libstdc++
stl_vector.h
Go to the documentation of this file.
1 // Vector implementation -*- C++ -*-
2 
3 // Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010,
4 // 2011 Free Software Foundation, Inc.
5 //
6 // This file is part of the GNU ISO C++ Library. This library is free
7 // software; you can redistribute it and/or modify it under the
8 // terms of the GNU General Public License as published by the
9 // Free Software Foundation; either version 3, or (at your option)
10 // any later version.
11 
12 // This library is distributed in the hope that it will be useful,
13 // but WITHOUT ANY WARRANTY; without even the implied warranty of
14 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 // GNU General Public License for more details.
16 
17 // Under Section 7 of GPL version 3, you are granted additional
18 // permissions described in the GCC Runtime Library Exception, version
19 // 3.1, as published by the Free Software Foundation.
20 
21 // You should have received a copy of the GNU General Public License and
22 // a copy of the GCC Runtime Library Exception along with this program;
23 // see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
24 // <http://www.gnu.org/licenses/>.
25 
26 /*
27  *
28  * Copyright (c) 1994
29  * Hewlett-Packard Company
30  *
31  * Permission to use, copy, modify, distribute and sell this software
32  * and its documentation for any purpose is hereby granted without fee,
33  * provided that the above copyright notice appear in all copies and
34  * that both that copyright notice and this permission notice appear
35  * in supporting documentation. Hewlett-Packard Company makes no
36  * representations about the suitability of this software for any
37  * purpose. It is provided "as is" without express or implied warranty.
38  *
39  *
40  * Copyright (c) 1996
41  * Silicon Graphics Computer Systems, Inc.
42  *
43  * Permission to use, copy, modify, distribute and sell this software
44  * and its documentation for any purpose is hereby granted without fee,
45  * provided that the above copyright notice appear in all copies and
46  * that both that copyright notice and this permission notice appear
47  * in supporting documentation. Silicon Graphics makes no
48  * representations about the suitability of this software for any
49  * purpose. It is provided "as is" without express or implied warranty.
50  */
51 
52 /** @file bits/stl_vector.h
53  * This is an internal header file, included by other library headers.
54  * Do not attempt to use it directly. @headername{vector}
55  */
56 
57 #ifndef _STL_VECTOR_H
58 #define _STL_VECTOR_H 1
59 
61 #include <bits/functexcept.h>
62 #include <bits/concept_check.h>
63 #include <initializer_list>
64 
65 namespace std _GLIBCXX_VISIBILITY(default)
66 {
67 _GLIBCXX_BEGIN_NAMESPACE_CONTAINER
68 
69  /// See bits/stl_deque.h's _Deque_base for an explanation.
70  template<typename _Tp, typename _Alloc>
71  struct _Vector_base
72  {
73  typedef typename _Alloc::template rebind<_Tp>::other _Tp_alloc_type;
74 
75  struct _Vector_impl
76  : public _Tp_alloc_type
77  {
78  typename _Tp_alloc_type::pointer _M_start;
79  typename _Tp_alloc_type::pointer _M_finish;
80  typename _Tp_alloc_type::pointer _M_end_of_storage;
81 
82  _Vector_impl()
83  : _Tp_alloc_type(), _M_start(0), _M_finish(0), _M_end_of_storage(0)
84  { }
85 
86  _Vector_impl(_Tp_alloc_type const& __a)
87  : _Tp_alloc_type(__a), _M_start(0), _M_finish(0), _M_end_of_storage(0)
88  { }
89  };
90 
91  public:
92  typedef _Alloc allocator_type;
93 
94  _Tp_alloc_type&
95  _M_get_Tp_allocator()
96  { return *static_cast<_Tp_alloc_type*>(&this->_M_impl); }
97 
98  const _Tp_alloc_type&
99  _M_get_Tp_allocator() const
100  { return *static_cast<const _Tp_alloc_type*>(&this->_M_impl); }
101 
102  allocator_type
103  get_allocator() const
104  { return allocator_type(_M_get_Tp_allocator()); }
105 
106  _Vector_base()
107  : _M_impl() { }
108 
109  _Vector_base(const allocator_type& __a)
110  : _M_impl(__a) { }
111 
112  _Vector_base(size_t __n)
113  : _M_impl()
114  {
115  this->_M_impl._M_start = this->_M_allocate(__n);
116  this->_M_impl._M_finish = this->_M_impl._M_start;
117  this->_M_impl._M_end_of_storage = this->_M_impl._M_start + __n;
118  }
119 
120  _Vector_base(size_t __n, const allocator_type& __a)
121  : _M_impl(__a)
122  {
123  this->_M_impl._M_start = this->_M_allocate(__n);
124  this->_M_impl._M_finish = this->_M_impl._M_start;
125  this->_M_impl._M_end_of_storage = this->_M_impl._M_start + __n;
126  }
127 
128 #ifdef __GXX_EXPERIMENTAL_CXX0X__
130  : _M_impl(__x._M_get_Tp_allocator())
131  {
132  this->_M_impl._M_start = __x._M_impl._M_start;
133  this->_M_impl._M_finish = __x._M_impl._M_finish;
134  this->_M_impl._M_end_of_storage = __x._M_impl._M_end_of_storage;
135  __x._M_impl._M_start = 0;
136  __x._M_impl._M_finish = 0;
137  __x._M_impl._M_end_of_storage = 0;
138  }
139 #endif
140 
141  ~_Vector_base()
142  { _M_deallocate(this->_M_impl._M_start, this->_M_impl._M_end_of_storage
143  - this->_M_impl._M_start); }
144 
145  public:
146  _Vector_impl _M_impl;
147 
148  typename _Tp_alloc_type::pointer
149  _M_allocate(size_t __n)
150  { return __n != 0 ? _M_impl.allocate(__n) : 0; }
151 
152  void
153  _M_deallocate(typename _Tp_alloc_type::pointer __p, size_t __n)
154  {
155  if (__p)
156  _M_impl.deallocate(__p, __n);
157  }
158  };
159 
160 
161  /**
162  * @brief A standard container which offers fixed time access to
163  * individual elements in any order.
164  *
165  * @ingroup sequences
166  *
167  * Meets the requirements of a <a href="tables.html#65">container</a>, a
168  * <a href="tables.html#66">reversible container</a>, and a
169  * <a href="tables.html#67">sequence</a>, including the
170  * <a href="tables.html#68">optional sequence requirements</a> with the
171  * %exception of @c push_front and @c pop_front.
172  *
173  * In some terminology a %vector can be described as a dynamic
174  * C-style array, it offers fast and efficient access to individual
175  * elements in any order and saves the user from worrying about
176  * memory and size allocation. Subscripting ( @c [] ) access is
177  * also provided as with C-style arrays.
178  */
179  template<typename _Tp, typename _Alloc = std::allocator<_Tp> >
180  class vector : protected _Vector_base<_Tp, _Alloc>
181  {
182  // Concept requirements.
183  typedef typename _Alloc::value_type _Alloc_value_type;
184  __glibcxx_class_requires(_Tp, _SGIAssignableConcept)
185  __glibcxx_class_requires2(_Tp, _Alloc_value_type, _SameTypeConcept)
186 
188  typedef typename _Base::_Tp_alloc_type _Tp_alloc_type;
189 
190  public:
191  typedef _Tp value_type;
192  typedef typename _Tp_alloc_type::pointer pointer;
193  typedef typename _Tp_alloc_type::const_pointer const_pointer;
194  typedef typename _Tp_alloc_type::reference reference;
195  typedef typename _Tp_alloc_type::const_reference const_reference;
196  typedef __gnu_cxx::__normal_iterator<pointer, vector> iterator;
197  typedef __gnu_cxx::__normal_iterator<const_pointer, vector>
198  const_iterator;
201  typedef size_t size_type;
202  typedef ptrdiff_t difference_type;
203  typedef _Alloc allocator_type;
204 
205  protected:
206  using _Base::_M_allocate;
207  using _Base::_M_deallocate;
208  using _Base::_M_impl;
209  using _Base::_M_get_Tp_allocator;
210 
211  public:
212  // [23.2.4.1] construct/copy/destroy
213  // (assign() and get_allocator() are also listed in this section)
214  /**
215  * @brief Default constructor creates no elements.
216  */
218  : _Base() { }
219 
220  /**
221  * @brief Creates a %vector with no elements.
222  * @param a An allocator object.
223  */
224  explicit
225  vector(const allocator_type& __a)
226  : _Base(__a) { }
227 
228 #ifdef __GXX_EXPERIMENTAL_CXX0X__
229  /**
230  * @brief Creates a %vector with default constructed elements.
231  * @param n The number of elements to initially create.
232  *
233  * This constructor fills the %vector with @a n default
234  * constructed elements.
235  */
236  explicit
237  vector(size_type __n)
238  : _Base(__n)
239  { _M_default_initialize(__n); }
240 
241  /**
242  * @brief Creates a %vector with copies of an exemplar element.
243  * @param n The number of elements to initially create.
244  * @param value An element to copy.
245  * @param a An allocator.
246  *
247  * This constructor fills the %vector with @a n copies of @a value.
248  */
249  vector(size_type __n, const value_type& __value,
250  const allocator_type& __a = allocator_type())
251  : _Base(__n, __a)
252  { _M_fill_initialize(__n, __value); }
253 #else
254  /**
255  * @brief Creates a %vector with copies of an exemplar element.
256  * @param n The number of elements to initially create.
257  * @param value An element to copy.
258  * @param a An allocator.
259  *
260  * This constructor fills the %vector with @a n copies of @a value.
261  */
262  explicit
263  vector(size_type __n, const value_type& __value = value_type(),
264  const allocator_type& __a = allocator_type())
265  : _Base(__n, __a)
266  { _M_fill_initialize(__n, __value); }
267 #endif
268 
269  /**
270  * @brief %Vector copy constructor.
271  * @param x A %vector of identical element and allocator types.
272  *
273  * The newly-created %vector uses a copy of the allocation
274  * object used by @a x. All the elements of @a x are copied,
275  * but any extra memory in
276  * @a x (for fast expansion) will not be copied.
277  */
278  vector(const vector& __x)
279  : _Base(__x.size(), __x._M_get_Tp_allocator())
280  { this->_M_impl._M_finish =
281  std::__uninitialized_copy_a(__x.begin(), __x.end(),
282  this->_M_impl._M_start,
283  _M_get_Tp_allocator());
284  }
285 
286 #ifdef __GXX_EXPERIMENTAL_CXX0X__
287  /**
288  * @brief %Vector move constructor.
289  * @param x A %vector of identical element and allocator types.
290  *
291  * The newly-created %vector contains the exact contents of @a x.
292  * The contents of @a x are a valid, but unspecified %vector.
293  */
294  vector(vector&& __x)
295  : _Base(std::move(__x)) { }
296 
297  /**
298  * @brief Builds a %vector from an initializer list.
299  * @param l An initializer_list.
300  * @param a An allocator.
301  *
302  * Create a %vector consisting of copies of the elements in the
303  * initializer_list @a l.
304  *
305  * This will call the element type's copy constructor N times
306  * (where N is @a l.size()) and do no memory reallocation.
307  */
309  const allocator_type& __a = allocator_type())
310  : _Base(__a)
311  {
312  _M_range_initialize(__l.begin(), __l.end(),
314  }
315 #endif
316 
317  /**
318  * @brief Builds a %vector from a range.
319  * @param first An input iterator.
320  * @param last An input iterator.
321  * @param a An allocator.
322  *
323  * Create a %vector consisting of copies of the elements from
324  * [first,last).
325  *
326  * If the iterators are forward, bidirectional, or
327  * random-access, then this will call the elements' copy
328  * constructor N times (where N is distance(first,last)) and do
329  * no memory reallocation. But if only input iterators are
330  * used, then this will do at most 2N calls to the copy
331  * constructor, and logN memory reallocations.
332  */
333  template<typename _InputIterator>
334  vector(_InputIterator __first, _InputIterator __last,
335  const allocator_type& __a = allocator_type())
336  : _Base(__a)
337  {
338  // Check whether it's an integral type. If so, it's not an iterator.
339  typedef typename std::__is_integer<_InputIterator>::__type _Integral;
340  _M_initialize_dispatch(__first, __last, _Integral());
341  }
342 
343  /**
344  * The dtor only erases the elements, and note that if the
345  * elements themselves are pointers, the pointed-to memory is
346  * not touched in any way. Managing the pointer is the user's
347  * responsibility.
348  */
350  { std::_Destroy(this->_M_impl._M_start, this->_M_impl._M_finish,
351  _M_get_Tp_allocator()); }
352 
353  /**
354  * @brief %Vector assignment operator.
355  * @param x A %vector of identical element and allocator types.
356  *
357  * All the elements of @a x are copied, but any extra memory in
358  * @a x (for fast expansion) will not be copied. Unlike the
359  * copy constructor, the allocator object is not copied.
360  */
361  vector&
362  operator=(const vector& __x);
363 
364 #ifdef __GXX_EXPERIMENTAL_CXX0X__
365  /**
366  * @brief %Vector move assignment operator.
367  * @param x A %vector of identical element and allocator types.
368  *
369  * The contents of @a x are moved into this %vector (without copying).
370  * @a x is a valid, but unspecified %vector.
371  */
372  vector&
374  {
375  // NB: DR 1204.
376  // NB: DR 675.
377  this->clear();
378  this->swap(__x);
379  return *this;
380  }
381 
382  /**
383  * @brief %Vector list assignment operator.
384  * @param l An initializer_list.
385  *
386  * This function fills a %vector with copies of the elements in the
387  * initializer list @a l.
388  *
389  * Note that the assignment completely changes the %vector and
390  * that the resulting %vector's size is the same as the number
391  * of elements assigned. Old data may be lost.
392  */
393  vector&
395  {
396  this->assign(__l.begin(), __l.end());
397  return *this;
398  }
399 #endif
400 
401  /**
402  * @brief Assigns a given value to a %vector.
403  * @param n Number of elements to be assigned.
404  * @param val Value to be assigned.
405  *
406  * This function fills a %vector with @a n copies of the given
407  * value. Note that the assignment completely changes the
408  * %vector and that the resulting %vector's size is the same as
409  * the number of elements assigned. Old data may be lost.
410  */
411  void
412  assign(size_type __n, const value_type& __val)
413  { _M_fill_assign(__n, __val); }
414 
415  /**
416  * @brief Assigns a range to a %vector.
417  * @param first An input iterator.
418  * @param last An input iterator.
419  *
420  * This function fills a %vector with copies of the elements in the
421  * range [first,last).
422  *
423  * Note that the assignment completely changes the %vector and
424  * that the resulting %vector's size is the same as the number
425  * of elements assigned. Old data may be lost.
426  */
427  template<typename _InputIterator>
428  void
429  assign(_InputIterator __first, _InputIterator __last)
430  {
431  // Check whether it's an integral type. If so, it's not an iterator.
432  typedef typename std::__is_integer<_InputIterator>::__type _Integral;
433  _M_assign_dispatch(__first, __last, _Integral());
434  }
435 
436 #ifdef __GXX_EXPERIMENTAL_CXX0X__
437  /**
438  * @brief Assigns an initializer list to a %vector.
439  * @param l An initializer_list.
440  *
441  * This function fills a %vector with copies of the elements in the
442  * initializer list @a l.
443  *
444  * Note that the assignment completely changes the %vector and
445  * that the resulting %vector's size is the same as the number
446  * of elements assigned. Old data may be lost.
447  */
448  void
450  { this->assign(__l.begin(), __l.end()); }
451 #endif
452 
453  /// Get a copy of the memory allocation object.
454  using _Base::get_allocator;
455 
456  // iterators
457  /**
458  * Returns a read/write iterator that points to the first
459  * element in the %vector. Iteration is done in ordinary
460  * element order.
461  */
462  iterator
464  { return iterator(this->_M_impl._M_start); }
465 
466  /**
467  * Returns a read-only (constant) iterator that points to the
468  * first element in the %vector. Iteration is done in ordinary
469  * element order.
470  */
471  const_iterator
472  begin() const
473  { return const_iterator(this->_M_impl._M_start); }
474 
475  /**
476  * Returns a read/write iterator that points one past the last
477  * element in the %vector. Iteration is done in ordinary
478  * element order.
479  */
480  iterator
481  end()
482  { return iterator(this->_M_impl._M_finish); }
483 
484  /**
485  * Returns a read-only (constant) iterator that points one past
486  * the last element in the %vector. Iteration is done in
487  * ordinary element order.
488  */
489  const_iterator
490  end() const
491  { return const_iterator(this->_M_impl._M_finish); }
492 
493  /**
494  * Returns a read/write reverse iterator that points to the
495  * last element in the %vector. Iteration is done in reverse
496  * element order.
497  */
500  { return reverse_iterator(end()); }
501 
502  /**
503  * Returns a read-only (constant) reverse iterator that points
504  * to the last element in the %vector. Iteration is done in
505  * reverse element order.
506  */
507  const_reverse_iterator
508  rbegin() const
509  { return const_reverse_iterator(end()); }
510 
511  /**
512  * Returns a read/write reverse iterator that points to one
513  * before the first element in the %vector. Iteration is done
514  * in reverse element order.
515  */
518  { return reverse_iterator(begin()); }
519 
520  /**
521  * Returns a read-only (constant) reverse iterator that points
522  * to one before the first element in the %vector. Iteration
523  * is done in reverse element order.
524  */
525  const_reverse_iterator
526  rend() const
527  { return const_reverse_iterator(begin()); }
528 
529 #ifdef __GXX_EXPERIMENTAL_CXX0X__
530  /**
531  * Returns a read-only (constant) iterator that points to the
532  * first element in the %vector. Iteration is done in ordinary
533  * element order.
534  */
535  const_iterator
536  cbegin() const
537  { return const_iterator(this->_M_impl._M_start); }
538 
539  /**
540  * Returns a read-only (constant) iterator that points one past
541  * the last element in the %vector. Iteration is done in
542  * ordinary element order.
543  */
544  const_iterator
545  cend() const
546  { return const_iterator(this->_M_impl._M_finish); }
547 
548  /**
549  * Returns a read-only (constant) reverse iterator that points
550  * to the last element in the %vector. Iteration is done in
551  * reverse element order.
552  */
553  const_reverse_iterator
554  crbegin() const
555  { return const_reverse_iterator(end()); }
556 
557  /**
558  * Returns a read-only (constant) reverse iterator that points
559  * to one before the first element in the %vector. Iteration
560  * is done in reverse element order.
561  */
562  const_reverse_iterator
563  crend() const
564  { return const_reverse_iterator(begin()); }
565 #endif
566 
567  // [23.2.4.2] capacity
568  /** Returns the number of elements in the %vector. */
569  size_type
570  size() const
571  { return size_type(this->_M_impl._M_finish - this->_M_impl._M_start); }
572 
573  /** Returns the size() of the largest possible %vector. */
574  size_type
575  max_size() const
576  { return _M_get_Tp_allocator().max_size(); }
577 
578 #ifdef __GXX_EXPERIMENTAL_CXX0X__
579  /**
580  * @brief Resizes the %vector to the specified number of elements.
581  * @param new_size Number of elements the %vector should contain.
582  *
583  * This function will %resize the %vector to the specified
584  * number of elements. If the number is smaller than the
585  * %vector's current size the %vector is truncated, otherwise
586  * default constructed elements are appended.
587  */
588  void
589  resize(size_type __new_size)
590  {
591  if (__new_size > size())
592  _M_default_append(__new_size - size());
593  else if (__new_size < size())
594  _M_erase_at_end(this->_M_impl._M_start + __new_size);
595  }
596 
597  /**
598  * @brief Resizes the %vector to the specified number of elements.
599  * @param new_size Number of elements the %vector should contain.
600  * @param x Data with which new elements should be populated.
601  *
602  * This function will %resize the %vector to the specified
603  * number of elements. If the number is smaller than the
604  * %vector's current size the %vector is truncated, otherwise
605  * the %vector is extended and new elements are populated with
606  * given data.
607  */
608  void
609  resize(size_type __new_size, const value_type& __x)
610  {
611  if (__new_size > size())
612  insert(end(), __new_size - size(), __x);
613  else if (__new_size < size())
614  _M_erase_at_end(this->_M_impl._M_start + __new_size);
615  }
616 #else
617  /**
618  * @brief Resizes the %vector to the specified number of elements.
619  * @param new_size Number of elements the %vector should contain.
620  * @param x Data with which new elements should be populated.
621  *
622  * This function will %resize the %vector to the specified
623  * number of elements. If the number is smaller than the
624  * %vector's current size the %vector is truncated, otherwise
625  * the %vector is extended and new elements are populated with
626  * given data.
627  */
628  void
629  resize(size_type __new_size, value_type __x = value_type())
630  {
631  if (__new_size > size())
632  insert(end(), __new_size - size(), __x);
633  else if (__new_size < size())
634  _M_erase_at_end(this->_M_impl._M_start + __new_size);
635  }
636 #endif
637 
638 #ifdef __GXX_EXPERIMENTAL_CXX0X__
639  /** A non-binding request to reduce capacity() to size(). */
640  void
642  { std::__shrink_to_fit<vector>::_S_do_it(*this); }
643 #endif
644 
645  /**
646  * Returns the total number of elements that the %vector can
647  * hold before needing to allocate more memory.
648  */
649  size_type
650  capacity() const
651  { return size_type(this->_M_impl._M_end_of_storage
652  - this->_M_impl._M_start); }
653 
654  /**
655  * Returns true if the %vector is empty. (Thus begin() would
656  * equal end().)
657  */
658  bool
659  empty() const
660  { return begin() == end(); }
661 
662  /**
663  * @brief Attempt to preallocate enough memory for specified number of
664  * elements.
665  * @param n Number of elements required.
666  * @throw std::length_error If @a n exceeds @c max_size().
667  *
668  * This function attempts to reserve enough memory for the
669  * %vector to hold the specified number of elements. If the
670  * number requested is more than max_size(), length_error is
671  * thrown.
672  *
673  * The advantage of this function is that if optimal code is a
674  * necessity and the user can determine the number of elements
675  * that will be required, the user can reserve the memory in
676  * %advance, and thus prevent a possible reallocation of memory
677  * and copying of %vector data.
678  */
679  void
680  reserve(size_type __n);
681 
682  // element access
683  /**
684  * @brief Subscript access to the data contained in the %vector.
685  * @param n The index of the element for which data should be
686  * accessed.
687  * @return Read/write reference to data.
688  *
689  * This operator allows for easy, array-style, data access.
690  * Note that data access with this operator is unchecked and
691  * out_of_range lookups are not defined. (For checked lookups
692  * see at().)
693  */
694  reference
695  operator[](size_type __n)
696  { return *(this->_M_impl._M_start + __n); }
697 
698  /**
699  * @brief Subscript access to the data contained in the %vector.
700  * @param n The index of the element for which data should be
701  * accessed.
702  * @return Read-only (constant) reference to data.
703  *
704  * This operator allows for easy, array-style, data access.
705  * Note that data access with this operator is unchecked and
706  * out_of_range lookups are not defined. (For checked lookups
707  * see at().)
708  */
709  const_reference
710  operator[](size_type __n) const
711  { return *(this->_M_impl._M_start + __n); }
712 
713  protected:
714  /// Safety check used only from at().
715  void
716  _M_range_check(size_type __n) const
717  {
718  if (__n >= this->size())
719  __throw_out_of_range(__N("vector::_M_range_check"));
720  }
721 
722  public:
723  /**
724  * @brief Provides access to the data contained in the %vector.
725  * @param n The index of the element for which data should be
726  * accessed.
727  * @return Read/write reference to data.
728  * @throw std::out_of_range If @a n is an invalid index.
729  *
730  * This function provides for safer data access. The parameter
731  * is first checked that it is in the range of the vector. The
732  * function throws out_of_range if the check fails.
733  */
734  reference
735  at(size_type __n)
736  {
737  _M_range_check(__n);
738  return (*this)[__n];
739  }
740 
741  /**
742  * @brief Provides access to the data contained in the %vector.
743  * @param n The index of the element for which data should be
744  * accessed.
745  * @return Read-only (constant) reference to data.
746  * @throw std::out_of_range If @a n is an invalid index.
747  *
748  * This function provides for safer data access. The parameter
749  * is first checked that it is in the range of the vector. The
750  * function throws out_of_range if the check fails.
751  */
752  const_reference
753  at(size_type __n) const
754  {
755  _M_range_check(__n);
756  return (*this)[__n];
757  }
758 
759  /**
760  * Returns a read/write reference to the data at the first
761  * element of the %vector.
762  */
763  reference
765  { return *begin(); }
766 
767  /**
768  * Returns a read-only (constant) reference to the data at the first
769  * element of the %vector.
770  */
771  const_reference
772  front() const
773  { return *begin(); }
774 
775  /**
776  * Returns a read/write reference to the data at the last
777  * element of the %vector.
778  */
779  reference
781  { return *(end() - 1); }
782 
783  /**
784  * Returns a read-only (constant) reference to the data at the
785  * last element of the %vector.
786  */
787  const_reference
788  back() const
789  { return *(end() - 1); }
790 
791  // _GLIBCXX_RESOLVE_LIB_DEFECTS
792  // DR 464. Suggestion for new member functions in standard containers.
793  // data access
794  /**
795  * Returns a pointer such that [data(), data() + size()) is a valid
796  * range. For a non-empty %vector, data() == &front().
797  */
798 #ifdef __GXX_EXPERIMENTAL_CXX0X__
799  _Tp*
800 #else
801  pointer
802 #endif
804  { return std::__addressof(front()); }
805 
806 #ifdef __GXX_EXPERIMENTAL_CXX0X__
807  const _Tp*
808 #else
809  const_pointer
810 #endif
811  data() const
812  { return std::__addressof(front()); }
813 
814  // [23.2.4.3] modifiers
815  /**
816  * @brief Add data to the end of the %vector.
817  * @param x Data to be added.
818  *
819  * This is a typical stack operation. The function creates an
820  * element at the end of the %vector and assigns the given data
821  * to it. Due to the nature of a %vector this operation can be
822  * done in constant time if the %vector has preallocated space
823  * available.
824  */
825  void
826  push_back(const value_type& __x)
827  {
828  if (this->_M_impl._M_finish != this->_M_impl._M_end_of_storage)
829  {
830  this->_M_impl.construct(this->_M_impl._M_finish, __x);
831  ++this->_M_impl._M_finish;
832  }
833  else
834  _M_insert_aux(end(), __x);
835  }
836 
837 #ifdef __GXX_EXPERIMENTAL_CXX0X__
838  void
839  push_back(value_type&& __x)
840  { emplace_back(std::move(__x)); }
841 
842  template<typename... _Args>
843  void
844  emplace_back(_Args&&... __args);
845 #endif
846 
847  /**
848  * @brief Removes last element.
849  *
850  * This is a typical stack operation. It shrinks the %vector by one.
851  *
852  * Note that no data is returned, and if the last element's
853  * data is needed, it should be retrieved before pop_back() is
854  * called.
855  */
856  void
858  {
859  --this->_M_impl._M_finish;
860  this->_M_impl.destroy(this->_M_impl._M_finish);
861  }
862 
863 #ifdef __GXX_EXPERIMENTAL_CXX0X__
864  /**
865  * @brief Inserts an object in %vector before specified iterator.
866  * @param position An iterator into the %vector.
867  * @param args Arguments.
868  * @return An iterator that points to the inserted data.
869  *
870  * This function will insert an object of type T constructed
871  * with T(std::forward<Args>(args)...) before the specified location.
872  * Note that this kind of operation could be expensive for a %vector
873  * and if it is frequently used the user should consider using
874  * std::list.
875  */
876  template<typename... _Args>
877  iterator
878  emplace(iterator __position, _Args&&... __args);
879 #endif
880 
881  /**
882  * @brief Inserts given value into %vector before specified iterator.
883  * @param position An iterator into the %vector.
884  * @param x Data to be inserted.
885  * @return An iterator that points to the inserted data.
886  *
887  * This function will insert a copy of the given value before
888  * the specified location. Note that this kind of operation
889  * could be expensive for a %vector and if it is frequently
890  * used the user should consider using std::list.
891  */
892  iterator
893  insert(iterator __position, const value_type& __x);
894 
895 #ifdef __GXX_EXPERIMENTAL_CXX0X__
896  /**
897  * @brief Inserts given rvalue into %vector before specified iterator.
898  * @param position An iterator into the %vector.
899  * @param x Data to be inserted.
900  * @return An iterator that points to the inserted data.
901  *
902  * This function will insert a copy of the given rvalue before
903  * the specified location. Note that this kind of operation
904  * could be expensive for a %vector and if it is frequently
905  * used the user should consider using std::list.
906  */
907  iterator
908  insert(iterator __position, value_type&& __x)
909  { return emplace(__position, std::move(__x)); }
910 
911  /**
912  * @brief Inserts an initializer_list into the %vector.
913  * @param position An iterator into the %vector.
914  * @param l An initializer_list.
915  *
916  * This function will insert copies of the data in the
917  * initializer_list @a l into the %vector before the location
918  * specified by @a position.
919  *
920  * Note that this kind of operation could be expensive for a
921  * %vector and if it is frequently used the user should
922  * consider using std::list.
923  */
924  void
925  insert(iterator __position, initializer_list<value_type> __l)
926  { this->insert(__position, __l.begin(), __l.end()); }
927 #endif
928 
929  /**
930  * @brief Inserts a number of copies of given data into the %vector.
931  * @param position An iterator into the %vector.
932  * @param n Number of elements to be inserted.
933  * @param x Data to be inserted.
934  *
935  * This function will insert a specified number of copies of
936  * the given data before the location specified by @a position.
937  *
938  * Note that this kind of operation could be expensive for a
939  * %vector and if it is frequently used the user should
940  * consider using std::list.
941  */
942  void
943  insert(iterator __position, size_type __n, const value_type& __x)
944  { _M_fill_insert(__position, __n, __x); }
945 
946  /**
947  * @brief Inserts a range into the %vector.
948  * @param position An iterator into the %vector.
949  * @param first An input iterator.
950  * @param last An input iterator.
951  *
952  * This function will insert copies of the data in the range
953  * [first,last) into the %vector before the location specified
954  * by @a pos.
955  *
956  * Note that this kind of operation could be expensive for a
957  * %vector and if it is frequently used the user should
958  * consider using std::list.
959  */
960  template<typename _InputIterator>
961  void
962  insert(iterator __position, _InputIterator __first,
963  _InputIterator __last)
964  {
965  // Check whether it's an integral type. If so, it's not an iterator.
966  typedef typename std::__is_integer<_InputIterator>::__type _Integral;
967  _M_insert_dispatch(__position, __first, __last, _Integral());
968  }
969 
970  /**
971  * @brief Remove element at given position.
972  * @param position Iterator pointing to element to be erased.
973  * @return An iterator pointing to the next element (or end()).
974  *
975  * This function will erase the element at the given position and thus
976  * shorten the %vector by one.
977  *
978  * Note This operation could be expensive and if it is
979  * frequently used the user should consider using std::list.
980  * The user is also cautioned that this function only erases
981  * the element, and that if the element is itself a pointer,
982  * the pointed-to memory is not touched in any way. Managing
983  * the pointer is the user's responsibility.
984  */
985  iterator
986  erase(iterator __position);
987 
988  /**
989  * @brief Remove a range of elements.
990  * @param first Iterator pointing to the first element to be erased.
991  * @param last Iterator pointing to one past the last element to be
992  * erased.
993  * @return An iterator pointing to the element pointed to by @a last
994  * prior to erasing (or end()).
995  *
996  * This function will erase the elements in the range [first,last) and
997  * shorten the %vector accordingly.
998  *
999  * Note This operation could be expensive and if it is
1000  * frequently used the user should consider using std::list.
1001  * The user is also cautioned that this function only erases
1002  * the elements, and that if the elements themselves are
1003  * pointers, the pointed-to memory is not touched in any way.
1004  * Managing the pointer is the user's responsibility.
1005  */
1006  iterator
1007  erase(iterator __first, iterator __last);
1008 
1009  /**
1010  * @brief Swaps data with another %vector.
1011  * @param x A %vector of the same element and allocator types.
1012  *
1013  * This exchanges the elements between two vectors in constant time.
1014  * (Three pointers, so it should be quite fast.)
1015  * Note that the global std::swap() function is specialized such that
1016  * std::swap(v1,v2) will feed to this function.
1017  */
1018  void
1019  swap(vector& __x)
1020  {
1021  std::swap(this->_M_impl._M_start, __x._M_impl._M_start);
1022  std::swap(this->_M_impl._M_finish, __x._M_impl._M_finish);
1023  std::swap(this->_M_impl._M_end_of_storage,
1024  __x._M_impl._M_end_of_storage);
1025 
1026  // _GLIBCXX_RESOLVE_LIB_DEFECTS
1027  // 431. Swapping containers with unequal allocators.
1028  std::__alloc_swap<_Tp_alloc_type>::_S_do_it(_M_get_Tp_allocator(),
1029  __x._M_get_Tp_allocator());
1030  }
1031 
1032  /**
1033  * Erases all the elements. Note that this function only erases the
1034  * elements, and that if the elements themselves are pointers, the
1035  * pointed-to memory is not touched in any way. Managing the pointer is
1036  * the user's responsibility.
1037  */
1038  void
1040  { _M_erase_at_end(this->_M_impl._M_start); }
1041 
1042  protected:
1043  /**
1044  * Memory expansion handler. Uses the member allocation function to
1045  * obtain @a n bytes of memory, and then copies [first,last) into it.
1046  */
1047  template<typename _ForwardIterator>
1048  pointer
1049  _M_allocate_and_copy(size_type __n,
1050  _ForwardIterator __first, _ForwardIterator __last)
1051  {
1052  pointer __result = this->_M_allocate(__n);
1053  __try
1054  {
1055  std::__uninitialized_copy_a(__first, __last, __result,
1056  _M_get_Tp_allocator());
1057  return __result;
1058  }
1059  __catch(...)
1060  {
1061  _M_deallocate(__result, __n);
1062  __throw_exception_again;
1063  }
1064  }
1065 
1066 
1067  // Internal constructor functions follow.
1068 
1069  // Called by the range constructor to implement [23.1.1]/9
1070 
1071  // _GLIBCXX_RESOLVE_LIB_DEFECTS
1072  // 438. Ambiguity in the "do the right thing" clause
1073  template<typename _Integer>
1074  void
1075  _M_initialize_dispatch(_Integer __n, _Integer __value, __true_type)
1076  {
1077  this->_M_impl._M_start = _M_allocate(static_cast<size_type>(__n));
1078  this->_M_impl._M_end_of_storage =
1079  this->_M_impl._M_start + static_cast<size_type>(__n);
1080  _M_fill_initialize(static_cast<size_type>(__n), __value);
1081  }
1082 
1083  // Called by the range constructor to implement [23.1.1]/9
1084  template<typename _InputIterator>
1085  void
1086  _M_initialize_dispatch(_InputIterator __first, _InputIterator __last,
1087  __false_type)
1088  {
1089  typedef typename std::iterator_traits<_InputIterator>::
1090  iterator_category _IterCategory;
1091  _M_range_initialize(__first, __last, _IterCategory());
1092  }
1093 
1094  // Called by the second initialize_dispatch above
1095  template<typename _InputIterator>
1096  void
1097  _M_range_initialize(_InputIterator __first,
1098  _InputIterator __last, std::input_iterator_tag)
1099  {
1100  for (; __first != __last; ++__first)
1101  push_back(*__first);
1102  }
1103 
1104  // Called by the second initialize_dispatch above
1105  template<typename _ForwardIterator>
1106  void
1107  _M_range_initialize(_ForwardIterator __first,
1108  _ForwardIterator __last, std::forward_iterator_tag)
1109  {
1110  const size_type __n = std::distance(__first, __last);
1111  this->_M_impl._M_start = this->_M_allocate(__n);
1112  this->_M_impl._M_end_of_storage = this->_M_impl._M_start + __n;
1113  this->_M_impl._M_finish =
1114  std::__uninitialized_copy_a(__first, __last,
1115  this->_M_impl._M_start,
1116  _M_get_Tp_allocator());
1117  }
1118 
1119  // Called by the first initialize_dispatch above and by the
1120  // vector(n,value,a) constructor.
1121  void
1122  _M_fill_initialize(size_type __n, const value_type& __value)
1123  {
1124  std::__uninitialized_fill_n_a(this->_M_impl._M_start, __n, __value,
1125  _M_get_Tp_allocator());
1126  this->_M_impl._M_finish = this->_M_impl._M_end_of_storage;
1127  }
1128 
1129 #ifdef __GXX_EXPERIMENTAL_CXX0X__
1130  // Called by the vector(n) constructor.
1131  void
1132  _M_default_initialize(size_type __n)
1133  {
1134  std::__uninitialized_default_n_a(this->_M_impl._M_start, __n,
1135  _M_get_Tp_allocator());
1136  this->_M_impl._M_finish = this->_M_impl._M_end_of_storage;
1137  }
1138 #endif
1139 
1140  // Internal assign functions follow. The *_aux functions do the actual
1141  // assignment work for the range versions.
1142 
1143  // Called by the range assign to implement [23.1.1]/9
1144 
1145  // _GLIBCXX_RESOLVE_LIB_DEFECTS
1146  // 438. Ambiguity in the "do the right thing" clause
1147  template<typename _Integer>
1148  void
1149  _M_assign_dispatch(_Integer __n, _Integer __val, __true_type)
1150  { _M_fill_assign(__n, __val); }
1151 
1152  // Called by the range assign to implement [23.1.1]/9
1153  template<typename _InputIterator>
1154  void
1155  _M_assign_dispatch(_InputIterator __first, _InputIterator __last,
1156  __false_type)
1157  {
1158  typedef typename std::iterator_traits<_InputIterator>::
1159  iterator_category _IterCategory;
1160  _M_assign_aux(__first, __last, _IterCategory());
1161  }
1162 
1163  // Called by the second assign_dispatch above
1164  template<typename _InputIterator>
1165  void
1166  _M_assign_aux(_InputIterator __first, _InputIterator __last,
1168 
1169  // Called by the second assign_dispatch above
1170  template<typename _ForwardIterator>
1171  void
1172  _M_assign_aux(_ForwardIterator __first, _ForwardIterator __last,
1174 
1175  // Called by assign(n,t), and the range assign when it turns out
1176  // to be the same thing.
1177  void
1178  _M_fill_assign(size_type __n, const value_type& __val);
1179 
1180 
1181  // Internal insert functions follow.
1182 
1183  // Called by the range insert to implement [23.1.1]/9
1184 
1185  // _GLIBCXX_RESOLVE_LIB_DEFECTS
1186  // 438. Ambiguity in the "do the right thing" clause
1187  template<typename _Integer>
1188  void
1189  _M_insert_dispatch(iterator __pos, _Integer __n, _Integer __val,
1190  __true_type)
1191  { _M_fill_insert(__pos, __n, __val); }
1192 
1193  // Called by the range insert to implement [23.1.1]/9
1194  template<typename _InputIterator>
1195  void
1196  _M_insert_dispatch(iterator __pos, _InputIterator __first,
1197  _InputIterator __last, __false_type)
1198  {
1199  typedef typename std::iterator_traits<_InputIterator>::
1200  iterator_category _IterCategory;
1201  _M_range_insert(__pos, __first, __last, _IterCategory());
1202  }
1203 
1204  // Called by the second insert_dispatch above
1205  template<typename _InputIterator>
1206  void
1207  _M_range_insert(iterator __pos, _InputIterator __first,
1208  _InputIterator __last, std::input_iterator_tag);
1209 
1210  // Called by the second insert_dispatch above
1211  template<typename _ForwardIterator>
1212  void
1213  _M_range_insert(iterator __pos, _ForwardIterator __first,
1214  _ForwardIterator __last, std::forward_iterator_tag);
1215 
1216  // Called by insert(p,n,x), and the range insert when it turns out to be
1217  // the same thing.
1218  void
1219  _M_fill_insert(iterator __pos, size_type __n, const value_type& __x);
1220 
1221 #ifdef __GXX_EXPERIMENTAL_CXX0X__
1222  // Called by resize(n).
1223  void
1224  _M_default_append(size_type __n);
1225 #endif
1226 
1227  // Called by insert(p,x)
1228 #ifndef __GXX_EXPERIMENTAL_CXX0X__
1229  void
1230  _M_insert_aux(iterator __position, const value_type& __x);
1231 #else
1232  template<typename... _Args>
1233  void
1234  _M_insert_aux(iterator __position, _Args&&... __args);
1235 #endif
1236 
1237  // Called by the latter.
1238  size_type
1239  _M_check_len(size_type __n, const char* __s) const
1240  {
1241  if (max_size() - size() < __n)
1242  __throw_length_error(__N(__s));
1243 
1244  const size_type __len = size() + std::max(size(), __n);
1245  return (__len < size() || __len > max_size()) ? max_size() : __len;
1246  }
1247 
1248  // Internal erase functions follow.
1249 
1250  // Called by erase(q1,q2), clear(), resize(), _M_fill_assign,
1251  // _M_assign_aux.
1252  void
1253  _M_erase_at_end(pointer __pos)
1254  {
1255  std::_Destroy(__pos, this->_M_impl._M_finish, _M_get_Tp_allocator());
1256  this->_M_impl._M_finish = __pos;
1257  }
1258  };
1259 
1260 
1261  /**
1262  * @brief Vector equality comparison.
1263  * @param x A %vector.
1264  * @param y A %vector of the same type as @a x.
1265  * @return True iff the size and elements of the vectors are equal.
1266  *
1267  * This is an equivalence relation. It is linear in the size of the
1268  * vectors. Vectors are considered equivalent if their sizes are equal,
1269  * and if corresponding elements compare equal.
1270  */
1271  template<typename _Tp, typename _Alloc>
1272  inline bool
1273  operator==(const vector<_Tp, _Alloc>& __x, const vector<_Tp, _Alloc>& __y)
1274  { return (__x.size() == __y.size()
1275  && std::equal(__x.begin(), __x.end(), __y.begin())); }
1276 
1277  /**
1278  * @brief Vector ordering relation.
1279  * @param x A %vector.
1280  * @param y A %vector of the same type as @a x.
1281  * @return True iff @a x is lexicographically less than @a y.
1282  *
1283  * This is a total ordering relation. It is linear in the size of the
1284  * vectors. The elements must be comparable with @c <.
1285  *
1286  * See std::lexicographical_compare() for how the determination is made.
1287  */
1288  template<typename _Tp, typename _Alloc>
1289  inline bool
1290  operator<(const vector<_Tp, _Alloc>& __x, const vector<_Tp, _Alloc>& __y)
1291  { return std::lexicographical_compare(__x.begin(), __x.end(),
1292  __y.begin(), __y.end()); }
1293 
1294  /// Based on operator==
1295  template<typename _Tp, typename _Alloc>
1296  inline bool
1297  operator!=(const vector<_Tp, _Alloc>& __x, const vector<_Tp, _Alloc>& __y)
1298  { return !(__x == __y); }
1299 
1300  /// Based on operator<
1301  template<typename _Tp, typename _Alloc>
1302  inline bool
1303  operator>(const vector<_Tp, _Alloc>& __x, const vector<_Tp, _Alloc>& __y)
1304  { return __y < __x; }
1305 
1306  /// Based on operator<
1307  template<typename _Tp, typename _Alloc>
1308  inline bool
1309  operator<=(const vector<_Tp, _Alloc>& __x, const vector<_Tp, _Alloc>& __y)
1310  { return !(__y < __x); }
1311 
1312  /// Based on operator<
1313  template<typename _Tp, typename _Alloc>
1314  inline bool
1315  operator>=(const vector<_Tp, _Alloc>& __x, const vector<_Tp, _Alloc>& __y)
1316  { return !(__x < __y); }
1317 
1318  /// See std::vector::swap().
1319  template<typename _Tp, typename _Alloc>
1320  inline void
1322  { __x.swap(__y); }
1323 
1324 _GLIBCXX_END_NAMESPACE_CONTAINER
1325 } // namespace std
1326 
1327 #endif /* _STL_VECTOR_H */