libstdc++
stl_map.h
Go to the documentation of this file.
1 // Map implementation -*- C++ -*-
2 
3 // Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010,
4 // 2011, 2012 Free Software Foundation, Inc.
5 //
6 // This file is part of the GNU ISO C++ Library. This library is free
7 // software; you can redistribute it and/or modify it under the
8 // terms of the GNU General Public License as published by the
9 // Free Software Foundation; either version 3, or (at your option)
10 // any later version.
11 
12 // This library is distributed in the hope that it will be useful,
13 // but WITHOUT ANY WARRANTY; without even the implied warranty of
14 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 // GNU General Public License for more details.
16 
17 // Under Section 7 of GPL version 3, you are granted additional
18 // permissions described in the GCC Runtime Library Exception, version
19 // 3.1, as published by the Free Software Foundation.
20 
21 // You should have received a copy of the GNU General Public License and
22 // a copy of the GCC Runtime Library Exception along with this program;
23 // see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
24 // <http://www.gnu.org/licenses/>.
25 
26 /*
27  *
28  * Copyright (c) 1994
29  * Hewlett-Packard Company
30  *
31  * Permission to use, copy, modify, distribute and sell this software
32  * and its documentation for any purpose is hereby granted without fee,
33  * provided that the above copyright notice appear in all copies and
34  * that both that copyright notice and this permission notice appear
35  * in supporting documentation. Hewlett-Packard Company makes no
36  * representations about the suitability of this software for any
37  * purpose. It is provided "as is" without express or implied warranty.
38  *
39  *
40  * Copyright (c) 1996,1997
41  * Silicon Graphics Computer Systems, Inc.
42  *
43  * Permission to use, copy, modify, distribute and sell this software
44  * and its documentation for any purpose is hereby granted without fee,
45  * provided that the above copyright notice appear in all copies and
46  * that both that copyright notice and this permission notice appear
47  * in supporting documentation. Silicon Graphics makes no
48  * representations about the suitability of this software for any
49  * purpose. It is provided "as is" without express or implied warranty.
50  */
51 
52 /** @file bits/stl_map.h
53  * This is an internal header file, included by other library headers.
54  * Do not attempt to use it directly. @headername{map}
55  */
56 
57 #ifndef _STL_MAP_H
58 #define _STL_MAP_H 1
59 
60 #include <bits/functexcept.h>
61 #include <bits/concept_check.h>
62 #ifdef __GXX_EXPERIMENTAL_CXX0X__
63 #include <initializer_list>
64 #endif
65 
66 namespace std _GLIBCXX_VISIBILITY(default)
67 {
68 _GLIBCXX_BEGIN_NAMESPACE_CONTAINER
69 
70  /**
71  * @brief A standard container made up of (key,value) pairs, which can be
72  * retrieved based on a key, in logarithmic time.
73  *
74  * @ingroup associative_containers
75  *
76  * Meets the requirements of a <a href="tables.html#65">container</a>, a
77  * <a href="tables.html#66">reversible container</a>, and an
78  * <a href="tables.html#69">associative container</a> (using unique keys).
79  * For a @c map<Key,T> the key_type is Key, the mapped_type is T, and the
80  * value_type is std::pair<const Key,T>.
81  *
82  * Maps support bidirectional iterators.
83  *
84  * The private tree data is declared exactly the same way for map and
85  * multimap; the distinction is made entirely in how the tree functions are
86  * called (*_unique versus *_equal, same as the standard).
87  */
88  template <typename _Key, typename _Tp, typename _Compare = std::less<_Key>,
89  typename _Alloc = std::allocator<std::pair<const _Key, _Tp> > >
90  class map
91  {
92  public:
93  typedef _Key key_type;
94  typedef _Tp mapped_type;
96  typedef _Compare key_compare;
97  typedef _Alloc allocator_type;
98 
99  private:
100  // concept requirements
101  typedef typename _Alloc::value_type _Alloc_value_type;
102  __glibcxx_class_requires(_Tp, _SGIAssignableConcept)
103  __glibcxx_class_requires4(_Compare, bool, _Key, _Key,
104  _BinaryFunctionConcept)
105  __glibcxx_class_requires2(value_type, _Alloc_value_type, _SameTypeConcept)
106 
107  public:
108  class value_compare
109  : public std::binary_function<value_type, value_type, bool>
110  {
111  friend class map<_Key, _Tp, _Compare, _Alloc>;
112  protected:
113  _Compare comp;
114 
115  value_compare(_Compare __c)
116  : comp(__c) { }
117 
118  public:
119  bool operator()(const value_type& __x, const value_type& __y) const
120  { return comp(__x.first, __y.first); }
121  };
122 
123  private:
124  /// This turns a red-black tree into a [multi]map.
125  typedef typename _Alloc::template rebind<value_type>::other
126  _Pair_alloc_type;
127 
128  typedef _Rb_tree<key_type, value_type, _Select1st<value_type>,
129  key_compare, _Pair_alloc_type> _Rep_type;
130 
131  /// The actual tree structure.
132  _Rep_type _M_t;
133 
134  public:
135  // many of these are specified differently in ISO, but the following are
136  // "functionally equivalent"
137  typedef typename _Pair_alloc_type::pointer pointer;
138  typedef typename _Pair_alloc_type::const_pointer const_pointer;
139  typedef typename _Pair_alloc_type::reference reference;
140  typedef typename _Pair_alloc_type::const_reference const_reference;
141  typedef typename _Rep_type::iterator iterator;
142  typedef typename _Rep_type::const_iterator const_iterator;
143  typedef typename _Rep_type::size_type size_type;
144  typedef typename _Rep_type::difference_type difference_type;
147 
148  // [23.3.1.1] construct/copy/destroy
149  // (get_allocator() is normally listed in this section, but seems to have
150  // been accidentally omitted in the printed standard)
151  /**
152  * @brief Default constructor creates no elements.
153  */
154  map()
155  : _M_t() { }
156 
157  /**
158  * @brief Creates a %map with no elements.
159  * @param __comp A comparison object.
160  * @param __a An allocator object.
161  */
162  explicit
163  map(const _Compare& __comp,
164  const allocator_type& __a = allocator_type())
165  : _M_t(__comp, _Pair_alloc_type(__a)) { }
166 
167  /**
168  * @brief %Map copy constructor.
169  * @param __x A %map of identical element and allocator types.
170  *
171  * The newly-created %map uses a copy of the allocation object
172  * used by @a __x.
173  */
174  map(const map& __x)
175  : _M_t(__x._M_t) { }
176 
177 #ifdef __GXX_EXPERIMENTAL_CXX0X__
178  /**
179  * @brief %Map move constructor.
180  * @param __x A %map of identical element and allocator types.
181  *
182  * The newly-created %map contains the exact contents of @a __x.
183  * The contents of @a __x are a valid, but unspecified %map.
184  */
185  map(map&& __x)
186  noexcept(is_nothrow_copy_constructible<_Compare>::value)
187  : _M_t(std::move(__x._M_t)) { }
188 
189  /**
190  * @brief Builds a %map from an initializer_list.
191  * @param __l An initializer_list.
192  * @param __comp A comparison object.
193  * @param __a An allocator object.
194  *
195  * Create a %map consisting of copies of the elements in the
196  * initializer_list @a __l.
197  * This is linear in N if the range is already sorted, and NlogN
198  * otherwise (where N is @a __l.size()).
199  */
201  const _Compare& __comp = _Compare(),
202  const allocator_type& __a = allocator_type())
203  : _M_t(__comp, _Pair_alloc_type(__a))
204  { _M_t._M_insert_unique(__l.begin(), __l.end()); }
205 #endif
206 
207  /**
208  * @brief Builds a %map from a range.
209  * @param __first An input iterator.
210  * @param __last An input iterator.
211  *
212  * Create a %map consisting of copies of the elements from
213  * [__first,__last). This is linear in N if the range is
214  * already sorted, and NlogN otherwise (where N is
215  * distance(__first,__last)).
216  */
217  template<typename _InputIterator>
218  map(_InputIterator __first, _InputIterator __last)
219  : _M_t()
220  { _M_t._M_insert_unique(__first, __last); }
221 
222  /**
223  * @brief Builds a %map from a range.
224  * @param __first An input iterator.
225  * @param __last An input iterator.
226  * @param __comp A comparison functor.
227  * @param __a An allocator object.
228  *
229  * Create a %map consisting of copies of the elements from
230  * [__first,__last). This is linear in N if the range is
231  * already sorted, and NlogN otherwise (where N is
232  * distance(__first,__last)).
233  */
234  template<typename _InputIterator>
235  map(_InputIterator __first, _InputIterator __last,
236  const _Compare& __comp,
237  const allocator_type& __a = allocator_type())
238  : _M_t(__comp, _Pair_alloc_type(__a))
239  { _M_t._M_insert_unique(__first, __last); }
240 
241  // FIXME There is no dtor declared, but we should have something
242  // generated by Doxygen. I don't know what tags to add to this
243  // paragraph to make that happen:
244  /**
245  * The dtor only erases the elements, and note that if the elements
246  * themselves are pointers, the pointed-to memory is not touched in any
247  * way. Managing the pointer is the user's responsibility.
248  */
249 
250  /**
251  * @brief %Map assignment operator.
252  * @param __x A %map of identical element and allocator types.
253  *
254  * All the elements of @a __x are copied, but unlike the copy
255  * constructor, the allocator object is not copied.
256  */
257  map&
258  operator=(const map& __x)
259  {
260  _M_t = __x._M_t;
261  return *this;
262  }
263 
264 #ifdef __GXX_EXPERIMENTAL_CXX0X__
265  /**
266  * @brief %Map move assignment operator.
267  * @param __x A %map of identical element and allocator types.
268  *
269  * The contents of @a __x are moved into this map (without copying).
270  * @a __x is a valid, but unspecified %map.
271  */
272  map&
273  operator=(map&& __x)
274  {
275  // NB: DR 1204.
276  // NB: DR 675.
277  this->clear();
278  this->swap(__x);
279  return *this;
280  }
281 
282  /**
283  * @brief %Map list assignment operator.
284  * @param __l An initializer_list.
285  *
286  * This function fills a %map with copies of the elements in the
287  * initializer list @a __l.
288  *
289  * Note that the assignment completely changes the %map and
290  * that the resulting %map's size is the same as the number
291  * of elements assigned. Old data may be lost.
292  */
293  map&
295  {
296  this->clear();
297  this->insert(__l.begin(), __l.end());
298  return *this;
299  }
300 #endif
301 
302  /// Get a copy of the memory allocation object.
303  allocator_type
304  get_allocator() const _GLIBCXX_NOEXCEPT
305  { return allocator_type(_M_t.get_allocator()); }
306 
307  // iterators
308  /**
309  * Returns a read/write iterator that points to the first pair in the
310  * %map.
311  * Iteration is done in ascending order according to the keys.
312  */
313  iterator
314  begin() _GLIBCXX_NOEXCEPT
315  { return _M_t.begin(); }
316 
317  /**
318  * Returns a read-only (constant) iterator that points to the first pair
319  * in the %map. Iteration is done in ascending order according to the
320  * keys.
321  */
322  const_iterator
323  begin() const _GLIBCXX_NOEXCEPT
324  { return _M_t.begin(); }
325 
326  /**
327  * Returns a read/write iterator that points one past the last
328  * pair in the %map. Iteration is done in ascending order
329  * according to the keys.
330  */
331  iterator
332  end() _GLIBCXX_NOEXCEPT
333  { return _M_t.end(); }
334 
335  /**
336  * Returns a read-only (constant) iterator that points one past the last
337  * pair in the %map. Iteration is done in ascending order according to
338  * the keys.
339  */
340  const_iterator
341  end() const _GLIBCXX_NOEXCEPT
342  { return _M_t.end(); }
343 
344  /**
345  * Returns a read/write reverse iterator that points to the last pair in
346  * the %map. Iteration is done in descending order according to the
347  * keys.
348  */
350  rbegin() _GLIBCXX_NOEXCEPT
351  { return _M_t.rbegin(); }
352 
353  /**
354  * Returns a read-only (constant) reverse iterator that points to the
355  * last pair in the %map. Iteration is done in descending order
356  * according to the keys.
357  */
358  const_reverse_iterator
359  rbegin() const _GLIBCXX_NOEXCEPT
360  { return _M_t.rbegin(); }
361 
362  /**
363  * Returns a read/write reverse iterator that points to one before the
364  * first pair in the %map. Iteration is done in descending order
365  * according to the keys.
366  */
368  rend() _GLIBCXX_NOEXCEPT
369  { return _M_t.rend(); }
370 
371  /**
372  * Returns a read-only (constant) reverse iterator that points to one
373  * before the first pair in the %map. Iteration is done in descending
374  * order according to the keys.
375  */
376  const_reverse_iterator
377  rend() const _GLIBCXX_NOEXCEPT
378  { return _M_t.rend(); }
379 
380 #ifdef __GXX_EXPERIMENTAL_CXX0X__
381  /**
382  * Returns a read-only (constant) iterator that points to the first pair
383  * in the %map. Iteration is done in ascending order according to the
384  * keys.
385  */
386  const_iterator
387  cbegin() const noexcept
388  { return _M_t.begin(); }
389 
390  /**
391  * Returns a read-only (constant) iterator that points one past the last
392  * pair in the %map. Iteration is done in ascending order according to
393  * the keys.
394  */
395  const_iterator
396  cend() const noexcept
397  { return _M_t.end(); }
398 
399  /**
400  * Returns a read-only (constant) reverse iterator that points to the
401  * last pair in the %map. Iteration is done in descending order
402  * according to the keys.
403  */
404  const_reverse_iterator
405  crbegin() const noexcept
406  { return _M_t.rbegin(); }
407 
408  /**
409  * Returns a read-only (constant) reverse iterator that points to one
410  * before the first pair in the %map. Iteration is done in descending
411  * order according to the keys.
412  */
413  const_reverse_iterator
414  crend() const noexcept
415  { return _M_t.rend(); }
416 #endif
417 
418  // capacity
419  /** Returns true if the %map is empty. (Thus begin() would equal
420  * end().)
421  */
422  bool
423  empty() const _GLIBCXX_NOEXCEPT
424  { return _M_t.empty(); }
425 
426  /** Returns the size of the %map. */
427  size_type
428  size() const _GLIBCXX_NOEXCEPT
429  { return _M_t.size(); }
430 
431  /** Returns the maximum size of the %map. */
432  size_type
433  max_size() const _GLIBCXX_NOEXCEPT
434  { return _M_t.max_size(); }
435 
436  // [23.3.1.2] element access
437  /**
438  * @brief Subscript ( @c [] ) access to %map data.
439  * @param __k The key for which data should be retrieved.
440  * @return A reference to the data of the (key,data) %pair.
441  *
442  * Allows for easy lookup with the subscript ( @c [] )
443  * operator. Returns data associated with the key specified in
444  * subscript. If the key does not exist, a pair with that key
445  * is created using default values, which is then returned.
446  *
447  * Lookup requires logarithmic time.
448  */
449  mapped_type&
450  operator[](const key_type& __k)
451  {
452  // concept requirements
453  __glibcxx_function_requires(_DefaultConstructibleConcept<mapped_type>)
454 
455  iterator __i = lower_bound(__k);
456  // __i->first is greater than or equivalent to __k.
457  if (__i == end() || key_comp()(__k, (*__i).first))
458  __i = insert(__i, value_type(__k, mapped_type()));
459  return (*__i).second;
460  }
461 
462 #ifdef __GXX_EXPERIMENTAL_CXX0X__
463  mapped_type&
464  operator[](key_type&& __k)
465  {
466  // concept requirements
467  __glibcxx_function_requires(_DefaultConstructibleConcept<mapped_type>)
468 
469  iterator __i = lower_bound(__k);
470  // __i->first is greater than or equivalent to __k.
471  if (__i == end() || key_comp()(__k, (*__i).first))
472  __i = insert(__i, std::make_pair(std::move(__k), mapped_type()));
473  return (*__i).second;
474  }
475 #endif
476 
477  // _GLIBCXX_RESOLVE_LIB_DEFECTS
478  // DR 464. Suggestion for new member functions in standard containers.
479  /**
480  * @brief Access to %map data.
481  * @param __k The key for which data should be retrieved.
482  * @return A reference to the data whose key is equivalent to @a __k, if
483  * such a data is present in the %map.
484  * @throw std::out_of_range If no such data is present.
485  */
486  mapped_type&
487  at(const key_type& __k)
488  {
489  iterator __i = lower_bound(__k);
490  if (__i == end() || key_comp()(__k, (*__i).first))
491  __throw_out_of_range(__N("map::at"));
492  return (*__i).second;
493  }
494 
495  const mapped_type&
496  at(const key_type& __k) const
497  {
498  const_iterator __i = lower_bound(__k);
499  if (__i == end() || key_comp()(__k, (*__i).first))
500  __throw_out_of_range(__N("map::at"));
501  return (*__i).second;
502  }
503 
504  // modifiers
505  /**
506  * @brief Attempts to insert a std::pair into the %map.
507 
508  * @param __x Pair to be inserted (see std::make_pair for easy
509  * creation of pairs).
510  *
511  * @return A pair, of which the first element is an iterator that
512  * points to the possibly inserted pair, and the second is
513  * a bool that is true if the pair was actually inserted.
514  *
515  * This function attempts to insert a (key, value) %pair into the %map.
516  * A %map relies on unique keys and thus a %pair is only inserted if its
517  * first element (the key) is not already present in the %map.
518  *
519  * Insertion requires logarithmic time.
520  */
522  insert(const value_type& __x)
523  { return _M_t._M_insert_unique(__x); }
524 
525 #ifdef __GXX_EXPERIMENTAL_CXX0X__
526  template<typename _Pair, typename = typename
528  _Pair&&>::value>::type>
530  insert(_Pair&& __x)
531  { return _M_t._M_insert_unique(std::forward<_Pair>(__x)); }
532 #endif
533 
534 #ifdef __GXX_EXPERIMENTAL_CXX0X__
535  /**
536  * @brief Attempts to insert a list of std::pairs into the %map.
537  * @param __list A std::initializer_list<value_type> of pairs to be
538  * inserted.
539  *
540  * Complexity similar to that of the range constructor.
541  */
542  void
544  { insert(__list.begin(), __list.end()); }
545 #endif
546 
547  /**
548  * @brief Attempts to insert a std::pair into the %map.
549  * @param __position An iterator that serves as a hint as to where the
550  * pair should be inserted.
551  * @param __x Pair to be inserted (see std::make_pair for easy creation
552  * of pairs).
553  * @return An iterator that points to the element with key of
554  * @a __x (may or may not be the %pair passed in).
555  *
556 
557  * This function is not concerned about whether the insertion
558  * took place, and thus does not return a boolean like the
559  * single-argument insert() does. Note that the first
560  * parameter is only a hint and can potentially improve the
561  * performance of the insertion process. A bad hint would
562  * cause no gains in efficiency.
563  *
564  * See
565  * http://gcc.gnu.org/onlinedocs/libstdc++/manual/bk01pt07ch17.html
566  * for more on @a hinting.
567  *
568  * Insertion requires logarithmic time (if the hint is not taken).
569  */
570  iterator
571 #ifdef __GXX_EXPERIMENTAL_CXX0X__
572  insert(const_iterator __position, const value_type& __x)
573 #else
574  insert(iterator __position, const value_type& __x)
575 #endif
576  { return _M_t._M_insert_unique_(__position, __x); }
577 
578 #ifdef __GXX_EXPERIMENTAL_CXX0X__
579  template<typename _Pair, typename = typename
581  _Pair&&>::value>::type>
582  iterator
583  insert(const_iterator __position, _Pair&& __x)
584  { return _M_t._M_insert_unique_(__position,
585  std::forward<_Pair>(__x)); }
586 #endif
587 
588  /**
589  * @brief Template function that attempts to insert a range of elements.
590  * @param __first Iterator pointing to the start of the range to be
591  * inserted.
592  * @param __last Iterator pointing to the end of the range.
593  *
594  * Complexity similar to that of the range constructor.
595  */
596  template<typename _InputIterator>
597  void
598  insert(_InputIterator __first, _InputIterator __last)
599  { _M_t._M_insert_unique(__first, __last); }
600 
601 #ifdef __GXX_EXPERIMENTAL_CXX0X__
602  // _GLIBCXX_RESOLVE_LIB_DEFECTS
603  // DR 130. Associative erase should return an iterator.
604  /**
605  * @brief Erases an element from a %map.
606  * @param __position An iterator pointing to the element to be erased.
607  * @return An iterator pointing to the element immediately following
608  * @a position prior to the element being erased. If no such
609  * element exists, end() is returned.
610  *
611  * This function erases an element, pointed to by the given
612  * iterator, from a %map. Note that this function only erases
613  * the element, and that if the element is itself a pointer,
614  * the pointed-to memory is not touched in any way. Managing
615  * the pointer is the user's responsibility.
616  */
617  iterator
618  erase(const_iterator __position)
619  { return _M_t.erase(__position); }
620 
621  // LWG 2059.
622  iterator
623  erase(iterator __position)
624  { return _M_t.erase(__position); }
625 #else
626  /**
627  * @brief Erases an element from a %map.
628  * @param __position An iterator pointing to the element to be erased.
629  *
630  * This function erases an element, pointed to by the given
631  * iterator, from a %map. Note that this function only erases
632  * the element, and that if the element is itself a pointer,
633  * the pointed-to memory is not touched in any way. Managing
634  * the pointer is the user's responsibility.
635  */
636  void
637  erase(iterator __position)
638  { _M_t.erase(__position); }
639 #endif
640 
641  /**
642  * @brief Erases elements according to the provided key.
643  * @param __x Key of element to be erased.
644  * @return The number of elements erased.
645  *
646  * This function erases all the elements located by the given key from
647  * a %map.
648  * Note that this function only erases the element, and that if
649  * the element is itself a pointer, the pointed-to memory is not touched
650  * in any way. Managing the pointer is the user's responsibility.
651  */
652  size_type
653  erase(const key_type& __x)
654  { return _M_t.erase(__x); }
655 
656 #ifdef __GXX_EXPERIMENTAL_CXX0X__
657  // _GLIBCXX_RESOLVE_LIB_DEFECTS
658  // DR 130. Associative erase should return an iterator.
659  /**
660  * @brief Erases a [first,last) range of elements from a %map.
661  * @param __first Iterator pointing to the start of the range to be
662  * erased.
663  * @param __last Iterator pointing to the end of the range to
664  * be erased.
665  * @return The iterator @a __last.
666  *
667  * This function erases a sequence of elements from a %map.
668  * Note that this function only erases the element, and that if
669  * the element is itself a pointer, the pointed-to memory is not touched
670  * in any way. Managing the pointer is the user's responsibility.
671  */
672  iterator
673  erase(const_iterator __first, const_iterator __last)
674  { return _M_t.erase(__first, __last); }
675 #else
676  /**
677  * @brief Erases a [__first,__last) range of elements from a %map.
678  * @param __first Iterator pointing to the start of the range to be
679  * erased.
680  * @param __last Iterator pointing to the end of the range to
681  * be erased.
682  *
683  * This function erases a sequence of elements from a %map.
684  * Note that this function only erases the element, and that if
685  * the element is itself a pointer, the pointed-to memory is not touched
686  * in any way. Managing the pointer is the user's responsibility.
687  */
688  void
689  erase(iterator __first, iterator __last)
690  { _M_t.erase(__first, __last); }
691 #endif
692 
693  /**
694  * @brief Swaps data with another %map.
695  * @param __x A %map of the same element and allocator types.
696  *
697  * This exchanges the elements between two maps in constant
698  * time. (It is only swapping a pointer, an integer, and an
699  * instance of the @c Compare type (which itself is often
700  * stateless and empty), so it should be quite fast.) Note
701  * that the global std::swap() function is specialized such
702  * that std::swap(m1,m2) will feed to this function.
703  */
704  void
705  swap(map& __x)
706  { _M_t.swap(__x._M_t); }
707 
708  /**
709  * Erases all elements in a %map. Note that this function only
710  * erases the elements, and that if the elements themselves are
711  * pointers, the pointed-to memory is not touched in any way.
712  * Managing the pointer is the user's responsibility.
713  */
714  void
715  clear() _GLIBCXX_NOEXCEPT
716  { _M_t.clear(); }
717 
718  // observers
719  /**
720  * Returns the key comparison object out of which the %map was
721  * constructed.
722  */
723  key_compare
724  key_comp() const
725  { return _M_t.key_comp(); }
726 
727  /**
728  * Returns a value comparison object, built from the key comparison
729  * object out of which the %map was constructed.
730  */
731  value_compare
732  value_comp() const
733  { return value_compare(_M_t.key_comp()); }
734 
735  // [23.3.1.3] map operations
736  /**
737  * @brief Tries to locate an element in a %map.
738  * @param __x Key of (key, value) %pair to be located.
739  * @return Iterator pointing to sought-after element, or end() if not
740  * found.
741  *
742  * This function takes a key and tries to locate the element with which
743  * the key matches. If successful the function returns an iterator
744  * pointing to the sought after %pair. If unsuccessful it returns the
745  * past-the-end ( @c end() ) iterator.
746  */
747  iterator
748  find(const key_type& __x)
749  { return _M_t.find(__x); }
750 
751  /**
752  * @brief Tries to locate an element in a %map.
753  * @param __x Key of (key, value) %pair to be located.
754  * @return Read-only (constant) iterator pointing to sought-after
755  * element, or end() if not found.
756  *
757  * This function takes a key and tries to locate the element with which
758  * the key matches. If successful the function returns a constant
759  * iterator pointing to the sought after %pair. If unsuccessful it
760  * returns the past-the-end ( @c end() ) iterator.
761  */
762  const_iterator
763  find(const key_type& __x) const
764  { return _M_t.find(__x); }
765 
766  /**
767  * @brief Finds the number of elements with given key.
768  * @param __x Key of (key, value) pairs to be located.
769  * @return Number of elements with specified key.
770  *
771  * This function only makes sense for multimaps; for map the result will
772  * either be 0 (not present) or 1 (present).
773  */
774  size_type
775  count(const key_type& __x) const
776  { return _M_t.find(__x) == _M_t.end() ? 0 : 1; }
777 
778  /**
779  * @brief Finds the beginning of a subsequence matching given key.
780  * @param __x Key of (key, value) pair to be located.
781  * @return Iterator pointing to first element equal to or greater
782  * than key, or end().
783  *
784  * This function returns the first element of a subsequence of elements
785  * that matches the given key. If unsuccessful it returns an iterator
786  * pointing to the first element that has a greater value than given key
787  * or end() if no such element exists.
788  */
789  iterator
790  lower_bound(const key_type& __x)
791  { return _M_t.lower_bound(__x); }
792 
793  /**
794  * @brief Finds the beginning of a subsequence matching given key.
795  * @param __x Key of (key, value) pair to be located.
796  * @return Read-only (constant) iterator pointing to first element
797  * equal to or greater than key, or end().
798  *
799  * This function returns the first element of a subsequence of elements
800  * that matches the given key. If unsuccessful it returns an iterator
801  * pointing to the first element that has a greater value than given key
802  * or end() if no such element exists.
803  */
804  const_iterator
805  lower_bound(const key_type& __x) const
806  { return _M_t.lower_bound(__x); }
807 
808  /**
809  * @brief Finds the end of a subsequence matching given key.
810  * @param __x Key of (key, value) pair to be located.
811  * @return Iterator pointing to the first element
812  * greater than key, or end().
813  */
814  iterator
815  upper_bound(const key_type& __x)
816  { return _M_t.upper_bound(__x); }
817 
818  /**
819  * @brief Finds the end of a subsequence matching given key.
820  * @param __x Key of (key, value) pair to be located.
821  * @return Read-only (constant) iterator pointing to first iterator
822  * greater than key, or end().
823  */
824  const_iterator
825  upper_bound(const key_type& __x) const
826  { return _M_t.upper_bound(__x); }
827 
828  /**
829  * @brief Finds a subsequence matching given key.
830  * @param __x Key of (key, value) pairs to be located.
831  * @return Pair of iterators that possibly points to the subsequence
832  * matching given key.
833  *
834  * This function is equivalent to
835  * @code
836  * std::make_pair(c.lower_bound(val),
837  * c.upper_bound(val))
838  * @endcode
839  * (but is faster than making the calls separately).
840  *
841  * This function probably only makes sense for multimaps.
842  */
844  equal_range(const key_type& __x)
845  { return _M_t.equal_range(__x); }
846 
847  /**
848  * @brief Finds a subsequence matching given key.
849  * @param __x Key of (key, value) pairs to be located.
850  * @return Pair of read-only (constant) iterators that possibly points
851  * to the subsequence matching given key.
852  *
853  * This function is equivalent to
854  * @code
855  * std::make_pair(c.lower_bound(val),
856  * c.upper_bound(val))
857  * @endcode
858  * (but is faster than making the calls separately).
859  *
860  * This function probably only makes sense for multimaps.
861  */
863  equal_range(const key_type& __x) const
864  { return _M_t.equal_range(__x); }
865 
866  template<typename _K1, typename _T1, typename _C1, typename _A1>
867  friend bool
868  operator==(const map<_K1, _T1, _C1, _A1>&,
869  const map<_K1, _T1, _C1, _A1>&);
870 
871  template<typename _K1, typename _T1, typename _C1, typename _A1>
872  friend bool
873  operator<(const map<_K1, _T1, _C1, _A1>&,
874  const map<_K1, _T1, _C1, _A1>&);
875  };
876 
877  /**
878  * @brief Map equality comparison.
879  * @param __x A %map.
880  * @param __y A %map of the same type as @a x.
881  * @return True iff the size and elements of the maps are equal.
882  *
883  * This is an equivalence relation. It is linear in the size of the
884  * maps. Maps are considered equivalent if their sizes are equal,
885  * and if corresponding elements compare equal.
886  */
887  template<typename _Key, typename _Tp, typename _Compare, typename _Alloc>
888  inline bool
889  operator==(const map<_Key, _Tp, _Compare, _Alloc>& __x,
891  { return __x._M_t == __y._M_t; }
892 
893  /**
894  * @brief Map ordering relation.
895  * @param __x A %map.
896  * @param __y A %map of the same type as @a x.
897  * @return True iff @a x is lexicographically less than @a y.
898  *
899  * This is a total ordering relation. It is linear in the size of the
900  * maps. The elements must be comparable with @c <.
901  *
902  * See std::lexicographical_compare() for how the determination is made.
903  */
904  template<typename _Key, typename _Tp, typename _Compare, typename _Alloc>
905  inline bool
906  operator<(const map<_Key, _Tp, _Compare, _Alloc>& __x,
908  { return __x._M_t < __y._M_t; }
909 
910  /// Based on operator==
911  template<typename _Key, typename _Tp, typename _Compare, typename _Alloc>
912  inline bool
913  operator!=(const map<_Key, _Tp, _Compare, _Alloc>& __x,
915  { return !(__x == __y); }
916 
917  /// Based on operator<
918  template<typename _Key, typename _Tp, typename _Compare, typename _Alloc>
919  inline bool
920  operator>(const map<_Key, _Tp, _Compare, _Alloc>& __x,
922  { return __y < __x; }
923 
924  /// Based on operator<
925  template<typename _Key, typename _Tp, typename _Compare, typename _Alloc>
926  inline bool
927  operator<=(const map<_Key, _Tp, _Compare, _Alloc>& __x,
929  { return !(__y < __x); }
930 
931  /// Based on operator<
932  template<typename _Key, typename _Tp, typename _Compare, typename _Alloc>
933  inline bool
934  operator>=(const map<_Key, _Tp, _Compare, _Alloc>& __x,
936  { return !(__x < __y); }
937 
938  /// See std::map::swap().
939  template<typename _Key, typename _Tp, typename _Compare, typename _Alloc>
940  inline void
943  { __x.swap(__y); }
944 
945 _GLIBCXX_END_NAMESPACE_CONTAINER
946 } // namespace std
947 
948 #endif /* _STL_MAP_H */