
Finding races and memory errors
with compiler instrumentation.

AddressSanitizer, ThreadSanitizer.

Konstantin Serebryany, Dmitry Vyukov

GNU Tools Cauldron
10 July 2012

● AddressSanitizer, a memory error detector
● ThreadSanitizer, a data race detector
● Status of GCC and LLVM implementations

Agenda

AddressSanitizer
a memory error detector

● Buffer overflow
○ Heap
○ Stack
○ Globals

● Use-after-free (dangling pointer)
● Uninitialized memory reads
● Leaks
● Double free
● Invalid free
● Overapping memcpy parameters
● ...

Memory Bugs in C++

AddressSanitizer overview

● Compile-time instrumentation module
○ Platform independent

● Run-time library
○ Supports Linux, MacOS, Android, Windows

● Released in May 2011
● Part of LLVM since November 2011

Shadow byte

● Every aligned 8-byte word of memory has only 9 states
● First N bytes are addressable, the rest 8-N bytes are not
● Can encode in 1 byte (shadow byte)
● Extreme: 128 application bytes map to 1 shadow byte.

Addressable

Unaddressable

Shadow

0

7

6

5

4

3

2

1

-1

Mapping: Shadow = (Addr>>3) + Offset

0xffffffff
0x40000000

0x3fffffff
0x28000000

0x27ffffff
0x24000000

0x23ffffff
0x20000000

0x1fffffff
0x00000000

Application

Shadow

mprotect-ed

Virtual address space

Mapping: Shadow = (Addr>>3) + 0

0xffffffff
0x20000000

0x1fffffff
0x04000000

0x03ffffff
0x00000000

Application

Shadow

mprotect-ed

Virtual address space

● Requires -fPIE -pie (linux)
● Gives ~6% speedup on x86_64

*a = ...

Instrumentation: 8 byte access

char *shadow = (a>>3)+Offset;
if (*shadow)

 ReportError(a);
*a = ...

*a = ...

Instrumentation: N byte access (N=1, 2, 4)

char *shadow = (a>>3)+Offset;
if (*shadow &&
 *shadow <= ((a&7)+N-1))
 ReportError(a);
*a = ...

Instrumentation example (x86_64)

shr $0x3,%rax # shift by 3
mov $0x100000000000,%rcx
or %rax,%rcx # add offset
cmpb $0x0,(%rcx) # load shadow
je 1f <foo+0x1f>
ud2a # generate SIGILL*

movq $0x1234,(%rdi) # original store

* May use call instead of UD2

void foo() {

 char a[328];

 <------------- CODE ------------->

}

Instrumenting stack

void foo() {
 char rz1[32]; // 32-byte aligned
 char a[328];
 char rz2[24];
 char rz3[32];
 int *shadow = (&rz1 >> 3) + kOffset;
 shadow[0] = 0xffffffff; // poison rz1

 shadow[11] = 0xffffff00; // poison rz2
 shadow[12] = 0xffffffff; // poison rz3
 <------------- CODE ------------->
 shadow[0] = shadow[11] = shadow[12] = 0;
}

Instrumenting stack

Instrumenting globals

int a;

struct {
 int original;
 char redzone[60];
} a; // 32-aligned

Run-time library

● Initializes shadow memory at startup
● Provides full malloc replacement

○ Insert poisoned redzones around allocated memory
○ Quarantine for free-ed memory
○ Collect stack traces for every malloc/free

● Provides interceptors for functions like memset
● Prints error messages

Report example: use-after-free

ERROR: AddressSanitizer heap-use-after-free
 on address 0x7fe8740a6214
 at pc 0x40246f bp 0x7fffe5e463e0 sp 0x7fffe5e463d8

READ of size 4 at 0x7fe8740a6214 thread T0
 #0 0x40246f in main example_UseAfterFree.cc:4
 #1 0x7fe8740e4c4d in __libc_start_main ??:0

0x7fe8740a6214 is located 4 bytes inside of 400-byte region

freed by thread T0 here:
 #0 0x4028f4 in operator delete[](void*) _asan_rtl_
 #1 0x402433 in main example_UseAfterFree.cc:4

previously allocated by thread T0 here:
 #0 0x402c36 in operator new[](unsigned long) _asan_rtl_
 #1 0x402423 in main example_UseAfterFree.cc:2

Report example: stack-buffer-overflow

ERROR: AddressSanitizer stack-buffer-overflow
 on address 0x7f5620d981b4
 at pc 0x4024e8 bp 0x7fff101cbc90 sp 0x7fff101cbc88

READ of size 4 at 0x7f5620d981b4 thread T0
 #0 0x4024e8 in main example_StackOutOfBounds.cc:4
 #1 0x7f5621db6c4d in __libc_start_main ??:0
 #2 0x402349 in _start ??:0

Address 0x7f5620d981b4 is located at offset 436 in frame <main>
of T0's stack:
 This frame has 1 object(s):
 [32, 432) 'stack_array'

1.26x slowdown (writes only)
1.73x slowdown (reads & writes)

Reads&Writes Only Writes

Real-life performance

● Almost no slowdown for GUI programs
○ Chrome, FireFox
○ They don't consume all of CPU anyway

● 1.5x - 4x slowdown for server side apps with -O2
○ The larger the slower (instruction cache)

Memory overhead
● Heap redzones: 16-31 bytes per allocation (minimal)

○ default: 128-255 bytes per allocation
● Stack redzones: 32-63 bytes per addr-taken local var
● Global redzones: 32-63 bytes per global
● Fixed size Quarantine (256M)
● Shadow:

○ (Heap + Globals + Stack + Quarantine) / 8
● Typical overall memory overhead is 2x - 4x
● Stack size increase up to 3x
● mmap MAP_NORESERVE 1/8-th of all address space

○ 16T on 64-bit
○ 0.5G on 32-bit

Trophies
● Chromium (including WebKit); in first 10 months

○ heap-use-after-free: 201
○ heap-buffer-overflow: 73
○ global-buffer-overflow: 8
○ stack-buffer-overflow: 7

● Mozilla
● FreeType
● FFmepeg
● libjpeg-turbo
● Perl
● Vim
● LLVM
● GCC (Bug 52629)
● WebRTC
● ...

http://gcc.gnu.org/bugzilla/show_bug.cgi?id=52629

Future work

● Avoid redundant checks (static analysis)
● Instrument or recompile libraries
● Instrument inline assembler
● Adapt to use in a kernel
● Port to Windows

○ Mostly, frontend work
○ Plain C and simple C++ already works
○ Help is welcome!

C++ is suddenly
a much safer language

Challenge

Implement
AddressSanitizer

in Hardware

ThreadSanitizer
a data race detector

ThreadSanitizer v1

● Based on Valgrind
● Used since 2009
● Slow (20x-300x slowdown)

○ Still, found thousands races
○ Also, faster than others

● Other race detectors for C/C++:
○ Helgrind (Valgrind)
○ Intel Parallel Inspector (PIN)

ThreadSanitizer v2 overview

● Simple compile-time instrumentation
● Redesigned run-time library

○ Fully parallel
○ No expensive atomics/locks on fast path
○ Scales to huge apps
○ Predictable memory footprint
○ Informative reports

Slowdown

Application Tsan1 Tsan2 Tsan1/Tsan2

RPC benchmark 283x 8.5x 33x

Server app test 28x 2x 14x

String util test 30x 2.4x 13x

Compiler instrumentation

void foo(int *p) {
 *p = 42;
}

void foo(int *p) {
 __tsan_func_entry(__builtin_return_address(0));
 __tsan_write4(p);
 *p = 42;
 __tsan_func_exit()
}

Direct mapping (64-bit Linux)

Application
0x7fffffffffff
0x7f0000000000

Protected
0x7effffffffff
0x200000000000

Shadow
0x1fffffffffff
0x180000000000

Protected
0x17ffffffffff
0x000000000000

Shadow = N * (Addr & Mask); // Requires -pie

Shadow cell
An 8-byte shadow cell represents one memory
access:

○ ~16 bits: TID (thread ID)
○ ~42 bits: Epoch (scalar clock)
○ 5 bits: position/size in 8-byte word
○ 1 bit: IsWrite

Full information (no more dereferences)

TID

Epo

Pos

IsW

N shadow cells per 8 application bytes
TID

Epo

Pos

IsW

TID

Epo

Pos

IsW

TID

Epo

Pos

IsW

TID

Epo

Pos

IsW

Example: first access
T1

E1

0:2

W

Write in thread T1

Example: second access
T1

E1

0:2

W

T2

E2

4:8

R

Read in thread T2

Example: third access
T1

E1

0:2

W

T3

E3

0:4

R

T2

E2

4:8

R

Read in thread T3

Example: race?
T1

E1

0:2

W

T3

E3

0:4

R

T2

E2

4:8

R

Race if E1 not
"happens-before" E3

Fast happens-before

● Constant-time operation
○ Get TID and Epoch from the shadow cell
○ 1 load from TLS
○ 1 compare

● Similar to FastTrack (PLDI'09)

Shadow word eviction

● When all shadow words are filled, one random is
replaced

Informative reports
● Need to report two stack traces:

○ current (easy)
○ previous (hard)

● TSan1:
○ Stores fixed number of frames (default: 10)
○ Information is never lost
○ Reference-counting and garbage collection

Previous stack traces in TSan2
● Per-thread cyclic buffer of events

○ 64 bits per event (type + pc)
○ Events: memory access, function entry/exit
○ Information will be lost after some time

● Replay the event buffer on report
○ Unlimited number of frames

Function interceptors

● 100+ interceptors
○ malloc, free, ...
○ pthread_mutex_lock, ...
○ strlen, memcmp, ...
○ read, write, ...

Limitations

● Only 64-bit Linux
● Heavily relies on TLS

○ Slow TLS on some platforms
● Hard to port to 32-bits :(

○ Too small address space
○ Expensive atomic 64-bit load/store

● Does not instrument:
○ pre-built libraries
○ inline assembler

Status of GCC and LLVM
implementations

Disclaimer:
we are not experienced

GCC hackers

Implementation details

● AddressSanitizer
○ Common run-time library + tests: 12 KLOC
○ LLVM: 1 KLOC, in trunk, fully functional
○ GCC: 400 LOC

■ in google/main branch
■ finds only heap bugs, no stack and globals
■ some problems (next slide)

● ThreadSanitizer
○ Common run-time library + tests: 14 KLOC
○ Supports C/C++ and Go
○ LLVM: 400 LOC, in trunk, fully functional
○ GCC: 400 LOC, separate plugin

■ does not instrument atomic operations

Problems with GCC (AddressSanitizer)

● Compile time: SLOW!
○ clang < clang+asan < gcc < gcc+asan (all with -O2)
○ 483.xalancbmk (seconds): 170 < 212 < 338 < 446

● Run-time: 10%-15% slower than LLVM (-O2 vs -O2)
○ Still, not apples-to-apples

● How to get the address of a memory access?
○ Copied some code from mudflap, ugly

● Has to run before loop optimizations
○ Otherwise can’t use build_addr

● Can't deal with bitfield loads
● Adding redzones to stack and global objects:

○ GCC: not clear how to implement in IR (GIMPLE)
○ LLVM: single IR-only transformation pass

GCC from newcomer's point of view

TREE_THIS_VOLATILE (call) = 1; // GCC

Call->setDoesNotReturn(); // LLVM

GCC from newcomer's point of view (2)

Value *B =
 IRB.CreateLoad(IRB.CreateIntToPtr(A, Ty));

t = build1 (INDIRECT_REF, shadow_type,
 build1 (VIEW_CONVERT_EXPR, shadow_ptr_type, t));
t = force_gimple_operand (t, &stmts, false, NULL_TREE);
gimple_seq_add_seq (&seq, stmts);
shadow_value = make_rename_temp (shadow_type,"");
g = gimple_build_assign (shadow_value, t);

GCC from newcomer's point of view (3)
if (isa<LoadInst>(I) || isa<StoreInst>(I)) ...

 base = get_base_address (expr);

 if (base == NULL_TREE

 || TREE_CODE (base) == SSA_NAME

 || TREE_CODE (base) == STRING_CST)

 return;

 tcode = TREE_CODE (expr);

 /* Below are things we do not instrument

 (no possibility of races or not implemented yet). */

 if (/* Compiler-emitted artificial variables. */

 (DECL_P (expr) && DECL_ARTIFICIAL (expr))

 /* The var does not live in memory -> no possibility of races. */

 || (tcode == VAR_DECL

 && TREE_ADDRESSABLE (expr) == 0

 && TREE_STATIC (expr) == 0)

 /* Not implemented. */

 || TREE_CODE (TREE_TYPE (expr)) == RECORD_TYPE

 /* Not implemented. */

 || tcode == CONSTRUCTOR

 /* Not implemented. */

 || tcode == PARM_DECL

 /* Load of a const variable/parameter/field. */

 || is_load_of_const (expr, is_write))

 return;

 if (tcode == COMPONENT_REF)

 {

 tree field = TREE_OPERAND (expr, 1);

 if (TREE_CODE (field) == FIELD_DECL)

 {

 fld_off = TREE_INT_CST_LOW (DECL_FIELD_BIT_OFFSET (field));

 fld_size = TREE_INT_CST_LOW (DECL_SIZE (field));

 if (((fld_off % BITS_PER_UNIT) != 0)

 || ((fld_size % BITS_PER_UNIT) != 0))

 {

 /* As of now it crashes compilation.

 TODO: handle bit-fields as if touching the whole field. */

 return;

 }

 }

 }

 /* TODO: handle other cases

 (FIELD_DECL, MEM_REF, ARRAY_RANGE_REF, TARGET_MEM_REF, ADDR_EXPR). */

 if (tcode != ARRAY_REF

 && tcode != VAR_DECL

 && tcode != COMPONENT_REF

 && tcode != INDIRECT_REF

 && tcode != MEM_REF)

 return;

Summary
● We encourage the GCC community to implement

AddressSanitizer and/or ThreadSanitizer compiler
module in gcc trunk

● 90% of work is done (the run-time library, tests)

Q&A

http://code.google.com/p/address-sanitizer/

http://code.google.com/p/thread-sanitizer/

http://code.google.com/p/address-sanitizer/
http://code.google.com/p/address-sanitizer/
http://code.google.com/p/thread-sanitizer/
http://code.google.com/p/thread-sanitizer/

Backup

AddressSanitizer vs Valgrind (Memcheck)

Valgrind AddressSanitizer

Heap out-of-bounds YES YES

Stack out-of-bounds NO YES

Global out-of-bounds NO YES

Use-after-free YES YES

Use-after-return NO Sometimes/YES

Uninitialized reads YES NO

Overhead 10x-300x 1.5x-3x

Platforms Linux, Mac Same as LLVM *

AddressSanitizer vs Mudflap

● Mudflap doesn't work (or is very slow) on any large
app

● Otherwise, the functionality is similar

