Next: , Previous: Trampolines, Up: Target Macros


17.13 Implicit Calls to Library Routines

Here is an explanation of implicit calls to library routines.

— Macro: DECLARE_LIBRARY_RENAMES

This macro, if defined, should expand to a piece of C code that will get expanded when compiling functions for libgcc.a. It can be used to provide alternate names for GCC's internal library functions if there are ABI-mandated names that the compiler should provide.

— Target Hook: void TARGET_INIT_LIBFUNCS (void)

This hook should declare additional library routines or rename existing ones, using the functions set_optab_libfunc and init_one_libfunc defined in optabs.c. init_optabs calls this macro after initializing all the normal library routines.

The default is to do nothing. Most ports don't need to define this hook.

— Target Hook: bool TARGET_LIBFUNC_GNU_PREFIX

If false (the default), internal library routines start with two underscores. If set to true, these routines start with __gnu_ instead. E.g., __muldi3 changes to __gnu_muldi3. This currently only affects functions defined in libgcc2.c. If this is set to true, the tm.h file must also #define LIBGCC2_GNU_PREFIX.

— Macro: FLOAT_LIB_COMPARE_RETURNS_BOOL (mode, comparison)

This macro should return true if the library routine that implements the floating point comparison operator comparison in mode mode will return a boolean, and false if it will return a tristate.

GCC's own floating point libraries return tristates from the comparison operators, so the default returns false always. Most ports don't need to define this macro.

— Macro: TARGET_LIB_INT_CMP_BIASED

This macro should evaluate to true if the integer comparison functions (like __cmpdi2) return 0 to indicate that the first operand is smaller than the second, 1 to indicate that they are equal, and 2 to indicate that the first operand is greater than the second. If this macro evaluates to false the comparison functions return −1, 0, and 1 instead of 0, 1, and 2. If the target uses the routines in libgcc.a, you do not need to define this macro.

— Macro: TARGET_EDOM

The value of EDOM on the target machine, as a C integer constant expression. If you don't define this macro, GCC does not attempt to deposit the value of EDOM into errno directly. Look in /usr/include/errno.h to find the value of EDOM on your system.

If you do not define TARGET_EDOM, then compiled code reports domain errors by calling the library function and letting it report the error. If mathematical functions on your system use matherr when there is an error, then you should leave TARGET_EDOM undefined so that matherr is used normally.

— Macro: GEN_ERRNO_RTX

Define this macro as a C expression to create an rtl expression that refers to the global “variable” errno. (On certain systems, errno may not actually be a variable.) If you don't define this macro, a reasonable default is used.

— Macro: TARGET_C99_FUNCTIONS

When this macro is nonzero, GCC will implicitly optimize sin calls into sinf and similarly for other functions defined by C99 standard. The default is zero because a number of existing systems lack support for these functions in their runtime so this macro needs to be redefined to one on systems that do support the C99 runtime.

— Macro: TARGET_HAS_SINCOS

When this macro is nonzero, GCC will implicitly optimize calls to sin and cos with the same argument to a call to sincos. The default is zero. The target has to provide the following functions:

          void sincos(double x, double *sin, double *cos);
          void sincosf(float x, float *sin, float *cos);
          void sincosl(long double x, long double *sin, long double *cos);
     
— Macro: NEXT_OBJC_RUNTIME

Set this macro to 1 to use the "NeXT" Objective-C message sending conventions by default. This calling convention involves passing the object, the selector and the method arguments all at once to the method-lookup library function. This is the usual setting when targeting Darwin/Mac OS X systems, which have the NeXT runtime installed.

If the macro is set to 0, the "GNU" Objective-C message sending convention will be used by default. This convention passes just the object and the selector to the method-lookup function, which returns a pointer to the method.

In either case, it remains possible to select code-generation for the alternate scheme, by means of compiler command line switches.