| 1 |
/* Functions related to building classes and their related objects. |
| 2 |
Copyright (C) 1987-2014 Free Software Foundation, Inc. |
| 3 |
Contributed by Michael Tiemann (tiemann@cygnus.com) |
| 4 |
|
| 5 |
This file is part of GCC. |
| 6 |
|
| 7 |
GCC is free software; you can redistribute it and/or modify |
| 8 |
it under the terms of the GNU General Public License as published by |
| 9 |
the Free Software Foundation; either version 3, or (at your option) |
| 10 |
any later version. |
| 11 |
|
| 12 |
GCC is distributed in the hope that it will be useful, |
| 13 |
but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 14 |
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| 15 |
GNU General Public License for more details. |
| 16 |
|
| 17 |
You should have received a copy of the GNU General Public License |
| 18 |
along with GCC; see the file COPYING3. If not see |
| 19 |
<http://www.gnu.org/licenses/>. */ |
| 20 |
|
| 21 |
|
| 22 |
/* High-level class interface. */ |
| 23 |
|
| 24 |
#include "config.h" |
| 25 |
#include "system.h" |
| 26 |
#include "coretypes.h" |
| 27 |
#include "tm.h" |
| 28 |
#include "tree.h" |
| 29 |
#include "stringpool.h" |
| 30 |
#include "stor-layout.h" |
| 31 |
#include "attribs.h" |
| 32 |
#include "pointer-set.h" |
| 33 |
#include "hash-table.h" |
| 34 |
#include "cp-tree.h" |
| 35 |
#include "flags.h" |
| 36 |
#include "toplev.h" |
| 37 |
#include "target.h" |
| 38 |
#include "convert.h" |
| 39 |
#include "cgraph.h" |
| 40 |
#include "dumpfile.h" |
| 41 |
#include "splay-tree.h" |
| 42 |
#include "gimplify.h" |
| 43 |
|
| 44 |
/* The number of nested classes being processed. If we are not in the |
| 45 |
scope of any class, this is zero. */ |
| 46 |
|
| 47 |
int current_class_depth; |
| 48 |
|
| 49 |
/* In order to deal with nested classes, we keep a stack of classes. |
| 50 |
The topmost entry is the innermost class, and is the entry at index |
| 51 |
CURRENT_CLASS_DEPTH */ |
| 52 |
|
| 53 |
typedef struct class_stack_node { |
| 54 |
/* The name of the class. */ |
| 55 |
tree name; |
| 56 |
|
| 57 |
/* The _TYPE node for the class. */ |
| 58 |
tree type; |
| 59 |
|
| 60 |
/* The access specifier pending for new declarations in the scope of |
| 61 |
this class. */ |
| 62 |
tree access; |
| 63 |
|
| 64 |
/* If were defining TYPE, the names used in this class. */ |
| 65 |
splay_tree names_used; |
| 66 |
|
| 67 |
/* Nonzero if this class is no longer open, because of a call to |
| 68 |
push_to_top_level. */ |
| 69 |
size_t hidden; |
| 70 |
}* class_stack_node_t; |
| 71 |
|
| 72 |
typedef struct vtbl_init_data_s |
| 73 |
{ |
| 74 |
/* The base for which we're building initializers. */ |
| 75 |
tree binfo; |
| 76 |
/* The type of the most-derived type. */ |
| 77 |
tree derived; |
| 78 |
/* The binfo for the dynamic type. This will be TYPE_BINFO (derived), |
| 79 |
unless ctor_vtbl_p is true. */ |
| 80 |
tree rtti_binfo; |
| 81 |
/* The negative-index vtable initializers built up so far. These |
| 82 |
are in order from least negative index to most negative index. */ |
| 83 |
vec<constructor_elt, va_gc> *inits; |
| 84 |
/* The binfo for the virtual base for which we're building |
| 85 |
vcall offset initializers. */ |
| 86 |
tree vbase; |
| 87 |
/* The functions in vbase for which we have already provided vcall |
| 88 |
offsets. */ |
| 89 |
vec<tree, va_gc> *fns; |
| 90 |
/* The vtable index of the next vcall or vbase offset. */ |
| 91 |
tree index; |
| 92 |
/* Nonzero if we are building the initializer for the primary |
| 93 |
vtable. */ |
| 94 |
int primary_vtbl_p; |
| 95 |
/* Nonzero if we are building the initializer for a construction |
| 96 |
vtable. */ |
| 97 |
int ctor_vtbl_p; |
| 98 |
/* True when adding vcall offset entries to the vtable. False when |
| 99 |
merely computing the indices. */ |
| 100 |
bool generate_vcall_entries; |
| 101 |
} vtbl_init_data; |
| 102 |
|
| 103 |
/* The type of a function passed to walk_subobject_offsets. */ |
| 104 |
typedef int (*subobject_offset_fn) (tree, tree, splay_tree); |
| 105 |
|
| 106 |
/* The stack itself. This is a dynamically resized array. The |
| 107 |
number of elements allocated is CURRENT_CLASS_STACK_SIZE. */ |
| 108 |
static int current_class_stack_size; |
| 109 |
static class_stack_node_t current_class_stack; |
| 110 |
|
| 111 |
/* The size of the largest empty class seen in this translation unit. */ |
| 112 |
static GTY (()) tree sizeof_biggest_empty_class; |
| 113 |
|
| 114 |
/* An array of all local classes present in this translation unit, in |
| 115 |
declaration order. */ |
| 116 |
vec<tree, va_gc> *local_classes; |
| 117 |
|
| 118 |
static tree get_vfield_name (tree); |
| 119 |
static void finish_struct_anon (tree); |
| 120 |
static tree get_vtable_name (tree); |
| 121 |
static tree get_basefndecls (tree, tree); |
| 122 |
static int build_primary_vtable (tree, tree); |
| 123 |
static int build_secondary_vtable (tree); |
| 124 |
static void finish_vtbls (tree); |
| 125 |
static void modify_vtable_entry (tree, tree, tree, tree, tree *); |
| 126 |
static void finish_struct_bits (tree); |
| 127 |
static int alter_access (tree, tree, tree); |
| 128 |
static void handle_using_decl (tree, tree); |
| 129 |
static tree dfs_modify_vtables (tree, void *); |
| 130 |
static tree modify_all_vtables (tree, tree); |
| 131 |
static void determine_primary_bases (tree); |
| 132 |
static void finish_struct_methods (tree); |
| 133 |
static void maybe_warn_about_overly_private_class (tree); |
| 134 |
static int method_name_cmp (const void *, const void *); |
| 135 |
static int resort_method_name_cmp (const void *, const void *); |
| 136 |
static void add_implicitly_declared_members (tree, tree*, int, int); |
| 137 |
static tree fixed_type_or_null (tree, int *, int *); |
| 138 |
static tree build_simple_base_path (tree expr, tree binfo); |
| 139 |
static tree build_vtbl_ref_1 (tree, tree); |
| 140 |
static void build_vtbl_initializer (tree, tree, tree, tree, int *, |
| 141 |
vec<constructor_elt, va_gc> **); |
| 142 |
static int count_fields (tree); |
| 143 |
static int add_fields_to_record_type (tree, struct sorted_fields_type*, int); |
| 144 |
static void insert_into_classtype_sorted_fields (tree, tree, int); |
| 145 |
static bool check_bitfield_decl (tree); |
| 146 |
static void check_field_decl (tree, tree, int *, int *, int *); |
| 147 |
static void check_field_decls (tree, tree *, int *, int *); |
| 148 |
static tree *build_base_field (record_layout_info, tree, splay_tree, tree *); |
| 149 |
static void build_base_fields (record_layout_info, splay_tree, tree *); |
| 150 |
static void check_methods (tree); |
| 151 |
static void remove_zero_width_bit_fields (tree); |
| 152 |
static void check_bases (tree, int *, int *); |
| 153 |
static void check_bases_and_members (tree); |
| 154 |
static tree create_vtable_ptr (tree, tree *); |
| 155 |
static void include_empty_classes (record_layout_info); |
| 156 |
static void layout_class_type (tree, tree *); |
| 157 |
static void propagate_binfo_offsets (tree, tree); |
| 158 |
static void layout_virtual_bases (record_layout_info, splay_tree); |
| 159 |
static void build_vbase_offset_vtbl_entries (tree, vtbl_init_data *); |
| 160 |
static void add_vcall_offset_vtbl_entries_r (tree, vtbl_init_data *); |
| 161 |
static void add_vcall_offset_vtbl_entries_1 (tree, vtbl_init_data *); |
| 162 |
static void build_vcall_offset_vtbl_entries (tree, vtbl_init_data *); |
| 163 |
static void add_vcall_offset (tree, tree, vtbl_init_data *); |
| 164 |
static void layout_vtable_decl (tree, int); |
| 165 |
static tree dfs_find_final_overrider_pre (tree, void *); |
| 166 |
static tree dfs_find_final_overrider_post (tree, void *); |
| 167 |
static tree find_final_overrider (tree, tree, tree); |
| 168 |
static int make_new_vtable (tree, tree); |
| 169 |
static tree get_primary_binfo (tree); |
| 170 |
static int maybe_indent_hierarchy (FILE *, int, int); |
| 171 |
static tree dump_class_hierarchy_r (FILE *, int, tree, tree, int); |
| 172 |
static void dump_class_hierarchy (tree); |
| 173 |
static void dump_class_hierarchy_1 (FILE *, int, tree); |
| 174 |
static void dump_array (FILE *, tree); |
| 175 |
static void dump_vtable (tree, tree, tree); |
| 176 |
static void dump_vtt (tree, tree); |
| 177 |
static void dump_thunk (FILE *, int, tree); |
| 178 |
static tree build_vtable (tree, tree, tree); |
| 179 |
static void initialize_vtable (tree, vec<constructor_elt, va_gc> *); |
| 180 |
static void layout_nonempty_base_or_field (record_layout_info, |
| 181 |
tree, tree, splay_tree); |
| 182 |
static tree end_of_class (tree, int); |
| 183 |
static bool layout_empty_base (record_layout_info, tree, tree, splay_tree); |
| 184 |
static void accumulate_vtbl_inits (tree, tree, tree, tree, tree, |
| 185 |
vec<constructor_elt, va_gc> **); |
| 186 |
static void dfs_accumulate_vtbl_inits (tree, tree, tree, tree, tree, |
| 187 |
vec<constructor_elt, va_gc> **); |
| 188 |
static void build_rtti_vtbl_entries (tree, vtbl_init_data *); |
| 189 |
static void build_vcall_and_vbase_vtbl_entries (tree, vtbl_init_data *); |
| 190 |
static void clone_constructors_and_destructors (tree); |
| 191 |
static tree build_clone (tree, tree); |
| 192 |
static void update_vtable_entry_for_fn (tree, tree, tree, tree *, unsigned); |
| 193 |
static void build_ctor_vtbl_group (tree, tree); |
| 194 |
static void build_vtt (tree); |
| 195 |
static tree binfo_ctor_vtable (tree); |
| 196 |
static void build_vtt_inits (tree, tree, vec<constructor_elt, va_gc> **, |
| 197 |
tree *); |
| 198 |
static tree dfs_build_secondary_vptr_vtt_inits (tree, void *); |
| 199 |
static tree dfs_fixup_binfo_vtbls (tree, void *); |
| 200 |
static int record_subobject_offset (tree, tree, splay_tree); |
| 201 |
static int check_subobject_offset (tree, tree, splay_tree); |
| 202 |
static int walk_subobject_offsets (tree, subobject_offset_fn, |
| 203 |
tree, splay_tree, tree, int); |
| 204 |
static void record_subobject_offsets (tree, tree, splay_tree, bool); |
| 205 |
static int layout_conflict_p (tree, tree, splay_tree, int); |
| 206 |
static int splay_tree_compare_integer_csts (splay_tree_key k1, |
| 207 |
splay_tree_key k2); |
| 208 |
static void warn_about_ambiguous_bases (tree); |
| 209 |
static bool type_requires_array_cookie (tree); |
| 210 |
static bool contains_empty_class_p (tree); |
| 211 |
static bool base_derived_from (tree, tree); |
| 212 |
static int empty_base_at_nonzero_offset_p (tree, tree, splay_tree); |
| 213 |
static tree end_of_base (tree); |
| 214 |
static tree get_vcall_index (tree, tree); |
| 215 |
|
| 216 |
/* Variables shared between class.c and call.c. */ |
| 217 |
|
| 218 |
int n_vtables = 0; |
| 219 |
int n_vtable_entries = 0; |
| 220 |
int n_vtable_searches = 0; |
| 221 |
int n_vtable_elems = 0; |
| 222 |
int n_convert_harshness = 0; |
| 223 |
int n_compute_conversion_costs = 0; |
| 224 |
int n_inner_fields_searched = 0; |
| 225 |
|
| 226 |
/* Convert to or from a base subobject. EXPR is an expression of type |
| 227 |
`A' or `A*', an expression of type `B' or `B*' is returned. To |
| 228 |
convert A to a base B, CODE is PLUS_EXPR and BINFO is the binfo for |
| 229 |
the B base instance within A. To convert base A to derived B, CODE |
| 230 |
is MINUS_EXPR and BINFO is the binfo for the A instance within B. |
| 231 |
In this latter case, A must not be a morally virtual base of B. |
| 232 |
NONNULL is true if EXPR is known to be non-NULL (this is only |
| 233 |
needed when EXPR is of pointer type). CV qualifiers are preserved |
| 234 |
from EXPR. */ |
| 235 |
|
| 236 |
tree |
| 237 |
build_base_path (enum tree_code code, |
| 238 |
tree expr, |
| 239 |
tree binfo, |
| 240 |
int nonnull, |
| 241 |
tsubst_flags_t complain) |
| 242 |
{ |
| 243 |
tree v_binfo = NULL_TREE; |
| 244 |
tree d_binfo = NULL_TREE; |
| 245 |
tree probe; |
| 246 |
tree offset; |
| 247 |
tree target_type; |
| 248 |
tree null_test = NULL; |
| 249 |
tree ptr_target_type; |
| 250 |
int fixed_type_p; |
| 251 |
int want_pointer = TYPE_PTR_P (TREE_TYPE (expr)); |
| 252 |
bool has_empty = false; |
| 253 |
bool virtual_access; |
| 254 |
|
| 255 |
if (expr == error_mark_node || binfo == error_mark_node || !binfo) |
| 256 |
return error_mark_node; |
| 257 |
|
| 258 |
for (probe = binfo; probe; probe = BINFO_INHERITANCE_CHAIN (probe)) |
| 259 |
{ |
| 260 |
d_binfo = probe; |
| 261 |
if (is_empty_class (BINFO_TYPE (probe))) |
| 262 |
has_empty = true; |
| 263 |
if (!v_binfo && BINFO_VIRTUAL_P (probe)) |
| 264 |
v_binfo = probe; |
| 265 |
} |
| 266 |
|
| 267 |
probe = TYPE_MAIN_VARIANT (TREE_TYPE (expr)); |
| 268 |
if (want_pointer) |
| 269 |
probe = TYPE_MAIN_VARIANT (TREE_TYPE (probe)); |
| 270 |
|
| 271 |
if (code == PLUS_EXPR |
| 272 |
&& !SAME_BINFO_TYPE_P (BINFO_TYPE (d_binfo), probe)) |
| 273 |
{ |
| 274 |
/* This can happen when adjust_result_of_qualified_name_lookup can't |
| 275 |
find a unique base binfo in a call to a member function. We |
| 276 |
couldn't give the diagnostic then since we might have been calling |
| 277 |
a static member function, so we do it now. */ |
| 278 |
if (complain & tf_error) |
| 279 |
{ |
| 280 |
tree base = lookup_base (probe, BINFO_TYPE (d_binfo), |
| 281 |
ba_unique, NULL, complain); |
| 282 |
gcc_assert (base == error_mark_node); |
| 283 |
} |
| 284 |
return error_mark_node; |
| 285 |
} |
| 286 |
|
| 287 |
gcc_assert ((code == MINUS_EXPR |
| 288 |
&& SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), probe)) |
| 289 |
|| code == PLUS_EXPR); |
| 290 |
|
| 291 |
if (binfo == d_binfo) |
| 292 |
/* Nothing to do. */ |
| 293 |
return expr; |
| 294 |
|
| 295 |
if (code == MINUS_EXPR && v_binfo) |
| 296 |
{ |
| 297 |
if (complain & tf_error) |
| 298 |
{ |
| 299 |
if (SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), BINFO_TYPE (v_binfo))) |
| 300 |
{ |
| 301 |
if (want_pointer) |
| 302 |
error ("cannot convert from pointer to base class %qT to " |
| 303 |
"pointer to derived class %qT because the base is " |
| 304 |
"virtual", BINFO_TYPE (binfo), BINFO_TYPE (d_binfo)); |
| 305 |
else |
| 306 |
error ("cannot convert from base class %qT to derived " |
| 307 |
"class %qT because the base is virtual", |
| 308 |
BINFO_TYPE (binfo), BINFO_TYPE (d_binfo)); |
| 309 |
} |
| 310 |
else |
| 311 |
{ |
| 312 |
if (want_pointer) |
| 313 |
error ("cannot convert from pointer to base class %qT to " |
| 314 |
"pointer to derived class %qT via virtual base %qT", |
| 315 |
BINFO_TYPE (binfo), BINFO_TYPE (d_binfo), |
| 316 |
BINFO_TYPE (v_binfo)); |
| 317 |
else |
| 318 |
error ("cannot convert from base class %qT to derived " |
| 319 |
"class %qT via virtual base %qT", BINFO_TYPE (binfo), |
| 320 |
BINFO_TYPE (d_binfo), BINFO_TYPE (v_binfo)); |
| 321 |
} |
| 322 |
} |
| 323 |
return error_mark_node; |
| 324 |
} |
| 325 |
|
| 326 |
if (!want_pointer) |
| 327 |
/* This must happen before the call to save_expr. */ |
| 328 |
expr = cp_build_addr_expr (expr, complain); |
| 329 |
else |
| 330 |
expr = mark_rvalue_use (expr); |
| 331 |
|
| 332 |
offset = BINFO_OFFSET (binfo); |
| 333 |
fixed_type_p = resolves_to_fixed_type_p (expr, &nonnull); |
| 334 |
target_type = code == PLUS_EXPR ? BINFO_TYPE (binfo) : BINFO_TYPE (d_binfo); |
| 335 |
/* TARGET_TYPE has been extracted from BINFO, and, is therefore always |
| 336 |
cv-unqualified. Extract the cv-qualifiers from EXPR so that the |
| 337 |
expression returned matches the input. */ |
| 338 |
target_type = cp_build_qualified_type |
| 339 |
(target_type, cp_type_quals (TREE_TYPE (TREE_TYPE (expr)))); |
| 340 |
ptr_target_type = build_pointer_type (target_type); |
| 341 |
|
| 342 |
/* Do we need to look in the vtable for the real offset? */ |
| 343 |
virtual_access = (v_binfo && fixed_type_p <= 0); |
| 344 |
|
| 345 |
/* Don't bother with the calculations inside sizeof; they'll ICE if the |
| 346 |
source type is incomplete and the pointer value doesn't matter. In a |
| 347 |
template (even in fold_non_dependent_expr), we don't have vtables set |
| 348 |
up properly yet, and the value doesn't matter there either; we're just |
| 349 |
interested in the result of overload resolution. */ |
| 350 |
if (cp_unevaluated_operand != 0 |
| 351 |
|| in_template_function ()) |
| 352 |
{ |
| 353 |
expr = build_nop (ptr_target_type, expr); |
| 354 |
if (!want_pointer) |
| 355 |
expr = build_indirect_ref (EXPR_LOCATION (expr), expr, RO_NULL); |
| 356 |
return expr; |
| 357 |
} |
| 358 |
|
| 359 |
/* If we're in an NSDMI, we don't have the full constructor context yet |
| 360 |
that we need for converting to a virtual base, so just build a stub |
| 361 |
CONVERT_EXPR and expand it later in bot_replace. */ |
| 362 |
if (virtual_access && fixed_type_p < 0 |
| 363 |
&& current_scope () != current_function_decl) |
| 364 |
{ |
| 365 |
expr = build1 (CONVERT_EXPR, ptr_target_type, expr); |
| 366 |
CONVERT_EXPR_VBASE_PATH (expr) = true; |
| 367 |
if (!want_pointer) |
| 368 |
expr = build_indirect_ref (EXPR_LOCATION (expr), expr, RO_NULL); |
| 369 |
return expr; |
| 370 |
} |
| 371 |
|
| 372 |
/* Do we need to check for a null pointer? */ |
| 373 |
if (want_pointer && !nonnull) |
| 374 |
{ |
| 375 |
/* If we know the conversion will not actually change the value |
| 376 |
of EXPR, then we can avoid testing the expression for NULL. |
| 377 |
We have to avoid generating a COMPONENT_REF for a base class |
| 378 |
field, because other parts of the compiler know that such |
| 379 |
expressions are always non-NULL. */ |
| 380 |
if (!virtual_access && integer_zerop (offset)) |
| 381 |
return build_nop (ptr_target_type, expr); |
| 382 |
null_test = error_mark_node; |
| 383 |
} |
| 384 |
|
| 385 |
/* Protect against multiple evaluation if necessary. */ |
| 386 |
if (TREE_SIDE_EFFECTS (expr) && (null_test || virtual_access)) |
| 387 |
expr = save_expr (expr); |
| 388 |
|
| 389 |
/* Now that we've saved expr, build the real null test. */ |
| 390 |
if (null_test) |
| 391 |
{ |
| 392 |
tree zero = cp_convert (TREE_TYPE (expr), nullptr_node, complain); |
| 393 |
null_test = fold_build2_loc (input_location, NE_EXPR, boolean_type_node, |
| 394 |
expr, zero); |
| 395 |
} |
| 396 |
|
| 397 |
/* If this is a simple base reference, express it as a COMPONENT_REF. */ |
| 398 |
if (code == PLUS_EXPR && !virtual_access |
| 399 |
/* We don't build base fields for empty bases, and they aren't very |
| 400 |
interesting to the optimizers anyway. */ |
| 401 |
&& !has_empty) |
| 402 |
{ |
| 403 |
expr = cp_build_indirect_ref (expr, RO_NULL, complain); |
| 404 |
expr = build_simple_base_path (expr, binfo); |
| 405 |
if (want_pointer) |
| 406 |
expr = build_address (expr); |
| 407 |
target_type = TREE_TYPE (expr); |
| 408 |
goto out; |
| 409 |
} |
| 410 |
|
| 411 |
if (virtual_access) |
| 412 |
{ |
| 413 |
/* Going via virtual base V_BINFO. We need the static offset |
| 414 |
from V_BINFO to BINFO, and the dynamic offset from D_BINFO to |
| 415 |
V_BINFO. That offset is an entry in D_BINFO's vtable. */ |
| 416 |
tree v_offset; |
| 417 |
|
| 418 |
if (fixed_type_p < 0 && in_base_initializer) |
| 419 |
{ |
| 420 |
/* In a base member initializer, we cannot rely on the |
| 421 |
vtable being set up. We have to indirect via the |
| 422 |
vtt_parm. */ |
| 423 |
tree t; |
| 424 |
|
| 425 |
t = TREE_TYPE (TYPE_VFIELD (current_class_type)); |
| 426 |
t = build_pointer_type (t); |
| 427 |
v_offset = convert (t, current_vtt_parm); |
| 428 |
v_offset = cp_build_indirect_ref (v_offset, RO_NULL, complain); |
| 429 |
} |
| 430 |
else |
| 431 |
v_offset = build_vfield_ref (cp_build_indirect_ref (expr, RO_NULL, |
| 432 |
complain), |
| 433 |
TREE_TYPE (TREE_TYPE (expr))); |
| 434 |
|
| 435 |
v_offset = fold_build_pointer_plus (v_offset, BINFO_VPTR_FIELD (v_binfo)); |
| 436 |
v_offset = build1 (NOP_EXPR, |
| 437 |
build_pointer_type (ptrdiff_type_node), |
| 438 |
v_offset); |
| 439 |
v_offset = cp_build_indirect_ref (v_offset, RO_NULL, complain); |
| 440 |
TREE_CONSTANT (v_offset) = 1; |
| 441 |
|
| 442 |
offset = convert_to_integer (ptrdiff_type_node, |
| 443 |
size_diffop_loc (input_location, offset, |
| 444 |
BINFO_OFFSET (v_binfo))); |
| 445 |
|
| 446 |
if (!integer_zerop (offset)) |
| 447 |
v_offset = build2 (code, ptrdiff_type_node, v_offset, offset); |
| 448 |
|
| 449 |
if (fixed_type_p < 0) |
| 450 |
/* Negative fixed_type_p means this is a constructor or destructor; |
| 451 |
virtual base layout is fixed in in-charge [cd]tors, but not in |
| 452 |
base [cd]tors. */ |
| 453 |
offset = build3 (COND_EXPR, ptrdiff_type_node, |
| 454 |
build2 (EQ_EXPR, boolean_type_node, |
| 455 |
current_in_charge_parm, integer_zero_node), |
| 456 |
v_offset, |
| 457 |
convert_to_integer (ptrdiff_type_node, |
| 458 |
BINFO_OFFSET (binfo))); |
| 459 |
else |
| 460 |
offset = v_offset; |
| 461 |
} |
| 462 |
|
| 463 |
if (want_pointer) |
| 464 |
target_type = ptr_target_type; |
| 465 |
|
| 466 |
expr = build1 (NOP_EXPR, ptr_target_type, expr); |
| 467 |
|
| 468 |
if (!integer_zerop (offset)) |
| 469 |
{ |
| 470 |
offset = fold_convert (sizetype, offset); |
| 471 |
if (code == MINUS_EXPR) |
| 472 |
offset = fold_build1_loc (input_location, NEGATE_EXPR, sizetype, offset); |
| 473 |
expr = fold_build_pointer_plus (expr, offset); |
| 474 |
} |
| 475 |
else |
| 476 |
null_test = NULL; |
| 477 |
|
| 478 |
if (!want_pointer) |
| 479 |
expr = cp_build_indirect_ref (expr, RO_NULL, complain); |
| 480 |
|
| 481 |
out: |
| 482 |
if (null_test) |
| 483 |
expr = fold_build3_loc (input_location, COND_EXPR, target_type, null_test, expr, |
| 484 |
build_zero_cst (target_type)); |
| 485 |
|
| 486 |
return expr; |
| 487 |
} |
| 488 |
|
| 489 |
/* Subroutine of build_base_path; EXPR and BINFO are as in that function. |
| 490 |
Perform a derived-to-base conversion by recursively building up a |
| 491 |
sequence of COMPONENT_REFs to the appropriate base fields. */ |
| 492 |
|
| 493 |
static tree |
| 494 |
build_simple_base_path (tree expr, tree binfo) |
| 495 |
{ |
| 496 |
tree type = BINFO_TYPE (binfo); |
| 497 |
tree d_binfo = BINFO_INHERITANCE_CHAIN (binfo); |
| 498 |
tree field; |
| 499 |
|
| 500 |
if (d_binfo == NULL_TREE) |
| 501 |
{ |
| 502 |
tree temp; |
| 503 |
|
| 504 |
gcc_assert (TYPE_MAIN_VARIANT (TREE_TYPE (expr)) == type); |
| 505 |
|
| 506 |
/* Transform `(a, b).x' into `(*(a, &b)).x', `(a ? b : c).x' |
| 507 |
into `(*(a ? &b : &c)).x', and so on. A COND_EXPR is only |
| 508 |
an lvalue in the front end; only _DECLs and _REFs are lvalues |
| 509 |
in the back end. */ |
| 510 |
temp = unary_complex_lvalue (ADDR_EXPR, expr); |
| 511 |
if (temp) |
| 512 |
expr = cp_build_indirect_ref (temp, RO_NULL, tf_warning_or_error); |
| 513 |
|
| 514 |
return expr; |
| 515 |
} |
| 516 |
|
| 517 |
/* Recurse. */ |
| 518 |
expr = build_simple_base_path (expr, d_binfo); |
| 519 |
|
| 520 |
for (field = TYPE_FIELDS (BINFO_TYPE (d_binfo)); |
| 521 |
field; field = DECL_CHAIN (field)) |
| 522 |
/* Is this the base field created by build_base_field? */ |
| 523 |
if (TREE_CODE (field) == FIELD_DECL |
| 524 |
&& DECL_FIELD_IS_BASE (field) |
| 525 |
&& TREE_TYPE (field) == type |
| 526 |
/* If we're looking for a field in the most-derived class, |
| 527 |
also check the field offset; we can have two base fields |
| 528 |
of the same type if one is an indirect virtual base and one |
| 529 |
is a direct non-virtual base. */ |
| 530 |
&& (BINFO_INHERITANCE_CHAIN (d_binfo) |
| 531 |
|| tree_int_cst_equal (byte_position (field), |
| 532 |
BINFO_OFFSET (binfo)))) |
| 533 |
{ |
| 534 |
/* We don't use build_class_member_access_expr here, as that |
| 535 |
has unnecessary checks, and more importantly results in |
| 536 |
recursive calls to dfs_walk_once. */ |
| 537 |
int type_quals = cp_type_quals (TREE_TYPE (expr)); |
| 538 |
|
| 539 |
expr = build3 (COMPONENT_REF, |
| 540 |
cp_build_qualified_type (type, type_quals), |
| 541 |
expr, field, NULL_TREE); |
| 542 |
expr = fold_if_not_in_template (expr); |
| 543 |
|
| 544 |
/* Mark the expression const or volatile, as appropriate. |
| 545 |
Even though we've dealt with the type above, we still have |
| 546 |
to mark the expression itself. */ |
| 547 |
if (type_quals & TYPE_QUAL_CONST) |
| 548 |
TREE_READONLY (expr) = 1; |
| 549 |
if (type_quals & TYPE_QUAL_VOLATILE) |
| 550 |
TREE_THIS_VOLATILE (expr) = 1; |
| 551 |
|
| 552 |
return expr; |
| 553 |
} |
| 554 |
|
| 555 |
/* Didn't find the base field?!? */ |
| 556 |
gcc_unreachable (); |
| 557 |
} |
| 558 |
|
| 559 |
/* Convert OBJECT to the base TYPE. OBJECT is an expression whose |
| 560 |
type is a class type or a pointer to a class type. In the former |
| 561 |
case, TYPE is also a class type; in the latter it is another |
| 562 |
pointer type. If CHECK_ACCESS is true, an error message is emitted |
| 563 |
if TYPE is inaccessible. If OBJECT has pointer type, the value is |
| 564 |
assumed to be non-NULL. */ |
| 565 |
|
| 566 |
tree |
| 567 |
convert_to_base (tree object, tree type, bool check_access, bool nonnull, |
| 568 |
tsubst_flags_t complain) |
| 569 |
{ |
| 570 |
tree binfo; |
| 571 |
tree object_type; |
| 572 |
|
| 573 |
if (TYPE_PTR_P (TREE_TYPE (object))) |
| 574 |
{ |
| 575 |
object_type = TREE_TYPE (TREE_TYPE (object)); |
| 576 |
type = TREE_TYPE (type); |
| 577 |
} |
| 578 |
else |
| 579 |
object_type = TREE_TYPE (object); |
| 580 |
|
| 581 |
binfo = lookup_base (object_type, type, check_access ? ba_check : ba_unique, |
| 582 |
NULL, complain); |
| 583 |
if (!binfo || binfo == error_mark_node) |
| 584 |
return error_mark_node; |
| 585 |
|
| 586 |
return build_base_path (PLUS_EXPR, object, binfo, nonnull, complain); |
| 587 |
} |
| 588 |
|
| 589 |
/* EXPR is an expression with unqualified class type. BASE is a base |
| 590 |
binfo of that class type. Returns EXPR, converted to the BASE |
| 591 |
type. This function assumes that EXPR is the most derived class; |
| 592 |
therefore virtual bases can be found at their static offsets. */ |
| 593 |
|
| 594 |
tree |
| 595 |
convert_to_base_statically (tree expr, tree base) |
| 596 |
{ |
| 597 |
tree expr_type; |
| 598 |
|
| 599 |
expr_type = TREE_TYPE (expr); |
| 600 |
if (!SAME_BINFO_TYPE_P (BINFO_TYPE (base), expr_type)) |
| 601 |
{ |
| 602 |
/* If this is a non-empty base, use a COMPONENT_REF. */ |
| 603 |
if (!is_empty_class (BINFO_TYPE (base))) |
| 604 |
return build_simple_base_path (expr, base); |
| 605 |
|
| 606 |
/* We use fold_build2 and fold_convert below to simplify the trees |
| 607 |
provided to the optimizers. It is not safe to call these functions |
| 608 |
when processing a template because they do not handle C++-specific |
| 609 |
trees. */ |
| 610 |
gcc_assert (!processing_template_decl); |
| 611 |
expr = cp_build_addr_expr (expr, tf_warning_or_error); |
| 612 |
if (!integer_zerop (BINFO_OFFSET (base))) |
| 613 |
expr = fold_build_pointer_plus_loc (input_location, |
| 614 |
expr, BINFO_OFFSET (base)); |
| 615 |
expr = fold_convert (build_pointer_type (BINFO_TYPE (base)), expr); |
| 616 |
expr = build_fold_indirect_ref_loc (input_location, expr); |
| 617 |
} |
| 618 |
|
| 619 |
return expr; |
| 620 |
} |
| 621 |
|
| 622 |
|
| 623 |
tree |
| 624 |
build_vfield_ref (tree datum, tree type) |
| 625 |
{ |
| 626 |
tree vfield, vcontext; |
| 627 |
|
| 628 |
if (datum == error_mark_node) |
| 629 |
return error_mark_node; |
| 630 |
|
| 631 |
/* First, convert to the requested type. */ |
| 632 |
if (!same_type_ignoring_top_level_qualifiers_p (TREE_TYPE (datum), type)) |
| 633 |
datum = convert_to_base (datum, type, /*check_access=*/false, |
| 634 |
/*nonnull=*/true, tf_warning_or_error); |
| 635 |
|
| 636 |
/* Second, the requested type may not be the owner of its own vptr. |
| 637 |
If not, convert to the base class that owns it. We cannot use |
| 638 |
convert_to_base here, because VCONTEXT may appear more than once |
| 639 |
in the inheritance hierarchy of TYPE, and thus direct conversion |
| 640 |
between the types may be ambiguous. Following the path back up |
| 641 |
one step at a time via primary bases avoids the problem. */ |
| 642 |
vfield = TYPE_VFIELD (type); |
| 643 |
vcontext = DECL_CONTEXT (vfield); |
| 644 |
while (!same_type_ignoring_top_level_qualifiers_p (vcontext, type)) |
| 645 |
{ |
| 646 |
datum = build_simple_base_path (datum, CLASSTYPE_PRIMARY_BINFO (type)); |
| 647 |
type = TREE_TYPE (datum); |
| 648 |
} |
| 649 |
|
| 650 |
return build3 (COMPONENT_REF, TREE_TYPE (vfield), datum, vfield, NULL_TREE); |
| 651 |
} |
| 652 |
|
| 653 |
/* Given an object INSTANCE, return an expression which yields the |
| 654 |
vtable element corresponding to INDEX. There are many special |
| 655 |
cases for INSTANCE which we take care of here, mainly to avoid |
| 656 |
creating extra tree nodes when we don't have to. */ |
| 657 |
|
| 658 |
static tree |
| 659 |
build_vtbl_ref_1 (tree instance, tree idx) |
| 660 |
{ |
| 661 |
tree aref; |
| 662 |
tree vtbl = NULL_TREE; |
| 663 |
|
| 664 |
/* Try to figure out what a reference refers to, and |
| 665 |
access its virtual function table directly. */ |
| 666 |
|
| 667 |
int cdtorp = 0; |
| 668 |
tree fixed_type = fixed_type_or_null (instance, NULL, &cdtorp); |
| 669 |
|
| 670 |
tree basetype = non_reference (TREE_TYPE (instance)); |
| 671 |
|
| 672 |
if (fixed_type && !cdtorp) |
| 673 |
{ |
| 674 |
tree binfo = lookup_base (fixed_type, basetype, |
| 675 |
ba_unique, NULL, tf_none); |
| 676 |
if (binfo && binfo != error_mark_node) |
| 677 |
vtbl = unshare_expr (BINFO_VTABLE (binfo)); |
| 678 |
} |
| 679 |
|
| 680 |
if (!vtbl) |
| 681 |
vtbl = build_vfield_ref (instance, basetype); |
| 682 |
|
| 683 |
aref = build_array_ref (input_location, vtbl, idx); |
| 684 |
TREE_CONSTANT (aref) |= TREE_CONSTANT (vtbl) && TREE_CONSTANT (idx); |
| 685 |
|
| 686 |
return aref; |
| 687 |
} |
| 688 |
|
| 689 |
tree |
| 690 |
build_vtbl_ref (tree instance, tree idx) |
| 691 |
{ |
| 692 |
tree aref = build_vtbl_ref_1 (instance, idx); |
| 693 |
|
| 694 |
return aref; |
| 695 |
} |
| 696 |
|
| 697 |
/* Given a stable object pointer INSTANCE_PTR, return an expression which |
| 698 |
yields a function pointer corresponding to vtable element INDEX. */ |
| 699 |
|
| 700 |
tree |
| 701 |
build_vfn_ref (tree instance_ptr, tree idx) |
| 702 |
{ |
| 703 |
tree aref; |
| 704 |
|
| 705 |
aref = build_vtbl_ref_1 (cp_build_indirect_ref (instance_ptr, RO_NULL, |
| 706 |
tf_warning_or_error), |
| 707 |
idx); |
| 708 |
|
| 709 |
/* When using function descriptors, the address of the |
| 710 |
vtable entry is treated as a function pointer. */ |
| 711 |
if (TARGET_VTABLE_USES_DESCRIPTORS) |
| 712 |
aref = build1 (NOP_EXPR, TREE_TYPE (aref), |
| 713 |
cp_build_addr_expr (aref, tf_warning_or_error)); |
| 714 |
|
| 715 |
/* Remember this as a method reference, for later devirtualization. */ |
| 716 |
aref = build3 (OBJ_TYPE_REF, TREE_TYPE (aref), aref, instance_ptr, idx); |
| 717 |
|
| 718 |
return aref; |
| 719 |
} |
| 720 |
|
| 721 |
/* Return the name of the virtual function table (as an IDENTIFIER_NODE) |
| 722 |
for the given TYPE. */ |
| 723 |
|
| 724 |
static tree |
| 725 |
get_vtable_name (tree type) |
| 726 |
{ |
| 727 |
return mangle_vtbl_for_type (type); |
| 728 |
} |
| 729 |
|
| 730 |
/* DECL is an entity associated with TYPE, like a virtual table or an |
| 731 |
implicitly generated constructor. Determine whether or not DECL |
| 732 |
should have external or internal linkage at the object file |
| 733 |
level. This routine does not deal with COMDAT linkage and other |
| 734 |
similar complexities; it simply sets TREE_PUBLIC if it possible for |
| 735 |
entities in other translation units to contain copies of DECL, in |
| 736 |
the abstract. */ |
| 737 |
|
| 738 |
void |
| 739 |
set_linkage_according_to_type (tree /*type*/, tree decl) |
| 740 |
{ |
| 741 |
TREE_PUBLIC (decl) = 1; |
| 742 |
determine_visibility (decl); |
| 743 |
} |
| 744 |
|
| 745 |
/* Create a VAR_DECL for a primary or secondary vtable for CLASS_TYPE. |
| 746 |
(For a secondary vtable for B-in-D, CLASS_TYPE should be D, not B.) |
| 747 |
Use NAME for the name of the vtable, and VTABLE_TYPE for its type. */ |
| 748 |
|
| 749 |
static tree |
| 750 |
build_vtable (tree class_type, tree name, tree vtable_type) |
| 751 |
{ |
| 752 |
tree decl; |
| 753 |
|
| 754 |
decl = build_lang_decl (VAR_DECL, name, vtable_type); |
| 755 |
/* vtable names are already mangled; give them their DECL_ASSEMBLER_NAME |
| 756 |
now to avoid confusion in mangle_decl. */ |
| 757 |
SET_DECL_ASSEMBLER_NAME (decl, name); |
| 758 |
DECL_CONTEXT (decl) = class_type; |
| 759 |
DECL_ARTIFICIAL (decl) = 1; |
| 760 |
TREE_STATIC (decl) = 1; |
| 761 |
TREE_READONLY (decl) = 1; |
| 762 |
DECL_VIRTUAL_P (decl) = 1; |
| 763 |
DECL_ALIGN (decl) = TARGET_VTABLE_ENTRY_ALIGN; |
| 764 |
DECL_VTABLE_OR_VTT_P (decl) = 1; |
| 765 |
/* At one time the vtable info was grabbed 2 words at a time. This |
| 766 |
fails on sparc unless you have 8-byte alignment. (tiemann) */ |
| 767 |
DECL_ALIGN (decl) = MAX (TYPE_ALIGN (double_type_node), |
| 768 |
DECL_ALIGN (decl)); |
| 769 |
set_linkage_according_to_type (class_type, decl); |
| 770 |
/* The vtable has not been defined -- yet. */ |
| 771 |
DECL_EXTERNAL (decl) = 1; |
| 772 |
DECL_NOT_REALLY_EXTERN (decl) = 1; |
| 773 |
|
| 774 |
/* Mark the VAR_DECL node representing the vtable itself as a |
| 775 |
"gratuitous" one, thereby forcing dwarfout.c to ignore it. It |
| 776 |
is rather important that such things be ignored because any |
| 777 |
effort to actually generate DWARF for them will run into |
| 778 |
trouble when/if we encounter code like: |
| 779 |
|
| 780 |
#pragma interface |
| 781 |
struct S { virtual void member (); }; |
| 782 |
|
| 783 |
because the artificial declaration of the vtable itself (as |
| 784 |
manufactured by the g++ front end) will say that the vtable is |
| 785 |
a static member of `S' but only *after* the debug output for |
| 786 |
the definition of `S' has already been output. This causes |
| 787 |
grief because the DWARF entry for the definition of the vtable |
| 788 |
will try to refer back to an earlier *declaration* of the |
| 789 |
vtable as a static member of `S' and there won't be one. We |
| 790 |
might be able to arrange to have the "vtable static member" |
| 791 |
attached to the member list for `S' before the debug info for |
| 792 |
`S' get written (which would solve the problem) but that would |
| 793 |
require more intrusive changes to the g++ front end. */ |
| 794 |
DECL_IGNORED_P (decl) = 1; |
| 795 |
|
| 796 |
return decl; |
| 797 |
} |
| 798 |
|
| 799 |
/* Get the VAR_DECL of the vtable for TYPE. TYPE need not be polymorphic, |
| 800 |
or even complete. If this does not exist, create it. If COMPLETE is |
| 801 |
nonzero, then complete the definition of it -- that will render it |
| 802 |
impossible to actually build the vtable, but is useful to get at those |
| 803 |
which are known to exist in the runtime. */ |
| 804 |
|
| 805 |
tree |
| 806 |
get_vtable_decl (tree type, int complete) |
| 807 |
{ |
| 808 |
tree decl; |
| 809 |
|
| 810 |
if (CLASSTYPE_VTABLES (type)) |
| 811 |
return CLASSTYPE_VTABLES (type); |
| 812 |
|
| 813 |
decl = build_vtable (type, get_vtable_name (type), vtbl_type_node); |
| 814 |
CLASSTYPE_VTABLES (type) = decl; |
| 815 |
|
| 816 |
if (complete) |
| 817 |
{ |
| 818 |
DECL_EXTERNAL (decl) = 1; |
| 819 |
cp_finish_decl (decl, NULL_TREE, false, NULL_TREE, 0); |
| 820 |
} |
| 821 |
|
| 822 |
return decl; |
| 823 |
} |
| 824 |
|
| 825 |
/* Build the primary virtual function table for TYPE. If BINFO is |
| 826 |
non-NULL, build the vtable starting with the initial approximation |
| 827 |
that it is the same as the one which is the head of the association |
| 828 |
list. Returns a nonzero value if a new vtable is actually |
| 829 |
created. */ |
| 830 |
|
| 831 |
static int |
| 832 |
build_primary_vtable (tree binfo, tree type) |
| 833 |
{ |
| 834 |
tree decl; |
| 835 |
tree virtuals; |
| 836 |
|
| 837 |
decl = get_vtable_decl (type, /*complete=*/0); |
| 838 |
|
| 839 |
if (binfo) |
| 840 |
{ |
| 841 |
if (BINFO_NEW_VTABLE_MARKED (binfo)) |
| 842 |
/* We have already created a vtable for this base, so there's |
| 843 |
no need to do it again. */ |
| 844 |
return 0; |
| 845 |
|
| 846 |
virtuals = copy_list (BINFO_VIRTUALS (binfo)); |
| 847 |
TREE_TYPE (decl) = TREE_TYPE (get_vtbl_decl_for_binfo (binfo)); |
| 848 |
DECL_SIZE (decl) = TYPE_SIZE (TREE_TYPE (decl)); |
| 849 |
DECL_SIZE_UNIT (decl) = TYPE_SIZE_UNIT (TREE_TYPE (decl)); |
| 850 |
} |
| 851 |
else |
| 852 |
{ |
| 853 |
gcc_assert (TREE_TYPE (decl) == vtbl_type_node); |
| 854 |
virtuals = NULL_TREE; |
| 855 |
} |
| 856 |
|
| 857 |
if (GATHER_STATISTICS) |
| 858 |
{ |
| 859 |
n_vtables += 1; |
| 860 |
n_vtable_elems += list_length (virtuals); |
| 861 |
} |
| 862 |
|
| 863 |
/* Initialize the association list for this type, based |
| 864 |
on our first approximation. */ |
| 865 |
BINFO_VTABLE (TYPE_BINFO (type)) = decl; |
| 866 |
BINFO_VIRTUALS (TYPE_BINFO (type)) = virtuals; |
| 867 |
SET_BINFO_NEW_VTABLE_MARKED (TYPE_BINFO (type)); |
| 868 |
return 1; |
| 869 |
} |
| 870 |
|
| 871 |
/* Give BINFO a new virtual function table which is initialized |
| 872 |
with a skeleton-copy of its original initialization. The only |
| 873 |
entry that changes is the `delta' entry, so we can really |
| 874 |
share a lot of structure. |
| 875 |
|
| 876 |
FOR_TYPE is the most derived type which caused this table to |
| 877 |
be needed. |
| 878 |
|
| 879 |
Returns nonzero if we haven't met BINFO before. |
| 880 |
|
| 881 |
The order in which vtables are built (by calling this function) for |
| 882 |
an object must remain the same, otherwise a binary incompatibility |
| 883 |
can result. */ |
| 884 |
|
| 885 |
static int |
| 886 |
build_secondary_vtable (tree binfo) |
| 887 |
{ |
| 888 |
if (BINFO_NEW_VTABLE_MARKED (binfo)) |
| 889 |
/* We already created a vtable for this base. There's no need to |
| 890 |
do it again. */ |
| 891 |
return 0; |
| 892 |
|
| 893 |
/* Remember that we've created a vtable for this BINFO, so that we |
| 894 |
don't try to do so again. */ |
| 895 |
SET_BINFO_NEW_VTABLE_MARKED (binfo); |
| 896 |
|
| 897 |
/* Make fresh virtual list, so we can smash it later. */ |
| 898 |
BINFO_VIRTUALS (binfo) = copy_list (BINFO_VIRTUALS (binfo)); |
| 899 |
|
| 900 |
/* Secondary vtables are laid out as part of the same structure as |
| 901 |
the primary vtable. */ |
| 902 |
BINFO_VTABLE (binfo) = NULL_TREE; |
| 903 |
return 1; |
| 904 |
} |
| 905 |
|
| 906 |
/* Create a new vtable for BINFO which is the hierarchy dominated by |
| 907 |
T. Return nonzero if we actually created a new vtable. */ |
| 908 |
|
| 909 |
static int |
| 910 |
make_new_vtable (tree t, tree binfo) |
| 911 |
{ |
| 912 |
if (binfo == TYPE_BINFO (t)) |
| 913 |
/* In this case, it is *type*'s vtable we are modifying. We start |
| 914 |
with the approximation that its vtable is that of the |
| 915 |
immediate base class. */ |
| 916 |
return build_primary_vtable (binfo, t); |
| 917 |
else |
| 918 |
/* This is our very own copy of `basetype' to play with. Later, |
| 919 |
we will fill in all the virtual functions that override the |
| 920 |
virtual functions in these base classes which are not defined |
| 921 |
by the current type. */ |
| 922 |
return build_secondary_vtable (binfo); |
| 923 |
} |
| 924 |
|
| 925 |
/* Make *VIRTUALS, an entry on the BINFO_VIRTUALS list for BINFO |
| 926 |
(which is in the hierarchy dominated by T) list FNDECL as its |
| 927 |
BV_FN. DELTA is the required constant adjustment from the `this' |
| 928 |
pointer where the vtable entry appears to the `this' required when |
| 929 |
the function is actually called. */ |
| 930 |
|
| 931 |
static void |
| 932 |
modify_vtable_entry (tree t, |
| 933 |
tree binfo, |
| 934 |
tree fndecl, |
| 935 |
tree delta, |
| 936 |
tree *virtuals) |
| 937 |
{ |
| 938 |
tree v; |
| 939 |
|
| 940 |
v = *virtuals; |
| 941 |
|
| 942 |
if (fndecl != BV_FN (v) |
| 943 |
|| !tree_int_cst_equal (delta, BV_DELTA (v))) |
| 944 |
{ |
| 945 |
/* We need a new vtable for BINFO. */ |
| 946 |
if (make_new_vtable (t, binfo)) |
| 947 |
{ |
| 948 |
/* If we really did make a new vtable, we also made a copy |
| 949 |
of the BINFO_VIRTUALS list. Now, we have to find the |
| 950 |
corresponding entry in that list. */ |
| 951 |
*virtuals = BINFO_VIRTUALS (binfo); |
| 952 |
while (BV_FN (*virtuals) != BV_FN (v)) |
| 953 |
*virtuals = TREE_CHAIN (*virtuals); |
| 954 |
v = *virtuals; |
| 955 |
} |
| 956 |
|
| 957 |
BV_DELTA (v) = delta; |
| 958 |
BV_VCALL_INDEX (v) = NULL_TREE; |
| 959 |
BV_FN (v) = fndecl; |
| 960 |
} |
| 961 |
} |
| 962 |
|
| 963 |
|
| 964 |
/* Add method METHOD to class TYPE. If USING_DECL is non-null, it is |
| 965 |
the USING_DECL naming METHOD. Returns true if the method could be |
| 966 |
added to the method vec. */ |
| 967 |
|
| 968 |
bool |
| 969 |
add_method (tree type, tree method, tree using_decl) |
| 970 |
{ |
| 971 |
unsigned slot; |
| 972 |
tree overload; |
| 973 |
bool template_conv_p = false; |
| 974 |
bool conv_p; |
| 975 |
vec<tree, va_gc> *method_vec; |
| 976 |
bool complete_p; |
| 977 |
bool insert_p = false; |
| 978 |
tree current_fns; |
| 979 |
tree fns; |
| 980 |
|
| 981 |
if (method == error_mark_node) |
| 982 |
return false; |
| 983 |
|
| 984 |
complete_p = COMPLETE_TYPE_P (type); |
| 985 |
conv_p = DECL_CONV_FN_P (method); |
| 986 |
if (conv_p) |
| 987 |
template_conv_p = (TREE_CODE (method) == TEMPLATE_DECL |
| 988 |
&& DECL_TEMPLATE_CONV_FN_P (method)); |
| 989 |
|
| 990 |
method_vec = CLASSTYPE_METHOD_VEC (type); |
| 991 |
if (!method_vec) |
| 992 |
{ |
| 993 |
/* Make a new method vector. We start with 8 entries. We must |
| 994 |
allocate at least two (for constructors and destructors), and |
| 995 |
we're going to end up with an assignment operator at some |
| 996 |
point as well. */ |
| 997 |
vec_alloc (method_vec, 8); |
| 998 |
/* Create slots for constructors and destructors. */ |
| 999 |
method_vec->quick_push (NULL_TREE); |
| 1000 |
method_vec->quick_push (NULL_TREE); |
| 1001 |
CLASSTYPE_METHOD_VEC (type) = method_vec; |
| 1002 |
} |
| 1003 |
|
| 1004 |
/* Maintain TYPE_HAS_USER_CONSTRUCTOR, etc. */ |
| 1005 |
grok_special_member_properties (method); |
| 1006 |
|
| 1007 |
/* Constructors and destructors go in special slots. */ |
| 1008 |
if (DECL_MAYBE_IN_CHARGE_CONSTRUCTOR_P (method)) |
| 1009 |
slot = CLASSTYPE_CONSTRUCTOR_SLOT; |
| 1010 |
else if (DECL_MAYBE_IN_CHARGE_DESTRUCTOR_P (method)) |
| 1011 |
{ |
| 1012 |
slot = CLASSTYPE_DESTRUCTOR_SLOT; |
| 1013 |
|
| 1014 |
if (TYPE_FOR_JAVA (type)) |
| 1015 |
{ |
| 1016 |
if (!DECL_ARTIFICIAL (method)) |
| 1017 |
error ("Java class %qT cannot have a destructor", type); |
| 1018 |
else if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type)) |
| 1019 |
error ("Java class %qT cannot have an implicit non-trivial " |
| 1020 |
"destructor", |
| 1021 |
type); |
| 1022 |
} |
| 1023 |
} |
| 1024 |
else |
| 1025 |
{ |
| 1026 |
tree m; |
| 1027 |
|
| 1028 |
insert_p = true; |
| 1029 |
/* See if we already have an entry with this name. */ |
| 1030 |
for (slot = CLASSTYPE_FIRST_CONVERSION_SLOT; |
| 1031 |
vec_safe_iterate (method_vec, slot, &m); |
| 1032 |
++slot) |
| 1033 |
{ |
| 1034 |
m = OVL_CURRENT (m); |
| 1035 |
if (template_conv_p) |
| 1036 |
{ |
| 1037 |
if (TREE_CODE (m) == TEMPLATE_DECL |
| 1038 |
&& DECL_TEMPLATE_CONV_FN_P (m)) |
| 1039 |
insert_p = false; |
| 1040 |
break; |
| 1041 |
} |
| 1042 |
if (conv_p && !DECL_CONV_FN_P (m)) |
| 1043 |
break; |
| 1044 |
if (DECL_NAME (m) == DECL_NAME (method)) |
| 1045 |
{ |
| 1046 |
insert_p = false; |
| 1047 |
break; |
| 1048 |
} |
| 1049 |
if (complete_p |
| 1050 |
&& !DECL_CONV_FN_P (m) |
| 1051 |
&& DECL_NAME (m) > DECL_NAME (method)) |
| 1052 |
break; |
| 1053 |
} |
| 1054 |
} |
| 1055 |
current_fns = insert_p ? NULL_TREE : (*method_vec)[slot]; |
| 1056 |
|
| 1057 |
/* Check to see if we've already got this method. */ |
| 1058 |
for (fns = current_fns; fns; fns = OVL_NEXT (fns)) |
| 1059 |
{ |
| 1060 |
tree fn = OVL_CURRENT (fns); |
| 1061 |
tree fn_type; |
| 1062 |
tree method_type; |
| 1063 |
tree parms1; |
| 1064 |
tree parms2; |
| 1065 |
|
| 1066 |
if (TREE_CODE (fn) != TREE_CODE (method)) |
| 1067 |
continue; |
| 1068 |
|
| 1069 |
/* [over.load] Member function declarations with the |
| 1070 |
same name and the same parameter types cannot be |
| 1071 |
overloaded if any of them is a static member |
| 1072 |
function declaration. |
| 1073 |
|
| 1074 |
[over.load] Member function declarations with the same name and |
| 1075 |
the same parameter-type-list as well as member function template |
| 1076 |
declarations with the same name, the same parameter-type-list, and |
| 1077 |
the same template parameter lists cannot be overloaded if any of |
| 1078 |
them, but not all, have a ref-qualifier. |
| 1079 |
|
| 1080 |
[namespace.udecl] When a using-declaration brings names |
| 1081 |
from a base class into a derived class scope, member |
| 1082 |
functions in the derived class override and/or hide member |
| 1083 |
functions with the same name and parameter types in a base |
| 1084 |
class (rather than conflicting). */ |
| 1085 |
fn_type = TREE_TYPE (fn); |
| 1086 |
method_type = TREE_TYPE (method); |
| 1087 |
parms1 = TYPE_ARG_TYPES (fn_type); |
| 1088 |
parms2 = TYPE_ARG_TYPES (method_type); |
| 1089 |
|
| 1090 |
/* Compare the quals on the 'this' parm. Don't compare |
| 1091 |
the whole types, as used functions are treated as |
| 1092 |
coming from the using class in overload resolution. */ |
| 1093 |
if (! DECL_STATIC_FUNCTION_P (fn) |
| 1094 |
&& ! DECL_STATIC_FUNCTION_P (method) |
| 1095 |
/* Either both or neither need to be ref-qualified for |
| 1096 |
differing quals to allow overloading. */ |
| 1097 |
&& (FUNCTION_REF_QUALIFIED (fn_type) |
| 1098 |
== FUNCTION_REF_QUALIFIED (method_type)) |
| 1099 |
&& (type_memfn_quals (fn_type) != type_memfn_quals (method_type) |
| 1100 |
|| type_memfn_rqual (fn_type) != type_memfn_rqual (method_type))) |
| 1101 |
continue; |
| 1102 |
|
| 1103 |
/* For templates, the return type and template parameters |
| 1104 |
must be identical. */ |
| 1105 |
if (TREE_CODE (fn) == TEMPLATE_DECL |
| 1106 |
&& (!same_type_p (TREE_TYPE (fn_type), |
| 1107 |
TREE_TYPE (method_type)) |
| 1108 |
|| !comp_template_parms (DECL_TEMPLATE_PARMS (fn), |
| 1109 |
DECL_TEMPLATE_PARMS (method)))) |
| 1110 |
continue; |
| 1111 |
|
| 1112 |
if (! DECL_STATIC_FUNCTION_P (fn)) |
| 1113 |
parms1 = TREE_CHAIN (parms1); |
| 1114 |
if (! DECL_STATIC_FUNCTION_P (method)) |
| 1115 |
parms2 = TREE_CHAIN (parms2); |
| 1116 |
|
| 1117 |
if (compparms (parms1, parms2) |
| 1118 |
&& (!DECL_CONV_FN_P (fn) |
| 1119 |
|| same_type_p (TREE_TYPE (fn_type), |
| 1120 |
TREE_TYPE (method_type)))) |
| 1121 |
{ |
| 1122 |
/* For function versions, their parms and types match |
| 1123 |
but they are not duplicates. Record function versions |
| 1124 |
as and when they are found. extern "C" functions are |
| 1125 |
not treated as versions. */ |
| 1126 |
if (TREE_CODE (fn) == FUNCTION_DECL |
| 1127 |
&& TREE_CODE (method) == FUNCTION_DECL |
| 1128 |
&& !DECL_EXTERN_C_P (fn) |
| 1129 |
&& !DECL_EXTERN_C_P (method) |
| 1130 |
&& targetm.target_option.function_versions (fn, method)) |
| 1131 |
{ |
| 1132 |
/* Mark functions as versions if necessary. Modify the mangled |
| 1133 |
decl name if necessary. */ |
| 1134 |
if (!DECL_FUNCTION_VERSIONED (fn)) |
| 1135 |
{ |
| 1136 |
DECL_FUNCTION_VERSIONED (fn) = 1; |
| 1137 |
if (DECL_ASSEMBLER_NAME_SET_P (fn)) |
| 1138 |
mangle_decl (fn); |
| 1139 |
} |
| 1140 |
if (!DECL_FUNCTION_VERSIONED (method)) |
| 1141 |
{ |
| 1142 |
DECL_FUNCTION_VERSIONED (method) = 1; |
| 1143 |
if (DECL_ASSEMBLER_NAME_SET_P (method)) |
| 1144 |
mangle_decl (method); |
| 1145 |
} |
| 1146 |
record_function_versions (fn, method); |
| 1147 |
continue; |
| 1148 |
} |
| 1149 |
if (DECL_INHERITED_CTOR_BASE (method)) |
| 1150 |
{ |
| 1151 |
if (DECL_INHERITED_CTOR_BASE (fn)) |
| 1152 |
{ |
| 1153 |
error_at (DECL_SOURCE_LOCATION (method), |
| 1154 |
"%q#D inherited from %qT", method, |
| 1155 |
DECL_INHERITED_CTOR_BASE (method)); |
| 1156 |
error_at (DECL_SOURCE_LOCATION (fn), |
| 1157 |
"conflicts with version inherited from %qT", |
| 1158 |
DECL_INHERITED_CTOR_BASE (fn)); |
| 1159 |
} |
| 1160 |
/* Otherwise defer to the other function. */ |
| 1161 |
return false; |
| 1162 |
} |
| 1163 |
if (using_decl) |
| 1164 |
{ |
| 1165 |
if (DECL_CONTEXT (fn) == type) |
| 1166 |
/* Defer to the local function. */ |
| 1167 |
return false; |
| 1168 |
} |
| 1169 |
else |
| 1170 |
{ |
| 1171 |
error ("%q+#D cannot be overloaded", method); |
| 1172 |
error ("with %q+#D", fn); |
| 1173 |
} |
| 1174 |
|
| 1175 |
/* We don't call duplicate_decls here to merge the |
| 1176 |
declarations because that will confuse things if the |
| 1177 |
methods have inline definitions. In particular, we |
| 1178 |
will crash while processing the definitions. */ |
| 1179 |
return false; |
| 1180 |
} |
| 1181 |
} |
| 1182 |
|
| 1183 |
/* A class should never have more than one destructor. */ |
| 1184 |
if (current_fns && DECL_MAYBE_IN_CHARGE_DESTRUCTOR_P (method)) |
| 1185 |
return false; |
| 1186 |
|
| 1187 |
/* Add the new binding. */ |
| 1188 |
if (using_decl) |
| 1189 |
{ |
| 1190 |
overload = ovl_cons (method, current_fns); |
| 1191 |
OVL_USED (overload) = true; |
| 1192 |
} |
| 1193 |
else |
| 1194 |
overload = build_overload (method, current_fns); |
| 1195 |
|
| 1196 |
if (conv_p) |
| 1197 |
TYPE_HAS_CONVERSION (type) = 1; |
| 1198 |
else if (slot >= CLASSTYPE_FIRST_CONVERSION_SLOT && !complete_p) |
| 1199 |
push_class_level_binding (DECL_NAME (method), overload); |
| 1200 |
|
| 1201 |
if (insert_p) |
| 1202 |
{ |
| 1203 |
bool reallocated; |
| 1204 |
|
| 1205 |
/* We only expect to add few methods in the COMPLETE_P case, so |
| 1206 |
just make room for one more method in that case. */ |
| 1207 |
if (complete_p) |
| 1208 |
reallocated = vec_safe_reserve_exact (method_vec, 1); |
| 1209 |
else |
| 1210 |
reallocated = vec_safe_reserve (method_vec, 1); |
| 1211 |
if (reallocated) |
| 1212 |
CLASSTYPE_METHOD_VEC (type) = method_vec; |
| 1213 |
if (slot == method_vec->length ()) |
| 1214 |
method_vec->quick_push (overload); |
| 1215 |
else |
| 1216 |
method_vec->quick_insert (slot, overload); |
| 1217 |
} |
| 1218 |
else |
| 1219 |
/* Replace the current slot. */ |
| 1220 |
(*method_vec)[slot] = overload; |
| 1221 |
return true; |
| 1222 |
} |
| 1223 |
|
| 1224 |
/* Subroutines of finish_struct. */ |
| 1225 |
|
| 1226 |
/* Change the access of FDECL to ACCESS in T. Return 1 if change was |
| 1227 |
legit, otherwise return 0. */ |
| 1228 |
|
| 1229 |
static int |
| 1230 |
alter_access (tree t, tree fdecl, tree access) |
| 1231 |
{ |
| 1232 |
tree elem; |
| 1233 |
|
| 1234 |
if (!DECL_LANG_SPECIFIC (fdecl)) |
| 1235 |
retrofit_lang_decl (fdecl); |
| 1236 |
|
| 1237 |
gcc_assert (!DECL_DISCRIMINATOR_P (fdecl)); |
| 1238 |
|
| 1239 |
elem = purpose_member (t, DECL_ACCESS (fdecl)); |
| 1240 |
if (elem) |
| 1241 |
{ |
| 1242 |
if (TREE_VALUE (elem) != access) |
| 1243 |
{ |
| 1244 |
if (TREE_CODE (TREE_TYPE (fdecl)) == FUNCTION_DECL) |
| 1245 |
error ("conflicting access specifications for method" |
| 1246 |
" %q+D, ignored", TREE_TYPE (fdecl)); |
| 1247 |
else |
| 1248 |
error ("conflicting access specifications for field %qE, ignored", |
| 1249 |
DECL_NAME (fdecl)); |
| 1250 |
} |
| 1251 |
else |
| 1252 |
{ |
| 1253 |
/* They're changing the access to the same thing they changed |
| 1254 |
it to before. That's OK. */ |
| 1255 |
; |
| 1256 |
} |
| 1257 |
} |
| 1258 |
else |
| 1259 |
{ |
| 1260 |
perform_or_defer_access_check (TYPE_BINFO (t), fdecl, fdecl, |
| 1261 |
tf_warning_or_error); |
| 1262 |
DECL_ACCESS (fdecl) = tree_cons (t, access, DECL_ACCESS (fdecl)); |
| 1263 |
return 1; |
| 1264 |
} |
| 1265 |
return 0; |
| 1266 |
} |
| 1267 |
|
| 1268 |
/* Process the USING_DECL, which is a member of T. */ |
| 1269 |
|
| 1270 |
static void |
| 1271 |
handle_using_decl (tree using_decl, tree t) |
| 1272 |
{ |
| 1273 |
tree decl = USING_DECL_DECLS (using_decl); |
| 1274 |
tree name = DECL_NAME (using_decl); |
| 1275 |
tree access |
| 1276 |
= TREE_PRIVATE (using_decl) ? access_private_node |
| 1277 |
: TREE_PROTECTED (using_decl) ? access_protected_node |
| 1278 |
: access_public_node; |
| 1279 |
tree flist = NULL_TREE; |
| 1280 |
tree old_value; |
| 1281 |
|
| 1282 |
gcc_assert (!processing_template_decl && decl); |
| 1283 |
|
| 1284 |
old_value = lookup_member (t, name, /*protect=*/0, /*want_type=*/false, |
| 1285 |
tf_warning_or_error); |
| 1286 |
if (old_value) |
| 1287 |
{ |
| 1288 |
if (is_overloaded_fn (old_value)) |
| 1289 |
old_value = OVL_CURRENT (old_value); |
| 1290 |
|
| 1291 |
if (DECL_P (old_value) && DECL_CONTEXT (old_value) == t) |
| 1292 |
/* OK */; |
| 1293 |
else |
| 1294 |
old_value = NULL_TREE; |
| 1295 |
} |
| 1296 |
|
| 1297 |
cp_emit_debug_info_for_using (decl, USING_DECL_SCOPE (using_decl)); |
| 1298 |
|
| 1299 |
if (is_overloaded_fn (decl)) |
| 1300 |
flist = decl; |
| 1301 |
|
| 1302 |
if (! old_value) |
| 1303 |
; |
| 1304 |
else if (is_overloaded_fn (old_value)) |
| 1305 |
{ |
| 1306 |
if (flist) |
| 1307 |
/* It's OK to use functions from a base when there are functions with |
| 1308 |
the same name already present in the current class. */; |
| 1309 |
else |
| 1310 |
{ |
| 1311 |
error ("%q+D invalid in %q#T", using_decl, t); |
| 1312 |
error (" because of local method %q+#D with same name", |
| 1313 |
OVL_CURRENT (old_value)); |
| 1314 |
return; |
| 1315 |
} |
| 1316 |
} |
| 1317 |
else if (!DECL_ARTIFICIAL (old_value)) |
| 1318 |
{ |
| 1319 |
error ("%q+D invalid in %q#T", using_decl, t); |
| 1320 |
error (" because of local member %q+#D with same name", old_value); |
| 1321 |
return; |
| 1322 |
} |
| 1323 |
|
| 1324 |
/* Make type T see field decl FDECL with access ACCESS. */ |
| 1325 |
if (flist) |
| 1326 |
for (; flist; flist = OVL_NEXT (flist)) |
| 1327 |
{ |
| 1328 |
add_method (t, OVL_CURRENT (flist), using_decl); |
| 1329 |
alter_access (t, OVL_CURRENT (flist), access); |
| 1330 |
} |
| 1331 |
else |
| 1332 |
alter_access (t, decl, access); |
| 1333 |
} |
| 1334 |
|
| 1335 |
/* walk_tree callback for check_abi_tags: if the type at *TP involves any |
| 1336 |
types with abi tags, add the corresponding identifiers to the VEC in |
| 1337 |
*DATA and set IDENTIFIER_MARKED. */ |
| 1338 |
|
| 1339 |
struct abi_tag_data |
| 1340 |
{ |
| 1341 |
tree t; |
| 1342 |
tree subob; |
| 1343 |
}; |
| 1344 |
|
| 1345 |
static tree |
| 1346 |
find_abi_tags_r (tree *tp, int */*walk_subtrees*/, void *data) |
| 1347 |
{ |
| 1348 |
if (!OVERLOAD_TYPE_P (*tp)) |
| 1349 |
return NULL_TREE; |
| 1350 |
|
| 1351 |
if (tree attributes = lookup_attribute ("abi_tag", TYPE_ATTRIBUTES (*tp))) |
| 1352 |
{ |
| 1353 |
struct abi_tag_data *p = static_cast<struct abi_tag_data*>(data); |
| 1354 |
for (tree list = TREE_VALUE (attributes); list; |
| 1355 |
list = TREE_CHAIN (list)) |
| 1356 |
{ |
| 1357 |
tree tag = TREE_VALUE (list); |
| 1358 |
tree id = get_identifier (TREE_STRING_POINTER (tag)); |
| 1359 |
if (!IDENTIFIER_MARKED (id)) |
| 1360 |
{ |
| 1361 |
if (TYPE_P (p->subob)) |
| 1362 |
{ |
| 1363 |
warning (OPT_Wabi_tag, "%qT does not have the %E abi tag " |
| 1364 |
"that base %qT has", p->t, tag, p->subob); |
| 1365 |
inform (location_of (p->subob), "%qT declared here", |
| 1366 |
p->subob); |
| 1367 |
} |
| 1368 |
else |
| 1369 |
{ |
| 1370 |
warning (OPT_Wabi_tag, "%qT does not have the %E abi tag " |
| 1371 |
"that %qT (used in the type of %qD) has", |
| 1372 |
p->t, tag, *tp, p->subob); |
| 1373 |
inform (location_of (p->subob), "%qD declared here", |
| 1374 |
p->subob); |
| 1375 |
inform (location_of (*tp), "%qT declared here", *tp); |
| 1376 |
} |
| 1377 |
} |
| 1378 |
} |
| 1379 |
} |
| 1380 |
return NULL_TREE; |
| 1381 |
} |
| 1382 |
|
| 1383 |
/* Set IDENTIFIER_MARKED on all the ABI tags on T and its (transitively |
| 1384 |
complete) template arguments. */ |
| 1385 |
|
| 1386 |
static void |
| 1387 |
mark_type_abi_tags (tree t, bool val) |
| 1388 |
{ |
| 1389 |
tree attributes = lookup_attribute ("abi_tag", TYPE_ATTRIBUTES (t)); |
| 1390 |
if (attributes) |
| 1391 |
{ |
| 1392 |
for (tree list = TREE_VALUE (attributes); list; |
| 1393 |
list = TREE_CHAIN (list)) |
| 1394 |
{ |
| 1395 |
tree tag = TREE_VALUE (list); |
| 1396 |
tree id = get_identifier (TREE_STRING_POINTER (tag)); |
| 1397 |
IDENTIFIER_MARKED (id) = val; |
| 1398 |
} |
| 1399 |
} |
| 1400 |
|
| 1401 |
/* Also mark ABI tags from template arguments. */ |
| 1402 |
if (CLASSTYPE_TEMPLATE_INFO (t)) |
| 1403 |
{ |
| 1404 |
tree args = CLASSTYPE_TI_ARGS (t); |
| 1405 |
for (int i = 0; i < TMPL_ARGS_DEPTH (args); ++i) |
| 1406 |
{ |
| 1407 |
tree level = TMPL_ARGS_LEVEL (args, i+1); |
| 1408 |
for (int j = 0; j < TREE_VEC_LENGTH (level); ++j) |
| 1409 |
{ |
| 1410 |
tree arg = TREE_VEC_ELT (level, j); |
| 1411 |
if (CLASS_TYPE_P (arg)) |
| 1412 |
mark_type_abi_tags (arg, val); |
| 1413 |
} |
| 1414 |
} |
| 1415 |
} |
| 1416 |
} |
| 1417 |
|
| 1418 |
/* Check that class T has all the abi tags that subobject SUBOB has, or |
| 1419 |
warn if not. */ |
| 1420 |
|
| 1421 |
static void |
| 1422 |
check_abi_tags (tree t, tree subob) |
| 1423 |
{ |
| 1424 |
mark_type_abi_tags (t, true); |
| 1425 |
|
| 1426 |
tree subtype = TYPE_P (subob) ? subob : TREE_TYPE (subob); |
| 1427 |
struct abi_tag_data data = { t, subob }; |
| 1428 |
|
| 1429 |
cp_walk_tree_without_duplicates (&subtype, find_abi_tags_r, &data); |
| 1430 |
|
| 1431 |
mark_type_abi_tags (t, false); |
| 1432 |
} |
| 1433 |
|
| 1434 |
/* Run through the base classes of T, updating CANT_HAVE_CONST_CTOR_P, |
| 1435 |
and NO_CONST_ASN_REF_P. Also set flag bits in T based on |
| 1436 |
properties of the bases. */ |
| 1437 |
|
| 1438 |
static void |
| 1439 |
check_bases (tree t, |
| 1440 |
int* cant_have_const_ctor_p, |
| 1441 |
int* no_const_asn_ref_p) |
| 1442 |
{ |
| 1443 |
int i; |
| 1444 |
bool seen_non_virtual_nearly_empty_base_p = 0; |
| 1445 |
int seen_tm_mask = 0; |
| 1446 |
tree base_binfo; |
| 1447 |
tree binfo; |
| 1448 |
tree field = NULL_TREE; |
| 1449 |
|
| 1450 |
if (!CLASSTYPE_NON_STD_LAYOUT (t)) |
| 1451 |
for (field = TYPE_FIELDS (t); field; field = DECL_CHAIN (field)) |
| 1452 |
if (TREE_CODE (field) == FIELD_DECL) |
| 1453 |
break; |
| 1454 |
|
| 1455 |
for (binfo = TYPE_BINFO (t), i = 0; |
| 1456 |
BINFO_BASE_ITERATE (binfo, i, base_binfo); i++) |
| 1457 |
{ |
| 1458 |
tree basetype = TREE_TYPE (base_binfo); |
| 1459 |
|
| 1460 |
gcc_assert (COMPLETE_TYPE_P (basetype)); |
| 1461 |
|
| 1462 |
if (CLASSTYPE_FINAL (basetype)) |
| 1463 |
error ("cannot derive from %<final%> base %qT in derived type %qT", |
| 1464 |
basetype, t); |
| 1465 |
|
| 1466 |
/* If any base class is non-literal, so is the derived class. */ |
| 1467 |
if (!CLASSTYPE_LITERAL_P (basetype)) |
| 1468 |
CLASSTYPE_LITERAL_P (t) = false; |
| 1469 |
|
| 1470 |
/* Effective C++ rule 14. We only need to check TYPE_POLYMORPHIC_P |
| 1471 |
here because the case of virtual functions but non-virtual |
| 1472 |
dtor is handled in finish_struct_1. */ |
| 1473 |
if (!TYPE_POLYMORPHIC_P (basetype)) |
| 1474 |
warning (OPT_Weffc__, |
| 1475 |
"base class %q#T has a non-virtual destructor", basetype); |
| 1476 |
|
| 1477 |
/* If the base class doesn't have copy constructors or |
| 1478 |
assignment operators that take const references, then the |
| 1479 |
derived class cannot have such a member automatically |
| 1480 |
generated. */ |
| 1481 |
if (TYPE_HAS_COPY_CTOR (basetype) |
| 1482 |
&& ! TYPE_HAS_CONST_COPY_CTOR (basetype)) |
| 1483 |
*cant_have_const_ctor_p = 1; |
| 1484 |
if (TYPE_HAS_COPY_ASSIGN (basetype) |
| 1485 |
&& !TYPE_HAS_CONST_COPY_ASSIGN (basetype)) |
| 1486 |
*no_const_asn_ref_p = 1; |
| 1487 |
|
| 1488 |
if (BINFO_VIRTUAL_P (base_binfo)) |
| 1489 |
/* A virtual base does not effect nearly emptiness. */ |
| 1490 |
; |
| 1491 |
else if (CLASSTYPE_NEARLY_EMPTY_P (basetype)) |
| 1492 |
{ |
| 1493 |
if (seen_non_virtual_nearly_empty_base_p) |
| 1494 |
/* And if there is more than one nearly empty base, then the |
| 1495 |
derived class is not nearly empty either. */ |
| 1496 |
CLASSTYPE_NEARLY_EMPTY_P (t) = 0; |
| 1497 |
else |
| 1498 |
/* Remember we've seen one. */ |
| 1499 |
seen_non_virtual_nearly_empty_base_p = 1; |
| 1500 |
} |
| 1501 |
else if (!is_empty_class (basetype)) |
| 1502 |
/* If the base class is not empty or nearly empty, then this |
| 1503 |
class cannot be nearly empty. */ |
| 1504 |
CLASSTYPE_NEARLY_EMPTY_P (t) = 0; |
| 1505 |
|
| 1506 |
/* A lot of properties from the bases also apply to the derived |
| 1507 |
class. */ |
| 1508 |
TYPE_NEEDS_CONSTRUCTING (t) |= TYPE_NEEDS_CONSTRUCTING (basetype); |
| 1509 |
TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t) |
| 1510 |
|= TYPE_HAS_NONTRIVIAL_DESTRUCTOR (basetype); |
| 1511 |
TYPE_HAS_COMPLEX_COPY_ASSIGN (t) |
| 1512 |
|= (TYPE_HAS_COMPLEX_COPY_ASSIGN (basetype) |
| 1513 |
|| !TYPE_HAS_COPY_ASSIGN (basetype)); |
| 1514 |
TYPE_HAS_COMPLEX_COPY_CTOR (t) |= (TYPE_HAS_COMPLEX_COPY_CTOR (basetype) |
| 1515 |
|| !TYPE_HAS_COPY_CTOR (basetype)); |
| 1516 |
TYPE_HAS_COMPLEX_MOVE_ASSIGN (t) |
| 1517 |
|= TYPE_HAS_COMPLEX_MOVE_ASSIGN (basetype); |
| 1518 |
TYPE_HAS_COMPLEX_MOVE_CTOR (t) |= TYPE_HAS_COMPLEX_MOVE_CTOR (basetype); |
| 1519 |
TYPE_POLYMORPHIC_P (t) |= TYPE_POLYMORPHIC_P (basetype); |
| 1520 |
CLASSTYPE_CONTAINS_EMPTY_CLASS_P (t) |
| 1521 |
|= CLASSTYPE_CONTAINS_EMPTY_CLASS_P (basetype); |
| 1522 |
TYPE_HAS_COMPLEX_DFLT (t) |= (!TYPE_HAS_DEFAULT_CONSTRUCTOR (basetype) |
| 1523 |
|| TYPE_HAS_COMPLEX_DFLT (basetype)); |
| 1524 |
SET_CLASSTYPE_READONLY_FIELDS_NEED_INIT |
| 1525 |
(t, CLASSTYPE_READONLY_FIELDS_NEED_INIT (t) |
| 1526 |
| CLASSTYPE_READONLY_FIELDS_NEED_INIT (basetype)); |
| 1527 |
SET_CLASSTYPE_REF_FIELDS_NEED_INIT |
| 1528 |
(t, CLASSTYPE_REF_FIELDS_NEED_INIT (t) |
| 1529 |
| CLASSTYPE_REF_FIELDS_NEED_INIT (basetype)); |
| 1530 |
|
| 1531 |
/* A standard-layout class is a class that: |
| 1532 |
... |
| 1533 |
* has no non-standard-layout base classes, */ |
| 1534 |
CLASSTYPE_NON_STD_LAYOUT (t) |= CLASSTYPE_NON_STD_LAYOUT (basetype); |
| 1535 |
if (!CLASSTYPE_NON_STD_LAYOUT (t)) |
| 1536 |
{ |
| 1537 |
tree basefield; |
| 1538 |
/* ...has no base classes of the same type as the first non-static |
| 1539 |
data member... */ |
| 1540 |
if (field && DECL_CONTEXT (field) == t |
| 1541 |
&& (same_type_ignoring_top_level_qualifiers_p |
| 1542 |
(TREE_TYPE (field), basetype))) |
| 1543 |
CLASSTYPE_NON_STD_LAYOUT (t) = 1; |
| 1544 |
else |
| 1545 |
/* ...either has no non-static data members in the most-derived |
| 1546 |
class and at most one base class with non-static data |
| 1547 |
members, or has no base classes with non-static data |
| 1548 |
members */ |
| 1549 |
for (basefield = TYPE_FIELDS (basetype); basefield; |
| 1550 |
basefield = DECL_CHAIN (basefield)) |
| 1551 |
if (TREE_CODE (basefield) == FIELD_DECL) |
| 1552 |
{ |
| 1553 |
if (field) |
| 1554 |
CLASSTYPE_NON_STD_LAYOUT (t) = 1; |
| 1555 |
else |
| 1556 |
field = basefield; |
| 1557 |
break; |
| 1558 |
} |
| 1559 |
} |
| 1560 |
|
| 1561 |
/* Don't bother collecting tm attributes if transactional memory |
| 1562 |
support is not enabled. */ |
| 1563 |
if (flag_tm) |
| 1564 |
{ |
| 1565 |
tree tm_attr = find_tm_attribute (TYPE_ATTRIBUTES (basetype)); |
| 1566 |
if (tm_attr) |
| 1567 |
seen_tm_mask |= tm_attr_to_mask (tm_attr); |
| 1568 |
} |
| 1569 |
|
| 1570 |
check_abi_tags (t, basetype); |
| 1571 |
} |
| 1572 |
|
| 1573 |
/* If one of the base classes had TM attributes, and the current class |
| 1574 |
doesn't define its own, then the current class inherits one. */ |
| 1575 |
if (seen_tm_mask && !find_tm_attribute (TYPE_ATTRIBUTES (t))) |
| 1576 |
{ |
| 1577 |
tree tm_attr = tm_mask_to_attr (seen_tm_mask & -seen_tm_mask); |
| 1578 |
TYPE_ATTRIBUTES (t) = tree_cons (tm_attr, NULL, TYPE_ATTRIBUTES (t)); |
| 1579 |
} |
| 1580 |
} |
| 1581 |
|
| 1582 |
/* Determine all the primary bases within T. Sets BINFO_PRIMARY_BASE_P for |
| 1583 |
those that are primaries. Sets BINFO_LOST_PRIMARY_P for those |
| 1584 |
that have had a nearly-empty virtual primary base stolen by some |
| 1585 |
other base in the hierarchy. Determines CLASSTYPE_PRIMARY_BASE for |
| 1586 |
T. */ |
| 1587 |
|
| 1588 |
static void |
| 1589 |
determine_primary_bases (tree t) |
| 1590 |
{ |
| 1591 |
unsigned i; |
| 1592 |
tree primary = NULL_TREE; |
| 1593 |
tree type_binfo = TYPE_BINFO (t); |
| 1594 |
tree base_binfo; |
| 1595 |
|
| 1596 |
/* Determine the primary bases of our bases. */ |
| 1597 |
for (base_binfo = TREE_CHAIN (type_binfo); base_binfo; |
| 1598 |
base_binfo = TREE_CHAIN (base_binfo)) |
| 1599 |
{ |
| 1600 |
tree primary = CLASSTYPE_PRIMARY_BINFO (BINFO_TYPE (base_binfo)); |
| 1601 |
|
| 1602 |
/* See if we're the non-virtual primary of our inheritance |
| 1603 |
chain. */ |
| 1604 |
if (!BINFO_VIRTUAL_P (base_binfo)) |
| 1605 |
{ |
| 1606 |
tree parent = BINFO_INHERITANCE_CHAIN (base_binfo); |
| 1607 |
tree parent_primary = CLASSTYPE_PRIMARY_BINFO (BINFO_TYPE (parent)); |
| 1608 |
|
| 1609 |
if (parent_primary |
| 1610 |
&& SAME_BINFO_TYPE_P (BINFO_TYPE (base_binfo), |
| 1611 |
BINFO_TYPE (parent_primary))) |
| 1612 |
/* We are the primary binfo. */ |
| 1613 |
BINFO_PRIMARY_P (base_binfo) = 1; |
| 1614 |
} |
| 1615 |
/* Determine if we have a virtual primary base, and mark it so. |
| 1616 |
*/ |
| 1617 |
if (primary && BINFO_VIRTUAL_P (primary)) |
| 1618 |
{ |
| 1619 |
tree this_primary = copied_binfo (primary, base_binfo); |
| 1620 |
|
| 1621 |
if (BINFO_PRIMARY_P (this_primary)) |
| 1622 |
/* Someone already claimed this base. */ |
| 1623 |
BINFO_LOST_PRIMARY_P (base_binfo) = 1; |
| 1624 |
else |
| 1625 |
{ |
| 1626 |
tree delta; |
| 1627 |
|
| 1628 |
BINFO_PRIMARY_P (this_primary) = 1; |
| 1629 |
BINFO_INHERITANCE_CHAIN (this_primary) = base_binfo; |
| 1630 |
|
| 1631 |
/* A virtual binfo might have been copied from within |
| 1632 |
another hierarchy. As we're about to use it as a |
| 1633 |
primary base, make sure the offsets match. */ |
| 1634 |
delta = size_diffop_loc (input_location, |
| 1635 |
convert (ssizetype, |
| 1636 |
BINFO_OFFSET (base_binfo)), |
| 1637 |
convert (ssizetype, |
| 1638 |
BINFO_OFFSET (this_primary))); |
| 1639 |
|
| 1640 |
propagate_binfo_offsets (this_primary, delta); |
| 1641 |
} |
| 1642 |
} |
| 1643 |
} |
| 1644 |
|
| 1645 |
/* First look for a dynamic direct non-virtual base. */ |
| 1646 |
for (i = 0; BINFO_BASE_ITERATE (type_binfo, i, base_binfo); i++) |
| 1647 |
{ |
| 1648 |
tree basetype = BINFO_TYPE (base_binfo); |
| 1649 |
|
| 1650 |
if (TYPE_CONTAINS_VPTR_P (basetype) && !BINFO_VIRTUAL_P (base_binfo)) |
| 1651 |
{ |
| 1652 |
primary = base_binfo; |
| 1653 |
goto found; |
| 1654 |
} |
| 1655 |
} |
| 1656 |
|
| 1657 |
/* A "nearly-empty" virtual base class can be the primary base |
| 1658 |
class, if no non-virtual polymorphic base can be found. Look for |
| 1659 |
a nearly-empty virtual dynamic base that is not already a primary |
| 1660 |
base of something in the hierarchy. If there is no such base, |
| 1661 |
just pick the first nearly-empty virtual base. */ |
| 1662 |
|
| 1663 |
for (base_binfo = TREE_CHAIN (type_binfo); base_binfo; |
| 1664 |
base_binfo = TREE_CHAIN (base_binfo)) |
| 1665 |
if (BINFO_VIRTUAL_P (base_binfo) |
| 1666 |
&& CLASSTYPE_NEARLY_EMPTY_P (BINFO_TYPE (base_binfo))) |
| 1667 |
{ |
| 1668 |
if (!BINFO_PRIMARY_P (base_binfo)) |
| 1669 |
{ |
| 1670 |
/* Found one that is not primary. */ |
| 1671 |
primary = base_binfo; |
| 1672 |
goto found; |
| 1673 |
} |
| 1674 |
else if (!primary) |
| 1675 |
/* Remember the first candidate. */ |
| 1676 |
primary = base_binfo; |
| 1677 |
} |
| 1678 |
|
| 1679 |
found: |
| 1680 |
/* If we've got a primary base, use it. */ |
| 1681 |
if (primary) |
| 1682 |
{ |
| 1683 |
tree basetype = BINFO_TYPE (primary); |
| 1684 |
|
| 1685 |
CLASSTYPE_PRIMARY_BINFO (t) = primary; |
| 1686 |
if (BINFO_PRIMARY_P (primary)) |
| 1687 |
/* We are stealing a primary base. */ |
| 1688 |
BINFO_LOST_PRIMARY_P (BINFO_INHERITANCE_CHAIN (primary)) = 1; |
| 1689 |
BINFO_PRIMARY_P (primary) = 1; |
| 1690 |
if (BINFO_VIRTUAL_P (primary)) |
| 1691 |
{ |
| 1692 |
tree delta; |
| 1693 |
|
| 1694 |
BINFO_INHERITANCE_CHAIN (primary) = type_binfo; |
| 1695 |
/* A virtual binfo might have been copied from within |
| 1696 |
another hierarchy. As we're about to use it as a primary |
| 1697 |
base, make sure the offsets match. */ |
| 1698 |
delta = size_diffop_loc (input_location, ssize_int (0), |
| 1699 |
convert (ssizetype, BINFO_OFFSET (primary))); |
| 1700 |
|
| 1701 |
propagate_binfo_offsets (primary, delta); |
| 1702 |
} |
| 1703 |
|
| 1704 |
primary = TYPE_BINFO (basetype); |
| 1705 |
|
| 1706 |
TYPE_VFIELD (t) = TYPE_VFIELD (basetype); |
| 1707 |
BINFO_VTABLE (type_binfo) = BINFO_VTABLE (primary); |
| 1708 |
BINFO_VIRTUALS (type_binfo) = BINFO_VIRTUALS (primary); |
| 1709 |
} |
| 1710 |
} |
| 1711 |
|
| 1712 |
/* Update the variant types of T. */ |
| 1713 |
|
| 1714 |
void |
| 1715 |
fixup_type_variants (tree t) |
| 1716 |
{ |
| 1717 |
tree variants; |
| 1718 |
|
| 1719 |
if (!t) |
| 1720 |
return; |
| 1721 |
|
| 1722 |
for (variants = TYPE_NEXT_VARIANT (t); |
| 1723 |
variants; |
| 1724 |
variants = TYPE_NEXT_VARIANT (variants)) |
| 1725 |
{ |
| 1726 |
/* These fields are in the _TYPE part of the node, not in |
| 1727 |
the TYPE_LANG_SPECIFIC component, so they are not shared. */ |
| 1728 |
TYPE_HAS_USER_CONSTRUCTOR (variants) = TYPE_HAS_USER_CONSTRUCTOR (t); |
| 1729 |
TYPE_NEEDS_CONSTRUCTING (variants) = TYPE_NEEDS_CONSTRUCTING (t); |
| 1730 |
TYPE_HAS_NONTRIVIAL_DESTRUCTOR (variants) |
| 1731 |
= TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t); |
| 1732 |
|
| 1733 |
TYPE_POLYMORPHIC_P (variants) = TYPE_POLYMORPHIC_P (t); |
| 1734 |
|
| 1735 |
TYPE_BINFO (variants) = TYPE_BINFO (t); |
| 1736 |
|
| 1737 |
/* Copy whatever these are holding today. */ |
| 1738 |
TYPE_VFIELD (variants) = TYPE_VFIELD (t); |
| 1739 |
TYPE_METHODS (variants) = TYPE_METHODS (t); |
| 1740 |
TYPE_FIELDS (variants) = TYPE_FIELDS (t); |
| 1741 |
} |
| 1742 |
} |
| 1743 |
|
| 1744 |
/* Early variant fixups: we apply attributes at the beginning of the class |
| 1745 |
definition, and we need to fix up any variants that have already been |
| 1746 |
made via elaborated-type-specifier so that check_qualified_type works. */ |
| 1747 |
|
| 1748 |
void |
| 1749 |
fixup_attribute_variants (tree t) |
| 1750 |
{ |
| 1751 |
tree variants; |
| 1752 |
|
| 1753 |
if (!t) |
| 1754 |
return; |
| 1755 |
|
| 1756 |
for (variants = TYPE_NEXT_VARIANT (t); |
| 1757 |
variants; |
| 1758 |
variants = TYPE_NEXT_VARIANT (variants)) |
| 1759 |
{ |
| 1760 |
/* These are the two fields that check_qualified_type looks at and |
| 1761 |
are affected by attributes. */ |
| 1762 |
TYPE_ATTRIBUTES (variants) = TYPE_ATTRIBUTES (t); |
| 1763 |
TYPE_ALIGN (variants) = TYPE_ALIGN (t); |
| 1764 |
} |
| 1765 |
} |
| 1766 |
|
| 1767 |
/* Set memoizing fields and bits of T (and its variants) for later |
| 1768 |
use. */ |
| 1769 |
|
| 1770 |
static void |
| 1771 |
finish_struct_bits (tree t) |
| 1772 |
{ |
| 1773 |
/* Fix up variants (if any). */ |
| 1774 |
fixup_type_variants (t); |
| 1775 |
|
| 1776 |
if (BINFO_N_BASE_BINFOS (TYPE_BINFO (t)) && TYPE_POLYMORPHIC_P (t)) |
| 1777 |
/* For a class w/o baseclasses, 'finish_struct' has set |
| 1778 |
CLASSTYPE_PURE_VIRTUALS correctly (by definition). |
| 1779 |
Similarly for a class whose base classes do not have vtables. |
| 1780 |
When neither of these is true, we might have removed abstract |
| 1781 |
virtuals (by providing a definition), added some (by declaring |
| 1782 |
new ones), or redeclared ones from a base class. We need to |
| 1783 |
recalculate what's really an abstract virtual at this point (by |
| 1784 |
looking in the vtables). */ |
| 1785 |
get_pure_virtuals (t); |
| 1786 |
|
| 1787 |
/* If this type has a copy constructor or a destructor, force its |
| 1788 |
mode to be BLKmode, and force its TREE_ADDRESSABLE bit to be |
| 1789 |
nonzero. This will cause it to be passed by invisible reference |
| 1790 |
and prevent it from being returned in a register. */ |
| 1791 |
if (type_has_nontrivial_copy_init (t) |
| 1792 |
|| TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t)) |
| 1793 |
{ |
| 1794 |
tree variants; |
| 1795 |
DECL_MODE (TYPE_MAIN_DECL (t)) = BLKmode; |
| 1796 |
for (variants = t; variants; variants = TYPE_NEXT_VARIANT (variants)) |
| 1797 |
{ |
| 1798 |
SET_TYPE_MODE (variants, BLKmode); |
| 1799 |
TREE_ADDRESSABLE (variants) = 1; |
| 1800 |
} |
| 1801 |
} |
| 1802 |
} |
| 1803 |
|
| 1804 |
/* Issue warnings about T having private constructors, but no friends, |
| 1805 |
and so forth. |
| 1806 |
|
| 1807 |
HAS_NONPRIVATE_METHOD is nonzero if T has any non-private methods or |
| 1808 |
static members. HAS_NONPRIVATE_STATIC_FN is nonzero if T has any |
| 1809 |
non-private static member functions. */ |
| 1810 |
|
| 1811 |
static void |
| 1812 |
maybe_warn_about_overly_private_class (tree t) |
| 1813 |
{ |
| 1814 |
int has_member_fn = 0; |
| 1815 |
int has_nonprivate_method = 0; |
| 1816 |
tree fn; |
| 1817 |
|
| 1818 |
if (!warn_ctor_dtor_privacy |
| 1819 |
/* If the class has friends, those entities might create and |
| 1820 |
access instances, so we should not warn. */ |
| 1821 |
|| (CLASSTYPE_FRIEND_CLASSES (t) |
| 1822 |
|| DECL_FRIENDLIST (TYPE_MAIN_DECL (t))) |
| 1823 |
/* We will have warned when the template was declared; there's |
| 1824 |
no need to warn on every instantiation. */ |
| 1825 |
|| CLASSTYPE_TEMPLATE_INSTANTIATION (t)) |
| 1826 |
/* There's no reason to even consider warning about this |
| 1827 |
class. */ |
| 1828 |
return; |
| 1829 |
|
| 1830 |
/* We only issue one warning, if more than one applies, because |
| 1831 |
otherwise, on code like: |
| 1832 |
|
| 1833 |
class A { |
| 1834 |
// Oops - forgot `public:' |
| 1835 |
A(); |
| 1836 |
A(const A&); |
| 1837 |
~A(); |
| 1838 |
}; |
| 1839 |
|
| 1840 |
we warn several times about essentially the same problem. */ |
| 1841 |
|
| 1842 |
/* Check to see if all (non-constructor, non-destructor) member |
| 1843 |
functions are private. (Since there are no friends or |
| 1844 |
non-private statics, we can't ever call any of the private member |
| 1845 |
functions.) */ |
| 1846 |
for (fn = TYPE_METHODS (t); fn; fn = DECL_CHAIN (fn)) |
| 1847 |
/* We're not interested in compiler-generated methods; they don't |
| 1848 |
provide any way to call private members. */ |
| 1849 |
if (!DECL_ARTIFICIAL (fn)) |
| 1850 |
{ |
| 1851 |
if (!TREE_PRIVATE (fn)) |
| 1852 |
{ |
| 1853 |
if (DECL_STATIC_FUNCTION_P (fn)) |
| 1854 |
/* A non-private static member function is just like a |
| 1855 |
friend; it can create and invoke private member |
| 1856 |
functions, and be accessed without a class |
| 1857 |
instance. */ |
| 1858 |
return; |
| 1859 |
|
| 1860 |
has_nonprivate_method = 1; |
| 1861 |
/* Keep searching for a static member function. */ |
| 1862 |
} |
| 1863 |
else if (!DECL_CONSTRUCTOR_P (fn) && !DECL_DESTRUCTOR_P (fn)) |
| 1864 |
has_member_fn = 1; |
| 1865 |
} |
| 1866 |
|
| 1867 |
if (!has_nonprivate_method && has_member_fn) |
| 1868 |
{ |
| 1869 |
/* There are no non-private methods, and there's at least one |
| 1870 |
private member function that isn't a constructor or |
| 1871 |
destructor. (If all the private members are |
| 1872 |
constructors/destructors we want to use the code below that |
| 1873 |
issues error messages specifically referring to |
| 1874 |
constructors/destructors.) */ |
| 1875 |
unsigned i; |
| 1876 |
tree binfo = TYPE_BINFO (t); |
| 1877 |
|
| 1878 |
for (i = 0; i != BINFO_N_BASE_BINFOS (binfo); i++) |
| 1879 |
if (BINFO_BASE_ACCESS (binfo, i) != access_private_node) |
| 1880 |
{ |
| 1881 |
has_nonprivate_method = 1; |
| 1882 |
break; |
| 1883 |
} |
| 1884 |
if (!has_nonprivate_method) |
| 1885 |
{ |
| 1886 |
warning (OPT_Wctor_dtor_privacy, |
| 1887 |
"all member functions in class %qT are private", t); |
| 1888 |
return; |
| 1889 |
} |
| 1890 |
} |
| 1891 |
|
| 1892 |
/* Even if some of the member functions are non-private, the class |
| 1893 |
won't be useful for much if all the constructors or destructors |
| 1894 |
are private: such an object can never be created or destroyed. */ |
| 1895 |
fn = CLASSTYPE_DESTRUCTORS (t); |
| 1896 |
if (fn && TREE_PRIVATE (fn)) |
| 1897 |
{ |
| 1898 |
warning (OPT_Wctor_dtor_privacy, |
| 1899 |
"%q#T only defines a private destructor and has no friends", |
| 1900 |
t); |
| 1901 |
return; |
| 1902 |
} |
| 1903 |
|
| 1904 |
/* Warn about classes that have private constructors and no friends. */ |
| 1905 |
if (TYPE_HAS_USER_CONSTRUCTOR (t) |
| 1906 |
/* Implicitly generated constructors are always public. */ |
| 1907 |
&& (!CLASSTYPE_LAZY_DEFAULT_CTOR (t) |
| 1908 |
|| !CLASSTYPE_LAZY_COPY_CTOR (t))) |
| 1909 |
{ |
| 1910 |
int nonprivate_ctor = 0; |
| 1911 |
|
| 1912 |
/* If a non-template class does not define a copy |
| 1913 |
constructor, one is defined for it, enabling it to avoid |
| 1914 |
this warning. For a template class, this does not |
| 1915 |
happen, and so we would normally get a warning on: |
| 1916 |
|
| 1917 |
template <class T> class C { private: C(); }; |
| 1918 |
|
| 1919 |
To avoid this asymmetry, we check TYPE_HAS_COPY_CTOR. All |
| 1920 |
complete non-template or fully instantiated classes have this |
| 1921 |
flag set. */ |
| 1922 |
if (!TYPE_HAS_COPY_CTOR (t)) |
| 1923 |
nonprivate_ctor = 1; |
| 1924 |
else |
| 1925 |
for (fn = CLASSTYPE_CONSTRUCTORS (t); fn; fn = OVL_NEXT (fn)) |
| 1926 |
{ |
| 1927 |
tree ctor = OVL_CURRENT (fn); |
| 1928 |
/* Ideally, we wouldn't count copy constructors (or, in |
| 1929 |
fact, any constructor that takes an argument of the |
| 1930 |
class type as a parameter) because such things cannot |
| 1931 |
be used to construct an instance of the class unless |
| 1932 |
you already have one. But, for now at least, we're |
| 1933 |
more generous. */ |
| 1934 |
if (! TREE_PRIVATE (ctor)) |
| 1935 |
{ |
| 1936 |
nonprivate_ctor = 1; |
| 1937 |
break; |
| 1938 |
} |
| 1939 |
} |
| 1940 |
|
| 1941 |
if (nonprivate_ctor == 0) |
| 1942 |
{ |
| 1943 |
warning (OPT_Wctor_dtor_privacy, |
| 1944 |
"%q#T only defines private constructors and has no friends", |
| 1945 |
t); |
| 1946 |
return; |
| 1947 |
} |
| 1948 |
} |
| 1949 |
} |
| 1950 |
|
| 1951 |
static struct { |
| 1952 |
gt_pointer_operator new_value; |
| 1953 |
void *cookie; |
| 1954 |
} resort_data; |
| 1955 |
|
| 1956 |
/* Comparison function to compare two TYPE_METHOD_VEC entries by name. */ |
| 1957 |
|
| 1958 |
static int |
| 1959 |
method_name_cmp (const void* m1_p, const void* m2_p) |
| 1960 |
{ |
| 1961 |
const tree *const m1 = (const tree *) m1_p; |
| 1962 |
const tree *const m2 = (const tree *) m2_p; |
| 1963 |
|
| 1964 |
if (*m1 == NULL_TREE && *m2 == NULL_TREE) |
| 1965 |
return 0; |
| 1966 |
if (*m1 == NULL_TREE) |
| 1967 |
return -1; |
| 1968 |
if (*m2 == NULL_TREE) |
| 1969 |
return 1; |
| 1970 |
if (DECL_NAME (OVL_CURRENT (*m1)) < DECL_NAME (OVL_CURRENT (*m2))) |
| 1971 |
return -1; |
| 1972 |
return 1; |
| 1973 |
} |
| 1974 |
|
| 1975 |
/* This routine compares two fields like method_name_cmp but using the |
| 1976 |
pointer operator in resort_field_decl_data. */ |
| 1977 |
|
| 1978 |
static int |
| 1979 |
resort_method_name_cmp (const void* m1_p, const void* m2_p) |
| 1980 |
{ |
| 1981 |
const tree *const m1 = (const tree *) m1_p; |
| 1982 |
const tree *const m2 = (const tree *) m2_p; |
| 1983 |
if (*m1 == NULL_TREE && *m2 == NULL_TREE) |
| 1984 |
return 0; |
| 1985 |
if (*m1 == NULL_TREE) |
| 1986 |
return -1; |
| 1987 |
if (*m2 == NULL_TREE) |
| 1988 |
return 1; |
| 1989 |
{ |
| 1990 |
tree d1 = DECL_NAME (OVL_CURRENT (*m1)); |
| 1991 |
tree d2 = DECL_NAME (OVL_CURRENT (*m2)); |
| 1992 |
resort_data.new_value (&d1, resort_data.cookie); |
| 1993 |
resort_data.new_value (&d2, resort_data.cookie); |
| 1994 |
if (d1 < d2) |
| 1995 |
return -1; |
| 1996 |
} |
| 1997 |
return 1; |
| 1998 |
} |
| 1999 |
|
| 2000 |
/* Resort TYPE_METHOD_VEC because pointers have been reordered. */ |
| 2001 |
|
| 2002 |
void |
| 2003 |
resort_type_method_vec (void* obj, |
| 2004 |
void* /*orig_obj*/, |
| 2005 |
gt_pointer_operator new_value, |
| 2006 |
void* cookie) |
| 2007 |
{ |
| 2008 |
vec<tree, va_gc> *method_vec = (vec<tree, va_gc> *) obj; |
| 2009 |
int len = vec_safe_length (method_vec); |
| 2010 |
size_t slot; |
| 2011 |
tree fn; |
| 2012 |
|
| 2013 |
/* The type conversion ops have to live at the front of the vec, so we |
| 2014 |
can't sort them. */ |
| 2015 |
for (slot = CLASSTYPE_FIRST_CONVERSION_SLOT; |
| 2016 |
vec_safe_iterate (method_vec, slot, &fn); |
| 2017 |
++slot) |
| 2018 |
if (!DECL_CONV_FN_P (OVL_CURRENT (fn))) |
| 2019 |
break; |
| 2020 |
|
| 2021 |
if (len - slot > 1) |
| 2022 |
{ |
| 2023 |
resort_data.new_value = new_value; |
| 2024 |
resort_data.cookie = cookie; |
| 2025 |
qsort (method_vec->address () + slot, len - slot, sizeof (tree), |
| 2026 |
resort_method_name_cmp); |
| 2027 |
} |
| 2028 |
} |
| 2029 |
|
| 2030 |
/* Warn about duplicate methods in fn_fields. |
| 2031 |
|
| 2032 |
Sort methods that are not special (i.e., constructors, destructors, |
| 2033 |
and type conversion operators) so that we can find them faster in |
| 2034 |
search. */ |
| 2035 |
|
| 2036 |
static void |
| 2037 |
finish_struct_methods (tree t) |
| 2038 |
{ |
| 2039 |
tree fn_fields; |
| 2040 |
vec<tree, va_gc> *method_vec; |
| 2041 |
int slot, len; |
| 2042 |
|
| 2043 |
method_vec = CLASSTYPE_METHOD_VEC (t); |
| 2044 |
if (!method_vec) |
| 2045 |
return; |
| 2046 |
|
| 2047 |
len = method_vec->length (); |
| 2048 |
|
| 2049 |
/* Clear DECL_IN_AGGR_P for all functions. */ |
| 2050 |
for (fn_fields = TYPE_METHODS (t); fn_fields; |
| 2051 |
fn_fields = DECL_CHAIN (fn_fields)) |
| 2052 |
DECL_IN_AGGR_P (fn_fields) = 0; |
| 2053 |
|
| 2054 |
/* Issue warnings about private constructors and such. If there are |
| 2055 |
no methods, then some public defaults are generated. */ |
| 2056 |
maybe_warn_about_overly_private_class (t); |
| 2057 |
|
| 2058 |
/* The type conversion ops have to live at the front of the vec, so we |
| 2059 |
can't sort them. */ |
| 2060 |
for (slot = CLASSTYPE_FIRST_CONVERSION_SLOT; |
| 2061 |
method_vec->iterate (slot, &fn_fields); |
| 2062 |
++slot) |
| 2063 |
if (!DECL_CONV_FN_P (OVL_CURRENT (fn_fields))) |
| 2064 |
break; |
| 2065 |
if (len - slot > 1) |
| 2066 |
qsort (method_vec->address () + slot, |
| 2067 |
len-slot, sizeof (tree), method_name_cmp); |
| 2068 |
} |
| 2069 |
|
| 2070 |
/* Make BINFO's vtable have N entries, including RTTI entries, |
| 2071 |
vbase and vcall offsets, etc. Set its type and call the back end |
| 2072 |
to lay it out. */ |
| 2073 |
|
| 2074 |
static void |
| 2075 |
layout_vtable_decl (tree binfo, int n) |
| 2076 |
{ |
| 2077 |
tree atype; |
| 2078 |
tree vtable; |
| 2079 |
|
| 2080 |
atype = build_array_of_n_type (vtable_entry_type, n); |
| 2081 |
layout_type (atype); |
| 2082 |
|
| 2083 |
/* We may have to grow the vtable. */ |
| 2084 |
vtable = get_vtbl_decl_for_binfo (binfo); |
| 2085 |
if (!same_type_p (TREE_TYPE (vtable), atype)) |
| 2086 |
{ |
| 2087 |
TREE_TYPE (vtable) = atype; |
| 2088 |
DECL_SIZE (vtable) = DECL_SIZE_UNIT (vtable) = NULL_TREE; |
| 2089 |
layout_decl (vtable, 0); |
| 2090 |
} |
| 2091 |
} |
| 2092 |
|
| 2093 |
/* True iff FNDECL and BASE_FNDECL (both non-static member functions) |
| 2094 |
have the same signature. */ |
| 2095 |
|
| 2096 |
int |
| 2097 |
same_signature_p (const_tree fndecl, const_tree base_fndecl) |
| 2098 |
{ |
| 2099 |
/* One destructor overrides another if they are the same kind of |
| 2100 |
destructor. */ |
| 2101 |
if (DECL_DESTRUCTOR_P (base_fndecl) && DECL_DESTRUCTOR_P (fndecl) |
| 2102 |
&& special_function_p (base_fndecl) == special_function_p (fndecl)) |
| 2103 |
return 1; |
| 2104 |
/* But a non-destructor never overrides a destructor, nor vice |
| 2105 |
versa, nor do different kinds of destructors override |
| 2106 |
one-another. For example, a complete object destructor does not |
| 2107 |
override a deleting destructor. */ |
| 2108 |
if (DECL_DESTRUCTOR_P (base_fndecl) || DECL_DESTRUCTOR_P (fndecl)) |
| 2109 |
return 0; |
| 2110 |
|
| 2111 |
if (DECL_NAME (fndecl) == DECL_NAME (base_fndecl) |
| 2112 |
|| (DECL_CONV_FN_P (fndecl) |
| 2113 |
&& DECL_CONV_FN_P (base_fndecl) |
| 2114 |
&& same_type_p (DECL_CONV_FN_TYPE (fndecl), |
| 2115 |
DECL_CONV_FN_TYPE (base_fndecl)))) |
| 2116 |
{ |
| 2117 |
tree fntype = TREE_TYPE (fndecl); |
| 2118 |
tree base_fntype = TREE_TYPE (base_fndecl); |
| 2119 |
if (type_memfn_quals (fntype) == type_memfn_quals (base_fntype) |
| 2120 |
&& type_memfn_rqual (fntype) == type_memfn_rqual (base_fntype) |
| 2121 |
&& compparms (FUNCTION_FIRST_USER_PARMTYPE (fndecl), |
| 2122 |
FUNCTION_FIRST_USER_PARMTYPE (base_fndecl))) |
| 2123 |
return 1; |
| 2124 |
} |
| 2125 |
return 0; |
| 2126 |
} |
| 2127 |
|
| 2128 |
/* Returns TRUE if DERIVED is a binfo containing the binfo BASE as a |
| 2129 |
subobject. */ |
| 2130 |
|
| 2131 |
static bool |
| 2132 |
base_derived_from (tree derived, tree base) |
| 2133 |
{ |
| 2134 |
tree probe; |
| 2135 |
|
| 2136 |
for (probe = base; probe; probe = BINFO_INHERITANCE_CHAIN (probe)) |
| 2137 |
{ |
| 2138 |
if (probe == derived) |
| 2139 |
return true; |
| 2140 |
else if (BINFO_VIRTUAL_P (probe)) |
| 2141 |
/* If we meet a virtual base, we can't follow the inheritance |
| 2142 |
any more. See if the complete type of DERIVED contains |
| 2143 |
such a virtual base. */ |
| 2144 |
return (binfo_for_vbase (BINFO_TYPE (probe), BINFO_TYPE (derived)) |
| 2145 |
!= NULL_TREE); |
| 2146 |
} |
| 2147 |
return false; |
| 2148 |
} |
| 2149 |
|
| 2150 |
typedef struct find_final_overrider_data_s { |
| 2151 |
/* The function for which we are trying to find a final overrider. */ |
| 2152 |
tree fn; |
| 2153 |
/* The base class in which the function was declared. */ |
| 2154 |
tree declaring_base; |
| 2155 |
/* The candidate overriders. */ |
| 2156 |
tree candidates; |
| 2157 |
/* Path to most derived. */ |
| 2158 |
vec<tree> path; |
| 2159 |
} find_final_overrider_data; |
| 2160 |
|
| 2161 |
/* Add the overrider along the current path to FFOD->CANDIDATES. |
| 2162 |
Returns true if an overrider was found; false otherwise. */ |
| 2163 |
|
| 2164 |
static bool |
| 2165 |
dfs_find_final_overrider_1 (tree binfo, |
| 2166 |
find_final_overrider_data *ffod, |
| 2167 |
unsigned depth) |
| 2168 |
{ |
| 2169 |
tree method; |
| 2170 |
|
| 2171 |
/* If BINFO is not the most derived type, try a more derived class. |
| 2172 |
A definition there will overrider a definition here. */ |
| 2173 |
if (depth) |
| 2174 |
{ |
| 2175 |
depth--; |
| 2176 |
if (dfs_find_final_overrider_1 |
| 2177 |
(ffod->path[depth], ffod, depth)) |
| 2178 |
return true; |
| 2179 |
} |
| 2180 |
|
| 2181 |
method = look_for_overrides_here (BINFO_TYPE (binfo), ffod->fn); |
| 2182 |
if (method) |
| 2183 |
{ |
| 2184 |
tree *candidate = &ffod->candidates; |
| 2185 |
|
| 2186 |
/* Remove any candidates overridden by this new function. */ |
| 2187 |
while (*candidate) |
| 2188 |
{ |
| 2189 |
/* If *CANDIDATE overrides METHOD, then METHOD |
| 2190 |
cannot override anything else on the list. */ |
| 2191 |
if (base_derived_from (TREE_VALUE (*candidate), binfo)) |
| 2192 |
return true; |
| 2193 |
/* If METHOD overrides *CANDIDATE, remove *CANDIDATE. */ |
| 2194 |
if (base_derived_from (binfo, TREE_VALUE (*candidate))) |
| 2195 |
*candidate = TREE_CHAIN (*candidate); |
| 2196 |
else |
| 2197 |
candidate = &TREE_CHAIN (*candidate); |
| 2198 |
} |
| 2199 |
|
| 2200 |
/* Add the new function. */ |
| 2201 |
ffod->candidates = tree_cons (method, binfo, ffod->candidates); |
| 2202 |
return true; |
| 2203 |
} |
| 2204 |
|
| 2205 |
return false; |
| 2206 |
} |
| 2207 |
|
| 2208 |
/* Called from find_final_overrider via dfs_walk. */ |
| 2209 |
|
| 2210 |
static tree |
| 2211 |
dfs_find_final_overrider_pre (tree binfo, void *data) |
| 2212 |
{ |
| 2213 |
find_final_overrider_data *ffod = (find_final_overrider_data *) data; |
| 2214 |
|
| 2215 |
if (binfo == ffod->declaring_base) |
| 2216 |
dfs_find_final_overrider_1 (binfo, ffod, ffod->path.length ()); |
| 2217 |
ffod->path.safe_push (binfo); |
| 2218 |
|
| 2219 |
return NULL_TREE; |
| 2220 |
} |
| 2221 |
|
| 2222 |
static tree |
| 2223 |
dfs_find_final_overrider_post (tree /*binfo*/, void *data) |
| 2224 |
{ |
| 2225 |
find_final_overrider_data *ffod = (find_final_overrider_data *) data; |
| 2226 |
ffod->path.pop (); |
| 2227 |
|
| 2228 |
return NULL_TREE; |
| 2229 |
} |
| 2230 |
|
| 2231 |
/* Returns a TREE_LIST whose TREE_PURPOSE is the final overrider for |
| 2232 |
FN and whose TREE_VALUE is the binfo for the base where the |
| 2233 |
overriding occurs. BINFO (in the hierarchy dominated by the binfo |
| 2234 |
DERIVED) is the base object in which FN is declared. */ |
| 2235 |
|
| 2236 |
static tree |
| 2237 |
find_final_overrider (tree derived, tree binfo, tree fn) |
| 2238 |
{ |
| 2239 |
find_final_overrider_data ffod; |
| 2240 |
|
| 2241 |
/* Getting this right is a little tricky. This is valid: |
| 2242 |
|
| 2243 |
struct S { virtual void f (); }; |
| 2244 |
struct T { virtual void f (); }; |
| 2245 |
struct U : public S, public T { }; |
| 2246 |
|
| 2247 |
even though calling `f' in `U' is ambiguous. But, |
| 2248 |
|
| 2249 |
struct R { virtual void f(); }; |
| 2250 |
struct S : virtual public R { virtual void f (); }; |
| 2251 |
struct T : virtual public R { virtual void f (); }; |
| 2252 |
struct U : public S, public T { }; |
| 2253 |
|
| 2254 |
is not -- there's no way to decide whether to put `S::f' or |
| 2255 |
`T::f' in the vtable for `R'. |
| 2256 |
|
| 2257 |
The solution is to look at all paths to BINFO. If we find |
| 2258 |
different overriders along any two, then there is a problem. */ |
| 2259 |
if (DECL_THUNK_P (fn)) |
| 2260 |
fn = THUNK_TARGET (fn); |
| 2261 |
|
| 2262 |
/* Determine the depth of the hierarchy. */ |
| 2263 |
ffod.fn = fn; |
| 2264 |
ffod.declaring_base = binfo; |
| 2265 |
ffod.candidates = NULL_TREE; |
| 2266 |
ffod.path.create (30); |
| 2267 |
|
| 2268 |
dfs_walk_all (derived, dfs_find_final_overrider_pre, |
| 2269 |
dfs_find_final_overrider_post, &ffod); |
| 2270 |
|
| 2271 |
ffod.path.release (); |
| 2272 |
|
| 2273 |
/* If there was no winner, issue an error message. */ |
| 2274 |
if (!ffod.candidates || TREE_CHAIN (ffod.candidates)) |
| 2275 |
return error_mark_node; |
| 2276 |
|
| 2277 |
return ffod.candidates; |
| 2278 |
} |
| 2279 |
|
| 2280 |
/* Return the index of the vcall offset for FN when TYPE is used as a |
| 2281 |
virtual base. */ |
| 2282 |
|
| 2283 |
static tree |
| 2284 |
get_vcall_index (tree fn, tree type) |
| 2285 |
{ |
| 2286 |
vec<tree_pair_s, va_gc> *indices = CLASSTYPE_VCALL_INDICES (type); |
| 2287 |
tree_pair_p p; |
| 2288 |
unsigned ix; |
| 2289 |
|
| 2290 |
FOR_EACH_VEC_SAFE_ELT (indices, ix, p) |
| 2291 |
if ((DECL_DESTRUCTOR_P (fn) && DECL_DESTRUCTOR_P (p->purpose)) |
| 2292 |
|| same_signature_p (fn, p->purpose)) |
| 2293 |
return p->value; |
| 2294 |
|
| 2295 |
/* There should always be an appropriate index. */ |
| 2296 |
gcc_unreachable (); |
| 2297 |
} |
| 2298 |
|
| 2299 |
/* Update an entry in the vtable for BINFO, which is in the hierarchy |
| 2300 |
dominated by T. FN is the old function; VIRTUALS points to the |
| 2301 |
corresponding position in the new BINFO_VIRTUALS list. IX is the index |
| 2302 |
of that entry in the list. */ |
| 2303 |
|
| 2304 |
static void |
| 2305 |
update_vtable_entry_for_fn (tree t, tree binfo, tree fn, tree* virtuals, |
| 2306 |
unsigned ix) |
| 2307 |
{ |
| 2308 |
tree b; |
| 2309 |
tree overrider; |
| 2310 |
tree delta; |
| 2311 |
tree virtual_base; |
| 2312 |
tree first_defn; |
| 2313 |
tree overrider_fn, overrider_target; |
| 2314 |
tree target_fn = DECL_THUNK_P (fn) ? THUNK_TARGET (fn) : fn; |
| 2315 |
tree over_return, base_return; |
| 2316 |
bool lost = false; |
| 2317 |
|
| 2318 |
/* Find the nearest primary base (possibly binfo itself) which defines |
| 2319 |
this function; this is the class the caller will convert to when |
| 2320 |
calling FN through BINFO. */ |
| 2321 |
for (b = binfo; ; b = get_primary_binfo (b)) |
| 2322 |
{ |
| 2323 |
gcc_assert (b); |
| 2324 |
if (look_for_overrides_here (BINFO_TYPE (b), target_fn)) |
| 2325 |
break; |
| 2326 |
|
| 2327 |
/* The nearest definition is from a lost primary. */ |
| 2328 |
if (BINFO_LOST_PRIMARY_P (b)) |
| 2329 |
lost = true; |
| 2330 |
} |
| 2331 |
first_defn = b; |
| 2332 |
|
| 2333 |
/* Find the final overrider. */ |
| 2334 |
overrider = find_final_overrider (TYPE_BINFO (t), b, target_fn); |
| 2335 |
if (overrider == error_mark_node) |
| 2336 |
{ |
| 2337 |
error ("no unique final overrider for %qD in %qT", target_fn, t); |
| 2338 |
return; |
| 2339 |
} |
| 2340 |
overrider_target = overrider_fn = TREE_PURPOSE (overrider); |
| 2341 |
|
| 2342 |
/* Check for adjusting covariant return types. */ |
| 2343 |
over_return = TREE_TYPE (TREE_TYPE (overrider_target)); |
| 2344 |
base_return = TREE_TYPE (TREE_TYPE (target_fn)); |
| 2345 |
|
| 2346 |
if (POINTER_TYPE_P (over_return) |
| 2347 |
&& TREE_CODE (over_return) == TREE_CODE (base_return) |
| 2348 |
&& CLASS_TYPE_P (TREE_TYPE (over_return)) |
| 2349 |
&& CLASS_TYPE_P (TREE_TYPE (base_return)) |
| 2350 |
/* If the overrider is invalid, don't even try. */ |
| 2351 |
&& !DECL_INVALID_OVERRIDER_P (overrider_target)) |
| 2352 |
{ |
| 2353 |
/* If FN is a covariant thunk, we must figure out the adjustment |
| 2354 |
to the final base FN was converting to. As OVERRIDER_TARGET might |
| 2355 |
also be converting to the return type of FN, we have to |
| 2356 |
combine the two conversions here. */ |
| 2357 |
tree fixed_offset, virtual_offset; |
| 2358 |
|
| 2359 |
over_return = TREE_TYPE (over_return); |
| 2360 |
base_return = TREE_TYPE (base_return); |
| 2361 |
|
| 2362 |
if (DECL_THUNK_P (fn)) |
| 2363 |
{ |
| 2364 |
gcc_assert (DECL_RESULT_THUNK_P (fn)); |
| 2365 |
fixed_offset = ssize_int (THUNK_FIXED_OFFSET (fn)); |
| 2366 |
virtual_offset = THUNK_VIRTUAL_OFFSET (fn); |
| 2367 |
} |
| 2368 |
else |
| 2369 |
fixed_offset = virtual_offset = NULL_TREE; |
| 2370 |
|
| 2371 |
if (virtual_offset) |
| 2372 |
/* Find the equivalent binfo within the return type of the |
| 2373 |
overriding function. We will want the vbase offset from |
| 2374 |
there. */ |
| 2375 |
virtual_offset = binfo_for_vbase (BINFO_TYPE (virtual_offset), |
| 2376 |
over_return); |
| 2377 |
else if (!same_type_ignoring_top_level_qualifiers_p |
| 2378 |
(over_return, base_return)) |
| 2379 |
{ |
| 2380 |
/* There was no existing virtual thunk (which takes |
| 2381 |
precedence). So find the binfo of the base function's |
| 2382 |
return type within the overriding function's return type. |
| 2383 |
We cannot call lookup base here, because we're inside a |
| 2384 |
dfs_walk, and will therefore clobber the BINFO_MARKED |
| 2385 |
flags. Fortunately we know the covariancy is valid (it |
| 2386 |
has already been checked), so we can just iterate along |
| 2387 |
the binfos, which have been chained in inheritance graph |
| 2388 |
order. Of course it is lame that we have to repeat the |
| 2389 |
search here anyway -- we should really be caching pieces |
| 2390 |
of the vtable and avoiding this repeated work. */ |
| 2391 |
tree thunk_binfo, base_binfo; |
| 2392 |
|
| 2393 |
/* Find the base binfo within the overriding function's |
| 2394 |
return type. We will always find a thunk_binfo, except |
| 2395 |
when the covariancy is invalid (which we will have |
| 2396 |
already diagnosed). */ |
| 2397 |
for (base_binfo = TYPE_BINFO (base_return), |
| 2398 |
thunk_binfo = TYPE_BINFO (over_return); |
| 2399 |
thunk_binfo; |
| 2400 |
thunk_binfo = TREE_CHAIN (thunk_binfo)) |
| 2401 |
if (SAME_BINFO_TYPE_P (BINFO_TYPE (thunk_binfo), |
| 2402 |
BINFO_TYPE (base_binfo))) |
| 2403 |
break; |
| 2404 |
|
| 2405 |
/* See if virtual inheritance is involved. */ |
| 2406 |
for (virtual_offset = thunk_binfo; |
| 2407 |
virtual_offset; |
| 2408 |
virtual_offset = BINFO_INHERITANCE_CHAIN (virtual_offset)) |
| 2409 |
if (BINFO_VIRTUAL_P (virtual_offset)) |
| 2410 |
break; |
| 2411 |
|
| 2412 |
if (virtual_offset |
| 2413 |
|| (thunk_binfo && !BINFO_OFFSET_ZEROP (thunk_binfo))) |
| 2414 |
{ |
| 2415 |
tree offset = convert (ssizetype, BINFO_OFFSET (thunk_binfo)); |
| 2416 |
|
| 2417 |
if (virtual_offset) |
| 2418 |
{ |
| 2419 |
/* We convert via virtual base. Adjust the fixed |
| 2420 |
offset to be from there. */ |
| 2421 |
offset = |
| 2422 |
size_diffop (offset, |
| 2423 |
convert (ssizetype, |
| 2424 |
BINFO_OFFSET (virtual_offset))); |
| 2425 |
} |
| 2426 |
if (fixed_offset) |
| 2427 |
/* There was an existing fixed offset, this must be |
| 2428 |
from the base just converted to, and the base the |
| 2429 |
FN was thunking to. */ |
| 2430 |
fixed_offset = size_binop (PLUS_EXPR, fixed_offset, offset); |
| 2431 |
else |
| 2432 |
fixed_offset = offset; |
| 2433 |
} |
| 2434 |
} |
| 2435 |
|
| 2436 |
if (fixed_offset || virtual_offset) |
| 2437 |
/* Replace the overriding function with a covariant thunk. We |
| 2438 |
will emit the overriding function in its own slot as |
| 2439 |
well. */ |
| 2440 |
overrider_fn = make_thunk (overrider_target, /*this_adjusting=*/0, |
| 2441 |
fixed_offset, virtual_offset); |
| 2442 |
} |
| 2443 |
else |
| 2444 |
gcc_assert (DECL_INVALID_OVERRIDER_P (overrider_target) || |
| 2445 |
!DECL_THUNK_P (fn)); |
| 2446 |
|
| 2447 |
/* If we need a covariant thunk, then we may need to adjust first_defn. |
| 2448 |
The ABI specifies that the thunks emitted with a function are |
| 2449 |
determined by which bases the function overrides, so we need to be |
| 2450 |
sure that we're using a thunk for some overridden base; even if we |
| 2451 |
know that the necessary this adjustment is zero, there may not be an |
| 2452 |
appropriate zero-this-adjusment thunk for us to use since thunks for |
| 2453 |
overriding virtual bases always use the vcall offset. |
| 2454 |
|
| 2455 |
Furthermore, just choosing any base that overrides this function isn't |
| 2456 |
quite right, as this slot won't be used for calls through a type that |
| 2457 |
puts a covariant thunk here. Calling the function through such a type |
| 2458 |
will use a different slot, and that slot is the one that determines |
| 2459 |
the thunk emitted for that base. |
| 2460 |
|
| 2461 |
So, keep looking until we find the base that we're really overriding |
| 2462 |
in this slot: the nearest primary base that doesn't use a covariant |
| 2463 |
thunk in this slot. */ |
| 2464 |
if (overrider_target != overrider_fn) |
| 2465 |
{ |
| 2466 |
if (BINFO_TYPE (b) == DECL_CONTEXT (overrider_target)) |
| 2467 |
/* We already know that the overrider needs a covariant thunk. */ |
| 2468 |
b = get_primary_binfo (b); |
| 2469 |
for (; ; b = get_primary_binfo (b)) |
| 2470 |
{ |
| 2471 |
tree main_binfo = TYPE_BINFO (BINFO_TYPE (b)); |
| 2472 |
tree bv = chain_index (ix, BINFO_VIRTUALS (main_binfo)); |
| 2473 |
if (!DECL_THUNK_P (TREE_VALUE (bv))) |
| 2474 |
break; |
| 2475 |
if (BINFO_LOST_PRIMARY_P (b)) |
| 2476 |
lost = true; |
| 2477 |
} |
| 2478 |
first_defn = b; |
| 2479 |
} |
| 2480 |
|
| 2481 |
/* Assume that we will produce a thunk that convert all the way to |
| 2482 |
the final overrider, and not to an intermediate virtual base. */ |
| 2483 |
virtual_base = NULL_TREE; |
| 2484 |
|
| 2485 |
/* See if we can convert to an intermediate virtual base first, and then |
| 2486 |
use the vcall offset located there to finish the conversion. */ |
| 2487 |
for (; b; b = BINFO_INHERITANCE_CHAIN (b)) |
| 2488 |
{ |
| 2489 |
/* If we find the final overrider, then we can stop |
| 2490 |
walking. */ |
| 2491 |
if (SAME_BINFO_TYPE_P (BINFO_TYPE (b), |
| 2492 |
BINFO_TYPE (TREE_VALUE (overrider)))) |
| 2493 |
break; |
| 2494 |
|
| 2495 |
/* If we find a virtual base, and we haven't yet found the |
| 2496 |
overrider, then there is a virtual base between the |
| 2497 |
declaring base (first_defn) and the final overrider. */ |
| 2498 |
if (BINFO_VIRTUAL_P (b)) |
| 2499 |
{ |
| 2500 |
virtual_base = b; |
| 2501 |
break; |
| 2502 |
} |
| 2503 |
} |
| 2504 |
|
| 2505 |
/* Compute the constant adjustment to the `this' pointer. The |
| 2506 |
`this' pointer, when this function is called, will point at BINFO |
| 2507 |
(or one of its primary bases, which are at the same offset). */ |
| 2508 |
if (virtual_base) |
| 2509 |
/* The `this' pointer needs to be adjusted from the declaration to |
| 2510 |
the nearest virtual base. */ |
| 2511 |
delta = size_diffop_loc (input_location, |
| 2512 |
convert (ssizetype, BINFO_OFFSET (virtual_base)), |
| 2513 |
convert (ssizetype, BINFO_OFFSET (first_defn))); |
| 2514 |
else if (lost) |
| 2515 |
/* If the nearest definition is in a lost primary, we don't need an |
| 2516 |
entry in our vtable. Except possibly in a constructor vtable, |
| 2517 |
if we happen to get our primary back. In that case, the offset |
| 2518 |
will be zero, as it will be a primary base. */ |
| 2519 |
delta = size_zero_node; |
| 2520 |
else |
| 2521 |
/* The `this' pointer needs to be adjusted from pointing to |
| 2522 |
BINFO to pointing at the base where the final overrider |
| 2523 |
appears. */ |
| 2524 |
delta = size_diffop_loc (input_location, |
| 2525 |
convert (ssizetype, |
| 2526 |
BINFO_OFFSET (TREE_VALUE (overrider))), |
| 2527 |
convert (ssizetype, BINFO_OFFSET (binfo))); |
| 2528 |
|
| 2529 |
modify_vtable_entry (t, binfo, overrider_fn, delta, virtuals); |
| 2530 |
|
| 2531 |
if (virtual_base) |
| 2532 |
BV_VCALL_INDEX (*virtuals) |
| 2533 |
= get_vcall_index (overrider_target, BINFO_TYPE (virtual_base)); |
| 2534 |
else |
| 2535 |
BV_VCALL_INDEX (*virtuals) = NULL_TREE; |
| 2536 |
|
| 2537 |
BV_LOST_PRIMARY (*virtuals) = lost; |
| 2538 |
} |
| 2539 |
|
| 2540 |
/* Called from modify_all_vtables via dfs_walk. */ |
| 2541 |
|
| 2542 |
static tree |
| 2543 |
dfs_modify_vtables (tree binfo, void* data) |
| 2544 |
{ |
| 2545 |
tree t = (tree) data; |
| 2546 |
tree virtuals; |
| 2547 |
tree old_virtuals; |
| 2548 |
unsigned ix; |
| 2549 |
|
| 2550 |
if (!TYPE_CONTAINS_VPTR_P (BINFO_TYPE (binfo))) |
| 2551 |
/* A base without a vtable needs no modification, and its bases |
| 2552 |
are uninteresting. */ |
| 2553 |
return dfs_skip_bases; |
| 2554 |
|
| 2555 |
if (SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), t) |
| 2556 |
&& !CLASSTYPE_HAS_PRIMARY_BASE_P (t)) |
| 2557 |
/* Don't do the primary vtable, if it's new. */ |
| 2558 |
return NULL_TREE; |
| 2559 |
|
| 2560 |
if (BINFO_PRIMARY_P (binfo) && !BINFO_VIRTUAL_P (binfo)) |
| 2561 |
/* There's no need to modify the vtable for a non-virtual primary |
| 2562 |
base; we're not going to use that vtable anyhow. We do still |
| 2563 |
need to do this for virtual primary bases, as they could become |
| 2564 |
non-primary in a construction vtable. */ |
| 2565 |
return NULL_TREE; |
| 2566 |
|
| 2567 |
make_new_vtable (t, binfo); |
| 2568 |
|
| 2569 |
/* Now, go through each of the virtual functions in the virtual |
| 2570 |
function table for BINFO. Find the final overrider, and update |
| 2571 |
the BINFO_VIRTUALS list appropriately. */ |
| 2572 |
for (ix = 0, virtuals = BINFO_VIRTUALS (binfo), |
| 2573 |
old_virtuals = BINFO_VIRTUALS (TYPE_BINFO (BINFO_TYPE (binfo))); |
| 2574 |
virtuals; |
| 2575 |
ix++, virtuals = TREE_CHAIN (virtuals), |
| 2576 |
old_virtuals = TREE_CHAIN (old_virtuals)) |
| 2577 |
update_vtable_entry_for_fn (t, |
| 2578 |
binfo, |
| 2579 |
BV_FN (old_virtuals), |
| 2580 |
&virtuals, ix); |
| 2581 |
|
| 2582 |
return NULL_TREE; |
| 2583 |
} |
| 2584 |
|
| 2585 |
/* Update all of the primary and secondary vtables for T. Create new |
| 2586 |
vtables as required, and initialize their RTTI information. Each |
| 2587 |
of the functions in VIRTUALS is declared in T and may override a |
| 2588 |
virtual function from a base class; find and modify the appropriate |
| 2589 |
entries to point to the overriding functions. Returns a list, in |
| 2590 |
declaration order, of the virtual functions that are declared in T, |
| 2591 |
but do not appear in the primary base class vtable, and which |
| 2592 |
should therefore be appended to the end of the vtable for T. */ |
| 2593 |
|
| 2594 |
static tree |
| 2595 |
modify_all_vtables (tree t, tree virtuals) |
| 2596 |
{ |
| 2597 |
tree binfo = TYPE_BINFO (t); |
| 2598 |
tree *fnsp; |
| 2599 |
|
| 2600 |
/* Mangle the vtable name before entering dfs_walk (c++/51884). */ |
| 2601 |
if (TYPE_CONTAINS_VPTR_P (t)) |
| 2602 |
get_vtable_decl (t, false); |
| 2603 |
|
| 2604 |
/* Update all of the vtables. */ |
| 2605 |
dfs_walk_once (binfo, dfs_modify_vtables, NULL, t); |
| 2606 |
|
| 2607 |
/* Add virtual functions not already in our primary vtable. These |
| 2608 |
will be both those introduced by this class, and those overridden |
| 2609 |
from secondary bases. It does not include virtuals merely |
| 2610 |
inherited from secondary bases. */ |
| 2611 |
for (fnsp = &virtuals; *fnsp; ) |
| 2612 |
{ |
| 2613 |
tree fn = TREE_VALUE (*fnsp); |
| 2614 |
|
| 2615 |
if (!value_member (fn, BINFO_VIRTUALS (binfo)) |
| 2616 |
|| DECL_VINDEX (fn) == error_mark_node) |
| 2617 |
{ |
| 2618 |
/* We don't need to adjust the `this' pointer when |
| 2619 |
calling this function. */ |
| 2620 |
BV_DELTA (*fnsp) = integer_zero_node; |
| 2621 |
BV_VCALL_INDEX (*fnsp) = NULL_TREE; |
| 2622 |
|
| 2623 |
/* This is a function not already in our vtable. Keep it. */ |
| 2624 |
fnsp = &TREE_CHAIN (*fnsp); |
| 2625 |
} |
| 2626 |
else |
| 2627 |
/* We've already got an entry for this function. Skip it. */ |
| 2628 |
*fnsp = TREE_CHAIN (*fnsp); |
| 2629 |
} |
| 2630 |
|
| 2631 |
return virtuals; |
| 2632 |
} |
| 2633 |
|
| 2634 |
/* Get the base virtual function declarations in T that have the |
| 2635 |
indicated NAME. */ |
| 2636 |
|
| 2637 |
static tree |
| 2638 |
get_basefndecls (tree name, tree t) |
| 2639 |
{ |
| 2640 |
tree methods; |
| 2641 |
tree base_fndecls = NULL_TREE; |
| 2642 |
int n_baseclasses = BINFO_N_BASE_BINFOS (TYPE_BINFO (t)); |
| 2643 |
int i; |
| 2644 |
|
| 2645 |
/* Find virtual functions in T with the indicated NAME. */ |
| 2646 |
i = lookup_fnfields_1 (t, name); |
| 2647 |
if (i != -1) |
| 2648 |
for (methods = (*CLASSTYPE_METHOD_VEC (t))[i]; |
| 2649 |
methods; |
| 2650 |
methods = OVL_NEXT (methods)) |
| 2651 |
{ |
| 2652 |
tree method = OVL_CURRENT (methods); |
| 2653 |
|
| 2654 |
if (TREE_CODE (method) == FUNCTION_DECL |
| 2655 |
&& DECL_VINDEX (method)) |
| 2656 |
base_fndecls = tree_cons (NULL_TREE, method, base_fndecls); |
| 2657 |
} |
| 2658 |
|
| 2659 |
if (base_fndecls) |
| 2660 |
return base_fndecls; |
| 2661 |
|
| 2662 |
for (i = 0; i < n_baseclasses; i++) |
| 2663 |
{ |
| 2664 |
tree basetype = BINFO_TYPE (BINFO_BASE_BINFO (TYPE_BINFO (t), i)); |
| 2665 |
base_fndecls = chainon (get_basefndecls (name, basetype), |
| 2666 |
base_fndecls); |
| 2667 |
} |
| 2668 |
|
| 2669 |
return base_fndecls; |
| 2670 |
} |
| 2671 |
|
| 2672 |
/* If this declaration supersedes the declaration of |
| 2673 |
a method declared virtual in the base class, then |
| 2674 |
mark this field as being virtual as well. */ |
| 2675 |
|
| 2676 |
void |
| 2677 |
check_for_override (tree decl, tree ctype) |
| 2678 |
{ |
| 2679 |
bool overrides_found = false; |
| 2680 |
if (TREE_CODE (decl) == TEMPLATE_DECL) |
| 2681 |
/* In [temp.mem] we have: |
| 2682 |
|
| 2683 |
A specialization of a member function template does not |
| 2684 |
override a virtual function from a base class. */ |
| 2685 |
return; |
| 2686 |
if ((DECL_DESTRUCTOR_P (decl) |
| 2687 |
|| IDENTIFIER_VIRTUAL_P (DECL_NAME (decl)) |
| 2688 |
|| DECL_CONV_FN_P (decl)) |
| 2689 |
&& look_for_overrides (ctype, decl) |
| 2690 |
&& !DECL_STATIC_FUNCTION_P (decl)) |
| 2691 |
/* Set DECL_VINDEX to a value that is neither an INTEGER_CST nor |
| 2692 |
the error_mark_node so that we know it is an overriding |
| 2693 |
function. */ |
| 2694 |
{ |
| 2695 |
DECL_VINDEX (decl) = decl; |
| 2696 |
overrides_found = true; |
| 2697 |
} |
| 2698 |
|
| 2699 |
if (DECL_VIRTUAL_P (decl)) |
| 2700 |
{ |
| 2701 |
if (!DECL_VINDEX (decl)) |
| 2702 |
DECL_VINDEX (decl) = error_mark_node; |
| 2703 |
IDENTIFIER_VIRTUAL_P (DECL_NAME (decl)) = 1; |
| 2704 |
if (DECL_DESTRUCTOR_P (decl)) |
| 2705 |
TYPE_HAS_NONTRIVIAL_DESTRUCTOR (ctype) = true; |
| 2706 |
} |
| 2707 |
else if (DECL_FINAL_P (decl)) |
| 2708 |
error ("%q+#D marked final, but is not virtual", decl); |
| 2709 |
if (DECL_OVERRIDE_P (decl) && !overrides_found) |
| 2710 |
error ("%q+#D marked override, but does not override", decl); |
| 2711 |
} |
| 2712 |
|
| 2713 |
/* Warn about hidden virtual functions that are not overridden in t. |
| 2714 |
We know that constructors and destructors don't apply. */ |
| 2715 |
|
| 2716 |
static void |
| 2717 |
warn_hidden (tree t) |
| 2718 |
{ |
| 2719 |
vec<tree, va_gc> *method_vec = CLASSTYPE_METHOD_VEC (t); |
| 2720 |
tree fns; |
| 2721 |
size_t i; |
| 2722 |
|
| 2723 |
/* We go through each separately named virtual function. */ |
| 2724 |
for (i = CLASSTYPE_FIRST_CONVERSION_SLOT; |
| 2725 |
vec_safe_iterate (method_vec, i, &fns); |
| 2726 |
++i) |
| 2727 |
{ |
| 2728 |
tree fn; |
| 2729 |
tree name; |
| 2730 |
tree fndecl; |
| 2731 |
tree base_fndecls; |
| 2732 |
tree base_binfo; |
| 2733 |
tree binfo; |
| 2734 |
int j; |
| 2735 |
|
| 2736 |
/* All functions in this slot in the CLASSTYPE_METHOD_VEC will |
| 2737 |
have the same name. Figure out what name that is. */ |
| 2738 |
name = DECL_NAME (OVL_CURRENT (fns)); |
| 2739 |
/* There are no possibly hidden functions yet. */ |
| 2740 |
base_fndecls = NULL_TREE; |
| 2741 |
/* Iterate through all of the base classes looking for possibly |
| 2742 |
hidden functions. */ |
| 2743 |
for (binfo = TYPE_BINFO (t), j = 0; |
| 2744 |
BINFO_BASE_ITERATE (binfo, j, base_binfo); j++) |
| 2745 |
{ |
| 2746 |
tree basetype = BINFO_TYPE (base_binfo); |
| 2747 |
base_fndecls = chainon (get_basefndecls (name, basetype), |
| 2748 |
base_fndecls); |
| 2749 |
} |
| 2750 |
|
| 2751 |
/* If there are no functions to hide, continue. */ |
| 2752 |
if (!base_fndecls) |
| 2753 |
continue; |
| 2754 |
|
| 2755 |
/* Remove any overridden functions. */ |
| 2756 |
for (fn = fns; fn; fn = OVL_NEXT (fn)) |
| 2757 |
{ |
| 2758 |
fndecl = OVL_CURRENT (fn); |
| 2759 |
if (DECL_VINDEX (fndecl)) |
| 2760 |
{ |
| 2761 |
tree *prev = &base_fndecls; |
| 2762 |
|
| 2763 |
while (*prev) |
| 2764 |
/* If the method from the base class has the same |
| 2765 |
signature as the method from the derived class, it |
| 2766 |
has been overridden. */ |
| 2767 |
if (same_signature_p (fndecl, TREE_VALUE (*prev))) |
| 2768 |
*prev = TREE_CHAIN (*prev); |
| 2769 |
else |
| 2770 |
prev = &TREE_CHAIN (*prev); |
| 2771 |
} |
| 2772 |
} |
| 2773 |
|
| 2774 |
/* Now give a warning for all base functions without overriders, |
| 2775 |
as they are hidden. */ |
| 2776 |
while (base_fndecls) |
| 2777 |
{ |
| 2778 |
/* Here we know it is a hider, and no overrider exists. */ |
| 2779 |
warning (OPT_Woverloaded_virtual, "%q+D was hidden", TREE_VALUE (base_fndecls)); |
| 2780 |
warning (OPT_Woverloaded_virtual, " by %q+D", fns); |
| 2781 |
base_fndecls = TREE_CHAIN (base_fndecls); |
| 2782 |
} |
| 2783 |
} |
| 2784 |
} |
| 2785 |
|
| 2786 |
/* Recursive helper for finish_struct_anon. */ |
| 2787 |
|
| 2788 |
static void |
| 2789 |
finish_struct_anon_r (tree field, bool complain) |
| 2790 |
{ |
| 2791 |
bool is_union = TREE_CODE (TREE_TYPE (field)) == UNION_TYPE; |
| 2792 |
tree elt = TYPE_FIELDS (TREE_TYPE (field)); |
| 2793 |
for (; elt; elt = DECL_CHAIN (elt)) |
| 2794 |
{ |
| 2795 |
/* We're generally only interested in entities the user |
| 2796 |
declared, but we also find nested classes by noticing |
| 2797 |
the TYPE_DECL that we create implicitly. You're |
| 2798 |
allowed to put one anonymous union inside another, |
| 2799 |
though, so we explicitly tolerate that. We use |
| 2800 |
TYPE_ANONYMOUS_P rather than ANON_AGGR_TYPE_P so that |
| 2801 |
we also allow unnamed types used for defining fields. */ |
| 2802 |
if (DECL_ARTIFICIAL (elt) |
| 2803 |
&& (!DECL_IMPLICIT_TYPEDEF_P (elt) |
| 2804 |
|| TYPE_ANONYMOUS_P (TREE_TYPE (elt)))) |
| 2805 |
continue; |
| 2806 |
|
| 2807 |
if (TREE_CODE (elt) != FIELD_DECL) |
| 2808 |
{ |
| 2809 |
if (complain) |
| 2810 |
{ |
| 2811 |
if (is_union) |
| 2812 |
permerror (input_location, |
| 2813 |
"%q+#D invalid; an anonymous union can " |
| 2814 |
"only have non-static data members", elt); |
| 2815 |
else |
| 2816 |
permerror (input_location, |
| 2817 |
"%q+#D invalid; an anonymous struct can " |
| 2818 |
"only have non-static data members", elt); |
| 2819 |
} |
| 2820 |
continue; |
| 2821 |
} |
| 2822 |
|
| 2823 |
if (complain) |
| 2824 |
{ |
| 2825 |
if (TREE_PRIVATE (elt)) |
| 2826 |
{ |
| 2827 |
if (is_union) |
| 2828 |
permerror (input_location, |
| 2829 |
"private member %q+#D in anonymous union", elt); |
| 2830 |
else |
| 2831 |
permerror (input_location, |
| 2832 |
"private member %q+#D in anonymous struct", elt); |
| 2833 |
} |
| 2834 |
else if (TREE_PROTECTED (elt)) |
| 2835 |
{ |
| 2836 |
if (is_union) |
| 2837 |
permerror (input_location, |
| 2838 |
"protected member %q+#D in anonymous union", elt); |
| 2839 |
else |
| 2840 |
permerror (input_location, |
| 2841 |
"protected member %q+#D in anonymous struct", elt); |
| 2842 |
} |
| 2843 |
} |
| 2844 |
|
| 2845 |
TREE_PRIVATE (elt) = TREE_PRIVATE (field); |
| 2846 |
TREE_PROTECTED (elt) = TREE_PROTECTED (field); |
| 2847 |
|
| 2848 |
/* Recurse into the anonymous aggregates to handle correctly |
| 2849 |
access control (c++/24926): |
| 2850 |
|
| 2851 |
class A { |
| 2852 |
union { |
| 2853 |
union { |
| 2854 |
int i; |
| 2855 |
}; |
| 2856 |
}; |
| 2857 |
}; |
| 2858 |
|
| 2859 |
int j=A().i; */ |
| 2860 |
if (DECL_NAME (elt) == NULL_TREE |
| 2861 |
&& ANON_AGGR_TYPE_P (TREE_TYPE (elt))) |
| 2862 |
finish_struct_anon_r (elt, /*complain=*/false); |
| 2863 |
} |
| 2864 |
} |
| 2865 |
|
| 2866 |
/* Check for things that are invalid. There are probably plenty of other |
| 2867 |
things we should check for also. */ |
| 2868 |
|
| 2869 |
static void |
| 2870 |
finish_struct_anon (tree t) |
| 2871 |
{ |
| 2872 |
for (tree field = TYPE_FIELDS (t); field; field = DECL_CHAIN (field)) |
| 2873 |
{ |
| 2874 |
if (TREE_STATIC (field)) |
| 2875 |
continue; |
| 2876 |
if (TREE_CODE (field) != FIELD_DECL) |
| 2877 |
continue; |
| 2878 |
|
| 2879 |
if (DECL_NAME (field) == NULL_TREE |
| 2880 |
&& ANON_AGGR_TYPE_P (TREE_TYPE (field))) |
| 2881 |
finish_struct_anon_r (field, /*complain=*/true); |
| 2882 |
} |
| 2883 |
} |
| 2884 |
|
| 2885 |
/* Add T to CLASSTYPE_DECL_LIST of current_class_type which |
| 2886 |
will be used later during class template instantiation. |
| 2887 |
When FRIEND_P is zero, T can be a static member data (VAR_DECL), |
| 2888 |
a non-static member data (FIELD_DECL), a member function |
| 2889 |
(FUNCTION_DECL), a nested type (RECORD_TYPE, ENUM_TYPE), |
| 2890 |
a typedef (TYPE_DECL) or a member class template (TEMPLATE_DECL) |
| 2891 |
When FRIEND_P is nonzero, T is either a friend class |
| 2892 |
(RECORD_TYPE, TEMPLATE_DECL) or a friend function |
| 2893 |
(FUNCTION_DECL, TEMPLATE_DECL). */ |
| 2894 |
|
| 2895 |
void |
| 2896 |
maybe_add_class_template_decl_list (tree type, tree t, int friend_p) |
| 2897 |
{ |
| 2898 |
/* Save some memory by not creating TREE_LIST if TYPE is not template. */ |
| 2899 |
if (CLASSTYPE_TEMPLATE_INFO (type)) |
| 2900 |
CLASSTYPE_DECL_LIST (type) |
| 2901 |
= tree_cons (friend_p ? NULL_TREE : type, |
| 2902 |
t, CLASSTYPE_DECL_LIST (type)); |
| 2903 |
} |
| 2904 |
|
| 2905 |
/* This function is called from declare_virt_assop_and_dtor via |
| 2906 |
dfs_walk_all. |
| 2907 |
|
| 2908 |
DATA is a type that direcly or indirectly inherits the base |
| 2909 |
represented by BINFO. If BINFO contains a virtual assignment [copy |
| 2910 |
assignment or move assigment] operator or a virtual constructor, |
| 2911 |
declare that function in DATA if it hasn't been already declared. */ |
| 2912 |
|
| 2913 |
static tree |
| 2914 |
dfs_declare_virt_assop_and_dtor (tree binfo, void *data) |
| 2915 |
{ |
| 2916 |
tree bv, fn, t = (tree)data; |
| 2917 |
tree opname = ansi_assopname (NOP_EXPR); |
| 2918 |
|
| 2919 |
gcc_assert (t && CLASS_TYPE_P (t)); |
| 2920 |
gcc_assert (binfo && TREE_CODE (binfo) == TREE_BINFO); |
| 2921 |
|
| 2922 |
if (!TYPE_CONTAINS_VPTR_P (BINFO_TYPE (binfo))) |
| 2923 |
/* A base without a vtable needs no modification, and its bases |
| 2924 |
are uninteresting. */ |
| 2925 |
return dfs_skip_bases; |
| 2926 |
|
| 2927 |
if (BINFO_PRIMARY_P (binfo)) |
| 2928 |
/* If this is a primary base, then we have already looked at the |
| 2929 |
virtual functions of its vtable. */ |
| 2930 |
return NULL_TREE; |
| 2931 |
|
| 2932 |
for (bv = BINFO_VIRTUALS (binfo); bv; bv = TREE_CHAIN (bv)) |
| 2933 |
{ |
| 2934 |
fn = BV_FN (bv); |
| 2935 |
|
| 2936 |
if (DECL_NAME (fn) == opname) |
| 2937 |
{ |
| 2938 |
if (CLASSTYPE_LAZY_COPY_ASSIGN (t)) |
| 2939 |
lazily_declare_fn (sfk_copy_assignment, t); |
| 2940 |
if (CLASSTYPE_LAZY_MOVE_ASSIGN (t)) |
| 2941 |
lazily_declare_fn (sfk_move_assignment, t); |
| 2942 |
} |
| 2943 |
else if (DECL_DESTRUCTOR_P (fn) |
| 2944 |
&& CLASSTYPE_LAZY_DESTRUCTOR (t)) |
| 2945 |
lazily_declare_fn (sfk_destructor, t); |
| 2946 |
} |
| 2947 |
|
| 2948 |
return NULL_TREE; |
| 2949 |
} |
| 2950 |
|
| 2951 |
/* If the class type T has a direct or indirect base that contains a |
| 2952 |
virtual assignment operator or a virtual destructor, declare that |
| 2953 |
function in T if it hasn't been already declared. */ |
| 2954 |
|
| 2955 |
static void |
| 2956 |
declare_virt_assop_and_dtor (tree t) |
| 2957 |
{ |
| 2958 |
if (!(TYPE_POLYMORPHIC_P (t) |
| 2959 |
&& (CLASSTYPE_LAZY_COPY_ASSIGN (t) |
| 2960 |
|| CLASSTYPE_LAZY_MOVE_ASSIGN (t) |
| 2961 |
|| CLASSTYPE_LAZY_DESTRUCTOR (t)))) |
| 2962 |
return; |
| 2963 |
|
| 2964 |
dfs_walk_all (TYPE_BINFO (t), |
| 2965 |
dfs_declare_virt_assop_and_dtor, |
| 2966 |
NULL, t); |
| 2967 |
} |
| 2968 |
|
| 2969 |
/* Declare the inheriting constructor for class T inherited from base |
| 2970 |
constructor CTOR with the parameter array PARMS of size NPARMS. */ |
| 2971 |
|
| 2972 |
static void |
| 2973 |
one_inheriting_sig (tree t, tree ctor, tree *parms, int nparms) |
| 2974 |
{ |
| 2975 |
/* We don't declare an inheriting ctor that would be a default, |
| 2976 |
copy or move ctor for derived or base. */ |
| 2977 |
if (nparms == 0) |
| 2978 |
return; |
| 2979 |
if (nparms == 1 |
| 2980 |
&& TREE_CODE (parms[0]) == REFERENCE_TYPE) |
| 2981 |
{ |
| 2982 |
tree parm = TYPE_MAIN_VARIANT (TREE_TYPE (parms[0])); |
| 2983 |
if (parm == t || parm == DECL_CONTEXT (ctor)) |
| 2984 |
return; |
| 2985 |
} |
| 2986 |
|
| 2987 |
tree parmlist = void_list_node; |
| 2988 |
for (int i = nparms - 1; i >= 0; i--) |
| 2989 |
parmlist = tree_cons (NULL_TREE, parms[i], parmlist); |
| 2990 |
tree fn = implicitly_declare_fn (sfk_inheriting_constructor, |
| 2991 |
t, false, ctor, parmlist); |
| 2992 |
if (add_method (t, fn, NULL_TREE)) |
| 2993 |
{ |
| 2994 |
DECL_CHAIN (fn) = TYPE_METHODS (t); |
| 2995 |
TYPE_METHODS (t) = fn; |
| 2996 |
} |
| 2997 |
} |
| 2998 |
|
| 2999 |
/* Declare all the inheriting constructors for class T inherited from base |
| 3000 |
constructor CTOR. */ |
| 3001 |
|
| 3002 |
static void |
| 3003 |
one_inherited_ctor (tree ctor, tree t) |
| 3004 |
{ |
| 3005 |
tree parms = FUNCTION_FIRST_USER_PARMTYPE (ctor); |
| 3006 |
|
| 3007 |
tree *new_parms = XALLOCAVEC (tree, list_length (parms)); |
| 3008 |
int i = 0; |
| 3009 |
for (; parms && parms != void_list_node; parms = TREE_CHAIN (parms)) |
| 3010 |
{ |
| 3011 |
if (TREE_PURPOSE (parms)) |
| 3012 |
one_inheriting_sig (t, ctor, new_parms, i); |
| 3013 |
new_parms[i++] = TREE_VALUE (parms); |
| 3014 |
} |
| 3015 |
one_inheriting_sig (t, ctor, new_parms, i); |
| 3016 |
if (parms == NULL_TREE) |
| 3017 |
{ |
| 3018 |
warning (OPT_Winherited_variadic_ctor, |
| 3019 |
"the ellipsis in %qD is not inherited", ctor); |
| 3020 |
inform (DECL_SOURCE_LOCATION (ctor), "%qD declared here", ctor); |
| 3021 |
} |
| 3022 |
} |
| 3023 |
|
| 3024 |
/* Create default constructors, assignment operators, and so forth for |
| 3025 |
the type indicated by T, if they are needed. CANT_HAVE_CONST_CTOR, |
| 3026 |
and CANT_HAVE_CONST_ASSIGNMENT are nonzero if, for whatever reason, |
| 3027 |
the class cannot have a default constructor, copy constructor |
| 3028 |
taking a const reference argument, or an assignment operator taking |
| 3029 |
a const reference, respectively. */ |
| 3030 |
|
| 3031 |
static void |
| 3032 |
add_implicitly_declared_members (tree t, tree* access_decls, |
| 3033 |
int cant_have_const_cctor, |
| 3034 |
int cant_have_const_assignment) |
| 3035 |
{ |
| 3036 |
bool move_ok = false; |
| 3037 |
|
| 3038 |
if (cxx_dialect >= cxx11 && !CLASSTYPE_DESTRUCTORS (t) |
| 3039 |
&& !TYPE_HAS_COPY_CTOR (t) && !TYPE_HAS_COPY_ASSIGN (t) |
| 3040 |
&& !type_has_move_constructor (t) && !type_has_move_assign (t)) |
| 3041 |
move_ok = true; |
| 3042 |
|
| 3043 |
/* Destructor. */ |
| 3044 |
if (!CLASSTYPE_DESTRUCTORS (t)) |
| 3045 |
{ |
| 3046 |
/* In general, we create destructors lazily. */ |
| 3047 |
CLASSTYPE_LAZY_DESTRUCTOR (t) = 1; |
| 3048 |
|
| 3049 |
if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t) |
| 3050 |
&& TYPE_FOR_JAVA (t)) |
| 3051 |
/* But if this is a Java class, any non-trivial destructor is |
| 3052 |
invalid, even if compiler-generated. Therefore, if the |
| 3053 |
destructor is non-trivial we create it now. */ |
| 3054 |
lazily_declare_fn (sfk_destructor, t); |
| 3055 |
} |
| 3056 |
|
| 3057 |
/* [class.ctor] |
| 3058 |
|
| 3059 |
If there is no user-declared constructor for a class, a default |
| 3060 |
constructor is implicitly declared. */ |
| 3061 |
if (! TYPE_HAS_USER_CONSTRUCTOR (t)) |
| 3062 |
{ |
| 3063 |
TYPE_HAS_DEFAULT_CONSTRUCTOR (t) = 1; |
| 3064 |
CLASSTYPE_LAZY_DEFAULT_CTOR (t) = 1; |
| 3065 |
if (cxx_dialect >= cxx11) |
| 3066 |
TYPE_HAS_CONSTEXPR_CTOR (t) |
| 3067 |
/* This might force the declaration. */ |
| 3068 |
= type_has_constexpr_default_constructor (t); |
| 3069 |
} |
| 3070 |
|
| 3071 |
/* [class.ctor] |
| 3072 |
|
| 3073 |
If a class definition does not explicitly declare a copy |
| 3074 |
constructor, one is declared implicitly. */ |
| 3075 |
if (! TYPE_HAS_COPY_CTOR (t) && ! TYPE_FOR_JAVA (t)) |
| 3076 |
{ |
| 3077 |
TYPE_HAS_COPY_CTOR (t) = 1; |
| 3078 |
TYPE_HAS_CONST_COPY_CTOR (t) = !cant_have_const_cctor; |
| 3079 |
CLASSTYPE_LAZY_COPY_CTOR (t) = 1; |
| 3080 |
if (move_ok) |
| 3081 |
CLASSTYPE_LAZY_MOVE_CTOR (t) = 1; |
| 3082 |
} |
| 3083 |
|
| 3084 |
/* If there is no assignment operator, one will be created if and |
| 3085 |
when it is needed. For now, just record whether or not the type |
| 3086 |
of the parameter to the assignment operator will be a const or |
| 3087 |
non-const reference. */ |
| 3088 |
if (!TYPE_HAS_COPY_ASSIGN (t) && !TYPE_FOR_JAVA (t)) |
| 3089 |
{ |
| 3090 |
TYPE_HAS_COPY_ASSIGN (t) = 1; |
| 3091 |
TYPE_HAS_CONST_COPY_ASSIGN (t) = !cant_have_const_assignment; |
| 3092 |
CLASSTYPE_LAZY_COPY_ASSIGN (t) = 1; |
| 3093 |
if (move_ok) |
| 3094 |
CLASSTYPE_LAZY_MOVE_ASSIGN (t) = 1; |
| 3095 |
} |
| 3096 |
|
| 3097 |
/* We can't be lazy about declaring functions that might override |
| 3098 |
a virtual function from a base class. */ |
| 3099 |
declare_virt_assop_and_dtor (t); |
| 3100 |
|
| 3101 |
while (*access_decls) |
| 3102 |
{ |
| 3103 |
tree using_decl = TREE_VALUE (*access_decls); |
| 3104 |
tree decl = USING_DECL_DECLS (using_decl); |
| 3105 |
if (DECL_NAME (using_decl) == ctor_identifier) |
| 3106 |
{ |
| 3107 |
/* declare, then remove the decl */ |
| 3108 |
tree ctor_list = decl; |
| 3109 |
location_t loc = input_location; |
| 3110 |
input_location = DECL_SOURCE_LOCATION (using_decl); |
| 3111 |
if (ctor_list) |
| 3112 |
for (; ctor_list; ctor_list = OVL_NEXT (ctor_list)) |
| 3113 |
one_inherited_ctor (OVL_CURRENT (ctor_list), t); |
| 3114 |
*access_decls = TREE_CHAIN (*access_decls); |
| 3115 |
input_location = loc; |
| 3116 |
} |
| 3117 |
else |
| 3118 |
access_decls = &TREE_CHAIN (*access_decls); |
| 3119 |
} |
| 3120 |
} |
| 3121 |
|
| 3122 |
/* Subroutine of insert_into_classtype_sorted_fields. Recursively |
| 3123 |
count the number of fields in TYPE, including anonymous union |
| 3124 |
members. */ |
| 3125 |
|
| 3126 |
static int |
| 3127 |
count_fields (tree fields) |
| 3128 |
{ |
| 3129 |
tree x; |
| 3130 |
int n_fields = 0; |
| 3131 |
for (x = fields; x; x = DECL_CHAIN (x)) |
| 3132 |
{ |
| 3133 |
if (TREE_CODE (x) == FIELD_DECL && ANON_AGGR_TYPE_P (TREE_TYPE (x))) |
| 3134 |
n_fields += count_fields (TYPE_FIELDS (TREE_TYPE (x))); |
| 3135 |
else |
| 3136 |
n_fields += 1; |
| 3137 |
} |
| 3138 |
return n_fields; |
| 3139 |
} |
| 3140 |
|
| 3141 |
/* Subroutine of insert_into_classtype_sorted_fields. Recursively add |
| 3142 |
all the fields in the TREE_LIST FIELDS to the SORTED_FIELDS_TYPE |
| 3143 |
elts, starting at offset IDX. */ |
| 3144 |
|
| 3145 |
static int |
| 3146 |
add_fields_to_record_type (tree fields, struct sorted_fields_type *field_vec, int idx) |
| 3147 |
{ |
| 3148 |
tree x; |
| 3149 |
for (x = fields; x; x = DECL_CHAIN (x)) |
| 3150 |
{ |
| 3151 |
if (TREE_CODE (x) == FIELD_DECL && ANON_AGGR_TYPE_P (TREE_TYPE (x))) |
| 3152 |
idx = add_fields_to_record_type (TYPE_FIELDS (TREE_TYPE (x)), field_vec, idx); |
| 3153 |
else |
| 3154 |
field_vec->elts[idx++] = x; |
| 3155 |
} |
| 3156 |
return idx; |
| 3157 |
} |
| 3158 |
|
| 3159 |
/* Add all of the enum values of ENUMTYPE, to the FIELD_VEC elts, |
| 3160 |
starting at offset IDX. */ |
| 3161 |
|
| 3162 |
static int |
| 3163 |
add_enum_fields_to_record_type (tree enumtype, |
| 3164 |
struct sorted_fields_type *field_vec, |
| 3165 |
int idx) |
| 3166 |
{ |
| 3167 |
tree values; |
| 3168 |
for (values = TYPE_VALUES (enumtype); values; values = TREE_CHAIN (values)) |
| 3169 |
field_vec->elts[idx++] = TREE_VALUE (values); |
| 3170 |
return idx; |
| 3171 |
} |
| 3172 |
|
| 3173 |
/* FIELD is a bit-field. We are finishing the processing for its |
| 3174 |
enclosing type. Issue any appropriate messages and set appropriate |
| 3175 |
flags. Returns false if an error has been diagnosed. */ |
| 3176 |
|
| 3177 |
static bool |
| 3178 |
check_bitfield_decl (tree field) |
| 3179 |
{ |
| 3180 |
tree type = TREE_TYPE (field); |
| 3181 |
tree w; |
| 3182 |
|
| 3183 |
/* Extract the declared width of the bitfield, which has been |
| 3184 |
temporarily stashed in DECL_INITIAL. */ |
| 3185 |
w = DECL_INITIAL (field); |
| 3186 |
gcc_assert (w != NULL_TREE); |
| 3187 |
/* Remove the bit-field width indicator so that the rest of the |
| 3188 |
compiler does not treat that value as an initializer. */ |
| 3189 |
DECL_INITIAL (field) = NULL_TREE; |
| 3190 |
|
| 3191 |
/* Detect invalid bit-field type. */ |
| 3192 |
if (!INTEGRAL_OR_ENUMERATION_TYPE_P (type)) |
| 3193 |
{ |
| 3194 |
error ("bit-field %q+#D with non-integral type", field); |
| 3195 |
w = error_mark_node; |
| 3196 |
} |
| 3197 |
else |
| 3198 |
{ |
| 3199 |
location_t loc = input_location; |
| 3200 |
/* Avoid the non_lvalue wrapper added by fold for PLUS_EXPRs. */ |
| 3201 |
STRIP_NOPS (w); |
| 3202 |
|
| 3203 |
/* detect invalid field size. */ |
| 3204 |
input_location = DECL_SOURCE_LOCATION (field); |
| 3205 |
w = cxx_constant_value (w); |
| 3206 |
input_location = loc; |
| 3207 |
|
| 3208 |
if (TREE_CODE (w) != INTEGER_CST) |
| 3209 |
{ |
| 3210 |
error ("bit-field %q+D width not an integer constant", field); |
| 3211 |
w = error_mark_node; |
| 3212 |
} |
| 3213 |
else if (tree_int_cst_sgn (w) < 0) |
| 3214 |
{ |
| 3215 |
error ("negative width in bit-field %q+D", field); |
| 3216 |
w = error_mark_node; |
| 3217 |
} |
| 3218 |
else if (integer_zerop (w) && DECL_NAME (field) != 0) |
| 3219 |
{ |
| 3220 |
error ("zero width for bit-field %q+D", field); |
| 3221 |
w = error_mark_node; |
| 3222 |
} |
| 3223 |
else if ((TREE_CODE (type) != ENUMERAL_TYPE |
| 3224 |
&& TREE_CODE (type) != BOOLEAN_TYPE |
| 3225 |
&& compare_tree_int (w, TYPE_PRECISION (type)) > 0) |
| 3226 |
|| ((TREE_CODE (type) == ENUMERAL_TYPE |
| 3227 |
|| TREE_CODE (type) == BOOLEAN_TYPE) |
| 3228 |
&& tree_int_cst_lt (TYPE_SIZE (type), w))) |
| 3229 |
warning (0, "width of %q+D exceeds its type", field); |
| 3230 |
else if (TREE_CODE (type) == ENUMERAL_TYPE |
| 3231 |
&& (0 > (compare_tree_int |
| 3232 |
(w, TYPE_PRECISION (ENUM_UNDERLYING_TYPE (type)))))) |
| 3233 |
warning (0, "%q+D is too small to hold all values of %q#T", field, type); |
| 3234 |
} |
| 3235 |
|
| 3236 |
if (w != error_mark_node) |
| 3237 |
{ |
| 3238 |
DECL_SIZE (field) = convert (bitsizetype, w); |
| 3239 |
DECL_BIT_FIELD (field) = 1; |
| 3240 |
return true; |
| 3241 |
} |
| 3242 |
else |
| 3243 |
{ |
| 3244 |
/* Non-bit-fields are aligned for their type. */ |
| 3245 |
DECL_BIT_FIELD (field) = 0; |
| 3246 |
CLEAR_DECL_C_BIT_FIELD (field); |
| 3247 |
return false; |
| 3248 |
} |
| 3249 |
} |
| 3250 |
|
| 3251 |
/* FIELD is a non bit-field. We are finishing the processing for its |
| 3252 |
enclosing type T. Issue any appropriate messages and set appropriate |
| 3253 |
flags. */ |
| 3254 |
|
| 3255 |
static void |
| 3256 |
check_field_decl (tree field, |
| 3257 |
tree t, |
| 3258 |
int* cant_have_const_ctor, |
| 3259 |
int* no_const_asn_ref, |
| 3260 |
int* any_default_members) |
| 3261 |
{ |
| 3262 |
tree type = strip_array_types (TREE_TYPE (field)); |
| 3263 |
|
| 3264 |
/* In C++98 an anonymous union cannot contain any fields which would change |
| 3265 |
the settings of CANT_HAVE_CONST_CTOR and friends. */ |
| 3266 |
if (ANON_UNION_TYPE_P (type) && cxx_dialect < cxx11) |
| 3267 |
; |
| 3268 |
/* And, we don't set TYPE_HAS_CONST_COPY_CTOR, etc., for anonymous |
| 3269 |
structs. So, we recurse through their fields here. */ |
| 3270 |
else if (ANON_AGGR_TYPE_P (type)) |
| 3271 |
{ |
| 3272 |
tree fields; |
| 3273 |
|
| 3274 |
for (fields = TYPE_FIELDS (type); fields; fields = DECL_CHAIN (fields)) |
| 3275 |
if (TREE_CODE (fields) == FIELD_DECL && !DECL_C_BIT_FIELD (field)) |
| 3276 |
check_field_decl (fields, t, cant_have_const_ctor, |
| 3277 |
no_const_asn_ref, any_default_members); |
| 3278 |
} |
| 3279 |
/* Check members with class type for constructors, destructors, |
| 3280 |
etc. */ |
| 3281 |
else if (CLASS_TYPE_P (type)) |
| 3282 |
{ |
| 3283 |
/* Never let anything with uninheritable virtuals |
| 3284 |
make it through without complaint. */ |
| 3285 |
abstract_virtuals_error (field, type); |
| 3286 |
|
| 3287 |
if (TREE_CODE (t) == UNION_TYPE && cxx_dialect < cxx11) |
| 3288 |
{ |
| 3289 |
static bool warned; |
| 3290 |
int oldcount = errorcount; |
| 3291 |
if (TYPE_NEEDS_CONSTRUCTING (type)) |
| 3292 |
error ("member %q+#D with constructor not allowed in union", |
| 3293 |
field); |
| 3294 |
if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type)) |
| 3295 |
error ("member %q+#D with destructor not allowed in union", field); |
| 3296 |
if (TYPE_HAS_COMPLEX_COPY_ASSIGN (type)) |
| 3297 |
error ("member %q+#D with copy assignment operator not allowed in union", |
| 3298 |
field); |
| 3299 |
if (!warned && errorcount > oldcount) |
| 3300 |
{ |
| 3301 |
inform (DECL_SOURCE_LOCATION (field), "unrestricted unions " |
| 3302 |
"only available with -std=c++11 or -std=gnu++11"); |
| 3303 |
warned = true; |
| 3304 |
} |
| 3305 |
} |
| 3306 |
else |
| 3307 |
{ |
| 3308 |
TYPE_NEEDS_CONSTRUCTING (t) |= TYPE_NEEDS_CONSTRUCTING (type); |
| 3309 |
TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t) |
| 3310 |
|= TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type); |
| 3311 |
TYPE_HAS_COMPLEX_COPY_ASSIGN (t) |
| 3312 |
|= (TYPE_HAS_COMPLEX_COPY_ASSIGN (type) |
| 3313 |
|| !TYPE_HAS_COPY_ASSIGN (type)); |
| 3314 |
TYPE_HAS_COMPLEX_COPY_CTOR (t) |= (TYPE_HAS_COMPLEX_COPY_CTOR (type) |
| 3315 |
|| !TYPE_HAS_COPY_CTOR (type)); |
| 3316 |
TYPE_HAS_COMPLEX_MOVE_ASSIGN (t) |= TYPE_HAS_COMPLEX_MOVE_ASSIGN (type); |
| 3317 |
TYPE_HAS_COMPLEX_MOVE_CTOR (t) |= TYPE_HAS_COMPLEX_MOVE_CTOR (type); |
| 3318 |
TYPE_HAS_COMPLEX_DFLT (t) |= (!TYPE_HAS_DEFAULT_CONSTRUCTOR (type) |
| 3319 |
|| TYPE_HAS_COMPLEX_DFLT (type)); |
| 3320 |
} |
| 3321 |
|
| 3322 |
if (TYPE_HAS_COPY_CTOR (type) |
| 3323 |
&& !TYPE_HAS_CONST_COPY_CTOR (type)) |
| 3324 |
*cant_have_const_ctor = 1; |
| 3325 |
|
| 3326 |
if (TYPE_HAS_COPY_ASSIGN (type) |
| 3327 |
&& !TYPE_HAS_CONST_COPY_ASSIGN (type)) |
| 3328 |
*no_const_asn_ref = 1; |
| 3329 |
} |
| 3330 |
|
| 3331 |
check_abi_tags (t, field); |
| 3332 |
|
| 3333 |
if (DECL_INITIAL (field) != NULL_TREE) |
| 3334 |
{ |
| 3335 |
/* `build_class_init_list' does not recognize |
| 3336 |
non-FIELD_DECLs. */ |
| 3337 |
if (TREE_CODE (t) == UNION_TYPE && *any_default_members != 0) |
| 3338 |
error ("multiple fields in union %qT initialized", t); |
| 3339 |
*any_default_members = 1; |
| 3340 |
} |
| 3341 |
} |
| 3342 |
|
| 3343 |
/* Check the data members (both static and non-static), class-scoped |
| 3344 |
typedefs, etc., appearing in the declaration of T. Issue |
| 3345 |
appropriate diagnostics. Sets ACCESS_DECLS to a list (in |
| 3346 |
declaration order) of access declarations; each TREE_VALUE in this |
| 3347 |
list is a USING_DECL. |
| 3348 |
|
| 3349 |
In addition, set the following flags: |
| 3350 |
|
| 3351 |
EMPTY_P |
| 3352 |
The class is empty, i.e., contains no non-static data members. |
| 3353 |
|
| 3354 |
CANT_HAVE_CONST_CTOR_P |
| 3355 |
This class cannot have an implicitly generated copy constructor |
| 3356 |
taking a const reference. |
| 3357 |
|
| 3358 |
CANT_HAVE_CONST_ASN_REF |
| 3359 |
This class cannot have an implicitly generated assignment |
| 3360 |
operator taking a const reference. |
| 3361 |
|
| 3362 |
All of these flags should be initialized before calling this |
| 3363 |
function. |
| 3364 |
|
| 3365 |
Returns a pointer to the end of the TYPE_FIELDs chain; additional |
| 3366 |
fields can be added by adding to this chain. */ |
| 3367 |
|
| 3368 |
static void |
| 3369 |
check_field_decls (tree t, tree *access_decls, |
| 3370 |
int *cant_have_const_ctor_p, |
| 3371 |
int *no_const_asn_ref_p) |
| 3372 |
{ |
| 3373 |
tree *field; |
| 3374 |
tree *next; |
| 3375 |
bool has_pointers; |
| 3376 |
int any_default_members; |
| 3377 |
int cant_pack = 0; |
| 3378 |
int field_access = -1; |
| 3379 |
|
| 3380 |
/* Assume there are no access declarations. */ |
| 3381 |
*access_decls = NULL_TREE; |
| 3382 |
/* Assume this class has no pointer members. */ |
| 3383 |
has_pointers = false; |
| 3384 |
/* Assume none of the members of this class have default |
| 3385 |
initializations. */ |
| 3386 |
any_default_members = 0; |
| 3387 |
|
| 3388 |
for (field = &TYPE_FIELDS (t); *field; field = next) |
| 3389 |
{ |
| 3390 |
tree x = *field; |
| 3391 |
tree type = TREE_TYPE (x); |
| 3392 |
int this_field_access; |
| 3393 |
|
| 3394 |
next = &DECL_CHAIN (x); |
| 3395 |
|
| 3396 |
if (TREE_CODE (x) == USING_DECL) |
| 3397 |
{ |
| 3398 |
/* Save the access declarations for our caller. */ |
| 3399 |
*access_decls = tree_cons (NULL_TREE, x, *access_decls); |
| 3400 |
continue; |
| 3401 |
} |
| 3402 |
|
| 3403 |
if (TREE_CODE (x) == TYPE_DECL |
| 3404 |
|| TREE_CODE (x) == TEMPLATE_DECL) |
| 3405 |
continue; |
| 3406 |
|
| 3407 |
/* If we've gotten this far, it's a data member, possibly static, |
| 3408 |
or an enumerator. */ |
| 3409 |
if (TREE_CODE (x) != CONST_DECL) |
| 3410 |
DECL_CONTEXT (x) = t; |
| 3411 |
|
| 3412 |
/* When this goes into scope, it will be a non-local reference. */ |
| 3413 |
DECL_NONLOCAL (x) = 1; |
| 3414 |
|
| 3415 |
if (TREE_CODE (t) == UNION_TYPE) |
| 3416 |
{ |
| 3417 |
/* [class.union] |
| 3418 |
|
| 3419 |
If a union contains a static data member, or a member of |
| 3420 |
reference type, the program is ill-formed. */ |
| 3421 |
if (VAR_P (x)) |
| 3422 |
{ |
| 3423 |
error ("%q+D may not be static because it is a member of a union", x); |
| 3424 |
continue; |
| 3425 |
} |
| 3426 |
if (TREE_CODE (type) == REFERENCE_TYPE) |
| 3427 |
{ |
| 3428 |
error ("%q+D may not have reference type %qT because" |
| 3429 |
" it is a member of a union", |
| 3430 |
x, type); |
| 3431 |
continue; |
| 3432 |
} |
| 3433 |
} |
| 3434 |
|
| 3435 |
/* Perform error checking that did not get done in |
| 3436 |
grokdeclarator. */ |
| 3437 |
if (TREE_CODE (type) == FUNCTION_TYPE) |
| 3438 |
{ |
| 3439 |
error ("field %q+D invalidly declared function type", x); |
| 3440 |
type = build_pointer_type (type); |
| 3441 |
TREE_TYPE (x) = type; |
| 3442 |
} |
| 3443 |
else if (TREE_CODE (type) == METHOD_TYPE) |
| 3444 |
{ |
| 3445 |
error ("field %q+D invalidly declared method type", x); |
| 3446 |
type = build_pointer_type (type); |
| 3447 |
TREE_TYPE (x) = type; |
| 3448 |
} |
| 3449 |
|
| 3450 |
if (type == error_mark_node) |
| 3451 |
continue; |
| 3452 |
|
| 3453 |
if (TREE_CODE (x) == CONST_DECL || VAR_P (x)) |
| 3454 |
continue; |
| 3455 |
|
| 3456 |
/* Now it can only be a FIELD_DECL. */ |
| 3457 |
|
| 3458 |
if (TREE_PRIVATE (x) || TREE_PROTECTED (x)) |
| 3459 |
CLASSTYPE_NON_AGGREGATE (t) = 1; |
| 3460 |
|
| 3461 |
/* If at least one non-static data member is non-literal, the whole |
| 3462 |
class becomes non-literal. Note: if the type is incomplete we |
| 3463 |
will complain later on. */ |
| 3464 |
if (COMPLETE_TYPE_P (type) && !literal_type_p (type)) |
| 3465 |
CLASSTYPE_LITERAL_P (t) = false; |
| 3466 |
|
| 3467 |
/* A standard-layout class is a class that: |
| 3468 |
... |
| 3469 |
has the same access control (Clause 11) for all non-static data members, |
| 3470 |
... */ |
| 3471 |
this_field_access = TREE_PROTECTED (x) ? 1 : TREE_PRIVATE (x) ? 2 : 0; |
| 3472 |
if (field_access == -1) |
| 3473 |
field_access = this_field_access; |
| 3474 |
else if (this_field_access != field_access) |
| 3475 |
CLASSTYPE_NON_STD_LAYOUT (t) = 1; |
| 3476 |
|
| 3477 |
/* If this is of reference type, check if it needs an init. */ |
| 3478 |
if (TREE_CODE (type) == REFERENCE_TYPE) |
| 3479 |
{ |
| 3480 |
CLASSTYPE_NON_LAYOUT_POD_P (t) = 1; |
| 3481 |
CLASSTYPE_NON_STD_LAYOUT (t) = 1; |
| 3482 |
if (DECL_INITIAL (x) == NULL_TREE) |
| 3483 |
SET_CLASSTYPE_REF_FIELDS_NEED_INIT (t, 1); |
| 3484 |
|
| 3485 |
/* ARM $12.6.2: [A member initializer list] (or, for an |
| 3486 |
aggregate, initialization by a brace-enclosed list) is the |
| 3487 |
only way to initialize nonstatic const and reference |
| 3488 |
members. */ |
| 3489 |
TYPE_HAS_COMPLEX_COPY_ASSIGN (t) = 1; |
| 3490 |
TYPE_HAS_COMPLEX_MOVE_ASSIGN (t) = 1; |
| 3491 |
} |
| 3492 |
|
| 3493 |
type = strip_array_types (type); |
| 3494 |
|
| 3495 |
if (TYPE_PACKED (t)) |
| 3496 |
{ |
| 3497 |
if (!layout_pod_type_p (type) && !TYPE_PACKED (type)) |
| 3498 |
{ |
| 3499 |
warning |
| 3500 |
(0, |
| 3501 |
"ignoring packed attribute because of unpacked non-POD field %q+#D", |
| 3502 |
x); |
| 3503 |
cant_pack = 1; |
| 3504 |
} |
| 3505 |
else if (DECL_C_BIT_FIELD (x) |
| 3506 |
|| TYPE_ALIGN (TREE_TYPE (x)) > BITS_PER_UNIT) |
| 3507 |
DECL_PACKED (x) = 1; |
| 3508 |
} |
| 3509 |
|
| 3510 |
if (DECL_C_BIT_FIELD (x) && integer_zerop (DECL_INITIAL (x))) |
| 3511 |
/* We don't treat zero-width bitfields as making a class |
| 3512 |
non-empty. */ |
| 3513 |
; |
| 3514 |
else |
| 3515 |
{ |
| 3516 |
/* The class is non-empty. */ |
| 3517 |
CLASSTYPE_EMPTY_P (t) = 0; |
| 3518 |
/* The class is not even nearly empty. */ |
| 3519 |
CLASSTYPE_NEARLY_EMPTY_P (t) = 0; |
| 3520 |
/* If one of the data members contains an empty class, |
| 3521 |
so does T. */ |
| 3522 |
if (CLASS_TYPE_P (type) |
| 3523 |
&& CLASSTYPE_CONTAINS_EMPTY_CLASS_P (type)) |
| 3524 |
CLASSTYPE_CONTAINS_EMPTY_CLASS_P (t) = 1; |
| 3525 |
} |
| 3526 |
|
| 3527 |
/* This is used by -Weffc++ (see below). Warn only for pointers |
| 3528 |
to members which might hold dynamic memory. So do not warn |
| 3529 |
for pointers to functions or pointers to members. */ |
| 3530 |
if (TYPE_PTR_P (type) |
| 3531 |
&& !TYPE_PTRFN_P (type)) |
| 3532 |
has_pointers = true; |
| 3533 |
|
| 3534 |
if (CLASS_TYPE_P (type)) |
| 3535 |
{ |
| 3536 |
if (CLASSTYPE_REF_FIELDS_NEED_INIT (type)) |
| 3537 |
SET_CLASSTYPE_REF_FIELDS_NEED_INIT (t, 1); |
| 3538 |
if (CLASSTYPE_READONLY_FIELDS_NEED_INIT (type)) |
| 3539 |
SET_CLASSTYPE_READONLY_FIELDS_NEED_INIT (t, 1); |
| 3540 |
} |
| 3541 |
|
| 3542 |
if (DECL_MUTABLE_P (x) || TYPE_HAS_MUTABLE_P (type)) |
| 3543 |
CLASSTYPE_HAS_MUTABLE (t) = 1; |
| 3544 |
|
| 3545 |
if (DECL_MUTABLE_P (x)) |
| 3546 |
{ |
| 3547 |
if (CP_TYPE_CONST_P (type)) |
| 3548 |
{ |
| 3549 |
error ("member %q+D cannot be declared both %<const%> " |
| 3550 |
"and %<mutable%>", x); |
| 3551 |
continue; |
| 3552 |
} |
| 3553 |
if (TREE_CODE (type) == REFERENCE_TYPE) |
| 3554 |
{ |
| 3555 |
error ("member %q+D cannot be declared as a %<mutable%> " |
| 3556 |
"reference", x); |
| 3557 |
continue; |
| 3558 |
} |
| 3559 |
} |
| 3560 |
|
| 3561 |
if (! layout_pod_type_p (type)) |
| 3562 |
/* DR 148 now allows pointers to members (which are POD themselves), |
| 3563 |
to be allowed in POD structs. */ |
| 3564 |
CLASSTYPE_NON_LAYOUT_POD_P (t) = 1; |
| 3565 |
|
| 3566 |
if (!std_layout_type_p (type)) |
| 3567 |
CLASSTYPE_NON_STD_LAYOUT (t) = 1; |
| 3568 |
|
| 3569 |
if (! zero_init_p (type)) |
| 3570 |
CLASSTYPE_NON_ZERO_INIT_P (t) = 1; |
| 3571 |
|
| 3572 |
/* We set DECL_C_BIT_FIELD in grokbitfield. |
| 3573 |
If the type and width are valid, we'll also set DECL_BIT_FIELD. */ |
| 3574 |
if (! DECL_C_BIT_FIELD (x) || ! check_bitfield_decl (x)) |
| 3575 |
check_field_decl (x, t, |
| 3576 |
cant_have_const_ctor_p, |
| 3577 |
no_const_asn_ref_p, |
| 3578 |
&any_default_members); |
| 3579 |
|
| 3580 |
/* Now that we've removed bit-field widths from DECL_INITIAL, |
| 3581 |
anything left in DECL_INITIAL is an NSDMI that makes the class |
| 3582 |
non-aggregate. */ |
| 3583 |
if (DECL_INITIAL (x)) |
| 3584 |
CLASSTYPE_NON_AGGREGATE (t) = true; |
| 3585 |
|
| 3586 |
/* If any field is const, the structure type is pseudo-const. */ |
| 3587 |
if (CP_TYPE_CONST_P (type)) |
| 3588 |
{ |
| 3589 |
C_TYPE_FIELDS_READONLY (t) = 1; |
| 3590 |
if (DECL_INITIAL (x) == NULL_TREE) |
| 3591 |
SET_CLASSTYPE_READONLY_FIELDS_NEED_INIT (t, 1); |
| 3592 |
|
| 3593 |
/* ARM $12.6.2: [A member initializer list] (or, for an |
| 3594 |
aggregate, initialization by a brace-enclosed list) is the |
| 3595 |
only way to initialize nonstatic const and reference |
| 3596 |
members. */ |
| 3597 |
TYPE_HAS_COMPLEX_COPY_ASSIGN (t) = 1; |
| 3598 |
TYPE_HAS_COMPLEX_MOVE_ASSIGN (t) = 1; |
| 3599 |
} |
| 3600 |
/* A field that is pseudo-const makes the structure likewise. */ |
| 3601 |
else if (CLASS_TYPE_P (type)) |
| 3602 |
{ |
| 3603 |
C_TYPE_FIELDS_READONLY (t) |= C_TYPE_FIELDS_READONLY (type); |
| 3604 |
SET_CLASSTYPE_READONLY_FIELDS_NEED_INIT (t, |
| 3605 |
CLASSTYPE_READONLY_FIELDS_NEED_INIT (t) |
| 3606 |
| CLASSTYPE_READONLY_FIELDS_NEED_INIT (type)); |
| 3607 |
} |
| 3608 |
|
| 3609 |
/* Core issue 80: A nonstatic data member is required to have a |
| 3610 |
different name from the class iff the class has a |
| 3611 |
user-declared constructor. */ |
| 3612 |
if (constructor_name_p (DECL_NAME (x), t) |
| 3613 |
&& TYPE_HAS_USER_CONSTRUCTOR (t)) |
| 3614 |
permerror (input_location, "field %q+#D with same name as class", x); |
| 3615 |
} |
| 3616 |
|
| 3617 |
/* Effective C++ rule 11: if a class has dynamic memory held by pointers, |
| 3618 |
it should also define a copy constructor and an assignment operator to |
| 3619 |
implement the correct copy semantic (deep vs shallow, etc.). As it is |
| 3620 |
not feasible to check whether the constructors do allocate dynamic memory |
| 3621 |
and store it within members, we approximate the warning like this: |
| 3622 |
|
| 3623 |
-- Warn only if there are members which are pointers |
| 3624 |
-- Warn only if there is a non-trivial constructor (otherwise, |
| 3625 |
there cannot be memory allocated). |
| 3626 |
-- Warn only if there is a non-trivial destructor. We assume that the |
| 3627 |
user at least implemented the cleanup correctly, and a destructor |
| 3628 |
is needed to free dynamic memory. |
| 3629 |
|
| 3630 |
This seems enough for practical purposes. */ |
| 3631 |
if (warn_ecpp |
| 3632 |
&& has_pointers |
| 3633 |
&& TYPE_HAS_USER_CONSTRUCTOR (t) |
| 3634 |
&& TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t) |
| 3635 |
&& !(TYPE_HAS_COPY_CTOR (t) && TYPE_HAS_COPY_ASSIGN (t))) |
| 3636 |
{ |
| 3637 |
warning (OPT_Weffc__, "%q#T has pointer data members", t); |
| 3638 |
|
| 3639 |
if (! TYPE_HAS_COPY_CTOR (t)) |
| 3640 |
{ |
| 3641 |
warning (OPT_Weffc__, |
| 3642 |
" but does not override %<%T(const %T&)%>", t, t); |
| 3643 |
if (!TYPE_HAS_COPY_ASSIGN (t)) |
| 3644 |
warning (OPT_Weffc__, " or %<operator=(const %T&)%>", t); |
| 3645 |
} |
| 3646 |
else if (! TYPE_HAS_COPY_ASSIGN (t)) |
| 3647 |
warning (OPT_Weffc__, |
| 3648 |
" but does not override %<operator=(const %T&)%>", t); |
| 3649 |
} |
| 3650 |
|
| 3651 |
/* Non-static data member initializers make the default constructor |
| 3652 |
non-trivial. */ |
| 3653 |
if (any_default_members) |
| 3654 |
{ |
| 3655 |
TYPE_NEEDS_CONSTRUCTING (t) = true; |
| 3656 |
TYPE_HAS_COMPLEX_DFLT (t) = true; |
| 3657 |
} |
| 3658 |
|
| 3659 |
/* If any of the fields couldn't be packed, unset TYPE_PACKED. */ |
| 3660 |
if (cant_pack) |
| 3661 |
TYPE_PACKED (t) = 0; |
| 3662 |
|
| 3663 |
/* Check anonymous struct/anonymous union fields. */ |
| 3664 |
finish_struct_anon (t); |
| 3665 |
|
| 3666 |
/* We've built up the list of access declarations in reverse order. |
| 3667 |
Fix that now. */ |
| 3668 |
*access_decls = nreverse (*access_decls); |
| 3669 |
} |
| 3670 |
|
| 3671 |
/* If TYPE is an empty class type, records its OFFSET in the table of |
| 3672 |
OFFSETS. */ |
| 3673 |
|
| 3674 |
static int |
| 3675 |
record_subobject_offset (tree type, tree offset, splay_tree offsets) |
| 3676 |
{ |
| 3677 |
splay_tree_node n; |
| 3678 |
|
| 3679 |
if (!is_empty_class (type)) |
| 3680 |
return 0; |
| 3681 |
|
| 3682 |
/* Record the location of this empty object in OFFSETS. */ |
| 3683 |
n = splay_tree_lookup (offsets, (splay_tree_key) offset); |
| 3684 |
if (!n) |
| 3685 |
n = splay_tree_insert (offsets, |
| 3686 |
(splay_tree_key) offset, |
| 3687 |
(splay_tree_value) NULL_TREE); |
| 3688 |
n->value = ((splay_tree_value) |
| 3689 |
tree_cons (NULL_TREE, |
| 3690 |
type, |
| 3691 |
(tree) n->value)); |
| 3692 |
|
| 3693 |
return 0; |
| 3694 |
} |
| 3695 |
|
| 3696 |
/* Returns nonzero if TYPE is an empty class type and there is |
| 3697 |
already an entry in OFFSETS for the same TYPE as the same OFFSET. */ |
| 3698 |
|
| 3699 |
static int |
| 3700 |
check_subobject_offset (tree type, tree offset, splay_tree offsets) |
| 3701 |
{ |
| 3702 |
splay_tree_node n; |
| 3703 |
tree t; |
| 3704 |
|
| 3705 |
if (!is_empty_class (type)) |
| 3706 |
return 0; |
| 3707 |
|
| 3708 |
/* Record the location of this empty object in OFFSETS. */ |
| 3709 |
n = splay_tree_lookup (offsets, (splay_tree_key) offset); |
| 3710 |
if (!n) |
| 3711 |
return 0; |
| 3712 |
|
| 3713 |
for (t = (tree) n->value; t; t = TREE_CHAIN (t)) |
| 3714 |
if (same_type_p (TREE_VALUE (t), type)) |
| 3715 |
return 1; |
| 3716 |
|
| 3717 |
return 0; |
| 3718 |
} |
| 3719 |
|
| 3720 |
/* Walk through all the subobjects of TYPE (located at OFFSET). Call |
| 3721 |
F for every subobject, passing it the type, offset, and table of |
| 3722 |
OFFSETS. If VBASES_P is one, then virtual non-primary bases should |
| 3723 |
be traversed. |
| 3724 |
|
| 3725 |
If MAX_OFFSET is non-NULL, then subobjects with an offset greater |
| 3726 |
than MAX_OFFSET will not be walked. |
| 3727 |
|
| 3728 |
If F returns a nonzero value, the traversal ceases, and that value |
| 3729 |
is returned. Otherwise, returns zero. */ |
| 3730 |
|
| 3731 |
static int |
| 3732 |
walk_subobject_offsets (tree type, |
| 3733 |
subobject_offset_fn f, |
| 3734 |
tree offset, |
| 3735 |
splay_tree offsets, |
| 3736 |
tree max_offset, |
| 3737 |
int vbases_p) |
| 3738 |
{ |
| 3739 |
int r = 0; |
| 3740 |
tree type_binfo = NULL_TREE; |
| 3741 |
|
| 3742 |
/* If this OFFSET is bigger than the MAX_OFFSET, then we should |
| 3743 |
stop. */ |
| 3744 |
if (max_offset && INT_CST_LT (max_offset, offset)) |
| 3745 |
return 0; |
| 3746 |
|
| 3747 |
if (type == error_mark_node) |
| 3748 |
return 0; |
| 3749 |
|
| 3750 |
if (!TYPE_P (type)) |
| 3751 |
{ |
| 3752 |
if (abi_version_at_least (2)) |
| 3753 |
type_binfo = type; |
| 3754 |
type = BINFO_TYPE (type); |
| 3755 |
} |
| 3756 |
|
| 3757 |
if (CLASS_TYPE_P (type)) |
| 3758 |
{ |
| 3759 |
tree field; |
| 3760 |
tree binfo; |
| 3761 |
int i; |
| 3762 |
|
| 3763 |
/* Avoid recursing into objects that are not interesting. */ |
| 3764 |
if (!CLASSTYPE_CONTAINS_EMPTY_CLASS_P (type)) |
| 3765 |
return 0; |
| 3766 |
|
| 3767 |
/* Record the location of TYPE. */ |
| 3768 |
r = (*f) (type, offset, offsets); |
| 3769 |
if (r) |
| 3770 |
return r; |
| 3771 |
|
| 3772 |
/* Iterate through the direct base classes of TYPE. */ |
| 3773 |
if (!type_binfo) |
| 3774 |
type_binfo = TYPE_BINFO (type); |
| 3775 |
for (i = 0; BINFO_BASE_ITERATE (type_binfo, i, binfo); i++) |
| 3776 |
{ |
| 3777 |
tree binfo_offset; |
| 3778 |
|
| 3779 |
if (abi_version_at_least (2) |
| 3780 |
&& BINFO_VIRTUAL_P (binfo)) |
| 3781 |
continue; |
| 3782 |
|
| 3783 |
if (!vbases_p |
| 3784 |
&& BINFO_VIRTUAL_P (binfo) |
| 3785 |
&& !BINFO_PRIMARY_P (binfo)) |
| 3786 |
continue; |
| 3787 |
|
| 3788 |
if (!abi_version_at_least (2)) |
| 3789 |
binfo_offset = size_binop (PLUS_EXPR, |
| 3790 |
offset, |
| 3791 |
BINFO_OFFSET (binfo)); |
| 3792 |
else |
| 3793 |
{ |
| 3794 |
tree orig_binfo; |
| 3795 |
/* We cannot rely on BINFO_OFFSET being set for the base |
| 3796 |
class yet, but the offsets for direct non-virtual |
| 3797 |
bases can be calculated by going back to the TYPE. */ |
| 3798 |
orig_binfo = BINFO_BASE_BINFO (TYPE_BINFO (type), i); |
| 3799 |
binfo_offset = size_binop (PLUS_EXPR, |
| 3800 |
offset, |
| 3801 |
BINFO_OFFSET (orig_binfo)); |
| 3802 |
} |
| 3803 |
|
| 3804 |
r = walk_subobject_offsets (binfo, |
| 3805 |
f, |
| 3806 |
binfo_offset, |
| 3807 |
offsets, |
| 3808 |
max_offset, |
| 3809 |
(abi_version_at_least (2) |
| 3810 |
? /*vbases_p=*/0 : vbases_p)); |
| 3811 |
if (r) |
| 3812 |
return r; |
| 3813 |
} |
| 3814 |
|
| 3815 |
if (abi_version_at_least (2) && CLASSTYPE_VBASECLASSES (type)) |
| 3816 |
{ |
| 3817 |
unsigned ix; |
| 3818 |
vec<tree, va_gc> *vbases; |
| 3819 |
|
| 3820 |
/* Iterate through the virtual base classes of TYPE. In G++ |
| 3821 |
3.2, we included virtual bases in the direct base class |
| 3822 |
loop above, which results in incorrect results; the |
| 3823 |
correct offsets for virtual bases are only known when |
| 3824 |
working with the most derived type. */ |
| 3825 |
if (vbases_p) |
| 3826 |
for (vbases = CLASSTYPE_VBASECLASSES (type), ix = 0; |
| 3827 |
vec_safe_iterate (vbases, ix, &binfo); ix++) |
| 3828 |
{ |
| 3829 |
r = walk_subobject_offsets (binfo, |
| 3830 |
f, |
| 3831 |
size_binop (PLUS_EXPR, |
| 3832 |
offset, |
| 3833 |
BINFO_OFFSET (binfo)), |
| 3834 |
offsets, |
| 3835 |
max_offset, |
| 3836 |
/*vbases_p=*/0); |
| 3837 |
if (r) |
| 3838 |
return r; |
| 3839 |
} |
| 3840 |
else |
| 3841 |
{ |
| 3842 |
/* We still have to walk the primary base, if it is |
| 3843 |
virtual. (If it is non-virtual, then it was walked |
| 3844 |
above.) */ |
| 3845 |
tree vbase = get_primary_binfo (type_binfo); |
| 3846 |
|
| 3847 |
if (vbase && BINFO_VIRTUAL_P (vbase) |
| 3848 |
&& BINFO_PRIMARY_P (vbase) |
| 3849 |
&& BINFO_INHERITANCE_CHAIN (vbase) == type_binfo) |
| 3850 |
{ |
| 3851 |
r = (walk_subobject_offsets |
| 3852 |
(vbase, f, offset, |
| 3853 |
offsets, max_offset, /*vbases_p=*/0)); |
| 3854 |
if (r) |
| 3855 |
return r; |
| 3856 |
} |
| 3857 |
} |
| 3858 |
} |
| 3859 |
|
| 3860 |
/* Iterate through the fields of TYPE. */ |
| 3861 |
for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field)) |
| 3862 |
if (TREE_CODE (field) == FIELD_DECL |
| 3863 |
&& TREE_TYPE (field) != error_mark_node |
| 3864 |
&& !DECL_ARTIFICIAL (field)) |
| 3865 |
{ |
| 3866 |
tree field_offset; |
| 3867 |
|
| 3868 |
if (abi_version_at_least (2)) |
| 3869 |
field_offset = byte_position (field); |
| 3870 |
else |
| 3871 |
/* In G++ 3.2, DECL_FIELD_OFFSET was used. */ |
| 3872 |
field_offset = DECL_FIELD_OFFSET (field); |
| 3873 |
|
| 3874 |
r = walk_subobject_offsets (TREE_TYPE (field), |
| 3875 |
f, |
| 3876 |
size_binop (PLUS_EXPR, |
| 3877 |
offset, |
| 3878 |
field_offset), |
| 3879 |
offsets, |
| 3880 |
max_offset, |
| 3881 |
/*vbases_p=*/1); |
| 3882 |
if (r) |
| 3883 |
return r; |
| 3884 |
} |
| 3885 |
} |
| 3886 |
else if (TREE_CODE (type) == ARRAY_TYPE) |
| 3887 |
{ |
| 3888 |
tree element_type = strip_array_types (type); |
| 3889 |
tree domain = TYPE_DOMAIN (type); |
| 3890 |
tree index; |
| 3891 |
|
| 3892 |
/* Avoid recursing into objects that are not interesting. */ |
| 3893 |
if (!CLASS_TYPE_P (element_type) |
| 3894 |
|| !CLASSTYPE_CONTAINS_EMPTY_CLASS_P (element_type)) |
| 3895 |
return 0; |
| 3896 |
|
| 3897 |
/* Step through each of the elements in the array. */ |
| 3898 |
for (index = size_zero_node; |
| 3899 |
/* G++ 3.2 had an off-by-one error here. */ |
| 3900 |
(abi_version_at_least (2) |
| 3901 |
? !INT_CST_LT (TYPE_MAX_VALUE (domain), index) |
| 3902 |
: INT_CST_LT (index, TYPE_MAX_VALUE (domain))); |
| 3903 |
index = size_binop (PLUS_EXPR, index, size_one_node)) |
| 3904 |
{ |
| 3905 |
r = walk_subobject_offsets (TREE_TYPE (type), |
| 3906 |
f, |
| 3907 |
offset, |
| 3908 |
offsets, |
| 3909 |
max_offset, |
| 3910 |
/*vbases_p=*/1); |
| 3911 |
if (r) |
| 3912 |
return r; |
| 3913 |
offset = size_binop (PLUS_EXPR, offset, |
| 3914 |
TYPE_SIZE_UNIT (TREE_TYPE (type))); |
| 3915 |
/* If this new OFFSET is bigger than the MAX_OFFSET, then |
| 3916 |
there's no point in iterating through the remaining |
| 3917 |
elements of the array. */ |
| 3918 |
if (max_offset && INT_CST_LT (max_offset, offset)) |
| 3919 |
break; |
| 3920 |
} |
| 3921 |
} |
| 3922 |
|
| 3923 |
return 0; |
| 3924 |
} |
| 3925 |
|
| 3926 |
/* Record all of the empty subobjects of TYPE (either a type or a |
| 3927 |
binfo). If IS_DATA_MEMBER is true, then a non-static data member |
| 3928 |
is being placed at OFFSET; otherwise, it is a base class that is |
| 3929 |
being placed at OFFSET. */ |
| 3930 |
|
| 3931 |
static void |
| 3932 |
record_subobject_offsets (tree type, |
| 3933 |
tree offset, |
| 3934 |
splay_tree offsets, |
| 3935 |
bool is_data_member) |
| 3936 |
{ |
| 3937 |
tree max_offset; |
| 3938 |
/* If recording subobjects for a non-static data member or a |
| 3939 |
non-empty base class , we do not need to record offsets beyond |
| 3940 |
the size of the biggest empty class. Additional data members |
| 3941 |
will go at the end of the class. Additional base classes will go |
| 3942 |
either at offset zero (if empty, in which case they cannot |
| 3943 |
overlap with offsets past the size of the biggest empty class) or |
| 3944 |
at the end of the class. |
| 3945 |
|
| 3946 |
However, if we are placing an empty base class, then we must record |
| 3947 |
all offsets, as either the empty class is at offset zero (where |
| 3948 |
other empty classes might later be placed) or at the end of the |
| 3949 |
class (where other objects might then be placed, so other empty |
| 3950 |
subobjects might later overlap). */ |
| 3951 |
if (is_data_member |
| 3952 |
|| !is_empty_class (BINFO_TYPE (type))) |
| 3953 |
max_offset = sizeof_biggest_empty_class; |
| 3954 |
else |
| 3955 |
max_offset = NULL_TREE; |
| 3956 |
walk_subobject_offsets (type, record_subobject_offset, offset, |
| 3957 |
offsets, max_offset, is_data_member); |
| 3958 |
} |
| 3959 |
|
| 3960 |
/* Returns nonzero if any of the empty subobjects of TYPE (located at |
| 3961 |
OFFSET) conflict with entries in OFFSETS. If VBASES_P is nonzero, |
| 3962 |
virtual bases of TYPE are examined. */ |
| 3963 |
|
| 3964 |
static int |
| 3965 |
layout_conflict_p (tree type, |
| 3966 |
tree offset, |
| 3967 |
splay_tree offsets, |
| 3968 |
int vbases_p) |
| 3969 |
{ |
| 3970 |
splay_tree_node max_node; |
| 3971 |
|
| 3972 |
/* Get the node in OFFSETS that indicates the maximum offset where |
| 3973 |
an empty subobject is located. */ |
| 3974 |
max_node = splay_tree_max (offsets); |
| 3975 |
/* If there aren't any empty subobjects, then there's no point in |
| 3976 |
performing this check. */ |
| 3977 |
if (!max_node) |
| 3978 |
return 0; |
| 3979 |
|
| 3980 |
return walk_subobject_offsets (type, check_subobject_offset, offset, |
| 3981 |
offsets, (tree) (max_node->key), |
| 3982 |
vbases_p); |
| 3983 |
} |
| 3984 |
|
| 3985 |
/* DECL is a FIELD_DECL corresponding either to a base subobject of a |
| 3986 |
non-static data member of the type indicated by RLI. BINFO is the |
| 3987 |
binfo corresponding to the base subobject, OFFSETS maps offsets to |
| 3988 |
types already located at those offsets. This function determines |
| 3989 |
the position of the DECL. */ |
| 3990 |
|
| 3991 |
static void |
| 3992 |
layout_nonempty_base_or_field (record_layout_info rli, |
| 3993 |
tree decl, |
| 3994 |
tree binfo, |
| 3995 |
splay_tree offsets) |
| 3996 |
{ |
| 3997 |
tree offset = NULL_TREE; |
| 3998 |
bool field_p; |
| 3999 |
tree type; |
| 4000 |
|
| 4001 |
if (binfo) |
| 4002 |
{ |
| 4003 |
/* For the purposes of determining layout conflicts, we want to |
| 4004 |
use the class type of BINFO; TREE_TYPE (DECL) will be the |
| 4005 |
CLASSTYPE_AS_BASE version, which does not contain entries for |
| 4006 |
zero-sized bases. */ |
| 4007 |
type = TREE_TYPE (binfo); |
| 4008 |
field_p = false; |
| 4009 |
} |
| 4010 |
else |
| 4011 |
{ |
| 4012 |
type = TREE_TYPE (decl); |
| 4013 |
field_p = true; |
| 4014 |
} |
| 4015 |
|
| 4016 |
/* Try to place the field. It may take more than one try if we have |
| 4017 |
a hard time placing the field without putting two objects of the |
| 4018 |
same type at the same address. */ |
| 4019 |
while (1) |
| 4020 |
{ |
| 4021 |
struct record_layout_info_s old_rli = *rli; |
| 4022 |
|
| 4023 |
/* Place this field. */ |
| 4024 |
place_field (rli, decl); |
| 4025 |
offset = byte_position (decl); |
| 4026 |
|
| 4027 |
/* We have to check to see whether or not there is already |
| 4028 |
something of the same type at the offset we're about to use. |
| 4029 |
For example, consider: |
| 4030 |
|
| 4031 |
struct S {}; |
| 4032 |
struct T : public S { int i; }; |
| 4033 |
struct U : public S, public T {}; |
| 4034 |
|
| 4035 |
Here, we put S at offset zero in U. Then, we can't put T at |
| 4036 |
offset zero -- its S component would be at the same address |
| 4037 |
as the S we already allocated. So, we have to skip ahead. |
| 4038 |
Since all data members, including those whose type is an |
| 4039 |
empty class, have nonzero size, any overlap can happen only |
| 4040 |
with a direct or indirect base-class -- it can't happen with |
| 4041 |
a data member. */ |
| 4042 |
/* In a union, overlap is permitted; all members are placed at |
| 4043 |
offset zero. */ |
| 4044 |
if (TREE_CODE (rli->t) == UNION_TYPE) |
| 4045 |
break; |
| 4046 |
/* G++ 3.2 did not check for overlaps when placing a non-empty |
| 4047 |
virtual base. */ |
| 4048 |
if (!abi_version_at_least (2) && binfo && BINFO_VIRTUAL_P (binfo)) |
| 4049 |
break; |
| 4050 |
if (layout_conflict_p (field_p ? type : binfo, offset, |
| 4051 |
offsets, field_p)) |
| 4052 |
{ |
| 4053 |
/* Strip off the size allocated to this field. That puts us |
| 4054 |
at the first place we could have put the field with |
| 4055 |
proper alignment. */ |
| 4056 |
*rli = old_rli; |
| 4057 |
|
| 4058 |
/* Bump up by the alignment required for the type. */ |
| 4059 |
rli->bitpos |
| 4060 |
= size_binop (PLUS_EXPR, rli->bitpos, |
| 4061 |
bitsize_int (binfo |
| 4062 |
? CLASSTYPE_ALIGN (type) |
| 4063 |
: TYPE_ALIGN (type))); |
| 4064 |
normalize_rli (rli); |
| 4065 |
} |
| 4066 |
else |
| 4067 |
/* There was no conflict. We're done laying out this field. */ |
| 4068 |
break; |
| 4069 |
} |
| 4070 |
|
| 4071 |
/* Now that we know where it will be placed, update its |
| 4072 |
BINFO_OFFSET. */ |
| 4073 |
if (binfo && CLASS_TYPE_P (BINFO_TYPE (binfo))) |
| 4074 |
/* Indirect virtual bases may have a nonzero BINFO_OFFSET at |
| 4075 |
this point because their BINFO_OFFSET is copied from another |
| 4076 |
hierarchy. Therefore, we may not need to add the entire |
| 4077 |
OFFSET. */ |
| 4078 |
propagate_binfo_offsets (binfo, |
| 4079 |
size_diffop_loc (input_location, |
| 4080 |
convert (ssizetype, offset), |
| 4081 |
convert (ssizetype, |
| 4082 |
BINFO_OFFSET (binfo)))); |
| 4083 |
} |
| 4084 |
|
| 4085 |
/* Returns true if TYPE is empty and OFFSET is nonzero. */ |
| 4086 |
|
| 4087 |
static int |
| 4088 |
empty_base_at_nonzero_offset_p (tree type, |
| 4089 |
tree offset, |
| 4090 |
splay_tree /*offsets*/) |
| 4091 |
{ |
| 4092 |
return is_empty_class (type) && !integer_zerop (offset); |
| 4093 |
} |
| 4094 |
|
| 4095 |
/* Layout the empty base BINFO. EOC indicates the byte currently just |
| 4096 |
past the end of the class, and should be correctly aligned for a |
| 4097 |
class of the type indicated by BINFO; OFFSETS gives the offsets of |
| 4098 |
the empty bases allocated so far. T is the most derived |
| 4099 |
type. Return nonzero iff we added it at the end. */ |
| 4100 |
|
| 4101 |
static bool |
| 4102 |
layout_empty_base (record_layout_info rli, tree binfo, |
| 4103 |
tree eoc, splay_tree offsets) |
| 4104 |
{ |
| 4105 |
tree alignment; |
| 4106 |
tree basetype = BINFO_TYPE (binfo); |
| 4107 |
bool atend = false; |
| 4108 |
|
| 4109 |
/* This routine should only be used for empty classes. */ |
| 4110 |
gcc_assert (is_empty_class (basetype)); |
| 4111 |
alignment = ssize_int (CLASSTYPE_ALIGN_UNIT (basetype)); |
| 4112 |
|
| 4113 |
if (!integer_zerop (BINFO_OFFSET (binfo))) |
| 4114 |
{ |
| 4115 |
if (abi_version_at_least (2)) |
| 4116 |
propagate_binfo_offsets |
| 4117 |
(binfo, size_diffop_loc (input_location, |
| 4118 |
size_zero_node, BINFO_OFFSET (binfo))); |
| 4119 |
else |
| 4120 |
warning (OPT_Wabi, |
| 4121 |
"offset of empty base %qT may not be ABI-compliant and may" |
| 4122 |
"change in a future version of GCC", |
| 4123 |
BINFO_TYPE (binfo)); |
| 4124 |
} |
| 4125 |
|
| 4126 |
/* This is an empty base class. We first try to put it at offset |
| 4127 |
zero. */ |
| 4128 |
if (layout_conflict_p (binfo, |
| 4129 |
BINFO_OFFSET (binfo), |
| 4130 |
offsets, |
| 4131 |
/*vbases_p=*/0)) |
| 4132 |
{ |
| 4133 |
/* That didn't work. Now, we move forward from the next |
| 4134 |
available spot in the class. */ |
| 4135 |
atend = true; |
| 4136 |
propagate_binfo_offsets (binfo, convert (ssizetype, eoc)); |
| 4137 |
while (1) |
| 4138 |
{ |
| 4139 |
if (!layout_conflict_p (binfo, |
| 4140 |
BINFO_OFFSET (binfo), |
| 4141 |
offsets, |
| 4142 |
/*vbases_p=*/0)) |
| 4143 |
/* We finally found a spot where there's no overlap. */ |
| 4144 |
break; |
| 4145 |
|
| 4146 |
/* There's overlap here, too. Bump along to the next spot. */ |
| 4147 |
propagate_binfo_offsets (binfo, alignment); |
| 4148 |
} |
| 4149 |
} |
| 4150 |
|
| 4151 |
if (CLASSTYPE_USER_ALIGN (basetype)) |
| 4152 |
{ |
| 4153 |
rli->record_align = MAX (rli->record_align, CLASSTYPE_ALIGN (basetype)); |
| 4154 |
if (warn_packed) |
| 4155 |
rli->unpacked_align = MAX (rli->unpacked_align, CLASSTYPE_ALIGN (basetype)); |
| 4156 |
TYPE_USER_ALIGN (rli->t) = 1; |
| 4157 |
} |
| 4158 |
|
| 4159 |
return atend; |
| 4160 |
} |
| 4161 |
|
| 4162 |
/* Layout the base given by BINFO in the class indicated by RLI. |
| 4163 |
*BASE_ALIGN is a running maximum of the alignments of |
| 4164 |
any base class. OFFSETS gives the location of empty base |
| 4165 |
subobjects. T is the most derived type. Return nonzero if the new |
| 4166 |
object cannot be nearly-empty. A new FIELD_DECL is inserted at |
| 4167 |
*NEXT_FIELD, unless BINFO is for an empty base class. |
| 4168 |
|
| 4169 |
Returns the location at which the next field should be inserted. */ |
| 4170 |
|
| 4171 |
static tree * |
| 4172 |
build_base_field (record_layout_info rli, tree binfo, |
| 4173 |
splay_tree offsets, tree *next_field) |
| 4174 |
{ |
| 4175 |
tree t = rli->t; |
| 4176 |
tree basetype = BINFO_TYPE (binfo); |
| 4177 |
|
| 4178 |
if (!COMPLETE_TYPE_P (basetype)) |
| 4179 |
/* This error is now reported in xref_tag, thus giving better |
| 4180 |
location information. */ |
| 4181 |
return next_field; |
| 4182 |
|
| 4183 |
/* Place the base class. */ |
| 4184 |
if (!is_empty_class (basetype)) |
| 4185 |
{ |
| 4186 |
tree decl; |
| 4187 |
|
| 4188 |
/* The containing class is non-empty because it has a non-empty |
| 4189 |
base class. */ |
| 4190 |
CLASSTYPE_EMPTY_P (t) = 0; |
| 4191 |
|
| 4192 |
/* Create the FIELD_DECL. */ |
| 4193 |
decl = build_decl (input_location, |
| 4194 |
FIELD_DECL, NULL_TREE, CLASSTYPE_AS_BASE (basetype)); |
| 4195 |
DECL_ARTIFICIAL (decl) = 1; |
| 4196 |
DECL_IGNORED_P (decl) = 1; |
| 4197 |
DECL_FIELD_CONTEXT (decl) = t; |
| 4198 |
if (CLASSTYPE_AS_BASE (basetype)) |
| 4199 |
{ |
| 4200 |
DECL_SIZE (decl) = CLASSTYPE_SIZE (basetype); |
| 4201 |
DECL_SIZE_UNIT (decl) = CLASSTYPE_SIZE_UNIT (basetype); |
| 4202 |
DECL_ALIGN (decl) = CLASSTYPE_ALIGN (basetype); |
| 4203 |
DECL_USER_ALIGN (decl) = CLASSTYPE_USER_ALIGN (basetype); |
| 4204 |
DECL_MODE (decl) = TYPE_MODE (basetype); |
| 4205 |
DECL_FIELD_IS_BASE (decl) = 1; |
| 4206 |
|
| 4207 |
/* Try to place the field. It may take more than one try if we |
| 4208 |
have a hard time placing the field without putting two |
| 4209 |
objects of the same type at the same address. */ |
| 4210 |
layout_nonempty_base_or_field (rli, decl, binfo, offsets); |
| 4211 |
/* Add the new FIELD_DECL to the list of fields for T. */ |
| 4212 |
DECL_CHAIN (decl) = *next_field; |
| 4213 |
*next_field = decl; |
| 4214 |
next_field = &DECL_CHAIN (decl); |
| 4215 |
} |
| 4216 |
} |
| 4217 |
else |
| 4218 |
{ |
| 4219 |
tree eoc; |
| 4220 |
bool atend; |
| 4221 |
|
| 4222 |
/* On some platforms (ARM), even empty classes will not be |
| 4223 |
byte-aligned. */ |
| 4224 |
eoc = round_up_loc (input_location, |
| 4225 |
rli_size_unit_so_far (rli), |
| 4226 |
CLASSTYPE_ALIGN_UNIT (basetype)); |
| 4227 |
atend = layout_empty_base (rli, binfo, eoc, offsets); |
| 4228 |
/* A nearly-empty class "has no proper base class that is empty, |
| 4229 |
not morally virtual, and at an offset other than zero." */ |
| 4230 |
if (!BINFO_VIRTUAL_P (binfo) && CLASSTYPE_NEARLY_EMPTY_P (t)) |
| 4231 |
{ |
| 4232 |
if (atend) |
| 4233 |
CLASSTYPE_NEARLY_EMPTY_P (t) = 0; |
| 4234 |
/* The check above (used in G++ 3.2) is insufficient because |
| 4235 |
an empty class placed at offset zero might itself have an |
| 4236 |
empty base at a nonzero offset. */ |
| 4237 |
else if (walk_subobject_offsets (basetype, |
| 4238 |
empty_base_at_nonzero_offset_p, |
| 4239 |
size_zero_node, |
| 4240 |
/*offsets=*/NULL, |
| 4241 |
/*max_offset=*/NULL_TREE, |
| 4242 |
/*vbases_p=*/true)) |
| 4243 |
{ |
| 4244 |
if (abi_version_at_least (2)) |
| 4245 |
CLASSTYPE_NEARLY_EMPTY_P (t) = 0; |
| 4246 |
else |
| 4247 |
warning (OPT_Wabi, |
| 4248 |
"class %qT will be considered nearly empty in a " |
| 4249 |
"future version of GCC", t); |
| 4250 |
} |
| 4251 |
} |
| 4252 |
|
| 4253 |
/* We do not create a FIELD_DECL for empty base classes because |
| 4254 |
it might overlap some other field. We want to be able to |
| 4255 |
create CONSTRUCTORs for the class by iterating over the |
| 4256 |
FIELD_DECLs, and the back end does not handle overlapping |
| 4257 |
FIELD_DECLs. */ |
| 4258 |
|
| 4259 |
/* An empty virtual base causes a class to be non-empty |
| 4260 |
-- but in that case we do not need to clear CLASSTYPE_EMPTY_P |
| 4261 |
here because that was already done when the virtual table |
| 4262 |
pointer was created. */ |
| 4263 |
} |
| 4264 |
|
| 4265 |
/* Record the offsets of BINFO and its base subobjects. */ |
| 4266 |
record_subobject_offsets (binfo, |
| 4267 |
BINFO_OFFSET (binfo), |
| 4268 |
offsets, |
| 4269 |
/*is_data_member=*/false); |
| 4270 |
|
| 4271 |
return next_field; |
| 4272 |
} |
| 4273 |
|
| 4274 |
/* Layout all of the non-virtual base classes. Record empty |
| 4275 |
subobjects in OFFSETS. T is the most derived type. Return nonzero |
| 4276 |
if the type cannot be nearly empty. The fields created |
| 4277 |
corresponding to the base classes will be inserted at |
| 4278 |
*NEXT_FIELD. */ |
| 4279 |
|
| 4280 |
static void |
| 4281 |
build_base_fields (record_layout_info rli, |
| 4282 |
splay_tree offsets, tree *next_field) |
| 4283 |
{ |
| 4284 |
/* Chain to hold all the new FIELD_DECLs which stand in for base class |
| 4285 |
subobjects. */ |
| 4286 |
tree t = rli->t; |
| 4287 |
int n_baseclasses = BINFO_N_BASE_BINFOS (TYPE_BINFO (t)); |
| 4288 |
int i; |
| 4289 |
|
| 4290 |
/* The primary base class is always allocated first. */ |
| 4291 |
if (CLASSTYPE_HAS_PRIMARY_BASE_P (t)) |
| 4292 |
next_field = build_base_field (rli, CLASSTYPE_PRIMARY_BINFO (t), |
| 4293 |
offsets, next_field); |
| 4294 |
|
| 4295 |
/* Now allocate the rest of the bases. */ |
| 4296 |
for (i = 0; i < n_baseclasses; ++i) |
| 4297 |
{ |
| 4298 |
tree base_binfo; |
| 4299 |
|
| 4300 |
base_binfo = BINFO_BASE_BINFO (TYPE_BINFO (t), i); |
| 4301 |
|
| 4302 |
/* The primary base was already allocated above, so we don't |
| 4303 |
need to allocate it again here. */ |
| 4304 |
if (base_binfo == CLASSTYPE_PRIMARY_BINFO (t)) |
| 4305 |
continue; |
| 4306 |
|
| 4307 |
/* Virtual bases are added at the end (a primary virtual base |
| 4308 |
will have already been added). */ |
| 4309 |
if (BINFO_VIRTUAL_P (base_binfo)) |
| 4310 |
continue; |
| 4311 |
|
| 4312 |
next_field = build_base_field (rli, base_binfo, |
| 4313 |
offsets, next_field); |
| 4314 |
} |
| 4315 |
} |
| 4316 |
|
| 4317 |
/* Go through the TYPE_METHODS of T issuing any appropriate |
| 4318 |
diagnostics, figuring out which methods override which other |
| 4319 |
methods, and so forth. */ |
| 4320 |
|
| 4321 |
static void |
| 4322 |
check_methods (tree t) |
| 4323 |
{ |
| 4324 |
tree x; |
| 4325 |
|
| 4326 |
for (x = TYPE_METHODS (t); x; x = DECL_CHAIN (x)) |
| 4327 |
{ |
| 4328 |
check_for_override (x, t); |
| 4329 |
if (DECL_PURE_VIRTUAL_P (x) && ! DECL_VINDEX (x)) |
| 4330 |
error ("initializer specified for non-virtual method %q+D", x); |
| 4331 |
/* The name of the field is the original field name |
| 4332 |
Save this in auxiliary field for later overloading. */ |
| 4333 |
if (DECL_VINDEX (x)) |
| 4334 |
{ |
| 4335 |
TYPE_POLYMORPHIC_P (t) = 1; |
| 4336 |
if (DECL_PURE_VIRTUAL_P (x)) |
| 4337 |
vec_safe_push (CLASSTYPE_PURE_VIRTUALS (t), x); |
| 4338 |
} |
| 4339 |
/* All user-provided destructors are non-trivial. |
| 4340 |
Constructors and assignment ops are handled in |
| 4341 |
grok_special_member_properties. */ |
| 4342 |
if (DECL_DESTRUCTOR_P (x) && user_provided_p (x)) |
| 4343 |
TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t) = 1; |
| 4344 |
} |
| 4345 |
} |
| 4346 |
|
| 4347 |
/* FN is a constructor or destructor. Clone the declaration to create |
| 4348 |
a specialized in-charge or not-in-charge version, as indicated by |
| 4349 |
NAME. */ |
| 4350 |
|
| 4351 |
static tree |
| 4352 |
build_clone (tree fn, tree name) |
| 4353 |
{ |
| 4354 |
tree parms; |
| 4355 |
tree clone; |
| 4356 |
|
| 4357 |
/* Copy the function. */ |
| 4358 |
clone = copy_decl (fn); |
| 4359 |
/* Reset the function name. */ |
| 4360 |
DECL_NAME (clone) = name; |
| 4361 |
SET_DECL_ASSEMBLER_NAME (clone, NULL_TREE); |
| 4362 |
/* Remember where this function came from. */ |
| 4363 |
DECL_ABSTRACT_ORIGIN (clone) = fn; |
| 4364 |
/* Make it easy to find the CLONE given the FN. */ |
| 4365 |
DECL_CHAIN (clone) = DECL_CHAIN (fn); |
| 4366 |
DECL_CHAIN (fn) = clone; |
| 4367 |
|
| 4368 |
/* If this is a template, do the rest on the DECL_TEMPLATE_RESULT. */ |
| 4369 |
if (TREE_CODE (clone) == TEMPLATE_DECL) |
| 4370 |
{ |
| 4371 |
tree result = build_clone (DECL_TEMPLATE_RESULT (clone), name); |
| 4372 |
DECL_TEMPLATE_RESULT (clone) = result; |
| 4373 |
DECL_TEMPLATE_INFO (result) = copy_node (DECL_TEMPLATE_INFO (result)); |
| 4374 |
DECL_TI_TEMPLATE (result) = clone; |
| 4375 |
TREE_TYPE (clone) = TREE_TYPE (result); |
| 4376 |
return clone; |
| 4377 |
} |
| 4378 |
|
| 4379 |
DECL_CLONED_FUNCTION (clone) = fn; |
| 4380 |
/* There's no pending inline data for this function. */ |
| 4381 |
DECL_PENDING_INLINE_INFO (clone) = NULL; |
| 4382 |
DECL_PENDING_INLINE_P (clone) = 0; |
| 4383 |
|
| 4384 |
/* The base-class destructor is not virtual. */ |
| 4385 |
if (name == base_dtor_identifier) |
| 4386 |
{ |
| 4387 |
DECL_VIRTUAL_P (clone) = 0; |
| 4388 |
if (TREE_CODE (clone) != TEMPLATE_DECL) |
| 4389 |
DECL_VINDEX (clone) = NULL_TREE; |
| 4390 |
} |
| 4391 |
|
| 4392 |
/* If there was an in-charge parameter, drop it from the function |
| 4393 |
type. */ |
| 4394 |
if (DECL_HAS_IN_CHARGE_PARM_P (clone)) |
| 4395 |
{ |
| 4396 |
tree basetype; |
| 4397 |
tree parmtypes; |
| 4398 |
tree exceptions; |
| 4399 |
|
| 4400 |
exceptions = TYPE_RAISES_EXCEPTIONS (TREE_TYPE (clone)); |
| 4401 |
basetype = TYPE_METHOD_BASETYPE (TREE_TYPE (clone)); |
| 4402 |
parmtypes = TYPE_ARG_TYPES (TREE_TYPE (clone)); |
| 4403 |
/* Skip the `this' parameter. */ |
| 4404 |
parmtypes = TREE_CHAIN (parmtypes); |
| 4405 |
/* Skip the in-charge parameter. */ |
| 4406 |
parmtypes = TREE_CHAIN (parmtypes); |
| 4407 |
/* And the VTT parm, in a complete [cd]tor. */ |
| 4408 |
if (DECL_HAS_VTT_PARM_P (fn) |
| 4409 |
&& ! DECL_NEEDS_VTT_PARM_P (clone)) |
| 4410 |
parmtypes = TREE_CHAIN (parmtypes); |
| 4411 |
/* If this is subobject constructor or destructor, add the vtt |
| 4412 |
parameter. */ |
| 4413 |
TREE_TYPE (clone) |
| 4414 |
= build_method_type_directly (basetype, |
| 4415 |
TREE_TYPE (TREE_TYPE (clone)), |
| 4416 |
parmtypes); |
| 4417 |
if (exceptions) |
| 4418 |
TREE_TYPE (clone) = build_exception_variant (TREE_TYPE (clone), |
| 4419 |
exceptions); |
| 4420 |
TREE_TYPE (clone) |
| 4421 |
= cp_build_type_attribute_variant (TREE_TYPE (clone), |
| 4422 |
TYPE_ATTRIBUTES (TREE_TYPE (fn))); |
| 4423 |
} |
| 4424 |
|
| 4425 |
/* Copy the function parameters. */ |
| 4426 |
DECL_ARGUMENTS (clone) = copy_list (DECL_ARGUMENTS (clone)); |
| 4427 |
/* Remove the in-charge parameter. */ |
| 4428 |
if (DECL_HAS_IN_CHARGE_PARM_P (clone)) |
| 4429 |
{ |
| 4430 |
DECL_CHAIN (DECL_ARGUMENTS (clone)) |
| 4431 |
= DECL_CHAIN (DECL_CHAIN (DECL_ARGUMENTS (clone))); |
| 4432 |
DECL_HAS_IN_CHARGE_PARM_P (clone) = 0; |
| 4433 |
} |
| 4434 |
/* And the VTT parm, in a complete [cd]tor. */ |
| 4435 |
if (DECL_HAS_VTT_PARM_P (fn)) |
| 4436 |
{ |
| 4437 |
if (DECL_NEEDS_VTT_PARM_P (clone)) |
| 4438 |
DECL_HAS_VTT_PARM_P (clone) = 1; |
| 4439 |
else |
| 4440 |
{ |
| 4441 |
DECL_CHAIN (DECL_ARGUMENTS (clone)) |
| 4442 |
= DECL_CHAIN (DECL_CHAIN (DECL_ARGUMENTS (clone))); |
| 4443 |
DECL_HAS_VTT_PARM_P (clone) = 0; |
| 4444 |
} |
| 4445 |
} |
| 4446 |
|
| 4447 |
for (parms = DECL_ARGUMENTS (clone); parms; parms = DECL_CHAIN (parms)) |
| 4448 |
{ |
| 4449 |
DECL_CONTEXT (parms) = clone; |
| 4450 |
cxx_dup_lang_specific_decl (parms); |
| 4451 |
} |
| 4452 |
|
| 4453 |
/* Create the RTL for this function. */ |
| 4454 |
SET_DECL_RTL (clone, NULL); |
| 4455 |
rest_of_decl_compilation (clone, /*top_level=*/1, at_eof); |
| 4456 |
|
| 4457 |
if (pch_file) |
| 4458 |
note_decl_for_pch (clone); |
| 4459 |
|
| 4460 |
return clone; |
| 4461 |
} |
| 4462 |
|
| 4463 |
/* Implementation of DECL_CLONED_FUNCTION and DECL_CLONED_FUNCTION_P, do |
| 4464 |
not invoke this function directly. |
| 4465 |
|
| 4466 |
For a non-thunk function, returns the address of the slot for storing |
| 4467 |
the function it is a clone of. Otherwise returns NULL_TREE. |
| 4468 |
|
| 4469 |
If JUST_TESTING, looks through TEMPLATE_DECL and returns NULL if |
| 4470 |
cloned_function is unset. This is to support the separate |
| 4471 |
DECL_CLONED_FUNCTION and DECL_CLONED_FUNCTION_P modes; using the latter |
| 4472 |
on a template makes sense, but not the former. */ |
| 4473 |
|
| 4474 |
tree * |
| 4475 |
decl_cloned_function_p (const_tree decl, bool just_testing) |
| 4476 |
{ |
| 4477 |
tree *ptr; |
| 4478 |
if (just_testing) |
| 4479 |
decl = STRIP_TEMPLATE (decl); |
| 4480 |
|
| 4481 |
if (TREE_CODE (decl) != FUNCTION_DECL |
| 4482 |
|| !DECL_LANG_SPECIFIC (decl) |
| 4483 |
|| DECL_LANG_SPECIFIC (decl)->u.fn.thunk_p) |
| 4484 |
{ |
| 4485 |
#if defined ENABLE_TREE_CHECKING && (GCC_VERSION >= 2007) |
| 4486 |
if (!just_testing) |
| 4487 |
lang_check_failed (__FILE__, __LINE__, __FUNCTION__); |
| 4488 |
else |
| 4489 |
#endif |
| 4490 |
return NULL; |
| 4491 |
} |
| 4492 |
|
| 4493 |
ptr = &DECL_LANG_SPECIFIC (decl)->u.fn.u5.cloned_function; |
| 4494 |
if (just_testing && *ptr == NULL_TREE) |
| 4495 |
return NULL; |
| 4496 |
else |
| 4497 |
return ptr; |
| 4498 |
} |
| 4499 |
|
| 4500 |
/* Produce declarations for all appropriate clones of FN. If |
| 4501 |
UPDATE_METHOD_VEC_P is nonzero, the clones are added to the |
| 4502 |
CLASTYPE_METHOD_VEC as well. */ |
| 4503 |
|
| 4504 |
void |
| 4505 |
clone_function_decl (tree fn, int update_method_vec_p) |
| 4506 |
{ |
| 4507 |
tree clone; |
| 4508 |
|
| 4509 |
/* Avoid inappropriate cloning. */ |
| 4510 |
if (DECL_CHAIN (fn) |
| 4511 |
&& DECL_CLONED_FUNCTION_P (DECL_CHAIN (fn))) |
| 4512 |
return; |
| 4513 |
|
| 4514 |
if (DECL_MAYBE_IN_CHARGE_CONSTRUCTOR_P (fn)) |
| 4515 |
{ |
| 4516 |
/* For each constructor, we need two variants: an in-charge version |
| 4517 |
and a not-in-charge version. */ |
| 4518 |
clone = build_clone (fn, complete_ctor_identifier); |
| 4519 |
if (update_method_vec_p) |
| 4520 |
add_method (DECL_CONTEXT (clone), clone, NULL_TREE); |
| 4521 |
clone = build_clone (fn, base_ctor_identifier); |
| 4522 |
if (update_method_vec_p) |
| 4523 |
add_method (DECL_CONTEXT (clone), clone, NULL_TREE); |
| 4524 |
} |
| 4525 |
else |
| 4526 |
{ |
| 4527 |
gcc_assert (DECL_MAYBE_IN_CHARGE_DESTRUCTOR_P (fn)); |
| 4528 |
|
| 4529 |
/* For each destructor, we need three variants: an in-charge |
| 4530 |
version, a not-in-charge version, and an in-charge deleting |
| 4531 |
version. We clone the deleting version first because that |
| 4532 |
means it will go second on the TYPE_METHODS list -- and that |
| 4533 |
corresponds to the correct layout order in the virtual |
| 4534 |
function table. |
| 4535 |
|
| 4536 |
For a non-virtual destructor, we do not build a deleting |
| 4537 |
destructor. */ |
| 4538 |
if (DECL_VIRTUAL_P (fn)) |
| 4539 |
{ |
| 4540 |
clone = build_clone (fn, deleting_dtor_identifier); |
| 4541 |
if (update_method_vec_p) |
| 4542 |
add_method (DECL_CONTEXT (clone), clone, NULL_TREE); |
| 4543 |
} |
| 4544 |
clone = build_clone (fn, complete_dtor_identifier); |
| 4545 |
if (update_method_vec_p) |
| 4546 |
add_method (DECL_CONTEXT (clone), clone, NULL_TREE); |
| 4547 |
clone = build_clone (fn, base_dtor_identifier); |
| 4548 |
if (update_method_vec_p) |
| 4549 |
add_method (DECL_CONTEXT (clone), clone, NULL_TREE); |
| 4550 |
} |
| 4551 |
|
| 4552 |
/* Note that this is an abstract function that is never emitted. */ |
| 4553 |
DECL_ABSTRACT (fn) = 1; |
| 4554 |
} |
| 4555 |
|
| 4556 |
/* DECL is an in charge constructor, which is being defined. This will |
| 4557 |
have had an in class declaration, from whence clones were |
| 4558 |
declared. An out-of-class definition can specify additional default |
| 4559 |
arguments. As it is the clones that are involved in overload |
| 4560 |
resolution, we must propagate the information from the DECL to its |
| 4561 |
clones. */ |
| 4562 |
|
| 4563 |
void |
| 4564 |
adjust_clone_args (tree decl) |
| 4565 |
{ |
| 4566 |
tree clone; |
| 4567 |
|
| 4568 |
for (clone = DECL_CHAIN (decl); clone && DECL_CLONED_FUNCTION_P (clone); |
| 4569 |
clone = DECL_CHAIN (clone)) |
| 4570 |
{ |
| 4571 |
tree orig_clone_parms = TYPE_ARG_TYPES (TREE_TYPE (clone)); |
| 4572 |
tree orig_decl_parms = TYPE_ARG_TYPES (TREE_TYPE (decl)); |
| 4573 |
tree decl_parms, clone_parms; |
| 4574 |
|
| 4575 |
clone_parms = orig_clone_parms; |
| 4576 |
|
| 4577 |
/* Skip the 'this' parameter. */ |
| 4578 |
orig_clone_parms = TREE_CHAIN (orig_clone_parms); |
| 4579 |
orig_decl_parms = TREE_CHAIN (orig_decl_parms); |
| 4580 |
|
| 4581 |
if (DECL_HAS_IN_CHARGE_PARM_P (decl)) |
| 4582 |
orig_decl_parms = TREE_CHAIN (orig_decl_parms); |
| 4583 |
if (DECL_HAS_VTT_PARM_P (decl)) |
| 4584 |
orig_decl_parms = TREE_CHAIN (orig_decl_parms); |
| 4585 |
|
| 4586 |
clone_parms = orig_clone_parms; |
| 4587 |
if (DECL_HAS_VTT_PARM_P (clone)) |
| 4588 |
clone_parms = TREE_CHAIN (clone_parms); |
| 4589 |
|
| 4590 |
for (decl_parms = orig_decl_parms; decl_parms; |
| 4591 |
decl_parms = TREE_CHAIN (decl_parms), |
| 4592 |
clone_parms = TREE_CHAIN (clone_parms)) |
| 4593 |
{ |
| 4594 |
gcc_assert (same_type_p (TREE_TYPE (decl_parms), |
| 4595 |
TREE_TYPE (clone_parms))); |
| 4596 |
|
| 4597 |
if (TREE_PURPOSE (decl_parms) && !TREE_PURPOSE (clone_parms)) |
| 4598 |
{ |
| 4599 |
/* A default parameter has been added. Adjust the |
| 4600 |
clone's parameters. */ |
| 4601 |
tree exceptions = TYPE_RAISES_EXCEPTIONS (TREE_TYPE (clone)); |
| 4602 |
tree attrs = TYPE_ATTRIBUTES (TREE_TYPE (clone)); |
| 4603 |
tree basetype = TYPE_METHOD_BASETYPE (TREE_TYPE (clone)); |
| 4604 |
tree type; |
| 4605 |
|
| 4606 |
clone_parms = orig_decl_parms; |
| 4607 |
|
| 4608 |
if (DECL_HAS_VTT_PARM_P (clone)) |
| 4609 |
{ |
| 4610 |
clone_parms = tree_cons (TREE_PURPOSE (orig_clone_parms), |
| 4611 |
TREE_VALUE (orig_clone_parms), |
| 4612 |
clone_parms); |
| 4613 |
TREE_TYPE (clone_parms) = TREE_TYPE (orig_clone_parms); |
| 4614 |
} |
| 4615 |
type = build_method_type_directly (basetype, |
| 4616 |
TREE_TYPE (TREE_TYPE (clone)), |
| 4617 |
clone_parms); |
| 4618 |
if (exceptions) |
| 4619 |
type = build_exception_variant (type, exceptions); |
| 4620 |
if (attrs) |
| 4621 |
type = cp_build_type_attribute_variant (type, attrs); |
| 4622 |
TREE_TYPE (clone) = type; |
| 4623 |
|
| 4624 |
clone_parms = NULL_TREE; |
| 4625 |
break; |
| 4626 |
} |
| 4627 |
} |
| 4628 |
gcc_assert (!clone_parms); |
| 4629 |
} |
| 4630 |
} |
| 4631 |
|
| 4632 |
/* For each of the constructors and destructors in T, create an |
| 4633 |
in-charge and not-in-charge variant. */ |
| 4634 |
|
| 4635 |
static void |
| 4636 |
clone_constructors_and_destructors (tree t) |
| 4637 |
{ |
| 4638 |
tree fns; |
| 4639 |
|
| 4640 |
/* If for some reason we don't have a CLASSTYPE_METHOD_VEC, we bail |
| 4641 |
out now. */ |
| 4642 |
if (!CLASSTYPE_METHOD_VEC (t)) |
| 4643 |
return; |
| 4644 |
|
| 4645 |
for (fns = CLASSTYPE_CONSTRUCTORS (t); fns; fns = OVL_NEXT (fns)) |
| 4646 |
clone_function_decl (OVL_CURRENT (fns), /*update_method_vec_p=*/1); |
| 4647 |
for (fns = CLASSTYPE_DESTRUCTORS (t); fns; fns = OVL_NEXT (fns)) |
| 4648 |
clone_function_decl (OVL_CURRENT (fns), /*update_method_vec_p=*/1); |
| 4649 |
} |
| 4650 |
|
| 4651 |
/* Deduce noexcept for a destructor DTOR. */ |
| 4652 |
|
| 4653 |
void |
| 4654 |
deduce_noexcept_on_destructor (tree dtor) |
| 4655 |
{ |
| 4656 |
if (!TYPE_RAISES_EXCEPTIONS (TREE_TYPE (dtor))) |
| 4657 |
{ |
| 4658 |
tree ctx = DECL_CONTEXT (dtor); |
| 4659 |
tree implicit_fn = implicitly_declare_fn (sfk_destructor, ctx, |
| 4660 |
/*const_p=*/false, |
| 4661 |
NULL, NULL); |
| 4662 |
tree eh_spec = TYPE_RAISES_EXCEPTIONS (TREE_TYPE (implicit_fn)); |
| 4663 |
TREE_TYPE (dtor) = build_exception_variant (TREE_TYPE (dtor), eh_spec); |
| 4664 |
} |
| 4665 |
} |
| 4666 |
|
| 4667 |
/* For each destructor in T, deduce noexcept: |
| 4668 |
|
| 4669 |
12.4/3: A declaration of a destructor that does not have an |
| 4670 |
exception-specification is implicitly considered to have the |
| 4671 |
same exception-specification as an implicit declaration (15.4). */ |
| 4672 |
|
| 4673 |
static void |
| 4674 |
deduce_noexcept_on_destructors (tree t) |
| 4675 |
{ |
| 4676 |
/* If for some reason we don't have a CLASSTYPE_METHOD_VEC, we bail |
| 4677 |
out now. */ |
| 4678 |
if (!CLASSTYPE_METHOD_VEC (t)) |
| 4679 |
return; |
| 4680 |
|
| 4681 |
for (tree fns = CLASSTYPE_DESTRUCTORS (t); fns; fns = OVL_NEXT (fns)) |
| 4682 |
deduce_noexcept_on_destructor (OVL_CURRENT (fns)); |
| 4683 |
} |
| 4684 |
|
| 4685 |
/* Subroutine of set_one_vmethod_tm_attributes. Search base classes |
| 4686 |
of TYPE for virtual functions which FNDECL overrides. Return a |
| 4687 |
mask of the tm attributes found therein. */ |
| 4688 |
|
| 4689 |
static int |
| 4690 |
look_for_tm_attr_overrides (tree type, tree fndecl) |
| 4691 |
{ |
| 4692 |
tree binfo = TYPE_BINFO (type); |
| 4693 |
tree base_binfo; |
| 4694 |
int ix, found = 0; |
| 4695 |
|
| 4696 |
for (ix = 0; BINFO_BASE_ITERATE (binfo, ix, base_binfo); ++ix) |
| 4697 |
{ |
| 4698 |
tree o, basetype = BINFO_TYPE (base_binfo); |
| 4699 |
|
| 4700 |
if (!TYPE_POLYMORPHIC_P (basetype)) |
| 4701 |
continue; |
| 4702 |
|
| 4703 |
o = look_for_overrides_here (basetype, fndecl); |
| 4704 |
if (o) |
| 4705 |
found |= tm_attr_to_mask (find_tm_attribute |
| 4706 |
(TYPE_ATTRIBUTES (TREE_TYPE (o)))); |
| 4707 |
else |
| 4708 |
found |= look_for_tm_attr_overrides (basetype, fndecl); |
| 4709 |
} |
| 4710 |
|
| 4711 |
return found; |
| 4712 |
} |
| 4713 |
|
| 4714 |
/* Subroutine of set_method_tm_attributes. Handle the checks and |
| 4715 |
inheritance for one virtual method FNDECL. */ |
| 4716 |
|
| 4717 |
static void |
| 4718 |
set_one_vmethod_tm_attributes (tree type, tree fndecl) |
| 4719 |
{ |
| 4720 |
tree tm_attr; |
| 4721 |
int found, have; |
| 4722 |
|
| 4723 |
found = look_for_tm_attr_overrides (type, fndecl); |
| 4724 |
|
| 4725 |
/* If FNDECL doesn't actually override anything (i.e. T is the |
| 4726 |
class that first declares FNDECL virtual), then we're done. */ |
| 4727 |
if (found == 0) |
| 4728 |
return; |
| 4729 |
|
| 4730 |
tm_attr = find_tm_attribute (TYPE_ATTRIBUTES (TREE_TYPE (fndecl))); |
| 4731 |
have = tm_attr_to_mask (tm_attr); |
| 4732 |
|
| 4733 |
/* Intel STM Language Extension 3.0, Section 4.2 table 4: |
| 4734 |
tm_pure must match exactly, otherwise no weakening of |
| 4735 |
tm_safe > tm_callable > nothing. */ |
| 4736 |
/* ??? The tm_pure attribute didn't make the transition to the |
| 4737 |
multivendor language spec. */ |
| 4738 |
if (have == TM_ATTR_PURE) |
| 4739 |
{ |
| 4740 |
if (found != TM_ATTR_PURE) |
| 4741 |
{ |
| 4742 |
found &= -found; |
| 4743 |
goto err_override; |
| 4744 |
} |
| 4745 |
} |
| 4746 |
/* If the overridden function is tm_pure, then FNDECL must be. */ |
| 4747 |
else if (found == TM_ATTR_PURE && tm_attr) |
| 4748 |
goto err_override; |
| 4749 |
/* Look for base class combinations that cannot be satisfied. */ |
| 4750 |
else if (found != TM_ATTR_PURE && (found & TM_ATTR_PURE)) |
| 4751 |
{ |
| 4752 |
found &= ~TM_ATTR_PURE; |
| 4753 |
found &= -found; |
| 4754 |
error_at (DECL_SOURCE_LOCATION (fndecl), |
| 4755 |
"method overrides both %<transaction_pure%> and %qE methods", |
| 4756 |
tm_mask_to_attr (found)); |
| 4757 |
} |
| 4758 |
/* If FNDECL did not declare an attribute, then inherit the most |
| 4759 |
restrictive one. */ |
| 4760 |
else if (tm_attr == NULL) |
| 4761 |
{ |
| 4762 |
apply_tm_attr (fndecl, tm_mask_to_attr (found & -found)); |
| 4763 |
} |
| 4764 |
/* Otherwise validate that we're not weaker than a function |
| 4765 |
that is being overridden. */ |
| 4766 |
else |
| 4767 |
{ |
| 4768 |
found &= -found; |
| 4769 |
if (found <= TM_ATTR_CALLABLE && have > found) |
| 4770 |
goto err_override; |
| 4771 |
} |
| 4772 |
return; |
| 4773 |
|
| 4774 |
err_override: |
| 4775 |
error_at (DECL_SOURCE_LOCATION (fndecl), |
| 4776 |
"method declared %qE overriding %qE method", |
| 4777 |
tm_attr, tm_mask_to_attr (found)); |
| 4778 |
} |
| 4779 |
|
| 4780 |
/* For each of the methods in T, propagate a class-level tm attribute. */ |
| 4781 |
|
| 4782 |
static void |
| 4783 |
set_method_tm_attributes (tree t) |
| 4784 |
{ |
| 4785 |
tree class_tm_attr, fndecl; |
| 4786 |
|
| 4787 |
/* Don't bother collecting tm attributes if transactional memory |
| 4788 |
support is not enabled. */ |
| 4789 |
if (!flag_tm) |
| 4790 |
return; |
| 4791 |
|
| 4792 |
/* Process virtual methods first, as they inherit directly from the |
| 4793 |
base virtual function and also require validation of new attributes. */ |
| 4794 |
if (TYPE_CONTAINS_VPTR_P (t)) |
| 4795 |
{ |
| 4796 |
tree vchain; |
| 4797 |
for (vchain = BINFO_VIRTUALS (TYPE_BINFO (t)); vchain; |
| 4798 |
vchain = TREE_CHAIN (vchain)) |
| 4799 |
{ |
| 4800 |
fndecl = BV_FN (vchain); |
| 4801 |
if (DECL_THUNK_P (fndecl)) |
| 4802 |
fndecl = THUNK_TARGET (fndecl); |
| 4803 |
set_one_vmethod_tm_attributes (t, fndecl); |
| 4804 |
} |
| 4805 |
} |
| 4806 |
|
| 4807 |
/* If the class doesn't have an attribute, nothing more to do. */ |
| 4808 |
class_tm_attr = find_tm_attribute (TYPE_ATTRIBUTES (t)); |
| 4809 |
if (class_tm_attr == NULL) |
| 4810 |
return; |
| 4811 |
|
| 4812 |
/* Any method that does not yet have a tm attribute inherits |
| 4813 |
the one from the class. */ |
| 4814 |
for (fndecl = TYPE_METHODS (t); fndecl; fndecl = TREE_CHAIN (fndecl)) |
| 4815 |
{ |
| 4816 |
if (!find_tm_attribute (TYPE_ATTRIBUTES (TREE_TYPE (fndecl)))) |
| 4817 |
apply_tm_attr (fndecl, class_tm_attr); |
| 4818 |
} |
| 4819 |
} |
| 4820 |
|
| 4821 |
/* Returns true iff class T has a user-defined constructor other than |
| 4822 |
the default constructor. */ |
| 4823 |
|
| 4824 |
bool |
| 4825 |
type_has_user_nondefault_constructor (tree t) |
| 4826 |
{ |
| 4827 |
tree fns; |
| 4828 |
|
| 4829 |
if (!TYPE_HAS_USER_CONSTRUCTOR (t)) |
| 4830 |
return false; |
| 4831 |
|
| 4832 |
for (fns = CLASSTYPE_CONSTRUCTORS (t); fns; fns = OVL_NEXT (fns)) |
| 4833 |
{ |
| 4834 |
tree fn = OVL_CURRENT (fns); |
| 4835 |
if (!DECL_ARTIFICIAL (fn) |
| 4836 |
&& (TREE_CODE (fn) == TEMPLATE_DECL |
| 4837 |
|| (skip_artificial_parms_for (fn, DECL_ARGUMENTS (fn)) |
| 4838 |
!= NULL_TREE))) |
| 4839 |
return true; |
| 4840 |
} |
| 4841 |
|
| 4842 |
return false; |
| 4843 |
} |
| 4844 |
|
| 4845 |
/* Returns the defaulted constructor if T has one. Otherwise, returns |
| 4846 |
NULL_TREE. */ |
| 4847 |
|
| 4848 |
tree |
| 4849 |
in_class_defaulted_default_constructor (tree t) |
| 4850 |
{ |
| 4851 |
tree fns, args; |
| 4852 |
|
| 4853 |
if (!TYPE_HAS_USER_CONSTRUCTOR (t)) |
| 4854 |
return NULL_TREE; |
| 4855 |
|
| 4856 |
for (fns = CLASSTYPE_CONSTRUCTORS (t); fns; fns = OVL_NEXT (fns)) |
| 4857 |
{ |
| 4858 |
tree fn = OVL_CURRENT (fns); |
| 4859 |
|
| 4860 |
if (DECL_DEFAULTED_IN_CLASS_P (fn)) |
| 4861 |
{ |
| 4862 |
args = FUNCTION_FIRST_USER_PARMTYPE (fn); |
| 4863 |
while (args && TREE_PURPOSE (args)) |
| 4864 |
args = TREE_CHAIN (args); |
| 4865 |
if (!args || args == void_list_node) |
| 4866 |
return fn; |
| 4867 |
} |
| 4868 |
} |
| 4869 |
|
| 4870 |
return NULL_TREE; |
| 4871 |
} |
| 4872 |
|
| 4873 |
/* Returns true iff FN is a user-provided function, i.e. user-declared |
| 4874 |
and not defaulted at its first declaration; or explicit, private, |
| 4875 |
protected, or non-const. */ |
| 4876 |
|
| 4877 |
bool |
| 4878 |
user_provided_p (tree fn) |
| 4879 |
{ |
| 4880 |
if (TREE_CODE (fn) == TEMPLATE_DECL) |
| 4881 |
return true; |
| 4882 |
else |
| 4883 |
return (!DECL_ARTIFICIAL (fn) |
| 4884 |
&& !(DECL_INITIALIZED_IN_CLASS_P (fn) |
| 4885 |
&& (DECL_DEFAULTED_FN (fn) || DECL_DELETED_FN (fn)))); |
| 4886 |
} |
| 4887 |
|
| 4888 |
/* Returns true iff class T has a user-provided constructor. */ |
| 4889 |
|
| 4890 |
bool |
| 4891 |
type_has_user_provided_constructor (tree t) |
| 4892 |
{ |
| 4893 |
tree fns; |
| 4894 |
|
| 4895 |
if (!CLASS_TYPE_P (t)) |
| 4896 |
return false; |
| 4897 |
|
| 4898 |
if (!TYPE_HAS_USER_CONSTRUCTOR (t)) |
| 4899 |
return false; |
| 4900 |
|
| 4901 |
/* This can happen in error cases; avoid crashing. */ |
| 4902 |
if (!CLASSTYPE_METHOD_VEC (t)) |
| 4903 |
return false; |
| 4904 |
|
| 4905 |
for (fns = CLASSTYPE_CONSTRUCTORS (t); fns; fns = OVL_NEXT (fns)) |
| 4906 |
if (user_provided_p (OVL_CURRENT (fns))) |
| 4907 |
return true; |
| 4908 |
|
| 4909 |
return false; |
| 4910 |
} |
| 4911 |
|
| 4912 |
/* Returns true iff class T has a user-provided default constructor. */ |
| 4913 |
|
| 4914 |
bool |
| 4915 |
type_has_user_provided_default_constructor (tree t) |
| 4916 |
{ |
| 4917 |
tree fns; |
| 4918 |
|
| 4919 |
if (!TYPE_HAS_USER_CONSTRUCTOR (t)) |
| 4920 |
return false; |
| 4921 |
|
| 4922 |
for (fns = CLASSTYPE_CONSTRUCTORS (t); fns; fns = OVL_NEXT (fns)) |
| 4923 |
{ |
| 4924 |
tree fn = OVL_CURRENT (fns); |
| 4925 |
if (TREE_CODE (fn) == FUNCTION_DECL |
| 4926 |
&& user_provided_p (fn) |
| 4927 |
&& sufficient_parms_p (FUNCTION_FIRST_USER_PARMTYPE (fn))) |
| 4928 |
return true; |
| 4929 |
} |
| 4930 |
|
| 4931 |
return false; |
| 4932 |
} |
| 4933 |
|
| 4934 |
/* TYPE is being used as a virtual base, and has a non-trivial move |
| 4935 |
assignment. Return true if this is due to there being a user-provided |
| 4936 |
move assignment in TYPE or one of its subobjects; if there isn't, then |
| 4937 |
multiple move assignment can't cause any harm. */ |
| 4938 |
|
| 4939 |
bool |
| 4940 |
vbase_has_user_provided_move_assign (tree type) |
| 4941 |
{ |
| 4942 |
/* Does the type itself have a user-provided move assignment operator? */ |
| 4943 |
for (tree fns |
| 4944 |
= lookup_fnfields_slot_nolazy (type, ansi_assopname (NOP_EXPR)); |
| 4945 |
fns; fns = OVL_NEXT (fns)) |
| 4946 |
{ |
| 4947 |
tree fn = OVL_CURRENT (fns); |
| 4948 |
if (move_fn_p (fn) && user_provided_p (fn)) |
| 4949 |
return true; |
| 4950 |
} |
| 4951 |
|
| 4952 |
/* Do any of its bases? */ |
| 4953 |
tree binfo = TYPE_BINFO (type); |
| 4954 |
tree base_binfo; |
| 4955 |
for (int i = 0; BINFO_BASE_ITERATE (binfo, i, base_binfo); ++i) |
| 4956 |
if (vbase_has_user_provided_move_assign (BINFO_TYPE (base_binfo))) |
| 4957 |
return true; |
| 4958 |
|
| 4959 |
/* Or non-static data members? */ |
| 4960 |
for (tree field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field)) |
| 4961 |
{ |
| 4962 |
if (TREE_CODE (field) == FIELD_DECL |
| 4963 |
&& CLASS_TYPE_P (TREE_TYPE (field)) |
| 4964 |
&& vbase_has_user_provided_move_assign (TREE_TYPE (field))) |
| 4965 |
return true; |
| 4966 |
} |
| 4967 |
|
| 4968 |
/* Seems not. */ |
| 4969 |
return false; |
| 4970 |
} |
| 4971 |
|
| 4972 |
/* If default-initialization leaves part of TYPE uninitialized, returns |
| 4973 |
a DECL for the field or TYPE itself (DR 253). */ |
| 4974 |
|
| 4975 |
tree |
| 4976 |
default_init_uninitialized_part (tree type) |
| 4977 |
{ |
| 4978 |
tree t, r, binfo; |
| 4979 |
int i; |
| 4980 |
|
| 4981 |
type = strip_array_types (type); |
| 4982 |
if (!CLASS_TYPE_P (type)) |
| 4983 |
return type; |
| 4984 |
if (type_has_user_provided_default_constructor (type)) |
| 4985 |
return NULL_TREE; |
| 4986 |
for (binfo = TYPE_BINFO (type), i = 0; |
| 4987 |
BINFO_BASE_ITERATE (binfo, i, t); ++i) |
| 4988 |
{ |
| 4989 |
r = default_init_uninitialized_part (BINFO_TYPE (t)); |
| 4990 |
if (r) |
| 4991 |
return r; |
| 4992 |
} |
| 4993 |
for (t = TYPE_FIELDS (type); t; t = DECL_CHAIN (t)) |
| 4994 |
if (TREE_CODE (t) == FIELD_DECL |
| 4995 |
&& !DECL_ARTIFICIAL (t) |
| 4996 |
&& !DECL_INITIAL (t)) |
| 4997 |
{ |
| 4998 |
r = default_init_uninitialized_part (TREE_TYPE (t)); |
| 4999 |
if (r) |
| 5000 |
return DECL_P (r) ? r : t; |
| 5001 |
} |
| 5002 |
|
| 5003 |
return NULL_TREE; |
| 5004 |
} |
| 5005 |
|
| 5006 |
/* Returns true iff for class T, a trivial synthesized default constructor |
| 5007 |
would be constexpr. */ |
| 5008 |
|
| 5009 |
bool |
| 5010 |
trivial_default_constructor_is_constexpr (tree t) |
| 5011 |
{ |
| 5012 |
/* A defaulted trivial default constructor is constexpr |
| 5013 |
if there is nothing to initialize. */ |
| 5014 |
gcc_assert (!TYPE_HAS_COMPLEX_DFLT (t)); |
| 5015 |
return is_really_empty_class (t); |
| 5016 |
} |
| 5017 |
|
| 5018 |
/* Returns true iff class T has a constexpr default constructor. */ |
| 5019 |
|
| 5020 |
bool |
| 5021 |
type_has_constexpr_default_constructor (tree t) |
| 5022 |
{ |
| 5023 |
tree fns; |
| 5024 |
|
| 5025 |
if (!CLASS_TYPE_P (t)) |
| 5026 |
{ |
| 5027 |
/* The caller should have stripped an enclosing array. */ |
| 5028 |
gcc_assert (TREE_CODE (t) != ARRAY_TYPE); |
| 5029 |
return false; |
| 5030 |
} |
| 5031 |
if (CLASSTYPE_LAZY_DEFAULT_CTOR (t)) |
| 5032 |
{ |
| 5033 |
if (!TYPE_HAS_COMPLEX_DFLT (t)) |
| 5034 |
return trivial_default_constructor_is_constexpr (t); |
| 5035 |
/* Non-trivial, we need to check subobject constructors. */ |
| 5036 |
lazily_declare_fn (sfk_constructor, t); |
| 5037 |
} |
| 5038 |
fns = locate_ctor (t); |
| 5039 |
return (fns && DECL_DECLARED_CONSTEXPR_P (fns)); |
| 5040 |
} |
| 5041 |
|
| 5042 |
/* Returns true iff class TYPE has a virtual destructor. */ |
| 5043 |
|
| 5044 |
bool |
| 5045 |
type_has_virtual_destructor (tree type) |
| 5046 |
{ |
| 5047 |
tree dtor; |
| 5048 |
|
| 5049 |
if (!CLASS_TYPE_P (type)) |
| 5050 |
return false; |
| 5051 |
|
| 5052 |
gcc_assert (COMPLETE_TYPE_P (type)); |
| 5053 |
dtor = CLASSTYPE_DESTRUCTORS (type); |
| 5054 |
return (dtor && DECL_VIRTUAL_P (dtor)); |
| 5055 |
} |
| 5056 |
|
| 5057 |
/* Returns true iff class T has a move constructor. */ |
| 5058 |
|
| 5059 |
bool |
| 5060 |
type_has_move_constructor (tree t) |
| 5061 |
{ |
| 5062 |
tree fns; |
| 5063 |
|
| 5064 |
if (CLASSTYPE_LAZY_MOVE_CTOR (t)) |
| 5065 |
{ |
| 5066 |
gcc_assert (COMPLETE_TYPE_P (t)); |
| 5067 |
lazily_declare_fn (sfk_move_constructor, t); |
| 5068 |
} |
| 5069 |
|
| 5070 |
if (!CLASSTYPE_METHOD_VEC (t)) |
| 5071 |
return false; |
| 5072 |
|
| 5073 |
for (fns = CLASSTYPE_CONSTRUCTORS (t); fns; fns = OVL_NEXT (fns)) |
| 5074 |
if (move_fn_p (OVL_CURRENT (fns))) |
| 5075 |
return true; |
| 5076 |
|
| 5077 |
return false; |
| 5078 |
} |
| 5079 |
|
| 5080 |
/* Returns true iff class T has a move assignment operator. */ |
| 5081 |
|
| 5082 |
bool |
| 5083 |
type_has_move_assign (tree t) |
| 5084 |
{ |
| 5085 |
tree fns; |
| 5086 |
|
| 5087 |
if (CLASSTYPE_LAZY_MOVE_ASSIGN (t)) |
| 5088 |
{ |
| 5089 |
gcc_assert (COMPLETE_TYPE_P (t)); |
| 5090 |
lazily_declare_fn (sfk_move_assignment, t); |
| 5091 |
} |
| 5092 |
|
| 5093 |
for (fns = lookup_fnfields_slot_nolazy (t, ansi_assopname (NOP_EXPR)); |
| 5094 |
fns; fns = OVL_NEXT (fns)) |
| 5095 |
if (move_fn_p (OVL_CURRENT (fns))) |
| 5096 |
return true; |
| 5097 |
|
| 5098 |
return false; |
| 5099 |
} |
| 5100 |
|
| 5101 |
/* Returns true iff class T has a move constructor that was explicitly |
| 5102 |
declared in the class body. Note that this is different from |
| 5103 |
"user-provided", which doesn't include functions that are defaulted in |
| 5104 |
the class. */ |
| 5105 |
|
| 5106 |
bool |
| 5107 |
type_has_user_declared_move_constructor (tree t) |
| 5108 |
{ |
| 5109 |
tree fns; |
| 5110 |
|
| 5111 |
if (CLASSTYPE_LAZY_MOVE_CTOR (t)) |
| 5112 |
return false; |
| 5113 |
|
| 5114 |
if (!CLASSTYPE_METHOD_VEC (t)) |
| 5115 |
return false; |
| 5116 |
|
| 5117 |
for (fns = CLASSTYPE_CONSTRUCTORS (t); fns; fns = OVL_NEXT (fns)) |
| 5118 |
{ |
| 5119 |
tree fn = OVL_CURRENT (fns); |
| 5120 |
if (move_fn_p (fn) && !DECL_ARTIFICIAL (fn)) |
| 5121 |
return true; |
| 5122 |
} |
| 5123 |
|
| 5124 |
return false; |
| 5125 |
} |
| 5126 |
|
| 5127 |
/* Returns true iff class T has a move assignment operator that was |
| 5128 |
explicitly declared in the class body. */ |
| 5129 |
|
| 5130 |
bool |
| 5131 |
type_has_user_declared_move_assign (tree t) |
| 5132 |
{ |
| 5133 |
tree fns; |
| 5134 |
|
| 5135 |
if (CLASSTYPE_LAZY_MOVE_ASSIGN (t)) |
| 5136 |
return false; |
| 5137 |
|
| 5138 |
for (fns = lookup_fnfields_slot_nolazy (t, ansi_assopname (NOP_EXPR)); |
| 5139 |
fns; fns = OVL_NEXT (fns)) |
| 5140 |
{ |
| 5141 |
tree fn = OVL_CURRENT (fns); |
| 5142 |
if (move_fn_p (fn) && !DECL_ARTIFICIAL (fn)) |
| 5143 |
return true; |
| 5144 |
} |
| 5145 |
|
| 5146 |
return false; |
| 5147 |
} |
| 5148 |
|
| 5149 |
/* Nonzero if we need to build up a constructor call when initializing an |
| 5150 |
object of this class, either because it has a user-declared constructor |
| 5151 |
or because it doesn't have a default constructor (so we need to give an |
| 5152 |
error if no initializer is provided). Use TYPE_NEEDS_CONSTRUCTING when |
| 5153 |
what you care about is whether or not an object can be produced by a |
| 5154 |
constructor (e.g. so we don't set TREE_READONLY on const variables of |
| 5155 |
such type); use this function when what you care about is whether or not |
| 5156 |
to try to call a constructor to create an object. The latter case is |
| 5157 |
the former plus some cases of constructors that cannot be called. */ |
| 5158 |
|
| 5159 |
bool |
| 5160 |
type_build_ctor_call (tree t) |
| 5161 |
{ |
| 5162 |
tree inner; |
| 5163 |
if (TYPE_NEEDS_CONSTRUCTING (t)) |
| 5164 |
return true; |
| 5165 |
inner = strip_array_types (t); |
| 5166 |
if (!CLASS_TYPE_P (inner) || ANON_AGGR_TYPE_P (inner)) |
| 5167 |
return false; |
| 5168 |
if (!TYPE_HAS_DEFAULT_CONSTRUCTOR (inner)) |
| 5169 |
return true; |
| 5170 |
if (cxx_dialect < cxx11) |
| 5171 |
return false; |
| 5172 |
/* A user-declared constructor might be private, and a constructor might |
| 5173 |
be trivial but deleted. */ |
| 5174 |
for (tree fns = lookup_fnfields_slot (inner, complete_ctor_identifier); |
| 5175 |
fns; fns = OVL_NEXT (fns)) |
| 5176 |
{ |
| 5177 |
tree fn = OVL_CURRENT (fns); |
| 5178 |
if (!DECL_ARTIFICIAL (fn) |
| 5179 |
|| DECL_DELETED_FN (fn)) |
| 5180 |
return true; |
| 5181 |
} |
| 5182 |
return false; |
| 5183 |
} |
| 5184 |
|
| 5185 |
/* Like type_build_ctor_call, but for destructors. */ |
| 5186 |
|
| 5187 |
bool |
| 5188 |
type_build_dtor_call (tree t) |
| 5189 |
{ |
| 5190 |
tree inner; |
| 5191 |
if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t)) |
| 5192 |
return true; |
| 5193 |
inner = strip_array_types (t); |
| 5194 |
if (!CLASS_TYPE_P (inner) || ANON_AGGR_TYPE_P (inner) |
| 5195 |
|| !COMPLETE_TYPE_P (inner)) |
| 5196 |
return false; |
| 5197 |
if (cxx_dialect < cxx11) |
| 5198 |
return false; |
| 5199 |
/* A user-declared destructor might be private, and a destructor might |
| 5200 |
be trivial but deleted. */ |
| 5201 |
for (tree fns = lookup_fnfields_slot (inner, complete_dtor_identifier); |
| 5202 |
fns; fns = OVL_NEXT (fns)) |
| 5203 |
{ |
| 5204 |
tree fn = OVL_CURRENT (fns); |
| 5205 |
if (!DECL_ARTIFICIAL (fn) |
| 5206 |
|| DECL_DELETED_FN (fn)) |
| 5207 |
return true; |
| 5208 |
} |
| 5209 |
return false; |
| 5210 |
} |
| 5211 |
|
| 5212 |
/* Remove all zero-width bit-fields from T. */ |
| 5213 |
|
| 5214 |
static void |
| 5215 |
remove_zero_width_bit_fields (tree t) |
| 5216 |
{ |
| 5217 |
tree *fieldsp; |
| 5218 |
|
| 5219 |
fieldsp = &TYPE_FIELDS (t); |
| 5220 |
while (*fieldsp) |
| 5221 |
{ |
| 5222 |
if (TREE_CODE (*fieldsp) == FIELD_DECL |
| 5223 |
&& DECL_C_BIT_FIELD (*fieldsp) |
| 5224 |
/* We should not be confused by the fact that grokbitfield |
| 5225 |
temporarily sets the width of the bit field into |
| 5226 |
DECL_INITIAL (*fieldsp). |
| 5227 |
check_bitfield_decl eventually sets DECL_SIZE (*fieldsp) |
| 5228 |
to that width. */ |
| 5229 |
&& integer_zerop (DECL_SIZE (*fieldsp))) |
| 5230 |
*fieldsp = DECL_CHAIN (*fieldsp); |
| 5231 |
else |
| 5232 |
fieldsp = &DECL_CHAIN (*fieldsp); |
| 5233 |
} |
| 5234 |
} |
| 5235 |
|
| 5236 |
/* Returns TRUE iff we need a cookie when dynamically allocating an |
| 5237 |
array whose elements have the indicated class TYPE. */ |
| 5238 |
|
| 5239 |
static bool |
| 5240 |
type_requires_array_cookie (tree type) |
| 5241 |
{ |
| 5242 |
tree fns; |
| 5243 |
bool has_two_argument_delete_p = false; |
| 5244 |
|
| 5245 |
gcc_assert (CLASS_TYPE_P (type)); |
| 5246 |
|
| 5247 |
/* If there's a non-trivial destructor, we need a cookie. In order |
| 5248 |
to iterate through the array calling the destructor for each |
| 5249 |
element, we'll have to know how many elements there are. */ |
| 5250 |
if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type)) |
| 5251 |
return true; |
| 5252 |
|
| 5253 |
/* If the usual deallocation function is a two-argument whose second |
| 5254 |
argument is of type `size_t', then we have to pass the size of |
| 5255 |
the array to the deallocation function, so we will need to store |
| 5256 |
a cookie. */ |
| 5257 |
fns = lookup_fnfields (TYPE_BINFO (type), |
| 5258 |
ansi_opname (VEC_DELETE_EXPR), |
| 5259 |
/*protect=*/0); |
| 5260 |
/* If there are no `operator []' members, or the lookup is |
| 5261 |
ambiguous, then we don't need a cookie. */ |
| 5262 |
if (!fns || fns == error_mark_node) |
| 5263 |
return false; |
| 5264 |
/* Loop through all of the functions. */ |
| 5265 |
for (fns = BASELINK_FUNCTIONS (fns); fns; fns = OVL_NEXT (fns)) |
| 5266 |
{ |
| 5267 |
tree fn; |
| 5268 |
tree second_parm; |
| 5269 |
|
| 5270 |
/* Select the current function. */ |
| 5271 |
fn = OVL_CURRENT (fns); |
| 5272 |
/* See if this function is a one-argument delete function. If |
| 5273 |
it is, then it will be the usual deallocation function. */ |
| 5274 |
second_parm = TREE_CHAIN (TYPE_ARG_TYPES (TREE_TYPE (fn))); |
| 5275 |
if (second_parm == void_list_node) |
| 5276 |
return false; |
| 5277 |
/* Do not consider this function if its second argument is an |
| 5278 |
ellipsis. */ |
| 5279 |
if (!second_parm) |
| 5280 |
continue; |
| 5281 |
/* Otherwise, if we have a two-argument function and the second |
| 5282 |
argument is `size_t', it will be the usual deallocation |
| 5283 |
function -- unless there is one-argument function, too. */ |
| 5284 |
if (TREE_CHAIN (second_parm) == void_list_node |
| 5285 |
&& same_type_p (TREE_VALUE (second_parm), size_type_node)) |
| 5286 |
has_two_argument_delete_p = true; |
| 5287 |
} |
| 5288 |
|
| 5289 |
return has_two_argument_delete_p; |
| 5290 |
} |
| 5291 |
|
| 5292 |
/* Finish computing the `literal type' property of class type T. |
| 5293 |
|
| 5294 |
At this point, we have already processed base classes and |
| 5295 |
non-static data members. We need to check whether the copy |
| 5296 |
constructor is trivial, the destructor is trivial, and there |
| 5297 |
is a trivial default constructor or at least one constexpr |
| 5298 |
constructor other than the copy constructor. */ |
| 5299 |
|
| 5300 |
static void |
| 5301 |
finalize_literal_type_property (tree t) |
| 5302 |
{ |
| 5303 |
tree fn; |
| 5304 |
|
| 5305 |
if (cxx_dialect < cxx11 |
| 5306 |
|| TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t)) |
| 5307 |
CLASSTYPE_LITERAL_P (t) = false; |
| 5308 |
else if (CLASSTYPE_LITERAL_P (t) && !TYPE_HAS_TRIVIAL_DFLT (t) |
| 5309 |
&& CLASSTYPE_NON_AGGREGATE (t) |
| 5310 |
&& !TYPE_HAS_CONSTEXPR_CTOR (t)) |
| 5311 |
CLASSTYPE_LITERAL_P (t) = false; |
| 5312 |
|
| 5313 |
if (!CLASSTYPE_LITERAL_P (t)) |
| 5314 |
for (fn = TYPE_METHODS (t); fn; fn = DECL_CHAIN (fn)) |
| 5315 |
if (DECL_DECLARED_CONSTEXPR_P (fn) |
| 5316 |
&& TREE_CODE (fn) != TEMPLATE_DECL |
| 5317 |
&& DECL_NONSTATIC_MEMBER_FUNCTION_P (fn) |
| 5318 |
&& !DECL_CONSTRUCTOR_P (fn)) |
| 5319 |
{ |
| 5320 |
DECL_DECLARED_CONSTEXPR_P (fn) = false; |
| 5321 |
if (!DECL_GENERATED_P (fn)) |
| 5322 |
{ |
| 5323 |
error ("enclosing class of constexpr non-static member " |
| 5324 |
"function %q+#D is not a literal type", fn); |
| 5325 |
explain_non_literal_class (t); |
| 5326 |
} |
| 5327 |
} |
| 5328 |
} |
| 5329 |
|
| 5330 |
/* T is a non-literal type used in a context which requires a constant |
| 5331 |
expression. Explain why it isn't literal. */ |
| 5332 |
|
| 5333 |
void |
| 5334 |
explain_non_literal_class (tree t) |
| 5335 |
{ |
| 5336 |
static struct pointer_set_t *diagnosed; |
| 5337 |
|
| 5338 |
if (!CLASS_TYPE_P (t)) |
| 5339 |
return; |
| 5340 |
t = TYPE_MAIN_VARIANT (t); |
| 5341 |
|
| 5342 |
if (diagnosed == NULL) |
| 5343 |
diagnosed = pointer_set_create (); |
| 5344 |
if (pointer_set_insert (diagnosed, t) != 0) |
| 5345 |
/* Already explained. */ |
| 5346 |
return; |
| 5347 |
|
| 5348 |
inform (0, "%q+T is not literal because:", t); |
| 5349 |
if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t)) |
| 5350 |
inform (0, " %q+T has a non-trivial destructor", t); |
| 5351 |
else if (CLASSTYPE_NON_AGGREGATE (t) |
| 5352 |
&& !TYPE_HAS_TRIVIAL_DFLT (t) |
| 5353 |
&& !TYPE_HAS_CONSTEXPR_CTOR (t)) |
| 5354 |
{ |
| 5355 |
inform (0, " %q+T is not an aggregate, does not have a trivial " |
| 5356 |
"default constructor, and has no constexpr constructor that " |
| 5357 |
"is not a copy or move constructor", t); |
| 5358 |
if (TYPE_HAS_DEFAULT_CONSTRUCTOR (t) |
| 5359 |
&& !type_has_user_provided_default_constructor (t)) |
| 5360 |
{ |
| 5361 |
/* Note that we can't simply call locate_ctor because when the |
| 5362 |
constructor is deleted it just returns NULL_TREE. */ |
| 5363 |
tree fns; |
| 5364 |
for (fns = CLASSTYPE_CONSTRUCTORS (t); fns; fns = OVL_NEXT (fns)) |
| 5365 |
{ |
| 5366 |
tree fn = OVL_CURRENT (fns); |
| 5367 |
tree parms = TYPE_ARG_TYPES (TREE_TYPE (fn)); |
| 5368 |
|
| 5369 |
parms = skip_artificial_parms_for (fn, parms); |
| 5370 |
|
| 5371 |
if (sufficient_parms_p (parms)) |
| 5372 |
{ |
| 5373 |
if (DECL_DELETED_FN (fn)) |
| 5374 |
maybe_explain_implicit_delete (fn); |
| 5375 |
else |
| 5376 |
explain_invalid_constexpr_fn (fn); |
| 5377 |
break; |
| 5378 |
} |
| 5379 |
} |
| 5380 |
} |
| 5381 |
} |
| 5382 |
else |
| 5383 |
{ |
| 5384 |
tree binfo, base_binfo, field; int i; |
| 5385 |
for (binfo = TYPE_BINFO (t), i = 0; |
| 5386 |
BINFO_BASE_ITERATE (binfo, i, base_binfo); i++) |
| 5387 |
{ |
| 5388 |
tree basetype = TREE_TYPE (base_binfo); |
| 5389 |
if (!CLASSTYPE_LITERAL_P (basetype)) |
| 5390 |
{ |
| 5391 |
inform (0, " base class %qT of %q+T is non-literal", |
| 5392 |
basetype, t); |
| 5393 |
explain_non_literal_class (basetype); |
| 5394 |
return; |
| 5395 |
} |
| 5396 |
} |
| 5397 |
for (field = TYPE_FIELDS (t); field; field = TREE_CHAIN (field)) |
| 5398 |
{ |
| 5399 |
tree ftype; |
| 5400 |
if (TREE_CODE (field) != FIELD_DECL) |
| 5401 |
continue; |
| 5402 |
ftype = TREE_TYPE (field); |
| 5403 |
if (!literal_type_p (ftype)) |
| 5404 |
{ |
| 5405 |
inform (0, " non-static data member %q+D has " |
| 5406 |
"non-literal type", field); |
| 5407 |
if (CLASS_TYPE_P (ftype)) |
| 5408 |
explain_non_literal_class (ftype); |
| 5409 |
} |
| 5410 |
} |
| 5411 |
} |
| 5412 |
} |
| 5413 |
|
| 5414 |
/* Check the validity of the bases and members declared in T. Add any |
| 5415 |
implicitly-generated functions (like copy-constructors and |
| 5416 |
assignment operators). Compute various flag bits (like |
| 5417 |
CLASSTYPE_NON_LAYOUT_POD_T) for T. This routine works purely at the C++ |
| 5418 |
level: i.e., independently of the ABI in use. */ |
| 5419 |
|
| 5420 |
static void |
| 5421 |
check_bases_and_members (tree t) |
| 5422 |
{ |
| 5423 |
/* Nonzero if the implicitly generated copy constructor should take |
| 5424 |
a non-const reference argument. */ |
| 5425 |
int cant_have_const_ctor; |
| 5426 |
/* Nonzero if the implicitly generated assignment operator |
| 5427 |
should take a non-const reference argument. */ |
| 5428 |
int no_const_asn_ref; |
| 5429 |
tree access_decls; |
| 5430 |
bool saved_complex_asn_ref; |
| 5431 |
bool saved_nontrivial_dtor; |
| 5432 |
tree fn; |
| 5433 |
|
| 5434 |
/* By default, we use const reference arguments and generate default |
| 5435 |
constructors. */ |
| 5436 |
cant_have_const_ctor = 0; |
| 5437 |
no_const_asn_ref = 0; |
| 5438 |
|
| 5439 |
/* Check all the base-classes. */ |
| 5440 |
check_bases (t, &cant_have_const_ctor, |
| 5441 |
&no_const_asn_ref); |
| 5442 |
|
| 5443 |
/* Deduce noexcept on destructors. This needs to happen after we've set |
| 5444 |
triviality flags appropriately for our bases. */ |
| 5445 |
if (cxx_dialect >= cxx11) |
| 5446 |
deduce_noexcept_on_destructors (t); |
| 5447 |
|
| 5448 |
/* Check all the method declarations. */ |
| 5449 |
check_methods (t); |
| 5450 |
|
| 5451 |
/* Save the initial values of these flags which only indicate whether |
| 5452 |
or not the class has user-provided functions. As we analyze the |
| 5453 |
bases and members we can set these flags for other reasons. */ |
| 5454 |
saved_complex_asn_ref = TYPE_HAS_COMPLEX_COPY_ASSIGN (t); |
| 5455 |
saved_nontrivial_dtor = TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t); |
| 5456 |
|
| 5457 |
/* Check all the data member declarations. We cannot call |
| 5458 |
check_field_decls until we have called check_bases check_methods, |
| 5459 |
as check_field_decls depends on TYPE_HAS_NONTRIVIAL_DESTRUCTOR |
| 5460 |
being set appropriately. */ |
| 5461 |
check_field_decls (t, &access_decls, |
| 5462 |
&cant_have_const_ctor, |
| 5463 |
&no_const_asn_ref); |
| 5464 |
|
| 5465 |
/* A nearly-empty class has to be vptr-containing; a nearly empty |
| 5466 |
class contains just a vptr. */ |
| 5467 |
if (!TYPE_CONTAINS_VPTR_P (t)) |
| 5468 |
CLASSTYPE_NEARLY_EMPTY_P (t) = 0; |
| 5469 |
|
| 5470 |
/* Do some bookkeeping that will guide the generation of implicitly |
| 5471 |
declared member functions. */ |
| 5472 |
TYPE_HAS_COMPLEX_COPY_CTOR (t) |= TYPE_CONTAINS_VPTR_P (t); |
| 5473 |
TYPE_HAS_COMPLEX_MOVE_CTOR (t) |= TYPE_CONTAINS_VPTR_P (t); |
| 5474 |
/* We need to call a constructor for this class if it has a |
| 5475 |
user-provided constructor, or if the default constructor is going |
| 5476 |
to initialize the vptr. (This is not an if-and-only-if; |
| 5477 |
TYPE_NEEDS_CONSTRUCTING is set elsewhere if bases or members |
| 5478 |
themselves need constructing.) */ |
| 5479 |
TYPE_NEEDS_CONSTRUCTING (t) |
| 5480 |
|= (type_has_user_provided_constructor (t) || TYPE_CONTAINS_VPTR_P (t)); |
| 5481 |
/* [dcl.init.aggr] |
| 5482 |
|
| 5483 |
An aggregate is an array or a class with no user-provided |
| 5484 |
constructors ... and no virtual functions. |
| 5485 |
|
| 5486 |
Again, other conditions for being an aggregate are checked |
| 5487 |
elsewhere. */ |
| 5488 |
CLASSTYPE_NON_AGGREGATE (t) |
| 5489 |
|= (type_has_user_provided_constructor (t) || TYPE_POLYMORPHIC_P (t)); |
| 5490 |
/* This is the C++98/03 definition of POD; it changed in C++0x, but we |
| 5491 |
retain the old definition internally for ABI reasons. */ |
| 5492 |
CLASSTYPE_NON_LAYOUT_POD_P (t) |
| 5493 |
|= (CLASSTYPE_NON_AGGREGATE (t) |
| 5494 |
|| saved_nontrivial_dtor || saved_complex_asn_ref); |
| 5495 |
CLASSTYPE_NON_STD_LAYOUT (t) |= TYPE_CONTAINS_VPTR_P (t); |
| 5496 |
TYPE_HAS_COMPLEX_COPY_ASSIGN (t) |= TYPE_CONTAINS_VPTR_P (t); |
| 5497 |
TYPE_HAS_COMPLEX_MOVE_ASSIGN (t) |= TYPE_CONTAINS_VPTR_P (t); |
| 5498 |
TYPE_HAS_COMPLEX_DFLT (t) |= TYPE_CONTAINS_VPTR_P (t); |
| 5499 |
|
| 5500 |
/* If the class has no user-declared constructor, but does have |
| 5501 |
non-static const or reference data members that can never be |
| 5502 |
initialized, issue a warning. */ |
| 5503 |
if (warn_uninitialized |
| 5504 |
/* Classes with user-declared constructors are presumed to |
| 5505 |
initialize these members. */ |
| 5506 |
&& !TYPE_HAS_USER_CONSTRUCTOR (t) |
| 5507 |
/* Aggregates can be initialized with brace-enclosed |
| 5508 |
initializers. */ |
| 5509 |
&& CLASSTYPE_NON_AGGREGATE (t)) |
| 5510 |
{ |
| 5511 |
tree field; |
| 5512 |
|
| 5513 |
for (field = TYPE_FIELDS (t); field; field = DECL_CHAIN (field)) |
| 5514 |
{ |
| 5515 |
tree type; |
| 5516 |
|
| 5517 |
if (TREE_CODE (field) != FIELD_DECL |
| 5518 |
|| DECL_INITIAL (field) != NULL_TREE) |
| 5519 |
continue; |
| 5520 |
|
| 5521 |
type = TREE_TYPE (field); |
| 5522 |
if (TREE_CODE (type) == REFERENCE_TYPE) |
| 5523 |
warning (OPT_Wuninitialized, "non-static reference %q+#D " |
| 5524 |
"in class without a constructor", field); |
| 5525 |
else if (CP_TYPE_CONST_P (type) |
| 5526 |
&& (!CLASS_TYPE_P (type) |
| 5527 |
|| !TYPE_HAS_DEFAULT_CONSTRUCTOR (type))) |
| 5528 |
warning (OPT_Wuninitialized, "non-static const member %q+#D " |
| 5529 |
"in class without a constructor", field); |
| 5530 |
} |
| 5531 |
} |
| 5532 |
|
| 5533 |
/* Synthesize any needed methods. */ |
| 5534 |
add_implicitly_declared_members (t, &access_decls, |
| 5535 |
cant_have_const_ctor, |
| 5536 |
no_const_asn_ref); |
| 5537 |
|
| 5538 |
/* Check defaulted declarations here so we have cant_have_const_ctor |
| 5539 |
and don't need to worry about clones. */ |
| 5540 |
for (fn = TYPE_METHODS (t); fn; fn = DECL_CHAIN (fn)) |
| 5541 |
if (!DECL_ARTIFICIAL (fn) && DECL_DEFAULTED_IN_CLASS_P (fn)) |
| 5542 |
{ |
| 5543 |
int copy = copy_fn_p (fn); |
| 5544 |
if (copy > 0) |
| 5545 |
{ |
| 5546 |
bool imp_const_p |
| 5547 |
= (DECL_CONSTRUCTOR_P (fn) ? !cant_have_const_ctor |
| 5548 |
: !no_const_asn_ref); |
| 5549 |
bool fn_const_p = (copy == 2); |
| 5550 |
|
| 5551 |
if (fn_const_p && !imp_const_p) |
| 5552 |
/* If the function is defaulted outside the class, we just |
| 5553 |
give the synthesis error. */ |
| 5554 |
error ("%q+D declared to take const reference, but implicit " |
| 5555 |
"declaration would take non-const", fn); |
| 5556 |
} |
| 5557 |
defaulted_late_check (fn); |
| 5558 |
} |
| 5559 |
|
| 5560 |
if (LAMBDA_TYPE_P (t)) |
| 5561 |
{ |
| 5562 |
/* "The closure type associated with a lambda-expression has a deleted |
| 5563 |
default constructor and a deleted copy assignment operator." */ |
| 5564 |
TYPE_NEEDS_CONSTRUCTING (t) = 1; |
| 5565 |
TYPE_HAS_COMPLEX_DFLT (t) = 1; |
| 5566 |
TYPE_HAS_COMPLEX_COPY_ASSIGN (t) = 1; |
| 5567 |
CLASSTYPE_LAZY_MOVE_ASSIGN (t) = 0; |
| 5568 |
|
| 5569 |
/* "This class type is not an aggregate." */ |
| 5570 |
CLASSTYPE_NON_AGGREGATE (t) = 1; |
| 5571 |
} |
| 5572 |
|
| 5573 |
/* Compute the 'literal type' property before we |
| 5574 |
do anything with non-static member functions. */ |
| 5575 |
finalize_literal_type_property (t); |
| 5576 |
|
| 5577 |
/* Create the in-charge and not-in-charge variants of constructors |
| 5578 |
and destructors. */ |
| 5579 |
clone_constructors_and_destructors (t); |
| 5580 |
|
| 5581 |
/* Process the using-declarations. */ |
| 5582 |
for (; access_decls; access_decls = TREE_CHAIN (access_decls)) |
| 5583 |
handle_using_decl (TREE_VALUE (access_decls), t); |
| 5584 |
|
| 5585 |
/* Build and sort the CLASSTYPE_METHOD_VEC. */ |
| 5586 |
finish_struct_methods (t); |
| 5587 |
|
| 5588 |
/* Figure out whether or not we will need a cookie when dynamically |
| 5589 |
allocating an array of this type. */ |
| 5590 |
TYPE_LANG_SPECIFIC (t)->u.c.vec_new_uses_cookie |
| 5591 |
= type_requires_array_cookie (t); |
| 5592 |
} |
| 5593 |
|
| 5594 |
/* If T needs a pointer to its virtual function table, set TYPE_VFIELD |
| 5595 |
accordingly. If a new vfield was created (because T doesn't have a |
| 5596 |
primary base class), then the newly created field is returned. It |
| 5597 |
is not added to the TYPE_FIELDS list; it is the caller's |
| 5598 |
responsibility to do that. Accumulate declared virtual functions |
| 5599 |
on VIRTUALS_P. */ |
| 5600 |
|
| 5601 |
static tree |
| 5602 |
create_vtable_ptr (tree t, tree* virtuals_p) |
| 5603 |
{ |
| 5604 |
tree fn; |
| 5605 |
|
| 5606 |
/* Collect the virtual functions declared in T. */ |
| 5607 |
for (fn = TYPE_METHODS (t); fn; fn = DECL_CHAIN (fn)) |
| 5608 |
if (DECL_VINDEX (fn) && !DECL_MAYBE_IN_CHARGE_DESTRUCTOR_P (fn) |
| 5609 |
&& TREE_CODE (DECL_VINDEX (fn)) != INTEGER_CST) |
| 5610 |
{ |
| 5611 |
tree new_virtual = make_node (TREE_LIST); |
| 5612 |
|
| 5613 |
BV_FN (new_virtual) = fn; |
| 5614 |
BV_DELTA (new_virtual) = integer_zero_node; |
| 5615 |
BV_VCALL_INDEX (new_virtual) = NULL_TREE; |
| 5616 |
|
| 5617 |
TREE_CHAIN (new_virtual) = *virtuals_p; |
| 5618 |
*virtuals_p = new_virtual; |
| 5619 |
} |
| 5620 |
|
| 5621 |
/* If we couldn't find an appropriate base class, create a new field |
| 5622 |
here. Even if there weren't any new virtual functions, we might need a |
| 5623 |
new virtual function table if we're supposed to include vptrs in |
| 5624 |
all classes that need them. */ |
| 5625 |
if (!TYPE_VFIELD (t) && (*virtuals_p || TYPE_CONTAINS_VPTR_P (t))) |
| 5626 |
{ |
| 5627 |
/* We build this decl with vtbl_ptr_type_node, which is a |
| 5628 |
`vtable_entry_type*'. It might seem more precise to use |
| 5629 |
`vtable_entry_type (*)[N]' where N is the number of virtual |
| 5630 |
functions. However, that would require the vtable pointer in |
| 5631 |
base classes to have a different type than the vtable pointer |
| 5632 |
in derived classes. We could make that happen, but that |
| 5633 |
still wouldn't solve all the problems. In particular, the |
| 5634 |
type-based alias analysis code would decide that assignments |
| 5635 |
to the base class vtable pointer can't alias assignments to |
| 5636 |
the derived class vtable pointer, since they have different |
| 5637 |
types. Thus, in a derived class destructor, where the base |
| 5638 |
class constructor was inlined, we could generate bad code for |
| 5639 |
setting up the vtable pointer. |
| 5640 |
|
| 5641 |
Therefore, we use one type for all vtable pointers. We still |
| 5642 |
use a type-correct type; it's just doesn't indicate the array |
| 5643 |
bounds. That's better than using `void*' or some such; it's |
| 5644 |
cleaner, and it let's the alias analysis code know that these |
| 5645 |
stores cannot alias stores to void*! */ |
| 5646 |
tree field; |
| 5647 |
|
| 5648 |
field = build_decl (input_location, |
| 5649 |
FIELD_DECL, get_vfield_name (t), vtbl_ptr_type_node); |
| 5650 |
DECL_VIRTUAL_P (field) = 1; |
| 5651 |
DECL_ARTIFICIAL (field) = 1; |
| 5652 |
DECL_FIELD_CONTEXT (field) = t; |
| 5653 |
DECL_FCONTEXT (field) = t; |
| 5654 |
if (TYPE_PACKED (t)) |
| 5655 |
DECL_PACKED (field) = 1; |
| 5656 |
|
| 5657 |
TYPE_VFIELD (t) = field; |
| 5658 |
|
| 5659 |
/* This class is non-empty. */ |
| 5660 |
CLASSTYPE_EMPTY_P (t) = 0; |
| 5661 |
|
| 5662 |
return field; |
| 5663 |
} |
| 5664 |
|
| 5665 |
return NULL_TREE; |
| 5666 |
} |
| 5667 |
|
| 5668 |
/* Add OFFSET to all base types of BINFO which is a base in the |
| 5669 |
hierarchy dominated by T. |
| 5670 |
|
| 5671 |
OFFSET, which is a type offset, is number of bytes. */ |
| 5672 |
|
| 5673 |
static void |
| 5674 |
propagate_binfo_offsets (tree binfo, tree offset) |
| 5675 |
{ |
| 5676 |
int i; |
| 5677 |
tree primary_binfo; |
| 5678 |
tree base_binfo; |
| 5679 |
|
| 5680 |
/* Update BINFO's offset. */ |
| 5681 |
BINFO_OFFSET (binfo) |
| 5682 |
= convert (sizetype, |
| 5683 |
size_binop (PLUS_EXPR, |
| 5684 |
convert (ssizetype, BINFO_OFFSET (binfo)), |
| 5685 |
offset)); |
| 5686 |
|
| 5687 |
/* Find the primary base class. */ |
| 5688 |
primary_binfo = get_primary_binfo (binfo); |
| 5689 |
|
| 5690 |
if (primary_binfo && BINFO_INHERITANCE_CHAIN (primary_binfo) == binfo) |
| 5691 |
propagate_binfo_offsets (primary_binfo, offset); |
| 5692 |
|
| 5693 |
/* Scan all of the bases, pushing the BINFO_OFFSET adjust |
| 5694 |
downwards. */ |
| 5695 |
for (i = 0; BINFO_BASE_ITERATE (binfo, i, base_binfo); ++i) |
| 5696 |
{ |
| 5697 |
/* Don't do the primary base twice. */ |
| 5698 |
if (base_binfo == primary_binfo) |
| 5699 |
continue; |
| 5700 |
|
| 5701 |
if (BINFO_VIRTUAL_P (base_binfo)) |
| 5702 |
continue; |
| 5703 |
|
| 5704 |
propagate_binfo_offsets (base_binfo, offset); |
| 5705 |
} |
| 5706 |
} |
| 5707 |
|
| 5708 |
/* Set BINFO_OFFSET for all of the virtual bases for RLI->T. Update |
| 5709 |
TYPE_ALIGN and TYPE_SIZE for T. OFFSETS gives the location of |
| 5710 |
empty subobjects of T. */ |
| 5711 |
|
| 5712 |
static void |
| 5713 |
layout_virtual_bases (record_layout_info rli, splay_tree offsets) |
| 5714 |
{ |
| 5715 |
tree vbase; |
| 5716 |
tree t = rli->t; |
| 5717 |
bool first_vbase = true; |
| 5718 |
tree *next_field; |
| 5719 |
|
| 5720 |
if (BINFO_N_BASE_BINFOS (TYPE_BINFO (t)) == 0) |
| 5721 |
return; |
| 5722 |
|
| 5723 |
if (!abi_version_at_least(2)) |
| 5724 |
{ |
| 5725 |
/* In G++ 3.2, we incorrectly rounded the size before laying out |
| 5726 |
the virtual bases. */ |
| 5727 |
finish_record_layout (rli, /*free_p=*/false); |
| 5728 |
#ifdef STRUCTURE_SIZE_BOUNDARY |
| 5729 |
/* Packed structures don't need to have minimum size. */ |
| 5730 |
if (! TYPE_PACKED (t)) |
| 5731 |
TYPE_ALIGN (t) = MAX (TYPE_ALIGN (t), (unsigned) STRUCTURE_SIZE_BOUNDARY); |
| 5732 |
#endif |
| 5733 |
rli->offset = TYPE_SIZE_UNIT (t); |
| 5734 |
rli->bitpos = bitsize_zero_node; |
| 5735 |
rli->record_align = TYPE_ALIGN (t); |
| 5736 |
} |
| 5737 |
|
| 5738 |
/* Find the last field. The artificial fields created for virtual |
| 5739 |
bases will go after the last extant field to date. */ |
| 5740 |
next_field = &TYPE_FIELDS (t); |
| 5741 |
while (*next_field) |
| 5742 |
next_field = &DECL_CHAIN (*next_field); |
| 5743 |
|
| 5744 |
/* Go through the virtual bases, allocating space for each virtual |
| 5745 |
base that is not already a primary base class. These are |
| 5746 |
allocated in inheritance graph order. */ |
| 5747 |
for (vbase = TYPE_BINFO (t); vbase; vbase = TREE_CHAIN (vbase)) |
| 5748 |
{ |
| 5749 |
if (!BINFO_VIRTUAL_P (vbase)) |
| 5750 |
continue; |
| 5751 |
|
| 5752 |
if (!BINFO_PRIMARY_P (vbase)) |
| 5753 |
{ |
| 5754 |
tree basetype = TREE_TYPE (vbase); |
| 5755 |
|
| 5756 |
/* This virtual base is not a primary base of any class in the |
| 5757 |
hierarchy, so we have to add space for it. */ |
| 5758 |
next_field = build_base_field (rli, vbase, |
| 5759 |
offsets, next_field); |
| 5760 |
|
| 5761 |
/* If the first virtual base might have been placed at a |
| 5762 |
lower address, had we started from CLASSTYPE_SIZE, rather |
| 5763 |
than TYPE_SIZE, issue a warning. There can be both false |
| 5764 |
positives and false negatives from this warning in rare |
| 5765 |
cases; to deal with all the possibilities would probably |
| 5766 |
require performing both layout algorithms and comparing |
| 5767 |
the results which is not particularly tractable. */ |
| 5768 |
if (warn_abi |
| 5769 |
&& first_vbase |
| 5770 |
&& (tree_int_cst_lt |
| 5771 |
(size_binop (CEIL_DIV_EXPR, |
| 5772 |
round_up_loc (input_location, |
| 5773 |
CLASSTYPE_SIZE (t), |
| 5774 |
CLASSTYPE_ALIGN (basetype)), |
| 5775 |
bitsize_unit_node), |
| 5776 |
BINFO_OFFSET (vbase)))) |
| 5777 |
warning (OPT_Wabi, |
| 5778 |
"offset of virtual base %qT is not ABI-compliant and " |
| 5779 |
"may change in a future version of GCC", |
| 5780 |
basetype); |
| 5781 |
|
| 5782 |
first_vbase = false; |
| 5783 |
} |
| 5784 |
} |
| 5785 |
} |
| 5786 |
|
| 5787 |
/* Returns the offset of the byte just past the end of the base class |
| 5788 |
BINFO. */ |
| 5789 |
|
| 5790 |
static tree |
| 5791 |
end_of_base (tree binfo) |
| 5792 |
{ |
| 5793 |
tree size; |
| 5794 |
|
| 5795 |
if (!CLASSTYPE_AS_BASE (BINFO_TYPE (binfo))) |
| 5796 |
size = TYPE_SIZE_UNIT (char_type_node); |
| 5797 |
else if (is_empty_class (BINFO_TYPE (binfo))) |
| 5798 |
/* An empty class has zero CLASSTYPE_SIZE_UNIT, but we need to |
| 5799 |
allocate some space for it. It cannot have virtual bases, so |
| 5800 |
TYPE_SIZE_UNIT is fine. */ |
| 5801 |
size = TYPE_SIZE_UNIT (BINFO_TYPE (binfo)); |
| 5802 |
else |
| 5803 |
size = CLASSTYPE_SIZE_UNIT (BINFO_TYPE (binfo)); |
| 5804 |
|
| 5805 |
return size_binop (PLUS_EXPR, BINFO_OFFSET (binfo), size); |
| 5806 |
} |
| 5807 |
|
| 5808 |
/* Returns the offset of the byte just past the end of the base class |
| 5809 |
with the highest offset in T. If INCLUDE_VIRTUALS_P is zero, then |
| 5810 |
only non-virtual bases are included. */ |
| 5811 |
|
| 5812 |
static tree |
| 5813 |
end_of_class (tree t, int include_virtuals_p) |
| 5814 |
{ |
| 5815 |
tree result = size_zero_node; |
| 5816 |
vec<tree, va_gc> *vbases; |
| 5817 |
tree binfo; |
| 5818 |
tree base_binfo; |
| 5819 |
tree offset; |
| 5820 |
int i; |
| 5821 |
|
| 5822 |
for (binfo = TYPE_BINFO (t), i = 0; |
| 5823 |
BINFO_BASE_ITERATE (binfo, i, base_binfo); ++i) |
| 5824 |
{ |
| 5825 |
if (!include_virtuals_p |
| 5826 |
&& BINFO_VIRTUAL_P (base_binfo) |
| 5827 |
&& (!BINFO_PRIMARY_P (base_binfo) |
| 5828 |
|| BINFO_INHERITANCE_CHAIN (base_binfo) != TYPE_BINFO (t))) |
| 5829 |
continue; |
| 5830 |
|
| 5831 |
offset = end_of_base (base_binfo); |
| 5832 |
if (INT_CST_LT_UNSIGNED (result, offset)) |
| 5833 |
result = offset; |
| 5834 |
} |
| 5835 |
|
| 5836 |
/* G++ 3.2 did not check indirect virtual bases. */ |
| 5837 |
if (abi_version_at_least (2) && include_virtuals_p) |
| 5838 |
for (vbases = CLASSTYPE_VBASECLASSES (t), i = 0; |
| 5839 |
vec_safe_iterate (vbases, i, &base_binfo); i++) |
| 5840 |
{ |
| 5841 |
offset = end_of_base (base_binfo); |
| 5842 |
if (INT_CST_LT_UNSIGNED (result, offset)) |
| 5843 |
result = offset; |
| 5844 |
} |
| 5845 |
|
| 5846 |
return result; |
| 5847 |
} |
| 5848 |
|
| 5849 |
/* Warn about bases of T that are inaccessible because they are |
| 5850 |
ambiguous. For example: |
| 5851 |
|
| 5852 |
struct S {}; |
| 5853 |
struct T : public S {}; |
| 5854 |
struct U : public S, public T {}; |
| 5855 |
|
| 5856 |
Here, `(S*) new U' is not allowed because there are two `S' |
| 5857 |
subobjects of U. */ |
| 5858 |
|
| 5859 |
static void |
| 5860 |
warn_about_ambiguous_bases (tree t) |
| 5861 |
{ |
| 5862 |
int i; |
| 5863 |
vec<tree, va_gc> *vbases; |
| 5864 |
tree basetype; |
| 5865 |
tree binfo; |
| 5866 |
tree base_binfo; |
| 5867 |
|
| 5868 |
/* If there are no repeated bases, nothing can be ambiguous. */ |
| 5869 |
if (!CLASSTYPE_REPEATED_BASE_P (t)) |
| 5870 |
return; |
| 5871 |
|
| 5872 |
/* Check direct bases. */ |
| 5873 |
for (binfo = TYPE_BINFO (t), i = 0; |
| 5874 |
BINFO_BASE_ITERATE (binfo, i, base_binfo); ++i) |
| 5875 |
{ |
| 5876 |
basetype = BINFO_TYPE (base_binfo); |
| 5877 |
|
| 5878 |
if (!uniquely_derived_from_p (basetype, t)) |
| 5879 |
warning (0, "direct base %qT inaccessible in %qT due to ambiguity", |
| 5880 |
basetype, t); |
| 5881 |
} |
| 5882 |
|
| 5883 |
/* Check for ambiguous virtual bases. */ |
| 5884 |
if (extra_warnings) |
| 5885 |
for (vbases = CLASSTYPE_VBASECLASSES (t), i = 0; |
| 5886 |
vec_safe_iterate (vbases, i, &binfo); i++) |
| 5887 |
{ |
| 5888 |
basetype = BINFO_TYPE (binfo); |
| 5889 |
|
| 5890 |
if (!uniquely_derived_from_p (basetype, t)) |
| 5891 |
warning (OPT_Wextra, "virtual base %qT inaccessible in %qT due " |
| 5892 |
"to ambiguity", basetype, t); |
| 5893 |
} |
| 5894 |
} |
| 5895 |
|
| 5896 |
/* Compare two INTEGER_CSTs K1 and K2. */ |
| 5897 |
|
| 5898 |
static int |
| 5899 |
splay_tree_compare_integer_csts (splay_tree_key k1, splay_tree_key k2) |
| 5900 |
{ |
| 5901 |
return tree_int_cst_compare ((tree) k1, (tree) k2); |
| 5902 |
} |
| 5903 |
|
| 5904 |
/* Increase the size indicated in RLI to account for empty classes |
| 5905 |
that are "off the end" of the class. */ |
| 5906 |
|
| 5907 |
static void |
| 5908 |
include_empty_classes (record_layout_info rli) |
| 5909 |
{ |
| 5910 |
tree eoc; |
| 5911 |
tree rli_size; |
| 5912 |
|
| 5913 |
/* It might be the case that we grew the class to allocate a |
| 5914 |
zero-sized base class. That won't be reflected in RLI, yet, |
| 5915 |
because we are willing to overlay multiple bases at the same |
| 5916 |
offset. However, now we need to make sure that RLI is big enough |
| 5917 |
to reflect the entire class. */ |
| 5918 |
eoc = end_of_class (rli->t, |
| 5919 |
CLASSTYPE_AS_BASE (rli->t) != NULL_TREE); |
| 5920 |
rli_size = rli_size_unit_so_far (rli); |
| 5921 |
if (TREE_CODE (rli_size) == INTEGER_CST |
| 5922 |
&& INT_CST_LT_UNSIGNED (rli_size, eoc)) |
| 5923 |
{ |
| 5924 |
if (!abi_version_at_least (2)) |
| 5925 |
/* In version 1 of the ABI, the size of a class that ends with |
| 5926 |
a bitfield was not rounded up to a whole multiple of a |
| 5927 |
byte. Because rli_size_unit_so_far returns only the number |
| 5928 |
of fully allocated bytes, any extra bits were not included |
| 5929 |
in the size. */ |
| 5930 |
rli->bitpos = round_down (rli->bitpos, BITS_PER_UNIT); |
| 5931 |
else |
| 5932 |
/* The size should have been rounded to a whole byte. */ |
| 5933 |
gcc_assert (tree_int_cst_equal |
| 5934 |
(rli->bitpos, round_down (rli->bitpos, BITS_PER_UNIT))); |
| 5935 |
rli->bitpos |
| 5936 |
= size_binop (PLUS_EXPR, |
| 5937 |
rli->bitpos, |
| 5938 |
size_binop (MULT_EXPR, |
| 5939 |
convert (bitsizetype, |
| 5940 |
size_binop (MINUS_EXPR, |
| 5941 |
eoc, rli_size)), |
| 5942 |
bitsize_int (BITS_PER_UNIT))); |
| 5943 |
normalize_rli (rli); |
| 5944 |
} |
| 5945 |
} |
| 5946 |
|
| 5947 |
/* Calculate the TYPE_SIZE, TYPE_ALIGN, etc for T. Calculate |
| 5948 |
BINFO_OFFSETs for all of the base-classes. Position the vtable |
| 5949 |
pointer. Accumulate declared virtual functions on VIRTUALS_P. */ |
| 5950 |
|
| 5951 |
static void |
| 5952 |
layout_class_type (tree t, tree *virtuals_p) |
| 5953 |
{ |
| 5954 |
tree non_static_data_members; |
| 5955 |
tree field; |
| 5956 |
tree vptr; |
| 5957 |
record_layout_info rli; |
| 5958 |
/* Maps offsets (represented as INTEGER_CSTs) to a TREE_LIST of |
| 5959 |
types that appear at that offset. */ |
| 5960 |
splay_tree empty_base_offsets; |
| 5961 |
/* True if the last field laid out was a bit-field. */ |
| 5962 |
bool last_field_was_bitfield = false; |
| 5963 |
/* The location at which the next field should be inserted. */ |
| 5964 |
tree *next_field; |
| 5965 |
/* T, as a base class. */ |
| 5966 |
tree base_t; |
| 5967 |
|
| 5968 |
/* Keep track of the first non-static data member. */ |
| 5969 |
non_static_data_members = TYPE_FIELDS (t); |
| 5970 |
|
| 5971 |
/* Start laying out the record. */ |
| 5972 |
rli = start_record_layout (t); |
| 5973 |
|
| 5974 |
/* Mark all the primary bases in the hierarchy. */ |
| 5975 |
determine_primary_bases (t); |
| 5976 |
|
| 5977 |
/* Create a pointer to our virtual function table. */ |
| 5978 |
vptr = create_vtable_ptr (t, virtuals_p); |
| 5979 |
|
| 5980 |
/* The vptr is always the first thing in the class. */ |
| 5981 |
if (vptr) |
| 5982 |
{ |
| 5983 |
DECL_CHAIN (vptr) = TYPE_FIELDS (t); |
| 5984 |
TYPE_FIELDS (t) = vptr; |
| 5985 |
next_field = &DECL_CHAIN (vptr); |
| 5986 |
place_field (rli, vptr); |
| 5987 |
} |
| 5988 |
else |
| 5989 |
next_field = &TYPE_FIELDS (t); |
| 5990 |
|
| 5991 |
/* Build FIELD_DECLs for all of the non-virtual base-types. */ |
| 5992 |
empty_base_offsets = splay_tree_new (splay_tree_compare_integer_csts, |
| 5993 |
NULL, NULL); |
| 5994 |
build_base_fields (rli, empty_base_offsets, next_field); |
| 5995 |
|
| 5996 |
/* Layout the non-static data members. */ |
| 5997 |
for (field = non_static_data_members; field; field = DECL_CHAIN (field)) |
| 5998 |
{ |
| 5999 |
tree type; |
| 6000 |
tree padding; |
| 6001 |
|
| 6002 |
/* We still pass things that aren't non-static data members to |
| 6003 |
the back end, in case it wants to do something with them. */ |
| 6004 |
if (TREE_CODE (field) != FIELD_DECL) |
| 6005 |
{ |
| 6006 |
place_field (rli, field); |
| 6007 |
/* If the static data member has incomplete type, keep track |
| 6008 |
of it so that it can be completed later. (The handling |
| 6009 |
of pending statics in finish_record_layout is |
| 6010 |
insufficient; consider: |
| 6011 |
|
| 6012 |
struct S1; |
| 6013 |
struct S2 { static S1 s1; }; |
| 6014 |
|
| 6015 |
At this point, finish_record_layout will be called, but |
| 6016 |
S1 is still incomplete.) */ |
| 6017 |
if (VAR_P (field)) |
| 6018 |
{ |
| 6019 |
maybe_register_incomplete_var (field); |
| 6020 |
/* The visibility of static data members is determined |
| 6021 |
at their point of declaration, not their point of |
| 6022 |
definition. */ |
| 6023 |
determine_visibility (field); |
| 6024 |
} |
| 6025 |
continue; |
| 6026 |
} |
| 6027 |
|
| 6028 |
type = TREE_TYPE (field); |
| 6029 |
if (type == error_mark_node) |
| 6030 |
continue; |
| 6031 |
|
| 6032 |
padding = NULL_TREE; |
| 6033 |
|
| 6034 |
/* If this field is a bit-field whose width is greater than its |
| 6035 |
type, then there are some special rules for allocating |
| 6036 |
it. */ |
| 6037 |
if (DECL_C_BIT_FIELD (field) |
| 6038 |
&& INT_CST_LT (TYPE_SIZE (type), DECL_SIZE (field))) |
| 6039 |
{ |
| 6040 |
unsigned int itk; |
| 6041 |
tree integer_type; |
| 6042 |
bool was_unnamed_p = false; |
| 6043 |
/* We must allocate the bits as if suitably aligned for the |
| 6044 |
longest integer type that fits in this many bits. type |
| 6045 |
of the field. Then, we are supposed to use the left over |
| 6046 |
bits as additional padding. */ |
| 6047 |
for (itk = itk_char; itk != itk_none; ++itk) |
| 6048 |
if (integer_types[itk] != NULL_TREE |
| 6049 |
&& (INT_CST_LT (size_int (MAX_FIXED_MODE_SIZE), |
| 6050 |
TYPE_SIZE (integer_types[itk])) |
| 6051 |
|| INT_CST_LT (DECL_SIZE (field), |
| 6052 |
TYPE_SIZE (integer_types[itk])))) |
| 6053 |
break; |
| 6054 |
|
| 6055 |
/* ITK now indicates a type that is too large for the |
| 6056 |
field. We have to back up by one to find the largest |
| 6057 |
type that fits. */ |
| 6058 |
do |
| 6059 |
{ |
| 6060 |
--itk; |
| 6061 |
integer_type = integer_types[itk]; |
| 6062 |
} while (itk > 0 && integer_type == NULL_TREE); |
| 6063 |
|
| 6064 |
/* Figure out how much additional padding is required. GCC |
| 6065 |
3.2 always created a padding field, even if it had zero |
| 6066 |
width. */ |
| 6067 |
if (!abi_version_at_least (2) |
| 6068 |
|| INT_CST_LT (TYPE_SIZE (integer_type), DECL_SIZE (field))) |
| 6069 |
{ |
| 6070 |
if (abi_version_at_least (2) && TREE_CODE (t) == UNION_TYPE) |
| 6071 |
/* In a union, the padding field must have the full width |
| 6072 |
of the bit-field; all fields start at offset zero. */ |
| 6073 |
padding = DECL_SIZE (field); |
| 6074 |
else |
| 6075 |
{ |
| 6076 |
if (TREE_CODE (t) == UNION_TYPE) |
| 6077 |
warning (OPT_Wabi, "size assigned to %qT may not be " |
| 6078 |
"ABI-compliant and may change in a future " |
| 6079 |
"version of GCC", |
| 6080 |
t); |
| 6081 |
padding = size_binop (MINUS_EXPR, DECL_SIZE (field), |
| 6082 |
TYPE_SIZE (integer_type)); |
| 6083 |
} |
| 6084 |
} |
| 6085 |
#ifdef PCC_BITFIELD_TYPE_MATTERS |
| 6086 |
/* An unnamed bitfield does not normally affect the |
| 6087 |
alignment of the containing class on a target where |
| 6088 |
PCC_BITFIELD_TYPE_MATTERS. But, the C++ ABI does not |
| 6089 |
make any exceptions for unnamed bitfields when the |
| 6090 |
bitfields are longer than their types. Therefore, we |
| 6091 |
temporarily give the field a name. */ |
| 6092 |
if (PCC_BITFIELD_TYPE_MATTERS && !DECL_NAME (field)) |
| 6093 |
{ |
| 6094 |
was_unnamed_p = true; |
| 6095 |
DECL_NAME (field) = make_anon_name (); |
| 6096 |
} |
| 6097 |
#endif |
| 6098 |
DECL_SIZE (field) = TYPE_SIZE (integer_type); |
| 6099 |
DECL_ALIGN (field) = TYPE_ALIGN (integer_type); |
| 6100 |
DECL_USER_ALIGN (field) = TYPE_USER_ALIGN (integer_type); |
| 6101 |
layout_nonempty_base_or_field (rli, field, NULL_TREE, |
| 6102 |
empty_base_offsets); |
| 6103 |
if (was_unnamed_p) |
| 6104 |
DECL_NAME (field) = NULL_TREE; |
| 6105 |
/* Now that layout has been performed, set the size of the |
| 6106 |
field to the size of its declared type; the rest of the |
| 6107 |
field is effectively invisible. */ |
| 6108 |
DECL_SIZE (field) = TYPE_SIZE (type); |
| 6109 |
/* We must also reset the DECL_MODE of the field. */ |
| 6110 |
if (abi_version_at_least (2)) |
| 6111 |
DECL_MODE (field) = TYPE_MODE (type); |
| 6112 |
else if (warn_abi |
| 6113 |
&& DECL_MODE (field) != TYPE_MODE (type)) |
| 6114 |
/* Versions of G++ before G++ 3.4 did not reset the |
| 6115 |
DECL_MODE. */ |
| 6116 |
warning (OPT_Wabi, |
| 6117 |
"the offset of %qD may not be ABI-compliant and may " |
| 6118 |
"change in a future version of GCC", field); |
| 6119 |
} |
| 6120 |
else |
| 6121 |
layout_nonempty_base_or_field (rli, field, NULL_TREE, |
| 6122 |
empty_base_offsets); |
| 6123 |
|
| 6124 |
/* Remember the location of any empty classes in FIELD. */ |
| 6125 |
if (abi_version_at_least (2)) |
| 6126 |
record_subobject_offsets (TREE_TYPE (field), |
| 6127 |
byte_position(field), |
| 6128 |
empty_base_offsets, |
| 6129 |
/*is_data_member=*/true); |
| 6130 |
|
| 6131 |
/* If a bit-field does not immediately follow another bit-field, |
| 6132 |
and yet it starts in the middle of a byte, we have failed to |
| 6133 |
comply with the ABI. */ |
| 6134 |
if (warn_abi |
| 6135 |
&& DECL_C_BIT_FIELD (field) |
| 6136 |
/* The TREE_NO_WARNING flag gets set by Objective-C when |
| 6137 |
laying out an Objective-C class. The ObjC ABI differs |
| 6138 |
from the C++ ABI, and so we do not want a warning |
| 6139 |
here. */ |
| 6140 |
&& !TREE_NO_WARNING (field) |
| 6141 |
&& !last_field_was_bitfield |
| 6142 |
&& !integer_zerop (size_binop (TRUNC_MOD_EXPR, |
| 6143 |
DECL_FIELD_BIT_OFFSET (field), |
| 6144 |
bitsize_unit_node))) |
| 6145 |
warning (OPT_Wabi, "offset of %q+D is not ABI-compliant and may " |
| 6146 |
"change in a future version of GCC", field); |
| 6147 |
|
| 6148 |
/* G++ used to use DECL_FIELD_OFFSET as if it were the byte |
| 6149 |
offset of the field. */ |
| 6150 |
if (warn_abi |
| 6151 |
&& !abi_version_at_least (2) |
| 6152 |
&& !tree_int_cst_equal (DECL_FIELD_OFFSET (field), |
| 6153 |
byte_position (field)) |
| 6154 |
&& contains_empty_class_p (TREE_TYPE (field))) |
| 6155 |
warning (OPT_Wabi, "%q+D contains empty classes which may cause base " |
| 6156 |
"classes to be placed at different locations in a " |
| 6157 |
"future version of GCC", field); |
| 6158 |
|
| 6159 |
/* The middle end uses the type of expressions to determine the |
| 6160 |
possible range of expression values. In order to optimize |
| 6161 |
"x.i > 7" to "false" for a 2-bit bitfield "i", the middle end |
| 6162 |
must be made aware of the width of "i", via its type. |
| 6163 |
|
| 6164 |
Because C++ does not have integer types of arbitrary width, |
| 6165 |
we must (for the purposes of the front end) convert from the |
| 6166 |
type assigned here to the declared type of the bitfield |
| 6167 |
whenever a bitfield expression is used as an rvalue. |
| 6168 |
Similarly, when assigning a value to a bitfield, the value |
| 6169 |
must be converted to the type given the bitfield here. */ |
| 6170 |
if (DECL_C_BIT_FIELD (field)) |
| 6171 |
{ |
| 6172 |
unsigned HOST_WIDE_INT width; |
| 6173 |
tree ftype = TREE_TYPE (field); |
| 6174 |
width = tree_to_uhwi (DECL_SIZE (field)); |
| 6175 |
if (width != TYPE_PRECISION (ftype)) |
| 6176 |
{ |
| 6177 |
TREE_TYPE (field) |
| 6178 |
= c_build_bitfield_integer_type (width, |
| 6179 |
TYPE_UNSIGNED (ftype)); |
| 6180 |
TREE_TYPE (field) |
| 6181 |
= cp_build_qualified_type (TREE_TYPE (field), |
| 6182 |
cp_type_quals (ftype)); |
| 6183 |
} |
| 6184 |
} |
| 6185 |
|
| 6186 |
/* If we needed additional padding after this field, add it |
| 6187 |
now. */ |
| 6188 |
if (padding) |
| 6189 |
{ |
| 6190 |
tree padding_field; |
| 6191 |
|
| 6192 |
padding_field = build_decl (input_location, |
| 6193 |
FIELD_DECL, |
| 6194 |
NULL_TREE, |
| 6195 |
char_type_node); |
| 6196 |
DECL_BIT_FIELD (padding_field) = 1; |
| 6197 |
DECL_SIZE (padding_field) = padding; |
| 6198 |
DECL_CONTEXT (padding_field) = t; |
| 6199 |
DECL_ARTIFICIAL (padding_field) = 1; |
| 6200 |
DECL_IGNORED_P (padding_field) = 1; |
| 6201 |
layout_nonempty_base_or_field (rli, padding_field, |
| 6202 |
NULL_TREE, |
| 6203 |
empty_base_offsets); |
| 6204 |
} |
| 6205 |
|
| 6206 |
last_field_was_bitfield = DECL_C_BIT_FIELD (field); |
| 6207 |
} |
| 6208 |
|
| 6209 |
if (abi_version_at_least (2) && !integer_zerop (rli->bitpos)) |
| 6210 |
{ |
| 6211 |
/* Make sure that we are on a byte boundary so that the size of |
| 6212 |
the class without virtual bases will always be a round number |
| 6213 |
of bytes. */ |
| 6214 |
rli->bitpos = round_up_loc (input_location, rli->bitpos, BITS_PER_UNIT); |
| 6215 |
normalize_rli (rli); |
| 6216 |
} |
| 6217 |
|
| 6218 |
/* G++ 3.2 does not allow virtual bases to be overlaid with tail |
| 6219 |
padding. */ |
| 6220 |
if (!abi_version_at_least (2)) |
| 6221 |
include_empty_classes(rli); |
| 6222 |
|
| 6223 |
/* Delete all zero-width bit-fields from the list of fields. Now |
| 6224 |
that the type is laid out they are no longer important. */ |
| 6225 |
remove_zero_width_bit_fields (t); |
| 6226 |
|
| 6227 |
/* Create the version of T used for virtual bases. We do not use |
| 6228 |
make_class_type for this version; this is an artificial type. For |
| 6229 |
a POD type, we just reuse T. */ |
| 6230 |
if (CLASSTYPE_NON_LAYOUT_POD_P (t) || CLASSTYPE_EMPTY_P (t)) |
| 6231 |
{ |
| 6232 |
base_t = make_node (TREE_CODE (t)); |
| 6233 |
|
| 6234 |
/* Set the size and alignment for the new type. In G++ 3.2, all |
| 6235 |
empty classes were considered to have size zero when used as |
| 6236 |
base classes. */ |
| 6237 |
if (!abi_version_at_least (2) && CLASSTYPE_EMPTY_P (t)) |
| 6238 |
{ |
| 6239 |
TYPE_SIZE (base_t) = bitsize_zero_node; |
| 6240 |
TYPE_SIZE_UNIT (base_t) = size_zero_node; |
| 6241 |
if (warn_abi && !integer_zerop (rli_size_unit_so_far (rli))) |
| 6242 |
warning (OPT_Wabi, |
| 6243 |
"layout of classes derived from empty class %qT " |
| 6244 |
"may change in a future version of GCC", |
| 6245 |
t); |
| 6246 |
} |
| 6247 |
else |
| 6248 |
{ |
| 6249 |
tree eoc; |
| 6250 |
|
| 6251 |
/* If the ABI version is not at least two, and the last |
| 6252 |
field was a bit-field, RLI may not be on a byte |
| 6253 |
boundary. In particular, rli_size_unit_so_far might |
| 6254 |
indicate the last complete byte, while rli_size_so_far |
| 6255 |
indicates the total number of bits used. Therefore, |
| 6256 |
rli_size_so_far, rather than rli_size_unit_so_far, is |
| 6257 |
used to compute TYPE_SIZE_UNIT. */ |
| 6258 |
eoc = end_of_class (t, /*include_virtuals_p=*/0); |
| 6259 |
TYPE_SIZE_UNIT (base_t) |
| 6260 |
= size_binop (MAX_EXPR, |
| 6261 |
convert (sizetype, |
| 6262 |
size_binop (CEIL_DIV_EXPR, |
| 6263 |
rli_size_so_far (rli), |
| 6264 |
bitsize_int (BITS_PER_UNIT))), |
| 6265 |
eoc); |
| 6266 |
TYPE_SIZE (base_t) |
| 6267 |
= size_binop (MAX_EXPR, |
| 6268 |
rli_size_so_far (rli), |
| 6269 |
size_binop (MULT_EXPR, |
| 6270 |
convert (bitsizetype, eoc), |
| 6271 |
bitsize_int (BITS_PER_UNIT))); |
| 6272 |
} |
| 6273 |
TYPE_ALIGN (base_t) = rli->record_align; |
| 6274 |
TYPE_USER_ALIGN (base_t) = TYPE_USER_ALIGN (t); |
| 6275 |
|
| 6276 |
/* Copy the fields from T. */ |
| 6277 |
next_field = &TYPE_FIELDS (base_t); |
| 6278 |
for (field = TYPE_FIELDS (t); field; field = DECL_CHAIN (field)) |
| 6279 |
if (TREE_CODE (field) == FIELD_DECL) |
| 6280 |
{ |
| 6281 |
*next_field = build_decl (input_location, |
| 6282 |
FIELD_DECL, |
| 6283 |
DECL_NAME (field), |
| 6284 |
TREE_TYPE (field)); |
| 6285 |
DECL_CONTEXT (*next_field) = base_t; |
| 6286 |
DECL_FIELD_OFFSET (*next_field) = DECL_FIELD_OFFSET (field); |
| 6287 |
DECL_FIELD_BIT_OFFSET (*next_field) |
| 6288 |
= DECL_FIELD_BIT_OFFSET (field); |
| 6289 |
DECL_SIZE (*next_field) = DECL_SIZE (field); |
| 6290 |
DECL_MODE (*next_field) = DECL_MODE (field); |
| 6291 |
next_field = &DECL_CHAIN (*next_field); |
| 6292 |
} |
| 6293 |
|
| 6294 |
/* Record the base version of the type. */ |
| 6295 |
CLASSTYPE_AS_BASE (t) = base_t; |
| 6296 |
TYPE_CONTEXT (base_t) = t; |
| 6297 |
} |
| 6298 |
else |
| 6299 |
CLASSTYPE_AS_BASE (t) = t; |
| 6300 |
|
| 6301 |
/* Every empty class contains an empty class. */ |
| 6302 |
if (CLASSTYPE_EMPTY_P (t)) |
| 6303 |
CLASSTYPE_CONTAINS_EMPTY_CLASS_P (t) = 1; |
| 6304 |
|
| 6305 |
/* Set the TYPE_DECL for this type to contain the right |
| 6306 |
value for DECL_OFFSET, so that we can use it as part |
| 6307 |
of a COMPONENT_REF for multiple inheritance. */ |
| 6308 |
layout_decl (TYPE_MAIN_DECL (t), 0); |
| 6309 |
|
| 6310 |
/* Now fix up any virtual base class types that we left lying |
| 6311 |
around. We must get these done before we try to lay out the |
| 6312 |
virtual function table. As a side-effect, this will remove the |
| 6313 |
base subobject fields. */ |
| 6314 |
layout_virtual_bases (rli, empty_base_offsets); |
| 6315 |
|
| 6316 |
/* Make sure that empty classes are reflected in RLI at this |
| 6317 |
point. */ |
| 6318 |
include_empty_classes(rli); |
| 6319 |
|
| 6320 |
/* Make sure not to create any structures with zero size. */ |
| 6321 |
if (integer_zerop (rli_size_unit_so_far (rli)) && CLASSTYPE_EMPTY_P (t)) |
| 6322 |
place_field (rli, |
| 6323 |
build_decl (input_location, |
| 6324 |
FIELD_DECL, NULL_TREE, char_type_node)); |
| 6325 |
|
| 6326 |
/* If this is a non-POD, declaring it packed makes a difference to how it |
| 6327 |
can be used as a field; don't let finalize_record_size undo it. */ |
| 6328 |
if (TYPE_PACKED (t) && !layout_pod_type_p (t)) |
| 6329 |
rli->packed_maybe_necessary = true; |
| 6330 |
|
| 6331 |
/* Let the back end lay out the type. */ |
| 6332 |
finish_record_layout (rli, /*free_p=*/true); |
| 6333 |
|
| 6334 |
if (TYPE_SIZE_UNIT (t) |
| 6335 |
&& TREE_CODE (TYPE_SIZE_UNIT (t)) == INTEGER_CST |
| 6336 |
&& !TREE_OVERFLOW (TYPE_SIZE_UNIT (t)) |
| 6337 |
&& !valid_constant_size_p (TYPE_SIZE_UNIT (t))) |
| 6338 |
error ("type %qT is too large", t); |
| 6339 |
|
| 6340 |
/* Warn about bases that can't be talked about due to ambiguity. */ |
| 6341 |
warn_about_ambiguous_bases (t); |
| 6342 |
|
| 6343 |
/* Now that we're done with layout, give the base fields the real types. */ |
| 6344 |
for (field = TYPE_FIELDS (t); field; field = DECL_CHAIN (field)) |
| 6345 |
if (DECL_ARTIFICIAL (field) && IS_FAKE_BASE_TYPE (TREE_TYPE (field))) |
| 6346 |
TREE_TYPE (field) = TYPE_CONTEXT (TREE_TYPE (field)); |
| 6347 |
|
| 6348 |
/* Clean up. */ |
| 6349 |
splay_tree_delete (empty_base_offsets); |
| 6350 |
|
| 6351 |
if (CLASSTYPE_EMPTY_P (t) |
| 6352 |
&& tree_int_cst_lt (sizeof_biggest_empty_class, |
| 6353 |
TYPE_SIZE_UNIT (t))) |
| 6354 |
sizeof_biggest_empty_class = TYPE_SIZE_UNIT (t); |
| 6355 |
} |
| 6356 |
|
| 6357 |
/* Determine the "key method" for the class type indicated by TYPE, |
| 6358 |
and set CLASSTYPE_KEY_METHOD accordingly. */ |
| 6359 |
|
| 6360 |
void |
| 6361 |
determine_key_method (tree type) |
| 6362 |
{ |
| 6363 |
tree method; |
| 6364 |
|
| 6365 |
if (TYPE_FOR_JAVA (type) |
| 6366 |
|| processing_template_decl |
| 6367 |
|| CLASSTYPE_TEMPLATE_INSTANTIATION (type) |
| 6368 |
|| CLASSTYPE_INTERFACE_KNOWN (type)) |
| 6369 |
return; |
| 6370 |
|
| 6371 |
/* The key method is the first non-pure virtual function that is not |
| 6372 |
inline at the point of class definition. On some targets the |
| 6373 |
key function may not be inline; those targets should not call |
| 6374 |
this function until the end of the translation unit. */ |
| 6375 |
for (method = TYPE_METHODS (type); method != NULL_TREE; |
| 6376 |
method = DECL_CHAIN (method)) |
| 6377 |
if (DECL_VINDEX (method) != NULL_TREE |
| 6378 |
&& ! DECL_DECLARED_INLINE_P (method) |
| 6379 |
&& ! DECL_PURE_VIRTUAL_P (method)) |
| 6380 |
{ |
| 6381 |
CLASSTYPE_KEY_METHOD (type) = method; |
| 6382 |
break; |
| 6383 |
} |
| 6384 |
|
| 6385 |
return; |
| 6386 |
} |
| 6387 |
|
| 6388 |
|
| 6389 |
/* Allocate and return an instance of struct sorted_fields_type with |
| 6390 |
N fields. */ |
| 6391 |
|
| 6392 |
static struct sorted_fields_type * |
| 6393 |
sorted_fields_type_new (int n) |
| 6394 |
{ |
| 6395 |
struct sorted_fields_type *sft; |
| 6396 |
sft = ggc_alloc_sorted_fields_type (sizeof (struct sorted_fields_type) |
| 6397 |
+ n * sizeof (tree)); |
| 6398 |
sft->len = n; |
| 6399 |
|
| 6400 |
return sft; |
| 6401 |
} |
| 6402 |
|
| 6403 |
|
| 6404 |
/* Perform processing required when the definition of T (a class type) |
| 6405 |
is complete. */ |
| 6406 |
|
| 6407 |
void |
| 6408 |
finish_struct_1 (tree t) |
| 6409 |
{ |
| 6410 |
tree x; |
| 6411 |
/* A TREE_LIST. The TREE_VALUE of each node is a FUNCTION_DECL. */ |
| 6412 |
tree virtuals = NULL_TREE; |
| 6413 |
|
| 6414 |
if (COMPLETE_TYPE_P (t)) |
| 6415 |
{ |
| 6416 |
gcc_assert (MAYBE_CLASS_TYPE_P (t)); |
| 6417 |
error ("redefinition of %q#T", t); |
| 6418 |
popclass (); |
| 6419 |
return; |
| 6420 |
} |
| 6421 |
|
| 6422 |
/* If this type was previously laid out as a forward reference, |
| 6423 |
make sure we lay it out again. */ |
| 6424 |
TYPE_SIZE (t) = NULL_TREE; |
| 6425 |
CLASSTYPE_PRIMARY_BINFO (t) = NULL_TREE; |
| 6426 |
|
| 6427 |
/* Make assumptions about the class; we'll reset the flags if |
| 6428 |
necessary. */ |
| 6429 |
CLASSTYPE_EMPTY_P (t) = 1; |
| 6430 |
CLASSTYPE_NEARLY_EMPTY_P (t) = 1; |
| 6431 |
CLASSTYPE_CONTAINS_EMPTY_CLASS_P (t) = 0; |
| 6432 |
CLASSTYPE_LITERAL_P (t) = true; |
| 6433 |
|
| 6434 |
/* Do end-of-class semantic processing: checking the validity of the |
| 6435 |
bases and members and add implicitly generated methods. */ |
| 6436 |
check_bases_and_members (t); |
| 6437 |
|
| 6438 |
/* Find the key method. */ |
| 6439 |
if (TYPE_CONTAINS_VPTR_P (t)) |
| 6440 |
{ |
| 6441 |
/* The Itanium C++ ABI permits the key method to be chosen when |
| 6442 |
the class is defined -- even though the key method so |
| 6443 |
selected may later turn out to be an inline function. On |
| 6444 |
some systems (such as ARM Symbian OS) the key method cannot |
| 6445 |
be determined until the end of the translation unit. On such |
| 6446 |
systems, we leave CLASSTYPE_KEY_METHOD set to NULL, which |
| 6447 |
will cause the class to be added to KEYED_CLASSES. Then, in |
| 6448 |
finish_file we will determine the key method. */ |
| 6449 |
if (targetm.cxx.key_method_may_be_inline ()) |
| 6450 |
determine_key_method (t); |
| 6451 |
|
| 6452 |
/* If a polymorphic class has no key method, we may emit the vtable |
| 6453 |
in every translation unit where the class definition appears. */ |
| 6454 |
if (CLASSTYPE_KEY_METHOD (t) == NULL_TREE) |
| 6455 |
keyed_classes = tree_cons (NULL_TREE, t, keyed_classes); |
| 6456 |
} |
| 6457 |
|
| 6458 |
/* Layout the class itself. */ |
| 6459 |
layout_class_type (t, &virtuals); |
| 6460 |
if (CLASSTYPE_AS_BASE (t) != t) |
| 6461 |
/* We use the base type for trivial assignments, and hence it |
| 6462 |
needs a mode. */ |
| 6463 |
compute_record_mode (CLASSTYPE_AS_BASE (t)); |
| 6464 |
|
| 6465 |
virtuals = modify_all_vtables (t, nreverse (virtuals)); |
| 6466 |
|
| 6467 |
/* If necessary, create the primary vtable for this class. */ |
| 6468 |
if (virtuals || TYPE_CONTAINS_VPTR_P (t)) |
| 6469 |
{ |
| 6470 |
/* We must enter these virtuals into the table. */ |
| 6471 |
if (!CLASSTYPE_HAS_PRIMARY_BASE_P (t)) |
| 6472 |
build_primary_vtable (NULL_TREE, t); |
| 6473 |
else if (! BINFO_NEW_VTABLE_MARKED (TYPE_BINFO (t))) |
| 6474 |
/* Here we know enough to change the type of our virtual |
| 6475 |
function table, but we will wait until later this function. */ |
| 6476 |
build_primary_vtable (CLASSTYPE_PRIMARY_BINFO (t), t); |
| 6477 |
|
| 6478 |
/* If we're warning about ABI tags, check the types of the new |
| 6479 |
virtual functions. */ |
| 6480 |
if (warn_abi_tag) |
| 6481 |
for (tree v = virtuals; v; v = TREE_CHAIN (v)) |
| 6482 |
check_abi_tags (t, TREE_VALUE (v)); |
| 6483 |
} |
| 6484 |
|
| 6485 |
if (TYPE_CONTAINS_VPTR_P (t)) |
| 6486 |
{ |
| 6487 |
int vindex; |
| 6488 |
tree fn; |
| 6489 |
|
| 6490 |
if (BINFO_VTABLE (TYPE_BINFO (t))) |
| 6491 |
gcc_assert (DECL_VIRTUAL_P (BINFO_VTABLE (TYPE_BINFO (t)))); |
| 6492 |
if (!CLASSTYPE_HAS_PRIMARY_BASE_P (t)) |
| 6493 |
gcc_assert (BINFO_VIRTUALS (TYPE_BINFO (t)) == NULL_TREE); |
| 6494 |
|
| 6495 |
/* Add entries for virtual functions introduced by this class. */ |
| 6496 |
BINFO_VIRTUALS (TYPE_BINFO (t)) |
| 6497 |
= chainon (BINFO_VIRTUALS (TYPE_BINFO (t)), virtuals); |
| 6498 |
|
| 6499 |
/* Set DECL_VINDEX for all functions declared in this class. */ |
| 6500 |
for (vindex = 0, fn = BINFO_VIRTUALS (TYPE_BINFO (t)); |
| 6501 |
fn; |
| 6502 |
fn = TREE_CHAIN (fn), |
| 6503 |
vindex += (TARGET_VTABLE_USES_DESCRIPTORS |
| 6504 |
? TARGET_VTABLE_USES_DESCRIPTORS : 1)) |
| 6505 |
{ |
| 6506 |
tree fndecl = BV_FN (fn); |
| 6507 |
|
| 6508 |
if (DECL_THUNK_P (fndecl)) |
| 6509 |
/* A thunk. We should never be calling this entry directly |
| 6510 |
from this vtable -- we'd use the entry for the non |
| 6511 |
thunk base function. */ |
| 6512 |
DECL_VINDEX (fndecl) = NULL_TREE; |
| 6513 |
else if (TREE_CODE (DECL_VINDEX (fndecl)) != INTEGER_CST) |
| 6514 |
DECL_VINDEX (fndecl) = build_int_cst (NULL_TREE, vindex); |
| 6515 |
} |
| 6516 |
} |
| 6517 |
|
| 6518 |
finish_struct_bits (t); |
| 6519 |
set_method_tm_attributes (t); |
| 6520 |
|
| 6521 |
/* Complete the rtl for any static member objects of the type we're |
| 6522 |
working on. */ |
| 6523 |
for (x = TYPE_FIELDS (t); x; x = DECL_CHAIN (x)) |
| 6524 |
if (VAR_P (x) && TREE_STATIC (x) |
| 6525 |
&& TREE_TYPE (x) != error_mark_node |
| 6526 |
&& same_type_p (TYPE_MAIN_VARIANT (TREE_TYPE (x)), t)) |
| 6527 |
DECL_MODE (x) = TYPE_MODE (t); |
| 6528 |
|
| 6529 |
/* Done with FIELDS...now decide whether to sort these for |
| 6530 |
faster lookups later. |
| 6531 |
|
| 6532 |
We use a small number because most searches fail (succeeding |
| 6533 |
ultimately as the search bores through the inheritance |
| 6534 |
hierarchy), and we want this failure to occur quickly. */ |
| 6535 |
|
| 6536 |
insert_into_classtype_sorted_fields (TYPE_FIELDS (t), t, 8); |
| 6537 |
|
| 6538 |
/* Complain if one of the field types requires lower visibility. */ |
| 6539 |
constrain_class_visibility (t); |
| 6540 |
|
| 6541 |
/* Make the rtl for any new vtables we have created, and unmark |
| 6542 |
the base types we marked. */ |
| 6543 |
finish_vtbls (t); |
| 6544 |
|
| 6545 |
/* Build the VTT for T. */ |
| 6546 |
build_vtt (t); |
| 6547 |
|
| 6548 |
/* This warning does not make sense for Java classes, since they |
| 6549 |
cannot have destructors. */ |
| 6550 |
if (!TYPE_FOR_JAVA (t) && warn_nonvdtor && TYPE_POLYMORPHIC_P (t)) |
| 6551 |
{ |
| 6552 |
tree dtor; |
| 6553 |
|
| 6554 |
dtor = CLASSTYPE_DESTRUCTORS (t); |
| 6555 |
if (/* An implicitly declared destructor is always public. And, |
| 6556 |
if it were virtual, we would have created it by now. */ |
| 6557 |
!dtor |
| 6558 |
|| (!DECL_VINDEX (dtor) |
| 6559 |
&& (/* public non-virtual */ |
| 6560 |
(!TREE_PRIVATE (dtor) && !TREE_PROTECTED (dtor)) |
| 6561 |
|| (/* non-public non-virtual with friends */ |
| 6562 |
(TREE_PRIVATE (dtor) || TREE_PROTECTED (dtor)) |
| 6563 |
&& (CLASSTYPE_FRIEND_CLASSES (t) |
| 6564 |
|| DECL_FRIENDLIST (TYPE_MAIN_DECL (t))))))) |
| 6565 |
warning (OPT_Wnon_virtual_dtor, |
| 6566 |
"%q#T has virtual functions and accessible" |
| 6567 |
" non-virtual destructor", t); |
| 6568 |
} |
| 6569 |
|
| 6570 |
complete_vars (t); |
| 6571 |
|
| 6572 |
if (warn_overloaded_virtual) |
| 6573 |
warn_hidden (t); |
| 6574 |
|
| 6575 |
/* Class layout, assignment of virtual table slots, etc., is now |
| 6576 |
complete. Give the back end a chance to tweak the visibility of |
| 6577 |
the class or perform any other required target modifications. */ |
| 6578 |
targetm.cxx.adjust_class_at_definition (t); |
| 6579 |
|
| 6580 |
maybe_suppress_debug_info (t); |
| 6581 |
|
| 6582 |
if (flag_vtable_verify) |
| 6583 |
vtv_save_class_info (t); |
| 6584 |
|
| 6585 |
dump_class_hierarchy (t); |
| 6586 |
|
| 6587 |
/* Finish debugging output for this type. */ |
| 6588 |
rest_of_type_compilation (t, ! LOCAL_CLASS_P (t)); |
| 6589 |
|
| 6590 |
if (TYPE_TRANSPARENT_AGGR (t)) |
| 6591 |
{ |
| 6592 |
tree field = first_field (t); |
| 6593 |
if (field == NULL_TREE || error_operand_p (field)) |
| 6594 |
{ |
| 6595 |
error ("type transparent %q#T does not have any fields", t); |
| 6596 |
TYPE_TRANSPARENT_AGGR (t) = 0; |
| 6597 |
} |
| 6598 |
else if (DECL_ARTIFICIAL (field)) |
| 6599 |
{ |
| 6600 |
if (DECL_FIELD_IS_BASE (field)) |
| 6601 |
error ("type transparent class %qT has base classes", t); |
| 6602 |
else |
| 6603 |
{ |
| 6604 |
gcc_checking_assert (DECL_VIRTUAL_P (field)); |
| 6605 |
error ("type transparent class %qT has virtual functions", t); |
| 6606 |
} |
| 6607 |
TYPE_TRANSPARENT_AGGR (t) = 0; |
| 6608 |
} |
| 6609 |
else if (TYPE_MODE (t) != DECL_MODE (field)) |
| 6610 |
{ |
| 6611 |
error ("type transparent %q#T cannot be made transparent because " |
| 6612 |
"the type of the first field has a different ABI from the " |
| 6613 |
"class overall", t); |
| 6614 |
TYPE_TRANSPARENT_AGGR (t) = 0; |
| 6615 |
} |
| 6616 |
} |
| 6617 |
} |
| 6618 |
|
| 6619 |
/* Insert FIELDS into T for the sorted case if the FIELDS count is |
| 6620 |
equal to THRESHOLD or greater than THRESHOLD. */ |
| 6621 |
|
| 6622 |
static void |
| 6623 |
insert_into_classtype_sorted_fields (tree fields, tree t, int threshold) |
| 6624 |
{ |
| 6625 |
int n_fields = count_fields (fields); |
| 6626 |
if (n_fields >= threshold) |
| 6627 |
{ |
| 6628 |
struct sorted_fields_type *field_vec = sorted_fields_type_new (n_fields); |
| 6629 |
add_fields_to_record_type (fields, field_vec, 0); |
| 6630 |
qsort (field_vec->elts, n_fields, sizeof (tree), field_decl_cmp); |
| 6631 |
CLASSTYPE_SORTED_FIELDS (t) = field_vec; |
| 6632 |
} |
| 6633 |
} |
| 6634 |
|
| 6635 |
/* Insert lately defined enum ENUMTYPE into T for the sorted case. */ |
| 6636 |
|
| 6637 |
void |
| 6638 |
insert_late_enum_def_into_classtype_sorted_fields (tree enumtype, tree t) |
| 6639 |
{ |
| 6640 |
struct sorted_fields_type *sorted_fields = CLASSTYPE_SORTED_FIELDS (t); |
| 6641 |
if (sorted_fields) |
| 6642 |
{ |
| 6643 |
int i; |
| 6644 |
int n_fields |
| 6645 |
= list_length (TYPE_VALUES (enumtype)) + sorted_fields->len; |
| 6646 |
struct sorted_fields_type *field_vec = sorted_fields_type_new (n_fields); |
| 6647 |
|
| 6648 |
for (i = 0; i < sorted_fields->len; ++i) |
| 6649 |
field_vec->elts[i] = sorted_fields->elts[i]; |
| 6650 |
|
| 6651 |
add_enum_fields_to_record_type (enumtype, field_vec, |
| 6652 |
sorted_fields->len); |
| 6653 |
qsort (field_vec->elts, n_fields, sizeof (tree), field_decl_cmp); |
| 6654 |
CLASSTYPE_SORTED_FIELDS (t) = field_vec; |
| 6655 |
} |
| 6656 |
} |
| 6657 |
|
| 6658 |
/* When T was built up, the member declarations were added in reverse |
| 6659 |
order. Rearrange them to declaration order. */ |
| 6660 |
|
| 6661 |
void |
| 6662 |
unreverse_member_declarations (tree t) |
| 6663 |
{ |
| 6664 |
tree next; |
| 6665 |
tree prev; |
| 6666 |
tree x; |
| 6667 |
|
| 6668 |
/* The following lists are all in reverse order. Put them in |
| 6669 |
declaration order now. */ |
| 6670 |
TYPE_METHODS (t) = nreverse (TYPE_METHODS (t)); |
| 6671 |
CLASSTYPE_DECL_LIST (t) = nreverse (CLASSTYPE_DECL_LIST (t)); |
| 6672 |
|
| 6673 |
/* Actually, for the TYPE_FIELDS, only the non TYPE_DECLs are in |
| 6674 |
reverse order, so we can't just use nreverse. */ |
| 6675 |
prev = NULL_TREE; |
| 6676 |
for (x = TYPE_FIELDS (t); |
| 6677 |
x && TREE_CODE (x) != TYPE_DECL; |
| 6678 |
x = next) |
| 6679 |
{ |
| 6680 |
next = DECL_CHAIN (x); |
| 6681 |
DECL_CHAIN (x) = prev; |
| 6682 |
prev = x; |
| 6683 |
} |
| 6684 |
if (prev) |
| 6685 |
{ |
| 6686 |
DECL_CHAIN (TYPE_FIELDS (t)) = x; |
| 6687 |
if (prev) |
| 6688 |
TYPE_FIELDS (t) = prev; |
| 6689 |
} |
| 6690 |
} |
| 6691 |
|
| 6692 |
tree |
| 6693 |
finish_struct (tree t, tree attributes) |
| 6694 |
{ |
| 6695 |
location_t saved_loc = input_location; |
| 6696 |
|
| 6697 |
/* Now that we've got all the field declarations, reverse everything |
| 6698 |
as necessary. */ |
| 6699 |
unreverse_member_declarations (t); |
| 6700 |
|
| 6701 |
cplus_decl_attributes (&t, attributes, (int) ATTR_FLAG_TYPE_IN_PLACE); |
| 6702 |
|
| 6703 |
/* Nadger the current location so that diagnostics point to the start of |
| 6704 |
the struct, not the end. */ |
| 6705 |
input_location = DECL_SOURCE_LOCATION (TYPE_NAME (t)); |
| 6706 |
|
| 6707 |
if (processing_template_decl) |
| 6708 |
{ |
| 6709 |
tree x; |
| 6710 |
|
| 6711 |
finish_struct_methods (t); |
| 6712 |
TYPE_SIZE (t) = bitsize_zero_node; |
| 6713 |
TYPE_SIZE_UNIT (t) = size_zero_node; |
| 6714 |
|
| 6715 |
/* We need to emit an error message if this type was used as a parameter |
| 6716 |
and it is an abstract type, even if it is a template. We construct |
| 6717 |
a simple CLASSTYPE_PURE_VIRTUALS list without taking bases into |
| 6718 |
account and we call complete_vars with this type, which will check |
| 6719 |
the PARM_DECLS. Note that while the type is being defined, |
| 6720 |
CLASSTYPE_PURE_VIRTUALS contains the list of the inline friends |
| 6721 |
(see CLASSTYPE_INLINE_FRIENDS) so we need to clear it. */ |
| 6722 |
CLASSTYPE_PURE_VIRTUALS (t) = NULL; |
| 6723 |
for (x = TYPE_METHODS (t); x; x = DECL_CHAIN (x)) |
| 6724 |
if (DECL_PURE_VIRTUAL_P (x)) |
| 6725 |
vec_safe_push (CLASSTYPE_PURE_VIRTUALS (t), x); |
| 6726 |
complete_vars (t); |
| 6727 |
/* We need to add the target functions to the CLASSTYPE_METHOD_VEC if |
| 6728 |
an enclosing scope is a template class, so that this function be |
| 6729 |
found by lookup_fnfields_1 when the using declaration is not |
| 6730 |
instantiated yet. */ |
| 6731 |
for (x = TYPE_FIELDS (t); x; x = DECL_CHAIN (x)) |
| 6732 |
if (TREE_CODE (x) == USING_DECL) |
| 6733 |
{ |
| 6734 |
tree fn = strip_using_decl (x); |
| 6735 |
if (is_overloaded_fn (fn)) |
| 6736 |
for (; fn; fn = OVL_NEXT (fn)) |
| 6737 |
add_method (t, OVL_CURRENT (fn), x); |
| 6738 |
} |
| 6739 |
|
| 6740 |
/* Remember current #pragma pack value. */ |
| 6741 |
TYPE_PRECISION (t) = maximum_field_alignment; |
| 6742 |
|
| 6743 |
/* Fix up any variants we've already built. */ |
| 6744 |
for (x = TYPE_NEXT_VARIANT (t); x; x = TYPE_NEXT_VARIANT (x)) |
| 6745 |
{ |
| 6746 |
TYPE_SIZE (x) = TYPE_SIZE (t); |
| 6747 |
TYPE_SIZE_UNIT (x) = TYPE_SIZE_UNIT (t); |
| 6748 |
TYPE_FIELDS (x) = TYPE_FIELDS (t); |
| 6749 |
TYPE_METHODS (x) = TYPE_METHODS (t); |
| 6750 |
} |
| 6751 |
} |
| 6752 |
else |
| 6753 |
finish_struct_1 (t); |
| 6754 |
|
| 6755 |
input_location = saved_loc; |
| 6756 |
|
| 6757 |
TYPE_BEING_DEFINED (t) = 0; |
| 6758 |
|
| 6759 |
if (current_class_type) |
| 6760 |
popclass (); |
| 6761 |
else |
| 6762 |
error ("trying to finish struct, but kicked out due to previous parse errors"); |
| 6763 |
|
| 6764 |
if (processing_template_decl && at_function_scope_p () |
| 6765 |
/* Lambdas are defined by the LAMBDA_EXPR. */ |
| 6766 |
&& !LAMBDA_TYPE_P (t)) |
| 6767 |
add_stmt (build_min (TAG_DEFN, t)); |
| 6768 |
|
| 6769 |
return t; |
| 6770 |
} |
| 6771 |
|
| 6772 |
/* Hash table to avoid endless recursion when handling references. */ |
| 6773 |
static hash_table <pointer_hash <tree_node> > fixed_type_or_null_ref_ht; |
| 6774 |
|
| 6775 |
/* Return the dynamic type of INSTANCE, if known. |
| 6776 |
Used to determine whether the virtual function table is needed |
| 6777 |
or not. |
| 6778 |
|
| 6779 |
*NONNULL is set iff INSTANCE can be known to be nonnull, regardless |
| 6780 |
of our knowledge of its type. *NONNULL should be initialized |
| 6781 |
before this function is called. */ |
| 6782 |
|
| 6783 |
static tree |
| 6784 |
fixed_type_or_null (tree instance, int *nonnull, int *cdtorp) |
| 6785 |
{ |
| 6786 |
#define RECUR(T) fixed_type_or_null((T), nonnull, cdtorp) |
| 6787 |
|
| 6788 |
switch (TREE_CODE (instance)) |
| 6789 |
{ |
| 6790 |
case INDIRECT_REF: |
| 6791 |
if (POINTER_TYPE_P (TREE_TYPE (instance))) |
| 6792 |
return NULL_TREE; |
| 6793 |
else |
| 6794 |
return RECUR (TREE_OPERAND (instance, 0)); |
| 6795 |
|
| 6796 |
case CALL_EXPR: |
| 6797 |
/* This is a call to a constructor, hence it's never zero. */ |
| 6798 |
if (TREE_HAS_CONSTRUCTOR (instance)) |
| 6799 |
{ |
| 6800 |
if (nonnull) |
| 6801 |
*nonnull = 1; |
| 6802 |
return TREE_TYPE (instance); |
| 6803 |
} |
| 6804 |
return NULL_TREE; |
| 6805 |
|
| 6806 |
case SAVE_EXPR: |
| 6807 |
/* This is a call to a constructor, hence it's never zero. */ |
| 6808 |
if (TREE_HAS_CONSTRUCTOR (instance)) |
| 6809 |
{ |
| 6810 |
if (nonnull) |
| 6811 |
*nonnull = 1; |
| 6812 |
return TREE_TYPE (instance); |
| 6813 |
} |
| 6814 |
return RECUR (TREE_OPERAND (instance, 0)); |
| 6815 |
|
| 6816 |
case POINTER_PLUS_EXPR: |
| 6817 |
case PLUS_EXPR: |
| 6818 |
case MINUS_EXPR: |
| 6819 |
if (TREE_CODE (TREE_OPERAND (instance, 0)) == ADDR_EXPR) |
| 6820 |
return RECUR (TREE_OPERAND (instance, 0)); |
| 6821 |
if (TREE_CODE (TREE_OPERAND (instance, 1)) == INTEGER_CST) |
| 6822 |
/* Propagate nonnull. */ |
| 6823 |
return RECUR (TREE_OPERAND (instance, 0)); |
| 6824 |
|
| 6825 |
return NULL_TREE; |
| 6826 |
|
| 6827 |
CASE_CONVERT: |
| 6828 |
return RECUR (TREE_OPERAND (instance, 0)); |
| 6829 |
|
| 6830 |
case ADDR_EXPR: |
| 6831 |
instance = TREE_OPERAND (instance, 0); |
| 6832 |
if (nonnull) |
| 6833 |
{ |
| 6834 |
/* Just because we see an ADDR_EXPR doesn't mean we're dealing |
| 6835 |
with a real object -- given &p->f, p can still be null. */ |
| 6836 |
tree t = get_base_address (instance); |
| 6837 |
/* ??? Probably should check DECL_WEAK here. */ |
| 6838 |
if (t && DECL_P (t)) |
| 6839 |
*nonnull = 1; |
| 6840 |
} |
| 6841 |
return RECUR (instance); |
| 6842 |
|
| 6843 |
case COMPONENT_REF: |
| 6844 |
/* If this component is really a base class reference, then the field |
| 6845 |
itself isn't definitive. */ |
| 6846 |
if (DECL_FIELD_IS_BASE (TREE_OPERAND (instance, 1))) |
| 6847 |
return RECUR (TREE_OPERAND (instance, 0)); |
| 6848 |
return RECUR (TREE_OPERAND (instance, 1)); |
| 6849 |
|
| 6850 |
case VAR_DECL: |
| 6851 |
case FIELD_DECL: |
| 6852 |
if (TREE_CODE (TREE_TYPE (instance)) == ARRAY_TYPE |
| 6853 |
&& MAYBE_CLASS_TYPE_P (TREE_TYPE (TREE_TYPE (instance)))) |
| 6854 |
{ |
| 6855 |
if (nonnull) |
| 6856 |
*nonnull = 1; |
| 6857 |
return TREE_TYPE (TREE_TYPE (instance)); |
| 6858 |
} |
| 6859 |
/* fall through... */ |
| 6860 |
case TARGET_EXPR: |
| 6861 |
case PARM_DECL: |
| 6862 |
case RESULT_DECL: |
| 6863 |
if (MAYBE_CLASS_TYPE_P (TREE_TYPE (instance))) |
| 6864 |
{ |
| 6865 |
if (nonnull) |
| 6866 |
*nonnull = 1; |
| 6867 |
return TREE_TYPE (instance); |
| 6868 |
} |
| 6869 |
else if (instance == current_class_ptr) |
| 6870 |
{ |
| 6871 |
if (nonnull) |
| 6872 |
*nonnull = 1; |
| 6873 |
|
| 6874 |
/* if we're in a ctor or dtor, we know our type. If |
| 6875 |
current_class_ptr is set but we aren't in a function, we're in |
| 6876 |
an NSDMI (and therefore a constructor). */ |
| 6877 |
if (current_scope () != current_function_decl |
| 6878 |
|| (DECL_LANG_SPECIFIC (current_function_decl) |
| 6879 |
&& (DECL_CONSTRUCTOR_P (current_function_decl) |
| 6880 |
|| DECL_DESTRUCTOR_P (current_function_decl)))) |
| 6881 |
{ |
| 6882 |
if (cdtorp) |
| 6883 |
*cdtorp = 1; |
| 6884 |
return TREE_TYPE (TREE_TYPE (instance)); |
| 6885 |
} |
| 6886 |
} |
| 6887 |
else if (TREE_CODE (TREE_TYPE (instance)) == REFERENCE_TYPE) |
| 6888 |
{ |
| 6889 |
/* We only need one hash table because it is always left empty. */ |
| 6890 |
if (!fixed_type_or_null_ref_ht.is_created ()) |
| 6891 |
fixed_type_or_null_ref_ht.create (37); |
| 6892 |
|
| 6893 |
/* Reference variables should be references to objects. */ |
| 6894 |
if (nonnull) |
| 6895 |
*nonnull = 1; |
| 6896 |
|
| 6897 |
/* Enter the INSTANCE in a table to prevent recursion; a |
| 6898 |
variable's initializer may refer to the variable |
| 6899 |
itself. */ |
| 6900 |
if (VAR_P (instance) |
| 6901 |
&& DECL_INITIAL (instance) |
| 6902 |
&& !type_dependent_expression_p_push (DECL_INITIAL (instance)) |
| 6903 |
&& !fixed_type_or_null_ref_ht.find (instance)) |
| 6904 |
{ |
| 6905 |
tree type; |
| 6906 |
tree_node **slot; |
| 6907 |
|
| 6908 |
slot = fixed_type_or_null_ref_ht.find_slot (instance, INSERT); |
| 6909 |
*slot = instance; |
| 6910 |
type = RECUR (DECL_INITIAL (instance)); |
| 6911 |
fixed_type_or_null_ref_ht.remove_elt (instance); |
| 6912 |
|
| 6913 |
return type; |
| 6914 |
} |
| 6915 |
} |
| 6916 |
return NULL_TREE; |
| 6917 |
|
| 6918 |
default: |
| 6919 |
return NULL_TREE; |
| 6920 |
} |
| 6921 |
#undef RECUR |
| 6922 |
} |
| 6923 |
|
| 6924 |
/* Return nonzero if the dynamic type of INSTANCE is known, and |
| 6925 |
equivalent to the static type. We also handle the case where |
| 6926 |
INSTANCE is really a pointer. Return negative if this is a |
| 6927 |
ctor/dtor. There the dynamic type is known, but this might not be |
| 6928 |
the most derived base of the original object, and hence virtual |
| 6929 |
bases may not be laid out according to this type. |
| 6930 |
|
| 6931 |
Used to determine whether the virtual function table is needed |
| 6932 |
or not. |
| 6933 |
|
| 6934 |
*NONNULL is set iff INSTANCE can be known to be nonnull, regardless |
| 6935 |
of our knowledge of its type. *NONNULL should be initialized |
| 6936 |
before this function is called. */ |
| 6937 |
|
| 6938 |
int |
| 6939 |
resolves_to_fixed_type_p (tree instance, int* nonnull) |
| 6940 |
{ |
| 6941 |
tree t = TREE_TYPE (instance); |
| 6942 |
int cdtorp = 0; |
| 6943 |
tree fixed; |
| 6944 |
|
| 6945 |
/* processing_template_decl can be false in a template if we're in |
| 6946 |
fold_non_dependent_expr, but we still want to suppress this check. */ |
| 6947 |
if (in_template_function ()) |
| 6948 |
{ |
| 6949 |
/* In a template we only care about the type of the result. */ |
| 6950 |
if (nonnull) |
| 6951 |
*nonnull = true; |
| 6952 |
return true; |
| 6953 |
} |
| 6954 |
|
| 6955 |
fixed = fixed_type_or_null (instance, nonnull, &cdtorp); |
| 6956 |
if (fixed == NULL_TREE) |
| 6957 |
return 0; |
| 6958 |
if (POINTER_TYPE_P (t)) |
| 6959 |
t = TREE_TYPE (t); |
| 6960 |
if (!same_type_ignoring_top_level_qualifiers_p (t, fixed)) |
| 6961 |
return 0; |
| 6962 |
return cdtorp ? -1 : 1; |
| 6963 |
} |
| 6964 |
|
| 6965 |
|
| 6966 |
void |
| 6967 |
init_class_processing (void) |
| 6968 |
{ |
| 6969 |
current_class_depth = 0; |
| 6970 |
current_class_stack_size = 10; |
| 6971 |
current_class_stack |
| 6972 |
= XNEWVEC (struct class_stack_node, current_class_stack_size); |
| 6973 |
vec_alloc (local_classes, 8); |
| 6974 |
sizeof_biggest_empty_class = size_zero_node; |
| 6975 |
|
| 6976 |
ridpointers[(int) RID_PUBLIC] = access_public_node; |
| 6977 |
ridpointers[(int) RID_PRIVATE] = access_private_node; |
| 6978 |
ridpointers[(int) RID_PROTECTED] = access_protected_node; |
| 6979 |
} |
| 6980 |
|
| 6981 |
/* Restore the cached PREVIOUS_CLASS_LEVEL. */ |
| 6982 |
|
| 6983 |
static void |
| 6984 |
restore_class_cache (void) |
| 6985 |
{ |
| 6986 |
tree type; |
| 6987 |
|
| 6988 |
/* We are re-entering the same class we just left, so we don't |
| 6989 |
have to search the whole inheritance matrix to find all the |
| 6990 |
decls to bind again. Instead, we install the cached |
| 6991 |
class_shadowed list and walk through it binding names. */ |
| 6992 |
push_binding_level (previous_class_level); |
| 6993 |
class_binding_level = previous_class_level; |
| 6994 |
/* Restore IDENTIFIER_TYPE_VALUE. */ |
| 6995 |
for (type = class_binding_level->type_shadowed; |
| 6996 |
type; |
| 6997 |
type = TREE_CHAIN (type)) |
| 6998 |
SET_IDENTIFIER_TYPE_VALUE (TREE_PURPOSE (type), TREE_TYPE (type)); |
| 6999 |
} |
| 7000 |
|
| 7001 |
/* Set global variables CURRENT_CLASS_NAME and CURRENT_CLASS_TYPE as |
| 7002 |
appropriate for TYPE. |
| 7003 |
|
| 7004 |
So that we may avoid calls to lookup_name, we cache the _TYPE |
| 7005 |
nodes of local TYPE_DECLs in the TREE_TYPE field of the name. |
| 7006 |
|
| 7007 |
For multiple inheritance, we perform a two-pass depth-first search |
| 7008 |
of the type lattice. */ |
| 7009 |
|
| 7010 |
void |
| 7011 |
pushclass (tree type) |
| 7012 |
{ |
| 7013 |
class_stack_node_t csn; |
| 7014 |
|
| 7015 |
type = TYPE_MAIN_VARIANT (type); |
| 7016 |
|
| 7017 |
/* Make sure there is enough room for the new entry on the stack. */ |
| 7018 |
if (current_class_depth + 1 >= current_class_stack_size) |
| 7019 |
{ |
| 7020 |
current_class_stack_size *= 2; |
| 7021 |
current_class_stack |
| 7022 |
= XRESIZEVEC (struct class_stack_node, current_class_stack, |
| 7023 |
current_class_stack_size); |
| 7024 |
} |
| 7025 |
|
| 7026 |
/* Insert a new entry on the class stack. */ |
| 7027 |
csn = current_class_stack + current_class_depth; |
| 7028 |
csn->name = current_class_name; |
| 7029 |
csn->type = current_class_type; |
| 7030 |
csn->access = current_access_specifier; |
| 7031 |
csn->names_used = 0; |
| 7032 |
csn->hidden = 0; |
| 7033 |
current_class_depth++; |
| 7034 |
|
| 7035 |
/* Now set up the new type. */ |
| 7036 |
current_class_name = TYPE_NAME (type); |
| 7037 |
if (TREE_CODE (current_class_name) == TYPE_DECL) |
| 7038 |
current_class_name = DECL_NAME (current_class_name); |
| 7039 |
current_class_type = type; |
| 7040 |
|
| 7041 |
/* By default, things in classes are private, while things in |
| 7042 |
structures or unions are public. */ |
| 7043 |
current_access_specifier = (CLASSTYPE_DECLARED_CLASS (type) |
| 7044 |
? access_private_node |
| 7045 |
: access_public_node); |
| 7046 |
|
| 7047 |
if (previous_class_level |
| 7048 |
&& type != previous_class_level->this_entity |
| 7049 |
&& current_class_depth == 1) |
| 7050 |
{ |
| 7051 |
/* Forcibly remove any old class remnants. */ |
| 7052 |
invalidate_class_lookup_cache (); |
| 7053 |
} |
| 7054 |
|
| 7055 |
if (!previous_class_level |
| 7056 |
|| type != previous_class_level->this_entity |
| 7057 |
|| current_class_depth > 1) |
| 7058 |
pushlevel_class (); |
| 7059 |
else |
| 7060 |
restore_class_cache (); |
| 7061 |
} |
| 7062 |
|
| 7063 |
/* When we exit a toplevel class scope, we save its binding level so |
| 7064 |
that we can restore it quickly. Here, we've entered some other |
| 7065 |
class, so we must invalidate our cache. */ |
| 7066 |
|
| 7067 |
void |
| 7068 |
invalidate_class_lookup_cache (void) |
| 7069 |
{ |
| 7070 |
previous_class_level = NULL; |
| 7071 |
} |
| 7072 |
|
| 7073 |
/* Get out of the current class scope. If we were in a class scope |
| 7074 |
previously, that is the one popped to. */ |
| 7075 |
|
| 7076 |
void |
| 7077 |
popclass (void) |
| 7078 |
{ |
| 7079 |
poplevel_class (); |
| 7080 |
|
| 7081 |
current_class_depth--; |
| 7082 |
current_class_name = current_class_stack[current_class_depth].name; |
| 7083 |
current_class_type = current_class_stack[current_class_depth].type; |
| 7084 |
current_access_specifier = current_class_stack[current_class_depth].access; |
| 7085 |
if (current_class_stack[current_class_depth].names_used) |
| 7086 |
splay_tree_delete (current_class_stack[current_class_depth].names_used); |
| 7087 |
} |
| 7088 |
|
| 7089 |
/* Mark the top of the class stack as hidden. */ |
| 7090 |
|
| 7091 |
void |
| 7092 |
push_class_stack (void) |
| 7093 |
{ |
| 7094 |
if (current_class_depth) |
| 7095 |
++current_class_stack[current_class_depth - 1].hidden; |
| 7096 |
} |
| 7097 |
|
| 7098 |
/* Mark the top of the class stack as un-hidden. */ |
| 7099 |
|
| 7100 |
void |
| 7101 |
pop_class_stack (void) |
| 7102 |
{ |
| 7103 |
if (current_class_depth) |
| 7104 |
--current_class_stack[current_class_depth - 1].hidden; |
| 7105 |
} |
| 7106 |
|
| 7107 |
/* Returns 1 if the class type currently being defined is either T or |
| 7108 |
a nested type of T. */ |
| 7109 |
|
| 7110 |
bool |
| 7111 |
currently_open_class (tree t) |
| 7112 |
{ |
| 7113 |
int i; |
| 7114 |
|
| 7115 |
if (!CLASS_TYPE_P (t)) |
| 7116 |
return false; |
| 7117 |
|
| 7118 |
t = TYPE_MAIN_VARIANT (t); |
| 7119 |
|
| 7120 |
/* We start looking from 1 because entry 0 is from global scope, |
| 7121 |
and has no type. */ |
| 7122 |
for (i = current_class_depth; i > 0; --i) |
| 7123 |
{ |
| 7124 |
tree c; |
| 7125 |
if (i == current_class_depth) |
| 7126 |
c = current_class_type; |
| 7127 |
else |
| 7128 |
{ |
| 7129 |
if (current_class_stack[i].hidden) |
| 7130 |
break; |
| 7131 |
c = current_class_stack[i].type; |
| 7132 |
} |
| 7133 |
if (!c) |
| 7134 |
continue; |
| 7135 |
if (same_type_p (c, t)) |
| 7136 |
return true; |
| 7137 |
} |
| 7138 |
return false; |
| 7139 |
} |
| 7140 |
|
| 7141 |
/* If either current_class_type or one of its enclosing classes are derived |
| 7142 |
from T, return the appropriate type. Used to determine how we found |
| 7143 |
something via unqualified lookup. */ |
| 7144 |
|
| 7145 |
tree |
| 7146 |
currently_open_derived_class (tree t) |
| 7147 |
{ |
| 7148 |
int i; |
| 7149 |
|
| 7150 |
/* The bases of a dependent type are unknown. */ |
| 7151 |
if (dependent_type_p (t)) |
| 7152 |
return NULL_TREE; |
| 7153 |
|
| 7154 |
if (!current_class_type) |
| 7155 |
return NULL_TREE; |
| 7156 |
|
| 7157 |
if (DERIVED_FROM_P (t, current_class_type)) |
| 7158 |
return current_class_type; |
| 7159 |
|
| 7160 |
for (i = current_class_depth - 1; i > 0; --i) |
| 7161 |
{ |
| 7162 |
if (current_class_stack[i].hidden) |
| 7163 |
break; |
| 7164 |
if (DERIVED_FROM_P (t, current_class_stack[i].type)) |
| 7165 |
return current_class_stack[i].type; |
| 7166 |
} |
| 7167 |
|
| 7168 |
return NULL_TREE; |
| 7169 |
} |
| 7170 |
|
| 7171 |
/* Returns the innermost class type which is not a lambda closure type. */ |
| 7172 |
|
| 7173 |
tree |
| 7174 |
current_nonlambda_class_type (void) |
| 7175 |
{ |
| 7176 |
int i; |
| 7177 |
|
| 7178 |
/* We start looking from 1 because entry 0 is from global scope, |
| 7179 |
and has no type. */ |
| 7180 |
for (i = current_class_depth; i > 0; --i) |
| 7181 |
{ |
| 7182 |
tree c; |
| 7183 |
if (i == current_class_depth) |
| 7184 |
c = current_class_type; |
| 7185 |
else |
| 7186 |
{ |
| 7187 |
if (current_class_stack[i].hidden) |
| 7188 |
break; |
| 7189 |
c = current_class_stack[i].type; |
| 7190 |
} |
| 7191 |
if (!c) |
| 7192 |
continue; |
| 7193 |
if (!LAMBDA_TYPE_P (c)) |
| 7194 |
return c; |
| 7195 |
} |
| 7196 |
return NULL_TREE; |
| 7197 |
} |
| 7198 |
|
| 7199 |
/* When entering a class scope, all enclosing class scopes' names with |
| 7200 |
static meaning (static variables, static functions, types and |
| 7201 |
enumerators) have to be visible. This recursive function calls |
| 7202 |
pushclass for all enclosing class contexts until global or a local |
| 7203 |
scope is reached. TYPE is the enclosed class. */ |
| 7204 |
|
| 7205 |
void |
| 7206 |
push_nested_class (tree type) |
| 7207 |
{ |
| 7208 |
/* A namespace might be passed in error cases, like A::B:C. */ |
| 7209 |
if (type == NULL_TREE |
| 7210 |
|| !CLASS_TYPE_P (type)) |
| 7211 |
return; |
| 7212 |
|
| 7213 |
push_nested_class (DECL_CONTEXT (TYPE_MAIN_DECL (type))); |
| 7214 |
|
| 7215 |
pushclass (type); |
| 7216 |
} |
| 7217 |
|
| 7218 |
/* Undoes a push_nested_class call. */ |
| 7219 |
|
| 7220 |
void |
| 7221 |
pop_nested_class (void) |
| 7222 |
{ |
| 7223 |
tree context = DECL_CONTEXT (TYPE_MAIN_DECL (current_class_type)); |
| 7224 |
|
| 7225 |
popclass (); |
| 7226 |
if (context && CLASS_TYPE_P (context)) |
| 7227 |
pop_nested_class (); |
| 7228 |
} |
| 7229 |
|
| 7230 |
/* Returns the number of extern "LANG" blocks we are nested within. */ |
| 7231 |
|
| 7232 |
int |
| 7233 |
current_lang_depth (void) |
| 7234 |
{ |
| 7235 |
return vec_safe_length (current_lang_base); |
| 7236 |
} |
| 7237 |
|
| 7238 |
/* Set global variables CURRENT_LANG_NAME to appropriate value |
| 7239 |
so that behavior of name-mangling machinery is correct. */ |
| 7240 |
|
| 7241 |
void |
| 7242 |
push_lang_context (tree name) |
| 7243 |
{ |
| 7244 |
vec_safe_push (current_lang_base, current_lang_name); |
| 7245 |
|
| 7246 |
if (name == lang_name_cplusplus) |
| 7247 |
{ |
| 7248 |
current_lang_name = name; |
| 7249 |
} |
| 7250 |
else if (name == lang_name_java) |
| 7251 |
{ |
| 7252 |
current_lang_name = name; |
| 7253 |
/* DECL_IGNORED_P is initially set for these types, to avoid clutter. |
| 7254 |
(See record_builtin_java_type in decl.c.) However, that causes |
| 7255 |
incorrect debug entries if these types are actually used. |
| 7256 |
So we re-enable debug output after extern "Java". */ |
| 7257 |
DECL_IGNORED_P (TYPE_NAME (java_byte_type_node)) = 0; |
| 7258 |
DECL_IGNORED_P (TYPE_NAME (java_short_type_node)) = 0; |
| 7259 |
DECL_IGNORED_P (TYPE_NAME (java_int_type_node)) = 0; |
| 7260 |
DECL_IGNORED_P (TYPE_NAME (java_long_type_node)) = 0; |
| 7261 |
DECL_IGNORED_P (TYPE_NAME (java_float_type_node)) = 0; |
| 7262 |
DECL_IGNORED_P (TYPE_NAME (java_double_type_node)) = 0; |
| 7263 |
DECL_IGNORED_P (TYPE_NAME (java_char_type_node)) = 0; |
| 7264 |
DECL_IGNORED_P (TYPE_NAME (java_boolean_type_node)) = 0; |
| 7265 |
} |
| 7266 |
else if (name == lang_name_c) |
| 7267 |
{ |
| 7268 |
current_lang_name = name; |
| 7269 |
} |
| 7270 |
else |
| 7271 |
error ("language string %<\"%E\"%> not recognized", name); |
| 7272 |
} |
| 7273 |
|
| 7274 |
/* Get out of the current language scope. */ |
| 7275 |
|
| 7276 |
void |
| 7277 |
pop_lang_context (void) |
| 7278 |
{ |
| 7279 |
current_lang_name = current_lang_base->pop (); |
| 7280 |
} |
| 7281 |
|
| 7282 |
/* Type instantiation routines. */ |
| 7283 |
|
| 7284 |
/* Given an OVERLOAD and a TARGET_TYPE, return the function that |
| 7285 |
matches the TARGET_TYPE. If there is no satisfactory match, return |
| 7286 |
error_mark_node, and issue an error & warning messages under |
| 7287 |
control of FLAGS. Permit pointers to member function if FLAGS |
| 7288 |
permits. If TEMPLATE_ONLY, the name of the overloaded function was |
| 7289 |
a template-id, and EXPLICIT_TARGS are the explicitly provided |
| 7290 |
template arguments. |
| 7291 |
|
| 7292 |
If OVERLOAD is for one or more member functions, then ACCESS_PATH |
| 7293 |
is the base path used to reference those member functions. If |
| 7294 |
the address is resolved to a member function, access checks will be |
| 7295 |
performed and errors issued if appropriate. */ |
| 7296 |
|
| 7297 |
static tree |
| 7298 |
resolve_address_of_overloaded_function (tree target_type, |
| 7299 |
tree overload, |
| 7300 |
tsubst_flags_t flags, |
| 7301 |
bool template_only, |
| 7302 |
tree explicit_targs, |
| 7303 |
tree access_path) |
| 7304 |
{ |
| 7305 |
/* Here's what the standard says: |
| 7306 |
|
| 7307 |
[over.over] |
| 7308 |
|
| 7309 |
If the name is a function template, template argument deduction |
| 7310 |
is done, and if the argument deduction succeeds, the deduced |
| 7311 |
arguments are used to generate a single template function, which |
| 7312 |
is added to the set of overloaded functions considered. |
| 7313 |
|
| 7314 |
Non-member functions and static member functions match targets of |
| 7315 |
type "pointer-to-function" or "reference-to-function." Nonstatic |
| 7316 |
member functions match targets of type "pointer-to-member |
| 7317 |
function;" the function type of the pointer to member is used to |
| 7318 |
select the member function from the set of overloaded member |
| 7319 |
functions. If a nonstatic member function is selected, the |
| 7320 |
reference to the overloaded function name is required to have the |
| 7321 |
form of a pointer to member as described in 5.3.1. |
| 7322 |
|
| 7323 |
If more than one function is selected, any template functions in |
| 7324 |
the set are eliminated if the set also contains a non-template |
| 7325 |
function, and any given template function is eliminated if the |
| 7326 |
set contains a second template function that is more specialized |
| 7327 |
than the first according to the partial ordering rules 14.5.5.2. |
| 7328 |
After such eliminations, if any, there shall remain exactly one |
| 7329 |
selected function. */ |
| 7330 |
|
| 7331 |
int is_ptrmem = 0; |
| 7332 |
/* We store the matches in a TREE_LIST rooted here. The functions |
| 7333 |
are the TREE_PURPOSE, not the TREE_VALUE, in this list, for easy |
| 7334 |
interoperability with most_specialized_instantiation. */ |
| 7335 |
tree matches = NULL_TREE; |
| 7336 |
tree fn; |
| 7337 |
tree target_fn_type; |
| 7338 |
|
| 7339 |
/* By the time we get here, we should be seeing only real |
| 7340 |
pointer-to-member types, not the internal POINTER_TYPE to |
| 7341 |
METHOD_TYPE representation. */ |
| 7342 |
gcc_assert (!TYPE_PTR_P (target_type) |
| 7343 |
|| TREE_CODE (TREE_TYPE (target_type)) != METHOD_TYPE); |
| 7344 |
|
| 7345 |
gcc_assert (is_overloaded_fn (overload)); |
| 7346 |
|
| 7347 |
/* Check that the TARGET_TYPE is reasonable. */ |
| 7348 |
if (TYPE_PTRFN_P (target_type) |
| 7349 |
|| TYPE_REFFN_P (target_type)) |
| 7350 |
/* This is OK. */; |
| 7351 |
else if (TYPE_PTRMEMFUNC_P (target_type)) |
| 7352 |
/* This is OK, too. */ |
| 7353 |
is_ptrmem = 1; |
| 7354 |
else if (TREE_CODE (target_type) == FUNCTION_TYPE) |
| 7355 |
/* This is OK, too. This comes from a conversion to reference |
| 7356 |
type. */ |
| 7357 |
target_type = build_reference_type (target_type); |
| 7358 |
else |
| 7359 |
{ |
| 7360 |
if (flags & tf_error) |
| 7361 |
error ("cannot resolve overloaded function %qD based on" |
| 7362 |
" conversion to type %qT", |
| 7363 |
DECL_NAME (OVL_FUNCTION (overload)), target_type); |
| 7364 |
return error_mark_node; |
| 7365 |
} |
| 7366 |
|
| 7367 |
/* Non-member functions and static member functions match targets of type |
| 7368 |
"pointer-to-function" or "reference-to-function." Nonstatic member |
| 7369 |
functions match targets of type "pointer-to-member-function;" the |
| 7370 |
function type of the pointer to member is used to select the member |
| 7371 |
function from the set of overloaded member functions. |
| 7372 |
|
| 7373 |
So figure out the FUNCTION_TYPE that we want to match against. */ |
| 7374 |
target_fn_type = static_fn_type (target_type); |
| 7375 |
|
| 7376 |
/* If we can find a non-template function that matches, we can just |
| 7377 |
use it. There's no point in generating template instantiations |
| 7378 |
if we're just going to throw them out anyhow. But, of course, we |
| 7379 |
can only do this when we don't *need* a template function. */ |
| 7380 |
if (!template_only) |
| 7381 |
{ |
| 7382 |
tree fns; |
| 7383 |
|
| 7384 |
for (fns = overload; fns; fns = OVL_NEXT (fns)) |
| 7385 |
{ |
| 7386 |
tree fn = OVL_CURRENT (fns); |
| 7387 |
|
| 7388 |
if (TREE_CODE (fn) == TEMPLATE_DECL) |
| 7389 |
/* We're not looking for templates just yet. */ |
| 7390 |
continue; |
| 7391 |
|
| 7392 |
if ((TREE_CODE (TREE_TYPE (fn)) == METHOD_TYPE) |
| 7393 |
!= is_ptrmem) |
| 7394 |
/* We're looking for a non-static member, and this isn't |
| 7395 |
one, or vice versa. */ |
| 7396 |
continue; |
| 7397 |
|
| 7398 |
/* Ignore functions which haven't been explicitly |
| 7399 |
declared. */ |
| 7400 |
if (DECL_ANTICIPATED (fn)) |
| 7401 |
continue; |
| 7402 |
|
| 7403 |
/* See if there's a match. */ |
| 7404 |
if (same_type_p (target_fn_type, static_fn_type (fn))) |
| 7405 |
matches = tree_cons (fn, NULL_TREE, matches); |
| 7406 |
} |
| 7407 |
} |
| 7408 |
|
| 7409 |
/* Now, if we've already got a match (or matches), there's no need |
| 7410 |
to proceed to the template functions. But, if we don't have a |
| 7411 |
match we need to look at them, too. */ |
| 7412 |
if (!matches) |
| 7413 |
{ |
| 7414 |
tree target_arg_types; |
| 7415 |
tree target_ret_type; |
| 7416 |
tree fns; |
| 7417 |
tree *args; |
| 7418 |
unsigned int nargs, ia; |
| 7419 |
tree arg; |
| 7420 |
|
| 7421 |
target_arg_types = TYPE_ARG_TYPES (target_fn_type); |
| 7422 |
target_ret_type = TREE_TYPE (target_fn_type); |
| 7423 |
|
| 7424 |
nargs = list_length (target_arg_types); |
| 7425 |
args = XALLOCAVEC (tree, nargs); |
| 7426 |
for (arg = target_arg_types, ia = 0; |
| 7427 |
arg != NULL_TREE && arg != void_list_node; |
| 7428 |
arg = TREE_CHAIN (arg), ++ia) |
| 7429 |
args[ia] = TREE_VALUE (arg); |
| 7430 |
nargs = ia; |
| 7431 |
|
| 7432 |
for (fns = overload; fns; fns = OVL_NEXT (fns)) |
| 7433 |
{ |
| 7434 |
tree fn = OVL_CURRENT (fns); |
| 7435 |
tree instantiation; |
| 7436 |
tree targs; |
| 7437 |
|
| 7438 |
if (TREE_CODE (fn) != TEMPLATE_DECL) |
| 7439 |
/* We're only looking for templates. */ |
| 7440 |
continue; |
| 7441 |
|
| 7442 |
if ((TREE_CODE (TREE_TYPE (fn)) == METHOD_TYPE) |
| 7443 |
!= is_ptrmem) |
| 7444 |
/* We're not looking for a non-static member, and this is |
| 7445 |
one, or vice versa. */ |
| 7446 |
continue; |
| 7447 |
|
| 7448 |
tree ret = target_ret_type; |
| 7449 |
|
| 7450 |
/* If the template has a deduced return type, don't expose it to |
| 7451 |
template argument deduction. */ |
| 7452 |
if (undeduced_auto_decl (fn)) |
| 7453 |
ret = NULL_TREE; |
| 7454 |
|
| 7455 |
/* Try to do argument deduction. */ |
| 7456 |
targs = make_tree_vec (DECL_NTPARMS (fn)); |
| 7457 |
instantiation = fn_type_unification (fn, explicit_targs, targs, args, |
| 7458 |
nargs, ret, |
| 7459 |
DEDUCE_EXACT, LOOKUP_NORMAL, |
| 7460 |
false, false); |
| 7461 |
if (instantiation == error_mark_node) |
| 7462 |
/* Instantiation failed. */ |
| 7463 |
continue; |
| 7464 |
|
| 7465 |
/* And now force instantiation to do return type deduction. */ |
| 7466 |
if (undeduced_auto_decl (instantiation)) |
| 7467 |
{ |
| 7468 |
++function_depth; |
| 7469 |
instantiate_decl (instantiation, /*defer*/false, /*class*/false); |
| 7470 |
--function_depth; |
| 7471 |
|
| 7472 |
require_deduced_type (instantiation); |
| 7473 |
} |
| 7474 |
|
| 7475 |
/* See if there's a match. */ |
| 7476 |
if (same_type_p (target_fn_type, static_fn_type (instantiation))) |
| 7477 |
matches = tree_cons (instantiation, fn, matches); |
| 7478 |
} |
| 7479 |
|
| 7480 |
/* Now, remove all but the most specialized of the matches. */ |
| 7481 |
if (matches) |
| 7482 |
{ |
| 7483 |
tree match = most_specialized_instantiation (matches); |
| 7484 |
|
| 7485 |
if (match != error_mark_node) |
| 7486 |
matches = tree_cons (TREE_PURPOSE (match), |
| 7487 |
NULL_TREE, |
| 7488 |
NULL_TREE); |
| 7489 |
} |
| 7490 |
} |
| 7491 |
|
| 7492 |
/* Now we should have exactly one function in MATCHES. */ |
| 7493 |
if (matches == NULL_TREE) |
| 7494 |
{ |
| 7495 |
/* There were *no* matches. */ |
| 7496 |
if (flags & tf_error) |
| 7497 |
{ |
| 7498 |
error ("no matches converting function %qD to type %q#T", |
| 7499 |
DECL_NAME (OVL_CURRENT (overload)), |
| 7500 |
target_type); |
| 7501 |
|
| 7502 |
print_candidates (overload); |
| 7503 |
} |
| 7504 |
return error_mark_node; |
| 7505 |
} |
| 7506 |
else if (TREE_CHAIN (matches)) |
| 7507 |
{ |
| 7508 |
/* There were too many matches. First check if they're all |
| 7509 |
the same function. */ |
| 7510 |
tree match = NULL_TREE; |
| 7511 |
|
| 7512 |
fn = TREE_PURPOSE (matches); |
| 7513 |
|
| 7514 |
/* For multi-versioned functions, more than one match is just fine and |
| 7515 |
decls_match will return false as they are different. */ |
| 7516 |
for (match = TREE_CHAIN (matches); match; match = TREE_CHAIN (match)) |
| 7517 |
if (!decls_match (fn, TREE_PURPOSE (match)) |
| 7518 |
&& !targetm.target_option.function_versions |
| 7519 |
(fn, TREE_PURPOSE (match))) |
| 7520 |
break; |
| 7521 |
|
| 7522 |
if (match) |
| 7523 |
{ |
| 7524 |
if (flags & tf_error) |
| 7525 |
{ |
| 7526 |
error ("converting overloaded function %qD to type %q#T is ambiguous", |
| 7527 |
DECL_NAME (OVL_FUNCTION (overload)), |
| 7528 |
target_type); |
| 7529 |
|
| 7530 |
/* Since print_candidates expects the functions in the |
| 7531 |
TREE_VALUE slot, we flip them here. */ |
| 7532 |
for (match = matches; match; match = TREE_CHAIN (match)) |
| 7533 |
TREE_VALUE (match) = TREE_PURPOSE (match); |
| 7534 |
|
| 7535 |
print_candidates (matches); |
| 7536 |
} |
| 7537 |
|
| 7538 |
return error_mark_node; |
| 7539 |
} |
| 7540 |
} |
| 7541 |
|
| 7542 |
/* Good, exactly one match. Now, convert it to the correct type. */ |
| 7543 |
fn = TREE_PURPOSE (matches); |
| 7544 |
|
| 7545 |
if (DECL_NONSTATIC_MEMBER_FUNCTION_P (fn) |
| 7546 |
&& !(flags & tf_ptrmem_ok) && !flag_ms_extensions) |
| 7547 |
{ |
| 7548 |
static int explained; |
| 7549 |
|
| 7550 |
if (!(flags & tf_error)) |
| 7551 |
return error_mark_node; |
| 7552 |
|
| 7553 |
permerror (input_location, "assuming pointer to member %qD", fn); |
| 7554 |
if (!explained) |
| 7555 |
{ |
| 7556 |
inform (input_location, "(a pointer to member can only be formed with %<&%E%>)", fn); |
| 7557 |
explained = 1; |
| 7558 |
} |
| 7559 |
} |
| 7560 |
|
| 7561 |
/* If a pointer to a function that is multi-versioned is requested, the |
| 7562 |
pointer to the dispatcher function is returned instead. This works |
| 7563 |
well because indirectly calling the function will dispatch the right |
| 7564 |
function version at run-time. */ |
| 7565 |
if (DECL_FUNCTION_VERSIONED (fn)) |
| 7566 |
{ |
| 7567 |
fn = get_function_version_dispatcher (fn); |
| 7568 |
if (fn == NULL) |
| 7569 |
return error_mark_node; |
| 7570 |
/* Mark all the versions corresponding to the dispatcher as used. */ |
| 7571 |
if (!(flags & tf_conv)) |
| 7572 |
mark_versions_used (fn); |
| 7573 |
} |
| 7574 |
|
| 7575 |
/* If we're doing overload resolution purely for the purpose of |
| 7576 |
determining conversion sequences, we should not consider the |
| 7577 |
function used. If this conversion sequence is selected, the |
| 7578 |
function will be marked as used at this point. */ |
| 7579 |
if (!(flags & tf_conv)) |
| 7580 |
{ |
| 7581 |
/* Make =delete work with SFINAE. */ |
| 7582 |
if (DECL_DELETED_FN (fn) && !(flags & tf_error)) |
| 7583 |
return error_mark_node; |
| 7584 |
|
| 7585 |
mark_used (fn); |
| 7586 |
} |
| 7587 |
|
| 7588 |
/* We could not check access to member functions when this |
| 7589 |
expression was originally created since we did not know at that |
| 7590 |
time to which function the expression referred. */ |
| 7591 |
if (DECL_FUNCTION_MEMBER_P (fn)) |
| 7592 |
{ |
| 7593 |
gcc_assert (access_path); |
| 7594 |
perform_or_defer_access_check (access_path, fn, fn, flags); |
| 7595 |
} |
| 7596 |
|
| 7597 |
if (TYPE_PTRFN_P (target_type) || TYPE_PTRMEMFUNC_P (target_type)) |
| 7598 |
return cp_build_addr_expr (fn, flags); |
| 7599 |
else |
| 7600 |
{ |
| 7601 |
/* The target must be a REFERENCE_TYPE. Above, cp_build_unary_op |
| 7602 |
will mark the function as addressed, but here we must do it |
| 7603 |
explicitly. */ |
| 7604 |
cxx_mark_addressable (fn); |
| 7605 |
|
| 7606 |
return fn; |
| 7607 |
} |
| 7608 |
} |
| 7609 |
|
| 7610 |
/* This function will instantiate the type of the expression given in |
| 7611 |
RHS to match the type of LHSTYPE. If errors exist, then return |
| 7612 |
error_mark_node. FLAGS is a bit mask. If TF_ERROR is set, then |
| 7613 |
we complain on errors. If we are not complaining, never modify rhs, |
| 7614 |
as overload resolution wants to try many possible instantiations, in |
| 7615 |
the hope that at least one will work. |
| 7616 |
|
| 7617 |
For non-recursive calls, LHSTYPE should be a function, pointer to |
| 7618 |
function, or a pointer to member function. */ |
| 7619 |
|
| 7620 |
tree |
| 7621 |
instantiate_type (tree lhstype, tree rhs, tsubst_flags_t flags) |
| 7622 |
{ |
| 7623 |
tsubst_flags_t flags_in = flags; |
| 7624 |
tree access_path = NULL_TREE; |
| 7625 |
|
| 7626 |
flags &= ~tf_ptrmem_ok; |
| 7627 |
|
| 7628 |
if (lhstype == unknown_type_node) |
| 7629 |
{ |
| 7630 |
if (flags & tf_error) |
| 7631 |
error ("not enough type information"); |
| 7632 |
return error_mark_node; |
| 7633 |
} |
| 7634 |
|
| 7635 |
if (TREE_TYPE (rhs) != NULL_TREE && ! (type_unknown_p (rhs))) |
| 7636 |
{ |
| 7637 |
tree fntype = non_reference (lhstype); |
| 7638 |
if (same_type_p (fntype, TREE_TYPE (rhs))) |
| 7639 |
return rhs; |
| 7640 |
if (flag_ms_extensions |
| 7641 |
&& TYPE_PTRMEMFUNC_P (fntype) |
| 7642 |
&& !TYPE_PTRMEMFUNC_P (TREE_TYPE (rhs))) |
| 7643 |
/* Microsoft allows `A::f' to be resolved to a |
| 7644 |
pointer-to-member. */ |
| 7645 |
; |
| 7646 |
else |
| 7647 |
{ |
| 7648 |
if (flags & tf_error) |
| 7649 |
error ("cannot convert %qE from type %qT to type %qT", |
| 7650 |
rhs, TREE_TYPE (rhs), fntype); |
| 7651 |
return error_mark_node; |
| 7652 |
} |
| 7653 |
} |
| 7654 |
|
| 7655 |
if (BASELINK_P (rhs)) |
| 7656 |
{ |
| 7657 |
access_path = BASELINK_ACCESS_BINFO (rhs); |
| 7658 |
rhs = BASELINK_FUNCTIONS (rhs); |
| 7659 |
} |
| 7660 |
|
| 7661 |
/* If we are in a template, and have a NON_DEPENDENT_EXPR, we cannot |
| 7662 |
deduce any type information. */ |
| 7663 |
if (TREE_CODE (rhs) == NON_DEPENDENT_EXPR) |
| 7664 |
{ |
| 7665 |
if (flags & tf_error) |
| 7666 |
error ("not enough type information"); |
| 7667 |
return error_mark_node; |
| 7668 |
} |
| 7669 |
|
| 7670 |
/* There only a few kinds of expressions that may have a type |
| 7671 |
dependent on overload resolution. */ |
| 7672 |
gcc_assert (TREE_CODE (rhs) == ADDR_EXPR |
| 7673 |
|| TREE_CODE (rhs) == COMPONENT_REF |
| 7674 |
|| is_overloaded_fn (rhs) |
| 7675 |
|| (flag_ms_extensions && TREE_CODE (rhs) == FUNCTION_DECL)); |
| 7676 |
|
| 7677 |
/* This should really only be used when attempting to distinguish |
| 7678 |
what sort of a pointer to function we have. For now, any |
| 7679 |
arithmetic operation which is not supported on pointers |
| 7680 |
is rejected as an error. */ |
| 7681 |
|
| 7682 |
switch (TREE_CODE (rhs)) |
| 7683 |
{ |
| 7684 |
case COMPONENT_REF: |
| 7685 |
{ |
| 7686 |
tree member = TREE_OPERAND (rhs, 1); |
| 7687 |
|
| 7688 |
member = instantiate_type (lhstype, member, flags); |
| 7689 |
if (member != error_mark_node |
| 7690 |
&& TREE_SIDE_EFFECTS (TREE_OPERAND (rhs, 0))) |
| 7691 |
/* Do not lose object's side effects. */ |
| 7692 |
return build2 (COMPOUND_EXPR, TREE_TYPE (member), |
| 7693 |
TREE_OPERAND (rhs, 0), member); |
| 7694 |
return member; |
| 7695 |
} |
| 7696 |
|
| 7697 |
case OFFSET_REF: |
| 7698 |
rhs = TREE_OPERAND (rhs, 1); |
| 7699 |
if (BASELINK_P (rhs)) |
| 7700 |
return instantiate_type (lhstype, rhs, flags_in); |
| 7701 |
|
| 7702 |
/* This can happen if we are forming a pointer-to-member for a |
| 7703 |
member template. */ |
| 7704 |
gcc_assert (TREE_CODE (rhs) == TEMPLATE_ID_EXPR); |
| 7705 |
|
| 7706 |
/* Fall through. */ |
| 7707 |
|
| 7708 |
case TEMPLATE_ID_EXPR: |
| 7709 |
{ |
| 7710 |
tree fns = TREE_OPERAND (rhs, 0); |
| 7711 |
tree args = TREE_OPERAND (rhs, 1); |
| 7712 |
|
| 7713 |
return |
| 7714 |
resolve_address_of_overloaded_function (lhstype, fns, flags_in, |
| 7715 |
/*template_only=*/true, |
| 7716 |
args, access_path); |
| 7717 |
} |
| 7718 |
|
| 7719 |
case OVERLOAD: |
| 7720 |
case FUNCTION_DECL: |
| 7721 |
return |
| 7722 |
resolve_address_of_overloaded_function (lhstype, rhs, flags_in, |
| 7723 |
/*template_only=*/false, |
| 7724 |
/*explicit_targs=*/NULL_TREE, |
| 7725 |
access_path); |
| 7726 |
|
| 7727 |
case ADDR_EXPR: |
| 7728 |
{ |
| 7729 |
if (PTRMEM_OK_P (rhs)) |
| 7730 |
flags |= tf_ptrmem_ok; |
| 7731 |
|
| 7732 |
return instantiate_type (lhstype, TREE_OPERAND (rhs, 0), flags); |
| 7733 |
} |
| 7734 |
|
| 7735 |
case ERROR_MARK: |
| 7736 |
return error_mark_node; |
| 7737 |
|
| 7738 |
default: |
| 7739 |
gcc_unreachable (); |
| 7740 |
} |
| 7741 |
return error_mark_node; |
| 7742 |
} |
| 7743 |
|
| 7744 |
/* Return the name of the virtual function pointer field |
| 7745 |
(as an IDENTIFIER_NODE) for the given TYPE. Note that |
| 7746 |
this may have to look back through base types to find the |
| 7747 |
ultimate field name. (For single inheritance, these could |
| 7748 |
all be the same name. Who knows for multiple inheritance). */ |
| 7749 |
|
| 7750 |
static tree |
| 7751 |
get_vfield_name (tree type) |
| 7752 |
{ |
| 7753 |
tree binfo, base_binfo; |
| 7754 |
char *buf; |
| 7755 |
|
| 7756 |
for (binfo = TYPE_BINFO (type); |
| 7757 |
BINFO_N_BASE_BINFOS (binfo); |
| 7758 |
binfo = base_binfo) |
| 7759 |
{ |
| 7760 |
base_binfo = BINFO_BASE_BINFO (binfo, 0); |
| 7761 |
|
| 7762 |
if (BINFO_VIRTUAL_P (base_binfo) |
| 7763 |
|| !TYPE_CONTAINS_VPTR_P (BINFO_TYPE (base_binfo))) |
| 7764 |
break; |
| 7765 |
} |
| 7766 |
|
| 7767 |
type = BINFO_TYPE (binfo); |
| 7768 |
buf = (char *) alloca (sizeof (VFIELD_NAME_FORMAT) |
| 7769 |
+ TYPE_NAME_LENGTH (type) + 2); |
| 7770 |
sprintf (buf, VFIELD_NAME_FORMAT, |
| 7771 |
IDENTIFIER_POINTER (constructor_name (type))); |
| 7772 |
return get_identifier (buf); |
| 7773 |
} |
| 7774 |
|
| 7775 |
void |
| 7776 |
print_class_statistics (void) |
| 7777 |
{ |
| 7778 |
if (! GATHER_STATISTICS) |
| 7779 |
return; |
| 7780 |
|
| 7781 |
fprintf (stderr, "convert_harshness = %d\n", n_convert_harshness); |
| 7782 |
fprintf (stderr, "compute_conversion_costs = %d\n", n_compute_conversion_costs); |
| 7783 |
if (n_vtables) |
| 7784 |
{ |
| 7785 |
fprintf (stderr, "vtables = %d; vtable searches = %d\n", |
| 7786 |
n_vtables, n_vtable_searches); |
| 7787 |
fprintf (stderr, "vtable entries = %d; vtable elems = %d\n", |
| 7788 |
n_vtable_entries, n_vtable_elems); |
| 7789 |
} |
| 7790 |
} |
| 7791 |
|
| 7792 |
/* Build a dummy reference to ourselves so Derived::Base (and A::A) works, |
| 7793 |
according to [class]: |
| 7794 |
The class-name is also inserted |
| 7795 |
into the scope of the class itself. For purposes of access checking, |
| 7796 |
the inserted class name is treated as if it were a public member name. */ |
| 7797 |
|
| 7798 |
void |
| 7799 |
build_self_reference (void) |
| 7800 |
{ |
| 7801 |
tree name = constructor_name (current_class_type); |
| 7802 |
tree value = build_lang_decl (TYPE_DECL, name, current_class_type); |
| 7803 |
tree saved_cas; |
| 7804 |
|
| 7805 |
DECL_NONLOCAL (value) = 1; |
| 7806 |
DECL_CONTEXT (value) = current_class_type; |
| 7807 |
DECL_ARTIFICIAL (value) = 1; |
| 7808 |
SET_DECL_SELF_REFERENCE_P (value); |
| 7809 |
set_underlying_type (value); |
| 7810 |
|
| 7811 |
if (processing_template_decl) |
| 7812 |
value = push_template_decl (value); |
| 7813 |
|
| 7814 |
saved_cas = current_access_specifier; |
| 7815 |
current_access_specifier = access_public_node; |
| 7816 |
finish_member_declaration (value); |
| 7817 |
current_access_specifier = saved_cas; |
| 7818 |
} |
| 7819 |
|
| 7820 |
/* Returns 1 if TYPE contains only padding bytes. */ |
| 7821 |
|
| 7822 |
int |
| 7823 |
is_empty_class (tree type) |
| 7824 |
{ |
| 7825 |
if (type == error_mark_node) |
| 7826 |
return 0; |
| 7827 |
|
| 7828 |
if (! CLASS_TYPE_P (type)) |
| 7829 |
return 0; |
| 7830 |
|
| 7831 |
/* In G++ 3.2, whether or not a class was empty was determined by |
| 7832 |
looking at its size. */ |
| 7833 |
if (abi_version_at_least (2)) |
| 7834 |
return CLASSTYPE_EMPTY_P (type); |
| 7835 |
else |
| 7836 |
return integer_zerop (CLASSTYPE_SIZE (type)); |
| 7837 |
} |
| 7838 |
|
| 7839 |
/* Returns true if TYPE contains an empty class. */ |
| 7840 |
|
| 7841 |
static bool |
| 7842 |
contains_empty_class_p (tree type) |
| 7843 |
{ |
| 7844 |
if (is_empty_class (type)) |
| 7845 |
return true; |
| 7846 |
if (CLASS_TYPE_P (type)) |
| 7847 |
{ |
| 7848 |
tree field; |
| 7849 |
tree binfo; |
| 7850 |
tree base_binfo; |
| 7851 |
int i; |
| 7852 |
|
| 7853 |
for (binfo = TYPE_BINFO (type), i = 0; |
| 7854 |
BINFO_BASE_ITERATE (binfo, i, base_binfo); ++i) |
| 7855 |
if (contains_empty_class_p (BINFO_TYPE (base_binfo))) |
| 7856 |
return true; |
| 7857 |
for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field)) |
| 7858 |
if (TREE_CODE (field) == FIELD_DECL |
| 7859 |
&& !DECL_ARTIFICIAL (field) |
| 7860 |
&& is_empty_class (TREE_TYPE (field))) |
| 7861 |
return true; |
| 7862 |
} |
| 7863 |
else if (TREE_CODE (type) == ARRAY_TYPE) |
| 7864 |
return contains_empty_class_p (TREE_TYPE (type)); |
| 7865 |
return false; |
| 7866 |
} |
| 7867 |
|
| 7868 |
/* Returns true if TYPE contains no actual data, just various |
| 7869 |
possible combinations of empty classes and possibly a vptr. */ |
| 7870 |
|
| 7871 |
bool |
| 7872 |
is_really_empty_class (tree type) |
| 7873 |
{ |
| 7874 |
if (CLASS_TYPE_P (type)) |
| 7875 |
{ |
| 7876 |
tree field; |
| 7877 |
tree binfo; |
| 7878 |
tree base_binfo; |
| 7879 |
int i; |
| 7880 |
|
| 7881 |
/* CLASSTYPE_EMPTY_P isn't set properly until the class is actually laid |
| 7882 |
out, but we'd like to be able to check this before then. */ |
| 7883 |
if (COMPLETE_TYPE_P (type) && is_empty_class (type)) |
| 7884 |
return true; |
| 7885 |
|
| 7886 |
for (binfo = TYPE_BINFO (type), i = 0; |
| 7887 |
BINFO_BASE_ITERATE (binfo, i, base_binfo); ++i) |
| 7888 |
if (!is_really_empty_class (BINFO_TYPE (base_binfo))) |
| 7889 |
return false; |
| 7890 |
for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field)) |
| 7891 |
if (TREE_CODE (field) == FIELD_DECL |
| 7892 |
&& !DECL_ARTIFICIAL (field) |
| 7893 |
&& !is_really_empty_class (TREE_TYPE (field))) |
| 7894 |
return false; |
| 7895 |
return true; |
| 7896 |
} |
| 7897 |
else if (TREE_CODE (type) == ARRAY_TYPE) |
| 7898 |
return is_really_empty_class (TREE_TYPE (type)); |
| 7899 |
return false; |
| 7900 |
} |
| 7901 |
|
| 7902 |
/* Note that NAME was looked up while the current class was being |
| 7903 |
defined and that the result of that lookup was DECL. */ |
| 7904 |
|
| 7905 |
void |
| 7906 |
maybe_note_name_used_in_class (tree name, tree decl) |
| 7907 |
{ |
| 7908 |
splay_tree names_used; |
| 7909 |
|
| 7910 |
/* If we're not defining a class, there's nothing to do. */ |
| 7911 |
if (!(innermost_scope_kind() == sk_class |
| 7912 |
&& TYPE_BEING_DEFINED (current_class_type) |
| 7913 |
&& !LAMBDA_TYPE_P (current_class_type))) |
| 7914 |
return; |
| 7915 |
|
| 7916 |
/* If there's already a binding for this NAME, then we don't have |
| 7917 |
anything to worry about. */ |
| 7918 |
if (lookup_member (current_class_type, name, |
| 7919 |
/*protect=*/0, /*want_type=*/false, tf_warning_or_error)) |
| 7920 |
return; |
| 7921 |
|
| 7922 |
if (!current_class_stack[current_class_depth - 1].names_used) |
| 7923 |
current_class_stack[current_class_depth - 1].names_used |
| 7924 |
= splay_tree_new (splay_tree_compare_pointers, 0, 0); |
| 7925 |
names_used = current_class_stack[current_class_depth - 1].names_used; |
| 7926 |
|
| 7927 |
splay_tree_insert (names_used, |
| 7928 |
(splay_tree_key) name, |
| 7929 |
(splay_tree_value) decl); |
| 7930 |
} |
| 7931 |
|
| 7932 |
/* Note that NAME was declared (as DECL) in the current class. Check |
| 7933 |
to see that the declaration is valid. */ |
| 7934 |
|
| 7935 |
void |
| 7936 |
note_name_declared_in_class (tree name, tree decl) |
| 7937 |
{ |
| 7938 |
splay_tree names_used; |
| 7939 |
splay_tree_node n; |
| 7940 |
|
| 7941 |
/* Look to see if we ever used this name. */ |
| 7942 |
names_used |
| 7943 |
= current_class_stack[current_class_depth - 1].names_used; |
| 7944 |
if (!names_used) |
| 7945 |
return; |
| 7946 |
/* The C language allows members to be declared with a type of the same |
| 7947 |
name, and the C++ standard says this diagnostic is not required. So |
| 7948 |
allow it in extern "C" blocks unless predantic is specified. |
| 7949 |
Allow it in all cases if -ms-extensions is specified. */ |
| 7950 |
if ((!pedantic && current_lang_name == lang_name_c) |
| 7951 |
|| flag_ms_extensions) |
| 7952 |
return; |
| 7953 |
n = splay_tree_lookup (names_used, (splay_tree_key) name); |
| 7954 |
if (n) |
| 7955 |
{ |
| 7956 |
/* [basic.scope.class] |
| 7957 |
|
| 7958 |
A name N used in a class S shall refer to the same declaration |
| 7959 |
in its context and when re-evaluated in the completed scope of |
| 7960 |
S. */ |
| 7961 |
permerror (input_location, "declaration of %q#D", decl); |
| 7962 |
permerror (input_location, "changes meaning of %qD from %q+#D", |
| 7963 |
DECL_NAME (OVL_CURRENT (decl)), (tree) n->value); |
| 7964 |
} |
| 7965 |
} |
| 7966 |
|
| 7967 |
/* Returns the VAR_DECL for the complete vtable associated with BINFO. |
| 7968 |
Secondary vtables are merged with primary vtables; this function |
| 7969 |
will return the VAR_DECL for the primary vtable. */ |
| 7970 |
|
| 7971 |
tree |
| 7972 |
get_vtbl_decl_for_binfo (tree binfo) |
| 7973 |
{ |
| 7974 |
tree decl; |
| 7975 |
|
| 7976 |
decl = BINFO_VTABLE (binfo); |
| 7977 |
if (decl && TREE_CODE (decl) == POINTER_PLUS_EXPR) |
| 7978 |
{ |
| 7979 |
gcc_assert (TREE_CODE (TREE_OPERAND (decl, 0)) == ADDR_EXPR); |
| 7980 |
decl = TREE_OPERAND (TREE_OPERAND (decl, 0), 0); |
| 7981 |
} |
| 7982 |
if (decl) |
| 7983 |
gcc_assert (VAR_P (decl)); |
| 7984 |
return decl; |
| 7985 |
} |
| 7986 |
|
| 7987 |
|
| 7988 |
/* Returns the binfo for the primary base of BINFO. If the resulting |
| 7989 |
BINFO is a virtual base, and it is inherited elsewhere in the |
| 7990 |
hierarchy, then the returned binfo might not be the primary base of |
| 7991 |
BINFO in the complete object. Check BINFO_PRIMARY_P or |
| 7992 |
BINFO_LOST_PRIMARY_P to be sure. */ |
| 7993 |
|
| 7994 |
static tree |
| 7995 |
get_primary_binfo (tree binfo) |
| 7996 |
{ |
| 7997 |
tree primary_base; |
| 7998 |
|
| 7999 |
primary_base = CLASSTYPE_PRIMARY_BINFO (BINFO_TYPE (binfo)); |
| 8000 |
if (!primary_base) |
| 8001 |
return NULL_TREE; |
| 8002 |
|
| 8003 |
return copied_binfo (primary_base, binfo); |
| 8004 |
} |
| 8005 |
|
| 8006 |
/* If INDENTED_P is zero, indent to INDENT. Return nonzero. */ |
| 8007 |
|
| 8008 |
static int |
| 8009 |
maybe_indent_hierarchy (FILE * stream, int indent, int indented_p) |
| 8010 |
{ |
| 8011 |
if (!indented_p) |
| 8012 |
fprintf (stream, "%*s", indent, ""); |
| 8013 |
return 1; |
| 8014 |
} |
| 8015 |
|
| 8016 |
/* Dump the offsets of all the bases rooted at BINFO to STREAM. |
| 8017 |
INDENT should be zero when called from the top level; it is |
| 8018 |
incremented recursively. IGO indicates the next expected BINFO in |
| 8019 |
inheritance graph ordering. */ |
| 8020 |
|
| 8021 |
static tree |
| 8022 |
dump_class_hierarchy_r (FILE *stream, |
| 8023 |
int flags, |
| 8024 |
tree binfo, |
| 8025 |
tree igo, |
| 8026 |
int indent) |
| 8027 |
{ |
| 8028 |
int indented = 0; |
| 8029 |
tree base_binfo; |
| 8030 |
int i; |
| 8031 |
|
| 8032 |
indented = maybe_indent_hierarchy (stream, indent, 0); |
| 8033 |
fprintf (stream, "%s (0x" HOST_WIDE_INT_PRINT_HEX ") ", |
| 8034 |
type_as_string (BINFO_TYPE (binfo), TFF_PLAIN_IDENTIFIER), |
| 8035 |
(HOST_WIDE_INT) (uintptr_t) binfo); |
| 8036 |
if (binfo != igo) |
| 8037 |
{ |
| 8038 |
fprintf (stream, "alternative-path\n"); |
| 8039 |
return igo; |
| 8040 |
} |
| 8041 |
igo = TREE_CHAIN (binfo); |
| 8042 |
|
| 8043 |
fprintf (stream, HOST_WIDE_INT_PRINT_DEC, |
| 8044 |
tree_to_shwi (BINFO_OFFSET (binfo))); |
| 8045 |
if (is_empty_class (BINFO_TYPE (binfo))) |
| 8046 |
fprintf (stream, " empty"); |
| 8047 |
else if (CLASSTYPE_NEARLY_EMPTY_P (BINFO_TYPE (binfo))) |
| 8048 |
fprintf (stream, " nearly-empty"); |
| 8049 |
if (BINFO_VIRTUAL_P (binfo)) |
| 8050 |
fprintf (stream, " virtual"); |
| 8051 |
fprintf (stream, "\n"); |
| 8052 |
|
| 8053 |
indented = 0; |
| 8054 |
if (BINFO_PRIMARY_P (binfo)) |
| 8055 |
{ |
| 8056 |
indented = maybe_indent_hierarchy (stream, indent + 3, indented); |
| 8057 |
fprintf (stream, " primary-for %s (0x" HOST_WIDE_INT_PRINT_HEX ")", |
| 8058 |
type_as_string (BINFO_TYPE (BINFO_INHERITANCE_CHAIN (binfo)), |
| 8059 |
TFF_PLAIN_IDENTIFIER), |
| 8060 |
(HOST_WIDE_INT) (uintptr_t) BINFO_INHERITANCE_CHAIN (binfo)); |
| 8061 |
} |
| 8062 |
if (BINFO_LOST_PRIMARY_P (binfo)) |
| 8063 |
{ |
| 8064 |
indented = maybe_indent_hierarchy (stream, indent + 3, indented); |
| 8065 |
fprintf (stream, " lost-primary"); |
| 8066 |
} |
| 8067 |
if (indented) |
| 8068 |
fprintf (stream, "\n"); |
| 8069 |
|
| 8070 |
if (!(flags & TDF_SLIM)) |
| 8071 |
{ |
| 8072 |
int indented = 0; |
| 8073 |
|
| 8074 |
if (BINFO_SUBVTT_INDEX (binfo)) |
| 8075 |
{ |
| 8076 |
indented = maybe_indent_hierarchy (stream, indent + 3, indented); |
| 8077 |
fprintf (stream, " subvttidx=%s", |
| 8078 |
expr_as_string (BINFO_SUBVTT_INDEX (binfo), |
| 8079 |
TFF_PLAIN_IDENTIFIER)); |
| 8080 |
} |
| 8081 |
if (BINFO_VPTR_INDEX (binfo)) |
| 8082 |
{ |
| 8083 |
indented = maybe_indent_hierarchy (stream, indent + 3, indented); |
| 8084 |
fprintf (stream, " vptridx=%s", |
| 8085 |
expr_as_string (BINFO_VPTR_INDEX (binfo), |
| 8086 |
TFF_PLAIN_IDENTIFIER)); |
| 8087 |
} |
| 8088 |
if (BINFO_VPTR_FIELD (binfo)) |
| 8089 |
{ |
| 8090 |
indented = maybe_indent_hierarchy (stream, indent + 3, indented); |
| 8091 |
fprintf (stream, " vbaseoffset=%s", |
| 8092 |
expr_as_string (BINFO_VPTR_FIELD (binfo), |
| 8093 |
TFF_PLAIN_IDENTIFIER)); |
| 8094 |
} |
| 8095 |
if (BINFO_VTABLE (binfo)) |
| 8096 |
{ |
| 8097 |
indented = maybe_indent_hierarchy (stream, indent + 3, indented); |
| 8098 |
fprintf (stream, " vptr=%s", |
| 8099 |
expr_as_string (BINFO_VTABLE (binfo), |
| 8100 |
TFF_PLAIN_IDENTIFIER)); |
| 8101 |
} |
| 8102 |
|
| 8103 |
if (indented) |
| 8104 |
fprintf (stream, "\n"); |
| 8105 |
} |
| 8106 |
|
| 8107 |
for (i = 0; BINFO_BASE_ITERATE (binfo, i, base_binfo); i++) |
| 8108 |
igo = dump_class_hierarchy_r (stream, flags, base_binfo, igo, indent + 2); |
| 8109 |
|
| 8110 |
return igo; |
| 8111 |
} |
| 8112 |
|
| 8113 |
/* Dump the BINFO hierarchy for T. */ |
| 8114 |
|
| 8115 |
static void |
| 8116 |
dump_class_hierarchy_1 (FILE *stream, int flags, tree t) |
| 8117 |
{ |
| 8118 |
fprintf (stream, "Class %s\n", type_as_string (t, TFF_PLAIN_IDENTIFIER)); |
| 8119 |
fprintf (stream, " size=%lu align=%lu\n", |
| 8120 |
(unsigned long)(tree_to_shwi (TYPE_SIZE (t)) / BITS_PER_UNIT), |
| 8121 |
(unsigned long)(TYPE_ALIGN (t) / BITS_PER_UNIT)); |
| 8122 |
fprintf (stream, " base size=%lu base align=%lu\n", |
| 8123 |
(unsigned long)(tree_to_shwi (TYPE_SIZE (CLASSTYPE_AS_BASE (t))) |
| 8124 |
/ BITS_PER_UNIT), |
| 8125 |
(unsigned long)(TYPE_ALIGN (CLASSTYPE_AS_BASE (t)) |
| 8126 |
/ BITS_PER_UNIT)); |
| 8127 |
dump_class_hierarchy_r (stream, flags, TYPE_BINFO (t), TYPE_BINFO (t), 0); |
| 8128 |
fprintf (stream, "\n"); |
| 8129 |
} |
| 8130 |
|
| 8131 |
/* Debug interface to hierarchy dumping. */ |
| 8132 |
|
| 8133 |
void |
| 8134 |
debug_class (tree t) |
| 8135 |
{ |
| 8136 |
dump_class_hierarchy_1 (stderr, TDF_SLIM, t); |
| 8137 |
} |
| 8138 |
|
| 8139 |
static void |
| 8140 |
dump_class_hierarchy (tree t) |
| 8141 |
{ |
| 8142 |
int flags; |
| 8143 |
FILE *stream = dump_begin (TDI_class, &flags); |
| 8144 |
|
| 8145 |
if (stream) |
| 8146 |
{ |
| 8147 |
dump_class_hierarchy_1 (stream, flags, t); |
| 8148 |
dump_end (TDI_class, stream); |
| 8149 |
} |
| 8150 |
} |
| 8151 |
|
| 8152 |
static void |
| 8153 |
dump_array (FILE * stream, tree decl) |
| 8154 |
{ |
| 8155 |
tree value; |
| 8156 |
unsigned HOST_WIDE_INT ix; |
| 8157 |
HOST_WIDE_INT elt; |
| 8158 |
tree size = TYPE_MAX_VALUE (TYPE_DOMAIN (TREE_TYPE (decl))); |
| 8159 |
|
| 8160 |
elt = (tree_to_shwi (TYPE_SIZE (TREE_TYPE (TREE_TYPE (decl)))) |
| 8161 |
/ BITS_PER_UNIT); |
| 8162 |
fprintf (stream, "%s:", decl_as_string (decl, TFF_PLAIN_IDENTIFIER)); |
| 8163 |
fprintf (stream, " %s entries", |
| 8164 |
expr_as_string (size_binop (PLUS_EXPR, size, size_one_node), |
| 8165 |
TFF_PLAIN_IDENTIFIER)); |
| 8166 |
fprintf (stream, "\n"); |
| 8167 |
|
| 8168 |
FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (DECL_INITIAL (decl)), |
| 8169 |
ix, value) |
| 8170 |
fprintf (stream, "%-4ld %s\n", (long)(ix * elt), |
| 8171 |
expr_as_string (value, TFF_PLAIN_IDENTIFIER)); |
| 8172 |
} |
| 8173 |
|
| 8174 |
static void |
| 8175 |
dump_vtable (tree t, tree binfo, tree vtable) |
| 8176 |
{ |
| 8177 |
int flags; |
| 8178 |
FILE *stream = dump_begin (TDI_class, &flags); |
| 8179 |
|
| 8180 |
if (!stream) |
| 8181 |
return; |
| 8182 |
|
| 8183 |
if (!(flags & TDF_SLIM)) |
| 8184 |
{ |
| 8185 |
int ctor_vtbl_p = TYPE_BINFO (t) != binfo; |
| 8186 |
|
| 8187 |
fprintf (stream, "%s for %s", |
| 8188 |
ctor_vtbl_p ? "Construction vtable" : "Vtable", |
| 8189 |
type_as_string (BINFO_TYPE (binfo), TFF_PLAIN_IDENTIFIER)); |
| 8190 |
if (ctor_vtbl_p) |
| 8191 |
{ |
| 8192 |
if (!BINFO_VIRTUAL_P (binfo)) |
| 8193 |
fprintf (stream, " (0x" HOST_WIDE_INT_PRINT_HEX " instance)", |
| 8194 |
(HOST_WIDE_INT) (uintptr_t) binfo); |
| 8195 |
fprintf (stream, " in %s", type_as_string (t, TFF_PLAIN_IDENTIFIER)); |
| 8196 |
} |
| 8197 |
fprintf (stream, "\n"); |
| 8198 |
dump_array (stream, vtable); |
| 8199 |
fprintf (stream, "\n"); |
| 8200 |
} |
| 8201 |
|
| 8202 |
dump_end (TDI_class, stream); |
| 8203 |
} |
| 8204 |
|
| 8205 |
static void |
| 8206 |
dump_vtt (tree t, tree vtt) |
| 8207 |
{ |
| 8208 |
int flags; |
| 8209 |
FILE *stream = dump_begin (TDI_class, &flags); |
| 8210 |
|
| 8211 |
if (!stream) |
| 8212 |
return; |
| 8213 |
|
| 8214 |
if (!(flags & TDF_SLIM)) |
| 8215 |
{ |
| 8216 |
fprintf (stream, "VTT for %s\n", |
| 8217 |
type_as_string (t, TFF_PLAIN_IDENTIFIER)); |
| 8218 |
dump_array (stream, vtt); |
| 8219 |
fprintf (stream, "\n"); |
| 8220 |
} |
| 8221 |
|
| 8222 |
dump_end (TDI_class, stream); |
| 8223 |
} |
| 8224 |
|
| 8225 |
/* Dump a function or thunk and its thunkees. */ |
| 8226 |
|
| 8227 |
static void |
| 8228 |
dump_thunk (FILE *stream, int indent, tree thunk) |
| 8229 |
{ |
| 8230 |
static const char spaces[] = " "; |
| 8231 |
tree name = DECL_NAME (thunk); |
| 8232 |
tree thunks; |
| 8233 |
|
| 8234 |
fprintf (stream, "%.*s%p %s %s", indent, spaces, |
| 8235 |
(void *)thunk, |
| 8236 |
!DECL_THUNK_P (thunk) ? "function" |
| 8237 |
: DECL_THIS_THUNK_P (thunk) ? "this-thunk" : "covariant-thunk", |
| 8238 |
name ? IDENTIFIER_POINTER (name) : "<unset>"); |
| 8239 |
if (DECL_THUNK_P (thunk)) |
| 8240 |
{ |
| 8241 |
HOST_WIDE_INT fixed_adjust = THUNK_FIXED_OFFSET (thunk); |
| 8242 |
tree virtual_adjust = THUNK_VIRTUAL_OFFSET (thunk); |
| 8243 |
|
| 8244 |
fprintf (stream, " fixed=" HOST_WIDE_INT_PRINT_DEC, fixed_adjust); |
| 8245 |
if (!virtual_adjust) |
| 8246 |
/*NOP*/; |
| 8247 |
else if (DECL_THIS_THUNK_P (thunk)) |
| 8248 |
fprintf (stream, " vcall=" HOST_WIDE_INT_PRINT_DEC, |
| 8249 |
tree_to_shwi (virtual_adjust)); |
| 8250 |
else |
| 8251 |
fprintf (stream, " vbase=" HOST_WIDE_INT_PRINT_DEC "(%s)", |
| 8252 |
tree_to_shwi (BINFO_VPTR_FIELD (virtual_adjust)), |
| 8253 |
type_as_string (BINFO_TYPE (virtual_adjust), TFF_SCOPE)); |
| 8254 |
if (THUNK_ALIAS (thunk)) |
| 8255 |
fprintf (stream, " alias to %p", (void *)THUNK_ALIAS (thunk)); |
| 8256 |
} |
| 8257 |
fprintf (stream, "\n"); |
| 8258 |
for (thunks = DECL_THUNKS (thunk); thunks; thunks = TREE_CHAIN (thunks)) |
| 8259 |
dump_thunk (stream, indent + 2, thunks); |
| 8260 |
} |
| 8261 |
|
| 8262 |
/* Dump the thunks for FN. */ |
| 8263 |
|
| 8264 |
void |
| 8265 |
debug_thunks (tree fn) |
| 8266 |
{ |
| 8267 |
dump_thunk (stderr, 0, fn); |
| 8268 |
} |
| 8269 |
|
| 8270 |
/* Virtual function table initialization. */ |
| 8271 |
|
| 8272 |
/* Create all the necessary vtables for T and its base classes. */ |
| 8273 |
|
| 8274 |
static void |
| 8275 |
finish_vtbls (tree t) |
| 8276 |
{ |
| 8277 |
tree vbase; |
| 8278 |
vec<constructor_elt, va_gc> *v = NULL; |
| 8279 |
tree vtable = BINFO_VTABLE (TYPE_BINFO (t)); |
| 8280 |
|
| 8281 |
/* We lay out the primary and secondary vtables in one contiguous |
| 8282 |
vtable. The primary vtable is first, followed by the non-virtual |
| 8283 |
secondary vtables in inheritance graph order. */ |
| 8284 |
accumulate_vtbl_inits (TYPE_BINFO (t), TYPE_BINFO (t), TYPE_BINFO (t), |
| 8285 |
vtable, t, &v); |
| 8286 |
|
| 8287 |
/* Then come the virtual bases, also in inheritance graph order. */ |
| 8288 |
for (vbase = TYPE_BINFO (t); vbase; vbase = TREE_CHAIN (vbase)) |
| 8289 |
{ |
| 8290 |
if (!BINFO_VIRTUAL_P (vbase)) |
| 8291 |
continue; |
| 8292 |
accumulate_vtbl_inits (vbase, vbase, TYPE_BINFO (t), vtable, t, &v); |
| 8293 |
} |
| 8294 |
|
| 8295 |
if (BINFO_VTABLE (TYPE_BINFO (t))) |
| 8296 |
initialize_vtable (TYPE_BINFO (t), v); |
| 8297 |
} |
| 8298 |
|
| 8299 |
/* Initialize the vtable for BINFO with the INITS. */ |
| 8300 |
|
| 8301 |
static void |
| 8302 |
initialize_vtable (tree binfo, vec<constructor_elt, va_gc> *inits) |
| 8303 |
{ |
| 8304 |
tree decl; |
| 8305 |
|
| 8306 |
layout_vtable_decl (binfo, vec_safe_length (inits)); |
| 8307 |
decl = get_vtbl_decl_for_binfo (binfo); |
| 8308 |
initialize_artificial_var (decl, inits); |
| 8309 |
dump_vtable (BINFO_TYPE (binfo), binfo, decl); |
| 8310 |
} |
| 8311 |
|
| 8312 |
/* Build the VTT (virtual table table) for T. |
| 8313 |
A class requires a VTT if it has virtual bases. |
| 8314 |
|
| 8315 |
This holds |
| 8316 |
1 - primary virtual pointer for complete object T |
| 8317 |
2 - secondary VTTs for each direct non-virtual base of T which requires a |
| 8318 |
VTT |
| 8319 |
3 - secondary virtual pointers for each direct or indirect base of T which |
| 8320 |
has virtual bases or is reachable via a virtual path from T. |
| 8321 |
4 - secondary VTTs for each direct or indirect virtual base of T. |
| 8322 |
|
| 8323 |
Secondary VTTs look like complete object VTTs without part 4. */ |
| 8324 |
|
| 8325 |
static void |
| 8326 |
build_vtt (tree t) |
| 8327 |
{ |
| 8328 |
tree type; |
| 8329 |
tree vtt; |
| 8330 |
tree index; |
| 8331 |
vec<constructor_elt, va_gc> *inits; |
| 8332 |
|
| 8333 |
/* Build up the initializers for the VTT. */ |
| 8334 |
inits = NULL; |
| 8335 |
index = size_zero_node; |
| 8336 |
build_vtt_inits (TYPE_BINFO (t), t, &inits, &index); |
| 8337 |
|
| 8338 |
/* If we didn't need a VTT, we're done. */ |
| 8339 |
if (!inits) |
| 8340 |
return; |
| 8341 |
|
| 8342 |
/* Figure out the type of the VTT. */ |
| 8343 |
type = build_array_of_n_type (const_ptr_type_node, |
| 8344 |
inits->length ()); |
| 8345 |
|
| 8346 |
/* Now, build the VTT object itself. */ |
| 8347 |
vtt = build_vtable (t, mangle_vtt_for_type (t), type); |
| 8348 |
initialize_artificial_var (vtt, inits); |
| 8349 |
/* Add the VTT to the vtables list. */ |
| 8350 |
DECL_CHAIN (vtt) = DECL_CHAIN (CLASSTYPE_VTABLES (t)); |
| 8351 |
DECL_CHAIN (CLASSTYPE_VTABLES (t)) = vtt; |
| 8352 |
|
| 8353 |
dump_vtt (t, vtt); |
| 8354 |
} |
| 8355 |
|
| 8356 |
/* When building a secondary VTT, BINFO_VTABLE is set to a TREE_LIST with |
| 8357 |
PURPOSE the RTTI_BINFO, VALUE the real vtable pointer for this binfo, |
| 8358 |
and CHAIN the vtable pointer for this binfo after construction is |
| 8359 |
complete. VALUE can also be another BINFO, in which case we recurse. */ |
| 8360 |
|
| 8361 |
static tree |
| 8362 |
binfo_ctor_vtable (tree binfo) |
| 8363 |
{ |
| 8364 |
tree vt; |
| 8365 |
|
| 8366 |
while (1) |
| 8367 |
{ |
| 8368 |
vt = BINFO_VTABLE (binfo); |
| 8369 |
if (TREE_CODE (vt) == TREE_LIST) |
| 8370 |
vt = TREE_VALUE (vt); |
| 8371 |
if (TREE_CODE (vt) == TREE_BINFO) |
| 8372 |
binfo = vt; |
| 8373 |
else |
| 8374 |
break; |
| 8375 |
} |
| 8376 |
|
| 8377 |
return vt; |
| 8378 |
} |
| 8379 |
|
| 8380 |
/* Data for secondary VTT initialization. */ |
| 8381 |
typedef struct secondary_vptr_vtt_init_data_s |
| 8382 |
{ |
| 8383 |
/* Is this the primary VTT? */ |
| 8384 |
bool top_level_p; |
| 8385 |
|
| 8386 |
/* Current index into the VTT. */ |
| 8387 |
tree index; |
| 8388 |
|
| 8389 |
/* Vector of initializers built up. */ |
| 8390 |
vec<constructor_elt, va_gc> *inits; |
| 8391 |
|
| 8392 |
/* The type being constructed by this secondary VTT. */ |
| 8393 |
tree type_being_constructed; |
| 8394 |
} secondary_vptr_vtt_init_data; |
| 8395 |
|
| 8396 |
/* Recursively build the VTT-initializer for BINFO (which is in the |
| 8397 |
hierarchy dominated by T). INITS points to the end of the initializer |
| 8398 |
list to date. INDEX is the VTT index where the next element will be |
| 8399 |
replaced. Iff BINFO is the binfo for T, this is the top level VTT (i.e. |
| 8400 |
not a subvtt for some base of T). When that is so, we emit the sub-VTTs |
| 8401 |
for virtual bases of T. When it is not so, we build the constructor |
| 8402 |
vtables for the BINFO-in-T variant. */ |
| 8403 |
|
| 8404 |
static void |
| 8405 |
build_vtt_inits (tree binfo, tree t, vec<constructor_elt, va_gc> **inits, |
| 8406 |
tree *index) |
| 8407 |
{ |
| 8408 |
int i; |
| 8409 |
tree b; |
| 8410 |
tree init; |
| 8411 |
secondary_vptr_vtt_init_data data; |
| 8412 |
int top_level_p = SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), t); |
| 8413 |
|
| 8414 |
/* We only need VTTs for subobjects with virtual bases. */ |
| 8415 |
if (!CLASSTYPE_VBASECLASSES (BINFO_TYPE (binfo))) |
| 8416 |
return; |
| 8417 |
|
| 8418 |
/* We need to use a construction vtable if this is not the primary |
| 8419 |
VTT. */ |
| 8420 |
if (!top_level_p) |
| 8421 |
{ |
| 8422 |
build_ctor_vtbl_group (binfo, t); |
| 8423 |
|
| 8424 |
/* Record the offset in the VTT where this sub-VTT can be found. */ |
| 8425 |
BINFO_SUBVTT_INDEX (binfo) = *index; |
| 8426 |
} |
| 8427 |
|
| 8428 |
/* Add the address of the primary vtable for the complete object. */ |
| 8429 |
init = binfo_ctor_vtable (binfo); |
| 8430 |
CONSTRUCTOR_APPEND_ELT (*inits, NULL_TREE, init); |
| 8431 |
if (top_level_p) |
| 8432 |
{ |
| 8433 |
gcc_assert (!BINFO_VPTR_INDEX (binfo)); |
| 8434 |
BINFO_VPTR_INDEX (binfo) = *index; |
| 8435 |
} |
| 8436 |
*index = size_binop (PLUS_EXPR, *index, TYPE_SIZE_UNIT (ptr_type_node)); |
| 8437 |
|
| 8438 |
/* Recursively add the secondary VTTs for non-virtual bases. */ |
| 8439 |
for (i = 0; BINFO_BASE_ITERATE (binfo, i, b); ++i) |
| 8440 |
if (!BINFO_VIRTUAL_P (b)) |
| 8441 |
build_vtt_inits (b, t, inits, index); |
| 8442 |
|
| 8443 |
/* Add secondary virtual pointers for all subobjects of BINFO with |
| 8444 |
either virtual bases or reachable along a virtual path, except |
| 8445 |
subobjects that are non-virtual primary bases. */ |
| 8446 |
data.top_level_p = top_level_p; |
| 8447 |
data.index = *index; |
| 8448 |
data.inits = *inits; |
| 8449 |
data.type_being_constructed = BINFO_TYPE (binfo); |
| 8450 |
|
| 8451 |
dfs_walk_once (binfo, dfs_build_secondary_vptr_vtt_inits, NULL, &data); |
| 8452 |
|
| 8453 |
*index = data.index; |
| 8454 |
|
| 8455 |
/* data.inits might have grown as we added secondary virtual pointers. |
| 8456 |
Make sure our caller knows about the new vector. */ |
| 8457 |
*inits = data.inits; |
| 8458 |
|
| 8459 |
if (top_level_p) |
| 8460 |
/* Add the secondary VTTs for virtual bases in inheritance graph |
| 8461 |
order. */ |
| 8462 |
for (b = TYPE_BINFO (BINFO_TYPE (binfo)); b; b = TREE_CHAIN (b)) |
| 8463 |
{ |
| 8464 |
if (!BINFO_VIRTUAL_P (b)) |
| 8465 |
continue; |
| 8466 |
|
| 8467 |
build_vtt_inits (b, t, inits, index); |
| 8468 |
} |
| 8469 |
else |
| 8470 |
/* Remove the ctor vtables we created. */ |
| 8471 |
dfs_walk_all (binfo, dfs_fixup_binfo_vtbls, NULL, binfo); |
| 8472 |
} |
| 8473 |
|
| 8474 |
/* Called from build_vtt_inits via dfs_walk. BINFO is the binfo for the base |
| 8475 |
in most derived. DATA is a SECONDARY_VPTR_VTT_INIT_DATA structure. */ |
| 8476 |
|
| 8477 |
static tree |
| 8478 |
dfs_build_secondary_vptr_vtt_inits (tree binfo, void *data_) |
| 8479 |
{ |
| 8480 |
secondary_vptr_vtt_init_data *data = (secondary_vptr_vtt_init_data *)data_; |
| 8481 |
|
| 8482 |
/* We don't care about bases that don't have vtables. */ |
| 8483 |
if (!TYPE_VFIELD (BINFO_TYPE (binfo))) |
| 8484 |
return dfs_skip_bases; |
| 8485 |
|
| 8486 |
/* We're only interested in proper subobjects of the type being |
| 8487 |
constructed. */ |
| 8488 |
if (SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), data->type_being_constructed)) |
| 8489 |
return NULL_TREE; |
| 8490 |
|
| 8491 |
/* We're only interested in bases with virtual bases or reachable |
| 8492 |
via a virtual path from the type being constructed. */ |
| 8493 |
if (!(CLASSTYPE_VBASECLASSES (BINFO_TYPE (binfo)) |
| 8494 |
|| binfo_via_virtual (binfo, data->type_being_constructed))) |
| 8495 |
return dfs_skip_bases; |
| 8496 |
|
| 8497 |
/* We're not interested in non-virtual primary bases. */ |
| 8498 |
if (!BINFO_VIRTUAL_P (binfo) && BINFO_PRIMARY_P (binfo)) |
| 8499 |
return NULL_TREE; |
| 8500 |
|
| 8501 |
/* Record the index where this secondary vptr can be found. */ |
| 8502 |
if (data->top_level_p) |
| 8503 |
{ |
| 8504 |
gcc_assert (!BINFO_VPTR_INDEX (binfo)); |
| 8505 |
BINFO_VPTR_INDEX (binfo) = data->index; |
| 8506 |
|
| 8507 |
if (BINFO_VIRTUAL_P (binfo)) |
| 8508 |
{ |
| 8509 |
/* It's a primary virtual base, and this is not a |
| 8510 |
construction vtable. Find the base this is primary of in |
| 8511 |
the inheritance graph, and use that base's vtable |
| 8512 |
now. */ |
| 8513 |
while (BINFO_PRIMARY_P (binfo)) |
| 8514 |
binfo = BINFO_INHERITANCE_CHAIN (binfo); |
| 8515 |
} |
| 8516 |
} |
| 8517 |
|
| 8518 |
/* Add the initializer for the secondary vptr itself. */ |
| 8519 |
CONSTRUCTOR_APPEND_ELT (data->inits, NULL_TREE, binfo_ctor_vtable (binfo)); |
| 8520 |
|
| 8521 |
/* Advance the vtt index. */ |
| 8522 |
data->index = size_binop (PLUS_EXPR, data->index, |
| 8523 |
TYPE_SIZE_UNIT (ptr_type_node)); |
| 8524 |
|
| 8525 |
return NULL_TREE; |
| 8526 |
} |
| 8527 |
|
| 8528 |
/* Called from build_vtt_inits via dfs_walk. After building |
| 8529 |
constructor vtables and generating the sub-vtt from them, we need |
| 8530 |
to restore the BINFO_VTABLES that were scribbled on. DATA is the |
| 8531 |
binfo of the base whose sub vtt was generated. */ |
| 8532 |
|
| 8533 |
static tree |
| 8534 |
dfs_fixup_binfo_vtbls (tree binfo, void* data) |
| 8535 |
{ |
| 8536 |
tree vtable = BINFO_VTABLE (binfo); |
| 8537 |
|
| 8538 |
if (!TYPE_CONTAINS_VPTR_P (BINFO_TYPE (binfo))) |
| 8539 |
/* If this class has no vtable, none of its bases do. */ |
| 8540 |
return dfs_skip_bases; |
| 8541 |
|
| 8542 |
if (!vtable) |
| 8543 |
/* This might be a primary base, so have no vtable in this |
| 8544 |
hierarchy. */ |
| 8545 |
return NULL_TREE; |
| 8546 |
|
| 8547 |
/* If we scribbled the construction vtable vptr into BINFO, clear it |
| 8548 |
out now. */ |
| 8549 |
if (TREE_CODE (vtable) == TREE_LIST |
| 8550 |
&& (TREE_PURPOSE (vtable) == (tree) data)) |
| 8551 |
BINFO_VTABLE (binfo) = TREE_CHAIN (vtable); |
| 8552 |
|
| 8553 |
return NULL_TREE; |
| 8554 |
} |
| 8555 |
|
| 8556 |
/* Build the construction vtable group for BINFO which is in the |
| 8557 |
hierarchy dominated by T. */ |
| 8558 |
|
| 8559 |
static void |
| 8560 |
build_ctor_vtbl_group (tree binfo, tree t) |
| 8561 |
{ |
| 8562 |
tree type; |
| 8563 |
tree vtbl; |
| 8564 |
tree id; |
| 8565 |
tree vbase; |
| 8566 |
vec<constructor_elt, va_gc> *v; |
| 8567 |
|
| 8568 |
/* See if we've already created this construction vtable group. */ |
| 8569 |
id = mangle_ctor_vtbl_for_type (t, binfo); |
| 8570 |
if (IDENTIFIER_GLOBAL_VALUE (id)) |
| 8571 |
return; |
| 8572 |
|
| 8573 |
gcc_assert (!SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), t)); |
| 8574 |
/* Build a version of VTBL (with the wrong type) for use in |
| 8575 |
constructing the addresses of secondary vtables in the |
| 8576 |
construction vtable group. */ |
| 8577 |
vtbl = build_vtable (t, id, ptr_type_node); |
| 8578 |
DECL_CONSTRUCTION_VTABLE_P (vtbl) = 1; |
| 8579 |
/* Don't export construction vtables from shared libraries. Even on |
| 8580 |
targets that don't support hidden visibility, this tells |
| 8581 |
can_refer_decl_in_current_unit_p not to assume that it's safe to |
| 8582 |
access from a different compilation unit (bz 54314). */ |
| 8583 |
DECL_VISIBILITY (vtbl) = VISIBILITY_HIDDEN; |
| 8584 |
DECL_VISIBILITY_SPECIFIED (vtbl) = true; |
| 8585 |
|
| 8586 |
v = NULL; |
| 8587 |
accumulate_vtbl_inits (binfo, TYPE_BINFO (TREE_TYPE (binfo)), |
| 8588 |
binfo, vtbl, t, &v); |
| 8589 |
|
| 8590 |
/* Add the vtables for each of our virtual bases using the vbase in T |
| 8591 |
binfo. */ |
| 8592 |
for (vbase = TYPE_BINFO (BINFO_TYPE (binfo)); |
| 8593 |
vbase; |
| 8594 |
vbase = TREE_CHAIN (vbase)) |
| 8595 |
{ |
| 8596 |
tree b; |
| 8597 |
|
| 8598 |
if (!BINFO_VIRTUAL_P (vbase)) |
| 8599 |
continue; |
| 8600 |
b = copied_binfo (vbase, binfo); |
| 8601 |
|
| 8602 |
accumulate_vtbl_inits (b, vbase, binfo, vtbl, t, &v); |
| 8603 |
} |
| 8604 |
|
| 8605 |
/* Figure out the type of the construction vtable. */ |
| 8606 |
type = build_array_of_n_type (vtable_entry_type, v->length ()); |
| 8607 |
layout_type (type); |
| 8608 |
TREE_TYPE (vtbl) = type; |
| 8609 |
DECL_SIZE (vtbl) = DECL_SIZE_UNIT (vtbl) = NULL_TREE; |
| 8610 |
layout_decl (vtbl, 0); |
| 8611 |
|
| 8612 |
/* Initialize the construction vtable. */ |
| 8613 |
CLASSTYPE_VTABLES (t) = chainon (CLASSTYPE_VTABLES (t), vtbl); |
| 8614 |
initialize_artificial_var (vtbl, v); |
| 8615 |
dump_vtable (t, binfo, vtbl); |
| 8616 |
} |
| 8617 |
|
| 8618 |
/* Add the vtbl initializers for BINFO (and its bases other than |
| 8619 |
non-virtual primaries) to the list of INITS. BINFO is in the |
| 8620 |
hierarchy dominated by T. RTTI_BINFO is the binfo within T of |
| 8621 |
the constructor the vtbl inits should be accumulated for. (If this |
| 8622 |
is the complete object vtbl then RTTI_BINFO will be TYPE_BINFO (T).) |
| 8623 |
ORIG_BINFO is the binfo for this object within BINFO_TYPE (RTTI_BINFO). |
| 8624 |
BINFO is the active base equivalent of ORIG_BINFO in the inheritance |
| 8625 |
graph of T. Both BINFO and ORIG_BINFO will have the same BINFO_TYPE, |
| 8626 |
but are not necessarily the same in terms of layout. */ |
| 8627 |
|
| 8628 |
static void |
| 8629 |
accumulate_vtbl_inits (tree binfo, |
| 8630 |
tree orig_binfo, |
| 8631 |
tree rtti_binfo, |
| 8632 |
tree vtbl, |
| 8633 |
tree t, |
| 8634 |
vec<constructor_elt, va_gc> **inits) |
| 8635 |
{ |
| 8636 |
int i; |
| 8637 |
tree base_binfo; |
| 8638 |
int ctor_vtbl_p = !SAME_BINFO_TYPE_P (BINFO_TYPE (rtti_binfo), t); |
| 8639 |
|
| 8640 |
gcc_assert (SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), BINFO_TYPE (orig_binfo))); |
| 8641 |
|
| 8642 |
/* If it doesn't have a vptr, we don't do anything. */ |
| 8643 |
if (!TYPE_CONTAINS_VPTR_P (BINFO_TYPE (binfo))) |
| 8644 |
return; |
| 8645 |
|
| 8646 |
/* If we're building a construction vtable, we're not interested in |
| 8647 |
subobjects that don't require construction vtables. */ |
| 8648 |
if (ctor_vtbl_p |
| 8649 |
&& !CLASSTYPE_VBASECLASSES (BINFO_TYPE (binfo)) |
| 8650 |
&& !binfo_via_virtual (orig_binfo, BINFO_TYPE (rtti_binfo))) |
| 8651 |
return; |
| 8652 |
|
| 8653 |
/* Build the initializers for the BINFO-in-T vtable. */ |
| 8654 |
dfs_accumulate_vtbl_inits (binfo, orig_binfo, rtti_binfo, vtbl, t, inits); |
| 8655 |
|
| 8656 |
/* Walk the BINFO and its bases. We walk in preorder so that as we |
| 8657 |
initialize each vtable we can figure out at what offset the |
| 8658 |
secondary vtable lies from the primary vtable. We can't use |
| 8659 |
dfs_walk here because we need to iterate through bases of BINFO |
| 8660 |
and RTTI_BINFO simultaneously. */ |
| 8661 |
for (i = 0; BINFO_BASE_ITERATE (binfo, i, base_binfo); ++i) |
| 8662 |
{ |
| 8663 |
/* Skip virtual bases. */ |
| 8664 |
if (BINFO_VIRTUAL_P (base_binfo)) |
| 8665 |
continue; |
| 8666 |
accumulate_vtbl_inits (base_binfo, |
| 8667 |
BINFO_BASE_BINFO (orig_binfo, i), |
| 8668 |
rtti_binfo, vtbl, t, |
| 8669 |
inits); |
| 8670 |
} |
| 8671 |
} |
| 8672 |
|
| 8673 |
/* Called from accumulate_vtbl_inits. Adds the initializers for the |
| 8674 |
BINFO vtable to L. */ |
| 8675 |
|
| 8676 |
static void |
| 8677 |
dfs_accumulate_vtbl_inits (tree binfo, |
| 8678 |
tree orig_binfo, |
| 8679 |
tree rtti_binfo, |
| 8680 |
tree orig_vtbl, |
| 8681 |
tree t, |
| 8682 |
vec<constructor_elt, va_gc> **l) |
| 8683 |
{ |
| 8684 |
tree vtbl = NULL_TREE; |
| 8685 |
int ctor_vtbl_p = !SAME_BINFO_TYPE_P (BINFO_TYPE (rtti_binfo), t); |
| 8686 |
int n_inits; |
| 8687 |
|
| 8688 |
if (ctor_vtbl_p |
| 8689 |
&& BINFO_VIRTUAL_P (orig_binfo) && BINFO_PRIMARY_P (orig_binfo)) |
| 8690 |
{ |
| 8691 |
/* In the hierarchy of BINFO_TYPE (RTTI_BINFO), this is a |
| 8692 |
primary virtual base. If it is not the same primary in |
| 8693 |
the hierarchy of T, we'll need to generate a ctor vtable |
| 8694 |
for it, to place at its location in T. If it is the same |
| 8695 |
primary, we still need a VTT entry for the vtable, but it |
| 8696 |
should point to the ctor vtable for the base it is a |
| 8697 |
primary for within the sub-hierarchy of RTTI_BINFO. |
| 8698 |
|
| 8699 |
There are three possible cases: |
| 8700 |
|
| 8701 |
1) We are in the same place. |
| 8702 |
2) We are a primary base within a lost primary virtual base of |
| 8703 |
RTTI_BINFO. |
| 8704 |
3) We are primary to something not a base of RTTI_BINFO. */ |
| 8705 |
|
| 8706 |
tree b; |
| 8707 |
tree last = NULL_TREE; |
| 8708 |
|
| 8709 |
/* First, look through the bases we are primary to for RTTI_BINFO |
| 8710 |
or a virtual base. */ |
| 8711 |
b = binfo; |
| 8712 |
while (BINFO_PRIMARY_P (b)) |
| 8713 |
{ |
| 8714 |
b = BINFO_INHERITANCE_CHAIN (b); |
| 8715 |
last = b; |
| 8716 |
if (BINFO_VIRTUAL_P (b) || b == rtti_binfo) |
| 8717 |
goto found; |
| 8718 |
} |
| 8719 |
/* If we run out of primary links, keep looking down our |
| 8720 |
inheritance chain; we might be an indirect primary. */ |
| 8721 |
for (b = last; b; b = BINFO_INHERITANCE_CHAIN (b)) |
| 8722 |
if (BINFO_VIRTUAL_P (b) || b == rtti_binfo) |
| 8723 |
break; |
| 8724 |
found: |
| 8725 |
|
| 8726 |
/* If we found RTTI_BINFO, this is case 1. If we found a virtual |
| 8727 |
base B and it is a base of RTTI_BINFO, this is case 2. In |
| 8728 |
either case, we share our vtable with LAST, i.e. the |
| 8729 |
derived-most base within B of which we are a primary. */ |
| 8730 |
if (b == rtti_binfo |
| 8731 |
|| (b && binfo_for_vbase (BINFO_TYPE (b), BINFO_TYPE (rtti_binfo)))) |
| 8732 |
/* Just set our BINFO_VTABLE to point to LAST, as we may not have |
| 8733 |
set LAST's BINFO_VTABLE yet. We'll extract the actual vptr in |
| 8734 |
binfo_ctor_vtable after everything's been set up. */ |
| 8735 |
vtbl = last; |
| 8736 |
|
| 8737 |
/* Otherwise, this is case 3 and we get our own. */ |
| 8738 |
} |
| 8739 |
else if (!BINFO_NEW_VTABLE_MARKED (orig_binfo)) |
| 8740 |
return; |
| 8741 |
|
| 8742 |
n_inits = vec_safe_length (*l); |
| 8743 |
|
| 8744 |
if (!vtbl) |
| 8745 |
{ |
| 8746 |
tree index; |
| 8747 |
int non_fn_entries; |
| 8748 |
|
| 8749 |
/* Add the initializer for this vtable. */ |
| 8750 |
build_vtbl_initializer (binfo, orig_binfo, t, rtti_binfo, |
| 8751 |
&non_fn_entries, l); |
| 8752 |
|
| 8753 |
/* Figure out the position to which the VPTR should point. */ |
| 8754 |
vtbl = build1 (ADDR_EXPR, vtbl_ptr_type_node, orig_vtbl); |
| 8755 |
index = size_binop (MULT_EXPR, |
| 8756 |
TYPE_SIZE_UNIT (vtable_entry_type), |
| 8757 |
size_int (non_fn_entries + n_inits)); |
| 8758 |
vtbl = fold_build_pointer_plus (vtbl, index); |
| 8759 |
} |
| 8760 |
|
| 8761 |
if (ctor_vtbl_p) |
| 8762 |
/* For a construction vtable, we can't overwrite BINFO_VTABLE. |
| 8763 |
So, we make a TREE_LIST. Later, dfs_fixup_binfo_vtbls will |
| 8764 |
straighten this out. */ |
| 8765 |
BINFO_VTABLE (binfo) = tree_cons (rtti_binfo, vtbl, BINFO_VTABLE (binfo)); |
| 8766 |
else if (BINFO_PRIMARY_P (binfo) && BINFO_VIRTUAL_P (binfo)) |
| 8767 |
/* Throw away any unneeded intializers. */ |
| 8768 |
(*l)->truncate (n_inits); |
| 8769 |
else |
| 8770 |
/* For an ordinary vtable, set BINFO_VTABLE. */ |
| 8771 |
BINFO_VTABLE (binfo) = vtbl; |
| 8772 |
} |
| 8773 |
|
| 8774 |
static GTY(()) tree abort_fndecl_addr; |
| 8775 |
|
| 8776 |
/* Construct the initializer for BINFO's virtual function table. BINFO |
| 8777 |
is part of the hierarchy dominated by T. If we're building a |
| 8778 |
construction vtable, the ORIG_BINFO is the binfo we should use to |
| 8779 |
find the actual function pointers to put in the vtable - but they |
| 8780 |
can be overridden on the path to most-derived in the graph that |
| 8781 |
ORIG_BINFO belongs. Otherwise, |
| 8782 |
ORIG_BINFO should be the same as BINFO. The RTTI_BINFO is the |
| 8783 |
BINFO that should be indicated by the RTTI information in the |
| 8784 |
vtable; it will be a base class of T, rather than T itself, if we |
| 8785 |
are building a construction vtable. |
| 8786 |
|
| 8787 |
The value returned is a TREE_LIST suitable for wrapping in a |
| 8788 |
CONSTRUCTOR to use as the DECL_INITIAL for a vtable. If |
| 8789 |
NON_FN_ENTRIES_P is not NULL, *NON_FN_ENTRIES_P is set to the |
| 8790 |
number of non-function entries in the vtable. |
| 8791 |
|
| 8792 |
It might seem that this function should never be called with a |
| 8793 |
BINFO for which BINFO_PRIMARY_P holds, the vtable for such a |
| 8794 |
base is always subsumed by a derived class vtable. However, when |
| 8795 |
we are building construction vtables, we do build vtables for |
| 8796 |
primary bases; we need these while the primary base is being |
| 8797 |
constructed. */ |
| 8798 |
|
| 8799 |
static void |
| 8800 |
build_vtbl_initializer (tree binfo, |
| 8801 |
tree orig_binfo, |
| 8802 |
tree t, |
| 8803 |
tree rtti_binfo, |
| 8804 |
int* non_fn_entries_p, |
| 8805 |
vec<constructor_elt, va_gc> **inits) |
| 8806 |
{ |
| 8807 |
tree v; |
| 8808 |
vtbl_init_data vid; |
| 8809 |
unsigned ix, jx; |
| 8810 |
tree vbinfo; |
| 8811 |
vec<tree, va_gc> *vbases; |
| 8812 |
constructor_elt *e; |
| 8813 |
|
| 8814 |
/* Initialize VID. */ |
| 8815 |
memset (&vid, 0, sizeof (vid)); |
| 8816 |
vid.binfo = binfo; |
| 8817 |
vid.derived = t; |
| 8818 |
vid.rtti_binfo = rtti_binfo; |
| 8819 |
vid.primary_vtbl_p = SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), t); |
| 8820 |
vid.ctor_vtbl_p = !SAME_BINFO_TYPE_P (BINFO_TYPE (rtti_binfo), t); |
| 8821 |
vid.generate_vcall_entries = true; |
| 8822 |
/* The first vbase or vcall offset is at index -3 in the vtable. */ |
| 8823 |
vid.index = ssize_int(-3 * TARGET_VTABLE_DATA_ENTRY_DISTANCE); |
| 8824 |
|
| 8825 |
/* Add entries to the vtable for RTTI. */ |
| 8826 |
build_rtti_vtbl_entries (binfo, &vid); |
| 8827 |
|
| 8828 |
/* Create an array for keeping track of the functions we've |
| 8829 |
processed. When we see multiple functions with the same |
| 8830 |
signature, we share the vcall offsets. */ |
| 8831 |
vec_alloc (vid.fns, 32); |
| 8832 |
/* Add the vcall and vbase offset entries. */ |
| 8833 |
build_vcall_and_vbase_vtbl_entries (binfo, &vid); |
| 8834 |
|
| 8835 |
/* Clear BINFO_VTABLE_PATH_MARKED; it's set by |
| 8836 |
build_vbase_offset_vtbl_entries. */ |
| 8837 |
for (vbases = CLASSTYPE_VBASECLASSES (t), ix = 0; |
| 8838 |
vec_safe_iterate (vbases, ix, &vbinfo); ix++) |
| 8839 |
BINFO_VTABLE_PATH_MARKED (vbinfo) = 0; |
| 8840 |
|
| 8841 |
/* If the target requires padding between data entries, add that now. */ |
| 8842 |
if (TARGET_VTABLE_DATA_ENTRY_DISTANCE > 1) |
| 8843 |
{ |
| 8844 |
int n_entries = vec_safe_length (vid.inits); |
| 8845 |
|
| 8846 |
vec_safe_grow (vid.inits, TARGET_VTABLE_DATA_ENTRY_DISTANCE * n_entries); |
| 8847 |
|
| 8848 |
/* Move data entries into their new positions and add padding |
| 8849 |
after the new positions. Iterate backwards so we don't |
| 8850 |
overwrite entries that we would need to process later. */ |
| 8851 |
for (ix = n_entries - 1; |
| 8852 |
vid.inits->iterate (ix, &e); |
| 8853 |
ix--) |
| 8854 |
{ |
| 8855 |
int j; |
| 8856 |
int new_position = (TARGET_VTABLE_DATA_ENTRY_DISTANCE * ix |
| 8857 |
+ (TARGET_VTABLE_DATA_ENTRY_DISTANCE - 1)); |
| 8858 |
|
| 8859 |
(*vid.inits)[new_position] = *e; |
| 8860 |
|
| 8861 |
for (j = 1; j < TARGET_VTABLE_DATA_ENTRY_DISTANCE; ++j) |
| 8862 |
{ |
| 8863 |
constructor_elt *f = &(*vid.inits)[new_position - j]; |
| 8864 |
f->index = NULL_TREE; |
| 8865 |
f->value = build1 (NOP_EXPR, vtable_entry_type, |
| 8866 |
null_pointer_node); |
| 8867 |
} |
| 8868 |
} |
| 8869 |
} |
| 8870 |
|
| 8871 |
if (non_fn_entries_p) |
| 8872 |
*non_fn_entries_p = vec_safe_length (vid.inits); |
| 8873 |
|
| 8874 |
/* The initializers for virtual functions were built up in reverse |
| 8875 |
order. Straighten them out and add them to the running list in one |
| 8876 |
step. */ |
| 8877 |
jx = vec_safe_length (*inits); |
| 8878 |
vec_safe_grow (*inits, jx + vid.inits->length ()); |
| 8879 |
|
| 8880 |
for (ix = vid.inits->length () - 1; |
| 8881 |
vid.inits->iterate (ix, &e); |
| 8882 |
ix--, jx++) |
| 8883 |
(**inits)[jx] = *e; |
| 8884 |
|
| 8885 |
/* Go through all the ordinary virtual functions, building up |
| 8886 |
initializers. */ |
| 8887 |
for (v = BINFO_VIRTUALS (orig_binfo); v; v = TREE_CHAIN (v)) |
| 8888 |
{ |
| 8889 |
tree delta; |
| 8890 |
tree vcall_index; |
| 8891 |
tree fn, fn_original; |
| 8892 |
tree init = NULL_TREE; |
| 8893 |
|
| 8894 |
fn = BV_FN (v); |
| 8895 |
fn_original = fn; |
| 8896 |
if (DECL_THUNK_P (fn)) |
| 8897 |
{ |
| 8898 |
if (!DECL_NAME (fn)) |
| 8899 |
finish_thunk (fn); |
| 8900 |
if (THUNK_ALIAS (fn)) |
| 8901 |
{ |
| 8902 |
fn = THUNK_ALIAS (fn); |
| 8903 |
BV_FN (v) = fn; |
| 8904 |
} |
| 8905 |
fn_original = THUNK_TARGET (fn); |
| 8906 |
} |
| 8907 |
|
| 8908 |
/* If the only definition of this function signature along our |
| 8909 |
primary base chain is from a lost primary, this vtable slot will |
| 8910 |
never be used, so just zero it out. This is important to avoid |
| 8911 |
requiring extra thunks which cannot be generated with the function. |
| 8912 |
|
| 8913 |
We first check this in update_vtable_entry_for_fn, so we handle |
| 8914 |
restored primary bases properly; we also need to do it here so we |
| 8915 |
zero out unused slots in ctor vtables, rather than filling them |
| 8916 |
with erroneous values (though harmless, apart from relocation |
| 8917 |
costs). */ |
| 8918 |
if (BV_LOST_PRIMARY (v)) |
| 8919 |
init = size_zero_node; |
| 8920 |
|
| 8921 |
if (! init) |
| 8922 |
{ |
| 8923 |
/* Pull the offset for `this', and the function to call, out of |
| 8924 |
the list. */ |
| 8925 |
delta = BV_DELTA (v); |
| 8926 |
vcall_index = BV_VCALL_INDEX (v); |
| 8927 |
|
| 8928 |
gcc_assert (TREE_CODE (delta) == INTEGER_CST); |
| 8929 |
gcc_assert (TREE_CODE (fn) == FUNCTION_DECL); |
| 8930 |
|
| 8931 |
/* You can't call an abstract virtual function; it's abstract. |
| 8932 |
So, we replace these functions with __pure_virtual. */ |
| 8933 |
if (DECL_PURE_VIRTUAL_P (fn_original)) |
| 8934 |
{ |
| 8935 |
fn = abort_fndecl; |
| 8936 |
if (!TARGET_VTABLE_USES_DESCRIPTORS) |
| 8937 |
{ |
| 8938 |
if (abort_fndecl_addr == NULL) |
| 8939 |
abort_fndecl_addr |
| 8940 |
= fold_convert (vfunc_ptr_type_node, |
| 8941 |
build_fold_addr_expr (fn)); |
| 8942 |
init = abort_fndecl_addr; |
| 8943 |
} |
| 8944 |
} |
| 8945 |
/* Likewise for deleted virtuals. */ |
| 8946 |
else if (DECL_DELETED_FN (fn_original)) |
| 8947 |
{ |
| 8948 |
fn = get_identifier ("__cxa_deleted_virtual"); |
| 8949 |
if (!get_global_value_if_present (fn, &fn)) |
| 8950 |
fn = push_library_fn (fn, (build_function_type_list |
| 8951 |
(void_type_node, NULL_TREE)), |
| 8952 |
NULL_TREE, ECF_NORETURN); |
| 8953 |
if (!TARGET_VTABLE_USES_DESCRIPTORS) |
| 8954 |
init = fold_convert (vfunc_ptr_type_node, |
| 8955 |
build_fold_addr_expr (fn)); |
| 8956 |
} |
| 8957 |
else |
| 8958 |
{ |
| 8959 |
if (!integer_zerop (delta) || vcall_index) |
| 8960 |
{ |
| 8961 |
fn = make_thunk (fn, /*this_adjusting=*/1, delta, vcall_index); |
| 8962 |
if (!DECL_NAME (fn)) |
| 8963 |
finish_thunk (fn); |
| 8964 |
} |
| 8965 |
/* Take the address of the function, considering it to be of an |
| 8966 |
appropriate generic type. */ |
| 8967 |
if (!TARGET_VTABLE_USES_DESCRIPTORS) |
| 8968 |
init = fold_convert (vfunc_ptr_type_node, |
| 8969 |
build_fold_addr_expr (fn)); |
| 8970 |
} |
| 8971 |
} |
| 8972 |
|
| 8973 |
/* And add it to the chain of initializers. */ |
| 8974 |
if (TARGET_VTABLE_USES_DESCRIPTORS) |
| 8975 |
{ |
| 8976 |
int i; |
| 8977 |
if (init == size_zero_node) |
| 8978 |
for (i = 0; i < TARGET_VTABLE_USES_DESCRIPTORS; ++i) |
| 8979 |
CONSTRUCTOR_APPEND_ELT (*inits, NULL_TREE, init); |
| 8980 |
else |
| 8981 |
for (i = 0; i < TARGET_VTABLE_USES_DESCRIPTORS; ++i) |
| 8982 |
{ |
| 8983 |
tree fdesc = build2 (FDESC_EXPR, vfunc_ptr_type_node, |
| 8984 |
fn, build_int_cst (NULL_TREE, i)); |
| 8985 |
TREE_CONSTANT (fdesc) = 1; |
| 8986 |
|
| 8987 |
CONSTRUCTOR_APPEND_ELT (*inits, NULL_TREE, fdesc); |
| 8988 |
} |
| 8989 |
} |
| 8990 |
else |
| 8991 |
CONSTRUCTOR_APPEND_ELT (*inits, NULL_TREE, init); |
| 8992 |
} |
| 8993 |
} |
| 8994 |
|
| 8995 |
/* Adds to vid->inits the initializers for the vbase and vcall |
| 8996 |
offsets in BINFO, which is in the hierarchy dominated by T. */ |
| 8997 |
|
| 8998 |
static void |
| 8999 |
build_vcall_and_vbase_vtbl_entries (tree binfo, vtbl_init_data* vid) |
| 9000 |
{ |
| 9001 |
tree b; |
| 9002 |
|
| 9003 |
/* If this is a derived class, we must first create entries |
| 9004 |
corresponding to the primary base class. */ |
| 9005 |
b = get_primary_binfo (binfo); |
| 9006 |
if (b) |
| 9007 |
build_vcall_and_vbase_vtbl_entries (b, vid); |
| 9008 |
|
| 9009 |
/* Add the vbase entries for this base. */ |
| 9010 |
build_vbase_offset_vtbl_entries (binfo, vid); |
| 9011 |
/* Add the vcall entries for this base. */ |
| 9012 |
build_vcall_offset_vtbl_entries (binfo, vid); |
| 9013 |
} |
| 9014 |
|
| 9015 |
/* Returns the initializers for the vbase offset entries in the vtable |
| 9016 |
for BINFO (which is part of the class hierarchy dominated by T), in |
| 9017 |
reverse order. VBASE_OFFSET_INDEX gives the vtable index |
| 9018 |
where the next vbase offset will go. */ |
| 9019 |
|
| 9020 |
static void |
| 9021 |
build_vbase_offset_vtbl_entries (tree binfo, vtbl_init_data* vid) |
| 9022 |
{ |
| 9023 |
tree vbase; |
| 9024 |
tree t; |
| 9025 |
tree non_primary_binfo; |
| 9026 |
|
| 9027 |
/* If there are no virtual baseclasses, then there is nothing to |
| 9028 |
do. */ |
| 9029 |
if (!CLASSTYPE_VBASECLASSES (BINFO_TYPE (binfo))) |
| 9030 |
return; |
| 9031 |
|
| 9032 |
t = vid->derived; |
| 9033 |
|
| 9034 |
/* We might be a primary base class. Go up the inheritance hierarchy |
| 9035 |
until we find the most derived class of which we are a primary base: |
| 9036 |
it is the offset of that which we need to use. */ |
| 9037 |
non_primary_binfo = binfo; |
| 9038 |
while (BINFO_INHERITANCE_CHAIN (non_primary_binfo)) |
| 9039 |
{ |
| 9040 |
tree b; |
| 9041 |
|
| 9042 |
/* If we have reached a virtual base, then it must be a primary |
| 9043 |
base (possibly multi-level) of vid->binfo, or we wouldn't |
| 9044 |
have called build_vcall_and_vbase_vtbl_entries for it. But it |
| 9045 |
might be a lost primary, so just skip down to vid->binfo. */ |
| 9046 |
if (BINFO_VIRTUAL_P (non_primary_binfo)) |
| 9047 |
{ |
| 9048 |
non_primary_binfo = vid->binfo; |
| 9049 |
break; |
| 9050 |
} |
| 9051 |
|
| 9052 |
b = BINFO_INHERITANCE_CHAIN (non_primary_binfo); |
| 9053 |
if (get_primary_binfo (b) != non_primary_binfo) |
| 9054 |
break; |
| 9055 |
non_primary_binfo = b; |
| 9056 |
} |
| 9057 |
|
| 9058 |
/* Go through the virtual bases, adding the offsets. */ |
| 9059 |
for (vbase = TYPE_BINFO (BINFO_TYPE (binfo)); |
| 9060 |
vbase; |
| 9061 |
vbase = TREE_CHAIN (vbase)) |
| 9062 |
{ |
| 9063 |
tree b; |
| 9064 |
tree delta; |
| 9065 |
|
| 9066 |
if (!BINFO_VIRTUAL_P (vbase)) |
| 9067 |
continue; |
| 9068 |
|
| 9069 |
/* Find the instance of this virtual base in the complete |
| 9070 |
object. */ |
| 9071 |
b = copied_binfo (vbase, binfo); |
| 9072 |
|
| 9073 |
/* If we've already got an offset for this virtual base, we |
| 9074 |
don't need another one. */ |
| 9075 |
if (BINFO_VTABLE_PATH_MARKED (b)) |
| 9076 |
continue; |
| 9077 |
BINFO_VTABLE_PATH_MARKED (b) = 1; |
| 9078 |
|
| 9079 |
/* Figure out where we can find this vbase offset. */ |
| 9080 |
delta = size_binop (MULT_EXPR, |
| 9081 |
vid->index, |
| 9082 |
convert (ssizetype, |
| 9083 |
TYPE_SIZE_UNIT (vtable_entry_type))); |
| 9084 |
if (vid->primary_vtbl_p) |
| 9085 |
BINFO_VPTR_FIELD (b) = delta; |
| 9086 |
|
| 9087 |
if (binfo != TYPE_BINFO (t)) |
| 9088 |
/* The vbase offset had better be the same. */ |
| 9089 |
gcc_assert (tree_int_cst_equal (delta, BINFO_VPTR_FIELD (vbase))); |
| 9090 |
|
| 9091 |
/* The next vbase will come at a more negative offset. */ |
| 9092 |
vid->index = size_binop (MINUS_EXPR, vid->index, |
| 9093 |
ssize_int (TARGET_VTABLE_DATA_ENTRY_DISTANCE)); |
| 9094 |
|
| 9095 |
/* The initializer is the delta from BINFO to this virtual base. |
| 9096 |
The vbase offsets go in reverse inheritance-graph order, and |
| 9097 |
we are walking in inheritance graph order so these end up in |
| 9098 |
the right order. */ |
| 9099 |
delta = size_diffop_loc (input_location, |
| 9100 |
BINFO_OFFSET (b), BINFO_OFFSET (non_primary_binfo)); |
| 9101 |
|
| 9102 |
CONSTRUCTOR_APPEND_ELT (vid->inits, NULL_TREE, |
| 9103 |
fold_build1_loc (input_location, NOP_EXPR, |
| 9104 |
vtable_entry_type, delta)); |
| 9105 |
} |
| 9106 |
} |
| 9107 |
|
| 9108 |
/* Adds the initializers for the vcall offset entries in the vtable |
| 9109 |
for BINFO (which is part of the class hierarchy dominated by VID->DERIVED) |
| 9110 |
to VID->INITS. */ |
| 9111 |
|
| 9112 |
static void |
| 9113 |
build_vcall_offset_vtbl_entries (tree binfo, vtbl_init_data* vid) |
| 9114 |
{ |
| 9115 |
/* We only need these entries if this base is a virtual base. We |
| 9116 |
compute the indices -- but do not add to the vtable -- when |
| 9117 |
building the main vtable for a class. */ |
| 9118 |
if (binfo == TYPE_BINFO (vid->derived) |
| 9119 |
|| (BINFO_VIRTUAL_P (binfo) |
| 9120 |
/* If BINFO is RTTI_BINFO, then (since BINFO does not |
| 9121 |
correspond to VID->DERIVED), we are building a primary |
| 9122 |
construction virtual table. Since this is a primary |
| 9123 |
virtual table, we do not need the vcall offsets for |
| 9124 |
BINFO. */ |
| 9125 |
&& binfo != vid->rtti_binfo)) |
| 9126 |
{ |
| 9127 |
/* We need a vcall offset for each of the virtual functions in this |
| 9128 |
vtable. For example: |
| 9129 |
|
| 9130 |
class A { virtual void f (); }; |
| 9131 |
class B1 : virtual public A { virtual void f (); }; |
| 9132 |
class B2 : virtual public A { virtual void f (); }; |
| 9133 |
class C: public B1, public B2 { virtual void f (); }; |
| 9134 |
|
| 9135 |
A C object has a primary base of B1, which has a primary base of A. A |
| 9136 |
C also has a secondary base of B2, which no longer has a primary base |
| 9137 |
of A. So the B2-in-C construction vtable needs a secondary vtable for |
| 9138 |
A, which will adjust the A* to a B2* to call f. We have no way of |
| 9139 |
knowing what (or even whether) this offset will be when we define B2, |
| 9140 |
so we store this "vcall offset" in the A sub-vtable and look it up in |
| 9141 |
a "virtual thunk" for B2::f. |
| 9142 |
|
| 9143 |
We need entries for all the functions in our primary vtable and |
| 9144 |
in our non-virtual bases' secondary vtables. */ |
| 9145 |
vid->vbase = binfo; |
| 9146 |
/* If we are just computing the vcall indices -- but do not need |
| 9147 |
the actual entries -- not that. */ |
| 9148 |
if (!BINFO_VIRTUAL_P (binfo)) |
| 9149 |
vid->generate_vcall_entries = false; |
| 9150 |
/* Now, walk through the non-virtual bases, adding vcall offsets. */ |
| 9151 |
add_vcall_offset_vtbl_entries_r (binfo, vid); |
| 9152 |
} |
| 9153 |
} |
| 9154 |
|
| 9155 |
/* Build vcall offsets, starting with those for BINFO. */ |
| 9156 |
|
| 9157 |
static void |
| 9158 |
add_vcall_offset_vtbl_entries_r (tree binfo, vtbl_init_data* vid) |
| 9159 |
{ |
| 9160 |
int i; |
| 9161 |
tree primary_binfo; |
| 9162 |
tree base_binfo; |
| 9163 |
|
| 9164 |
/* Don't walk into virtual bases -- except, of course, for the |
| 9165 |
virtual base for which we are building vcall offsets. Any |
| 9166 |
primary virtual base will have already had its offsets generated |
| 9167 |
through the recursion in build_vcall_and_vbase_vtbl_entries. */ |
| 9168 |
if (BINFO_VIRTUAL_P (binfo) && vid->vbase != binfo) |
| 9169 |
return; |
| 9170 |
|
| 9171 |
/* If BINFO has a primary base, process it first. */ |
| 9172 |
primary_binfo = get_primary_binfo (binfo); |
| 9173 |
if (primary_binfo) |
| 9174 |
add_vcall_offset_vtbl_entries_r (primary_binfo, vid); |
| 9175 |
|
| 9176 |
/* Add BINFO itself to the list. */ |
| 9177 |
add_vcall_offset_vtbl_entries_1 (binfo, vid); |
| 9178 |
|
| 9179 |
/* Scan the non-primary bases of BINFO. */ |
| 9180 |
for (i = 0; BINFO_BASE_ITERATE (binfo, i, base_binfo); ++i) |
| 9181 |
if (base_binfo != primary_binfo) |
| 9182 |
add_vcall_offset_vtbl_entries_r (base_binfo, vid); |
| 9183 |
} |
| 9184 |
|
| 9185 |
/* Called from build_vcall_offset_vtbl_entries_r. */ |
| 9186 |
|
| 9187 |
static void |
| 9188 |
add_vcall_offset_vtbl_entries_1 (tree binfo, vtbl_init_data* vid) |
| 9189 |
{ |
| 9190 |
/* Make entries for the rest of the virtuals. */ |
| 9191 |
if (abi_version_at_least (2)) |
| 9192 |
{ |
| 9193 |
tree orig_fn; |
| 9194 |
|
| 9195 |
/* The ABI requires that the methods be processed in declaration |
| 9196 |
order. G++ 3.2 used the order in the vtable. */ |
| 9197 |
for (orig_fn = TYPE_METHODS (BINFO_TYPE (binfo)); |
| 9198 |
orig_fn; |
| 9199 |
orig_fn = DECL_CHAIN (orig_fn)) |
| 9200 |
if (DECL_VINDEX (orig_fn)) |
| 9201 |
add_vcall_offset (orig_fn, binfo, vid); |
| 9202 |
} |
| 9203 |
else |
| 9204 |
{ |
| 9205 |
tree derived_virtuals; |
| 9206 |
tree base_virtuals; |
| 9207 |
tree orig_virtuals; |
| 9208 |
/* If BINFO is a primary base, the most derived class which has |
| 9209 |
BINFO as a primary base; otherwise, just BINFO. */ |
| 9210 |
tree non_primary_binfo; |
| 9211 |
|
| 9212 |
/* We might be a primary base class. Go up the inheritance hierarchy |
| 9213 |
until we find the most derived class of which we are a primary base: |
| 9214 |
it is the BINFO_VIRTUALS there that we need to consider. */ |
| 9215 |
non_primary_binfo = binfo; |
| 9216 |
while (BINFO_INHERITANCE_CHAIN (non_primary_binfo)) |
| 9217 |
{ |
| 9218 |
tree b; |
| 9219 |
|
| 9220 |
/* If we have reached a virtual base, then it must be vid->vbase, |
| 9221 |
because we ignore other virtual bases in |
| 9222 |
add_vcall_offset_vtbl_entries_r. In turn, it must be a primary |
| 9223 |
base (possibly multi-level) of vid->binfo, or we wouldn't |
| 9224 |
have called build_vcall_and_vbase_vtbl_entries for it. But it |
| 9225 |
might be a lost primary, so just skip down to vid->binfo. */ |
| 9226 |
if (BINFO_VIRTUAL_P (non_primary_binfo)) |
| 9227 |
{ |
| 9228 |
gcc_assert (non_primary_binfo == vid->vbase); |
| 9229 |
non_primary_binfo = vid->binfo; |
| 9230 |
break; |
| 9231 |
} |
| 9232 |
|
| 9233 |
b = BINFO_INHERITANCE_CHAIN (non_primary_binfo); |
| 9234 |
if (get_primary_binfo (b) != non_primary_binfo) |
| 9235 |
break; |
| 9236 |
non_primary_binfo = b; |
| 9237 |
} |
| 9238 |
|
| 9239 |
if (vid->ctor_vtbl_p) |
| 9240 |
/* For a ctor vtable we need the equivalent binfo within the hierarchy |
| 9241 |
where rtti_binfo is the most derived type. */ |
| 9242 |
non_primary_binfo |
| 9243 |
= original_binfo (non_primary_binfo, vid->rtti_binfo); |
| 9244 |
|
| 9245 |
for (base_virtuals = BINFO_VIRTUALS (binfo), |
| 9246 |
derived_virtuals = BINFO_VIRTUALS (non_primary_binfo), |
| 9247 |
orig_virtuals = BINFO_VIRTUALS (TYPE_BINFO (BINFO_TYPE (binfo))); |
| 9248 |
base_virtuals; |
| 9249 |
base_virtuals = TREE_CHAIN (base_virtuals), |
| 9250 |
derived_virtuals = TREE_CHAIN (derived_virtuals), |
| 9251 |
orig_virtuals = TREE_CHAIN (orig_virtuals)) |
| 9252 |
{ |
| 9253 |
tree orig_fn; |
| 9254 |
|
| 9255 |
/* Find the declaration that originally caused this function to |
| 9256 |
be present in BINFO_TYPE (binfo). */ |
| 9257 |
orig_fn = BV_FN (orig_virtuals); |
| 9258 |
|
| 9259 |
/* When processing BINFO, we only want to generate vcall slots for |
| 9260 |
function slots introduced in BINFO. So don't try to generate |
| 9261 |
one if the function isn't even defined in BINFO. */ |
| 9262 |
if (!SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), DECL_CONTEXT (orig_fn))) |
| 9263 |
continue; |
| 9264 |
|
| 9265 |
add_vcall_offset (orig_fn, binfo, vid); |
| 9266 |
} |
| 9267 |
} |
| 9268 |
} |
| 9269 |
|
| 9270 |
/* Add a vcall offset entry for ORIG_FN to the vtable. */ |
| 9271 |
|
| 9272 |
static void |
| 9273 |
add_vcall_offset (tree orig_fn, tree binfo, vtbl_init_data *vid) |
| 9274 |
{ |
| 9275 |
size_t i; |
| 9276 |
tree vcall_offset; |
| 9277 |
tree derived_entry; |
| 9278 |
|
| 9279 |
/* If there is already an entry for a function with the same |
| 9280 |
signature as FN, then we do not need a second vcall offset. |
| 9281 |
Check the list of functions already present in the derived |
| 9282 |
class vtable. */ |
| 9283 |
FOR_EACH_VEC_SAFE_ELT (vid->fns, i, derived_entry) |
| 9284 |
{ |
| 9285 |
if (same_signature_p (derived_entry, orig_fn) |
| 9286 |
/* We only use one vcall offset for virtual destructors, |
| 9287 |
even though there are two virtual table entries. */ |
| 9288 |
|| (DECL_DESTRUCTOR_P (derived_entry) |
| 9289 |
&& DECL_DESTRUCTOR_P (orig_fn))) |
| 9290 |
return; |
| 9291 |
} |
| 9292 |
|
| 9293 |
/* If we are building these vcall offsets as part of building |
| 9294 |
the vtable for the most derived class, remember the vcall |
| 9295 |
offset. */ |
| 9296 |
if (vid->binfo == TYPE_BINFO (vid->derived)) |
| 9297 |
{ |
| 9298 |
tree_pair_s elt = {orig_fn, vid->index}; |
| 9299 |
vec_safe_push (CLASSTYPE_VCALL_INDICES (vid->derived), elt); |
| 9300 |
} |
| 9301 |
|
| 9302 |
/* The next vcall offset will be found at a more negative |
| 9303 |
offset. */ |
| 9304 |
vid->index = size_binop (MINUS_EXPR, vid->index, |
| 9305 |
ssize_int (TARGET_VTABLE_DATA_ENTRY_DISTANCE)); |
| 9306 |
|
| 9307 |
/* Keep track of this function. */ |
| 9308 |
vec_safe_push (vid->fns, orig_fn); |
| 9309 |
|
| 9310 |
if (vid->generate_vcall_entries) |
| 9311 |
{ |
| 9312 |
tree base; |
| 9313 |
tree fn; |
| 9314 |
|
| 9315 |
/* Find the overriding function. */ |
| 9316 |
fn = find_final_overrider (vid->rtti_binfo, binfo, orig_fn); |
| 9317 |
if (fn == error_mark_node) |
| 9318 |
vcall_offset = build_zero_cst (vtable_entry_type); |
| 9319 |
else |
| 9320 |
{ |
| 9321 |
base = TREE_VALUE (fn); |
| 9322 |
|
| 9323 |
/* The vbase we're working on is a primary base of |
| 9324 |
vid->binfo. But it might be a lost primary, so its |
| 9325 |
BINFO_OFFSET might be wrong, so we just use the |
| 9326 |
BINFO_OFFSET from vid->binfo. */ |
| 9327 |
vcall_offset = size_diffop_loc (input_location, |
| 9328 |
BINFO_OFFSET (base), |
| 9329 |
BINFO_OFFSET (vid->binfo)); |
| 9330 |
vcall_offset = fold_build1_loc (input_location, |
| 9331 |
NOP_EXPR, vtable_entry_type, |
| 9332 |
vcall_offset); |
| 9333 |
} |
| 9334 |
/* Add the initializer to the vtable. */ |
| 9335 |
CONSTRUCTOR_APPEND_ELT (vid->inits, NULL_TREE, vcall_offset); |
| 9336 |
} |
| 9337 |
} |
| 9338 |
|
| 9339 |
/* Return vtbl initializers for the RTTI entries corresponding to the |
| 9340 |
BINFO's vtable. The RTTI entries should indicate the object given |
| 9341 |
by VID->rtti_binfo. */ |
| 9342 |
|
| 9343 |
static void |
| 9344 |
build_rtti_vtbl_entries (tree binfo, vtbl_init_data* vid) |
| 9345 |
{ |
| 9346 |
tree b; |
| 9347 |
tree t; |
| 9348 |
tree offset; |
| 9349 |
tree decl; |
| 9350 |
tree init; |
| 9351 |
|
| 9352 |
t = BINFO_TYPE (vid->rtti_binfo); |
| 9353 |
|
| 9354 |
/* To find the complete object, we will first convert to our most |
| 9355 |
primary base, and then add the offset in the vtbl to that value. */ |
| 9356 |
b = binfo; |
| 9357 |
while (CLASSTYPE_HAS_PRIMARY_BASE_P (BINFO_TYPE (b)) |
| 9358 |
&& !BINFO_LOST_PRIMARY_P (b)) |
| 9359 |
{ |
| 9360 |
tree primary_base; |
| 9361 |
|
| 9362 |
primary_base = get_primary_binfo (b); |
| 9363 |
gcc_assert (BINFO_PRIMARY_P (primary_base) |
| 9364 |
&& BINFO_INHERITANCE_CHAIN (primary_base) == b); |
| 9365 |
b = primary_base; |
| 9366 |
} |
| 9367 |
offset = size_diffop_loc (input_location, |
| 9368 |
BINFO_OFFSET (vid->rtti_binfo), BINFO_OFFSET (b)); |
| 9369 |
|
| 9370 |
/* The second entry is the address of the typeinfo object. */ |
| 9371 |
if (flag_rtti) |
| 9372 |
decl = build_address (get_tinfo_decl (t)); |
| 9373 |
else |
| 9374 |
decl = integer_zero_node; |
| 9375 |
|
| 9376 |
/* Convert the declaration to a type that can be stored in the |
| 9377 |
vtable. */ |
| 9378 |
init = build_nop (vfunc_ptr_type_node, decl); |
| 9379 |
CONSTRUCTOR_APPEND_ELT (vid->inits, NULL_TREE, init); |
| 9380 |
|
| 9381 |
/* Add the offset-to-top entry. It comes earlier in the vtable than |
| 9382 |
the typeinfo entry. Convert the offset to look like a |
| 9383 |
function pointer, so that we can put it in the vtable. */ |
| 9384 |
init = build_nop (vfunc_ptr_type_node, offset); |
| 9385 |
CONSTRUCTOR_APPEND_ELT (vid->inits, NULL_TREE, init); |
| 9386 |
} |
| 9387 |
|
| 9388 |
/* TRUE iff TYPE is uniquely derived from PARENT. Ignores |
| 9389 |
accessibility. */ |
| 9390 |
|
| 9391 |
bool |
| 9392 |
uniquely_derived_from_p (tree parent, tree type) |
| 9393 |
{ |
| 9394 |
tree base = lookup_base (type, parent, ba_unique, NULL, tf_none); |
| 9395 |
return base && base != error_mark_node; |
| 9396 |
} |
| 9397 |
|
| 9398 |
/* TRUE iff TYPE is publicly & uniquely derived from PARENT. */ |
| 9399 |
|
| 9400 |
bool |
| 9401 |
publicly_uniquely_derived_p (tree parent, tree type) |
| 9402 |
{ |
| 9403 |
tree base = lookup_base (type, parent, ba_ignore_scope | ba_check, |
| 9404 |
NULL, tf_none); |
| 9405 |
return base && base != error_mark_node; |
| 9406 |
} |
| 9407 |
|
| 9408 |
/* CTX1 and CTX2 are declaration contexts. Return the innermost common |
| 9409 |
class between them, if any. */ |
| 9410 |
|
| 9411 |
tree |
| 9412 |
common_enclosing_class (tree ctx1, tree ctx2) |
| 9413 |
{ |
| 9414 |
if (!TYPE_P (ctx1) || !TYPE_P (ctx2)) |
| 9415 |
return NULL_TREE; |
| 9416 |
gcc_assert (ctx1 == TYPE_MAIN_VARIANT (ctx1) |
| 9417 |
&& ctx2 == TYPE_MAIN_VARIANT (ctx2)); |
| 9418 |
if (ctx1 == ctx2) |
| 9419 |
return ctx1; |
| 9420 |
for (tree t = ctx1; TYPE_P (t); t = TYPE_CONTEXT (t)) |
| 9421 |
TYPE_MARKED_P (t) = true; |
| 9422 |
tree found = NULL_TREE; |
| 9423 |
for (tree t = ctx2; TYPE_P (t); t = TYPE_CONTEXT (t)) |
| 9424 |
if (TYPE_MARKED_P (t)) |
| 9425 |
{ |
| 9426 |
found = t; |
| 9427 |
break; |
| 9428 |
} |
| 9429 |
for (tree t = ctx1; TYPE_P (t); t = TYPE_CONTEXT (t)) |
| 9430 |
TYPE_MARKED_P (t) = false; |
| 9431 |
return found; |
| 9432 |
} |
| 9433 |
|
| 9434 |
#include "gt-cp-class.h" |