = p; | |
3046 | } | |
3047 | } | |
3048 | } | |
3049 | break; | |
3050 | ||
3051 | case E_Access_Protected_Subprogram_Type: | |
3052 | if (type_annotate_only && No (Equivalent_Type (gnat_entity))) | |
3053 | gnu_type = build_pointer_type (void_type_node); | |
3054 | else | |
3055 | /* The runtime representation is the equivalent type. */ | |
3056 | gnu_type = gnat_to_gnu_type (Equivalent_Type (gnat_entity)); | |
3057 | ||
3058 | if (Is_Itype (Directly_Designated_Type (gnat_entity)) | |
3059 | && ! present_gnu_tree (Directly_Designated_Type (gnat_entity)) | |
3060 | && No (Freeze_Node (Directly_Designated_Type (gnat_entity))) | |
3061 | && ! Is_Record_Type (Scope (Directly_Designated_Type (gnat_entity)))) | |
3062 | gnat_to_gnu_entity (Directly_Designated_Type (gnat_entity), | |
3063 | NULL_TREE, 0); | |
3064 | ||
3065 | break; | |
3066 | ||
3067 | case E_Access_Subtype: | |
3068 | ||
3069 | /* We treat this as identical to its base type; any constraint is | |
3070 | meaningful only to the front end. | |
3071 | ||
3072 | The designated type must be elaborated as well, if it does | |
3073 | not have its own freeze node. Designated (sub)types created | |
3074 | for constrained components of records with discriminants are | |
3075 | not frozen by the front end and thus not elaborated by gigi, | |
3076 | because their use may appear before the base type is frozen, | |
3077 | and because it is not clear that they are needed anywhere in | |
3078 | Gigi. With the current model, there is no correct place where | |
3079 | they could be elaborated. */ | |
3080 | ||
3081 | gnu_type = gnat_to_gnu_type (Etype (gnat_entity)); | |
3082 | if (Is_Itype (Directly_Designated_Type (gnat_entity)) | |
3083 | && ! present_gnu_tree (Directly_Designated_Type (gnat_entity)) | |
3084 | && Is_Frozen (Directly_Designated_Type (gnat_entity)) | |
3085 | && No (Freeze_Node (Directly_Designated_Type (gnat_entity)))) | |
3086 | { | |
3087 | /* If we are not defining this entity, and we have incomplete | |
3088 | entities being processed above us, make a dummy type and | |
3089 | elaborate it later. */ | |
3090 | if (! definition && defer_incomplete_level != 0) | |
3091 | { | |
3092 | struct incomplete *p | |
3093 | = (struct incomplete *) xmalloc (sizeof (struct incomplete)); | |
3094 | tree gnu_ptr_type | |
3095 | = build_pointer_type | |
3096 | (make_dummy_type (Directly_Designated_Type (gnat_entity))); | |
3097 | ||
3098 | p->old_type = TREE_TYPE (gnu_ptr_type); | |
3099 | p->full_type = Directly_Designated_Type (gnat_entity); | |
3100 | p->next = defer_incomplete_list; | |
3101 | defer_incomplete_list = p; | |
3102 | } | |
fbf5a39b AC |
3103 | else if |
3104 | (IN (Ekind (Base_Type (Directly_Designated_Type (gnat_entity))), | |
3105 | Incomplete_Or_Private_Kind)) | |
3106 | { ;} | |
70482933 RK |
3107 | else |
3108 | gnat_to_gnu_entity (Directly_Designated_Type (gnat_entity), | |
3109 | NULL_TREE, 0); | |
3110 | } | |
3111 | ||
3112 | maybe_present = 1; | |
3113 | break; | |
3114 | ||
3115 | /* Subprogram Entities | |
3116 | ||
3117 | The following access functions are defined for subprograms (functions | |
3118 | or procedures): | |
3119 | ||
3120 | First_Formal The first formal parameter. | |
3121 | Is_Imported Indicates that the subprogram has appeared in | |
3122 | an INTERFACE or IMPORT pragma. For now we | |
3123 | assume that the external language is C. | |
3124 | Is_Inlined True if the subprogram is to be inlined. | |
3125 | ||
3126 | In addition for function subprograms we have: | |
3127 | ||
3128 | Etype Return type of the function. | |
3129 | ||
3130 | Each parameter is first checked by calling must_pass_by_ref on its | |
3131 | type to determine if it is passed by reference. For parameters which | |
3132 | are copied in, if they are Ada IN OUT or OUT parameters, their return | |
3133 | value becomes part of a record which becomes the return type of the | |
3134 | function (C function - note that this applies only to Ada procedures | |
3135 | so there is no Ada return type). Additional code to store back the | |
3136 | parameters will be generated on the caller side. This transformation | |
3137 | is done here, not in the front-end. | |
3138 | ||
3139 | The intended result of the transformation can be seen from the | |
3140 | equivalent source rewritings that follow: | |
3141 | ||
3142 | struct temp {int a,b}; | |
3143 | procedure P (A,B: IN OUT ...) is temp P (int A,B) { | |
3144 | .. .. | |
3145 | end P; return {A,B}; | |
3146 | } | |
3147 | procedure call | |
3148 | ||
3149 | { | |
3150 | temp t; | |
3151 | P(X,Y); t = P(X,Y); | |
3152 | X = t.a , Y = t.b; | |
3153 | } | |
3154 | ||
3155 | For subprogram types we need to perform mainly the same conversions to | |
3156 | GCC form that are needed for procedures and function declarations. The | |
3157 | only difference is that at the end, we make a type declaration instead | |
3158 | of a function declaration. */ | |
3159 | ||
3160 | case E_Subprogram_Type: | |
3161 | case E_Function: | |
3162 | case E_Procedure: | |
3163 | { | |
3164 | /* The first GCC parameter declaration (a PARM_DECL node). The | |
3165 | PARM_DECL nodes are chained through the TREE_CHAIN field, so this | |
3166 | actually is the head of this parameter list. */ | |
3167 | tree gnu_param_list = NULL_TREE; | |
3168 | /* The type returned by a function. If the subprogram is a procedure | |
3169 | this type should be void_type_node. */ | |
3170 | tree gnu_return_type = void_type_node; | |
3171 | /* List of fields in return type of procedure with copy in copy out | |
3172 | parameters. */ | |
3173 | tree gnu_field_list = NULL_TREE; | |
3174 | /* Non-null for subprograms containing parameters passed by copy in | |
3175 | copy out (Ada IN OUT or OUT parameters not passed by reference), | |
3176 | in which case it is the list of nodes used to specify the values of | |
3177 | the in out/out parameters that are returned as a record upon | |
3178 | procedure return. The TREE_PURPOSE of an element of this list is | |
3179 | a field of the record and the TREE_VALUE is the PARM_DECL | |
3180 | corresponding to that field. This list will be saved in the | |
3181 | TYPE_CI_CO_LIST field of the FUNCTION_TYPE node we create. */ | |
3182 | tree gnu_return_list = NULL_TREE; | |
3183 | Entity_Id gnat_param; | |
3184 | int inline_flag = Is_Inlined (gnat_entity); | |
3185 | int public_flag = Is_Public (gnat_entity); | |
3186 | int extern_flag | |
3187 | = (Is_Public (gnat_entity) && !definition) || imported_p; | |
3188 | int pure_flag = Is_Pure (gnat_entity); | |
3189 | int volatile_flag = No_Return (gnat_entity); | |
3190 | int returns_by_ref = 0; | |
3191 | int returns_unconstrained = 0; | |
fbf5a39b | 3192 | tree gnu_ext_name = create_concat_name (gnat_entity, 0); |
70482933 RK |
3193 | int has_copy_in_out = 0; |
3194 | int parmnum; | |
3195 | ||
3196 | if (kind == E_Subprogram_Type && ! definition) | |
3197 | /* A parameter may refer to this type, so defer completion | |
3198 | of any incomplete types. */ | |
3199 | defer_incomplete_level++, this_deferred = 1; | |
3200 | ||
3201 | /* If the subprogram has an alias, it is probably inherited, so | |
3202 | we can use the original one. If the original "subprogram" | |
3203 | is actually an enumeration literal, it may be the first use | |
3204 | of its type, so we must elaborate that type now. */ | |
3205 | if (Present (Alias (gnat_entity))) | |
3206 | { | |
3207 | if (Ekind (Alias (gnat_entity)) == E_Enumeration_Literal) | |
3208 | gnat_to_gnu_entity (Etype (Alias (gnat_entity)), NULL_TREE, 0); | |
3209 | ||
3210 | gnu_decl = gnat_to_gnu_entity (Alias (gnat_entity), | |
3211 | gnu_expr, 0); | |
3212 | ||
3213 | /* Elaborate any Itypes in the parameters of this entity. */ | |
3214 | for (gnat_temp = First_Formal (gnat_entity); | |
3215 | Present (gnat_temp); | |
3216 | gnat_temp = Next_Formal_With_Extras (gnat_temp)) | |
3217 | if (Is_Itype (Etype (gnat_temp))) | |
3218 | gnat_to_gnu_entity (Etype (gnat_temp), NULL_TREE, 0); | |
3219 | ||
3220 | break; | |
3221 | } | |
3222 | ||
3223 | if (kind == E_Function || kind == E_Subprogram_Type) | |
3224 | gnu_return_type = gnat_to_gnu_type (Etype (gnat_entity)); | |
3225 | ||
3226 | /* If this function returns by reference, make the actual | |
3227 | return type of this function the pointer and mark the decl. */ | |
3228 | if (Returns_By_Ref (gnat_entity)) | |
3229 | { | |
3230 | returns_by_ref = 1; | |
70482933 RK |
3231 | gnu_return_type = build_pointer_type (gnu_return_type); |
3232 | } | |
3233 | ||
fbf5a39b AC |
3234 | /* If the Mechanism is By_Reference, ensure the return type uses |
3235 | the machine's by-reference mechanism, which may not the same | |
3236 | as above (e.g., it might be by passing a fake parameter). */ | |
3237 | else if (kind == E_Function | |
3238 | && Mechanism (gnat_entity) == By_Reference) | |
3239 | { | |
3240 | gnu_return_type = copy_type (gnu_return_type); | |
3241 | TREE_ADDRESSABLE (gnu_return_type) = 1; | |
3242 | } | |
3243 | ||
70482933 RK |
3244 | /* If we are supposed to return an unconstrained array, |
3245 | actually return a fat pointer and make a note of that. Return | |
3246 | a pointer to an unconstrained record of variable size. */ | |
3247 | else if (TREE_CODE (gnu_return_type) == UNCONSTRAINED_ARRAY_TYPE) | |
3248 | { | |
3249 | gnu_return_type = TREE_TYPE (gnu_return_type); | |
3250 | returns_unconstrained = 1; | |
3251 | } | |
3252 | ||
fbf5a39b AC |
3253 | /* If the type requires a transient scope, the result is allocated |
3254 | on the secondary stack, so the result type of the function is | |
3255 | just a pointer. */ | |
70482933 RK |
3256 | else if (Requires_Transient_Scope (Etype (gnat_entity))) |
3257 | { | |
3258 | gnu_return_type = build_pointer_type (gnu_return_type); | |
3259 | returns_unconstrained = 1; | |
3260 | } | |
3261 | ||
3262 | /* If the type is a padded type and the underlying type would not | |
3263 | be passed by reference or this function has a foreign convention, | |
3264 | return the underlying type. */ | |
3265 | else if (TREE_CODE (gnu_return_type) == RECORD_TYPE | |
3266 | && TYPE_IS_PADDING_P (gnu_return_type) | |
3267 | && (! default_pass_by_ref (TREE_TYPE | |
3268 | (TYPE_FIELDS (gnu_return_type))) | |
3269 | || Has_Foreign_Convention (gnat_entity))) | |
3270 | gnu_return_type = TREE_TYPE (TYPE_FIELDS (gnu_return_type)); | |
3271 | ||
3272 | /* Look at all our parameters and get the type of | |
3273 | each. While doing this, build a copy-out structure if | |
3274 | we need one. */ | |
3275 | ||
3276 | for (gnat_param = First_Formal (gnat_entity), parmnum = 0; | |
3277 | Present (gnat_param); | |
3278 | gnat_param = Next_Formal_With_Extras (gnat_param), parmnum++) | |
3279 | { | |
3280 | tree gnu_param_name = get_entity_name (gnat_param); | |
3281 | tree gnu_param_type = gnat_to_gnu_type (Etype (gnat_param)); | |
3282 | tree gnu_param, gnu_field; | |
3283 | int by_ref_p = 0; | |
3284 | int by_descr_p = 0; | |
3285 | int by_component_ptr_p = 0; | |
3286 | int copy_in_copy_out_flag = 0; | |
3287 | int req_by_copy = 0, req_by_ref = 0; | |
3288 | ||
3289 | /* See if a Mechanism was supplied that forced this | |
3290 | parameter to be passed one way or another. */ | |
3291 | if (Is_Valued_Procedure (gnat_entity) && parmnum == 0) | |
3292 | req_by_copy = 1; | |
3293 | else if (Mechanism (gnat_param) == Default) | |
3294 | ; | |
3295 | else if (Mechanism (gnat_param) == By_Copy) | |
3296 | req_by_copy = 1; | |
3297 | else if (Mechanism (gnat_param) == By_Reference) | |
3298 | req_by_ref = 1; | |
3299 | else if (Mechanism (gnat_param) <= By_Descriptor) | |
3300 | by_descr_p = 1; | |
3301 | else if (Mechanism (gnat_param) > 0) | |
3302 | { | |
3303 | if (TREE_CODE (gnu_param_type) == UNCONSTRAINED_ARRAY_TYPE | |
3304 | || TREE_CODE (TYPE_SIZE (gnu_param_type)) != INTEGER_CST | |
3305 | || 0 < compare_tree_int (TYPE_SIZE (gnu_param_type), | |
3306 | Mechanism (gnat_param))) | |
3307 | req_by_ref = 1; | |
3308 | else | |
3309 | req_by_copy = 1; | |
3310 | } | |
3311 | else | |
3312 | post_error ("unsupported mechanism for&", gnat_param); | |
3313 | ||
3314 | /* If this is either a foreign function or if the | |
3315 | underlying type won't be passed by refererence, strip off | |
3316 | possible padding type. */ | |
3317 | if (TREE_CODE (gnu_param_type) == RECORD_TYPE | |
3318 | && TYPE_IS_PADDING_P (gnu_param_type) | |
3319 | && (req_by_ref || Has_Foreign_Convention (gnat_entity) | |
3320 | || ! must_pass_by_ref (TREE_TYPE (TYPE_FIELDS | |
3321 | (gnu_param_type))))) | |
3322 | gnu_param_type = TREE_TYPE (TYPE_FIELDS (gnu_param_type)); | |
3323 | ||
3324 | /* If this is an IN parameter it is read-only, so make a variant | |
3325 | of the type that is read-only. | |
3326 | ||
3327 | ??? However, if this is an unconstrained array, that type can | |
3328 | be very complex. So skip it for now. Likewise for any other | |
3329 | self-referential type. */ | |
3330 | if (Ekind (gnat_param) == E_In_Parameter | |
3331 | && TREE_CODE (gnu_param_type) != UNCONSTRAINED_ARRAY_TYPE | |
3332 | && ! (TYPE_SIZE (gnu_param_type) != 0 | |
fbf5a39b | 3333 | && CONTAINS_PLACEHOLDER_P (TYPE_SIZE (gnu_param_type)))) |
70482933 RK |
3334 | gnu_param_type |
3335 | = build_qualified_type (gnu_param_type, | |
3336 | (TYPE_QUALS (gnu_param_type) | |
3337 | | TYPE_QUAL_CONST)); | |
3338 | ||
3339 | /* For foreign conventions, pass arrays as a pointer to the | |
3340 | underlying type. First check for unconstrained array and get | |
3341 | the underlying array. Then get the component type and build | |
3342 | a pointer to it. */ | |
3343 | if (Has_Foreign_Convention (gnat_entity) | |
3344 | && TREE_CODE (gnu_param_type) == UNCONSTRAINED_ARRAY_TYPE) | |
3345 | gnu_param_type | |
3346 | = TREE_TYPE (TREE_TYPE (TYPE_FIELDS | |
3347 | (TREE_TYPE (gnu_param_type)))); | |
3348 | ||
3349 | if (by_descr_p) | |
3350 | gnu_param_type | |
3351 | = build_pointer_type | |
3352 | (build_vms_descriptor (gnu_param_type, | |
3353 | Mechanism (gnat_param), | |
3354 | gnat_entity)); | |
3355 | ||
3356 | else if (Has_Foreign_Convention (gnat_entity) | |
3357 | && ! req_by_copy | |
3358 | && TREE_CODE (gnu_param_type) == ARRAY_TYPE) | |
3359 | { | |
3360 | /* Strip off any multi-dimensional entries, then strip | |
3361 | off the last array to get the component type. */ | |
3362 | while (TREE_CODE (TREE_TYPE (gnu_param_type)) == ARRAY_TYPE | |
3363 | && TYPE_MULTI_ARRAY_P (TREE_TYPE (gnu_param_type))) | |
3364 | gnu_param_type = TREE_TYPE (gnu_param_type); | |
3365 | ||
3366 | by_component_ptr_p = 1; | |
3367 | gnu_param_type = TREE_TYPE (gnu_param_type); | |
3368 | ||
3369 | if (Ekind (gnat_param) == E_In_Parameter) | |
3370 | gnu_param_type | |
3371 | = build_qualified_type (gnu_param_type, | |
3372 | (TYPE_QUALS (gnu_param_type) | |
3373 | | TYPE_QUAL_CONST)); | |
3374 | ||
3375 | gnu_param_type = build_pointer_type (gnu_param_type); | |
3376 | } | |
3377 | ||
3378 | /* Fat pointers are passed as thin pointers for foreign | |
3379 | conventions. */ | |
3380 | else if (Has_Foreign_Convention (gnat_entity) | |
3381 | && TYPE_FAT_POINTER_P (gnu_param_type)) | |
3382 | gnu_param_type | |
3383 | = make_type_from_size (gnu_param_type, | |
3384 | size_int (POINTER_SIZE), 0); | |
3385 | ||
3386 | /* If we must pass or were requested to pass by reference, do so. | |
3387 | If we were requested to pass by copy, do so. | |
3388 | Otherwise, for foreign conventions, pass all in out parameters | |
3389 | or aggregates by reference. For COBOL and Fortran, pass | |
3390 | all integer and FP types that way too. For Convention Ada, | |
3391 | use the standard Ada default. */ | |
fbf5a39b | 3392 | else if (must_pass_by_ref (gnu_param_type) || req_by_ref |
70482933 RK |
3393 | || (! req_by_copy |
3394 | && ((Has_Foreign_Convention (gnat_entity) | |
3395 | && (Ekind (gnat_param) != E_In_Parameter | |
3396 | || AGGREGATE_TYPE_P (gnu_param_type))) | |
3397 | || (((Convention (gnat_entity) | |
3398 | == Convention_Fortran) | |
3399 | || (Convention (gnat_entity) | |
3400 | == Convention_COBOL)) | |
3401 | && (INTEGRAL_TYPE_P (gnu_param_type) | |
3402 | || FLOAT_TYPE_P (gnu_param_type))) | |
3403 | /* For convention Ada, see if we pass by reference | |
3404 | by default. */ | |
3405 | || (! Has_Foreign_Convention (gnat_entity) | |
3406 | && default_pass_by_ref (gnu_param_type))))) | |
3407 | { | |
3408 | gnu_param_type = build_reference_type (gnu_param_type); | |
3409 | by_ref_p = 1; | |
3410 | } | |
3411 | ||
fbf5a39b | 3412 | else if (Ekind (gnat_param) != E_In_Parameter) |
70482933 RK |
3413 | copy_in_copy_out_flag = 1; |
3414 | ||
3415 | if (req_by_copy && (by_ref_p || by_component_ptr_p)) | |
3416 | post_error ("?cannot pass & by copy", gnat_param); | |
3417 | ||
3418 | /* If this is an OUT parameter that isn't passed by reference | |
3419 | and isn't a pointer or aggregate, we don't make a PARM_DECL | |
3420 | for it. Instead, it will be a VAR_DECL created when we process | |
3421 | the procedure. For the special parameter of Valued_Procedure, | |
fbf5a39b AC |
3422 | never pass it in. |
3423 | ||
3424 | An exception is made to cover the RM-6.4.1 rule requiring "by | |
3425 | copy" out parameters with discriminants or implicit initial | |
3426 | values to be handled like in out parameters. These type are | |
3427 | normally built as aggregates, and hence passed by reference, | |
3428 | except for some packed arrays which end up encoded in special | |
3429 | integer types. | |
3430 | ||
3431 | The exception we need to make is then for packed arrays of | |
3432 | records with discriminants or implicit initial values. We have | |
3433 | no light/easy way to check for the latter case, so we merely | |
3434 | check for packed arrays of records. This may lead to useless | |
3435 | copy-in operations, but in very rare cases only, as these would | |
3436 | be exceptions in a set of already exceptional situations. */ | |
70482933 RK |
3437 | if (Ekind (gnat_param) == E_Out_Parameter && ! by_ref_p |
3438 | && ((Is_Valued_Procedure (gnat_entity) && parmnum == 0) | |
3439 | || (! by_descr_p | |
3440 | && ! POINTER_TYPE_P (gnu_param_type) | |
fbf5a39b AC |
3441 | && ! AGGREGATE_TYPE_P (gnu_param_type))) |
3442 | && ! (Is_Array_Type (Etype (gnat_param)) | |
3443 | && Is_Packed (Etype (gnat_param)) | |
3444 | && Is_Composite_Type (Component_Type | |
3445 | (Etype (gnat_param))))) | |
70482933 RK |
3446 | gnu_param = 0; |
3447 | else | |
3448 | { | |
3449 | set_lineno (gnat_param, 0); | |
3450 | gnu_param | |
3451 | = create_param_decl | |
3452 | (gnu_param_name, gnu_param_type, | |
3453 | by_ref_p || by_component_ptr_p | |
3454 | || Ekind (gnat_param) == E_In_Parameter); | |
3455 | ||
3456 | DECL_BY_REF_P (gnu_param) = by_ref_p; | |
3457 | DECL_BY_COMPONENT_PTR_P (gnu_param) = by_component_ptr_p; | |
3458 | DECL_BY_DESCRIPTOR_P (gnu_param) = by_descr_p; | |
3459 | DECL_POINTS_TO_READONLY_P (gnu_param) | |
3460 | = (Ekind (gnat_param) == E_In_Parameter | |
3461 | && (by_ref_p || by_component_ptr_p)); | |
3462 | save_gnu_tree (gnat_param, gnu_param, 0); | |
3463 | gnu_param_list = chainon (gnu_param, gnu_param_list); | |
3464 | ||
3465 | /* If a parameter is a pointer, this function may modify | |
3466 | memory through it and thus shouldn't be considered | |
3467 | a pure function. Also, the memory may be modified | |
3468 | between two calls, so they can't be CSE'ed. The latter | |
3469 | case also handles by-ref parameters. */ | |
3470 | if (POINTER_TYPE_P (gnu_param_type) | |
3471 | || TYPE_FAT_POINTER_P (gnu_param_type)) | |
3472 | pure_flag = 0; | |
3473 | } | |
3474 | ||
fbf5a39b | 3475 | if (copy_in_copy_out_flag) |
70482933 RK |
3476 | { |
3477 | if (! has_copy_in_out) | |
3478 | { | |
3479 | if (TREE_CODE (gnu_return_type) != VOID_TYPE) | |
3480 | gigi_abort (111); | |
3481 | ||
3482 | gnu_return_type = make_node (RECORD_TYPE); | |
3483 | TYPE_NAME (gnu_return_type) = get_identifier ("RETURN"); | |
3484 | has_copy_in_out = 1; | |
3485 | } | |
3486 | ||
3487 | set_lineno (gnat_param, 0); | |
3488 | gnu_field = create_field_decl (gnu_param_name, gnu_param_type, | |
3489 | gnu_return_type, 0, 0, 0, 0); | |
3490 | TREE_CHAIN (gnu_field) = gnu_field_list; | |
3491 | gnu_field_list = gnu_field; | |
3492 | gnu_return_list = tree_cons (gnu_field, gnu_param, | |
3493 | gnu_return_list); | |
3494 | } | |
3495 | } | |
3496 | ||
fbf5a39b AC |
3497 | /* Do not compute record for out parameters if subprogram is |
3498 | stubbed since structures are incomplete for the back-end. */ | |
70482933 RK |
3499 | if (gnu_field_list != 0 |
3500 | && Convention (gnat_entity) != Convention_Stubbed) | |
3501 | finish_record_type (gnu_return_type, nreverse (gnu_field_list), | |
3502 | 0, 0); | |
3503 | ||
3504 | /* If we have a CICO list but it has only one entry, we convert | |
3505 | this function into a function that simply returns that one | |
3506 | object. */ | |
3507 | if (list_length (gnu_return_list) == 1) | |
3508 | gnu_return_type = TREE_TYPE (TREE_PURPOSE (gnu_return_list)); | |
3509 | ||
fbf5a39b | 3510 | #ifdef _WIN32 |
70482933 RK |
3511 | if (Convention (gnat_entity) == Convention_Stdcall) |
3512 | { | |
3513 | struct attrib *attr | |
3514 | = (struct attrib *) xmalloc (sizeof (struct attrib)); | |
3515 | ||
3516 | attr->next = attr_list; | |
3517 | attr->type = ATTR_MACHINE_ATTRIBUTE; | |
3518 | attr->name = get_identifier ("stdcall"); | |
3519 | attr->arg = NULL_TREE; | |
3520 | attr->error_point = gnat_entity; | |
3521 | attr_list = attr; | |
3522 | } | |
fbf5a39b | 3523 | #endif |
70482933 RK |
3524 | |
3525 | /* Both lists ware built in reverse. */ | |
3526 | gnu_param_list = nreverse (gnu_param_list); | |
3527 | gnu_return_list = nreverse (gnu_return_list); | |
3528 | ||
3529 | gnu_type | |
3530 | = create_subprog_type (gnu_return_type, gnu_param_list, | |
3531 | gnu_return_list, returns_unconstrained, | |
3532 | returns_by_ref, | |
3533 | Function_Returns_With_DSP (gnat_entity)); | |
3534 | ||
638e383e | 3535 | /* ??? For now, don't consider nested functions pure. */ |
70482933 RK |
3536 | if (! global_bindings_p ()) |
3537 | pure_flag = 0; | |
3538 | ||
3539 | gnu_type | |
3540 | = build_qualified_type (gnu_type, | |
3541 | (TYPE_QUALS (gnu_type) | |
3542 | | (TYPE_QUAL_CONST * pure_flag) | |
3543 | | (TYPE_QUAL_VOLATILE * volatile_flag))); | |
3544 | ||
70482933 RK |
3545 | set_lineno (gnat_entity, 0); |
3546 | ||
fbf5a39b AC |
3547 | /* If there was no specified Interface_Name and the external and |
3548 | internal names of the subprogram are the same, only use the | |
3549 | internal name to allow disambiguation of nested subprograms. */ | |
3550 | if (No (Interface_Name (gnat_entity)) && gnu_ext_name == gnu_entity_id) | |
3551 | gnu_ext_name = 0; | |
3552 | ||
70482933 RK |
3553 | /* If we are defining the subprogram and it has an Address clause |
3554 | we must get the address expression from the saved GCC tree for the | |
3555 | subprogram if it has a Freeze_Node. Otherwise, we elaborate | |
3556 | the address expression here since the front-end has guaranteed | |
3557 | in that case that the elaboration has no effects. If there is | |
3558 | an Address clause and we are not defining the object, just | |
3559 | make it a constant. */ | |
3560 | if (Present (Address_Clause (gnat_entity))) | |
3561 | { | |
3562 | tree gnu_address = 0; | |
3563 | ||
3564 | if (definition) | |
3565 | gnu_address | |
3566 | = (present_gnu_tree (gnat_entity) | |
3567 | ? get_gnu_tree (gnat_entity) | |
3568 | : gnat_to_gnu (Expression (Address_Clause (gnat_entity)))); | |
3569 | ||
3570 | save_gnu_tree (gnat_entity, NULL_TREE, 0); | |
3571 | ||
3572 | gnu_type = build_reference_type (gnu_type); | |
3573 | if (gnu_address != 0) | |
3574 | gnu_address = convert (gnu_type, gnu_address); | |
3575 | ||
3576 | gnu_decl | |
3577 | = create_var_decl (gnu_entity_id, gnu_ext_name, gnu_type, | |
3578 | gnu_address, 0, Is_Public (gnat_entity), | |
3579 | extern_flag, 0, 0); | |
3580 | DECL_BY_REF_P (gnu_decl) = 1; | |
3581 | } | |
3582 | ||
fbf5a39b AC |
3583 | else if (kind == E_Subprogram_Type) |
3584 | gnu_decl = create_type_decl (gnu_entity_id, gnu_type, attr_list, | |
70482933 RK |
3585 | ! Comes_From_Source (gnat_entity), |
3586 | debug_info_p); | |
fbf5a39b | 3587 | else |
70482933 RK |
3588 | { |
3589 | gnu_decl = create_subprog_decl (gnu_entity_id, gnu_ext_name, | |
3590 | gnu_type, gnu_param_list, | |
3591 | inline_flag, public_flag, | |
3592 | extern_flag, attr_list); | |
3593 | DECL_STUBBED_P (gnu_decl) | |
3594 | = Convention (gnat_entity) == Convention_Stubbed; | |
3595 | } | |
3596 | } | |
3597 | break; | |
3598 | ||
3599 | case E_Incomplete_Type: | |
3600 | case E_Private_Type: | |
3601 | case E_Limited_Private_Type: | |
3602 | case E_Record_Type_With_Private: | |
3603 | case E_Private_Subtype: | |
3604 | case E_Limited_Private_Subtype: | |
3605 | case E_Record_Subtype_With_Private: | |
3606 | ||
3607 | /* If this type does not have a full view in the unit we are | |
3608 | compiling, then just get the type from its Etype. */ | |
3609 | if (No (Full_View (gnat_entity))) | |
3610 | { | |
3611 | /* If this is an incomplete type with no full view, it must | |
3612 | be a Taft Amendement type, so just return a dummy type. */ | |
3613 | if (kind == E_Incomplete_Type) | |
3614 | gnu_type = make_dummy_type (gnat_entity); | |
3615 | ||
3616 | else if (Present (Underlying_Full_View (gnat_entity))) | |
3617 | gnu_decl = gnat_to_gnu_entity (Underlying_Full_View (gnat_entity), | |
3618 | NULL_TREE, 0); | |
3619 | else | |
3620 | { | |
3621 | gnu_decl = gnat_to_gnu_entity (Etype (gnat_entity), | |
3622 | NULL_TREE, 0); | |
3623 | maybe_present = 1; | |
3624 | } | |
3625 | ||
3626 | break; | |
3627 | } | |
3628 | ||
3629 | /* Otherwise, if we are not defining the type now, get the | |
3630 | type from the full view. But always get the type from the full | |
3631 | view for define on use types, since otherwise we won't see them! */ | |
3632 | ||
3633 | else if (! definition | |
3634 | || (Is_Itype (Full_View (gnat_entity)) | |
3635 | && No (Freeze_Node (gnat_entity))) | |
3636 | || (Is_Itype (gnat_entity) | |
3637 | && No (Freeze_Node (Full_View (gnat_entity))))) | |
3638 | { | |
3639 | gnu_decl = gnat_to_gnu_entity (Full_View (gnat_entity), | |
3640 | NULL_TREE, 0); | |
3641 | maybe_present = 1; | |
3642 | break; | |
3643 | } | |
3644 | ||
3645 | /* For incomplete types, make a dummy type entry which will be | |
3646 | replaced later. */ | |
3647 | gnu_type = make_dummy_type (gnat_entity); | |
3648 | ||
3649 | /* Save this type as the full declaration's type so we can do any needed | |
3650 | updates when we see it. */ | |
3651 | set_lineno (gnat_entity, 0); | |
3652 | gnu_decl = create_type_decl (gnu_entity_id, gnu_type, attr_list, | |
3653 | ! Comes_From_Source (gnat_entity), | |
3654 | debug_info_p); | |
3655 | save_gnu_tree (Full_View (gnat_entity), gnu_decl, 0); | |
3656 | break; | |
3657 | ||
3658 | /* Simple class_wide types are always viewed as their root_type | |
3659 | by Gigi unless an Equivalent_Type is specified. */ | |
3660 | case E_Class_Wide_Type: | |
3661 | if (Present (Equivalent_Type (gnat_entity))) | |
3662 | gnu_type = gnat_to_gnu_type (Equivalent_Type (gnat_entity)); | |
3663 | else | |
3664 | gnu_type = gnat_to_gnu_type (Root_Type (gnat_entity)); | |
3665 | ||
3666 | maybe_present = 1; | |
3667 | break; | |
3668 | ||
3669 | case E_Task_Type: | |
3670 | case E_Task_Subtype: | |
3671 | case E_Protected_Type: | |
3672 | case E_Protected_Subtype: | |
3673 | if (type_annotate_only && No (Corresponding_Record_Type (gnat_entity))) | |
3674 | gnu_type = void_type_node; | |
3675 | else | |
3676 | gnu_type = gnat_to_gnu_type (Corresponding_Record_Type (gnat_entity)); | |
3677 | ||
3678 | maybe_present = 1; | |
3679 | break; | |
3680 | ||
3681 | case E_Label: | |
3682 | gnu_decl = create_label_decl (gnu_entity_id); | |
3683 | break; | |
3684 | ||
3685 | case E_Block: | |
3686 | case E_Loop: | |
3687 | /* Nothing at all to do here, so just return an ERROR_MARK and claim | |
3688 | we've already saved it, so we don't try to. */ | |
3689 | gnu_decl = error_mark_node; | |
3690 | saved = 1; | |
3691 | break; | |
3692 | ||
3693 | default: | |
3694 | gigi_abort (113); | |
3695 | } | |
3696 | ||
3697 | /* If we had a case where we evaluated another type and it might have | |
3698 | defined this one, handle it here. */ | |
3699 | if (maybe_present && present_gnu_tree (gnat_entity)) | |
3700 | { | |
3701 | gnu_decl = get_gnu_tree (gnat_entity); | |
3702 | saved = 1; | |
3703 | } | |
3704 | ||
3705 | /* If we are processing a type and there is either no decl for it or | |
3706 | we just made one, do some common processing for the type, such as | |
3707 | handling alignment and possible padding. */ | |
3708 | ||
3709 | if ((gnu_decl == 0 || this_made_decl) && IN (kind, Type_Kind)) | |
3710 | { | |
fbf5a39b AC |
3711 | if (Is_Tagged_Type (gnat_entity) |
3712 | || Is_Class_Wide_Equivalent_Type (gnat_entity)) | |
07fc65c4 | 3713 | TYPE_ALIGN_OK (gnu_type) = 1; |
70482933 RK |
3714 | |
3715 | if (AGGREGATE_TYPE_P (gnu_type) && Is_By_Reference_Type (gnat_entity)) | |
3716 | TYPE_BY_REFERENCE_P (gnu_type) = 1; | |
3717 | ||
3718 | /* ??? Don't set the size for a String_Literal since it is either | |
3719 | confirming or we don't handle it properly (if the low bound is | |
3720 | non-constant). */ | |
3721 | if (gnu_size == 0 && kind != E_String_Literal_Subtype) | |
3722 | gnu_size = validate_size (Esize (gnat_entity), gnu_type, gnat_entity, | |
3723 | TYPE_DECL, 0, Has_Size_Clause (gnat_entity)); | |
3724 | ||
3725 | /* If a size was specified, see if we can make a new type of that size | |
3726 | by rearranging the type, for example from a fat to a thin pointer. */ | |
3727 | if (gnu_size != 0) | |
3728 | { | |
3729 | gnu_type | |
3730 | = make_type_from_size (gnu_type, gnu_size, | |
3731 | Has_Biased_Representation (gnat_entity)); | |
3732 | ||
3733 | if (operand_equal_p (TYPE_SIZE (gnu_type), gnu_size, 0) | |
3734 | && operand_equal_p (rm_size (gnu_type), gnu_size, 0)) | |
3735 | gnu_size = 0; | |
3736 | } | |
3737 | ||
3738 | /* If the alignment hasn't already been processed and this is | |
3739 | not an unconstrained array, see if an alignment is specified. | |
3740 | If not, we pick a default alignment for atomic objects. */ | |
3741 | if (align != 0 || TREE_CODE (gnu_type) == UNCONSTRAINED_ARRAY_TYPE) | |
3742 | ; | |
3743 | else if (Known_Alignment (gnat_entity)) | |
3744 | align = validate_alignment (Alignment (gnat_entity), gnat_entity, | |
3745 | TYPE_ALIGN (gnu_type)); | |
3746 | else if (Is_Atomic (gnat_entity) && gnu_size == 0 | |
3747 | && host_integerp (TYPE_SIZE (gnu_type), 1) | |
3748 | && integer_pow2p (TYPE_SIZE (gnu_type))) | |
3749 | align = MIN (BIGGEST_ALIGNMENT, | |
3750 | tree_low_cst (TYPE_SIZE (gnu_type), 1)); | |
3751 | else if (Is_Atomic (gnat_entity) && gnu_size != 0 | |
3752 | && host_integerp (gnu_size, 1) | |
3753 | && integer_pow2p (gnu_size)) | |
3754 | align = MIN (BIGGEST_ALIGNMENT, tree_low_cst (gnu_size, 1)); | |
3755 | ||
3756 | /* See if we need to pad the type. If we did, and made a record, | |
3757 | the name of the new type may be changed. So get it back for | |
3758 | us when we make the new TYPE_DECL below. */ | |
3759 | gnu_type = maybe_pad_type (gnu_type, gnu_size, align, | |
3760 | gnat_entity, "PAD", 1, definition, 0); | |
3761 | if (TREE_CODE (gnu_type) == RECORD_TYPE | |
3762 | && TYPE_IS_PADDING_P (gnu_type)) | |
3763 | { | |
3764 | gnu_entity_id = TYPE_NAME (gnu_type); | |
3765 | if (TREE_CODE (gnu_entity_id) == TYPE_DECL) | |
3766 | gnu_entity_id = DECL_NAME (gnu_entity_id); | |
3767 | } | |
3768 | ||
3769 | set_rm_size (RM_Size (gnat_entity), gnu_type, gnat_entity); | |
3770 | ||
3771 | /* If we are at global level, GCC will have applied variable_size to | |
3772 | the type, but that won't have done anything. So, if it's not | |
3773 | a constant or self-referential, call elaborate_expression_1 to | |
3774 | make a variable for the size rather than calculating it each time. | |
3775 | Handle both the RM size and the actual size. */ | |
3776 | if (global_bindings_p () | |
3777 | && TYPE_SIZE (gnu_type) != 0 | |
fbf5a39b AC |
3778 | && ! TREE_CONSTANT (TYPE_SIZE (gnu_type)) |
3779 | && ! CONTAINS_PLACEHOLDER_P (TYPE_SIZE (gnu_type))) | |
70482933 RK |
3780 | { |
3781 | if (TREE_CODE (gnu_type) == RECORD_TYPE | |
3782 | && operand_equal_p (TYPE_ADA_SIZE (gnu_type), | |
3783 | TYPE_SIZE (gnu_type), 0)) | |
e2500fed GK |
3784 | { |
3785 | TYPE_SIZE (gnu_type) | |
3786 | = elaborate_expression_1 (gnat_entity, gnat_entity, | |
3787 | TYPE_SIZE (gnu_type), | |
3788 | get_identifier ("SIZE"), | |
3789 | definition, 0); | |
3790 | SET_TYPE_ADA_SIZE (gnu_type, TYPE_SIZE (gnu_type)); | |
3791 | } | |
70482933 RK |
3792 | else |
3793 | { | |
3794 | TYPE_SIZE (gnu_type) | |
3795 | = elaborate_expression_1 (gnat_entity, gnat_entity, | |
3796 | TYPE_SIZE (gnu_type), | |
3797 | get_identifier ("SIZE"), | |
3798 | definition, 0); | |
07fc65c4 GB |
3799 | |
3800 | /* ??? For now, store the size as a multiple of the alignment | |
3801 | in bytes so that we can see the alignment from the tree. */ | |
70482933 | 3802 | TYPE_SIZE_UNIT (gnu_type) |
07fc65c4 GB |
3803 | = build_binary_op |
3804 | (MULT_EXPR, sizetype, | |
3805 | elaborate_expression_1 | |
3806 | (gnat_entity, gnat_entity, | |
3807 | build_binary_op (EXACT_DIV_EXPR, sizetype, | |
3808 | TYPE_SIZE_UNIT (gnu_type), | |
3809 | size_int (TYPE_ALIGN (gnu_type) | |
3810 | / BITS_PER_UNIT)), | |
3811 | get_identifier ("SIZE_A_UNIT"), | |
3812 | definition, 0), | |
3813 | size_int (TYPE_ALIGN (gnu_type) / BITS_PER_UNIT)); | |
3814 | ||
3815 | if (TREE_CODE (gnu_type) == RECORD_TYPE) | |
e2500fed GK |
3816 | SET_TYPE_ADA_SIZE (gnu_type, |
3817 | elaborate_expression_1 (gnat_entity, gnat_entity, | |
07fc65c4 GB |
3818 | TYPE_ADA_SIZE (gnu_type), |
3819 | get_identifier ("RM_SIZE"), | |
e2500fed | 3820 | definition, 0)); |
70482933 RK |
3821 | } |
3822 | } | |
3823 | ||
3824 | /* If this is a record type or subtype, call elaborate_expression_1 on | |
3825 | any field position. Do this for both global and local types. | |
3826 | Skip any fields that we haven't made trees for to avoid problems with | |
3827 | class wide types. */ | |
3828 | if (IN (kind, Record_Kind)) | |
3829 | for (gnat_temp = First_Entity (gnat_entity); Present (gnat_temp); | |
3830 | gnat_temp = Next_Entity (gnat_temp)) | |
3831 | if (Ekind (gnat_temp) == E_Component && present_gnu_tree (gnat_temp)) | |
3832 | { | |
3833 | tree gnu_field = get_gnu_tree (gnat_temp); | |
3834 | ||
07fc65c4 GB |
3835 | /* ??? Unfortunately, GCC needs to be able to prove the |
3836 | alignment of this offset and if it's a variable, it can't. | |
fbf5a39b | 3837 | In GCC 3.4, we'll use DECL_OFFSET_ALIGN in some way, but |
07fc65c4 GB |
3838 | right now, we have to put in an explicit multiply and |
3839 | divide by that value. */ | |
fbf5a39b | 3840 | if (! CONTAINS_PLACEHOLDER_P (DECL_FIELD_OFFSET (gnu_field))) |
70482933 | 3841 | DECL_FIELD_OFFSET (gnu_field) |
07fc65c4 GB |
3842 | = build_binary_op |
3843 | (MULT_EXPR, sizetype, | |
3844 | elaborate_expression_1 | |
fbf5a39b | 3845 | (gnat_temp, gnat_temp, |
07fc65c4 GB |
3846 | build_binary_op (EXACT_DIV_EXPR, sizetype, |
3847 | DECL_FIELD_OFFSET (gnu_field), | |
3848 | size_int (DECL_OFFSET_ALIGN (gnu_field) | |
3849 | / BITS_PER_UNIT)), | |
3850 | get_identifier ("OFFSET"), | |
3851 | definition, 0), | |
3852 | size_int (DECL_OFFSET_ALIGN (gnu_field) / BITS_PER_UNIT)); | |
70482933 RK |
3853 | } |
3854 | ||
3855 | gnu_type = build_qualified_type (gnu_type, | |
3856 | (TYPE_QUALS (gnu_type) | |
3857 | | (TYPE_QUAL_VOLATILE | |
fbf5a39b | 3858 | * Treat_As_Volatile (gnat_entity)))); |
70482933 RK |
3859 | |
3860 | if (Is_Atomic (gnat_entity)) | |
3861 | check_ok_for_atomic (gnu_type, gnat_entity, 0); | |
3862 | ||
3863 | if (Known_Alignment (gnat_entity)) | |
3864 | TYPE_USER_ALIGN (gnu_type) = 1; | |
3865 | ||
3866 | if (gnu_decl == 0) | |
3867 | { | |
3868 | set_lineno (gnat_entity, 0); | |
3869 | gnu_decl = create_type_decl (gnu_entity_id, gnu_type, attr_list, | |
3870 | ! Comes_From_Source (gnat_entity), | |
3871 | debug_info_p); | |
3872 | } | |
3873 | else | |
3874 | TREE_TYPE (gnu_decl) = gnu_type; | |
3875 | } | |
3876 | ||
3877 | if (IN (kind, Type_Kind) && ! TYPE_IS_DUMMY_P (TREE_TYPE (gnu_decl))) | |
3878 | { | |
3879 | gnu_type = TREE_TYPE (gnu_decl); | |
3880 | ||
3881 | /* Back-annotate the Alignment of the type if not already in the | |
3882 | tree. Likewise for sizes. */ | |
3883 | if (Unknown_Alignment (gnat_entity)) | |
3884 | Set_Alignment (gnat_entity, | |
3885 | UI_From_Int (TYPE_ALIGN (gnu_type) / BITS_PER_UNIT)); | |
3886 | ||
3887 | if (Unknown_Esize (gnat_entity) && TYPE_SIZE (gnu_type) != 0) | |
3888 | { | |
3889 | /* If the size is self-referential, we annotate the maximum | |
3890 | value of that size. */ | |
3891 | tree gnu_size = TYPE_SIZE (gnu_type); | |
3892 | ||
fbf5a39b | 3893 | if (CONTAINS_PLACEHOLDER_P (gnu_size)) |
70482933 RK |
3894 | gnu_size = max_size (gnu_size, 1); |
3895 | ||
3896 | Set_Esize (gnat_entity, annotate_value (gnu_size)); | |
fbf5a39b AC |
3897 | |
3898 | if (type_annotate_only && Is_Tagged_Type (gnat_entity)) | |
3899 | { | |
3900 | /* In this mode the tag and the parent components are not | |
3901 | generated by the front-end, so the sizes must be adjusted | |
3902 | explicitly now. */ | |
3903 | ||
3904 | int size_offset; | |
3905 | int new_size; | |
3906 | ||
3907 | if (Is_Derived_Type (gnat_entity)) | |
3908 | { | |
3909 | size_offset | |
3910 | = UI_To_Int (Esize (Etype (Base_Type (gnat_entity)))); | |
3911 | Set_Alignment (gnat_entity, | |
3912 | Alignment (Etype (Base_Type (gnat_entity)))); | |
3913 | } | |
3914 | else | |
3915 | size_offset = POINTER_SIZE; | |
3916 | ||
3917 | new_size = UI_To_Int (Esize (gnat_entity)) + size_offset; | |
3918 | Set_Esize (gnat_entity, | |
3919 | UI_From_Int (((new_size + (POINTER_SIZE - 1)) | |
3920 | / POINTER_SIZE) * POINTER_SIZE)); | |
3921 | Set_RM_Size (gnat_entity, Esize (gnat_entity)); | |
3922 | } | |
70482933 RK |
3923 | } |
3924 | ||
3925 | if (Unknown_RM_Size (gnat_entity) && rm_size (gnu_type) != 0) | |
3926 | Set_RM_Size (gnat_entity, annotate_value (rm_size (gnu_type))); | |
3927 | } | |
3928 | ||
3929 | if (! Comes_From_Source (gnat_entity) && DECL_P (gnu_decl)) | |
3930 | DECL_ARTIFICIAL (gnu_decl) = 1; | |
3931 | ||
3932 | if (! debug_info_p && DECL_P (gnu_decl) | |
3933 | && TREE_CODE (gnu_decl) != FUNCTION_DECL) | |
3934 | DECL_IGNORED_P (gnu_decl) = 1; | |
3935 | ||
3936 | /* If this decl is really indirect, adjust it. */ | |
3937 | if (TREE_CODE (gnu_decl) == VAR_DECL) | |
3938 | adjust_decl_rtl (gnu_decl); | |
3939 | ||
3940 | /* If we haven't already, associate the ..._DECL node that we just made with | |
3941 | the input GNAT entity node. */ | |
3942 | if (! saved) | |
3943 | save_gnu_tree (gnat_entity, gnu_decl, 0); | |
3944 | ||
3945 | /* If this is an enumeral or floating-point type, we were not able to set | |
3946 | the bounds since they refer to the type. These bounds are always static. | |
3947 | ||
3948 | For enumeration types, also write debugging information and declare the | |
3949 | enumeration literal table, if needed. */ | |
3950 | ||
3951 | if ((kind == E_Enumeration_Type && Present (First_Literal (gnat_entity))) | |
3952 | || (kind == E_Floating_Point_Type && ! Vax_Float (gnat_entity))) | |
3953 | { | |
3954 | tree gnu_scalar_type = gnu_type; | |
3955 | ||
3956 | /* If this is a padded type, we need to use the underlying type. */ | |
3957 | if (TREE_CODE (gnu_scalar_type) == RECORD_TYPE | |
3958 | && TYPE_IS_PADDING_P (gnu_scalar_type)) | |
3959 | gnu_scalar_type = TREE_TYPE (TYPE_FIELDS (gnu_scalar_type)); | |
3960 | ||
3961 | /* If this is a floating point type and we haven't set a floating | |
3962 | point type yet, use this in the evaluation of the bounds. */ | |
3963 | if (longest_float_type_node == 0 && kind == E_Floating_Point_Type) | |
3964 | longest_float_type_node = gnu_type; | |
3965 | ||
3966 | TYPE_MIN_VALUE (gnu_scalar_type) | |
3967 | = gnat_to_gnu (Type_Low_Bound (gnat_entity)); | |
3968 | TYPE_MAX_VALUE (gnu_scalar_type) | |
3969 | = gnat_to_gnu (Type_High_Bound (gnat_entity)); | |
3970 | ||
3971 | if (kind == E_Enumeration_Type) | |
3972 | { | |
3973 | TYPE_STUB_DECL (gnu_scalar_type) = gnu_decl; | |
3974 | ||
3975 | /* Since this has both a typedef and a tag, avoid outputting | |
3976 | the name twice. */ | |
3977 | DECL_ARTIFICIAL (gnu_decl) = 1; | |
3978 | rest_of_type_compilation (gnu_scalar_type, global_bindings_p ()); | |
3979 | } | |
3980 | } | |
3981 | ||
3982 | /* If we deferred processing of incomplete types, re-enable it. If there | |
3983 | were no other disables and we have some to process, do so. */ | |
3984 | if (this_deferred && --defer_incomplete_level == 0 | |
3985 | && defer_incomplete_list != 0) | |
3986 | { | |
3987 | struct incomplete *incp = defer_incomplete_list; | |
3988 | struct incomplete *next; | |
3989 | ||
3990 | defer_incomplete_list = 0; | |
3991 | for (; incp; incp = next) | |
3992 | { | |
3993 | next = incp->next; | |
3994 | ||
3995 | if (incp->old_type != 0) | |
7a3a8c06 | 3996 | update_pointer_to (TYPE_MAIN_VARIANT (incp->old_type), |
70482933 RK |
3997 | gnat_to_gnu_type (incp->full_type)); |
3998 | free (incp); | |
3999 | } | |
4000 | } | |
4001 | ||
4002 | /* If we are not defining this type, see if it's in the incomplete list. | |
4003 | If so, handle that list entry now. */ | |
4004 | else if (! definition) | |
4005 | { | |
4006 | struct incomplete *incp; | |
4007 | ||
4008 | for (incp = defer_incomplete_list; incp; incp = incp->next) | |
4009 | if (incp->old_type != 0 && incp->full_type == gnat_entity) | |
4010 | { | |
7a3a8c06 RK |
4011 | update_pointer_to (TYPE_MAIN_VARIANT (incp->old_type), |
4012 | TREE_TYPE (gnu_decl)); | |
70482933 RK |
4013 | incp->old_type = 0; |
4014 | } | |
4015 | } | |
4016 | ||
4017 | if (this_global) | |
4018 | force_global--; | |
4019 | ||
4020 | if (Is_Packed_Array_Type (gnat_entity) | |
4021 | && Is_Itype (Associated_Node_For_Itype (gnat_entity)) | |
4022 | && No (Freeze_Node (Associated_Node_For_Itype (gnat_entity))) | |
4023 | && ! present_gnu_tree (Associated_Node_For_Itype (gnat_entity))) | |
4024 | gnat_to_gnu_entity (Associated_Node_For_Itype (gnat_entity), NULL_TREE, 0); | |
4025 | ||
4026 | return gnu_decl; | |
4027 | } | |
4028 | \f | |
4029 | /* Given GNAT_ENTITY, elaborate all expressions that are required to | |
4030 | be elaborated at the point of its definition, but do nothing else. */ | |
4031 | ||
4032 | void | |
4033 | elaborate_entity (gnat_entity) | |
4034 | Entity_Id gnat_entity; | |
4035 | { | |
4036 | switch (Ekind (gnat_entity)) | |
4037 | { | |
4038 | case E_Signed_Integer_Subtype: | |
4039 | case E_Modular_Integer_Subtype: | |
4040 | case E_Enumeration_Subtype: | |
4041 | case E_Ordinary_Fixed_Point_Subtype: | |
4042 | case E_Decimal_Fixed_Point_Subtype: | |
4043 | case E_Floating_Point_Subtype: | |
4044 | { | |
4045 | Node_Id gnat_lb = Type_Low_Bound (gnat_entity); | |
4046 | Node_Id gnat_hb = Type_High_Bound (gnat_entity); | |
4047 | ||
4048 | /* ??? Tests for avoiding static constaint error expression | |
4049 | is needed until the front stops generating bogus conversions | |
4050 | on bounds of real types. */ | |
4051 | ||
4052 | if (! Raises_Constraint_Error (gnat_lb)) | |
4053 | elaborate_expression (gnat_lb, gnat_entity, get_identifier ("L"), | |
4054 | 1, 0, Needs_Debug_Info (gnat_entity)); | |
4055 | if (! Raises_Constraint_Error (gnat_hb)) | |
4056 | elaborate_expression (gnat_hb, gnat_entity, get_identifier ("U"), | |
4057 | 1, 0, Needs_Debug_Info (gnat_entity)); | |
4058 | break; | |
4059 | } | |
4060 | ||
4061 | case E_Record_Type: | |
4062 | { | |
4063 | Node_Id full_definition = Declaration_Node (gnat_entity); | |
4064 | Node_Id record_definition = Type_Definition (full_definition); | |
4065 | ||
4066 | /* If this is a record extension, go a level further to find the | |
4067 | record definition. */ | |
4068 | if (Nkind (record_definition) == N_Derived_Type_Definition) | |
4069 | record_definition = Record_Extension_Part (record_definition); | |
4070 | } | |
4071 | break; | |
4072 | ||
4073 | case E_Record_Subtype: | |
4074 | case E_Private_Subtype: | |
4075 | case E_Limited_Private_Subtype: | |
4076 | case E_Record_Subtype_With_Private: | |
4077 | if (Is_Constrained (gnat_entity) | |
4078 | && Has_Discriminants (Base_Type (gnat_entity)) | |
4079 | && Present (Discriminant_Constraint (gnat_entity))) | |
4080 | { | |
4081 | Node_Id gnat_discriminant_expr; | |
4082 | Entity_Id gnat_field; | |
4083 | ||
4084 | for (gnat_field = First_Discriminant (Base_Type (gnat_entity)), | |
4085 | gnat_discriminant_expr | |
4086 | = First_Elmt (Discriminant_Constraint (gnat_entity)); | |
4087 | Present (gnat_field); | |
4088 | gnat_field = Next_Discriminant (gnat_field), | |
4089 | gnat_discriminant_expr = Next_Elmt (gnat_discriminant_expr)) | |
4090 | /* ??? For now, ignore access discriminants. */ | |
4091 | if (! Is_Access_Type (Etype (Node (gnat_discriminant_expr)))) | |
4092 | elaborate_expression (Node (gnat_discriminant_expr), | |
4093 | gnat_entity, | |
4094 | get_entity_name (gnat_field), 1, 0, 0); | |
4095 | } | |
4096 | break; | |
4097 | ||
4098 | } | |
4099 | } | |
4100 | \f | |
4101 | /* Mark GNAT_ENTITY as going out of scope at this point. Recursively mark | |
4102 | any entities on its entity chain similarly. */ | |
4103 | ||
4104 | void | |
4105 | mark_out_of_scope (gnat_entity) | |
4106 | Entity_Id gnat_entity; | |
4107 | { | |
4108 | Entity_Id gnat_sub_entity; | |
4109 | unsigned int kind = Ekind (gnat_entity); | |
4110 | ||
4111 | /* If this has an entity list, process all in the list. */ | |
4112 | if (IN (kind, Class_Wide_Kind) || IN (kind, Concurrent_Kind) | |
4113 | || IN (kind, Private_Kind) | |
4114 | || kind == E_Block || kind == E_Entry || kind == E_Entry_Family | |
4115 | || kind == E_Function || kind == E_Generic_Function | |
4116 | || kind == E_Generic_Package || kind == E_Generic_Procedure | |
4117 | || kind == E_Loop || kind == E_Operator || kind == E_Package | |
4118 | || kind == E_Package_Body || kind == E_Procedure | |
4119 | || kind == E_Record_Type || kind == E_Record_Subtype | |
4120 | || kind == E_Subprogram_Body || kind == E_Subprogram_Type) | |
4121 | for (gnat_sub_entity = First_Entity (gnat_entity); | |
4122 | Present (gnat_sub_entity); | |
4123 | gnat_sub_entity = Next_Entity (gnat_sub_entity)) | |
4124 | if (Scope (gnat_sub_entity) == gnat_entity | |
4125 | && gnat_sub_entity != gnat_entity) | |
4126 | mark_out_of_scope (gnat_sub_entity); | |
4127 | ||
4128 | /* Now clear this if it has been defined, but only do so if it isn't | |
4129 | a subprogram or parameter. We could refine this, but it isn't | |
4130 | worth it. If this is statically allocated, it is supposed to | |
4131 | hang around out of cope. */ | |
4132 | if (present_gnu_tree (gnat_entity) && ! Is_Statically_Allocated (gnat_entity) | |
4133 | && kind != E_Procedure && kind != E_Function && ! IN (kind, Formal_Kind)) | |
4134 | { | |
4135 | save_gnu_tree (gnat_entity, NULL_TREE, 1); | |
4136 | save_gnu_tree (gnat_entity, error_mark_node, 1); | |
4137 | } | |
4138 | } | |
4139 | \f | |
4140 | /* Return a TREE_LIST describing the substitutions needed to reflect | |
4141 | discriminant substitutions from GNAT_SUBTYPE to GNAT_TYPE and add | |
4142 | them to GNU_LIST. If GNAT_TYPE is not specified, use the base type | |
4143 | of GNAT_SUBTYPE. The substitions can be in any order. TREE_PURPOSE | |
4144 | gives the tree for the discriminant and TREE_VALUES is the replacement | |
4145 | value. They are in the form of operands to substitute_in_expr. | |
4146 | DEFINITION is as in gnat_to_gnu_entity. */ | |
4147 | ||
4148 | static tree | |
4149 | substitution_list (gnat_subtype, gnat_type, gnu_list, definition) | |
4150 | Entity_Id gnat_subtype; | |
4151 | Entity_Id gnat_type; | |
4152 | tree gnu_list; | |
4153 | int definition; | |
4154 | { | |
4155 | Entity_Id gnat_discrim; | |
4156 | Node_Id gnat_value; | |
4157 | ||
4158 | if (No (gnat_type)) | |
4159 | gnat_type = Implementation_Base_Type (gnat_subtype); | |
4160 | ||
4161 | if (Has_Discriminants (gnat_type)) | |
fbf5a39b AC |
4162 | for (gnat_discrim = First_Stored_Discriminant (gnat_type), |
4163 | gnat_value = First_Elmt (Stored_Constraint (gnat_subtype)); | |
70482933 | 4164 | Present (gnat_discrim); |
fbf5a39b | 4165 | gnat_discrim = Next_Stored_Discriminant (gnat_discrim), |
70482933 RK |
4166 | gnat_value = Next_Elmt (gnat_value)) |
4167 | /* Ignore access discriminants. */ | |
4168 | if (! Is_Access_Type (Etype (Node (gnat_value)))) | |
4169 | gnu_list = tree_cons (gnat_to_gnu_entity (gnat_discrim, NULL_TREE, 0), | |
4170 | elaborate_expression | |
4171 | (Node (gnat_value), gnat_subtype, | |
4172 | get_entity_name (gnat_discrim), definition, | |
4173 | 1, 0), | |
4174 | gnu_list); | |
4175 | ||
4176 | return gnu_list; | |
4177 | } | |
4178 | \f | |
4179 | /* For the following two functions: for each GNAT entity, the GCC | |
4180 | tree node used as a dummy for that entity, if any. */ | |
4181 | ||
e2500fed | 4182 | static GTY((length ("max_gnat_nodes"))) tree * dummy_node_table; |
70482933 RK |
4183 | |
4184 | /* Initialize the above table. */ | |
4185 | ||
4186 | void | |
4187 | init_dummy_type () | |
4188 | { | |
4189 | Node_Id gnat_node; | |
4190 | ||
e2500fed | 4191 | dummy_node_table = (tree *) ggc_alloc (max_gnat_nodes * sizeof (tree)); |
70482933 RK |
4192 | |
4193 | for (gnat_node = 0; gnat_node < max_gnat_nodes; gnat_node++) | |
4194 | dummy_node_table[gnat_node] = NULL_TREE; | |
4195 | ||
4196 | dummy_node_table -= First_Node_Id; | |
4197 | } | |
4198 | ||
4199 | /* Make a dummy type corresponding to GNAT_TYPE. */ | |
4200 | ||
4201 | tree | |
4202 | make_dummy_type (gnat_type) | |
4203 | Entity_Id gnat_type; | |
4204 | { | |
4205 | Entity_Id gnat_underlying; | |
4206 | tree gnu_type; | |
4207 | ||
4208 | /* Find a full type for GNAT_TYPE, taking into account any class wide | |
4209 | types. */ | |
4210 | if (Is_Class_Wide_Type (gnat_type) && Present (Equivalent_Type (gnat_type))) | |
4211 | gnat_type = Equivalent_Type (gnat_type); | |
4212 | else if (Ekind (gnat_type) == E_Class_Wide_Type) | |
4213 | gnat_type = Root_Type (gnat_type); | |
4214 | ||
4215 | for (gnat_underlying = gnat_type; | |
4216 | (IN (Ekind (gnat_underlying), Incomplete_Or_Private_Kind) | |
4217 | && Present (Full_View (gnat_underlying))); | |
4218 | gnat_underlying = Full_View (gnat_underlying)) | |
4219 | ; | |
4220 | ||
4221 | /* If it there already a dummy type, use that one. Else make one. */ | |
4222 | if (dummy_node_table[gnat_underlying]) | |
4223 | return dummy_node_table[gnat_underlying]; | |
4224 | ||
4225 | /* If this is a record, make this a RECORD_TYPE or UNION_TYPE; else make | |
4226 | it a VOID_TYPE. */ | |
4227 | if (Is_Record_Type (gnat_underlying)) | |
4228 | gnu_type = make_node (Is_Unchecked_Union (gnat_underlying) | |
4229 | ? UNION_TYPE : RECORD_TYPE); | |
4230 | else | |
4231 | gnu_type = make_node (ENUMERAL_TYPE); | |
4232 | ||
4233 | TYPE_NAME (gnu_type) = get_entity_name (gnat_type); | |
4234 | if (AGGREGATE_TYPE_P (gnu_type)) | |
4235 | TYPE_STUB_DECL (gnu_type) | |
4236 | = pushdecl (build_decl (TYPE_DECL, NULL_TREE, gnu_type)); | |
4237 | ||
4238 | TYPE_DUMMY_P (gnu_type) = 1; | |
4239 | dummy_node_table[gnat_underlying] = gnu_type; | |
4240 | ||
4241 | return gnu_type; | |
4242 | } | |
4243 | \f | |
4244 | /* Return 1 if the size represented by GNU_SIZE can be handled by an | |
4245 | allocation. If STATIC_P is non-zero, consider only what can be | |
4246 | done with a static allocation. */ | |
4247 | ||
4248 | static int | |
4249 | allocatable_size_p (gnu_size, static_p) | |
4250 | tree gnu_size; | |
4251 | int static_p; | |
4252 | { | |
fbf5a39b AC |
4253 | HOST_WIDE_INT our_size; |
4254 | ||
70482933 RK |
4255 | /* If this is not a static allocation, the only case we want to forbid |
4256 | is an overflowing size. That will be converted into a raise a | |
4257 | Storage_Error. */ | |
4258 | if (! static_p) | |
4259 | return ! (TREE_CODE (gnu_size) == INTEGER_CST | |
4260 | && TREE_CONSTANT_OVERFLOW (gnu_size)); | |
4261 | ||
4262 | /* Otherwise, we need to deal with both variable sizes and constant | |
fbf5a39b AC |
4263 | sizes that won't fit in a host int. We use int instead of HOST_WIDE_INT |
4264 | since assemblers may not like very large sizes. */ | |
4265 | if (!host_integerp (gnu_size, 1)) | |
4266 | return 0; | |
4267 | ||
4268 | our_size = tree_low_cst (gnu_size, 1); | |
4269 | return (int) our_size == our_size; | |
70482933 RK |
4270 | } |
4271 | \f | |
4272 | /* Return a list of attributes for GNAT_ENTITY, if any. */ | |
4273 | ||
4274 | static struct attrib * | |
4275 | build_attr_list (gnat_entity) | |
4276 | Entity_Id gnat_entity; | |
4277 | { | |
4278 | struct attrib *attr_list = 0; | |
4279 | Node_Id gnat_temp; | |
4280 | ||
4281 | for (gnat_temp = First_Rep_Item (gnat_entity); Present (gnat_temp); | |
4282 | gnat_temp = Next_Rep_Item (gnat_temp)) | |
4283 | if (Nkind (gnat_temp) == N_Pragma) | |
4284 | { | |
4285 | struct attrib *attr; | |
4286 | tree gnu_arg0 = 0, gnu_arg1 = 0; | |
4287 | Node_Id gnat_assoc = Pragma_Argument_Associations (gnat_temp); | |
4288 | enum attr_type etype; | |
4289 | ||
4290 | if (Present (gnat_assoc) && Present (First (gnat_assoc)) | |
4291 | && Present (Next (First (gnat_assoc))) | |
4292 | && (Nkind (Expression (Next (First (gnat_assoc)))) | |
4293 | == N_String_Literal)) | |
4294 | { | |
4295 | gnu_arg0 = get_identifier (TREE_STRING_POINTER | |
4296 | (gnat_to_gnu | |
4297 | (Expression (Next | |
4298 | (First (gnat_assoc)))))); | |
4299 | if (Present (Next (Next (First (gnat_assoc)))) | |
4300 | && (Nkind (Expression (Next (Next (First (gnat_assoc))))) | |
4301 | == N_String_Literal)) | |
4302 | gnu_arg1 = get_identifier (TREE_STRING_POINTER | |
4303 | (gnat_to_gnu | |
4304 | (Expression | |
4305 | (Next (Next | |
4306 | (First (gnat_assoc))))))); | |
4307 | } | |
4308 | ||
4309 | switch (Get_Pragma_Id (Chars (gnat_temp))) | |
4310 | { | |
4311 | case Pragma_Machine_Attribute: | |
4312 | etype = ATTR_MACHINE_ATTRIBUTE; | |
4313 | break; | |
4314 | ||
4315 | case Pragma_Linker_Alias: | |
4316 | etype = ATTR_LINK_ALIAS; | |
4317 | break; | |
4318 | ||
4319 | case Pragma_Linker_Section: | |
4320 | etype = ATTR_LINK_SECTION; | |
4321 | break; | |
4322 | ||
4323 | case Pragma_Weak_External: | |
4324 | etype = ATTR_WEAK_EXTERNAL; | |
4325 | break; | |
4326 | ||
4327 | default: | |
4328 | continue; | |
4329 | } | |
4330 | ||
4331 | attr = (struct attrib *) xmalloc (sizeof (struct attrib)); | |
4332 | attr->next = attr_list; | |
4333 | attr->type = etype; | |
4334 | attr->name = gnu_arg0; | |
4335 | attr->arg = gnu_arg1; | |
4336 | attr->error_point | |
4337 | = Present (Next (First (gnat_assoc))) | |
4338 | ? Expression (Next (First (gnat_assoc))) : gnat_temp; | |
4339 | attr_list = attr; | |
4340 | } | |
4341 | ||
4342 | return attr_list; | |
4343 | } | |
4344 | \f | |
4345 | /* Get the unpadded version of a GNAT type. */ | |
4346 | ||
4347 | tree | |
4348 | get_unpadded_type (gnat_entity) | |
4349 | Entity_Id gnat_entity; | |
4350 | { | |
4351 | tree type = gnat_to_gnu_type (gnat_entity); | |
4352 | ||
4353 | if (TREE_CODE (type) == RECORD_TYPE && TYPE_IS_PADDING_P (type)) | |
4354 | type = TREE_TYPE (TYPE_FIELDS (type)); | |
4355 | ||
4356 | return type; | |
4357 | } | |
4358 | \f | |
4359 | /* Called when we need to protect a variable object using a save_expr. */ | |
4360 | ||
4361 | tree | |
4362 | maybe_variable (gnu_operand, gnat_node) | |
4363 | tree gnu_operand; | |
4364 | Node_Id gnat_node; | |
4365 | { | |
4366 | if (TREE_CONSTANT (gnu_operand) || TREE_READONLY (gnu_operand) | |
4367 | || TREE_CODE (gnu_operand) == SAVE_EXPR | |
4368 | || TREE_CODE (gnu_operand) == NULL_EXPR) | |
4369 | return gnu_operand; | |
4370 | ||
4371 | /* If we will be generating code, make sure we are at the proper | |
4372 | line number. */ | |
fbf5a39b | 4373 | if (! global_bindings_p () && ! CONTAINS_PLACEHOLDER_P (gnu_operand)) |
70482933 RK |
4374 | set_lineno (gnat_node, 1); |
4375 | ||
4376 | if (TREE_CODE (gnu_operand) == UNCONSTRAINED_ARRAY_REF) | |
4377 | return build1 (UNCONSTRAINED_ARRAY_REF, TREE_TYPE (gnu_operand), | |
4378 | variable_size (TREE_OPERAND (gnu_operand, 0))); | |
4379 | else | |
4380 | return variable_size (gnu_operand); | |
4381 | } | |
4382 | \f | |
4383 | /* Given a GNAT tree GNAT_EXPR, for an expression which is a value within a | |
4384 | type definition (either a bound or a discriminant value) for GNAT_ENTITY, | |
4385 | return the GCC tree to use for that expression. GNU_NAME is the | |
4386 | qualification to use if an external name is appropriate and DEFINITION is | |
4387 | nonzero if this is a definition of GNAT_ENTITY. If NEED_VALUE is nonzero, | |
4388 | we need a result. Otherwise, we are just elaborating this for | |
4389 | side-effects. If NEED_DEBUG is nonzero we need the symbol for debugging | |
4390 | purposes even if it isn't needed for code generation. */ | |
4391 | ||
4392 | static tree | |
4393 | elaborate_expression (gnat_expr, gnat_entity, gnu_name, definition, | |
4394 | need_value, need_debug) | |
4395 | Node_Id gnat_expr; | |
4396 | Entity_Id gnat_entity; | |
4397 | tree gnu_name; | |
4398 | int definition; | |
4399 | int need_value; | |
4400 | int need_debug; | |
4401 | { | |
4402 | tree gnu_expr; | |
4403 | ||
4404 | /* If we already elaborated this expression (e.g., it was involved | |
4405 | in the definition of a private type), use the old value. */ | |
4406 | if (present_gnu_tree (gnat_expr)) | |
4407 | return get_gnu_tree (gnat_expr); | |
4408 | ||
4409 | /* If we don't need a value and this is static or a discriment, we | |
4410 | don't need to do anything. */ | |
4411 | else if (! need_value | |
4412 | && (Is_OK_Static_Expression (gnat_expr) | |
4413 | || (Nkind (gnat_expr) == N_Identifier | |
4414 | && Ekind (Entity (gnat_expr)) == E_Discriminant))) | |
4415 | return 0; | |
4416 | ||
4417 | /* Otherwise, convert this tree to its GCC equivalant. */ | |
4418 | gnu_expr | |
4419 | = elaborate_expression_1 (gnat_expr, gnat_entity, gnat_to_gnu (gnat_expr), | |
4420 | gnu_name, definition, need_debug); | |
4421 | ||
4422 | /* Save the expression in case we try to elaborate this entity again. | |
4423 | Since this is not a DECL, don't check it. If this is a constant, | |
4424 | don't save it since GNAT_EXPR might be used more than once. Also, | |
4425 | don't save if it's a discriminant. */ | |
fbf5a39b | 4426 | if (! CONTAINS_PLACEHOLDER_P (gnu_expr)) |
70482933 RK |
4427 | save_gnu_tree (gnat_expr, gnu_expr, 1); |
4428 | ||
4429 | return need_value ? gnu_expr : error_mark_node; | |
4430 | } | |
4431 | ||
4432 | /* Similar, but take a GNU expression. */ | |
4433 | ||
4434 | static tree | |
4435 | elaborate_expression_1 (gnat_expr, gnat_entity, gnu_expr, gnu_name, definition, | |
4436 | need_debug) | |
4437 | Node_Id gnat_expr; | |
4438 | Entity_Id gnat_entity; | |
4439 | tree gnu_expr; | |
4440 | tree gnu_name; | |
4441 | int definition; | |
4442 | int need_debug; | |
4443 | { | |
4444 | tree gnu_decl = 0; | |
70482933 RK |
4445 | /* Strip any conversions to see if the expression is a readonly variable. |
4446 | ??? This really should remain readonly, but we have to think about | |
4447 | the typing of the tree here. */ | |
07fc65c4 GB |
4448 | tree gnu_inner_expr = remove_conversions (gnu_expr, 1); |
4449 | int expr_global = Is_Public (gnat_entity) || global_bindings_p (); | |
4450 | int expr_variable; | |
70482933 RK |
4451 | |
4452 | /* In most cases, we won't see a naked FIELD_DECL here because a | |
4453 | discriminant reference will have been replaced with a COMPONENT_REF | |
4454 | when the type is being elaborated. However, there are some cases | |
4455 | involving child types where we will. So convert it to a COMPONENT_REF | |
4456 | here. We have to hope it will be at the highest level of the | |
4457 | expression in these cases. */ | |
4458 | if (TREE_CODE (gnu_expr) == FIELD_DECL) | |
4459 | gnu_expr = build (COMPONENT_REF, TREE_TYPE (gnu_expr), | |
4460 | build (PLACEHOLDER_EXPR, DECL_CONTEXT (gnu_expr)), | |
4461 | gnu_expr); | |
4462 | ||
70482933 RK |
4463 | /* If GNU_EXPR is neither a placeholder nor a constant, nor a variable |
4464 | that is a constant, make a variable that is initialized to contain the | |
4465 | bound when the package containing the definition is elaborated. If | |
4466 | this entity is defined at top level and a bound or discriminant value | |
4467 | isn't a constant or a reference to a discriminant, replace the bound | |
4468 | by the variable; otherwise use a SAVE_EXPR if needed. Note that we | |
4469 | rely here on the fact that an expression cannot contain both the | |
4470 | discriminant and some other variable. */ | |
4471 | ||
4472 | expr_variable = (TREE_CODE_CLASS (TREE_CODE (gnu_expr)) != 'c' | |
4473 | && ! (TREE_CODE (gnu_inner_expr) == VAR_DECL | |
4474 | && TREE_READONLY (gnu_inner_expr)) | |
fbf5a39b | 4475 | && ! CONTAINS_PLACEHOLDER_P (gnu_expr)); |
70482933 RK |
4476 | |
4477 | /* If this is a static expression or contains a discriminant, we don't | |
4478 | need the variable for debugging (and can't elaborate anyway if a | |
4479 | discriminant). */ | |
4480 | if (need_debug | |
4481 | && (Is_OK_Static_Expression (gnat_expr) | |
fbf5a39b | 4482 | || CONTAINS_PLACEHOLDER_P (gnu_expr))) |
70482933 RK |
4483 | need_debug = 0; |
4484 | ||
4485 | /* Now create the variable if we need it. */ | |
4486 | if (need_debug || (expr_variable && expr_global)) | |
4487 | { | |
4488 | set_lineno (gnat_entity, ! global_bindings_p ()); | |
4489 | gnu_decl | |
4490 | = create_var_decl (create_concat_name (gnat_entity, | |
4491 | IDENTIFIER_POINTER (gnu_name)), | |
4492 | NULL_TREE, TREE_TYPE (gnu_expr), gnu_expr, 1, | |
4493 | Is_Public (gnat_entity), ! definition, 0, 0); | |
4494 | } | |
4495 | ||
4496 | /* We only need to use this variable if we are in global context since GCC | |
4497 | can do the right thing in the local case. */ | |
4498 | if (expr_global && expr_variable) | |
4499 | return gnu_decl; | |
07fc65c4 GB |
4500 | else if (! expr_variable) |
4501 | return gnu_expr; | |
70482933 RK |
4502 | else |
4503 | return maybe_variable (gnu_expr, gnat_expr); | |
4504 | } | |
4505 | \f | |
4506 | /* Create a record type that contains a field of TYPE with a starting bit | |
4507 | position so that it is aligned to ALIGN bits and is SIZE bytes long. */ | |
4508 | ||
4509 | tree | |
4510 | make_aligning_type (type, align, size) | |
4511 | tree type; | |
4512 | int align; | |
4513 | tree size; | |
4514 | { | |
4515 | tree record_type = make_node (RECORD_TYPE); | |
4516 | tree place = build (PLACEHOLDER_EXPR, record_type); | |
4517 | tree size_addr_place = convert (sizetype, | |
4518 | build_unary_op (ADDR_EXPR, NULL_TREE, | |
4519 | place)); | |
4520 | tree name = TYPE_NAME (type); | |
4521 | tree pos, field; | |
4522 | ||
4523 | if (TREE_CODE (name) == TYPE_DECL) | |
4524 | name = DECL_NAME (name); | |
4525 | ||
4526 | TYPE_NAME (record_type) = concat_id_with_name (name, "_ALIGN"); | |
4527 | ||
4528 | /* The bit position is obtained by "and"ing the alignment minus 1 | |
4529 | with the two's complement of the address and multiplying | |
4530 | by the number of bits per unit. Do all this in sizetype. */ | |
4531 | ||
4532 | pos = size_binop (MULT_EXPR, | |
4533 | convert (bitsizetype, | |
fbf5a39b | 4534 | size_binop (BIT_AND_EXPR, |
70482933 RK |
4535 | size_diffop (size_zero_node, |
4536 | size_addr_place), | |
4537 | ssize_int ((align / BITS_PER_UNIT) | |
4538 | - 1))), | |
4539 | bitsize_unit_node); | |
4540 | ||
4541 | field = create_field_decl (get_identifier ("F"), type, record_type, | |
4542 | 1, size, pos, 1); | |
4543 | DECL_BIT_FIELD (field) = 0; | |
4544 | ||
4545 | finish_record_type (record_type, field, 1, 0); | |
4546 | TYPE_ALIGN (record_type) = BIGGEST_ALIGNMENT; | |
4547 | TYPE_SIZE (record_type) | |
4548 | = size_binop (PLUS_EXPR, | |
4549 | size_binop (MULT_EXPR, convert (bitsizetype, size), | |
4550 | bitsize_unit_node), | |
4551 | bitsize_int (align)); | |
4552 | TYPE_SIZE_UNIT (record_type) | |
4553 | = size_binop (PLUS_EXPR, size, size_int (align / BITS_PER_UNIT)); | |
fbf5a39b | 4554 | TYPE_ALIAS_SET (record_type) = get_alias_set (type); |
70482933 RK |
4555 | return record_type; |
4556 | } | |
4557 | \f | |
fbf5a39b AC |
4558 | /* TYPE is a RECORD_TYPE, UNION_TYPE, or QUAL_UNION_TYPE, with BLKmode that's |
4559 | being used as the field type of a packed record. See if we can rewrite it | |
4560 | as a record that has a non-BLKmode type, which we can pack tighter. If so, | |
4561 | return the new type. If not, return the original type. */ | |
70482933 RK |
4562 | |
4563 | static tree | |
4564 | make_packable_type (type) | |
4565 | tree type; | |
4566 | { | |
fbf5a39b | 4567 | tree new_type = make_node (TREE_CODE (type)); |
70482933 RK |
4568 | tree field_list = NULL_TREE; |
4569 | tree old_field; | |
4570 | ||
4571 | /* Copy the name and flags from the old type to that of the new and set | |
fbf5a39b AC |
4572 | the alignment to try for an integral type. For QUAL_UNION_TYPE, |
4573 | also copy the size. */ | |
70482933 RK |
4574 | TYPE_NAME (new_type) = TYPE_NAME (type); |
4575 | TYPE_LEFT_JUSTIFIED_MODULAR_P (new_type) | |
4576 | = TYPE_LEFT_JUSTIFIED_MODULAR_P (type); | |
4577 | TYPE_CONTAINS_TEMPLATE_P (new_type) = TYPE_CONTAINS_TEMPLATE_P (type); | |
fbf5a39b AC |
4578 | TYPE_IS_PADDING_P (new_type) = TYPE_IS_PADDING_P (type); |
4579 | if (TREE_CODE (type) == QUAL_UNION_TYPE) | |
4580 | { | |
4581 | TYPE_SIZE (new_type) = TYPE_SIZE (type); | |
4582 | TYPE_SIZE_UNIT (new_type) = TYPE_SIZE_UNIT (type); | |
4583 | } | |
70482933 RK |
4584 | |
4585 | TYPE_ALIGN (new_type) | |
4586 | = ((HOST_WIDE_INT) 1 | |
4587 | << (floor_log2 (tree_low_cst (TYPE_SIZE (type), 1) - 1) + 1)); | |
4588 | ||
4589 | /* Now copy the fields, keeping the position and size. */ | |
4590 | for (old_field = TYPE_FIELDS (type); old_field != 0; | |
4591 | old_field = TREE_CHAIN (old_field)) | |
4592 | { | |
fbf5a39b AC |
4593 | tree new_field_type = TREE_TYPE (old_field); |
4594 | tree new_field; | |
4595 | ||
4596 | if (TYPE_MODE (new_field_type) == BLKmode | |
4597 | && (TREE_CODE (new_field_type) == RECORD_TYPE | |
4598 | || TREE_CODE (new_field_type) == UNION_TYPE | |
4599 | || TREE_CODE (new_field_type) == QUAL_UNION_TYPE) | |
4600 | && host_integerp (TYPE_SIZE (new_field_type), 1)) | |
4601 | new_field_type = make_packable_type (new_field_type); | |
4602 | ||
4603 | new_field = create_field_decl (DECL_NAME (old_field), new_field_type, | |
4604 | new_type, TYPE_PACKED (type), | |
4605 | DECL_SIZE (old_field), | |
4606 | bit_position (old_field), | |
4607 | ! DECL_NONADDRESSABLE_P (old_field)); | |
70482933 RK |
4608 | |
4609 | DECL_INTERNAL_P (new_field) = DECL_INTERNAL_P (old_field); | |
e2500fed GK |
4610 | SET_DECL_ORIGINAL_FIELD (new_field, |
4611 | (DECL_ORIGINAL_FIELD (old_field) != 0 | |
4612 | ? DECL_ORIGINAL_FIELD (old_field) : old_field)); | |
fbf5a39b AC |
4613 | |
4614 | if (TREE_CODE (new_type) == QUAL_UNION_TYPE) | |
4615 | DECL_QUALIFIER (new_field) = DECL_QUALIFIER (old_field); | |
4616 | ||
70482933 RK |
4617 | TREE_CHAIN (new_field) = field_list; |
4618 | field_list = new_field; | |
4619 | } | |
4620 | ||
4621 | finish_record_type (new_type, nreverse (field_list), 1, 1); | |
fbf5a39b | 4622 | TYPE_ALIAS_SET (new_type) = get_alias_set (type); |
70482933 RK |
4623 | return TYPE_MODE (new_type) == BLKmode ? type : new_type; |
4624 | } | |
4625 | \f | |
4626 | /* Ensure that TYPE has SIZE and ALIGN. Make and return a new padded type | |
4627 | if needed. We have already verified that SIZE and TYPE are large enough. | |
4628 | ||
4629 | GNAT_ENTITY and NAME_TRAILER are used to name the resulting record and | |
4630 | to issue a warning. | |
4631 | ||
4632 | IS_USER_TYPE is nonzero if we must be sure we complete the original type. | |
4633 | ||
4634 | DEFINITION is nonzero if this type is being defined. | |
4635 | ||
4636 | SAME_RM_SIZE is nonzero if the RM_Size of the resulting type is to be | |
4637 | set to its TYPE_SIZE; otherwise, it's set to the RM_Size of the original | |
4638 | type. */ | |
4639 | ||
4640 | static tree | |
4641 | maybe_pad_type (type, size, align, gnat_entity, name_trailer, | |
4642 | is_user_type, definition, same_rm_size) | |
4643 | tree type; | |
4644 | tree size; | |
4645 | unsigned int align; | |
4646 | Entity_Id gnat_entity; | |
4647 | const char *name_trailer; | |
4648 | int is_user_type; | |
4649 | int definition; | |
4650 | int same_rm_size; | |
4651 | { | |
4652 | tree orig_size = TYPE_SIZE (type); | |
4653 | tree record; | |
4654 | tree field; | |
4655 | ||
4656 | /* If TYPE is a padded type, see if it agrees with any size and alignment | |
4657 | we were given. If so, return the original type. Otherwise, strip | |
4658 | off the padding, since we will either be returning the inner type | |
4659 | or repadding it. If no size or alignment is specified, use that of | |
4660 | the original padded type. */ | |
4661 | ||
4662 | if (TREE_CODE (type) == RECORD_TYPE && TYPE_IS_PADDING_P (type)) | |
4663 | { | |
4664 | if ((size == 0 | |
4665 | || operand_equal_p (round_up (size, | |
4666 | MAX (align, TYPE_ALIGN (type))), | |
4667 | round_up (TYPE_SIZE (type), | |
4668 | MAX (align, TYPE_ALIGN (type))), | |
4669 | 0)) | |
4670 | && (align == 0 || align == TYPE_ALIGN (type))) | |
4671 | return type; | |
4672 | ||
4673 | if (size == 0) | |
4674 | size = TYPE_SIZE (type); | |
4675 | if (align == 0) | |
4676 | align = TYPE_ALIGN (type); | |
4677 | ||
4678 | type = TREE_TYPE (TYPE_FIELDS (type)); | |
4679 | orig_size = TYPE_SIZE (type); | |
4680 | } | |
4681 | ||
4682 | /* If the size is either not being changed or is being made smaller (which | |
4683 | is not done here (and is only valid for bitfields anyway), show the size | |
4684 | isn't changing. Likewise, clear the alignment if it isn't being | |
4685 | changed. Then return if we aren't doing anything. */ | |
4686 | ||
4687 | if (size != 0 | |
4688 | && (operand_equal_p (size, orig_size, 0) | |
4689 | || (TREE_CODE (orig_size) == INTEGER_CST | |
4690 | && tree_int_cst_lt (size, orig_size)))) | |
4691 | size = 0; | |
4692 | ||
4693 | if (align == TYPE_ALIGN (type)) | |
4694 | align = 0; | |
4695 | ||
4696 | if (align == 0 && size == 0) | |
4697 | return type; | |
4698 | ||
4699 | /* We used to modify the record in place in some cases, but that could | |
4700 | generate incorrect debugging information. So make a new record | |
4701 | type and name. */ | |
4702 | record = make_node (RECORD_TYPE); | |
4703 | ||
4704 | if (Present (gnat_entity)) | |
4705 | TYPE_NAME (record) = create_concat_name (gnat_entity, name_trailer); | |
4706 | ||
4707 | /* If we were making a type, complete the original type and give it a | |
4708 | name. */ | |
4709 | if (is_user_type) | |
4710 | create_type_decl (get_entity_name (gnat_entity), type, | |
4711 | 0, ! Comes_From_Source (gnat_entity), | |
4712 | ! (TYPE_NAME (type) != 0 | |
4713 | && TREE_CODE (TYPE_NAME (type)) == TYPE_DECL | |
4714 | && DECL_IGNORED_P (TYPE_NAME (type)))); | |
4715 | ||
4716 | /* If we are changing the alignment and the input type is a record with | |
4717 | BLKmode and a small constant size, try to make a form that has an | |
4718 | integral mode. That might allow this record to have an integral mode, | |
4719 | which will be much more efficient. There is no point in doing this if a | |
4720 | size is specified unless it is also smaller than the biggest alignment | |
4721 | and it is incorrect to do this if the size of the original type is not a | |
4722 | multiple of the alignment. */ | |
4723 | if (align != 0 | |
4724 | && TREE_CODE (type) == RECORD_TYPE | |
4725 | && TYPE_MODE (type) == BLKmode | |
4726 | && host_integerp (orig_size, 1) | |
4727 | && compare_tree_int (orig_size, BIGGEST_ALIGNMENT) <= 0 | |
4728 | && (size == 0 | |
4729 | || (TREE_CODE (size) == INTEGER_CST | |
4730 | && compare_tree_int (size, BIGGEST_ALIGNMENT) <= 0)) | |
4731 | && tree_low_cst (orig_size, 1) % align == 0) | |
4732 | type = make_packable_type (type); | |
4733 | ||
4734 | field = create_field_decl (get_identifier ("F"), type, record, 0, | |
4735 | NULL_TREE, bitsize_zero_node, 1); | |
4736 | ||
4737 | DECL_INTERNAL_P (field) = 1; | |
4738 | TYPE_SIZE (record) = size != 0 ? size : orig_size; | |
4739 | TYPE_SIZE_UNIT (record) | |
4740 | = convert (sizetype, | |
4741 | size_binop (CEIL_DIV_EXPR, TYPE_SIZE (record), | |
4742 | bitsize_unit_node)); | |
4743 | TYPE_ALIGN (record) = align; | |
4744 | TYPE_IS_PADDING_P (record) = 1; | |
4745 | TYPE_VOLATILE (record) | |
fbf5a39b | 4746 | = Present (gnat_entity) && Treat_As_Volatile (gnat_entity); |
70482933 RK |
4747 | finish_record_type (record, field, 1, 0); |
4748 | ||
4749 | /* Keep the RM_Size of the padded record as that of the old record | |
4750 | if requested. */ | |
e2500fed | 4751 | SET_TYPE_ADA_SIZE (record, same_rm_size ? size : rm_size (type)); |
70482933 RK |
4752 | |
4753 | /* Unless debugging information isn't being written for the input type, | |
4754 | write a record that shows what we are a subtype of and also make a | |
4755 | variable that indicates our size, if variable. */ | |
4756 | if (TYPE_NAME (record) != 0 | |
4757 | && AGGREGATE_TYPE_P (type) | |
4758 | && (TREE_CODE (TYPE_NAME (type)) != TYPE_DECL | |
4759 | || ! DECL_IGNORED_P (TYPE_NAME (type)))) | |
4760 | { | |
4761 | tree marker = make_node (RECORD_TYPE); | |
4762 | tree name = DECL_NAME (TYPE_NAME (record)); | |
4763 | tree orig_name = TYPE_NAME (type); | |
4764 | ||
4765 | if (TREE_CODE (orig_name) == TYPE_DECL) | |
4766 | orig_name = DECL_NAME (orig_name); | |
4767 | ||
4768 | TYPE_NAME (marker) = concat_id_with_name (name, "XVS"); | |
4769 | finish_record_type (marker, | |
4770 | create_field_decl (orig_name, integer_type_node, | |
4771 | marker, 0, NULL_TREE, NULL_TREE, | |
4772 | 0), | |
4773 | 0, 0); | |
4774 | ||
4775 | if (size != 0 && TREE_CODE (size) != INTEGER_CST && definition) | |
4776 | create_var_decl (concat_id_with_name (name, "XVZ"), NULL_TREE, | |
4777 | sizetype, TYPE_SIZE (record), 0, 0, 0, 0, | |
4778 | 0); | |
4779 | } | |
4780 | ||
4781 | type = record; | |
4782 | ||
fbf5a39b | 4783 | if (CONTAINS_PLACEHOLDER_P (orig_size)) |
70482933 RK |
4784 | orig_size = max_size (orig_size, 1); |
4785 | ||
4786 | /* If the size was widened explicitly, maybe give a warning. */ | |
4787 | if (size != 0 && Present (gnat_entity) | |
4788 | && ! operand_equal_p (size, orig_size, 0) | |
4789 | && ! (TREE_CODE (size) == INTEGER_CST | |
4790 | && TREE_CODE (orig_size) == INTEGER_CST | |
4791 | && tree_int_cst_lt (size, orig_size))) | |
4792 | { | |
4793 | Node_Id gnat_error_node = Empty; | |
4794 | ||
4795 | if (Is_Packed_Array_Type (gnat_entity)) | |
4796 | gnat_entity = Associated_Node_For_Itype (gnat_entity); | |
4797 | ||
4798 | if ((Ekind (gnat_entity) == E_Component | |
4799 | || Ekind (gnat_entity) == E_Discriminant) | |
4800 | && Present (Component_Clause (gnat_entity))) | |
4801 | gnat_error_node = Last_Bit (Component_Clause (gnat_entity)); | |
4802 | else if (Present (Size_Clause (gnat_entity))) | |
4803 | gnat_error_node = Expression (Size_Clause (gnat_entity)); | |
4804 | ||
4805 | /* Generate message only for entities that come from source, since | |
4806 | if we have an entity created by expansion, the message will be | |
4807 | generated for some other corresponding source entity. */ | |
4808 | if (Comes_From_Source (gnat_entity) && Present (gnat_error_node)) | |
4809 | post_error_ne_tree ("{^ }bits of & unused?", gnat_error_node, | |
4810 | gnat_entity, | |
4811 | size_diffop (size, orig_size)); | |
4812 | ||
4813 | else if (*name_trailer == 'C' && ! Is_Internal (gnat_entity)) | |
4814 | post_error_ne_tree ("component of& padded{ by ^ bits}?", | |
4815 | gnat_entity, gnat_entity, | |
4816 | size_diffop (size, orig_size)); | |
4817 | } | |
4818 | ||
4819 | return type; | |
4820 | } | |
4821 | \f | |
4822 | /* Given a GNU tree and a GNAT list of choices, generate an expression to test | |
4823 | the value passed against the list of choices. */ | |
4824 | ||
4825 | tree | |
4826 | choices_to_gnu (operand, choices) | |
4827 | tree operand; | |
4828 | Node_Id choices; | |
4829 | { | |
4830 | Node_Id choice; | |
4831 | Node_Id gnat_temp; | |
4832 | tree result = integer_zero_node; | |
4833 | tree this_test, low = 0, high = 0, single = 0; | |
4834 | ||
4835 | for (choice = First (choices); Present (choice); choice = Next (choice)) | |
4836 | { | |
4837 | switch (Nkind (choice)) | |
4838 | { | |
4839 | case N_Range: | |
4840 | low = gnat_to_gnu (Low_Bound (choice)); | |
4841 | high = gnat_to_gnu (High_Bound (choice)); | |
4842 | ||
4843 | /* There's no good type to use here, so we might as well use | |
4844 | integer_type_node. */ | |
4845 | this_test | |
4846 | = build_binary_op (TRUTH_ANDIF_EXPR, integer_type_node, | |
4847 | build_binary_op (GE_EXPR, integer_type_node, | |
4848 | operand, low), | |
4849 | build_binary_op (LE_EXPR, integer_type_node, | |
4850 | operand, high)); | |
4851 | ||
4852 | break; | |
4853 | ||
4854 | case N_Subtype_Indication: | |
4855 | gnat_temp = Range_Expression (Constraint (choice)); | |
4856 | low = gnat_to_gnu (Low_Bound (gnat_temp)); | |
4857 | high = gnat_to_gnu (High_Bound (gnat_temp)); | |
4858 | ||
4859 | this_test | |
4860 | = build_binary_op (TRUTH_ANDIF_EXPR, integer_type_node, | |
4861 | build_binary_op (GE_EXPR, integer_type_node, | |
4862 | operand, low), | |
4863 | build_binary_op (LE_EXPR, integer_type_node, | |
4864 | operand, high)); | |
4865 | break; | |
4866 | ||
4867 | case N_Identifier: | |
4868 | case N_Expanded_Name: | |
4869 | /* This represents either a subtype range, an enumeration | |
4870 | literal, or a constant Ekind says which. If an enumeration | |
4871 | literal or constant, fall through to the next case. */ | |
4872 | if (Ekind (Entity (choice)) != E_Enumeration_Literal | |
4873 | && Ekind (Entity (choice)) != E_Constant) | |
4874 | { | |
4875 | tree type = gnat_to_gnu_type (Entity (choice)); | |
4876 | ||
4877 | low = TYPE_MIN_VALUE (type); | |
4878 | high = TYPE_MAX_VALUE (type); | |
4879 | ||
4880 | this_test | |
4881 | = build_binary_op (TRUTH_ANDIF_EXPR, integer_type_node, | |
4882 | build_binary_op (GE_EXPR, integer_type_node, | |
4883 | operand, low), | |
4884 | build_binary_op (LE_EXPR, integer_type_node, | |
4885 | operand, high)); | |
4886 | break; | |
4887 | } | |
4888 | /* ... fall through ... */ | |
4889 | case N_Character_Literal: | |
4890 | case N_Integer_Literal: | |
4891 | single = gnat_to_gnu (choice); | |
4892 | this_test = build_binary_op (EQ_EXPR, integer_type_node, operand, | |
4893 | single); | |
4894 | break; | |
4895 | ||
4896 | case N_Others_Choice: | |
4897 | this_test = integer_one_node; | |
4898 | break; | |
4899 | ||
4900 | default: | |
4901 | gigi_abort (114); | |
4902 | } | |
4903 | ||
4904 | result = build_binary_op (TRUTH_ORIF_EXPR, integer_type_node, | |
4905 | result, this_test); | |
4906 | } | |
4907 | ||
4908 | return result; | |
4909 | } | |
4910 | \f | |
4911 | /* Return a GCC tree for a field corresponding to GNAT_FIELD to be | |
4912 | placed in GNU_RECORD_TYPE. | |
4913 | ||
4914 | PACKED is 1 if the enclosing record is packed and -1 if the enclosing | |
4915 | record has a Component_Alignment of Storage_Unit. | |
4916 | ||
4917 | DEFINITION is nonzero if this field is for a record being defined. */ | |
4918 | ||
4919 | static tree | |
4920 | gnat_to_gnu_field (gnat_field, gnu_record_type, packed, definition) | |
4921 | Entity_Id gnat_field; | |
4922 | tree gnu_record_type; | |
4923 | int packed; | |
4924 | int definition; | |
4925 | { | |
4926 | tree gnu_field_id = get_entity_name (gnat_field); | |
4927 | tree gnu_field_type = gnat_to_gnu_type (Etype (gnat_field)); | |
4928 | tree gnu_orig_field_type = gnu_field_type; | |
4929 | tree gnu_pos = 0; | |
4930 | tree gnu_size = 0; | |
4931 | tree gnu_field; | |
4932 | int needs_strict_alignment | |
4933 | = (Is_Aliased (gnat_field) || Strict_Alignment (Etype (gnat_field)) | |
fbf5a39b | 4934 | || Treat_As_Volatile (gnat_field)); |
70482933 | 4935 | |
fbf5a39b AC |
4936 | /* If this field requires strict alignment or contains an item of |
4937 | variable sized, pretend it isn't packed. */ | |
4938 | if (needs_strict_alignment || is_variable_size (gnu_field_type)) | |
70482933 RK |
4939 | packed = 0; |
4940 | ||
4941 | /* For packed records, this is one of the few occasions on which we use | |
4942 | the official RM size for discrete or fixed-point components, instead | |
4943 | of the normal GNAT size stored in Esize. See description in Einfo: | |
4944 | "Handling of Type'Size Values" for further details. */ | |
4945 | ||
4946 | if (packed == 1) | |
4947 | gnu_size = validate_size (RM_Size (Etype (gnat_field)), gnu_field_type, | |
4948 | gnat_field, FIELD_DECL, 0, 1); | |
4949 | ||
4950 | if (Known_Static_Esize (gnat_field)) | |
4951 | gnu_size = validate_size (Esize (gnat_field), gnu_field_type, | |
4952 | gnat_field, FIELD_DECL, 0, 1); | |
4953 | ||
07fc65c4 GB |
4954 | /* If the field's type is a left-justified modular type, make the field |
4955 | the type of the inner object unless it is aliases. We don't need | |
4956 | the the wrapper here and it can prevent packing. */ | |
4957 | if (! Is_Aliased (gnat_field) && TREE_CODE (gnu_field_type) == RECORD_TYPE | |
4958 | && TYPE_LEFT_JUSTIFIED_MODULAR_P (gnu_field_type)) | |
4959 | gnu_field_type = TREE_TYPE (TYPE_FIELDS (gnu_field_type)); | |
4960 | ||
4961 | /* If we are packing this record or we have a specified size that's | |
4962 | smaller than that of the field type and the field type is also a record | |
70482933 RK |
4963 | that's BLKmode and with a small constant size, see if we can get a |
4964 | better form of the type that allows more packing. If we can, show | |
4965 | a size was specified for it if there wasn't one so we know to | |
4966 | make this a bitfield and avoid making things wider. */ | |
07fc65c4 | 4967 | if (TREE_CODE (gnu_field_type) == RECORD_TYPE |
70482933 RK |
4968 | && TYPE_MODE (gnu_field_type) == BLKmode |
4969 | && host_integerp (TYPE_SIZE (gnu_field_type), 1) | |
07fc65c4 GB |
4970 | && compare_tree_int (TYPE_SIZE (gnu_field_type), BIGGEST_ALIGNMENT) <= 0 |
4971 | && (packed | |
4972 | || (gnu_size != 0 && tree_int_cst_lt (gnu_size, | |
4973 | TYPE_SIZE (gnu_field_type))))) | |
70482933 RK |
4974 | { |
4975 | gnu_field_type = make_packable_type (gnu_field_type); | |
4976 | ||
4977 | if (gnu_field_type != gnu_orig_field_type && gnu_size == 0) | |
4978 | gnu_size = rm_size (gnu_field_type); | |
4979 | } | |
4980 | ||
fbf5a39b AC |
4981 | /* If we are packing the record and the field is BLKmode, round the |
4982 | size up to a byte boundary. */ | |
4983 | if (packed && TYPE_MODE (gnu_field_type) == BLKmode && gnu_size != 0) | |
4984 | gnu_size = round_up (gnu_size, BITS_PER_UNIT); | |
4985 | ||
70482933 RK |
4986 | if (Present (Component_Clause (gnat_field))) |
4987 | { | |
4988 | gnu_pos = UI_To_gnu (Component_Bit_Offset (gnat_field), bitsizetype); | |
4989 | gnu_size = validate_size (Esize (gnat_field), gnu_field_type, | |
4990 | gnat_field, FIELD_DECL, 0, 1); | |
4991 | ||
4992 | /* Ensure the position does not overlap with the parent subtype, | |
4993 | if there is one. */ | |
4994 | if (Present (Parent_Subtype (Underlying_Type (Scope (gnat_field))))) | |
4995 | { | |
4996 | tree gnu_parent | |
4997 | = gnat_to_gnu_type (Parent_Subtype | |
4998 | (Underlying_Type (Scope (gnat_field)))); | |
4999 | ||
5000 | if (TREE_CODE (TYPE_SIZE (gnu_parent)) == INTEGER_CST | |
5001 | && tree_int_cst_lt (gnu_pos, TYPE_SIZE (gnu_parent))) | |
5002 | { | |
5003 | post_error_ne_tree | |
5004 | ("offset of& must be beyond parent{, minimum allowed is ^}", | |
5005 | First_Bit (Component_Clause (gnat_field)), gnat_field, | |
5006 | TYPE_SIZE_UNIT (gnu_parent)); | |
5007 | } | |
5008 | } | |
5009 | ||
5010 | /* If this field needs strict alignment, ensure the record is | |
5011 | sufficiently aligned and that that position and size are | |
5012 | consistent with the alignment. */ | |
5013 | if (needs_strict_alignment) | |
5014 | { | |
5015 | tree gnu_min_size = round_up (rm_size (gnu_field_type), | |
5016 | TYPE_ALIGN (gnu_field_type)); | |
5017 | ||
5018 | TYPE_ALIGN (gnu_record_type) | |
5019 | = MAX (TYPE_ALIGN (gnu_record_type), TYPE_ALIGN (gnu_field_type)); | |
5020 | ||
5021 | /* If Atomic, the size must match exactly and if aliased, the size | |
5022 | must not be less than the rounded size. */ | |
5023 | if ((Is_Atomic (gnat_field) || Is_Atomic (Etype (gnat_field))) | |
5024 | && ! operand_equal_p (gnu_size, TYPE_SIZE (gnu_field_type), 0)) | |
5025 | { | |
5026 | post_error_ne_tree | |
5027 | ("atomic field& must be natural size of type{ (^)}", | |
5028 | Last_Bit (Component_Clause (gnat_field)), gnat_field, | |
5029 | TYPE_SIZE (gnu_field_type)); | |
5030 | ||
5031 | gnu_size = 0; | |
5032 | } | |
5033 | ||
5034 | else if (Is_Aliased (gnat_field) | |
5035 | && gnu_size != 0 | |
5036 | && tree_int_cst_lt (gnu_size, gnu_min_size)) | |
5037 | { | |
5038 | post_error_ne_tree | |
5039 | ("size of aliased field& too small{, minimum required is ^}", | |
5040 | Last_Bit (Component_Clause (gnat_field)), gnat_field, | |
5041 | gnu_min_size); | |
5042 | gnu_size = 0; | |
5043 | } | |
5044 | ||
fbf5a39b | 5045 | if (! integer_zerop (size_binop |
70482933 RK |
5046 | (TRUNC_MOD_EXPR, gnu_pos, |
5047 | bitsize_int (TYPE_ALIGN (gnu_field_type))))) | |
5048 | { | |
5049 | if (Is_Aliased (gnat_field)) | |
5050 | post_error_ne_num | |
5051 | ("position of aliased field& must be multiple of ^ bits", | |
07fc65c4 | 5052 | First_Bit (Component_Clause (gnat_field)), gnat_field, |
70482933 RK |
5053 | TYPE_ALIGN (gnu_field_type)); |
5054 | ||
fbf5a39b | 5055 | else if (Treat_As_Volatile (gnat_field)) |
70482933 RK |
5056 | post_error_ne_num |
5057 | ("position of volatile field& must be multiple of ^ bits", | |
5058 | First_Bit (Component_Clause (gnat_field)), gnat_field, | |
5059 | TYPE_ALIGN (gnu_field_type)); | |
5060 | ||
5061 | else if (Strict_Alignment (Etype (gnat_field))) | |
5062 | post_error_ne_num | |
5063 | ("position of & with aliased or tagged components not multiple of ^ bits", | |
5064 | First_Bit (Component_Clause (gnat_field)), gnat_field, | |
5065 | TYPE_ALIGN (gnu_field_type)); | |
5066 | else | |
5067 | gigi_abort (124); | |
5068 | ||
5069 | gnu_pos = 0; | |
5070 | } | |
5071 | ||
5072 | /* If an error set the size to zero, show we have no position | |
5073 | either. */ | |
5074 | if (gnu_size == 0) | |
5075 | gnu_pos = 0; | |
5076 | } | |
5077 | ||
5078 | if (Is_Atomic (gnat_field)) | |
5079 | check_ok_for_atomic (gnu_field_type, gnat_field, 0); | |
5080 | ||
fbf5a39b | 5081 | if (gnu_pos != 0 && TYPE_MODE (gnu_field_type) == BLKmode |
70482933 | 5082 | && (! integer_zerop (size_binop (TRUNC_MOD_EXPR, gnu_pos, |
fbf5a39b AC |
5083 | bitsize_unit_node))) |
5084 | && TYPE_MODE (gnu_field_type) == BLKmode) | |
70482933 | 5085 | { |
fbf5a39b AC |
5086 | post_error_ne ("fields of& must start at storage unit boundary", |
5087 | First_Bit (Component_Clause (gnat_field)), | |
5088 | Etype (gnat_field)); | |
5089 | gnu_pos = 0; | |
70482933 RK |
5090 | } |
5091 | } | |
5092 | ||
5093 | /* If the record has rep clauses and this is the tag field, make a rep | |
5094 | clause for it as well. */ | |
5095 | else if (Has_Specified_Layout (Scope (gnat_field)) | |
5096 | && Chars (gnat_field) == Name_uTag) | |
5097 | { | |
5098 | gnu_pos = bitsize_zero_node; | |
5099 | gnu_size = TYPE_SIZE (gnu_field_type); | |
5100 | } | |
5101 | ||
fbf5a39b AC |
5102 | /* If a size is specified and this is a BLKmode field, it must be an |
5103 | integral number of bytes. */ | |
5104 | if (gnu_size != 0 && TYPE_MODE (gnu_field_type) == BLKmode | |
5105 | && ! integer_zerop (size_binop (TRUNC_MOD_EXPR, gnu_size, | |
5106 | bitsize_unit_node))) | |
5107 | { | |
5108 | post_error_ne ("size of fields of& must be multiple of a storage unit", | |
5109 | gnat_field, Etype (gnat_field)); | |
5110 | gnu_pos = gnu_size = 0; | |
5111 | } | |
5112 | ||
70482933 | 5113 | /* We need to make the size the maximum for the type if it is |
07fc65c4 GB |
5114 | self-referential and an unconstrained type. In that case, we can't |
5115 | pack the field since we can't make a copy to align it. */ | |
70482933 RK |
5116 | if (TREE_CODE (gnu_field_type) == RECORD_TYPE |
5117 | && gnu_size == 0 | |
fbf5a39b | 5118 | && CONTAINS_PLACEHOLDER_P (TYPE_SIZE (gnu_field_type)) |
70482933 | 5119 | && ! Is_Constrained (Underlying_Type (Etype (gnat_field)))) |
07fc65c4 GB |
5120 | { |
5121 | gnu_size = max_size (TYPE_SIZE (gnu_field_type), 1); | |
5122 | packed = 0; | |
5123 | } | |
70482933 RK |
5124 | |
5125 | /* If no size is specified (or if there was an error), don't specify a | |
5126 | position. */ | |
5127 | if (gnu_size == 0) | |
5128 | gnu_pos = 0; | |
5129 | else | |
5130 | { | |
5131 | /* Unless this field is aliased, we can remove any left-justified | |
5132 | modular type since it's only needed in the unchecked conversion | |
5133 | case, which doesn't apply here. */ | |
5134 | if (! needs_strict_alignment | |
5135 | && TREE_CODE (gnu_field_type) == RECORD_TYPE | |
5136 | && TYPE_LEFT_JUSTIFIED_MODULAR_P (gnu_field_type)) | |
5137 | gnu_field_type = TREE_TYPE (TYPE_FIELDS (gnu_field_type)); | |
5138 | ||
5139 | gnu_field_type | |
5140 | = make_type_from_size (gnu_field_type, gnu_size, | |
5141 | Has_Biased_Representation (gnat_field)); | |
5142 | gnu_field_type = maybe_pad_type (gnu_field_type, gnu_size, 0, | |
5143 | gnat_field, "PAD", 0, definition, 1); | |
5144 | } | |
5145 | ||
5146 | if (TREE_CODE (gnu_field_type) == RECORD_TYPE | |
5147 | && TYPE_CONTAINS_TEMPLATE_P (gnu_field_type)) | |
5148 | gigi_abort (118); | |
5149 | ||
fbf5a39b | 5150 | /* Now create the decl for the field. */ |
70482933 RK |
5151 | set_lineno (gnat_field, 0); |
5152 | gnu_field = create_field_decl (gnu_field_id, gnu_field_type, gnu_record_type, | |
5153 | packed, gnu_size, gnu_pos, | |
5154 | Is_Aliased (gnat_field)); | |
5155 | ||
fbf5a39b | 5156 | TREE_THIS_VOLATILE (gnu_field) = Treat_As_Volatile (gnat_field); |
70482933 RK |
5157 | |
5158 | if (Ekind (gnat_field) == E_Discriminant) | |
5159 | DECL_DISCRIMINANT_NUMBER (gnu_field) | |
5160 | = UI_To_gnu (Discriminant_Number (gnat_field), sizetype); | |
5161 | ||
5162 | return gnu_field; | |
5163 | } | |
5164 | \f | |
fbf5a39b AC |
5165 | /* Return 1 if TYPE is a type with variable size, a padding type with a field |
5166 | of variable size or is a record that has a field such a field. */ | |
5167 | ||
5168 | static int | |
5169 | is_variable_size (type) | |
5170 | tree type; | |
5171 | { | |
5172 | tree field; | |
5173 | ||
5174 | /* We need not be concerned about this at all if we don't have | |
5175 | strict alignment. */ | |
5176 | if (! STRICT_ALIGNMENT) | |
5177 | return 0; | |
5178 | else if (! TREE_CONSTANT (TYPE_SIZE (type))) | |
5179 | return 1; | |
5180 | else if (TREE_CODE (type) == RECORD_TYPE && TYPE_IS_PADDING_P (type) | |
5181 | && ! TREE_CONSTANT (DECL_SIZE (TYPE_FIELDS (type)))) | |
5182 | return 1; | |
5183 | else if (TREE_CODE (type) != RECORD_TYPE | |
5184 | && TREE_CODE (type) != UNION_TYPE | |
5185 | && TREE_CODE (type) != QUAL_UNION_TYPE) | |
5186 | return 0; | |
5187 | ||
5188 | for (field = TYPE_FIELDS (type); field != 0; field = TREE_CHAIN (field)) | |
5189 | if (is_variable_size (TREE_TYPE (field))) | |
5190 | return 1; | |
5191 | ||
5192 | return 0; | |
5193 | } | |
5194 | \f | |
70482933 RK |
5195 | /* Return a GCC tree for a record type given a GNAT Component_List and a chain |
5196 | of GCC trees for fields that are in the record and have already been | |
5197 | processed. When called from gnat_to_gnu_entity during the processing of a | |
5198 | record type definition, the GCC nodes for the discriminants will be on | |
5199 | the chain. The other calls to this function are recursive calls from | |
5200 | itself for the Component_List of a variant and the chain is empty. | |
5201 | ||
5202 | PACKED is 1 if this is for a record with "pragma pack" and -1 is this is | |
5203 | for a record type with "pragma component_alignment (storage_unit)". | |
5204 | ||
5205 | FINISH_RECORD is nonzero if this call will supply all of the remaining | |
5206 | fields of the record. | |
5207 | ||
5208 | P_GNU_REP_LIST, if nonzero, is a pointer to a list to which each field | |
5209 | with a rep clause is to be added. If it is nonzero, that is all that | |
5210 | should be done with such fields. | |
5211 | ||
5212 | CANCEL_ALIGNMENT, if nonzero, means the alignment should be zeroed | |
5213 | before laying out the record. This means the alignment only serves | |
5214 | to force fields to be bitfields, but not require the record to be | |
5215 | that aligned. This is used for variants. | |
5216 | ||
5217 | ALL_REP, if nonzero, means that a rep clause was found for all the | |
5218 | fields. This simplifies the logic since we know we're not in the mixed | |
5219 | case. | |
5220 | ||
5221 | The processing of the component list fills in the chain with all of the | |
5222 | fields of the record and then the record type is finished. */ | |
5223 | ||
5224 | static void | |
5225 | components_to_record (gnu_record_type, component_list, gnu_field_list, packed, | |
5226 | definition, p_gnu_rep_list, cancel_alignment, all_rep) | |
5227 | tree gnu_record_type; | |
5228 | Node_Id component_list; | |
5229 | tree gnu_field_list; | |
5230 | int packed; | |
5231 | int definition; | |
5232 | tree *p_gnu_rep_list; | |
5233 | int cancel_alignment; | |
5234 | int all_rep; | |
5235 | { | |
5236 | Node_Id component_decl; | |
5237 | Entity_Id gnat_field; | |
5238 | Node_Id variant_part; | |
5239 | Node_Id variant; | |
5240 | tree gnu_our_rep_list = NULL_TREE; | |
5241 | tree gnu_field, gnu_last; | |
5242 | int layout_with_rep = 0; | |
fbf5a39b | 5243 | int all_rep_and_size = all_rep && TYPE_SIZE (gnu_record_type) != 0; |
70482933 RK |
5244 | |
5245 | /* For each variable within each component declaration create a GCC field | |
5246 | and add it to the list, skipping any pragmas in the list. */ | |
5247 | ||
5248 | if (Present (Component_Items (component_list))) | |
5249 | for (component_decl = First_Non_Pragma (Component_Items (component_list)); | |
5250 | Present (component_decl); | |
5251 | component_decl = Next_Non_Pragma (component_decl)) | |
5252 | { | |
5253 | gnat_field = Defining_Entity (component_decl); | |
5254 | ||
5255 | if (Chars (gnat_field) == Name_uParent) | |
5256 | gnu_field = tree_last (TYPE_FIELDS (gnu_record_type)); | |
5257 | else | |
5258 | { | |
5259 | gnu_field = gnat_to_gnu_field (gnat_field, gnu_record_type, | |
5260 | packed, definition); | |
5261 | ||
5262 | /* If this is the _Tag field, put it before any discriminants, | |
fbf5a39b AC |
5263 | instead of after them as is the case for all other fields. |
5264 | Ignore field of void type if only annotating. */ | |
70482933 RK |
5265 | if (Chars (gnat_field) == Name_uTag) |
5266 | gnu_field_list = chainon (gnu_field_list, gnu_field); | |
5267 | else | |
5268 | { | |
5269 | TREE_CHAIN (gnu_field) = gnu_field_list; | |
5270 | gnu_field_list = gnu_field; | |
5271 | } | |
5272 | } | |
5273 | ||
5274 | save_gnu_tree (gnat_field, gnu_field, 0); | |
5275 | } | |
5276 | ||
5277 | /* At the end of the component list there may be a variant part. */ | |
5278 | variant_part = Variant_Part (component_list); | |
5279 | ||
5280 | /* If this is an unchecked union, each variant must have exactly one | |
5281 | component, each of which becomes one component of this union. */ | |
5282 | if (TREE_CODE (gnu_record_type) == UNION_TYPE && Present (variant_part)) | |
5283 | for (variant = First_Non_Pragma (Variants (variant_part)); | |
5284 | Present (variant); | |
5285 | variant = Next_Non_Pragma (variant)) | |
5286 | { | |
5287 | component_decl | |
5288 | = First_Non_Pragma (Component_Items (Component_List (variant))); | |
5289 | gnat_field = Defining_Entity (component_decl); | |
5290 | gnu_field = gnat_to_gnu_field (gnat_field, gnu_record_type, packed, | |
5291 | definition); | |
5292 | TREE_CHAIN (gnu_field) = gnu_field_list; | |
5293 | gnu_field_list = gnu_field; | |
5294 | save_gnu_tree (gnat_field, gnu_field, 0); | |
5295 | } | |
5296 | ||
5297 | /* We create a QUAL_UNION_TYPE for the variant part since the variants are | |
5298 | mutually exclusive and should go in the same memory. To do this we need | |
5299 | to treat each variant as a record whose elements are created from the | |
5300 | component list for the variant. So here we create the records from the | |
5301 | lists for the variants and put them all into the QUAL_UNION_TYPE. */ | |
5302 | else if (Present (variant_part)) | |
5303 | { | |
5304 | tree gnu_discriminant = gnat_to_gnu (Name (variant_part)); | |
5305 | Node_Id variant; | |
5306 | tree gnu_union_type = make_node (QUAL_UNION_TYPE); | |
5307 | tree gnu_union_field; | |
5308 | tree gnu_variant_list = NULL_TREE; | |
5309 | tree gnu_name = TYPE_NAME (gnu_record_type); | |
5310 | tree gnu_var_name | |
5311 | = concat_id_with_name | |
5312 | (get_identifier (Get_Name_String (Chars (Name (variant_part)))), | |
5313 | "XVN"); | |
5314 | ||
5315 | if (TREE_CODE (gnu_name) == TYPE_DECL) | |
5316 | gnu_name = DECL_NAME (gnu_name); | |
5317 | ||
5318 | TYPE_NAME (gnu_union_type) | |
5319 | = concat_id_with_name (gnu_name, IDENTIFIER_POINTER (gnu_var_name)); | |
5320 | TYPE_PACKED (gnu_union_type) = TYPE_PACKED (gnu_record_type); | |
5321 | ||
5322 | for (variant = First_Non_Pragma (Variants (variant_part)); | |
5323 | Present (variant); | |
5324 | variant = Next_Non_Pragma (variant)) | |
5325 | { | |
5326 | tree gnu_variant_type = make_node (RECORD_TYPE); | |
5327 | tree gnu_inner_name; | |
5328 | tree gnu_qual; | |
5329 | ||
5330 | Get_Variant_Encoding (variant); | |
5331 | gnu_inner_name = get_identifier (Name_Buffer); | |
5332 | TYPE_NAME (gnu_variant_type) | |
5333 | = concat_id_with_name (TYPE_NAME (gnu_union_type), | |
5334 | IDENTIFIER_POINTER (gnu_inner_name)); | |
5335 | ||
5336 | /* Set the alignment of the inner type in case we need to make | |
5337 | inner objects into bitfields, but then clear it out | |
5338 | so the record actually gets only the alignment required. */ | |
5339 | TYPE_ALIGN (gnu_variant_type) = TYPE_ALIGN (gnu_record_type); | |
5340 | TYPE_PACKED (gnu_variant_type) = TYPE_PACKED (gnu_record_type); | |
fbf5a39b AC |
5341 | |
5342 | /* Similarly, if the outer record has a size specified and all fields | |
5343 | have record rep clauses, we can propagate the size into the | |
5344 | variant part. */ | |
5345 | if (all_rep_and_size) | |
5346 | { | |
5347 | TYPE_SIZE (gnu_variant_type) = TYPE_SIZE (gnu_record_type); | |
5348 | TYPE_SIZE_UNIT (gnu_variant_type) | |
5349 | = TYPE_SIZE_UNIT (gnu_record_type); | |
5350 | } | |
5351 | ||
70482933 RK |
5352 | components_to_record (gnu_variant_type, Component_List (variant), |
5353 | NULL_TREE, packed, definition, | |
fbf5a39b | 5354 | &gnu_our_rep_list, !all_rep_and_size, all_rep); |
70482933 RK |
5355 | |
5356 | gnu_qual = choices_to_gnu (gnu_discriminant, | |
5357 | Discrete_Choices (variant)); | |
5358 | ||
5359 | Set_Present_Expr (variant, annotate_value (gnu_qual)); | |
5360 | gnu_field = create_field_decl (gnu_inner_name, gnu_variant_type, | |
fbf5a39b AC |
5361 | gnu_union_type, 0, |
5362 | (all_rep_and_size | |
5363 | ? TYPE_SIZE (gnu_record_type) : 0), | |
5364 | (all_rep_and_size | |
5365 | ? bitsize_zero_node : 0), | |
5366 | 1); | |
5367 | ||
70482933 RK |
5368 | DECL_INTERNAL_P (gnu_field) = 1; |
5369 | DECL_QUALIFIER (gnu_field) = gnu_qual; | |
5370 | TREE_CHAIN (gnu_field) = gnu_variant_list; | |
5371 | gnu_variant_list = gnu_field; | |
5372 | } | |
5373 | ||
5374 | /* We can delete any empty variants from the end. This may leave none | |
5375 | left. Note we cannot delete variants from anywhere else. */ | |
5376 | while (gnu_variant_list != 0 | |
5377 | && TYPE_FIELDS (TREE_TYPE (gnu_variant_list)) == 0) | |
5378 | gnu_variant_list = TREE_CHAIN (gnu_variant_list); | |
5379 | ||
5380 | /* Only make the QUAL_UNION_TYPE if there are any non-empty variants. */ | |
5381 | if (gnu_variant_list != 0) | |
5382 | { | |
fbf5a39b AC |
5383 | if (all_rep_and_size) |
5384 | { | |
5385 | TYPE_SIZE (gnu_union_type) = TYPE_SIZE (gnu_record_type); | |
5386 | TYPE_SIZE_UNIT (gnu_union_type) | |
5387 | = TYPE_SIZE_UNIT (gnu_record_type); | |
5388 | } | |
5389 | ||
70482933 | 5390 | finish_record_type (gnu_union_type, nreverse (gnu_variant_list), |
fbf5a39b | 5391 | all_rep_and_size, 0); |
70482933 RK |
5392 | |
5393 | gnu_union_field | |
5394 | = create_field_decl (gnu_var_name, gnu_union_type, gnu_record_type, | |
5395 | packed, | |
5396 | all_rep ? TYPE_SIZE (gnu_union_type) : 0, | |
5397 | all_rep ? bitsize_zero_node : 0, 1); | |
5398 | ||
5399 | DECL_INTERNAL_P (gnu_union_field) = 1; | |
5400 | TREE_CHAIN (gnu_union_field) = gnu_field_list; | |
5401 | gnu_field_list = gnu_union_field; | |
5402 | } | |
5403 | } | |
5404 | ||
5405 | /* Scan GNU_FIELD_LIST and see if any fields have rep clauses. If they | |
5406 | do, pull them out and put them into GNU_OUR_REP_LIST. We have to do this | |
5407 | in a separate pass since we want to handle the discriminants but can't | |
5408 | play with them until we've used them in debugging data above. | |
5409 | ||
5410 | ??? Note: if we then reorder them, debugging information will be wrong, | |
5411 | but there's nothing that can be done about this at the moment. */ | |
5412 | ||
5413 | for (gnu_field = gnu_field_list, gnu_last = 0; gnu_field; ) | |
5414 | { | |
5415 | if (DECL_FIELD_OFFSET (gnu_field) != 0) | |
5416 | { | |
5417 | tree gnu_next = TREE_CHAIN (gnu_field); | |
5418 | ||
5419 | if (gnu_last == 0) | |
5420 | gnu_field_list = gnu_next; | |
5421 | else | |
5422 | TREE_CHAIN (gnu_last) = gnu_next; | |
5423 | ||
5424 | TREE_CHAIN (gnu_field) = gnu_our_rep_list; | |
5425 | gnu_our_rep_list = gnu_field; | |
5426 | gnu_field = gnu_next; | |
5427 | } | |
5428 | else | |
5429 | { | |
5430 | gnu_last = gnu_field; | |
5431 | gnu_field = TREE_CHAIN (gnu_field); | |
5432 | } | |
5433 | } | |
5434 | ||
5435 | /* If we have any items in our rep'ed field list, it is not the case that all | |
5436 | the fields in the record have rep clauses, and P_REP_LIST is nonzero, | |
5437 | set it and ignore the items. Otherwise, sort the fields by bit position | |
5438 | and put them into their own record if we have any fields without | |
5439 | rep clauses. */ | |
5440 | if (gnu_our_rep_list != 0 && p_gnu_rep_list != 0 && ! all_rep) | |
5441 | *p_gnu_rep_list = chainon (*p_gnu_rep_list, gnu_our_rep_list); | |
5442 | else if (gnu_our_rep_list != 0) | |
5443 | { | |
5444 | tree gnu_rep_type | |
5445 | = gnu_field_list == 0 ? gnu_record_type : make_node (RECORD_TYPE); | |
5446 | int len = list_length (gnu_our_rep_list); | |
5447 | tree *gnu_arr = (tree *) alloca (sizeof (tree) * len); | |
5448 | int i; | |
5449 | ||
5450 | /* Set DECL_SECTION_NAME to increasing integers so we have a | |
5451 | stable sort. */ | |
5452 | for (i = 0, gnu_field = gnu_our_rep_list; gnu_field; | |
5453 | gnu_field = TREE_CHAIN (gnu_field), i++) | |
5454 | { | |
5455 | gnu_arr[i] = gnu_field; | |
5456 | DECL_SECTION_NAME (gnu_field) = size_int (i); | |
5457 | } | |
5458 | ||
5459 | qsort (gnu_arr, len, sizeof (tree), compare_field_bitpos); | |
5460 | ||
5461 | /* Put the fields in the list in order of increasing position, which | |
5462 | means we start from the end. */ | |
5463 | gnu_our_rep_list = NULL_TREE; | |
5464 | for (i = len - 1; i >= 0; i--) | |
5465 | { | |
5466 | TREE_CHAIN (gnu_arr[i]) = gnu_our_rep_list; | |
5467 | gnu_our_rep_list = gnu_arr[i]; | |
5468 | DECL_CONTEXT (gnu_arr[i]) = gnu_rep_type; | |
5469 | DECL_SECTION_NAME (gnu_arr[i]) = 0; | |
5470 | } | |
5471 | ||
5472 | if (gnu_field_list != 0) | |
5473 | { | |
5474 | finish_record_type (gnu_rep_type, gnu_our_rep_list, 1, 0); | |
5475 | gnu_field = create_field_decl (get_identifier ("REP"), gnu_rep_type, | |
5476 | gnu_record_type, 0, 0, 0, 1); | |
5477 | DECL_INTERNAL_P (gnu_field) = 1; | |
5478 | gnu_field_list = chainon (gnu_field_list, gnu_field); | |
5479 | } | |
5480 | else | |
5481 | { | |
5482 | layout_with_rep = 1; | |
5483 | gnu_field_list = nreverse (gnu_our_rep_list); | |
5484 | } | |
5485 | } | |
5486 | ||
5487 | if (cancel_alignment) | |
5488 | TYPE_ALIGN (gnu_record_type) = 0; | |
5489 | ||
5490 | finish_record_type (gnu_record_type, nreverse (gnu_field_list), | |
5491 | layout_with_rep, 0); | |
5492 | } | |
5493 | \f | |
5494 | /* Called via qsort from the above. Returns -1, 1, depending on the | |
5495 | bit positions and ordinals of the two fields. */ | |
5496 | ||
5497 | static int | |
5498 | compare_field_bitpos (rt1, rt2) | |
5499 | const PTR rt1; | |
5500 | const PTR rt2; | |
5501 | { | |
5502 | tree *t1 = (tree *) rt1; | |
5503 | tree *t2 = (tree *) rt2; | |
5504 | ||
5505 | if (tree_int_cst_equal (bit_position (*t1), bit_position (*t2))) | |
5506 | return | |
5507 | (tree_int_cst_lt (DECL_SECTION_NAME (*t1), DECL_SECTION_NAME (*t2)) | |
5508 | ? -1 : 1); | |
5509 | else if (tree_int_cst_lt (bit_position (*t1), bit_position (*t2))) | |
5510 | return -1; | |
5511 | else | |
5512 | return 1; | |
5513 | } | |
5514 | \f | |
5515 | /* Given GNU_SIZE, a GCC tree representing a size, return a Uint to be | |
5516 | placed into an Esize, Component_Bit_Offset, or Component_Size value | |
5517 | in the GNAT tree. */ | |
5518 | ||
5519 | static Uint | |
5520 | annotate_value (gnu_size) | |
5521 | tree gnu_size; | |
5522 | { | |
5523 | int len = TREE_CODE_LENGTH (TREE_CODE (gnu_size)); | |
5524 | TCode tcode; | |
fbf5a39b | 5525 | Node_Ref_Or_Val ops[3], ret; |
70482933 | 5526 | int i; |
45659035 | 5527 | int size; |
70482933 | 5528 | |
fbf5a39b AC |
5529 | /* If back annotation is suppressed by the front end, return No_Uint */ |
5530 | if (!Back_Annotate_Rep_Info) | |
5531 | return No_Uint; | |
5532 | ||
5533 | /* See if we've already saved the value for this node. */ | |
5534 | if (IS_EXPR_CODE_CLASS (TREE_CODE_CLASS (TREE_CODE (gnu_size))) | |
5535 | && TREE_COMPLEXITY (gnu_size) != 0) | |
5536 | return (Node_Ref_Or_Val) TREE_COMPLEXITY (gnu_size); | |
5537 | ||
70482933 RK |
5538 | /* If we do not return inside this switch, TCODE will be set to the |
5539 | code to use for a Create_Node operand and LEN (set above) will be | |
5540 | the number of recursive calls for us to make. */ | |
5541 | ||
5542 | switch (TREE_CODE (gnu_size)) | |
5543 | { | |
5544 | case INTEGER_CST: | |
5545 | if (TREE_OVERFLOW (gnu_size)) | |
5546 | return No_Uint; | |
5547 | ||
5548 | /* This may have come from a conversion from some smaller type, | |
5549 | so ensure this is in bitsizetype. */ | |
5550 | gnu_size = convert (bitsizetype, gnu_size); | |
5551 | ||
5552 | /* For negative values, use NEGATE_EXPR of the supplied value. */ | |
5553 | if (tree_int_cst_sgn (gnu_size) < 0) | |
5554 | { | |
5555 | /* The rediculous code below is to handle the case of the largest | |
5556 | negative integer. */ | |
5557 | tree negative_size = size_diffop (bitsize_zero_node, gnu_size); | |
5558 | int adjust = 0; | |
5559 | tree temp; | |
5560 | ||
5561 | if (TREE_CONSTANT_OVERFLOW (negative_size)) | |
5562 | { | |
5563 | negative_size | |
5564 | = size_binop (MINUS_EXPR, bitsize_zero_node, | |
5565 | size_binop (PLUS_EXPR, gnu_size, | |
5566 | bitsize_one_node)); | |
5567 | adjust = 1; | |
5568 | } | |
5569 | ||
5570 | temp = build1 (NEGATE_EXPR, bitsizetype, negative_size); | |
5571 | if (adjust) | |
5572 | temp = build (MINUS_EXPR, bitsizetype, temp, bitsize_one_node); | |
5573 | ||
5574 | return annotate_value (temp); | |
5575 | } | |
5576 | ||
5577 | if (! host_integerp (gnu_size, 1)) | |
5578 | return No_Uint; | |
5579 | ||
5580 | size = tree_low_cst (gnu_size, 1); | |
5581 | ||
5582 | /* This peculiar test is to make sure that the size fits in an int | |
5583 | on machines where HOST_WIDE_INT is not "int". */ | |
5584 | if (tree_low_cst (gnu_size, 1) == size) | |
5585 | return UI_From_Int (size); | |
5586 | else | |
5587 | return No_Uint; | |
5588 | ||
5589 | case COMPONENT_REF: | |
5590 | /* The only case we handle here is a simple discriminant reference. */ | |
5591 | if (TREE_CODE (TREE_OPERAND (gnu_size, 0)) == PLACEHOLDER_EXPR | |
5592 | && TREE_CODE (TREE_OPERAND (gnu_size, 1)) == FIELD_DECL | |
5593 | && DECL_DISCRIMINANT_NUMBER (TREE_OPERAND (gnu_size, 1)) != 0) | |
5594 | return Create_Node (Discrim_Val, | |
5595 | annotate_value (DECL_DISCRIMINANT_NUMBER | |
5596 | (TREE_OPERAND (gnu_size, 1))), | |
5597 | No_Uint, No_Uint); | |
5598 | else | |
5599 | return No_Uint; | |
5600 | ||
5601 | case NOP_EXPR: case CONVERT_EXPR: case NON_LVALUE_EXPR: | |
5602 | return annotate_value (TREE_OPERAND (gnu_size, 0)); | |
5603 | ||
5604 | /* Now just list the operations we handle. */ | |
5605 | case COND_EXPR: tcode = Cond_Expr; break; | |
5606 | case PLUS_EXPR: tcode = Plus_Expr; break; | |
5607 | case MINUS_EXPR: tcode = Minus_Expr; break; | |
5608 | case MULT_EXPR: tcode = Mult_Expr; break; | |
5609 | case TRUNC_DIV_EXPR: tcode = Trunc_Div_Expr; break; | |
5610 | case CEIL_DIV_EXPR: tcode = Ceil_Div_Expr; break; | |
5611 | case FLOOR_DIV_EXPR: tcode = Floor_Div_Expr; break; | |
5612 | case TRUNC_MOD_EXPR: tcode = Trunc_Mod_Expr; break; | |
5613 | case CEIL_MOD_EXPR: tcode = Ceil_Mod_Expr; break; | |
5614 | case FLOOR_MOD_EXPR: tcode = Floor_Mod_Expr; break; | |
5615 | case EXACT_DIV_EXPR: tcode = Exact_Div_Expr; break; | |
5616 | case NEGATE_EXPR: tcode = Negate_Expr; break; | |
5617 | case MIN_EXPR: tcode = Min_Expr; break; | |
5618 | case MAX_EXPR: tcode = Max_Expr; break; | |
5619 | case ABS_EXPR: tcode = Abs_Expr; break; | |
5620 | case TRUTH_ANDIF_EXPR: tcode = Truth_Andif_Expr; break; | |
5621 | case TRUTH_ORIF_EXPR: tcode = Truth_Orif_Expr; break; | |
5622 | case TRUTH_AND_EXPR: tcode = Truth_And_Expr; break; | |
5623 | case TRUTH_OR_EXPR: tcode = Truth_Or_Expr; break; | |
5624 | case TRUTH_XOR_EXPR: tcode = Truth_Xor_Expr; break; | |
5625 | case TRUTH_NOT_EXPR: tcode = Truth_Not_Expr; break; | |
5626 | case LT_EXPR: tcode = Lt_Expr; break; | |
5627 | case LE_EXPR: tcode = Le_Expr; break; | |
5628 | case GT_EXPR: tcode = Gt_Expr; break; | |
5629 | case GE_EXPR: tcode = Ge_Expr; break; | |
5630 | case EQ_EXPR: tcode = Eq_Expr; break; | |
5631 | case NE_EXPR: tcode = Ne_Expr; break; | |
5632 | ||
5633 | default: | |
5634 | return No_Uint; | |
5635 | } | |
5636 | ||
5637 | /* Now get each of the operands that's relevant for this code. If any | |
5638 | cannot be expressed as a repinfo node, say we can't. */ | |
5639 | for (i = 0; i < 3; i++) | |
5640 | ops[i] = No_Uint; | |
5641 | ||
5642 | for (i = 0; i < len; i++) | |
5643 | { | |
5644 | ops[i] = annotate_value (TREE_OPERAND (gnu_size, i)); | |
5645 | if (ops[i] == No_Uint) | |
5646 | return No_Uint; | |
5647 | } | |
5648 | ||
fbf5a39b AC |
5649 | ret = Create_Node (tcode, ops[0], ops[1], ops[2]); |
5650 | TREE_COMPLEXITY (gnu_size) = ret; | |
5651 | return ret; | |
70482933 RK |
5652 | } |
5653 | ||
5654 | /* Given GNAT_ENTITY, a record type, and GNU_TYPE, its corresponding | |
5655 | GCC type, set Component_Bit_Offset and Esize to the position and size | |
5656 | used by Gigi. */ | |
5657 | ||
5658 | static void | |
5659 | annotate_rep (gnat_entity, gnu_type) | |
5660 | Entity_Id gnat_entity; | |
5661 | tree gnu_type; | |
5662 | { | |
5663 | tree gnu_list; | |
5664 | tree gnu_entry; | |
5665 | Entity_Id gnat_field; | |
5666 | ||
5667 | /* We operate by first making a list of all field and their positions | |
5668 | (we can get the sizes easily at any time) by a recursive call | |
5669 | and then update all the sizes into the tree. */ | |
5670 | gnu_list = compute_field_positions (gnu_type, NULL_TREE, | |
07fc65c4 GB |
5671 | size_zero_node, bitsize_zero_node, |
5672 | BIGGEST_ALIGNMENT); | |
70482933 RK |
5673 | |
5674 | for (gnat_field = First_Entity (gnat_entity); Present (gnat_field); | |
5675 | gnat_field = Next_Entity (gnat_field)) | |
5676 | if ((Ekind (gnat_field) == E_Component | |
5677 | || (Ekind (gnat_field) == E_Discriminant | |
fbf5a39b | 5678 | && ! Is_Unchecked_Union (Scope (gnat_field))))) |
70482933 | 5679 | { |
fbf5a39b AC |
5680 | tree parent_offset = bitsize_zero_node; |
5681 | ||
5682 | gnu_entry | |
5683 | = purpose_member (gnat_to_gnu_entity (gnat_field, NULL_TREE, 0), | |
5684 | gnu_list); | |
5685 | ||
5686 | if (gnu_entry) | |
5687 | { | |
5688 | if (type_annotate_only && Is_Tagged_Type (gnat_entity)) | |
5689 | { | |
5690 | /* In this mode the tag and parent components have not been | |
5691 | generated, so we add the appropriate offset to each | |
5692 | component. For a component appearing in the current | |
5693 | extension, the offset is the size of the parent. */ | |
5694 | if (Is_Derived_Type (gnat_entity) | |
5695 | && Original_Record_Component (gnat_field) == gnat_field) | |
5696 | parent_offset | |
5697 | = UI_To_gnu (Esize (Etype (Base_Type (gnat_entity))), | |
5698 | bitsizetype); | |
5699 | else | |
5700 | parent_offset = bitsize_int (POINTER_SIZE); | |
5701 | } | |
5702 | ||
5703 | Set_Component_Bit_Offset | |
5704 | (gnat_field, | |
5705 | annotate_value | |
5706 | (size_binop (PLUS_EXPR, | |
5707 | bit_from_pos (TREE_PURPOSE (TREE_VALUE (gnu_entry)), | |
5708 | TREE_VALUE (TREE_VALUE | |
5709 | (TREE_VALUE (gnu_entry)))), | |
5710 | parent_offset))); | |
5711 | ||
5712 | Set_Esize (gnat_field, | |
5713 | annotate_value (DECL_SIZE (TREE_PURPOSE (gnu_entry)))); | |
5714 | } | |
5715 | else if (type_annotate_only | |
5716 | && Is_Tagged_Type (gnat_entity) | |
5717 | && Is_Derived_Type (gnat_entity)) | |
5718 | { | |
5719 | /* If there is no gnu_entry, this is an inherited component whose | |
5720 | position is the same as in the parent type. */ | |
5721 | Set_Component_Bit_Offset | |
5722 | (gnat_field, | |
5723 | Component_Bit_Offset (Original_Record_Component (gnat_field))); | |
5724 | Set_Esize (gnat_field, | |
5725 | Esize (Original_Record_Component (gnat_field))); | |
5726 | } | |
70482933 RK |
5727 | } |
5728 | } | |
5729 | ||
07fc65c4 GB |
5730 | /* Scan all fields in GNU_TYPE and build entries where TREE_PURPOSE is the |
5731 | FIELD_DECL and TREE_VALUE a TREE_LIST with TREE_PURPOSE being the byte | |
5732 | position and TREE_VALUE being a TREE_LIST with TREE_PURPOSE the value to be | |
5733 | placed into DECL_OFFSET_ALIGN and TREE_VALUE the bit position. GNU_POS is | |
5734 | to be added to the position, GNU_BITPOS to the bit position, OFFSET_ALIGN is | |
5735 | the present value of DECL_OFFSET_ALIGN and GNU_LIST is a list of the entries | |
5736 | so far. */ | |
70482933 RK |
5737 | |
5738 | static tree | |
07fc65c4 | 5739 | compute_field_positions (gnu_type, gnu_list, gnu_pos, gnu_bitpos, offset_align) |
70482933 RK |
5740 | tree gnu_type; |
5741 | tree gnu_list; | |
5742 | tree gnu_pos; | |
5743 | tree gnu_bitpos; | |
07fc65c4 | 5744 | unsigned int offset_align; |
70482933 RK |
5745 | { |
5746 | tree gnu_field; | |
5747 | tree gnu_result = gnu_list; | |
5748 | ||
5749 | for (gnu_field = TYPE_FIELDS (gnu_type); gnu_field; | |
5750 | gnu_field = TREE_CHAIN (gnu_field)) | |
5751 | { | |
5752 | tree gnu_our_bitpos = size_binop (PLUS_EXPR, gnu_bitpos, | |
5753 | DECL_FIELD_BIT_OFFSET (gnu_field)); | |
07fc65c4 GB |
5754 | tree gnu_our_offset = size_binop (PLUS_EXPR, gnu_pos, |
5755 | DECL_FIELD_OFFSET (gnu_field)); | |
5756 | unsigned int our_offset_align | |
5757 | = MIN (offset_align, DECL_OFFSET_ALIGN (gnu_field)); | |
70482933 RK |
5758 | |
5759 | gnu_result | |
5760 | = tree_cons (gnu_field, | |
07fc65c4 GB |
5761 | tree_cons (gnu_our_offset, |
5762 | tree_cons (size_int (our_offset_align), | |
5763 | gnu_our_bitpos, NULL_TREE), | |
5764 | NULL_TREE), | |
70482933 RK |
5765 | gnu_result); |
5766 | ||
5767 | if (DECL_INTERNAL_P (gnu_field)) | |
5768 | gnu_result | |
07fc65c4 GB |
5769 | = compute_field_positions (TREE_TYPE (gnu_field), gnu_result, |
5770 | gnu_our_offset, gnu_our_bitpos, | |
5771 | our_offset_align); | |
70482933 RK |
5772 | } |
5773 | ||
5774 | return gnu_result; | |
5775 | } | |
5776 | \f | |
5777 | /* UINT_SIZE is a Uint giving the specified size for an object of GNU_TYPE | |
5778 | corresponding to GNAT_OBJECT. If size is valid, return a tree corresponding | |
5779 | to its value. Otherwise return 0. KIND is VAR_DECL is we are specifying | |
5780 | the size for an object, TYPE_DECL for the size of a type, and FIELD_DECL | |
5781 | for the size of a field. COMPONENT_P is true if we are being called | |
5782 | to process the Component_Size of GNAT_OBJECT. This is used for error | |
5783 | message handling and to indicate to use the object size of GNU_TYPE. | |
5784 | ZERO_OK is nonzero if a size of zero is permitted; if ZERO_OK is zero, | |
5785 | it means that a size of zero should be treated as an unspecified size. */ | |
5786 | ||
5787 | static tree | |
5788 | validate_size (uint_size, gnu_type, gnat_object, kind, component_p, zero_ok) | |
5789 | Uint uint_size; | |
5790 | tree gnu_type; | |
5791 | Entity_Id gnat_object; | |
5792 | enum tree_code kind; | |
5793 | int component_p; | |
5794 | int zero_ok; | |
5795 | { | |
5796 | Node_Id gnat_error_node; | |
5797 | tree type_size | |
5798 | = kind == VAR_DECL ? TYPE_SIZE (gnu_type) : rm_size (gnu_type); | |
5799 | tree size; | |
5800 | ||
fbf5a39b | 5801 | /* Find the node to use for errors. */ |
70482933 RK |
5802 | if ((Ekind (gnat_object) == E_Component |
5803 | || Ekind (gnat_object) == E_Discriminant) | |
5804 | && Present (Component_Clause (gnat_object))) | |
5805 | gnat_error_node = Last_Bit (Component_Clause (gnat_object)); | |
5806 | else if (Present (Size_Clause (gnat_object))) | |
5807 | gnat_error_node = Expression (Size_Clause (gnat_object)); | |
5808 | else | |
5809 | gnat_error_node = gnat_object; | |
5810 | ||
5811 | /* Don't give errors on packed array types; we'll be giving the error on | |
5812 | the type itself soon enough. */ | |
5813 | if (Is_Packed_Array_Type (gnat_object)) | |
5814 | gnat_error_node = Empty; | |
5815 | ||
fbf5a39b AC |
5816 | /* Return 0 if no size was specified, either because Esize was not Present or |
5817 | the specified size was zero. */ | |
70482933 RK |
5818 | if (No (uint_size) || uint_size == No_Uint) |
5819 | return 0; | |
5820 | ||
fbf5a39b AC |
5821 | /* Get the size as a tree. Give an error if a size was specified, but cannot |
5822 | be represented as in sizetype. */ | |
70482933 RK |
5823 | size = UI_To_gnu (uint_size, bitsizetype); |
5824 | if (TREE_OVERFLOW (size)) | |
5825 | { | |
fbf5a39b AC |
5826 | post_error_ne (component_p ? "component size of & is too large" |
5827 | : "size of & is too large", | |
5828 | gnat_error_node, gnat_object); | |
70482933 RK |
5829 | return 0; |
5830 | } | |
70482933 RK |
5831 | /* Ignore a negative size since that corresponds to our back-annotation. |
5832 | Also ignore a zero size unless a size clause exists. */ | |
5833 | else if (tree_int_cst_sgn (size) < 0 || (integer_zerop (size) && ! zero_ok)) | |
fbf5a39b | 5834 | return 0; |
70482933 RK |
5835 | |
5836 | /* The size of objects is always a multiple of a byte. */ | |
5837 | if (kind == VAR_DECL | |
5838 | && ! integer_zerop (size_binop (TRUNC_MOD_EXPR, size, | |
5839 | bitsize_unit_node))) | |
5840 | { | |
5841 | if (component_p) | |
5842 | post_error_ne ("component size for& is not a multiple of Storage_Unit", | |
5843 | gnat_error_node, gnat_object); | |
5844 | else | |
5845 | post_error_ne ("size for& is not a multiple of Storage_Unit", | |
5846 | gnat_error_node, gnat_object); | |
5847 | return 0; | |
5848 | } | |
5849 | ||
5850 | /* If this is an integral type, the front-end has verified the size, so we | |
5851 | need not do it here (which would entail checking against the bounds). | |
5852 | However, if this is an aliased object, it may not be smaller than the | |
5853 | type of the object. */ | |
a8fee948 | 5854 | if (INTEGRAL_TYPE_P (gnu_type) && ! TYPE_PACKED_ARRAY_TYPE_P (gnu_type) |
70482933 RK |
5855 | && ! (kind == VAR_DECL && Is_Aliased (gnat_object))) |
5856 | return size; | |
5857 | ||
5858 | /* If the object is a record that contains a template, add the size of | |
5859 | the template to the specified size. */ | |
5860 | if (TREE_CODE (gnu_type) == RECORD_TYPE | |
5861 | && TYPE_CONTAINS_TEMPLATE_P (gnu_type)) | |
5862 | size = size_binop (PLUS_EXPR, DECL_SIZE (TYPE_FIELDS (gnu_type)), size); | |
5863 | ||
fbf5a39b AC |
5864 | /* Modify the size of the type to be that of the maximum size if it has a |
5865 | discriminant or the size of a thin pointer if this is a fat pointer. */ | |
5866 | if (type_size != 0 && CONTAINS_PLACEHOLDER_P (type_size)) | |
5867 | type_size = max_size (type_size, 1); | |
5868 | else if (TYPE_FAT_POINTER_P (gnu_type)) | |
5869 | type_size = bitsize_int (POINTER_SIZE); | |
5870 | ||
70482933 RK |
5871 | /* If the size of the object is a constant, the new size must not be |
5872 | smaller. */ | |
5873 | if (TREE_CODE (type_size) != INTEGER_CST | |
5874 | || TREE_OVERFLOW (type_size) | |
5875 | || tree_int_cst_lt (size, type_size)) | |
5876 | { | |
5877 | if (component_p) | |
5878 | post_error_ne_tree | |
5879 | ("component size for& too small{, minimum allowed is ^}", | |
5880 | gnat_error_node, gnat_object, type_size); | |
5881 | else | |
5882 | post_error_ne_tree ("size for& too small{, minimum allowed is ^}", | |
5883 | gnat_error_node, gnat_object, type_size); | |
5884 | ||
5885 | if (kind == VAR_DECL && ! component_p | |
5886 | && TREE_CODE (rm_size (gnu_type)) == INTEGER_CST | |
5887 | && ! tree_int_cst_lt (size, rm_size (gnu_type))) | |
5888 | post_error_ne_tree_2 | |
5b09c153 | 5889 | ("\\size of ^ is not a multiple of alignment (^ bits)", |
70482933 RK |
5890 | gnat_error_node, gnat_object, rm_size (gnu_type), |
5891 | TYPE_ALIGN (gnu_type)); | |
5892 | ||
5893 | else if (INTEGRAL_TYPE_P (gnu_type)) | |
5894 | post_error_ne ("\\size would be legal if & were not aliased!", | |
5895 | gnat_error_node, gnat_object); | |
5896 | ||
5897 | return 0; | |
5898 | } | |
5899 | ||
5900 | return size; | |
5901 | } | |
5902 | \f | |
5903 | /* Similarly, but both validate and process a value of RM_Size. This | |
5904 | routine is only called for types. */ | |
5905 | ||
5906 | static void | |
5907 | set_rm_size (uint_size, gnu_type, gnat_entity) | |
5908 | Uint uint_size; | |
5909 | tree gnu_type; | |
5910 | Entity_Id gnat_entity; | |
5911 | { | |
5912 | /* Only give an error if a Value_Size clause was explicitly given. | |
5913 | Otherwise, we'd be duplicating an error on the Size clause. */ | |
5914 | Node_Id gnat_attr_node | |
5915 | = Get_Attribute_Definition_Clause (gnat_entity, Attr_Value_Size); | |
5916 | tree old_size = rm_size (gnu_type); | |
5917 | tree size; | |
5918 | ||
5919 | /* Get the size as a tree. Do nothing if none was specified, either | |
5920 | because RM_Size was not Present or if the specified size was zero. | |
5921 | Give an error if a size was specified, but cannot be represented as | |
5922 | in sizetype. */ | |
5923 | if (No (uint_size) || uint_size == No_Uint) | |
5924 | return; | |
5925 | ||
5926 | size = UI_To_gnu (uint_size, bitsizetype); | |
5927 | if (TREE_OVERFLOW (size)) | |
5928 | { | |
5929 | if (Present (gnat_attr_node)) | |
5930 | post_error_ne ("Value_Size of & is too large", gnat_attr_node, | |
5931 | gnat_entity); | |
5932 | ||
5933 | return; | |
5934 | } | |
5935 | ||
5936 | /* Ignore a negative size since that corresponds to our back-annotation. | |
5937 | Also ignore a zero size unless a size clause exists, a Value_Size | |
5938 | clause exists, or this is an integer type, in which case the | |
5939 | front end will have always set it. */ | |
5940 | else if (tree_int_cst_sgn (size) < 0 | |
5941 | || (integer_zerop (size) && No (gnat_attr_node) | |
5942 | && ! Has_Size_Clause (gnat_entity) | |
5943 | && ! Is_Discrete_Or_Fixed_Point_Type (gnat_entity))) | |
5944 | return; | |
5945 | ||
5946 | /* If the old size is self-referential, get the maximum size. */ | |
fbf5a39b | 5947 | if (CONTAINS_PLACEHOLDER_P (old_size)) |
70482933 RK |
5948 | old_size = max_size (old_size, 1); |
5949 | ||
5950 | /* If the size of the object is a constant, the new size must not be | |
5951 | smaller (the front end checks this for scalar types). */ | |
5952 | if (TREE_CODE (old_size) != INTEGER_CST | |
5953 | || TREE_OVERFLOW (old_size) | |
5954 | || (AGGREGATE_TYPE_P (gnu_type) | |
5955 | && tree_int_cst_lt (size, old_size))) | |
5956 | { | |
5957 | if (Present (gnat_attr_node)) | |
5958 | post_error_ne_tree | |
5959 | ("Value_Size for& too small{, minimum allowed is ^}", | |
5960 | gnat_attr_node, gnat_entity, old_size); | |
5961 | ||
5962 | return; | |
5963 | } | |
5964 | ||
5965 | /* Otherwise, set the RM_Size. */ | |
5966 | if (TREE_CODE (gnu_type) == INTEGER_TYPE | |
5967 | && Is_Discrete_Or_Fixed_Point_Type (gnat_entity)) | |
5968 | TYPE_RM_SIZE_INT (gnu_type) = size; | |
5969 | else if (TREE_CODE (gnu_type) == ENUMERAL_TYPE) | |
e2500fed | 5970 | SET_TYPE_RM_SIZE_ENUM (gnu_type, size); |
70482933 RK |
5971 | else if ((TREE_CODE (gnu_type) == RECORD_TYPE |
5972 | || TREE_CODE (gnu_type) == UNION_TYPE | |
5973 | || TREE_CODE (gnu_type) == QUAL_UNION_TYPE) | |
5974 | && ! TYPE_IS_FAT_POINTER_P (gnu_type)) | |
e2500fed | 5975 | SET_TYPE_ADA_SIZE (gnu_type, size); |
70482933 RK |
5976 | } |
5977 | \f | |
5978 | /* Given a type TYPE, return a new type whose size is appropriate for SIZE. | |
5979 | If TYPE is the best type, return it. Otherwise, make a new type. We | |
5980 | only support new integral and pointer types. BIASED_P is nonzero if | |
5981 | we are making a biased type. */ | |
5982 | ||
5983 | static tree | |
5984 | make_type_from_size (type, size_tree, biased_p) | |
5985 | tree type; | |
5986 | tree size_tree; | |
5987 | int biased_p; | |
5988 | { | |
5989 | tree new_type; | |
5990 | unsigned HOST_WIDE_INT size; | |
5991 | ||
5992 | /* If size indicates an error, just return TYPE to avoid propagating the | |
5993 | error. Likewise if it's too large to represent. */ | |
5994 | if (size_tree == 0 || ! host_integerp (size_tree, 1)) | |
5995 | return type; | |
5996 | ||
5997 | size = tree_low_cst (size_tree, 1); | |
5998 | switch (TREE_CODE (type)) | |
5999 | { | |
6000 | case INTEGER_TYPE: | |
6001 | case ENUMERAL_TYPE: | |
6002 | /* Only do something if the type is not already the proper size and is | |
6003 | not a packed array type. */ | |
6004 | if (TYPE_PACKED_ARRAY_TYPE_P (type) | |
6005 | || (TYPE_PRECISION (type) == size | |
6006 | && biased_p == (TREE_CODE (type) == INTEGER_CST | |
6007 | && TYPE_BIASED_REPRESENTATION_P (type)))) | |
6008 | break; | |
6009 | ||
6010 | size = MIN (size, LONG_LONG_TYPE_SIZE); | |
6011 | new_type = make_signed_type (size); | |
6012 | TREE_TYPE (new_type) | |
6013 | = TREE_TYPE (type) != 0 ? TREE_TYPE (type) : type; | |
6014 | TYPE_MIN_VALUE (new_type) | |
6015 | = convert (TREE_TYPE (new_type), TYPE_MIN_VALUE (type)); | |
6016 | TYPE_MAX_VALUE (new_type) | |
6017 | = convert (TREE_TYPE (new_type), TYPE_MAX_VALUE (type)); | |
6018 | TYPE_BIASED_REPRESENTATION_P (new_type) | |
6019 | = ((TREE_CODE (type) == INTEGER_TYPE | |
6020 | && TYPE_BIASED_REPRESENTATION_P (type)) | |
6021 | || biased_p); | |
6022 | TREE_UNSIGNED (new_type) | |
6023 | = TREE_UNSIGNED (type) | TYPE_BIASED_REPRESENTATION_P (new_type); | |
6024 | TYPE_RM_SIZE_INT (new_type) = bitsize_int (size); | |
6025 | return new_type; | |
6026 | ||
6027 | case RECORD_TYPE: | |
6028 | /* Do something if this is a fat pointer, in which case we | |
6029 | may need to return the thin pointer. */ | |
6030 | if (TYPE_IS_FAT_POINTER_P (type) && size < POINTER_SIZE * 2) | |
6031 | return | |
6032 | build_pointer_type | |
6033 | (TYPE_OBJECT_RECORD_TYPE (TYPE_UNCONSTRAINED_ARRAY (type))); | |
6034 | break; | |
6035 | ||
6036 | case POINTER_TYPE: | |
6037 | /* Only do something if this is a thin pointer, in which case we | |
6038 | may need to return the fat pointer. */ | |
6039 | if (TYPE_THIN_POINTER_P (type) && size >= POINTER_SIZE * 2) | |
6040 | return | |
6041 | build_pointer_type (TYPE_UNCONSTRAINED_ARRAY (TREE_TYPE (type))); | |
6042 | ||
6043 | break; | |
6044 | ||
6045 | default: | |
6046 | break; | |
6047 | } | |
6048 | ||
6049 | return type; | |
6050 | } | |
6051 | \f | |
6052 | /* ALIGNMENT is a Uint giving the alignment specified for GNAT_ENTITY, | |
6053 | a type or object whose present alignment is ALIGN. If this alignment is | |
6054 | valid, return it. Otherwise, give an error and return ALIGN. */ | |
6055 | ||
6056 | static unsigned int | |
6057 | validate_alignment (alignment, gnat_entity, align) | |
6058 | Uint alignment; | |
6059 | Entity_Id gnat_entity; | |
6060 | unsigned int align; | |
6061 | { | |
6062 | Node_Id gnat_error_node = gnat_entity; | |
6063 | unsigned int new_align; | |
6064 | ||
6065 | #ifndef MAX_OFILE_ALIGNMENT | |
6066 | #define MAX_OFILE_ALIGNMENT BIGGEST_ALIGNMENT | |
6067 | #endif | |
6068 | ||
6069 | if (Present (Alignment_Clause (gnat_entity))) | |
6070 | gnat_error_node = Expression (Alignment_Clause (gnat_entity)); | |
6071 | ||
07fc65c4 GB |
6072 | /* Don't worry about checking alignment if alignment was not specified |
6073 | by the source program and we already posted an error for this entity. */ | |
6074 | ||
6075 | if (Error_Posted (gnat_entity) && !Has_Alignment_Clause (gnat_entity)) | |
6076 | return align; | |
6077 | ||
70482933 RK |
6078 | /* Within GCC, an alignment is an integer, so we must make sure a |
6079 | value is specified that fits in that range. Also, alignments of | |
6080 | more than MAX_OFILE_ALIGNMENT can't be supported. */ | |
6081 | ||
6082 | if (! UI_Is_In_Int_Range (alignment) | |
6083 | || ((new_align = UI_To_Int (alignment)) | |
6084 | > MAX_OFILE_ALIGNMENT / BITS_PER_UNIT)) | |
6085 | post_error_ne_num ("largest supported alignment for& is ^", | |
6086 | gnat_error_node, gnat_entity, | |
6087 | MAX_OFILE_ALIGNMENT / BITS_PER_UNIT); | |
6088 | else if (! (Present (Alignment_Clause (gnat_entity)) | |
6089 | && From_At_Mod (Alignment_Clause (gnat_entity))) | |
6090 | && new_align * BITS_PER_UNIT < align) | |
6091 | post_error_ne_num ("alignment for& must be at least ^", | |
6092 | gnat_error_node, gnat_entity, | |
6093 | align / BITS_PER_UNIT); | |
6094 | else | |
6095 | align = MAX (align, new_align == 0 ? 1 : new_align * BITS_PER_UNIT); | |
6096 | ||
6097 | return align; | |
6098 | } | |
6099 | \f | |
6100 | /* Verify that OBJECT, a type or decl, is something we can implement | |
6101 | atomically. If not, give an error for GNAT_ENTITY. COMP_P is nonzero | |
6102 | if we require atomic components. */ | |
6103 | ||
6104 | static void | |
6105 | check_ok_for_atomic (object, gnat_entity, comp_p) | |
6106 | tree object; | |
6107 | Entity_Id gnat_entity; | |
6108 | int comp_p; | |
6109 | { | |
6110 | Node_Id gnat_error_point = gnat_entity; | |
6111 | Node_Id gnat_node; | |
6112 | enum machine_mode mode; | |
6113 | unsigned int align; | |
6114 | tree size; | |
6115 | ||
6116 | /* There are three case of what OBJECT can be. It can be a type, in which | |
6117 | case we take the size, alignment and mode from the type. It can be a | |
6118 | declaration that was indirect, in which case the relevant values are | |
6119 | that of the type being pointed to, or it can be a normal declaration, | |
6120 | in which case the values are of the decl. The code below assumes that | |
6121 | OBJECT is either a type or a decl. */ | |
6122 | if (TYPE_P (object)) | |
6123 | { | |
6124 | mode = TYPE_MODE (object); | |
6125 | align = TYPE_ALIGN (object); | |
6126 | size = TYPE_SIZE (object); | |
6127 | } | |
6128 | else if (DECL_BY_REF_P (object)) | |
6129 | { | |
6130 | mode = TYPE_MODE (TREE_TYPE (TREE_TYPE (object))); | |
6131 | align = TYPE_ALIGN (TREE_TYPE (TREE_TYPE (object))); | |
6132 | size = TYPE_SIZE (TREE_TYPE (TREE_TYPE (object))); | |
6133 | } | |
6134 | else | |
6135 | { | |
6136 | mode = DECL_MODE (object); | |
6137 | align = DECL_ALIGN (object); | |
6138 | size = DECL_SIZE (object); | |
6139 | } | |
6140 | ||
6141 | /* Consider all floating-point types atomic and any types that that are | |
6142 | represented by integers no wider than a machine word. */ | |
6143 | if (GET_MODE_CLASS (mode) == MODE_FLOAT | |
6144 | || ((GET_MODE_CLASS (mode) == MODE_INT | |
6145 | || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT) | |
6146 | && GET_MODE_BITSIZE (mode) <= BITS_PER_WORD)) | |
6147 | return; | |
6148 | ||
6149 | /* For the moment, also allow anything that has an alignment equal | |
6150 | to its size and which is smaller than a word. */ | |
fbf5a39b | 6151 | if (size != 0 && TREE_CODE (size) == INTEGER_CST |
70482933 RK |
6152 | && compare_tree_int (size, align) == 0 |
6153 | && align <= BITS_PER_WORD) | |
6154 | return; | |
6155 | ||
6156 | for (gnat_node = First_Rep_Item (gnat_entity); Present (gnat_node); | |
6157 | gnat_node = Next_Rep_Item (gnat_node)) | |
6158 | { | |
6159 | if (! comp_p && Nkind (gnat_node) == N_Pragma | |
6160 | && Get_Pragma_Id (Chars (gnat_node)) == Pragma_Atomic) | |
6161 | gnat_error_point = First (Pragma_Argument_Associations (gnat_node)); | |
6162 | else if (comp_p && Nkind (gnat_node) == N_Pragma | |
6163 | && (Get_Pragma_Id (Chars (gnat_node)) | |
6164 | == Pragma_Atomic_Components)) | |
6165 | gnat_error_point = First (Pragma_Argument_Associations (gnat_node)); | |
6166 | } | |
6167 | ||
6168 | if (comp_p) | |
6169 | post_error_ne ("atomic access to component of & cannot be guaranteed", | |
6170 | gnat_error_point, gnat_entity); | |
6171 | else | |
6172 | post_error_ne ("atomic access to & cannot be guaranteed", | |
6173 | gnat_error_point, gnat_entity); | |
6174 | } | |
6175 | \f | |
6176 | /* Given a type T, a FIELD_DECL F, and a replacement value R, | |
6177 | return a new type with all size expressions that contain F | |
6178 | updated by replacing F with R. This is identical to GCC's | |
6179 | substitute_in_type except that it knows about TYPE_INDEX_TYPE. | |
6180 | If F is NULL_TREE, always make a new RECORD_TYPE, even if nothing has | |
6181 | changed. */ | |
6182 | ||
6183 | tree | |
6184 | gnat_substitute_in_type (t, f, r) | |
6185 | tree t, f, r; | |
6186 | { | |
6187 | tree new = t; | |
6188 | tree tem; | |
6189 | ||
6190 | switch (TREE_CODE (t)) | |
6191 | { | |
6192 | case INTEGER_TYPE: | |
6193 | case ENUMERAL_TYPE: | |
6194 | case BOOLEAN_TYPE: | |
6195 | case CHAR_TYPE: | |
fbf5a39b AC |
6196 | if (CONTAINS_PLACEHOLDER_P (TYPE_MIN_VALUE (t)) |
6197 | || CONTAINS_PLACEHOLDER_P (TYPE_MAX_VALUE (t))) | |
70482933 RK |
6198 | { |
6199 | tree low = substitute_in_expr (TYPE_MIN_VALUE (t), f, r); | |
6200 | tree high = substitute_in_expr (TYPE_MAX_VALUE (t), f, r); | |
6201 | ||
6202 | if (low == TYPE_MIN_VALUE (t) && high == TYPE_MAX_VALUE (t)) | |
6203 | return t; | |
6204 | ||
6205 | new = build_range_type (TREE_TYPE (t), low, high); | |
6206 | if (TYPE_INDEX_TYPE (t)) | |
fbf5a39b | 6207 | SET_TYPE_INDEX_TYPE (new, |
e2500fed | 6208 | gnat_substitute_in_type (TYPE_INDEX_TYPE (t), f, r)); |
70482933 RK |
6209 | return new; |
6210 | } | |
6211 | ||
6212 | return t; | |
6213 | ||
6214 | case REAL_TYPE: | |
6215 | if ((TYPE_MIN_VALUE (t) != 0 | |
fbf5a39b | 6216 | && CONTAINS_PLACEHOLDER_P (TYPE_MIN_VALUE (t))) |
70482933 | 6217 | || (TYPE_MAX_VALUE (t) != 0 |
fbf5a39b | 6218 | && CONTAINS_PLACEHOLDER_P (TYPE_MAX_VALUE (t)))) |
70482933 RK |
6219 | { |
6220 | tree low = 0, high = 0; | |
6221 | ||
6222 | if (TYPE_MIN_VALUE (t)) | |
6223 | low = substitute_in_expr (TYPE_MIN_VALUE (t), f, r); | |
6224 | if (TYPE_MAX_VALUE (t)) | |
6225 | high = substitute_in_expr (TYPE_MAX_VALUE (t), f, r); | |
6226 | ||
6227 | if (low == TYPE_MIN_VALUE (t) && high == TYPE_MAX_VALUE (t)) | |
6228 | return t; | |
6229 | ||
6230 | t = copy_type (t); | |
6231 | TYPE_MIN_VALUE (t) = low; | |
6232 | TYPE_MAX_VALUE (t) = high; | |
6233 | } | |
6234 | return t; | |
6235 | ||
6236 | case COMPLEX_TYPE: | |
6237 | tem = gnat_substitute_in_type (TREE_TYPE (t), f, r); | |
6238 | if (tem == TREE_TYPE (t)) | |
6239 | return t; | |
6240 | ||
6241 | return build_complex_type (tem); | |
6242 | ||
6243 | case OFFSET_TYPE: | |
6244 | case METHOD_TYPE: | |
6245 | case FILE_TYPE: | |
6246 | case SET_TYPE: | |
6247 | case FUNCTION_TYPE: | |
6248 | case LANG_TYPE: | |
6249 | /* Don't know how to do these yet. */ | |
6250 | abort (); | |
6251 | ||
6252 | case ARRAY_TYPE: | |
6253 | { | |
6254 | tree component = gnat_substitute_in_type (TREE_TYPE (t), f, r); | |
6255 | tree domain = gnat_substitute_in_type (TYPE_DOMAIN (t), f, r); | |
6256 | ||
6257 | if (component == TREE_TYPE (t) && domain == TYPE_DOMAIN (t)) | |
6258 | return t; | |
6259 | ||
6260 | new = build_array_type (component, domain); | |
6261 | TYPE_SIZE (new) = 0; | |
6262 | TYPE_MULTI_ARRAY_P (new) = TYPE_MULTI_ARRAY_P (t); | |
6263 | TYPE_CONVENTION_FORTRAN_P (new) = TYPE_CONVENTION_FORTRAN_P (t); | |
6264 | layout_type (new); | |
6265 | TYPE_ALIGN (new) = TYPE_ALIGN (t); | |
6266 | return new; | |
6267 | } | |
6268 | ||
6269 | case RECORD_TYPE: | |
6270 | case UNION_TYPE: | |
6271 | case QUAL_UNION_TYPE: | |
6272 | { | |
6273 | tree field; | |
6274 | int changed_field | |
6275 | = (f == NULL_TREE && ! TREE_CONSTANT (TYPE_SIZE (t))); | |
6276 | int field_has_rep = 0; | |
6277 | tree last_field = 0; | |
6278 | ||
6279 | tree new = copy_type (t); | |
6280 | ||
6281 | /* Start out with no fields, make new fields, and chain them | |
6282 | in. If we haven't actually changed the type of any field, | |
6283 | discard everything we've done and return the old type. */ | |
6284 | ||
6285 | TYPE_FIELDS (new) = 0; | |
6286 | TYPE_SIZE (new) = 0; | |
6287 | ||
6288 | for (field = TYPE_FIELDS (t); field; | |
6289 | field = TREE_CHAIN (field)) | |
6290 | { | |
6291 | tree new_field = copy_node (field); | |
6292 | ||
6293 | TREE_TYPE (new_field) | |
6294 | = gnat_substitute_in_type (TREE_TYPE (new_field), f, r); | |
6295 | ||
6296 | if (DECL_HAS_REP_P (field) && ! DECL_INTERNAL_P (field)) | |
6297 | field_has_rep = 1; | |
6298 | else if (TREE_TYPE (new_field) != TREE_TYPE (field)) | |
6299 | changed_field = 1; | |
6300 | ||
6301 | /* If this is an internal field and the type of this field is | |
6302 | a UNION_TYPE or RECORD_TYPE with no elements, ignore it. If | |
6303 | the type just has one element, treat that as the field. | |
6304 | But don't do this if we are processing a QUAL_UNION_TYPE. */ | |
6305 | if (TREE_CODE (t) != QUAL_UNION_TYPE | |
6306 | && DECL_INTERNAL_P (new_field) | |
6307 | && (TREE_CODE (TREE_TYPE (new_field)) == UNION_TYPE | |
6308 | || TREE_CODE (TREE_TYPE (new_field)) == RECORD_TYPE)) | |
6309 | { | |
6310 | if (TYPE_FIELDS (TREE_TYPE (new_field)) == 0) | |
6311 | continue; | |
6312 | ||
6313 | if (TREE_CHAIN (TYPE_FIELDS (TREE_TYPE (new_field))) == 0) | |
6314 | { | |
6315 | tree next_new_field | |
6316 | = copy_node (TYPE_FIELDS (TREE_TYPE (new_field))); | |
6317 | ||
6318 | /* Make sure omitting the union doesn't change | |
6319 | the layout. */ | |
6320 | DECL_ALIGN (next_new_field) = DECL_ALIGN (new_field); | |
6321 | new_field = next_new_field; | |
6322 | } | |
6323 | } | |
6324 | ||
6325 | DECL_CONTEXT (new_field) = new; | |
e2500fed GK |
6326 | SET_DECL_ORIGINAL_FIELD (new_field, |
6327 | (DECL_ORIGINAL_FIELD (field) != 0 | |
6328 | ? DECL_ORIGINAL_FIELD (field) : field)); | |
70482933 RK |
6329 | |
6330 | /* If the size of the old field was set at a constant, | |
6331 | propagate the size in case the type's size was variable. | |
6332 | (This occurs in the case of a variant or discriminated | |
6333 | record with a default size used as a field of another | |
6334 | record.) */ | |
6335 | DECL_SIZE (new_field) | |
6336 | = TREE_CODE (DECL_SIZE (field)) == INTEGER_CST | |
6337 | ? DECL_SIZE (field) : 0; | |
6338 | DECL_SIZE_UNIT (new_field) | |
6339 | = TREE_CODE (DECL_SIZE_UNIT (field)) == INTEGER_CST | |
6340 | ? DECL_SIZE_UNIT (field) : 0; | |
6341 | ||
6342 | if (TREE_CODE (t) == QUAL_UNION_TYPE) | |
6343 | { | |
6344 | tree new_q = substitute_in_expr (DECL_QUALIFIER (field), f, r); | |
6345 | ||
6346 | if (new_q != DECL_QUALIFIER (new_field)) | |
6347 | changed_field = 1; | |
6348 | ||
6349 | /* Do the substitution inside the qualifier and if we find | |
6350 | that this field will not be present, omit it. */ | |
6351 | DECL_QUALIFIER (new_field) = new_q; | |
6352 | ||
6353 | if (integer_zerop (DECL_QUALIFIER (new_field))) | |
6354 | continue; | |
6355 | } | |
6356 | ||
6357 | if (last_field == 0) | |
6358 | TYPE_FIELDS (new) = new_field; | |
6359 | else | |
6360 | TREE_CHAIN (last_field) = new_field; | |
6361 | ||
6362 | last_field = new_field; | |
6363 | ||
6364 | /* If this is a qualified type and this field will always be | |
6365 | present, we are done. */ | |
6366 | if (TREE_CODE (t) == QUAL_UNION_TYPE | |
6367 | && integer_onep (DECL_QUALIFIER (new_field))) | |
6368 | break; | |
6369 | } | |
6370 | ||
6371 | /* If this used to be a qualified union type, but we now know what | |
6372 | field will be present, make this a normal union. */ | |
6373 | if (changed_field && TREE_CODE (new) == QUAL_UNION_TYPE | |
6374 | && (TYPE_FIELDS (new) == 0 | |
6375 | || integer_onep (DECL_QUALIFIER (TYPE_FIELDS (new))))) | |
6376 | TREE_SET_CODE (new, UNION_TYPE); | |
6377 | else if (! changed_field) | |
6378 | return t; | |
6379 | ||
6380 | if (field_has_rep) | |
6381 | gigi_abort (117); | |
6382 | ||
6383 | layout_type (new); | |
6384 | ||
6385 | /* If the size was originally a constant use it. */ | |
6386 | if (TYPE_SIZE (t) != 0 && TREE_CODE (TYPE_SIZE (t)) == INTEGER_CST | |
6387 | && TREE_CODE (TYPE_SIZE (new)) != INTEGER_CST) | |
6388 | { | |
6389 | TYPE_SIZE (new) = TYPE_SIZE (t); | |
6390 | TYPE_SIZE_UNIT (new) = TYPE_SIZE_UNIT (t); | |
e2500fed | 6391 | SET_TYPE_ADA_SIZE (new, TYPE_ADA_SIZE (t)); |
70482933 RK |
6392 | } |
6393 | ||
6394 | return new; | |
6395 | } | |
6396 | ||
6397 | default: | |
6398 | return t; | |
6399 | } | |
6400 | } | |
6401 | \f | |
6402 | /* Return the "RM size" of GNU_TYPE. This is the actual number of bits | |
6403 | needed to represent the object. */ | |
6404 | ||
6405 | tree | |
6406 | rm_size (gnu_type) | |
6407 | tree gnu_type; | |
6408 | { | |
6409 | /* For integer types, this is the precision. For record types, we store | |
6410 | the size explicitly. For other types, this is just the size. */ | |
6411 | ||
6412 | if (INTEGRAL_TYPE_P (gnu_type) && TYPE_RM_SIZE (gnu_type) != 0) | |
6413 | return TYPE_RM_SIZE (gnu_type); | |
6414 | else if (TREE_CODE (gnu_type) == RECORD_TYPE | |
6415 | && TYPE_CONTAINS_TEMPLATE_P (gnu_type)) | |
6416 | /* Return the rm_size of the actual data plus the size of the template. */ | |
6417 | return | |
6418 | size_binop (PLUS_EXPR, | |
6419 | rm_size (TREE_TYPE (TREE_CHAIN (TYPE_FIELDS (gnu_type)))), | |
6420 | DECL_SIZE (TYPE_FIELDS (gnu_type))); | |
6421 | else if ((TREE_CODE (gnu_type) == RECORD_TYPE | |
6422 | || TREE_CODE (gnu_type) == UNION_TYPE | |
6423 | || TREE_CODE (gnu_type) == QUAL_UNION_TYPE) | |
6424 | && ! TYPE_IS_FAT_POINTER_P (gnu_type) | |
6425 | && TYPE_ADA_SIZE (gnu_type) != 0) | |
6426 | return TYPE_ADA_SIZE (gnu_type); | |
6427 | else | |
6428 | return TYPE_SIZE (gnu_type); | |
6429 | } | |
6430 | \f | |
6431 | /* Return an identifier representing the external name to be used for | |
6432 | GNAT_ENTITY. If SUFFIX is specified, the name is followed by "___" | |
6433 | and the specified suffix. */ | |
6434 | ||
6435 | tree | |
6436 | create_concat_name (gnat_entity, suffix) | |
6437 | Entity_Id gnat_entity; | |
6438 | const char *suffix; | |
6439 | { | |
6440 | const char *str = (suffix == 0 ? "" : suffix); | |
6441 | String_Template temp = {1, strlen (str)}; | |
6442 | Fat_Pointer fp = {str, &temp}; | |
6443 | ||
6444 | Get_External_Name_With_Suffix (gnat_entity, fp); | |
6445 | ||
fbf5a39b AC |
6446 | #ifdef _WIN32 |
6447 | /* A variable using the Stdcall convention (meaning we are running | |
6448 | on a Windows box) live in a DLL. Here we adjust its name to use | |
6449 | the jump-table, the _imp__NAME contains the address for the NAME | |
6450 | variable. */ | |
6451 | ||
6452 | { | |
6453 | Entity_Kind kind = Ekind (gnat_entity); | |
6454 | char *prefix = "_imp__"; | |
6455 | int plen = strlen (prefix); | |
6456 | ||
6457 | if ((kind == E_Variable || kind == E_Constant) | |
6458 | && Convention (gnat_entity) == Convention_Stdcall) | |
6459 | { | |
6460 | int k; | |
6461 | for (k = 0; k <= Name_Len; k++) | |
6462 | Name_Buffer [Name_Len - k + plen] = Name_Buffer [Name_Len - k]; | |
6463 | strncpy (Name_Buffer, prefix, plen); | |
6464 | } | |
6465 | } | |
6466 | #endif | |
6467 | ||
70482933 RK |
6468 | return get_identifier (Name_Buffer); |
6469 | } | |
6470 | ||
6471 | /* Return the name to be used for GNAT_ENTITY. If a type, create a | |
6472 | fully-qualified name, possibly with type information encoding. | |
6473 | Otherwise, return the name. */ | |
6474 | ||
6475 | tree | |
6476 | get_entity_name (gnat_entity) | |
6477 | Entity_Id gnat_entity; | |
6478 | { | |
6479 | Get_Encoded_Name (gnat_entity); | |
6480 | return get_identifier (Name_Buffer); | |
6481 | } | |
6482 | ||
6483 | /* Given GNU_ID, an IDENTIFIER_NODE containing a name and SUFFIX, a | |
6484 | string, return a new IDENTIFIER_NODE that is the concatenation of | |
6485 | the name in GNU_ID and SUFFIX. */ | |
6486 | ||
6487 | tree | |
6488 | concat_id_with_name (gnu_id, suffix) | |
6489 | tree gnu_id; | |
6490 | const char *suffix; | |
6491 | { | |
6492 | int len = IDENTIFIER_LENGTH (gnu_id); | |
6493 | ||
6494 | strncpy (Name_Buffer, IDENTIFIER_POINTER (gnu_id), | |
6495 | IDENTIFIER_LENGTH (gnu_id)); | |
6496 | strncpy (Name_Buffer + len, "___", 3); | |
6497 | len += 3; | |
6498 | strcpy (Name_Buffer + len, suffix); | |
6499 | return get_identifier (Name_Buffer); | |
6500 | } | |
e2500fed GK |
6501 | |
6502 | #include "gt-ada-decl.h" |