]> gcc.gnu.org Git - gcc.git/blame - gcc/ada/checks.adb
ada: Fix spelling of functions with(out) "side effects"
[gcc.git] / gcc / ada / checks.adb
CommitLineData
70482933
RK
1------------------------------------------------------------------------------
2-- --
3-- GNAT COMPILER COMPONENTS --
4-- --
5-- C H E C K S --
6-- --
7-- B o d y --
8-- --
cccef051 9-- Copyright (C) 1992-2023, Free Software Foundation, Inc. --
70482933
RK
10-- --
11-- GNAT is free software; you can redistribute it and/or modify it under --
12-- terms of the GNU General Public License as published by the Free Soft- --
b5c84c3c 13-- ware Foundation; either version 3, or (at your option) any later ver- --
70482933
RK
14-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16-- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17-- for more details. You should have received a copy of the GNU General --
b5c84c3c
RD
18-- Public License distributed with GNAT; see file COPYING3. If not, go to --
19-- http://www.gnu.org/licenses for a complete copy of the license. --
70482933
RK
20-- --
21-- GNAT was originally developed by the GNAT team at New York University. --
71ff80dc 22-- Extensive contributions were provided by Ada Core Technologies Inc. --
70482933
RK
23-- --
24------------------------------------------------------------------------------
25
104f58db 26with Atree; use Atree;
104f58db
BD
27with Debug; use Debug;
28with Einfo; use Einfo;
76f9c7f4 29with Einfo.Entities; use Einfo.Entities;
104f58db
BD
30with Einfo.Utils; use Einfo.Utils;
31with Elists; use Elists;
32with Eval_Fat; use Eval_Fat;
33with Exp_Ch11; use Exp_Ch11;
34with Exp_Ch4; use Exp_Ch4;
35with Exp_Pakd; use Exp_Pakd;
36with Exp_Util; use Exp_Util;
37with Expander; use Expander;
38with Freeze; use Freeze;
39with Lib; use Lib;
40with Nlists; use Nlists;
41with Nmake; use Nmake;
42with Opt; use Opt;
43with Output; use Output;
44with Restrict; use Restrict;
45with Rident; use Rident;
46with Rtsfind; use Rtsfind;
47with Sem; use Sem;
48with Sem_Aux; use Sem_Aux;
49with Sem_Ch3; use Sem_Ch3;
50with Sem_Ch8; use Sem_Ch8;
29d39651 51with Sem_Cat; use Sem_Cat;
104f58db
BD
52with Sem_Disp; use Sem_Disp;
53with Sem_Eval; use Sem_Eval;
54with Sem_Mech; use Sem_Mech;
55with Sem_Res; use Sem_Res;
56with Sem_Util; use Sem_Util;
57with Sem_Warn; use Sem_Warn;
58with Sinfo; use Sinfo;
59with Sinfo.Nodes; use Sinfo.Nodes;
60with Sinfo.Utils; use Sinfo.Utils;
61with Sinput; use Sinput;
62with Snames; use Snames;
63with Sprint; use Sprint;
64with Stand; use Stand;
65with Stringt; use Stringt;
66with Targparm; use Targparm;
67with Tbuild; use Tbuild;
68with Ttypes; use Ttypes;
69with Validsw; use Validsw;
70482933
RK
70
71package body Checks is
72
73 -- General note: many of these routines are concerned with generating
74 -- checking code to make sure that constraint error is raised at runtime.
75 -- Clearly this code is only needed if the expander is active, since
76 -- otherwise we will not be generating code or going into the runtime
77 -- execution anyway.
78
79 -- We therefore disconnect most of these checks if the expander is
80 -- inactive. This has the additional benefit that we do not need to
81 -- worry about the tree being messed up by previous errors (since errors
82 -- turn off expansion anyway).
83
84 -- There are a few exceptions to the above rule. For instance routines
85 -- such as Apply_Scalar_Range_Check that do not insert any code can be
86 -- safely called even when the Expander is inactive (but Errors_Detected
87 -- is 0). The benefit of executing this code when expansion is off, is
29d39651 88 -- the ability to emit constraint error warnings for static expressions
70482933
RK
89 -- even when we are not generating code.
90
637a41a5
AC
91 -- The above is modified in gnatprove mode to ensure that proper check
92 -- flags are always placed, even if expansion is off.
93
fbf5a39b
AC
94 -------------------------------------
95 -- Suppression of Redundant Checks --
96 -------------------------------------
97
98 -- This unit implements a limited circuit for removal of redundant
99 -- checks. The processing is based on a tracing of simple sequential
100 -- flow. For any sequence of statements, we save expressions that are
101 -- marked to be checked, and then if the same expression appears later
102 -- with the same check, then under certain circumstances, the second
103 -- check can be suppressed.
104
105 -- Basically, we can suppress the check if we know for certain that
106 -- the previous expression has been elaborated (together with its
107 -- check), and we know that the exception frame is the same, and that
108 -- nothing has happened to change the result of the exception.
109
110 -- Let us examine each of these three conditions in turn to describe
111 -- how we ensure that this condition is met.
112
113 -- First, we need to know for certain that the previous expression has
308e6f3a 114 -- been executed. This is done principally by the mechanism of calling
fbf5a39b
AC
115 -- Conditional_Statements_Begin at the start of any statement sequence
116 -- and Conditional_Statements_End at the end. The End call causes all
117 -- checks remembered since the Begin call to be discarded. This does
118 -- miss a few cases, notably the case of a nested BEGIN-END block with
119 -- no exception handlers. But the important thing is to be conservative.
120 -- The other protection is that all checks are discarded if a label
121 -- is encountered, since then the assumption of sequential execution
122 -- is violated, and we don't know enough about the flow.
123
124 -- Second, we need to know that the exception frame is the same. We
125 -- do this by killing all remembered checks when we enter a new frame.
126 -- Again, that's over-conservative, but generally the cases we can help
127 -- with are pretty local anyway (like the body of a loop for example).
128
129 -- Third, we must be sure to forget any checks which are no longer valid.
130 -- This is done by two mechanisms, first the Kill_Checks_Variable call is
131 -- used to note any changes to local variables. We only attempt to deal
132 -- with checks involving local variables, so we do not need to worry
133 -- about global variables. Second, a call to any non-global procedure
134 -- causes us to abandon all stored checks, since such a all may affect
135 -- the values of any local variables.
136
137 -- The following define the data structures used to deal with remembering
138 -- checks so that redundant checks can be eliminated as described above.
139
140 -- Right now, the only expressions that we deal with are of the form of
141 -- simple local objects (either declared locally, or IN parameters) or
142 -- such objects plus/minus a compile time known constant. We can do
143 -- more later on if it seems worthwhile, but this catches many simple
144 -- cases in practice.
145
146 -- The following record type reflects a single saved check. An entry
147 -- is made in the stack of saved checks if and only if the expression
148 -- has been elaborated with the indicated checks.
149
150 type Saved_Check is record
151 Killed : Boolean;
152 -- Set True if entry is killed by Kill_Checks
153
154 Entity : Entity_Id;
155 -- The entity involved in the expression that is checked
156
157 Offset : Uint;
158 -- A compile time value indicating the result of adding or
159 -- subtracting a compile time value. This value is to be
160 -- added to the value of the Entity. A value of zero is
161 -- used for the case of a simple entity reference.
162
163 Check_Type : Character;
164 -- This is set to 'R' for a range check (in which case Target_Type
165 -- is set to the target type for the range check) or to 'O' for an
166 -- overflow check (in which case Target_Type is set to Empty).
167
168 Target_Type : Entity_Id;
169 -- Used only if Do_Range_Check is set. Records the target type for
170 -- the check. We need this, because a check is a duplicate only if
308e6f3a 171 -- it has the same target type (or more accurately one with a
fbf5a39b
AC
172 -- range that is smaller or equal to the stored target type of a
173 -- saved check).
174 end record;
175
176 -- The following table keeps track of saved checks. Rather than use an
d1915cb8 177 -- extensible table, we just use a table of fixed size, and we discard
fbf5a39b
AC
178 -- any saved checks that do not fit. That's very unlikely to happen and
179 -- this is only an optimization in any case.
180
181 Saved_Checks : array (Int range 1 .. 200) of Saved_Check;
182 -- Array of saved checks
183
184 Num_Saved_Checks : Nat := 0;
185 -- Number of saved checks
186
187 -- The following stack keeps track of statement ranges. It is treated
188 -- as a stack. When Conditional_Statements_Begin is called, an entry
189 -- is pushed onto this stack containing the value of Num_Saved_Checks
190 -- at the time of the call. Then when Conditional_Statements_End is
191 -- called, this value is popped off and used to reset Num_Saved_Checks.
192
193 -- Note: again, this is a fixed length stack with a size that should
194 -- always be fine. If the value of the stack pointer goes above the
195 -- limit, then we just forget all saved checks.
196
197 Saved_Checks_Stack : array (Int range 1 .. 100) of Nat;
198 Saved_Checks_TOS : Nat := 0;
199
200 -----------------------
201 -- Local Subprograms --
202 -----------------------
70482933 203
a7f1b24f 204 procedure Apply_Arithmetic_Overflow_Strict (N : Node_Id);
acad3c0a 205 -- Used to apply arithmetic overflow checks for all cases except operators
3ada950b 206 -- on signed arithmetic types in MINIMIZED/ELIMINATED case (for which we
a7f1b24f
RD
207 -- call Apply_Arithmetic_Overflow_Minimized_Eliminated below). N can be a
208 -- signed integer arithmetic operator (but not an if or case expression).
209 -- It is also called for types other than signed integers.
acad3c0a
AC
210
211 procedure Apply_Arithmetic_Overflow_Minimized_Eliminated (Op : Node_Id);
212 -- Used to apply arithmetic overflow checks for the case where the overflow
a7f1b24f
RD
213 -- checking mode is MINIMIZED or ELIMINATED and we have a signed integer
214 -- arithmetic op (which includes the case of if and case expressions). Note
215 -- that Do_Overflow_Check may or may not be set for node Op. In these modes
216 -- we have work to do even if overflow checking is suppressed.
acad3c0a 217
a91e9ac7
AC
218 procedure Apply_Division_Check
219 (N : Node_Id;
220 Rlo : Uint;
221 Rhi : Uint;
222 ROK : Boolean);
223 -- N is an N_Op_Div, N_Op_Rem, or N_Op_Mod node. This routine applies
224 -- division checks as required if the Do_Division_Check flag is set.
225 -- Rlo and Rhi give the possible range of the right operand, these values
226 -- can be referenced and trusted only if ROK is set True.
227
228 procedure Apply_Float_Conversion_Check
6c8e70fe 229 (Expr : Node_Id;
a91e9ac7
AC
230 Target_Typ : Entity_Id);
231 -- The checks on a conversion from a floating-point type to an integer
232 -- type are delicate. They have to be performed before conversion, they
233 -- have to raise an exception when the operand is a NaN, and rounding must
234 -- be taken into account to determine the safe bounds of the operand.
235
70482933 236 procedure Apply_Selected_Length_Checks
6c8e70fe 237 (Expr : Node_Id;
70482933
RK
238 Target_Typ : Entity_Id;
239 Source_Typ : Entity_Id;
240 Do_Static : Boolean);
241 -- This is the subprogram that does all the work for Apply_Length_Check
242 -- and Apply_Static_Length_Check. Expr, Target_Typ and Source_Typ are as
243 -- described for the above routines. The Do_Static flag indicates that
244 -- only a static check is to be done.
245
12be130c
EB
246 procedure Compute_Range_For_Arithmetic_Op
247 (Op : Node_Kind;
248 Lo_Left : Uint;
249 Hi_Left : Uint;
250 Lo_Right : Uint;
251 Hi_Right : Uint;
252 OK : out Boolean;
253 Lo : out Uint;
254 Hi : out Uint);
255 -- Given an integer arithmetical operation Op and the range of values of
256 -- its operand(s), try to compute a conservative estimate of the possible
257 -- range of values for the result of the operation. Thus if OK is True on
258 -- return, the result is known to lie in the range Lo .. Hi (inclusive).
259 -- If OK is false, both Lo and Hi are set to No_Uint.
260
939c12d2 261 type Check_Type is new Check_Id range Access_Check .. Division_Check;
2ede092b
RD
262 function Check_Needed (Nod : Node_Id; Check : Check_Type) return Boolean;
263 -- This function is used to see if an access or division by zero check is
264 -- needed. The check is to be applied to a single variable appearing in the
265 -- source, and N is the node for the reference. If N is not of this form,
266 -- True is returned with no further processing. If N is of the right form,
267 -- then further processing determines if the given Check is needed.
268 --
269 -- The particular circuit is to see if we have the case of a check that is
270 -- not needed because it appears in the right operand of a short circuited
271 -- conditional where the left operand guards the check. For example:
272 --
273 -- if Var = 0 or else Q / Var > 12 then
274 -- ...
275 -- end if;
276 --
277 -- In this example, the division check is not required. At the same time
278 -- we can issue warnings for suspicious use of non-short-circuited forms,
279 -- such as:
280 --
281 -- if Var = 0 or Q / Var > 12 then
282 -- ...
283 -- end if;
284
fbf5a39b
AC
285 procedure Find_Check
286 (Expr : Node_Id;
287 Check_Type : Character;
288 Target_Type : Entity_Id;
289 Entry_OK : out Boolean;
290 Check_Num : out Nat;
291 Ent : out Entity_Id;
292 Ofs : out Uint);
293 -- This routine is used by Enable_Range_Check and Enable_Overflow_Check
294 -- to see if a check is of the form for optimization, and if so, to see
295 -- if it has already been performed. Expr is the expression to check,
296 -- and Check_Type is 'R' for a range check, 'O' for an overflow check.
297 -- Target_Type is the target type for a range check, and Empty for an
298 -- overflow check. If the entry is not of the form for optimization,
299 -- then Entry_OK is set to False, and the remaining out parameters
300 -- are undefined. If the entry is OK, then Ent/Ofs are set to the
301 -- entity and offset from the expression. Check_Num is the number of
302 -- a matching saved entry in Saved_Checks, or zero if no such entry
303 -- is located.
304
70482933
RK
305 function Get_Discriminal (E : Entity_Id; Bound : Node_Id) return Node_Id;
306 -- If a discriminal is used in constraining a prival, Return reference
307 -- to the discriminal of the protected body (which renames the parameter
308 -- of the enclosing protected operation). This clumsy transformation is
309 -- needed because privals are created too late and their actual subtypes
310 -- are not available when analysing the bodies of the protected operations.
c064e066
RD
311 -- This function is called whenever the bound is an entity and the scope
312 -- indicates a protected operation. If the bound is an in-parameter of
313 -- a protected operation that is not a prival, the function returns the
314 -- bound itself.
70482933
RK
315 -- To be cleaned up???
316
317 function Guard_Access
6c8e70fe
EB
318 (Cond : Node_Id;
319 Loc : Source_Ptr;
320 Expr : Node_Id) return Node_Id;
70482933
RK
321 -- In the access type case, guard the test with a test to ensure
322 -- that the access value is non-null, since the checks do not
323 -- not apply to null access values.
324
325 procedure Install_Static_Check (R_Cno : Node_Id; Loc : Source_Ptr);
326 -- Called by Apply_{Length,Range}_Checks to rewrite the tree with the
327 -- Constraint_Error node.
328
acad3c0a
AC
329 function Is_Signed_Integer_Arithmetic_Op (N : Node_Id) return Boolean;
330 -- Returns True if node N is for an arithmetic operation with signed
4b1c4f20
RD
331 -- integer operands. This includes unary and binary operators, and also
332 -- if and case expression nodes where the dependent expressions are of
333 -- a signed integer type. These are the kinds of nodes for which special
3ada950b 334 -- handling applies in MINIMIZED or ELIMINATED overflow checking mode.
acad3c0a 335
c064e066
RD
336 function Range_Or_Validity_Checks_Suppressed
337 (Expr : Node_Id) return Boolean;
338 -- Returns True if either range or validity checks or both are suppressed
339 -- for the type of the given expression, or, if the expression is the name
340 -- of an entity, if these checks are suppressed for the entity.
341
70482933 342 function Selected_Length_Checks
6c8e70fe 343 (Expr : Node_Id;
70482933
RK
344 Target_Typ : Entity_Id;
345 Source_Typ : Entity_Id;
6b6fcd3e 346 Warn_Node : Node_Id) return Check_Result;
70482933
RK
347 -- Like Apply_Selected_Length_Checks, except it doesn't modify
348 -- anything, just returns a list of nodes as described in the spec of
349 -- this package for the Range_Check function.
66340e0e
AC
350 -- ??? In fact it does construct the test and insert it into the tree,
351 -- and insert actions in various ways (calling Insert_Action directly
352 -- in particular) so we do not call it in GNATprove mode, contrary to
353 -- Selected_Range_Checks.
70482933
RK
354
355 function Selected_Range_Checks
6c8e70fe 356 (Expr : Node_Id;
70482933
RK
357 Target_Typ : Entity_Id;
358 Source_Typ : Entity_Id;
6b6fcd3e 359 Warn_Node : Node_Id) return Check_Result;
451187a3 360 -- Like Apply_Range_Check, except it does not modify anything, just
ec170be1 361 -- returns a list of nodes as described in the spec of this package
70482933
RK
362 -- for the Range_Check function.
363
364 ------------------------------
365 -- Access_Checks_Suppressed --
366 ------------------------------
367
368 function Access_Checks_Suppressed (E : Entity_Id) return Boolean is
369 begin
fbf5a39b
AC
370 if Present (E) and then Checks_May_Be_Suppressed (E) then
371 return Is_Check_Suppressed (E, Access_Check);
372 else
3217f71e 373 return Scope_Suppress.Suppress (Access_Check);
fbf5a39b 374 end if;
70482933
RK
375 end Access_Checks_Suppressed;
376
377 -------------------------------------
378 -- Accessibility_Checks_Suppressed --
379 -------------------------------------
380
381 function Accessibility_Checks_Suppressed (E : Entity_Id) return Boolean is
382 begin
bcb8c3bb
JS
383 if No_Dynamic_Accessibility_Checks_Enabled (E) then
384 return True;
385
386 elsif Present (E) and then Checks_May_Be_Suppressed (E) then
fbf5a39b 387 return Is_Check_Suppressed (E, Accessibility_Check);
bcb8c3bb 388
fbf5a39b 389 else
3217f71e 390 return Scope_Suppress.Suppress (Accessibility_Check);
fbf5a39b 391 end if;
70482933
RK
392 end Accessibility_Checks_Suppressed;
393
11b4899f
JM
394 -----------------------------
395 -- Activate_Division_Check --
396 -----------------------------
397
398 procedure Activate_Division_Check (N : Node_Id) is
399 begin
400 Set_Do_Division_Check (N, True);
401 Possible_Local_Raise (N, Standard_Constraint_Error);
402 end Activate_Division_Check;
403
404 -----------------------------
405 -- Activate_Overflow_Check --
406 -----------------------------
407
408 procedure Activate_Overflow_Check (N : Node_Id) is
bb304287
AC
409 Typ : constant Entity_Id := Etype (N);
410
11b4899f 411 begin
bb304287
AC
412 -- Floating-point case. If Etype is not set (this can happen when we
413 -- activate a check on a node that has not yet been analyzed), then
414 -- we assume we do not have a floating-point type (as per our spec).
415
416 if Present (Typ) and then Is_Floating_Point_Type (Typ) then
417
418 -- Ignore call if we have no automatic overflow checks on the target
419 -- and Check_Float_Overflow mode is not set. These are the cases in
420 -- which we expect to generate infinities and NaN's with no check.
421
422 if not (Machine_Overflows_On_Target or Check_Float_Overflow) then
423 return;
424
425 -- Ignore for unary operations ("+", "-", abs) since these can never
426 -- result in overflow for floating-point cases.
396eb900 427
bb304287
AC
428 elsif Nkind (N) in N_Unary_Op then
429 return;
430
431 -- Otherwise we will set the flag
432
433 else
434 null;
435 end if;
436
437 -- Discrete case
438
439 else
440 -- Nothing to do for Rem/Mod/Plus (overflow not possible, the check
441 -- for zero-divide is a divide check, not an overflow check).
396eb900 442
4a08c95c 443 if Nkind (N) in N_Op_Rem | N_Op_Mod | N_Op_Plus then
bb304287
AC
444 return;
445 end if;
396eb900
AC
446 end if;
447
bb304287 448 -- Fall through for cases where we do set the flag
396eb900 449
a7191e01 450 Set_Do_Overflow_Check (N);
396eb900 451 Possible_Local_Raise (N, Standard_Constraint_Error);
11b4899f
JM
452 end Activate_Overflow_Check;
453
454 --------------------------
455 -- Activate_Range_Check --
456 --------------------------
457
458 procedure Activate_Range_Check (N : Node_Id) is
459 begin
68c8d72a 460 Set_Do_Range_Check (N);
11b4899f
JM
461 Possible_Local_Raise (N, Standard_Constraint_Error);
462 end Activate_Range_Check;
463
c064e066
RD
464 ---------------------------------
465 -- Alignment_Checks_Suppressed --
466 ---------------------------------
467
468 function Alignment_Checks_Suppressed (E : Entity_Id) return Boolean is
469 begin
470 if Present (E) and then Checks_May_Be_Suppressed (E) then
471 return Is_Check_Suppressed (E, Alignment_Check);
472 else
3217f71e 473 return Scope_Suppress.Suppress (Alignment_Check);
c064e066
RD
474 end if;
475 end Alignment_Checks_Suppressed;
476
b07b7ace
AC
477 ----------------------------------
478 -- Allocation_Checks_Suppressed --
479 ----------------------------------
480
59f4d038
RD
481 -- Note: at the current time there are no calls to this function, because
482 -- the relevant check is in the run-time, so it is not a check that the
483 -- compiler can suppress anyway, but we still have to recognize the check
484 -- name Allocation_Check since it is part of the standard.
485
b07b7ace
AC
486 function Allocation_Checks_Suppressed (E : Entity_Id) return Boolean is
487 begin
488 if Present (E) and then Checks_May_Be_Suppressed (E) then
489 return Is_Check_Suppressed (E, Allocation_Check);
490 else
491 return Scope_Suppress.Suppress (Allocation_Check);
492 end if;
493 end Allocation_Checks_Suppressed;
494
70482933
RK
495 -------------------------
496 -- Append_Range_Checks --
497 -------------------------
498
499 procedure Append_Range_Checks
500 (Checks : Check_Result;
501 Stmts : List_Id;
502 Suppress_Typ : Entity_Id;
bbe7d67f 503 Static_Sloc : Source_Ptr)
70482933 504 is
e0666fc6
AC
505 Checks_On : constant Boolean :=
506 not Index_Checks_Suppressed (Suppress_Typ)
507 or else
508 not Range_Checks_Suppressed (Suppress_Typ);
509
70482933 510 begin
869a06d9 511 -- For now we just return if Checks_On is false, however this could be
e0666fc6 512 -- enhanced to check for an always True value in the condition and to
869a06d9 513 -- generate a compilation warning.
70482933
RK
514
515 if not Checks_On then
516 return;
517 end if;
518
519 for J in 1 .. 2 loop
520 exit when No (Checks (J));
521
522 if Nkind (Checks (J)) = N_Raise_Constraint_Error
523 and then Present (Condition (Checks (J)))
524 then
bbe7d67f 525 Append_To (Stmts, Checks (J));
70482933
RK
526 else
527 Append_To
07fc65c4 528 (Stmts,
bbe7d67f 529 Make_Raise_Constraint_Error (Static_Sloc,
07fc65c4 530 Reason => CE_Range_Check_Failed));
70482933
RK
531 end if;
532 end loop;
533 end Append_Range_Checks;
534
535 ------------------------
536 -- Apply_Access_Check --
537 ------------------------
538
539 procedure Apply_Access_Check (N : Node_Id) is
540 P : constant Node_Id := Prefix (N);
541
542 begin
2ede092b
RD
543 -- We do not need checks if we are not generating code (i.e. the
544 -- expander is not active). This is not just an optimization, there
545 -- are cases (e.g. with pragma Debug) where generating the checks
cb9d41eb 546 -- can cause real trouble.
6cdb2c6e 547
4460a9bc 548 if not Expander_Active then
2ede092b 549 return;
fbf5a39b 550 end if;
70482933 551
86ac5e79 552 -- No check if short circuiting makes check unnecessary
fbf5a39b 553
86ac5e79
ES
554 if not Check_Needed (P, Access_Check) then
555 return;
70482933 556 end if;
fbf5a39b 557
f2cbd970
JM
558 -- No check if accessing the Offset_To_Top component of a dispatch
559 -- table. They are safe by construction.
560
1be9633f
AC
561 if Tagged_Type_Expansion
562 and then Present (Etype (P))
3477e0b2 563 and then Is_RTE (Etype (P), RE_Offset_To_Top_Ptr)
f2cbd970
JM
564 then
565 return;
566 end if;
567
86ac5e79 568 -- Otherwise go ahead and install the check
fbf5a39b 569
2820d220 570 Install_Null_Excluding_Check (P);
70482933
RK
571 end Apply_Access_Check;
572
c064e066
RD
573 --------------------------------
574 -- Apply_Address_Clause_Check --
575 --------------------------------
576
577 procedure Apply_Address_Clause_Check (E : Entity_Id; N : Node_Id) is
6f5c2c4b
AC
578 pragma Assert (Nkind (N) = N_Freeze_Entity);
579
80007176
AC
580 AC : constant Node_Id := Address_Clause (E);
581 Loc : constant Source_Ptr := Sloc (AC);
582 Typ : constant Entity_Id := Etype (E);
980f237d 583
980f237d 584 Expr : Node_Id;
c064e066
RD
585 -- Address expression (not necessarily the same as Aexp, for example
586 -- when Aexp is a reference to a constant, in which case Expr gets
aca670a0 587 -- reset to reference the value expression of the constant).
c064e066 588
980f237d 589 begin
f4cd2542
EB
590 -- See if alignment check needed. Note that we never need a check if the
591 -- maximum alignment is one, since the check will always succeed.
592
593 -- Note: we do not check for checks suppressed here, since that check
594 -- was done in Sem_Ch13 when the address clause was processed. We are
595 -- only called if checks were not suppressed. The reason for this is
596 -- that we have to delay the call to Apply_Alignment_Check till freeze
597 -- time (so that all types etc are elaborated), but we have to check
598 -- the status of check suppressing at the point of the address clause.
599
600 if No (AC)
601 or else not Check_Address_Alignment (AC)
602 or else Maximum_Alignment = 1
603 then
604 return;
605 end if;
606
607 -- Obtain expression from address clause
fbf5a39b 608
f26a3587 609 Expr := Address_Value (Expression (AC));
c064e066 610
f26a3587
AC
611 -- See if we know that Expr has an acceptable value at compile time. If
612 -- it hasn't or we don't know, we defer issuing the warning until the
613 -- end of the compilation to take into account back end annotations.
980f237d
GB
614
615 if Compile_Time_Known_Value (Expr)
ddda9d0f 616 and then (Known_Alignment (E) or else Known_Alignment (Typ))
980f237d 617 then
ddda9d0f
AC
618 declare
619 AL : Uint := Alignment (Typ);
620
621 begin
80007176
AC
622 -- The object alignment might be more restrictive than the type
623 -- alignment.
ddda9d0f
AC
624
625 if Known_Alignment (E) then
626 AL := Alignment (E);
627 end if;
628
f26a3587 629 if Expr_Value (Expr) mod AL = 0 then
c064e066 630 return;
ddda9d0f
AC
631 end if;
632 end;
980f237d 633
e9c12b91
AC
634 -- If the expression has the form X'Address, then we can find out if the
635 -- object X has an alignment that is compatible with the object E. If it
636 -- hasn't or we don't know, we defer issuing the warning until the end
637 -- of the compilation to take into account back end annotations.
980f237d 638
c064e066
RD
639 elsif Nkind (Expr) = N_Attribute_Reference
640 and then Attribute_Name (Expr) = Name_Address
e9c12b91
AC
641 and then
642 Has_Compatible_Alignment (E, Prefix (Expr), False) = Known_Compatible
c064e066 643 then
f4cd2542 644 return;
c064e066 645 end if;
980f237d 646
308e6f3a
RW
647 -- Here we do not know if the value is acceptable. Strictly we don't
648 -- have to do anything, since if the alignment is bad, we have an
649 -- erroneous program. However we are allowed to check for erroneous
650 -- conditions and we decide to do this by default if the check is not
651 -- suppressed.
c064e066
RD
652
653 -- However, don't do the check if elaboration code is unwanted
654
655 if Restriction_Active (No_Elaboration_Code) then
656 return;
657
658 -- Generate a check to raise PE if alignment may be inappropriate
659
660 else
43018f58 661 -- If the original expression is a nonstatic constant, use the name
80007176
AC
662 -- of the constant itself rather than duplicating its initialization
663 -- expression, which was extracted above.
c064e066 664
11b4899f
JM
665 -- Note: Expr is empty if the address-clause is applied to in-mode
666 -- actuals (allowed by 13.1(22)).
667
7d0d27d9 668 if No (Expr)
11b4899f
JM
669 or else
670 (Is_Entity_Name (Expression (AC))
671 and then Ekind (Entity (Expression (AC))) = E_Constant
80007176
AC
672 and then Nkind (Parent (Entity (Expression (AC)))) =
673 N_Object_Declaration)
c064e066
RD
674 then
675 Expr := New_Copy_Tree (Expression (AC));
676 else
677 Remove_Side_Effects (Expr);
980f237d 678 end if;
980f237d 679
6f5c2c4b
AC
680 if No (Actions (N)) then
681 Set_Actions (N, New_List);
682 end if;
683
684 Prepend_To (Actions (N),
c064e066
RD
685 Make_Raise_Program_Error (Loc,
686 Condition =>
687 Make_Op_Ne (Loc,
80007176 688 Left_Opnd =>
c064e066 689 Make_Op_Mod (Loc,
80007176 690 Left_Opnd =>
c064e066
RD
691 Unchecked_Convert_To
692 (RTE (RE_Integer_Address), Expr),
693 Right_Opnd =>
694 Make_Attribute_Reference (Loc,
6f5c2c4b 695 Prefix => New_Occurrence_Of (E, Loc),
c064e066
RD
696 Attribute_Name => Name_Alignment)),
697 Right_Opnd => Make_Integer_Literal (Loc, Uint_0)),
80007176 698 Reason => PE_Misaligned_Address_Value));
aca670a0
AC
699
700 Warning_Msg := No_Error_Msg;
6f5c2c4b 701 Analyze (First (Actions (N)), Suppress => All_Checks);
3b4598a7 702
f26a3587 703 -- If the above raise action generated a warning message (for example
aca670a0
AC
704 -- from Warn_On_Non_Local_Exception mode with the active restriction
705 -- No_Exception_Propagation).
706
707 if Warning_Msg /= No_Error_Msg then
80007176 708
aca670a0
AC
709 -- If the expression has a known at compile time value, then
710 -- once we know the alignment of the type, we can check if the
711 -- exception will be raised or not, and if not, we don't need
712 -- the warning so we will kill the warning later on.
713
714 if Compile_Time_Known_Value (Expr) then
715 Alignment_Warnings.Append
5c13a04e
EB
716 ((E => E,
717 A => Expr_Value (Expr),
718 P => Empty,
719 W => Warning_Msg));
720
721 -- Likewise if the expression is of the form X'Address
722
723 elsif Nkind (Expr) = N_Attribute_Reference
724 and then Attribute_Name (Expr) = Name_Address
725 then
726 Alignment_Warnings.Append
727 ((E => E,
728 A => No_Uint,
729 P => Prefix (Expr),
730 W => Warning_Msg));
3b4598a7 731
80007176
AC
732 -- Add explanation of the warning generated by the check
733
734 else
f26a3587 735 Error_Msg_N
80007176 736 ("\address value may be incompatible with alignment of "
ed00b051 737 & "object?.x?", AC);
f26a3587 738 end if;
3b4598a7 739 end if;
6fd0a72a 740
c064e066
RD
741 return;
742 end if;
fbf5a39b
AC
743
744 exception
80007176 745
c064e066
RD
746 -- If we have some missing run time component in configurable run time
747 -- mode then just skip the check (it is not required in any case).
748
fbf5a39b
AC
749 when RE_Not_Available =>
750 return;
c064e066 751 end Apply_Address_Clause_Check;
980f237d 752
70482933
RK
753 -------------------------------------
754 -- Apply_Arithmetic_Overflow_Check --
755 -------------------------------------
756
acad3c0a
AC
757 procedure Apply_Arithmetic_Overflow_Check (N : Node_Id) is
758 begin
759 -- Use old routine in almost all cases (the only case we are treating
5707e389 760 -- specially is the case of a signed integer arithmetic op with the
a7f1b24f 761 -- overflow checking mode set to MINIMIZED or ELIMINATED).
acad3c0a 762
a7f1b24f 763 if Overflow_Check_Mode = Strict
acad3c0a
AC
764 or else not Is_Signed_Integer_Arithmetic_Op (N)
765 then
a7f1b24f 766 Apply_Arithmetic_Overflow_Strict (N);
acad3c0a 767
5707e389
AC
768 -- Otherwise use the new routine for the case of a signed integer
769 -- arithmetic op, with Do_Overflow_Check set to True, and the checking
770 -- mode is MINIMIZED or ELIMINATED.
acad3c0a
AC
771
772 else
773 Apply_Arithmetic_Overflow_Minimized_Eliminated (N);
774 end if;
775 end Apply_Arithmetic_Overflow_Check;
776
a7f1b24f
RD
777 --------------------------------------
778 -- Apply_Arithmetic_Overflow_Strict --
779 --------------------------------------
acad3c0a 780
13230c68
AC
781 -- This routine is called only if the type is an integer type and an
782 -- arithmetic overflow check may be needed for op (add, subtract, or
783 -- multiply). This check is performed if Backend_Overflow_Checks_On_Target
784 -- is not enabled and Do_Overflow_Check is set. In this case we expand the
ec2dd67a
RD
785 -- operation into a more complex sequence of tests that ensures that
786 -- overflow is properly caught.
70482933 787
a7f1b24f
RD
788 -- This is used in CHECKED modes. It is identical to the code for this
789 -- cases before the big overflow earthquake, thus ensuring that in this
790 -- modes we have compatible behavior (and reliability) to what was there
791 -- before. It is also called for types other than signed integers, and if
792 -- the Do_Overflow_Check flag is off.
acad3c0a
AC
793
794 -- Note: we also call this routine if we decide in the MINIMIZED case
795 -- to give up and just generate an overflow check without any fuss.
796
a7f1b24f 797 procedure Apply_Arithmetic_Overflow_Strict (N : Node_Id) is
5707e389
AC
798 Loc : constant Source_Ptr := Sloc (N);
799 Typ : constant Entity_Id := Etype (N);
800 Rtyp : constant Entity_Id := Root_Type (Typ);
70482933
RK
801
802 begin
a7f1b24f
RD
803 -- Nothing to do if Do_Overflow_Check not set or overflow checks
804 -- suppressed.
805
806 if not Do_Overflow_Check (N) then
807 return;
808 end if;
809
ec2dd67a
RD
810 -- An interesting special case. If the arithmetic operation appears as
811 -- the operand of a type conversion:
812
813 -- type1 (x op y)
814
815 -- and all the following conditions apply:
816
817 -- arithmetic operation is for a signed integer type
818 -- target type type1 is a static integer subtype
819 -- range of x and y are both included in the range of type1
820 -- range of x op y is included in the range of type1
821 -- size of type1 is at least twice the result size of op
822
4404c282 823 -- then we don't do an overflow check in any case. Instead, we transform
ec2dd67a
RD
824 -- the operation so that we end up with:
825
826 -- type1 (type1 (x) op type1 (y))
827
828 -- This avoids intermediate overflow before the conversion. It is
829 -- explicitly permitted by RM 3.5.4(24):
830
831 -- For the execution of a predefined operation of a signed integer
832 -- type, the implementation need not raise Constraint_Error if the
833 -- result is outside the base range of the type, so long as the
834 -- correct result is produced.
835
836 -- It's hard to imagine that any programmer counts on the exception
837 -- being raised in this case, and in any case it's wrong coding to
838 -- have this expectation, given the RM permission. Furthermore, other
839 -- Ada compilers do allow such out of range results.
840
841 -- Note that we do this transformation even if overflow checking is
842 -- off, since this is precisely about giving the "right" result and
843 -- avoiding the need for an overflow check.
844
eaa826f8
RD
845 -- Note: this circuit is partially redundant with respect to the similar
846 -- processing in Exp_Ch4.Expand_N_Type_Conversion, but the latter deals
847 -- with cases that do not come through here. We still need the following
848 -- processing even with the Exp_Ch4 code in place, since we want to be
849 -- sure not to generate the arithmetic overflow check in these cases
850 -- (Exp_Ch4 would have a hard time removing them once generated).
851
ec2dd67a
RD
852 if Is_Signed_Integer_Type (Typ)
853 and then Nkind (Parent (N)) = N_Type_Conversion
70482933 854 then
b6b5cca8 855 Conversion_Optimization : declare
ec2dd67a 856 Target_Type : constant Entity_Id :=
15f0f591 857 Base_Type (Entity (Subtype_Mark (Parent (N))));
ec2dd67a
RD
858
859 Llo, Lhi : Uint;
860 Rlo, Rhi : Uint;
861 LOK, ROK : Boolean;
862
863 Vlo : Uint;
864 Vhi : Uint;
865 VOK : Boolean;
866
867 Tlo : Uint;
868 Thi : Uint;
869
870 begin
871 if Is_Integer_Type (Target_Type)
872 and then RM_Size (Root_Type (Target_Type)) >= 2 * RM_Size (Rtyp)
873 then
874 Tlo := Expr_Value (Type_Low_Bound (Target_Type));
875 Thi := Expr_Value (Type_High_Bound (Target_Type));
876
c800f862
RD
877 Determine_Range
878 (Left_Opnd (N), LOK, Llo, Lhi, Assume_Valid => True);
879 Determine_Range
880 (Right_Opnd (N), ROK, Rlo, Rhi, Assume_Valid => True);
ec2dd67a
RD
881
882 if (LOK and ROK)
883 and then Tlo <= Llo and then Lhi <= Thi
884 and then Tlo <= Rlo and then Rhi <= Thi
885 then
c800f862 886 Determine_Range (N, VOK, Vlo, Vhi, Assume_Valid => True);
ec2dd67a
RD
887
888 if VOK and then Tlo <= Vlo and then Vhi <= Thi then
4fb0b3f0
AC
889 -- Rewrite the conversion operand so that the original
890 -- node is retained, in order to avoid the warning for
891 -- redundant conversions in Resolve_Type_Conversion.
892
03b4e4ae
PT
893 declare
894 Op : constant Node_Id := New_Op_Node (Nkind (N), Loc);
895 begin
896 Set_Left_Opnd (Op,
897 Make_Type_Conversion (Loc,
898 Subtype_Mark =>
899 New_Occurrence_Of (Target_Type, Loc),
900 Expression => Relocate_Node (Left_Opnd (N))));
901 Set_Right_Opnd (Op,
902 Make_Type_Conversion (Loc,
903 Subtype_Mark =>
904 New_Occurrence_Of (Target_Type, Loc),
905 Expression => Relocate_Node (Right_Opnd (N))));
906
907 Rewrite (N, Op);
908 end;
4fb0b3f0 909
ec2dd67a 910 Set_Etype (N, Target_Type);
4fb0b3f0 911
ec2dd67a
RD
912 Analyze_And_Resolve (Left_Opnd (N), Target_Type);
913 Analyze_And_Resolve (Right_Opnd (N), Target_Type);
914
915 -- Given that the target type is twice the size of the
916 -- source type, overflow is now impossible, so we can
917 -- safely kill the overflow check and return.
918
919 Set_Do_Overflow_Check (N, False);
920 return;
921 end if;
922 end if;
923 end if;
b6b5cca8 924 end Conversion_Optimization;
70482933
RK
925 end if;
926
ec2dd67a
RD
927 -- Now see if an overflow check is required
928
929 declare
a5476382 930 Dsiz : constant Uint := 2 * Esize (Rtyp);
ec2dd67a
RD
931 Opnod : Node_Id;
932 Ctyp : Entity_Id;
933 Opnd : Node_Id;
934 Cent : RE_Id;
70482933 935
ec2dd67a
RD
936 begin
937 -- Skip check if back end does overflow checks, or the overflow flag
fdfcc663
AC
938 -- is not set anyway, or we are not doing code expansion, or the
939 -- parent node is a type conversion whose operand is an arithmetic
940 -- operation on signed integers on which the expander can promote
0c0c6f49 941 -- later the operands to type Integer (see Expand_N_Type_Conversion).
70482933 942
ec2dd67a
RD
943 if Backend_Overflow_Checks_On_Target
944 or else not Do_Overflow_Check (N)
4460a9bc 945 or else not Expander_Active
fdfcc663
AC
946 or else (Present (Parent (N))
947 and then Nkind (Parent (N)) = N_Type_Conversion
948 and then Integer_Promotion_Possible (Parent (N)))
ec2dd67a
RD
949 then
950 return;
951 end if;
70482933 952
ec2dd67a
RD
953 -- Otherwise, generate the full general code for front end overflow
954 -- detection, which works by doing arithmetic in a larger type:
70482933 955
ec2dd67a 956 -- x op y
70482933 957
ec2dd67a 958 -- is expanded into
70482933 959
ec2dd67a 960 -- Typ (Checktyp (x) op Checktyp (y));
70482933 961
ec2dd67a
RD
962 -- where Typ is the type of the original expression, and Checktyp is
963 -- an integer type of sufficient length to hold the largest possible
964 -- result.
70482933 965
a5476382 966 -- If the size of the check type exceeds the maximum integer size,
ec2dd67a 967 -- we use a different approach, expanding to:
70482933 968
a5476382 969 -- typ (xxx_With_Ovflo_Check (Integer_NN (x), Integer_NN (y)))
70482933 970
ec2dd67a 971 -- where xxx is Add, Multiply or Subtract as appropriate
70482933 972
ec2dd67a
RD
973 -- Find check type if one exists
974
a5476382
EB
975 if Dsiz <= System_Max_Integer_Size then
976 Ctyp := Integer_Type_For (Dsiz, Uns => False);
ec2dd67a 977
ce532f42 978 -- No check type exists, use runtime call
70482933
RK
979
980 else
a5476382
EB
981 if System_Max_Integer_Size = 64 then
982 Ctyp := RTE (RE_Integer_64);
983 else
984 Ctyp := RTE (RE_Integer_128);
985 end if;
986
ec2dd67a 987 if Nkind (N) = N_Op_Add then
a5476382
EB
988 if System_Max_Integer_Size = 64 then
989 Cent := RE_Add_With_Ovflo_Check64;
990 else
991 Cent := RE_Add_With_Ovflo_Check128;
992 end if;
70482933 993
a5476382
EB
994 elsif Nkind (N) = N_Op_Subtract then
995 if System_Max_Integer_Size = 64 then
996 Cent := RE_Subtract_With_Ovflo_Check64;
997 else
998 Cent := RE_Subtract_With_Ovflo_Check128;
999 end if;
70482933 1000
a5476382
EB
1001 else pragma Assert (Nkind (N) = N_Op_Multiply);
1002 if System_Max_Integer_Size = 64 then
1003 Cent := RE_Multiply_With_Ovflo_Check64;
1004 else
1005 Cent := RE_Multiply_With_Ovflo_Check128;
1006 end if;
ec2dd67a
RD
1007 end if;
1008
1009 Rewrite (N,
1010 OK_Convert_To (Typ,
1011 Make_Function_Call (Loc,
e4494292 1012 Name => New_Occurrence_Of (RTE (Cent), Loc),
ec2dd67a 1013 Parameter_Associations => New_List (
a5476382
EB
1014 OK_Convert_To (Ctyp, Left_Opnd (N)),
1015 OK_Convert_To (Ctyp, Right_Opnd (N))))));
70482933 1016
ec2dd67a
RD
1017 Analyze_And_Resolve (N, Typ);
1018 return;
1019 end if;
70482933 1020
ec2dd67a
RD
1021 -- If we fall through, we have the case where we do the arithmetic
1022 -- in the next higher type and get the check by conversion. In these
1023 -- cases Ctyp is set to the type to be used as the check type.
70482933 1024
ec2dd67a 1025 Opnod := Relocate_Node (N);
70482933 1026
ec2dd67a 1027 Opnd := OK_Convert_To (Ctyp, Left_Opnd (Opnod));
70482933 1028
ec2dd67a
RD
1029 Analyze (Opnd);
1030 Set_Etype (Opnd, Ctyp);
1031 Set_Analyzed (Opnd, True);
1032 Set_Left_Opnd (Opnod, Opnd);
70482933 1033
ec2dd67a 1034 Opnd := OK_Convert_To (Ctyp, Right_Opnd (Opnod));
70482933 1035
ec2dd67a
RD
1036 Analyze (Opnd);
1037 Set_Etype (Opnd, Ctyp);
1038 Set_Analyzed (Opnd, True);
1039 Set_Right_Opnd (Opnod, Opnd);
70482933 1040
ec2dd67a
RD
1041 -- The type of the operation changes to the base type of the check
1042 -- type, and we reset the overflow check indication, since clearly no
1043 -- overflow is possible now that we are using a double length type.
1044 -- We also set the Analyzed flag to avoid a recursive attempt to
1045 -- expand the node.
70482933 1046
ec2dd67a
RD
1047 Set_Etype (Opnod, Base_Type (Ctyp));
1048 Set_Do_Overflow_Check (Opnod, False);
1049 Set_Analyzed (Opnod, True);
70482933 1050
ec2dd67a 1051 -- Now build the outer conversion
70482933 1052
ec2dd67a
RD
1053 Opnd := OK_Convert_To (Typ, Opnod);
1054 Analyze (Opnd);
1055 Set_Etype (Opnd, Typ);
fbf5a39b 1056
ec2dd67a
RD
1057 -- In the discrete type case, we directly generate the range check
1058 -- for the outer operand. This range check will implement the
1059 -- required overflow check.
fbf5a39b 1060
ec2dd67a
RD
1061 if Is_Discrete_Type (Typ) then
1062 Rewrite (N, Opnd);
1063 Generate_Range_Check
1064 (Expression (N), Typ, CE_Overflow_Check_Failed);
fbf5a39b 1065
ec2dd67a
RD
1066 -- For other types, we enable overflow checking on the conversion,
1067 -- after setting the node as analyzed to prevent recursive attempts
1068 -- to expand the conversion node.
fbf5a39b 1069
ec2dd67a
RD
1070 else
1071 Set_Analyzed (Opnd, True);
1072 Enable_Overflow_Check (Opnd);
1073 Rewrite (N, Opnd);
1074 end if;
1075
1076 exception
1077 when RE_Not_Available =>
1078 return;
1079 end;
a7f1b24f 1080 end Apply_Arithmetic_Overflow_Strict;
acad3c0a
AC
1081
1082 ----------------------------------------------------
1083 -- Apply_Arithmetic_Overflow_Minimized_Eliminated --
1084 ----------------------------------------------------
1085
1086 procedure Apply_Arithmetic_Overflow_Minimized_Eliminated (Op : Node_Id) is
1087 pragma Assert (Is_Signed_Integer_Arithmetic_Op (Op));
acad3c0a
AC
1088
1089 Loc : constant Source_Ptr := Sloc (Op);
1090 P : constant Node_Id := Parent (Op);
1091
d79059a3
AC
1092 LLIB : constant Entity_Id := Base_Type (Standard_Long_Long_Integer);
1093 -- Operands and results are of this type when we convert
1094
acad3c0a
AC
1095 Result_Type : constant Entity_Id := Etype (Op);
1096 -- Original result type
1097
15c94a55 1098 Check_Mode : constant Overflow_Mode_Type := Overflow_Check_Mode;
acad3c0a
AC
1099 pragma Assert (Check_Mode in Minimized_Or_Eliminated);
1100
1101 Lo, Hi : Uint;
1102 -- Ranges of values for result
1103
1104 begin
1105 -- Nothing to do if our parent is one of the following:
1106
4b1c4f20 1107 -- Another signed integer arithmetic op
acad3c0a
AC
1108 -- A membership operation
1109 -- A comparison operation
1110
1111 -- In all these cases, we will process at the higher level (and then
1112 -- this node will be processed during the downwards recursion that
a7f1b24f 1113 -- is part of the processing in Minimize_Eliminate_Overflows).
acad3c0a
AC
1114
1115 if Is_Signed_Integer_Arithmetic_Op (P)
71fb4dc8
AC
1116 or else Nkind (P) in N_Membership_Test
1117 or else Nkind (P) in N_Op_Compare
f6194278 1118
f6636994
AC
1119 -- This is also true for an alternative in a case expression
1120
1121 or else Nkind (P) = N_Case_Expression_Alternative
1122
1123 -- This is also true for a range operand in a membership test
f6194278 1124
71fb4dc8
AC
1125 or else (Nkind (P) = N_Range
1126 and then Nkind (Parent (P)) in N_Membership_Test)
acad3c0a 1127 then
fdc54be6
AC
1128 -- If_Expressions and Case_Expressions are treated as arithmetic
1129 -- ops, but if they appear in an assignment or similar contexts
1130 -- there is no overflow check that starts from that parent node,
1131 -- so apply check now.
ae745a0d 1132 -- Similarly, if these expressions are nested, we should go on.
fdc54be6 1133
4a08c95c 1134 if Nkind (P) in N_If_Expression | N_Case_Expression
fdc54be6
AC
1135 and then not Is_Signed_Integer_Arithmetic_Op (Parent (P))
1136 then
1137 null;
ae745a0d
ES
1138 elsif Nkind (P) in N_If_Expression | N_Case_Expression
1139 and then Nkind (Op) in N_If_Expression | N_Case_Expression
1140 then
1141 null;
fdc54be6
AC
1142 else
1143 return;
1144 end if;
acad3c0a
AC
1145 end if;
1146
4b1c4f20 1147 -- Otherwise, we have a top level arithmetic operation node, and this
5707e389
AC
1148 -- is where we commence the special processing for MINIMIZED/ELIMINATED
1149 -- modes. This is the case where we tell the machinery not to move into
1150 -- Bignum mode at this top level (of course the top level operation
1151 -- will still be in Bignum mode if either of its operands are of type
1152 -- Bignum).
acad3c0a 1153
a7f1b24f 1154 Minimize_Eliminate_Overflows (Op, Lo, Hi, Top_Level => True);
acad3c0a
AC
1155
1156 -- That call may but does not necessarily change the result type of Op.
1157 -- It is the job of this routine to undo such changes, so that at the
1158 -- top level, we have the proper type. This "undoing" is a point at
1159 -- which a final overflow check may be applied.
1160
b6b5cca8
AC
1161 -- If the result type was not fiddled we are all set. We go to base
1162 -- types here because things may have been rewritten to generate the
1163 -- base type of the operand types.
acad3c0a 1164
b6b5cca8 1165 if Base_Type (Etype (Op)) = Base_Type (Result_Type) then
acad3c0a
AC
1166 return;
1167
1168 -- Bignum case
1169
d79059a3 1170 elsif Is_RTE (Etype (Op), RE_Bignum) then
acad3c0a 1171
456cbfa5 1172 -- We need a sequence that looks like:
acad3c0a
AC
1173
1174 -- Rnn : Result_Type;
1175
1176 -- declare
456cbfa5 1177 -- M : Mark_Id := SS_Mark;
acad3c0a 1178 -- begin
d79059a3 1179 -- Rnn := Long_Long_Integer'Base (From_Bignum (Op));
acad3c0a
AC
1180 -- SS_Release (M);
1181 -- end;
1182
1183 -- This block is inserted (using Insert_Actions), and then the node
1184 -- is replaced with a reference to Rnn.
1185
e645cb39 1186 -- If our parent is a conversion node then there is no point in
4404c282 1187 -- generating a conversion to Result_Type. Instead, we let the parent
e645cb39
AC
1188 -- handle this. Note that this special case is not just about
1189 -- optimization. Consider
acad3c0a
AC
1190
1191 -- A,B,C : Integer;
1192 -- ...
d79059a3 1193 -- X := Long_Long_Integer'Base (A * (B ** C));
acad3c0a
AC
1194
1195 -- Now the product may fit in Long_Long_Integer but not in Integer.
5707e389
AC
1196 -- In MINIMIZED/ELIMINATED mode, we don't want to introduce an
1197 -- overflow exception for this intermediate value.
acad3c0a
AC
1198
1199 declare
d79059a3 1200 Blk : constant Node_Id := Make_Bignum_Block (Loc);
acad3c0a
AC
1201 Rnn : constant Entity_Id := Make_Temporary (Loc, 'R', Op);
1202 RHS : Node_Id;
1203
1204 Rtype : Entity_Id;
1205
1206 begin
1207 RHS := Convert_From_Bignum (Op);
1208
1209 if Nkind (P) /= N_Type_Conversion then
d79059a3 1210 Convert_To_And_Rewrite (Result_Type, RHS);
acad3c0a
AC
1211 Rtype := Result_Type;
1212
1213 -- Interesting question, do we need a check on that conversion
1214 -- operation. Answer, not if we know the result is in range.
1215 -- At the moment we are not taking advantage of this. To be
1216 -- looked at later ???
1217
1218 else
d79059a3 1219 Rtype := LLIB;
acad3c0a
AC
1220 end if;
1221
1222 Insert_Before
1223 (First (Statements (Handled_Statement_Sequence (Blk))),
1224 Make_Assignment_Statement (Loc,
1225 Name => New_Occurrence_Of (Rnn, Loc),
1226 Expression => RHS));
1227
1228 Insert_Actions (Op, New_List (
1229 Make_Object_Declaration (Loc,
1230 Defining_Identifier => Rnn,
1231 Object_Definition => New_Occurrence_Of (Rtype, Loc)),
1232 Blk));
1233
1234 Rewrite (Op, New_Occurrence_Of (Rnn, Loc));
1235 Analyze_And_Resolve (Op);
1236 end;
1237
fdc54be6 1238 -- Here we know the result is Long_Long_Integer'Base, or that it has
60b68e56 1239 -- been rewritten because the parent operation is a conversion. See
a7f1b24f 1240 -- Apply_Arithmetic_Overflow_Strict.Conversion_Optimization.
acad3c0a
AC
1241
1242 else
b6b5cca8
AC
1243 pragma Assert
1244 (Etype (Op) = LLIB or else Nkind (Parent (Op)) = N_Type_Conversion);
acad3c0a
AC
1245
1246 -- All we need to do here is to convert the result to the proper
1247 -- result type. As explained above for the Bignum case, we can
1248 -- omit this if our parent is a type conversion.
1249
1250 if Nkind (P) /= N_Type_Conversion then
1251 Convert_To_And_Rewrite (Result_Type, Op);
1252 end if;
1253
1254 Analyze_And_Resolve (Op);
1255 end if;
1256 end Apply_Arithmetic_Overflow_Minimized_Eliminated;
70482933 1257
70482933
RK
1258 ----------------------------
1259 -- Apply_Constraint_Check --
1260 ----------------------------
1261
1262 procedure Apply_Constraint_Check
1263 (N : Node_Id;
1264 Typ : Entity_Id;
1265 No_Sliding : Boolean := False)
1266 is
1267 Desig_Typ : Entity_Id;
1268
1269 begin
48f91b44
RD
1270 -- No checks inside a generic (check the instantiations)
1271
70482933
RK
1272 if Inside_A_Generic then
1273 return;
48f91b44 1274 end if;
70482933 1275
308e6f3a 1276 -- Apply required constraint checks
48f91b44
RD
1277
1278 if Is_Scalar_Type (Typ) then
70482933
RK
1279 Apply_Scalar_Range_Check (N, Typ);
1280
1281 elsif Is_Array_Type (Typ) then
1282
d8b9660d 1283 -- A useful optimization: an aggregate with only an others clause
c84700e7
ES
1284 -- always has the right bounds.
1285
1286 if Nkind (N) = N_Aggregate
1287 and then No (Expressions (N))
51ad879c
PT
1288 and then Nkind (First (Component_Associations (N))) =
1289 N_Component_Association
c84700e7
ES
1290 and then Nkind
1291 (First (Choices (First (Component_Associations (N)))))
1292 = N_Others_Choice
1293 then
1294 return;
1295 end if;
1296
70482933
RK
1297 if Is_Constrained (Typ) then
1298 Apply_Length_Check (N, Typ);
1299
1300 if No_Sliding then
1301 Apply_Range_Check (N, Typ);
1302 end if;
1303 else
1304 Apply_Range_Check (N, Typ);
1305 end if;
1306
a40ada7e 1307 elsif (Is_Record_Type (Typ) or else Is_Private_Type (Typ))
70482933
RK
1308 and then Has_Discriminants (Base_Type (Typ))
1309 and then Is_Constrained (Typ)
1310 then
1311 Apply_Discriminant_Check (N, Typ);
1312
1313 elsif Is_Access_Type (Typ) then
1314
1315 Desig_Typ := Designated_Type (Typ);
1316
1317 -- No checks necessary if expression statically null
1318
939c12d2 1319 if Known_Null (N) then
11b4899f
JM
1320 if Can_Never_Be_Null (Typ) then
1321 Install_Null_Excluding_Check (N);
1322 end if;
70482933
RK
1323
1324 -- No sliding possible on access to arrays
1325
1326 elsif Is_Array_Type (Desig_Typ) then
1327 if Is_Constrained (Desig_Typ) then
1328 Apply_Length_Check (N, Typ);
1329 end if;
1330
1331 Apply_Range_Check (N, Typ);
1332
99bba92c
AC
1333 -- Do not install a discriminant check for a constrained subtype
1334 -- created for an unconstrained nominal type because the subtype
1335 -- has the correct constraints by construction.
1336
70482933 1337 elsif Has_Discriminants (Base_Type (Desig_Typ))
99bba92c
AC
1338 and then Is_Constrained (Desig_Typ)
1339 and then not Is_Constr_Subt_For_U_Nominal (Desig_Typ)
70482933
RK
1340 then
1341 Apply_Discriminant_Check (N, Typ);
1342 end if;
2820d220 1343
16b05213 1344 -- Apply the 2005 Null_Excluding check. Note that we do not apply
11b4899f
JM
1345 -- this check if the constraint node is illegal, as shown by having
1346 -- an error posted. This additional guard prevents cascaded errors
1347 -- and compiler aborts on illegal programs involving Ada 2005 checks.
1348
2820d220
AC
1349 if Can_Never_Be_Null (Typ)
1350 and then not Can_Never_Be_Null (Etype (N))
11b4899f 1351 and then not Error_Posted (N)
2820d220
AC
1352 then
1353 Install_Null_Excluding_Check (N);
1354 end if;
70482933
RK
1355 end if;
1356 end Apply_Constraint_Check;
1357
1358 ------------------------------
1359 -- Apply_Discriminant_Check --
1360 ------------------------------
1361
1362 procedure Apply_Discriminant_Check
1363 (N : Node_Id;
1364 Typ : Entity_Id;
1365 Lhs : Node_Id := Empty)
1366 is
1367 Loc : constant Source_Ptr := Sloc (N);
1368 Do_Access : constant Boolean := Is_Access_Type (Typ);
1369 S_Typ : Entity_Id := Etype (N);
1370 Cond : Node_Id;
1371 T_Typ : Entity_Id;
1372
438ff97c
ES
1373 function Denotes_Explicit_Dereference (Obj : Node_Id) return Boolean;
1374 -- A heap object with an indefinite subtype is constrained by its
1375 -- initial value, and assigning to it requires a constraint_check.
1376 -- The target may be an explicit dereference, or a renaming of one.
1377
70482933
RK
1378 function Is_Aliased_Unconstrained_Component return Boolean;
1379 -- It is possible for an aliased component to have a nominal
1380 -- unconstrained subtype (through instantiation). If this is a
1381 -- discriminated component assigned in the expansion of an aggregate
1382 -- in an initialization, the check must be suppressed. This unusual
939c12d2 1383 -- situation requires a predicate of its own.
70482933 1384
438ff97c
ES
1385 ----------------------------------
1386 -- Denotes_Explicit_Dereference --
1387 ----------------------------------
1388
1389 function Denotes_Explicit_Dereference (Obj : Node_Id) return Boolean is
1390 begin
32841e7e
EB
1391 if Is_Entity_Name (Obj) then
1392 return Present (Renamed_Object (Entity (Obj)))
1393 and then
1394 Denotes_Explicit_Dereference (Renamed_Object (Entity (Obj)));
1395
1396 -- This routine uses the rules of the language so we need to exclude
1397 -- rewritten constructs that introduce artificial dereferences.
1398
1399 elsif Nkind (Obj) = N_Explicit_Dereference then
1400 return not Is_Captured_Function_Call (Obj)
1401 and then not
1402 (Nkind (Parent (Obj)) = N_Object_Renaming_Declaration
1403 and then Is_Return_Object (Defining_Entity (Parent (Obj))));
1404
1405 else
1406 return False;
1407 end if;
438ff97c
ES
1408 end Denotes_Explicit_Dereference;
1409
70482933
RK
1410 ----------------------------------------
1411 -- Is_Aliased_Unconstrained_Component --
1412 ----------------------------------------
1413
1414 function Is_Aliased_Unconstrained_Component return Boolean is
1415 Comp : Entity_Id;
1416 Pref : Node_Id;
1417
1418 begin
1419 if Nkind (Lhs) /= N_Selected_Component then
1420 return False;
1421 else
1422 Comp := Entity (Selector_Name (Lhs));
1423 Pref := Prefix (Lhs);
1424 end if;
1425
1426 if Ekind (Comp) /= E_Component
1427 or else not Is_Aliased (Comp)
1428 then
1429 return False;
1430 end if;
1431
1432 return not Comes_From_Source (Pref)
1433 and then In_Instance
1434 and then not Is_Constrained (Etype (Comp));
1435 end Is_Aliased_Unconstrained_Component;
1436
1437 -- Start of processing for Apply_Discriminant_Check
1438
1439 begin
1440 if Do_Access then
1441 T_Typ := Designated_Type (Typ);
1442 else
1443 T_Typ := Typ;
1444 end if;
1445
6ae40af3
ES
1446 -- If the expression is a function call that returns a limited object
1447 -- it cannot be copied. It is not clear how to perform the proper
1448 -- discriminant check in this case because the discriminant value must
1449 -- be retrieved from the constructed object itself.
1450
1451 if Nkind (N) = N_Function_Call
1452 and then Is_Limited_Type (Typ)
1453 and then Is_Entity_Name (Name (N))
1454 and then Returns_By_Ref (Entity (Name (N)))
1455 then
1456 return;
1457 end if;
1458
27bb7941
AC
1459 -- Only apply checks when generating code and discriminant checks are
1460 -- not suppressed. In GNATprove mode, we do not apply the checks, but we
1461 -- still analyze the expression to possibly issue errors on SPARK code
1462 -- when a run-time error can be detected at compile time.
1463
1464 if not GNATprove_Mode then
1465 if not Expander_Active
1466 or else Discriminant_Checks_Suppressed (T_Typ)
1467 then
1468 return;
1469 end if;
70482933
RK
1470 end if;
1471
675d6070
TQ
1472 -- No discriminant checks necessary for an access when expression is
1473 -- statically Null. This is not only an optimization, it is fundamental
1474 -- because otherwise discriminant checks may be generated in init procs
1475 -- for types containing an access to a not-yet-frozen record, causing a
1476 -- deadly forward reference.
70482933 1477
675d6070
TQ
1478 -- Also, if the expression is of an access type whose designated type is
1479 -- incomplete, then the access value must be null and we suppress the
1480 -- check.
70482933 1481
939c12d2 1482 if Known_Null (N) then
70482933
RK
1483 return;
1484
1485 elsif Is_Access_Type (S_Typ) then
1486 S_Typ := Designated_Type (S_Typ);
1487
1488 if Ekind (S_Typ) = E_Incomplete_Type then
1489 return;
1490 end if;
1491 end if;
1492
c064e066
RD
1493 -- If an assignment target is present, then we need to generate the
1494 -- actual subtype if the target is a parameter or aliased object with
1495 -- an unconstrained nominal subtype.
1496
1497 -- Ada 2005 (AI-363): For Ada 2005, we limit the building of the actual
1498 -- subtype to the parameter and dereference cases, since other aliased
1499 -- objects are unconstrained (unless the nominal subtype is explicitly
438ff97c 1500 -- constrained).
70482933
RK
1501
1502 if Present (Lhs)
1503 and then (Present (Param_Entity (Lhs))
0791fbe9 1504 or else (Ada_Version < Ada_2005
c064e066 1505 and then not Is_Constrained (T_Typ)
70482933 1506 and then Is_Aliased_View (Lhs)
c064e066 1507 and then not Is_Aliased_Unconstrained_Component)
0791fbe9 1508 or else (Ada_Version >= Ada_2005
c064e066 1509 and then not Is_Constrained (T_Typ)
32841e7e 1510 and then Denotes_Explicit_Dereference (Lhs)))
70482933
RK
1511 then
1512 T_Typ := Get_Actual_Subtype (Lhs);
1513 end if;
1514
675d6070
TQ
1515 -- Nothing to do if the type is unconstrained (this is the case where
1516 -- the actual subtype in the RM sense of N is unconstrained and no check
1517 -- is required).
70482933
RK
1518
1519 if not Is_Constrained (T_Typ) then
1520 return;
d8b9660d
ES
1521
1522 -- Ada 2005: nothing to do if the type is one for which there is a
1523 -- partial view that is constrained.
1524
0791fbe9 1525 elsif Ada_Version >= Ada_2005
0fbcb11c 1526 and then Object_Type_Has_Constrained_Partial_View
414b312e
AC
1527 (Typ => Base_Type (T_Typ),
1528 Scop => Current_Scope)
d8b9660d
ES
1529 then
1530 return;
70482933
RK
1531 end if;
1532
5d09245e
AC
1533 -- Nothing to do if the type is an Unchecked_Union
1534
1535 if Is_Unchecked_Union (Base_Type (T_Typ)) then
1536 return;
1537 end if;
1538
6b6041ec 1539 -- Suppress checks if the subtypes are the same. The check must be
675d6070
TQ
1540 -- preserved in an assignment to a formal, because the constraint is
1541 -- given by the actual.
70482933
RK
1542
1543 if Nkind (Original_Node (N)) /= N_Allocator
1544 and then (No (Lhs)
9972d439
RD
1545 or else not Is_Entity_Name (Lhs)
1546 or else No (Param_Entity (Lhs)))
70482933
RK
1547 then
1548 if (Etype (N) = Typ
1549 or else (Do_Access and then Designated_Type (Typ) = S_Typ))
1550 and then not Is_Aliased_View (Lhs)
1551 then
1552 return;
1553 end if;
1554
675d6070
TQ
1555 -- We can also eliminate checks on allocators with a subtype mark that
1556 -- coincides with the context type. The context type may be a subtype
1557 -- without a constraint (common case, a generic actual).
70482933
RK
1558
1559 elsif Nkind (Original_Node (N)) = N_Allocator
1560 and then Is_Entity_Name (Expression (Original_Node (N)))
1561 then
1562 declare
fbf5a39b 1563 Alloc_Typ : constant Entity_Id :=
15f0f591 1564 Entity (Expression (Original_Node (N)));
70482933
RK
1565
1566 begin
1567 if Alloc_Typ = T_Typ
1568 or else (Nkind (Parent (T_Typ)) = N_Subtype_Declaration
1569 and then Is_Entity_Name (
1570 Subtype_Indication (Parent (T_Typ)))
1571 and then Alloc_Typ = Base_Type (T_Typ))
1572
1573 then
1574 return;
1575 end if;
1576 end;
1577 end if;
1578
675d6070
TQ
1579 -- See if we have a case where the types are both constrained, and all
1580 -- the constraints are constants. In this case, we can do the check
1581 -- successfully at compile time.
70482933 1582
6b6041ec 1583 -- We skip this check for the case where the node is rewritten as
c91dbd18
AC
1584 -- an allocator, because it already carries the context subtype,
1585 -- and extracting the discriminants from the aggregate is messy.
70482933
RK
1586
1587 if Is_Constrained (S_Typ)
1588 and then Nkind (Original_Node (N)) /= N_Allocator
1589 then
1590 declare
1591 DconT : Elmt_Id;
1592 Discr : Entity_Id;
1593 DconS : Elmt_Id;
1594 ItemS : Node_Id;
1595 ItemT : Node_Id;
1596
1597 begin
1598 -- S_Typ may not have discriminants in the case where it is a
675d6070 1599 -- private type completed by a default discriminated type. In that
6b6041ec 1600 -- case, we need to get the constraints from the underlying type.
675d6070
TQ
1601 -- If the underlying type is unconstrained (i.e. has no default
1602 -- discriminants) no check is needed.
70482933
RK
1603
1604 if Has_Discriminants (S_Typ) then
1605 Discr := First_Discriminant (S_Typ);
1606 DconS := First_Elmt (Discriminant_Constraint (S_Typ));
1607
1608 else
1609 Discr := First_Discriminant (Underlying_Type (S_Typ));
1610 DconS :=
1611 First_Elmt
1612 (Discriminant_Constraint (Underlying_Type (S_Typ)));
1613
1614 if No (DconS) then
1615 return;
1616 end if;
65356e64
AC
1617
1618 -- A further optimization: if T_Typ is derived from S_Typ
1619 -- without imposing a constraint, no check is needed.
1620
1621 if Nkind (Original_Node (Parent (T_Typ))) =
1622 N_Full_Type_Declaration
1623 then
1624 declare
91b1417d 1625 Type_Def : constant Node_Id :=
15f0f591 1626 Type_Definition (Original_Node (Parent (T_Typ)));
65356e64
AC
1627 begin
1628 if Nkind (Type_Def) = N_Derived_Type_Definition
1629 and then Is_Entity_Name (Subtype_Indication (Type_Def))
1630 and then Entity (Subtype_Indication (Type_Def)) = S_Typ
1631 then
1632 return;
1633 end if;
1634 end;
1635 end if;
70482933
RK
1636 end if;
1637
d2a6bd6b
AC
1638 -- Constraint may appear in full view of type
1639
1640 if Ekind (T_Typ) = E_Private_Subtype
1641 and then Present (Full_View (T_Typ))
1642 then
c91dbd18 1643 DconT :=
d2a6bd6b 1644 First_Elmt (Discriminant_Constraint (Full_View (T_Typ)));
d2a6bd6b 1645 else
c91dbd18
AC
1646 DconT :=
1647 First_Elmt (Discriminant_Constraint (T_Typ));
d2a6bd6b 1648 end if;
70482933
RK
1649
1650 while Present (Discr) loop
1651 ItemS := Node (DconS);
1652 ItemT := Node (DconT);
1653
11b4899f
JM
1654 -- For a discriminated component type constrained by the
1655 -- current instance of an enclosing type, there is no
1656 -- applicable discriminant check.
1657
1658 if Nkind (ItemT) = N_Attribute_Reference
1659 and then Is_Access_Type (Etype (ItemT))
1660 and then Is_Entity_Name (Prefix (ItemT))
1661 and then Is_Type (Entity (Prefix (ItemT)))
1662 then
1663 return;
1664 end if;
1665
f2cbd970 1666 -- If the expressions for the discriminants are identical
e5eb84aa 1667 -- and it is side-effect-free (for now just an entity),
f2cbd970
JM
1668 -- this may be a shared constraint, e.g. from a subtype
1669 -- without a constraint introduced as a generic actual.
1670 -- Examine other discriminants if any.
1671
1672 if ItemS = ItemT
1673 and then Is_Entity_Name (ItemS)
1674 then
1675 null;
1676
1677 elsif not Is_OK_Static_Expression (ItemS)
1678 or else not Is_OK_Static_Expression (ItemT)
1679 then
1680 exit;
70482933 1681
f2cbd970 1682 elsif Expr_Value (ItemS) /= Expr_Value (ItemT) then
70482933
RK
1683 if Do_Access then -- needs run-time check.
1684 exit;
1685 else
1686 Apply_Compile_Time_Constraint_Error
685bc70f 1687 (N, "incorrect value for discriminant&??",
07fc65c4 1688 CE_Discriminant_Check_Failed, Ent => Discr);
70482933
RK
1689 return;
1690 end if;
1691 end if;
1692
1693 Next_Elmt (DconS);
1694 Next_Elmt (DconT);
1695 Next_Discriminant (Discr);
1696 end loop;
1697
1698 if No (Discr) then
1699 return;
1700 end if;
1701 end;
1702 end if;
1703
27bb7941
AC
1704 -- In GNATprove mode, we do not apply the checks
1705
1706 if GNATprove_Mode then
1707 return;
1708 end if;
1709
70482933
RK
1710 -- Here we need a discriminant check. First build the expression
1711 -- for the comparisons of the discriminants:
1712
1713 -- (n.disc1 /= typ.disc1) or else
1714 -- (n.disc2 /= typ.disc2) or else
1715 -- ...
1716 -- (n.discn /= typ.discn)
1717
1718 Cond := Build_Discriminant_Checks (N, T_Typ);
1719
acad3c0a
AC
1720 -- If Lhs is set and is a parameter, then the condition is guarded by:
1721 -- lhs'constrained and then (condition built above)
70482933
RK
1722
1723 if Present (Param_Entity (Lhs)) then
1724 Cond :=
1725 Make_And_Then (Loc,
1726 Left_Opnd =>
1727 Make_Attribute_Reference (Loc,
1728 Prefix => New_Occurrence_Of (Param_Entity (Lhs), Loc),
1729 Attribute_Name => Name_Constrained),
1730 Right_Opnd => Cond);
1731 end if;
1732
1733 if Do_Access then
1734 Cond := Guard_Access (Cond, Loc, N);
1735 end if;
1736
1737 Insert_Action (N,
07fc65c4
GB
1738 Make_Raise_Constraint_Error (Loc,
1739 Condition => Cond,
1740 Reason => CE_Discriminant_Check_Failed));
70482933
RK
1741 end Apply_Discriminant_Check;
1742
a91e9ac7
AC
1743 -------------------------
1744 -- Apply_Divide_Checks --
1745 -------------------------
70482933 1746
a91e9ac7 1747 procedure Apply_Divide_Checks (N : Node_Id) is
70482933
RK
1748 Loc : constant Source_Ptr := Sloc (N);
1749 Typ : constant Entity_Id := Etype (N);
1750 Left : constant Node_Id := Left_Opnd (N);
1751 Right : constant Node_Id := Right_Opnd (N);
1752
15c94a55 1753 Mode : constant Overflow_Mode_Type := Overflow_Check_Mode;
a91e9ac7
AC
1754 -- Current overflow checking mode
1755
70482933
RK
1756 LLB : Uint;
1757 Llo : Uint;
1758 Lhi : Uint;
1759 LOK : Boolean;
1760 Rlo : Uint;
1761 Rhi : Uint;
a91e9ac7 1762 ROK : Boolean;
67ce0d7e
RD
1763
1764 pragma Warnings (Off, Lhi);
1765 -- Don't actually use this value
70482933
RK
1766
1767 begin
a7f1b24f
RD
1768 -- If we are operating in MINIMIZED or ELIMINATED mode, and we are
1769 -- operating on signed integer types, then the only thing this routine
1770 -- does is to call Apply_Arithmetic_Overflow_Minimized_Eliminated. That
1771 -- procedure will (possibly later on during recursive downward calls),
1772 -- ensure that any needed overflow/division checks are properly applied.
a91e9ac7
AC
1773
1774 if Mode in Minimized_Or_Eliminated
a91e9ac7
AC
1775 and then Is_Signed_Integer_Type (Typ)
1776 then
1777 Apply_Arithmetic_Overflow_Minimized_Eliminated (N);
1778 return;
1779 end if;
1780
1781 -- Proceed here in SUPPRESSED or CHECKED modes
1782
4460a9bc 1783 if Expander_Active
2ede092b
RD
1784 and then not Backend_Divide_Checks_On_Target
1785 and then Check_Needed (Right, Division_Check)
70482933 1786 then
c800f862 1787 Determine_Range (Right, ROK, Rlo, Rhi, Assume_Valid => True);
70482933 1788
a91e9ac7 1789 -- Deal with division check
70482933 1790
a91e9ac7
AC
1791 if Do_Division_Check (N)
1792 and then not Division_Checks_Suppressed (Typ)
1793 then
1794 Apply_Division_Check (N, Rlo, Rhi, ROK);
70482933
RK
1795 end if;
1796
a91e9ac7
AC
1797 -- Deal with overflow check
1798
a7f1b24f
RD
1799 if Do_Overflow_Check (N)
1800 and then not Overflow_Checks_Suppressed (Etype (N))
1801 then
b7c874a7
AC
1802 Set_Do_Overflow_Check (N, False);
1803
a91e9ac7
AC
1804 -- Test for extremely annoying case of xxx'First divided by -1
1805 -- for division of signed integer types (only overflow case).
70482933 1806
70482933
RK
1807 if Nkind (N) = N_Op_Divide
1808 and then Is_Signed_Integer_Type (Typ)
1809 then
c800f862 1810 Determine_Range (Left, LOK, Llo, Lhi, Assume_Valid => True);
70482933
RK
1811 LLB := Expr_Value (Type_Low_Bound (Base_Type (Typ)));
1812
8f563162 1813 if (not ROK or else (Rlo <= (-1) and then (-1) <= Rhi))
a91e9ac7 1814 and then
8f563162 1815 (not LOK or else Llo = LLB)
70482933 1816 then
a8697b27
EB
1817 -- Ensure that expressions are not evaluated twice (once
1818 -- for their runtime checks and once for their regular
1819 -- computation).
1820
1821 Force_Evaluation (Left, Mode => Strict);
1822 Force_Evaluation (Right, Mode => Strict);
1823
70482933
RK
1824 Insert_Action (N,
1825 Make_Raise_Constraint_Error (Loc,
1826 Condition =>
1827 Make_And_Then (Loc,
a91e9ac7
AC
1828 Left_Opnd =>
1829 Make_Op_Eq (Loc,
1830 Left_Opnd =>
1831 Duplicate_Subexpr_Move_Checks (Left),
1832 Right_Opnd => Make_Integer_Literal (Loc, LLB)),
70482933 1833
a91e9ac7
AC
1834 Right_Opnd =>
1835 Make_Op_Eq (Loc,
1836 Left_Opnd => Duplicate_Subexpr (Right),
1837 Right_Opnd => Make_Integer_Literal (Loc, -1))),
70482933 1838
07fc65c4 1839 Reason => CE_Overflow_Check_Failed));
70482933
RK
1840 end if;
1841 end if;
1842 end if;
1843 end if;
a91e9ac7
AC
1844 end Apply_Divide_Checks;
1845
1846 --------------------------
1847 -- Apply_Division_Check --
1848 --------------------------
1849
1850 procedure Apply_Division_Check
1851 (N : Node_Id;
1852 Rlo : Uint;
1853 Rhi : Uint;
1854 ROK : Boolean)
1855 is
1856 pragma Assert (Do_Division_Check (N));
1857
1858 Loc : constant Source_Ptr := Sloc (N);
61770974
HK
1859 Right : constant Node_Id := Right_Opnd (N);
1860 Opnd : Node_Id;
a91e9ac7
AC
1861
1862 begin
4460a9bc 1863 if Expander_Active
a91e9ac7
AC
1864 and then not Backend_Divide_Checks_On_Target
1865 and then Check_Needed (Right, Division_Check)
a91e9ac7 1866
61770974
HK
1867 -- See if division by zero possible, and if so generate test. This
1868 -- part of the test is not controlled by the -gnato switch, since it
1869 -- is a Division_Check and not an Overflow_Check.
b7c874a7 1870
61770974
HK
1871 and then Do_Division_Check (N)
1872 then
1873 Set_Do_Division_Check (N, False);
ed170742 1874
8f563162 1875 if not ROK or else (Rlo <= 0 and then 0 <= Rhi) then
61770974
HK
1876 if Is_Floating_Point_Type (Etype (N)) then
1877 Opnd := Make_Real_Literal (Loc, Ureal_0);
1878 else
1879 Opnd := Make_Integer_Literal (Loc, 0);
a91e9ac7 1880 end if;
61770974
HK
1881
1882 Insert_Action (N,
1883 Make_Raise_Constraint_Error (Loc,
1884 Condition =>
1885 Make_Op_Eq (Loc,
1886 Left_Opnd => Duplicate_Subexpr_Move_Checks (Right),
1887 Right_Opnd => Opnd),
1888 Reason => CE_Divide_By_Zero));
a91e9ac7
AC
1889 end if;
1890 end if;
1891 end Apply_Division_Check;
70482933 1892
7324bf49
AC
1893 ----------------------------------
1894 -- Apply_Float_Conversion_Check --
1895 ----------------------------------
1896
675d6070
TQ
1897 -- Let F and I be the source and target types of the conversion. The RM
1898 -- specifies that a floating-point value X is rounded to the nearest
1899 -- integer, with halfway cases being rounded away from zero. The rounded
1900 -- value of X is checked against I'Range.
1901
1902 -- The catch in the above paragraph is that there is no good way to know
1903 -- whether the round-to-integer operation resulted in overflow. A remedy is
1904 -- to perform a range check in the floating-point domain instead, however:
7324bf49 1905
7324bf49 1906 -- (1) The bounds may not be known at compile time
939c12d2 1907 -- (2) The check must take into account rounding or truncation.
7324bf49 1908 -- (3) The range of type I may not be exactly representable in F.
e8bb6ff9 1909 -- (4) For the rounding case, the end-points I'First - 0.5 and
939c12d2
RD
1910 -- I'Last + 0.5 may or may not be in range, depending on the
1911 -- sign of I'First and I'Last.
7324bf49
AC
1912 -- (5) X may be a NaN, which will fail any comparison
1913
939c12d2 1914 -- The following steps correctly convert X with rounding:
675d6070 1915
7324bf49
AC
1916 -- (1) If either I'First or I'Last is not known at compile time, use
1917 -- I'Base instead of I in the next three steps and perform a
1918 -- regular range check against I'Range after conversion.
1919 -- (2) If I'First - 0.5 is representable in F then let Lo be that
1920 -- value and define Lo_OK as (I'First > 0). Otherwise, let Lo be
939c12d2
RD
1921 -- F'Machine (I'First) and let Lo_OK be (Lo >= I'First).
1922 -- In other words, take one of the closest floating-point numbers
1923 -- (which is an integer value) to I'First, and see if it is in
1924 -- range or not.
7324bf49
AC
1925 -- (3) If I'Last + 0.5 is representable in F then let Hi be that value
1926 -- and define Hi_OK as (I'Last < 0). Otherwise, let Hi be
939c12d2 1927 -- F'Machine (I'Last) and let Hi_OK be (Hi <= I'Last).
7324bf49
AC
1928 -- (4) Raise CE when (Lo_OK and X < Lo) or (not Lo_OK and X <= Lo)
1929 -- or (Hi_OK and X > Hi) or (not Hi_OK and X >= Hi)
1930
939c12d2
RD
1931 -- For the truncating case, replace steps (2) and (3) as follows:
1932 -- (2) If I'First > 0, then let Lo be F'Pred (I'First) and let Lo_OK
1933 -- be False. Otherwise, let Lo be F'Succ (I'First - 1) and let
1934 -- Lo_OK be True.
1935 -- (3) If I'Last < 0, then let Hi be F'Succ (I'Last) and let Hi_OK
1936 -- be False. Otherwise let Hi be F'Pred (I'Last + 1) and let
1197ddb1 1937 -- Hi_OK be True.
939c12d2 1938
7324bf49 1939 procedure Apply_Float_Conversion_Check
6c8e70fe 1940 (Expr : Node_Id;
7324bf49
AC
1941 Target_Typ : Entity_Id)
1942 is
675d6070
TQ
1943 LB : constant Node_Id := Type_Low_Bound (Target_Typ);
1944 HB : constant Node_Id := Type_High_Bound (Target_Typ);
6c8e70fe
EB
1945 Loc : constant Source_Ptr := Sloc (Expr);
1946 Expr_Type : constant Entity_Id := Base_Type (Etype (Expr));
675d6070 1947 Target_Base : constant Entity_Id :=
15f0f591 1948 Implementation_Base_Type (Target_Typ);
675d6070 1949
6c8e70fe 1950 Par : constant Node_Id := Parent (Expr);
939c12d2
RD
1951 pragma Assert (Nkind (Par) = N_Type_Conversion);
1952 -- Parent of check node, must be a type conversion
1953
1954 Truncate : constant Boolean := Float_Truncate (Par);
1955 Max_Bound : constant Uint :=
15f0f591
AC
1956 UI_Expon
1957 (Machine_Radix_Value (Expr_Type),
1958 Machine_Mantissa_Value (Expr_Type) - 1) - 1;
939c12d2 1959
7324bf49
AC
1960 -- Largest bound, so bound plus or minus half is a machine number of F
1961
675d6070
TQ
1962 Ifirst, Ilast : Uint;
1963 -- Bounds of integer type
1964
1965 Lo, Hi : Ureal;
1966 -- Bounds to check in floating-point domain
7324bf49 1967
675d6070
TQ
1968 Lo_OK, Hi_OK : Boolean;
1969 -- True iff Lo resp. Hi belongs to I'Range
7324bf49 1970
675d6070
TQ
1971 Lo_Chk, Hi_Chk : Node_Id;
1972 -- Expressions that are False iff check fails
1973
1974 Reason : RT_Exception_Code;
7324bf49
AC
1975
1976 begin
b5bdffcc
AC
1977 -- We do not need checks if we are not generating code (i.e. the full
1978 -- expander is not active). In SPARK mode, we specifically don't want
1979 -- the frontend to expand these checks, which are dealt with directly
1980 -- in the formal verification backend.
1981
4460a9bc 1982 if not Expander_Active then
b5bdffcc
AC
1983 return;
1984 end if;
1985
68c8d72a
EB
1986 -- Here we will generate an explicit range check, so we don't want to
1987 -- set the Do_Range check flag, since the range check is taken care of
1988 -- by the code we will generate.
1989
6c8e70fe 1990 Set_Do_Range_Check (Expr, False);
68c8d72a 1991
7324bf49
AC
1992 if not Compile_Time_Known_Value (LB)
1993 or not Compile_Time_Known_Value (HB)
1994 then
1995 declare
675d6070
TQ
1996 -- First check that the value falls in the range of the base type,
1997 -- to prevent overflow during conversion and then perform a
1998 -- regular range check against the (dynamic) bounds.
7324bf49 1999
7324bf49 2000 pragma Assert (Target_Base /= Target_Typ);
7324bf49 2001
191fcb3a 2002 Temp : constant Entity_Id := Make_Temporary (Loc, 'T', Par);
7324bf49
AC
2003
2004 begin
6c8e70fe 2005 Apply_Float_Conversion_Check (Expr, Target_Base);
7324bf49
AC
2006 Set_Etype (Temp, Target_Base);
2007
ba58b776
GD
2008 -- Note: Previously the declaration was inserted above the parent
2009 -- of the conversion, apparently as a small optimization for the
2010 -- subequent traversal in Insert_Actions. Unfortunately a similar
2011 -- optimization takes place in Insert_Actions, assuming that the
2012 -- insertion point must be above the expression that creates
2013 -- actions. This is not correct in the presence of conditional
2014 -- expressions, where the insertion must be in the list of actions
2015 -- attached to the current alternative.
90393d3c
ES
2016
2017 Insert_Action (Par,
7324bf49
AC
2018 Make_Object_Declaration (Loc,
2019 Defining_Identifier => Temp,
2020 Object_Definition => New_Occurrence_Of (Target_Typ, Loc),
2021 Expression => New_Copy_Tree (Par)),
2022 Suppress => All_Checks);
2023
2024 Insert_Action (Par,
2025 Make_Raise_Constraint_Error (Loc,
2026 Condition =>
2027 Make_Not_In (Loc,
2028 Left_Opnd => New_Occurrence_Of (Temp, Loc),
2029 Right_Opnd => New_Occurrence_Of (Target_Typ, Loc)),
2030 Reason => CE_Range_Check_Failed));
2031 Rewrite (Par, New_Occurrence_Of (Temp, Loc));
2032
2033 return;
2034 end;
2035 end if;
2036
44114dff 2037 -- Get the (static) bounds of the target type
7324bf49
AC
2038
2039 Ifirst := Expr_Value (LB);
2040 Ilast := Expr_Value (HB);
2041
44114dff
ES
2042 -- A simple optimization: if the expression is a universal literal,
2043 -- we can do the comparison with the bounds and the conversion to
2044 -- an integer type statically. The range checks are unchanged.
2045
6c8e70fe
EB
2046 if Nkind (Expr) = N_Real_Literal
2047 and then Etype (Expr) = Universal_Real
44114dff 2048 and then Is_Integer_Type (Target_Typ)
44114dff
ES
2049 then
2050 declare
6c8e70fe 2051 Int_Val : constant Uint := UR_To_Uint (Realval (Expr));
44114dff
ES
2052
2053 begin
2054 if Int_Val <= Ilast and then Int_Val >= Ifirst then
2055
6f2b033b 2056 -- Conversion is safe
44114dff 2057
6c8e70fe 2058 Rewrite (Parent (Expr),
44114dff 2059 Make_Integer_Literal (Loc, UI_To_Int (Int_Val)));
6c8e70fe 2060 Analyze_And_Resolve (Parent (Expr), Target_Typ);
44114dff
ES
2061 return;
2062 end if;
2063 end;
2064 end if;
2065
7324bf49
AC
2066 -- Check against lower bound
2067
939c12d2
RD
2068 if Truncate and then Ifirst > 0 then
2069 Lo := Pred (Expr_Type, UR_From_Uint (Ifirst));
2070 Lo_OK := False;
2071
2072 elsif Truncate then
2073 Lo := Succ (Expr_Type, UR_From_Uint (Ifirst - 1));
2074 Lo_OK := True;
2075
2076 elsif abs (Ifirst) < Max_Bound then
7324bf49
AC
2077 Lo := UR_From_Uint (Ifirst) - Ureal_Half;
2078 Lo_OK := (Ifirst > 0);
939c12d2 2079
7324bf49 2080 else
60440d3c 2081 Lo := Machine_Number (Expr_Type, UR_From_Uint (Ifirst), Expr);
7324bf49
AC
2082 Lo_OK := (Lo >= UR_From_Uint (Ifirst));
2083 end if;
2084
46e54783
EB
2085 -- Saturate the lower bound to that of the expression's type, because
2086 -- we do not want to create an out-of-range value but we still need to
2087 -- do a comparison to catch NaNs.
2088
2089 if Lo < Expr_Value_R (Type_Low_Bound (Expr_Type)) then
2090 Lo := Expr_Value_R (Type_Low_Bound (Expr_Type));
2091 Lo_OK := True;
2092 end if;
2093
7324bf49
AC
2094 if Lo_OK then
2095
2096 -- Lo_Chk := (X >= Lo)
2097
2098 Lo_Chk := Make_Op_Ge (Loc,
6c8e70fe 2099 Left_Opnd => Duplicate_Subexpr_No_Checks (Expr),
7324bf49
AC
2100 Right_Opnd => Make_Real_Literal (Loc, Lo));
2101
2102 else
2103 -- Lo_Chk := (X > Lo)
2104
2105 Lo_Chk := Make_Op_Gt (Loc,
6c8e70fe 2106 Left_Opnd => Duplicate_Subexpr_No_Checks (Expr),
7324bf49
AC
2107 Right_Opnd => Make_Real_Literal (Loc, Lo));
2108 end if;
2109
2110 -- Check against higher bound
2111
939c12d2
RD
2112 if Truncate and then Ilast < 0 then
2113 Hi := Succ (Expr_Type, UR_From_Uint (Ilast));
c2db4b32 2114 Hi_OK := False;
939c12d2
RD
2115
2116 elsif Truncate then
2117 Hi := Pred (Expr_Type, UR_From_Uint (Ilast + 1));
2118 Hi_OK := True;
2119
2120 elsif abs (Ilast) < Max_Bound then
7324bf49
AC
2121 Hi := UR_From_Uint (Ilast) + Ureal_Half;
2122 Hi_OK := (Ilast < 0);
2123 else
60440d3c 2124 Hi := Machine_Number (Expr_Type, UR_From_Uint (Ilast), Expr);
7324bf49
AC
2125 Hi_OK := (Hi <= UR_From_Uint (Ilast));
2126 end if;
2127
46e54783
EB
2128 -- Saturate the higher bound to that of the expression's type, because
2129 -- we do not want to create an out-of-range value but we still need to
2130 -- do a comparison to catch NaNs.
2131
2132 if Hi > Expr_Value_R (Type_High_Bound (Expr_Type)) then
2133 Hi := Expr_Value_R (Type_High_Bound (Expr_Type));
2134 Hi_OK := True;
2135 end if;
2136
7324bf49
AC
2137 if Hi_OK then
2138
2139 -- Hi_Chk := (X <= Hi)
2140
2141 Hi_Chk := Make_Op_Le (Loc,
6c8e70fe 2142 Left_Opnd => Duplicate_Subexpr_No_Checks (Expr),
7324bf49
AC
2143 Right_Opnd => Make_Real_Literal (Loc, Hi));
2144
2145 else
2146 -- Hi_Chk := (X < Hi)
2147
2148 Hi_Chk := Make_Op_Lt (Loc,
6c8e70fe 2149 Left_Opnd => Duplicate_Subexpr_No_Checks (Expr),
7324bf49
AC
2150 Right_Opnd => Make_Real_Literal (Loc, Hi));
2151 end if;
2152
675d6070
TQ
2153 -- If the bounds of the target type are the same as those of the base
2154 -- type, the check is an overflow check as a range check is not
2155 -- performed in these cases.
7324bf49
AC
2156
2157 if Expr_Value (Type_Low_Bound (Target_Base)) = Ifirst
2158 and then Expr_Value (Type_High_Bound (Target_Base)) = Ilast
2159 then
2160 Reason := CE_Overflow_Check_Failed;
2161 else
2162 Reason := CE_Range_Check_Failed;
2163 end if;
2164
2165 -- Raise CE if either conditions does not hold
2166
6c8e70fe 2167 Insert_Action (Expr,
7324bf49 2168 Make_Raise_Constraint_Error (Loc,
d8b9660d 2169 Condition => Make_Op_Not (Loc, Make_And_Then (Loc, Lo_Chk, Hi_Chk)),
7324bf49
AC
2170 Reason => Reason));
2171 end Apply_Float_Conversion_Check;
2172
70482933
RK
2173 ------------------------
2174 -- Apply_Length_Check --
2175 ------------------------
2176
2177 procedure Apply_Length_Check
6c8e70fe 2178 (Expr : Node_Id;
70482933
RK
2179 Target_Typ : Entity_Id;
2180 Source_Typ : Entity_Id := Empty)
2181 is
2182 begin
2183 Apply_Selected_Length_Checks
6c8e70fe 2184 (Expr, Target_Typ, Source_Typ, Do_Static => False);
70482933
RK
2185 end Apply_Length_Check;
2186
25f11dfe
EB
2187 --------------------------------------
2188 -- Apply_Length_Check_On_Assignment --
2189 --------------------------------------
2190
2191 procedure Apply_Length_Check_On_Assignment
2192 (Expr : Node_Id;
2193 Target_Typ : Entity_Id;
2194 Target : Node_Id;
2195 Source_Typ : Entity_Id := Empty)
2196 is
2197 Assign : constant Node_Id := Parent (Target);
2198
2199 begin
a521dc37
EB
2200 -- Do not apply length checks if parent is still an assignment statement
2201 -- with Suppress_Assignment_Checks flag set.
2202
2203 if Nkind (Assign) = N_Assignment_Statement
2204 and then Suppress_Assignment_Checks (Assign)
2205 then
2206 return;
2207 end if;
2208
25f11dfe
EB
2209 -- No check is needed for the initialization of an object whose
2210 -- nominal subtype is unconstrained.
2211
2212 if Is_Constr_Subt_For_U_Nominal (Target_Typ)
2213 and then Nkind (Parent (Assign)) = N_Freeze_Entity
2214 and then Is_Entity_Name (Target)
2215 and then Entity (Target) = Entity (Parent (Assign))
2216 then
2217 return;
2218 end if;
2219
2220 Apply_Selected_Length_Checks
2221 (Expr, Target_Typ, Source_Typ, Do_Static => False);
2222 end Apply_Length_Check_On_Assignment;
2223
5f49133f
AC
2224 -------------------------------------
2225 -- Apply_Parameter_Aliasing_Checks --
2226 -------------------------------------
0ea55619 2227
5f49133f
AC
2228 procedure Apply_Parameter_Aliasing_Checks
2229 (Call : Node_Id;
2230 Subp : Entity_Id)
2231 is
baed70ac
AC
2232 Loc : constant Source_Ptr := Sloc (Call);
2233
cc9a7ae2
PT
2234 function Parameter_Passing_Mechanism_Specified
2235 (Typ : Entity_Id)
2236 return Boolean;
2237 -- Returns True if parameter-passing mechanism is specified for type Typ
2238
5f49133f
AC
2239 function May_Cause_Aliasing
2240 (Formal_1 : Entity_Id;
2241 Formal_2 : Entity_Id) return Boolean;
2242 -- Determine whether two formal parameters can alias each other
2243 -- depending on their modes.
2244
2245 function Original_Actual (N : Node_Id) return Node_Id;
2246 -- The expander may replace an actual with a temporary for the sake of
2247 -- side effect removal. The temporary may hide a potential aliasing as
2248 -- it does not share the address of the actual. This routine attempts
2249 -- to retrieve the original actual.
2250
baed70ac
AC
2251 procedure Overlap_Check
2252 (Actual_1 : Node_Id;
2253 Actual_2 : Node_Id;
2254 Formal_1 : Entity_Id;
2255 Formal_2 : Entity_Id;
2256 Check : in out Node_Id);
2257 -- Create a check to determine whether Actual_1 overlaps with Actual_2.
2258 -- If detailed exception messages are enabled, the check is augmented to
2259 -- provide information about the names of the corresponding formals. See
2260 -- the body for details. Actual_1 and Actual_2 denote the two actuals to
2261 -- be tested. Formal_1 and Formal_2 denote the corresponding formals.
2262 -- Check contains all and-ed simple tests generated so far or remains
2263 -- unchanged in the case of detailed exception messaged.
2264
cc9a7ae2
PT
2265 -------------------------------------------
2266 -- Parameter_Passing_Mechanism_Specified --
2267 -------------------------------------------
2268
2269 function Parameter_Passing_Mechanism_Specified
2270 (Typ : Entity_Id)
2271 return Boolean
2272 is
2273 begin
2274 return Is_Elementary_Type (Typ)
2275 or else Is_By_Reference_Type (Typ);
2276 end Parameter_Passing_Mechanism_Specified;
2277
5f49133f
AC
2278 ------------------------
2279 -- May_Cause_Aliasing --
2280 ------------------------
0ea55619 2281
5f49133f 2282 function May_Cause_Aliasing
e8dde875 2283 (Formal_1 : Entity_Id;
5f49133f
AC
2284 Formal_2 : Entity_Id) return Boolean
2285 is
2286 begin
2287 -- The following combination cannot lead to aliasing
2288
2289 -- Formal 1 Formal 2
2290 -- IN IN
2291
2292 if Ekind (Formal_1) = E_In_Parameter
9a6dc470
RD
2293 and then
2294 Ekind (Formal_2) = E_In_Parameter
5f49133f
AC
2295 then
2296 return False;
2297
2298 -- The following combinations may lead to aliasing
2299
2300 -- Formal 1 Formal 2
2301 -- IN OUT
2302 -- IN IN OUT
2303 -- OUT IN
2304 -- OUT IN OUT
2305 -- OUT OUT
2306
2307 else
2308 return True;
2309 end if;
2310 end May_Cause_Aliasing;
2311
2312 ---------------------
2313 -- Original_Actual --
2314 ---------------------
2315
2316 function Original_Actual (N : Node_Id) return Node_Id is
2317 begin
2318 if Nkind (N) = N_Type_Conversion then
2319 return Expression (N);
2320
2321 -- The expander created a temporary to capture the result of a type
2322 -- conversion where the expression is the real actual.
2323
2324 elsif Nkind (N) = N_Identifier
2325 and then Present (Original_Node (N))
2326 and then Nkind (Original_Node (N)) = N_Type_Conversion
2327 then
2328 return Expression (Original_Node (N));
2329 end if;
2330
2331 return N;
2332 end Original_Actual;
2333
baed70ac
AC
2334 -------------------
2335 -- Overlap_Check --
2336 -------------------
2337
2338 procedure Overlap_Check
2339 (Actual_1 : Node_Id;
2340 Actual_2 : Node_Id;
2341 Formal_1 : Entity_Id;
2342 Formal_2 : Entity_Id;
2343 Check : in out Node_Id)
2344 is
f59ca9ee
PT
2345 Cond : Node_Id;
2346 Formal_Name : Bounded_String;
baed70ac
AC
2347
2348 begin
2349 -- Generate:
2350 -- Actual_1'Overlaps_Storage (Actual_2)
2351
2352 Cond :=
2353 Make_Attribute_Reference (Loc,
2354 Prefix => New_Copy_Tree (Original_Actual (Actual_1)),
2355 Attribute_Name => Name_Overlaps_Storage,
2356 Expressions =>
2357 New_List (New_Copy_Tree (Original_Actual (Actual_2))));
2358
2359 -- Generate the following check when detailed exception messages are
2360 -- enabled:
2361
2362 -- if Actual_1'Overlaps_Storage (Actual_2) then
2363 -- raise Program_Error with <detailed message>;
2364 -- end if;
2365
2366 if Exception_Extra_Info then
2367 Start_String;
2368
2369 -- Do not generate location information for internal calls
2370
2371 if Comes_From_Source (Call) then
2372 Store_String_Chars (Build_Location_String (Loc));
2373 Store_String_Char (' ');
2374 end if;
2375
2376 Store_String_Chars ("aliased parameters, actuals for """);
f7ea2603 2377
f59ca9ee
PT
2378 Append (Formal_Name, Chars (Formal_1));
2379 Adjust_Name_Case (Formal_Name, Sloc (Formal_1));
2380 Store_String_Chars (To_String (Formal_Name));
f7ea2603 2381
baed70ac 2382 Store_String_Chars (""" and """);
f7ea2603 2383
f59ca9ee
PT
2384 Formal_Name.Length := 0;
2385
2386 Append (Formal_Name, Chars (Formal_2));
2387 Adjust_Name_Case (Formal_Name, Sloc (Formal_2));
2388 Store_String_Chars (To_String (Formal_Name));
f7ea2603 2389
baed70ac
AC
2390 Store_String_Chars (""" overlap");
2391
2392 Insert_Action (Call,
2393 Make_If_Statement (Loc,
2394 Condition => Cond,
2395 Then_Statements => New_List (
2396 Make_Raise_Statement (Loc,
2397 Name =>
e4494292 2398 New_Occurrence_Of (Standard_Program_Error, Loc),
baed70ac
AC
2399 Expression => Make_String_Literal (Loc, End_String)))));
2400
2401 -- Create a sequence of overlapping checks by and-ing them all
2402 -- together.
2403
2404 else
2405 if No (Check) then
2406 Check := Cond;
2407 else
2408 Check :=
2409 Make_And_Then (Loc,
2410 Left_Opnd => Check,
2411 Right_Opnd => Cond);
2412 end if;
2413 end if;
2414 end Overlap_Check;
2415
5f49133f
AC
2416 -- Local variables
2417
b4213ffd
AC
2418 Actual_1 : Node_Id;
2419 Actual_2 : Node_Id;
2420 Check : Node_Id;
2421 Formal_1 : Entity_Id;
2422 Formal_2 : Entity_Id;
2423 Orig_Act_1 : Node_Id;
2424 Orig_Act_2 : Node_Id;
5f49133f
AC
2425
2426 -- Start of processing for Apply_Parameter_Aliasing_Checks
2427
2428 begin
baed70ac 2429 Check := Empty;
5f49133f
AC
2430
2431 Actual_1 := First_Actual (Call);
2432 Formal_1 := First_Formal (Subp);
2433 while Present (Actual_1) and then Present (Formal_1) loop
b4213ffd 2434 Orig_Act_1 := Original_Actual (Actual_1);
5f49133f 2435
9e1ca4e3 2436 if Is_Name_Reference (Orig_Act_1) then
5f49133f
AC
2437 Actual_2 := Next_Actual (Actual_1);
2438 Formal_2 := Next_Formal (Formal_1);
2439 while Present (Actual_2) and then Present (Formal_2) loop
b4213ffd 2440 Orig_Act_2 := Original_Actual (Actual_2);
5f49133f 2441
9e1ca4e3
PT
2442 -- Generate the check only when the mode of the two formals may
2443 -- lead to aliasing.
5f49133f 2444
9e1ca4e3 2445 if Is_Name_Reference (Orig_Act_2)
5f49133f
AC
2446 and then May_Cause_Aliasing (Formal_1, Formal_2)
2447 then
cc9a7ae2
PT
2448
2449 -- The aliasing check only applies when some of the formals
2450 -- have their passing mechanism unspecified; RM 6.2 (12/3).
2451
2452 if Parameter_Passing_Mechanism_Specified (Etype (Orig_Act_1))
2453 and then
2454 Parameter_Passing_Mechanism_Specified (Etype (Orig_Act_2))
2455 then
2456 null;
2457 else
2458 Remove_Side_Effects (Actual_1);
2459 Remove_Side_Effects (Actual_2);
2460
2461 Overlap_Check
2462 (Actual_1 => Actual_1,
2463 Actual_2 => Actual_2,
2464 Formal_1 => Formal_1,
2465 Formal_2 => Formal_2,
2466 Check => Check);
2467 end if;
5f49133f
AC
2468 end if;
2469
2470 Next_Actual (Actual_2);
2471 Next_Formal (Formal_2);
2472 end loop;
2473 end if;
2474
2475 Next_Actual (Actual_1);
2476 Next_Formal (Formal_1);
2477 end loop;
2478
baed70ac 2479 -- Place a simple check right before the call
5f49133f 2480
baed70ac 2481 if Present (Check) and then not Exception_Extra_Info then
5f49133f
AC
2482 Insert_Action (Call,
2483 Make_Raise_Program_Error (Loc,
baed70ac
AC
2484 Condition => Check,
2485 Reason => PE_Aliased_Parameters));
5f49133f
AC
2486 end if;
2487 end Apply_Parameter_Aliasing_Checks;
2488
2489 -------------------------------------
2490 -- Apply_Parameter_Validity_Checks --
2491 -------------------------------------
2492
2493 procedure Apply_Parameter_Validity_Checks (Subp : Entity_Id) is
2494 Subp_Decl : Node_Id;
0ea55619 2495
e8dde875 2496 procedure Add_Validity_Check
c9d70ab1
AC
2497 (Formal : Entity_Id;
2498 Prag_Nam : Name_Id;
e8dde875 2499 For_Result : Boolean := False);
31fde973 2500 -- Add a single 'Valid[_Scalars] check which verifies the initialization
c9d70ab1 2501 -- of Formal. Prag_Nam denotes the pre or post condition pragma name.
e8dde875 2502 -- Set flag For_Result when to verify the result of a function.
0ea55619 2503
0ea55619
AC
2504 ------------------------
2505 -- Add_Validity_Check --
2506 ------------------------
2507
2508 procedure Add_Validity_Check
c9d70ab1
AC
2509 (Formal : Entity_Id;
2510 Prag_Nam : Name_Id;
0ea55619
AC
2511 For_Result : Boolean := False)
2512 is
c9d70ab1
AC
2513 procedure Build_Pre_Post_Condition (Expr : Node_Id);
2514 -- Create a pre/postcondition pragma that tests expression Expr
2515
2516 ------------------------------
2517 -- Build_Pre_Post_Condition --
2518 ------------------------------
2519
2520 procedure Build_Pre_Post_Condition (Expr : Node_Id) is
2521 Loc : constant Source_Ptr := Sloc (Subp);
2522 Decls : List_Id;
2523 Prag : Node_Id;
2524
2525 begin
2526 Prag :=
2527 Make_Pragma (Loc,
88456bc1 2528 Chars => Prag_Nam,
c9d70ab1
AC
2529 Pragma_Argument_Associations => New_List (
2530 Make_Pragma_Argument_Association (Loc,
2531 Chars => Name_Check,
2532 Expression => Expr)));
2533
2534 -- Add a message unless exception messages are suppressed
2535
2536 if not Exception_Locations_Suppressed then
2537 Append_To (Pragma_Argument_Associations (Prag),
2538 Make_Pragma_Argument_Association (Loc,
2539 Chars => Name_Message,
2540 Expression =>
2541 Make_String_Literal (Loc,
2542 Strval => "failed "
2543 & Get_Name_String (Prag_Nam)
2544 & " from "
2545 & Build_Location_String (Loc))));
2546 end if;
2547
2548 -- Insert the pragma in the tree
2549
2550 if Nkind (Parent (Subp_Decl)) = N_Compilation_Unit then
2551 Add_Global_Declaration (Prag);
2552 Analyze (Prag);
2553
2554 -- PPC pragmas associated with subprogram bodies must be inserted
2555 -- in the declarative part of the body.
2556
2557 elsif Nkind (Subp_Decl) = N_Subprogram_Body then
2558 Decls := Declarations (Subp_Decl);
2559
2560 if No (Decls) then
2561 Decls := New_List;
2562 Set_Declarations (Subp_Decl, Decls);
2563 end if;
2564
2565 Prepend_To (Decls, Prag);
2566 Analyze (Prag);
2567
2568 -- For subprogram declarations insert the PPC pragma right after
2569 -- the declarative node.
2570
2571 else
2572 Insert_After_And_Analyze (Subp_Decl, Prag);
2573 end if;
2574 end Build_Pre_Post_Condition;
2575
2576 -- Local variables
2577
e8dde875 2578 Loc : constant Source_Ptr := Sloc (Subp);
c9d70ab1 2579 Typ : constant Entity_Id := Etype (Formal);
0ea55619
AC
2580 Check : Node_Id;
2581 Nam : Name_Id;
2582
c9d70ab1
AC
2583 -- Start of processing for Add_Validity_Check
2584
0ea55619 2585 begin
e5c4e2bc 2586 -- For scalars, generate 'Valid test
0ea55619
AC
2587
2588 if Is_Scalar_Type (Typ) then
2589 Nam := Name_Valid;
e5c4e2bc
AC
2590
2591 -- For any non-scalar with scalar parts, generate 'Valid_Scalars test
2592
2593 elsif Scalar_Part_Present (Typ) then
0ea55619 2594 Nam := Name_Valid_Scalars;
e5c4e2bc
AC
2595
2596 -- No test needed for other cases (no scalars to test)
2597
0ea55619
AC
2598 else
2599 return;
2600 end if;
2601
2602 -- Step 1: Create the expression to verify the validity of the
2603 -- context.
2604
c9d70ab1 2605 Check := New_Occurrence_Of (Formal, Loc);
0ea55619
AC
2606
2607 -- When processing a function result, use 'Result. Generate
2608 -- Context'Result
2609
2610 if For_Result then
2611 Check :=
2612 Make_Attribute_Reference (Loc,
2613 Prefix => Check,
2614 Attribute_Name => Name_Result);
2615 end if;
2616
2617 -- Generate:
2618 -- Context['Result]'Valid[_Scalars]
2619
2620 Check :=
2621 Make_Attribute_Reference (Loc,
2622 Prefix => Check,
2623 Attribute_Name => Nam);
2624
e8dde875
AC
2625 -- Step 2: Create a pre or post condition pragma
2626
c9d70ab1 2627 Build_Pre_Post_Condition (Check);
e8dde875
AC
2628 end Add_Validity_Check;
2629
e8dde875
AC
2630 -- Local variables
2631
2632 Formal : Entity_Id;
e8dde875
AC
2633 Subp_Spec : Node_Id;
2634
5f49133f 2635 -- Start of processing for Apply_Parameter_Validity_Checks
0ea55619
AC
2636
2637 begin
e8dde875 2638 -- Extract the subprogram specification and declaration nodes
0ea55619 2639
e8dde875 2640 Subp_Spec := Parent (Subp);
9a6dc470 2641
898edf75
BD
2642 if No (Subp_Spec) then
2643 return;
2644 end if;
2645
e8dde875
AC
2646 if Nkind (Subp_Spec) = N_Defining_Program_Unit_Name then
2647 Subp_Spec := Parent (Subp_Spec);
2648 end if;
9a6dc470 2649
e8dde875 2650 Subp_Decl := Parent (Subp_Spec);
8e983d80 2651
0ea55619 2652 if not Comes_From_Source (Subp)
e8dde875 2653
5af0271f
PT
2654 -- Do not process formal subprograms because the corresponding actual
2655 -- will receive the proper checks when the instance is analyzed.
e8dde875
AC
2656
2657 or else Is_Formal_Subprogram (Subp)
2658
e0c23ac7 2659 -- Do not process imported subprograms since pre and postconditions
9a6dc470 2660 -- are never verified on routines coming from a different language.
e8dde875 2661
0ea55619
AC
2662 or else Is_Imported (Subp)
2663 or else Is_Intrinsic_Subprogram (Subp)
e8dde875 2664
9a6dc470
RD
2665 -- The PPC pragmas generated by this routine do not correspond to
2666 -- source aspects, therefore they cannot be applied to abstract
2667 -- subprograms.
e8dde875 2668
c5a26133 2669 or else Nkind (Subp_Decl) = N_Abstract_Subprogram_Declaration
e8dde875 2670
9a6dc470
RD
2671 -- Do not consider subprogram renaminds because the renamed entity
2672 -- already has the proper PPC pragmas.
d85be3ba
AC
2673
2674 or else Nkind (Subp_Decl) = N_Subprogram_Renaming_Declaration
2675
9a6dc470
RD
2676 -- Do not process null procedures because there is no benefit of
2677 -- adding the checks to a no action routine.
e8dde875
AC
2678
2679 or else (Nkind (Subp_Spec) = N_Procedure_Specification
9a6dc470 2680 and then Null_Present (Subp_Spec))
0ea55619
AC
2681 then
2682 return;
2683 end if;
2684
e8dde875
AC
2685 -- Inspect all the formals applying aliasing and scalar initialization
2686 -- checks where applicable.
0ea55619
AC
2687
2688 Formal := First_Formal (Subp);
2689 while Present (Formal) loop
e8dde875
AC
2690
2691 -- Generate the following scalar initialization checks for each
2692 -- formal parameter:
2693
2694 -- mode IN - Pre => Formal'Valid[_Scalars]
2695 -- mode IN OUT - Pre, Post => Formal'Valid[_Scalars]
2696 -- mode OUT - Post => Formal'Valid[_Scalars]
2697
4a08c95c 2698 if Ekind (Formal) in E_In_Parameter | E_In_Out_Parameter then
5af0271f
PT
2699 Add_Validity_Check (Formal, Name_Precondition, False);
2700 end if;
e8dde875 2701
4a08c95c 2702 if Ekind (Formal) in E_In_Out_Parameter | E_Out_Parameter then
5af0271f 2703 Add_Validity_Check (Formal, Name_Postcondition, False);
0ea55619
AC
2704 end if;
2705
0ea55619
AC
2706 Next_Formal (Formal);
2707 end loop;
2708
9a6dc470 2709 -- Generate following scalar initialization check for function result:
e8dde875
AC
2710
2711 -- Post => Subp'Result'Valid[_Scalars]
0ea55619 2712
5af0271f 2713 if Ekind (Subp) = E_Function then
e8dde875 2714 Add_Validity_Check (Subp, Name_Postcondition, True);
0ea55619 2715 end if;
5f49133f 2716 end Apply_Parameter_Validity_Checks;
0ea55619 2717
48f91b44
RD
2718 ---------------------------
2719 -- Apply_Predicate_Check --
2720 ---------------------------
2721
6eca51ce
ES
2722 procedure Apply_Predicate_Check
2723 (N : Node_Id;
2724 Typ : Entity_Id;
2725 Fun : Entity_Id := Empty)
2726 is
b97813ab
EB
2727 Par : Node_Id;
2728 S : Entity_Id;
8e983d80 2729
8f563162 2730 Check_Disabled : constant Boolean := not Predicate_Enabled (Typ)
8861bdd5 2731 or else not Predicate_Check_In_Scope (N);
48f91b44 2732 begin
152f64c2
AC
2733 S := Current_Scope;
2734 while Present (S) and then not Is_Subprogram (S) loop
2735 S := Scope (S);
2736 end loop;
62db841a 2737
152f64c2
AC
2738 -- If the check appears within the predicate function itself, it means
2739 -- that the user specified a check whose formal is the predicated
2740 -- subtype itself, rather than some covering type. This is likely to be
8861bdd5
SB
2741 -- a common error, and thus deserves a warning. We want to emit this
2742 -- warning even if predicate checking is disabled (in which case the
2743 -- warning is still useful even if it is not strictly accurate).
8e1e62e3 2744
152f64c2
AC
2745 if Present (S) and then S = Predicate_Function (Typ) then
2746 Error_Msg_NE
2747 ("predicate check includes a call to& that requires a "
2748 & "predicate check??", Parent (N), Fun);
2749 Error_Msg_N
2750 ("\this will result in infinite recursion??", Parent (N));
0929eaeb 2751
152f64c2 2752 if Is_First_Subtype (Typ) then
6eca51ce 2753 Error_Msg_NE
152f64c2
AC
2754 ("\use an explicit subtype of& to carry the predicate",
2755 Parent (N), Typ);
2756 end if;
6eca51ce 2757
8861bdd5
SB
2758 if not Check_Disabled then
2759 Insert_Action (N,
2760 Make_Raise_Storage_Error (Sloc (N),
2761 Reason => SE_Infinite_Recursion));
2762 return;
2763 end if;
2764 end if;
2765
2766 if Check_Disabled then
152f64c2
AC
2767 return;
2768 end if;
0929eaeb 2769
152f64c2 2770 -- Normal case of predicate active
804fc056 2771
152f64c2
AC
2772 -- If the expression is an IN parameter, the predicate will have
2773 -- been applied at the point of call. An additional check would
2774 -- be redundant, or will lead to out-of-scope references if the
2775 -- call appears within an aspect specification for a precondition.
db626148 2776
152f64c2
AC
2777 -- However, if the reference is within the body of the subprogram
2778 -- that declares the formal, the predicate can safely be applied,
2779 -- which may be necessary for a nested call whose formal has a
2780 -- different predicate.
db626148 2781
152f64c2
AC
2782 if Is_Entity_Name (N)
2783 and then Ekind (Entity (N)) = E_In_Parameter
2784 then
2785 declare
2786 In_Body : Boolean := False;
2787 P : Node_Id := Parent (N);
db626148 2788
152f64c2
AC
2789 begin
2790 while Present (P) loop
2791 if Nkind (P) = N_Subprogram_Body
2792 and then
2793 ((Present (Corresponding_Spec (P))
2794 and then
2795 Corresponding_Spec (P) = Scope (Entity (N)))
2796 or else
2797 Defining_Unit_Name (Specification (P)) =
2798 Scope (Entity (N)))
2799 then
2800 In_Body := True;
2801 exit;
2802 end if;
f197d2f2 2803
152f64c2
AC
2804 P := Parent (P);
2805 end loop;
804fc056 2806
152f64c2 2807 if not In_Body then
405b907c
AC
2808 return;
2809 end if;
152f64c2
AC
2810 end;
2811 end if;
405b907c 2812
152f64c2
AC
2813 -- If the type has a static predicate and the expression is known
2814 -- at compile time, see if the expression satisfies the predicate.
b97813ab 2815
152f64c2 2816 Check_Expression_Against_Static_Predicate (N, Typ);
405b907c 2817
152f64c2
AC
2818 if not Expander_Active then
2819 return;
2820 end if;
b97813ab 2821
152f64c2
AC
2822 Par := Parent (N);
2823 if Nkind (Par) = N_Qualified_Expression then
2824 Par := Parent (Par);
2825 end if;
b97813ab 2826
152f64c2
AC
2827 -- For an entity of the type, generate a call to the predicate
2828 -- function, unless its type is an actual subtype, which is not
2829 -- visible outside of the enclosing subprogram.
b97813ab 2830
152f64c2
AC
2831 if Is_Entity_Name (N)
2832 and then not Is_Actual_Subtype (Typ)
2833 then
2834 Insert_Action (N,
2835 Make_Predicate_Check
2836 (Typ, New_Occurrence_Of (Entity (N), Sloc (N))));
2837 return;
4269edf0 2838
4a08c95c 2839 elsif Nkind (N) in N_Aggregate | N_Extension_Aggregate then
152f64c2
AC
2840
2841 -- If the expression is an aggregate in an assignment, apply the
2842 -- check to the LHS after the assignment, rather than create a
2843 -- redundant temporary. This is only necessary in rare cases
2844 -- of array types (including strings) initialized with an
2845 -- aggregate with an "others" clause, either coming from source
2846 -- or generated by an Initialize_Scalars pragma.
2847
2848 if Nkind (Par) = N_Assignment_Statement then
2849 Insert_Action_After (Par,
2850 Make_Predicate_Check
2851 (Typ, Duplicate_Subexpr (Name (Par))));
2852 return;
2853
2a50a4d4
EB
2854 -- Similarly, if the expression is a qualified aggregate in an
2855 -- allocator, apply the check to the dereference of the access
2856 -- value, rather than create a temporary. This is necessary for
2857 -- inherently limited types, for which the temporary is illegal.
2858
2859 elsif Nkind (Par) = N_Allocator then
2860 declare
2861 Deref : constant Node_Id :=
2862 Make_Explicit_Dereference (Sloc (N),
2863 Prefix => Duplicate_Subexpr (Par));
2864
2865 begin
2866 -- This is required by Predicate_Check_In_Scope ???
2867
2868 Preserve_Comes_From_Source (Deref, N);
2869
2870 Insert_Action_After (Parent (Par),
2871 Make_Predicate_Check (Typ, Deref));
2872 return;
2873 end;
2874
152f64c2
AC
2875 -- Similarly, if the expression is an aggregate in an object
2876 -- declaration, apply it to the object after the declaration.
2977b006
MP
2877
2878 -- This is only necessary in cases of tagged extensions
2879 -- initialized with an aggregate with an "others => <>" clause,
2880 -- when the subtypes of LHS and RHS do not statically match or
2881 -- when we know the object's type will be rewritten later.
2882 -- The condition for the later is copied from the
2883 -- Analyze_Object_Declaration procedure when it actually builds the
2884 -- subtype.
152f64c2
AC
2885
2886 elsif Nkind (Par) = N_Object_Declaration then
2977b006
MP
2887 if Subtypes_Statically_Match
2888 (Etype (Defining_Identifier (Par)), Typ)
2889 and then (Nkind (N) = N_Extension_Aggregate
2890 or else (Is_Definite_Subtype (Typ)
2891 and then Build_Default_Subtype_OK (Typ)))
2892 then
2893 Insert_Action_After (Par,
2894 Make_Predicate_Check (Typ,
2895 New_Occurrence_Of (Defining_Identifier (Par), Sloc (N))));
2896 return;
2897 end if;
2898
62db841a 2899 end if;
48f91b44 2900 end if;
152f64c2
AC
2901
2902 -- If the expression is not an entity it may have side effects,
2903 -- and the following call will create an object declaration for
2904 -- it. We disable checks during its analysis, to prevent an
2905 -- infinite recursion.
2906
2907 Insert_Action (N,
2908 Make_Predicate_Check
2909 (Typ, Duplicate_Subexpr (N)), Suppress => All_Checks);
48f91b44
RD
2910 end Apply_Predicate_Check;
2911
70482933
RK
2912 -----------------------
2913 -- Apply_Range_Check --
2914 -----------------------
2915
2916 procedure Apply_Range_Check
ec170be1
EB
2917 (Expr : Node_Id;
2918 Target_Typ : Entity_Id;
2919 Source_Typ : Entity_Id := Empty;
2920 Insert_Node : Node_Id := Empty)
70482933 2921 is
ec170be1
EB
2922 Checks_On : constant Boolean :=
2923 not Index_Checks_Suppressed (Target_Typ)
2924 or else
2925 not Range_Checks_Suppressed (Target_Typ);
2926
2927 Loc : constant Source_Ptr := Sloc (Expr);
2928
2929 Cond : Node_Id;
2930 R_Cno : Node_Id;
2931 R_Result : Check_Result;
2932
70482933 2933 begin
ec170be1
EB
2934 -- Only apply checks when generating code. In GNATprove mode, we do not
2935 -- apply the checks, but we still call Selected_Range_Checks to possibly
2936 -- issue errors on SPARK code when a run-time error can be detected at
2937 -- compile time.
2938
2939 if not GNATprove_Mode then
2940 if not Expander_Active or not Checks_On then
2941 return;
2942 end if;
2943 end if;
2944
2945 R_Result :=
2946 Selected_Range_Checks (Expr, Target_Typ, Source_Typ, Insert_Node);
2947
2948 if GNATprove_Mode then
2949 return;
2950 end if;
2951
2952 for J in 1 .. 2 loop
2953 R_Cno := R_Result (J);
2954 exit when No (R_Cno);
2955
2956 -- The range check requires runtime evaluation. Depending on what its
2957 -- triggering condition is, the check may be converted into a compile
2958 -- time constraint check.
2959
2960 if Nkind (R_Cno) = N_Raise_Constraint_Error
2961 and then Present (Condition (R_Cno))
2962 then
2963 Cond := Condition (R_Cno);
2964
2965 -- Insert the range check before the related context. Note that
2966 -- this action analyses the triggering condition.
2967
2968 if Present (Insert_Node) then
2969 Insert_Action (Insert_Node, R_Cno);
2970 else
2971 Insert_Action (Expr, R_Cno);
2972 end if;
2973
2974 -- The triggering condition evaluates to True, the range check
2975 -- can be converted into a compile time constraint check.
2976
2977 if Is_Entity_Name (Cond)
2978 and then Entity (Cond) = Standard_True
2979 then
2980 -- Since an N_Range is technically not an expression, we have
2981 -- to set one of the bounds to C_E and then just flag the
2982 -- N_Range. The warning message will point to the lower bound
2983 -- and complain about a range, which seems OK.
2984
2985 if Nkind (Expr) = N_Range then
2986 Apply_Compile_Time_Constraint_Error
2987 (Low_Bound (Expr),
2988 "static range out of bounds of}??",
2989 CE_Range_Check_Failed,
2990 Ent => Target_Typ,
2991 Typ => Target_Typ);
2992
2993 Set_Raises_Constraint_Error (Expr);
2994
2995 else
2996 Apply_Compile_Time_Constraint_Error
2997 (Expr,
2998 "static value out of range of}??",
2999 CE_Range_Check_Failed,
3000 Ent => Target_Typ,
3001 Typ => Target_Typ);
3002 end if;
3003 end if;
3004
3005 -- The range check raises Constraint_Error explicitly
3006
3007 elsif Present (Insert_Node) then
3008 R_Cno :=
3009 Make_Raise_Constraint_Error (Sloc (Insert_Node),
3010 Reason => CE_Range_Check_Failed);
3011
3012 Insert_Action (Insert_Node, R_Cno);
3013
3014 else
3015 Install_Static_Check (R_Cno, Loc);
3016 end if;
3017 end loop;
70482933
RK
3018 end Apply_Range_Check;
3019
3020 ------------------------------
3021 -- Apply_Scalar_Range_Check --
3022 ------------------------------
3023
675d6070
TQ
3024 -- Note that Apply_Scalar_Range_Check never turns the Do_Range_Check flag
3025 -- off if it is already set on.
70482933
RK
3026
3027 procedure Apply_Scalar_Range_Check
3028 (Expr : Node_Id;
3029 Target_Typ : Entity_Id;
3030 Source_Typ : Entity_Id := Empty;
3031 Fixed_Int : Boolean := False)
3032 is
3033 Parnt : constant Node_Id := Parent (Expr);
3034 S_Typ : Entity_Id;
3035 Arr : Node_Id := Empty; -- initialize to prevent warning
3036 Arr_Typ : Entity_Id := Empty; -- initialize to prevent warning
70482933
RK
3037
3038 Is_Subscr_Ref : Boolean;
3039 -- Set true if Expr is a subscript
3040
3041 Is_Unconstrained_Subscr_Ref : Boolean;
3042 -- Set true if Expr is a subscript of an unconstrained array. In this
3043 -- case we do not attempt to do an analysis of the value against the
3044 -- range of the subscript, since we don't know the actual subtype.
3045
3046 Int_Real : Boolean;
675d6070
TQ
3047 -- Set to True if Expr should be regarded as a real value even though
3048 -- the type of Expr might be discrete.
70482933 3049
520c0201
AC
3050 procedure Bad_Value (Warn : Boolean := False);
3051 -- Procedure called if value is determined to be out of range. Warn is
3052 -- True to force a warning instead of an error, even when SPARK_Mode is
3053 -- On.
70482933 3054
fbf5a39b
AC
3055 ---------------
3056 -- Bad_Value --
3057 ---------------
3058
520c0201 3059 procedure Bad_Value (Warn : Boolean := False) is
70482933
RK
3060 begin
3061 Apply_Compile_Time_Constraint_Error
685bc70f 3062 (Expr, "value not in range of}??", CE_Range_Check_Failed,
520c0201
AC
3063 Ent => Target_Typ,
3064 Typ => Target_Typ,
3065 Warn => Warn);
70482933
RK
3066 end Bad_Value;
3067
fbf5a39b
AC
3068 -- Start of processing for Apply_Scalar_Range_Check
3069
70482933 3070 begin
939c12d2 3071 -- Return if check obviously not needed
70482933 3072
939c12d2
RD
3073 if
3074 -- Not needed inside generic
70482933 3075
939c12d2
RD
3076 Inside_A_Generic
3077
3078 -- Not needed if previous error
3079
3080 or else Target_Typ = Any_Type
3081 or else Nkind (Expr) = N_Error
3082
3083 -- Not needed for non-scalar type
3084
3085 or else not Is_Scalar_Type (Target_Typ)
3086
3087 -- Not needed if we know node raises CE already
3088
3089 or else Raises_Constraint_Error (Expr)
70482933
RK
3090 then
3091 return;
3092 end if;
3093
3094 -- Now, see if checks are suppressed
3095
3096 Is_Subscr_Ref :=
3097 Is_List_Member (Expr) and then Nkind (Parnt) = N_Indexed_Component;
3098
3099 if Is_Subscr_Ref then
3100 Arr := Prefix (Parnt);
3101 Arr_Typ := Get_Actual_Subtype_If_Available (Arr);
ba759acd 3102
f4f92d9d 3103 if Is_Access_Type (Arr_Typ) then
05c1e7d2 3104 Arr_Typ := Designated_Type (Arr_Typ);
f4f92d9d 3105 end if;
70482933
RK
3106 end if;
3107
3108 if not Do_Range_Check (Expr) then
3109
3110 -- Subscript reference. Check for Index_Checks suppressed
3111
3112 if Is_Subscr_Ref then
3113
3114 -- Check array type and its base type
3115
3116 if Index_Checks_Suppressed (Arr_Typ)
fbf5a39b 3117 or else Index_Checks_Suppressed (Base_Type (Arr_Typ))
70482933
RK
3118 then
3119 return;
3120
3121 -- Check array itself if it is an entity name
3122
3123 elsif Is_Entity_Name (Arr)
fbf5a39b 3124 and then Index_Checks_Suppressed (Entity (Arr))
70482933
RK
3125 then
3126 return;
3127
3128 -- Check expression itself if it is an entity name
3129
3130 elsif Is_Entity_Name (Expr)
fbf5a39b 3131 and then Index_Checks_Suppressed (Entity (Expr))
70482933
RK
3132 then
3133 return;
3134 end if;
3135
3136 -- All other cases, check for Range_Checks suppressed
3137
3138 else
3139 -- Check target type and its base type
3140
3141 if Range_Checks_Suppressed (Target_Typ)
fbf5a39b 3142 or else Range_Checks_Suppressed (Base_Type (Target_Typ))
70482933
RK
3143 then
3144 return;
3145
3146 -- Check expression itself if it is an entity name
3147
3148 elsif Is_Entity_Name (Expr)
fbf5a39b 3149 and then Range_Checks_Suppressed (Entity (Expr))
70482933
RK
3150 then
3151 return;
3152
675d6070
TQ
3153 -- If Expr is part of an assignment statement, then check left
3154 -- side of assignment if it is an entity name.
70482933
RK
3155
3156 elsif Nkind (Parnt) = N_Assignment_Statement
3157 and then Is_Entity_Name (Name (Parnt))
fbf5a39b 3158 and then Range_Checks_Suppressed (Entity (Name (Parnt)))
70482933
RK
3159 then
3160 return;
3161 end if;
3162 end if;
3163 end if;
3164
fbf5a39b
AC
3165 -- Do not set range checks if they are killed
3166
3167 if Nkind (Expr) = N_Unchecked_Type_Conversion
3168 and then Kill_Range_Check (Expr)
3169 then
3170 return;
3171 end if;
3172
3173 -- Do not set range checks for any values from System.Scalar_Values
a90bd866 3174 -- since the whole idea of such values is to avoid checking them.
fbf5a39b
AC
3175
3176 if Is_Entity_Name (Expr)
3177 and then Is_RTU (Scope (Entity (Expr)), System_Scalar_Values)
3178 then
3179 return;
3180 end if;
3181
70482933
RK
3182 -- Now see if we need a check
3183
3184 if No (Source_Typ) then
3185 S_Typ := Etype (Expr);
3186 else
3187 S_Typ := Source_Typ;
3188 end if;
3189
3190 if not Is_Scalar_Type (S_Typ) or else S_Typ = Any_Type then
3191 return;
3192 end if;
3193
3194 Is_Unconstrained_Subscr_Ref :=
3195 Is_Subscr_Ref and then not Is_Constrained (Arr_Typ);
3196
347c766a 3197 -- Special checks for floating-point type
70482933 3198
347c766a
RD
3199 if Is_Floating_Point_Type (S_Typ) then
3200
3201 -- Always do a range check if the source type includes infinities and
3202 -- the target type does not include infinities. We do not do this if
3203 -- range checks are killed.
aff557c7
AC
3204 -- If the expression is a literal and the bounds of the type are
3205 -- static constants it may be possible to optimize the check.
347c766a
RD
3206
3207 if Has_Infinities (S_Typ)
3208 and then not Has_Infinities (Target_Typ)
3209 then
aff557c7
AC
3210 -- If the expression is a literal and the bounds of the type are
3211 -- static constants it may be possible to optimize the check.
3212
3213 if Nkind (Expr) = N_Real_Literal then
3214 declare
3215 Tlo : constant Node_Id := Type_Low_Bound (Target_Typ);
3216 Thi : constant Node_Id := Type_High_Bound (Target_Typ);
3217
3218 begin
3219 if Compile_Time_Known_Value (Tlo)
3220 and then Compile_Time_Known_Value (Thi)
3221 and then Expr_Value_R (Expr) >= Expr_Value_R (Tlo)
3222 and then Expr_Value_R (Expr) <= Expr_Value_R (Thi)
3223 then
3224 return;
3225 else
3226 Enable_Range_Check (Expr);
3227 end if;
3228 end;
3229
3230 else
3231 Enable_Range_Check (Expr);
3232 end if;
347c766a 3233 end if;
70482933
RK
3234 end if;
3235
675d6070 3236 -- Return if we know expression is definitely in the range of the target
84c54629
EB
3237 -- type as determined by Determine_Range_To_Discrete. Right now we only
3238 -- do this for discrete target types, i.e. neither for fixed-point nor
3239 -- for floating-point types. But the additional less precise tests below
3240 -- catch these cases.
d8ee014f 3241
675d6070
TQ
3242 -- Note: skip this if we are given a source_typ, since the point of
3243 -- supplying a Source_Typ is to stop us looking at the expression.
3244 -- We could sharpen this test to be out parameters only ???
70482933
RK
3245
3246 if Is_Discrete_Type (Target_Typ)
70482933
RK
3247 and then not Is_Unconstrained_Subscr_Ref
3248 and then No (Source_Typ)
3249 then
3250 declare
70482933 3251 Thi : constant Node_Id := Type_High_Bound (Target_Typ);
94295b25 3252 Tlo : constant Node_Id := Type_Low_Bound (Target_Typ);
70482933
RK
3253
3254 begin
3255 if Compile_Time_Known_Value (Tlo)
3256 and then Compile_Time_Known_Value (Thi)
3257 then
fbf5a39b 3258 declare
dcd5fd67 3259 OK : Boolean := False; -- initialize to prevent warning
fbf5a39b 3260 Hiv : constant Uint := Expr_Value (Thi);
94295b25 3261 Lov : constant Uint := Expr_Value (Tlo);
dcd5fd67
PMR
3262 Hi : Uint := No_Uint;
3263 Lo : Uint := No_Uint;
70482933 3264
fbf5a39b 3265 begin
94295b25
AC
3266 -- If range is null, we for sure have a constraint error (we
3267 -- don't even need to look at the value involved, since all
3268 -- possible values will raise CE).
fbf5a39b
AC
3269
3270 if Lov > Hiv then
39f0fa29 3271
520c0201
AC
3272 -- When SPARK_Mode is On, force a warning instead of
3273 -- an error in that case, as this likely corresponds
3274 -- to deactivated code.
3275
3276 Bad_Value (Warn => SPARK_Mode = On);
3277
fbf5a39b
AC
3278 return;
3279 end if;
3280
3281 -- Otherwise determine range of value
3282
84c54629
EB
3283 Determine_Range_To_Discrete
3284 (Expr, OK, Lo, Hi, Fixed_Int, Assume_Valid => True);
fbf5a39b
AC
3285
3286 if OK then
3287
3288 -- If definitely in range, all OK
70482933 3289
70482933
RK
3290 if Lo >= Lov and then Hi <= Hiv then
3291 return;
3292
fbf5a39b
AC
3293 -- If definitely not in range, warn
3294
70482933 3295 elsif Lov > Hi or else Hiv < Lo then
0c506265 3296
88ad52c9
AC
3297 -- Ignore out of range values for System.Priority in
3298 -- CodePeer mode since the actual target compiler may
3299 -- provide a wider range.
3300
3301 if not CodePeer_Mode
a9e48b0d 3302 or else not Is_RTE (Target_Typ, RE_Priority)
88ad52c9
AC
3303 then
3304 Bad_Value;
3305 end if;
3306
70482933 3307 return;
fbf5a39b
AC
3308
3309 -- Otherwise we don't know
3310
3311 else
3312 null;
70482933 3313 end if;
fbf5a39b
AC
3314 end if;
3315 end;
70482933
RK
3316 end if;
3317 end;
3318 end if;
3319
3320 Int_Real :=
3321 Is_Floating_Point_Type (S_Typ)
3322 or else (Is_Fixed_Point_Type (S_Typ) and then not Fixed_Int);
3323
3324 -- Check if we can determine at compile time whether Expr is in the
fbf5a39b
AC
3325 -- range of the target type. Note that if S_Typ is within the bounds
3326 -- of Target_Typ then this must be the case. This check is meaningful
84c54629
EB
3327 -- only if this is not a conversion between integer and real types,
3328 -- unless for a fixed-point type if Fixed_Int is set.
70482933
RK
3329
3330 if not Is_Unconstrained_Subscr_Ref
84c54629
EB
3331 and then (Is_Discrete_Type (S_Typ) = Is_Discrete_Type (Target_Typ)
3332 or else (Fixed_Int and then Is_Discrete_Type (Target_Typ)))
70482933 3333 and then
c27f2f15 3334 (In_Subrange_Of (S_Typ, Target_Typ, Fixed_Int)
6d0b56ad
AC
3335
3336 -- Also check if the expression itself is in the range of the
3337 -- target type if it is a known at compile time value. We skip
3338 -- this test if S_Typ is set since for OUT and IN OUT parameters
3339 -- the Expr itself is not relevant to the checking.
3340
70482933 3341 or else
6d0b56ad
AC
3342 (No (Source_Typ)
3343 and then Is_In_Range (Expr, Target_Typ,
3344 Assume_Valid => True,
3345 Fixed_Int => Fixed_Int,
3346 Int_Real => Int_Real)))
70482933
RK
3347 then
3348 return;
3349
c800f862
RD
3350 elsif Is_Out_Of_Range (Expr, Target_Typ,
3351 Assume_Valid => True,
3352 Fixed_Int => Fixed_Int,
3353 Int_Real => Int_Real)
3354 then
70482933
RK
3355 Bad_Value;
3356 return;
3357
347c766a 3358 -- Floating-point case
675d6070
TQ
3359 -- In the floating-point case, we only do range checks if the type is
3360 -- constrained. We definitely do NOT want range checks for unconstrained
0da343bc
AC
3361 -- types, since we want to have infinities, except when
3362 -- Check_Float_Overflow is set.
70482933 3363
fbf5a39b 3364 elsif Is_Floating_Point_Type (S_Typ) then
0da343bc 3365 if Is_Constrained (S_Typ) or else Check_Float_Overflow then
fbf5a39b
AC
3366 Enable_Range_Check (Expr);
3367 end if;
70482933 3368
fbf5a39b 3369 -- For all other cases we enable a range check unconditionally
70482933
RK
3370
3371 else
3372 Enable_Range_Check (Expr);
3373 return;
3374 end if;
70482933
RK
3375 end Apply_Scalar_Range_Check;
3376
3377 ----------------------------------
3378 -- Apply_Selected_Length_Checks --
3379 ----------------------------------
3380
3381 procedure Apply_Selected_Length_Checks
6c8e70fe 3382 (Expr : Node_Id;
70482933
RK
3383 Target_Typ : Entity_Id;
3384 Source_Typ : Entity_Id;
3385 Do_Static : Boolean)
3386 is
e0666fc6
AC
3387 Checks_On : constant Boolean :=
3388 not Index_Checks_Suppressed (Target_Typ)
3389 or else
3390 not Length_Checks_Suppressed (Target_Typ);
3391
6c8e70fe 3392 Loc : constant Source_Ptr := Sloc (Expr);
e0666fc6 3393
70482933 3394 Cond : Node_Id;
70482933 3395 R_Cno : Node_Id;
e0666fc6 3396 R_Result : Check_Result;
70482933
RK
3397
3398 begin
66340e0e 3399 -- Only apply checks when generating code
27bb7941 3400
4a28b181 3401 -- Note: this means that we lose some useful warnings if the expander
27bb7941 3402 -- is not active.
4a28b181 3403
66340e0e 3404 if not Expander_Active then
70482933
RK
3405 return;
3406 end if;
3407
3408 R_Result :=
6c8e70fe 3409 Selected_Length_Checks (Expr, Target_Typ, Source_Typ, Empty);
70482933
RK
3410
3411 for J in 1 .. 2 loop
70482933
RK
3412 R_Cno := R_Result (J);
3413 exit when No (R_Cno);
3414
3415 -- A length check may mention an Itype which is attached to a
3416 -- subsequent node. At the top level in a package this can cause
3417 -- an order-of-elaboration problem, so we make sure that the itype
3418 -- is referenced now.
3419
3420 if Ekind (Current_Scope) = E_Package
3421 and then Is_Compilation_Unit (Current_Scope)
3422 then
6c8e70fe 3423 Ensure_Defined (Target_Typ, Expr);
70482933
RK
3424
3425 if Present (Source_Typ) then
6c8e70fe 3426 Ensure_Defined (Source_Typ, Expr);
70482933 3427
6c8e70fe
EB
3428 elsif Is_Itype (Etype (Expr)) then
3429 Ensure_Defined (Etype (Expr), Expr);
70482933
RK
3430 end if;
3431 end if;
3432
70482933
RK
3433 if Nkind (R_Cno) = N_Raise_Constraint_Error
3434 and then Present (Condition (R_Cno))
3435 then
3436 Cond := Condition (R_Cno);
3437
c064e066 3438 -- Case where node does not now have a dynamic check
70482933 3439
6c8e70fe 3440 if not Has_Dynamic_Length_Check (Expr) then
c064e066
RD
3441
3442 -- If checks are on, just insert the check
3443
3444 if Checks_On then
6c8e70fe 3445 Insert_Action (Expr, R_Cno);
c064e066
RD
3446
3447 if not Do_Static then
6c8e70fe 3448 Set_Has_Dynamic_Length_Check (Expr);
c064e066
RD
3449 end if;
3450
3451 -- If checks are off, then analyze the length check after
3452 -- temporarily attaching it to the tree in case the relevant
308e6f3a 3453 -- condition can be evaluated at compile time. We still want a
c064e066
RD
3454 -- compile time warning in this case.
3455
3456 else
6c8e70fe 3457 Set_Parent (R_Cno, Expr);
c064e066 3458 Analyze (R_Cno);
70482933 3459 end if;
70482933
RK
3460 end if;
3461
3462 -- Output a warning if the condition is known to be True
3463
3464 if Is_Entity_Name (Cond)
3465 and then Entity (Cond) = Standard_True
3466 then
3467 Apply_Compile_Time_Constraint_Error
6c8e70fe 3468 (Expr, "wrong length for array of}??",
07fc65c4 3469 CE_Length_Check_Failed,
70482933
RK
3470 Ent => Target_Typ,
3471 Typ => Target_Typ);
3472
3473 -- If we were only doing a static check, or if checks are not
3474 -- on, then we want to delete the check, since it is not needed.
3475 -- We do this by replacing the if statement by a null statement
3476
3477 elsif Do_Static or else not Checks_On then
11b4899f 3478 Remove_Warning_Messages (R_Cno);
70482933
RK
3479 Rewrite (R_Cno, Make_Null_Statement (Loc));
3480 end if;
3481
3482 else
3483 Install_Static_Check (R_Cno, Loc);
3484 end if;
70482933 3485 end loop;
70482933
RK
3486 end Apply_Selected_Length_Checks;
3487
70482933
RK
3488 -------------------------------
3489 -- Apply_Static_Length_Check --
3490 -------------------------------
3491
3492 procedure Apply_Static_Length_Check
3493 (Expr : Node_Id;
3494 Target_Typ : Entity_Id;
3495 Source_Typ : Entity_Id := Empty)
3496 is
3497 begin
3498 Apply_Selected_Length_Checks
3499 (Expr, Target_Typ, Source_Typ, Do_Static => True);
3500 end Apply_Static_Length_Check;
3501
3502 -------------------------------------
3503 -- Apply_Subscript_Validity_Checks --
3504 -------------------------------------
3505
e02c8dff
SB
3506 procedure Apply_Subscript_Validity_Checks
3507 (Expr : Node_Id;
3508 No_Check_Needed : Dimension_Set := Empty_Dimension_Set) is
70482933
RK
3509 Sub : Node_Id;
3510
e02c8dff 3511 Dimension : Pos := 1;
70482933
RK
3512 begin
3513 pragma Assert (Nkind (Expr) = N_Indexed_Component);
3514
3515 -- Loop through subscripts
3516
3517 Sub := First (Expressions (Expr));
3518 while Present (Sub) loop
3519
675d6070
TQ
3520 -- Check one subscript. Note that we do not worry about enumeration
3521 -- type with holes, since we will convert the value to a Pos value
3522 -- for the subscript, and that convert will do the necessary validity
3523 -- check.
70482933 3524
8f563162 3525 if No_Check_Needed = Empty_Dimension_Set
e02c8dff
SB
3526 or else not No_Check_Needed.Elements (Dimension)
3527 then
3528 Ensure_Valid (Sub, Holes_OK => True);
3529 end if;
70482933
RK
3530
3531 -- Move to next subscript
3532
cbbe41d1 3533 Next (Sub);
e02c8dff 3534 Dimension := Dimension + 1;
70482933
RK
3535 end loop;
3536 end Apply_Subscript_Validity_Checks;
3537
3538 ----------------------------------
3539 -- Apply_Type_Conversion_Checks --
3540 ----------------------------------
3541
3542 procedure Apply_Type_Conversion_Checks (N : Node_Id) is
3543 Target_Type : constant Entity_Id := Etype (N);
3544 Target_Base : constant Entity_Id := Base_Type (Target_Type);
fbf5a39b 3545 Expr : constant Node_Id := Expression (N);
2c1a2cf3
RD
3546
3547 Expr_Type : constant Entity_Id := Underlying_Type (Etype (Expr));
1197ddb1
AC
3548 -- Note: if Etype (Expr) is a private type without discriminants, its
3549 -- full view might have discriminants with defaults, so we need the
3550 -- full view here to retrieve the constraints.
70482933 3551
4068698c
JS
3552 procedure Make_Discriminant_Constraint_Check
3553 (Target_Type : Entity_Id;
3554 Expr_Type : Entity_Id);
3555 -- Generate a discriminant check based on the target type and expression
3556 -- type for Expr.
3557
3558 ----------------------------------------
3559 -- Make_Discriminant_Constraint_Check --
3560 ----------------------------------------
3561
3562 procedure Make_Discriminant_Constraint_Check
3563 (Target_Type : Entity_Id;
3564 Expr_Type : Entity_Id)
3565 is
3566 Loc : constant Source_Ptr := Sloc (N);
3567 Cond : Node_Id;
3568 Constraint : Elmt_Id;
3569 Discr_Value : Node_Id;
3570 Discr : Entity_Id;
3571
3572 New_Constraints : constant Elist_Id := New_Elmt_List;
3573 Old_Constraints : constant Elist_Id :=
3574 Discriminant_Constraint (Expr_Type);
3575
3576 begin
3577 -- Build an actual discriminant constraint list using the stored
3578 -- constraint, to verify that the expression of the parent type
3579 -- satisfies the constraints imposed by the (unconstrained) derived
3580 -- type. This applies to value conversions, not to view conversions
3581 -- of tagged types.
3582
3583 Constraint := First_Elmt (Stored_Constraint (Target_Type));
3584 while Present (Constraint) loop
3585 Discr_Value := Node (Constraint);
3586
3587 if Is_Entity_Name (Discr_Value)
3588 and then Ekind (Entity (Discr_Value)) = E_Discriminant
3589 then
3590 Discr := Corresponding_Discriminant (Entity (Discr_Value));
3591
3592 if Present (Discr)
3593 and then Scope (Discr) = Base_Type (Expr_Type)
3594 then
3595 -- Parent is constrained by new discriminant. Obtain
3596 -- Value of original discriminant in expression. If the
3597 -- new discriminant has been used to constrain more than
3598 -- one of the stored discriminants, this will provide the
3599 -- required consistency check.
3600
3601 Append_Elmt
3602 (Make_Selected_Component (Loc,
3603 Prefix =>
3604 Duplicate_Subexpr_No_Checks
3605 (Expr, Name_Req => True),
3606 Selector_Name =>
3607 Make_Identifier (Loc, Chars (Discr))),
3608 New_Constraints);
3609
3610 else
3611 -- Discriminant of more remote ancestor ???
3612
3613 return;
3614 end if;
3615
3616 -- Derived type definition has an explicit value for this
3617 -- stored discriminant.
3618
3619 else
3620 Append_Elmt
3621 (Duplicate_Subexpr_No_Checks (Discr_Value),
3622 New_Constraints);
3623 end if;
3624
3625 Next_Elmt (Constraint);
3626 end loop;
3627
3628 -- Use the unconstrained expression type to retrieve the
3629 -- discriminants of the parent, and apply momentarily the
3630 -- discriminant constraint synthesized above.
3631
3632 -- Note: We use Expr_Type instead of Target_Type since the number of
3633 -- actual discriminants may be different due to the presence of
3634 -- stored discriminants and cause Build_Discriminant_Checks to fail.
3635
3636 Set_Discriminant_Constraint (Expr_Type, New_Constraints);
3637 Cond := Build_Discriminant_Checks (Expr, Expr_Type);
3638 Set_Discriminant_Constraint (Expr_Type, Old_Constraints);
3639
55b93bbc
JS
3640 -- Conversion between access types requires that we check for null
3641 -- before checking discriminants.
3642
3643 if Is_Access_Type (Etype (Expr)) then
3644 Cond := Make_And_Then (Loc,
3645 Left_Opnd =>
3646 Make_Op_Ne (Loc,
3647 Left_Opnd =>
3648 Duplicate_Subexpr_No_Checks
3649 (Expr, Name_Req => True),
3650 Right_Opnd => Make_Null (Loc)),
3651 Right_Opnd => Cond);
3652 end if;
3653
4068698c
JS
3654 Insert_Action (N,
3655 Make_Raise_Constraint_Error (Loc,
3656 Condition => Cond,
3657 Reason => CE_Discriminant_Check_Failed));
3658 end Make_Discriminant_Constraint_Check;
3659
3660 -- Start of processing for Apply_Type_Conversion_Checks
3661
70482933
RK
3662 begin
3663 if Inside_A_Generic then
3664 return;
3665
07fc65c4 3666 -- Skip these checks if serious errors detected, there are some nasty
70482933
RK
3667 -- situations of incomplete trees that blow things up.
3668
07fc65c4 3669 elsif Serious_Errors_Detected > 0 then
70482933
RK
3670 return;
3671
8e1e62e3
AC
3672 -- Never generate discriminant checks for Unchecked_Union types
3673
3674 elsif Present (Expr_Type)
3675 and then Is_Unchecked_Union (Expr_Type)
3676 then
3677 return;
3678
675d6070
TQ
3679 -- Scalar type conversions of the form Target_Type (Expr) require a
3680 -- range check if we cannot be sure that Expr is in the base type of
3681 -- Target_Typ and also that Expr is in the range of Target_Typ. These
3682 -- are not quite the same condition from an implementation point of
3683 -- view, but clearly the second includes the first.
70482933
RK
3684
3685 elsif Is_Scalar_Type (Target_Type) then
3686 declare
23a9215f 3687 Conv_OK : constant Boolean := Conversion_OK (N);
675d6070 3688 -- If the Conversion_OK flag on the type conversion is set and no
8e1e62e3
AC
3689 -- floating-point type is involved in the type conversion then
3690 -- fixed-point values must be read as integral values.
70482933 3691
7324bf49 3692 Float_To_Int : constant Boolean :=
15f0f591
AC
3693 Is_Floating_Point_Type (Expr_Type)
3694 and then Is_Integer_Type (Target_Type);
7324bf49 3695
70482933 3696 begin
70482933 3697 if not Overflow_Checks_Suppressed (Target_Base)
a7f1b24f 3698 and then not Overflow_Checks_Suppressed (Target_Type)
1c7717c3 3699 and then not
c27f2f15 3700 In_Subrange_Of (Expr_Type, Target_Base, Fixed_Int => Conv_OK)
7324bf49 3701 and then not Float_To_Int
70482933 3702 then
82e5c243 3703 -- A small optimization: the attribute 'Pos applied to an
0929d66b
AC
3704 -- enumeration type has a known range, even though its type is
3705 -- Universal_Integer. So in numeric conversions it is usually
3706 -- within range of the target integer type. Use the static
3707 -- bounds of the base types to check. Disable this optimization
90b9052e
GD
3708 -- in case of a descendant of a generic formal discrete type,
3709 -- because we don't necessarily know the upper bound yet.
f8981f19
AC
3710
3711 if Nkind (Expr) = N_Attribute_Reference
3712 and then Attribute_Name (Expr) = Name_Pos
3713 and then Is_Enumeration_Type (Etype (Prefix (Expr)))
90b9052e
GD
3714 and then
3715 not Is_Generic_Type (Root_Type (Etype (Prefix (Expr))))
f8981f19
AC
3716 and then Is_Integer_Type (Target_Type)
3717 then
3718 declare
82e5c243
AC
3719 Enum_T : constant Entity_Id :=
3720 Root_Type (Etype (Prefix (Expr)));
3721 Int_T : constant Entity_Id := Base_Type (Target_Type);
3722 Last_I : constant Uint :=
3723 Intval (High_Bound (Scalar_Range (Int_T)));
3724 Last_E : Uint;
f8981f19
AC
3725
3726 begin
82e5c243 3727 -- Character types have no explicit literals, so we use
f8981f19
AC
3728 -- the known number of characters in the type.
3729
3730 if Root_Type (Enum_T) = Standard_Character then
3731 Last_E := UI_From_Int (255);
3732
3733 elsif Enum_T = Standard_Wide_Character
3734 or else Enum_T = Standard_Wide_Wide_Character
3735 then
3736 Last_E := UI_From_Int (65535);
3737
3738 else
82e5c243
AC
3739 Last_E :=
3740 Enumeration_Pos
f8981f19
AC
3741 (Entity (High_Bound (Scalar_Range (Enum_T))));
3742 end if;
3743
17ea7fad 3744 if Last_E > Last_I then
f8981f19
AC
3745 Activate_Overflow_Check (N);
3746 end if;
3747 end;
f8981f19
AC
3748 else
3749 Activate_Overflow_Check (N);
3750 end if;
70482933
RK
3751 end if;
3752
3753 if not Range_Checks_Suppressed (Target_Type)
3754 and then not Range_Checks_Suppressed (Expr_Type)
3755 then
d8ee014f
YM
3756 if Float_To_Int
3757 and then not GNATprove_Mode
3758 then
7324bf49
AC
3759 Apply_Float_Conversion_Check (Expr, Target_Type);
3760 else
84c54629
EB
3761 -- Raw conversions involving fixed-point types are expanded
3762 -- separately and do not need a Range_Check flag yet, except
3763 -- in GNATprove_Mode where this expansion is not performed.
3764 -- This does not apply to conversion where fixed-point types
3765 -- are treated as integers, which are precisely generated by
3766 -- this expansion.
241848fd 3767
94a98e80 3768 if GNATprove_Mode
84c54629 3769 or else Conv_OK
8113b0c7
EB
3770 or else (not Is_Fixed_Point_Type (Expr_Type)
3771 and then not Is_Fixed_Point_Type (Target_Type))
241848fd
ES
3772 then
3773 Apply_Scalar_Range_Check
3774 (Expr, Target_Type, Fixed_Int => Conv_OK);
3775
3776 else
8113b0c7 3777 Set_Do_Range_Check (Expr, False);
241848fd 3778 end if;
b2009d46
AC
3779
3780 -- If the target type has predicates, we need to indicate
8e1e62e3
AC
3781 -- the need for a check, even if Determine_Range finds that
3782 -- the value is within bounds. This may be the case e.g for
3783 -- a division with a constant denominator.
b2009d46
AC
3784
3785 if Has_Predicates (Target_Type) then
3786 Enable_Range_Check (Expr);
3787 end if;
7324bf49 3788 end if;
70482933
RK
3789 end if;
3790 end;
3791
4068698c
JS
3792 -- Generate discriminant constraint checks for access types on the
3793 -- designated target type's stored constraints.
70482933 3794
4068698c 3795 -- Do we need to generate subtype predicate checks here as well ???
70482933 3796
4068698c
JS
3797 elsif Comes_From_Source (N)
3798 and then Ekind (Target_Type) = E_General_Access_Type
70482933 3799
4068698c
JS
3800 -- Check that both of the designated types have known discriminants,
3801 -- and that such checks on the target type are not suppressed.
70482933 3802
4068698c
JS
3803 and then Has_Discriminants (Directly_Designated_Type (Target_Type))
3804 and then Has_Discriminants (Directly_Designated_Type (Expr_Type))
3805 and then not Discriminant_Checks_Suppressed
3806 (Directly_Designated_Type (Target_Type))
70482933 3807
4068698c 3808 -- Verify the designated type of the target has stored constraints
70482933 3809
4068698c
JS
3810 and then Present
3811 (Stored_Constraint (Directly_Designated_Type (Target_Type)))
3812 then
3813 Make_Discriminant_Constraint_Check
3814 (Target_Type => Directly_Designated_Type (Target_Type),
3815 Expr_Type => Directly_Designated_Type (Expr_Type));
70482933 3816
4068698c 3817 -- Create discriminant checks for the Target_Type's stored constraints
70482933 3818
4068698c
JS
3819 elsif Comes_From_Source (N)
3820 and then not Discriminant_Checks_Suppressed (Target_Type)
3821 and then Is_Record_Type (Target_Type)
3822 and then Is_Derived_Type (Target_Type)
3823 and then not Is_Tagged_Type (Target_Type)
3824 and then not Is_Constrained (Target_Type)
3825 and then Present (Stored_Constraint (Target_Type))
3826 then
3827 Make_Discriminant_Constraint_Check (Target_Type, Expr_Type);
70482933 3828
8bfbd380
AC
3829 -- For arrays, checks are set now, but conversions are applied during
3830 -- expansion, to take into accounts changes of representation. The
3831 -- checks become range checks on the base type or length checks on the
3832 -- subtype, depending on whether the target type is unconstrained or
83851b23
AC
3833 -- constrained. Note that the range check is put on the expression of a
3834 -- type conversion, while the length check is put on the type conversion
3835 -- itself.
8bfbd380
AC
3836
3837 elsif Is_Array_Type (Target_Type) then
3838 if Is_Constrained (Target_Type) then
3839 Set_Do_Length_Check (N);
3840 else
3841 Set_Do_Range_Check (Expr);
3842 end if;
70482933 3843 end if;
70482933
RK
3844 end Apply_Type_Conversion_Checks;
3845
3846 ----------------------------------------------
3847 -- Apply_Universal_Integer_Attribute_Checks --
3848 ----------------------------------------------
3849
3850 procedure Apply_Universal_Integer_Attribute_Checks (N : Node_Id) is
3851 Loc : constant Source_Ptr := Sloc (N);
3852 Typ : constant Entity_Id := Etype (N);
3853
3854 begin
3855 if Inside_A_Generic then
3856 return;
3857
48b6386f
EB
3858 -- Nothing to do if the result type is universal integer
3859
3860 elsif Typ = Universal_Integer then
3861 return;
3862
70482933
RK
3863 -- Nothing to do if checks are suppressed
3864
3865 elsif Range_Checks_Suppressed (Typ)
3866 and then Overflow_Checks_Suppressed (Typ)
3867 then
3868 return;
3869
3870 -- Nothing to do if the attribute does not come from source. The
3871 -- internal attributes we generate of this type do not need checks,
3872 -- and furthermore the attempt to check them causes some circular
3873 -- elaboration orders when dealing with packed types.
3874
3875 elsif not Comes_From_Source (N) then
3876 return;
3877
fbf5a39b
AC
3878 -- If the prefix is a selected component that depends on a discriminant
3879 -- the check may improperly expose a discriminant instead of using
3880 -- the bounds of the object itself. Set the type of the attribute to
3881 -- the base type of the context, so that a check will be imposed when
3882 -- needed (e.g. if the node appears as an index).
3883
3884 elsif Nkind (Prefix (N)) = N_Selected_Component
3885 and then Ekind (Typ) = E_Signed_Integer_Subtype
3886 and then Depends_On_Discriminant (Scalar_Range (Typ))
3887 then
3888 Set_Etype (N, Base_Type (Typ));
3889
675d6070
TQ
3890 -- Otherwise, replace the attribute node with a type conversion node
3891 -- whose expression is the attribute, retyped to universal integer, and
3892 -- whose subtype mark is the target type. The call to analyze this
3893 -- conversion will set range and overflow checks as required for proper
3894 -- detection of an out of range value.
70482933
RK
3895
3896 else
3897 Set_Etype (N, Universal_Integer);
3898 Set_Analyzed (N, True);
3899
3900 Rewrite (N,
3901 Make_Type_Conversion (Loc,
3902 Subtype_Mark => New_Occurrence_Of (Typ, Loc),
3903 Expression => Relocate_Node (N)));
3904
3905 Analyze_And_Resolve (N, Typ);
3906 return;
3907 end if;
70482933
RK
3908 end Apply_Universal_Integer_Attribute_Checks;
3909
12b4d338
AC
3910 -------------------------------------
3911 -- Atomic_Synchronization_Disabled --
3912 -------------------------------------
3913
3914 -- Note: internally Disable/Enable_Atomic_Synchronization is implemented
3915 -- using a bogus check called Atomic_Synchronization. This is to make it
3916 -- more convenient to get exactly the same semantics as [Un]Suppress.
3917
3918 function Atomic_Synchronization_Disabled (E : Entity_Id) return Boolean is
3919 begin
4c318253
AC
3920 -- If debug flag d.e is set, always return False, i.e. all atomic sync
3921 -- looks enabled, since it is never disabled.
3922
3923 if Debug_Flag_Dot_E then
3924 return False;
3925
3926 -- If debug flag d.d is set then always return True, i.e. all atomic
3927 -- sync looks disabled, since it always tests True.
3928
3929 elsif Debug_Flag_Dot_D then
3930 return True;
3931
3932 -- If entity present, then check result for that entity
3933
3934 elsif Present (E) and then Checks_May_Be_Suppressed (E) then
12b4d338 3935 return Is_Check_Suppressed (E, Atomic_Synchronization);
4c318253
AC
3936
3937 -- Otherwise result depends on current scope setting
3938
12b4d338 3939 else
3217f71e 3940 return Scope_Suppress.Suppress (Atomic_Synchronization);
12b4d338
AC
3941 end if;
3942 end Atomic_Synchronization_Disabled;
3943
70482933
RK
3944 -------------------------------
3945 -- Build_Discriminant_Checks --
3946 -------------------------------
3947
3948 function Build_Discriminant_Checks
3949 (N : Node_Id;
6b6fcd3e 3950 T_Typ : Entity_Id) return Node_Id
70482933
RK
3951 is
3952 Loc : constant Source_Ptr := Sloc (N);
3953 Cond : Node_Id;
3954 Disc : Elmt_Id;
3955 Disc_Ent : Entity_Id;
fbf5a39b 3956 Dref : Node_Id;
70482933
RK
3957 Dval : Node_Id;
3958
86ac5e79
ES
3959 function Aggregate_Discriminant_Val (Disc : Entity_Id) return Node_Id;
3960
f6219730
JS
3961 function Replace_Current_Instance
3962 (N : Node_Id) return Traverse_Result;
3963 -- Replace a reference to the current instance of the type with the
3964 -- corresponding _init formal of the initialization procedure. Note:
3965 -- this function relies on us currently being within the initialization
3966 -- procedure.
3967
8016e567
PT
3968 --------------------------------
3969 -- Aggregate_Discriminant_Val --
3970 --------------------------------
86ac5e79
ES
3971
3972 function Aggregate_Discriminant_Val (Disc : Entity_Id) return Node_Id is
3973 Assoc : Node_Id;
3974
3975 begin
675d6070
TQ
3976 -- The aggregate has been normalized with named associations. We use
3977 -- the Chars field to locate the discriminant to take into account
3978 -- discriminants in derived types, which carry the same name as those
3979 -- in the parent.
86ac5e79
ES
3980
3981 Assoc := First (Component_Associations (N));
3982 while Present (Assoc) loop
3983 if Chars (First (Choices (Assoc))) = Chars (Disc) then
3984 return Expression (Assoc);
3985 else
3986 Next (Assoc);
3987 end if;
3988 end loop;
3989
3990 -- Discriminant must have been found in the loop above
3991
3992 raise Program_Error;
3993 end Aggregate_Discriminant_Val;
3994
f6219730
JS
3995 ------------------------------
3996 -- Replace_Current_Instance --
3997 ------------------------------
3998
3999 function Replace_Current_Instance
4000 (N : Node_Id) return Traverse_Result is
4001 begin
4002 if Is_Entity_Name (N)
4003 and then Etype (N) = Entity (N)
4004 then
4005 Rewrite (N,
4006 New_Occurrence_Of (First_Formal (Current_Subprogram), Loc));
4007 end if;
4008
4009 return OK;
4010 end Replace_Current_Instance;
4011
4012 procedure Search_And_Replace_Current_Instance is new
4013 Traverse_Proc (Replace_Current_Instance);
4014
86ac5e79
ES
4015 -- Start of processing for Build_Discriminant_Checks
4016
70482933 4017 begin
86ac5e79
ES
4018 -- Loop through discriminants evolving the condition
4019
70482933
RK
4020 Cond := Empty;
4021 Disc := First_Elmt (Discriminant_Constraint (T_Typ));
4022
fbf5a39b 4023 -- For a fully private type, use the discriminants of the parent type
70482933
RK
4024
4025 if Is_Private_Type (T_Typ)
4026 and then No (Full_View (T_Typ))
4027 then
4028 Disc_Ent := First_Discriminant (Etype (Base_Type (T_Typ)));
4029 else
4030 Disc_Ent := First_Discriminant (T_Typ);
4031 end if;
4032
4033 while Present (Disc) loop
70482933
RK
4034 Dval := Node (Disc);
4035
4036 if Nkind (Dval) = N_Identifier
4037 and then Ekind (Entity (Dval)) = E_Discriminant
4038 then
4039 Dval := New_Occurrence_Of (Discriminal (Entity (Dval)), Loc);
4040 else
fbf5a39b 4041 Dval := Duplicate_Subexpr_No_Checks (Dval);
70482933
RK
4042 end if;
4043
f6219730
JS
4044 -- Replace references to the current instance of the type with the
4045 -- corresponding _init formal of the initialization procedure.
4046
4047 if Within_Init_Proc then
4048 Search_And_Replace_Current_Instance (Dval);
4049 end if;
4050
5d09245e
AC
4051 -- If we have an Unchecked_Union node, we can infer the discriminants
4052 -- of the node.
fbf5a39b 4053
5d09245e
AC
4054 if Is_Unchecked_Union (Base_Type (T_Typ)) then
4055 Dref := New_Copy (
4056 Get_Discriminant_Value (
4057 First_Discriminant (T_Typ),
4058 T_Typ,
4059 Stored_Constraint (T_Typ)));
4060
86ac5e79
ES
4061 elsif Nkind (N) = N_Aggregate then
4062 Dref :=
4063 Duplicate_Subexpr_No_Checks
4064 (Aggregate_Discriminant_Val (Disc_Ent));
4065
f715a5bd
EB
4066 elsif Is_Access_Type (Etype (N)) then
4067 Dref :=
4068 Make_Selected_Component (Loc,
4069 Prefix =>
4070 Make_Explicit_Dereference (Loc,
4071 Duplicate_Subexpr_No_Checks (N, Name_Req => True)),
4072 Selector_Name => Make_Identifier (Loc, Chars (Disc_Ent)));
4073
4074 Set_Is_In_Discriminant_Check (Dref);
5d09245e
AC
4075 else
4076 Dref :=
4077 Make_Selected_Component (Loc,
637a41a5 4078 Prefix =>
5d09245e 4079 Duplicate_Subexpr_No_Checks (N, Name_Req => True),
637a41a5 4080 Selector_Name => Make_Identifier (Loc, Chars (Disc_Ent)));
5d09245e
AC
4081
4082 Set_Is_In_Discriminant_Check (Dref);
4083 end if;
fbf5a39b 4084
70482933
RK
4085 Evolve_Or_Else (Cond,
4086 Make_Op_Ne (Loc,
637a41a5 4087 Left_Opnd => Dref,
70482933
RK
4088 Right_Opnd => Dval));
4089
4090 Next_Elmt (Disc);
4091 Next_Discriminant (Disc_Ent);
4092 end loop;
4093
4094 return Cond;
4095 end Build_Discriminant_Checks;
4096
2ede092b
RD
4097 ------------------
4098 -- Check_Needed --
4099 ------------------
4100
4101 function Check_Needed (Nod : Node_Id; Check : Check_Type) return Boolean is
4102 N : Node_Id;
4103 P : Node_Id;
4104 K : Node_Kind;
4105 L : Node_Id;
4106 R : Node_Id;
4107
ef163a0a
AC
4108 function Left_Expression (Op : Node_Id) return Node_Id;
4109 -- Return the relevant expression from the left operand of the given
4110 -- short circuit form: this is LO itself, except if LO is a qualified
4111 -- expression, a type conversion, or an expression with actions, in
4112 -- which case this is Left_Expression (Expression (LO)).
4113
4114 ---------------------
4115 -- Left_Expression --
4116 ---------------------
4117
4118 function Left_Expression (Op : Node_Id) return Node_Id is
4119 LE : Node_Id := Left_Opnd (Op);
4120 begin
4a08c95c
AC
4121 while Nkind (LE) in N_Qualified_Expression
4122 | N_Type_Conversion
4123 | N_Expression_With_Actions
ef163a0a
AC
4124 loop
4125 LE := Expression (LE);
4126 end loop;
4127
4128 return LE;
4129 end Left_Expression;
4130
4131 -- Start of processing for Check_Needed
4132
2ede092b
RD
4133 begin
4134 -- Always check if not simple entity
4135
4136 if Nkind (Nod) not in N_Has_Entity
4137 or else not Comes_From_Source (Nod)
4138 then
4139 return True;
4140 end if;
4141
4142 -- Look up tree for short circuit
4143
4144 N := Nod;
4145 loop
4146 P := Parent (N);
4147 K := Nkind (P);
4148
16a55e63
RD
4149 -- Done if out of subexpression (note that we allow generated stuff
4150 -- such as itype declarations in this context, to keep the loop going
4151 -- since we may well have generated such stuff in complex situations.
4152 -- Also done if no parent (probably an error condition, but no point
a90bd866 4153 -- in behaving nasty if we find it).
16a55e63
RD
4154
4155 if No (P)
4156 or else (K not in N_Subexpr and then Comes_From_Source (P))
4157 then
2ede092b
RD
4158 return True;
4159
16a55e63
RD
4160 -- Or/Or Else case, where test is part of the right operand, or is
4161 -- part of one of the actions associated with the right operand, and
4162 -- the left operand is an equality test.
2ede092b 4163
16a55e63 4164 elsif K = N_Op_Or then
2ede092b 4165 exit when N = Right_Opnd (P)
ef163a0a 4166 and then Nkind (Left_Expression (P)) = N_Op_Eq;
2ede092b 4167
16a55e63
RD
4168 elsif K = N_Or_Else then
4169 exit when (N = Right_Opnd (P)
4170 or else
4171 (Is_List_Member (N)
4172 and then List_Containing (N) = Actions (P)))
ef163a0a 4173 and then Nkind (Left_Expression (P)) = N_Op_Eq;
2ede092b 4174
16a55e63
RD
4175 -- Similar test for the And/And then case, where the left operand
4176 -- is an inequality test.
4177
4178 elsif K = N_Op_And then
2ede092b 4179 exit when N = Right_Opnd (P)
ef163a0a 4180 and then Nkind (Left_Expression (P)) = N_Op_Ne;
16a55e63
RD
4181
4182 elsif K = N_And_Then then
4183 exit when (N = Right_Opnd (P)
4184 or else
4185 (Is_List_Member (N)
637a41a5 4186 and then List_Containing (N) = Actions (P)))
ef163a0a 4187 and then Nkind (Left_Expression (P)) = N_Op_Ne;
2ede092b
RD
4188 end if;
4189
4190 N := P;
4191 end loop;
4192
4193 -- If we fall through the loop, then we have a conditional with an
ef163a0a
AC
4194 -- appropriate test as its left operand, so look further.
4195
4196 L := Left_Expression (P);
4197
4198 -- L is an "=" or "/=" operator: extract its operands
2ede092b 4199
2ede092b
RD
4200 R := Right_Opnd (L);
4201 L := Left_Opnd (L);
4202
4203 -- Left operand of test must match original variable
4204
637a41a5 4205 if Nkind (L) not in N_Has_Entity or else Entity (L) /= Entity (Nod) then
2ede092b
RD
4206 return True;
4207 end if;
4208
939c12d2 4209 -- Right operand of test must be key value (zero or null)
2ede092b
RD
4210
4211 case Check is
4212 when Access_Check =>
939c12d2 4213 if not Known_Null (R) then
2ede092b
RD
4214 return True;
4215 end if;
4216
4217 when Division_Check =>
4218 if not Compile_Time_Known_Value (R)
4219 or else Expr_Value (R) /= Uint_0
4220 then
4221 return True;
4222 end if;
939c12d2
RD
4223
4224 when others =>
4225 raise Program_Error;
2ede092b
RD
4226 end case;
4227
4228 -- Here we have the optimizable case, warn if not short-circuited
4229
4230 if K = N_Op_And or else K = N_Op_Or then
43417b90 4231 Error_Msg_Warn := SPARK_Mode /= On;
4a28b181 4232
2ede092b
RD
4233 case Check is
4234 when Access_Check =>
4a28b181
AC
4235 if GNATprove_Mode then
4236 Error_Msg_N
4237 ("Constraint_Error might have been raised (access check)",
4238 Parent (Nod));
4239 else
4240 Error_Msg_N
4241 ("Constraint_Error may be raised (access check)??",
4242 Parent (Nod));
4243 end if;
4244
2ede092b 4245 when Division_Check =>
4a28b181
AC
4246 if GNATprove_Mode then
4247 Error_Msg_N
4248 ("Constraint_Error might have been raised (zero divide)",
4249 Parent (Nod));
4250 else
4251 Error_Msg_N
4252 ("Constraint_Error may be raised (zero divide)??",
4253 Parent (Nod));
4254 end if;
939c12d2
RD
4255
4256 when others =>
4257 raise Program_Error;
2ede092b
RD
4258 end case;
4259
4260 if K = N_Op_And then
19d846a0 4261 Error_Msg_N -- CODEFIX
685bc70f 4262 ("use `AND THEN` instead of AND??", P);
2ede092b 4263 else
19d846a0 4264 Error_Msg_N -- CODEFIX
685bc70f 4265 ("use `OR ELSE` instead of OR??", P);
2ede092b
RD
4266 end if;
4267
308e6f3a 4268 -- If not short-circuited, we need the check
2ede092b
RD
4269
4270 return True;
4271
4272 -- If short-circuited, we can omit the check
4273
4274 else
4275 return False;
4276 end if;
4277 end Check_Needed;
4278
70482933
RK
4279 -----------------------------------
4280 -- Check_Valid_Lvalue_Subscripts --
4281 -----------------------------------
4282
4283 procedure Check_Valid_Lvalue_Subscripts (Expr : Node_Id) is
4284 begin
4285 -- Skip this if range checks are suppressed
4286
4287 if Range_Checks_Suppressed (Etype (Expr)) then
4288 return;
4289
675d6070
TQ
4290 -- Only do this check for expressions that come from source. We assume
4291 -- that expander generated assignments explicitly include any necessary
4292 -- checks. Note that this is not just an optimization, it avoids
a90bd866 4293 -- infinite recursions.
70482933
RK
4294
4295 elsif not Comes_From_Source (Expr) then
4296 return;
4297
4298 -- For a selected component, check the prefix
4299
4300 elsif Nkind (Expr) = N_Selected_Component then
4301 Check_Valid_Lvalue_Subscripts (Prefix (Expr));
4302 return;
4303
4304 -- Case of indexed component
4305
4306 elsif Nkind (Expr) = N_Indexed_Component then
4307 Apply_Subscript_Validity_Checks (Expr);
4308
675d6070
TQ
4309 -- Prefix may itself be or contain an indexed component, and these
4310 -- subscripts need checking as well.
70482933
RK
4311
4312 Check_Valid_Lvalue_Subscripts (Prefix (Expr));
4313 end if;
4314 end Check_Valid_Lvalue_Subscripts;
4315
2820d220
AC
4316 ----------------------------------
4317 -- Null_Exclusion_Static_Checks --
4318 ----------------------------------
4319
d59179b1 4320 procedure Null_Exclusion_Static_Checks
62d40a7a
AC
4321 (N : Node_Id;
4322 Comp : Node_Id := Empty;
4323 Array_Comp : Boolean := False)
d59179b1 4324 is
97ac2d62
AC
4325 Has_Null : constant Boolean := Has_Null_Exclusion (N);
4326 Kind : constant Node_Kind := Nkind (N);
4327 Error_Nod : Node_Id;
4328 Expr : Node_Id;
4329 Typ : Entity_Id;
2820d220 4330
2ede092b 4331 begin
c064e066 4332 pragma Assert
4a08c95c
AC
4333 (Kind in N_Component_Declaration
4334 | N_Discriminant_Specification
4335 | N_Function_Specification
4336 | N_Object_Declaration
4337 | N_Parameter_Specification);
c064e066 4338
97ac2d62 4339 if Kind = N_Function_Specification then
c064e066
RD
4340 Typ := Etype (Defining_Entity (N));
4341 else
4342 Typ := Etype (Defining_Identifier (N));
4343 end if;
2820d220 4344
97ac2d62 4345 case Kind is
2ede092b
RD
4346 when N_Component_Declaration =>
4347 if Present (Access_Definition (Component_Definition (N))) then
97ac2d62 4348 Error_Nod := Component_Definition (N);
2ede092b 4349 else
97ac2d62 4350 Error_Nod := Subtype_Indication (Component_Definition (N));
2ede092b 4351 end if;
7324bf49 4352
c064e066 4353 when N_Discriminant_Specification =>
97ac2d62 4354 Error_Nod := Discriminant_Type (N);
c064e066
RD
4355
4356 when N_Function_Specification =>
97ac2d62 4357 Error_Nod := Result_Definition (N);
c064e066
RD
4358
4359 when N_Object_Declaration =>
97ac2d62 4360 Error_Nod := Object_Definition (N);
c064e066
RD
4361
4362 when N_Parameter_Specification =>
97ac2d62 4363 Error_Nod := Parameter_Type (N);
c064e066 4364
2ede092b
RD
4365 when others =>
4366 raise Program_Error;
4367 end case;
7324bf49 4368
c064e066 4369 if Has_Null then
7324bf49 4370
c064e066
RD
4371 -- Enforce legality rule 3.10 (13): A null exclusion can only be
4372 -- applied to an access [sub]type.
7324bf49 4373
c064e066 4374 if not Is_Access_Type (Typ) then
ed2233dc 4375 Error_Msg_N
97ac2d62 4376 ("`NOT NULL` allowed only for an access type", Error_Nod);
7324bf49 4377
675d6070 4378 -- Enforce legality rule RM 3.10(14/1): A null exclusion can only
c064e066
RD
4379 -- be applied to a [sub]type that does not exclude null already.
4380
97ac2d62 4381 elsif Can_Never_Be_Null (Typ) and then Comes_From_Source (Typ) then
ed2233dc 4382 Error_Msg_NE
11b4899f 4383 ("`NOT NULL` not allowed (& already excludes null)",
97ac2d62 4384 Error_Nod, Typ);
c064e066 4385 end if;
2ede092b 4386 end if;
7324bf49 4387
f2cbd970
JM
4388 -- Check that null-excluding objects are always initialized, except for
4389 -- deferred constants, for which the expression will appear in the full
4390 -- declaration.
2ede092b 4391
97ac2d62 4392 if Kind = N_Object_Declaration
86ac5e79 4393 and then No (Expression (N))
f2cbd970 4394 and then not Constant_Present (N)
675d6070 4395 and then not No_Initialization (N)
2ede092b 4396 then
d59179b1
AC
4397 if Present (Comp) then
4398
31e358e1 4399 -- Specialize the warning message to indicate that we are dealing
d59179b1
AC
4400 -- with an uninitialized composite object that has a defaulted
4401 -- null-excluding component.
4402
4403 Error_Msg_Name_1 := Chars (Defining_Identifier (Comp));
4404 Error_Msg_Name_2 := Chars (Defining_Identifier (N));
4405
62d40a7a
AC
4406 Discard_Node
4407 (Compile_Time_Constraint_Error
cdfdd0de
PT
4408 (N => N,
4409 Msg =>
62d40a7a
AC
4410 "(Ada 2005) null-excluding component % of object % must "
4411 & "be initialized??",
4412 Ent => Defining_Identifier (Comp)));
4413
4414 -- This is a case of an array with null-excluding components, so
4415 -- indicate that in the warning.
4416
4417 elsif Array_Comp then
4418 Discard_Node
4419 (Compile_Time_Constraint_Error
cdfdd0de
PT
4420 (N => N,
4421 Msg =>
62d40a7a
AC
4422 "(Ada 2005) null-excluding array components must "
4423 & "be initialized??",
4424 Ent => Defining_Identifier (N)));
4425
4426 -- Normal case of object of a null-excluding access type
31e358e1 4427
d59179b1 4428 else
62d40a7a
AC
4429 -- Add an expression that assigns null. This node is needed by
4430 -- Apply_Compile_Time_Constraint_Error, which will replace this
4431 -- with a Constraint_Error node.
4432
4433 Set_Expression (N, Make_Null (Sloc (N)));
4434 Set_Etype (Expression (N), Etype (Defining_Identifier (N)));
4435
d59179b1
AC
4436 Apply_Compile_Time_Constraint_Error
4437 (N => Expression (N),
4438 Msg =>
4439 "(Ada 2005) null-excluding objects must be initialized??",
4440 Reason => CE_Null_Not_Allowed);
4441 end if;
2ede092b 4442 end if;
7324bf49 4443
f2cbd970
JM
4444 -- Check that a null-excluding component, formal or object is not being
4445 -- assigned a null value. Otherwise generate a warning message and
f3d0f304 4446 -- replace Expression (N) by an N_Constraint_Error node.
2ede092b 4447
97ac2d62 4448 if Kind /= N_Function_Specification then
c064e066 4449 Expr := Expression (N);
7324bf49 4450
939c12d2 4451 if Present (Expr) and then Known_Null (Expr) then
97ac2d62 4452 case Kind is
d8f43ee6
HK
4453 when N_Component_Declaration
4454 | N_Discriminant_Specification
4455 =>
82c80734 4456 Apply_Compile_Time_Constraint_Error
c064e066 4457 (N => Expr,
d8f43ee6 4458 Msg =>
9ed2b86d 4459 "(Ada 2005) NULL not allowed in null-excluding "
d8f43ee6 4460 & "components??",
c064e066 4461 Reason => CE_Null_Not_Allowed);
7324bf49 4462
c064e066 4463 when N_Object_Declaration =>
82c80734 4464 Apply_Compile_Time_Constraint_Error
c064e066 4465 (N => Expr,
d8f43ee6 4466 Msg =>
9ed2b86d 4467 "(Ada 2005) NULL not allowed in null-excluding "
d8f43ee6 4468 & "objects??",
c064e066 4469 Reason => CE_Null_Not_Allowed);
7324bf49 4470
c064e066 4471 when N_Parameter_Specification =>
82c80734 4472 Apply_Compile_Time_Constraint_Error
c064e066 4473 (N => Expr,
d8f43ee6 4474 Msg =>
9ed2b86d 4475 "(Ada 2005) NULL not allowed in null-excluding "
d8f43ee6 4476 & "formals??",
c064e066 4477 Reason => CE_Null_Not_Allowed);
2ede092b
RD
4478
4479 when others =>
4480 null;
7324bf49
AC
4481 end case;
4482 end if;
c064e066 4483 end if;
2820d220
AC
4484 end Null_Exclusion_Static_Checks;
4485
12be130c
EB
4486 -------------------------------------
4487 -- Compute_Range_For_Arithmetic_Op --
4488 -------------------------------------
4489
4490 procedure Compute_Range_For_Arithmetic_Op
4491 (Op : Node_Kind;
4492 Lo_Left : Uint;
4493 Hi_Left : Uint;
4494 Lo_Right : Uint;
4495 Hi_Right : Uint;
4496 OK : out Boolean;
4497 Lo : out Uint;
4498 Hi : out Uint)
4499 is
4500 -- Use local variables for possible adjustments
4501
4502 Llo : Uint renames Lo_Left;
4503 Lhi : Uint renames Hi_Left;
4504 Rlo : Uint := Lo_Right;
4505 Rhi : Uint := Hi_Right;
4506
4507 begin
4508 -- We will compute a range for the result in almost all cases
4509
4510 OK := True;
4511
4512 case Op is
4513
4514 -- Absolute value
4515
4516 when N_Op_Abs =>
4517 Lo := Uint_0;
4518 Hi := UI_Max (abs Rlo, abs Rhi);
4519
4520 -- Addition
4521
4522 when N_Op_Add =>
4523 Lo := Llo + Rlo;
4524 Hi := Lhi + Rhi;
4525
4526 -- Division
4527
4528 when N_Op_Divide =>
4529
4530 -- If the right operand can only be zero, set 0..0
4531
4532 if Rlo = 0 and then Rhi = 0 then
4533 Lo := Uint_0;
4534 Hi := Uint_0;
4535
4536 -- Possible bounds of division must come from dividing end
4537 -- values of the input ranges (four possibilities), provided
4538 -- zero is not included in the possible values of the right
4539 -- operand.
4540
4541 -- Otherwise, we just consider two intervals of values for
4542 -- the right operand: the interval of negative values (up to
4543 -- -1) and the interval of positive values (starting at 1).
4544 -- Since division by 1 is the identity, and division by -1
4545 -- is negation, we get all possible bounds of division in that
4546 -- case by considering:
4547 -- - all values from the division of end values of input
4548 -- ranges;
4549 -- - the end values of the left operand;
4550 -- - the negation of the end values of the left operand.
4551
4552 else
4553 declare
4554 Mrk : constant Uintp.Save_Mark := Mark;
4555 -- Mark so we can release the RR and Ev values
4556
4557 Ev1 : Uint;
4558 Ev2 : Uint;
4559 Ev3 : Uint;
4560 Ev4 : Uint;
4561
4562 begin
4563 -- Discard extreme values of zero for the divisor, since
4564 -- they will simply result in an exception in any case.
4565
4566 if Rlo = 0 then
4567 Rlo := Uint_1;
4568 elsif Rhi = 0 then
4569 Rhi := -Uint_1;
4570 end if;
4571
4572 -- Compute possible bounds coming from dividing end
4573 -- values of the input ranges.
4574
4575 Ev1 := Llo / Rlo;
4576 Ev2 := Llo / Rhi;
4577 Ev3 := Lhi / Rlo;
4578 Ev4 := Lhi / Rhi;
4579
4580 Lo := UI_Min (UI_Min (Ev1, Ev2), UI_Min (Ev3, Ev4));
4581 Hi := UI_Max (UI_Max (Ev1, Ev2), UI_Max (Ev3, Ev4));
4582
4583 -- If the right operand can be both negative or positive,
4584 -- include the end values of the left operand in the
4585 -- extreme values, as well as their negation.
4586
4587 if Rlo < 0 and then Rhi > 0 then
4588 Ev1 := Llo;
4589 Ev2 := -Llo;
4590 Ev3 := Lhi;
4591 Ev4 := -Lhi;
4592
4593 Lo := UI_Min (Lo,
4594 UI_Min (UI_Min (Ev1, Ev2), UI_Min (Ev3, Ev4)));
4595 Hi := UI_Max (Hi,
4596 UI_Max (UI_Max (Ev1, Ev2), UI_Max (Ev3, Ev4)));
4597 end if;
4598
4599 -- Release the RR and Ev values
4600
4601 Release_And_Save (Mrk, Lo, Hi);
4602 end;
4603 end if;
4604
4605 -- Exponentiation
4606
4607 when N_Op_Expon =>
4608
4609 -- Discard negative values for the exponent, since they will
4610 -- simply result in an exception in any case.
4611
4612 if Rhi < 0 then
4613 Rhi := Uint_0;
4614 elsif Rlo < 0 then
4615 Rlo := Uint_0;
4616 end if;
4617
4618 -- Estimate number of bits in result before we go computing
4619 -- giant useless bounds. Basically the number of bits in the
4620 -- result is the number of bits in the base multiplied by the
4621 -- value of the exponent. If this is big enough that the result
4622 -- definitely won't fit in Long_Long_Integer, return immediately
4623 -- and avoid computing giant bounds.
4624
4625 -- The comparison here is approximate, but conservative, it
4626 -- only clicks on cases that are sure to exceed the bounds.
4627
4628 if Num_Bits (UI_Max (abs Llo, abs Lhi)) * Rhi + 1 > 100 then
4629 Lo := No_Uint;
4630 Hi := No_Uint;
4631 OK := False;
4632 return;
4633
4634 -- If right operand is zero then result is 1
4635
4636 elsif Rhi = 0 then
4637 Lo := Uint_1;
4638 Hi := Uint_1;
4639
4640 else
4641 -- High bound comes either from exponentiation of largest
4642 -- positive value to largest exponent value, or from
4643 -- the exponentiation of most negative value to an
4644 -- even exponent.
4645
4646 declare
4647 Hi1, Hi2 : Uint;
4648
4649 begin
4650 if Lhi > 0 then
4651 Hi1 := Lhi ** Rhi;
4652 else
4653 Hi1 := Uint_0;
4654 end if;
4655
4656 if Llo < 0 then
4657 if Rhi mod 2 = 0 then
4658 Hi2 := Llo ** Rhi;
4659 else
4660 Hi2 := Llo ** (Rhi - 1);
4661 end if;
4662 else
4663 Hi2 := Uint_0;
4664 end if;
4665
4666 Hi := UI_Max (Hi1, Hi2);
4667 end;
4668
4669 -- Result can only be negative if base can be negative
4670
4671 if Llo < 0 then
4672 if Rhi mod 2 = 0 then
4673 Lo := Llo ** (Rhi - 1);
4674 else
4675 Lo := Llo ** Rhi;
4676 end if;
4677
4678 -- Otherwise low bound is minimum ** minimum
4679
4680 else
4681 Lo := Llo ** Rlo;
4682 end if;
4683 end if;
4684
4685 -- Negation
4686
4687 when N_Op_Minus =>
4688 Lo := -Rhi;
4689 Hi := -Rlo;
4690
4691 -- Mod
4692
4693 when N_Op_Mod =>
4694 declare
4695 Maxabs : constant Uint := UI_Max (abs Rlo, abs Rhi) - 1;
4696 -- This is the maximum absolute value of the result
4697
4698 begin
4699 Lo := Uint_0;
4700 Hi := Uint_0;
4701
4702 -- The result depends only on the sign and magnitude of
4703 -- the right operand, it does not depend on the sign or
4704 -- magnitude of the left operand.
4705
4706 if Rlo < 0 then
4707 Lo := -Maxabs;
4708 end if;
4709
4710 if Rhi > 0 then
4711 Hi := Maxabs;
4712 end if;
4713 end;
4714
4715 -- Multiplication
4716
4717 when N_Op_Multiply =>
4718
4719 -- Possible bounds of multiplication must come from multiplying
4720 -- end values of the input ranges (four possibilities).
4721
4722 declare
4723 Mrk : constant Uintp.Save_Mark := Mark;
4724 -- Mark so we can release the Ev values
4725
4726 Ev1 : constant Uint := Llo * Rlo;
4727 Ev2 : constant Uint := Llo * Rhi;
4728 Ev3 : constant Uint := Lhi * Rlo;
4729 Ev4 : constant Uint := Lhi * Rhi;
4730
4731 begin
4732 Lo := UI_Min (UI_Min (Ev1, Ev2), UI_Min (Ev3, Ev4));
4733 Hi := UI_Max (UI_Max (Ev1, Ev2), UI_Max (Ev3, Ev4));
4734
4735 -- Release the Ev values
4736
4737 Release_And_Save (Mrk, Lo, Hi);
4738 end;
4739
4740 -- Plus operator (affirmation)
4741
4742 when N_Op_Plus =>
4743 Lo := Rlo;
4744 Hi := Rhi;
4745
4746 -- Remainder
4747
4748 when N_Op_Rem =>
4749 declare
4750 Maxabs : constant Uint := UI_Max (abs Rlo, abs Rhi) - 1;
4751 -- This is the maximum absolute value of the result. Note
4752 -- that the result range does not depend on the sign of the
4753 -- right operand.
4754
4755 begin
4756 Lo := Uint_0;
4757 Hi := Uint_0;
4758
4759 -- Case of left operand negative, which results in a range
4760 -- of -Maxabs .. 0 for those negative values. If there are
4761 -- no negative values then Lo value of result is always 0.
4762
4763 if Llo < 0 then
4764 Lo := -Maxabs;
4765 end if;
4766
4767 -- Case of left operand positive
4768
4769 if Lhi > 0 then
4770 Hi := Maxabs;
4771 end if;
4772 end;
4773
4774 -- Subtract
4775
4776 when N_Op_Subtract =>
4777 Lo := Llo - Rhi;
4778 Hi := Lhi - Rlo;
4779
4780 -- Nothing else should be possible
4781
4782 when others =>
4783 raise Program_Error;
4784 end case;
4785 end Compute_Range_For_Arithmetic_Op;
4786
fbf5a39b
AC
4787 ----------------------------------
4788 -- Conditional_Statements_Begin --
4789 ----------------------------------
4790
4791 procedure Conditional_Statements_Begin is
4792 begin
4793 Saved_Checks_TOS := Saved_Checks_TOS + 1;
4794
675d6070
TQ
4795 -- If stack overflows, kill all checks, that way we know to simply reset
4796 -- the number of saved checks to zero on return. This should never occur
4797 -- in practice.
fbf5a39b
AC
4798
4799 if Saved_Checks_TOS > Saved_Checks_Stack'Last then
4800 Kill_All_Checks;
4801
675d6070
TQ
4802 -- In the normal case, we just make a new stack entry saving the current
4803 -- number of saved checks for a later restore.
fbf5a39b
AC
4804
4805 else
4806 Saved_Checks_Stack (Saved_Checks_TOS) := Num_Saved_Checks;
4807
4808 if Debug_Flag_CC then
4809 w ("Conditional_Statements_Begin: Num_Saved_Checks = ",
4810 Num_Saved_Checks);
4811 end if;
4812 end if;
4813 end Conditional_Statements_Begin;
4814
4815 --------------------------------
4816 -- Conditional_Statements_End --
4817 --------------------------------
4818
4819 procedure Conditional_Statements_End is
4820 begin
4821 pragma Assert (Saved_Checks_TOS > 0);
4822
675d6070
TQ
4823 -- If the saved checks stack overflowed, then we killed all checks, so
4824 -- setting the number of saved checks back to zero is correct. This
4825 -- should never occur in practice.
fbf5a39b
AC
4826
4827 if Saved_Checks_TOS > Saved_Checks_Stack'Last then
4828 Num_Saved_Checks := 0;
4829
675d6070
TQ
4830 -- In the normal case, restore the number of saved checks from the top
4831 -- stack entry.
fbf5a39b
AC
4832
4833 else
4834 Num_Saved_Checks := Saved_Checks_Stack (Saved_Checks_TOS);
637a41a5 4835
fbf5a39b
AC
4836 if Debug_Flag_CC then
4837 w ("Conditional_Statements_End: Num_Saved_Checks = ",
4838 Num_Saved_Checks);
4839 end if;
4840 end if;
4841
4842 Saved_Checks_TOS := Saved_Checks_TOS - 1;
4843 end Conditional_Statements_End;
4844
acad3c0a
AC
4845 -------------------------
4846 -- Convert_From_Bignum --
4847 -------------------------
4848
4849 function Convert_From_Bignum (N : Node_Id) return Node_Id is
4850 Loc : constant Source_Ptr := Sloc (N);
4851
4852 begin
4853 pragma Assert (Is_RTE (Etype (N), RE_Bignum));
4854
4855 -- Construct call From Bignum
4856
4857 return
4858 Make_Function_Call (Loc,
4859 Name =>
4860 New_Occurrence_Of (RTE (RE_From_Bignum), Loc),
4861 Parameter_Associations => New_List (Relocate_Node (N)));
4862 end Convert_From_Bignum;
4863
4864 -----------------------
4865 -- Convert_To_Bignum --
4866 -----------------------
4867
4868 function Convert_To_Bignum (N : Node_Id) return Node_Id is
4869 Loc : constant Source_Ptr := Sloc (N);
4870
4871 begin
4b1c4f20 4872 -- Nothing to do if Bignum already except call Relocate_Node
acad3c0a
AC
4873
4874 if Is_RTE (Etype (N), RE_Bignum) then
4875 return Relocate_Node (N);
4876
5707e389
AC
4877 -- Otherwise construct call to To_Bignum, converting the operand to the
4878 -- required Long_Long_Integer form.
acad3c0a
AC
4879
4880 else
4881 pragma Assert (Is_Signed_Integer_Type (Etype (N)));
4882 return
4883 Make_Function_Call (Loc,
4884 Name =>
4885 New_Occurrence_Of (RTE (RE_To_Bignum), Loc),
4886 Parameter_Associations => New_List (
4887 Convert_To (Standard_Long_Long_Integer, Relocate_Node (N))));
4888 end if;
4889 end Convert_To_Bignum;
4890
70482933
RK
4891 ---------------------
4892 -- Determine_Range --
4893 ---------------------
4894
c9a4817d 4895 Cache_Size : constant := 2 ** 10;
70482933 4896 type Cache_Index is range 0 .. Cache_Size - 1;
a90bd866 4897 -- Determine size of below cache (power of 2 is more efficient)
70482933 4898
6b6bce61 4899 Determine_Range_Cache_N : array (Cache_Index) of Node_Id;
12be130c 4900 Determine_Range_Cache_O : array (Cache_Index) of Node_Id;
6b6bce61
AC
4901 Determine_Range_Cache_V : array (Cache_Index) of Boolean;
4902 Determine_Range_Cache_Lo : array (Cache_Index) of Uint;
4903 Determine_Range_Cache_Hi : array (Cache_Index) of Uint;
4904 Determine_Range_Cache_Lo_R : array (Cache_Index) of Ureal;
4905 Determine_Range_Cache_Hi_R : array (Cache_Index) of Ureal;
675d6070 4906 -- The above arrays are used to implement a small direct cache for
6b6bce61
AC
4907 -- Determine_Range and Determine_Range_R calls. Because of the way these
4908 -- subprograms recursively traces subexpressions, and because overflow
4909 -- checking calls the routine on the way up the tree, a quadratic behavior
4910 -- can otherwise be encountered in large expressions. The cache entry for
4911 -- node N is stored in the (N mod Cache_Size) entry, and can be validated
12be130c
EB
4912 -- by checking the actual node value stored there. The Range_Cache_O array
4913 -- records the setting of Original_Node (N) so that the cache entry does
4914 -- not become stale when the node N is rewritten. The Range_Cache_V array
6b6bce61 4915 -- records the setting of Assume_Valid for the cache entry.
70482933
RK
4916
4917 procedure Determine_Range
c800f862
RD
4918 (N : Node_Id;
4919 OK : out Boolean;
4920 Lo : out Uint;
4921 Hi : out Uint;
4922 Assume_Valid : Boolean := False)
70482933 4923 is
12be130c
EB
4924 Kind : constant Node_Kind := Nkind (N);
4925 -- Kind of node
4926
4927 function Half_Address_Space return Uint;
4928 -- The size of half the total addressable memory space in storage units
4929 -- (minus one, so that the size fits in a signed integer whose size is
4930 -- System_Address_Size, which helps in various cases).
4931
4932 ------------------------
4933 -- Half_Address_Space --
4934 ------------------------
4935
4936 function Half_Address_Space return Uint is
4937 begin
4938 return Uint_2 ** (System_Address_Size - 1) - 1;
4939 end Half_Address_Space;
4940
4941 -- Local variables
4942
1c7717c3
AC
4943 Typ : Entity_Id := Etype (N);
4944 -- Type to use, may get reset to base type for possibly invalid entity
c1c22e7a 4945
12be130c
EB
4946 Lo_Left : Uint := No_Uint;
4947 Hi_Left : Uint := No_Uint;
c1c22e7a 4948 -- Lo and Hi bounds of left operand
70482933 4949
dcd5fd67
PMR
4950 Lo_Right : Uint := No_Uint;
4951 Hi_Right : Uint := No_Uint;
c1c22e7a
GB
4952 -- Lo and Hi bounds of right (or only) operand
4953
4954 Bound : Node_Id;
4955 -- Temp variable used to hold a bound node
4956
4957 Hbound : Uint;
4958 -- High bound of base type of expression
4959
4960 Lor : Uint;
4961 Hir : Uint;
4962 -- Refined values for low and high bounds, after tightening
4963
4964 OK1 : Boolean;
4965 -- Used in lower level calls to indicate if call succeeded
4966
4967 Cindex : Cache_Index;
4968 -- Used to search cache
70482933 4969
d7a44b14
AC
4970 Btyp : Entity_Id;
4971 -- Base type
4972
70482933
RK
4973 -- Start of processing for Determine_Range
4974
4975 begin
3e65bfab
AC
4976 -- Prevent junk warnings by initializing range variables
4977
4978 Lo := No_Uint;
4979 Hi := No_Uint;
4980 Lor := No_Uint;
4981 Hir := No_Uint;
4982
62be5d0a
JM
4983 -- For temporary constants internally generated to remove side effects
4984 -- we must use the corresponding expression to determine the range of
3e65bfab
AC
4985 -- the expression. But note that the expander can also generate
4986 -- constants in other cases, including deferred constants.
62be5d0a
JM
4987
4988 if Is_Entity_Name (N)
4989 and then Nkind (Parent (Entity (N))) = N_Object_Declaration
4990 and then Ekind (Entity (N)) = E_Constant
4991 and then Is_Internal_Name (Chars (Entity (N)))
4992 then
3e65bfab
AC
4993 if Present (Expression (Parent (Entity (N)))) then
4994 Determine_Range
4995 (Expression (Parent (Entity (N))), OK, Lo, Hi, Assume_Valid);
62be5d0a 4996
3e65bfab
AC
4997 elsif Present (Full_View (Entity (N))) then
4998 Determine_Range
4999 (Expression (Parent (Full_View (Entity (N)))),
5000 OK, Lo, Hi, Assume_Valid);
70482933 5001
3e65bfab
AC
5002 else
5003 OK := False;
5004 end if;
5005 return;
5006 end if;
70482933 5007
1abad480 5008 -- If type is not defined, we can't determine its range
70482933 5009
1abad480
AC
5010 if No (Typ)
5011
5012 -- We don't deal with anything except discrete types
5013
5014 or else not Is_Discrete_Type (Typ)
5015
f20b5ef4
JM
5016 -- Don't deal with enumerated types with non-standard representation
5017
5018 or else (Is_Enumeration_Type (Typ)
c56c7d3a
SB
5019 and then Present (Enum_Pos_To_Rep
5020 (Implementation_Base_Type (Typ))))
f20b5ef4 5021
1abad480
AC
5022 -- Ignore type for which an error has been posted, since range in
5023 -- this case may well be a bogosity deriving from the error. Also
5024 -- ignore if error posted on the reference node.
5025
5026 or else Error_Posted (N) or else Error_Posted (Typ)
70482933
RK
5027 then
5028 OK := False;
5029 return;
5030 end if;
5031
5032 -- For all other cases, we can determine the range
5033
5034 OK := True;
5035
675d6070 5036 -- If value is compile time known, then the possible range is the one
a90bd866 5037 -- value that we know this expression definitely has.
70482933
RK
5038
5039 if Compile_Time_Known_Value (N) then
5040 Lo := Expr_Value (N);
5041 Hi := Lo;
5042 return;
5043 end if;
5044
5045 -- Return if already in the cache
5046
5047 Cindex := Cache_Index (N mod Cache_Size);
5048
c800f862
RD
5049 if Determine_Range_Cache_N (Cindex) = N
5050 and then
12be130c
EB
5051 Determine_Range_Cache_O (Cindex) = Original_Node (N)
5052 and then
c800f862
RD
5053 Determine_Range_Cache_V (Cindex) = Assume_Valid
5054 then
70482933
RK
5055 Lo := Determine_Range_Cache_Lo (Cindex);
5056 Hi := Determine_Range_Cache_Hi (Cindex);
5057 return;
5058 end if;
5059
675d6070
TQ
5060 -- Otherwise, start by finding the bounds of the type of the expression,
5061 -- the value cannot be outside this range (if it is, then we have an
5062 -- overflow situation, which is a separate check, we are talking here
5063 -- only about the expression value).
70482933 5064
93c3fca7
AC
5065 -- First a check, never try to find the bounds of a generic type, since
5066 -- these bounds are always junk values, and it is only valid to look at
5067 -- the bounds in an instance.
5068
5069 if Is_Generic_Type (Typ) then
5070 OK := False;
5071 return;
5072 end if;
5073
c800f862 5074 -- First step, change to use base type unless we know the value is valid
1c7717c3 5075
c800f862
RD
5076 if (Is_Entity_Name (N) and then Is_Known_Valid (Entity (N)))
5077 or else Assume_No_Invalid_Values
5078 or else Assume_Valid
1c7717c3 5079 then
43018f58
ES
5080 -- If this is a known valid constant with a nonstatic value, it may
5081 -- have inherited a narrower subtype from its initial value; use this
5082 -- saved subtype (see sem_ch3.adb).
5083
5084 if Is_Entity_Name (N)
5085 and then Ekind (Entity (N)) = E_Constant
5086 and then Present (Actual_Subtype (Entity (N)))
5087 then
5088 Typ := Actual_Subtype (Entity (N));
5089 end if;
5090
c800f862
RD
5091 else
5092 Typ := Underlying_Type (Base_Type (Typ));
1c7717c3
AC
5093 end if;
5094
d7a44b14
AC
5095 -- Retrieve the base type. Handle the case where the base type is a
5096 -- private enumeration type.
5097
5098 Btyp := Base_Type (Typ);
5099
5100 if Is_Private_Type (Btyp) and then Present (Full_View (Btyp)) then
5101 Btyp := Full_View (Btyp);
5102 end if;
5103
675d6070
TQ
5104 -- We use the actual bound unless it is dynamic, in which case use the
5105 -- corresponding base type bound if possible. If we can't get a bound
5106 -- then we figure we can't determine the range (a peculiar case, that
5107 -- perhaps cannot happen, but there is no point in bombing in this
12be130c 5108 -- optimization circuit).
c1c22e7a
GB
5109
5110 -- First the low bound
70482933
RK
5111
5112 Bound := Type_Low_Bound (Typ);
5113
5114 if Compile_Time_Known_Value (Bound) then
5115 Lo := Expr_Value (Bound);
5116
d7a44b14
AC
5117 elsif Compile_Time_Known_Value (Type_Low_Bound (Btyp)) then
5118 Lo := Expr_Value (Type_Low_Bound (Btyp));
70482933
RK
5119
5120 else
5121 OK := False;
5122 return;
5123 end if;
5124
c1c22e7a
GB
5125 -- Now the high bound
5126
70482933
RK
5127 Bound := Type_High_Bound (Typ);
5128
c1c22e7a
GB
5129 -- We need the high bound of the base type later on, and this should
5130 -- always be compile time known. Again, it is not clear that this
5131 -- can ever be false, but no point in bombing.
70482933 5132
d7a44b14
AC
5133 if Compile_Time_Known_Value (Type_High_Bound (Btyp)) then
5134 Hbound := Expr_Value (Type_High_Bound (Btyp));
70482933
RK
5135 Hi := Hbound;
5136
5137 else
5138 OK := False;
5139 return;
5140 end if;
5141
675d6070
TQ
5142 -- If we have a static subtype, then that may have a tighter bound so
5143 -- use the upper bound of the subtype instead in this case.
c1c22e7a
GB
5144
5145 if Compile_Time_Known_Value (Bound) then
5146 Hi := Expr_Value (Bound);
5147 end if;
5148
675d6070
TQ
5149 -- We may be able to refine this value in certain situations. If any
5150 -- refinement is possible, then Lor and Hir are set to possibly tighter
5151 -- bounds, and OK1 is set to True.
70482933 5152
12be130c 5153 case Kind is
70482933 5154
12be130c 5155 -- Unary operation case
70482933 5156
12be130c
EB
5157 when N_Op_Abs
5158 | N_Op_Minus
5159 | N_Op_Plus
5160 =>
c800f862
RD
5161 Determine_Range
5162 (Right_Opnd (N), OK1, Lo_Right, Hi_Right, Assume_Valid);
70482933
RK
5163
5164 if OK1 then
12be130c
EB
5165 Compute_Range_For_Arithmetic_Op
5166 (Kind, Lo_Left, Hi_Left, Lo_Right, Hi_Right, OK1, Lor, Hir);
70482933
RK
5167 end if;
5168
12be130c 5169 -- Binary operation case
70482933 5170
12be130c
EB
5171 when N_Op_Add
5172 | N_Op_Divide
5173 | N_Op_Expon
5174 | N_Op_Mod
5175 | N_Op_Multiply
5176 | N_Op_Rem
5177 | N_Op_Subtract
5178 =>
5179 Determine_Range
5180 (Left_Opnd (N), OK1, Lo_Left, Hi_Left, Assume_Valid);
70482933 5181
12be130c
EB
5182 if OK1 then
5183 Determine_Range
5184 (Right_Opnd (N), OK1, Lo_Right, Hi_Right, Assume_Valid);
70482933
RK
5185 end if;
5186
12be130c
EB
5187 if OK1 then
5188 Compute_Range_For_Arithmetic_Op
5189 (Kind, Lo_Left, Hi_Left, Lo_Right, Hi_Right, OK1, Lor, Hir);
70482933
RK
5190 end if;
5191
5192 -- Attribute reference cases
5193
5194 when N_Attribute_Reference =>
12be130c 5195 case Get_Attribute_Id (Attribute_Name (N)) is
70482933 5196
b8989631
EB
5197 -- For Min/Max attributes, we can refine the range using the
5198 -- possible range of values of the attribute expressions.
5199
5200 when Attribute_Min
5201 | Attribute_Max
5202 =>
5203 Determine_Range
5204 (First (Expressions (N)),
5205 OK1, Lo_Left, Hi_Left, Assume_Valid);
5206
5207 if OK1 then
5208 Determine_Range
5209 (Next (First (Expressions (N))),
5210 OK1, Lo_Right, Hi_Right, Assume_Valid);
5211 end if;
5212
5213 if OK1 then
5214 Lor := UI_Min (Lo_Left, Lo_Right);
5215 Hir := UI_Max (Hi_Left, Hi_Right);
5216 end if;
5217
70482933 5218 -- For Pos/Val attributes, we can refine the range using the
f26d5cd3 5219 -- possible range of values of the attribute expression.
70482933 5220
12be130c
EB
5221 when Attribute_Pos
5222 | Attribute_Val
d8f43ee6 5223 =>
c800f862
RD
5224 Determine_Range
5225 (First (Expressions (N)), OK1, Lor, Hir, Assume_Valid);
70482933 5226
12be130c
EB
5227 -- For Length and Range_Length attributes, use the bounds of
5228 -- the (corresponding index) type to refine the range.
70482933 5229
12be130c
EB
5230 when Attribute_Length
5231 | Attribute_Range_Length
5232 =>
70482933 5233 declare
12be130c
EB
5234 Ptyp : Entity_Id;
5235 Ityp : Entity_Id;
70482933
RK
5236
5237 LL, LU : Uint;
5238 UL, UU : Uint;
5239
5240 begin
12be130c
EB
5241 Ptyp := Etype (Prefix (N));
5242 if Is_Access_Type (Ptyp) then
5243 Ptyp := Designated_Type (Ptyp);
70482933
RK
5244 end if;
5245
5246 -- For string literal, we know exact value
5247
12be130c 5248 if Ekind (Ptyp) = E_String_Literal_Subtype then
70482933 5249 OK := True;
12be130c
EB
5250 Lo := String_Literal_Length (Ptyp);
5251 Hi := String_Literal_Length (Ptyp);
70482933
RK
5252 return;
5253 end if;
5254
12be130c
EB
5255 if Is_Array_Type (Ptyp) then
5256 Ityp := Get_Index_Subtype (N);
70482933 5257 else
12be130c 5258 Ityp := Ptyp;
70482933
RK
5259 end if;
5260
12be130c 5261 -- If the (index) type is a formal type or derived from
b4d7b435
AC
5262 -- one, the bounds are not static.
5263
12be130c 5264 if Is_Generic_Type (Root_Type (Ityp)) then
b4d7b435
AC
5265 OK := False;
5266 return;
5267 end if;
5268
70482933 5269 Determine_Range
12be130c 5270 (Type_Low_Bound (Ityp), OK1, LL, LU, Assume_Valid);
70482933
RK
5271
5272 if OK1 then
5273 Determine_Range
12be130c 5274 (Type_High_Bound (Ityp), OK1, UL, UU, Assume_Valid);
70482933
RK
5275
5276 if OK1 then
70482933
RK
5277 -- The maximum value for Length is the biggest
5278 -- possible gap between the values of the bounds.
5279 -- But of course, this value cannot be negative.
5280
c800f862 5281 Hir := UI_Max (Uint_0, UU - LL + 1);
70482933 5282
12be130c 5283 -- For a constrained array, the minimum value for
70482933 5284 -- Length is taken from the actual value of the
5b599df4
AC
5285 -- bounds, since the index will be exactly of this
5286 -- subtype.
70482933 5287
12be130c 5288 if Is_Constrained (Ptyp) then
c800f862 5289 Lor := UI_Max (Uint_0, UL - LU + 1);
70482933
RK
5290
5291 -- For an unconstrained array, the minimum value
5292 -- for length is always zero.
5293
5294 else
5295 Lor := Uint_0;
5296 end if;
5297 end if;
5298 end if;
12be130c
EB
5299
5300 -- Small optimization: the maximum size in storage units
5301 -- an object can have with GNAT is half of the address
5302 -- space, so we can bound the length of an array declared
5303 -- in Interfaces (or its children) because its component
5304 -- size is at least the storage unit and it is meant to
5305 -- be used to interface actual array objects.
5306
5307 if Is_Array_Type (Ptyp) then
5308 declare
5309 S : constant Entity_Id := Scope (Base_Type (Ptyp));
5310 begin
5311 if Is_RTU (S, Interfaces)
5312 or else (S /= Standard_Standard
5313 and then Is_RTU (Scope (S), Interfaces))
5314 then
5315 Hir := UI_Min (Hir, Half_Address_Space);
5316 end if;
5317 end;
5318 end if;
5319 end;
5320
5321 -- The maximum default alignment is quite low, but GNAT accepts
5322 -- alignment clauses that are fairly large, but not as large as
5323 -- the maximum size of objects, see below.
5324
5325 when Attribute_Alignment =>
5326 Lor := Uint_0;
5327 Hir := Half_Address_Space;
5328 OK1 := True;
5329
5330 -- The attribute should have been folded if a component clause
5331 -- was specified, so we assume there is none.
5332
5333 when Attribute_Bit
5334 | Attribute_First_Bit
5335 =>
5336 Lor := Uint_0;
5337 Hir := UI_From_Int (System_Storage_Unit - 1);
5338 OK1 := True;
5339
5340 -- Likewise about the component clause. Note that Last_Bit
5341 -- yields -1 for a field of size 0 if First_Bit is 0.
5342
5343 when Attribute_Last_Bit =>
5344 Lor := Uint_Minus_1;
5345 Hir := Hi;
5346 OK1 := True;
5347
5348 -- Likewise about the component clause for Position. The
5349 -- maximum size in storage units that an object can have
5350 -- with GNAT is half of the address space.
5351
5352 when Attribute_Max_Size_In_Storage_Elements
5353 | Attribute_Position
5354 =>
5355 Lor := Uint_0;
5356 Hir := Half_Address_Space;
5357 OK1 := True;
5358
5359 -- These attributes yield a nonnegative value (we do not set
5360 -- the maximum value because it is too large to be useful).
5361
5362 when Attribute_Bit_Position
5363 | Attribute_Component_Size
5364 | Attribute_Object_Size
5365 | Attribute_Size
5366 | Attribute_Value_Size
5367 =>
5368 Lor := Uint_0;
5369 Hir := Hi;
5370 OK1 := True;
5371
5372 -- The maximum size is the sum of twice the size of the largest
5373 -- integer for every dimension, rounded up to the next multiple
5374 -- of the maximum alignment, but we add instead of rounding.
5375
5376 when Attribute_Descriptor_Size =>
5377 declare
5378 Max_Align : constant Pos :=
5379 Maximum_Alignment * System_Storage_Unit;
5380 Max_Size : constant Uint :=
5381 2 * Esize (Universal_Integer);
5382 Ndims : constant Pos :=
5383 Number_Dimensions (Etype (Prefix (N)));
5384 begin
5385 Lor := Uint_0;
5386 Hir := Max_Size * Ndims + Max_Align;
5387 OK1 := True;
70482933
RK
5388 end;
5389
869a06d9 5390 -- No special handling for other attributes for now
70482933
RK
5391
5392 when others =>
5393 OK1 := False;
5394
5395 end case;
5396
70482933 5397 when N_Type_Conversion =>
84c54629
EB
5398 -- For a type conversion, we can try to refine the range using the
5399 -- converted value.
d8ee014f 5400
84c54629
EB
5401 Determine_Range_To_Discrete
5402 (Expression (N), OK1, Lor, Hir, Conversion_OK (N), Assume_Valid);
70482933
RK
5403
5404 -- Nothing special to do for all other expression kinds
5405
5406 when others =>
5407 OK1 := False;
5408 Lor := No_Uint;
5409 Hir := No_Uint;
5410 end case;
5411
5b599df4
AC
5412 -- At this stage, if OK1 is true, then we know that the actual result of
5413 -- the computed expression is in the range Lor .. Hir. We can use this
5414 -- to restrict the possible range of results.
70482933
RK
5415
5416 if OK1 then
5417
5b599df4 5418 -- If the refined value of the low bound is greater than the type
6b6bce61 5419 -- low bound, then reset it to the more restrictive value. However,
5b599df4
AC
5420 -- we do NOT do this for the case of a modular type where the
5421 -- possible upper bound on the value is above the base type high
5422 -- bound, because that means the result could wrap.
50462286 5423 -- Same applies for the lower bound if it is negative.
70482933 5424
50462286
MP
5425 if Is_Modular_Integer_Type (Typ) then
5426 if Lor > Lo and then Hir <= Hbound then
5427 Lo := Lor;
5428 end if;
70482933 5429
50462286
MP
5430 if Hir < Hi and then Lor >= Uint_0 then
5431 Hi := Hir;
5432 end if;
70482933 5433
50462286
MP
5434 else
5435 if Lor > Hi or else Hir < Lo then
5436
5437 -- If the ranges are disjoint, return the computed range.
5438
5439 -- The current range-constraining logic would require returning
5440 -- the base type's bounds. However, this would miss an
5441 -- opportunity to warn about out-of-range values for some cases
5442 -- (e.g. when type's upper bound is equal to base type upper
5443 -- bound).
5444
5445 -- The alternative of always returning the computed values,
5446 -- even when ranges are intersecting, has unwanted effects
5447 -- (mainly useless constraint checks are inserted) in the
5448 -- Enable_Overflow_Check and Apply_Scalar_Range_Check as these
5449 -- bounds have a special interpretation.
5450
5451 Lo := Lor;
5452 Hi := Hir;
5453 else
5454
5455 -- If the ranges Lor .. Hir and Lo .. Hi intersect, try to
5456 -- refine the returned range.
5457
5458 if Lor > Lo then
5459 Lo := Lor;
5460 end if;
5461
5462 if Hir < Hi then
5463 Hi := Hir;
5464 end if;
5465 end if;
70482933
RK
5466 end if;
5467 end if;
5468
5469 -- Set cache entry for future call and we are all done
5470
5471 Determine_Range_Cache_N (Cindex) := N;
12be130c 5472 Determine_Range_Cache_O (Cindex) := Original_Node (N);
c800f862 5473 Determine_Range_Cache_V (Cindex) := Assume_Valid;
70482933
RK
5474 Determine_Range_Cache_Lo (Cindex) := Lo;
5475 Determine_Range_Cache_Hi (Cindex) := Hi;
5476 return;
5477
5b599df4
AC
5478 -- If any exception occurs, it means that we have some bug in the compiler,
5479 -- possibly triggered by a previous error, or by some unforeseen peculiar
70482933
RK
5480 -- occurrence. However, this is only an optimization attempt, so there is
5481 -- really no point in crashing the compiler. Instead we just decide, too
5482 -- bad, we can't figure out a range in this case after all.
5483
5484 exception
5485 when others =>
5486
5487 -- Debug flag K disables this behavior (useful for debugging)
5488
5489 if Debug_Flag_K then
5490 raise;
5491 else
5492 OK := False;
5493 Lo := No_Uint;
5494 Hi := No_Uint;
5495 return;
5496 end if;
70482933
RK
5497 end Determine_Range;
5498
6b6bce61
AC
5499 -----------------------
5500 -- Determine_Range_R --
5501 -----------------------
5502
5503 procedure Determine_Range_R
5504 (N : Node_Id;
5505 OK : out Boolean;
5506 Lo : out Ureal;
5507 Hi : out Ureal;
5508 Assume_Valid : Boolean := False)
5509 is
5510 Typ : Entity_Id := Etype (N);
5511 -- Type to use, may get reset to base type for possibly invalid entity
5512
5513 Lo_Left : Ureal;
5514 Hi_Left : Ureal;
5515 -- Lo and Hi bounds of left operand
5516
dcd5fd67
PMR
5517 Lo_Right : Ureal := No_Ureal;
5518 Hi_Right : Ureal := No_Ureal;
6b6bce61
AC
5519 -- Lo and Hi bounds of right (or only) operand
5520
5521 Bound : Node_Id;
5522 -- Temp variable used to hold a bound node
5523
5524 Hbound : Ureal;
5525 -- High bound of base type of expression
5526
5527 Lor : Ureal;
5528 Hir : Ureal;
5529 -- Refined values for low and high bounds, after tightening
5530
5531 OK1 : Boolean;
5532 -- Used in lower level calls to indicate if call succeeded
5533
5534 Cindex : Cache_Index;
5535 -- Used to search cache
5536
5537 Btyp : Entity_Id;
5538 -- Base type
5539
5540 function OK_Operands return Boolean;
5541 -- Used for binary operators. Determines the ranges of the left and
5542 -- right operands, and if they are both OK, returns True, and puts
5543 -- the results in Lo_Right, Hi_Right, Lo_Left, Hi_Left.
5544
5545 function Round_Machine (B : Ureal) return Ureal;
60440d3c 5546 -- B is a real bound. Round it to the nearest machine number.
6b6bce61
AC
5547
5548 -----------------
5549 -- OK_Operands --
5550 -----------------
5551
5552 function OK_Operands return Boolean is
5553 begin
5554 Determine_Range_R
5555 (Left_Opnd (N), OK1, Lo_Left, Hi_Left, Assume_Valid);
5556
5557 if not OK1 then
5558 return False;
5559 end if;
5560
5561 Determine_Range_R
5562 (Right_Opnd (N), OK1, Lo_Right, Hi_Right, Assume_Valid);
5563 return OK1;
5564 end OK_Operands;
5565
5566 -------------------
5567 -- Round_Machine --
5568 -------------------
5569
5570 function Round_Machine (B : Ureal) return Ureal is
5571 begin
60440d3c 5572 return Machine_Number (Typ, B, N);
6b6bce61
AC
5573 end Round_Machine;
5574
5575 -- Start of processing for Determine_Range_R
5576
5577 begin
5578 -- Prevent junk warnings by initializing range variables
5579
5580 Lo := No_Ureal;
5581 Hi := No_Ureal;
5582 Lor := No_Ureal;
5583 Hir := No_Ureal;
5584
5585 -- For temporary constants internally generated to remove side effects
5586 -- we must use the corresponding expression to determine the range of
5587 -- the expression. But note that the expander can also generate
5588 -- constants in other cases, including deferred constants.
5589
5590 if Is_Entity_Name (N)
5591 and then Nkind (Parent (Entity (N))) = N_Object_Declaration
5592 and then Ekind (Entity (N)) = E_Constant
5593 and then Is_Internal_Name (Chars (Entity (N)))
5594 then
5595 if Present (Expression (Parent (Entity (N)))) then
5596 Determine_Range_R
5597 (Expression (Parent (Entity (N))), OK, Lo, Hi, Assume_Valid);
5598
5599 elsif Present (Full_View (Entity (N))) then
5600 Determine_Range_R
5601 (Expression (Parent (Full_View (Entity (N)))),
5602 OK, Lo, Hi, Assume_Valid);
5603
5604 else
5605 OK := False;
5606 end if;
d6e8719d 5607
6b6bce61
AC
5608 return;
5609 end if;
5610
5611 -- If type is not defined, we can't determine its range
5612
9324e07d
BD
5613 pragma Warnings (Off, "condition can only be True if invalid");
5614 -- Otherwise the compiler warns on the check of Float_Rep below, because
5615 -- there is only one value (see types.ads).
5616
6b6bce61
AC
5617 if No (Typ)
5618
5619 -- We don't deal with anything except IEEE floating-point types
5620
5621 or else not Is_Floating_Point_Type (Typ)
5622 or else Float_Rep (Typ) /= IEEE_Binary
5623
5624 -- Ignore type for which an error has been posted, since range in
5625 -- this case may well be a bogosity deriving from the error. Also
5626 -- ignore if error posted on the reference node.
5627
5628 or else Error_Posted (N) or else Error_Posted (Typ)
5629 then
9324e07d 5630 pragma Warnings (On, "condition can only be True if invalid");
6b6bce61
AC
5631 OK := False;
5632 return;
5633 end if;
5634
5635 -- For all other cases, we can determine the range
5636
5637 OK := True;
5638
5639 -- If value is compile time known, then the possible range is the one
5640 -- value that we know this expression definitely has.
5641
5642 if Compile_Time_Known_Value (N) then
5643 Lo := Expr_Value_R (N);
5644 Hi := Lo;
5645 return;
5646 end if;
5647
5648 -- Return if already in the cache
5649
5650 Cindex := Cache_Index (N mod Cache_Size);
5651
5652 if Determine_Range_Cache_N (Cindex) = N
5653 and then
12be130c
EB
5654 Determine_Range_Cache_O (Cindex) = Original_Node (N)
5655 and then
6b6bce61
AC
5656 Determine_Range_Cache_V (Cindex) = Assume_Valid
5657 then
5658 Lo := Determine_Range_Cache_Lo_R (Cindex);
5659 Hi := Determine_Range_Cache_Hi_R (Cindex);
5660 return;
5661 end if;
5662
5663 -- Otherwise, start by finding the bounds of the type of the expression,
5664 -- the value cannot be outside this range (if it is, then we have an
5665 -- overflow situation, which is a separate check, we are talking here
5666 -- only about the expression value).
5667
5668 -- First a check, never try to find the bounds of a generic type, since
5669 -- these bounds are always junk values, and it is only valid to look at
5670 -- the bounds in an instance.
5671
5672 if Is_Generic_Type (Typ) then
5673 OK := False;
5674 return;
5675 end if;
5676
5677 -- First step, change to use base type unless we know the value is valid
5678
5679 if (Is_Entity_Name (N) and then Is_Known_Valid (Entity (N)))
5680 or else Assume_No_Invalid_Values
5681 or else Assume_Valid
5682 then
5683 null;
5684 else
5685 Typ := Underlying_Type (Base_Type (Typ));
5686 end if;
5687
5688 -- Retrieve the base type. Handle the case where the base type is a
5689 -- private type.
5690
5691 Btyp := Base_Type (Typ);
5692
5693 if Is_Private_Type (Btyp) and then Present (Full_View (Btyp)) then
5694 Btyp := Full_View (Btyp);
5695 end if;
5696
5697 -- We use the actual bound unless it is dynamic, in which case use the
5698 -- corresponding base type bound if possible. If we can't get a bound
5699 -- then we figure we can't determine the range (a peculiar case, that
5700 -- perhaps cannot happen, but there is no point in bombing in this
5701 -- optimization circuit).
5702
5703 -- First the low bound
5704
5705 Bound := Type_Low_Bound (Typ);
5706
5707 if Compile_Time_Known_Value (Bound) then
5708 Lo := Expr_Value_R (Bound);
5709
5710 elsif Compile_Time_Known_Value (Type_Low_Bound (Btyp)) then
5711 Lo := Expr_Value_R (Type_Low_Bound (Btyp));
5712
5713 else
5714 OK := False;
5715 return;
5716 end if;
5717
5718 -- Now the high bound
5719
5720 Bound := Type_High_Bound (Typ);
5721
5722 -- We need the high bound of the base type later on, and this should
5723 -- always be compile time known. Again, it is not clear that this
5724 -- can ever be false, but no point in bombing.
5725
5726 if Compile_Time_Known_Value (Type_High_Bound (Btyp)) then
5727 Hbound := Expr_Value_R (Type_High_Bound (Btyp));
5728 Hi := Hbound;
5729
5730 else
5731 OK := False;
5732 return;
5733 end if;
5734
5735 -- If we have a static subtype, then that may have a tighter bound so
5736 -- use the upper bound of the subtype instead in this case.
5737
5738 if Compile_Time_Known_Value (Bound) then
5739 Hi := Expr_Value_R (Bound);
5740 end if;
5741
5742 -- We may be able to refine this value in certain situations. If any
5743 -- refinement is possible, then Lor and Hir are set to possibly tighter
5744 -- bounds, and OK1 is set to True.
5745
5746 case Nkind (N) is
5747
5748 -- For unary plus, result is limited by range of operand
5749
5750 when N_Op_Plus =>
5751 Determine_Range_R
5752 (Right_Opnd (N), OK1, Lor, Hir, Assume_Valid);
5753
5754 -- For unary minus, determine range of operand, and negate it
5755
5756 when N_Op_Minus =>
5757 Determine_Range_R
5758 (Right_Opnd (N), OK1, Lo_Right, Hi_Right, Assume_Valid);
5759
5760 if OK1 then
5761 Lor := -Hi_Right;
5762 Hir := -Lo_Right;
5763 end if;
5764
5765 -- For binary addition, get range of each operand and do the
5766 -- addition to get the result range.
5767
5768 when N_Op_Add =>
5769 if OK_Operands then
5770 Lor := Round_Machine (Lo_Left + Lo_Right);
5771 Hir := Round_Machine (Hi_Left + Hi_Right);
5772 end if;
5773
5774 -- For binary subtraction, get range of each operand and do the worst
5775 -- case subtraction to get the result range.
5776
5777 when N_Op_Subtract =>
5778 if OK_Operands then
5779 Lor := Round_Machine (Lo_Left - Hi_Right);
5780 Hir := Round_Machine (Hi_Left - Lo_Right);
5781 end if;
5782
5783 -- For multiplication, get range of each operand and do the
5784 -- four multiplications to get the result range.
5785
5786 when N_Op_Multiply =>
5787 if OK_Operands then
5788 declare
5789 M1 : constant Ureal := Round_Machine (Lo_Left * Lo_Right);
5790 M2 : constant Ureal := Round_Machine (Lo_Left * Hi_Right);
5791 M3 : constant Ureal := Round_Machine (Hi_Left * Lo_Right);
5792 M4 : constant Ureal := Round_Machine (Hi_Left * Hi_Right);
94295b25 5793
6b6bce61
AC
5794 begin
5795 Lor := UR_Min (UR_Min (M1, M2), UR_Min (M3, M4));
5796 Hir := UR_Max (UR_Max (M1, M2), UR_Max (M3, M4));
5797 end;
5798 end if;
5799
5800 -- For division, consider separately the cases where the right
5801 -- operand is positive or negative. Otherwise, the right operand
5802 -- can be arbitrarily close to zero, so the result is likely to
5803 -- be unbounded in one direction, do not attempt to compute it.
5804
5805 when N_Op_Divide =>
5806 if OK_Operands then
5807
5808 -- Right operand is positive
5809
5810 if Lo_Right > Ureal_0 then
5811
5812 -- If the low bound of the left operand is negative, obtain
5813 -- the overall low bound by dividing it by the smallest
5814 -- value of the right operand, and otherwise by the largest
5815 -- value of the right operand.
5816
5817 if Lo_Left < Ureal_0 then
5818 Lor := Round_Machine (Lo_Left / Lo_Right);
5819 else
5820 Lor := Round_Machine (Lo_Left / Hi_Right);
5821 end if;
5822
5823 -- If the high bound of the left operand is negative, obtain
5824 -- the overall high bound by dividing it by the largest
5825 -- value of the right operand, and otherwise by the
5826 -- smallest value of the right operand.
5827
5828 if Hi_Left < Ureal_0 then
5829 Hir := Round_Machine (Hi_Left / Hi_Right);
5830 else
5831 Hir := Round_Machine (Hi_Left / Lo_Right);
5832 end if;
5833
5834 -- Right operand is negative
5835
5836 elsif Hi_Right < Ureal_0 then
5837
5838 -- If the low bound of the left operand is negative, obtain
5839 -- the overall low bound by dividing it by the largest
5840 -- value of the right operand, and otherwise by the smallest
5841 -- value of the right operand.
5842
5843 if Lo_Left < Ureal_0 then
5844 Lor := Round_Machine (Lo_Left / Hi_Right);
5845 else
5846 Lor := Round_Machine (Lo_Left / Lo_Right);
5847 end if;
5848
5849 -- If the high bound of the left operand is negative, obtain
5850 -- the overall high bound by dividing it by the smallest
5851 -- value of the right operand, and otherwise by the
5852 -- largest value of the right operand.
5853
5854 if Hi_Left < Ureal_0 then
5855 Hir := Round_Machine (Hi_Left / Lo_Right);
5856 else
5857 Hir := Round_Machine (Hi_Left / Hi_Right);
5858 end if;
5859
5860 else
5861 OK1 := False;
5862 end if;
5863 end if;
5864
6b6bce61 5865 when N_Type_Conversion =>
3c77943e
YM
5866
5867 -- For type conversion from one floating-point type to another, we
5868 -- can refine the range using the converted value.
5869
5870 if Is_Floating_Point_Type (Etype (Expression (N))) then
5871 Determine_Range_R (Expression (N), OK1, Lor, Hir, Assume_Valid);
5872
5873 -- When converting an integer to a floating-point type, determine
5874 -- the range in integer first, and then convert the bounds.
5875
5876 elsif Is_Discrete_Type (Etype (Expression (N))) then
5877 declare
94295b25
AC
5878 Hir_Int : Uint;
5879 Lor_Int : Uint;
5880
3c77943e 5881 begin
94295b25
AC
5882 Determine_Range
5883 (Expression (N), OK1, Lor_Int, Hir_Int, Assume_Valid);
3c77943e
YM
5884
5885 if OK1 then
5886 Lor := Round_Machine (UR_From_Uint (Lor_Int));
5887 Hir := Round_Machine (UR_From_Uint (Hir_Int));
5888 end if;
5889 end;
5890
5891 else
5892 OK1 := False;
5893 end if;
6b6bce61
AC
5894
5895 -- Nothing special to do for all other expression kinds
5896
5897 when others =>
5898 OK1 := False;
5899 Lor := No_Ureal;
5900 Hir := No_Ureal;
5901 end case;
5902
5903 -- At this stage, if OK1 is true, then we know that the actual result of
5904 -- the computed expression is in the range Lor .. Hir. We can use this
5905 -- to restrict the possible range of results.
5906
5907 if OK1 then
5908
5909 -- If the refined value of the low bound is greater than the type
5910 -- low bound, then reset it to the more restrictive value.
5911
5912 if Lor > Lo then
5913 Lo := Lor;
5914 end if;
5915
5916 -- Similarly, if the refined value of the high bound is less than the
5917 -- value so far, then reset it to the more restrictive value.
5918
5919 if Hir < Hi then
5920 Hi := Hir;
5921 end if;
5922 end if;
5923
5924 -- Set cache entry for future call and we are all done
5925
5926 Determine_Range_Cache_N (Cindex) := N;
12be130c 5927 Determine_Range_Cache_O (Cindex) := Original_Node (N);
6b6bce61
AC
5928 Determine_Range_Cache_V (Cindex) := Assume_Valid;
5929 Determine_Range_Cache_Lo_R (Cindex) := Lo;
5930 Determine_Range_Cache_Hi_R (Cindex) := Hi;
5931 return;
5932
5933 -- If any exception occurs, it means that we have some bug in the compiler,
5934 -- possibly triggered by a previous error, or by some unforeseen peculiar
5935 -- occurrence. However, this is only an optimization attempt, so there is
5936 -- really no point in crashing the compiler. Instead we just decide, too
5937 -- bad, we can't figure out a range in this case after all.
5938
5939 exception
5940 when others =>
5941
5942 -- Debug flag K disables this behavior (useful for debugging)
5943
5944 if Debug_Flag_K then
5945 raise;
5946 else
5947 OK := False;
5948 Lo := No_Ureal;
5949 Hi := No_Ureal;
5950 return;
5951 end if;
5952 end Determine_Range_R;
5953
84c54629
EB
5954 ---------------------------------
5955 -- Determine_Range_To_Discrete --
5956 ---------------------------------
5957
5958 procedure Determine_Range_To_Discrete
5959 (N : Node_Id;
5960 OK : out Boolean;
5961 Lo : out Uint;
5962 Hi : out Uint;
5963 Fixed_Int : Boolean := False;
5964 Assume_Valid : Boolean := False)
5965 is
5966 Typ : constant Entity_Id := Etype (N);
5967
5968 begin
5969 -- For a discrete type, simply defer to Determine_Range
5970
5971 if Is_Discrete_Type (Typ) then
5972 Determine_Range (N, OK, Lo, Hi, Assume_Valid);
5973
5974 -- For a fixed point type treated as an integer, we can determine the
5975 -- range using the Corresponding_Integer_Value of the bounds of the
5976 -- type or base type. This is done by the calls to Expr_Value below.
5977
5978 elsif Is_Fixed_Point_Type (Typ) and then Fixed_Int then
5979 declare
5980 Btyp, Ftyp : Entity_Id;
5981 Bound : Node_Id;
5982
5983 begin
5984 if Assume_Valid then
5985 Ftyp := Typ;
5986 else
5987 Ftyp := Underlying_Type (Base_Type (Typ));
5988 end if;
5989
5990 Btyp := Base_Type (Ftyp);
5991
5992 -- First the low bound
5993
5994 Bound := Type_Low_Bound (Ftyp);
5995
5996 if Compile_Time_Known_Value (Bound) then
5997 Lo := Expr_Value (Bound);
5998 else
5999 Lo := Expr_Value (Type_Low_Bound (Btyp));
6000 end if;
6001
6002 -- Then the high bound
6003
6004 Bound := Type_High_Bound (Ftyp);
6005
6006 if Compile_Time_Known_Value (Bound) then
6007 Hi := Expr_Value (Bound);
6008 else
6009 Hi := Expr_Value (Type_High_Bound (Btyp));
6010 end if;
6011
6012 OK := True;
6013 end;
6014
6015 -- For a floating-point type, we can determine the range in real first,
6016 -- and then convert the bounds using UR_To_Uint, which correctly rounds
6017 -- away from zero when half way between two integers, as required by
6018 -- normal Ada 95 rounding semantics. But this is only possible because
6019 -- GNATprove's analysis rules out the possibility of a NaN or infinite.
6020
6021 elsif GNATprove_Mode and then Is_Floating_Point_Type (Typ) then
6022 declare
6023 Lo_Real, Hi_Real : Ureal;
6024
6025 begin
6026 Determine_Range_R (N, OK, Lo_Real, Hi_Real, Assume_Valid);
6027
6028 if OK then
6029 Lo := UR_To_Uint (Lo_Real);
6030 Hi := UR_To_Uint (Hi_Real);
6031 else
6032 Lo := No_Uint;
6033 Hi := No_Uint;
6034 end if;
6035 end;
6036
6037 else
6038 Lo := No_Uint;
6039 Hi := No_Uint;
6040 OK := False;
6041 end if;
6042 end Determine_Range_To_Discrete;
6043
70482933
RK
6044 ------------------------------------
6045 -- Discriminant_Checks_Suppressed --
6046 ------------------------------------
6047
6048 function Discriminant_Checks_Suppressed (E : Entity_Id) return Boolean is
6049 begin
fbf5a39b
AC
6050 if Present (E) then
6051 if Is_Unchecked_Union (E) then
6052 return True;
6053 elsif Checks_May_Be_Suppressed (E) then
6054 return Is_Check_Suppressed (E, Discriminant_Check);
6055 end if;
6056 end if;
6057
3217f71e 6058 return Scope_Suppress.Suppress (Discriminant_Check);
70482933
RK
6059 end Discriminant_Checks_Suppressed;
6060
6061 --------------------------------
6062 -- Division_Checks_Suppressed --
6063 --------------------------------
6064
6065 function Division_Checks_Suppressed (E : Entity_Id) return Boolean is
6066 begin
fbf5a39b
AC
6067 if Present (E) and then Checks_May_Be_Suppressed (E) then
6068 return Is_Check_Suppressed (E, Division_Check);
6069 else
3217f71e 6070 return Scope_Suppress.Suppress (Division_Check);
fbf5a39b 6071 end if;
70482933
RK
6072 end Division_Checks_Suppressed;
6073
59f4d038
RD
6074 --------------------------------------
6075 -- Duplicated_Tag_Checks_Suppressed --
6076 --------------------------------------
6077
6078 function Duplicated_Tag_Checks_Suppressed (E : Entity_Id) return Boolean is
6079 begin
6080 if Present (E) and then Checks_May_Be_Suppressed (E) then
6081 return Is_Check_Suppressed (E, Duplicated_Tag_Check);
6082 else
6083 return Scope_Suppress.Suppress (Duplicated_Tag_Check);
6084 end if;
6085 end Duplicated_Tag_Checks_Suppressed;
6086
70482933
RK
6087 -----------------------------------
6088 -- Elaboration_Checks_Suppressed --
6089 -----------------------------------
6090
6091 function Elaboration_Checks_Suppressed (E : Entity_Id) return Boolean is
6092 begin
f02b8bb8
RD
6093 -- The complication in this routine is that if we are in the dynamic
6094 -- model of elaboration, we also check All_Checks, since All_Checks
6095 -- does not set Elaboration_Check explicitly.
6096
fbf5a39b
AC
6097 if Present (E) then
6098 if Kill_Elaboration_Checks (E) then
6099 return True;
f02b8bb8 6100
fbf5a39b 6101 elsif Checks_May_Be_Suppressed (E) then
f02b8bb8
RD
6102 if Is_Check_Suppressed (E, Elaboration_Check) then
6103 return True;
90e491a7 6104
f02b8bb8
RD
6105 elsif Dynamic_Elaboration_Checks then
6106 return Is_Check_Suppressed (E, All_Checks);
90e491a7 6107
f02b8bb8
RD
6108 else
6109 return False;
6110 end if;
fbf5a39b
AC
6111 end if;
6112 end if;
6113
3217f71e 6114 if Scope_Suppress.Suppress (Elaboration_Check) then
f02b8bb8 6115 return True;
90e491a7 6116
f02b8bb8 6117 elsif Dynamic_Elaboration_Checks then
3217f71e 6118 return Scope_Suppress.Suppress (All_Checks);
90e491a7 6119
f02b8bb8
RD
6120 else
6121 return False;
6122 end if;
70482933
RK
6123 end Elaboration_Checks_Suppressed;
6124
fbf5a39b
AC
6125 ---------------------------
6126 -- Enable_Overflow_Check --
6127 ---------------------------
6128
6129 procedure Enable_Overflow_Check (N : Node_Id) is
d6e8719d 6130 Typ : constant Entity_Id := Base_Type (Etype (N));
15c94a55 6131 Mode : constant Overflow_Mode_Type := Overflow_Check_Mode;
acad3c0a
AC
6132 Chk : Nat;
6133 OK : Boolean;
6134 Ent : Entity_Id;
6135 Ofs : Uint;
6136 Lo : Uint;
6137 Hi : Uint;
70482933 6138
b7c874a7
AC
6139 Do_Ovflow_Check : Boolean;
6140
70482933 6141 begin
fbf5a39b
AC
6142 if Debug_Flag_CC then
6143 w ("Enable_Overflow_Check for node ", Int (N));
6144 Write_Str (" Source location = ");
6145 wl (Sloc (N));
11b4899f 6146 pg (Union_Id (N));
70482933 6147 end if;
70482933 6148
3d5952be
AC
6149 -- No check if overflow checks suppressed for type of node
6150
a7f1b24f 6151 if Overflow_Checks_Suppressed (Etype (N)) then
3d5952be
AC
6152 return;
6153
991395ab
AC
6154 -- Nothing to do for unsigned integer types, which do not overflow
6155
6156 elsif Is_Modular_Integer_Type (Typ) then
6157 return;
acad3c0a
AC
6158 end if;
6159
a7f1b24f 6160 -- This is the point at which processing for STRICT mode diverges
5707e389
AC
6161 -- from processing for MINIMIZED/ELIMINATED modes. This divergence is
6162 -- probably more extreme that it needs to be, but what is going on here
6163 -- is that when we introduced MINIMIZED/ELIMINATED modes, we wanted
a7f1b24f 6164 -- to leave the processing for STRICT mode untouched. There were
5707e389 6165 -- two reasons for this. First it avoided any incompatible change of
a7f1b24f 6166 -- behavior. Second, it guaranteed that STRICT mode continued to be
5707e389 6167 -- legacy reliable.
acad3c0a 6168
a7f1b24f 6169 -- The big difference is that in STRICT mode there is a fair amount of
acad3c0a
AC
6170 -- circuitry to try to avoid setting the Do_Overflow_Check flag if we
6171 -- know that no check is needed. We skip all that in the two new modes,
6172 -- since really overflow checking happens over a whole subtree, and we
6173 -- do the corresponding optimizations later on when applying the checks.
6174
6175 if Mode in Minimized_Or_Eliminated then
a7f1b24f
RD
6176 if not (Overflow_Checks_Suppressed (Etype (N)))
6177 and then not (Is_Entity_Name (N)
6178 and then Overflow_Checks_Suppressed (Entity (N)))
6179 then
6180 Activate_Overflow_Check (N);
6181 end if;
acad3c0a
AC
6182
6183 if Debug_Flag_CC then
6184 w ("Minimized/Eliminated mode");
6185 end if;
6186
6187 return;
6188 end if;
6189
a7f1b24f 6190 -- Remainder of processing is for STRICT case, and is unchanged from
3ada950b 6191 -- earlier versions preceding the addition of MINIMIZED/ELIMINATED.
991395ab 6192
675d6070
TQ
6193 -- Nothing to do if the range of the result is known OK. We skip this
6194 -- for conversions, since the caller already did the check, and in any
6195 -- case the condition for deleting the check for a type conversion is
f2cbd970 6196 -- different.
70482933 6197
acad3c0a 6198 if Nkind (N) /= N_Type_Conversion then
c800f862 6199 Determine_Range (N, OK, Lo, Hi, Assume_Valid => True);
70482933 6200
f2cbd970
JM
6201 -- Note in the test below that we assume that the range is not OK
6202 -- if a bound of the range is equal to that of the type. That's not
6203 -- quite accurate but we do this for the following reasons:
70482933 6204
fbf5a39b
AC
6205 -- a) The way that Determine_Range works, it will typically report
6206 -- the bounds of the value as being equal to the bounds of the
6207 -- type, because it either can't tell anything more precise, or
6208 -- does not think it is worth the effort to be more precise.
70482933 6209
fbf5a39b
AC
6210 -- b) It is very unusual to have a situation in which this would
6211 -- generate an unnecessary overflow check (an example would be
6212 -- a subtype with a range 0 .. Integer'Last - 1 to which the
f2cbd970 6213 -- literal value one is added).
70482933 6214
fbf5a39b
AC
6215 -- c) The alternative is a lot of special casing in this routine
6216 -- which would partially duplicate Determine_Range processing.
70482933 6217
b7c874a7
AC
6218 if OK then
6219 Do_Ovflow_Check := True;
6220
6221 -- Note that the following checks are quite deliberately > and <
6222 -- rather than >= and <= as explained above.
6223
6224 if Lo > Expr_Value (Type_Low_Bound (Typ))
6225 and then
6226 Hi < Expr_Value (Type_High_Bound (Typ))
6227 then
6228 Do_Ovflow_Check := False;
6229
6230 -- Despite the comments above, it is worth dealing specially with
12be130c
EB
6231 -- division. The only case where integer division can overflow is
6232 -- (largest negative number) / (-1). So we will do an extra range
6233 -- analysis to see if this is possible.
b7c874a7
AC
6234
6235 elsif Nkind (N) = N_Op_Divide then
6236 Determine_Range
6237 (Left_Opnd (N), OK, Lo, Hi, Assume_Valid => True);
6238
6239 if OK and then Lo > Expr_Value (Type_Low_Bound (Typ)) then
6240 Do_Ovflow_Check := False;
6241
6242 else
6243 Determine_Range
6244 (Right_Opnd (N), OK, Lo, Hi, Assume_Valid => True);
6245
6246 if OK and then (Lo > Uint_Minus_1
6247 or else
6248 Hi < Uint_Minus_1)
6249 then
6250 Do_Ovflow_Check := False;
6251 end if;
6252 end if;
12be130c
EB
6253
6254 -- Likewise for Abs/Minus, the only case where the operation can
6255 -- overflow is when the operand is the largest negative number.
6256
4a08c95c 6257 elsif Nkind (N) in N_Op_Abs | N_Op_Minus then
12be130c
EB
6258 Determine_Range
6259 (Right_Opnd (N), OK, Lo, Hi, Assume_Valid => True);
6260
6261 if OK and then Lo > Expr_Value (Type_Low_Bound (Typ)) then
6262 Do_Ovflow_Check := False;
6263 end if;
fbf5a39b
AC
6264 end if;
6265
b7c874a7
AC
6266 -- If no overflow check required, we are done
6267
6268 if not Do_Ovflow_Check then
6269 if Debug_Flag_CC then
6270 w ("No overflow check required");
6271 end if;
6272
6273 return;
6274 end if;
fbf5a39b
AC
6275 end if;
6276 end if;
6277
675d6070
TQ
6278 -- If not in optimizing mode, set flag and we are done. We are also done
6279 -- (and just set the flag) if the type is not a discrete type, since it
6280 -- is not worth the effort to eliminate checks for other than discrete
6281 -- types. In addition, we take this same path if we have stored the
6282 -- maximum number of checks possible already (a very unlikely situation,
a90bd866 6283 -- but we do not want to blow up).
fbf5a39b
AC
6284
6285 if Optimization_Level = 0
6286 or else not Is_Discrete_Type (Etype (N))
6287 or else Num_Saved_Checks = Saved_Checks'Last
70482933 6288 then
11b4899f 6289 Activate_Overflow_Check (N);
fbf5a39b
AC
6290
6291 if Debug_Flag_CC then
6292 w ("Optimization off");
6293 end if;
6294
70482933 6295 return;
fbf5a39b 6296 end if;
70482933 6297
fbf5a39b
AC
6298 -- Otherwise evaluate and check the expression
6299
6300 Find_Check
6301 (Expr => N,
6302 Check_Type => 'O',
6303 Target_Type => Empty,
6304 Entry_OK => OK,
6305 Check_Num => Chk,
6306 Ent => Ent,
6307 Ofs => Ofs);
6308
6309 if Debug_Flag_CC then
6310 w ("Called Find_Check");
6311 w (" OK = ", OK);
6312
6313 if OK then
6314 w (" Check_Num = ", Chk);
6315 w (" Ent = ", Int (Ent));
6316 Write_Str (" Ofs = ");
6317 pid (Ofs);
6318 end if;
6319 end if;
70482933 6320
fbf5a39b
AC
6321 -- If check is not of form to optimize, then set flag and we are done
6322
6323 if not OK then
11b4899f 6324 Activate_Overflow_Check (N);
70482933 6325 return;
fbf5a39b 6326 end if;
70482933 6327
fbf5a39b
AC
6328 -- If check is already performed, then return without setting flag
6329
6330 if Chk /= 0 then
6331 if Debug_Flag_CC then
6332 w ("Check suppressed!");
6333 end if;
70482933 6334
70482933 6335 return;
fbf5a39b 6336 end if;
70482933 6337
fbf5a39b
AC
6338 -- Here we will make a new entry for the new check
6339
11b4899f 6340 Activate_Overflow_Check (N);
fbf5a39b
AC
6341 Num_Saved_Checks := Num_Saved_Checks + 1;
6342 Saved_Checks (Num_Saved_Checks) :=
6343 (Killed => False,
6344 Entity => Ent,
6345 Offset => Ofs,
6346 Check_Type => 'O',
6347 Target_Type => Empty);
6348
6349 if Debug_Flag_CC then
6350 w ("Make new entry, check number = ", Num_Saved_Checks);
6351 w (" Entity = ", Int (Ent));
6352 Write_Str (" Offset = ");
6353 pid (Ofs);
6354 w (" Check_Type = O");
6355 w (" Target_Type = Empty");
6356 end if;
70482933 6357
675d6070 6358 -- If we get an exception, then something went wrong, probably because of
637a41a5
AC
6359 -- an error in the structure of the tree due to an incorrect program. Or
6360 -- it may be a bug in the optimization circuit. In either case the safest
675d6070 6361 -- thing is simply to set the check flag unconditionally.
fbf5a39b
AC
6362
6363 exception
6364 when others =>
11b4899f 6365 Activate_Overflow_Check (N);
fbf5a39b
AC
6366
6367 if Debug_Flag_CC then
6368 w (" exception occurred, overflow flag set");
6369 end if;
6370
6371 return;
6372 end Enable_Overflow_Check;
6373
6374 ------------------------
6375 -- Enable_Range_Check --
6376 ------------------------
6377
6378 procedure Enable_Range_Check (N : Node_Id) is
6379 Chk : Nat;
6380 OK : Boolean;
6381 Ent : Entity_Id;
6382 Ofs : Uint;
6383 Ttyp : Entity_Id;
6384 P : Node_Id;
6385
6386 begin
675d6070 6387 -- Return if unchecked type conversion with range check killed. In this
a90bd866 6388 -- case we never set the flag (that's what Kill_Range_Check is about).
fbf5a39b
AC
6389
6390 if Nkind (N) = N_Unchecked_Type_Conversion
6391 and then Kill_Range_Check (N)
70482933
RK
6392 then
6393 return;
fbf5a39b 6394 end if;
70482933 6395
c7532b2d 6396 -- Do not set range check flag if parent is assignment statement or
a521dc37 6397 -- object declaration with Suppress_Assignment_Checks flag set.
c7532b2d 6398
4a08c95c 6399 if Nkind (Parent (N)) in N_Assignment_Statement | N_Object_Declaration
c7532b2d
AC
6400 and then Suppress_Assignment_Checks (Parent (N))
6401 then
6402 return;
6403 end if;
6404
c064e066
RD
6405 -- Check for various cases where we should suppress the range check
6406
6407 -- No check if range checks suppressed for type of node
6408
637a41a5 6409 if Present (Etype (N)) and then Range_Checks_Suppressed (Etype (N)) then
c064e066
RD
6410 return;
6411
6412 -- No check if node is an entity name, and range checks are suppressed
6413 -- for this entity, or for the type of this entity.
6414
6415 elsif Is_Entity_Name (N)
6416 and then (Range_Checks_Suppressed (Entity (N))
637a41a5 6417 or else Range_Checks_Suppressed (Etype (Entity (N))))
c064e066
RD
6418 then
6419 return;
6420
6421 -- No checks if index of array, and index checks are suppressed for
6422 -- the array object or the type of the array.
6423
6424 elsif Nkind (Parent (N)) = N_Indexed_Component then
6425 declare
6426 Pref : constant Node_Id := Prefix (Parent (N));
6427 begin
6428 if Is_Entity_Name (Pref)
6429 and then Index_Checks_Suppressed (Entity (Pref))
6430 then
6431 return;
6432 elsif Index_Checks_Suppressed (Etype (Pref)) then
6433 return;
6434 end if;
6435 end;
6436 end if;
6437
fbf5a39b 6438 -- Debug trace output
70482933 6439
fbf5a39b
AC
6440 if Debug_Flag_CC then
6441 w ("Enable_Range_Check for node ", Int (N));
6442 Write_Str (" Source location = ");
6443 wl (Sloc (N));
11b4899f 6444 pg (Union_Id (N));
fbf5a39b
AC
6445 end if;
6446
675d6070
TQ
6447 -- If not in optimizing mode, set flag and we are done. We are also done
6448 -- (and just set the flag) if the type is not a discrete type, since it
6449 -- is not worth the effort to eliminate checks for other than discrete
6450 -- types. In addition, we take this same path if we have stored the
6451 -- maximum number of checks possible already (a very unlikely situation,
a90bd866 6452 -- but we do not want to blow up).
fbf5a39b
AC
6453
6454 if Optimization_Level = 0
6455 or else No (Etype (N))
6456 or else not Is_Discrete_Type (Etype (N))
6457 or else Num_Saved_Checks = Saved_Checks'Last
70482933 6458 then
11b4899f 6459 Activate_Range_Check (N);
fbf5a39b
AC
6460
6461 if Debug_Flag_CC then
6462 w ("Optimization off");
6463 end if;
6464
70482933 6465 return;
fbf5a39b 6466 end if;
70482933 6467
fbf5a39b 6468 -- Otherwise find out the target type
70482933 6469
fbf5a39b 6470 P := Parent (N);
70482933 6471
fbf5a39b
AC
6472 -- For assignment, use left side subtype
6473
6474 if Nkind (P) = N_Assignment_Statement
6475 and then Expression (P) = N
6476 then
6477 Ttyp := Etype (Name (P));
6478
6479 -- For indexed component, use subscript subtype
6480
6481 elsif Nkind (P) = N_Indexed_Component then
6482 declare
6483 Atyp : Entity_Id;
6484 Indx : Node_Id;
6485 Subs : Node_Id;
6486
6487 begin
6488 Atyp := Etype (Prefix (P));
6489
6490 if Is_Access_Type (Atyp) then
6491 Atyp := Designated_Type (Atyp);
d935a36e
AC
6492
6493 -- If the prefix is an access to an unconstrained array,
675d6070
TQ
6494 -- perform check unconditionally: it depends on the bounds of
6495 -- an object and we cannot currently recognize whether the test
6496 -- may be redundant.
d935a36e
AC
6497
6498 if not Is_Constrained (Atyp) then
11b4899f 6499 Activate_Range_Check (N);
d935a36e
AC
6500 return;
6501 end if;
82c80734 6502
ef2c20e7
AC
6503 -- Ditto if prefix is simply an unconstrained array. We used
6504 -- to think this case was OK, if the prefix was not an explicit
6505 -- dereference, but we have now seen a case where this is not
6506 -- true, so it is safer to just suppress the optimization in this
6507 -- case. The back end is getting better at eliminating redundant
6508 -- checks in any case, so the loss won't be important.
82c80734 6509
ef2c20e7 6510 elsif Is_Array_Type (Atyp)
82c80734
RD
6511 and then not Is_Constrained (Atyp)
6512 then
11b4899f 6513 Activate_Range_Check (N);
82c80734 6514 return;
fbf5a39b
AC
6515 end if;
6516
6517 Indx := First_Index (Atyp);
6518 Subs := First (Expressions (P));
6519 loop
6520 if Subs = N then
6521 Ttyp := Etype (Indx);
6522 exit;
6523 end if;
6524
6525 Next_Index (Indx);
6526 Next (Subs);
6527 end loop;
6528 end;
6529
6530 -- For now, ignore all other cases, they are not so interesting
6531
6532 else
6533 if Debug_Flag_CC then
6534 w (" target type not found, flag set");
6535 end if;
6536
11b4899f 6537 Activate_Range_Check (N);
fbf5a39b
AC
6538 return;
6539 end if;
6540
6541 -- Evaluate and check the expression
6542
6543 Find_Check
6544 (Expr => N,
6545 Check_Type => 'R',
6546 Target_Type => Ttyp,
6547 Entry_OK => OK,
6548 Check_Num => Chk,
6549 Ent => Ent,
6550 Ofs => Ofs);
6551
6552 if Debug_Flag_CC then
6553 w ("Called Find_Check");
6554 w ("Target_Typ = ", Int (Ttyp));
6555 w (" OK = ", OK);
6556
6557 if OK then
6558 w (" Check_Num = ", Chk);
6559 w (" Ent = ", Int (Ent));
6560 Write_Str (" Ofs = ");
6561 pid (Ofs);
6562 end if;
6563 end if;
6564
6565 -- If check is not of form to optimize, then set flag and we are done
6566
6567 if not OK then
6568 if Debug_Flag_CC then
6569 w (" expression not of optimizable type, flag set");
6570 end if;
6571
11b4899f 6572 Activate_Range_Check (N);
fbf5a39b
AC
6573 return;
6574 end if;
6575
6576 -- If check is already performed, then return without setting flag
6577
6578 if Chk /= 0 then
6579 if Debug_Flag_CC then
6580 w ("Check suppressed!");
6581 end if;
6582
6583 return;
6584 end if;
6585
6586 -- Here we will make a new entry for the new check
6587
11b4899f 6588 Activate_Range_Check (N);
fbf5a39b
AC
6589 Num_Saved_Checks := Num_Saved_Checks + 1;
6590 Saved_Checks (Num_Saved_Checks) :=
6591 (Killed => False,
6592 Entity => Ent,
6593 Offset => Ofs,
6594 Check_Type => 'R',
6595 Target_Type => Ttyp);
6596
6597 if Debug_Flag_CC then
6598 w ("Make new entry, check number = ", Num_Saved_Checks);
6599 w (" Entity = ", Int (Ent));
6600 Write_Str (" Offset = ");
6601 pid (Ofs);
6602 w (" Check_Type = R");
6603 w (" Target_Type = ", Int (Ttyp));
11b4899f 6604 pg (Union_Id (Ttyp));
fbf5a39b
AC
6605 end if;
6606
675d6070
TQ
6607 -- If we get an exception, then something went wrong, probably because of
6608 -- an error in the structure of the tree due to an incorrect program. Or
6609 -- it may be a bug in the optimization circuit. In either case the safest
6610 -- thing is simply to set the check flag unconditionally.
fbf5a39b
AC
6611
6612 exception
6613 when others =>
11b4899f 6614 Activate_Range_Check (N);
fbf5a39b
AC
6615
6616 if Debug_Flag_CC then
6617 w (" exception occurred, range flag set");
6618 end if;
6619
6620 return;
6621 end Enable_Range_Check;
6622
6623 ------------------
6624 -- Ensure_Valid --
6625 ------------------
6626
2934b84a
AC
6627 procedure Ensure_Valid
6628 (Expr : Node_Id;
6629 Holes_OK : Boolean := False;
6630 Related_Id : Entity_Id := Empty;
6631 Is_Low_Bound : Boolean := False;
6632 Is_High_Bound : Boolean := False)
6633 is
fbf5a39b
AC
6634 Typ : constant Entity_Id := Etype (Expr);
6635
6636 begin
6637 -- Ignore call if we are not doing any validity checking
6638
6639 if not Validity_Checks_On then
6640 return;
6641
c064e066 6642 -- Ignore call if range or validity checks suppressed on entity or type
fbf5a39b 6643
c064e066 6644 elsif Range_Or_Validity_Checks_Suppressed (Expr) then
fbf5a39b
AC
6645 return;
6646
675d6070
TQ
6647 -- No check required if expression is from the expander, we assume the
6648 -- expander will generate whatever checks are needed. Note that this is
a90bd866 6649 -- not just an optimization, it avoids infinite recursions.
fbf5a39b
AC
6650
6651 -- Unchecked conversions must be checked, unless they are initialized
6652 -- scalar values, as in a component assignment in an init proc.
6653
6654 -- In addition, we force a check if Force_Validity_Checks is set
6655
6656 elsif not Comes_From_Source (Expr)
2e60feb5
PMR
6657 and then not
6658 (Nkind (Expr) = N_Identifier
19e7eae5
BD
6659 and then Present (Renamed_Entity_Or_Object (Entity (Expr)))
6660 and then
6661 Comes_From_Source (Renamed_Entity_Or_Object (Entity (Expr))))
fbf5a39b
AC
6662 and then not Force_Validity_Checks
6663 and then (Nkind (Expr) /= N_Unchecked_Type_Conversion
6664 or else Kill_Range_Check (Expr))
6665 then
6666 return;
6667
6668 -- No check required if expression is known to have valid value
6669
6670 elsif Expr_Known_Valid (Expr) then
6671 return;
6672
229fa5db
AC
6673 -- No check needed within a generated predicate function. Validity
6674 -- of input value will have been checked earlier.
6675
6676 elsif Ekind (Current_Scope) = E_Function
6677 and then Is_Predicate_Function (Current_Scope)
6678 then
6679 return;
6680
675d6070
TQ
6681 -- Ignore case of enumeration with holes where the flag is set not to
6682 -- worry about holes, since no special validity check is needed
fbf5a39b
AC
6683
6684 elsif Is_Enumeration_Type (Typ)
6685 and then Has_Non_Standard_Rep (Typ)
6686 and then Holes_OK
6687 then
6688 return;
6689
ddda9d0f 6690 -- No check required on the left-hand side of an assignment
fbf5a39b
AC
6691
6692 elsif Nkind (Parent (Expr)) = N_Assignment_Statement
6693 and then Expr = Name (Parent (Expr))
6694 then
6695 return;
6696
308e6f3a 6697 -- No check on a universal real constant. The context will eventually
f02b8bb8
RD
6698 -- convert it to a machine number for some target type, or report an
6699 -- illegality.
6700
6701 elsif Nkind (Expr) = N_Real_Literal
6702 and then Etype (Expr) = Universal_Real
6703 then
6704 return;
6705
308e6f3a 6706 -- If the expression denotes a component of a packed boolean array,
c064e066
RD
6707 -- no possible check applies. We ignore the old ACATS chestnuts that
6708 -- involve Boolean range True..True.
6709
6710 -- Note: validity checks are generated for expressions that yield a
6711 -- scalar type, when it is possible to create a value that is outside of
6712 -- the type. If this is a one-bit boolean no such value exists. This is
6713 -- an optimization, and it also prevents compiler blowing up during the
6714 -- elaboration of improperly expanded packed array references.
6715
6716 elsif Nkind (Expr) = N_Indexed_Component
6717 and then Is_Bit_Packed_Array (Etype (Prefix (Expr)))
6718 and then Root_Type (Etype (Expr)) = Standard_Boolean
6719 then
6720 return;
6721
064f4527
TQ
6722 -- For an expression with actions, we want to insert the validity check
6723 -- on the final Expression.
6724
6725 elsif Nkind (Expr) = N_Expression_With_Actions then
6726 Ensure_Valid (Expression (Expr));
6727 return;
6728
fbf5a39b
AC
6729 -- An annoying special case. If this is an out parameter of a scalar
6730 -- type, then the value is not going to be accessed, therefore it is
155f4f34
HK
6731 -- inappropriate to do any validity check at the call site. Likewise
6732 -- if the parameter is passed by reference.
fbf5a39b
AC
6733
6734 else
6735 -- Only need to worry about scalar types
6736
6737 if Is_Scalar_Type (Typ) then
70482933
RK
6738 declare
6739 P : Node_Id;
6740 N : Node_Id;
6741 E : Entity_Id;
6742 F : Entity_Id;
6743 A : Node_Id;
6744 L : List_Id;
6745
6746 begin
6747 -- Find actual argument (which may be a parameter association)
6748 -- and the parent of the actual argument (the call statement)
6749
6750 N := Expr;
6751 P := Parent (Expr);
6752
6753 if Nkind (P) = N_Parameter_Association then
6754 N := P;
6755 P := Parent (N);
6756 end if;
6757
155f4f34
HK
6758 -- If this is an indirect or dispatching call, get signature
6759 -- from the subprogram type.
70482933 6760
4a08c95c
AC
6761 if Nkind (P) in N_Entry_Call_Statement
6762 | N_Function_Call
6763 | N_Procedure_Call_Statement
155f4f34
HK
6764 then
6765 E := Get_Called_Entity (P);
70482933 6766 L := Parameter_Associations (P);
fbf5a39b 6767
675d6070 6768 -- Only need to worry if there are indeed actuals, and if
155f4f34
HK
6769 -- this could be a subprogram call, otherwise we cannot get
6770 -- a match (either we are not an argument, or the mode of
6771 -- the formal is not OUT). This test also filters out the
675d6070 6772 -- generic case.
70482933 6773
637a41a5
AC
6774 if Is_Non_Empty_List (L) and then Is_Subprogram (E) then
6775
675d6070
TQ
6776 -- This is the loop through parameters, looking for an
6777 -- OUT parameter for which we are the argument.
70482933
RK
6778
6779 F := First_Formal (E);
6780 A := First (L);
70482933 6781 while Present (F) loop
155f4f34
HK
6782 if A = N
6783 and then (Ekind (F) = E_Out_Parameter
6784 or else Mechanism (F) = By_Reference)
6785 then
70482933
RK
6786 return;
6787 end if;
6788
6789 Next_Formal (F);
6790 Next (A);
6791 end loop;
6792 end if;
6793 end if;
6794 end;
6795 end if;
6796 end if;
6797
1c218ac3 6798 -- If this is a boolean expression, only its elementary operands need
46f52a47
AC
6799 -- checking: if they are valid, a boolean or short-circuit operation
6800 -- with them will be valid as well.
38afef28
AC
6801
6802 if Base_Type (Typ) = Standard_Boolean
96d2756f 6803 and then
1c218ac3 6804 (Nkind (Expr) in N_Op or else Nkind (Expr) in N_Short_Circuit)
38afef28
AC
6805 then
6806 return;
6807 end if;
6808
c064e066 6809 -- If we fall through, a validity check is required
70482933 6810
2934b84a 6811 Insert_Valid_Check (Expr, Related_Id, Is_Low_Bound, Is_High_Bound);
1c3340e6
RD
6812
6813 if Is_Entity_Name (Expr)
6814 and then Safe_To_Capture_Value (Expr, Entity (Expr))
6815 then
6816 Set_Is_Known_Valid (Entity (Expr));
6817 end if;
70482933
RK
6818 end Ensure_Valid;
6819
6820 ----------------------
6821 -- Expr_Known_Valid --
6822 ----------------------
6823
6824 function Expr_Known_Valid (Expr : Node_Id) return Boolean is
6825 Typ : constant Entity_Id := Etype (Expr);
6826
6827 begin
675d6070
TQ
6828 -- Non-scalar types are always considered valid, since they never give
6829 -- rise to the issues of erroneous or bounded error behavior that are
6830 -- the concern. In formal reference manual terms the notion of validity
6831 -- only applies to scalar types. Note that even when packed arrays are
6832 -- represented using modular types, they are still arrays semantically,
6833 -- so they are also always valid (in particular, the unused bits can be
6834 -- random rubbish without affecting the validity of the array value).
70482933 6835
8ca597af 6836 if not Is_Scalar_Type (Typ) or else Is_Packed_Array_Impl_Type (Typ) then
70482933
RK
6837 return True;
6838
6839 -- If no validity checking, then everything is considered valid
6840
6841 elsif not Validity_Checks_On then
6842 return True;
6843
6844 -- Floating-point types are considered valid unless floating-point
6845 -- validity checks have been specifically turned on.
6846
6847 elsif Is_Floating_Point_Type (Typ)
6848 and then not Validity_Check_Floating_Point
6849 then
6850 return True;
6851
675d6070
TQ
6852 -- If the expression is the value of an object that is known to be
6853 -- valid, then clearly the expression value itself is valid.
70482933
RK
6854
6855 elsif Is_Entity_Name (Expr)
6856 and then Is_Known_Valid (Entity (Expr))
fba9ebfc
AC
6857
6858 -- Exclude volatile variables
6859
6860 and then not Treat_As_Volatile (Entity (Expr))
70482933
RK
6861 then
6862 return True;
6863
c064e066
RD
6864 -- References to discriminants are always considered valid. The value
6865 -- of a discriminant gets checked when the object is built. Within the
6866 -- record, we consider it valid, and it is important to do so, since
6867 -- otherwise we can try to generate bogus validity checks which
675d6070
TQ
6868 -- reference discriminants out of scope. Discriminants of concurrent
6869 -- types are excluded for the same reason.
c064e066
RD
6870
6871 elsif Is_Entity_Name (Expr)
675d6070 6872 and then Denotes_Discriminant (Expr, Check_Concurrent => True)
c064e066
RD
6873 then
6874 return True;
6875
675d6070
TQ
6876 -- If the type is one for which all values are known valid, then we are
6877 -- sure that the value is valid except in the slightly odd case where
6878 -- the expression is a reference to a variable whose size has been
6879 -- explicitly set to a value greater than the object size.
70482933
RK
6880
6881 elsif Is_Known_Valid (Typ) then
6882 if Is_Entity_Name (Expr)
6883 and then Ekind (Entity (Expr)) = E_Variable
b23cdc01 6884 and then Known_Esize (Entity (Expr))
70482933
RK
6885 and then Esize (Entity (Expr)) > Esize (Typ)
6886 then
6887 return False;
6888 else
6889 return True;
6890 end if;
6891
6892 -- Integer and character literals always have valid values, where
6893 -- appropriate these will be range checked in any case.
6894
4a08c95c 6895 elsif Nkind (Expr) in N_Integer_Literal | N_Character_Literal then
70482933 6896 return True;
cf427f02 6897
70482933
RK
6898 -- If we have a type conversion or a qualification of a known valid
6899 -- value, then the result will always be valid.
6900
4a08c95c 6901 elsif Nkind (Expr) in N_Type_Conversion | N_Qualified_Expression then
70482933
RK
6902 return Expr_Known_Valid (Expression (Expr));
6903
162c21d9
AC
6904 -- Case of expression is a non-floating-point operator. In this case we
6905 -- can assume the result is valid the generated code for the operator
6906 -- will include whatever checks are needed (e.g. range checks) to ensure
6907 -- validity. This assumption does not hold for the floating-point case,
6908 -- since floating-point operators can generate Infinite or NaN results
6909 -- which are considered invalid.
6910
6911 -- Historical note: in older versions, the exemption of floating-point
6912 -- types from this assumption was done only in cases where the parent
6913 -- was an assignment, function call or parameter association. Presumably
6914 -- the idea was that in other contexts, the result would be checked
6915 -- elsewhere, but this list of cases was missing tests (at least the
6916 -- N_Object_Declaration case, as shown by a reported missing validity
6917 -- check), and it is not clear why function calls but not procedure
6918 -- calls were tested for. It really seems more accurate and much
6919 -- safer to recognize that expressions which are the result of a
6920 -- floating-point operator can never be assumed to be valid.
6921
6922 elsif Nkind (Expr) in N_Op and then not Is_Floating_Point_Type (Typ) then
6923 return True;
28e4d64e 6924
675d6070
TQ
6925 -- The result of a membership test is always valid, since it is true or
6926 -- false, there are no other possibilities.
c064e066
RD
6927
6928 elsif Nkind (Expr) in N_Membership_Test then
6929 return True;
6930
70482933
RK
6931 -- For all other cases, we do not know the expression is valid
6932
6933 else
6934 return False;
6935 end if;
6936 end Expr_Known_Valid;
6937
fbf5a39b
AC
6938 ----------------
6939 -- Find_Check --
6940 ----------------
6941
6942 procedure Find_Check
6943 (Expr : Node_Id;
6944 Check_Type : Character;
6945 Target_Type : Entity_Id;
6946 Entry_OK : out Boolean;
6947 Check_Num : out Nat;
6948 Ent : out Entity_Id;
6949 Ofs : out Uint)
6950 is
6951 function Within_Range_Of
6952 (Target_Type : Entity_Id;
6b6fcd3e 6953 Check_Type : Entity_Id) return Boolean;
fbf5a39b
AC
6954 -- Given a requirement for checking a range against Target_Type, and
6955 -- and a range Check_Type against which a check has already been made,
6956 -- determines if the check against check type is sufficient to ensure
6957 -- that no check against Target_Type is required.
6958
6959 ---------------------
6960 -- Within_Range_Of --
6961 ---------------------
6962
6963 function Within_Range_Of
6964 (Target_Type : Entity_Id;
6b6fcd3e 6965 Check_Type : Entity_Id) return Boolean
fbf5a39b
AC
6966 is
6967 begin
6968 if Target_Type = Check_Type then
6969 return True;
6970
6971 else
6972 declare
6973 Tlo : constant Node_Id := Type_Low_Bound (Target_Type);
6974 Thi : constant Node_Id := Type_High_Bound (Target_Type);
6975 Clo : constant Node_Id := Type_Low_Bound (Check_Type);
6976 Chi : constant Node_Id := Type_High_Bound (Check_Type);
6977
6978 begin
6979 if (Tlo = Clo
6980 or else (Compile_Time_Known_Value (Tlo)
6981 and then
6982 Compile_Time_Known_Value (Clo)
6983 and then
6984 Expr_Value (Clo) >= Expr_Value (Tlo)))
6985 and then
6986 (Thi = Chi
6987 or else (Compile_Time_Known_Value (Thi)
6988 and then
6989 Compile_Time_Known_Value (Chi)
6990 and then
6991 Expr_Value (Chi) <= Expr_Value (Clo)))
6992 then
6993 return True;
6994 else
6995 return False;
6996 end if;
6997 end;
6998 end if;
6999 end Within_Range_Of;
7000
7001 -- Start of processing for Find_Check
7002
7003 begin
75ba322d 7004 -- Establish default, in case no entry is found
fbf5a39b
AC
7005
7006 Check_Num := 0;
7007
7008 -- Case of expression is simple entity reference
7009
7010 if Is_Entity_Name (Expr) then
7011 Ent := Entity (Expr);
7012 Ofs := Uint_0;
7013
7014 -- Case of expression is entity + known constant
7015
7016 elsif Nkind (Expr) = N_Op_Add
7017 and then Compile_Time_Known_Value (Right_Opnd (Expr))
7018 and then Is_Entity_Name (Left_Opnd (Expr))
7019 then
7020 Ent := Entity (Left_Opnd (Expr));
7021 Ofs := Expr_Value (Right_Opnd (Expr));
7022
7023 -- Case of expression is entity - known constant
7024
7025 elsif Nkind (Expr) = N_Op_Subtract
7026 and then Compile_Time_Known_Value (Right_Opnd (Expr))
7027 and then Is_Entity_Name (Left_Opnd (Expr))
7028 then
7029 Ent := Entity (Left_Opnd (Expr));
7030 Ofs := UI_Negate (Expr_Value (Right_Opnd (Expr)));
7031
7032 -- Any other expression is not of the right form
7033
7034 else
7035 Ent := Empty;
7036 Ofs := Uint_0;
7037 Entry_OK := False;
7038 return;
7039 end if;
7040
675d6070
TQ
7041 -- Come here with expression of appropriate form, check if entity is an
7042 -- appropriate one for our purposes.
fbf5a39b
AC
7043
7044 if (Ekind (Ent) = E_Variable
f2cbd970 7045 or else Is_Constant_Object (Ent))
fbf5a39b
AC
7046 and then not Is_Library_Level_Entity (Ent)
7047 then
7048 Entry_OK := True;
7049 else
7050 Entry_OK := False;
7051 return;
7052 end if;
7053
7054 -- See if there is matching check already
7055
7056 for J in reverse 1 .. Num_Saved_Checks loop
7057 declare
7058 SC : Saved_Check renames Saved_Checks (J);
fbf5a39b
AC
7059 begin
7060 if SC.Killed = False
7061 and then SC.Entity = Ent
7062 and then SC.Offset = Ofs
7063 and then SC.Check_Type = Check_Type
7064 and then Within_Range_Of (Target_Type, SC.Target_Type)
7065 then
7066 Check_Num := J;
7067 return;
7068 end if;
7069 end;
7070 end loop;
7071
7072 -- If we fall through entry was not found
7073
fbf5a39b
AC
7074 return;
7075 end Find_Check;
7076
7077 ---------------------------------
7078 -- Generate_Discriminant_Check --
7079 ---------------------------------
7080
fbf5a39b
AC
7081 procedure Generate_Discriminant_Check (N : Node_Id) is
7082 Loc : constant Source_Ptr := Sloc (N);
7083 Pref : constant Node_Id := Prefix (N);
7084 Sel : constant Node_Id := Selector_Name (N);
7085
7086 Orig_Comp : constant Entity_Id :=
15f0f591 7087 Original_Record_Component (Entity (Sel));
fbf5a39b
AC
7088 -- The original component to be checked
7089
7090 Discr_Fct : constant Entity_Id :=
15f0f591 7091 Discriminant_Checking_Func (Orig_Comp);
fbf5a39b
AC
7092 -- The discriminant checking function
7093
7094 Discr : Entity_Id;
7095 -- One discriminant to be checked in the type
7096
7097 Real_Discr : Entity_Id;
7098 -- Actual discriminant in the call
7099
7100 Pref_Type : Entity_Id;
7101 -- Type of relevant prefix (ignoring private/access stuff)
7102
7103 Args : List_Id;
7104 -- List of arguments for function call
7105
7106 Formal : Entity_Id;
675d6070
TQ
7107 -- Keep track of the formal corresponding to the actual we build for
7108 -- each discriminant, in order to be able to perform the necessary type
7109 -- conversions.
fbf5a39b
AC
7110
7111 Scomp : Node_Id;
7112 -- Selected component reference for checking function argument
7113
7114 begin
7115 Pref_Type := Etype (Pref);
7116
7117 -- Force evaluation of the prefix, so that it does not get evaluated
7118 -- twice (once for the check, once for the actual reference). Such a
637a41a5
AC
7119 -- double evaluation is always a potential source of inefficiency, and
7120 -- is functionally incorrect in the volatile case, or when the prefix
2cc2e964
AC
7121 -- may have side effects. A nonvolatile entity or a component of a
7122 -- nonvolatile entity requires no evaluation.
fbf5a39b
AC
7123
7124 if Is_Entity_Name (Pref) then
7125 if Treat_As_Volatile (Entity (Pref)) then
7126 Force_Evaluation (Pref, Name_Req => True);
7127 end if;
7128
7129 elsif Treat_As_Volatile (Etype (Pref)) then
637a41a5 7130 Force_Evaluation (Pref, Name_Req => True);
fbf5a39b
AC
7131
7132 elsif Nkind (Pref) = N_Selected_Component
7133 and then Is_Entity_Name (Prefix (Pref))
7134 then
7135 null;
7136
7137 else
7138 Force_Evaluation (Pref, Name_Req => True);
7139 end if;
7140
7141 -- For a tagged type, use the scope of the original component to
7142 -- obtain the type, because ???
7143
7144 if Is_Tagged_Type (Scope (Orig_Comp)) then
7145 Pref_Type := Scope (Orig_Comp);
7146
675d6070
TQ
7147 -- For an untagged derived type, use the discriminants of the parent
7148 -- which have been renamed in the derivation, possibly by a one-to-many
1fb63e89 7149 -- discriminant constraint. For untagged type, initially get the Etype
675d6070 7150 -- of the prefix
fbf5a39b
AC
7151
7152 else
7153 if Is_Derived_Type (Pref_Type)
7154 and then Number_Discriminants (Pref_Type) /=
7155 Number_Discriminants (Etype (Base_Type (Pref_Type)))
7156 then
7157 Pref_Type := Etype (Base_Type (Pref_Type));
7158 end if;
7159 end if;
7160
7161 -- We definitely should have a checking function, This routine should
7162 -- not be called if no discriminant checking function is present.
7163
7164 pragma Assert (Present (Discr_Fct));
7165
7166 -- Create the list of the actual parameters for the call. This list
7167 -- is the list of the discriminant fields of the record expression to
7168 -- be discriminant checked.
7169
7170 Args := New_List;
7171 Formal := First_Formal (Discr_Fct);
7172 Discr := First_Discriminant (Pref_Type);
7173 while Present (Discr) loop
7174
7175 -- If we have a corresponding discriminant field, and a parent
7176 -- subtype is present, then we want to use the corresponding
7177 -- discriminant since this is the one with the useful value.
7178
7179 if Present (Corresponding_Discriminant (Discr))
7180 and then Ekind (Pref_Type) = E_Record_Type
7181 and then Present (Parent_Subtype (Pref_Type))
7182 then
7183 Real_Discr := Corresponding_Discriminant (Discr);
7184 else
7185 Real_Discr := Discr;
7186 end if;
7187
7188 -- Construct the reference to the discriminant
7189
7190 Scomp :=
7191 Make_Selected_Component (Loc,
7192 Prefix =>
7193 Unchecked_Convert_To (Pref_Type,
7194 Duplicate_Subexpr (Pref)),
7195 Selector_Name => New_Occurrence_Of (Real_Discr, Loc));
7196
7197 -- Manually analyze and resolve this selected component. We really
7198 -- want it just as it appears above, and do not want the expander
675d6070
TQ
7199 -- playing discriminal games etc with this reference. Then we append
7200 -- the argument to the list we are gathering.
fbf5a39b
AC
7201
7202 Set_Etype (Scomp, Etype (Real_Discr));
7203 Set_Analyzed (Scomp, True);
7204 Append_To (Args, Convert_To (Etype (Formal), Scomp));
7205
7206 Next_Formal_With_Extras (Formal);
7207 Next_Discriminant (Discr);
7208 end loop;
7209
7210 -- Now build and insert the call
7211
7212 Insert_Action (N,
7213 Make_Raise_Constraint_Error (Loc,
7214 Condition =>
7215 Make_Function_Call (Loc,
637a41a5 7216 Name => New_Occurrence_Of (Discr_Fct, Loc),
fbf5a39b
AC
7217 Parameter_Associations => Args),
7218 Reason => CE_Discriminant_Check_Failed));
7219 end Generate_Discriminant_Check;
7220
15ce9ca2
AC
7221 ---------------------------
7222 -- Generate_Index_Checks --
7223 ---------------------------
fbf5a39b 7224
e02c8dff
SB
7225 procedure Generate_Index_Checks
7226 (N : Node_Id;
7227 Checks_Generated : out Dimension_Set)
7228 is
4230bdb7
AC
7229
7230 function Entity_Of_Prefix return Entity_Id;
7231 -- Returns the entity of the prefix of N (or Empty if not found)
7232
8ed68165
AC
7233 ----------------------
7234 -- Entity_Of_Prefix --
7235 ----------------------
7236
4230bdb7 7237 function Entity_Of_Prefix return Entity_Id is
0d53d36b
AC
7238 P : Node_Id;
7239
4230bdb7 7240 begin
0d53d36b 7241 P := Prefix (N);
4230bdb7 7242 while not Is_Entity_Name (P) loop
4a08c95c 7243 if Nkind (P) not in N_Selected_Component | N_Indexed_Component then
4230bdb7
AC
7244 return Empty;
7245 end if;
7246
7247 P := Prefix (P);
7248 end loop;
7249
7250 return Entity (P);
7251 end Entity_Of_Prefix;
7252
7253 -- Local variables
7254
7255 Loc : constant Source_Ptr := Sloc (N);
7256 A : constant Node_Id := Prefix (N);
7257 A_Ent : constant Entity_Id := Entity_Of_Prefix;
7258 Sub : Node_Id;
fbf5a39b 7259
8ed68165
AC
7260 -- Start of processing for Generate_Index_Checks
7261
fbf5a39b 7262 begin
e02c8dff
SB
7263 Checks_Generated.Elements := (others => False);
7264
4230bdb7
AC
7265 -- Ignore call if the prefix is not an array since we have a serious
7266 -- error in the sources. Ignore it also if index checks are suppressed
7267 -- for array object or type.
c064e066 7268
4230bdb7 7269 if not Is_Array_Type (Etype (A))
637a41a5 7270 or else (Present (A_Ent) and then Index_Checks_Suppressed (A_Ent))
c064e066
RD
7271 or else Index_Checks_Suppressed (Etype (A))
7272 then
7273 return;
3a3af4c3
AC
7274
7275 -- The indexed component we are dealing with contains 'Loop_Entry in its
7276 -- prefix. This case arises when analysis has determined that constructs
7277 -- such as
7278
7279 -- Prefix'Loop_Entry (Expr)
7280 -- Prefix'Loop_Entry (Expr1, Expr2, ... ExprN)
7281
7282 -- require rewriting for error detection purposes. A side effect of this
7283 -- action is the generation of index checks that mention 'Loop_Entry.
7284 -- Delay the generation of the check until 'Loop_Entry has been properly
7285 -- expanded. This is done in Expand_Loop_Entry_Attributes.
7286
7287 elsif Nkind (Prefix (N)) = N_Attribute_Reference
7288 and then Attribute_Name (Prefix (N)) = Name_Loop_Entry
7289 then
7290 return;
c064e066
RD
7291 end if;
7292
4230bdb7
AC
7293 -- Generate a raise of constraint error with the appropriate reason and
7294 -- a condition of the form:
7295
8ed68165 7296 -- Base_Type (Sub) not in Array'Range (Subscript)
4230bdb7
AC
7297
7298 -- Note that the reason we generate the conversion to the base type here
7299 -- is that we definitely want the range check to take place, even if it
7300 -- looks like the subtype is OK. Optimization considerations that allow
7301 -- us to omit the check have already been taken into account in the
7302 -- setting of the Do_Range_Check flag earlier on.
c064e066 7303
fbf5a39b 7304 Sub := First (Expressions (N));
4230bdb7
AC
7305
7306 -- Handle string literals
7307
7308 if Ekind (Etype (A)) = E_String_Literal_Subtype then
fbf5a39b
AC
7309 if Do_Range_Check (Sub) then
7310 Set_Do_Range_Check (Sub, False);
7311
4230bdb7
AC
7312 -- For string literals we obtain the bounds of the string from the
7313 -- associated subtype.
fbf5a39b 7314
4230bdb7 7315 Insert_Action (N,
d7a44b14
AC
7316 Make_Raise_Constraint_Error (Loc,
7317 Condition =>
7318 Make_Not_In (Loc,
7319 Left_Opnd =>
7320 Convert_To (Base_Type (Etype (Sub)),
7321 Duplicate_Subexpr_Move_Checks (Sub)),
7322 Right_Opnd =>
7323 Make_Attribute_Reference (Loc,
e4494292 7324 Prefix => New_Occurrence_Of (Etype (A), Loc),
d7a44b14
AC
7325 Attribute_Name => Name_Range)),
7326 Reason => CE_Index_Check_Failed));
e02c8dff
SB
7327
7328 Checks_Generated.Elements (1) := True;
4230bdb7 7329 end if;
fbf5a39b 7330
4230bdb7 7331 -- General case
fbf5a39b 7332
4230bdb7
AC
7333 else
7334 declare
c94bbfbe 7335 A_Idx : Node_Id;
4230bdb7 7336 A_Range : Node_Id;
c94bbfbe 7337 Ind : Pos;
4230bdb7
AC
7338 Num : List_Id;
7339 Range_N : Node_Id;
fbf5a39b 7340
4230bdb7
AC
7341 begin
7342 A_Idx := First_Index (Etype (A));
7343 Ind := 1;
7344 while Present (Sub) loop
7345 if Do_Range_Check (Sub) then
7346 Set_Do_Range_Check (Sub, False);
fbf5a39b 7347
4230bdb7 7348 -- Force evaluation except for the case of a simple name of
2cc2e964 7349 -- a nonvolatile entity.
fbf5a39b 7350
4230bdb7
AC
7351 if not Is_Entity_Name (Sub)
7352 or else Treat_As_Volatile (Entity (Sub))
7353 then
7354 Force_Evaluation (Sub);
7355 end if;
fbf5a39b 7356
4230bdb7
AC
7357 if Nkind (A_Idx) = N_Range then
7358 A_Range := A_Idx;
7359
4a08c95c 7360 elsif Nkind (A_Idx) in N_Identifier | N_Expanded_Name then
4230bdb7
AC
7361 A_Range := Scalar_Range (Entity (A_Idx));
7362
a9fb2055
PT
7363 if Nkind (A_Range) = N_Subtype_Indication then
7364 A_Range := Range_Expression (Constraint (A_Range));
7365 end if;
7366
4230bdb7
AC
7367 else pragma Assert (Nkind (A_Idx) = N_Subtype_Indication);
7368 A_Range := Range_Expression (Constraint (A_Idx));
7369 end if;
7370
7371 -- For array objects with constant bounds we can generate
7372 -- the index check using the bounds of the type of the index
7373
7374 if Present (A_Ent)
7375 and then Ekind (A_Ent) = E_Variable
7376 and then Is_Constant_Bound (Low_Bound (A_Range))
7377 and then Is_Constant_Bound (High_Bound (A_Range))
7378 then
7379 Range_N :=
7380 Make_Attribute_Reference (Loc,
8ed68165 7381 Prefix =>
e4494292 7382 New_Occurrence_Of (Etype (A_Idx), Loc),
4230bdb7
AC
7383 Attribute_Name => Name_Range);
7384
7385 -- For arrays with non-constant bounds we cannot generate
7386 -- the index check using the bounds of the type of the index
7387 -- since it may reference discriminants of some enclosing
7388 -- type. We obtain the bounds directly from the prefix
7389 -- object.
7390
7391 else
7392 if Ind = 1 then
7393 Num := No_List;
7394 else
7395 Num := New_List (Make_Integer_Literal (Loc, Ind));
7396 end if;
7397
7398 Range_N :=
7399 Make_Attribute_Reference (Loc,
7400 Prefix =>
7401 Duplicate_Subexpr_Move_Checks (A, Name_Req => True),
7402 Attribute_Name => Name_Range,
7403 Expressions => Num);
7404 end if;
7405
7406 Insert_Action (N,
d7a44b14
AC
7407 Make_Raise_Constraint_Error (Loc,
7408 Condition =>
7409 Make_Not_In (Loc,
7410 Left_Opnd =>
7411 Convert_To (Base_Type (Etype (Sub)),
7412 Duplicate_Subexpr_Move_Checks (Sub)),
7413 Right_Opnd => Range_N),
7414 Reason => CE_Index_Check_Failed));
e02c8dff
SB
7415
7416 Checks_Generated.Elements (Ind) := True;
4230bdb7
AC
7417 end if;
7418
99859ea7 7419 Next_Index (A_Idx);
4230bdb7
AC
7420 Ind := Ind + 1;
7421 Next (Sub);
7422 end loop;
7423 end;
7424 end if;
fbf5a39b
AC
7425 end Generate_Index_Checks;
7426
7427 --------------------------
7428 -- Generate_Range_Check --
7429 --------------------------
7430
7431 procedure Generate_Range_Check
7432 (N : Node_Id;
7433 Target_Type : Entity_Id;
7434 Reason : RT_Exception_Code)
7435 is
7436 Loc : constant Source_Ptr := Sloc (N);
7437 Source_Type : constant Entity_Id := Etype (N);
7438 Source_Base_Type : constant Entity_Id := Base_Type (Source_Type);
7439 Target_Base_Type : constant Entity_Id := Base_Type (Target_Type);
7440
67460d45
EB
7441 procedure Convert_And_Check_Range (Suppress : Check_Id);
7442 -- Convert N to the target base type and save the result in a temporary.
7443 -- The action is analyzed using the default checks as modified by the
7444 -- given Suppress argument. Then check the converted value against the
7445 -- range of the target subtype.
f5655e4a 7446
cf9e3829
EB
7447 function Is_Single_Attribute_Reference (N : Node_Id) return Boolean;
7448 -- Return True if N is an expression that contains a single attribute
7449 -- reference, possibly as operand among only integer literal operands.
7450
b6621d10
AC
7451 -----------------------------
7452 -- Convert_And_Check_Range --
7453 -----------------------------
f5655e4a 7454
67460d45
EB
7455 procedure Convert_And_Check_Range (Suppress : Check_Id) is
7456 Tnn : constant Entity_Id := Make_Temporary (Loc, 'T', N);
7457 Conv_N : Node_Id;
f5655e4a 7458
b6621d10 7459 begin
f20b5ef4
JM
7460 -- For enumeration types with non-standard representation this is a
7461 -- direct conversion from the enumeration type to the target integer
7462 -- type, which is treated by the back end as a normal integer type
7463 -- conversion, treating the enumeration type as an integer, which is
7464 -- exactly what we want. We set Conversion_OK to make sure that the
7465 -- analyzer does not complain about what otherwise might be an
7466 -- illegal conversion.
7467
7468 if Is_Enumeration_Type (Source_Base_Type)
7469 and then Present (Enum_Pos_To_Rep (Source_Base_Type))
7470 and then Is_Integer_Type (Target_Base_Type)
7471 then
67460d45 7472 Conv_N := OK_Convert_To (Target_Base_Type, Duplicate_Subexpr (N));
f20b5ef4 7473 else
67460d45 7474 Conv_N := Convert_To (Target_Base_Type, Duplicate_Subexpr (N));
f20b5ef4
JM
7475 end if;
7476
67460d45
EB
7477 -- We make a temporary to hold the value of the conversion to the
7478 -- target base type, and then do the test against this temporary.
7479 -- N itself is replaced by an occurrence of Tnn and followed by
7480 -- the explicit range check.
f5655e4a 7481
b6621d10
AC
7482 -- Tnn : constant Target_Base_Type := Target_Base_Type (N);
7483 -- [constraint_error when Tnn not in Target_Type]
67460d45 7484 -- Tnn
b6621d10 7485
f5655e4a
AC
7486 Insert_Actions (N, New_List (
7487 Make_Object_Declaration (Loc,
7488 Defining_Identifier => Tnn,
7489 Object_Definition => New_Occurrence_Of (Target_Base_Type, Loc),
7490 Constant_Present => True,
67460d45 7491 Expression => Conv_N),
f5655e4a
AC
7492
7493 Make_Raise_Constraint_Error (Loc,
7494 Condition =>
7495 Make_Not_In (Loc,
7496 Left_Opnd => New_Occurrence_Of (Tnn, Loc),
7497 Right_Opnd => New_Occurrence_Of (Target_Type, Loc)),
7498 Reason => Reason)),
67460d45 7499 Suppress => Suppress);
f5655e4a
AC
7500
7501 Rewrite (N, New_Occurrence_Of (Tnn, Loc));
7502
7503 -- Set the type of N, because the declaration for Tnn might not
7504 -- be analyzed yet, as is the case if N appears within a record
7505 -- declaration, as a discriminant constraint or expression.
7506
7507 Set_Etype (N, Target_Base_Type);
7508 end Convert_And_Check_Range;
7509
cf9e3829
EB
7510 -------------------------------------
7511 -- Is_Single_Attribute_Reference --
7512 -------------------------------------
7513
7514 function Is_Single_Attribute_Reference (N : Node_Id) return Boolean is
7515 begin
7516 if Nkind (N) = N_Attribute_Reference then
7517 return True;
7518
7519 elsif Nkind (N) in N_Binary_Op then
7520 if Nkind (Right_Opnd (N)) = N_Integer_Literal then
7521 return Is_Single_Attribute_Reference (Left_Opnd (N));
7522
7523 elsif Nkind (Left_Opnd (N)) = N_Integer_Literal then
7524 return Is_Single_Attribute_Reference (Right_Opnd (N));
7525
7526 else
7527 return False;
7528 end if;
7529
7530 else
7531 return False;
7532 end if;
7533 end Is_Single_Attribute_Reference;
7534
f5655e4a
AC
7535 -- Start of processing for Generate_Range_Check
7536
fbf5a39b 7537 begin
675d6070
TQ
7538 -- First special case, if the source type is already within the range
7539 -- of the target type, then no check is needed (probably we should have
7540 -- stopped Do_Range_Check from being set in the first place, but better
67460d45 7541 -- late than never in preventing junk code and junk flag settings).
fbf5a39b 7542
c27f2f15 7543 if In_Subrange_Of (Source_Type, Target_Type)
347c766a
RD
7544
7545 -- We do NOT apply this if the source node is a literal, since in this
7546 -- case the literal has already been labeled as having the subtype of
7547 -- the target.
7548
fbf5a39b 7549 and then not
4a08c95c
AC
7550 (Nkind (N) in
7551 N_Integer_Literal | N_Real_Literal | N_Character_Literal
fbf5a39b 7552 or else
347c766a
RD
7553 (Is_Entity_Name (N)
7554 and then Ekind (Entity (N)) = E_Enumeration_Literal))
fbf5a39b 7555 then
edab6088 7556 Set_Do_Range_Check (N, False);
fbf5a39b
AC
7557 return;
7558 end if;
7559
4ffefb70
PT
7560 -- Here a check is needed. If the expander is not active (which is also
7561 -- the case in GNATprove mode), then simply set the Do_Range_Check flag
7562 -- and we are done. We just want to see the range check flag set, we do
7563 -- not want to generate the explicit range check code.
edab6088 7564
4ffefb70 7565 if not Expander_Active then
68c8d72a 7566 Set_Do_Range_Check (N);
edab6088
RD
7567 return;
7568 end if;
7569
7570 -- Here we will generate an explicit range check, so we don't want to
7571 -- set the Do_Range check flag, since the range check is taken care of
7572 -- by the code we will generate.
7573
7574 Set_Do_Range_Check (N, False);
7575
7576 -- Force evaluation of the node, so that it does not get evaluated twice
7577 -- (once for the check, once for the actual reference). Such a double
7578 -- evaluation is always a potential source of inefficiency, and is
7579 -- functionally incorrect in the volatile case.
fbf5a39b 7580
967947ed
PMR
7581 -- We skip the evaluation of attribute references because, after these
7582 -- runtime checks are generated, the expander may need to rewrite this
7583 -- node (for example, see Attribute_Max_Size_In_Storage_Elements in
cf9e3829
EB
7584 -- Expand_N_Attribute_Reference) and, in many cases, their return type
7585 -- is universal integer, which is a very large type for a temporary.
967947ed 7586
cf9e3829 7587 if not Is_Single_Attribute_Reference (N)
967947ed 7588 and then (not Is_Entity_Name (N)
c581c520 7589 or else Treat_As_Volatile (Entity (N)))
967947ed
PMR
7590 then
7591 Force_Evaluation (N, Mode => Strict);
fbf5a39b
AC
7592 end if;
7593
675d6070
TQ
7594 -- The easiest case is when Source_Base_Type and Target_Base_Type are
7595 -- the same since in this case we can simply do a direct check of the
7596 -- value of N against the bounds of Target_Type.
fbf5a39b
AC
7597
7598 -- [constraint_error when N not in Target_Type]
7599
7600 -- Note: this is by far the most common case, for example all cases of
7601 -- checks on the RHS of assignments are in this category, but not all
7602 -- cases are like this. Notably conversions can involve two types.
7603
7604 if Source_Base_Type = Target_Base_Type then
96e90ac1
RD
7605
7606 -- Insert the explicit range check. Note that we suppress checks for
7607 -- this code, since we don't want a recursive range check popping up.
7608
fbf5a39b
AC
7609 Insert_Action (N,
7610 Make_Raise_Constraint_Error (Loc,
7611 Condition =>
7612 Make_Not_In (Loc,
7613 Left_Opnd => Duplicate_Subexpr (N),
7614 Right_Opnd => New_Occurrence_Of (Target_Type, Loc)),
96e90ac1
RD
7615 Reason => Reason),
7616 Suppress => All_Checks);
fbf5a39b
AC
7617
7618 -- Next test for the case where the target type is within the bounds
7619 -- of the base type of the source type, since in this case we can
7c2a44ae 7620 -- simply convert the bounds of the target type to this base type
67460d45 7621 -- to do the test.
fbf5a39b
AC
7622
7623 -- [constraint_error when N not in
7624 -- Source_Base_Type (Target_Type'First)
7625 -- ..
7626 -- Source_Base_Type(Target_Type'Last))]
7627
ddda9d0f 7628 -- The conversions will always work and need no check
fbf5a39b 7629
d79e621a
GD
7630 -- Unchecked_Convert_To is used instead of Convert_To to handle the case
7631 -- of converting from an enumeration value to an integer type, such as
7632 -- occurs for the case of generating a range check on Enum'Val(Exp)
7633 -- (which used to be handled by gigi). This is OK, since the conversion
7634 -- itself does not require a check.
7635
c27f2f15 7636 elsif In_Subrange_Of (Target_Type, Source_Base_Type) then
96e90ac1
RD
7637
7638 -- Insert the explicit range check. Note that we suppress checks for
7639 -- this code, since we don't want a recursive range check popping up.
7640
f5655e4a
AC
7641 if Is_Discrete_Type (Source_Base_Type)
7642 and then
7643 Is_Discrete_Type (Target_Base_Type)
7644 then
7645 Insert_Action (N,
7646 Make_Raise_Constraint_Error (Loc,
7647 Condition =>
7648 Make_Not_In (Loc,
7649 Left_Opnd => Duplicate_Subexpr (N),
7650
7651 Right_Opnd =>
7652 Make_Range (Loc,
7653 Low_Bound =>
7654 Unchecked_Convert_To (Source_Base_Type,
7655 Make_Attribute_Reference (Loc,
7656 Prefix =>
7657 New_Occurrence_Of (Target_Type, Loc),
7658 Attribute_Name => Name_First)),
7659
7660 High_Bound =>
7661 Unchecked_Convert_To (Source_Base_Type,
7662 Make_Attribute_Reference (Loc,
7663 Prefix =>
7664 New_Occurrence_Of (Target_Type, Loc),
7665 Attribute_Name => Name_Last)))),
7666 Reason => Reason),
7667 Suppress => All_Checks);
fbf5a39b 7668
f5655e4a 7669 -- For conversions involving at least one type that is not discrete,
67460d45
EB
7670 -- first convert to the target base type and then generate the range
7671 -- check. This avoids problems with values that are close to a bound
7672 -- of the target type that would fail a range check when done in a
7673 -- larger source type before converting but pass if converted with
f5655e4a
AC
7674 -- rounding and then checked (such as in float-to-float conversions).
7675
67460d45
EB
7676 -- Note that overflow checks are not suppressed for this code because
7677 -- we do not know whether the source type is in range of the target
7678 -- base type (unlike in the next case below).
7679
f5655e4a 7680 else
67460d45 7681 Convert_And_Check_Range (Suppress => Range_Check);
f5655e4a 7682 end if;
fbf5a39b 7683
929d5203 7684 -- Note that at this stage we know that the Target_Base_Type is not in
675d6070
TQ
7685 -- the range of the Source_Base_Type (since even the Target_Type itself
7686 -- is not in this range). It could still be the case that Source_Type is
7687 -- in range of the target base type since we have not checked that case.
fbf5a39b 7688
675d6070 7689 -- If that is the case, we can freely convert the source to the target,
67460d45
EB
7690 -- and then test the target result against the bounds. Note that checks
7691 -- are suppressed for this code, since we don't want a recursive range
7692 -- check popping up.
fbf5a39b 7693
c27f2f15 7694 elsif In_Subrange_Of (Source_Type, Target_Base_Type) then
67460d45 7695 Convert_And_Check_Range (Suppress => All_Checks);
fbf5a39b
AC
7696
7697 -- At this stage, we know that we have two scalar types, which are
7698 -- directly convertible, and where neither scalar type has a base
7699 -- range that is in the range of the other scalar type.
7700
7701 -- The only way this can happen is with a signed and unsigned type.
7702 -- So test for these two cases:
7703
7704 else
7705 -- Case of the source is unsigned and the target is signed
7706
7707 if Is_Unsigned_Type (Source_Base_Type)
7708 and then not Is_Unsigned_Type (Target_Base_Type)
7709 then
7710 -- If the source is unsigned and the target is signed, then we
7711 -- know that the source is not shorter than the target (otherwise
7712 -- the source base type would be in the target base type range).
7713
675d6070
TQ
7714 -- In other words, the unsigned type is either the same size as
7715 -- the target, or it is larger. It cannot be smaller.
fbf5a39b
AC
7716
7717 pragma Assert
7718 (Esize (Source_Base_Type) >= Esize (Target_Base_Type));
7719
7720 -- We only need to check the low bound if the low bound of the
7721 -- target type is non-negative. If the low bound of the target
7722 -- type is negative, then we know that we will fit fine.
7723
7724 -- If the high bound of the target type is negative, then we
7725 -- know we have a constraint error, since we can't possibly
7726 -- have a negative source.
7727
7728 -- With these two checks out of the way, we can do the check
7729 -- using the source type safely
7730
a90bd866 7731 -- This is definitely the most annoying case.
fbf5a39b
AC
7732
7733 -- [constraint_error
7734 -- when (Target_Type'First >= 0
7735 -- and then
7736 -- N < Source_Base_Type (Target_Type'First))
7737 -- or else Target_Type'Last < 0
7738 -- or else N > Source_Base_Type (Target_Type'Last)];
7739
7740 -- We turn off all checks since we know that the conversions
7741 -- will work fine, given the guards for negative values.
7742
7743 Insert_Action (N,
7744 Make_Raise_Constraint_Error (Loc,
7745 Condition =>
7746 Make_Or_Else (Loc,
7747 Make_Or_Else (Loc,
7748 Left_Opnd =>
7749 Make_And_Then (Loc,
7750 Left_Opnd => Make_Op_Ge (Loc,
7751 Left_Opnd =>
7752 Make_Attribute_Reference (Loc,
7753 Prefix =>
7754 New_Occurrence_Of (Target_Type, Loc),
7755 Attribute_Name => Name_First),
7756 Right_Opnd => Make_Integer_Literal (Loc, Uint_0)),
7757
7758 Right_Opnd =>
7759 Make_Op_Lt (Loc,
7760 Left_Opnd => Duplicate_Subexpr (N),
7761 Right_Opnd =>
7762 Convert_To (Source_Base_Type,
7763 Make_Attribute_Reference (Loc,
7764 Prefix =>
7765 New_Occurrence_Of (Target_Type, Loc),
7766 Attribute_Name => Name_First)))),
7767
7768 Right_Opnd =>
7769 Make_Op_Lt (Loc,
7770 Left_Opnd =>
7771 Make_Attribute_Reference (Loc,
7772 Prefix => New_Occurrence_Of (Target_Type, Loc),
7773 Attribute_Name => Name_Last),
7774 Right_Opnd => Make_Integer_Literal (Loc, Uint_0))),
7775
7776 Right_Opnd =>
7777 Make_Op_Gt (Loc,
7778 Left_Opnd => Duplicate_Subexpr (N),
7779 Right_Opnd =>
7780 Convert_To (Source_Base_Type,
7781 Make_Attribute_Reference (Loc,
7782 Prefix => New_Occurrence_Of (Target_Type, Loc),
7783 Attribute_Name => Name_Last)))),
7784
7785 Reason => Reason),
7786 Suppress => All_Checks);
7787
7788 -- Only remaining possibility is that the source is signed and
b568955d 7789 -- the target is unsigned.
fbf5a39b
AC
7790
7791 else
7792 pragma Assert (not Is_Unsigned_Type (Source_Base_Type)
637a41a5 7793 and then Is_Unsigned_Type (Target_Base_Type));
fbf5a39b 7794
675d6070
TQ
7795 -- If the source is signed and the target is unsigned, then we
7796 -- know that the target is not shorter than the source (otherwise
7797 -- the target base type would be in the source base type range).
fbf5a39b 7798
675d6070
TQ
7799 -- In other words, the unsigned type is either the same size as
7800 -- the target, or it is larger. It cannot be smaller.
fbf5a39b 7801
675d6070
TQ
7802 -- Clearly we have an error if the source value is negative since
7803 -- no unsigned type can have negative values. If the source type
7804 -- is non-negative, then the check can be done using the target
7805 -- type.
fbf5a39b
AC
7806
7807 -- Tnn : constant Target_Base_Type (N) := Target_Type;
7808
7809 -- [constraint_error
7810 -- when N < 0 or else Tnn not in Target_Type];
7811
675d6070
TQ
7812 -- We turn off all checks for the conversion of N to the target
7813 -- base type, since we generate the explicit check to ensure that
7814 -- the value is non-negative
fbf5a39b
AC
7815
7816 declare
191fcb3a 7817 Tnn : constant Entity_Id := Make_Temporary (Loc, 'T', N);
fbf5a39b
AC
7818
7819 begin
7820 Insert_Actions (N, New_List (
7821 Make_Object_Declaration (Loc,
7822 Defining_Identifier => Tnn,
7823 Object_Definition =>
7824 New_Occurrence_Of (Target_Base_Type, Loc),
7825 Constant_Present => True,
7826 Expression =>
738a0e8d
BD
7827 Unchecked_Convert_To
7828 (Target_Base_Type, Duplicate_Subexpr (N))),
fbf5a39b
AC
7829
7830 Make_Raise_Constraint_Error (Loc,
7831 Condition =>
7832 Make_Or_Else (Loc,
7833 Left_Opnd =>
7834 Make_Op_Lt (Loc,
7835 Left_Opnd => Duplicate_Subexpr (N),
7836 Right_Opnd => Make_Integer_Literal (Loc, Uint_0)),
7837
7838 Right_Opnd =>
7839 Make_Not_In (Loc,
7840 Left_Opnd => New_Occurrence_Of (Tnn, Loc),
7841 Right_Opnd =>
7842 New_Occurrence_Of (Target_Type, Loc))),
7843
637a41a5 7844 Reason => Reason)),
fbf5a39b
AC
7845 Suppress => All_Checks);
7846
675d6070
TQ
7847 -- Set the Etype explicitly, because Insert_Actions may have
7848 -- placed the declaration in the freeze list for an enclosing
7849 -- construct, and thus it is not analyzed yet.
fbf5a39b
AC
7850
7851 Set_Etype (Tnn, Target_Base_Type);
7852 Rewrite (N, New_Occurrence_Of (Tnn, Loc));
7853 end;
7854 end if;
7855 end if;
7856 end Generate_Range_Check;
7857
939c12d2
RD
7858 ------------------
7859 -- Get_Check_Id --
7860 ------------------
7861
7862 function Get_Check_Id (N : Name_Id) return Check_Id is
7863 begin
7864 -- For standard check name, we can do a direct computation
7865
7866 if N in First_Check_Name .. Last_Check_Name then
7867 return Check_Id (N - (First_Check_Name - 1));
7868
7869 -- For non-standard names added by pragma Check_Name, search table
7870
7871 else
7872 for J in All_Checks + 1 .. Check_Names.Last loop
7873 if Check_Names.Table (J) = N then
7874 return J;
7875 end if;
7876 end loop;
7877 end if;
7878
7879 -- No matching name found
7880
7881 return No_Check_Id;
7882 end Get_Check_Id;
7883
70482933
RK
7884 ---------------------
7885 -- Get_Discriminal --
7886 ---------------------
7887
7888 function Get_Discriminal (E : Entity_Id; Bound : Node_Id) return Node_Id is
7889 Loc : constant Source_Ptr := Sloc (E);
7890 D : Entity_Id;
7891 Sc : Entity_Id;
7892
7893 begin
c064e066
RD
7894 -- The bound can be a bona fide parameter of a protected operation,
7895 -- rather than a prival encoded as an in-parameter.
7896
7897 if No (Discriminal_Link (Entity (Bound))) then
7898 return Bound;
7899 end if;
7900
939c12d2
RD
7901 -- Climb the scope stack looking for an enclosing protected type. If
7902 -- we run out of scopes, return the bound itself.
7903
7904 Sc := Scope (E);
7905 while Present (Sc) loop
7906 if Sc = Standard_Standard then
7907 return Bound;
939c12d2
RD
7908 elsif Ekind (Sc) = E_Protected_Type then
7909 exit;
7910 end if;
7911
7912 Sc := Scope (Sc);
7913 end loop;
7914
70482933 7915 D := First_Discriminant (Sc);
939c12d2
RD
7916 while Present (D) loop
7917 if Chars (D) = Chars (Bound) then
7918 return New_Occurrence_Of (Discriminal (D), Loc);
7919 end if;
70482933 7920
70482933
RK
7921 Next_Discriminant (D);
7922 end loop;
7923
939c12d2 7924 return Bound;
70482933
RK
7925 end Get_Discriminal;
7926
939c12d2
RD
7927 ----------------------
7928 -- Get_Range_Checks --
7929 ----------------------
7930
7931 function Get_Range_Checks
6c8e70fe 7932 (Expr : Node_Id;
939c12d2
RD
7933 Target_Typ : Entity_Id;
7934 Source_Typ : Entity_Id := Empty;
7935 Warn_Node : Node_Id := Empty) return Check_Result
7936 is
7937 begin
637a41a5 7938 return
6c8e70fe 7939 Selected_Range_Checks (Expr, Target_Typ, Source_Typ, Warn_Node);
939c12d2
RD
7940 end Get_Range_Checks;
7941
70482933
RK
7942 ------------------
7943 -- Guard_Access --
7944 ------------------
7945
7946 function Guard_Access
6c8e70fe
EB
7947 (Cond : Node_Id;
7948 Loc : Source_Ptr;
7949 Expr : Node_Id) return Node_Id
70482933
RK
7950 is
7951 begin
7952 if Nkind (Cond) = N_Or_Else then
7953 Set_Paren_Count (Cond, 1);
7954 end if;
7955
6c8e70fe 7956 if Nkind (Expr) = N_Allocator then
70482933 7957 return Cond;
637a41a5 7958
70482933
RK
7959 else
7960 return
7961 Make_And_Then (Loc,
7962 Left_Opnd =>
7963 Make_Op_Ne (Loc,
6c8e70fe 7964 Left_Opnd => Duplicate_Subexpr_No_Checks (Expr),
70482933
RK
7965 Right_Opnd => Make_Null (Loc)),
7966 Right_Opnd => Cond);
7967 end if;
7968 end Guard_Access;
7969
7970 -----------------------------
7971 -- Index_Checks_Suppressed --
7972 -----------------------------
7973
7974 function Index_Checks_Suppressed (E : Entity_Id) return Boolean is
7975 begin
fbf5a39b
AC
7976 if Present (E) and then Checks_May_Be_Suppressed (E) then
7977 return Is_Check_Suppressed (E, Index_Check);
7978 else
3217f71e 7979 return Scope_Suppress.Suppress (Index_Check);
fbf5a39b 7980 end if;
70482933
RK
7981 end Index_Checks_Suppressed;
7982
7983 ----------------
7984 -- Initialize --
7985 ----------------
7986
7987 procedure Initialize is
7988 begin
7989 for J in Determine_Range_Cache_N'Range loop
7990 Determine_Range_Cache_N (J) := Empty;
7991 end loop;
939c12d2
RD
7992
7993 Check_Names.Init;
7994
7995 for J in Int range 1 .. All_Checks loop
7996 Check_Names.Append (Name_Id (Int (First_Check_Name) + J - 1));
7997 end loop;
70482933
RK
7998 end Initialize;
7999
8000 -------------------------
8001 -- Insert_Range_Checks --
8002 -------------------------
8003
8004 procedure Insert_Range_Checks
8005 (Checks : Check_Result;
8006 Node : Node_Id;
8007 Suppress_Typ : Entity_Id;
bbe7d67f 8008 Static_Sloc : Source_Ptr;
70482933
RK
8009 Do_Before : Boolean := False)
8010 is
e0666fc6
AC
8011 Checks_On : constant Boolean :=
8012 not Index_Checks_Suppressed (Suppress_Typ)
8013 or else
8014 not Range_Checks_Suppressed (Suppress_Typ);
8015
bbe7d67f 8016 Check_Node : Node_Id;
70482933 8017
70482933 8018 begin
675d6070
TQ
8019 -- For now we just return if Checks_On is false, however this should be
8020 -- enhanced to check for an always True value in the condition and to
869a06d9 8021 -- generate a compilation warning.
70482933 8022
1f0b1e48 8023 if not Expander_Active or not Checks_On then
70482933
RK
8024 return;
8025 end if;
8026
70482933
RK
8027 for J in 1 .. 2 loop
8028 exit when No (Checks (J));
8029
8030 if Nkind (Checks (J)) = N_Raise_Constraint_Error
8031 and then Present (Condition (Checks (J)))
8032 then
bbe7d67f 8033 Check_Node := Checks (J);
70482933
RK
8034 else
8035 Check_Node :=
bbe7d67f 8036 Make_Raise_Constraint_Error (Static_Sloc,
07fc65c4 8037 Reason => CE_Range_Check_Failed);
bbe7d67f 8038 end if;
70482933 8039
bbe7d67f
EB
8040 Mark_Rewrite_Insertion (Check_Node);
8041
8042 if Do_Before then
8043 Insert_Before_And_Analyze (Node, Check_Node);
8044 else
8045 Insert_After_And_Analyze (Node, Check_Node);
70482933
RK
8046 end if;
8047 end loop;
8048 end Insert_Range_Checks;
8049
8050 ------------------------
8051 -- Insert_Valid_Check --
8052 ------------------------
8053
2934b84a
AC
8054 procedure Insert_Valid_Check
8055 (Expr : Node_Id;
8056 Related_Id : Entity_Id := Empty;
8057 Is_Low_Bound : Boolean := False;
8058 Is_High_Bound : Boolean := False)
8059 is
70482933 8060 Loc : constant Source_Ptr := Sloc (Expr);
d9fe0e53 8061 Typ : Entity_Id := Etype (Expr);
84157f51 8062 Exp : Node_Id;
70482933
RK
8063
8064 begin
2934b84a
AC
8065 -- Do not insert if checks off, or if not checking validity or if
8066 -- expression is known to be valid.
70482933 8067
c064e066
RD
8068 if not Validity_Checks_On
8069 or else Range_Or_Validity_Checks_Suppressed (Expr)
8dc2ddaf 8070 or else Expr_Known_Valid (Expr)
70482933 8071 then
84157f51 8072 return;
70482933 8073
489c6e19
AC
8074 -- Do not insert checks within a predicate function. This will arise
8075 -- if the current unit and the predicate function are being compiled
8076 -- with validity checks enabled.
d515aef3 8077
b0cd50fd 8078 elsif Present (Predicate_Function (Typ))
d515aef3
AC
8079 and then Current_Scope = Predicate_Function (Typ)
8080 then
8081 return;
d515aef3 8082
9dc30a5f
AC
8083 -- If the expression is a packed component of a modular type of the
8084 -- right size, the data is always valid.
8085
b0cd50fd 8086 elsif Nkind (Expr) = N_Selected_Component
9dc30a5f
AC
8087 and then Present (Component_Clause (Entity (Selector_Name (Expr))))
8088 and then Is_Modular_Integer_Type (Typ)
8089 and then Modulus (Typ) = 2 ** Esize (Entity (Selector_Name (Expr)))
8090 then
8091 return;
b0cd50fd
AC
8092
8093 -- Do not generate a validity check when inside a generic unit as this
8094 -- is an expansion activity.
8095
8096 elsif Inside_A_Generic then
8097 return;
9dc30a5f
AC
8098 end if;
8099
6578a6bf
HK
8100 -- Entities declared in Lock_free protected types must be treated as
8101 -- volatile, and we must inhibit validity checks to prevent improper
8102 -- constant folding.
90fd73bb
ES
8103
8104 if Is_Entity_Name (Expr)
8105 and then Is_Subprogram (Scope (Entity (Expr)))
8106 and then Present (Protected_Subprogram (Scope (Entity (Expr))))
8107 and then Uses_Lock_Free
6578a6bf 8108 (Scope (Protected_Subprogram (Scope (Entity (Expr)))))
90fd73bb
ES
8109 then
8110 return;
8111 end if;
8112
84157f51
GB
8113 -- If we have a checked conversion, then validity check applies to
8114 -- the expression inside the conversion, not the result, since if
8115 -- the expression inside is valid, then so is the conversion result.
70482933 8116
84157f51
GB
8117 Exp := Expr;
8118 while Nkind (Exp) = N_Type_Conversion loop
8119 Exp := Expression (Exp);
8120 end loop;
d9fe0e53 8121 Typ := Etype (Exp);
84157f51 8122
89b6c83e
AC
8123 -- Do not generate a check for a variable which already validates the
8124 -- value of an assignable object.
8125
8126 if Is_Validation_Variable_Reference (Exp) then
8127 return;
8128 end if;
8129
c064e066 8130 declare
62e45e3e 8131 CE : Node_Id;
62e45e3e
HK
8132 PV : Node_Id;
8133 Var_Id : Entity_Id;
d8b9660d 8134
c064e066 8135 begin
89b6c83e
AC
8136 -- If the expression denotes an assignable object, capture its value
8137 -- in a variable and replace the original expression by the variable.
8138 -- This approach has several effects:
8dc2ddaf 8139
89b6c83e
AC
8140 -- 1) The evaluation of the object results in only one read in the
8141 -- case where the object is atomic or volatile.
59f4d038 8142
62e45e3e 8143 -- Var ... := Object; -- read
59f4d038 8144
89b6c83e
AC
8145 -- 2) The captured value is the one verified by attribute 'Valid.
8146 -- As a result the object is not evaluated again, which would
8147 -- result in an unwanted read in the case where the object is
8148 -- atomic or volatile.
8149
62e45e3e 8150 -- if not Var'Valid then -- OK, no read of Object
89b6c83e
AC
8151
8152 -- if not Object'Valid then -- Wrong, extra read of Object
8153
8154 -- 3) The captured value replaces the original object reference.
8155 -- As a result the object is not evaluated again, in the same
8156 -- vein as 2).
8157
62e45e3e 8158 -- ... Var ... -- OK, no read of Object
89b6c83e
AC
8159
8160 -- ... Object ... -- Wrong, extra read of Object
8dc2ddaf 8161
89b6c83e
AC
8162 -- 4) The use of a variable to capture the value of the object
8163 -- allows the propagation of any changes back to the original
8164 -- object.
8165
8166 -- procedure Call (Val : in out ...);
8167
62e45e3e
HK
8168 -- Var : ... := Object; -- read Object
8169 -- if not Var'Valid then -- validity check
8170 -- Call (Var); -- modify Var
8171 -- Object := Var; -- update Object
89b6c83e
AC
8172
8173 if Is_Variable (Exp) then
62e45e3e 8174 Var_Id := Make_Temporary (Loc, 'T', Exp);
89b6c83e 8175
683af98c
AC
8176 -- Because we could be dealing with a transient scope which would
8177 -- cause our object declaration to remain unanalyzed we must do
8178 -- some manual decoration.
8179
2e02ab86 8180 Mutate_Ekind (Var_Id, E_Variable);
683af98c
AC
8181 Set_Etype (Var_Id, Typ);
8182
89b6c83e
AC
8183 Insert_Action (Exp,
8184 Make_Object_Declaration (Loc,
62e45e3e 8185 Defining_Identifier => Var_Id,
89b6c83e 8186 Object_Definition => New_Occurrence_Of (Typ, Loc),
dd89dddf
AC
8187 Expression => New_Copy_Tree (Exp)),
8188 Suppress => Validity_Check);
8189
8190 Set_Validated_Object (Var_Id, New_Copy_Tree (Exp));
13931a38 8191
62e45e3e 8192 Rewrite (Exp, New_Occurrence_Of (Var_Id, Loc));
89b6c83e 8193
1361a4fb
EB
8194 -- Move the Do_Range_Check flag over to the new Exp so it doesn't
8195 -- get lost and doesn't leak elsewhere.
3815f967 8196
1361a4fb
EB
8197 if Do_Range_Check (Validated_Object (Var_Id)) then
8198 Set_Do_Range_Check (Exp);
8199 Set_Do_Range_Check (Validated_Object (Var_Id), False);
3815f967
AC
8200 end if;
8201
d9fe0e53
MP
8202 -- In case of a type conversion, an expansion of the expr may be
8203 -- needed (eg. fixed-point as actual).
8204
8205 if Exp /= Expr then
8206 pragma Assert (Nkind (Expr) = N_Type_Conversion);
8207 Analyze_And_Resolve (Expr);
8208 end if;
8209
13931a38
EB
8210 PV := New_Occurrence_Of (Var_Id, Loc);
8211
89b6c83e
AC
8212 -- Otherwise the expression does not denote a variable. Force its
8213 -- evaluation by capturing its value in a constant. Generate:
8214
8215 -- Temp : constant ... := Exp;
8216
8217 else
8218 Force_Evaluation
8219 (Exp => Exp,
8220 Related_Id => Related_Id,
8221 Is_Low_Bound => Is_Low_Bound,
8222 Is_High_Bound => Is_High_Bound);
8223
8224 PV := New_Copy_Tree (Exp);
8225 end if;
c064e066 8226
e80f0cb0
RD
8227 -- A rather specialized test. If PV is an analyzed expression which
8228 -- is an indexed component of a packed array that has not been
8229 -- properly expanded, turn off its Analyzed flag to make sure it
4bd4bb7f
AC
8230 -- gets properly reexpanded. If the prefix is an access value,
8231 -- the dereference will be added later.
0e564ab4
AC
8232
8233 -- The reason this arises is that Duplicate_Subexpr_No_Checks did
8234 -- an analyze with the old parent pointer. This may point e.g. to
8235 -- a subprogram call, which deactivates this expansion.
8236
8237 if Analyzed (PV)
8238 and then Nkind (PV) = N_Indexed_Component
4bd4bb7f 8239 and then Is_Array_Type (Etype (Prefix (PV)))
8ca597af 8240 and then Present (Packed_Array_Impl_Type (Etype (Prefix (PV))))
0e564ab4
AC
8241 then
8242 Set_Analyzed (PV, False);
8243 end if;
8244
59f4d038
RD
8245 -- Build the raise CE node to check for validity. We build a type
8246 -- qualification for the prefix, since it may not be of the form of
8247 -- a name, and we don't care in this context!
0e564ab4
AC
8248
8249 CE :=
2934b84a
AC
8250 Make_Raise_Constraint_Error (Loc,
8251 Condition =>
8252 Make_Op_Not (Loc,
8253 Right_Opnd =>
8254 Make_Attribute_Reference (Loc,
8255 Prefix => PV,
8256 Attribute_Name => Name_Valid)),
8257 Reason => CE_Invalid_Data);
0e564ab4
AC
8258
8259 -- Insert the validity check. Note that we do this with validity
8260 -- checks turned off, to avoid recursion, we do not want validity
a90bd866 8261 -- checks on the validity checking code itself.
0e564ab4
AC
8262
8263 Insert_Action (Expr, CE, Suppress => Validity_Check);
c064e066 8264
308e6f3a 8265 -- If the expression is a reference to an element of a bit-packed
c064e066
RD
8266 -- array, then it is rewritten as a renaming declaration. If the
8267 -- expression is an actual in a call, it has not been expanded,
8268 -- waiting for the proper point at which to do it. The same happens
8269 -- with renamings, so that we have to force the expansion now. This
8270 -- non-local complication is due to code in exp_ch2,adb, exp_ch4.adb
8271 -- and exp_ch6.adb.
8272
8273 if Is_Entity_Name (Exp)
8274 and then Nkind (Parent (Entity (Exp))) =
637a41a5 8275 N_Object_Renaming_Declaration
c064e066
RD
8276 then
8277 declare
8278 Old_Exp : constant Node_Id := Name (Parent (Entity (Exp)));
8279 begin
8280 if Nkind (Old_Exp) = N_Indexed_Component
8281 and then Is_Bit_Packed_Array (Etype (Prefix (Old_Exp)))
8282 then
8283 Expand_Packed_Element_Reference (Old_Exp);
8284 end if;
8285 end;
8286 end if;
c064e066 8287 end;
70482933
RK
8288 end Insert_Valid_Check;
8289
acad3c0a
AC
8290 -------------------------------------
8291 -- Is_Signed_Integer_Arithmetic_Op --
8292 -------------------------------------
8293
8294 function Is_Signed_Integer_Arithmetic_Op (N : Node_Id) return Boolean is
8295 begin
8296 case Nkind (N) is
d8f43ee6
HK
8297 when N_Op_Abs
8298 | N_Op_Add
8299 | N_Op_Divide
8300 | N_Op_Expon
8301 | N_Op_Minus
8302 | N_Op_Mod
8303 | N_Op_Multiply
8304 | N_Op_Plus
8305 | N_Op_Rem
8306 | N_Op_Subtract
8307 =>
acad3c0a
AC
8308 return Is_Signed_Integer_Type (Etype (N));
8309
d8f43ee6
HK
8310 when N_Case_Expression
8311 | N_If_Expression
8312 =>
4b1c4f20
RD
8313 return Is_Signed_Integer_Type (Etype (N));
8314
acad3c0a
AC
8315 when others =>
8316 return False;
8317 end case;
8318 end Is_Signed_Integer_Arithmetic_Op;
8319
2820d220
AC
8320 ----------------------------------
8321 -- Install_Null_Excluding_Check --
8322 ----------------------------------
8323
8324 procedure Install_Null_Excluding_Check (N : Node_Id) is
437f8c1e 8325 Loc : constant Source_Ptr := Sloc (Parent (N));
86ac5e79
ES
8326 Typ : constant Entity_Id := Etype (N);
8327
8328 procedure Mark_Non_Null;
bb6e3d41
HK
8329 -- After installation of check, if the node in question is an entity
8330 -- name, then mark this entity as non-null if possible.
8331
86ac5e79
ES
8332 -------------------
8333 -- Mark_Non_Null --
8334 -------------------
8335
8336 procedure Mark_Non_Null is
8337 begin
bb6e3d41
HK
8338 -- Only case of interest is if node N is an entity name
8339
86ac5e79 8340 if Is_Entity_Name (N) then
bb6e3d41
HK
8341
8342 -- For sure, we want to clear an indication that this is known to
a90bd866 8343 -- be null, since if we get past this check, it definitely is not.
bb6e3d41 8344
86ac5e79
ES
8345 Set_Is_Known_Null (Entity (N), False);
8346
214b1cb8
PT
8347 -- We can mark the entity as known to be non-null if it is safe to
8348 -- capture the value.
bb6e3d41 8349
214b1cb8 8350 if Safe_To_Capture_Value (N, Entity (N)) then
bb6e3d41 8351 Set_Is_Known_Non_Null (Entity (N));
86ac5e79
ES
8352 end if;
8353 end if;
8354 end Mark_Non_Null;
8355
8356 -- Start of processing for Install_Null_Excluding_Check
2820d220
AC
8357
8358 begin
fcf1dd74
JM
8359 -- No need to add null-excluding checks when the tree may not be fully
8360 -- decorated.
8361
8362 if Serious_Errors_Detected > 0 then
8363 return;
8364 end if;
8365
86ac5e79 8366 pragma Assert (Is_Access_Type (Typ));
2820d220 8367
cca7f107 8368 -- No check inside a generic, check will be emitted in instance
2820d220 8369
86ac5e79 8370 if Inside_A_Generic then
2820d220 8371 return;
86ac5e79
ES
8372 end if;
8373
8374 -- No check needed if known to be non-null
8375
8376 if Known_Non_Null (N) then
d8b9660d 8377 return;
86ac5e79 8378 end if;
2820d220 8379
86ac5e79
ES
8380 -- If known to be null, here is where we generate a compile time check
8381
8382 if Known_Null (N) then
b1c11e0e 8383
637a41a5
AC
8384 -- Avoid generating warning message inside init procs. In SPARK mode
8385 -- we can go ahead and call Apply_Compile_Time_Constraint_Error
cca7f107 8386 -- since it will be turned into an error in any case.
b1c11e0e 8387
cca7f107
AC
8388 if (not Inside_Init_Proc or else SPARK_Mode = On)
8389
1ae70618
ES
8390 -- Do not emit the warning within a conditional expression,
8391 -- where the expression might not be evaluated, and the warning
8392 -- appear as extraneous noise.
cca7f107
AC
8393
8394 and then not Within_Case_Or_If_Expression (N)
8395 then
b1c11e0e 8396 Apply_Compile_Time_Constraint_Error
4a28b181 8397 (N, "null value not allowed here??", CE_Access_Check_Failed);
cca7f107
AC
8398
8399 -- Remaining cases, where we silently insert the raise
8400
b1c11e0e
JM
8401 else
8402 Insert_Action (N,
8403 Make_Raise_Constraint_Error (Loc,
8404 Reason => CE_Access_Check_Failed));
8405 end if;
8406
86ac5e79
ES
8407 Mark_Non_Null;
8408 return;
8409 end if;
8410
8411 -- If entity is never assigned, for sure a warning is appropriate
8412
8413 if Is_Entity_Name (N) then
8414 Check_Unset_Reference (N);
2820d220 8415 end if;
86ac5e79
ES
8416
8417 -- No check needed if checks are suppressed on the range. Note that we
8418 -- don't set Is_Known_Non_Null in this case (we could legitimately do
8419 -- so, since the program is erroneous, but we don't like to casually
8420 -- propagate such conclusions from erroneosity).
8421
8422 if Access_Checks_Suppressed (Typ) then
8423 return;
8424 end if;
8425
939c12d2
RD
8426 -- No check needed for access to concurrent record types generated by
8427 -- the expander. This is not just an optimization (though it does indeed
8428 -- remove junk checks). It also avoids generation of junk warnings.
8429
8430 if Nkind (N) in N_Has_Chars
8431 and then Chars (N) = Name_uObject
8432 and then Is_Concurrent_Record_Type
8433 (Directly_Designated_Type (Etype (N)))
8434 then
8435 return;
8436 end if;
8437
0a376301
JM
8438 -- No check needed in interface thunks since the runtime check is
8439 -- already performed at the caller side.
8440
8441 if Is_Thunk (Current_Scope) then
8442 return;
8443 end if;
8444
5c34f30d
YM
8445 -- In GNATprove mode, we do not apply the check
8446
8447 if GNATprove_Mode then
74cab21a
EB
8448 return;
8449 end if;
8450
86ac5e79
ES
8451 -- Otherwise install access check
8452
8453 Insert_Action (N,
8454 Make_Raise_Constraint_Error (Loc,
8455 Condition =>
8456 Make_Op_Eq (Loc,
8457 Left_Opnd => Duplicate_Subexpr_Move_Checks (N),
8458 Right_Opnd => Make_Null (Loc)),
8459 Reason => CE_Access_Check_Failed));
8460
6675552b
JS
8461 -- Mark the entity of N "non-null" except when assertions are enabled -
8462 -- since expansion becomes much more complicated (especially when it
8463 -- comes to contracts) due to the generation of wrappers and wholesale
8464 -- moving of declarations and statements which may happen.
8465
8466 -- Additionally, it is assumed that extra checks will exist with
8467 -- assertions enabled so some potentially redundant checks are
8468 -- acceptable.
8469
8470 if not Assertions_Enabled then
8471 Mark_Non_Null;
8472 end if;
2820d220
AC
8473 end Install_Null_Excluding_Check;
8474
7327f5c2
AC
8475 -----------------------------------------
8476 -- Install_Primitive_Elaboration_Check --
8477 -----------------------------------------
8478
8479 procedure Install_Primitive_Elaboration_Check (Subp_Body : Node_Id) is
7327f5c2
AC
8480 function Within_Compilation_Unit_Instance
8481 (Subp_Id : Entity_Id) return Boolean;
8482 -- Determine whether subprogram Subp_Id appears within an instance which
8483 -- acts as a compilation unit.
8484
8485 --------------------------------------
8486 -- Within_Compilation_Unit_Instance --
8487 --------------------------------------
8488
8489 function Within_Compilation_Unit_Instance
8490 (Subp_Id : Entity_Id) return Boolean
8491 is
8492 Pack : Entity_Id;
8493
8494 begin
8495 -- Examine the scope chain looking for a compilation-unit-level
8496 -- instance.
8497
8498 Pack := Scope (Subp_Id);
8499 while Present (Pack) and then Pack /= Standard_Standard loop
8500 if Ekind (Pack) = E_Package
8501 and then Is_Generic_Instance (Pack)
8502 and then Nkind (Parent (Unit_Declaration_Node (Pack))) =
8503 N_Compilation_Unit
8504 then
8505 return True;
8506 end if;
8507
8508 Pack := Scope (Pack);
8509 end loop;
8510
8511 return False;
8512 end Within_Compilation_Unit_Instance;
8513
8514 -- Local declarations
8515
8516 Context : constant Node_Id := Parent (Subp_Body);
8517 Loc : constant Source_Ptr := Sloc (Subp_Body);
8518 Subp_Id : constant Entity_Id := Unique_Defining_Entity (Subp_Body);
8519 Subp_Decl : constant Node_Id := Unit_Declaration_Node (Subp_Id);
8520
8dce7371
PMR
8521 Decls : List_Id;
8522 Flag_Id : Entity_Id;
8523 Set_Ins : Node_Id;
8524 Set_Stmt : Node_Id;
8525 Tag_Typ : Entity_Id;
7327f5c2
AC
8526
8527 -- Start of processing for Install_Primitive_Elaboration_Check
8528
8529 begin
8530 -- Do not generate an elaboration check in compilation modes where
8531 -- expansion is not desirable.
8532
65f1ca2e 8533 if GNATprove_Mode then
7327f5c2
AC
8534 return;
8535
85be939e
AC
8536 -- Do not generate an elaboration check if all checks have been
8537 -- suppressed.
304757d2 8538
85be939e 8539 elsif Suppress_Checks then
304757d2
AC
8540 return;
8541
7327f5c2 8542 -- Do not generate an elaboration check if the related subprogram is
29d39651 8543 -- not subject to elaboration checks.
7327f5c2
AC
8544
8545 elsif Elaboration_Checks_Suppressed (Subp_Id) then
8546 return;
85be939e
AC
8547
8548 -- Do not generate an elaboration check if such code is not desirable
8549
8550 elsif Restriction_Active (No_Elaboration_Code) then
8551 return;
7327f5c2 8552
29d39651
BD
8553 -- If pragma Pure or Preelaborate applies, then these elaboration checks
8554 -- cannot fail, so do not generate them.
8555
8556 elsif In_Preelaborated_Unit then
8557 return;
8558
640ad9c2
HK
8559 -- Do not generate an elaboration check if exceptions cannot be used,
8560 -- caught, or propagated.
8561
8562 elsif not Exceptions_OK then
8563 return;
8564
29d39651
BD
8565 -- Do not consider subprograms that are compilation units, because they
8566 -- cannot be the target of a dispatching call.
7327f5c2
AC
8567
8568 elsif Nkind (Context) = N_Compilation_Unit then
8569 return;
8570
8dce7371
PMR
8571 -- Do not consider anything other than nonabstract library-level source
8572 -- primitives.
7327f5c2
AC
8573
8574 elsif not
8575 (Comes_From_Source (Subp_Id)
8576 and then Is_Library_Level_Entity (Subp_Id)
8577 and then Is_Primitive (Subp_Id)
8578 and then not Is_Abstract_Subprogram (Subp_Id))
8579 then
8580 return;
8581
8582 -- Do not consider inlined primitives, because once the body is inlined
8583 -- the reference to the elaboration flag will be out of place and will
8584 -- result in an undefined symbol.
8585
8586 elsif Is_Inlined (Subp_Id) or else Has_Pragma_Inline (Subp_Id) then
8587 return;
8588
8589 -- Do not generate a duplicate elaboration check. This happens only in
8590 -- the case of primitives completed by an expression function, as the
8591 -- corresponding body is apparently analyzed and expanded twice.
8592
8593 elsif Analyzed (Subp_Body) then
8594 return;
8595
29d39651
BD
8596 -- Do not consider primitives that occur within an instance that is a
8597 -- compilation unit. Such an instance defines its spec and body out of
8598 -- order (body is first) within the tree, which causes the reference to
8599 -- the elaboration flag to appear as an undefined symbol.
7327f5c2
AC
8600
8601 elsif Within_Compilation_Unit_Instance (Subp_Id) then
8602 return;
8603 end if;
8604
8605 Tag_Typ := Find_Dispatching_Type (Subp_Id);
8606
8607 -- Only tagged primitives may be the target of a dispatching call
8608
8609 if No (Tag_Typ) then
8610 return;
8611
8612 -- Do not consider finalization-related primitives, because they may
8613 -- need to be called while elaboration is taking place.
8614
8615 elsif Is_Controlled (Tag_Typ)
4a08c95c
AC
8616 and then
8617 Chars (Subp_Id) in Name_Adjust | Name_Finalize | Name_Initialize
7327f5c2
AC
8618 then
8619 return;
8620 end if;
8621
8622 -- Create the declaration of the elaboration flag. The name carries a
8623 -- unique counter in case of name overloading.
8624
8625 Flag_Id :=
8626 Make_Defining_Identifier (Loc,
90e491a7 8627 Chars => New_External_Name (Chars (Subp_Id), 'E', -1));
7327f5c2
AC
8628 Set_Is_Frozen (Flag_Id);
8629
8630 -- Insert the declaration of the elaboration flag in front of the
8631 -- primitive spec and analyze it in the proper context.
8632
8633 Push_Scope (Scope (Subp_Id));
8634
8635 -- Generate:
90e491a7 8636 -- E : Boolean := False;
7327f5c2
AC
8637
8638 Insert_Action (Subp_Decl,
8639 Make_Object_Declaration (Loc,
8640 Defining_Identifier => Flag_Id,
8641 Object_Definition => New_Occurrence_Of (Standard_Boolean, Loc),
8642 Expression => New_Occurrence_Of (Standard_False, Loc)));
8643 Pop_Scope;
8644
8645 -- Prevent the compiler from optimizing the elaboration check by killing
8646 -- the current value of the flag and the associated assignment.
8647
8648 Set_Current_Value (Flag_Id, Empty);
8649 Set_Last_Assignment (Flag_Id, Empty);
8650
8651 -- Add a check at the top of the body declarations to ensure that the
8652 -- elaboration flag has been set.
8653
8654 Decls := Declarations (Subp_Body);
8655
8656 if No (Decls) then
8657 Decls := New_List;
8658 Set_Declarations (Subp_Body, Decls);
8659 end if;
8660
8661 -- Generate:
8662 -- if not F then
8663 -- raise Program_Error with "access before elaboration";
8664 -- end if;
8665
8666 Prepend_To (Decls,
8667 Make_Raise_Program_Error (Loc,
8668 Condition =>
8669 Make_Op_Not (Loc,
8670 Right_Opnd => New_Occurrence_Of (Flag_Id, Loc)),
8671 Reason => PE_Access_Before_Elaboration));
8672
8673 Analyze (First (Decls));
8674
8675 -- Set the elaboration flag once the body has been elaborated. Insert
8676 -- the statement after the subprogram stub when the primitive body is
8677 -- a subunit.
8678
8679 if Nkind (Context) = N_Subunit then
8680 Set_Ins := Corresponding_Stub (Context);
8681 else
8682 Set_Ins := Subp_Body;
8683 end if;
8684
8685 -- Generate:
90e491a7 8686 -- E := True;
7327f5c2 8687
8dce7371 8688 Set_Stmt :=
7327f5c2
AC
8689 Make_Assignment_Statement (Loc,
8690 Name => New_Occurrence_Of (Flag_Id, Loc),
8dce7371
PMR
8691 Expression => New_Occurrence_Of (Standard_True, Loc));
8692
8693 -- Mark the assignment statement as elaboration code. This allows the
8694 -- early call region mechanism (see Sem_Elab) to properly ignore such
8695 -- assignments even though they are non-preelaborable code.
8696
8697 Set_Is_Elaboration_Code (Set_Stmt);
8698
8699 Insert_After_And_Analyze (Set_Ins, Set_Stmt);
7327f5c2
AC
8700 end Install_Primitive_Elaboration_Check;
8701
70482933
RK
8702 --------------------------
8703 -- Install_Static_Check --
8704 --------------------------
8705
8706 procedure Install_Static_Check (R_Cno : Node_Id; Loc : Source_Ptr) is
edab6088 8707 Stat : constant Boolean := Is_OK_Static_Expression (R_Cno);
70482933
RK
8708 Typ : constant Entity_Id := Etype (R_Cno);
8709
8710 begin
07fc65c4
GB
8711 Rewrite (R_Cno,
8712 Make_Raise_Constraint_Error (Loc,
8713 Reason => CE_Range_Check_Failed));
70482933
RK
8714 Set_Analyzed (R_Cno);
8715 Set_Etype (R_Cno, Typ);
8716 Set_Raises_Constraint_Error (R_Cno);
8717 Set_Is_Static_Expression (R_Cno, Stat);
3f92c93b
AC
8718
8719 -- Now deal with possible local raise handling
8720
8721 Possible_Local_Raise (R_Cno, Standard_Constraint_Error);
70482933
RK
8722 end Install_Static_Check;
8723
acad3c0a
AC
8724 -------------------------
8725 -- Is_Check_Suppressed --
8726 -------------------------
8727
8728 function Is_Check_Suppressed (E : Entity_Id; C : Check_Id) return Boolean is
8729 Ptr : Suppress_Stack_Entry_Ptr;
8730
8731 begin
8732 -- First search the local entity suppress stack. We search this from the
8733 -- top of the stack down so that we get the innermost entry that applies
8734 -- to this case if there are nested entries.
8735
8736 Ptr := Local_Suppress_Stack_Top;
8737 while Ptr /= null loop
8738 if (Ptr.Entity = Empty or else Ptr.Entity = E)
8739 and then (Ptr.Check = All_Checks or else Ptr.Check = C)
8740 then
8741 return Ptr.Suppress;
8742 end if;
8743
8744 Ptr := Ptr.Prev;
8745 end loop;
8746
8747 -- Now search the global entity suppress table for a matching entry.
8748 -- We also search this from the top down so that if there are multiple
8749 -- pragmas for the same entity, the last one applies (not clear what
8750 -- or whether the RM specifies this handling, but it seems reasonable).
8751
8752 Ptr := Global_Suppress_Stack_Top;
8753 while Ptr /= null loop
8754 if (Ptr.Entity = Empty or else Ptr.Entity = E)
8755 and then (Ptr.Check = All_Checks or else Ptr.Check = C)
8756 then
8757 return Ptr.Suppress;
8758 end if;
8759
8760 Ptr := Ptr.Prev;
8761 end loop;
8762
8763 -- If we did not find a matching entry, then use the normal scope
8764 -- suppress value after all (actually this will be the global setting
8765 -- since it clearly was not overridden at any point). For a predefined
8766 -- check, we test the specific flag. For a user defined check, we check
8767 -- the All_Checks flag. The Overflow flag requires special handling to
90e491a7 8768 -- deal with the General vs Assertion case.
acad3c0a
AC
8769
8770 if C = Overflow_Check then
8771 return Overflow_Checks_Suppressed (Empty);
90e491a7 8772
acad3c0a
AC
8773 elsif C in Predefined_Check_Id then
8774 return Scope_Suppress.Suppress (C);
90e491a7 8775
acad3c0a
AC
8776 else
8777 return Scope_Suppress.Suppress (All_Checks);
8778 end if;
8779 end Is_Check_Suppressed;
8780
fbf5a39b
AC
8781 ---------------------
8782 -- Kill_All_Checks --
8783 ---------------------
8784
8785 procedure Kill_All_Checks is
8786 begin
8787 if Debug_Flag_CC then
8788 w ("Kill_All_Checks");
8789 end if;
8790
675d6070
TQ
8791 -- We reset the number of saved checks to zero, and also modify all
8792 -- stack entries for statement ranges to indicate that the number of
8793 -- checks at each level is now zero.
fbf5a39b
AC
8794
8795 Num_Saved_Checks := 0;
8796
67ce0d7e
RD
8797 -- Note: the Int'Min here avoids any possibility of J being out of
8798 -- range when called from e.g. Conditional_Statements_Begin.
8799
8800 for J in 1 .. Int'Min (Saved_Checks_TOS, Saved_Checks_Stack'Last) loop
fbf5a39b
AC
8801 Saved_Checks_Stack (J) := 0;
8802 end loop;
8803 end Kill_All_Checks;
8804
8805 -----------------
8806 -- Kill_Checks --
8807 -----------------
8808
8809 procedure Kill_Checks (V : Entity_Id) is
8810 begin
8811 if Debug_Flag_CC then
8812 w ("Kill_Checks for entity", Int (V));
8813 end if;
8814
8815 for J in 1 .. Num_Saved_Checks loop
8816 if Saved_Checks (J).Entity = V then
8817 if Debug_Flag_CC then
8818 w (" Checks killed for saved check ", J);
8819 end if;
8820
8821 Saved_Checks (J).Killed := True;
8822 end if;
8823 end loop;
8824 end Kill_Checks;
8825
70482933
RK
8826 ------------------------------
8827 -- Length_Checks_Suppressed --
8828 ------------------------------
8829
8830 function Length_Checks_Suppressed (E : Entity_Id) return Boolean is
8831 begin
fbf5a39b
AC
8832 if Present (E) and then Checks_May_Be_Suppressed (E) then
8833 return Is_Check_Suppressed (E, Length_Check);
8834 else
3217f71e 8835 return Scope_Suppress.Suppress (Length_Check);
fbf5a39b 8836 end if;
70482933
RK
8837 end Length_Checks_Suppressed;
8838
acad3c0a
AC
8839 -----------------------
8840 -- Make_Bignum_Block --
8841 -----------------------
8842
8843 function Make_Bignum_Block (Loc : Source_Ptr) return Node_Id is
8844 M : constant Entity_Id := Make_Defining_Identifier (Loc, Name_uM);
acad3c0a
AC
8845 begin
8846 return
8847 Make_Block_Statement (Loc,
8e888920
AC
8848 Declarations =>
8849 New_List (Build_SS_Mark_Call (Loc, M)),
acad3c0a
AC
8850 Handled_Statement_Sequence =>
8851 Make_Handled_Sequence_Of_Statements (Loc,
8e888920 8852 Statements => New_List (Build_SS_Release_Call (Loc, M))));
acad3c0a
AC
8853 end Make_Bignum_Block;
8854
a7f1b24f
RD
8855 ----------------------------------
8856 -- Minimize_Eliminate_Overflows --
8857 ----------------------------------
acad3c0a 8858
b6b5cca8
AC
8859 -- This is a recursive routine that is called at the top of an expression
8860 -- tree to properly process overflow checking for a whole subtree by making
8861 -- recursive calls to process operands. This processing may involve the use
8862 -- of bignum or long long integer arithmetic, which will change the types
8863 -- of operands and results. That's why we can't do this bottom up (since
5707e389 8864 -- it would interfere with semantic analysis).
b6b5cca8 8865
5707e389 8866 -- What happens is that if MINIMIZED/ELIMINATED mode is in effect then
a7f1b24f
RD
8867 -- the operator expansion routines, as well as the expansion routines for
8868 -- if/case expression, do nothing (for the moment) except call the routine
8869 -- to apply the overflow check (Apply_Arithmetic_Overflow_Check). That
8870 -- routine does nothing for non top-level nodes, so at the point where the
8871 -- call is made for the top level node, the entire expression subtree has
8872 -- not been expanded, or processed for overflow. All that has to happen as
8873 -- a result of the top level call to this routine.
b6b5cca8
AC
8874
8875 -- As noted above, the overflow processing works by making recursive calls
8876 -- for the operands, and figuring out what to do, based on the processing
8877 -- of these operands (e.g. if a bignum operand appears, the parent op has
8878 -- to be done in bignum mode), and the determined ranges of the operands.
8879
8880 -- After possible rewriting of a constituent subexpression node, a call is
a40ada7e 8881 -- made to either reexpand the node (if nothing has changed) or reanalyze
5707e389
AC
8882 -- the node (if it has been modified by the overflow check processing). The
8883 -- Analyzed_Flag is set to False before the reexpand/reanalyze. To avoid
8884 -- a recursive call into the whole overflow apparatus, an important rule
a7f1b24f
RD
8885 -- for this call is that the overflow handling mode must be temporarily set
8886 -- to STRICT.
b6b5cca8 8887
a7f1b24f 8888 procedure Minimize_Eliminate_Overflows
c7e152b5
AC
8889 (N : Node_Id;
8890 Lo : out Uint;
8891 Hi : out Uint;
8892 Top_Level : Boolean)
acad3c0a 8893 is
4b1c4f20
RD
8894 Rtyp : constant Entity_Id := Etype (N);
8895 pragma Assert (Is_Signed_Integer_Type (Rtyp));
8896 -- Result type, must be a signed integer type
acad3c0a 8897
15c94a55 8898 Check_Mode : constant Overflow_Mode_Type := Overflow_Check_Mode;
acad3c0a
AC
8899 pragma Assert (Check_Mode in Minimized_Or_Eliminated);
8900
8901 Loc : constant Source_Ptr := Sloc (N);
8902
8903 Rlo, Rhi : Uint;
4b1c4f20 8904 -- Ranges of values for right operand (operator case)
acad3c0a 8905
a6d25cad
AC
8906 Llo : Uint := No_Uint; -- initialize to prevent warning
8907 Lhi : Uint := No_Uint; -- initialize to prevent warning
4b1c4f20 8908 -- Ranges of values for left operand (operator case)
acad3c0a 8909
d79059a3
AC
8910 LLIB : constant Entity_Id := Base_Type (Standard_Long_Long_Integer);
8911 -- Operands and results are of this type when we convert
8912
4b1c4f20
RD
8913 LLLo : constant Uint := Intval (Type_Low_Bound (LLIB));
8914 LLHi : constant Uint := Intval (Type_High_Bound (LLIB));
acad3c0a
AC
8915 -- Bounds of Long_Long_Integer
8916
8917 Binary : constant Boolean := Nkind (N) in N_Binary_Op;
8918 -- Indicates binary operator case
8919
8920 OK : Boolean;
8921 -- Used in call to Determine_Range
8922
c7e152b5
AC
8923 Bignum_Operands : Boolean;
8924 -- Set True if one or more operands is already of type Bignum, meaning
8925 -- that for sure (regardless of Top_Level setting) we are committed to
4b1c4f20 8926 -- doing the operation in Bignum mode (or in the case of a case or if
5707e389 8927 -- expression, converting all the dependent expressions to Bignum).
4b1c4f20
RD
8928
8929 Long_Long_Integer_Operands : Boolean;
5707e389 8930 -- Set True if one or more operands is already of type Long_Long_Integer
4b1c4f20
RD
8931 -- which means that if the result is known to be in the result type
8932 -- range, then we must convert such operands back to the result type.
a7f1b24f
RD
8933
8934 procedure Reanalyze (Typ : Entity_Id; Suppress : Boolean := False);
8935 -- This is called when we have modified the node and we therefore need
8936 -- to reanalyze it. It is important that we reset the mode to STRICT for
8937 -- this reanalysis, since if we leave it in MINIMIZED or ELIMINATED mode
a90bd866 8938 -- we would reenter this routine recursively which would not be good.
a7f1b24f
RD
8939 -- The argument Suppress is set True if we also want to suppress
8940 -- overflow checking for the reexpansion (this is set when we know
8941 -- overflow is not possible). Typ is the type for the reanalysis.
8942
8943 procedure Reexpand (Suppress : Boolean := False);
8944 -- This is like Reanalyze, but does not do the Analyze step, it only
8945 -- does a reexpansion. We do this reexpansion in STRICT mode, so that
8946 -- instead of reentering the MINIMIZED/ELIMINATED mode processing, we
8947 -- follow the normal expansion path (e.g. converting A**4 to A**2**2).
8948 -- Note that skipping reanalysis is not just an optimization, testing
8949 -- has showed up several complex cases in which reanalyzing an already
8950 -- analyzed node causes incorrect behavior.
a40ada7e 8951
4b1c4f20
RD
8952 function In_Result_Range return Boolean;
8953 -- Returns True iff Lo .. Hi are within range of the result type
c7e152b5 8954
a91e9ac7 8955 procedure Max (A : in out Uint; B : Uint);
5707e389 8956 -- If A is No_Uint, sets A to B, else to UI_Max (A, B)
a91e9ac7
AC
8957
8958 procedure Min (A : in out Uint; B : Uint);
5707e389 8959 -- If A is No_Uint, sets A to B, else to UI_Min (A, B)
a91e9ac7 8960
4b1c4f20
RD
8961 ---------------------
8962 -- In_Result_Range --
8963 ---------------------
8964
8965 function In_Result_Range return Boolean is
8966 begin
2175b50b 8967 if No (Lo) or else No (Hi) then
b6b5cca8
AC
8968 return False;
8969
edab6088 8970 elsif Is_OK_Static_Subtype (Etype (N)) then
4b1c4f20
RD
8971 return Lo >= Expr_Value (Type_Low_Bound (Rtyp))
8972 and then
8973 Hi <= Expr_Value (Type_High_Bound (Rtyp));
b6b5cca8 8974
4b1c4f20
RD
8975 else
8976 return Lo >= Expr_Value (Type_Low_Bound (Base_Type (Rtyp)))
8977 and then
8978 Hi <= Expr_Value (Type_High_Bound (Base_Type (Rtyp)));
8979 end if;
8980 end In_Result_Range;
8981
a91e9ac7
AC
8982 ---------
8983 -- Max --
8984 ---------
8985
8986 procedure Max (A : in out Uint; B : Uint) is
8987 begin
2175b50b 8988 if No (A) or else B > A then
a91e9ac7
AC
8989 A := B;
8990 end if;
8991 end Max;
8992
8993 ---------
8994 -- Min --
8995 ---------
8996
8997 procedure Min (A : in out Uint; B : Uint) is
8998 begin
2175b50b 8999 if No (A) or else B < A then
a91e9ac7
AC
9000 A := B;
9001 end if;
9002 end Min;
9003
a7f1b24f
RD
9004 ---------------
9005 -- Reanalyze --
9006 ---------------
9007
9008 procedure Reanalyze (Typ : Entity_Id; Suppress : Boolean := False) is
15c94a55
RD
9009 Svg : constant Overflow_Mode_Type :=
9010 Scope_Suppress.Overflow_Mode_General;
9011 Sva : constant Overflow_Mode_Type :=
9012 Scope_Suppress.Overflow_Mode_Assertions;
a7f1b24f
RD
9013 Svo : constant Boolean :=
9014 Scope_Suppress.Suppress (Overflow_Check);
9015
9016 begin
15c94a55
RD
9017 Scope_Suppress.Overflow_Mode_General := Strict;
9018 Scope_Suppress.Overflow_Mode_Assertions := Strict;
a7f1b24f
RD
9019
9020 if Suppress then
9021 Scope_Suppress.Suppress (Overflow_Check) := True;
9022 end if;
9023
9024 Analyze_And_Resolve (N, Typ);
9025
fed8bd87
RD
9026 Scope_Suppress.Suppress (Overflow_Check) := Svo;
9027 Scope_Suppress.Overflow_Mode_General := Svg;
9028 Scope_Suppress.Overflow_Mode_Assertions := Sva;
a7f1b24f
RD
9029 end Reanalyze;
9030
a40ada7e
RD
9031 --------------
9032 -- Reexpand --
9033 --------------
9034
a7f1b24f 9035 procedure Reexpand (Suppress : Boolean := False) is
15c94a55
RD
9036 Svg : constant Overflow_Mode_Type :=
9037 Scope_Suppress.Overflow_Mode_General;
9038 Sva : constant Overflow_Mode_Type :=
9039 Scope_Suppress.Overflow_Mode_Assertions;
a7f1b24f
RD
9040 Svo : constant Boolean :=
9041 Scope_Suppress.Suppress (Overflow_Check);
9042
a40ada7e 9043 begin
15c94a55
RD
9044 Scope_Suppress.Overflow_Mode_General := Strict;
9045 Scope_Suppress.Overflow_Mode_Assertions := Strict;
a40ada7e 9046 Set_Analyzed (N, False);
a7f1b24f
RD
9047
9048 if Suppress then
9049 Scope_Suppress.Suppress (Overflow_Check) := True;
9050 end if;
9051
a40ada7e 9052 Expand (N);
a7f1b24f 9053
fed8bd87
RD
9054 Scope_Suppress.Suppress (Overflow_Check) := Svo;
9055 Scope_Suppress.Overflow_Mode_General := Svg;
9056 Scope_Suppress.Overflow_Mode_Assertions := Sva;
a40ada7e
RD
9057 end Reexpand;
9058
a7f1b24f 9059 -- Start of processing for Minimize_Eliminate_Overflows
a91e9ac7 9060
acad3c0a 9061 begin
bc3fb397
AC
9062 -- Default initialize Lo and Hi since these are not guaranteed to be
9063 -- set otherwise.
9064
9065 Lo := No_Uint;
9066 Hi := No_Uint;
9067
4b1c4f20 9068 -- Case where we do not have a signed integer arithmetic operation
acad3c0a
AC
9069
9070 if not Is_Signed_Integer_Arithmetic_Op (N) then
9071
9072 -- Use the normal Determine_Range routine to get the range. We
9073 -- don't require operands to be valid, invalid values may result in
9074 -- rubbish results where the result has not been properly checked for
a90bd866 9075 -- overflow, that's fine.
acad3c0a
AC
9076
9077 Determine_Range (N, OK, Lo, Hi, Assume_Valid => False);
9078
5707e389 9079 -- If Determine_Range did not work (can this in fact happen? Not
acad3c0a
AC
9080 -- clear but might as well protect), use type bounds.
9081
9082 if not OK then
9083 Lo := Intval (Type_Low_Bound (Base_Type (Etype (N))));
9084 Hi := Intval (Type_High_Bound (Base_Type (Etype (N))));
9085 end if;
9086
9087 -- If we don't have a binary operator, all we have to do is to set
637a41a5 9088 -- the Hi/Lo range, so we are done.
acad3c0a
AC
9089
9090 return;
9091
4b1c4f20
RD
9092 -- Processing for if expression
9093
9b16cb57 9094 elsif Nkind (N) = N_If_Expression then
4b1c4f20
RD
9095 declare
9096 Then_DE : constant Node_Id := Next (First (Expressions (N)));
9097 Else_DE : constant Node_Id := Next (Then_DE);
9098
9099 begin
9100 Bignum_Operands := False;
9101
a7f1b24f 9102 Minimize_Eliminate_Overflows
4b1c4f20
RD
9103 (Then_DE, Lo, Hi, Top_Level => False);
9104
2175b50b 9105 if No (Lo) then
4b1c4f20
RD
9106 Bignum_Operands := True;
9107 end if;
9108
a7f1b24f 9109 Minimize_Eliminate_Overflows
4b1c4f20
RD
9110 (Else_DE, Rlo, Rhi, Top_Level => False);
9111
2175b50b 9112 if No (Rlo) then
4b1c4f20
RD
9113 Bignum_Operands := True;
9114 else
9115 Long_Long_Integer_Operands :=
9116 Etype (Then_DE) = LLIB or else Etype (Else_DE) = LLIB;
9117
9118 Min (Lo, Rlo);
9119 Max (Hi, Rhi);
9120 end if;
9121
5707e389
AC
9122 -- If at least one of our operands is now Bignum, we must rebuild
9123 -- the if expression to use Bignum operands. We will analyze the
4b1c4f20 9124 -- rebuilt if expression with overflow checks off, since once we
a90bd866 9125 -- are in bignum mode, we are all done with overflow checks.
4b1c4f20
RD
9126
9127 if Bignum_Operands then
9128 Rewrite (N,
9b16cb57 9129 Make_If_Expression (Loc,
4b1c4f20
RD
9130 Expressions => New_List (
9131 Remove_Head (Expressions (N)),
9132 Convert_To_Bignum (Then_DE),
9133 Convert_To_Bignum (Else_DE)),
9134 Is_Elsif => Is_Elsif (N)));
9135
a7f1b24f 9136 Reanalyze (RTE (RE_Bignum), Suppress => True);
4b1c4f20
RD
9137
9138 -- If we have no Long_Long_Integer operands, then we are in result
9139 -- range, since it means that none of our operands felt the need
9140 -- to worry about overflow (otherwise it would have already been
a40ada7e
RD
9141 -- converted to long long integer or bignum). We reexpand to
9142 -- complete the expansion of the if expression (but we do not
9143 -- need to reanalyze).
4b1c4f20
RD
9144
9145 elsif not Long_Long_Integer_Operands then
9146 Set_Do_Overflow_Check (N, False);
a7f1b24f 9147 Reexpand;
4b1c4f20
RD
9148
9149 -- Otherwise convert us to long long integer mode. Note that we
9150 -- don't need any further overflow checking at this level.
9151
9152 else
9153 Convert_To_And_Rewrite (LLIB, Then_DE);
9154 Convert_To_And_Rewrite (LLIB, Else_DE);
9155 Set_Etype (N, LLIB);
b6b5cca8
AC
9156
9157 -- Now reanalyze with overflow checks off
9158
4b1c4f20 9159 Set_Do_Overflow_Check (N, False);
a7f1b24f 9160 Reanalyze (LLIB, Suppress => True);
4b1c4f20
RD
9161 end if;
9162 end;
9163
9164 return;
9165
9166 -- Here for case expression
9167
9168 elsif Nkind (N) = N_Case_Expression then
9169 Bignum_Operands := False;
9170 Long_Long_Integer_Operands := False;
4b1c4f20
RD
9171
9172 declare
b6b5cca8 9173 Alt : Node_Id;
4b1c4f20
RD
9174
9175 begin
9176 -- Loop through expressions applying recursive call
9177
9178 Alt := First (Alternatives (N));
9179 while Present (Alt) loop
9180 declare
9181 Aexp : constant Node_Id := Expression (Alt);
9182
9183 begin
a7f1b24f 9184 Minimize_Eliminate_Overflows
4b1c4f20
RD
9185 (Aexp, Lo, Hi, Top_Level => False);
9186
2175b50b 9187 if No (Lo) then
4b1c4f20
RD
9188 Bignum_Operands := True;
9189 elsif Etype (Aexp) = LLIB then
9190 Long_Long_Integer_Operands := True;
9191 end if;
9192 end;
9193
9194 Next (Alt);
9195 end loop;
9196
9197 -- If we have no bignum or long long integer operands, it means
9198 -- that none of our dependent expressions could raise overflow.
9199 -- In this case, we simply return with no changes except for
9200 -- resetting the overflow flag, since we are done with overflow
a40ada7e
RD
9201 -- checks for this node. We will reexpand to get the needed
9202 -- expansion for the case expression, but we do not need to
5707e389 9203 -- reanalyze, since nothing has changed.
4b1c4f20 9204
b6b5cca8 9205 if not (Bignum_Operands or Long_Long_Integer_Operands) then
4b1c4f20 9206 Set_Do_Overflow_Check (N, False);
a7f1b24f 9207 Reexpand (Suppress => True);
4b1c4f20
RD
9208
9209 -- Otherwise we are going to rebuild the case expression using
9210 -- either bignum or long long integer operands throughout.
9211
9212 else
b6b5cca8 9213 declare
a6b13d32 9214 Rtype : Entity_Id := Empty;
b6b5cca8
AC
9215 New_Alts : List_Id;
9216 New_Exp : Node_Id;
9217
9218 begin
9219 New_Alts := New_List;
9220 Alt := First (Alternatives (N));
9221 while Present (Alt) loop
9222 if Bignum_Operands then
9223 New_Exp := Convert_To_Bignum (Expression (Alt));
9224 Rtype := RTE (RE_Bignum);
9225 else
9226 New_Exp := Convert_To (LLIB, Expression (Alt));
9227 Rtype := LLIB;
9228 end if;
4b1c4f20 9229
b6b5cca8
AC
9230 Append_To (New_Alts,
9231 Make_Case_Expression_Alternative (Sloc (Alt),
b6b5cca8
AC
9232 Discrete_Choices => Discrete_Choices (Alt),
9233 Expression => New_Exp));
4b1c4f20 9234
b6b5cca8
AC
9235 Next (Alt);
9236 end loop;
4b1c4f20 9237
b6b5cca8
AC
9238 Rewrite (N,
9239 Make_Case_Expression (Loc,
9240 Expression => Expression (N),
9241 Alternatives => New_Alts));
4b1c4f20 9242
a6b13d32 9243 pragma Assert (Present (Rtype));
a7f1b24f 9244 Reanalyze (Rtype, Suppress => True);
b6b5cca8 9245 end;
4b1c4f20
RD
9246 end if;
9247 end;
9248
9249 return;
9250 end if;
9251
9252 -- If we have an arithmetic operator we make recursive calls on the
acad3c0a 9253 -- operands to get the ranges (and to properly process the subtree
637a41a5 9254 -- that lies below us).
acad3c0a 9255
a7f1b24f 9256 Minimize_Eliminate_Overflows
4b1c4f20 9257 (Right_Opnd (N), Rlo, Rhi, Top_Level => False);
acad3c0a 9258
4b1c4f20 9259 if Binary then
a7f1b24f 9260 Minimize_Eliminate_Overflows
4b1c4f20 9261 (Left_Opnd (N), Llo, Lhi, Top_Level => False);
acad3c0a
AC
9262 end if;
9263
b6b5cca8
AC
9264 -- Record if we have Long_Long_Integer operands
9265
9266 Long_Long_Integer_Operands :=
9267 Etype (Right_Opnd (N)) = LLIB
9268 or else (Binary and then Etype (Left_Opnd (N)) = LLIB);
9269
9270 -- If either operand is a bignum, then result will be a bignum and we
9271 -- don't need to do any range analysis. As previously discussed we could
9272 -- do range analysis in such cases, but it could mean working with giant
9273 -- numbers at compile time for very little gain (the number of cases
5707e389 9274 -- in which we could slip back from bignum mode is small).
acad3c0a 9275
2175b50b 9276 if No (Rlo) or else (Binary and then No (Llo)) then
acad3c0a
AC
9277 Lo := No_Uint;
9278 Hi := No_Uint;
c7e152b5 9279 Bignum_Operands := True;
acad3c0a
AC
9280
9281 -- Otherwise compute result range
9282
9283 else
12be130c
EB
9284 Compute_Range_For_Arithmetic_Op
9285 (Nkind (N), Llo, Lhi, Rlo, Rhi, OK, Lo, Hi);
c7e152b5 9286 Bignum_Operands := False;
acad3c0a
AC
9287 end if;
9288
a40ada7e 9289 -- Here for the case where we have not rewritten anything (no bignum
5707e389
AC
9290 -- operands or long long integer operands), and we know the result.
9291 -- If we know we are in the result range, and we do not have Bignum
9292 -- operands or Long_Long_Integer operands, we can just reexpand with
9293 -- overflow checks turned off (since we know we cannot have overflow).
9294 -- As always the reexpansion is required to complete expansion of the
9295 -- operator, but we do not need to reanalyze, and we prevent recursion
9296 -- by suppressing the check.
b6b5cca8
AC
9297
9298 if not (Bignum_Operands or Long_Long_Integer_Operands)
9299 and then In_Result_Range
9300 then
9301 Set_Do_Overflow_Check (N, False);
a7f1b24f 9302 Reexpand (Suppress => True);
b6b5cca8
AC
9303 return;
9304
9305 -- Here we know that we are not in the result range, and in the general
5707e389
AC
9306 -- case we will move into either the Bignum or Long_Long_Integer domain
9307 -- to compute the result. However, there is one exception. If we are
9308 -- at the top level, and we do not have Bignum or Long_Long_Integer
9309 -- operands, we will have to immediately convert the result back to
9310 -- the result type, so there is no point in Bignum/Long_Long_Integer
9311 -- fiddling.
b6b5cca8
AC
9312
9313 elsif Top_Level
9314 and then not (Bignum_Operands or Long_Long_Integer_Operands)
2352eadb
AC
9315
9316 -- One further refinement. If we are at the top level, but our parent
9317 -- is a type conversion, then go into bignum or long long integer node
9318 -- since the result will be converted to that type directly without
9319 -- going through the result type, and we may avoid an overflow. This
9320 -- is the case for example of Long_Long_Integer (A ** 4), where A is
9321 -- of type Integer, and the result A ** 4 fits in Long_Long_Integer
9322 -- but does not fit in Integer.
9323
9324 and then Nkind (Parent (N)) /= N_Type_Conversion
b6b5cca8 9325 then
a7f1b24f 9326 -- Here keep original types, but we need to complete analysis
b6b5cca8
AC
9327
9328 -- One subtlety. We can't just go ahead and do an analyze operation
5707e389
AC
9329 -- here because it will cause recursion into the whole MINIMIZED/
9330 -- ELIMINATED overflow processing which is not what we want. Here
b6b5cca8 9331 -- we are at the top level, and we need a check against the result
a90bd866 9332 -- mode (i.e. we want to use STRICT mode). So do exactly that.
a40ada7e
RD
9333 -- Also, we have not modified the node, so this is a case where
9334 -- we need to reexpand, but not reanalyze.
b6b5cca8 9335
a7f1b24f 9336 Reexpand;
b6b5cca8
AC
9337 return;
9338
9339 -- Cases where we do the operation in Bignum mode. This happens either
acad3c0a 9340 -- because one of our operands is in Bignum mode already, or because
6cb3037c
AC
9341 -- the computed bounds are outside the bounds of Long_Long_Integer,
9342 -- which in some cases can be indicated by Hi and Lo being No_Uint.
acad3c0a
AC
9343
9344 -- Note: we could do better here and in some cases switch back from
9345 -- Bignum mode to normal mode, e.g. big mod 2 must be in the range
9346 -- 0 .. 1, but the cases are rare and it is not worth the effort.
9347 -- Failing to do this switching back is only an efficiency issue.
9348
2175b50b 9349 elsif No (Lo) or else Lo < LLLo or else Hi > LLHi then
acad3c0a 9350
c7e152b5 9351 -- OK, we are definitely outside the range of Long_Long_Integer. The
b6b5cca8 9352 -- question is whether to move to Bignum mode, or stay in the domain
c7e152b5
AC
9353 -- of Long_Long_Integer, signalling that an overflow check is needed.
9354
9355 -- Obviously in MINIMIZED mode we stay with LLI, since we are not in
9356 -- the Bignum business. In ELIMINATED mode, we will normally move
9357 -- into Bignum mode, but there is an exception if neither of our
9358 -- operands is Bignum now, and we are at the top level (Top_Level
9359 -- set True). In this case, there is no point in moving into Bignum
9360 -- mode to prevent overflow if the caller will immediately convert
9361 -- the Bignum value back to LLI with an overflow check. It's more
a7f1b24f 9362 -- efficient to stay in LLI mode with an overflow check (if needed)
c7e152b5
AC
9363
9364 if Check_Mode = Minimized
9365 or else (Top_Level and not Bignum_Operands)
9366 then
a7f1b24f
RD
9367 if Do_Overflow_Check (N) then
9368 Enable_Overflow_Check (N);
9369 end if;
acad3c0a 9370
a7f1b24f
RD
9371 -- The result now has to be in Long_Long_Integer mode, so adjust
9372 -- the possible range to reflect this. Note these calls also
9373 -- change No_Uint values from the top level case to LLI bounds.
c7e152b5
AC
9374
9375 Max (Lo, LLLo);
9376 Min (Hi, LLHi);
9377
9378 -- Otherwise we are in ELIMINATED mode and we switch to Bignum mode
acad3c0a
AC
9379
9380 else
9381 pragma Assert (Check_Mode = Eliminated);
9382
9383 declare
9384 Fent : Entity_Id;
9385 Args : List_Id;
9386
9387 begin
9388 case Nkind (N) is
d8f43ee6 9389 when N_Op_Abs =>
acad3c0a
AC
9390 Fent := RTE (RE_Big_Abs);
9391
d8f43ee6 9392 when N_Op_Add =>
acad3c0a
AC
9393 Fent := RTE (RE_Big_Add);
9394
d8f43ee6 9395 when N_Op_Divide =>
acad3c0a
AC
9396 Fent := RTE (RE_Big_Div);
9397
d8f43ee6 9398 when N_Op_Expon =>
acad3c0a
AC
9399 Fent := RTE (RE_Big_Exp);
9400
d8f43ee6 9401 when N_Op_Minus =>
acad3c0a
AC
9402 Fent := RTE (RE_Big_Neg);
9403
d8f43ee6 9404 when N_Op_Mod =>
acad3c0a
AC
9405 Fent := RTE (RE_Big_Mod);
9406
9407 when N_Op_Multiply =>
9408 Fent := RTE (RE_Big_Mul);
9409
d8f43ee6 9410 when N_Op_Rem =>
acad3c0a
AC
9411 Fent := RTE (RE_Big_Rem);
9412
9413 when N_Op_Subtract =>
9414 Fent := RTE (RE_Big_Sub);
9415
9416 -- Anything else is an internal error, this includes the
9417 -- N_Op_Plus case, since how can plus cause the result
9418 -- to be out of range if the operand is in range?
9419
9420 when others =>
9421 raise Program_Error;
9422 end case;
9423
9424 -- Construct argument list for Bignum call, converting our
9425 -- operands to Bignum form if they are not already there.
9426
9427 Args := New_List;
9428
9429 if Binary then
9430 Append_To (Args, Convert_To_Bignum (Left_Opnd (N)));
9431 end if;
9432
9433 Append_To (Args, Convert_To_Bignum (Right_Opnd (N)));
9434
9435 -- Now rewrite the arithmetic operator with a call to the
9436 -- corresponding bignum function.
9437
9438 Rewrite (N,
9439 Make_Function_Call (Loc,
9440 Name => New_Occurrence_Of (Fent, Loc),
9441 Parameter_Associations => Args));
a7f1b24f 9442 Reanalyze (RTE (RE_Bignum), Suppress => True);
c7e152b5
AC
9443
9444 -- Indicate result is Bignum mode
9445
9446 Lo := No_Uint;
9447 Hi := No_Uint;
6cb3037c 9448 return;
acad3c0a
AC
9449 end;
9450 end if;
9451
9452 -- Otherwise we are in range of Long_Long_Integer, so no overflow
6cb3037c 9453 -- check is required, at least not yet.
acad3c0a
AC
9454
9455 else
6cb3037c
AC
9456 Set_Do_Overflow_Check (N, False);
9457 end if;
acad3c0a 9458
b6b5cca8
AC
9459 -- Here we are not in Bignum territory, but we may have long long
9460 -- integer operands that need special handling. First a special check:
9461 -- If an exponentiation operator exponent is of type Long_Long_Integer,
9462 -- it means we converted it to prevent overflow, but exponentiation
9463 -- requires a Natural right operand, so convert it back to Natural.
9464 -- This conversion may raise an exception which is fine.
4b1c4f20 9465
b6b5cca8
AC
9466 if Nkind (N) = N_Op_Expon and then Etype (Right_Opnd (N)) = LLIB then
9467 Convert_To_And_Rewrite (Standard_Natural, Right_Opnd (N));
4b1c4f20
RD
9468 end if;
9469
6cb3037c
AC
9470 -- Here we will do the operation in Long_Long_Integer. We do this even
9471 -- if we know an overflow check is required, better to do this in long
a90bd866 9472 -- long integer mode, since we are less likely to overflow.
acad3c0a 9473
6cb3037c
AC
9474 -- Convert right or only operand to Long_Long_Integer, except that
9475 -- we do not touch the exponentiation right operand.
acad3c0a 9476
6cb3037c
AC
9477 if Nkind (N) /= N_Op_Expon then
9478 Convert_To_And_Rewrite (LLIB, Right_Opnd (N));
9479 end if;
acad3c0a 9480
6cb3037c 9481 -- Convert left operand to Long_Long_Integer for binary case
d79059a3 9482
6cb3037c
AC
9483 if Binary then
9484 Convert_To_And_Rewrite (LLIB, Left_Opnd (N));
9485 end if;
9486
9487 -- Reset node to unanalyzed
9488
9489 Set_Analyzed (N, False);
9490 Set_Etype (N, Empty);
9491 Set_Entity (N, Empty);
9492
a91e9ac7
AC
9493 -- Now analyze this new node. This reanalysis will complete processing
9494 -- for the node. In particular we will complete the expansion of an
9495 -- exponentiation operator (e.g. changing A ** 2 to A * A), and also
9496 -- we will complete any division checks (since we have not changed the
9497 -- setting of the Do_Division_Check flag).
acad3c0a 9498
a7f1b24f 9499 -- We do this reanalysis in STRICT mode to avoid recursion into the
a90bd866 9500 -- MINIMIZED/ELIMINATED handling, since we are now done with that.
acad3c0a 9501
a7f1b24f 9502 declare
15c94a55
RD
9503 SG : constant Overflow_Mode_Type :=
9504 Scope_Suppress.Overflow_Mode_General;
9505 SA : constant Overflow_Mode_Type :=
9506 Scope_Suppress.Overflow_Mode_Assertions;
6cb3037c 9507
a7f1b24f 9508 begin
15c94a55
RD
9509 Scope_Suppress.Overflow_Mode_General := Strict;
9510 Scope_Suppress.Overflow_Mode_Assertions := Strict;
6cb3037c 9511
a7f1b24f
RD
9512 if not Do_Overflow_Check (N) then
9513 Reanalyze (LLIB, Suppress => True);
9514 else
9515 Reanalyze (LLIB);
9516 end if;
9517
15c94a55
RD
9518 Scope_Suppress.Overflow_Mode_General := SG;
9519 Scope_Suppress.Overflow_Mode_Assertions := SA;
a7f1b24f
RD
9520 end;
9521 end Minimize_Eliminate_Overflows;
acad3c0a
AC
9522
9523 -------------------------
9524 -- Overflow_Check_Mode --
9525 -------------------------
9526
15c94a55 9527 function Overflow_Check_Mode return Overflow_Mode_Type is
70482933 9528 begin
05b34c18 9529 if In_Assertion_Expr = 0 then
15c94a55 9530 return Scope_Suppress.Overflow_Mode_General;
fbf5a39b 9531 else
15c94a55 9532 return Scope_Suppress.Overflow_Mode_Assertions;
fbf5a39b 9533 end if;
acad3c0a
AC
9534 end Overflow_Check_Mode;
9535
9536 --------------------------------
9537 -- Overflow_Checks_Suppressed --
9538 --------------------------------
9539
9540 function Overflow_Checks_Suppressed (E : Entity_Id) return Boolean is
9541 begin
a7f1b24f
RD
9542 if Present (E) and then Checks_May_Be_Suppressed (E) then
9543 return Is_Check_Suppressed (E, Overflow_Check);
9544 else
9545 return Scope_Suppress.Suppress (Overflow_Check);
9546 end if;
70482933 9547 end Overflow_Checks_Suppressed;
b568955d 9548
f1c80977
AC
9549 ---------------------------------
9550 -- Predicate_Checks_Suppressed --
9551 ---------------------------------
9552
9553 function Predicate_Checks_Suppressed (E : Entity_Id) return Boolean is
9554 begin
9555 if Present (E) and then Checks_May_Be_Suppressed (E) then
9556 return Is_Check_Suppressed (E, Predicate_Check);
9557 else
9558 return Scope_Suppress.Suppress (Predicate_Check);
9559 end if;
9560 end Predicate_Checks_Suppressed;
9561
70482933
RK
9562 -----------------------------
9563 -- Range_Checks_Suppressed --
9564 -----------------------------
9565
9566 function Range_Checks_Suppressed (E : Entity_Id) return Boolean is
9567 begin
fbf5a39b 9568 if Present (E) then
21c51f53 9569 if Kill_Range_Checks (E) then
fbf5a39b 9570 return True;
4bd4bb7f 9571
fbf5a39b
AC
9572 elsif Checks_May_Be_Suppressed (E) then
9573 return Is_Check_Suppressed (E, Range_Check);
9574 end if;
9575 end if;
70482933 9576
3217f71e 9577 return Scope_Suppress.Suppress (Range_Check);
70482933
RK
9578 end Range_Checks_Suppressed;
9579
c064e066
RD
9580 -----------------------------------------
9581 -- Range_Or_Validity_Checks_Suppressed --
9582 -----------------------------------------
9583
9584 -- Note: the coding would be simpler here if we simply made appropriate
9585 -- calls to Range/Validity_Checks_Suppressed, but that would result in
9586 -- duplicated checks which we prefer to avoid.
9587
9588 function Range_Or_Validity_Checks_Suppressed
9589 (Expr : Node_Id) return Boolean
9590 is
9591 begin
9592 -- Immediate return if scope checks suppressed for either check
9593
3217f71e
AC
9594 if Scope_Suppress.Suppress (Range_Check)
9595 or
9596 Scope_Suppress.Suppress (Validity_Check)
9597 then
c064e066
RD
9598 return True;
9599 end if;
9600
9601 -- If no expression, that's odd, decide that checks are suppressed,
9602 -- since we don't want anyone trying to do checks in this case, which
9603 -- is most likely the result of some other error.
9604
9605 if No (Expr) then
9606 return True;
9607 end if;
9608
9609 -- Expression is present, so perform suppress checks on type
9610
9611 declare
9612 Typ : constant Entity_Id := Etype (Expr);
9613 begin
21c51f53 9614 if Checks_May_Be_Suppressed (Typ)
c064e066
RD
9615 and then (Is_Check_Suppressed (Typ, Range_Check)
9616 or else
9617 Is_Check_Suppressed (Typ, Validity_Check))
9618 then
9619 return True;
9620 end if;
9621 end;
9622
9623 -- If expression is an entity name, perform checks on this entity
9624
9625 if Is_Entity_Name (Expr) then
9626 declare
9627 Ent : constant Entity_Id := Entity (Expr);
9628 begin
9629 if Checks_May_Be_Suppressed (Ent) then
9630 return Is_Check_Suppressed (Ent, Range_Check)
9631 or else Is_Check_Suppressed (Ent, Validity_Check);
9632 end if;
9633 end;
9634 end if;
9635
9636 -- If we fall through, no checks suppressed
9637
9638 return False;
9639 end Range_Or_Validity_Checks_Suppressed;
9640
8cbb664e
MG
9641 -------------------
9642 -- Remove_Checks --
9643 -------------------
9644
9645 procedure Remove_Checks (Expr : Node_Id) is
8cbb664e
MG
9646 function Process (N : Node_Id) return Traverse_Result;
9647 -- Process a single node during the traversal
9648
10303118
BD
9649 procedure Traverse is new Traverse_Proc (Process);
9650 -- The traversal procedure itself
8cbb664e
MG
9651
9652 -------------
9653 -- Process --
9654 -------------
9655
9656 function Process (N : Node_Id) return Traverse_Result is
9657 begin
9658 if Nkind (N) not in N_Subexpr then
9659 return Skip;
9660 end if;
9661
9662 Set_Do_Range_Check (N, False);
9663
9664 case Nkind (N) is
9665 when N_And_Then =>
10303118 9666 Traverse (Left_Opnd (N));
8cbb664e
MG
9667 return Skip;
9668
9669 when N_Attribute_Reference =>
8cbb664e
MG
9670 Set_Do_Overflow_Check (N, False);
9671
8cbb664e
MG
9672 when N_Op =>
9673 Set_Do_Overflow_Check (N, False);
9674
9675 case Nkind (N) is
9676 when N_Op_Divide =>
9677 Set_Do_Division_Check (N, False);
9678
9679 when N_Op_And =>
9680 Set_Do_Length_Check (N, False);
9681
9682 when N_Op_Mod =>
9683 Set_Do_Division_Check (N, False);
9684
9685 when N_Op_Or =>
9686 Set_Do_Length_Check (N, False);
9687
9688 when N_Op_Rem =>
9689 Set_Do_Division_Check (N, False);
9690
9691 when N_Op_Xor =>
9692 Set_Do_Length_Check (N, False);
9693
9694 when others =>
9695 null;
9696 end case;
9697
9698 when N_Or_Else =>
10303118 9699 Traverse (Left_Opnd (N));
8cbb664e
MG
9700 return Skip;
9701
9702 when N_Selected_Component =>
8cbb664e
MG
9703 Set_Do_Discriminant_Check (N, False);
9704
8cbb664e 9705 when N_Type_Conversion =>
fbf5a39b 9706 Set_Do_Length_Check (N, False);
8cbb664e 9707 Set_Do_Overflow_Check (N, False);
8cbb664e
MG
9708
9709 when others =>
9710 null;
9711 end case;
9712
9713 return OK;
9714 end Process;
9715
9716 -- Start of processing for Remove_Checks
9717
9718 begin
10303118 9719 Traverse (Expr);
8cbb664e
MG
9720 end Remove_Checks;
9721
70482933
RK
9722 ----------------------------
9723 -- Selected_Length_Checks --
9724 ----------------------------
9725
9726 function Selected_Length_Checks
6c8e70fe 9727 (Expr : Node_Id;
70482933
RK
9728 Target_Typ : Entity_Id;
9729 Source_Typ : Entity_Id;
6b6fcd3e 9730 Warn_Node : Node_Id) return Check_Result
70482933 9731 is
6c8e70fe 9732 Loc : constant Source_Ptr := Sloc (Expr);
70482933
RK
9733 S_Typ : Entity_Id;
9734 T_Typ : Entity_Id;
9735 Expr_Actual : Node_Id;
9736 Exptyp : Entity_Id;
9737 Cond : Node_Id := Empty;
9738 Do_Access : Boolean := False;
9739 Wnode : Node_Id := Warn_Node;
9740 Ret_Result : Check_Result := (Empty, Empty);
9741 Num_Checks : Natural := 0;
9742
9743 procedure Add_Check (N : Node_Id);
9744 -- Adds the action given to Ret_Result if N is non-Empty
9745
9746 function Get_E_Length (E : Entity_Id; Indx : Nat) return Node_Id;
869a06d9
AC
9747 -- Return E'Length (Indx)
9748
70482933 9749 function Get_N_Length (N : Node_Id; Indx : Nat) return Node_Id;
869a06d9 9750 -- Return N'Length (Indx)
70482933
RK
9751
9752 function Same_Bounds (L : Node_Id; R : Node_Id) return Boolean;
9753 -- True for equal literals and for nodes that denote the same constant
c84700e7 9754 -- entity, even if its value is not a static constant. This includes the
fbf5a39b 9755 -- case of a discriminal reference within an init proc. Removes some
c84700e7 9756 -- obviously superfluous checks.
70482933
RK
9757
9758 function Length_E_Cond
9759 (Exptyp : Entity_Id;
9760 Typ : Entity_Id;
6b6fcd3e 9761 Indx : Nat) return Node_Id;
70482933
RK
9762 -- Returns expression to compute:
9763 -- Typ'Length /= Exptyp'Length
9764
9765 function Length_N_Cond
6c8e70fe 9766 (Exp : Node_Id;
70482933 9767 Typ : Entity_Id;
6b6fcd3e 9768 Indx : Nat) return Node_Id;
70482933 9769 -- Returns expression to compute:
6c8e70fe 9770 -- Typ'Length /= Exp'Length
70482933 9771
eb6b9c9b 9772 function Length_Mismatch_Info_Message
65d76c55
BD
9773 (Left_Element_Count : Unat;
9774 Right_Element_Count : Unat) return String;
eb6b9c9b
GD
9775 -- Returns a message indicating how many elements were expected
9776 -- (Left_Element_Count) and how many were found (Right_Element_Count).
9777
70482933
RK
9778 ---------------
9779 -- Add_Check --
9780 ---------------
9781
9782 procedure Add_Check (N : Node_Id) is
9783 begin
9784 if Present (N) then
9785
869a06d9
AC
9786 -- We do not support inserting more than 2 checks on the same
9787 -- node. If this happens it means we have already added an
9788 -- unconditional raise, so we can skip the other checks safely
9789 -- since N will always raise an exception.
70482933
RK
9790
9791 if Num_Checks = 2 then
9792 return;
9793 end if;
9794
9795 pragma Assert (Num_Checks <= 1);
9796 Num_Checks := Num_Checks + 1;
9797 Ret_Result (Num_Checks) := N;
9798 end if;
9799 end Add_Check;
9800
9801 ------------------
9802 -- Get_E_Length --
9803 ------------------
9804
9805 function Get_E_Length (E : Entity_Id; Indx : Nat) return Node_Id is
11b4899f 9806 SE : constant Entity_Id := Scope (E);
70482933
RK
9807 N : Node_Id;
9808 E1 : Entity_Id := E;
70482933
RK
9809
9810 begin
9811 if Ekind (Scope (E)) = E_Record_Type
9812 and then Has_Discriminants (Scope (E))
9813 then
9814 N := Build_Discriminal_Subtype_Of_Component (E);
9815
9816 if Present (N) then
6c8e70fe 9817 Insert_Action (Expr, N);
70482933
RK
9818 E1 := Defining_Identifier (N);
9819 end if;
9820 end if;
9821
9822 if Ekind (E1) = E_String_Literal_Subtype then
9823 return
9824 Make_Integer_Literal (Loc,
9825 Intval => String_Literal_Length (E1));
9826
11b4899f
JM
9827 elsif SE /= Standard_Standard
9828 and then Ekind (Scope (SE)) = E_Protected_Type
9829 and then Has_Discriminants (Scope (SE))
9830 and then Has_Completion (Scope (SE))
70482933
RK
9831 and then not Inside_Init_Proc
9832 then
70482933
RK
9833 -- If the type whose length is needed is a private component
9834 -- constrained by a discriminant, we must expand the 'Length
9835 -- attribute into an explicit computation, using the discriminal
9836 -- of the current protected operation. This is because the actual
9837 -- type of the prival is constructed after the protected opera-
9838 -- tion has been fully expanded.
9839
9840 declare
9841 Indx_Type : Node_Id;
7c4f3267 9842 Bounds : Range_Nodes;
70482933
RK
9843 Do_Expand : Boolean := False;
9844
9845 begin
9846 Indx_Type := First_Index (E);
9847
9848 for J in 1 .. Indx - 1 loop
9849 Next_Index (Indx_Type);
9850 end loop;
9851
7c4f3267 9852 Bounds := Get_Index_Bounds (Indx_Type);
70482933 9853
7c4f3267
BD
9854 if Nkind (Bounds.First) = N_Identifier
9855 and then Ekind (Entity (Bounds.First)) = E_In_Parameter
70482933 9856 then
7c4f3267 9857 Bounds.First := Get_Discriminal (E, Bounds.First);
70482933
RK
9858 Do_Expand := True;
9859 end if;
9860
7c4f3267
BD
9861 if Nkind (Bounds.Last) = N_Identifier
9862 and then Ekind (Entity (Bounds.Last)) = E_In_Parameter
70482933 9863 then
7c4f3267 9864 Bounds.Last := Get_Discriminal (E, Bounds.Last);
70482933
RK
9865 Do_Expand := True;
9866 end if;
9867
9868 if Do_Expand then
7c4f3267
BD
9869 if not Is_Entity_Name (Bounds.First) then
9870 Bounds.First :=
9871 Duplicate_Subexpr_No_Checks (Bounds.First);
70482933
RK
9872 end if;
9873
7c4f3267
BD
9874 if not Is_Entity_Name (Bounds.Last) then
9875 Bounds.First := Duplicate_Subexpr_No_Checks (Bounds.Last);
70482933
RK
9876 end if;
9877
9878 N :=
9879 Make_Op_Add (Loc,
9880 Left_Opnd =>
9881 Make_Op_Subtract (Loc,
7c4f3267
BD
9882 Left_Opnd => Bounds.Last,
9883 Right_Opnd => Bounds.First),
70482933
RK
9884
9885 Right_Opnd => Make_Integer_Literal (Loc, 1));
9886 return N;
9887
9888 else
9889 N :=
9890 Make_Attribute_Reference (Loc,
9891 Attribute_Name => Name_Length,
9892 Prefix =>
9893 New_Occurrence_Of (E1, Loc));
9894
9895 if Indx > 1 then
9896 Set_Expressions (N, New_List (
9897 Make_Integer_Literal (Loc, Indx)));
9898 end if;
9899
9900 return N;
9901 end if;
9902 end;
9903
9904 else
9905 N :=
9906 Make_Attribute_Reference (Loc,
9907 Attribute_Name => Name_Length,
9908 Prefix =>
9909 New_Occurrence_Of (E1, Loc));
9910
9911 if Indx > 1 then
9912 Set_Expressions (N, New_List (
9913 Make_Integer_Literal (Loc, Indx)));
9914 end if;
9915
9916 return N;
70482933
RK
9917 end if;
9918 end Get_E_Length;
9919
9920 ------------------
9921 -- Get_N_Length --
9922 ------------------
9923
9924 function Get_N_Length (N : Node_Id; Indx : Nat) return Node_Id is
9925 begin
9926 return
9927 Make_Attribute_Reference (Loc,
9928 Attribute_Name => Name_Length,
9929 Prefix =>
fbf5a39b 9930 Duplicate_Subexpr_No_Checks (N, Name_Req => True),
70482933
RK
9931 Expressions => New_List (
9932 Make_Integer_Literal (Loc, Indx)));
70482933
RK
9933 end Get_N_Length;
9934
9935 -------------------
9936 -- Length_E_Cond --
9937 -------------------
9938
9939 function Length_E_Cond
9940 (Exptyp : Entity_Id;
9941 Typ : Entity_Id;
6b6fcd3e 9942 Indx : Nat) return Node_Id
70482933
RK
9943 is
9944 begin
9945 return
9946 Make_Op_Ne (Loc,
9947 Left_Opnd => Get_E_Length (Typ, Indx),
9948 Right_Opnd => Get_E_Length (Exptyp, Indx));
70482933
RK
9949 end Length_E_Cond;
9950
9951 -------------------
9952 -- Length_N_Cond --
9953 -------------------
9954
9955 function Length_N_Cond
6c8e70fe 9956 (Exp : Node_Id;
70482933 9957 Typ : Entity_Id;
6b6fcd3e 9958 Indx : Nat) return Node_Id
70482933
RK
9959 is
9960 begin
9961 return
9962 Make_Op_Ne (Loc,
9963 Left_Opnd => Get_E_Length (Typ, Indx),
6c8e70fe 9964 Right_Opnd => Get_N_Length (Exp, Indx));
70482933
RK
9965 end Length_N_Cond;
9966
eb6b9c9b
GD
9967 ----------------------------------
9968 -- Length_Mismatch_Info_Message --
9969 ----------------------------------
9970
9971 function Length_Mismatch_Info_Message
65d76c55
BD
9972 (Left_Element_Count : Unat;
9973 Right_Element_Count : Unat) return String
eb6b9c9b
GD
9974 is
9975
65d76c55 9976 function Plural_Vs_Singular_Ending (Count : Unat) return String;
eb6b9c9b
GD
9977 -- Returns an empty string if Count is 1; otherwise returns "s"
9978
65d76c55 9979 function Plural_Vs_Singular_Ending (Count : Unat) return String is
eb6b9c9b
GD
9980 begin
9981 if Count = 1 then
9982 return "";
9983 else
9984 return "s";
9985 end if;
9986 end Plural_Vs_Singular_Ending;
9987
9988 begin
65d76c55
BD
9989 return "expected "
9990 & UI_Image (Left_Element_Count, Format => Decimal)
eb6b9c9b
GD
9991 & " element"
9992 & Plural_Vs_Singular_Ending (Left_Element_Count)
65d76c55
BD
9993 & "; found "
9994 & UI_Image (Right_Element_Count, Format => Decimal)
eb6b9c9b
GD
9995 & " element"
9996 & Plural_Vs_Singular_Ending (Right_Element_Count);
65d76c55
BD
9997 -- "Format => Decimal" above is needed because otherwise UI_Image
9998 -- can sometimes return a hexadecimal number 16#...#, but "#" means
9999 -- something special to Errout. A previous version used the default
10000 -- Auto, which was essentially the same bug as documented here:
10001 -- https://xkcd.com/327/ .
eb6b9c9b
GD
10002 end Length_Mismatch_Info_Message;
10003
675d6070
TQ
10004 -----------------
10005 -- Same_Bounds --
10006 -----------------
10007
70482933
RK
10008 function Same_Bounds (L : Node_Id; R : Node_Id) return Boolean is
10009 begin
10010 return
10011 (Nkind (L) = N_Integer_Literal
10012 and then Nkind (R) = N_Integer_Literal
10013 and then Intval (L) = Intval (R))
10014
10015 or else
10016 (Is_Entity_Name (L)
10017 and then Ekind (Entity (L)) = E_Constant
10018 and then ((Is_Entity_Name (R)
10019 and then Entity (L) = Entity (R))
10020 or else
10021 (Nkind (R) = N_Type_Conversion
10022 and then Is_Entity_Name (Expression (R))
10023 and then Entity (L) = Entity (Expression (R)))))
10024
10025 or else
10026 (Is_Entity_Name (R)
10027 and then Ekind (Entity (R)) = E_Constant
10028 and then Nkind (L) = N_Type_Conversion
10029 and then Is_Entity_Name (Expression (L))
c84700e7
ES
10030 and then Entity (R) = Entity (Expression (L)))
10031
10032 or else
10033 (Is_Entity_Name (L)
10034 and then Is_Entity_Name (R)
10035 and then Entity (L) = Entity (R)
10036 and then Ekind (Entity (L)) = E_In_Parameter
10037 and then Inside_Init_Proc);
70482933
RK
10038 end Same_Bounds;
10039
10040 -- Start of processing for Selected_Length_Checks
10041
10042 begin
66340e0e 10043 -- Checks will be applied only when generating code
27bb7941 10044
66340e0e 10045 if not Expander_Active then
70482933
RK
10046 return Ret_Result;
10047 end if;
10048
10049 if Target_Typ = Any_Type
10050 or else Target_Typ = Any_Composite
6c8e70fe 10051 or else Raises_Constraint_Error (Expr)
70482933
RK
10052 then
10053 return Ret_Result;
10054 end if;
10055
10056 if No (Wnode) then
6c8e70fe 10057 Wnode := Expr;
70482933
RK
10058 end if;
10059
10060 T_Typ := Target_Typ;
10061
10062 if No (Source_Typ) then
6c8e70fe 10063 S_Typ := Etype (Expr);
70482933
RK
10064 else
10065 S_Typ := Source_Typ;
10066 end if;
10067
10068 if S_Typ = Any_Type or else S_Typ = Any_Composite then
10069 return Ret_Result;
10070 end if;
10071
10072 if Is_Access_Type (T_Typ) and then Is_Access_Type (S_Typ) then
10073 S_Typ := Designated_Type (S_Typ);
10074 T_Typ := Designated_Type (T_Typ);
10075 Do_Access := True;
10076
939c12d2 10077 -- A simple optimization for the null case
70482933 10078
6c8e70fe 10079 if Known_Null (Expr) then
70482933
RK
10080 return Ret_Result;
10081 end if;
10082 end if;
10083
10084 if Is_Array_Type (T_Typ) and then Is_Array_Type (S_Typ) then
10085 if Is_Constrained (T_Typ) then
10086
9b16cb57
RD
10087 -- The checking code to be generated will freeze the corresponding
10088 -- array type. However, we must freeze the type now, so that the
10089 -- freeze node does not appear within the generated if expression,
10090 -- but ahead of it.
70482933 10091
6c8e70fe 10092 Freeze_Before (Expr, T_Typ);
70482933 10093
6c8e70fe
EB
10094 Expr_Actual := Get_Referenced_Object (Expr);
10095 Exptyp := Get_Actual_Subtype (Expr);
70482933
RK
10096
10097 if Is_Access_Type (Exptyp) then
10098 Exptyp := Designated_Type (Exptyp);
10099 end if;
10100
10101 -- String_Literal case. This needs to be handled specially be-
10102 -- cause no index types are available for string literals. The
10103 -- condition is simply:
10104
10105 -- T_Typ'Length = string-literal-length
10106
fbf5a39b
AC
10107 if Nkind (Expr_Actual) = N_String_Literal
10108 and then Ekind (Etype (Expr_Actual)) = E_String_Literal_Subtype
10109 then
70482933
RK
10110 Cond :=
10111 Make_Op_Ne (Loc,
10112 Left_Opnd => Get_E_Length (T_Typ, 1),
10113 Right_Opnd =>
10114 Make_Integer_Literal (Loc,
10115 Intval =>
10116 String_Literal_Length (Etype (Expr_Actual))));
10117
10118 -- General array case. Here we have a usable actual subtype for
10119 -- the expression, and the condition is built from the two types
10120 -- (Do_Length):
10121
10122 -- T_Typ'Length /= Exptyp'Length or else
10123 -- T_Typ'Length (2) /= Exptyp'Length (2) or else
10124 -- T_Typ'Length (3) /= Exptyp'Length (3) or else
10125 -- ...
10126
10127 elsif Is_Constrained (Exptyp) then
10128 declare
fbf5a39b
AC
10129 Ndims : constant Nat := Number_Dimensions (T_Typ);
10130
10131 L_Index : Node_Id;
10132 R_Index : Node_Id;
7c4f3267
BD
10133 L_Bounds : Range_Nodes;
10134 R_Bounds : Range_Nodes;
70482933
RK
10135 L_Length : Uint;
10136 R_Length : Uint;
fbf5a39b 10137 Ref_Node : Node_Id;
70482933
RK
10138
10139 begin
675d6070
TQ
10140 -- At the library level, we need to ensure that the type of
10141 -- the object is elaborated before the check itself is
10142 -- emitted. This is only done if the object is in the
10143 -- current compilation unit, otherwise the type is frozen
10144 -- and elaborated in its unit.
fbf5a39b
AC
10145
10146 if Is_Itype (Exptyp)
10147 and then
10148 Ekind (Cunit_Entity (Current_Sem_Unit)) = E_Package
10149 and then
10150 not In_Package_Body (Cunit_Entity (Current_Sem_Unit))
891a6e79 10151 and then In_Open_Scopes (Scope (Exptyp))
fbf5a39b 10152 then
6c8e70fe 10153 Ref_Node := Make_Itype_Reference (Sloc (Expr));
fbf5a39b 10154 Set_Itype (Ref_Node, Exptyp);
6c8e70fe 10155 Insert_Action (Expr, Ref_Node);
fbf5a39b
AC
10156 end if;
10157
70482933
RK
10158 L_Index := First_Index (T_Typ);
10159 R_Index := First_Index (Exptyp);
10160
10161 for Indx in 1 .. Ndims loop
10162 if not (Nkind (L_Index) = N_Raise_Constraint_Error
07fc65c4
GB
10163 or else
10164 Nkind (R_Index) = N_Raise_Constraint_Error)
70482933 10165 then
7c4f3267
BD
10166 L_Bounds := Get_Index_Bounds (L_Index);
10167 R_Bounds := Get_Index_Bounds (R_Index);
70482933
RK
10168
10169 -- Deal with compile time length check. Note that we
10170 -- skip this in the access case, because the access
10171 -- value may be null, so we cannot know statically.
10172
10173 if not Do_Access
7c4f3267
BD
10174 and then Compile_Time_Known_Value (L_Bounds.First)
10175 and then Compile_Time_Known_Value (L_Bounds.Last)
10176 and then Compile_Time_Known_Value (R_Bounds.First)
10177 and then Compile_Time_Known_Value (R_Bounds.Last)
70482933 10178 then
7c4f3267
BD
10179 if Expr_Value (L_Bounds.Last) >=
10180 Expr_Value (L_Bounds.First)
10181 then
10182 L_Length := Expr_Value (L_Bounds.Last) -
10183 Expr_Value (L_Bounds.First) + 1;
70482933
RK
10184 else
10185 L_Length := UI_From_Int (0);
10186 end if;
10187
7c4f3267
BD
10188 if Expr_Value (R_Bounds.Last) >=
10189 Expr_Value (R_Bounds.First)
10190 then
10191 R_Length := Expr_Value (R_Bounds.Last) -
10192 Expr_Value (R_Bounds.First) + 1;
70482933
RK
10193 else
10194 R_Length := UI_From_Int (0);
10195 end if;
10196
10197 if L_Length > R_Length then
10198 Add_Check
10199 (Compile_Time_Constraint_Error
65d76c55 10200 (Wnode, "too few elements for}!!??", T_Typ,
eb6b9c9b
GD
10201 Extra_Msg => Length_Mismatch_Info_Message
10202 (L_Length, R_Length)));
70482933 10203
9fe696a3 10204 elsif L_Length < R_Length then
70482933
RK
10205 Add_Check
10206 (Compile_Time_Constraint_Error
65d76c55 10207 (Wnode, "too many elements for}!!??", T_Typ,
eb6b9c9b
GD
10208 Extra_Msg => Length_Mismatch_Info_Message
10209 (L_Length, R_Length)));
70482933
RK
10210 end if;
10211
10212 -- The comparison for an individual index subtype
10213 -- is omitted if the corresponding index subtypes
10214 -- statically match, since the result is known to
10215 -- be true. Note that this test is worth while even
10216 -- though we do static evaluation, because non-static
10217 -- subtypes can statically match.
10218
10219 elsif not
10220 Subtypes_Statically_Match
10221 (Etype (L_Index), Etype (R_Index))
10222
10223 and then not
7c4f3267
BD
10224 (Same_Bounds (L_Bounds.First, R_Bounds.First)
10225 and then
10226 Same_Bounds (L_Bounds.Last, R_Bounds.Last))
70482933
RK
10227 then
10228 Evolve_Or_Else
10229 (Cond, Length_E_Cond (Exptyp, T_Typ, Indx));
10230 end if;
10231
10232 Next (L_Index);
10233 Next (R_Index);
10234 end if;
10235 end loop;
10236 end;
10237
10238 -- Handle cases where we do not get a usable actual subtype that
10239 -- is constrained. This happens for example in the function call
10240 -- and explicit dereference cases. In these cases, we have to get
10241 -- the length or range from the expression itself, making sure we
10242 -- do not evaluate it more than once.
10243
6c8e70fe 10244 -- Here Expr is the original expression, or more properly the
675d6070
TQ
10245 -- result of applying Duplicate_Expr to the original tree, forcing
10246 -- the result to be a name.
70482933
RK
10247
10248 else
10249 declare
12be130c 10250 Ndims : constant Pos := Number_Dimensions (T_Typ);
70482933
RK
10251
10252 begin
10253 -- Build the condition for the explicit dereference case
10254
10255 for Indx in 1 .. Ndims loop
10256 Evolve_Or_Else
6c8e70fe 10257 (Cond, Length_N_Cond (Expr, T_Typ, Indx));
70482933
RK
10258 end loop;
10259 end;
10260 end if;
10261 end if;
10262 end if;
10263
10264 -- Construct the test and insert into the tree
10265
10266 if Present (Cond) then
10267 if Do_Access then
6c8e70fe 10268 Cond := Guard_Access (Cond, Loc, Expr);
70482933
RK
10269 end if;
10270
07fc65c4
GB
10271 Add_Check
10272 (Make_Raise_Constraint_Error (Loc,
10273 Condition => Cond,
10274 Reason => CE_Length_Check_Failed));
70482933
RK
10275 end if;
10276
10277 return Ret_Result;
70482933
RK
10278 end Selected_Length_Checks;
10279
10280 ---------------------------
10281 -- Selected_Range_Checks --
10282 ---------------------------
10283
10284 function Selected_Range_Checks
6c8e70fe 10285 (Expr : Node_Id;
70482933
RK
10286 Target_Typ : Entity_Id;
10287 Source_Typ : Entity_Id;
6b6fcd3e 10288 Warn_Node : Node_Id) return Check_Result
70482933 10289 is
6c8e70fe 10290 Loc : constant Source_Ptr := Sloc (Expr);
70482933
RK
10291 S_Typ : Entity_Id;
10292 T_Typ : Entity_Id;
10293 Expr_Actual : Node_Id;
10294 Exptyp : Entity_Id;
10295 Cond : Node_Id := Empty;
10296 Do_Access : Boolean := False;
8f721245 10297 Wnode : Node_Id := Warn_Node;
70482933 10298 Ret_Result : Check_Result := (Empty, Empty);
dcd5fd67 10299 Num_Checks : Natural := 0;
70482933
RK
10300
10301 procedure Add_Check (N : Node_Id);
10302 -- Adds the action given to Ret_Result if N is non-Empty
10303
10304 function Discrete_Range_Cond
6c8e70fe
EB
10305 (Exp : Node_Id;
10306 Typ : Entity_Id) return Node_Id;
70482933 10307 -- Returns expression to compute:
6c8e70fe 10308 -- Low_Bound (Exp) < Typ'First
70482933 10309 -- or else
6c8e70fe 10310 -- High_Bound (Exp) > Typ'Last
70482933
RK
10311
10312 function Discrete_Expr_Cond
6c8e70fe
EB
10313 (Exp : Node_Id;
10314 Typ : Entity_Id) return Node_Id;
70482933 10315 -- Returns expression to compute:
6c8e70fe 10316 -- Exp < Typ'First
70482933 10317 -- or else
6c8e70fe 10318 -- Exp > Typ'Last
70482933
RK
10319
10320 function Get_E_First_Or_Last
5a153b27
AC
10321 (Loc : Source_Ptr;
10322 E : Entity_Id;
70482933 10323 Indx : Nat;
6b6fcd3e 10324 Nam : Name_Id) return Node_Id;
a548f9ff 10325 -- Returns an attribute reference
70482933 10326 -- E'First or E'Last
a548f9ff 10327 -- with a source location of Loc.
6ca9ec9c 10328 --
a548f9ff
TQ
10329 -- Nam is Name_First or Name_Last, according to which attribute is
10330 -- desired. If Indx is non-zero, it is passed as a literal in the
10331 -- Expressions of the attribute reference (identifying the desired
10332 -- array dimension).
70482933
RK
10333
10334 function Get_N_First (N : Node_Id; Indx : Nat) return Node_Id;
10335 function Get_N_Last (N : Node_Id; Indx : Nat) return Node_Id;
10336 -- Returns expression to compute:
fbf5a39b 10337 -- N'First or N'Last using Duplicate_Subexpr_No_Checks
70482933 10338
a521dc37
EB
10339 function Is_Cond_Expr_Ge (N : Node_Id; V : Node_Id) return Boolean;
10340 function Is_Cond_Expr_Le (N : Node_Id; V : Node_Id) return Boolean;
10341 -- Return True if N is a conditional expression whose dependent
10342 -- expressions are all known and greater/lower than or equal to V.
10343
70482933
RK
10344 function Range_E_Cond
10345 (Exptyp : Entity_Id;
10346 Typ : Entity_Id;
10347 Indx : Nat)
10348 return Node_Id;
10349 -- Returns expression to compute:
10350 -- Exptyp'First < Typ'First or else Exptyp'Last > Typ'Last
10351
10352 function Range_Equal_E_Cond
10353 (Exptyp : Entity_Id;
10354 Typ : Entity_Id;
6b6fcd3e 10355 Indx : Nat) return Node_Id;
70482933
RK
10356 -- Returns expression to compute:
10357 -- Exptyp'First /= Typ'First or else Exptyp'Last /= Typ'Last
10358
10359 function Range_N_Cond
6c8e70fe 10360 (Exp : Node_Id;
70482933 10361 Typ : Entity_Id;
6b6fcd3e 10362 Indx : Nat) return Node_Id;
70482933 10363 -- Return expression to compute:
6c8e70fe 10364 -- Exp'First < Typ'First or else Exp'Last > Typ'Last
70482933 10365
a521dc37
EB
10366 function "<" (Left, Right : Node_Id) return Boolean
10367 is (if Is_Floating_Point_Type (S_Typ)
10368 then Expr_Value_R (Left) < Expr_Value_R (Right)
10369 else Expr_Value (Left) < Expr_Value (Right));
10370 function "<=" (Left, Right : Node_Id) return Boolean
10371 is (if Is_Floating_Point_Type (S_Typ)
10372 then Expr_Value_R (Left) <= Expr_Value_R (Right)
10373 else Expr_Value (Left) <= Expr_Value (Right));
10374 -- Convenience comparison functions of integer or floating point values
10375
70482933
RK
10376 ---------------
10377 -- Add_Check --
10378 ---------------
10379
10380 procedure Add_Check (N : Node_Id) is
10381 begin
10382 if Present (N) then
10383
869a06d9
AC
10384 -- We do not support inserting more than 2 checks on the same
10385 -- node. If this happens it means we have already added an
10386 -- unconditional raise, so we can skip the other checks safely
10387 -- since N will always raise an exception.
70482933
RK
10388
10389 if Num_Checks = 2 then
10390 return;
10391 end if;
10392
10393 pragma Assert (Num_Checks <= 1);
10394 Num_Checks := Num_Checks + 1;
10395 Ret_Result (Num_Checks) := N;
10396 end if;
10397 end Add_Check;
10398
10399 -------------------------
10400 -- Discrete_Expr_Cond --
10401 -------------------------
10402
10403 function Discrete_Expr_Cond
6c8e70fe
EB
10404 (Exp : Node_Id;
10405 Typ : Entity_Id) return Node_Id
70482933
RK
10406 is
10407 begin
10408 return
10409 Make_Or_Else (Loc,
10410 Left_Opnd =>
10411 Make_Op_Lt (Loc,
10412 Left_Opnd =>
fbf5a39b 10413 Convert_To (Base_Type (Typ),
6c8e70fe 10414 Duplicate_Subexpr_No_Checks (Exp)),
70482933
RK
10415 Right_Opnd =>
10416 Convert_To (Base_Type (Typ),
5a153b27 10417 Get_E_First_Or_Last (Loc, Typ, 0, Name_First))),
70482933
RK
10418
10419 Right_Opnd =>
10420 Make_Op_Gt (Loc,
10421 Left_Opnd =>
fbf5a39b 10422 Convert_To (Base_Type (Typ),
6c8e70fe 10423 Duplicate_Subexpr_No_Checks (Exp)),
70482933
RK
10424 Right_Opnd =>
10425 Convert_To
10426 (Base_Type (Typ),
5a153b27 10427 Get_E_First_Or_Last (Loc, Typ, 0, Name_Last))));
70482933
RK
10428 end Discrete_Expr_Cond;
10429
10430 -------------------------
10431 -- Discrete_Range_Cond --
10432 -------------------------
10433
10434 function Discrete_Range_Cond
6c8e70fe
EB
10435 (Exp : Node_Id;
10436 Typ : Entity_Id) return Node_Id
70482933 10437 is
6c8e70fe
EB
10438 LB : Node_Id := Low_Bound (Exp);
10439 HB : Node_Id := High_Bound (Exp);
70482933
RK
10440
10441 Left_Opnd : Node_Id;
10442 Right_Opnd : Node_Id;
10443
10444 begin
10445 if Nkind (LB) = N_Identifier
675d6070
TQ
10446 and then Ekind (Entity (LB)) = E_Discriminant
10447 then
70482933
RK
10448 LB := New_Occurrence_Of (Discriminal (Entity (LB)), Loc);
10449 end if;
10450
d32db3a7
GD
10451 -- If the index type has a fixed lower bound, then we require an
10452 -- exact match of the range's lower bound against that fixed lower
10453 -- bound.
70482933 10454
d32db3a7
GD
10455 if Is_Fixed_Lower_Bound_Index_Subtype (Typ) then
10456 Left_Opnd :=
10457 Make_Op_Ne (Loc,
10458 Left_Opnd =>
10459 Convert_To
10460 (Base_Type (Typ), Duplicate_Subexpr_No_Checks (LB)),
10461
10462 Right_Opnd =>
10463 Convert_To
10464 (Base_Type (Typ),
10465 Get_E_First_Or_Last (Loc, Typ, 0, Name_First)));
10466
10467 -- Otherwise we do the expected less-than comparison
10468
10469 else
10470 Left_Opnd :=
10471 Make_Op_Lt (Loc,
10472 Left_Opnd =>
10473 Convert_To
10474 (Base_Type (Typ), Duplicate_Subexpr_No_Checks (LB)),
10475
10476 Right_Opnd =>
10477 Convert_To
10478 (Base_Type (Typ),
10479 Get_E_First_Or_Last (Loc, Typ, 0, Name_First)));
10480 end if;
70482933 10481
b3f96dc1
AC
10482 if Nkind (HB) = N_Identifier
10483 and then Ekind (Entity (HB)) = E_Discriminant
70482933 10484 then
b3f96dc1 10485 HB := New_Occurrence_Of (Discriminal (Entity (HB)), Loc);
70482933
RK
10486 end if;
10487
10488 Right_Opnd :=
10489 Make_Op_Gt (Loc,
10490 Left_Opnd =>
10491 Convert_To
fbf5a39b 10492 (Base_Type (Typ), Duplicate_Subexpr_No_Checks (HB)),
70482933
RK
10493
10494 Right_Opnd =>
10495 Convert_To
10496 (Base_Type (Typ),
5a153b27 10497 Get_E_First_Or_Last (Loc, Typ, 0, Name_Last)));
70482933
RK
10498
10499 return Make_Or_Else (Loc, Left_Opnd, Right_Opnd);
10500 end Discrete_Range_Cond;
10501
10502 -------------------------
10503 -- Get_E_First_Or_Last --
10504 -------------------------
10505
10506 function Get_E_First_Or_Last
5a153b27
AC
10507 (Loc : Source_Ptr;
10508 E : Entity_Id;
70482933 10509 Indx : Nat;
6b6fcd3e 10510 Nam : Name_Id) return Node_Id
70482933 10511 is
5a153b27 10512 Exprs : List_Id;
70482933 10513 begin
5a153b27
AC
10514 if Indx > 0 then
10515 Exprs := New_List (Make_Integer_Literal (Loc, UI_From_Int (Indx)));
70482933 10516 else
5a153b27 10517 Exprs := No_List;
70482933
RK
10518 end if;
10519
5a153b27
AC
10520 return Make_Attribute_Reference (Loc,
10521 Prefix => New_Occurrence_Of (E, Loc),
10522 Attribute_Name => Nam,
10523 Expressions => Exprs);
70482933
RK
10524 end Get_E_First_Or_Last;
10525
10526 -----------------
10527 -- Get_N_First --
10528 -----------------
10529
10530 function Get_N_First (N : Node_Id; Indx : Nat) return Node_Id is
10531 begin
10532 return
10533 Make_Attribute_Reference (Loc,
10534 Attribute_Name => Name_First,
10535 Prefix =>
fbf5a39b 10536 Duplicate_Subexpr_No_Checks (N, Name_Req => True),
70482933
RK
10537 Expressions => New_List (
10538 Make_Integer_Literal (Loc, Indx)));
70482933
RK
10539 end Get_N_First;
10540
10541 ----------------
10542 -- Get_N_Last --
10543 ----------------
10544
10545 function Get_N_Last (N : Node_Id; Indx : Nat) return Node_Id is
10546 begin
10547 return
10548 Make_Attribute_Reference (Loc,
10549 Attribute_Name => Name_Last,
10550 Prefix =>
fbf5a39b 10551 Duplicate_Subexpr_No_Checks (N, Name_Req => True),
70482933
RK
10552 Expressions => New_List (
10553 Make_Integer_Literal (Loc, Indx)));
70482933
RK
10554 end Get_N_Last;
10555
a521dc37
EB
10556 ---------------------
10557 -- Is_Cond_Expr_Ge --
10558 ---------------------
10559
10560 function Is_Cond_Expr_Ge (N : Node_Id; V : Node_Id) return Boolean is
10561 begin
10562 -- Only if expressions are relevant for the time being
10563
10564 if Nkind (N) = N_If_Expression then
10565 declare
10566 Cond : constant Node_Id := First (Expressions (N));
10567 Thenx : constant Node_Id := Next (Cond);
10568 Elsex : constant Node_Id := Next (Thenx);
10569
10570 begin
10571 return Compile_Time_Known_Value (Thenx)
10572 and then V <= Thenx
10573 and then
10574 ((Compile_Time_Known_Value (Elsex) and then V <= Elsex)
10575 or else Is_Cond_Expr_Ge (Elsex, V));
10576 end;
10577
10578 else
10579 return False;
10580 end if;
10581 end Is_Cond_Expr_Ge;
10582
10583 ---------------------
10584 -- Is_Cond_Expr_Le --
10585 ---------------------
10586
10587 function Is_Cond_Expr_Le (N : Node_Id; V : Node_Id) return Boolean is
10588 begin
10589 -- Only if expressions are relevant for the time being
10590
10591 if Nkind (N) = N_If_Expression then
10592 declare
10593 Cond : constant Node_Id := First (Expressions (N));
10594 Thenx : constant Node_Id := Next (Cond);
10595 Elsex : constant Node_Id := Next (Thenx);
10596
10597 begin
10598 return Compile_Time_Known_Value (Thenx)
10599 and then Thenx <= V
10600 and then
10601 ((Compile_Time_Known_Value (Elsex) and then Elsex <= V)
10602 or else Is_Cond_Expr_Le (Elsex, V));
10603 end;
10604
10605 else
10606 return False;
10607 end if;
10608 end Is_Cond_Expr_Le;
10609
70482933
RK
10610 ------------------
10611 -- Range_E_Cond --
10612 ------------------
10613
10614 function Range_E_Cond
10615 (Exptyp : Entity_Id;
10616 Typ : Entity_Id;
6b6fcd3e 10617 Indx : Nat) return Node_Id
70482933
RK
10618 is
10619 begin
10620 return
10621 Make_Or_Else (Loc,
10622 Left_Opnd =>
10623 Make_Op_Lt (Loc,
5a153b27
AC
10624 Left_Opnd =>
10625 Get_E_First_Or_Last (Loc, Exptyp, Indx, Name_First),
10626 Right_Opnd =>
10627 Get_E_First_Or_Last (Loc, Typ, Indx, Name_First)),
70482933
RK
10628
10629 Right_Opnd =>
10630 Make_Op_Gt (Loc,
5a153b27
AC
10631 Left_Opnd =>
10632 Get_E_First_Or_Last (Loc, Exptyp, Indx, Name_Last),
10633 Right_Opnd =>
10634 Get_E_First_Or_Last (Loc, Typ, Indx, Name_Last)));
70482933
RK
10635 end Range_E_Cond;
10636
10637 ------------------------
10638 -- Range_Equal_E_Cond --
10639 ------------------------
10640
10641 function Range_Equal_E_Cond
10642 (Exptyp : Entity_Id;
10643 Typ : Entity_Id;
6b6fcd3e 10644 Indx : Nat) return Node_Id
70482933
RK
10645 is
10646 begin
10647 return
10648 Make_Or_Else (Loc,
10649 Left_Opnd =>
10650 Make_Op_Ne (Loc,
5a153b27
AC
10651 Left_Opnd =>
10652 Get_E_First_Or_Last (Loc, Exptyp, Indx, Name_First),
10653 Right_Opnd =>
10654 Get_E_First_Or_Last (Loc, Typ, Indx, Name_First)),
10655
70482933
RK
10656 Right_Opnd =>
10657 Make_Op_Ne (Loc,
5a153b27
AC
10658 Left_Opnd =>
10659 Get_E_First_Or_Last (Loc, Exptyp, Indx, Name_Last),
10660 Right_Opnd =>
10661 Get_E_First_Or_Last (Loc, Typ, Indx, Name_Last)));
70482933
RK
10662 end Range_Equal_E_Cond;
10663
10664 ------------------
10665 -- Range_N_Cond --
10666 ------------------
10667
10668 function Range_N_Cond
6c8e70fe 10669 (Exp : Node_Id;
70482933 10670 Typ : Entity_Id;
6b6fcd3e 10671 Indx : Nat) return Node_Id
70482933
RK
10672 is
10673 begin
10674 return
10675 Make_Or_Else (Loc,
10676 Left_Opnd =>
10677 Make_Op_Lt (Loc,
5a153b27 10678 Left_Opnd =>
6c8e70fe 10679 Get_N_First (Exp, Indx),
5a153b27
AC
10680 Right_Opnd =>
10681 Get_E_First_Or_Last (Loc, Typ, Indx, Name_First)),
70482933
RK
10682
10683 Right_Opnd =>
10684 Make_Op_Gt (Loc,
5a153b27 10685 Left_Opnd =>
6c8e70fe 10686 Get_N_Last (Exp, Indx),
5a153b27
AC
10687 Right_Opnd =>
10688 Get_E_First_Or_Last (Loc, Typ, Indx, Name_Last)));
70482933
RK
10689 end Range_N_Cond;
10690
10691 -- Start of processing for Selected_Range_Checks
10692
10693 begin
27bb7941
AC
10694 -- Checks will be applied only when generating code. In GNATprove mode,
10695 -- we do not apply the checks, but we still call Selected_Range_Checks
fdd0a844
YM
10696 -- outside of generics to possibly issue errors on SPARK code when a
10697 -- run-time error can be detected at compile time.
27bb7941 10698
fdd0a844 10699 if Inside_A_Generic or (not GNATprove_Mode and not Expander_Active) then
70482933
RK
10700 return Ret_Result;
10701 end if;
10702
10703 if Target_Typ = Any_Type
10704 or else Target_Typ = Any_Composite
6c8e70fe 10705 or else Raises_Constraint_Error (Expr)
70482933
RK
10706 then
10707 return Ret_Result;
10708 end if;
10709
10710 if No (Wnode) then
6c8e70fe 10711 Wnode := Expr;
70482933
RK
10712 end if;
10713
10714 T_Typ := Target_Typ;
10715
10716 if No (Source_Typ) then
6c8e70fe 10717 S_Typ := Etype (Expr);
70482933
RK
10718 else
10719 S_Typ := Source_Typ;
10720 end if;
10721
10722 if S_Typ = Any_Type or else S_Typ = Any_Composite then
10723 return Ret_Result;
10724 end if;
10725
10726 -- The order of evaluating T_Typ before S_Typ seems to be critical
6c8e70fe 10727 -- because S_Typ can be derived from Etype (Expr), if it's not passed
70482933
RK
10728 -- in, and since Node can be an N_Range node, it might be invalid.
10729 -- Should there be an assert check somewhere for taking the Etype of
10730 -- an N_Range node ???
10731
10732 if Is_Access_Type (T_Typ) and then Is_Access_Type (S_Typ) then
10733 S_Typ := Designated_Type (S_Typ);
10734 T_Typ := Designated_Type (T_Typ);
10735 Do_Access := True;
10736
939c12d2 10737 -- A simple optimization for the null case
70482933 10738
6c8e70fe 10739 if Known_Null (Expr) then
70482933
RK
10740 return Ret_Result;
10741 end if;
10742 end if;
10743
10744 -- For an N_Range Node, check for a null range and then if not
10745 -- null generate a range check action.
10746
6c8e70fe 10747 if Nkind (Expr) = N_Range then
70482933
RK
10748
10749 -- There's no point in checking a range against itself
10750
6c8e70fe 10751 if Expr = Scalar_Range (T_Typ) then
70482933
RK
10752 return Ret_Result;
10753 end if;
10754
10755 declare
10756 T_LB : constant Node_Id := Type_Low_Bound (T_Typ);
10757 T_HB : constant Node_Id := Type_High_Bound (T_Typ);
10475800
EB
10758 Known_T_LB : constant Boolean := Compile_Time_Known_Value (T_LB);
10759 Known_T_HB : constant Boolean := Compile_Time_Known_Value (T_HB);
70482933 10760
869a06d9
AC
10761 LB : Node_Id := Low_Bound (Expr);
10762 HB : Node_Id := High_Bound (Expr);
10763 Known_LB : Boolean := False;
10764 Known_HB : Boolean := False;
10765 Check_Added : Boolean := False;
10475800 10766
869a06d9
AC
10767 Out_Of_Range_L : Boolean := False;
10768 Out_Of_Range_H : Boolean := False;
70482933
RK
10769
10770 begin
10475800
EB
10771 -- Compute what is known at compile time
10772
10773 if Known_T_LB and Known_T_HB then
10774 if Compile_Time_Known_Value (LB) then
10775 Known_LB := True;
10776
10777 -- There's no point in checking that a bound is within its
10778 -- own range so pretend that it is known in this case. First
10779 -- deal with low bound.
10780
10781 elsif Ekind (Etype (LB)) = E_Signed_Integer_Subtype
10782 and then Scalar_Range (Etype (LB)) = Scalar_Range (T_Typ)
10783 then
10784 LB := T_LB;
10785 Known_LB := True;
a521dc37
EB
10786
10787 -- Similarly; deal with the case where the low bound is a
10788 -- conditional expression whose result is greater than or
10789 -- equal to the target low bound.
10790
10791 elsif Is_Cond_Expr_Ge (LB, T_LB) then
10792 LB := T_LB;
10793 Known_LB := True;
10475800
EB
10794 end if;
10795
10796 -- Likewise for the high bound
10797
10798 if Compile_Time_Known_Value (HB) then
10799 Known_HB := True;
10800
10801 elsif Ekind (Etype (HB)) = E_Signed_Integer_Subtype
10802 and then Scalar_Range (Etype (HB)) = Scalar_Range (T_Typ)
10803 then
10804 HB := T_HB;
10805 Known_HB := True;
a521dc37
EB
10806
10807 elsif Is_Cond_Expr_Le (HB, T_HB) then
10808 HB := T_HB;
10809 Known_HB := True;
10475800
EB
10810 end if;
10811 end if;
10812
869a06d9
AC
10813 -- Check for the simple cases where we can do the check at
10814 -- compile time. This is skipped if we have an access type, since
10815 -- the access value may be null.
70482933 10816
869a06d9
AC
10817 if not Do_Access and then Not_Null_Range (LB, HB) then
10818 if Known_LB then
10819 if Known_T_LB then
10820 Out_Of_Range_L := LB < T_LB;
10821 end if;
70482933 10822
869a06d9
AC
10823 if Known_T_HB and not Out_Of_Range_L then
10824 Out_Of_Range_L := T_HB < LB;
10825 end if;
70482933 10826
70482933
RK
10827 if Out_Of_Range_L then
10828 if No (Warn_Node) then
10829 Add_Check
10830 (Compile_Time_Constraint_Error
6c8e70fe 10831 (Low_Bound (Expr),
685bc70f 10832 "static value out of range of}??", T_Typ));
869a06d9 10833 Check_Added := True;
70482933
RK
10834
10835 else
10836 Add_Check
10837 (Compile_Time_Constraint_Error
10838 (Wnode,
685bc70f 10839 "static range out of bounds of}??", T_Typ));
869a06d9 10840 Check_Added := True;
70482933
RK
10841 end if;
10842 end if;
869a06d9
AC
10843 end if;
10844
d32db3a7
GD
10845 -- Flag the case of a fixed-lower-bound index where the static
10846 -- bounds are not equal.
10847
10848 if not Check_Added
10849 and then Is_Fixed_Lower_Bound_Index_Subtype (T_Typ)
0251292d
EB
10850 and then Known_LB
10851 and then Known_T_LB
d32db3a7
GD
10852 and then Expr_Value (LB) /= Expr_Value (T_LB)
10853 then
10854 Add_Check
10855 (Compile_Time_Constraint_Error
10856 ((if Present (Warn_Node)
cdfdd0de
PT
10857 then Warn_Node else Low_Bound (Expr)),
10858 "static value does not equal lower bound of}??",
d32db3a7
GD
10859 T_Typ));
10860 Check_Added := True;
10861 end if;
10862
869a06d9
AC
10863 if Known_HB then
10864 if Known_T_HB then
10865 Out_Of_Range_H := T_HB < HB;
10866 end if;
10867
10868 if Known_T_LB and not Out_Of_Range_H then
10869 Out_Of_Range_H := HB < T_LB;
10870 end if;
70482933
RK
10871
10872 if Out_Of_Range_H then
10873 if No (Warn_Node) then
10874 Add_Check
10875 (Compile_Time_Constraint_Error
6c8e70fe 10876 (High_Bound (Expr),
685bc70f 10877 "static value out of range of}??", T_Typ));
869a06d9 10878 Check_Added := True;
70482933
RK
10879
10880 else
10881 Add_Check
10882 (Compile_Time_Constraint_Error
10883 (Wnode,
685bc70f 10884 "static range out of bounds of}??", T_Typ));
869a06d9 10885 Check_Added := True;
70482933
RK
10886 end if;
10887 end if;
70482933 10888 end if;
869a06d9 10889 end if;
70482933 10890
869a06d9
AC
10891 -- Check for the case where not everything is static
10892
10893 if not Check_Added
10894 and then
10895 (Do_Access
10896 or else not Known_T_LB
10897 or else not Known_LB
10898 or else not Known_T_HB
10899 or else not Known_HB)
10900 then
70482933 10901 declare
6c8e70fe
EB
10902 LB : Node_Id := Low_Bound (Expr);
10903 HB : Node_Id := High_Bound (Expr);
70482933
RK
10904
10905 begin
675d6070
TQ
10906 -- If either bound is a discriminant and we are within the
10907 -- record declaration, it is a use of the discriminant in a
10908 -- constraint of a component, and nothing can be checked
10909 -- here. The check will be emitted within the init proc.
10910 -- Before then, the discriminal has no real meaning.
10911 -- Similarly, if the entity is a discriminal, there is no
10912 -- check to perform yet.
10913
10914 -- The same holds within a discriminated synchronized type,
10915 -- where the discriminant may constrain a component or an
10916 -- entry family.
70482933
RK
10917
10918 if Nkind (LB) = N_Identifier
c064e066 10919 and then Denotes_Discriminant (LB, True)
70482933 10920 then
c064e066
RD
10921 if Current_Scope = Scope (Entity (LB))
10922 or else Is_Concurrent_Type (Current_Scope)
10923 or else Ekind (Entity (LB)) /= E_Discriminant
10924 then
70482933
RK
10925 return Ret_Result;
10926 else
10927 LB :=
10928 New_Occurrence_Of (Discriminal (Entity (LB)), Loc);
10929 end if;
10930 end if;
10931
10932 if Nkind (HB) = N_Identifier
c064e066 10933 and then Denotes_Discriminant (HB, True)
70482933 10934 then
c064e066
RD
10935 if Current_Scope = Scope (Entity (HB))
10936 or else Is_Concurrent_Type (Current_Scope)
10937 or else Ekind (Entity (HB)) /= E_Discriminant
10938 then
70482933
RK
10939 return Ret_Result;
10940 else
10941 HB :=
10942 New_Occurrence_Of (Discriminal (Entity (HB)), Loc);
10943 end if;
10944 end if;
10945
6c8e70fe 10946 Cond := Discrete_Range_Cond (Expr, T_Typ);
70482933
RK
10947 Set_Paren_Count (Cond, 1);
10948
10949 Cond :=
10950 Make_And_Then (Loc,
10951 Left_Opnd =>
10952 Make_Op_Ge (Loc,
4c51ff88
AC
10953 Left_Opnd =>
10954 Convert_To (Base_Type (Etype (HB)),
10955 Duplicate_Subexpr_No_Checks (HB)),
10956 Right_Opnd =>
10957 Convert_To (Base_Type (Etype (LB)),
10958 Duplicate_Subexpr_No_Checks (LB))),
70482933
RK
10959 Right_Opnd => Cond);
10960 end;
70482933
RK
10961 end if;
10962 end;
10963
10964 elsif Is_Scalar_Type (S_Typ) then
10965
10966 -- This somewhat duplicates what Apply_Scalar_Range_Check does,
869a06d9
AC
10967 -- except the above simply sets a flag in the node and lets the
10968 -- check be generated based on the Etype of the expression.
70482933
RK
10969 -- Sometimes, however we want to do a dynamic check against an
10970 -- arbitrary target type, so we do that here.
10971
10972 if Ekind (Base_Type (S_Typ)) /= Ekind (Base_Type (T_Typ)) then
6c8e70fe 10973 Cond := Discrete_Expr_Cond (Expr, T_Typ);
70482933
RK
10974
10975 -- For literals, we can tell if the constraint error will be
10976 -- raised at compile time, so we never need a dynamic check, but
10977 -- if the exception will be raised, then post the usual warning,
10978 -- and replace the literal with a raise constraint error
10979 -- expression. As usual, skip this for access types
10980
6c8e70fe 10981 elsif Compile_Time_Known_Value (Expr) and then not Do_Access then
869a06d9 10982 if Is_Out_Of_Range (Expr, T_Typ) then
70482933 10983
869a06d9
AC
10984 -- Bounds of the type are static and the literal is out of
10985 -- range so output a warning message.
70482933 10986
869a06d9
AC
10987 if No (Warn_Node) then
10988 Add_Check
10989 (Compile_Time_Constraint_Error
10990 (Expr, "static value out of range of}??", T_Typ));
70482933
RK
10991
10992 else
869a06d9
AC
10993 Add_Check
10994 (Compile_Time_Constraint_Error
10995 (Wnode, "static value out of range of}??", T_Typ));
70482933 10996 end if;
869a06d9
AC
10997 else
10998 Cond := Discrete_Expr_Cond (Expr, T_Typ);
10999 end if;
70482933
RK
11000
11001 -- Here for the case of a non-static expression, we need a runtime
11002 -- check unless the source type range is guaranteed to be in the
11003 -- range of the target type.
11004
11005 else
c27f2f15 11006 if not In_Subrange_Of (S_Typ, T_Typ) then
6c8e70fe 11007 Cond := Discrete_Expr_Cond (Expr, T_Typ);
70482933
RK
11008 end if;
11009 end if;
11010 end if;
11011
11012 if Is_Array_Type (T_Typ) and then Is_Array_Type (S_Typ) then
11013 if Is_Constrained (T_Typ) then
6c8e70fe 11014 Expr_Actual := Get_Referenced_Object (Expr);
70482933
RK
11015 Exptyp := Get_Actual_Subtype (Expr_Actual);
11016
11017 if Is_Access_Type (Exptyp) then
11018 Exptyp := Designated_Type (Exptyp);
11019 end if;
11020
11021 -- String_Literal case. This needs to be handled specially be-
11022 -- cause no index types are available for string literals. The
11023 -- condition is simply:
11024
11025 -- T_Typ'Length = string-literal-length
11026
11027 if Nkind (Expr_Actual) = N_String_Literal then
11028 null;
11029
11030 -- General array case. Here we have a usable actual subtype for
11031 -- the expression, and the condition is built from the two types
11032
11033 -- T_Typ'First < Exptyp'First or else
11034 -- T_Typ'Last > Exptyp'Last or else
11035 -- T_Typ'First(1) < Exptyp'First(1) or else
11036 -- T_Typ'Last(1) > Exptyp'Last(1) or else
11037 -- ...
11038
11039 elsif Is_Constrained (Exptyp) then
11040 declare
12be130c 11041 Ndims : constant Pos := Number_Dimensions (T_Typ);
fbf5a39b 11042
70482933
RK
11043 L_Index : Node_Id;
11044 R_Index : Node_Id;
70482933
RK
11045
11046 begin
11047 L_Index := First_Index (T_Typ);
11048 R_Index := First_Index (Exptyp);
11049
11050 for Indx in 1 .. Ndims loop
11051 if not (Nkind (L_Index) = N_Raise_Constraint_Error
07fc65c4
GB
11052 or else
11053 Nkind (R_Index) = N_Raise_Constraint_Error)
70482933 11054 then
70482933
RK
11055 -- Deal with compile time length check. Note that we
11056 -- skip this in the access case, because the access
11057 -- value may be null, so we cannot know statically.
11058
11059 if not
11060 Subtypes_Statically_Match
11061 (Etype (L_Index), Etype (R_Index))
11062 then
11063 -- If the target type is constrained then we
11064 -- have to check for exact equality of bounds
11065 -- (required for qualified expressions).
11066
11067 if Is_Constrained (T_Typ) then
11068 Evolve_Or_Else
11069 (Cond,
11070 Range_Equal_E_Cond (Exptyp, T_Typ, Indx));
70482933
RK
11071 else
11072 Evolve_Or_Else
11073 (Cond, Range_E_Cond (Exptyp, T_Typ, Indx));
11074 end if;
11075 end if;
11076
11077 Next (L_Index);
11078 Next (R_Index);
70482933
RK
11079 end if;
11080 end loop;
11081 end;
11082
11083 -- Handle cases where we do not get a usable actual subtype that
11084 -- is constrained. This happens for example in the function call
11085 -- and explicit dereference cases. In these cases, we have to get
11086 -- the length or range from the expression itself, making sure we
11087 -- do not evaluate it more than once.
11088
6c8e70fe 11089 -- Here Expr is the original expression, or more properly the
70482933
RK
11090 -- result of applying Duplicate_Expr to the original tree,
11091 -- forcing the result to be a name.
11092
11093 else
11094 declare
12be130c 11095 Ndims : constant Pos := Number_Dimensions (T_Typ);
70482933
RK
11096
11097 begin
11098 -- Build the condition for the explicit dereference case
11099
11100 for Indx in 1 .. Ndims loop
11101 Evolve_Or_Else
6c8e70fe 11102 (Cond, Range_N_Cond (Expr, T_Typ, Indx));
70482933
RK
11103 end loop;
11104 end;
70482933
RK
11105 end if;
11106
62a3799f
GD
11107 -- If the context is a qualified_expression where the subtype is
11108 -- an unconstrained array subtype with fixed-lower-bound indexes,
11109 -- then consistency checks must be done between the lower bounds
11110 -- of any such indexes and the corresponding lower bounds of the
11111 -- qualified array object.
11112
11113 elsif Is_Fixed_Lower_Bound_Array_Subtype (T_Typ)
11114 and then Nkind (Parent (Expr)) = N_Qualified_Expression
11115 and then not Do_Access
11116 then
11117 declare
11118 Ndims : constant Pos := Number_Dimensions (T_Typ);
11119
11120 Qual_Index : Node_Id;
11121 Expr_Index : Node_Id;
11122
11123 begin
11124 Expr_Actual := Get_Referenced_Object (Expr);
11125 Exptyp := Get_Actual_Subtype (Expr_Actual);
11126
11127 Qual_Index := First_Index (T_Typ);
11128 Expr_Index := First_Index (Exptyp);
11129
11130 for Indx in 1 .. Ndims loop
11131 if Nkind (Expr_Index) /= N_Raise_Constraint_Error then
11132
11133 -- If this index of the qualifying array subtype has
11134 -- a fixed lower bound, then apply a check that the
11135 -- corresponding lower bound of the array expression
11136 -- is equal to it.
11137
11138 if Is_Fixed_Lower_Bound_Index_Subtype (Etype (Qual_Index))
11139 then
11140 Evolve_Or_Else
11141 (Cond,
11142 Make_Op_Ne (Loc,
11143 Left_Opnd =>
11144 Get_E_First_Or_Last
11145 (Loc, Exptyp, Indx, Name_First),
11146 Right_Opnd =>
11147 New_Copy_Tree
11148 (Type_Low_Bound (Etype (Qual_Index)))));
11149 end if;
11150
11151 Next (Qual_Index);
11152 Next (Expr_Index);
11153 end if;
11154 end loop;
11155 end;
11156
70482933 11157 else
675d6070
TQ
11158 -- For a conversion to an unconstrained array type, generate an
11159 -- Action to check that the bounds of the source value are within
11160 -- the constraints imposed by the target type (RM 4.6(38)). No
11161 -- check is needed for a conversion to an access to unconstrained
11162 -- array type, as 4.6(24.15/2) requires the designated subtypes
11163 -- of the two access types to statically match.
11164
6c8e70fe 11165 if Nkind (Parent (Expr)) = N_Type_Conversion
675d6070
TQ
11166 and then not Do_Access
11167 then
70482933
RK
11168 declare
11169 Opnd_Index : Node_Id;
11170 Targ_Index : Node_Id;
11b4899f 11171 Opnd_Range : Node_Id;
70482933
RK
11172
11173 begin
6c8e70fe 11174 Opnd_Index := First_Index (Get_Actual_Subtype (Expr));
70482933 11175 Targ_Index := First_Index (T_Typ);
11b4899f
JM
11176 while Present (Opnd_Index) loop
11177
11178 -- If the index is a range, use its bounds. If it is an
11179 -- entity (as will be the case if it is a named subtype
11180 -- or an itype created for a slice) retrieve its range.
11181
11182 if Is_Entity_Name (Opnd_Index)
11183 and then Is_Type (Entity (Opnd_Index))
11184 then
11185 Opnd_Range := Scalar_Range (Entity (Opnd_Index));
11186 else
11187 Opnd_Range := Opnd_Index;
11188 end if;
11189
11190 if Nkind (Opnd_Range) = N_Range then
c800f862
RD
11191 if Is_In_Range
11192 (Low_Bound (Opnd_Range), Etype (Targ_Index),
11193 Assume_Valid => True)
70482933
RK
11194 and then
11195 Is_In_Range
c800f862
RD
11196 (High_Bound (Opnd_Range), Etype (Targ_Index),
11197 Assume_Valid => True)
70482933
RK
11198 then
11199 null;
11200
675d6070 11201 -- If null range, no check needed
ddda9d0f 11202
fbf5a39b 11203 elsif
11b4899f 11204 Compile_Time_Known_Value (High_Bound (Opnd_Range))
fbf5a39b 11205 and then
11b4899f 11206 Compile_Time_Known_Value (Low_Bound (Opnd_Range))
fbf5a39b 11207 and then
11b4899f
JM
11208 Expr_Value (High_Bound (Opnd_Range)) <
11209 Expr_Value (Low_Bound (Opnd_Range))
fbf5a39b
AC
11210 then
11211 null;
11212
70482933 11213 elsif Is_Out_Of_Range
c800f862
RD
11214 (Low_Bound (Opnd_Range), Etype (Targ_Index),
11215 Assume_Valid => True)
70482933
RK
11216 or else
11217 Is_Out_Of_Range
c800f862
RD
11218 (High_Bound (Opnd_Range), Etype (Targ_Index),
11219 Assume_Valid => True)
70482933
RK
11220 then
11221 Add_Check
11222 (Compile_Time_Constraint_Error
685bc70f 11223 (Wnode, "value out of range of}??", T_Typ));
70482933
RK
11224
11225 else
11226 Evolve_Or_Else
11227 (Cond,
11228 Discrete_Range_Cond
11b4899f 11229 (Opnd_Range, Etype (Targ_Index)));
70482933
RK
11230 end if;
11231 end if;
11232
11233 Next_Index (Opnd_Index);
11234 Next_Index (Targ_Index);
11235 end loop;
11236 end;
11237 end if;
11238 end if;
11239 end if;
11240
11241 -- Construct the test and insert into the tree
11242
11243 if Present (Cond) then
11244 if Do_Access then
6c8e70fe 11245 Cond := Guard_Access (Cond, Loc, Expr);
70482933
RK
11246 end if;
11247
07fc65c4
GB
11248 Add_Check
11249 (Make_Raise_Constraint_Error (Loc,
10475800 11250 Condition => Cond,
af6478c8 11251 Reason => CE_Range_Check_Failed));
70482933
RK
11252 end if;
11253
11254 return Ret_Result;
70482933
RK
11255 end Selected_Range_Checks;
11256
11257 -------------------------------
11258 -- Storage_Checks_Suppressed --
11259 -------------------------------
11260
11261 function Storage_Checks_Suppressed (E : Entity_Id) return Boolean is
11262 begin
fbf5a39b
AC
11263 if Present (E) and then Checks_May_Be_Suppressed (E) then
11264 return Is_Check_Suppressed (E, Storage_Check);
11265 else
3217f71e 11266 return Scope_Suppress.Suppress (Storage_Check);
fbf5a39b 11267 end if;
70482933
RK
11268 end Storage_Checks_Suppressed;
11269
11270 ---------------------------
11271 -- Tag_Checks_Suppressed --
11272 ---------------------------
11273
11274 function Tag_Checks_Suppressed (E : Entity_Id) return Boolean is
11275 begin
b98e2969
AC
11276 if Present (E)
11277 and then Checks_May_Be_Suppressed (E)
11278 then
11279 return Is_Check_Suppressed (E, Tag_Check);
637a41a5
AC
11280 else
11281 return Scope_Suppress.Suppress (Tag_Check);
fbf5a39b 11282 end if;
70482933
RK
11283 end Tag_Checks_Suppressed;
11284
aca670a0
AC
11285 ---------------------------------------
11286 -- Validate_Alignment_Check_Warnings --
11287 ---------------------------------------
11288
11289 procedure Validate_Alignment_Check_Warnings is
11290 begin
11291 for J in Alignment_Warnings.First .. Alignment_Warnings.Last loop
11292 declare
11293 AWR : Alignment_Warnings_Record
11294 renames Alignment_Warnings.Table (J);
11295 begin
11296 if Known_Alignment (AWR.E)
2175b50b 11297 and then ((Present (AWR.A)
5c13a04e
EB
11298 and then AWR.A mod Alignment (AWR.E) = 0)
11299 or else (Present (AWR.P)
11300 and then Has_Compatible_Alignment
11301 (AWR.E, AWR.P, True) =
11302 Known_Compatible))
aca670a0
AC
11303 then
11304 Delete_Warning_And_Continuations (AWR.W);
11305 end if;
11306 end;
11307 end loop;
11308 end Validate_Alignment_Check_Warnings;
11309
c064e066
RD
11310 --------------------------
11311 -- Validity_Check_Range --
11312 --------------------------
11313
2934b84a
AC
11314 procedure Validity_Check_Range
11315 (N : Node_Id;
68dd6649 11316 Related_Id : Entity_Id := Empty) is
c064e066
RD
11317 begin
11318 if Validity_Checks_On and Validity_Check_Operands then
11319 if Nkind (N) = N_Range then
2934b84a
AC
11320 Ensure_Valid
11321 (Expr => Low_Bound (N),
11322 Related_Id => Related_Id,
11323 Is_Low_Bound => True);
11324
11325 Ensure_Valid
11326 (Expr => High_Bound (N),
11327 Related_Id => Related_Id,
11328 Is_High_Bound => True);
c064e066
RD
11329 end if;
11330 end if;
11331 end Validity_Check_Range;
11332
70482933 11333end Checks;
This page took 8.527253 seconds and 5 git commands to generate.