| 1 |
/* Basic IPA utilities for type inheritance graph construction and |
| 2 |
devirtualization. |
| 3 |
Copyright (C) 2013-2019 Free Software Foundation, Inc. |
| 4 |
Contributed by Jan Hubicka |
| 5 |
|
| 6 |
This file is part of GCC. |
| 7 |
|
| 8 |
GCC is free software; you can redistribute it and/or modify it under |
| 9 |
the terms of the GNU General Public License as published by the Free |
| 10 |
Software Foundation; either version 3, or (at your option) any later |
| 11 |
version. |
| 12 |
|
| 13 |
GCC is distributed in the hope that it will be useful, but WITHOUT ANY |
| 14 |
WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| 15 |
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
| 16 |
for more details. |
| 17 |
|
| 18 |
You should have received a copy of the GNU General Public License |
| 19 |
along with GCC; see the file COPYING3. If not see |
| 20 |
<http://www.gnu.org/licenses/>. */ |
| 21 |
|
| 22 |
/* Brief vocabulary: |
| 23 |
ODR = One Definition Rule |
| 24 |
In short, the ODR states that: |
| 25 |
1 In any translation unit, a template, type, function, or object can |
| 26 |
have no more than one definition. Some of these can have any number |
| 27 |
of declarations. A definition provides an instance. |
| 28 |
2 In the entire program, an object or non-inline function cannot have |
| 29 |
more than one definition; if an object or function is used, it must |
| 30 |
have exactly one definition. You can declare an object or function |
| 31 |
that is never used, in which case you don't have to provide |
| 32 |
a definition. In no event can there be more than one definition. |
| 33 |
3 Some things, like types, templates, and extern inline functions, can |
| 34 |
be defined in more than one translation unit. For a given entity, |
| 35 |
each definition must be the same. Non-extern objects and functions |
| 36 |
in different translation units are different entities, even if their |
| 37 |
names and types are the same. |
| 38 |
|
| 39 |
OTR = OBJ_TYPE_REF |
| 40 |
This is the Gimple representation of type information of a polymorphic call. |
| 41 |
It contains two parameters: |
| 42 |
otr_type is a type of class whose method is called. |
| 43 |
otr_token is the index into virtual table where address is taken. |
| 44 |
|
| 45 |
BINFO |
| 46 |
This is the type inheritance information attached to each tree |
| 47 |
RECORD_TYPE by the C++ frontend. It provides information about base |
| 48 |
types and virtual tables. |
| 49 |
|
| 50 |
BINFO is linked to the RECORD_TYPE by TYPE_BINFO. |
| 51 |
BINFO also links to its type by BINFO_TYPE and to the virtual table by |
| 52 |
BINFO_VTABLE. |
| 53 |
|
| 54 |
Base types of a given type are enumerated by BINFO_BASE_BINFO |
| 55 |
vector. Members of this vectors are not BINFOs associated |
| 56 |
with a base type. Rather they are new copies of BINFOs |
| 57 |
(base BINFOs). Their virtual tables may differ from |
| 58 |
virtual table of the base type. Also BINFO_OFFSET specifies |
| 59 |
offset of the base within the type. |
| 60 |
|
| 61 |
In the case of single inheritance, the virtual table is shared |
| 62 |
and BINFO_VTABLE of base BINFO is NULL. In the case of multiple |
| 63 |
inheritance the individual virtual tables are pointer to by |
| 64 |
BINFO_VTABLE of base binfos (that differs of BINFO_VTABLE of |
| 65 |
binfo associated to the base type). |
| 66 |
|
| 67 |
BINFO lookup for a given base type and offset can be done by |
| 68 |
get_binfo_at_offset. It returns proper BINFO whose virtual table |
| 69 |
can be used for lookup of virtual methods associated with the |
| 70 |
base type. |
| 71 |
|
| 72 |
token |
| 73 |
This is an index of virtual method in virtual table associated |
| 74 |
to the type defining it. Token can be looked up from OBJ_TYPE_REF |
| 75 |
or from DECL_VINDEX of a given virtual table. |
| 76 |
|
| 77 |
polymorphic (indirect) call |
| 78 |
This is callgraph representation of virtual method call. Every |
| 79 |
polymorphic call contains otr_type and otr_token taken from |
| 80 |
original OBJ_TYPE_REF at callgraph construction time. |
| 81 |
|
| 82 |
What we do here: |
| 83 |
|
| 84 |
build_type_inheritance_graph triggers a construction of the type inheritance |
| 85 |
graph. |
| 86 |
|
| 87 |
We reconstruct it based on types of methods we see in the unit. |
| 88 |
This means that the graph is not complete. Types with no methods are not |
| 89 |
inserted into the graph. Also types without virtual methods are not |
| 90 |
represented at all, though it may be easy to add this. |
| 91 |
|
| 92 |
The inheritance graph is represented as follows: |
| 93 |
|
| 94 |
Vertices are structures odr_type. Every odr_type may correspond |
| 95 |
to one or more tree type nodes that are equivalent by ODR rule. |
| 96 |
(the multiple type nodes appear only with linktime optimization) |
| 97 |
|
| 98 |
Edges are represented by odr_type->base and odr_type->derived_types. |
| 99 |
At the moment we do not track offsets of types for multiple inheritance. |
| 100 |
Adding this is easy. |
| 101 |
|
| 102 |
possible_polymorphic_call_targets returns, given an parameters found in |
| 103 |
indirect polymorphic edge all possible polymorphic call targets of the call. |
| 104 |
|
| 105 |
pass_ipa_devirt performs simple speculative devirtualization. |
| 106 |
*/ |
| 107 |
|
| 108 |
#include "config.h" |
| 109 |
#include "system.h" |
| 110 |
#include "coretypes.h" |
| 111 |
#include "backend.h" |
| 112 |
#include "rtl.h" |
| 113 |
#include "tree.h" |
| 114 |
#include "gimple.h" |
| 115 |
#include "alloc-pool.h" |
| 116 |
#include "tree-pass.h" |
| 117 |
#include "cgraph.h" |
| 118 |
#include "lto-streamer.h" |
| 119 |
#include "fold-const.h" |
| 120 |
#include "print-tree.h" |
| 121 |
#include "calls.h" |
| 122 |
#include "ipa-utils.h" |
| 123 |
#include "gimple-fold.h" |
| 124 |
#include "symbol-summary.h" |
| 125 |
#include "tree-vrp.h" |
| 126 |
#include "ipa-prop.h" |
| 127 |
#include "ipa-fnsummary.h" |
| 128 |
#include "demangle.h" |
| 129 |
#include "dbgcnt.h" |
| 130 |
#include "gimple-pretty-print.h" |
| 131 |
#include "intl.h" |
| 132 |
#include "stringpool.h" |
| 133 |
#include "attribs.h" |
| 134 |
|
| 135 |
/* Hash based set of pairs of types. */ |
| 136 |
struct type_pair |
| 137 |
{ |
| 138 |
tree first; |
| 139 |
tree second; |
| 140 |
}; |
| 141 |
|
| 142 |
template <> |
| 143 |
struct default_hash_traits <type_pair> |
| 144 |
: typed_noop_remove <type_pair> |
| 145 |
{ |
| 146 |
GTY((skip)) typedef type_pair value_type; |
| 147 |
GTY((skip)) typedef type_pair compare_type; |
| 148 |
static hashval_t |
| 149 |
hash (type_pair p) |
| 150 |
{ |
| 151 |
return TYPE_UID (p.first) ^ TYPE_UID (p.second); |
| 152 |
} |
| 153 |
static bool |
| 154 |
is_empty (type_pair p) |
| 155 |
{ |
| 156 |
return p.first == NULL; |
| 157 |
} |
| 158 |
static bool |
| 159 |
is_deleted (type_pair p ATTRIBUTE_UNUSED) |
| 160 |
{ |
| 161 |
return false; |
| 162 |
} |
| 163 |
static bool |
| 164 |
equal (const type_pair &a, const type_pair &b) |
| 165 |
{ |
| 166 |
return a.first==b.first && a.second == b.second; |
| 167 |
} |
| 168 |
static void |
| 169 |
mark_empty (type_pair &e) |
| 170 |
{ |
| 171 |
e.first = NULL; |
| 172 |
} |
| 173 |
}; |
| 174 |
|
| 175 |
/* HACK alert: this is used to communicate with ipa-inline-transform that |
| 176 |
thunk is being expanded and there is no need to clear the polymorphic |
| 177 |
call target cache. */ |
| 178 |
bool thunk_expansion; |
| 179 |
|
| 180 |
static bool odr_types_equivalent_p (tree, tree, bool, bool *, |
| 181 |
hash_set<type_pair> *, |
| 182 |
location_t, location_t); |
| 183 |
static void warn_odr (tree t1, tree t2, tree st1, tree st2, |
| 184 |
bool warn, bool *warned, const char *reason); |
| 185 |
|
| 186 |
static bool odr_violation_reported = false; |
| 187 |
|
| 188 |
|
| 189 |
/* Pointer set of all call targets appearing in the cache. */ |
| 190 |
static hash_set<cgraph_node *> *cached_polymorphic_call_targets; |
| 191 |
|
| 192 |
/* The node of type inheritance graph. For each type unique in |
| 193 |
One Definition Rule (ODR) sense, we produce one node linking all |
| 194 |
main variants of types equivalent to it, bases and derived types. */ |
| 195 |
|
| 196 |
struct GTY(()) odr_type_d |
| 197 |
{ |
| 198 |
/* leader type. */ |
| 199 |
tree type; |
| 200 |
/* All bases; built only for main variants of types. */ |
| 201 |
vec<odr_type> GTY((skip)) bases; |
| 202 |
/* All derived types with virtual methods seen in unit; |
| 203 |
built only for main variants of types. */ |
| 204 |
vec<odr_type> GTY((skip)) derived_types; |
| 205 |
|
| 206 |
/* All equivalent types, if more than one. */ |
| 207 |
vec<tree, va_gc> *types; |
| 208 |
/* Set of all equivalent types, if NON-NULL. */ |
| 209 |
hash_set<tree> * GTY((skip)) types_set; |
| 210 |
|
| 211 |
/* Unique ID indexing the type in odr_types array. */ |
| 212 |
int id; |
| 213 |
/* Is it in anonymous namespace? */ |
| 214 |
bool anonymous_namespace; |
| 215 |
/* Do we know about all derivations of given type? */ |
| 216 |
bool all_derivations_known; |
| 217 |
/* Did we report ODR violation here? */ |
| 218 |
bool odr_violated; |
| 219 |
/* Set when virtual table without RTTI prevailed table with. */ |
| 220 |
bool rtti_broken; |
| 221 |
/* Set when the canonical type is determined using the type name. */ |
| 222 |
bool tbaa_enabled; |
| 223 |
}; |
| 224 |
|
| 225 |
/* Return TRUE if all derived types of T are known and thus |
| 226 |
we may consider the walk of derived type complete. |
| 227 |
|
| 228 |
This is typically true only for final anonymous namespace types and types |
| 229 |
defined within functions (that may be COMDAT and thus shared across units, |
| 230 |
but with the same set of derived types). */ |
| 231 |
|
| 232 |
bool |
| 233 |
type_all_derivations_known_p (const_tree t) |
| 234 |
{ |
| 235 |
if (TYPE_FINAL_P (t)) |
| 236 |
return true; |
| 237 |
if (flag_ltrans) |
| 238 |
return false; |
| 239 |
/* Non-C++ types may have IDENTIFIER_NODE here, do not crash. */ |
| 240 |
if (!TYPE_NAME (t) || TREE_CODE (TYPE_NAME (t)) != TYPE_DECL) |
| 241 |
return true; |
| 242 |
if (type_in_anonymous_namespace_p (t)) |
| 243 |
return true; |
| 244 |
return (decl_function_context (TYPE_NAME (t)) != NULL); |
| 245 |
} |
| 246 |
|
| 247 |
/* Return TRUE if type's constructors are all visible. */ |
| 248 |
|
| 249 |
static bool |
| 250 |
type_all_ctors_visible_p (tree t) |
| 251 |
{ |
| 252 |
return !flag_ltrans |
| 253 |
&& symtab->state >= CONSTRUCTION |
| 254 |
/* We cannot always use type_all_derivations_known_p. |
| 255 |
For function local types we must assume case where |
| 256 |
the function is COMDAT and shared in between units. |
| 257 |
|
| 258 |
TODO: These cases are quite easy to get, but we need |
| 259 |
to keep track of C++ privatizing via -Wno-weak |
| 260 |
as well as the IPA privatizing. */ |
| 261 |
&& type_in_anonymous_namespace_p (t); |
| 262 |
} |
| 263 |
|
| 264 |
/* Return TRUE if type may have instance. */ |
| 265 |
|
| 266 |
static bool |
| 267 |
type_possibly_instantiated_p (tree t) |
| 268 |
{ |
| 269 |
tree vtable; |
| 270 |
varpool_node *vnode; |
| 271 |
|
| 272 |
/* TODO: Add abstract types here. */ |
| 273 |
if (!type_all_ctors_visible_p (t)) |
| 274 |
return true; |
| 275 |
|
| 276 |
vtable = BINFO_VTABLE (TYPE_BINFO (t)); |
| 277 |
if (TREE_CODE (vtable) == POINTER_PLUS_EXPR) |
| 278 |
vtable = TREE_OPERAND (TREE_OPERAND (vtable, 0), 0); |
| 279 |
vnode = varpool_node::get (vtable); |
| 280 |
return vnode && vnode->definition; |
| 281 |
} |
| 282 |
|
| 283 |
/* Hash used to unify ODR types based on their mangled name and for anonymous |
| 284 |
namespace types. */ |
| 285 |
|
| 286 |
struct odr_name_hasher : pointer_hash <odr_type_d> |
| 287 |
{ |
| 288 |
typedef union tree_node *compare_type; |
| 289 |
static inline hashval_t hash (const odr_type_d *); |
| 290 |
static inline bool equal (const odr_type_d *, const tree_node *); |
| 291 |
static inline void remove (odr_type_d *); |
| 292 |
}; |
| 293 |
|
| 294 |
static bool |
| 295 |
can_be_name_hashed_p (tree t) |
| 296 |
{ |
| 297 |
return (!in_lto_p || odr_type_p (t)); |
| 298 |
} |
| 299 |
|
| 300 |
/* Hash type by its ODR name. */ |
| 301 |
|
| 302 |
static hashval_t |
| 303 |
hash_odr_name (const_tree t) |
| 304 |
{ |
| 305 |
gcc_checking_assert (TYPE_MAIN_VARIANT (t) == t); |
| 306 |
|
| 307 |
/* If not in LTO, all main variants are unique, so we can do |
| 308 |
pointer hash. */ |
| 309 |
if (!in_lto_p) |
| 310 |
return htab_hash_pointer (t); |
| 311 |
|
| 312 |
/* Anonymous types are unique. */ |
| 313 |
if (type_with_linkage_p (t) && type_in_anonymous_namespace_p (t)) |
| 314 |
return htab_hash_pointer (t); |
| 315 |
|
| 316 |
gcc_checking_assert (TYPE_NAME (t) |
| 317 |
&& DECL_ASSEMBLER_NAME_SET_P (TYPE_NAME (t))); |
| 318 |
return IDENTIFIER_HASH_VALUE (DECL_ASSEMBLER_NAME (TYPE_NAME (t))); |
| 319 |
} |
| 320 |
|
| 321 |
/* Return the computed hashcode for ODR_TYPE. */ |
| 322 |
|
| 323 |
inline hashval_t |
| 324 |
odr_name_hasher::hash (const odr_type_d *odr_type) |
| 325 |
{ |
| 326 |
return hash_odr_name (odr_type->type); |
| 327 |
} |
| 328 |
|
| 329 |
/* For languages with One Definition Rule, work out if |
| 330 |
types are the same based on their name. |
| 331 |
|
| 332 |
This is non-trivial for LTO where minor differences in |
| 333 |
the type representation may have prevented type merging |
| 334 |
to merge two copies of otherwise equivalent type. |
| 335 |
|
| 336 |
Until we start streaming mangled type names, this function works |
| 337 |
only for polymorphic types. |
| 338 |
*/ |
| 339 |
|
| 340 |
bool |
| 341 |
types_same_for_odr (const_tree type1, const_tree type2) |
| 342 |
{ |
| 343 |
gcc_checking_assert (TYPE_P (type1) && TYPE_P (type2)); |
| 344 |
|
| 345 |
type1 = TYPE_MAIN_VARIANT (type1); |
| 346 |
type2 = TYPE_MAIN_VARIANT (type2); |
| 347 |
|
| 348 |
if (type1 == type2) |
| 349 |
return true; |
| 350 |
|
| 351 |
if (!in_lto_p) |
| 352 |
return false; |
| 353 |
|
| 354 |
/* Anonymous namespace types are never duplicated. */ |
| 355 |
if ((type_with_linkage_p (type1) && type_in_anonymous_namespace_p (type1)) |
| 356 |
|| (type_with_linkage_p (type2) && type_in_anonymous_namespace_p (type2))) |
| 357 |
return false; |
| 358 |
|
| 359 |
/* If both type has mangled defined check if they are same. |
| 360 |
Watch for anonymous types which are all mangled as "<anon">. */ |
| 361 |
if (!type_with_linkage_p (type1) || !type_with_linkage_p (type2)) |
| 362 |
return false; |
| 363 |
if (type_in_anonymous_namespace_p (type1) |
| 364 |
|| type_in_anonymous_namespace_p (type2)) |
| 365 |
return false; |
| 366 |
return (DECL_ASSEMBLER_NAME (TYPE_NAME (type1)) |
| 367 |
== DECL_ASSEMBLER_NAME (TYPE_NAME (type2))); |
| 368 |
} |
| 369 |
|
| 370 |
/* Return true if we can decide on ODR equivalency. |
| 371 |
|
| 372 |
In non-LTO it is always decide, in LTO however it depends in the type has |
| 373 |
ODR info attached. */ |
| 374 |
|
| 375 |
bool |
| 376 |
types_odr_comparable (tree t1, tree t2) |
| 377 |
{ |
| 378 |
return (!in_lto_p |
| 379 |
|| TYPE_MAIN_VARIANT (t1) == TYPE_MAIN_VARIANT (t2) |
| 380 |
|| (odr_type_p (TYPE_MAIN_VARIANT (t1)) |
| 381 |
&& odr_type_p (TYPE_MAIN_VARIANT (t2)))); |
| 382 |
} |
| 383 |
|
| 384 |
/* Return true if T1 and T2 are ODR equivalent. If ODR equivalency is not |
| 385 |
known, be conservative and return false. */ |
| 386 |
|
| 387 |
bool |
| 388 |
types_must_be_same_for_odr (tree t1, tree t2) |
| 389 |
{ |
| 390 |
if (types_odr_comparable (t1, t2)) |
| 391 |
return types_same_for_odr (t1, t2); |
| 392 |
else |
| 393 |
return TYPE_MAIN_VARIANT (t1) == TYPE_MAIN_VARIANT (t2); |
| 394 |
} |
| 395 |
|
| 396 |
/* If T is compound type, return type it is based on. */ |
| 397 |
|
| 398 |
static tree |
| 399 |
compound_type_base (const_tree t) |
| 400 |
{ |
| 401 |
if (TREE_CODE (t) == ARRAY_TYPE |
| 402 |
|| POINTER_TYPE_P (t) |
| 403 |
|| TREE_CODE (t) == COMPLEX_TYPE |
| 404 |
|| VECTOR_TYPE_P (t)) |
| 405 |
return TREE_TYPE (t); |
| 406 |
if (TREE_CODE (t) == METHOD_TYPE) |
| 407 |
return TYPE_METHOD_BASETYPE (t); |
| 408 |
if (TREE_CODE (t) == OFFSET_TYPE) |
| 409 |
return TYPE_OFFSET_BASETYPE (t); |
| 410 |
return NULL_TREE; |
| 411 |
} |
| 412 |
|
| 413 |
/* Return true if T is either ODR type or compound type based from it. |
| 414 |
If the function return true, we know that T is a type originating from C++ |
| 415 |
source even at link-time. */ |
| 416 |
|
| 417 |
bool |
| 418 |
odr_or_derived_type_p (const_tree t) |
| 419 |
{ |
| 420 |
do |
| 421 |
{ |
| 422 |
if (odr_type_p (TYPE_MAIN_VARIANT (t))) |
| 423 |
return true; |
| 424 |
/* Function type is a tricky one. Basically we can consider it |
| 425 |
ODR derived if return type or any of the parameters is. |
| 426 |
We need to check all parameters because LTO streaming merges |
| 427 |
common types (such as void) and they are not considered ODR then. */ |
| 428 |
if (TREE_CODE (t) == FUNCTION_TYPE) |
| 429 |
{ |
| 430 |
if (TYPE_METHOD_BASETYPE (t)) |
| 431 |
t = TYPE_METHOD_BASETYPE (t); |
| 432 |
else |
| 433 |
{ |
| 434 |
if (TREE_TYPE (t) && odr_or_derived_type_p (TREE_TYPE (t))) |
| 435 |
return true; |
| 436 |
for (t = TYPE_ARG_TYPES (t); t; t = TREE_CHAIN (t)) |
| 437 |
if (odr_or_derived_type_p (TYPE_MAIN_VARIANT (TREE_VALUE (t)))) |
| 438 |
return true; |
| 439 |
return false; |
| 440 |
} |
| 441 |
} |
| 442 |
else |
| 443 |
t = compound_type_base (t); |
| 444 |
} |
| 445 |
while (t); |
| 446 |
return t; |
| 447 |
} |
| 448 |
|
| 449 |
/* Compare types T1 and T2 and return true if they are |
| 450 |
equivalent. */ |
| 451 |
|
| 452 |
inline bool |
| 453 |
odr_name_hasher::equal (const odr_type_d *o1, const tree_node *t2) |
| 454 |
{ |
| 455 |
tree t1 = o1->type; |
| 456 |
|
| 457 |
gcc_checking_assert (TYPE_MAIN_VARIANT (t2) == t2); |
| 458 |
gcc_checking_assert (TYPE_MAIN_VARIANT (t1) == t1); |
| 459 |
if (t1 == t2) |
| 460 |
return true; |
| 461 |
if (!in_lto_p) |
| 462 |
return false; |
| 463 |
/* Check for anonymous namespaces. */ |
| 464 |
if ((type_with_linkage_p (t1) && type_in_anonymous_namespace_p (t1)) |
| 465 |
|| (type_with_linkage_p (t2) && type_in_anonymous_namespace_p (t2))) |
| 466 |
return false; |
| 467 |
gcc_checking_assert (DECL_ASSEMBLER_NAME (TYPE_NAME (t1))); |
| 468 |
gcc_checking_assert (DECL_ASSEMBLER_NAME (TYPE_NAME (t2))); |
| 469 |
return (DECL_ASSEMBLER_NAME (TYPE_NAME (t1)) |
| 470 |
== DECL_ASSEMBLER_NAME (TYPE_NAME (t2))); |
| 471 |
} |
| 472 |
|
| 473 |
/* Free ODR type V. */ |
| 474 |
|
| 475 |
inline void |
| 476 |
odr_name_hasher::remove (odr_type_d *v) |
| 477 |
{ |
| 478 |
v->bases.release (); |
| 479 |
v->derived_types.release (); |
| 480 |
if (v->types_set) |
| 481 |
delete v->types_set; |
| 482 |
ggc_free (v); |
| 483 |
} |
| 484 |
|
| 485 |
/* ODR type hash used to look up ODR type based on tree type node. */ |
| 486 |
|
| 487 |
typedef hash_table<odr_name_hasher> odr_hash_type; |
| 488 |
static odr_hash_type *odr_hash; |
| 489 |
|
| 490 |
/* ODR types are also stored into ODR_TYPE vector to allow consistent |
| 491 |
walking. Bases appear before derived types. Vector is garbage collected |
| 492 |
so we won't end up visiting empty types. */ |
| 493 |
|
| 494 |
static GTY(()) vec <odr_type, va_gc> *odr_types_ptr; |
| 495 |
#define odr_types (*odr_types_ptr) |
| 496 |
|
| 497 |
/* Set TYPE_BINFO of TYPE and its variants to BINFO. */ |
| 498 |
void |
| 499 |
set_type_binfo (tree type, tree binfo) |
| 500 |
{ |
| 501 |
for (; type; type = TYPE_NEXT_VARIANT (type)) |
| 502 |
if (COMPLETE_TYPE_P (type)) |
| 503 |
TYPE_BINFO (type) = binfo; |
| 504 |
else |
| 505 |
gcc_assert (!TYPE_BINFO (type)); |
| 506 |
} |
| 507 |
|
| 508 |
/* Return true if type variants match. |
| 509 |
This assumes that we already verified that T1 and T2 are variants of the |
| 510 |
same type. */ |
| 511 |
|
| 512 |
static bool |
| 513 |
type_variants_equivalent_p (tree t1, tree t2) |
| 514 |
{ |
| 515 |
if (TYPE_QUALS (t1) != TYPE_QUALS (t2)) |
| 516 |
return false; |
| 517 |
|
| 518 |
if (comp_type_attributes (t1, t2) != 1) |
| 519 |
return false; |
| 520 |
|
| 521 |
if (COMPLETE_TYPE_P (t1) && COMPLETE_TYPE_P (t2) |
| 522 |
&& TYPE_ALIGN (t1) != TYPE_ALIGN (t2)) |
| 523 |
return false; |
| 524 |
|
| 525 |
return true; |
| 526 |
} |
| 527 |
|
| 528 |
/* Compare T1 and T2 based on name or structure. */ |
| 529 |
|
| 530 |
static bool |
| 531 |
odr_subtypes_equivalent_p (tree t1, tree t2, |
| 532 |
hash_set<type_pair> *visited, |
| 533 |
location_t loc1, location_t loc2) |
| 534 |
{ |
| 535 |
|
| 536 |
/* This can happen in incomplete types that should be handled earlier. */ |
| 537 |
gcc_assert (t1 && t2); |
| 538 |
|
| 539 |
if (t1 == t2) |
| 540 |
return true; |
| 541 |
|
| 542 |
/* Anonymous namespace types must match exactly. */ |
| 543 |
if ((type_with_linkage_p (TYPE_MAIN_VARIANT (t1)) |
| 544 |
&& type_in_anonymous_namespace_p (TYPE_MAIN_VARIANT (t1))) |
| 545 |
|| (type_with_linkage_p (TYPE_MAIN_VARIANT (t2)) |
| 546 |
&& type_in_anonymous_namespace_p (TYPE_MAIN_VARIANT (t2)))) |
| 547 |
return false; |
| 548 |
|
| 549 |
/* For ODR types be sure to compare their names. |
| 550 |
To support -Wno-odr-type-merging we allow one type to be non-ODR |
| 551 |
and other ODR even though it is a violation. */ |
| 552 |
if (types_odr_comparable (t1, t2)) |
| 553 |
{ |
| 554 |
if (t1 != t2 |
| 555 |
&& odr_type_p (TYPE_MAIN_VARIANT (t1)) |
| 556 |
&& get_odr_type (TYPE_MAIN_VARIANT (t1), true)->odr_violated) |
| 557 |
return false; |
| 558 |
if (!types_same_for_odr (t1, t2)) |
| 559 |
return false; |
| 560 |
if (!type_variants_equivalent_p (t1, t2)) |
| 561 |
return false; |
| 562 |
/* Limit recursion: If subtypes are ODR types and we know |
| 563 |
that they are same, be happy. */ |
| 564 |
if (odr_type_p (TYPE_MAIN_VARIANT (t1))) |
| 565 |
return true; |
| 566 |
} |
| 567 |
|
| 568 |
/* Component types, builtins and possibly violating ODR types |
| 569 |
have to be compared structurally. */ |
| 570 |
if (TREE_CODE (t1) != TREE_CODE (t2)) |
| 571 |
return false; |
| 572 |
if (AGGREGATE_TYPE_P (t1) |
| 573 |
&& (TYPE_NAME (t1) == NULL_TREE) != (TYPE_NAME (t2) == NULL_TREE)) |
| 574 |
return false; |
| 575 |
|
| 576 |
type_pair pair={TYPE_MAIN_VARIANT (t1), TYPE_MAIN_VARIANT (t2)}; |
| 577 |
if (TYPE_UID (TYPE_MAIN_VARIANT (t1)) > TYPE_UID (TYPE_MAIN_VARIANT (t2))) |
| 578 |
{ |
| 579 |
pair.first = TYPE_MAIN_VARIANT (t2); |
| 580 |
pair.second = TYPE_MAIN_VARIANT (t1); |
| 581 |
} |
| 582 |
if (visited->add (pair)) |
| 583 |
return true; |
| 584 |
if (!odr_types_equivalent_p (TYPE_MAIN_VARIANT (t1), TYPE_MAIN_VARIANT (t2), |
| 585 |
false, NULL, visited, loc1, loc2)) |
| 586 |
return false; |
| 587 |
if (!type_variants_equivalent_p (t1, t2)) |
| 588 |
return false; |
| 589 |
return true; |
| 590 |
} |
| 591 |
|
| 592 |
/* Return true if DECL1 and DECL2 are identical methods. Consider |
| 593 |
name equivalent to name.localalias.xyz. */ |
| 594 |
|
| 595 |
static bool |
| 596 |
methods_equal_p (tree decl1, tree decl2) |
| 597 |
{ |
| 598 |
if (DECL_ASSEMBLER_NAME (decl1) == DECL_ASSEMBLER_NAME (decl2)) |
| 599 |
return true; |
| 600 |
const char sep = symbol_table::symbol_suffix_separator (); |
| 601 |
|
| 602 |
const char *name1 = IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (decl1)); |
| 603 |
const char *ptr1 = strchr (name1, sep); |
| 604 |
int len1 = ptr1 ? ptr1 - name1 : strlen (name1); |
| 605 |
|
| 606 |
const char *name2 = IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (decl2)); |
| 607 |
const char *ptr2 = strchr (name2, sep); |
| 608 |
int len2 = ptr2 ? ptr2 - name2 : strlen (name2); |
| 609 |
|
| 610 |
if (len1 != len2) |
| 611 |
return false; |
| 612 |
return !strncmp (name1, name2, len1); |
| 613 |
} |
| 614 |
|
| 615 |
/* Compare two virtual tables, PREVAILING and VTABLE and output ODR |
| 616 |
violation warnings. */ |
| 617 |
|
| 618 |
void |
| 619 |
compare_virtual_tables (varpool_node *prevailing, varpool_node *vtable) |
| 620 |
{ |
| 621 |
int n1, n2; |
| 622 |
|
| 623 |
if (DECL_VIRTUAL_P (prevailing->decl) != DECL_VIRTUAL_P (vtable->decl)) |
| 624 |
{ |
| 625 |
odr_violation_reported = true; |
| 626 |
if (DECL_VIRTUAL_P (prevailing->decl)) |
| 627 |
{ |
| 628 |
varpool_node *tmp = prevailing; |
| 629 |
prevailing = vtable; |
| 630 |
vtable = tmp; |
| 631 |
} |
| 632 |
auto_diagnostic_group d; |
| 633 |
if (warning_at (DECL_SOURCE_LOCATION |
| 634 |
(TYPE_NAME (DECL_CONTEXT (vtable->decl))), |
| 635 |
OPT_Wodr, |
| 636 |
"virtual table of type %qD violates one definition rule", |
| 637 |
DECL_CONTEXT (vtable->decl))) |
| 638 |
inform (DECL_SOURCE_LOCATION (prevailing->decl), |
| 639 |
"variable of same assembler name as the virtual table is " |
| 640 |
"defined in another translation unit"); |
| 641 |
return; |
| 642 |
} |
| 643 |
if (!prevailing->definition || !vtable->definition) |
| 644 |
return; |
| 645 |
|
| 646 |
/* If we do not stream ODR type info, do not bother to do useful compare. */ |
| 647 |
if (!TYPE_BINFO (DECL_CONTEXT (vtable->decl)) |
| 648 |
|| !polymorphic_type_binfo_p (TYPE_BINFO (DECL_CONTEXT (vtable->decl)))) |
| 649 |
return; |
| 650 |
|
| 651 |
odr_type class_type = get_odr_type (DECL_CONTEXT (vtable->decl), true); |
| 652 |
|
| 653 |
if (class_type->odr_violated) |
| 654 |
return; |
| 655 |
|
| 656 |
for (n1 = 0, n2 = 0; true; n1++, n2++) |
| 657 |
{ |
| 658 |
struct ipa_ref *ref1, *ref2; |
| 659 |
bool end1, end2; |
| 660 |
|
| 661 |
end1 = !prevailing->iterate_reference (n1, ref1); |
| 662 |
end2 = !vtable->iterate_reference (n2, ref2); |
| 663 |
|
| 664 |
/* !DECL_VIRTUAL_P means RTTI entry; |
| 665 |
We warn when RTTI is lost because non-RTTI prevails; we silently |
| 666 |
accept the other case. */ |
| 667 |
while (!end2 |
| 668 |
&& (end1 |
| 669 |
|| (methods_equal_p (ref1->referred->decl, |
| 670 |
ref2->referred->decl) |
| 671 |
&& TREE_CODE (ref1->referred->decl) == FUNCTION_DECL)) |
| 672 |
&& TREE_CODE (ref2->referred->decl) != FUNCTION_DECL) |
| 673 |
{ |
| 674 |
if (!class_type->rtti_broken) |
| 675 |
{ |
| 676 |
auto_diagnostic_group d; |
| 677 |
if (warning_at (DECL_SOURCE_LOCATION |
| 678 |
(TYPE_NAME (DECL_CONTEXT (vtable->decl))), |
| 679 |
OPT_Wodr, |
| 680 |
"virtual table of type %qD contains RTTI " |
| 681 |
"information", |
| 682 |
DECL_CONTEXT (vtable->decl))) |
| 683 |
{ |
| 684 |
inform (DECL_SOURCE_LOCATION |
| 685 |
(TYPE_NAME (DECL_CONTEXT (prevailing->decl))), |
| 686 |
"but is prevailed by one without from other" |
| 687 |
" translation unit"); |
| 688 |
inform (DECL_SOURCE_LOCATION |
| 689 |
(TYPE_NAME (DECL_CONTEXT (prevailing->decl))), |
| 690 |
"RTTI will not work on this type"); |
| 691 |
class_type->rtti_broken = true; |
| 692 |
} |
| 693 |
} |
| 694 |
n2++; |
| 695 |
end2 = !vtable->iterate_reference (n2, ref2); |
| 696 |
} |
| 697 |
while (!end1 |
| 698 |
&& (end2 |
| 699 |
|| (methods_equal_p (ref2->referred->decl, ref1->referred->decl) |
| 700 |
&& TREE_CODE (ref2->referred->decl) == FUNCTION_DECL)) |
| 701 |
&& TREE_CODE (ref1->referred->decl) != FUNCTION_DECL) |
| 702 |
{ |
| 703 |
n1++; |
| 704 |
end1 = !prevailing->iterate_reference (n1, ref1); |
| 705 |
} |
| 706 |
|
| 707 |
/* Finished? */ |
| 708 |
if (end1 && end2) |
| 709 |
{ |
| 710 |
/* Extra paranoia; compare the sizes. We do not have information |
| 711 |
about virtual inheritance offsets, so just be sure that these |
| 712 |
match. |
| 713 |
Do this as very last check so the not very informative error |
| 714 |
is not output too often. */ |
| 715 |
if (DECL_SIZE (prevailing->decl) != DECL_SIZE (vtable->decl)) |
| 716 |
{ |
| 717 |
class_type->odr_violated = true; |
| 718 |
auto_diagnostic_group d; |
| 719 |
tree ctx = TYPE_NAME (DECL_CONTEXT (vtable->decl)); |
| 720 |
if (warning_at (DECL_SOURCE_LOCATION (ctx), OPT_Wodr, |
| 721 |
"virtual table of type %qD violates " |
| 722 |
"one definition rule", |
| 723 |
DECL_CONTEXT (vtable->decl))) |
| 724 |
{ |
| 725 |
ctx = TYPE_NAME (DECL_CONTEXT (prevailing->decl)); |
| 726 |
inform (DECL_SOURCE_LOCATION (ctx), |
| 727 |
"the conflicting type defined in another translation" |
| 728 |
" unit has virtual table of different size"); |
| 729 |
} |
| 730 |
} |
| 731 |
return; |
| 732 |
} |
| 733 |
|
| 734 |
if (!end1 && !end2) |
| 735 |
{ |
| 736 |
if (methods_equal_p (ref1->referred->decl, ref2->referred->decl)) |
| 737 |
continue; |
| 738 |
|
| 739 |
class_type->odr_violated = true; |
| 740 |
|
| 741 |
/* If the loops above stopped on non-virtual pointer, we have |
| 742 |
mismatch in RTTI information mangling. */ |
| 743 |
if (TREE_CODE (ref1->referred->decl) != FUNCTION_DECL |
| 744 |
&& TREE_CODE (ref2->referred->decl) != FUNCTION_DECL) |
| 745 |
{ |
| 746 |
auto_diagnostic_group d; |
| 747 |
if (warning_at (DECL_SOURCE_LOCATION |
| 748 |
(TYPE_NAME (DECL_CONTEXT (vtable->decl))), |
| 749 |
OPT_Wodr, |
| 750 |
"virtual table of type %qD violates " |
| 751 |
"one definition rule", |
| 752 |
DECL_CONTEXT (vtable->decl))) |
| 753 |
{ |
| 754 |
inform (DECL_SOURCE_LOCATION |
| 755 |
(TYPE_NAME (DECL_CONTEXT (prevailing->decl))), |
| 756 |
"the conflicting type defined in another translation " |
| 757 |
"unit with different RTTI information"); |
| 758 |
} |
| 759 |
return; |
| 760 |
} |
| 761 |
/* At this point both REF1 and REF2 points either to virtual table |
| 762 |
or virtual method. If one points to virtual table and other to |
| 763 |
method we can complain the same way as if one table was shorter |
| 764 |
than other pointing out the extra method. */ |
| 765 |
if (TREE_CODE (ref1->referred->decl) |
| 766 |
!= TREE_CODE (ref2->referred->decl)) |
| 767 |
{ |
| 768 |
if (VAR_P (ref1->referred->decl)) |
| 769 |
end1 = true; |
| 770 |
else if (VAR_P (ref2->referred->decl)) |
| 771 |
end2 = true; |
| 772 |
} |
| 773 |
} |
| 774 |
|
| 775 |
class_type->odr_violated = true; |
| 776 |
|
| 777 |
/* Complain about size mismatch. Either we have too many virtual |
| 778 |
functions or too many virtual table pointers. */ |
| 779 |
if (end1 || end2) |
| 780 |
{ |
| 781 |
if (end1) |
| 782 |
{ |
| 783 |
varpool_node *tmp = prevailing; |
| 784 |
prevailing = vtable; |
| 785 |
vtable = tmp; |
| 786 |
ref1 = ref2; |
| 787 |
} |
| 788 |
auto_diagnostic_group d; |
| 789 |
if (warning_at (DECL_SOURCE_LOCATION |
| 790 |
(TYPE_NAME (DECL_CONTEXT (vtable->decl))), |
| 791 |
OPT_Wodr, |
| 792 |
"virtual table of type %qD violates " |
| 793 |
"one definition rule", |
| 794 |
DECL_CONTEXT (vtable->decl))) |
| 795 |
{ |
| 796 |
if (TREE_CODE (ref1->referring->decl) == FUNCTION_DECL) |
| 797 |
{ |
| 798 |
inform (DECL_SOURCE_LOCATION |
| 799 |
(TYPE_NAME (DECL_CONTEXT (prevailing->decl))), |
| 800 |
"the conflicting type defined in another translation " |
| 801 |
"unit"); |
| 802 |
inform (DECL_SOURCE_LOCATION |
| 803 |
(TYPE_NAME (DECL_CONTEXT (ref1->referring->decl))), |
| 804 |
"contains additional virtual method %qD", |
| 805 |
ref1->referred->decl); |
| 806 |
} |
| 807 |
else |
| 808 |
{ |
| 809 |
inform (DECL_SOURCE_LOCATION |
| 810 |
(TYPE_NAME (DECL_CONTEXT (prevailing->decl))), |
| 811 |
"the conflicting type defined in another translation " |
| 812 |
"unit has virtual table with more entries"); |
| 813 |
} |
| 814 |
} |
| 815 |
return; |
| 816 |
} |
| 817 |
|
| 818 |
/* And in the last case we have either mismatch in between two virtual |
| 819 |
methods or two virtual table pointers. */ |
| 820 |
auto_diagnostic_group d; |
| 821 |
if (warning_at (DECL_SOURCE_LOCATION |
| 822 |
(TYPE_NAME (DECL_CONTEXT (vtable->decl))), OPT_Wodr, |
| 823 |
"virtual table of type %qD violates " |
| 824 |
"one definition rule", |
| 825 |
DECL_CONTEXT (vtable->decl))) |
| 826 |
{ |
| 827 |
if (TREE_CODE (ref1->referred->decl) == FUNCTION_DECL) |
| 828 |
{ |
| 829 |
inform (DECL_SOURCE_LOCATION |
| 830 |
(TYPE_NAME (DECL_CONTEXT (prevailing->decl))), |
| 831 |
"the conflicting type defined in another translation " |
| 832 |
"unit"); |
| 833 |
gcc_assert (TREE_CODE (ref2->referred->decl) |
| 834 |
== FUNCTION_DECL); |
| 835 |
inform (DECL_SOURCE_LOCATION |
| 836 |
(ref1->referred->ultimate_alias_target ()->decl), |
| 837 |
"virtual method %qD", |
| 838 |
ref1->referred->ultimate_alias_target ()->decl); |
| 839 |
inform (DECL_SOURCE_LOCATION |
| 840 |
(ref2->referred->ultimate_alias_target ()->decl), |
| 841 |
"ought to match virtual method %qD but does not", |
| 842 |
ref2->referred->ultimate_alias_target ()->decl); |
| 843 |
} |
| 844 |
else |
| 845 |
inform (DECL_SOURCE_LOCATION |
| 846 |
(TYPE_NAME (DECL_CONTEXT (prevailing->decl))), |
| 847 |
"the conflicting type defined in another translation " |
| 848 |
"unit has virtual table with different contents"); |
| 849 |
return; |
| 850 |
} |
| 851 |
} |
| 852 |
} |
| 853 |
|
| 854 |
/* Output ODR violation warning about T1 and T2 with REASON. |
| 855 |
Display location of ST1 and ST2 if REASON speaks about field or |
| 856 |
method of the type. |
| 857 |
If WARN is false, do nothing. Set WARNED if warning was indeed |
| 858 |
output. */ |
| 859 |
|
| 860 |
static void |
| 861 |
warn_odr (tree t1, tree t2, tree st1, tree st2, |
| 862 |
bool warn, bool *warned, const char *reason) |
| 863 |
{ |
| 864 |
tree decl2 = TYPE_NAME (TYPE_MAIN_VARIANT (t2)); |
| 865 |
if (warned) |
| 866 |
*warned = false; |
| 867 |
|
| 868 |
if (!warn || !TYPE_NAME(TYPE_MAIN_VARIANT (t1))) |
| 869 |
return; |
| 870 |
|
| 871 |
/* ODR warnings are output during LTO streaming; we must apply location |
| 872 |
cache for potential warnings to be output correctly. */ |
| 873 |
if (lto_location_cache::current_cache) |
| 874 |
lto_location_cache::current_cache->apply_location_cache (); |
| 875 |
|
| 876 |
auto_diagnostic_group d; |
| 877 |
if (t1 != TYPE_MAIN_VARIANT (t1) |
| 878 |
&& TYPE_NAME (t1) != TYPE_NAME (TYPE_MAIN_VARIANT (t1))) |
| 879 |
{ |
| 880 |
if (!warning_at (DECL_SOURCE_LOCATION (TYPE_NAME (TYPE_MAIN_VARIANT (t1))), |
| 881 |
OPT_Wodr, "type %qT (typedef of %qT) violates the " |
| 882 |
"C++ One Definition Rule", |
| 883 |
t1, TYPE_MAIN_VARIANT (t1))) |
| 884 |
return; |
| 885 |
} |
| 886 |
else |
| 887 |
{ |
| 888 |
if (!warning_at (DECL_SOURCE_LOCATION (TYPE_NAME (TYPE_MAIN_VARIANT (t1))), |
| 889 |
OPT_Wodr, "type %qT violates the C++ One Definition Rule", |
| 890 |
t1)) |
| 891 |
return; |
| 892 |
} |
| 893 |
if (!st1 && !st2) |
| 894 |
; |
| 895 |
/* For FIELD_DECL support also case where one of fields is |
| 896 |
NULL - this is used when the structures have mismatching number of |
| 897 |
elements. */ |
| 898 |
else if (!st1 || TREE_CODE (st1) == FIELD_DECL) |
| 899 |
{ |
| 900 |
inform (DECL_SOURCE_LOCATION (decl2), |
| 901 |
"a different type is defined in another translation unit"); |
| 902 |
if (!st1) |
| 903 |
{ |
| 904 |
st1 = st2; |
| 905 |
st2 = NULL; |
| 906 |
} |
| 907 |
inform (DECL_SOURCE_LOCATION (st1), |
| 908 |
"the first difference of corresponding definitions is field %qD", |
| 909 |
st1); |
| 910 |
if (st2) |
| 911 |
decl2 = st2; |
| 912 |
} |
| 913 |
else if (TREE_CODE (st1) == FUNCTION_DECL) |
| 914 |
{ |
| 915 |
inform (DECL_SOURCE_LOCATION (decl2), |
| 916 |
"a different type is defined in another translation unit"); |
| 917 |
inform (DECL_SOURCE_LOCATION (st1), |
| 918 |
"the first difference of corresponding definitions is method %qD", |
| 919 |
st1); |
| 920 |
decl2 = st2; |
| 921 |
} |
| 922 |
else |
| 923 |
return; |
| 924 |
inform (DECL_SOURCE_LOCATION (decl2), reason); |
| 925 |
|
| 926 |
if (warned) |
| 927 |
*warned = true; |
| 928 |
} |
| 929 |
|
| 930 |
/* Return true if T1 and T2 are incompatible and we want to recursively |
| 931 |
dive into them from warn_type_mismatch to give sensible answer. */ |
| 932 |
|
| 933 |
static bool |
| 934 |
type_mismatch_p (tree t1, tree t2) |
| 935 |
{ |
| 936 |
if (odr_or_derived_type_p (t1) && odr_or_derived_type_p (t2) |
| 937 |
&& !odr_types_equivalent_p (t1, t2)) |
| 938 |
return true; |
| 939 |
return !types_compatible_p (t1, t2); |
| 940 |
} |
| 941 |
|
| 942 |
|
| 943 |
/* Types T1 and T2 was found to be incompatible in a context they can't |
| 944 |
(either used to declare a symbol of same assembler name or unified by |
| 945 |
ODR rule). We already output warning about this, but if possible, output |
| 946 |
extra information on how the types mismatch. |
| 947 |
|
| 948 |
This is hard to do in general. We basically handle the common cases. |
| 949 |
|
| 950 |
If LOC1 and LOC2 are meaningful locations, use it in the case the types |
| 951 |
themselves do not have one. */ |
| 952 |
|
| 953 |
void |
| 954 |
warn_types_mismatch (tree t1, tree t2, location_t loc1, location_t loc2) |
| 955 |
{ |
| 956 |
/* Location of type is known only if it has TYPE_NAME and the name is |
| 957 |
TYPE_DECL. */ |
| 958 |
location_t loc_t1 = TYPE_NAME (t1) && TREE_CODE (TYPE_NAME (t1)) == TYPE_DECL |
| 959 |
? DECL_SOURCE_LOCATION (TYPE_NAME (t1)) |
| 960 |
: UNKNOWN_LOCATION; |
| 961 |
location_t loc_t2 = TYPE_NAME (t2) && TREE_CODE (TYPE_NAME (t2)) == TYPE_DECL |
| 962 |
? DECL_SOURCE_LOCATION (TYPE_NAME (t2)) |
| 963 |
: UNKNOWN_LOCATION; |
| 964 |
bool loc_t2_useful = false; |
| 965 |
|
| 966 |
/* With LTO it is a common case that the location of both types match. |
| 967 |
See if T2 has a location that is different from T1. If so, we will |
| 968 |
inform user about the location. |
| 969 |
Do not consider the location passed to us in LOC1/LOC2 as those are |
| 970 |
already output. */ |
| 971 |
if (loc_t2 > BUILTINS_LOCATION && loc_t2 != loc_t1) |
| 972 |
{ |
| 973 |
if (loc_t1 <= BUILTINS_LOCATION) |
| 974 |
loc_t2_useful = true; |
| 975 |
else |
| 976 |
{ |
| 977 |
expanded_location xloc1 = expand_location (loc_t1); |
| 978 |
expanded_location xloc2 = expand_location (loc_t2); |
| 979 |
|
| 980 |
if (strcmp (xloc1.file, xloc2.file) |
| 981 |
|| xloc1.line != xloc2.line |
| 982 |
|| xloc1.column != xloc2.column) |
| 983 |
loc_t2_useful = true; |
| 984 |
} |
| 985 |
} |
| 986 |
|
| 987 |
if (loc_t1 <= BUILTINS_LOCATION) |
| 988 |
loc_t1 = loc1; |
| 989 |
if (loc_t2 <= BUILTINS_LOCATION) |
| 990 |
loc_t2 = loc2; |
| 991 |
|
| 992 |
location_t loc = loc_t1 <= BUILTINS_LOCATION ? loc_t2 : loc_t1; |
| 993 |
|
| 994 |
/* It is a quite common bug to reference anonymous namespace type in |
| 995 |
non-anonymous namespace class. */ |
| 996 |
tree mt1 = TYPE_MAIN_VARIANT (t1); |
| 997 |
tree mt2 = TYPE_MAIN_VARIANT (t2); |
| 998 |
if ((type_with_linkage_p (mt1) |
| 999 |
&& type_in_anonymous_namespace_p (mt1)) |
| 1000 |
|| (type_with_linkage_p (mt2) |
| 1001 |
&& type_in_anonymous_namespace_p (mt2))) |
| 1002 |
{ |
| 1003 |
if (!type_with_linkage_p (mt1) |
| 1004 |
|| !type_in_anonymous_namespace_p (mt1)) |
| 1005 |
{ |
| 1006 |
std::swap (t1, t2); |
| 1007 |
std::swap (mt1, mt2); |
| 1008 |
std::swap (loc_t1, loc_t2); |
| 1009 |
} |
| 1010 |
gcc_assert (TYPE_NAME (mt1) |
| 1011 |
&& TREE_CODE (TYPE_NAME (mt1)) == TYPE_DECL); |
| 1012 |
tree n1 = TYPE_NAME (mt1); |
| 1013 |
tree n2 = TYPE_NAME (mt2) ? TYPE_NAME (mt2) : NULL; |
| 1014 |
|
| 1015 |
if (TREE_CODE (n1) == TYPE_DECL) |
| 1016 |
n1 = DECL_NAME (n1); |
| 1017 |
if (n2 && TREE_CODE (n2) == TYPE_DECL) |
| 1018 |
n2 = DECL_NAME (n2); |
| 1019 |
/* Most of the time, the type names will match, do not be unnecessarily |
| 1020 |
verbose. */ |
| 1021 |
if (n1 != n2) |
| 1022 |
inform (loc_t1, |
| 1023 |
"type %qT defined in anonymous namespace cannot match " |
| 1024 |
"type %qT across the translation unit boundary", |
| 1025 |
t1, t2); |
| 1026 |
else |
| 1027 |
inform (loc_t1, |
| 1028 |
"type %qT defined in anonymous namespace cannot match " |
| 1029 |
"across the translation unit boundary", |
| 1030 |
t1); |
| 1031 |
if (loc_t2_useful) |
| 1032 |
inform (loc_t2, |
| 1033 |
"the incompatible type defined in another translation unit"); |
| 1034 |
return; |
| 1035 |
} |
| 1036 |
/* If types have mangled ODR names and they are different, it is most |
| 1037 |
informative to output those. |
| 1038 |
This also covers types defined in different namespaces. */ |
| 1039 |
const char *odr1 = get_odr_name_for_type (mt1); |
| 1040 |
const char *odr2 = get_odr_name_for_type (mt2); |
| 1041 |
if (odr1 != NULL && odr2 != NULL && odr1 != odr2) |
| 1042 |
{ |
| 1043 |
const int opts = DMGL_PARAMS | DMGL_ANSI | DMGL_TYPES; |
| 1044 |
char *name1 = xstrdup (cplus_demangle (odr1, opts)); |
| 1045 |
char *name2 = cplus_demangle (odr2, opts); |
| 1046 |
if (name1 && name2 && strcmp (name1, name2)) |
| 1047 |
{ |
| 1048 |
inform (loc_t1, |
| 1049 |
"type name %qs should match type name %qs", |
| 1050 |
name1, name2); |
| 1051 |
if (loc_t2_useful) |
| 1052 |
inform (loc_t2, |
| 1053 |
"the incompatible type is defined here"); |
| 1054 |
free (name1); |
| 1055 |
return; |
| 1056 |
} |
| 1057 |
free (name1); |
| 1058 |
} |
| 1059 |
/* A tricky case are compound types. Often they appear the same in source |
| 1060 |
code and the mismatch is dragged in by type they are build from. |
| 1061 |
Look for those differences in subtypes and try to be informative. In other |
| 1062 |
cases just output nothing because the source code is probably different |
| 1063 |
and in this case we already output a all necessary info. */ |
| 1064 |
if (!TYPE_NAME (t1) || !TYPE_NAME (t2)) |
| 1065 |
{ |
| 1066 |
if (TREE_CODE (t1) == TREE_CODE (t2)) |
| 1067 |
{ |
| 1068 |
if (TREE_CODE (t1) == ARRAY_TYPE |
| 1069 |
&& COMPLETE_TYPE_P (t1) && COMPLETE_TYPE_P (t2)) |
| 1070 |
{ |
| 1071 |
tree i1 = TYPE_DOMAIN (t1); |
| 1072 |
tree i2 = TYPE_DOMAIN (t2); |
| 1073 |
|
| 1074 |
if (i1 && i2 |
| 1075 |
&& TYPE_MAX_VALUE (i1) |
| 1076 |
&& TYPE_MAX_VALUE (i2) |
| 1077 |
&& !operand_equal_p (TYPE_MAX_VALUE (i1), |
| 1078 |
TYPE_MAX_VALUE (i2), 0)) |
| 1079 |
{ |
| 1080 |
inform (loc, |
| 1081 |
"array types have different bounds"); |
| 1082 |
return; |
| 1083 |
} |
| 1084 |
} |
| 1085 |
if ((POINTER_TYPE_P (t1) || TREE_CODE (t1) == ARRAY_TYPE) |
| 1086 |
&& type_mismatch_p (TREE_TYPE (t1), TREE_TYPE (t2))) |
| 1087 |
warn_types_mismatch (TREE_TYPE (t1), TREE_TYPE (t2), loc_t1, loc_t2); |
| 1088 |
else if (TREE_CODE (t1) == METHOD_TYPE |
| 1089 |
|| TREE_CODE (t1) == FUNCTION_TYPE) |
| 1090 |
{ |
| 1091 |
tree parms1 = NULL, parms2 = NULL; |
| 1092 |
int count = 1; |
| 1093 |
|
| 1094 |
if (type_mismatch_p (TREE_TYPE (t1), TREE_TYPE (t2))) |
| 1095 |
{ |
| 1096 |
inform (loc, "return value type mismatch"); |
| 1097 |
warn_types_mismatch (TREE_TYPE (t1), TREE_TYPE (t2), loc_t1, |
| 1098 |
loc_t2); |
| 1099 |
return; |
| 1100 |
} |
| 1101 |
if (prototype_p (t1) && prototype_p (t2)) |
| 1102 |
for (parms1 = TYPE_ARG_TYPES (t1), parms2 = TYPE_ARG_TYPES (t2); |
| 1103 |
parms1 && parms2; |
| 1104 |
parms1 = TREE_CHAIN (parms1), parms2 = TREE_CHAIN (parms2), |
| 1105 |
count++) |
| 1106 |
{ |
| 1107 |
if (type_mismatch_p (TREE_VALUE (parms1), TREE_VALUE (parms2))) |
| 1108 |
{ |
| 1109 |
if (count == 1 && TREE_CODE (t1) == METHOD_TYPE) |
| 1110 |
inform (loc, |
| 1111 |
"implicit this pointer type mismatch"); |
| 1112 |
else |
| 1113 |
inform (loc, |
| 1114 |
"type mismatch in parameter %i", |
| 1115 |
count - (TREE_CODE (t1) == METHOD_TYPE)); |
| 1116 |
warn_types_mismatch (TREE_VALUE (parms1), |
| 1117 |
TREE_VALUE (parms2), |
| 1118 |
loc_t1, loc_t2); |
| 1119 |
return; |
| 1120 |
} |
| 1121 |
} |
| 1122 |
if (parms1 || parms2) |
| 1123 |
{ |
| 1124 |
inform (loc, |
| 1125 |
"types have different parameter counts"); |
| 1126 |
return; |
| 1127 |
} |
| 1128 |
} |
| 1129 |
} |
| 1130 |
return; |
| 1131 |
} |
| 1132 |
|
| 1133 |
if (types_odr_comparable (t1, t2) |
| 1134 |
/* We make assign integers mangled names to be able to handle |
| 1135 |
signed/unsigned chars. Accepting them here would however lead to |
| 1136 |
confusing message like |
| 1137 |
"type ‘const int’ itself violates the C++ One Definition Rule" */ |
| 1138 |
&& TREE_CODE (t1) != INTEGER_TYPE |
| 1139 |
&& types_same_for_odr (t1, t2)) |
| 1140 |
inform (loc_t1, |
| 1141 |
"type %qT itself violates the C++ One Definition Rule", t1); |
| 1142 |
/* Prevent pointless warnings like "struct aa" should match "struct aa". */ |
| 1143 |
else if (TYPE_NAME (t1) == TYPE_NAME (t2) |
| 1144 |
&& TREE_CODE (t1) == TREE_CODE (t2) && !loc_t2_useful) |
| 1145 |
return; |
| 1146 |
else |
| 1147 |
inform (loc_t1, "type %qT should match type %qT", |
| 1148 |
t1, t2); |
| 1149 |
if (loc_t2_useful) |
| 1150 |
inform (loc_t2, "the incompatible type is defined here"); |
| 1151 |
} |
| 1152 |
|
| 1153 |
/* Return true if T should be ignored in TYPE_FIELDS for ODR comparison. */ |
| 1154 |
|
| 1155 |
static bool |
| 1156 |
skip_in_fields_list_p (tree t) |
| 1157 |
{ |
| 1158 |
if (TREE_CODE (t) != FIELD_DECL) |
| 1159 |
return true; |
| 1160 |
/* C++ FE introduces zero sized fields depending on -std setting, see |
| 1161 |
PR89358. */ |
| 1162 |
if (DECL_SIZE (t) |
| 1163 |
&& integer_zerop (DECL_SIZE (t)) |
| 1164 |
&& DECL_ARTIFICIAL (t) |
| 1165 |
&& DECL_IGNORED_P (t) |
| 1166 |
&& !DECL_NAME (t)) |
| 1167 |
return true; |
| 1168 |
return false; |
| 1169 |
} |
| 1170 |
|
| 1171 |
/* Compare T1 and T2, report ODR violations if WARN is true and set |
| 1172 |
WARNED to true if anything is reported. Return true if types match. |
| 1173 |
If true is returned, the types are also compatible in the sense of |
| 1174 |
gimple_canonical_types_compatible_p. |
| 1175 |
If LOC1 and LOC2 is not UNKNOWN_LOCATION it may be used to output a warning |
| 1176 |
about the type if the type itself do not have location. */ |
| 1177 |
|
| 1178 |
static bool |
| 1179 |
odr_types_equivalent_p (tree t1, tree t2, bool warn, bool *warned, |
| 1180 |
hash_set<type_pair> *visited, |
| 1181 |
location_t loc1, location_t loc2) |
| 1182 |
{ |
| 1183 |
/* Check first for the obvious case of pointer identity. */ |
| 1184 |
if (t1 == t2) |
| 1185 |
return true; |
| 1186 |
|
| 1187 |
/* Can't be the same type if the types don't have the same code. */ |
| 1188 |
if (TREE_CODE (t1) != TREE_CODE (t2)) |
| 1189 |
{ |
| 1190 |
warn_odr (t1, t2, NULL, NULL, warn, warned, |
| 1191 |
G_("a different type is defined in another translation unit")); |
| 1192 |
return false; |
| 1193 |
} |
| 1194 |
|
| 1195 |
if ((type_with_linkage_p (TYPE_MAIN_VARIANT (t1)) |
| 1196 |
&& type_in_anonymous_namespace_p (TYPE_MAIN_VARIANT (t1))) |
| 1197 |
|| (type_with_linkage_p (TYPE_MAIN_VARIANT (t2)) |
| 1198 |
&& type_in_anonymous_namespace_p (TYPE_MAIN_VARIANT (t2)))) |
| 1199 |
{ |
| 1200 |
/* We cannot trip this when comparing ODR types, only when trying to |
| 1201 |
match different ODR derivations from different declarations. |
| 1202 |
So WARN should be always false. */ |
| 1203 |
gcc_assert (!warn); |
| 1204 |
return false; |
| 1205 |
} |
| 1206 |
|
| 1207 |
if (TREE_CODE (t1) == ENUMERAL_TYPE |
| 1208 |
&& TYPE_VALUES (t1) && TYPE_VALUES (t2)) |
| 1209 |
{ |
| 1210 |
tree v1, v2; |
| 1211 |
for (v1 = TYPE_VALUES (t1), v2 = TYPE_VALUES (t2); |
| 1212 |
v1 && v2 ; v1 = TREE_CHAIN (v1), v2 = TREE_CHAIN (v2)) |
| 1213 |
{ |
| 1214 |
if (TREE_PURPOSE (v1) != TREE_PURPOSE (v2)) |
| 1215 |
{ |
| 1216 |
warn_odr (t1, t2, NULL, NULL, warn, warned, |
| 1217 |
G_("an enum with different value name" |
| 1218 |
" is defined in another translation unit")); |
| 1219 |
return false; |
| 1220 |
} |
| 1221 |
if (!operand_equal_p (TREE_VALUE (v1), TREE_VALUE (v2), 0)) |
| 1222 |
{ |
| 1223 |
warn_odr (t1, t2, NULL, NULL, warn, warned, |
| 1224 |
G_("an enum with different values is defined" |
| 1225 |
" in another translation unit")); |
| 1226 |
return false; |
| 1227 |
} |
| 1228 |
} |
| 1229 |
if (v1 || v2) |
| 1230 |
{ |
| 1231 |
warn_odr (t1, t2, NULL, NULL, warn, warned, |
| 1232 |
G_("an enum with mismatching number of values " |
| 1233 |
"is defined in another translation unit")); |
| 1234 |
return false; |
| 1235 |
} |
| 1236 |
} |
| 1237 |
|
| 1238 |
/* Non-aggregate types can be handled cheaply. */ |
| 1239 |
if (INTEGRAL_TYPE_P (t1) |
| 1240 |
|| SCALAR_FLOAT_TYPE_P (t1) |
| 1241 |
|| FIXED_POINT_TYPE_P (t1) |
| 1242 |
|| TREE_CODE (t1) == VECTOR_TYPE |
| 1243 |
|| TREE_CODE (t1) == COMPLEX_TYPE |
| 1244 |
|| TREE_CODE (t1) == OFFSET_TYPE |
| 1245 |
|| POINTER_TYPE_P (t1)) |
| 1246 |
{ |
| 1247 |
if (TYPE_PRECISION (t1) != TYPE_PRECISION (t2)) |
| 1248 |
{ |
| 1249 |
warn_odr (t1, t2, NULL, NULL, warn, warned, |
| 1250 |
G_("a type with different precision is defined " |
| 1251 |
"in another translation unit")); |
| 1252 |
return false; |
| 1253 |
} |
| 1254 |
if (TYPE_UNSIGNED (t1) != TYPE_UNSIGNED (t2)) |
| 1255 |
{ |
| 1256 |
warn_odr (t1, t2, NULL, NULL, warn, warned, |
| 1257 |
G_("a type with different signedness is defined " |
| 1258 |
"in another translation unit")); |
| 1259 |
return false; |
| 1260 |
} |
| 1261 |
|
| 1262 |
if (TREE_CODE (t1) == INTEGER_TYPE |
| 1263 |
&& TYPE_STRING_FLAG (t1) != TYPE_STRING_FLAG (t2)) |
| 1264 |
{ |
| 1265 |
/* char WRT uint_8? */ |
| 1266 |
warn_odr (t1, t2, NULL, NULL, warn, warned, |
| 1267 |
G_("a different type is defined in another " |
| 1268 |
"translation unit")); |
| 1269 |
return false; |
| 1270 |
} |
| 1271 |
|
| 1272 |
/* For canonical type comparisons we do not want to build SCCs |
| 1273 |
so we cannot compare pointed-to types. But we can, for now, |
| 1274 |
require the same pointed-to type kind and match what |
| 1275 |
useless_type_conversion_p would do. */ |
| 1276 |
if (POINTER_TYPE_P (t1)) |
| 1277 |
{ |
| 1278 |
if (TYPE_ADDR_SPACE (TREE_TYPE (t1)) |
| 1279 |
!= TYPE_ADDR_SPACE (TREE_TYPE (t2))) |
| 1280 |
{ |
| 1281 |
warn_odr (t1, t2, NULL, NULL, warn, warned, |
| 1282 |
G_("it is defined as a pointer in different address " |
| 1283 |
"space in another translation unit")); |
| 1284 |
return false; |
| 1285 |
} |
| 1286 |
|
| 1287 |
if (!odr_subtypes_equivalent_p (TREE_TYPE (t1), TREE_TYPE (t2), |
| 1288 |
visited, loc1, loc2)) |
| 1289 |
{ |
| 1290 |
warn_odr (t1, t2, NULL, NULL, warn, warned, |
| 1291 |
G_("it is defined as a pointer to different type " |
| 1292 |
"in another translation unit")); |
| 1293 |
if (warn && warned) |
| 1294 |
warn_types_mismatch (TREE_TYPE (t1), TREE_TYPE (t2), |
| 1295 |
loc1, loc2); |
| 1296 |
return false; |
| 1297 |
} |
| 1298 |
} |
| 1299 |
|
| 1300 |
if ((TREE_CODE (t1) == VECTOR_TYPE || TREE_CODE (t1) == COMPLEX_TYPE) |
| 1301 |
&& !odr_subtypes_equivalent_p (TREE_TYPE (t1), TREE_TYPE (t2), |
| 1302 |
visited, loc1, loc2)) |
| 1303 |
{ |
| 1304 |
/* Probably specific enough. */ |
| 1305 |
warn_odr (t1, t2, NULL, NULL, warn, warned, |
| 1306 |
G_("a different type is defined " |
| 1307 |
"in another translation unit")); |
| 1308 |
if (warn && warned) |
| 1309 |
warn_types_mismatch (TREE_TYPE (t1), TREE_TYPE (t2), loc1, loc2); |
| 1310 |
return false; |
| 1311 |
} |
| 1312 |
} |
| 1313 |
/* Do type-specific comparisons. */ |
| 1314 |
else switch (TREE_CODE (t1)) |
| 1315 |
{ |
| 1316 |
case ARRAY_TYPE: |
| 1317 |
{ |
| 1318 |
/* Array types are the same if the element types are the same and |
| 1319 |
the number of elements are the same. */ |
| 1320 |
if (!odr_subtypes_equivalent_p (TREE_TYPE (t1), TREE_TYPE (t2), |
| 1321 |
visited, loc1, loc2)) |
| 1322 |
{ |
| 1323 |
warn_odr (t1, t2, NULL, NULL, warn, warned, |
| 1324 |
G_("a different type is defined in another " |
| 1325 |
"translation unit")); |
| 1326 |
if (warn && warned) |
| 1327 |
warn_types_mismatch (TREE_TYPE (t1), TREE_TYPE (t2), loc1, loc2); |
| 1328 |
} |
| 1329 |
gcc_assert (TYPE_STRING_FLAG (t1) == TYPE_STRING_FLAG (t2)); |
| 1330 |
gcc_assert (TYPE_NONALIASED_COMPONENT (t1) |
| 1331 |
== TYPE_NONALIASED_COMPONENT (t2)); |
| 1332 |
|
| 1333 |
tree i1 = TYPE_DOMAIN (t1); |
| 1334 |
tree i2 = TYPE_DOMAIN (t2); |
| 1335 |
|
| 1336 |
/* For an incomplete external array, the type domain can be |
| 1337 |
NULL_TREE. Check this condition also. */ |
| 1338 |
if (i1 == NULL_TREE || i2 == NULL_TREE) |
| 1339 |
return type_variants_equivalent_p (t1, t2); |
| 1340 |
|
| 1341 |
tree min1 = TYPE_MIN_VALUE (i1); |
| 1342 |
tree min2 = TYPE_MIN_VALUE (i2); |
| 1343 |
tree max1 = TYPE_MAX_VALUE (i1); |
| 1344 |
tree max2 = TYPE_MAX_VALUE (i2); |
| 1345 |
|
| 1346 |
/* In C++, minimums should be always 0. */ |
| 1347 |
gcc_assert (min1 == min2); |
| 1348 |
if (!operand_equal_p (max1, max2, 0)) |
| 1349 |
{ |
| 1350 |
warn_odr (t1, t2, NULL, NULL, warn, warned, |
| 1351 |
G_("an array of different size is defined " |
| 1352 |
"in another translation unit")); |
| 1353 |
return false; |
| 1354 |
} |
| 1355 |
} |
| 1356 |
break; |
| 1357 |
|
| 1358 |
case METHOD_TYPE: |
| 1359 |
case FUNCTION_TYPE: |
| 1360 |
/* Function types are the same if the return type and arguments types |
| 1361 |
are the same. */ |
| 1362 |
if (!odr_subtypes_equivalent_p (TREE_TYPE (t1), TREE_TYPE (t2), |
| 1363 |
visited, loc1, loc2)) |
| 1364 |
{ |
| 1365 |
warn_odr (t1, t2, NULL, NULL, warn, warned, |
| 1366 |
G_("has different return value " |
| 1367 |
"in another translation unit")); |
| 1368 |
if (warn && warned) |
| 1369 |
warn_types_mismatch (TREE_TYPE (t1), TREE_TYPE (t2), loc1, loc2); |
| 1370 |
return false; |
| 1371 |
} |
| 1372 |
|
| 1373 |
if (TYPE_ARG_TYPES (t1) == TYPE_ARG_TYPES (t2) |
| 1374 |
|| !prototype_p (t1) || !prototype_p (t2)) |
| 1375 |
return type_variants_equivalent_p (t1, t2); |
| 1376 |
else |
| 1377 |
{ |
| 1378 |
tree parms1, parms2; |
| 1379 |
|
| 1380 |
for (parms1 = TYPE_ARG_TYPES (t1), parms2 = TYPE_ARG_TYPES (t2); |
| 1381 |
parms1 && parms2; |
| 1382 |
parms1 = TREE_CHAIN (parms1), parms2 = TREE_CHAIN (parms2)) |
| 1383 |
{ |
| 1384 |
if (!odr_subtypes_equivalent_p |
| 1385 |
(TREE_VALUE (parms1), TREE_VALUE (parms2), |
| 1386 |
visited, loc1, loc2)) |
| 1387 |
{ |
| 1388 |
warn_odr (t1, t2, NULL, NULL, warn, warned, |
| 1389 |
G_("has different parameters in another " |
| 1390 |
"translation unit")); |
| 1391 |
if (warn && warned) |
| 1392 |
warn_types_mismatch (TREE_VALUE (parms1), |
| 1393 |
TREE_VALUE (parms2), loc1, loc2); |
| 1394 |
return false; |
| 1395 |
} |
| 1396 |
} |
| 1397 |
|
| 1398 |
if (parms1 || parms2) |
| 1399 |
{ |
| 1400 |
warn_odr (t1, t2, NULL, NULL, warn, warned, |
| 1401 |
G_("has different parameters " |
| 1402 |
"in another translation unit")); |
| 1403 |
return false; |
| 1404 |
} |
| 1405 |
|
| 1406 |
return type_variants_equivalent_p (t1, t2); |
| 1407 |
} |
| 1408 |
|
| 1409 |
case RECORD_TYPE: |
| 1410 |
case UNION_TYPE: |
| 1411 |
case QUAL_UNION_TYPE: |
| 1412 |
{ |
| 1413 |
tree f1, f2; |
| 1414 |
|
| 1415 |
/* For aggregate types, all the fields must be the same. */ |
| 1416 |
if (COMPLETE_TYPE_P (t1) && COMPLETE_TYPE_P (t2)) |
| 1417 |
{ |
| 1418 |
if (TYPE_BINFO (t1) && TYPE_BINFO (t2) |
| 1419 |
&& polymorphic_type_binfo_p (TYPE_BINFO (t1)) |
| 1420 |
!= polymorphic_type_binfo_p (TYPE_BINFO (t2))) |
| 1421 |
{ |
| 1422 |
if (polymorphic_type_binfo_p (TYPE_BINFO (t1))) |
| 1423 |
warn_odr (t1, t2, NULL, NULL, warn, warned, |
| 1424 |
G_("a type defined in another translation unit " |
| 1425 |
"is not polymorphic")); |
| 1426 |
else |
| 1427 |
warn_odr (t1, t2, NULL, NULL, warn, warned, |
| 1428 |
G_("a type defined in another translation unit " |
| 1429 |
"is polymorphic")); |
| 1430 |
return false; |
| 1431 |
} |
| 1432 |
for (f1 = TYPE_FIELDS (t1), f2 = TYPE_FIELDS (t2); |
| 1433 |
f1 || f2; |
| 1434 |
f1 = TREE_CHAIN (f1), f2 = TREE_CHAIN (f2)) |
| 1435 |
{ |
| 1436 |
/* Skip non-fields. */ |
| 1437 |
while (f1 && skip_in_fields_list_p (f1)) |
| 1438 |
f1 = TREE_CHAIN (f1); |
| 1439 |
while (f2 && skip_in_fields_list_p (f2)) |
| 1440 |
f2 = TREE_CHAIN (f2); |
| 1441 |
if (!f1 || !f2) |
| 1442 |
break; |
| 1443 |
if (DECL_VIRTUAL_P (f1) != DECL_VIRTUAL_P (f2)) |
| 1444 |
{ |
| 1445 |
warn_odr (t1, t2, NULL, NULL, warn, warned, |
| 1446 |
G_("a type with different virtual table pointers" |
| 1447 |
" is defined in another translation unit")); |
| 1448 |
return false; |
| 1449 |
} |
| 1450 |
if (DECL_ARTIFICIAL (f1) != DECL_ARTIFICIAL (f2)) |
| 1451 |
{ |
| 1452 |
warn_odr (t1, t2, NULL, NULL, warn, warned, |
| 1453 |
G_("a type with different bases is defined " |
| 1454 |
"in another translation unit")); |
| 1455 |
return false; |
| 1456 |
} |
| 1457 |
if (DECL_NAME (f1) != DECL_NAME (f2) |
| 1458 |
&& !DECL_ARTIFICIAL (f1)) |
| 1459 |
{ |
| 1460 |
warn_odr (t1, t2, f1, f2, warn, warned, |
| 1461 |
G_("a field with different name is defined " |
| 1462 |
"in another translation unit")); |
| 1463 |
return false; |
| 1464 |
} |
| 1465 |
if (!odr_subtypes_equivalent_p (TREE_TYPE (f1), |
| 1466 |
TREE_TYPE (f2), |
| 1467 |
visited, loc1, loc2)) |
| 1468 |
{ |
| 1469 |
/* Do not warn about artificial fields and just go into |
| 1470 |
generic field mismatch warning. */ |
| 1471 |
if (DECL_ARTIFICIAL (f1)) |
| 1472 |
break; |
| 1473 |
|
| 1474 |
warn_odr (t1, t2, f1, f2, warn, warned, |
| 1475 |
G_("a field of same name but different type " |
| 1476 |
"is defined in another translation unit")); |
| 1477 |
if (warn && warned) |
| 1478 |
warn_types_mismatch (TREE_TYPE (f1), TREE_TYPE (f2), loc1, loc2); |
| 1479 |
return false; |
| 1480 |
} |
| 1481 |
if (!gimple_compare_field_offset (f1, f2)) |
| 1482 |
{ |
| 1483 |
/* Do not warn about artificial fields and just go into |
| 1484 |
generic field mismatch warning. */ |
| 1485 |
if (DECL_ARTIFICIAL (f1)) |
| 1486 |
break; |
| 1487 |
warn_odr (t1, t2, f1, f2, warn, warned, |
| 1488 |
G_("fields have different layout " |
| 1489 |
"in another translation unit")); |
| 1490 |
return false; |
| 1491 |
} |
| 1492 |
if (DECL_BIT_FIELD (f1) != DECL_BIT_FIELD (f2)) |
| 1493 |
{ |
| 1494 |
warn_odr (t1, t2, f1, f2, warn, warned, |
| 1495 |
G_("one field is a bitfield while the other " |
| 1496 |
"is not")); |
| 1497 |
return false; |
| 1498 |
} |
| 1499 |
else |
| 1500 |
gcc_assert (DECL_NONADDRESSABLE_P (f1) |
| 1501 |
== DECL_NONADDRESSABLE_P (f2)); |
| 1502 |
} |
| 1503 |
|
| 1504 |
/* If one aggregate has more fields than the other, they |
| 1505 |
are not the same. */ |
| 1506 |
if (f1 || f2) |
| 1507 |
{ |
| 1508 |
if ((f1 && DECL_VIRTUAL_P (f1)) || (f2 && DECL_VIRTUAL_P (f2))) |
| 1509 |
warn_odr (t1, t2, NULL, NULL, warn, warned, |
| 1510 |
G_("a type with different virtual table pointers" |
| 1511 |
" is defined in another translation unit")); |
| 1512 |
else if ((f1 && DECL_ARTIFICIAL (f1)) |
| 1513 |
|| (f2 && DECL_ARTIFICIAL (f2))) |
| 1514 |
warn_odr (t1, t2, NULL, NULL, warn, warned, |
| 1515 |
G_("a type with different bases is defined " |
| 1516 |
"in another translation unit")); |
| 1517 |
else |
| 1518 |
warn_odr (t1, t2, f1, f2, warn, warned, |
| 1519 |
G_("a type with different number of fields " |
| 1520 |
"is defined in another translation unit")); |
| 1521 |
|
| 1522 |
return false; |
| 1523 |
} |
| 1524 |
} |
| 1525 |
break; |
| 1526 |
} |
| 1527 |
case VOID_TYPE: |
| 1528 |
case NULLPTR_TYPE: |
| 1529 |
break; |
| 1530 |
|
| 1531 |
default: |
| 1532 |
debug_tree (t1); |
| 1533 |
gcc_unreachable (); |
| 1534 |
} |
| 1535 |
|
| 1536 |
/* Those are better to come last as they are utterly uninformative. */ |
| 1537 |
if (TYPE_SIZE (t1) && TYPE_SIZE (t2) |
| 1538 |
&& !operand_equal_p (TYPE_SIZE (t1), TYPE_SIZE (t2), 0)) |
| 1539 |
{ |
| 1540 |
warn_odr (t1, t2, NULL, NULL, warn, warned, |
| 1541 |
G_("a type with different size " |
| 1542 |
"is defined in another translation unit")); |
| 1543 |
return false; |
| 1544 |
} |
| 1545 |
|
| 1546 |
gcc_assert (!TYPE_SIZE_UNIT (t1) || !TYPE_SIZE_UNIT (t2) |
| 1547 |
|| operand_equal_p (TYPE_SIZE_UNIT (t1), |
| 1548 |
TYPE_SIZE_UNIT (t2), 0)); |
| 1549 |
return type_variants_equivalent_p (t1, t2); |
| 1550 |
} |
| 1551 |
|
| 1552 |
/* Return true if TYPE1 and TYPE2 are equivalent for One Definition Rule. */ |
| 1553 |
|
| 1554 |
bool |
| 1555 |
odr_types_equivalent_p (tree type1, tree type2) |
| 1556 |
{ |
| 1557 |
gcc_checking_assert (odr_or_derived_type_p (type1) |
| 1558 |
&& odr_or_derived_type_p (type2)); |
| 1559 |
|
| 1560 |
hash_set<type_pair> visited; |
| 1561 |
return odr_types_equivalent_p (type1, type2, false, NULL, |
| 1562 |
&visited, UNKNOWN_LOCATION, UNKNOWN_LOCATION); |
| 1563 |
} |
| 1564 |
|
| 1565 |
/* TYPE is equivalent to VAL by ODR, but its tree representation differs |
| 1566 |
from VAL->type. This may happen in LTO where tree merging did not merge |
| 1567 |
all variants of the same type or due to ODR violation. |
| 1568 |
|
| 1569 |
Analyze and report ODR violations and add type to duplicate list. |
| 1570 |
If TYPE is more specified than VAL->type, prevail VAL->type. Also if |
| 1571 |
this is first time we see definition of a class return true so the |
| 1572 |
base types are analyzed. */ |
| 1573 |
|
| 1574 |
static bool |
| 1575 |
add_type_duplicate (odr_type val, tree type) |
| 1576 |
{ |
| 1577 |
bool build_bases = false; |
| 1578 |
bool prevail = false; |
| 1579 |
bool odr_must_violate = false; |
| 1580 |
|
| 1581 |
if (!val->types_set) |
| 1582 |
val->types_set = new hash_set<tree>; |
| 1583 |
|
| 1584 |
/* Chose polymorphic type as leader (this happens only in case of ODR |
| 1585 |
violations. */ |
| 1586 |
if ((TREE_CODE (type) == RECORD_TYPE && TYPE_BINFO (type) |
| 1587 |
&& polymorphic_type_binfo_p (TYPE_BINFO (type))) |
| 1588 |
&& (TREE_CODE (val->type) != RECORD_TYPE || !TYPE_BINFO (val->type) |
| 1589 |
|| !polymorphic_type_binfo_p (TYPE_BINFO (val->type)))) |
| 1590 |
{ |
| 1591 |
prevail = true; |
| 1592 |
build_bases = true; |
| 1593 |
} |
| 1594 |
/* Always prefer complete type to be the leader. */ |
| 1595 |
else if (!COMPLETE_TYPE_P (val->type) && COMPLETE_TYPE_P (type)) |
| 1596 |
{ |
| 1597 |
prevail = true; |
| 1598 |
if (TREE_CODE (type) == RECORD_TYPE) |
| 1599 |
build_bases = TYPE_BINFO (type); |
| 1600 |
} |
| 1601 |
else if (COMPLETE_TYPE_P (val->type) && !COMPLETE_TYPE_P (type)) |
| 1602 |
; |
| 1603 |
else if (TREE_CODE (val->type) == ENUMERAL_TYPE |
| 1604 |
&& TREE_CODE (type) == ENUMERAL_TYPE |
| 1605 |
&& !TYPE_VALUES (val->type) && TYPE_VALUES (type)) |
| 1606 |
prevail = true; |
| 1607 |
else if (TREE_CODE (val->type) == RECORD_TYPE |
| 1608 |
&& TREE_CODE (type) == RECORD_TYPE |
| 1609 |
&& TYPE_BINFO (type) && !TYPE_BINFO (val->type)) |
| 1610 |
{ |
| 1611 |
gcc_assert (!val->bases.length ()); |
| 1612 |
build_bases = true; |
| 1613 |
prevail = true; |
| 1614 |
} |
| 1615 |
|
| 1616 |
if (prevail) |
| 1617 |
std::swap (val->type, type); |
| 1618 |
|
| 1619 |
val->types_set->add (type); |
| 1620 |
|
| 1621 |
if (!odr_hash) |
| 1622 |
return false; |
| 1623 |
|
| 1624 |
gcc_checking_assert (can_be_name_hashed_p (type) |
| 1625 |
&& can_be_name_hashed_p (val->type)); |
| 1626 |
|
| 1627 |
bool merge = true; |
| 1628 |
bool base_mismatch = false; |
| 1629 |
unsigned int i; |
| 1630 |
bool warned = false; |
| 1631 |
hash_set<type_pair> visited; |
| 1632 |
|
| 1633 |
gcc_assert (in_lto_p); |
| 1634 |
vec_safe_push (val->types, type); |
| 1635 |
|
| 1636 |
/* If both are class types, compare the bases. */ |
| 1637 |
if (COMPLETE_TYPE_P (type) && COMPLETE_TYPE_P (val->type) |
| 1638 |
&& TREE_CODE (val->type) == RECORD_TYPE |
| 1639 |
&& TREE_CODE (type) == RECORD_TYPE |
| 1640 |
&& TYPE_BINFO (val->type) && TYPE_BINFO (type)) |
| 1641 |
{ |
| 1642 |
if (BINFO_N_BASE_BINFOS (TYPE_BINFO (type)) |
| 1643 |
!= BINFO_N_BASE_BINFOS (TYPE_BINFO (val->type))) |
| 1644 |
{ |
| 1645 |
if (!flag_ltrans && !warned && !val->odr_violated) |
| 1646 |
{ |
| 1647 |
tree extra_base; |
| 1648 |
warn_odr (type, val->type, NULL, NULL, !warned, &warned, |
| 1649 |
"a type with the same name but different " |
| 1650 |
"number of polymorphic bases is " |
| 1651 |
"defined in another translation unit"); |
| 1652 |
if (warned) |
| 1653 |
{ |
| 1654 |
if (BINFO_N_BASE_BINFOS (TYPE_BINFO (type)) |
| 1655 |
> BINFO_N_BASE_BINFOS (TYPE_BINFO (val->type))) |
| 1656 |
extra_base = BINFO_BASE_BINFO |
| 1657 |
(TYPE_BINFO (type), |
| 1658 |
BINFO_N_BASE_BINFOS (TYPE_BINFO (val->type))); |
| 1659 |
else |
| 1660 |
extra_base = BINFO_BASE_BINFO |
| 1661 |
(TYPE_BINFO (val->type), |
| 1662 |
BINFO_N_BASE_BINFOS (TYPE_BINFO (type))); |
| 1663 |
tree extra_base_type = BINFO_TYPE (extra_base); |
| 1664 |
inform (DECL_SOURCE_LOCATION (TYPE_NAME (extra_base_type)), |
| 1665 |
"the extra base is defined here"); |
| 1666 |
} |
| 1667 |
} |
| 1668 |
base_mismatch = true; |
| 1669 |
} |
| 1670 |
else |
| 1671 |
for (i = 0; i < BINFO_N_BASE_BINFOS (TYPE_BINFO (type)); i++) |
| 1672 |
{ |
| 1673 |
tree base1 = BINFO_BASE_BINFO (TYPE_BINFO (type), i); |
| 1674 |
tree base2 = BINFO_BASE_BINFO (TYPE_BINFO (val->type), i); |
| 1675 |
tree type1 = BINFO_TYPE (base1); |
| 1676 |
tree type2 = BINFO_TYPE (base2); |
| 1677 |
|
| 1678 |
if (types_odr_comparable (type1, type2)) |
| 1679 |
{ |
| 1680 |
if (!types_same_for_odr (type1, type2)) |
| 1681 |
base_mismatch = true; |
| 1682 |
} |
| 1683 |
else |
| 1684 |
if (!odr_types_equivalent_p (type1, type2)) |
| 1685 |
base_mismatch = true; |
| 1686 |
if (base_mismatch) |
| 1687 |
{ |
| 1688 |
if (!warned && !val->odr_violated) |
| 1689 |
{ |
| 1690 |
warn_odr (type, val->type, NULL, NULL, |
| 1691 |
!warned, &warned, |
| 1692 |
"a type with the same name but different base " |
| 1693 |
"type is defined in another translation unit"); |
| 1694 |
if (warned) |
| 1695 |
warn_types_mismatch (type1, type2, |
| 1696 |
UNKNOWN_LOCATION, UNKNOWN_LOCATION); |
| 1697 |
} |
| 1698 |
break; |
| 1699 |
} |
| 1700 |
if (BINFO_OFFSET (base1) != BINFO_OFFSET (base2)) |
| 1701 |
{ |
| 1702 |
base_mismatch = true; |
| 1703 |
if (!warned && !val->odr_violated) |
| 1704 |
warn_odr (type, val->type, NULL, NULL, |
| 1705 |
!warned, &warned, |
| 1706 |
"a type with the same name but different base " |
| 1707 |
"layout is defined in another translation unit"); |
| 1708 |
break; |
| 1709 |
} |
| 1710 |
/* One of bases is not of complete type. */ |
| 1711 |
if (!TYPE_BINFO (type1) != !TYPE_BINFO (type2)) |
| 1712 |
{ |
| 1713 |
/* If we have a polymorphic type info specified for TYPE1 |
| 1714 |
but not for TYPE2 we possibly missed a base when recording |
| 1715 |
VAL->type earlier. |
| 1716 |
Be sure this does not happen. */ |
| 1717 |
if (TYPE_BINFO (type1) |
| 1718 |
&& polymorphic_type_binfo_p (TYPE_BINFO (type1)) |
| 1719 |
&& !build_bases) |
| 1720 |
odr_must_violate = true; |
| 1721 |
break; |
| 1722 |
} |
| 1723 |
/* One base is polymorphic and the other not. |
| 1724 |
This ought to be diagnosed earlier, but do not ICE in the |
| 1725 |
checking bellow. */ |
| 1726 |
else if (TYPE_BINFO (type1) |
| 1727 |
&& polymorphic_type_binfo_p (TYPE_BINFO (type1)) |
| 1728 |
!= polymorphic_type_binfo_p (TYPE_BINFO (type2))) |
| 1729 |
{ |
| 1730 |
if (!warned && !val->odr_violated) |
| 1731 |
warn_odr (type, val->type, NULL, NULL, |
| 1732 |
!warned, &warned, |
| 1733 |
"a base of the type is polymorphic only in one " |
| 1734 |
"translation unit"); |
| 1735 |
base_mismatch = true; |
| 1736 |
break; |
| 1737 |
} |
| 1738 |
} |
| 1739 |
if (base_mismatch) |
| 1740 |
{ |
| 1741 |
merge = false; |
| 1742 |
odr_violation_reported = true; |
| 1743 |
val->odr_violated = true; |
| 1744 |
|
| 1745 |
if (symtab->dump_file) |
| 1746 |
{ |
| 1747 |
fprintf (symtab->dump_file, "ODR base violation\n"); |
| 1748 |
|
| 1749 |
print_node (symtab->dump_file, "", val->type, 0); |
| 1750 |
putc ('\n',symtab->dump_file); |
| 1751 |
print_node (symtab->dump_file, "", type, 0); |
| 1752 |
putc ('\n',symtab->dump_file); |
| 1753 |
} |
| 1754 |
} |
| 1755 |
} |
| 1756 |
|
| 1757 |
/* Next compare memory layout. |
| 1758 |
The DECL_SOURCE_LOCATIONs in this invocation came from LTO streaming. |
| 1759 |
We must apply the location cache to ensure that they are valid |
| 1760 |
before we can pass them to odr_types_equivalent_p (PR lto/83121). */ |
| 1761 |
if (lto_location_cache::current_cache) |
| 1762 |
lto_location_cache::current_cache->apply_location_cache (); |
| 1763 |
/* As a special case we stream mangles names of integer types so we can see |
| 1764 |
if they are believed to be same even though they have different |
| 1765 |
representation. Avoid bogus warning on mismatches in these. */ |
| 1766 |
if (TREE_CODE (type) != INTEGER_TYPE |
| 1767 |
&& TREE_CODE (val->type) != INTEGER_TYPE |
| 1768 |
&& !odr_types_equivalent_p (val->type, type, |
| 1769 |
!flag_ltrans && !val->odr_violated && !warned, |
| 1770 |
&warned, &visited, |
| 1771 |
DECL_SOURCE_LOCATION (TYPE_NAME (val->type)), |
| 1772 |
DECL_SOURCE_LOCATION (TYPE_NAME (type)))) |
| 1773 |
{ |
| 1774 |
merge = false; |
| 1775 |
odr_violation_reported = true; |
| 1776 |
val->odr_violated = true; |
| 1777 |
} |
| 1778 |
gcc_assert (val->odr_violated || !odr_must_violate); |
| 1779 |
/* Sanity check that all bases will be build same way again. */ |
| 1780 |
if (flag_checking |
| 1781 |
&& COMPLETE_TYPE_P (type) && COMPLETE_TYPE_P (val->type) |
| 1782 |
&& TREE_CODE (val->type) == RECORD_TYPE |
| 1783 |
&& TREE_CODE (type) == RECORD_TYPE |
| 1784 |
&& TYPE_BINFO (val->type) && TYPE_BINFO (type) |
| 1785 |
&& !val->odr_violated |
| 1786 |
&& !base_mismatch && val->bases.length ()) |
| 1787 |
{ |
| 1788 |
unsigned int num_poly_bases = 0; |
| 1789 |
unsigned int j; |
| 1790 |
|
| 1791 |
for (i = 0; i < BINFO_N_BASE_BINFOS (TYPE_BINFO (type)); i++) |
| 1792 |
if (polymorphic_type_binfo_p (BINFO_BASE_BINFO |
| 1793 |
(TYPE_BINFO (type), i))) |
| 1794 |
num_poly_bases++; |
| 1795 |
gcc_assert (num_poly_bases == val->bases.length ()); |
| 1796 |
for (j = 0, i = 0; i < BINFO_N_BASE_BINFOS (TYPE_BINFO (type)); |
| 1797 |
i++) |
| 1798 |
if (polymorphic_type_binfo_p (BINFO_BASE_BINFO |
| 1799 |
(TYPE_BINFO (type), i))) |
| 1800 |
{ |
| 1801 |
odr_type base = get_odr_type |
| 1802 |
(BINFO_TYPE |
| 1803 |
(BINFO_BASE_BINFO (TYPE_BINFO (type), |
| 1804 |
i)), |
| 1805 |
true); |
| 1806 |
gcc_assert (val->bases[j] == base); |
| 1807 |
j++; |
| 1808 |
} |
| 1809 |
} |
| 1810 |
|
| 1811 |
|
| 1812 |
/* Regularize things a little. During LTO same types may come with |
| 1813 |
different BINFOs. Either because their virtual table was |
| 1814 |
not merged by tree merging and only later at decl merging or |
| 1815 |
because one type comes with external vtable, while other |
| 1816 |
with internal. We want to merge equivalent binfos to conserve |
| 1817 |
memory and streaming overhead. |
| 1818 |
|
| 1819 |
The external vtables are more harmful: they contain references |
| 1820 |
to external declarations of methods that may be defined in the |
| 1821 |
merged LTO unit. For this reason we absolutely need to remove |
| 1822 |
them and replace by internal variants. Not doing so will lead |
| 1823 |
to incomplete answers from possible_polymorphic_call_targets. |
| 1824 |
|
| 1825 |
FIXME: disable for now; because ODR types are now build during |
| 1826 |
streaming in, the variants do not need to be linked to the type, |
| 1827 |
yet. We need to do the merging in cleanup pass to be implemented |
| 1828 |
soon. */ |
| 1829 |
if (!flag_ltrans && merge |
| 1830 |
&& 0 |
| 1831 |
&& TREE_CODE (val->type) == RECORD_TYPE |
| 1832 |
&& TREE_CODE (type) == RECORD_TYPE |
| 1833 |
&& TYPE_BINFO (val->type) && TYPE_BINFO (type) |
| 1834 |
&& TYPE_MAIN_VARIANT (type) == type |
| 1835 |
&& TYPE_MAIN_VARIANT (val->type) == val->type |
| 1836 |
&& BINFO_VTABLE (TYPE_BINFO (val->type)) |
| 1837 |
&& BINFO_VTABLE (TYPE_BINFO (type))) |
| 1838 |
{ |
| 1839 |
tree master_binfo = TYPE_BINFO (val->type); |
| 1840 |
tree v1 = BINFO_VTABLE (master_binfo); |
| 1841 |
tree v2 = BINFO_VTABLE (TYPE_BINFO (type)); |
| 1842 |
|
| 1843 |
if (TREE_CODE (v1) == POINTER_PLUS_EXPR) |
| 1844 |
{ |
| 1845 |
gcc_assert (TREE_CODE (v2) == POINTER_PLUS_EXPR |
| 1846 |
&& operand_equal_p (TREE_OPERAND (v1, 1), |
| 1847 |
TREE_OPERAND (v2, 1), 0)); |
| 1848 |
v1 = TREE_OPERAND (TREE_OPERAND (v1, 0), 0); |
| 1849 |
v2 = TREE_OPERAND (TREE_OPERAND (v2, 0), 0); |
| 1850 |
} |
| 1851 |
gcc_assert (DECL_ASSEMBLER_NAME (v1) |
| 1852 |
== DECL_ASSEMBLER_NAME (v2)); |
| 1853 |
|
| 1854 |
if (DECL_EXTERNAL (v1) && !DECL_EXTERNAL (v2)) |
| 1855 |
{ |
| 1856 |
unsigned int i; |
| 1857 |
|
| 1858 |
set_type_binfo (val->type, TYPE_BINFO (type)); |
| 1859 |
for (i = 0; i < val->types->length (); i++) |
| 1860 |
{ |
| 1861 |
if (TYPE_BINFO ((*val->types)[i]) |
| 1862 |
== master_binfo) |
| 1863 |
set_type_binfo ((*val->types)[i], TYPE_BINFO (type)); |
| 1864 |
} |
| 1865 |
BINFO_TYPE (TYPE_BINFO (type)) = val->type; |
| 1866 |
} |
| 1867 |
else |
| 1868 |
set_type_binfo (type, master_binfo); |
| 1869 |
} |
| 1870 |
return build_bases; |
| 1871 |
} |
| 1872 |
|
| 1873 |
/* REF is OBJ_TYPE_REF, return the class the ref corresponds to. */ |
| 1874 |
|
| 1875 |
tree |
| 1876 |
obj_type_ref_class (const_tree ref) |
| 1877 |
{ |
| 1878 |
gcc_checking_assert (TREE_CODE (ref) == OBJ_TYPE_REF); |
| 1879 |
ref = TREE_TYPE (ref); |
| 1880 |
gcc_checking_assert (TREE_CODE (ref) == POINTER_TYPE); |
| 1881 |
ref = TREE_TYPE (ref); |
| 1882 |
/* We look for type THIS points to. ObjC also builds |
| 1883 |
OBJ_TYPE_REF with non-method calls, Their first parameter |
| 1884 |
ID however also corresponds to class type. */ |
| 1885 |
gcc_checking_assert (TREE_CODE (ref) == METHOD_TYPE |
| 1886 |
|| TREE_CODE (ref) == FUNCTION_TYPE); |
| 1887 |
ref = TREE_VALUE (TYPE_ARG_TYPES (ref)); |
| 1888 |
gcc_checking_assert (TREE_CODE (ref) == POINTER_TYPE); |
| 1889 |
tree ret = TREE_TYPE (ref); |
| 1890 |
if (!in_lto_p && !TYPE_STRUCTURAL_EQUALITY_P (ret)) |
| 1891 |
ret = TYPE_CANONICAL (ret); |
| 1892 |
else |
| 1893 |
ret = get_odr_type (ret)->type; |
| 1894 |
return ret; |
| 1895 |
} |
| 1896 |
|
| 1897 |
/* Get ODR type hash entry for TYPE. If INSERT is true, create |
| 1898 |
possibly new entry. */ |
| 1899 |
|
| 1900 |
odr_type |
| 1901 |
get_odr_type (tree type, bool insert) |
| 1902 |
{ |
| 1903 |
odr_type_d **slot = NULL; |
| 1904 |
odr_type val = NULL; |
| 1905 |
hashval_t hash; |
| 1906 |
bool build_bases = false; |
| 1907 |
bool insert_to_odr_array = false; |
| 1908 |
int base_id = -1; |
| 1909 |
|
| 1910 |
type = TYPE_MAIN_VARIANT (type); |
| 1911 |
if (!in_lto_p && !TYPE_STRUCTURAL_EQUALITY_P (type)) |
| 1912 |
type = TYPE_CANONICAL (type); |
| 1913 |
|
| 1914 |
gcc_checking_assert (can_be_name_hashed_p (type)); |
| 1915 |
|
| 1916 |
hash = hash_odr_name (type); |
| 1917 |
slot = odr_hash->find_slot_with_hash (type, hash, |
| 1918 |
insert ? INSERT : NO_INSERT); |
| 1919 |
|
| 1920 |
if (!slot) |
| 1921 |
return NULL; |
| 1922 |
|
| 1923 |
/* See if we already have entry for type. */ |
| 1924 |
if (*slot) |
| 1925 |
{ |
| 1926 |
val = *slot; |
| 1927 |
|
| 1928 |
if (val->type != type && insert |
| 1929 |
&& (!val->types_set || !val->types_set->add (type))) |
| 1930 |
build_bases = add_type_duplicate (val, type); |
| 1931 |
} |
| 1932 |
else |
| 1933 |
{ |
| 1934 |
val = ggc_cleared_alloc<odr_type_d> (); |
| 1935 |
val->type = type; |
| 1936 |
val->bases = vNULL; |
| 1937 |
val->derived_types = vNULL; |
| 1938 |
if (type_with_linkage_p (type)) |
| 1939 |
val->anonymous_namespace = type_in_anonymous_namespace_p (type); |
| 1940 |
else |
| 1941 |
val->anonymous_namespace = 0; |
| 1942 |
build_bases = COMPLETE_TYPE_P (val->type); |
| 1943 |
insert_to_odr_array = true; |
| 1944 |
*slot = val; |
| 1945 |
} |
| 1946 |
|
| 1947 |
if (build_bases && TREE_CODE (type) == RECORD_TYPE && TYPE_BINFO (type) |
| 1948 |
&& type_with_linkage_p (type) |
| 1949 |
&& type == TYPE_MAIN_VARIANT (type)) |
| 1950 |
{ |
| 1951 |
tree binfo = TYPE_BINFO (type); |
| 1952 |
unsigned int i; |
| 1953 |
|
| 1954 |
gcc_assert (BINFO_TYPE (TYPE_BINFO (val->type)) == type); |
| 1955 |
|
| 1956 |
val->all_derivations_known = type_all_derivations_known_p (type); |
| 1957 |
for (i = 0; i < BINFO_N_BASE_BINFOS (binfo); i++) |
| 1958 |
/* For now record only polymorphic types. other are |
| 1959 |
pointless for devirtualization and we cannot precisely |
| 1960 |
determine ODR equivalency of these during LTO. */ |
| 1961 |
if (polymorphic_type_binfo_p (BINFO_BASE_BINFO (binfo, i))) |
| 1962 |
{ |
| 1963 |
tree base_type= BINFO_TYPE (BINFO_BASE_BINFO (binfo, i)); |
| 1964 |
odr_type base = get_odr_type (base_type, true); |
| 1965 |
gcc_assert (TYPE_MAIN_VARIANT (base_type) == base_type); |
| 1966 |
base->derived_types.safe_push (val); |
| 1967 |
val->bases.safe_push (base); |
| 1968 |
if (base->id > base_id) |
| 1969 |
base_id = base->id; |
| 1970 |
} |
| 1971 |
} |
| 1972 |
/* Ensure that type always appears after bases. */ |
| 1973 |
if (insert_to_odr_array) |
| 1974 |
{ |
| 1975 |
if (odr_types_ptr) |
| 1976 |
val->id = odr_types.length (); |
| 1977 |
vec_safe_push (odr_types_ptr, val); |
| 1978 |
} |
| 1979 |
else if (base_id > val->id) |
| 1980 |
{ |
| 1981 |
odr_types[val->id] = 0; |
| 1982 |
/* Be sure we did not recorded any derived types; these may need |
| 1983 |
renumbering too. */ |
| 1984 |
gcc_assert (val->derived_types.length() == 0); |
| 1985 |
val->id = odr_types.length (); |
| 1986 |
vec_safe_push (odr_types_ptr, val); |
| 1987 |
} |
| 1988 |
return val; |
| 1989 |
} |
| 1990 |
|
| 1991 |
/* Return type that in ODR type hash prevailed TYPE. Be careful and punt |
| 1992 |
on ODR violations. */ |
| 1993 |
|
| 1994 |
tree |
| 1995 |
prevailing_odr_type (tree type) |
| 1996 |
{ |
| 1997 |
odr_type t = get_odr_type (type, false); |
| 1998 |
if (!t || t->odr_violated) |
| 1999 |
return type; |
| 2000 |
return t->type; |
| 2001 |
} |
| 2002 |
|
| 2003 |
/* Set tbaa_enabled flag for TYPE. */ |
| 2004 |
|
| 2005 |
void |
| 2006 |
enable_odr_based_tbaa (tree type) |
| 2007 |
{ |
| 2008 |
odr_type t = get_odr_type (type, true); |
| 2009 |
t->tbaa_enabled = true; |
| 2010 |
} |
| 2011 |
|
| 2012 |
/* True if canonical type of TYPE is determined using ODR name. */ |
| 2013 |
|
| 2014 |
bool |
| 2015 |
odr_based_tbaa_p (const_tree type) |
| 2016 |
{ |
| 2017 |
if (!RECORD_OR_UNION_TYPE_P (type)) |
| 2018 |
return false; |
| 2019 |
odr_type t = get_odr_type (const_cast <tree> (type), false); |
| 2020 |
if (!t || !t->tbaa_enabled) |
| 2021 |
return false; |
| 2022 |
return true; |
| 2023 |
} |
| 2024 |
|
| 2025 |
/* Set TYPE_CANONICAL of type and all its variants and duplicates |
| 2026 |
to CANONICAL. */ |
| 2027 |
|
| 2028 |
void |
| 2029 |
set_type_canonical_for_odr_type (tree type, tree canonical) |
| 2030 |
{ |
| 2031 |
odr_type t = get_odr_type (type, false); |
| 2032 |
unsigned int i; |
| 2033 |
tree tt; |
| 2034 |
|
| 2035 |
for (tree t2 = t->type; t2; t2 = TYPE_NEXT_VARIANT (t2)) |
| 2036 |
TYPE_CANONICAL (t2) = canonical; |
| 2037 |
if (t->types) |
| 2038 |
FOR_EACH_VEC_ELT (*t->types, i, tt) |
| 2039 |
for (tree t2 = tt; t2; t2 = TYPE_NEXT_VARIANT (t2)) |
| 2040 |
TYPE_CANONICAL (t2) = canonical; |
| 2041 |
} |
| 2042 |
|
| 2043 |
/* Return true if we reported some ODR violation on TYPE. */ |
| 2044 |
|
| 2045 |
bool |
| 2046 |
odr_type_violation_reported_p (tree type) |
| 2047 |
{ |
| 2048 |
return get_odr_type (type, false)->odr_violated; |
| 2049 |
} |
| 2050 |
|
| 2051 |
/* Add TYPE of ODR type hash. */ |
| 2052 |
|
| 2053 |
void |
| 2054 |
register_odr_type (tree type) |
| 2055 |
{ |
| 2056 |
if (!odr_hash) |
| 2057 |
odr_hash = new odr_hash_type (23); |
| 2058 |
if (type == TYPE_MAIN_VARIANT (type)) |
| 2059 |
{ |
| 2060 |
/* To get ODR warnings right, first register all sub-types. */ |
| 2061 |
if (RECORD_OR_UNION_TYPE_P (type) |
| 2062 |
&& COMPLETE_TYPE_P (type)) |
| 2063 |
{ |
| 2064 |
/* Limit recursion on types which are already registered. */ |
| 2065 |
odr_type ot = get_odr_type (type, false); |
| 2066 |
if (ot |
| 2067 |
&& (ot->type == type |
| 2068 |
|| (ot->types_set |
| 2069 |
&& ot->types_set->contains (type)))) |
| 2070 |
return; |
| 2071 |
for (tree f = TYPE_FIELDS (type); f; f = TREE_CHAIN (f)) |
| 2072 |
if (TREE_CODE (f) == FIELD_DECL) |
| 2073 |
{ |
| 2074 |
tree subtype = TREE_TYPE (f); |
| 2075 |
|
| 2076 |
while (TREE_CODE (subtype) == ARRAY_TYPE) |
| 2077 |
subtype = TREE_TYPE (subtype); |
| 2078 |
if (type_with_linkage_p (TYPE_MAIN_VARIANT (subtype))) |
| 2079 |
register_odr_type (TYPE_MAIN_VARIANT (subtype)); |
| 2080 |
} |
| 2081 |
if (TYPE_BINFO (type)) |
| 2082 |
for (unsigned int i = 0; |
| 2083 |
i < BINFO_N_BASE_BINFOS (TYPE_BINFO (type)); i++) |
| 2084 |
register_odr_type (BINFO_TYPE (BINFO_BASE_BINFO |
| 2085 |
(TYPE_BINFO (type), i))); |
| 2086 |
} |
| 2087 |
get_odr_type (type, true); |
| 2088 |
} |
| 2089 |
} |
| 2090 |
|
| 2091 |
/* Return true if type is known to have no derivations. */ |
| 2092 |
|
| 2093 |
bool |
| 2094 |
type_known_to_have_no_derivations_p (tree t) |
| 2095 |
{ |
| 2096 |
return (type_all_derivations_known_p (t) |
| 2097 |
&& (TYPE_FINAL_P (t) |
| 2098 |
|| (odr_hash |
| 2099 |
&& !get_odr_type (t, true)->derived_types.length()))); |
| 2100 |
} |
| 2101 |
|
| 2102 |
/* Dump ODR type T and all its derived types. INDENT specifies indentation for |
| 2103 |
recursive printing. */ |
| 2104 |
|
| 2105 |
static void |
| 2106 |
dump_odr_type (FILE *f, odr_type t, int indent=0) |
| 2107 |
{ |
| 2108 |
unsigned int i; |
| 2109 |
fprintf (f, "%*s type %i: ", indent * 2, "", t->id); |
| 2110 |
print_generic_expr (f, t->type, TDF_SLIM); |
| 2111 |
fprintf (f, "%s", t->anonymous_namespace ? " (anonymous namespace)":""); |
| 2112 |
fprintf (f, "%s\n", t->all_derivations_known ? " (derivations known)":""); |
| 2113 |
if (TYPE_NAME (t->type)) |
| 2114 |
{ |
| 2115 |
if (DECL_ASSEMBLER_NAME_SET_P (TYPE_NAME (t->type))) |
| 2116 |
fprintf (f, "%*s mangled name: %s\n", indent * 2, "", |
| 2117 |
IDENTIFIER_POINTER |
| 2118 |
(DECL_ASSEMBLER_NAME (TYPE_NAME (t->type)))); |
| 2119 |
} |
| 2120 |
if (t->bases.length ()) |
| 2121 |
{ |
| 2122 |
fprintf (f, "%*s base odr type ids: ", indent * 2, ""); |
| 2123 |
for (i = 0; i < t->bases.length (); i++) |
| 2124 |
fprintf (f, " %i", t->bases[i]->id); |
| 2125 |
fprintf (f, "\n"); |
| 2126 |
} |
| 2127 |
if (t->derived_types.length ()) |
| 2128 |
{ |
| 2129 |
fprintf (f, "%*s derived types:\n", indent * 2, ""); |
| 2130 |
for (i = 0; i < t->derived_types.length (); i++) |
| 2131 |
dump_odr_type (f, t->derived_types[i], indent + 1); |
| 2132 |
} |
| 2133 |
fprintf (f, "\n"); |
| 2134 |
} |
| 2135 |
|
| 2136 |
/* Dump the type inheritance graph. */ |
| 2137 |
|
| 2138 |
static void |
| 2139 |
dump_type_inheritance_graph (FILE *f) |
| 2140 |
{ |
| 2141 |
unsigned int i; |
| 2142 |
unsigned int num_all_types = 0, num_types = 0, num_duplicates = 0; |
| 2143 |
if (!odr_types_ptr) |
| 2144 |
return; |
| 2145 |
fprintf (f, "\n\nType inheritance graph:\n"); |
| 2146 |
for (i = 0; i < odr_types.length (); i++) |
| 2147 |
{ |
| 2148 |
if (odr_types[i] && odr_types[i]->bases.length () == 0) |
| 2149 |
dump_odr_type (f, odr_types[i]); |
| 2150 |
} |
| 2151 |
for (i = 0; i < odr_types.length (); i++) |
| 2152 |
{ |
| 2153 |
if (!odr_types[i]) |
| 2154 |
continue; |
| 2155 |
|
| 2156 |
num_all_types++; |
| 2157 |
if (!odr_types[i]->types || !odr_types[i]->types->length ()) |
| 2158 |
continue; |
| 2159 |
|
| 2160 |
/* To aid ODR warnings we also mangle integer constants but do |
| 2161 |
not consider duplicates there. */ |
| 2162 |
if (TREE_CODE (odr_types[i]->type) == INTEGER_TYPE) |
| 2163 |
continue; |
| 2164 |
|
| 2165 |
/* It is normal to have one duplicate and one normal variant. */ |
| 2166 |
if (odr_types[i]->types->length () == 1 |
| 2167 |
&& COMPLETE_TYPE_P (odr_types[i]->type) |
| 2168 |
&& !COMPLETE_TYPE_P ((*odr_types[i]->types)[0])) |
| 2169 |
continue; |
| 2170 |
|
| 2171 |
num_types ++; |
| 2172 |
|
| 2173 |
unsigned int j; |
| 2174 |
fprintf (f, "Duplicate tree types for odr type %i\n", i); |
| 2175 |
print_node (f, "", odr_types[i]->type, 0); |
| 2176 |
print_node (f, "", TYPE_NAME (odr_types[i]->type), 0); |
| 2177 |
putc ('\n',f); |
| 2178 |
for (j = 0; j < odr_types[i]->types->length (); j++) |
| 2179 |
{ |
| 2180 |
tree t; |
| 2181 |
num_duplicates ++; |
| 2182 |
fprintf (f, "duplicate #%i\n", j); |
| 2183 |
print_node (f, "", (*odr_types[i]->types)[j], 0); |
| 2184 |
t = (*odr_types[i]->types)[j]; |
| 2185 |
while (TYPE_P (t) && TYPE_CONTEXT (t)) |
| 2186 |
{ |
| 2187 |
t = TYPE_CONTEXT (t); |
| 2188 |
print_node (f, "", t, 0); |
| 2189 |
} |
| 2190 |
print_node (f, "", TYPE_NAME ((*odr_types[i]->types)[j]), 0); |
| 2191 |
putc ('\n',f); |
| 2192 |
} |
| 2193 |
} |
| 2194 |
fprintf (f, "Out of %i types there are %i types with duplicates; " |
| 2195 |
"%i duplicates overall\n", num_all_types, num_types, num_duplicates); |
| 2196 |
} |
| 2197 |
|
| 2198 |
/* Save some WPA->ltrans streaming by freeing stuff needed only for good |
| 2199 |
ODR warnings. |
| 2200 |
We free TYPE_VALUES of enums and also make TYPE_DECLs to not point back |
| 2201 |
to the type (which is needed to keep them in the same SCC and preserve |
| 2202 |
location information to output warnings) and subsequently we make all |
| 2203 |
TYPE_DECLS of same assembler name equivalent. */ |
| 2204 |
|
| 2205 |
static void |
| 2206 |
free_odr_warning_data () |
| 2207 |
{ |
| 2208 |
static bool odr_data_freed = false; |
| 2209 |
|
| 2210 |
if (odr_data_freed || !flag_wpa || !odr_types_ptr) |
| 2211 |
return; |
| 2212 |
|
| 2213 |
odr_data_freed = true; |
| 2214 |
|
| 2215 |
for (unsigned int i = 0; i < odr_types.length (); i++) |
| 2216 |
if (odr_types[i]) |
| 2217 |
{ |
| 2218 |
tree t = odr_types[i]->type; |
| 2219 |
|
| 2220 |
if (TREE_CODE (t) == ENUMERAL_TYPE) |
| 2221 |
TYPE_VALUES (t) = NULL; |
| 2222 |
TREE_TYPE (TYPE_NAME (t)) = void_type_node; |
| 2223 |
|
| 2224 |
if (odr_types[i]->types) |
| 2225 |
for (unsigned int j = 0; j < odr_types[i]->types->length (); j++) |
| 2226 |
{ |
| 2227 |
tree td = (*odr_types[i]->types)[j]; |
| 2228 |
|
| 2229 |
if (TREE_CODE (td) == ENUMERAL_TYPE) |
| 2230 |
TYPE_VALUES (td) = NULL; |
| 2231 |
TYPE_NAME (td) = TYPE_NAME (t); |
| 2232 |
} |
| 2233 |
} |
| 2234 |
odr_data_freed = true; |
| 2235 |
} |
| 2236 |
|
| 2237 |
/* Initialize IPA devirt and build inheritance tree graph. */ |
| 2238 |
|
| 2239 |
void |
| 2240 |
build_type_inheritance_graph (void) |
| 2241 |
{ |
| 2242 |
struct symtab_node *n; |
| 2243 |
FILE *inheritance_dump_file; |
| 2244 |
dump_flags_t flags; |
| 2245 |
|
| 2246 |
if (odr_hash) |
| 2247 |
{ |
| 2248 |
free_odr_warning_data (); |
| 2249 |
return; |
| 2250 |
} |
| 2251 |
timevar_push (TV_IPA_INHERITANCE); |
| 2252 |
inheritance_dump_file = dump_begin (TDI_inheritance, &flags); |
| 2253 |
odr_hash = new odr_hash_type (23); |
| 2254 |
|
| 2255 |
/* We reconstruct the graph starting of types of all methods seen in the |
| 2256 |
unit. */ |
| 2257 |
FOR_EACH_SYMBOL (n) |
| 2258 |
if (is_a <cgraph_node *> (n) |
| 2259 |
&& DECL_VIRTUAL_P (n->decl) |
| 2260 |
&& n->real_symbol_p ()) |
| 2261 |
get_odr_type (TYPE_METHOD_BASETYPE (TREE_TYPE (n->decl)), true); |
| 2262 |
|
| 2263 |
/* Look also for virtual tables of types that do not define any methods. |
| 2264 |
|
| 2265 |
We need it in a case where class B has virtual base of class A |
| 2266 |
re-defining its virtual method and there is class C with no virtual |
| 2267 |
methods with B as virtual base. |
| 2268 |
|
| 2269 |
Here we output B's virtual method in two variant - for non-virtual |
| 2270 |
and virtual inheritance. B's virtual table has non-virtual version, |
| 2271 |
while C's has virtual. |
| 2272 |
|
| 2273 |
For this reason we need to know about C in order to include both |
| 2274 |
variants of B. More correctly, record_target_from_binfo should |
| 2275 |
add both variants of the method when walking B, but we have no |
| 2276 |
link in between them. |
| 2277 |
|
| 2278 |
We rely on fact that either the method is exported and thus we |
| 2279 |
assume it is called externally or C is in anonymous namespace and |
| 2280 |
thus we will see the vtable. */ |
| 2281 |
|
| 2282 |
else if (is_a <varpool_node *> (n) |
| 2283 |
&& DECL_VIRTUAL_P (n->decl) |
| 2284 |
&& TREE_CODE (DECL_CONTEXT (n->decl)) == RECORD_TYPE |
| 2285 |
&& TYPE_BINFO (DECL_CONTEXT (n->decl)) |
| 2286 |
&& polymorphic_type_binfo_p (TYPE_BINFO (DECL_CONTEXT (n->decl)))) |
| 2287 |
get_odr_type (TYPE_MAIN_VARIANT (DECL_CONTEXT (n->decl)), true); |
| 2288 |
if (inheritance_dump_file) |
| 2289 |
{ |
| 2290 |
dump_type_inheritance_graph (inheritance_dump_file); |
| 2291 |
dump_end (TDI_inheritance, inheritance_dump_file); |
| 2292 |
} |
| 2293 |
free_odr_warning_data (); |
| 2294 |
timevar_pop (TV_IPA_INHERITANCE); |
| 2295 |
} |
| 2296 |
|
| 2297 |
/* Return true if N has reference from live virtual table |
| 2298 |
(and thus can be a destination of polymorphic call). |
| 2299 |
Be conservatively correct when callgraph is not built or |
| 2300 |
if the method may be referred externally. */ |
| 2301 |
|
| 2302 |
static bool |
| 2303 |
referenced_from_vtable_p (struct cgraph_node *node) |
| 2304 |
{ |
| 2305 |
int i; |
| 2306 |
struct ipa_ref *ref; |
| 2307 |
bool found = false; |
| 2308 |
|
| 2309 |
if (node->externally_visible |
| 2310 |
|| DECL_EXTERNAL (node->decl) |
| 2311 |
|| node->used_from_other_partition) |
| 2312 |
return true; |
| 2313 |
|
| 2314 |
/* Keep this test constant time. |
| 2315 |
It is unlikely this can happen except for the case where speculative |
| 2316 |
devirtualization introduced many speculative edges to this node. |
| 2317 |
In this case the target is very likely alive anyway. */ |
| 2318 |
if (node->ref_list.referring.length () > 100) |
| 2319 |
return true; |
| 2320 |
|
| 2321 |
/* We need references built. */ |
| 2322 |
if (symtab->state <= CONSTRUCTION) |
| 2323 |
return true; |
| 2324 |
|
| 2325 |
for (i = 0; node->iterate_referring (i, ref); i++) |
| 2326 |
if ((ref->use == IPA_REF_ALIAS |
| 2327 |
&& referenced_from_vtable_p (dyn_cast<cgraph_node *> (ref->referring))) |
| 2328 |
|| (ref->use == IPA_REF_ADDR |
| 2329 |
&& VAR_P (ref->referring->decl) |
| 2330 |
&& DECL_VIRTUAL_P (ref->referring->decl))) |
| 2331 |
{ |
| 2332 |
found = true; |
| 2333 |
break; |
| 2334 |
} |
| 2335 |
return found; |
| 2336 |
} |
| 2337 |
|
| 2338 |
/* Return if TARGET is cxa_pure_virtual. */ |
| 2339 |
|
| 2340 |
static bool |
| 2341 |
is_cxa_pure_virtual_p (tree target) |
| 2342 |
{ |
| 2343 |
return target && TREE_CODE (TREE_TYPE (target)) != METHOD_TYPE |
| 2344 |
&& DECL_NAME (target) |
| 2345 |
&& id_equal (DECL_NAME (target), |
| 2346 |
"__cxa_pure_virtual"); |
| 2347 |
} |
| 2348 |
|
| 2349 |
/* If TARGET has associated node, record it in the NODES array. |
| 2350 |
CAN_REFER specify if program can refer to the target directly. |
| 2351 |
if TARGET is unknown (NULL) or it cannot be inserted (for example because |
| 2352 |
its body was already removed and there is no way to refer to it), clear |
| 2353 |
COMPLETEP. */ |
| 2354 |
|
| 2355 |
static void |
| 2356 |
maybe_record_node (vec <cgraph_node *> &nodes, |
| 2357 |
tree target, hash_set<tree> *inserted, |
| 2358 |
bool can_refer, |
| 2359 |
bool *completep) |
| 2360 |
{ |
| 2361 |
struct cgraph_node *target_node, *alias_target; |
| 2362 |
enum availability avail; |
| 2363 |
bool pure_virtual = is_cxa_pure_virtual_p (target); |
| 2364 |
|
| 2365 |
/* __builtin_unreachable do not need to be added into |
| 2366 |
list of targets; the runtime effect of calling them is undefined. |
| 2367 |
Only "real" virtual methods should be accounted. */ |
| 2368 |
if (target && TREE_CODE (TREE_TYPE (target)) != METHOD_TYPE && !pure_virtual) |
| 2369 |
return; |
| 2370 |
|
| 2371 |
if (!can_refer) |
| 2372 |
{ |
| 2373 |
/* The only case when method of anonymous namespace becomes unreferable |
| 2374 |
is when we completely optimized it out. */ |
| 2375 |
if (flag_ltrans |
| 2376 |
|| !target |
| 2377 |
|| !type_in_anonymous_namespace_p (DECL_CONTEXT (target))) |
| 2378 |
*completep = false; |
| 2379 |
return; |
| 2380 |
} |
| 2381 |
|
| 2382 |
if (!target) |
| 2383 |
return; |
| 2384 |
|
| 2385 |
target_node = cgraph_node::get (target); |
| 2386 |
|
| 2387 |
/* Prefer alias target over aliases, so we do not get confused by |
| 2388 |
fake duplicates. */ |
| 2389 |
if (target_node) |
| 2390 |
{ |
| 2391 |
alias_target = target_node->ultimate_alias_target (&avail); |
| 2392 |
if (target_node != alias_target |
| 2393 |
&& avail >= AVAIL_AVAILABLE |
| 2394 |
&& target_node->get_availability ()) |
| 2395 |
target_node = alias_target; |
| 2396 |
} |
| 2397 |
|
| 2398 |
/* Method can only be called by polymorphic call if any |
| 2399 |
of vtables referring to it are alive. |
| 2400 |
|
| 2401 |
While this holds for non-anonymous functions, too, there are |
| 2402 |
cases where we want to keep them in the list; for example |
| 2403 |
inline functions with -fno-weak are static, but we still |
| 2404 |
may devirtualize them when instance comes from other unit. |
| 2405 |
The same holds for LTO. |
| 2406 |
|
| 2407 |
Currently we ignore these functions in speculative devirtualization. |
| 2408 |
??? Maybe it would make sense to be more aggressive for LTO even |
| 2409 |
elsewhere. */ |
| 2410 |
if (!flag_ltrans |
| 2411 |
&& !pure_virtual |
| 2412 |
&& type_in_anonymous_namespace_p (DECL_CONTEXT (target)) |
| 2413 |
&& (!target_node |
| 2414 |
|| !referenced_from_vtable_p (target_node))) |
| 2415 |
; |
| 2416 |
/* See if TARGET is useful function we can deal with. */ |
| 2417 |
else if (target_node != NULL |
| 2418 |
&& (TREE_PUBLIC (target) |
| 2419 |
|| DECL_EXTERNAL (target) |
| 2420 |
|| target_node->definition) |
| 2421 |
&& target_node->real_symbol_p ()) |
| 2422 |
{ |
| 2423 |
gcc_assert (!target_node->inlined_to); |
| 2424 |
gcc_assert (target_node->real_symbol_p ()); |
| 2425 |
/* When sanitizing, do not assume that __cxa_pure_virtual is not called |
| 2426 |
by valid program. */ |
| 2427 |
if (flag_sanitize & SANITIZE_UNREACHABLE) |
| 2428 |
; |
| 2429 |
/* Only add pure virtual if it is the only possible target. This way |
| 2430 |
we will preserve the diagnostics about pure virtual called in many |
| 2431 |
cases without disabling optimization in other. */ |
| 2432 |
else if (pure_virtual) |
| 2433 |
{ |
| 2434 |
if (nodes.length ()) |
| 2435 |
return; |
| 2436 |
} |
| 2437 |
/* If we found a real target, take away cxa_pure_virtual. */ |
| 2438 |
else if (!pure_virtual && nodes.length () == 1 |
| 2439 |
&& is_cxa_pure_virtual_p (nodes[0]->decl)) |
| 2440 |
nodes.pop (); |
| 2441 |
if (pure_virtual && nodes.length ()) |
| 2442 |
return; |
| 2443 |
if (!inserted->add (target)) |
| 2444 |
{ |
| 2445 |
cached_polymorphic_call_targets->add (target_node); |
| 2446 |
nodes.safe_push (target_node); |
| 2447 |
} |
| 2448 |
} |
| 2449 |
else if (!completep) |
| 2450 |
; |
| 2451 |
/* We have definition of __cxa_pure_virtual that is not accessible (it is |
| 2452 |
optimized out or partitioned to other unit) so we cannot add it. When |
| 2453 |
not sanitizing, there is nothing to do. |
| 2454 |
Otherwise declare the list incomplete. */ |
| 2455 |
else if (pure_virtual) |
| 2456 |
{ |
| 2457 |
if (flag_sanitize & SANITIZE_UNREACHABLE) |
| 2458 |
*completep = false; |
| 2459 |
} |
| 2460 |
else if (flag_ltrans |
| 2461 |
|| !type_in_anonymous_namespace_p (DECL_CONTEXT (target))) |
| 2462 |
*completep = false; |
| 2463 |
} |
| 2464 |
|
| 2465 |
/* See if BINFO's type matches OUTER_TYPE. If so, look up |
| 2466 |
BINFO of subtype of OTR_TYPE at OFFSET and in that BINFO find |
| 2467 |
method in vtable and insert method to NODES array |
| 2468 |
or BASES_TO_CONSIDER if this array is non-NULL. |
| 2469 |
Otherwise recurse to base BINFOs. |
| 2470 |
This matches what get_binfo_at_offset does, but with offset |
| 2471 |
being unknown. |
| 2472 |
|
| 2473 |
TYPE_BINFOS is a stack of BINFOS of types with defined |
| 2474 |
virtual table seen on way from class type to BINFO. |
| 2475 |
|
| 2476 |
MATCHED_VTABLES tracks virtual tables we already did lookup |
| 2477 |
for virtual function in. INSERTED tracks nodes we already |
| 2478 |
inserted. |
| 2479 |
|
| 2480 |
ANONYMOUS is true if BINFO is part of anonymous namespace. |
| 2481 |
|
| 2482 |
Clear COMPLETEP when we hit unreferable target. |
| 2483 |
*/ |
| 2484 |
|
| 2485 |
static void |
| 2486 |
record_target_from_binfo (vec <cgraph_node *> &nodes, |
| 2487 |
vec <tree> *bases_to_consider, |
| 2488 |
tree binfo, |
| 2489 |
tree otr_type, |
| 2490 |
vec <tree> &type_binfos, |
| 2491 |
HOST_WIDE_INT otr_token, |
| 2492 |
tree outer_type, |
| 2493 |
HOST_WIDE_INT offset, |
| 2494 |
hash_set<tree> *inserted, |
| 2495 |
hash_set<tree> *matched_vtables, |
| 2496 |
bool anonymous, |
| 2497 |
bool *completep) |
| 2498 |
{ |
| 2499 |
tree type = BINFO_TYPE (binfo); |
| 2500 |
int i; |
| 2501 |
tree base_binfo; |
| 2502 |
|
| 2503 |
|
| 2504 |
if (BINFO_VTABLE (binfo)) |
| 2505 |
type_binfos.safe_push (binfo); |
| 2506 |
if (types_same_for_odr (type, outer_type)) |
| 2507 |
{ |
| 2508 |
int i; |
| 2509 |
tree type_binfo = NULL; |
| 2510 |
|
| 2511 |
/* Look up BINFO with virtual table. For normal types it is always last |
| 2512 |
binfo on stack. */ |
| 2513 |
for (i = type_binfos.length () - 1; i >= 0; i--) |
| 2514 |
if (BINFO_OFFSET (type_binfos[i]) == BINFO_OFFSET (binfo)) |
| 2515 |
{ |
| 2516 |
type_binfo = type_binfos[i]; |
| 2517 |
break; |
| 2518 |
} |
| 2519 |
if (BINFO_VTABLE (binfo)) |
| 2520 |
type_binfos.pop (); |
| 2521 |
/* If this is duplicated BINFO for base shared by virtual inheritance, |
| 2522 |
we may not have its associated vtable. This is not a problem, since |
| 2523 |
we will walk it on the other path. */ |
| 2524 |
if (!type_binfo) |
| 2525 |
return; |
| 2526 |
tree inner_binfo = get_binfo_at_offset (type_binfo, |
| 2527 |
offset, otr_type); |
| 2528 |
if (!inner_binfo) |
| 2529 |
{ |
| 2530 |
gcc_assert (odr_violation_reported); |
| 2531 |
return; |
| 2532 |
} |
| 2533 |
/* For types in anonymous namespace first check if the respective vtable |
| 2534 |
is alive. If not, we know the type can't be called. */ |
| 2535 |
if (!flag_ltrans && anonymous) |
| 2536 |
{ |
| 2537 |
tree vtable = BINFO_VTABLE (inner_binfo); |
| 2538 |
varpool_node *vnode; |
| 2539 |
|
| 2540 |
if (TREE_CODE (vtable) == POINTER_PLUS_EXPR) |
| 2541 |
vtable = TREE_OPERAND (TREE_OPERAND (vtable, 0), 0); |
| 2542 |
vnode = varpool_node::get (vtable); |
| 2543 |
if (!vnode || !vnode->definition) |
| 2544 |
return; |
| 2545 |
} |
| 2546 |
gcc_assert (inner_binfo); |
| 2547 |
if (bases_to_consider |
| 2548 |
? !matched_vtables->contains (BINFO_VTABLE (inner_binfo)) |
| 2549 |
: !matched_vtables->add (BINFO_VTABLE (inner_binfo))) |
| 2550 |
{ |
| 2551 |
bool can_refer; |
| 2552 |
tree target = gimple_get_virt_method_for_binfo (otr_token, |
| 2553 |
inner_binfo, |
| 2554 |
&can_refer); |
| 2555 |
if (!bases_to_consider) |
| 2556 |
maybe_record_node (nodes, target, inserted, can_refer, completep); |
| 2557 |
/* Destructors are never called via construction vtables. */ |
| 2558 |
else if (!target || !DECL_CXX_DESTRUCTOR_P (target)) |
| 2559 |
bases_to_consider->safe_push (target); |
| 2560 |
} |
| 2561 |
return; |
| 2562 |
} |
| 2563 |
|
| 2564 |
/* Walk bases. */ |
| 2565 |
for (i = 0; BINFO_BASE_ITERATE (binfo, i, base_binfo); i++) |
| 2566 |
/* Walking bases that have no virtual method is pointless exercise. */ |
| 2567 |
if (polymorphic_type_binfo_p (base_binfo)) |
| 2568 |
record_target_from_binfo (nodes, bases_to_consider, base_binfo, otr_type, |
| 2569 |
type_binfos, |
| 2570 |
otr_token, outer_type, offset, inserted, |
| 2571 |
matched_vtables, anonymous, completep); |
| 2572 |
if (BINFO_VTABLE (binfo)) |
| 2573 |
type_binfos.pop (); |
| 2574 |
} |
| 2575 |
|
| 2576 |
/* Look up virtual methods matching OTR_TYPE (with OFFSET and OTR_TOKEN) |
| 2577 |
of TYPE, insert them to NODES, recurse into derived nodes. |
| 2578 |
INSERTED is used to avoid duplicate insertions of methods into NODES. |
| 2579 |
MATCHED_VTABLES are used to avoid duplicate walking vtables. |
| 2580 |
Clear COMPLETEP if unreferable target is found. |
| 2581 |
|
| 2582 |
If CONSIDER_CONSTRUCTION is true, record to BASES_TO_CONSIDER |
| 2583 |
all cases where BASE_SKIPPED is true (because the base is abstract |
| 2584 |
class). */ |
| 2585 |
|
| 2586 |
static void |
| 2587 |
possible_polymorphic_call_targets_1 (vec <cgraph_node *> &nodes, |
| 2588 |
hash_set<tree> *inserted, |
| 2589 |
hash_set<tree> *matched_vtables, |
| 2590 |
tree otr_type, |
| 2591 |
odr_type type, |
| 2592 |
HOST_WIDE_INT otr_token, |
| 2593 |
tree outer_type, |
| 2594 |
HOST_WIDE_INT offset, |
| 2595 |
bool *completep, |
| 2596 |
vec <tree> &bases_to_consider, |
| 2597 |
bool consider_construction) |
| 2598 |
{ |
| 2599 |
tree binfo = TYPE_BINFO (type->type); |
| 2600 |
unsigned int i; |
| 2601 |
auto_vec <tree, 8> type_binfos; |
| 2602 |
bool possibly_instantiated = type_possibly_instantiated_p (type->type); |
| 2603 |
|
| 2604 |
/* We may need to consider types w/o instances because of possible derived |
| 2605 |
types using their methods either directly or via construction vtables. |
| 2606 |
We are safe to skip them when all derivations are known, since we will |
| 2607 |
handle them later. |
| 2608 |
This is done by recording them to BASES_TO_CONSIDER array. */ |
| 2609 |
if (possibly_instantiated || consider_construction) |
| 2610 |
{ |
| 2611 |
record_target_from_binfo (nodes, |
| 2612 |
(!possibly_instantiated |
| 2613 |
&& type_all_derivations_known_p (type->type)) |
| 2614 |
? &bases_to_consider : NULL, |
| 2615 |
binfo, otr_type, type_binfos, otr_token, |
| 2616 |
outer_type, offset, |
| 2617 |
inserted, matched_vtables, |
| 2618 |
type->anonymous_namespace, completep); |
| 2619 |
} |
| 2620 |
for (i = 0; i < type->derived_types.length (); i++) |
| 2621 |
possible_polymorphic_call_targets_1 (nodes, inserted, |
| 2622 |
matched_vtables, |
| 2623 |
otr_type, |
| 2624 |
type->derived_types[i], |
| 2625 |
otr_token, outer_type, offset, completep, |
| 2626 |
bases_to_consider, consider_construction); |
| 2627 |
} |
| 2628 |
|
| 2629 |
/* Cache of queries for polymorphic call targets. |
| 2630 |
|
| 2631 |
Enumerating all call targets may get expensive when there are many |
| 2632 |
polymorphic calls in the program, so we memoize all the previous |
| 2633 |
queries and avoid duplicated work. */ |
| 2634 |
|
| 2635 |
class polymorphic_call_target_d |
| 2636 |
{ |
| 2637 |
public: |
| 2638 |
HOST_WIDE_INT otr_token; |
| 2639 |
ipa_polymorphic_call_context context; |
| 2640 |
odr_type type; |
| 2641 |
vec <cgraph_node *> targets; |
| 2642 |
tree decl_warning; |
| 2643 |
int type_warning; |
| 2644 |
unsigned int n_odr_types; |
| 2645 |
bool complete; |
| 2646 |
bool speculative; |
| 2647 |
}; |
| 2648 |
|
| 2649 |
/* Polymorphic call target cache helpers. */ |
| 2650 |
|
| 2651 |
struct polymorphic_call_target_hasher |
| 2652 |
: pointer_hash <polymorphic_call_target_d> |
| 2653 |
{ |
| 2654 |
static inline hashval_t hash (const polymorphic_call_target_d *); |
| 2655 |
static inline bool equal (const polymorphic_call_target_d *, |
| 2656 |
const polymorphic_call_target_d *); |
| 2657 |
static inline void remove (polymorphic_call_target_d *); |
| 2658 |
}; |
| 2659 |
|
| 2660 |
/* Return the computed hashcode for ODR_QUERY. */ |
| 2661 |
|
| 2662 |
inline hashval_t |
| 2663 |
polymorphic_call_target_hasher::hash (const polymorphic_call_target_d *odr_query) |
| 2664 |
{ |
| 2665 |
inchash::hash hstate (odr_query->otr_token); |
| 2666 |
|
| 2667 |
hstate.add_hwi (odr_query->type->id); |
| 2668 |
hstate.merge_hash (TYPE_UID (odr_query->context.outer_type)); |
| 2669 |
hstate.add_hwi (odr_query->context.offset); |
| 2670 |
hstate.add_hwi (odr_query->n_odr_types); |
| 2671 |
|
| 2672 |
if (odr_query->context.speculative_outer_type) |
| 2673 |
{ |
| 2674 |
hstate.merge_hash (TYPE_UID (odr_query->context.speculative_outer_type)); |
| 2675 |
hstate.add_hwi (odr_query->context.speculative_offset); |
| 2676 |
} |
| 2677 |
hstate.add_flag (odr_query->speculative); |
| 2678 |
hstate.add_flag (odr_query->context.maybe_in_construction); |
| 2679 |
hstate.add_flag (odr_query->context.maybe_derived_type); |
| 2680 |
hstate.add_flag (odr_query->context.speculative_maybe_derived_type); |
| 2681 |
hstate.commit_flag (); |
| 2682 |
return hstate.end (); |
| 2683 |
} |
| 2684 |
|
| 2685 |
/* Compare cache entries T1 and T2. */ |
| 2686 |
|
| 2687 |
inline bool |
| 2688 |
polymorphic_call_target_hasher::equal (const polymorphic_call_target_d *t1, |
| 2689 |
const polymorphic_call_target_d *t2) |
| 2690 |
{ |
| 2691 |
return (t1->type == t2->type && t1->otr_token == t2->otr_token |
| 2692 |
&& t1->speculative == t2->speculative |
| 2693 |
&& t1->context.offset == t2->context.offset |
| 2694 |
&& t1->context.speculative_offset == t2->context.speculative_offset |
| 2695 |
&& t1->context.outer_type == t2->context.outer_type |
| 2696 |
&& t1->context.speculative_outer_type == t2->context.speculative_outer_type |
| 2697 |
&& t1->context.maybe_in_construction |
| 2698 |
== t2->context.maybe_in_construction |
| 2699 |
&& t1->context.maybe_derived_type == t2->context.maybe_derived_type |
| 2700 |
&& (t1->context.speculative_maybe_derived_type |
| 2701 |
== t2->context.speculative_maybe_derived_type) |
| 2702 |
/* Adding new type may affect outcome of target search. */ |
| 2703 |
&& t1->n_odr_types == t2->n_odr_types); |
| 2704 |
} |
| 2705 |
|
| 2706 |
/* Remove entry in polymorphic call target cache hash. */ |
| 2707 |
|
| 2708 |
inline void |
| 2709 |
polymorphic_call_target_hasher::remove (polymorphic_call_target_d *v) |
| 2710 |
{ |
| 2711 |
v->targets.release (); |
| 2712 |
free (v); |
| 2713 |
} |
| 2714 |
|
| 2715 |
/* Polymorphic call target query cache. */ |
| 2716 |
|
| 2717 |
typedef hash_table<polymorphic_call_target_hasher> |
| 2718 |
polymorphic_call_target_hash_type; |
| 2719 |
static polymorphic_call_target_hash_type *polymorphic_call_target_hash; |
| 2720 |
|
| 2721 |
/* Destroy polymorphic call target query cache. */ |
| 2722 |
|
| 2723 |
static void |
| 2724 |
free_polymorphic_call_targets_hash () |
| 2725 |
{ |
| 2726 |
if (cached_polymorphic_call_targets) |
| 2727 |
{ |
| 2728 |
delete polymorphic_call_target_hash; |
| 2729 |
polymorphic_call_target_hash = NULL; |
| 2730 |
delete cached_polymorphic_call_targets; |
| 2731 |
cached_polymorphic_call_targets = NULL; |
| 2732 |
} |
| 2733 |
} |
| 2734 |
|
| 2735 |
/* Force rebuilding type inheritance graph from scratch. |
| 2736 |
This is use to make sure that we do not keep references to types |
| 2737 |
which was not visible to free_lang_data. */ |
| 2738 |
|
| 2739 |
void |
| 2740 |
rebuild_type_inheritance_graph () |
| 2741 |
{ |
| 2742 |
if (!odr_hash) |
| 2743 |
return; |
| 2744 |
delete odr_hash; |
| 2745 |
odr_hash = NULL; |
| 2746 |
odr_types_ptr = NULL; |
| 2747 |
free_polymorphic_call_targets_hash (); |
| 2748 |
} |
| 2749 |
|
| 2750 |
/* When virtual function is removed, we may need to flush the cache. */ |
| 2751 |
|
| 2752 |
static void |
| 2753 |
devirt_node_removal_hook (struct cgraph_node *n, void *d ATTRIBUTE_UNUSED) |
| 2754 |
{ |
| 2755 |
if (cached_polymorphic_call_targets |
| 2756 |
&& !thunk_expansion |
| 2757 |
&& cached_polymorphic_call_targets->contains (n)) |
| 2758 |
free_polymorphic_call_targets_hash (); |
| 2759 |
} |
| 2760 |
|
| 2761 |
/* Look up base of BINFO that has virtual table VTABLE with OFFSET. */ |
| 2762 |
|
| 2763 |
tree |
| 2764 |
subbinfo_with_vtable_at_offset (tree binfo, unsigned HOST_WIDE_INT offset, |
| 2765 |
tree vtable) |
| 2766 |
{ |
| 2767 |
tree v = BINFO_VTABLE (binfo); |
| 2768 |
int i; |
| 2769 |
tree base_binfo; |
| 2770 |
unsigned HOST_WIDE_INT this_offset; |
| 2771 |
|
| 2772 |
if (v) |
| 2773 |
{ |
| 2774 |
if (!vtable_pointer_value_to_vtable (v, &v, &this_offset)) |
| 2775 |
gcc_unreachable (); |
| 2776 |
|
| 2777 |
if (offset == this_offset |
| 2778 |
&& DECL_ASSEMBLER_NAME (v) == DECL_ASSEMBLER_NAME (vtable)) |
| 2779 |
return binfo; |
| 2780 |
} |
| 2781 |
|
| 2782 |
for (i = 0; BINFO_BASE_ITERATE (binfo, i, base_binfo); i++) |
| 2783 |
if (polymorphic_type_binfo_p (base_binfo)) |
| 2784 |
{ |
| 2785 |
base_binfo = subbinfo_with_vtable_at_offset (base_binfo, offset, vtable); |
| 2786 |
if (base_binfo) |
| 2787 |
return base_binfo; |
| 2788 |
} |
| 2789 |
return NULL; |
| 2790 |
} |
| 2791 |
|
| 2792 |
/* T is known constant value of virtual table pointer. |
| 2793 |
Store virtual table to V and its offset to OFFSET. |
| 2794 |
Return false if T does not look like virtual table reference. */ |
| 2795 |
|
| 2796 |
bool |
| 2797 |
vtable_pointer_value_to_vtable (const_tree t, tree *v, |
| 2798 |
unsigned HOST_WIDE_INT *offset) |
| 2799 |
{ |
| 2800 |
/* We expect &MEM[(void *)&virtual_table + 16B]. |
| 2801 |
We obtain object's BINFO from the context of the virtual table. |
| 2802 |
This one contains pointer to virtual table represented via |
| 2803 |
POINTER_PLUS_EXPR. Verify that this pointer matches what |
| 2804 |
we propagated through. |
| 2805 |
|
| 2806 |
In the case of virtual inheritance, the virtual tables may |
| 2807 |
be nested, i.e. the offset may be different from 16 and we may |
| 2808 |
need to dive into the type representation. */ |
| 2809 |
if (TREE_CODE (t) == ADDR_EXPR |
| 2810 |
&& TREE_CODE (TREE_OPERAND (t, 0)) == MEM_REF |
| 2811 |
&& TREE_CODE (TREE_OPERAND (TREE_OPERAND (t, 0), 0)) == ADDR_EXPR |
| 2812 |
&& TREE_CODE (TREE_OPERAND (TREE_OPERAND (t, 0), 1)) == INTEGER_CST |
| 2813 |
&& (TREE_CODE (TREE_OPERAND (TREE_OPERAND (TREE_OPERAND (t, 0), 0), 0)) |
| 2814 |
== VAR_DECL) |
| 2815 |
&& DECL_VIRTUAL_P (TREE_OPERAND (TREE_OPERAND |
| 2816 |
(TREE_OPERAND (t, 0), 0), 0))) |
| 2817 |
{ |
| 2818 |
*v = TREE_OPERAND (TREE_OPERAND (TREE_OPERAND (t, 0), 0), 0); |
| 2819 |
*offset = tree_to_uhwi (TREE_OPERAND (TREE_OPERAND (t, 0), 1)); |
| 2820 |
return true; |
| 2821 |
} |
| 2822 |
|
| 2823 |
/* Alternative representation, used by C++ frontend is POINTER_PLUS_EXPR. |
| 2824 |
We need to handle it when T comes from static variable initializer or |
| 2825 |
BINFO. */ |
| 2826 |
if (TREE_CODE (t) == POINTER_PLUS_EXPR) |
| 2827 |
{ |
| 2828 |
*offset = tree_to_uhwi (TREE_OPERAND (t, 1)); |
| 2829 |
t = TREE_OPERAND (t, 0); |
| 2830 |
} |
| 2831 |
else |
| 2832 |
*offset = 0; |
| 2833 |
|
| 2834 |
if (TREE_CODE (t) != ADDR_EXPR) |
| 2835 |
return false; |
| 2836 |
*v = TREE_OPERAND (t, 0); |
| 2837 |
return true; |
| 2838 |
} |
| 2839 |
|
| 2840 |
/* T is known constant value of virtual table pointer. Return BINFO of the |
| 2841 |
instance type. */ |
| 2842 |
|
| 2843 |
tree |
| 2844 |
vtable_pointer_value_to_binfo (const_tree t) |
| 2845 |
{ |
| 2846 |
tree vtable; |
| 2847 |
unsigned HOST_WIDE_INT offset; |
| 2848 |
|
| 2849 |
if (!vtable_pointer_value_to_vtable (t, &vtable, &offset)) |
| 2850 |
return NULL_TREE; |
| 2851 |
|
| 2852 |
/* FIXME: for stores of construction vtables we return NULL, |
| 2853 |
because we do not have BINFO for those. Eventually we should fix |
| 2854 |
our representation to allow this case to be handled, too. |
| 2855 |
In the case we see store of BINFO we however may assume |
| 2856 |
that standard folding will be able to cope with it. */ |
| 2857 |
return subbinfo_with_vtable_at_offset (TYPE_BINFO (DECL_CONTEXT (vtable)), |
| 2858 |
offset, vtable); |
| 2859 |
} |
| 2860 |
|
| 2861 |
/* Walk bases of OUTER_TYPE that contain OTR_TYPE at OFFSET. |
| 2862 |
Look up their respective virtual methods for OTR_TOKEN and OTR_TYPE |
| 2863 |
and insert them in NODES. |
| 2864 |
|
| 2865 |
MATCHED_VTABLES and INSERTED is used to avoid duplicated work. */ |
| 2866 |
|
| 2867 |
static void |
| 2868 |
record_targets_from_bases (tree otr_type, |
| 2869 |
HOST_WIDE_INT otr_token, |
| 2870 |
tree outer_type, |
| 2871 |
HOST_WIDE_INT offset, |
| 2872 |
vec <cgraph_node *> &nodes, |
| 2873 |
hash_set<tree> *inserted, |
| 2874 |
hash_set<tree> *matched_vtables, |
| 2875 |
bool *completep) |
| 2876 |
{ |
| 2877 |
while (true) |
| 2878 |
{ |
| 2879 |
HOST_WIDE_INT pos, size; |
| 2880 |
tree base_binfo; |
| 2881 |
tree fld; |
| 2882 |
|
| 2883 |
if (types_same_for_odr (outer_type, otr_type)) |
| 2884 |
return; |
| 2885 |
|
| 2886 |
for (fld = TYPE_FIELDS (outer_type); fld; fld = DECL_CHAIN (fld)) |
| 2887 |
{ |
| 2888 |
if (TREE_CODE (fld) != FIELD_DECL) |
| 2889 |
continue; |
| 2890 |
|
| 2891 |
pos = int_bit_position (fld); |
| 2892 |
size = tree_to_shwi (DECL_SIZE (fld)); |
| 2893 |
if (pos <= offset && (pos + size) > offset |
| 2894 |
/* Do not get confused by zero sized bases. */ |
| 2895 |
&& polymorphic_type_binfo_p (TYPE_BINFO (TREE_TYPE (fld)))) |
| 2896 |
break; |
| 2897 |
} |
| 2898 |
/* Within a class type we should always find corresponding fields. */ |
| 2899 |
gcc_assert (fld && TREE_CODE (TREE_TYPE (fld)) == RECORD_TYPE); |
| 2900 |
|
| 2901 |
/* Nonbase types should have been stripped by outer_class_type. */ |
| 2902 |
gcc_assert (DECL_ARTIFICIAL (fld)); |
| 2903 |
|
| 2904 |
outer_type = TREE_TYPE (fld); |
| 2905 |
offset -= pos; |
| 2906 |
|
| 2907 |
base_binfo = get_binfo_at_offset (TYPE_BINFO (outer_type), |
| 2908 |
offset, otr_type); |
| 2909 |
if (!base_binfo) |
| 2910 |
{ |
| 2911 |
gcc_assert (odr_violation_reported); |
| 2912 |
return; |
| 2913 |
} |
| 2914 |
gcc_assert (base_binfo); |
| 2915 |
if (!matched_vtables->add (BINFO_VTABLE (base_binfo))) |
| 2916 |
{ |
| 2917 |
bool can_refer; |
| 2918 |
tree target = gimple_get_virt_method_for_binfo (otr_token, |
| 2919 |
base_binfo, |
| 2920 |
&can_refer); |
| 2921 |
if (!target || ! DECL_CXX_DESTRUCTOR_P (target)) |
| 2922 |
maybe_record_node (nodes, target, inserted, can_refer, completep); |
| 2923 |
matched_vtables->add (BINFO_VTABLE (base_binfo)); |
| 2924 |
} |
| 2925 |
} |
| 2926 |
} |
| 2927 |
|
| 2928 |
/* When virtual table is removed, we may need to flush the cache. */ |
| 2929 |
|
| 2930 |
static void |
| 2931 |
devirt_variable_node_removal_hook (varpool_node *n, |
| 2932 |
void *d ATTRIBUTE_UNUSED) |
| 2933 |
{ |
| 2934 |
if (cached_polymorphic_call_targets |
| 2935 |
&& DECL_VIRTUAL_P (n->decl) |
| 2936 |
&& type_in_anonymous_namespace_p (DECL_CONTEXT (n->decl))) |
| 2937 |
free_polymorphic_call_targets_hash (); |
| 2938 |
} |
| 2939 |
|
| 2940 |
/* Record about how many calls would benefit from given type to be final. */ |
| 2941 |
|
| 2942 |
struct odr_type_warn_count |
| 2943 |
{ |
| 2944 |
tree type; |
| 2945 |
int count; |
| 2946 |
profile_count dyn_count; |
| 2947 |
}; |
| 2948 |
|
| 2949 |
/* Record about how many calls would benefit from given method to be final. */ |
| 2950 |
|
| 2951 |
struct decl_warn_count |
| 2952 |
{ |
| 2953 |
tree decl; |
| 2954 |
int count; |
| 2955 |
profile_count dyn_count; |
| 2956 |
}; |
| 2957 |
|
| 2958 |
/* Information about type and decl warnings. */ |
| 2959 |
|
| 2960 |
class final_warning_record |
| 2961 |
{ |
| 2962 |
public: |
| 2963 |
/* If needed grow type_warnings vector and initialize new decl_warn_count |
| 2964 |
to have dyn_count set to profile_count::zero (). */ |
| 2965 |
void grow_type_warnings (unsigned newlen); |
| 2966 |
|
| 2967 |
profile_count dyn_count; |
| 2968 |
auto_vec<odr_type_warn_count> type_warnings; |
| 2969 |
hash_map<tree, decl_warn_count> decl_warnings; |
| 2970 |
}; |
| 2971 |
|
| 2972 |
void |
| 2973 |
final_warning_record::grow_type_warnings (unsigned newlen) |
| 2974 |
{ |
| 2975 |
unsigned len = type_warnings.length (); |
| 2976 |
if (newlen > len) |
| 2977 |
{ |
| 2978 |
type_warnings.safe_grow_cleared (newlen); |
| 2979 |
for (unsigned i = len; i < newlen; i++) |
| 2980 |
type_warnings[i].dyn_count = profile_count::zero (); |
| 2981 |
} |
| 2982 |
} |
| 2983 |
|
| 2984 |
class final_warning_record *final_warning_records; |
| 2985 |
|
| 2986 |
/* Return vector containing possible targets of polymorphic call of type |
| 2987 |
OTR_TYPE calling method OTR_TOKEN within type of OTR_OUTER_TYPE and OFFSET. |
| 2988 |
If INCLUDE_BASES is true, walk also base types of OUTER_TYPES containing |
| 2989 |
OTR_TYPE and include their virtual method. This is useful for types |
| 2990 |
possibly in construction or destruction where the virtual table may |
| 2991 |
temporarily change to one of base types. INCLUDE_DERIVED_TYPES make |
| 2992 |
us to walk the inheritance graph for all derivations. |
| 2993 |
|
| 2994 |
If COMPLETEP is non-NULL, store true if the list is complete. |
| 2995 |
CACHE_TOKEN (if non-NULL) will get stored to an unique ID of entry |
| 2996 |
in the target cache. If user needs to visit every target list |
| 2997 |
just once, it can memoize them. |
| 2998 |
|
| 2999 |
If SPECULATIVE is set, the list will not contain targets that |
| 3000 |
are not speculatively taken. |
| 3001 |
|
| 3002 |
Returned vector is placed into cache. It is NOT caller's responsibility |
| 3003 |
to free it. The vector can be freed on cgraph_remove_node call if |
| 3004 |
the particular node is a virtual function present in the cache. */ |
| 3005 |
|
| 3006 |
vec <cgraph_node *> |
| 3007 |
possible_polymorphic_call_targets (tree otr_type, |
| 3008 |
HOST_WIDE_INT otr_token, |
| 3009 |
ipa_polymorphic_call_context context, |
| 3010 |
bool *completep, |
| 3011 |
void **cache_token, |
| 3012 |
bool speculative) |
| 3013 |
{ |
| 3014 |
static struct cgraph_node_hook_list *node_removal_hook_holder; |
| 3015 |
vec <cgraph_node *> nodes = vNULL; |
| 3016 |
auto_vec <tree, 8> bases_to_consider; |
| 3017 |
odr_type type, outer_type; |
| 3018 |
polymorphic_call_target_d key; |
| 3019 |
polymorphic_call_target_d **slot; |
| 3020 |
unsigned int i; |
| 3021 |
tree binfo, target; |
| 3022 |
bool complete; |
| 3023 |
bool can_refer = false; |
| 3024 |
bool skipped = false; |
| 3025 |
|
| 3026 |
otr_type = TYPE_MAIN_VARIANT (otr_type); |
| 3027 |
|
| 3028 |
/* If ODR is not initialized or the context is invalid, return empty |
| 3029 |
incomplete list. */ |
| 3030 |
if (!odr_hash || context.invalid || !TYPE_BINFO (otr_type)) |
| 3031 |
{ |
| 3032 |
if (completep) |
| 3033 |
*completep = context.invalid; |
| 3034 |
if (cache_token) |
| 3035 |
*cache_token = NULL; |
| 3036 |
return nodes; |
| 3037 |
} |
| 3038 |
|
| 3039 |
/* Do not bother to compute speculative info when user do not asks for it. */ |
| 3040 |
if (!speculative || !context.speculative_outer_type) |
| 3041 |
context.clear_speculation (); |
| 3042 |
|
| 3043 |
type = get_odr_type (otr_type, true); |
| 3044 |
|
| 3045 |
/* Recording type variants would waste results cache. */ |
| 3046 |
gcc_assert (!context.outer_type |
| 3047 |
|| TYPE_MAIN_VARIANT (context.outer_type) == context.outer_type); |
| 3048 |
|
| 3049 |
/* Look up the outer class type we want to walk. |
| 3050 |
If we fail to do so, the context is invalid. */ |
| 3051 |
if ((context.outer_type || context.speculative_outer_type) |
| 3052 |
&& !context.restrict_to_inner_class (otr_type)) |
| 3053 |
{ |
| 3054 |
if (completep) |
| 3055 |
*completep = true; |
| 3056 |
if (cache_token) |
| 3057 |
*cache_token = NULL; |
| 3058 |
return nodes; |
| 3059 |
} |
| 3060 |
gcc_assert (!context.invalid); |
| 3061 |
|
| 3062 |
/* Check that restrict_to_inner_class kept the main variant. */ |
| 3063 |
gcc_assert (!context.outer_type |
| 3064 |
|| TYPE_MAIN_VARIANT (context.outer_type) == context.outer_type); |
| 3065 |
|
| 3066 |
/* We canonicalize our query, so we do not need extra hashtable entries. */ |
| 3067 |
|
| 3068 |
/* Without outer type, we have no use for offset. Just do the |
| 3069 |
basic search from inner type. */ |
| 3070 |
if (!context.outer_type) |
| 3071 |
context.clear_outer_type (otr_type); |
| 3072 |
/* We need to update our hierarchy if the type does not exist. */ |
| 3073 |
outer_type = get_odr_type (context.outer_type, true); |
| 3074 |
/* If the type is complete, there are no derivations. */ |
| 3075 |
if (TYPE_FINAL_P (outer_type->type)) |
| 3076 |
context.maybe_derived_type = false; |
| 3077 |
|
| 3078 |
/* Initialize query cache. */ |
| 3079 |
if (!cached_polymorphic_call_targets) |
| 3080 |
{ |
| 3081 |
cached_polymorphic_call_targets = new hash_set<cgraph_node *>; |
| 3082 |
polymorphic_call_target_hash |
| 3083 |
= new polymorphic_call_target_hash_type (23); |
| 3084 |
if (!node_removal_hook_holder) |
| 3085 |
{ |
| 3086 |
node_removal_hook_holder = |
| 3087 |
symtab->add_cgraph_removal_hook (&devirt_node_removal_hook, NULL); |
| 3088 |
symtab->add_varpool_removal_hook (&devirt_variable_node_removal_hook, |
| 3089 |
NULL); |
| 3090 |
} |
| 3091 |
} |
| 3092 |
|
| 3093 |
if (in_lto_p) |
| 3094 |
{ |
| 3095 |
if (context.outer_type != otr_type) |
| 3096 |
context.outer_type |
| 3097 |
= get_odr_type (context.outer_type, true)->type; |
| 3098 |
if (context.speculative_outer_type) |
| 3099 |
context.speculative_outer_type |
| 3100 |
= get_odr_type (context.speculative_outer_type, true)->type; |
| 3101 |
} |
| 3102 |
|
| 3103 |
/* Look up cached answer. */ |
| 3104 |
key.type = type; |
| 3105 |
key.otr_token = otr_token; |
| 3106 |
key.speculative = speculative; |
| 3107 |
key.context = context; |
| 3108 |
key.n_odr_types = odr_types.length (); |
| 3109 |
slot = polymorphic_call_target_hash->find_slot (&key, INSERT); |
| 3110 |
if (cache_token) |
| 3111 |
*cache_token = (void *)*slot; |
| 3112 |
if (*slot) |
| 3113 |
{ |
| 3114 |
if (completep) |
| 3115 |
*completep = (*slot)->complete; |
| 3116 |
if ((*slot)->type_warning && final_warning_records) |
| 3117 |
{ |
| 3118 |
final_warning_records->type_warnings[(*slot)->type_warning - 1].count++; |
| 3119 |
if (!final_warning_records->type_warnings |
| 3120 |
[(*slot)->type_warning - 1].dyn_count.initialized_p ()) |
| 3121 |
final_warning_records->type_warnings |
| 3122 |
[(*slot)->type_warning - 1].dyn_count = profile_count::zero (); |
| 3123 |
if (final_warning_records->dyn_count > 0) |
| 3124 |
final_warning_records->type_warnings[(*slot)->type_warning - 1].dyn_count |
| 3125 |
= final_warning_records->type_warnings[(*slot)->type_warning - 1].dyn_count |
| 3126 |
+ final_warning_records->dyn_count; |
| 3127 |
} |
| 3128 |
if (!speculative && (*slot)->decl_warning && final_warning_records) |
| 3129 |
{ |
| 3130 |
struct decl_warn_count *c = |
| 3131 |
final_warning_records->decl_warnings.get ((*slot)->decl_warning); |
| 3132 |
c->count++; |
| 3133 |
if (final_warning_records->dyn_count > 0) |
| 3134 |
c->dyn_count += final_warning_records->dyn_count; |
| 3135 |
} |
| 3136 |
return (*slot)->targets; |
| 3137 |
} |
| 3138 |
|
| 3139 |
complete = true; |
| 3140 |
|
| 3141 |
/* Do actual search. */ |
| 3142 |
timevar_push (TV_IPA_VIRTUAL_CALL); |
| 3143 |
*slot = XCNEW (polymorphic_call_target_d); |
| 3144 |
if (cache_token) |
| 3145 |
*cache_token = (void *)*slot; |
| 3146 |
(*slot)->type = type; |
| 3147 |
(*slot)->otr_token = otr_token; |
| 3148 |
(*slot)->context = context; |
| 3149 |
(*slot)->speculative = speculative; |
| 3150 |
|
| 3151 |
hash_set<tree> inserted; |
| 3152 |
hash_set<tree> matched_vtables; |
| 3153 |
|
| 3154 |
/* First insert targets we speculatively identified as likely. */ |
| 3155 |
if (context.speculative_outer_type) |
| 3156 |
{ |
| 3157 |
odr_type speculative_outer_type; |
| 3158 |
bool speculation_complete = true; |
| 3159 |
|
| 3160 |
/* First insert target from type itself and check if it may have |
| 3161 |
derived types. */ |
| 3162 |
speculative_outer_type = get_odr_type (context.speculative_outer_type, true); |
| 3163 |
if (TYPE_FINAL_P (speculative_outer_type->type)) |
| 3164 |
context.speculative_maybe_derived_type = false; |
| 3165 |
binfo = get_binfo_at_offset (TYPE_BINFO (speculative_outer_type->type), |
| 3166 |
context.speculative_offset, otr_type); |
| 3167 |
if (binfo) |
| 3168 |
target = gimple_get_virt_method_for_binfo (otr_token, binfo, |
| 3169 |
&can_refer); |
| 3170 |
else |
| 3171 |
target = NULL; |
| 3172 |
|
| 3173 |
/* In the case we get complete method, we don't need |
| 3174 |
to walk derivations. */ |
| 3175 |
if (target && DECL_FINAL_P (target)) |
| 3176 |
context.speculative_maybe_derived_type = false; |
| 3177 |
if (type_possibly_instantiated_p (speculative_outer_type->type)) |
| 3178 |
maybe_record_node (nodes, target, &inserted, can_refer, &speculation_complete); |
| 3179 |
if (binfo) |
| 3180 |
matched_vtables.add (BINFO_VTABLE (binfo)); |
| 3181 |
|
| 3182 |
|
| 3183 |
/* Next walk recursively all derived types. */ |
| 3184 |
if (context.speculative_maybe_derived_type) |
| 3185 |
for (i = 0; i < speculative_outer_type->derived_types.length(); i++) |
| 3186 |
possible_polymorphic_call_targets_1 (nodes, &inserted, |
| 3187 |
&matched_vtables, |
| 3188 |
otr_type, |
| 3189 |
speculative_outer_type->derived_types[i], |
| 3190 |
otr_token, speculative_outer_type->type, |
| 3191 |
context.speculative_offset, |
| 3192 |
&speculation_complete, |
| 3193 |
bases_to_consider, |
| 3194 |
false); |
| 3195 |
} |
| 3196 |
|
| 3197 |
if (!speculative || !nodes.length ()) |
| 3198 |
{ |
| 3199 |
/* First see virtual method of type itself. */ |
| 3200 |
binfo = get_binfo_at_offset (TYPE_BINFO (outer_type->type), |
| 3201 |
context.offset, otr_type); |
| 3202 |
if (binfo) |
| 3203 |
target = gimple_get_virt_method_for_binfo (otr_token, binfo, |
| 3204 |
&can_refer); |
| 3205 |
else |
| 3206 |
{ |
| 3207 |
gcc_assert (odr_violation_reported); |
| 3208 |
target = NULL; |
| 3209 |
} |
| 3210 |
|
| 3211 |
/* Destructors are never called through construction virtual tables, |
| 3212 |
because the type is always known. */ |
| 3213 |
if (target && DECL_CXX_DESTRUCTOR_P (target)) |
| 3214 |
context.maybe_in_construction = false; |
| 3215 |
|
| 3216 |
if (target) |
| 3217 |
{ |
| 3218 |
/* In the case we get complete method, we don't need |
| 3219 |
to walk derivations. */ |
| 3220 |
if (DECL_FINAL_P (target)) |
| 3221 |
context.maybe_derived_type = false; |
| 3222 |
} |
| 3223 |
|
| 3224 |
/* If OUTER_TYPE is abstract, we know we are not seeing its instance. */ |
| 3225 |
if (type_possibly_instantiated_p (outer_type->type)) |
| 3226 |
maybe_record_node (nodes, target, &inserted, can_refer, &complete); |
| 3227 |
else |
| 3228 |
skipped = true; |
| 3229 |
|
| 3230 |
if (binfo) |
| 3231 |
matched_vtables.add (BINFO_VTABLE (binfo)); |
| 3232 |
|
| 3233 |
/* Next walk recursively all derived types. */ |
| 3234 |
if (context.maybe_derived_type) |
| 3235 |
{ |
| 3236 |
for (i = 0; i < outer_type->derived_types.length(); i++) |
| 3237 |
possible_polymorphic_call_targets_1 (nodes, &inserted, |
| 3238 |
&matched_vtables, |
| 3239 |
otr_type, |
| 3240 |
outer_type->derived_types[i], |
| 3241 |
otr_token, outer_type->type, |
| 3242 |
context.offset, &complete, |
| 3243 |
bases_to_consider, |
| 3244 |
context.maybe_in_construction); |
| 3245 |
|
| 3246 |
if (!outer_type->all_derivations_known) |
| 3247 |
{ |
| 3248 |
if (!speculative && final_warning_records |
| 3249 |
&& nodes.length () == 1 |
| 3250 |
&& TREE_CODE (TREE_TYPE (nodes[0]->decl)) == METHOD_TYPE) |
| 3251 |
{ |
| 3252 |
if (complete |
| 3253 |
&& warn_suggest_final_types |
| 3254 |
&& !outer_type->derived_types.length ()) |
| 3255 |
{ |
| 3256 |
final_warning_records->grow_type_warnings |
| 3257 |
(outer_type->id); |
| 3258 |
final_warning_records->type_warnings[outer_type->id].count++; |
| 3259 |
if (!final_warning_records->type_warnings |
| 3260 |
[outer_type->id].dyn_count.initialized_p ()) |
| 3261 |
final_warning_records->type_warnings |
| 3262 |
[outer_type->id].dyn_count = profile_count::zero (); |
| 3263 |
final_warning_records->type_warnings[outer_type->id].dyn_count |
| 3264 |
+= final_warning_records->dyn_count; |
| 3265 |
final_warning_records->type_warnings[outer_type->id].type |
| 3266 |
= outer_type->type; |
| 3267 |
(*slot)->type_warning = outer_type->id + 1; |
| 3268 |
} |
| 3269 |
if (complete |
| 3270 |
&& warn_suggest_final_methods |
| 3271 |
&& types_same_for_odr (DECL_CONTEXT (nodes[0]->decl), |
| 3272 |
outer_type->type)) |
| 3273 |
{ |
| 3274 |
bool existed; |
| 3275 |
struct decl_warn_count &c = |
| 3276 |
final_warning_records->decl_warnings.get_or_insert |
| 3277 |
(nodes[0]->decl, &existed); |
| 3278 |
|
| 3279 |
if (existed) |
| 3280 |
{ |
| 3281 |
c.count++; |
| 3282 |
c.dyn_count += final_warning_records->dyn_count; |
| 3283 |
} |
| 3284 |
else |
| 3285 |
{ |
| 3286 |
c.count = 1; |
| 3287 |
c.dyn_count = final_warning_records->dyn_count; |
| 3288 |
c.decl = nodes[0]->decl; |
| 3289 |
} |
| 3290 |
(*slot)->decl_warning = nodes[0]->decl; |
| 3291 |
} |
| 3292 |
} |
| 3293 |
complete = false; |
| 3294 |
} |
| 3295 |
} |
| 3296 |
|
| 3297 |
if (!speculative) |
| 3298 |
{ |
| 3299 |
/* Destructors are never called through construction virtual tables, |
| 3300 |
because the type is always known. One of entries may be |
| 3301 |
cxa_pure_virtual so look to at least two of them. */ |
| 3302 |
if (context.maybe_in_construction) |
| 3303 |
for (i =0 ; i < MIN (nodes.length (), 2); i++) |
| 3304 |
if (DECL_CXX_DESTRUCTOR_P (nodes[i]->decl)) |
| 3305 |
context.maybe_in_construction = false; |
| 3306 |
if (context.maybe_in_construction) |
| 3307 |
{ |
| 3308 |
if (type != outer_type |
| 3309 |
&& (!skipped |
| 3310 |
|| (context.maybe_derived_type |
| 3311 |
&& !type_all_derivations_known_p (outer_type->type)))) |
| 3312 |
record_targets_from_bases (otr_type, otr_token, outer_type->type, |
| 3313 |
context.offset, nodes, &inserted, |
| 3314 |
&matched_vtables, &complete); |
| 3315 |
if (skipped) |
| 3316 |
maybe_record_node (nodes, target, &inserted, can_refer, &complete); |
| 3317 |
for (i = 0; i < bases_to_consider.length(); i++) |
| 3318 |
maybe_record_node (nodes, bases_to_consider[i], &inserted, can_refer, &complete); |
| 3319 |
} |
| 3320 |
} |
| 3321 |
} |
| 3322 |
|
| 3323 |
(*slot)->targets = nodes; |
| 3324 |
(*slot)->complete = complete; |
| 3325 |
(*slot)->n_odr_types = odr_types.length (); |
| 3326 |
if (completep) |
| 3327 |
*completep = complete; |
| 3328 |
|
| 3329 |
timevar_pop (TV_IPA_VIRTUAL_CALL); |
| 3330 |
return nodes; |
| 3331 |
} |
| 3332 |
|
| 3333 |
bool |
| 3334 |
add_decl_warning (const tree &key ATTRIBUTE_UNUSED, const decl_warn_count &value, |
| 3335 |
vec<const decl_warn_count*> *vec) |
| 3336 |
{ |
| 3337 |
vec->safe_push (&value); |
| 3338 |
return true; |
| 3339 |
} |
| 3340 |
|
| 3341 |
/* Dump target list TARGETS into FILE. */ |
| 3342 |
|
| 3343 |
static void |
| 3344 |
dump_targets (FILE *f, vec <cgraph_node *> targets, bool verbose) |
| 3345 |
{ |
| 3346 |
unsigned int i; |
| 3347 |
|
| 3348 |
for (i = 0; i < targets.length (); i++) |
| 3349 |
{ |
| 3350 |
char *name = NULL; |
| 3351 |
if (in_lto_p) |
| 3352 |
name = cplus_demangle_v3 (targets[i]->asm_name (), 0); |
| 3353 |
fprintf (f, " %s/%i", name ? name : targets[i]->name (), |
| 3354 |
targets[i]->order); |
| 3355 |
if (in_lto_p) |
| 3356 |
free (name); |
| 3357 |
if (!targets[i]->definition) |
| 3358 |
fprintf (f, " (no definition%s)", |
| 3359 |
DECL_DECLARED_INLINE_P (targets[i]->decl) |
| 3360 |
? " inline" : ""); |
| 3361 |
/* With many targets for every call polymorphic dumps are going to |
| 3362 |
be quadratic in size. */ |
| 3363 |
if (i > 10 && !verbose) |
| 3364 |
{ |
| 3365 |
fprintf (f, " ... and %i more targets\n", targets.length () - i); |
| 3366 |
return; |
| 3367 |
} |
| 3368 |
} |
| 3369 |
fprintf (f, "\n"); |
| 3370 |
} |
| 3371 |
|
| 3372 |
/* Dump all possible targets of a polymorphic call. */ |
| 3373 |
|
| 3374 |
void |
| 3375 |
dump_possible_polymorphic_call_targets (FILE *f, |
| 3376 |
tree otr_type, |
| 3377 |
HOST_WIDE_INT otr_token, |
| 3378 |
const ipa_polymorphic_call_context &ctx, |
| 3379 |
bool verbose) |
| 3380 |
{ |
| 3381 |
vec <cgraph_node *> targets; |
| 3382 |
bool final; |
| 3383 |
odr_type type = get_odr_type (TYPE_MAIN_VARIANT (otr_type), false); |
| 3384 |
unsigned int len; |
| 3385 |
|
| 3386 |
if (!type) |
| 3387 |
return; |
| 3388 |
targets = possible_polymorphic_call_targets (otr_type, otr_token, |
| 3389 |
ctx, |
| 3390 |
&final, NULL, false); |
| 3391 |
fprintf (f, " Targets of polymorphic call of type %i:", type->id); |
| 3392 |
print_generic_expr (f, type->type, TDF_SLIM); |
| 3393 |
fprintf (f, " token %i\n", (int)otr_token); |
| 3394 |
|
| 3395 |
ctx.dump (f); |
| 3396 |
|
| 3397 |
fprintf (f, " %s%s%s%s\n ", |
| 3398 |
final ? "This is a complete list." : |
| 3399 |
"This is partial list; extra targets may be defined in other units.", |
| 3400 |
ctx.maybe_in_construction ? " (base types included)" : "", |
| 3401 |
ctx.maybe_derived_type ? " (derived types included)" : "", |
| 3402 |
ctx.speculative_maybe_derived_type ? " (speculative derived types included)" : ""); |
| 3403 |
len = targets.length (); |
| 3404 |
dump_targets (f, targets, verbose); |
| 3405 |
|
| 3406 |
targets = possible_polymorphic_call_targets (otr_type, otr_token, |
| 3407 |
ctx, |
| 3408 |
&final, NULL, true); |
| 3409 |
if (targets.length () != len) |
| 3410 |
{ |
| 3411 |
fprintf (f, " Speculative targets:"); |
| 3412 |
dump_targets (f, targets, verbose); |
| 3413 |
} |
| 3414 |
/* Ugly: during callgraph construction the target cache may get populated |
| 3415 |
before all targets are found. While this is harmless (because all local |
| 3416 |
types are discovered and only in those case we devirtualize fully and we |
| 3417 |
don't do speculative devirtualization before IPA stage) it triggers |
| 3418 |
assert here when dumping at that stage also populates the case with |
| 3419 |
speculative targets. Quietly ignore this. */ |
| 3420 |
gcc_assert (symtab->state < IPA_SSA || targets.length () <= len); |
| 3421 |
fprintf (f, "\n"); |
| 3422 |
} |
| 3423 |
|
| 3424 |
|
| 3425 |
/* Return true if N can be possibly target of a polymorphic call of |
| 3426 |
OTR_TYPE/OTR_TOKEN. */ |
| 3427 |
|
| 3428 |
bool |
| 3429 |
possible_polymorphic_call_target_p (tree otr_type, |
| 3430 |
HOST_WIDE_INT otr_token, |
| 3431 |
const ipa_polymorphic_call_context &ctx, |
| 3432 |
struct cgraph_node *n) |
| 3433 |
{ |
| 3434 |
vec <cgraph_node *> targets; |
| 3435 |
unsigned int i; |
| 3436 |
bool final; |
| 3437 |
|
| 3438 |
if (fndecl_built_in_p (n->decl, BUILT_IN_UNREACHABLE) |
| 3439 |
|| fndecl_built_in_p (n->decl, BUILT_IN_TRAP)) |
| 3440 |
return true; |
| 3441 |
|
| 3442 |
if (is_cxa_pure_virtual_p (n->decl)) |
| 3443 |
return true; |
| 3444 |
|
| 3445 |
if (!odr_hash) |
| 3446 |
return true; |
| 3447 |
targets = possible_polymorphic_call_targets (otr_type, otr_token, ctx, &final); |
| 3448 |
for (i = 0; i < targets.length (); i++) |
| 3449 |
if (n->semantically_equivalent_p (targets[i])) |
| 3450 |
return true; |
| 3451 |
|
| 3452 |
/* At a moment we allow middle end to dig out new external declarations |
| 3453 |
as a targets of polymorphic calls. */ |
| 3454 |
if (!final && !n->definition) |
| 3455 |
return true; |
| 3456 |
return false; |
| 3457 |
} |
| 3458 |
|
| 3459 |
|
| 3460 |
|
| 3461 |
/* Return true if N can be possibly target of a polymorphic call of |
| 3462 |
OBJ_TYPE_REF expression REF in STMT. */ |
| 3463 |
|
| 3464 |
bool |
| 3465 |
possible_polymorphic_call_target_p (tree ref, |
| 3466 |
gimple *stmt, |
| 3467 |
struct cgraph_node *n) |
| 3468 |
{ |
| 3469 |
ipa_polymorphic_call_context context (current_function_decl, ref, stmt); |
| 3470 |
tree call_fn = gimple_call_fn (stmt); |
| 3471 |
|
| 3472 |
return possible_polymorphic_call_target_p (obj_type_ref_class (call_fn), |
| 3473 |
tree_to_uhwi |
| 3474 |
(OBJ_TYPE_REF_TOKEN (call_fn)), |
| 3475 |
context, |
| 3476 |
n); |
| 3477 |
} |
| 3478 |
|
| 3479 |
|
| 3480 |
/* After callgraph construction new external nodes may appear. |
| 3481 |
Add them into the graph. */ |
| 3482 |
|
| 3483 |
void |
| 3484 |
update_type_inheritance_graph (void) |
| 3485 |
{ |
| 3486 |
struct cgraph_node *n; |
| 3487 |
|
| 3488 |
if (!odr_hash) |
| 3489 |
return; |
| 3490 |
free_polymorphic_call_targets_hash (); |
| 3491 |
timevar_push (TV_IPA_INHERITANCE); |
| 3492 |
/* We reconstruct the graph starting from types of all methods seen in the |
| 3493 |
unit. */ |
| 3494 |
FOR_EACH_FUNCTION (n) |
| 3495 |
if (DECL_VIRTUAL_P (n->decl) |
| 3496 |
&& !n->definition |
| 3497 |
&& n->real_symbol_p ()) |
| 3498 |
get_odr_type (TYPE_METHOD_BASETYPE (TREE_TYPE (n->decl)), true); |
| 3499 |
timevar_pop (TV_IPA_INHERITANCE); |
| 3500 |
} |
| 3501 |
|
| 3502 |
|
| 3503 |
/* Return true if N looks like likely target of a polymorphic call. |
| 3504 |
Rule out cxa_pure_virtual, noreturns, function declared cold and |
| 3505 |
other obvious cases. */ |
| 3506 |
|
| 3507 |
bool |
| 3508 |
likely_target_p (struct cgraph_node *n) |
| 3509 |
{ |
| 3510 |
int flags; |
| 3511 |
/* cxa_pure_virtual and similar things are not likely. */ |
| 3512 |
if (TREE_CODE (TREE_TYPE (n->decl)) != METHOD_TYPE) |
| 3513 |
return false; |
| 3514 |
flags = flags_from_decl_or_type (n->decl); |
| 3515 |
if (flags & ECF_NORETURN) |
| 3516 |
return false; |
| 3517 |
if (lookup_attribute ("cold", |
| 3518 |
DECL_ATTRIBUTES (n->decl))) |
| 3519 |
return false; |
| 3520 |
if (n->frequency < NODE_FREQUENCY_NORMAL) |
| 3521 |
return false; |
| 3522 |
/* If there are no live virtual tables referring the target, |
| 3523 |
the only way the target can be called is an instance coming from other |
| 3524 |
compilation unit; speculative devirtualization is built around an |
| 3525 |
assumption that won't happen. */ |
| 3526 |
if (!referenced_from_vtable_p (n)) |
| 3527 |
return false; |
| 3528 |
return true; |
| 3529 |
} |
| 3530 |
|
| 3531 |
/* Compare type warning records P1 and P2 and choose one with larger count; |
| 3532 |
helper for qsort. */ |
| 3533 |
|
| 3534 |
static int |
| 3535 |
type_warning_cmp (const void *p1, const void *p2) |
| 3536 |
{ |
| 3537 |
const odr_type_warn_count *t1 = (const odr_type_warn_count *)p1; |
| 3538 |
const odr_type_warn_count *t2 = (const odr_type_warn_count *)p2; |
| 3539 |
|
| 3540 |
if (t1->dyn_count < t2->dyn_count) |
| 3541 |
return 1; |
| 3542 |
if (t1->dyn_count > t2->dyn_count) |
| 3543 |
return -1; |
| 3544 |
return t2->count - t1->count; |
| 3545 |
} |
| 3546 |
|
| 3547 |
/* Compare decl warning records P1 and P2 and choose one with larger count; |
| 3548 |
helper for qsort. */ |
| 3549 |
|
| 3550 |
static int |
| 3551 |
decl_warning_cmp (const void *p1, const void *p2) |
| 3552 |
{ |
| 3553 |
const decl_warn_count *t1 = *(const decl_warn_count * const *)p1; |
| 3554 |
const decl_warn_count *t2 = *(const decl_warn_count * const *)p2; |
| 3555 |
|
| 3556 |
if (t1->dyn_count < t2->dyn_count) |
| 3557 |
return 1; |
| 3558 |
if (t1->dyn_count > t2->dyn_count) |
| 3559 |
return -1; |
| 3560 |
return t2->count - t1->count; |
| 3561 |
} |
| 3562 |
|
| 3563 |
|
| 3564 |
/* Try to speculatively devirtualize call to OTR_TYPE with OTR_TOKEN with |
| 3565 |
context CTX. */ |
| 3566 |
|
| 3567 |
struct cgraph_node * |
| 3568 |
try_speculative_devirtualization (tree otr_type, HOST_WIDE_INT otr_token, |
| 3569 |
ipa_polymorphic_call_context ctx) |
| 3570 |
{ |
| 3571 |
vec <cgraph_node *>targets |
| 3572 |
= possible_polymorphic_call_targets |
| 3573 |
(otr_type, otr_token, ctx, NULL, NULL, true); |
| 3574 |
unsigned int i; |
| 3575 |
struct cgraph_node *likely_target = NULL; |
| 3576 |
|
| 3577 |
for (i = 0; i < targets.length (); i++) |
| 3578 |
if (likely_target_p (targets[i])) |
| 3579 |
{ |
| 3580 |
if (likely_target) |
| 3581 |
return NULL; |
| 3582 |
likely_target = targets[i]; |
| 3583 |
} |
| 3584 |
if (!likely_target |
| 3585 |
||!likely_target->definition |
| 3586 |
|| DECL_EXTERNAL (likely_target->decl)) |
| 3587 |
return NULL; |
| 3588 |
|
| 3589 |
/* Don't use an implicitly-declared destructor (c++/58678). */ |
| 3590 |
struct cgraph_node *non_thunk_target |
| 3591 |
= likely_target->function_symbol (); |
| 3592 |
if (DECL_ARTIFICIAL (non_thunk_target->decl)) |
| 3593 |
return NULL; |
| 3594 |
if (likely_target->get_availability () <= AVAIL_INTERPOSABLE |
| 3595 |
&& likely_target->can_be_discarded_p ()) |
| 3596 |
return NULL; |
| 3597 |
return likely_target; |
| 3598 |
} |
| 3599 |
|
| 3600 |
/* The ipa-devirt pass. |
| 3601 |
When polymorphic call has only one likely target in the unit, |
| 3602 |
turn it into a speculative call. */ |
| 3603 |
|
| 3604 |
static unsigned int |
| 3605 |
ipa_devirt (void) |
| 3606 |
{ |
| 3607 |
struct cgraph_node *n; |
| 3608 |
hash_set<void *> bad_call_targets; |
| 3609 |
struct cgraph_edge *e; |
| 3610 |
|
| 3611 |
int npolymorphic = 0, nspeculated = 0, nconverted = 0, ncold = 0; |
| 3612 |
int nmultiple = 0, noverwritable = 0, ndevirtualized = 0, nnotdefined = 0; |
| 3613 |
int nwrong = 0, nok = 0, nexternal = 0, nartificial = 0; |
| 3614 |
int ndropped = 0; |
| 3615 |
|
| 3616 |
if (!odr_types_ptr) |
| 3617 |
return 0; |
| 3618 |
|
| 3619 |
if (dump_file) |
| 3620 |
dump_type_inheritance_graph (dump_file); |
| 3621 |
|
| 3622 |
/* We can output -Wsuggest-final-methods and -Wsuggest-final-types warnings. |
| 3623 |
This is implemented by setting up final_warning_records that are updated |
| 3624 |
by get_polymorphic_call_targets. |
| 3625 |
We need to clear cache in this case to trigger recomputation of all |
| 3626 |
entries. */ |
| 3627 |
if (warn_suggest_final_methods || warn_suggest_final_types) |
| 3628 |
{ |
| 3629 |
final_warning_records = new (final_warning_record); |
| 3630 |
final_warning_records->dyn_count = profile_count::zero (); |
| 3631 |
final_warning_records->grow_type_warnings (odr_types.length ()); |
| 3632 |
free_polymorphic_call_targets_hash (); |
| 3633 |
} |
| 3634 |
|
| 3635 |
FOR_EACH_DEFINED_FUNCTION (n) |
| 3636 |
{ |
| 3637 |
bool update = false; |
| 3638 |
if (!opt_for_fn (n->decl, flag_devirtualize)) |
| 3639 |
continue; |
| 3640 |
if (dump_file && n->indirect_calls) |
| 3641 |
fprintf (dump_file, "\n\nProcesing function %s\n", |
| 3642 |
n->dump_name ()); |
| 3643 |
for (e = n->indirect_calls; e; e = e->next_callee) |
| 3644 |
if (e->indirect_info->polymorphic) |
| 3645 |
{ |
| 3646 |
struct cgraph_node *likely_target = NULL; |
| 3647 |
void *cache_token; |
| 3648 |
bool final; |
| 3649 |
|
| 3650 |
if (final_warning_records) |
| 3651 |
final_warning_records->dyn_count = e->count.ipa (); |
| 3652 |
|
| 3653 |
vec <cgraph_node *>targets |
| 3654 |
= possible_polymorphic_call_targets |
| 3655 |
(e, &final, &cache_token, true); |
| 3656 |
unsigned int i; |
| 3657 |
|
| 3658 |
/* Trigger warnings by calculating non-speculative targets. */ |
| 3659 |
if (warn_suggest_final_methods || warn_suggest_final_types) |
| 3660 |
possible_polymorphic_call_targets (e); |
| 3661 |
|
| 3662 |
if (dump_file) |
| 3663 |
dump_possible_polymorphic_call_targets |
| 3664 |
(dump_file, e, (dump_flags & TDF_DETAILS)); |
| 3665 |
|
| 3666 |
npolymorphic++; |
| 3667 |
|
| 3668 |
/* See if the call can be devirtualized by means of ipa-prop's |
| 3669 |
polymorphic call context propagation. If not, we can just |
| 3670 |
forget about this call being polymorphic and avoid some heavy |
| 3671 |
lifting in remove_unreachable_nodes that will otherwise try to |
| 3672 |
keep all possible targets alive until inlining and in the inliner |
| 3673 |
itself. |
| 3674 |
|
| 3675 |
This may need to be revisited once we add further ways to use |
| 3676 |
the may edges, but it is a reasonable thing to do right now. */ |
| 3677 |
|
| 3678 |
if ((e->indirect_info->param_index == -1 |
| 3679 |
|| (!opt_for_fn (n->decl, flag_devirtualize_speculatively) |
| 3680 |
&& e->indirect_info->vptr_changed)) |
| 3681 |
&& !flag_ltrans_devirtualize) |
| 3682 |
{ |
| 3683 |
e->indirect_info->polymorphic = false; |
| 3684 |
ndropped++; |
| 3685 |
if (dump_file) |
| 3686 |
fprintf (dump_file, "Dropping polymorphic call info;" |
| 3687 |
" it cannot be used by ipa-prop\n"); |
| 3688 |
} |
| 3689 |
|
| 3690 |
if (!opt_for_fn (n->decl, flag_devirtualize_speculatively)) |
| 3691 |
continue; |
| 3692 |
|
| 3693 |
if (!e->maybe_hot_p ()) |
| 3694 |
{ |
| 3695 |
if (dump_file) |
| 3696 |
fprintf (dump_file, "Call is cold\n\n"); |
| 3697 |
ncold++; |
| 3698 |
continue; |
| 3699 |
} |
| 3700 |
if (e->speculative) |
| 3701 |
{ |
| 3702 |
if (dump_file) |
| 3703 |
fprintf (dump_file, "Call is already speculated\n\n"); |
| 3704 |
nspeculated++; |
| 3705 |
|
| 3706 |
/* When dumping see if we agree with speculation. */ |
| 3707 |
if (!dump_file) |
| 3708 |
continue; |
| 3709 |
} |
| 3710 |
if (bad_call_targets.contains (cache_token)) |
| 3711 |
{ |
| 3712 |
if (dump_file) |
| 3713 |
fprintf (dump_file, "Target list is known to be useless\n\n"); |
| 3714 |
nmultiple++; |
| 3715 |
continue; |
| 3716 |
} |
| 3717 |
for (i = 0; i < targets.length (); i++) |
| 3718 |
if (likely_target_p (targets[i])) |
| 3719 |
{ |
| 3720 |
if (likely_target) |
| 3721 |
{ |
| 3722 |
likely_target = NULL; |
| 3723 |
if (dump_file) |
| 3724 |
fprintf (dump_file, "More than one likely target\n\n"); |
| 3725 |
nmultiple++; |
| 3726 |
break; |
| 3727 |
} |
| 3728 |
likely_target = targets[i]; |
| 3729 |
} |
| 3730 |
if (!likely_target) |
| 3731 |
{ |
| 3732 |
bad_call_targets.add (cache_token); |
| 3733 |
continue; |
| 3734 |
} |
| 3735 |
/* This is reached only when dumping; check if we agree or disagree |
| 3736 |
with the speculation. */ |
| 3737 |
if (e->speculative) |
| 3738 |
{ |
| 3739 |
struct cgraph_edge *e2; |
| 3740 |
struct ipa_ref *ref; |
| 3741 |
e->speculative_call_info (e2, e, ref); |
| 3742 |
if (e2->callee->ultimate_alias_target () |
| 3743 |
== likely_target->ultimate_alias_target ()) |
| 3744 |
{ |
| 3745 |
fprintf (dump_file, "We agree with speculation\n\n"); |
| 3746 |
nok++; |
| 3747 |
} |
| 3748 |
else |
| 3749 |
{ |
| 3750 |
fprintf (dump_file, "We disagree with speculation\n\n"); |
| 3751 |
nwrong++; |
| 3752 |
} |
| 3753 |
continue; |
| 3754 |
} |
| 3755 |
if (!likely_target->definition) |
| 3756 |
{ |
| 3757 |
if (dump_file) |
| 3758 |
fprintf (dump_file, "Target is not a definition\n\n"); |
| 3759 |
nnotdefined++; |
| 3760 |
continue; |
| 3761 |
} |
| 3762 |
/* Do not introduce new references to external symbols. While we |
| 3763 |
can handle these just well, it is common for programs to |
| 3764 |
incorrectly with headers defining methods they are linked |
| 3765 |
with. */ |
| 3766 |
if (DECL_EXTERNAL (likely_target->decl)) |
| 3767 |
{ |
| 3768 |
if (dump_file) |
| 3769 |
fprintf (dump_file, "Target is external\n\n"); |
| 3770 |
nexternal++; |
| 3771 |
continue; |
| 3772 |
} |
| 3773 |
/* Don't use an implicitly-declared destructor (c++/58678). */ |
| 3774 |
struct cgraph_node *non_thunk_target |
| 3775 |
= likely_target->function_symbol (); |
| 3776 |
if (DECL_ARTIFICIAL (non_thunk_target->decl)) |
| 3777 |
{ |
| 3778 |
if (dump_file) |
| 3779 |
fprintf (dump_file, "Target is artificial\n\n"); |
| 3780 |
nartificial++; |
| 3781 |
continue; |
| 3782 |
} |
| 3783 |
if (likely_target->get_availability () <= AVAIL_INTERPOSABLE |
| 3784 |
&& likely_target->can_be_discarded_p ()) |
| 3785 |
{ |
| 3786 |
if (dump_file) |
| 3787 |
fprintf (dump_file, "Target is overwritable\n\n"); |
| 3788 |
noverwritable++; |
| 3789 |
continue; |
| 3790 |
} |
| 3791 |
else if (dbg_cnt (devirt)) |
| 3792 |
{ |
| 3793 |
if (dump_enabled_p ()) |
| 3794 |
{ |
| 3795 |
dump_printf_loc (MSG_OPTIMIZED_LOCATIONS, e->call_stmt, |
| 3796 |
"speculatively devirtualizing call " |
| 3797 |
"in %s to %s\n", |
| 3798 |
n->dump_name (), |
| 3799 |
likely_target->dump_name ()); |
| 3800 |
} |
| 3801 |
if (!likely_target->can_be_discarded_p ()) |
| 3802 |
{ |
| 3803 |
cgraph_node *alias; |
| 3804 |
alias = dyn_cast<cgraph_node *> (likely_target->noninterposable_alias ()); |
| 3805 |
if (alias) |
| 3806 |
likely_target = alias; |
| 3807 |
} |
| 3808 |
nconverted++; |
| 3809 |
update = true; |
| 3810 |
e->make_speculative |
| 3811 |
(likely_target, e->count.apply_scale (8, 10)); |
| 3812 |
} |
| 3813 |
} |
| 3814 |
if (update) |
| 3815 |
ipa_update_overall_fn_summary (n); |
| 3816 |
} |
| 3817 |
if (warn_suggest_final_methods || warn_suggest_final_types) |
| 3818 |
{ |
| 3819 |
if (warn_suggest_final_types) |
| 3820 |
{ |
| 3821 |
final_warning_records->type_warnings.qsort (type_warning_cmp); |
| 3822 |
for (unsigned int i = 0; |
| 3823 |
i < final_warning_records->type_warnings.length (); i++) |
| 3824 |
if (final_warning_records->type_warnings[i].count) |
| 3825 |
{ |
| 3826 |
tree type = final_warning_records->type_warnings[i].type; |
| 3827 |
int count = final_warning_records->type_warnings[i].count; |
| 3828 |
profile_count dyn_count |
| 3829 |
= final_warning_records->type_warnings[i].dyn_count; |
| 3830 |
|
| 3831 |
if (!(dyn_count > 0)) |
| 3832 |
warning_n (DECL_SOURCE_LOCATION (TYPE_NAME (type)), |
| 3833 |
OPT_Wsuggest_final_types, count, |
| 3834 |
"Declaring type %qD final " |
| 3835 |
"would enable devirtualization of %i call", |
| 3836 |
"Declaring type %qD final " |
| 3837 |
"would enable devirtualization of %i calls", |
| 3838 |
type, |
| 3839 |
count); |
| 3840 |
else |
| 3841 |
warning_n (DECL_SOURCE_LOCATION (TYPE_NAME (type)), |
| 3842 |
OPT_Wsuggest_final_types, count, |
| 3843 |
"Declaring type %qD final " |
| 3844 |
"would enable devirtualization of %i call " |
| 3845 |
"executed %lli times", |
| 3846 |
"Declaring type %qD final " |
| 3847 |
"would enable devirtualization of %i calls " |
| 3848 |
"executed %lli times", |
| 3849 |
type, |
| 3850 |
count, |
| 3851 |
(long long) dyn_count.to_gcov_type ()); |
| 3852 |
} |
| 3853 |
} |
| 3854 |
|
| 3855 |
if (warn_suggest_final_methods) |
| 3856 |
{ |
| 3857 |
auto_vec<const decl_warn_count*> decl_warnings_vec; |
| 3858 |
|
| 3859 |
final_warning_records->decl_warnings.traverse |
| 3860 |
<vec<const decl_warn_count *> *, add_decl_warning> (&decl_warnings_vec); |
| 3861 |
decl_warnings_vec.qsort (decl_warning_cmp); |
| 3862 |
for (unsigned int i = 0; i < decl_warnings_vec.length (); i++) |
| 3863 |
{ |
| 3864 |
tree decl = decl_warnings_vec[i]->decl; |
| 3865 |
int count = decl_warnings_vec[i]->count; |
| 3866 |
profile_count dyn_count |
| 3867 |
= decl_warnings_vec[i]->dyn_count; |
| 3868 |
|
| 3869 |
if (!(dyn_count > 0)) |
| 3870 |
if (DECL_CXX_DESTRUCTOR_P (decl)) |
| 3871 |
warning_n (DECL_SOURCE_LOCATION (decl), |
| 3872 |
OPT_Wsuggest_final_methods, count, |
| 3873 |
"Declaring virtual destructor of %qD final " |
| 3874 |
"would enable devirtualization of %i call", |
| 3875 |
"Declaring virtual destructor of %qD final " |
| 3876 |
"would enable devirtualization of %i calls", |
| 3877 |
DECL_CONTEXT (decl), count); |
| 3878 |
else |
| 3879 |
warning_n (DECL_SOURCE_LOCATION (decl), |
| 3880 |
OPT_Wsuggest_final_methods, count, |
| 3881 |
"Declaring method %qD final " |
| 3882 |
"would enable devirtualization of %i call", |
| 3883 |
"Declaring method %qD final " |
| 3884 |
"would enable devirtualization of %i calls", |
| 3885 |
decl, count); |
| 3886 |
else if (DECL_CXX_DESTRUCTOR_P (decl)) |
| 3887 |
warning_n (DECL_SOURCE_LOCATION (decl), |
| 3888 |
OPT_Wsuggest_final_methods, count, |
| 3889 |
"Declaring virtual destructor of %qD final " |
| 3890 |
"would enable devirtualization of %i call " |
| 3891 |
"executed %lli times", |
| 3892 |
"Declaring virtual destructor of %qD final " |
| 3893 |
"would enable devirtualization of %i calls " |
| 3894 |
"executed %lli times", |
| 3895 |
DECL_CONTEXT (decl), count, |
| 3896 |
(long long)dyn_count.to_gcov_type ()); |
| 3897 |
else |
| 3898 |
warning_n (DECL_SOURCE_LOCATION (decl), |
| 3899 |
OPT_Wsuggest_final_methods, count, |
| 3900 |
"Declaring method %qD final " |
| 3901 |
"would enable devirtualization of %i call " |
| 3902 |
"executed %lli times", |
| 3903 |
"Declaring method %qD final " |
| 3904 |
"would enable devirtualization of %i calls " |
| 3905 |
"executed %lli times", |
| 3906 |
decl, count, |
| 3907 |
(long long)dyn_count.to_gcov_type ()); |
| 3908 |
} |
| 3909 |
} |
| 3910 |
|
| 3911 |
delete (final_warning_records); |
| 3912 |
final_warning_records = 0; |
| 3913 |
} |
| 3914 |
|
| 3915 |
if (dump_file) |
| 3916 |
fprintf (dump_file, |
| 3917 |
"%i polymorphic calls, %i devirtualized," |
| 3918 |
" %i speculatively devirtualized, %i cold\n" |
| 3919 |
"%i have multiple targets, %i overwritable," |
| 3920 |
" %i already speculated (%i agree, %i disagree)," |
| 3921 |
" %i external, %i not defined, %i artificial, %i infos dropped\n", |
| 3922 |
npolymorphic, ndevirtualized, nconverted, ncold, |
| 3923 |
nmultiple, noverwritable, nspeculated, nok, nwrong, |
| 3924 |
nexternal, nnotdefined, nartificial, ndropped); |
| 3925 |
return ndevirtualized || ndropped ? TODO_remove_functions : 0; |
| 3926 |
} |
| 3927 |
|
| 3928 |
namespace { |
| 3929 |
|
| 3930 |
const pass_data pass_data_ipa_devirt = |
| 3931 |
{ |
| 3932 |
IPA_PASS, /* type */ |
| 3933 |
"devirt", /* name */ |
| 3934 |
OPTGROUP_NONE, /* optinfo_flags */ |
| 3935 |
TV_IPA_DEVIRT, /* tv_id */ |
| 3936 |
0, /* properties_required */ |
| 3937 |
0, /* properties_provided */ |
| 3938 |
0, /* properties_destroyed */ |
| 3939 |
0, /* todo_flags_start */ |
| 3940 |
( TODO_dump_symtab ), /* todo_flags_finish */ |
| 3941 |
}; |
| 3942 |
|
| 3943 |
class pass_ipa_devirt : public ipa_opt_pass_d |
| 3944 |
{ |
| 3945 |
public: |
| 3946 |
pass_ipa_devirt (gcc::context *ctxt) |
| 3947 |
: ipa_opt_pass_d (pass_data_ipa_devirt, ctxt, |
| 3948 |
NULL, /* generate_summary */ |
| 3949 |
NULL, /* write_summary */ |
| 3950 |
NULL, /* read_summary */ |
| 3951 |
NULL, /* write_optimization_summary */ |
| 3952 |
NULL, /* read_optimization_summary */ |
| 3953 |
NULL, /* stmt_fixup */ |
| 3954 |
0, /* function_transform_todo_flags_start */ |
| 3955 |
NULL, /* function_transform */ |
| 3956 |
NULL) /* variable_transform */ |
| 3957 |
{} |
| 3958 |
|
| 3959 |
/* opt_pass methods: */ |
| 3960 |
virtual bool gate (function *) |
| 3961 |
{ |
| 3962 |
/* In LTO, always run the IPA passes and decide on function basis if the |
| 3963 |
pass is enabled. */ |
| 3964 |
if (in_lto_p) |
| 3965 |
return true; |
| 3966 |
return (flag_devirtualize |
| 3967 |
&& (flag_devirtualize_speculatively |
| 3968 |
|| (warn_suggest_final_methods |
| 3969 |
|| warn_suggest_final_types)) |
| 3970 |
&& optimize); |
| 3971 |
} |
| 3972 |
|
| 3973 |
virtual unsigned int execute (function *) { return ipa_devirt (); } |
| 3974 |
|
| 3975 |
}; // class pass_ipa_devirt |
| 3976 |
|
| 3977 |
} // anon namespace |
| 3978 |
|
| 3979 |
ipa_opt_pass_d * |
| 3980 |
make_pass_ipa_devirt (gcc::context *ctxt) |
| 3981 |
{ |
| 3982 |
return new pass_ipa_devirt (ctxt); |
| 3983 |
} |
| 3984 |
|
| 3985 |
/* Print ODR name of a TYPE if available. |
| 3986 |
Use demangler when option DEMANGLE is used. */ |
| 3987 |
|
| 3988 |
DEBUG_FUNCTION void |
| 3989 |
debug_tree_odr_name (tree type, bool demangle) |
| 3990 |
{ |
| 3991 |
const char *odr = get_odr_name_for_type (type); |
| 3992 |
if (demangle) |
| 3993 |
{ |
| 3994 |
const int opts = DMGL_PARAMS | DMGL_ANSI | DMGL_TYPES; |
| 3995 |
odr = cplus_demangle (odr, opts); |
| 3996 |
} |
| 3997 |
|
| 3998 |
fprintf (stderr, "%s\n", odr); |
| 3999 |
} |
| 4000 |
|
| 4001 |
#include "gt-ipa-devirt.h" |