
Advanced Tracing Features
using GDB and LTTng

GCC Summit 2010
2010-10-26

francois.chouinard@ericsson.com

marc.khouzam@ericsson.com

mailto:francois.chouinard@ericsson.commarc.khouzam@ericsson.com
mailto:francois.chouinard@ericsson.commarc.khouzam@ericsson.com

© Ericsson | GCC Summit 2010

› What is Tracing?
› The Linux Tracing Toolkit next generation (LTTng)

› User-space Tracer (UST)

› Eclipse Tracing and Monitoring Framework
– LTTng Eclipse Integration

– Perspective and Views

– Upcoming Features

› Integration with GDB Tracepoints
› Getting Eclipse to work for you in under a minute

Summary

© Ericsson | GCC Summit 2010

What is Tracing?

› Technique used to collect info to debug/monitor a system
› Often used when debuggers are too intrusive

– Real-time system
– Live system
– Race condition

› Also used for performance tuning

› Like logging but records events that:
– happen much more frequently (gigabytes of data collected)

– can be at a much lower level (system calls, scheduling, interrupts)

› Requires efficient visualization tool to make sense of the vast
amount of data collected

© Ericsson | GCC Summit 2010

Interest in Tracing

› The interest in tracing is growing tremendously.
› Involvement from such companies :

– Google
– QNX
– CodeSourcery
– FreeScale
– MentorGraphics
– Texas Instrument
– Red Hat
– WindRiver
– Ericsson
– etc...

© Ericsson | GCC Summit 2010

Linux Tracing Toolkit

› Open-source project (http://www.lltng.org)
› Aims at producing a highly efficient full system tracing solution

› Composed of several components
– Kernel tracing
– User-space tracing
– Trace viewer
– Trace streaming

› Partially already included in the Linux Kernel

© Ericsson | GCC Summit 2010

Linux Tracing Toolkit

› Highly optimized static tracepoints
› Highly compact binary trace format

› Efficient probes which do not use traps or system calls

› Almost zero performance impact with instrumentation points
disabled

› Active instrumentation points have low performance impact
› Zero copy from event generation to disk write
› ...

© Ericsson | GCC Summit 2010

User-Space Tracer (UST)

› Static tracepoints for user-space
› Port of the LTTng kernel tracer to user-space

› Like LTTng performance is the main goal
– Tracing does not require system calls or traps

› Tracepoints may be added in any user-space code
– Multi-threaded applications

– signal handlers

– libraries

› Programs must be compiled with libust (-lust)

© Ericsson | GCC Summit 2010

User-Space Tracer (UST)

› Example of Marker in servers/slapd/search.c

› Command: ldapsearch -b “dc=rlnx,dc=com”
› Marker output: { “DN” = “dc=rlnx,dc=com” }

› Can be controlled and used by GDB for static tracing

© Ericsson | GCC Summit 2010

Trace visualization

› Originally, making use of LTTng with LTTv

› Integration of many different tools in Eclipse makes Eclipse
a better fit

› Focus is now on the new LTTng integration in Eclipse

© Ericsson | GCC Summit 2010

TargetHost

Eclipse

Shell cmd

LTTng

RSE/TCF

TMF

C/C++
App

Java App Whatever

Kernel Space

TCF
Agent

lttd lttctl

Patched
Kernel

libust libust libust

libustd

libustlibust

libustctl

Local FS

C adapterC adapter

LTTng Eclipse Integration

© Ericsson | GCC Summit 2010

TMF

ControlFlow
View

Resources
View

Statistics
View

Kernel State
System

Events
View

Histogram
View

Trace
Parsing

Lib

Experiment/
Traceset

Trace nTrace 1
Project

View

Some other
Analysis Tool

Some other
View

JN
I

LTTng Eclipse Architecture

© Ericsson | GCC Summit 2010

LTTng Perspective

© Ericsson | GCC Summit 2010

LTTng – Project View

› Projects are used to group
traces that you wish to
correlate

› Experiments are specific
correlations between
selected trace files

› Traces are all trace files
currently included in the
project

© Ericsson | GCC Summit 2010

LTTng – Events View

› 'Raw' merged events in chronological order

› Synchronized on timestamp with other views
› Upcoming feature:

– Event filtering on time range, event type, field value (e.g. pid), …
– Individual trace tabs

© Ericsson | GCC Summit 2010

› Event distribution over full traceset and selected window

› Controls to modify current event and event window

› Synchronized on current window and current event

› Upcoming feature:
– Zooming the selected window using the mouse

LTTng – Histogram View

© Ericsson | GCC Summit 2010

› Displays processes states (color-coded) over time

› State 'tooltips‘ through hovering

› Zooming and filtering

› Quick navigation between processes, states

› Upcoming features :

– Color legend

– Configurable color scheme

LTTng – Control Flow View

© Ericsson | GCC Summit 2010

› Displays system resource states (color-coded) over time
› State 'tooltips'
› Zooming and filtering
› Quick navigation between resources, states

› Upcoming features :
– Color legend
– Configurable color scheme

LTTng – Resources View

© Ericsson | GCC Summit 2010

› Displays basic CPU usage statistics

› Upcoming feature:
– Make the view generic (decoupled from the kernel events structure)

LTTng – Statistics View

© Ericsson | GCC Summit 2010

› General
– Tracing tool control
– Trace streaming
– Correlation of heterogeneous traces
– User Space Tracing
– Source lookup
– Performance tuning

› Analyses
– Time correction (traces synchronization)

› Multi-core, multi-level, multi-node
– Timing dependencies (processes interactions e.g. startup time)
– Pattern matching (security e.g. intrusion detection)

LTTng – Upcoming Features

© Ericsson | GCC Summit 2010

Integration with GDB Tracepoints

› GDB Tracepoints are currently visualized through the
debugger views

› Current work to use TMF/LTTng views with GDB Tracepoints
– Histogram view
– Events view

› Other discussed visualizations such as :
– Variable variation over time

© Ericsson | GCC Summit 2010

LTTng Eclipse Project (http://www.eclipse.org/linuxtools/projectPages/lttng)

LTTng Eclipse Wiki (http://wiki.eclipse.org/Linux_Tools_Project/LTTng)

Linux Tools (http://www.eclipse.org/linuxtools/index.php)

Update Site (http://download.eclipse.org/technology/linuxtools/update)

LTTng Project (http://lttng.org)

Tracing Wiki (http://lttng.org/tracingwiki/index.php/TracingBook)

LTTng – Pointers

http://www.eclipse.org/linuxtools/projectPages/lttng
http://wiki.eclipse.org/Linux_Tools_Project/LTTng
http://www.eclipse.org/linuxtools/index.php
http://lttng.org/
http://lttng.org/tracingwiki/index.php/TracingBook

© Ericsson | GCC Summit 2010

Getting Eclipse to work for you in under a
minute

1.Downloading Eclipse Linux Package:
• http://eclipse.org/downloads
• Choose: “Eclipse IDE for C/C++ Linux Developers”

2.Extract it: tar xf <packageFile>

3.Run it: cd <packageDir> ; ./eclipse

4.Create a (dummy) C/C++ project: “Hello World” is fine

5.Start debugging... GDB... GCC... etc...

http://eclipse.org/downloads

© Ericsson | GCC Summit 2010

Questions?

© Ericsson | GCC Summit 2010

	Eclipse Tracing Tracing Mini-Summit LinuxCon 2010 2010-08-09
	Slide 2
	LTTng – Introduction
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	LTTng Eclipse Integration
	LTTng Eclipse Architecture
	LTTng Perspective
	LTTng – Project View
	LTTng – Events View
	LTTng – Histogram View
	LTTng – Control Flow View
	LTTng – Resources View
	LTTng – Statistics View
	LTTng – Upcoming Features
	Slide 20
	LTTng – Pointers
	Slide 22
	Questions?
	Slide 24

