stl_list.h

Go to the documentation of this file.
00001 // List implementation -*- C++ -*-
00002 
00003 // Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006
00004 // Free Software Foundation, Inc.
00005 //
00006 // This file is part of the GNU ISO C++ Library.  This library is free
00007 // software; you can redistribute it and/or modify it under the
00008 // terms of the GNU General Public License as published by the
00009 // Free Software Foundation; either version 2, or (at your option)
00010 // any later version.
00011 
00012 // This library is distributed in the hope that it will be useful,
00013 // but WITHOUT ANY WARRANTY; without even the implied warranty of
00014 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
00015 // GNU General Public License for more details.
00016 
00017 // You should have received a copy of the GNU General Public License along
00018 // with this library; see the file COPYING.  If not, write to the Free
00019 // Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301,
00020 // USA.
00021 
00022 // As a special exception, you may use this file as part of a free software
00023 // library without restriction.  Specifically, if other files instantiate
00024 // templates or use macros or inline functions from this file, or you compile
00025 // this file and link it with other files to produce an executable, this
00026 // file does not by itself cause the resulting executable to be covered by
00027 // the GNU General Public License.  This exception does not however
00028 // invalidate any other reasons why the executable file might be covered by
00029 // the GNU General Public License.
00030 
00031 /*
00032  *
00033  * Copyright (c) 1994
00034  * Hewlett-Packard Company
00035  *
00036  * Permission to use, copy, modify, distribute and sell this software
00037  * and its documentation for any purpose is hereby granted without fee,
00038  * provided that the above copyright notice appear in all copies and
00039  * that both that copyright notice and this permission notice appear
00040  * in supporting documentation.  Hewlett-Packard Company makes no
00041  * representations about the suitability of this software for any
00042  * purpose.  It is provided "as is" without express or implied warranty.
00043  *
00044  *
00045  * Copyright (c) 1996,1997
00046  * Silicon Graphics Computer Systems, Inc.
00047  *
00048  * Permission to use, copy, modify, distribute and sell this software
00049  * and its documentation for any purpose is hereby granted without fee,
00050  * provided that the above copyright notice appear in all copies and
00051  * that both that copyright notice and this permission notice appear
00052  * in supporting documentation.  Silicon Graphics makes no
00053  * representations about the suitability of this software for any
00054  * purpose.  It is provided "as is" without express or implied warranty.
00055  */
00056 
00057 /** @file stl_list.h
00058  *  This is an internal header file, included by other library headers.
00059  *  You should not attempt to use it directly.
00060  */
00061 
00062 #ifndef _LIST_H
00063 #define _LIST_H 1
00064 
00065 #include <bits/concept_check.h>
00066 
00067 _GLIBCXX_BEGIN_NESTED_NAMESPACE(std, _GLIBCXX_STD)
00068 
00069   // Supporting structures are split into common and templated types; the
00070   // latter publicly inherits from the former in an effort to reduce code
00071   // duplication.  This results in some "needless" static_cast'ing later on,
00072   // but it's all safe downcasting.
00073 
00074   /// @if maint Common part of a node in the %list.  @endif
00075   struct _List_node_base
00076   {
00077     _List_node_base* _M_next;   ///< Self-explanatory
00078     _List_node_base* _M_prev;   ///< Self-explanatory
00079 
00080     static void
00081     swap(_List_node_base& __x, _List_node_base& __y);
00082 
00083     void
00084     transfer(_List_node_base * const __first,
00085          _List_node_base * const __last);
00086 
00087     void
00088     reverse();
00089 
00090     void
00091     hook(_List_node_base * const __position);
00092 
00093     void
00094     unhook();
00095   };
00096 
00097   /// @if maint An actual node in the %list.  @endif
00098   template<typename _Tp>
00099     struct _List_node : public _List_node_base
00100     {
00101       _Tp _M_data;                ///< User's data.
00102     };
00103 
00104   /**
00105    *  @brief A list::iterator.
00106    *
00107    *  @if maint
00108    *  All the functions are op overloads.
00109    *  @endif
00110   */
00111   template<typename _Tp>
00112     struct _List_iterator
00113     {
00114       typedef _List_iterator<_Tp>                _Self;
00115       typedef _List_node<_Tp>                    _Node;
00116 
00117       typedef ptrdiff_t                          difference_type;
00118       typedef std::bidirectional_iterator_tag    iterator_category;
00119       typedef _Tp                                value_type;
00120       typedef _Tp*                               pointer;
00121       typedef _Tp&                               reference;
00122 
00123       _List_iterator()
00124       : _M_node() { }
00125 
00126       explicit
00127       _List_iterator(_List_node_base* __x)
00128       : _M_node(__x) { }
00129 
00130       // Must downcast from List_node_base to _List_node to get to _M_data.
00131       reference
00132       operator*() const
00133       { return static_cast<_Node*>(_M_node)->_M_data; }
00134 
00135       pointer
00136       operator->() const
00137       { return &static_cast<_Node*>(_M_node)->_M_data; }
00138 
00139       _Self&
00140       operator++()
00141       {
00142     _M_node = _M_node->_M_next;
00143     return *this;
00144       }
00145 
00146       _Self
00147       operator++(int)
00148       {
00149     _Self __tmp = *this;
00150     _M_node = _M_node->_M_next;
00151     return __tmp;
00152       }
00153 
00154       _Self&
00155       operator--()
00156       {
00157     _M_node = _M_node->_M_prev;
00158     return *this;
00159       }
00160 
00161       _Self
00162       operator--(int)
00163       {
00164     _Self __tmp = *this;
00165     _M_node = _M_node->_M_prev;
00166     return __tmp;
00167       }
00168 
00169       bool
00170       operator==(const _Self& __x) const
00171       { return _M_node == __x._M_node; }
00172 
00173       bool
00174       operator!=(const _Self& __x) const
00175       { return _M_node != __x._M_node; }
00176 
00177       // The only member points to the %list element.
00178       _List_node_base* _M_node;
00179     };
00180 
00181   /**
00182    *  @brief A list::const_iterator.
00183    *
00184    *  @if maint
00185    *  All the functions are op overloads.
00186    *  @endif
00187   */
00188   template<typename _Tp>
00189     struct _List_const_iterator
00190     {
00191       typedef _List_const_iterator<_Tp>          _Self;
00192       typedef const _List_node<_Tp>              _Node;
00193       typedef _List_iterator<_Tp>                iterator;
00194 
00195       typedef ptrdiff_t                          difference_type;
00196       typedef std::bidirectional_iterator_tag    iterator_category;
00197       typedef _Tp                                value_type;
00198       typedef const _Tp*                         pointer;
00199       typedef const _Tp&                         reference;
00200 
00201       _List_const_iterator()
00202       : _M_node() { }
00203 
00204       explicit
00205       _List_const_iterator(const _List_node_base* __x)
00206       : _M_node(__x) { }
00207 
00208       _List_const_iterator(const iterator& __x)
00209       : _M_node(__x._M_node) { }
00210 
00211       // Must downcast from List_node_base to _List_node to get to
00212       // _M_data.
00213       reference
00214       operator*() const
00215       { return static_cast<_Node*>(_M_node)->_M_data; }
00216 
00217       pointer
00218       operator->() const
00219       { return &static_cast<_Node*>(_M_node)->_M_data; }
00220 
00221       _Self&
00222       operator++()
00223       {
00224     _M_node = _M_node->_M_next;
00225     return *this;
00226       }
00227 
00228       _Self
00229       operator++(int)
00230       {
00231     _Self __tmp = *this;
00232     _M_node = _M_node->_M_next;
00233     return __tmp;
00234       }
00235 
00236       _Self&
00237       operator--()
00238       {
00239     _M_node = _M_node->_M_prev;
00240     return *this;
00241       }
00242 
00243       _Self
00244       operator--(int)
00245       {
00246     _Self __tmp = *this;
00247     _M_node = _M_node->_M_prev;
00248     return __tmp;
00249       }
00250 
00251       bool
00252       operator==(const _Self& __x) const
00253       { return _M_node == __x._M_node; }
00254 
00255       bool
00256       operator!=(const _Self& __x) const
00257       { return _M_node != __x._M_node; }
00258 
00259       // The only member points to the %list element.
00260       const _List_node_base* _M_node;
00261     };
00262 
00263   template<typename _Val>
00264     inline bool
00265     operator==(const _List_iterator<_Val>& __x,
00266            const _List_const_iterator<_Val>& __y)
00267     { return __x._M_node == __y._M_node; }
00268 
00269   template<typename _Val>
00270     inline bool
00271     operator!=(const _List_iterator<_Val>& __x,
00272                const _List_const_iterator<_Val>& __y)
00273     { return __x._M_node != __y._M_node; }
00274 
00275 
00276   /**
00277    *  @if maint
00278    *  See bits/stl_deque.h's _Deque_base for an explanation.
00279    *  @endif
00280   */
00281   template<typename _Tp, typename _Alloc>
00282     class _List_base
00283     {
00284     protected:
00285       // NOTA BENE
00286       // The stored instance is not actually of "allocator_type"'s
00287       // type.  Instead we rebind the type to
00288       // Allocator<List_node<Tp>>, which according to [20.1.5]/4
00289       // should probably be the same.  List_node<Tp> is not the same
00290       // size as Tp (it's two pointers larger), and specializations on
00291       // Tp may go unused because List_node<Tp> is being bound
00292       // instead.
00293       //
00294       // We put this to the test in the constructors and in
00295       // get_allocator, where we use conversions between
00296       // allocator_type and _Node_alloc_type. The conversion is
00297       // required by table 32 in [20.1.5].
00298       typedef typename _Alloc::template rebind<_List_node<_Tp> >::other
00299         _Node_alloc_type;
00300 
00301       typedef typename _Alloc::template rebind<_Tp>::other _Tp_alloc_type;
00302 
00303       struct _List_impl 
00304       : public _Node_alloc_type
00305       {
00306     _List_node_base _M_node;
00307 
00308     _List_impl(const _Node_alloc_type& __a)
00309     : _Node_alloc_type(__a), _M_node()
00310     { }
00311       };
00312 
00313       _List_impl _M_impl;
00314 
00315       _List_node<_Tp>*
00316       _M_get_node()
00317       { return _M_impl._Node_alloc_type::allocate(1); }
00318       
00319       void
00320       _M_put_node(_List_node<_Tp>* __p)
00321       { _M_impl._Node_alloc_type::deallocate(__p, 1); }
00322       
00323   public:
00324       typedef _Alloc allocator_type;
00325 
00326       _Node_alloc_type&
00327       _M_get_Node_allocator()
00328       { return *static_cast<_Node_alloc_type*>(&this->_M_impl); }
00329 
00330       const _Node_alloc_type&
00331       _M_get_Node_allocator() const
00332       { return *static_cast<const _Node_alloc_type*>(&this->_M_impl); }
00333 
00334       _Tp_alloc_type
00335       _M_get_Tp_allocator() const
00336       { return _Tp_alloc_type(_M_get_Node_allocator()); }
00337 
00338       allocator_type
00339       get_allocator() const
00340       { return allocator_type(_M_get_Node_allocator()); }
00341 
00342       _List_base(const allocator_type& __a)
00343       : _M_impl(__a)
00344       { _M_init(); }
00345 
00346       // This is what actually destroys the list.
00347       ~_List_base()
00348       { _M_clear(); }
00349 
00350       void
00351       _M_clear();
00352 
00353       void
00354       _M_init()
00355       {
00356         this->_M_impl._M_node._M_next = &this->_M_impl._M_node;
00357         this->_M_impl._M_node._M_prev = &this->_M_impl._M_node;
00358       }
00359     };
00360 
00361   /**
00362    *  @brief A standard container with linear time access to elements,
00363    *  and fixed time insertion/deletion at any point in the sequence.
00364    *
00365    *  @ingroup Containers
00366    *  @ingroup Sequences
00367    *
00368    *  Meets the requirements of a <a href="tables.html#65">container</a>, a
00369    *  <a href="tables.html#66">reversible container</a>, and a
00370    *  <a href="tables.html#67">sequence</a>, including the
00371    *  <a href="tables.html#68">optional sequence requirements</a> with the
00372    *  %exception of @c at and @c operator[].
00373    *
00374    *  This is a @e doubly @e linked %list.  Traversal up and down the
00375    *  %list requires linear time, but adding and removing elements (or
00376    *  @e nodes) is done in constant time, regardless of where the
00377    *  change takes place.  Unlike std::vector and std::deque,
00378    *  random-access iterators are not provided, so subscripting ( @c
00379    *  [] ) access is not allowed.  For algorithms which only need
00380    *  sequential access, this lack makes no difference.
00381    *
00382    *  Also unlike the other standard containers, std::list provides
00383    *  specialized algorithms %unique to linked lists, such as
00384    *  splicing, sorting, and in-place reversal.
00385    *
00386    *  @if maint
00387    *  A couple points on memory allocation for list<Tp>:
00388    *
00389    *  First, we never actually allocate a Tp, we allocate
00390    *  List_node<Tp>'s and trust [20.1.5]/4 to DTRT.  This is to ensure
00391    *  that after elements from %list<X,Alloc1> are spliced into
00392    *  %list<X,Alloc2>, destroying the memory of the second %list is a
00393    *  valid operation, i.e., Alloc1 giveth and Alloc2 taketh away.
00394    *
00395    *  Second, a %list conceptually represented as
00396    *  @code
00397    *    A <---> B <---> C <---> D
00398    *  @endcode
00399    *  is actually circular; a link exists between A and D.  The %list
00400    *  class holds (as its only data member) a private list::iterator
00401    *  pointing to @e D, not to @e A!  To get to the head of the %list,
00402    *  we start at the tail and move forward by one.  When this member
00403    *  iterator's next/previous pointers refer to itself, the %list is
00404    *  %empty.  @endif
00405   */
00406   template<typename _Tp, typename _Alloc = std::allocator<_Tp> >
00407     class list : protected _List_base<_Tp, _Alloc>
00408     {
00409       // concept requirements
00410       typedef typename _Alloc::value_type                _Alloc_value_type;
00411       __glibcxx_class_requires(_Tp, _SGIAssignableConcept)
00412       __glibcxx_class_requires2(_Tp, _Alloc_value_type, _SameTypeConcept)
00413 
00414       typedef _List_base<_Tp, _Alloc>                    _Base;
00415       typedef typename _Base::_Tp_alloc_type         _Tp_alloc_type;
00416 
00417     public:
00418       typedef _Tp                                        value_type;
00419       typedef typename _Tp_alloc_type::pointer           pointer;
00420       typedef typename _Tp_alloc_type::const_pointer     const_pointer;
00421       typedef typename _Tp_alloc_type::reference         reference;
00422       typedef typename _Tp_alloc_type::const_reference   const_reference;
00423       typedef _List_iterator<_Tp>                        iterator;
00424       typedef _List_const_iterator<_Tp>                  const_iterator;
00425       typedef std::reverse_iterator<const_iterator>      const_reverse_iterator;
00426       typedef std::reverse_iterator<iterator>            reverse_iterator;
00427       typedef size_t                                     size_type;
00428       typedef ptrdiff_t                                  difference_type;
00429       typedef _Alloc                                     allocator_type;
00430 
00431     protected:
00432       // Note that pointers-to-_Node's can be ctor-converted to
00433       // iterator types.
00434       typedef _List_node<_Tp>                _Node;
00435 
00436       using _Base::_M_impl;
00437       using _Base::_M_put_node;
00438       using _Base::_M_get_node;
00439       using _Base::_M_get_Tp_allocator;
00440       using _Base::_M_get_Node_allocator;
00441 
00442       /**
00443        *  @if maint
00444        *  @param  x  An instance of user data.
00445        *
00446        *  Allocates space for a new node and constructs a copy of @a x in it.
00447        *  @endif
00448        */
00449       _Node*
00450       _M_create_node(const value_type& __x)
00451       {
00452     _Node* __p = this->_M_get_node();
00453     try
00454       {
00455         _M_get_Tp_allocator().construct(&__p->_M_data, __x);
00456       }
00457     catch(...)
00458       {
00459         _M_put_node(__p);
00460         __throw_exception_again;
00461       }
00462     return __p;
00463       }
00464 
00465     public:
00466       // [23.2.2.1] construct/copy/destroy
00467       // (assign() and get_allocator() are also listed in this section)
00468       /**
00469        *  @brief  Default constructor creates no elements.
00470        */
00471       explicit
00472       list(const allocator_type& __a = allocator_type())
00473       : _Base(__a) { }
00474 
00475       /**
00476        *  @brief  Create a %list with copies of an exemplar element.
00477        *  @param  n  The number of elements to initially create.
00478        *  @param  value  An element to copy.
00479        *
00480        *  This constructor fills the %list with @a n copies of @a value.
00481        */
00482       explicit
00483       list(size_type __n, const value_type& __value = value_type(),
00484        const allocator_type& __a = allocator_type())
00485       : _Base(__a)
00486       { _M_fill_initialize(__n, __value); }
00487 
00488       /**
00489        *  @brief  %List copy constructor.
00490        *  @param  x  A %list of identical element and allocator types.
00491        *
00492        *  The newly-created %list uses a copy of the allocation object used
00493        *  by @a x.
00494        */
00495       list(const list& __x)
00496       : _Base(__x._M_get_Node_allocator())
00497       { _M_initialize_dispatch(__x.begin(), __x.end(), __false_type()); }
00498 
00499       /**
00500        *  @brief  Builds a %list from a range.
00501        *  @param  first  An input iterator.
00502        *  @param  last  An input iterator.
00503        *
00504        *  Create a %list consisting of copies of the elements from
00505        *  [@a first,@a last).  This is linear in N (where N is
00506        *  distance(@a first,@a last)).
00507        */
00508       template<typename _InputIterator>
00509         list(_InputIterator __first, _InputIterator __last,
00510          const allocator_type& __a = allocator_type())
00511         : _Base(__a)
00512         { 
00513       // Check whether it's an integral type.  If so, it's not an iterator.
00514       typedef typename std::__is_integer<_InputIterator>::__type _Integral;
00515       _M_initialize_dispatch(__first, __last, _Integral());
00516     }
00517 
00518       /**
00519        *  No explicit dtor needed as the _Base dtor takes care of
00520        *  things.  The _Base dtor only erases the elements, and note
00521        *  that if the elements themselves are pointers, the pointed-to
00522        *  memory is not touched in any way.  Managing the pointer is
00523        *  the user's responsibilty.
00524        */
00525 
00526       /**
00527        *  @brief  %List assignment operator.
00528        *  @param  x  A %list of identical element and allocator types.
00529        *
00530        *  All the elements of @a x are copied, but unlike the copy
00531        *  constructor, the allocator object is not copied.
00532        */
00533       list&
00534       operator=(const list& __x);
00535 
00536       /**
00537        *  @brief  Assigns a given value to a %list.
00538        *  @param  n  Number of elements to be assigned.
00539        *  @param  val  Value to be assigned.
00540        *
00541        *  This function fills a %list with @a n copies of the given
00542        *  value.  Note that the assignment completely changes the %list
00543        *  and that the resulting %list's size is the same as the number
00544        *  of elements assigned.  Old data may be lost.
00545        */
00546       void
00547       assign(size_type __n, const value_type& __val)
00548       { _M_fill_assign(__n, __val); }
00549 
00550       /**
00551        *  @brief  Assigns a range to a %list.
00552        *  @param  first  An input iterator.
00553        *  @param  last   An input iterator.
00554        *
00555        *  This function fills a %list with copies of the elements in the
00556        *  range [@a first,@a last).
00557        *
00558        *  Note that the assignment completely changes the %list and
00559        *  that the resulting %list's size is the same as the number of
00560        *  elements assigned.  Old data may be lost.
00561        */
00562       template<typename _InputIterator>
00563         void
00564         assign(_InputIterator __first, _InputIterator __last)
00565         {
00566       // Check whether it's an integral type.  If so, it's not an iterator.
00567       typedef typename std::__is_integer<_InputIterator>::__type _Integral;
00568       _M_assign_dispatch(__first, __last, _Integral());
00569     }
00570 
00571       /// Get a copy of the memory allocation object.
00572       allocator_type
00573       get_allocator() const
00574       { return _Base::get_allocator(); }
00575 
00576       // iterators
00577       /**
00578        *  Returns a read/write iterator that points to the first element in the
00579        *  %list.  Iteration is done in ordinary element order.
00580        */
00581       iterator
00582       begin()
00583       { return iterator(this->_M_impl._M_node._M_next); }
00584 
00585       /**
00586        *  Returns a read-only (constant) iterator that points to the
00587        *  first element in the %list.  Iteration is done in ordinary
00588        *  element order.
00589        */
00590       const_iterator
00591       begin() const
00592       { return const_iterator(this->_M_impl._M_node._M_next); }
00593 
00594       /**
00595        *  Returns a read/write iterator that points one past the last
00596        *  element in the %list.  Iteration is done in ordinary element
00597        *  order.
00598        */
00599       iterator
00600       end()
00601       { return iterator(&this->_M_impl._M_node); }
00602 
00603       /**
00604        *  Returns a read-only (constant) iterator that points one past
00605        *  the last element in the %list.  Iteration is done in ordinary
00606        *  element order.
00607        */
00608       const_iterator
00609       end() const
00610       { return const_iterator(&this->_M_impl._M_node); }
00611 
00612       /**
00613        *  Returns a read/write reverse iterator that points to the last
00614        *  element in the %list.  Iteration is done in reverse element
00615        *  order.
00616        */
00617       reverse_iterator
00618       rbegin()
00619       { return reverse_iterator(end()); }
00620 
00621       /**
00622        *  Returns a read-only (constant) reverse iterator that points to
00623        *  the last element in the %list.  Iteration is done in reverse
00624        *  element order.
00625        */
00626       const_reverse_iterator
00627       rbegin() const
00628       { return const_reverse_iterator(end()); }
00629 
00630       /**
00631        *  Returns a read/write reverse iterator that points to one
00632        *  before the first element in the %list.  Iteration is done in
00633        *  reverse element order.
00634        */
00635       reverse_iterator
00636       rend()
00637       { return reverse_iterator(begin()); }
00638 
00639       /**
00640        *  Returns a read-only (constant) reverse iterator that points to one
00641        *  before the first element in the %list.  Iteration is done in reverse
00642        *  element order.
00643        */
00644       const_reverse_iterator
00645       rend() const
00646       { return const_reverse_iterator(begin()); }
00647 
00648       // [23.2.2.2] capacity
00649       /**
00650        *  Returns true if the %list is empty.  (Thus begin() would equal
00651        *  end().)
00652        */
00653       bool
00654       empty() const
00655       { return this->_M_impl._M_node._M_next == &this->_M_impl._M_node; }
00656 
00657       /**  Returns the number of elements in the %list.  */
00658       size_type
00659       size() const
00660       { return std::distance(begin(), end()); }
00661 
00662       /**  Returns the size() of the largest possible %list.  */
00663       size_type
00664       max_size() const
00665       { return _M_get_Tp_allocator().max_size(); }
00666 
00667       /**
00668        *  @brief Resizes the %list to the specified number of elements.
00669        *  @param new_size Number of elements the %list should contain.
00670        *  @param x Data with which new elements should be populated.
00671        *
00672        *  This function will %resize the %list to the specified number
00673        *  of elements.  If the number is smaller than the %list's
00674        *  current size the %list is truncated, otherwise the %list is
00675        *  extended and new elements are populated with given data.
00676        */
00677       void
00678       resize(size_type __new_size, value_type __x = value_type());
00679 
00680       // element access
00681       /**
00682        *  Returns a read/write reference to the data at the first
00683        *  element of the %list.
00684        */
00685       reference
00686       front()
00687       { return *begin(); }
00688 
00689       /**
00690        *  Returns a read-only (constant) reference to the data at the first
00691        *  element of the %list.
00692        */
00693       const_reference
00694       front() const
00695       { return *begin(); }
00696 
00697       /**
00698        *  Returns a read/write reference to the data at the last element
00699        *  of the %list.
00700        */
00701       reference
00702       back()
00703       { 
00704     iterator __tmp = end();
00705     --__tmp;
00706     return *__tmp;
00707       }
00708 
00709       /**
00710        *  Returns a read-only (constant) reference to the data at the last
00711        *  element of the %list.
00712        */
00713       const_reference
00714       back() const
00715       { 
00716     const_iterator __tmp = end();
00717     --__tmp;
00718     return *__tmp;
00719       }
00720 
00721       // [23.2.2.3] modifiers
00722       /**
00723        *  @brief  Add data to the front of the %list.
00724        *  @param  x  Data to be added.
00725        *
00726        *  This is a typical stack operation.  The function creates an
00727        *  element at the front of the %list and assigns the given data
00728        *  to it.  Due to the nature of a %list this operation can be
00729        *  done in constant time, and does not invalidate iterators and
00730        *  references.
00731        */
00732       void
00733       push_front(const value_type& __x)
00734       { this->_M_insert(begin(), __x); }
00735 
00736       /**
00737        *  @brief  Removes first element.
00738        *
00739        *  This is a typical stack operation.  It shrinks the %list by
00740        *  one.  Due to the nature of a %list this operation can be done
00741        *  in constant time, and only invalidates iterators/references to
00742        *  the element being removed.
00743        *
00744        *  Note that no data is returned, and if the first element's data
00745        *  is needed, it should be retrieved before pop_front() is
00746        *  called.
00747        */
00748       void
00749       pop_front()
00750       { this->_M_erase(begin()); }
00751 
00752       /**
00753        *  @brief  Add data to the end of the %list.
00754        *  @param  x  Data to be added.
00755        *
00756        *  This is a typical stack operation.  The function creates an
00757        *  element at the end of the %list and assigns the given data to
00758        *  it.  Due to the nature of a %list this operation can be done
00759        *  in constant time, and does not invalidate iterators and
00760        *  references.
00761        */
00762       void
00763       push_back(const value_type& __x)
00764       { this->_M_insert(end(), __x); }
00765 
00766       /**
00767        *  @brief  Removes last element.
00768        *
00769        *  This is a typical stack operation.  It shrinks the %list by
00770        *  one.  Due to the nature of a %list this operation can be done
00771        *  in constant time, and only invalidates iterators/references to
00772        *  the element being removed.
00773        *
00774        *  Note that no data is returned, and if the last element's data
00775        *  is needed, it should be retrieved before pop_back() is called.
00776        */
00777       void
00778       pop_back()
00779       { this->_M_erase(iterator(this->_M_impl._M_node._M_prev)); }
00780 
00781       /**
00782        *  @brief  Inserts given value into %list before specified iterator.
00783        *  @param  position  An iterator into the %list.
00784        *  @param  x  Data to be inserted.
00785        *  @return  An iterator that points to the inserted data.
00786        *
00787        *  This function will insert a copy of the given value before
00788        *  the specified location.  Due to the nature of a %list this
00789        *  operation can be done in constant time, and does not
00790        *  invalidate iterators and references.
00791        */
00792       iterator
00793       insert(iterator __position, const value_type& __x);
00794 
00795       /**
00796        *  @brief  Inserts a number of copies of given data into the %list.
00797        *  @param  position  An iterator into the %list.
00798        *  @param  n  Number of elements to be inserted.
00799        *  @param  x  Data to be inserted.
00800        *
00801        *  This function will insert a specified number of copies of the
00802        *  given data before the location specified by @a position.
00803        *
00804        *  This operation is linear in the number of elements inserted and
00805        *  does not invalidate iterators and references.
00806        */
00807       void
00808       insert(iterator __position, size_type __n, const value_type& __x)
00809       {  
00810     list __tmp(__n, __x, _M_get_Node_allocator());
00811     splice(__position, __tmp);
00812       }
00813 
00814       /**
00815        *  @brief  Inserts a range into the %list.
00816        *  @param  position  An iterator into the %list.
00817        *  @param  first  An input iterator.
00818        *  @param  last   An input iterator.
00819        *
00820        *  This function will insert copies of the data in the range [@a
00821        *  first,@a last) into the %list before the location specified by
00822        *  @a position.
00823        *
00824        *  This operation is linear in the number of elements inserted and
00825        *  does not invalidate iterators and references.
00826        */
00827       template<typename _InputIterator>
00828         void
00829         insert(iterator __position, _InputIterator __first,
00830            _InputIterator __last)
00831         {
00832       list __tmp(__first, __last, _M_get_Node_allocator());
00833       splice(__position, __tmp);
00834     }
00835 
00836       /**
00837        *  @brief  Remove element at given position.
00838        *  @param  position  Iterator pointing to element to be erased.
00839        *  @return  An iterator pointing to the next element (or end()).
00840        *
00841        *  This function will erase the element at the given position and thus
00842        *  shorten the %list by one.
00843        *
00844        *  Due to the nature of a %list this operation can be done in
00845        *  constant time, and only invalidates iterators/references to
00846        *  the element being removed.  The user is also cautioned that
00847        *  this function only erases the element, and that if the element
00848        *  is itself a pointer, the pointed-to memory is not touched in
00849        *  any way.  Managing the pointer is the user's responsibilty.
00850        */
00851       iterator
00852       erase(iterator __position);
00853 
00854       /**
00855        *  @brief  Remove a range of elements.
00856        *  @param  first  Iterator pointing to the first element to be erased.
00857        *  @param  last  Iterator pointing to one past the last element to be
00858        *                erased.
00859        *  @return  An iterator pointing to the element pointed to by @a last
00860        *           prior to erasing (or end()).
00861        *
00862        *  This function will erase the elements in the range @a
00863        *  [first,last) and shorten the %list accordingly.
00864        *
00865        *  This operation is linear time in the size of the range and only
00866        *  invalidates iterators/references to the element being removed.
00867        *  The user is also cautioned that this function only erases the
00868        *  elements, and that if the elements themselves are pointers, the
00869        *  pointed-to memory is not touched in any way.  Managing the pointer
00870        *  is the user's responsibilty.
00871        */
00872       iterator
00873       erase(iterator __first, iterator __last)
00874       {
00875     while (__first != __last)
00876       __first = erase(__first);
00877     return __last;
00878       }
00879 
00880       /**
00881        *  @brief  Swaps data with another %list.
00882        *  @param  x  A %list of the same element and allocator types.
00883        *
00884        *  This exchanges the elements between two lists in constant
00885        *  time.  Note that the global std::swap() function is
00886        *  specialized such that std::swap(l1,l2) will feed to this
00887        *  function.
00888        */
00889       void
00890       swap(list& __x)
00891       {
00892     _List_node_base::swap(this->_M_impl._M_node, __x._M_impl._M_node);
00893 
00894     // _GLIBCXX_RESOLVE_LIB_DEFECTS
00895     // 431. Swapping containers with unequal allocators.
00896     std::__alloc_swap<typename _Base::_Node_alloc_type>::
00897 	  _S_do_it(_M_get_Node_allocator(), __x._M_get_Node_allocator());
00898       }
00899 
00900       /**
00901        *  Erases all the elements.  Note that this function only erases
00902        *  the elements, and that if the elements themselves are
00903        *  pointers, the pointed-to memory is not touched in any way.
00904        *  Managing the pointer is the user's responsibilty.
00905        */
00906       void
00907       clear()
00908       {
00909         _Base::_M_clear();
00910         _Base::_M_init();
00911       }
00912 
00913       // [23.2.2.4] list operations
00914       /**
00915        *  @brief  Insert contents of another %list.
00916        *  @param  position  Iterator referencing the element to insert before.
00917        *  @param  x  Source list.
00918        *
00919        *  The elements of @a x are inserted in constant time in front of
00920        *  the element referenced by @a position.  @a x becomes an empty
00921        *  list.
00922        *
00923        *  Requires this != @a x.
00924        */
00925       void
00926       splice(iterator __position, list& __x)
00927       {
00928     if (!__x.empty())
00929       {
00930         _M_check_equal_allocators(__x);
00931 
00932         this->_M_transfer(__position, __x.begin(), __x.end());
00933       }
00934       }
00935 
00936       /**
00937        *  @brief  Insert element from another %list.
00938        *  @param  position  Iterator referencing the element to insert before.
00939        *  @param  x  Source list.
00940        *  @param  i  Iterator referencing the element to move.
00941        *
00942        *  Removes the element in list @a x referenced by @a i and
00943        *  inserts it into the current list before @a position.
00944        */
00945       void
00946       splice(iterator __position, list& __x, iterator __i)
00947       {
00948     iterator __j = __i;
00949     ++__j;
00950     if (__position == __i || __position == __j)
00951       return;
00952 
00953     if (this != &__x)
00954       _M_check_equal_allocators(__x);
00955 
00956     this->_M_transfer(__position, __i, __j);
00957       }
00958 
00959       /**
00960        *  @brief  Insert range from another %list.
00961        *  @param  position  Iterator referencing the element to insert before.
00962        *  @param  x  Source list.
00963        *  @param  first  Iterator referencing the start of range in x.
00964        *  @param  last  Iterator referencing the end of range in x.
00965        *
00966        *  Removes elements in the range [first,last) and inserts them
00967        *  before @a position in constant time.
00968        *
00969        *  Undefined if @a position is in [first,last).
00970        */
00971       void
00972       splice(iterator __position, list& __x, iterator __first, iterator __last)
00973       {
00974     if (__first != __last)
00975       {
00976         if (this != &__x)
00977           _M_check_equal_allocators(__x);
00978 
00979         this->_M_transfer(__position, __first, __last);
00980       }
00981       }
00982 
00983       /**
00984        *  @brief  Remove all elements equal to value.
00985        *  @param  value  The value to remove.
00986        *
00987        *  Removes every element in the list equal to @a value.
00988        *  Remaining elements stay in list order.  Note that this
00989        *  function only erases the elements, and that if the elements
00990        *  themselves are pointers, the pointed-to memory is not
00991        *  touched in any way.  Managing the pointer is the user's
00992        *  responsibilty.
00993        */
00994       void
00995       remove(const _Tp& __value);
00996 
00997       /**
00998        *  @brief  Remove all elements satisfying a predicate.
00999        *  @param  Predicate  Unary predicate function or object.
01000        *
01001        *  Removes every element in the list for which the predicate
01002        *  returns true.  Remaining elements stay in list order.  Note
01003        *  that this function only erases the elements, and that if the
01004        *  elements themselves are pointers, the pointed-to memory is
01005        *  not touched in any way.  Managing the pointer is the user's
01006        *  responsibilty.
01007        */
01008       template<typename _Predicate>
01009         void
01010         remove_if(_Predicate);
01011 
01012       /**
01013        *  @brief  Remove consecutive duplicate elements.
01014        *
01015        *  For each consecutive set of elements with the same value,
01016        *  remove all but the first one.  Remaining elements stay in
01017        *  list order.  Note that this function only erases the
01018        *  elements, and that if the elements themselves are pointers,
01019        *  the pointed-to memory is not touched in any way.  Managing
01020        *  the pointer is the user's responsibilty.
01021        */
01022       void
01023       unique();
01024 
01025       /**
01026        *  @brief  Remove consecutive elements satisfying a predicate.
01027        *  @param  BinaryPredicate  Binary predicate function or object.
01028        *
01029        *  For each consecutive set of elements [first,last) that
01030        *  satisfy predicate(first,i) where i is an iterator in
01031        *  [first,last), remove all but the first one.  Remaining
01032        *  elements stay in list order.  Note that this function only
01033        *  erases the elements, and that if the elements themselves are
01034        *  pointers, the pointed-to memory is not touched in any way.
01035        *  Managing the pointer is the user's responsibilty.
01036        */
01037       template<typename _BinaryPredicate>
01038         void
01039         unique(_BinaryPredicate);
01040 
01041       /**
01042        *  @brief  Merge sorted lists.
01043        *  @param  x  Sorted list to merge.
01044        *
01045        *  Assumes that both @a x and this list are sorted according to
01046        *  operator<().  Merges elements of @a x into this list in
01047        *  sorted order, leaving @a x empty when complete.  Elements in
01048        *  this list precede elements in @a x that are equal.
01049        */
01050       void
01051       merge(list& __x);
01052 
01053       /**
01054        *  @brief  Merge sorted lists according to comparison function.
01055        *  @param  x  Sorted list to merge.
01056        *  @param StrictWeakOrdering Comparison function definining
01057        *  sort order.
01058        *
01059        *  Assumes that both @a x and this list are sorted according to
01060        *  StrictWeakOrdering.  Merges elements of @a x into this list
01061        *  in sorted order, leaving @a x empty when complete.  Elements
01062        *  in this list precede elements in @a x that are equivalent
01063        *  according to StrictWeakOrdering().
01064        */
01065       template<typename _StrictWeakOrdering>
01066         void
01067         merge(list&, _StrictWeakOrdering);
01068 
01069       /**
01070        *  @brief  Reverse the elements in list.
01071        *
01072        *  Reverse the order of elements in the list in linear time.
01073        */
01074       void
01075       reverse()
01076       { this->_M_impl._M_node.reverse(); }
01077 
01078       /**
01079        *  @brief  Sort the elements.
01080        *
01081        *  Sorts the elements of this list in NlogN time.  Equivalent
01082        *  elements remain in list order.
01083        */
01084       void
01085       sort();
01086 
01087       /**
01088        *  @brief  Sort the elements according to comparison function.
01089        *
01090        *  Sorts the elements of this list in NlogN time.  Equivalent
01091        *  elements remain in list order.
01092        */
01093       template<typename _StrictWeakOrdering>
01094         void
01095         sort(_StrictWeakOrdering);
01096 
01097     protected:
01098       // Internal constructor functions follow.
01099 
01100       // Called by the range constructor to implement [23.1.1]/9
01101       template<typename _Integer>
01102         void
01103         _M_initialize_dispatch(_Integer __n, _Integer __x, __true_type)
01104         {
01105       _M_fill_initialize(static_cast<size_type>(__n),
01106                  static_cast<value_type>(__x));
01107     }
01108 
01109       // Called by the range constructor to implement [23.1.1]/9
01110       template<typename _InputIterator>
01111         void
01112         _M_initialize_dispatch(_InputIterator __first, _InputIterator __last,
01113                    __false_type)
01114         {
01115       for (; __first != __last; ++__first)
01116         push_back(*__first);
01117     }
01118 
01119       // Called by list(n,v,a), and the range constructor when it turns out
01120       // to be the same thing.
01121       void
01122       _M_fill_initialize(size_type __n, const value_type& __x)
01123       {
01124     for (; __n > 0; --__n)
01125       push_back(__x);
01126       }
01127 
01128 
01129       // Internal assign functions follow.
01130 
01131       // Called by the range assign to implement [23.1.1]/9
01132       template<typename _Integer>
01133         void
01134         _M_assign_dispatch(_Integer __n, _Integer __val, __true_type)
01135         {
01136       _M_fill_assign(static_cast<size_type>(__n),
01137              static_cast<value_type>(__val));
01138     }
01139 
01140       // Called by the range assign to implement [23.1.1]/9
01141       template<typename _InputIterator>
01142         void
01143         _M_assign_dispatch(_InputIterator __first, _InputIterator __last,
01144                __false_type);
01145 
01146       // Called by assign(n,t), and the range assign when it turns out
01147       // to be the same thing.
01148       void
01149       _M_fill_assign(size_type __n, const value_type& __val);
01150 
01151 
01152       // Moves the elements from [first,last) before position.
01153       void
01154       _M_transfer(iterator __position, iterator __first, iterator __last)
01155       { __position._M_node->transfer(__first._M_node, __last._M_node); }
01156 
01157       // Inserts new element at position given and with value given.
01158       void
01159       _M_insert(iterator __position, const value_type& __x)
01160       {
01161         _Node* __tmp = _M_create_node(__x);
01162         __tmp->hook(__position._M_node);
01163       }
01164 
01165       // Erases element at position given.
01166       void
01167       _M_erase(iterator __position)
01168       {
01169         __position._M_node->unhook();
01170         _Node* __n = static_cast<_Node*>(__position._M_node);
01171         _M_get_Tp_allocator().destroy(&__n->_M_data);
01172         _M_put_node(__n);
01173       }
01174 
01175       // To implement the splice (and merge) bits of N1599.
01176       void
01177       _M_check_equal_allocators(list& __x)
01178       {
01179     if (_M_get_Node_allocator() != __x._M_get_Node_allocator())
01180       __throw_runtime_error(__N("list::_M_check_equal_allocators"));
01181       }
01182     };
01183 
01184   /**
01185    *  @brief  List equality comparison.
01186    *  @param  x  A %list.
01187    *  @param  y  A %list of the same type as @a x.
01188    *  @return  True iff the size and elements of the lists are equal.
01189    *
01190    *  This is an equivalence relation.  It is linear in the size of
01191    *  the lists.  Lists are considered equivalent if their sizes are
01192    *  equal, and if corresponding elements compare equal.
01193   */
01194   template<typename _Tp, typename _Alloc>
01195     inline bool
01196     operator==(const list<_Tp, _Alloc>& __x, const list<_Tp, _Alloc>& __y)
01197     {
01198       typedef typename list<_Tp, _Alloc>::const_iterator const_iterator;
01199       const_iterator __end1 = __x.end();
01200       const_iterator __end2 = __y.end();
01201 
01202       const_iterator __i1 = __x.begin();
01203       const_iterator __i2 = __y.begin();
01204       while (__i1 != __end1 && __i2 != __end2 && *__i1 == *__i2)
01205     {
01206       ++__i1;
01207       ++__i2;
01208     }
01209       return __i1 == __end1 && __i2 == __end2;
01210     }
01211 
01212   /**
01213    *  @brief  List ordering relation.
01214    *  @param  x  A %list.
01215    *  @param  y  A %list of the same type as @a x.
01216    *  @return  True iff @a x is lexicographically less than @a y.
01217    *
01218    *  This is a total ordering relation.  It is linear in the size of the
01219    *  lists.  The elements must be comparable with @c <.
01220    *
01221    *  See std::lexicographical_compare() for how the determination is made.
01222   */
01223   template<typename _Tp, typename _Alloc>
01224     inline bool
01225     operator<(const list<_Tp, _Alloc>& __x, const list<_Tp, _Alloc>& __y)
01226     { return std::lexicographical_compare(__x.begin(), __x.end(),
01227                       __y.begin(), __y.end()); }
01228 
01229   /// Based on operator==
01230   template<typename _Tp, typename _Alloc>
01231     inline bool
01232     operator!=(const list<_Tp, _Alloc>& __x, const list<_Tp, _Alloc>& __y)
01233     { return !(__x == __y); }
01234 
01235   /// Based on operator<
01236   template<typename _Tp, typename _Alloc>
01237     inline bool
01238     operator>(const list<_Tp, _Alloc>& __x, const list<_Tp, _Alloc>& __y)
01239     { return __y < __x; }
01240 
01241   /// Based on operator<
01242   template<typename _Tp, typename _Alloc>
01243     inline bool
01244     operator<=(const list<_Tp, _Alloc>& __x, const list<_Tp, _Alloc>& __y)
01245     { return !(__y < __x); }
01246 
01247   /// Based on operator<
01248   template<typename _Tp, typename _Alloc>
01249     inline bool
01250     operator>=(const list<_Tp, _Alloc>& __x, const list<_Tp, _Alloc>& __y)
01251     { return !(__x < __y); }
01252 
01253   /// See std::list::swap().
01254   template<typename _Tp, typename _Alloc>
01255     inline void
01256     swap(list<_Tp, _Alloc>& __x, list<_Tp, _Alloc>& __y)
01257     { __x.swap(__y); }
01258 
01259 _GLIBCXX_END_NESTED_NAMESPACE
01260 
01261 #endif /* _LIST_H */
01262 

Generated on Thu Nov 1 13:12:33 2007 for libstdc++ by  doxygen 1.5.1