Straight-Line Strength Reduction in GCC

Bill Schmidt, Ph.D.
PowerLinux Toolchain Team
IBM Linux Technology Center
Motivation

- Why a talk on strength reduction?
 - Missing piece in GCC, other than induction variables
 - Several bug reports lamenting lack of strength reduction in blocks
 - Surprisingly interesting topic (at least to me)

- Ongoing project
 - New pass added a couple of weeks ago
 - Only handles simplest forms so far
 - Rest has been prototyped
 - Input welcome!
Motivation: Examples from Bugzilla (PR22586, 2005)

```c
int foo (int a[], int b[], int i) {
    a[i] = b[i] + 2; i++;
    return i;
}
```

```c
D.2001_2 = (long unsigned int) i_1(D);
D.2002_3 = D.2001_2 * 4;
D.2003_5 = a_4(D) + D.2002_3;
D.2004_7 = b_6(D) + D.2002_3;
D.2005_8 = *D.2004_7;
D.2006_9 = D.2005_8 + 2;
*D.2003_5 = D.2006_9;
```

```c
i_10 = i_1(D) + 1;
D.2001_11 = (long unsigned int) i_10;
D.2002_12 = D.2001_11 * 4;
D.2003_13 = a_4(D) + D.2002_12;
D.2004_14 = b_6(D) + D.2002_12;
D.2005_15 = *D.2004_14;
D.2006_16 = D.2005_15 + 2;
*D.2003_13 = D.2006_16;
```

```c
i_17 = i_1(D) + 2;
D.2001_18 = (long unsigned int) i_17;
D.2002_19 = D.2001_18 * 4;
D.2003_20 = a_4(D) + D.2002_19;
D.2004_21 = b_6(D) + D.2002_19;
D.2005_22 = *D.2004_21;
D.2006_23 = D.2005_22 + 2;
*D.2003_20 = D.2006_23;
```

```c
i_24 = i_1(D) + 3;
...
Motivation: Examples from Bugzilla (PR32120, 2007)

```c
int f(int a)
{
 int c = a + 2;
 int d = c * 2;
 int e = a * 2;
 int f = e + 4;
 return d == f;
}
```

```c
int c_2 = a_1(D) + 2;
int d_3 = c_2 * 2;
int e_4 = a_1(D) * 2;
int f_5 = e_4 + 4;
D.2005_6 = d_3 == f_5;
D.2004_7 = (int) D.2005_6;
return D.2004_7;
```

No optimization at all...
Motivation: Examples from Bugzilla (PR46556, 2010)

```c
struct x
{
 int a[16];
 int b[16];
 int c[16];
};

extern void foo (int, int, int);

void
f (struct x *p, unsigned int n)
{
 foo (p->a[n], p->c[n], p->b[n]);
}
```
Why develop a separate pass?

- **Common practice:** strength reduction as part of PRE
  - Make use of existing value numbering

- **Disadvantages**
  - Lookup problem
  - Advantageous to view chains of related candidates together
  - Strength reduction needs special handling for casts
  - PRE insertion is complex
The value number lookup problem

One form of strength reduction candidate:

\[ S1: \quad X = (B + i) \times S \]

B = base variable, i = constant index, S = stride (assume constant for now)

Need a previous statement of the form:

\[ S0: \quad Y = (B + i') \times S \]

i' = possibly different constant index

Can replace S1 with:

\[ S1': \quad X = Y + c, \quad c = (i - i') \times S \]

**Problem**: Any arbitrary value of i' will do. What avail expr should we look up?

Common case: \((B + (i - 1)) \times S\)

but very limited results.
Kinds of strength reduction opportunities

- Opportunities where multiplies are explicit in GIMPLE
  - Stride is a known constant value
  - Stride is an unknown, but still constant, value

- Implicit multiplies in addressing expressions
  - Recall the case of multiple array fields in a structure

- Conditional increments
  - Variant of both forms of explicit multiplies
  - From PR35308:
    
    ```c
 a[i] = i*g;
 if (.....)
 i++;
 a[i] += ...
 ...
 ... = i*g;
    ```
Goals of this work

- Single framework flexible enough to handle all these types
  - Common features of all abstracted into the candidate table
- Don't disturb existing strength reduction of ivars
  - Late pass following loop optimizations
- Efficiency
  - Single forward pass over GIMPLE representation
- Profitability
  - Use cost model that reflects target
- Efficacy
  - As many candidates as possible (dominator paths)
  - Catch opportunities exposed by earlier transformations
Background concepts

- **Basic block**: maximal chunk of branch-free code (in or out)
- **Control flow graph**: Blocks connected by possible execution paths
- **Dominance**: Block A *dominates* block B iff executing block B implies that block A has already been executed at least once.
  - Dominance relation is a tree; *immediate dominator* is immediate predecessor in this tree.
- **Static Single Assignment (SSA) form**:
  - Each “name” is assigned to exactly once ($X \mapsto X_1, X_2, \ldots$)
  - Join points handled specially (more later)
  - Greatly simplifies available expressions over dominator paths
Candidate table

- Central data structure for the pass
  - Essentially a specialized kind of value numbering

- Four kinds of candidates
  - CAND_MULT: Value of the form \((B + i) \times S\)
  - CAND_ADD: Value of the form \(B + (i \times S)\)
  - CAND_REF: For implicit multiplies in addressing expressions
  - CAND_PHI: For conditional candidates

- All use \(B = \text{base}, i = \text{index}, S = \text{stride (known or unknown)}\)

- Type: For when casts intervene

- Basis: A previous candidate allowing strength reduction

- Dependent: Later candidate for which this is a basis

- Sibling: Candidate having the same basis
Explicit multiplies

- For CAND_MULT we seek:
  - S0: $Y = (B + i') * S$
  - S1: $X = (B + i) * S$

- So we can replace S1 by:
  - S1': $X = Y + (i - i') * S$ (folded to extent possible)

- For CAND_ADD:
  - S0: $Y = B + (i' * S)$
  - S1: $X = B + (i * S)$

- So we can replace S1 by:
  - S1': $X = Y + (i - i') * S$ (ah, the same thing!)

- In both cases, S0 is the basis for S1 (and S1 is a dependent of S0).
- We call $(i - i')$ the increment of S1 with respect to its basis S0.
Constructing the candidate table

- Statements are visited in dominance order
- Any statement that can contribute to a CAND_MULT or CAND_ADD gets at least one entry
  - Add, ptr add, subtract, multiply, negate, copy, type conversion
- Multiple interpretations per statement
  - Separate entries, chained together
  - Add of two SSA names: either could be the base
  - Multiply of two SSA names: either could be the base or stride
  - Copy or conversion:
    - CAND_MULT: \( X = (B + 0) \times 1 \)
    - CAND_ADD: \( X = B + (0 \times 1) \)
- Potential dead-code savings identified
Constructing the candidate table (cont.)

- Algebraic rules propagate values forward to produce more complex candidates.
  - Suppose we encounter \( X = Y \times c \).
  - We find \( Y \) represented in the candidate table by:
    - \( Y = (B + i') \times S \), \( S \) constant
  - We can add this representation of \( X \) to the table:
    - \( X = (B + i') \times (c \times S)_{\text{fold}} \)

- Or an “undistribution” example:
  - \( X = Y \times c \)
  - \( Y = (B + i') \times S \), \( S \) constant, \( c = kS \) for integer \( k \)
  - \( \Rightarrow X = (B + (i' + k)_{\text{fold}}) \times S \)
Finding a basis

- Maintain mapping from base names to chains of candidates
  - I.e., “B” in all our examples

- Basis must satisfy these properties:
  - Same kind (CAND_MULT, etc.)
  - Same base name B and stride S
  - Compatible types (see slide 3)
  - Dominates the candidate

- More than one basis may exist
  - For now, most immediately dominating basis is chosen
  - Limits introduced lifetimes
    - But subsequent optimizations often defeat this :(  
  - Other bases can be found transitively
Profitability: The easy cases

- Trees of related candidates are considered together.
- Recall these all have same base B and stride S.
- Known stride == always profitable (well, not unprofitable)
  - CAND_ADD doesn't apply: $B + (i \times S)^\text{fold}$ is already simplified
  - CAND_MULT:
    
    \[
    \begin{align*}
    M &= B + i'; \\
    Y &= M \times S; \\
    N &= B + i; \\
    X &= N \times S;
    \end{align*}
    \]
    
    where $c = (i - i') \times S$.

- When S is unknown, we are still ok if the increment $(i - i')$ is -1, 0, or 1.
Profitability: Unknown strides with nontrivial increments

- Increment = (i – i'). Assume | i – i' | > 1.
- Candidate will be replaced with B + ((i – i')^{fold} * S).
  - The second addend may not yet exist, in which case it must be inserted (“initializer”).
  - Without savings from dead code, this can worsen performance.
  - If same initializer is needed by several related candidates, the cost is reduced.

- Table of increments created for chain of related candidates
  - Each increment checked for total profitability (cost of inserting initializer, dead code savings, replacement savings)
  - All-or-nothing decision for related candidates with same increment
  - Initializer inserted at nearest common dominator position
Measures of profitability

- Optimizing for size
  - Cost function is the delta of the size of instructions
  - Total over all candidates with same increment

- Optimizing for speed
  - Cost function is target-specific model of execution time
  - Must improve performance along at least one path
  - More conservative requirement: must improve performance along all paths

- Problem: size/speed is a per-block decision
  - For now: Block containing ultimate basis determines which
Limitations of increment model

- Current prototype uses model just described
- More involved analysis can provide improvements
  - Increment for each candidate is determined by its chosen basis
  - Chains of related candidates enable multiple choices for potential increments (choose different basis)
  - Best would be to search all potential increment spaces for a group of related candidates and choose most profitable
- Target capabilities change profitability
  - Targets having a shift-add instruction should be biased towards power-of-2 increments (thanks to Richard Earnshaw)
More on SSA form: PHI statements

\[ X_1 = A_5 + 8; \]

\[ X_2 = B_8 - 16; \]

\[ X_3 = \text{PHI} < X_1, X_2 > \]

\[ \ldots = X_3 \]
Conditional candidates

\[ X_0 = \ldots ; \]
\[ A_4 = X_0 \times 5; \quad \text{(MULT B:} X_0, \text{ i:0, S:5)} \]
if ( \ldots )
\[ X_1 = X_0 + 1; \quad \text{(ADD B:} X_0, \text{ i:1, S:1)} \]
\[ X_2 = \text{PHI } < X_0, X_1 >; \quad \text{(PHI B:} X_0, \text{ i:0, S:1)} \]
\[ X_3 = X_2 + 1; \quad \text{(ADD B:} X_2, \text{ i:1, S:1)} \]
\[ A_5 = X_3 \times 5; \quad \text{(MULT B:} X_2, \text{ i:1, S:5)} \]

\[ X_0 = \ldots ; \]
\[ A_4 = X_0 \times 5; \]
if ( \ldots ) {
  \[ X_1 = X_0 + 1; \]
  \[ T_6 = A_4 + 5; \]
}
\[ X_2 = \text{PHI } < X_0, X_1 >; \]
\[ T_7 = \text{PHI } < A_4, T_6 >; \]
\[ X_3 = X_2 + 1; \]
\[ A_5 = T_7 + 5; \]

Note: \( A_5 \) can't use \( A_4 \) as a basis with our current definitions, as they don't have the same base name. We will call it a “hidden basis.”

- Base name of CAND_MULT \( A_5 \) is defined by a PHI
- That PHI's arguments have the same “derived base name”:
  - Argument is a CAND_ADD with stride 1 => base name
  - Otherwise, argument itself
Conditional candidate transformations

- When a PHI is encountered while building the candidate table, determine if it has a derived base name B.
  - If so, add CAND_PHI (B, 0, 1) to the table.
- During transformation phase:
  - Find the hidden basis as per previous slide.
    - Strides must still be identical.
  - Introduce a new PHI in the same block with the feeding PHI.
    - “Phi basis.”
  - Translate argument from feeding PHI to argument for phi basis.
    - Argument is a CAND_ADD (B, i, 1) => create an add of hidden basis with i * S.
    - Argument is the derived base name => copy the hidden basis.
  - Replace CAND_MULT with an add relative to the phi basis.
Profitability for conditional candidates

- Conditional candidates with known strides are no longer always profitable to replace.
  - Cost of compensation code can offset gains if not enough code goes dead.

- Conditional candidates with unknown strides are considered together with their foregoing related candidates.
  - But a phi breaks the chain, so subsequent candidates are now based off the candidate that had a hidden basis.
    - So phis are at the frontier of the candidate tree.
  - Increment analysis proceeds as before, but a phi is only replaced if every increment needed for an argument is profitable to replace.
Implicit multiplies in addressing expressions

- Recall the code from PR46556 (slide 5):

```c
struct x { int a[16]; int b[16]; int c[16]; };

void f (struct x *p, unsigned int n) {
 foo (p->a[n], p->c[n], p->b[n]);
}
```
Implicit multiplies in addressing expressions

- \( p->a[n] = *(p + offsetof(a) + (n * sizeof(int))) \)
- General form: \( *(T1 + C1 + (T2 + C2) * C3 + C4) \)
  - \( T1, T2 \): arbitrary trees
  - \( C1, C2, C3, C4 \): arbitrary constants
- We want to distribute the multiply and replace the original reference by:
  - \( *(T1 + (T2 * C3), (C1 + (C2 * C3) + C4)_{\text{fold}}) \)
- This moves the \([n]\) into the base address calculation so similar expressions differ only in the offset.
  - \( p->a[n].x \) and \( p->b[n+4].y \) would differ only in offset
- But only make the transformation if it's profitable.
Reference candidates

- When a component reference expression is encountered in GIMPLE, use `get_inner_reference` to look for pattern:
  - `base = *(T1 + C1)`, `C1` may be zero
  - `offset = (T2 + C2) * C3`, `C2` may be zero
  - `bitpos = C4 * BITS_PER_UNIT`, `C4` may be zero

- If found, create a CAND_REF candidate with:
  - `B = T1`
  - `i = (C1 + (C2 * C3) + C4)_{fold}`
  - `S = T2 * C3`

- Note `B` and `S` can now be arbitrary trees.
- Basis for candidate again must match `B` and `S`. 
Transforming reference candidates

- As with other kinds, chains of related CAND_REFs are processed together.

- If there is at least one basis-dependent relation, all candidates are transformed (including the ultimate basis).

- This allows the RTL addressing code to recognize these addresses differ only by a constant address.

```
addi 8,4,32
addi 10,4,16
mr 9,3
sldi 4,4,2
sldi 8,8,2
sldi 10,10,2
std 0,16(1)
stdu 1,-112(1)
lwax 3,3,4
lwax 5,9,10
lwax 4,9,8
bl foo
```

```
sldi 4,4,2
add 9,3,4
std 0,16(1)
stdu 1,-112(1)
lwax 3,3,4
lwa 5,64(9)
lwa 4,128(9)
bl foo
```
Status and future work

- Stage 1 complete: explicit multiplies with known strides
- Handling of reference candidates submitted for approval
- The rest has been implemented in a prototype but not yet submitted.

Remaining issues and open questions
- Improve the increment selection for explicit multiplies with unknown strides
  - Wider search
  - Better choices for targets with shift-add
- Look for more un-distribution opportunities
- Handle B = &var
- Register pressure concerns?
Conclusions and acknowledgments

- **Conclusions**
  - Strength reduction proved more interesting than I thought
  - Goals of project are all on target
  - Open to ideas for improvements!

- **Acknowledgments**
  - Richard Guenther
  - Richard Earnshaw
  - Andrew Pinski
  - Steven Bosscher
  - Alan Modra
  - Xinliang (David) Li