
Tricks of a Spec master

Michael Meissner
IBM

meissner@linux.vnet.ibm.com

Abstract

The 29 programs that make up the spec 2006 benchmark
suite are often used to compare systems performance in
the real world, but these benchmarks each have differ-
ent characteristics. In this lightning round talk, I will
cover at a high level the performance characteristics of
these benchmarks in terms of optimizations that GCC
does. For example, some benchmarks are classic float-
ing point applications and benefit from SIMD (single in-
struction multiple data) instructions, while other bench-
marks don’t.

1 Spec benchmarks

The SPEC organization has strict rules on doing runs
and reporting benchmarks, and companies often have
whole performance groups dedicated to getting the best
numbers as a means of reporting how a particular plat-
form performs compared to other platforms. Most of
the SPEC benchmarks are collections of freely available
softare at a particular point in time with a fixed work-
load.

When I joined IBM two years ago after working at
AMD, I made the observation that I was at a new com-
pany, with a different processor, but that I was running
the same benchmarks, and many of the things I noticed
at AMD were just as relevant at IBM.

This talk explores some of the characteristics that I and
other coworkers have noticed in running spec bench-
marks. I use the spec runs as a guide towards tuning the
PowerPC GCC compiler. The percentages listed in this
talk are gathered from various runs over the last year or
two, and come from various compilers. I hope it is use-
ful of things to think about when tuning GCC to run on
various real world application.

This talk is not a representation of official numbers for
IBM platforms, nor is it the offical views of the IBM
corporation.

1.1 Spec 2006 INT benchmarks

The 12 Spec 2006 integer benchmarks are:

SpecINT benchmarks
400.perlbench 401.bzip2 403.gcc
429.mcf 445.gobmk 456.hmmer
458.sjeng 462.libquantum 464.h264ref
471.omnetpp 473.astar 483.xalancbmk

1.2 Spec 2006 FP benchmarks

The 17 Spec 2006 floating point benchmarks are:

SpecFP benchmarks
410.bwaves 416.gamess 433.milc
434.zeusmp 435.gromacs 436.cactusADM
437.leslie3d 444.namd 447.dealII
450.soplex 453.povray 454.calculix
459.GemsFDTD 465.tonto 470.lbm
481.wrf 482.sphinx3

1.3 Base and peak runs

The SPEC organization classifies runs as base and
peak.

• Base runs are meant to run the entire benchmark suite
with a common set of optimization options. In addition,
there are rules that prevent profiling, and should reflect
a high degree of portability, safety, and performance.
The idea is that these would be options you would use
to build a project, but without doing extensive tweaking
of options, training runs, or other highly tuned options.

• Peak runs are no holds barred, optimize to the maxi-
mum even if it may violate language standards. You can
profile a benchmark with training runs, specify different
options for each particular benchmark, link in libraries
on a per-application basis.

• In terms of tuning the compiler, I tend to take a middle
ground, in that I generally try to use the same option
on each build, but I will use -ffast-math, -O3, and
some other options.

• I do break with the same option rule for the
400.perlbench and 433.milc benchmarks because I
use the -fno-strict-aliasing option for those
benchmarks alone. Those benchmarks do not run
in some cases without -fno-strict-aliasing.
The SPEC committee has ruled for base runs,
-fno-strict-aliasing counts as an optimiza-
tion option, and not a portability option. I don’t no-
tice the problem when doing power7 runs, but I have
noticed it in doing power6 runs. For an official result
with GCC, we would need to use the option, at least for
power6. Using -fno-strict-aliasing does hurt
performance in some benchmarks.

• When I was benchmarking GCC 4.3 based compil-
ers, I also omitted the -ftree-loop-linear op-
tion when building 464.h264ref, since the 4.3 compiler
generated an internal error. More recent compilers have
fixed this bug, so I now use the option on all builds.

• The spec numbers for each benchmark are ratios com-
pared to a run of a particular machine in 2006. If you
look at the numbers, you will see a wide swing of val-
ues, where some benchmarks have radically improved
with newer machines, while other benchmarks have less
improvement.

• SpecINT and SpecFP are each calculated as the geo-
metric mean of the benchmarks. This has the effect that
if you find a new optimization that helps a single bench-
mark, it brings up the combined value a little, but it can
be frustrating when you get a 25% gain in a benchmark
and the SpecFP number only goes up by a percent.

1.4 Current options used on power7

The options that I use change over time, but in the fall
of 2010, the options I currently use for power7 are:

• -O3

• -fpeel-loops

• -funroll-loops

• -ftree-loop-linear

• -fvect-cost-model

• -ffast-math

• -falign-functions=16

• -falign-loops=32

• -mveclibabi=mass

• -mcpu=power7

• -mrecip=rsqrt

2 Reciprocal estimate

The PowerPC architecture has several instructions that
give an estimate which can then be refined with
multiple Newton-Raphson steps to recover the accu-
racy. Newer generations of the PowerPC architecture
(power6, power7) provide higher accuracy so that only
2 steps of Newton-Raphson fixup are needed.

• FRE, FRES: Estimate 1/x for double and single preci-
sion.

• FSQRTE, FSQRTES: Estimate 1/sqrt(x) for double and
single precision.

The main function (inl1130) in the 435.gromacs
benchmark has nine occurances of the single pre-
cision 1/sqrt(x) in the inner loop. By using the
-mrecip=rsqrt option that was added in GCC 4.6,
it sped up the 435.gromacs benchmark by 25%.

The 437.leslie3d benchmark speeds up by 3% when
using the plain reciprocal estimate instructions, but
450.soplex slows down, so at present, I recommend of
optimizing just 1/sqrt(x).

The x86 computers have similar estimate instructions
for single precision (not double precision), and the GCC
compiler has optimized this for some time.

The function (inl1130) also is rather register intensive,
and the PowerPC compiler has to spill intermediate val-
ues to the stack because the compiler ran out of floating
point registers (32). One of the optimizations we are
considering in the future is to spill single precision val-
ues to the upper 32 registers available under VSX rather
than save/restore them to the stack.

3 Pow 0.75

I looked at the profile information for the 410.bwaves
benchmark, and discovered it was spending 50% of the
time in the pow function. I looked at the benchmark and
saw that the source only had two forms of pow useage:

• a**2 which the compiler optimizes into a multiply;

• a**0.75 which the compiler did not optimize.

I submited a patch that causes GCC to optimize pow
(x, 0.75) into sqrt(sqrt(x)) * sqrt(x)

when -ffast-math is used for all ports that provide
a sqrt instruction.

Benchmark Percent
410.bwaves +48%

4 Vectorized libraries

The x86 port has had the -mveclibabi=acml and
-mveclibabi=svml options for some time to use the
optimized AMD and Intel math libraries that vector-
ize various math functions under the -ffast-math
option. In 2010, I added -mveclibabi=mass op-
tion to the PowerPC port to access the MASS optimized
libraries. I measured the performance of just using the
MASS library for its faster version of the math functions,
and the effect of vectorizing the math functions under
Power7 VSX.

Currently, the compiler only optimizes calls to the ele-
mental vector elements, such as V2DF or V4SF, but the
optimized math libraries also have functions that take
two pointers and a length, and I had meant to add a pass
to GCC that would convert code like:

for (i = 0; i < n; i++)
a[i] = sin (b[i]);

into the appropriate vector calls. This should provide
more benefit since the optimized math libraries can do
the appropriate scheduling of the loads and stores.

Benchmark Library Autovect
459.GemsFDTD +8% +8%
465.tonto +73% +75%
481.wrf +64% +72%

5 Floating point multiply and add instructions

The 454.calculix benchmark benefits the most from hav-
ing the compiler automatically optimize (a * b) +
c into a fused multiply/add operations and 1.0 - (a

* b) into a fused negative multiply/subtract operation.

Benchmark Percent
454.calculix +16%

Due to a bug that we haven’t tracked down yet, we need
to wrap the atan2 library because something isn’t deal-
ing with -0.0. It occurs from the fortran line:

tt=datan2(dsqrt(1.d0-cn*cn),cn)/3.d0

I wrap the atan2 call using the options
-Wl,-wrap,atan2 and linking in the following
code with all programs:

static double zero = 0.0;

extern double __real_atan2 (double,
double);

double
__wrap_atan2 (double x,

double y)
{
return __real_atan2 (x + zero,

y + zero);
}

6 Benchmarks that are vectorized

I’ve looked at the code that is vectorized on the SPEC
2006 benchmark on the power7, which includes vector
char, short, int, float, and double operations.
I see that a lot of benchmarks generate vector code in
various places, but when I looked closer, I didn’t see that
much vector code in the hot functions. One of the func-
tions 410.bwaves has vector code in the hotspot func-
tions, but is slower than the scalar version. None of the
benchmarks have vector integer or vector single preci-
sion operations generated in hot functions. It is interest-
ing that the three benchmarks that can benefit from vec-
torized math libraries, don’t seem to have other vector-
izable code in the hot functions. It may be that so much
time is spent doing the math functions, that it swamps
the other calculations.

Benchmark Percent
410.bwaves -10%
436.cactusADM +60%
437.leslied +28%

7 Code alignment issues

One of the very frustrating issues we’ve been dealing
with when comparing two compilers, is that for a few
benchmarks, depending on exactly where the hot loop
is placed, we will see big swings in performance. Just
bumping up function and loop alignments blindly can
result in other slow downs.

Benchmark Difference
410.bwaves +/- 20%
450.soplex +/- 6%
456.hmmer +/- 12%

8 Shrinkwrapping

Shrinkwrapping is a term we use to describe functions
that have a simple test around the function, and if the test
fails, the rest of the function is not executed. If the test
involves an argument passed in a register and is often
false, and the function will needlessly save and restore
any saved registers that were used when the test is true.
On some of the PowerPC machines the processor will
stall while waiting until the store queue is emptied be-
fore it can do the loads in some cases. The place that
we noticed it was in the 453.povray benchmark in the
pov::Ray_In_Bound() function.

Benchmark Profile Elapse
453.povray +/- 3% +/- 6%

The savings in cpu time for using shrinkwap on the
pov::Ray_In_Bound() function is 3% and the to-
tal elapsed time difference is 6%. This indicates that the
cpu is spending a lot more time page faulting or idling
while doing the useless stores.

9 Benchmarks with hotspot functions

Some benchmarks concentrate most of their execution
in a few functions, while others distribute their time over
more functions. It is a lot easier to look at the hot func-
tions to optimize them rather than trying to come up
with an optimization that speeds up programs in gen-
eral. Here is a list of the benchmarks with hot functions:

Benchmark Percent # functions
470.lbm 99% 1
436.cactusADM 99% 1
456.hmmer 96% 1
462.libquantum 94% 3
437.leslie3d 93% 7
459.GemsFDTD 90% 5
410.bwaves 89% 2
401.bzip2 86% 5
473.astar 85% 3
429.mcf 85% 3
444.namd 73% 7
435.gromacs 71% 2

10 32-bit vs. 64-bit

On the PowerPC architecture, I see roughly a 10% over-
all drop in performance when I run the SpecINT bench-
mark in 64-bit mode compared to 32-bit mode. The
SpecFP benchmark is roughly 1% difference. However,
it isn’t consistant. There are benchmarks with big drops
when running in 64-bit mode compared to 32-bit mode,
but other benchmarks that are faster.

There are many different reasons for this performance
difference:

• 32-bit programs have smaller pointers and generally
have smaller stack frames and structure alignments.
This means that in general the data cache will be more
effective for 32-bit programs than for 64-bit programs.

• The ABI (application binary interface) is different for
32-bit and 64-bit programs. Depending on the system,
this can have either a positive or negative effect. For
instance, on the x86, in 64-bit mode, instructions often
times have the REX prefix set to address the registers
added in 64-bit. This makes instructions somewhat big-
ger, and makes the instruction cache less effective.

• On the other hand, 64-bit programs usually have a single
instruction to do 64-bit integer arithmetic, while 32-bit
programs have to issue multiple instructions to do 64-bit
integer arithmetic. This affects programs that use long
long types in C or INTEGER in Fortran defaulting to
64-bit.

• Many programs need 64-bit addressing these days, and
would be severaly hampered when run on a 32-bit sys-
tem. This is a case where the real world is not necessar-
ily in tune with the benchmarking world.

10.1 Benchmarks that are faster in 32-bit mode

Some of the benchmarks that are slower in 64-bit com-
pared to 32-bit are:

Benchmark Type Percent Cause
429.mcf int -31% Pointer chasing
471.omnetpp int -23% Pointer and calls
464.h264ref int -18% Pointer chasing
483.xalancbmk int -12% Calls and malloc
473.astar int -10% Pointer chasing
445.gobmk int -10% Calls
401.bzip2 int -9%
416.gamess fp -9%
450.soplex fp -9%
458.sjeng int -9%
482.sphinx3* fp -6%
444.namd fp -5%
447.dealII fp -5%
403.gcc int -5%
400.perlbench int -4%
465.tonto fp -4%

* The sphinx3 run was with a GCC 4.4 based compiler,
as it did not work correctly in GCC 4.6 when I did the
comparison.

10.2 Benchmarks that are faster in 64-bit mode

Some of the benchmarks that are faster in 64-bit com-
pared to 32-bit are:

Benchmark Type Percent Cause
462.libquantum int +4% long long
410.bwaves fp +14% fortran int
481.wrf* fp +13% fortran int
436.cactusADM fp +9% fortran int
453.povray fp +4% long long

* The wrf run was with a GCC 4.4 based compiler, as it
did not work correctly in GCC 4.6 when I did the com-
parison.

