

G++ diagnostics: present and (near) future
Paolo Carlini

Renewed interest...

● Between 4.6 and 4.7 renewed interest in some recent
 and not-so-recent diagnostic issues, eg:
 - c++/48934 (“no rejection reason given for SFINAE”)

● Patch contributed by Nathan Froyd

 - -Wdelete-non-virtual-dtor
● Patch contributed by Jonathan Wakely

 - many smaller issues fixed (ICEs on invalid, error recovery...)

● We should thank Clang++ for a lot of this ;)

Renewed interest (2)

● In 4.8 finally we also have “caret diagnostics”
 - Patch contributed by Manuel Lopez Ibanez

 - Quite similar to EDG

 - Location information still needs work (lately making progress)

 - Can be disabled
● What about expressions in that case?!

 - No ranges (about this more from Dodji)

 - Should we somehow keep the source code around instead of
 reloading it in case of error??

● I do see the delay!
● See the wiki for details

-Wunused-local-typedefs

• Resolving libstdc++/33084 boiled down to fixing a
library (ie, <valarrray>) function with this body:

typedef _BinClos<_Name, _Constant, _ValArray,
 _Tp, _Tp> _Closure;

typedef typename __fun<_Name, _Tp>::result_type _Rt;

return _Expr<_Closure, _Tp>(_Closure(__t, __v));

• Note the pointless typedef...

-Wunused-local-typedefs (2)

• … indeed we had a trivial typo:

_Rt → _Tp

• In PR33255 I wondered if we could do something
about this!

• In 4.7, the new -Wunused-local-typedefs warning
(implemented by Dodji Seketeli) detects such sort of
very suspect “unused” typedef.

• In 4.8 is enabled by default as part of -Wunused
- had to make sure we don't give spurious warnings in some
 special cases involving system headers

-Wzero-as-null-pointer-constant

• In C++11 there is a proper type for null pointer
constants, std::nullptr_t, with value nullptr (*), eg:

int* p = nullptr;

preferably replaces:

int* p = 0;

• Likewise in conditionals, everywhere.

(*) http://en.wikipedia.org/wiki/C++11#Null_pointer_constant

-Wzero-as-null-pointer-constant (2)

• The new -Wzero-as-null-pointer-constant, available
in c++98 mode too, detects such uses of the legacy
“0” literal to mean null pointer and helps moving code
to C++11.

• First blush, it seems a very trivial thing – I did the work
mostly to address a PR and, while doing that, learning
more about the C++ front-end – but apparently quite a
few users are finding it useful...

• … because we got many PRs when the features was
still buggy, and one for 4.7.0 too!
- The latter fixed for 4.7.1, was about “0” in default arguments.

Conclusions (for Paolo's talk)

Please add to:

http://gcc.gnu.org/wiki/Better_Diagnostics

Thanks!

Random bibliography

• Some recent C++11 books:

http://www.manning.com/williams/
http://www.cppstdlib.com/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11

