
GNU UPC

GNU Tools Cauldron 2013

July, 2013 Intrepid Technology, Inc.
www.intrepid.com

1

Presenter:
Gary Funck <gary@intrepid.com>

UPC

• Unified Parallel C
• Finalized specification (1.0) in 2001
• Unified features found in previous projects (AC,

Split-C, PCP)
• Extends ISO C 99 to add explicit parallel language

features
• UPC Language Specification v1.2, dated March 2005
• UPC Language Specification v1.3, in progress

 http://code.google.com/p/upc-specification/

July, 2013 Intrepid Technology, Inc.
www.intrepid.com

2

http://code.google.com/p/upc-specification

GNU UPC
• First release in year 2000 for SGI IRIX 6.5 was based on

GCC 2.9.5.
• Extended earlier 2.7.2 version implemented for Cray T3-E
• Supported architectures: x86_64, x86, PPC/POWER7,

IA64, MIPS
• Supported platforms: Linux, Cray XT3/4/5/6, SGI Altix
• GDB support for SMP based runtime only on x86, x86_64

Linux

July, 2013 Intrepid Technology, Inc.
www.intrepid.com

3

GNU UPC @ gccupc.org

July, 2013 Intrepid Technology, Inc.
www.intrepid.com

4

http://www.gccupc.org/

http://www.gccupc.org/

GNU UPC @ gnu.org

July, 2013 Intrepid Technology, Inc.
www.intrepid.com

5

http://gcc.gnu.org/projects/gupc.html

http://gcc.gnu.org/projects/gupc.html

UPC Language

July, 2013 Intrepid Technology, Inc.
www.intrepid.com

6

UPC Global Shared Memory
• A collection of threads operating in a single global

address space
• Address space is logically partitioned among threads
• Each thread has affinity with a portion of the globally

shared address space
• Each UPC thread is usually a separate Unix process

July, 2013 Intrepid Technology, Inc.
www.intrepid.com

7

UPC Programing Model

July, 2013 Intrepid Technology, Inc.
www.intrepid.com

8

Shared Memory Access
via UPC Pointer-to-Shared

July, 2013 Intrepid Technology, Inc.
www.intrepid.com

9

UPC Shared Declarations

• Declared as “shared” qualified
shared int i;
 Integer allocated on Thread 0.

shared int A[THREADS];
 Shared array. Integer allocated on each thread.

shared [2] int B[THREADS];
 Shared array with a layout qualifier.
 B[0] and B[1] allocated on Thread 0.

shared int *p;
 Pointer to a shared object. Storage for pointer is
 in local/private address space.

July, 2013 Intrepid Technology, Inc.
www.intrepid.com

10

UPC Shared Data Layout

July, 2013 Intrepid Technology, Inc.
www.intrepid.com

11

UPC Memory Model

• Relaxed memory accesses
relaxed shared int i;

• Strict memory accesses
strict shared int i;

• Default memory model: relaxed
• Change memory model with pragmas

– #pragma upc strict

– #pragma upc relaxed

July, 2013 Intrepid Technology, Inc.
www.intrepid.com

12

UPC Memory Consistency

• Relaxed accesses may appear to be arbitrarily
reordered relative to program order unless:
– access is to the same location and at least one of

them is a write
• Strict accesses must

– appear in program order with respect to other
strict accesses

– appear after all relaxed accesses complete
– complete before any relaxed access

July, 2013 Intrepid Technology, Inc.

www.intrepid.com
13

UPC Example:
Parallel Sum

 shared int A[100*THREADS];
 shared int tsum[THREADS];
 int i, sum = 0;
 for (i = MYTHREAD; i < 100*THREADS; i += THREADS)
 A[i] = i + 1;
 upc_barrier;
 for (i = MYTHREAD; i < 100*THREADS; i += THREADS)
 sum += A[i];
 tsum[MYTHREAD] = sum;
 upc_barrier;
 if (MYTHREAD == 0)
 {
 /* sum up each thread’s partial sum */
 for (i = 1; i < THREADS; ++i)
 sum += tsum[i];
 printf ("Sum = %d\n", sum);
 }

July, 2013 Intrepid Technology, Inc.
www.intrepid.com

14

UPC Pointer-to-shared
Arithmetic

July, 2013 Intrepid Technology, Inc.
www.intrepid.com

15

shared [B] int *p1, *p2;
int i;
p2 = p1 + i;

a = (i < 0) ? 1 : 0;

ph_tmp = p1.phase - a * (B - 1);

th_tmp = p1.thread - a * (THREADS - 1);

p2.phase = (ph_tmp + i) % B + a * (B - 1);

p2.thread = (th_tmp + (ph_tmp + i) / B) % THREADS +
 a * (THREADS - 1);

block_incr = (th_tmp + (ph_tmp + i) / B) / THREADS;

elem_incr = (p2.phase – p1.phase) + B * block_incr;

p2.addr = p1.addr + elem_incr * upc_elemsizeof(*p1);

Equivalent “C” logic

UPC Cast to Local Address

int *P1;
shared int *S1;
P1 = (int *) S1; /* allowed if upc_threadof(S1) == MYTHREAD */

Bytes with affinity to a given thread containing
shared objects can be accessed by either pointers-
to-shared or pointers-to-local of that thread.

July, 2013 Intrepid Technology, Inc.
www.intrepid.com

16

UPC Synchornization
Statements

• Collective operations
• Each thread executes an alternating sequence of

upc_notify and upc_wait statements

July, 2013 Intrepid Technology, Inc.
www.intrepid.com

17

upc_notify expressionopt Notify on exiting synchronization
phase

upc_wait expressionopt End of the synchronization phase

upc_barrier expressionopt

Equivalent to
upc_notify expressionopt
upc_wait expressionopt

upc_fence All shared accesses must
complete

UPC Iteration Statement

upc_forall (expressionopt;
expressionopt; expressionopt;

affinityopt) statement

• Collective operation
• The affinity field specifies the executions of

the loop body which are to be performed by a
thread

July, 2013 Intrepid Technology, Inc.
www.intrepid.com

18

GNU UPC

July, 2013 Intrepid Technology, Inc.
www.intrepid.com

19

GNU UPC
• UPC 1.2 specification compliant
• UPC 1.3 specification will be finalized soon.

Most version 1.3 support is implemented.
• Current released version is based on GCC 4.8
• GNU UPC is available in the GUPC branch

of the GCC svn repository
• The current differences between the GUPC branch

and the main GCC trunk are detailed at
http://www.gccupc.org/gupc-changes

July, 2013 Intrepid Technology, Inc.
www.intrepid.com

20

http://www.gwu.edu/~upc/docs/upc_specs_1.2.pdf
https://code.google.com/p/upc-specification/
http://gcc.gnu.org/svn/gcc/branches/gupc/
http://www.gccupc.org/gupc-changes

GNU UPC Runtime Library
• The UPC runtime makes extensive use of inlining to

improve performance
• Built-in runtime support for symmetric multiprocessor

(SMP) systems (libgupc/smp)
• Built-in runtime support for multi-node systems with

Infiniband interconnects supporting the Portals4 library
(libgupc/portals4). Requires Portals4 reference
implementation (http://code.google.com/p/portals4/).

• Additional multi-node and high speed interconnect
support provided by linking with the Berkeley UPC run-
time

July, 2013 Intrepid Technology, Inc.
www.intrepid.com

21

http://www.cs.sandia.gov/Portals/portals4.html
http://code.google.com/p/portals4/
http://www.gccupc.org/gnu-upc-info/gnu-upc-with-berkeley-upcr-runtime
http://www.gccupc.org/gnu-upc-info/gnu-upc-with-berkeley-upcr-runtime

GNU UPC
PTS Representation

Thread Phase Address

July, 2013 Intrepid Technology, Inc.
www.intrepid.com

22

Representation Size
(in bits)

Thread Phase Address

Packed 64 10 20 34

Struct 128 32 32 64

GNU UPC
Shared Access API

• UPC runtime calls are generated by GNU UPC to
implement access to UPC shared memory locations

• Type-specific access routines
– Relaxed Get:
u_intSI_t __getsi2 (upcr_shared_ptr_t src);

– Relaxed Put:
void __putsi2 (upcr_shared_ptr_t dest, u_intSI_t v);

– Strict Get:
u_intSI_t __getssi2 (upcr_shared_ptr_t src);

– Strict Put:
void __putssi2 (upcr_shared_ptr_t dest, u_intSI_t v);

July, 2013 Intrepid Technology, Inc.
www.intrepid.com

23

GNU UPC Runtime Calls - Put
 shared int A[100*THREADS];
 int i, sum = 0;
 /* each thread fills in its contribution. */
 for (i = MYTHREAD; i < 100*THREADS; i += THREADS)
 A[i] = i + 1;
 upc_barrier;

July, 2013 Intrepid Technology, Inc.
www.intrepid.com

24

 shared int A[100*THREADS];
 int i, sum = 0;
 /* each thread fills in its contribution. */
 for (i = MYTHREAD; i < 100*THREADS; i += THREADS)
 {
 __putsi2(&A[i], i + 1);
 }
 __upc_barrier(ANON_BARRIER_ID);

GNU UPC Runtime Calls - Get
if (MYTHREAD == 0)
 {
 /* serialized sum on thread 0. Here, thread 0
 accesses the data on all threads. */
 for (i = 0; i < 100*THREADS; ++i)
 sum += A[i];
 printf ("Sum = %d\n", sum);
 }

July, 2013 Intrepid Technology, Inc.
www.intrepid.com

25

 if (MYTHREAD == 0)
 {

 for (i = 0; i < 100*THREADS; ++i)

 sum += __getsi2(&A[i]);
 printf ("Sum = %d\n", sum);

 }

GNU UPC
Control Flow

GCC Front-End
• Parses UPC shared, strict, relaxed, and layout (blocksize)

qualifiers
• Parses UPC statements (e. g. upc_forall, upc_barrier)
• Implements UPC semantic checks

GNU UPC Lowering Pass (upc_genericize.c)
• Rewrites UPC-specific tree nodes into SIMPLE. For

example, translates UPC shared references to get and put
runtime calls.

• Generates initialization code when shared address
expressions are used in static initializers.

July, 2013 Intrepid Technology, Inc.
www.intrepid.com

26

GNU UPC
GCC Language Hooks

LANG_HOOKS_NAME "GNU UPC"

LANG_HOOKS_EXPAND_CONSTANT Convert constant expressions involving UPC pointers-to-
shared into equivalent “C” representation

LANG_HOOKS_GET_ALIAS_SET Handle aliasing for references to UPC shared objects

LANG_HOOKS_GENERICIZE New: UPC lowering pass

LANG_HOOKS_HANDLE_OPTION Handle UPC-specific options

LANG_HOOKS_INIT Initialize UPC-specific processing

LANG_HOOKS_FINISH Finalize UPC-specific processing

LANG_HOOKS_INITIALIZE_DIAGNOSTICS Initialize UPC-specific diagnostics

LANG_HOOKS_INIT_OPTIONS Initialize UPC-specific options processing

LANG_HOOKS_POST_OPTIONS Finalize UPC-specific options processing

LANG_HOOKS_TYPES_COMPATIBLE_P Check compatibility for UPC shared objects and
references to those objects

LANG_HOOKS_INIT_TS Register UPC-specific “tree contains struct” tree nodes

July, 2013 Intrepid Technology, Inc.
www.intrepid.com

27

GNU UPC
Key gcc/upc/ Source Files

config-lang.in UPC-specific configure processing

gupcspec.c UPC command line driver

gupc.texi UPC documentation

Make-lang.in UPC-specific make rules

upc-act.c UPC-related actions: supports both the front-end and lowering pass

upc-gasp.c UPC-specific performance-related instrumentation

upc-genericize.c UPC lowering pass (rewrites UPC constructs into “C” constructs)

upc-lang.c UPC-specific language hooks

upc-pts-packed.c UPC “packed” pointer-to-shared representation manipulation

upc-pts-struct.c UPC “struct” pointer-to-shared representation manipulation

upc-tree.def UPC-specific tree node definitions

July, 2013 Intrepid Technology, Inc.
www.intrepid.com

28

GNU UPC
GCC Tree Node Extensions

 union {

 /* The bits in the following
structure should only be used with

 accessor macros that
constrain inputs with tree checking.
*/

 struct {

 [...]

 unsigned unsigned_flag : 1;

 unsigned packed_flag : 1;

 unsigned user_align : 1;

 unsigned nameless_flag : 1;

 unsigned upc_shared_flag : 1;
 unsigned upc_strict_flag : 1;
 unsigned upc_relaxed_flag : 1;
 [...]

 unsigned address_space : 8;

 } bits;

/* Non-zero if the UPC blocking factor is 0.
*/

#define TYPE_HAS_BLOCK_FACTOR_0(TYPE)
TYPE_LANG_FLAG_4 (TYPE)

/* Non-zero if the UPC blocking factor is
greater than 1.

 In this case, the blocking factor value
is stored in a hash table. */

#define TYPE_HAS_BLOCK_FACTOR_X(TYPE)
TYPE_LANG_FLAG_5 (TYPE)

/* Non-zero if the UPC blocking factor is
not equal to 1 (the default). */

#define TYPE_HAS_BLOCK_FACTOR(TYPE) \

 (TYPE_SHARED(TYPE) \

 && (TYPE_HAS_BLOCK_FACTOR_0 (TYPE) \

 || TYPE_HAS_BLOCK_FACTOR_X (TYPE)))

extern void upc_block_factor_insert (tree,
tree);

extern tree upc_block_factor_lookup
(const_tree);

July, 2013 Intrepid Technology, Inc.
www.intrepid.com

29

GNU UPC
Technical Issues

• Can GNU UPC be incorporated into GCC
without the need to build it as a separate
language front end?

• Can SIMPLE (and GIMPLE) be extended to
include UPC pointers-to-shared (ie, “fat
pointers” used by GNU UPC)?

• Can/should GNU UPC be changed such that
it does not depend upon separate linker
sections?

July, 2013 Intrepid Technology, Inc.
www.intrepid.com

30

	GNU UPC�
	UPC
	GNU UPC
	GNU UPC @ gccupc.org
	GNU UPC @ gnu.org
	Slide Number 6
	UPC Global Shared Memory
	UPC Programing Model
	Shared Memory Access�via UPC Pointer-to-Shared
	UPC Shared Declarations
	UPC Shared Data Layout
	UPC Memory Model
	UPC Memory Consistency
	UPC Example:�Parallel Sum
	UPC Pointer-to-shared Arithmetic
	UPC Cast to Local Address
	UPC Synchornization Statements
	UPC Iteration Statement
	Slide Number 19
	GNU UPC
	GNU UPC Runtime Library
	GNU UPC�PTS Representation
	GNU UPC�Shared Access API
	GNU UPC Runtime Calls - Put
	GNU UPC Runtime Calls - Get
	GNU UPC�Control Flow
	GNU UPC�GCC Language Hooks
	GNU UPC�Key gcc/upc/ Source Files
	GNU UPC�GCC Tree Node Extensions
	GNU UPC�Technical Issues

