libstdc++
stl_vector.h
Go to the documentation of this file.
00001 // Vector implementation -*- C++ -*-
00002 
00003 // Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010,
00004 // 2011 Free Software Foundation, Inc.
00005 //
00006 // This file is part of the GNU ISO C++ Library.  This library is free
00007 // software; you can redistribute it and/or modify it under the
00008 // terms of the GNU General Public License as published by the
00009 // Free Software Foundation; either version 3, or (at your option)
00010 // any later version.
00011 
00012 // This library is distributed in the hope that it will be useful,
00013 // but WITHOUT ANY WARRANTY; without even the implied warranty of
00014 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
00015 // GNU General Public License for more details.
00016 
00017 // Under Section 7 of GPL version 3, you are granted additional
00018 // permissions described in the GCC Runtime Library Exception, version
00019 // 3.1, as published by the Free Software Foundation.
00020 
00021 // You should have received a copy of the GNU General Public License and
00022 // a copy of the GCC Runtime Library Exception along with this program;
00023 // see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
00024 // <http://www.gnu.org/licenses/>.
00025 
00026 /*
00027  *
00028  * Copyright (c) 1994
00029  * Hewlett-Packard Company
00030  *
00031  * Permission to use, copy, modify, distribute and sell this software
00032  * and its documentation for any purpose is hereby granted without fee,
00033  * provided that the above copyright notice appear in all copies and
00034  * that both that copyright notice and this permission notice appear
00035  * in supporting documentation.  Hewlett-Packard Company makes no
00036  * representations about the suitability of this software for any
00037  * purpose.  It is provided "as is" without express or implied warranty.
00038  *
00039  *
00040  * Copyright (c) 1996
00041  * Silicon Graphics Computer Systems, Inc.
00042  *
00043  * Permission to use, copy, modify, distribute and sell this software
00044  * and its documentation for any purpose is hereby granted without fee,
00045  * provided that the above copyright notice appear in all copies and
00046  * that both that copyright notice and this permission notice appear
00047  * in supporting documentation.  Silicon Graphics makes no
00048  * representations about the suitability of this  software for any
00049  * purpose.  It is provided "as is" without express or implied warranty.
00050  */
00051 
00052 /** @file bits/stl_vector.h
00053  *  This is an internal header file, included by other library headers.
00054  *  Do not attempt to use it directly. @headername{vector}
00055  */
00056 
00057 #ifndef _STL_VECTOR_H
00058 #define _STL_VECTOR_H 1
00059 
00060 #include <bits/stl_iterator_base_funcs.h>
00061 #include <bits/functexcept.h>
00062 #include <bits/concept_check.h>
00063 #include <initializer_list>
00064 
00065 namespace std _GLIBCXX_VISIBILITY(default)
00066 {
00067 _GLIBCXX_BEGIN_NAMESPACE_CONTAINER
00068 
00069   /// See bits/stl_deque.h's _Deque_base for an explanation.
00070   template<typename _Tp, typename _Alloc>
00071     struct _Vector_base
00072     {
00073       typedef typename _Alloc::template rebind<_Tp>::other _Tp_alloc_type;
00074 
00075       struct _Vector_impl 
00076       : public _Tp_alloc_type
00077       {
00078     typename _Tp_alloc_type::pointer _M_start;
00079     typename _Tp_alloc_type::pointer _M_finish;
00080     typename _Tp_alloc_type::pointer _M_end_of_storage;
00081 
00082     _Vector_impl()
00083     : _Tp_alloc_type(), _M_start(0), _M_finish(0), _M_end_of_storage(0)
00084     { }
00085 
00086     _Vector_impl(_Tp_alloc_type const& __a)
00087     : _Tp_alloc_type(__a), _M_start(0), _M_finish(0), _M_end_of_storage(0)
00088     { }
00089       };
00090       
00091     public:
00092       typedef _Alloc allocator_type;
00093 
00094       _Tp_alloc_type&
00095       _M_get_Tp_allocator()
00096       { return *static_cast<_Tp_alloc_type*>(&this->_M_impl); }
00097 
00098       const _Tp_alloc_type&
00099       _M_get_Tp_allocator() const
00100       { return *static_cast<const _Tp_alloc_type*>(&this->_M_impl); }
00101 
00102       allocator_type
00103       get_allocator() const
00104       { return allocator_type(_M_get_Tp_allocator()); }
00105 
00106       _Vector_base()
00107       : _M_impl() { }
00108 
00109       _Vector_base(const allocator_type& __a)
00110       : _M_impl(__a) { }
00111 
00112       _Vector_base(size_t __n)
00113       : _M_impl()
00114       {
00115     this->_M_impl._M_start = this->_M_allocate(__n);
00116     this->_M_impl._M_finish = this->_M_impl._M_start;
00117     this->_M_impl._M_end_of_storage = this->_M_impl._M_start + __n;
00118       }
00119 
00120       _Vector_base(size_t __n, const allocator_type& __a)
00121       : _M_impl(__a)
00122       {
00123     this->_M_impl._M_start = this->_M_allocate(__n);
00124     this->_M_impl._M_finish = this->_M_impl._M_start;
00125     this->_M_impl._M_end_of_storage = this->_M_impl._M_start + __n;
00126       }
00127 
00128 #ifdef __GXX_EXPERIMENTAL_CXX0X__
00129       _Vector_base(_Vector_base&& __x)
00130       : _M_impl(__x._M_get_Tp_allocator())
00131       {
00132     this->_M_impl._M_start = __x._M_impl._M_start;
00133     this->_M_impl._M_finish = __x._M_impl._M_finish;
00134     this->_M_impl._M_end_of_storage = __x._M_impl._M_end_of_storage;
00135     __x._M_impl._M_start = 0;
00136     __x._M_impl._M_finish = 0;
00137     __x._M_impl._M_end_of_storage = 0;
00138       }
00139 #endif
00140 
00141       ~_Vector_base()
00142       { _M_deallocate(this->_M_impl._M_start, this->_M_impl._M_end_of_storage
00143               - this->_M_impl._M_start); }
00144 
00145     public:
00146       _Vector_impl _M_impl;
00147 
00148       typename _Tp_alloc_type::pointer
00149       _M_allocate(size_t __n)
00150       { return __n != 0 ? _M_impl.allocate(__n) : 0; }
00151 
00152       void
00153       _M_deallocate(typename _Tp_alloc_type::pointer __p, size_t __n)
00154       {
00155     if (__p)
00156       _M_impl.deallocate(__p, __n);
00157       }
00158     };
00159 
00160 
00161   /**
00162    *  @brief A standard container which offers fixed time access to
00163    *  individual elements in any order.
00164    *
00165    *  @ingroup sequences
00166    *
00167    *  Meets the requirements of a <a href="tables.html#65">container</a>, a
00168    *  <a href="tables.html#66">reversible container</a>, and a
00169    *  <a href="tables.html#67">sequence</a>, including the
00170    *  <a href="tables.html#68">optional sequence requirements</a> with the
00171    *  %exception of @c push_front and @c pop_front.
00172    *
00173    *  In some terminology a %vector can be described as a dynamic
00174    *  C-style array, it offers fast and efficient access to individual
00175    *  elements in any order and saves the user from worrying about
00176    *  memory and size allocation.  Subscripting ( @c [] ) access is
00177    *  also provided as with C-style arrays.
00178   */
00179   template<typename _Tp, typename _Alloc = std::allocator<_Tp> >
00180     class vector : protected _Vector_base<_Tp, _Alloc>
00181     {
00182       // Concept requirements.
00183       typedef typename _Alloc::value_type                _Alloc_value_type;
00184       __glibcxx_class_requires(_Tp, _SGIAssignableConcept)
00185       __glibcxx_class_requires2(_Tp, _Alloc_value_type, _SameTypeConcept)
00186       
00187       typedef _Vector_base<_Tp, _Alloc>          _Base;
00188       typedef typename _Base::_Tp_alloc_type         _Tp_alloc_type;
00189 
00190     public:
00191       typedef _Tp                    value_type;
00192       typedef typename _Tp_alloc_type::pointer           pointer;
00193       typedef typename _Tp_alloc_type::const_pointer     const_pointer;
00194       typedef typename _Tp_alloc_type::reference         reference;
00195       typedef typename _Tp_alloc_type::const_reference   const_reference;
00196       typedef __gnu_cxx::__normal_iterator<pointer, vector> iterator;
00197       typedef __gnu_cxx::__normal_iterator<const_pointer, vector>
00198       const_iterator;
00199       typedef std::reverse_iterator<const_iterator>  const_reverse_iterator;
00200       typedef std::reverse_iterator<iterator>        reverse_iterator;
00201       typedef size_t                     size_type;
00202       typedef ptrdiff_t                  difference_type;
00203       typedef _Alloc                                 allocator_type;
00204 
00205     protected:
00206       using _Base::_M_allocate;
00207       using _Base::_M_deallocate;
00208       using _Base::_M_impl;
00209       using _Base::_M_get_Tp_allocator;
00210 
00211     public:
00212       // [23.2.4.1] construct/copy/destroy
00213       // (assign() and get_allocator() are also listed in this section)
00214       /**
00215        *  @brief  Default constructor creates no elements.
00216        */
00217       vector()
00218       : _Base() { }
00219 
00220       /**
00221        *  @brief  Creates a %vector with no elements.
00222        *  @param  a  An allocator object.
00223        */
00224       explicit
00225       vector(const allocator_type& __a)
00226       : _Base(__a) { }
00227 
00228 #ifdef __GXX_EXPERIMENTAL_CXX0X__
00229       /**
00230        *  @brief  Creates a %vector with default constructed elements.
00231        *  @param  n  The number of elements to initially create.
00232        *
00233        *  This constructor fills the %vector with @a n default
00234        *  constructed elements.
00235        */
00236       explicit
00237       vector(size_type __n)
00238       : _Base(__n)
00239       { _M_default_initialize(__n); }
00240 
00241       /**
00242        *  @brief  Creates a %vector with copies of an exemplar element.
00243        *  @param  n  The number of elements to initially create.
00244        *  @param  value  An element to copy.
00245        *  @param  a  An allocator.
00246        *
00247        *  This constructor fills the %vector with @a n copies of @a value.
00248        */
00249       vector(size_type __n, const value_type& __value,
00250          const allocator_type& __a = allocator_type())
00251       : _Base(__n, __a)
00252       { _M_fill_initialize(__n, __value); }
00253 #else
00254       /**
00255        *  @brief  Creates a %vector with copies of an exemplar element.
00256        *  @param  n  The number of elements to initially create.
00257        *  @param  value  An element to copy.
00258        *  @param  a  An allocator.
00259        *
00260        *  This constructor fills the %vector with @a n copies of @a value.
00261        */
00262       explicit
00263       vector(size_type __n, const value_type& __value = value_type(),
00264          const allocator_type& __a = allocator_type())
00265       : _Base(__n, __a)
00266       { _M_fill_initialize(__n, __value); }
00267 #endif
00268 
00269       /**
00270        *  @brief  %Vector copy constructor.
00271        *  @param  x  A %vector of identical element and allocator types.
00272        *
00273        *  The newly-created %vector uses a copy of the allocation
00274        *  object used by @a x.  All the elements of @a x are copied,
00275        *  but any extra memory in
00276        *  @a x (for fast expansion) will not be copied.
00277        */
00278       vector(const vector& __x)
00279       : _Base(__x.size(), __x._M_get_Tp_allocator())
00280       { this->_M_impl._M_finish =
00281       std::__uninitialized_copy_a(__x.begin(), __x.end(),
00282                       this->_M_impl._M_start,
00283                       _M_get_Tp_allocator());
00284       }
00285 
00286 #ifdef __GXX_EXPERIMENTAL_CXX0X__
00287       /**
00288        *  @brief  %Vector move constructor.
00289        *  @param  x  A %vector of identical element and allocator types.
00290        *
00291        *  The newly-created %vector contains the exact contents of @a x.
00292        *  The contents of @a x are a valid, but unspecified %vector.
00293        */
00294       vector(vector&& __x)
00295       : _Base(std::move(__x)) { }
00296 
00297       /**
00298        *  @brief  Builds a %vector from an initializer list.
00299        *  @param  l  An initializer_list.
00300        *  @param  a  An allocator.
00301        *
00302        *  Create a %vector consisting of copies of the elements in the
00303        *  initializer_list @a l.
00304        *
00305        *  This will call the element type's copy constructor N times
00306        *  (where N is @a l.size()) and do no memory reallocation.
00307        */
00308       vector(initializer_list<value_type> __l,
00309          const allocator_type& __a = allocator_type())
00310       : _Base(__a)
00311       {
00312     _M_range_initialize(__l.begin(), __l.end(),
00313                 random_access_iterator_tag());
00314       }
00315 #endif
00316 
00317       /**
00318        *  @brief  Builds a %vector from a range.
00319        *  @param  first  An input iterator.
00320        *  @param  last  An input iterator.
00321        *  @param  a  An allocator.
00322        *
00323        *  Create a %vector consisting of copies of the elements from
00324        *  [first,last).
00325        *
00326        *  If the iterators are forward, bidirectional, or
00327        *  random-access, then this will call the elements' copy
00328        *  constructor N times (where N is distance(first,last)) and do
00329        *  no memory reallocation.  But if only input iterators are
00330        *  used, then this will do at most 2N calls to the copy
00331        *  constructor, and logN memory reallocations.
00332        */
00333       template<typename _InputIterator>
00334         vector(_InputIterator __first, _InputIterator __last,
00335            const allocator_type& __a = allocator_type())
00336     : _Base(__a)
00337         {
00338       // Check whether it's an integral type.  If so, it's not an iterator.
00339       typedef typename std::__is_integer<_InputIterator>::__type _Integral;
00340       _M_initialize_dispatch(__first, __last, _Integral());
00341     }
00342 
00343       /**
00344        *  The dtor only erases the elements, and note that if the
00345        *  elements themselves are pointers, the pointed-to memory is
00346        *  not touched in any way.  Managing the pointer is the user's
00347        *  responsibility.
00348        */
00349       ~vector()
00350       { std::_Destroy(this->_M_impl._M_start, this->_M_impl._M_finish,
00351               _M_get_Tp_allocator()); }
00352 
00353       /**
00354        *  @brief  %Vector assignment operator.
00355        *  @param  x  A %vector of identical element and allocator types.
00356        *
00357        *  All the elements of @a x are copied, but any extra memory in
00358        *  @a x (for fast expansion) will not be copied.  Unlike the
00359        *  copy constructor, the allocator object is not copied.
00360        */
00361       vector&
00362       operator=(const vector& __x);
00363 
00364 #ifdef __GXX_EXPERIMENTAL_CXX0X__
00365       /**
00366        *  @brief  %Vector move assignment operator.
00367        *  @param  x  A %vector of identical element and allocator types.
00368        *
00369        *  The contents of @a x are moved into this %vector (without copying).
00370        *  @a x is a valid, but unspecified %vector.
00371        */
00372       vector&
00373       operator=(vector&& __x)
00374       {
00375     // NB: DR 1204.
00376     // NB: DR 675.
00377     this->clear();
00378     this->swap(__x);
00379     return *this;
00380       }
00381 
00382       /**
00383        *  @brief  %Vector list assignment operator.
00384        *  @param  l  An initializer_list.
00385        *
00386        *  This function fills a %vector with copies of the elements in the
00387        *  initializer list @a l.
00388        *
00389        *  Note that the assignment completely changes the %vector and
00390        *  that the resulting %vector's size is the same as the number
00391        *  of elements assigned.  Old data may be lost.
00392        */
00393       vector&
00394       operator=(initializer_list<value_type> __l)
00395       {
00396     this->assign(__l.begin(), __l.end());
00397     return *this;
00398       }
00399 #endif
00400 
00401       /**
00402        *  @brief  Assigns a given value to a %vector.
00403        *  @param  n  Number of elements to be assigned.
00404        *  @param  val  Value to be assigned.
00405        *
00406        *  This function fills a %vector with @a n copies of the given
00407        *  value.  Note that the assignment completely changes the
00408        *  %vector and that the resulting %vector's size is the same as
00409        *  the number of elements assigned.  Old data may be lost.
00410        */
00411       void
00412       assign(size_type __n, const value_type& __val)
00413       { _M_fill_assign(__n, __val); }
00414 
00415       /**
00416        *  @brief  Assigns a range to a %vector.
00417        *  @param  first  An input iterator.
00418        *  @param  last   An input iterator.
00419        *
00420        *  This function fills a %vector with copies of the elements in the
00421        *  range [first,last).
00422        *
00423        *  Note that the assignment completely changes the %vector and
00424        *  that the resulting %vector's size is the same as the number
00425        *  of elements assigned.  Old data may be lost.
00426        */
00427       template<typename _InputIterator>
00428         void
00429         assign(_InputIterator __first, _InputIterator __last)
00430         {
00431       // Check whether it's an integral type.  If so, it's not an iterator.
00432       typedef typename std::__is_integer<_InputIterator>::__type _Integral;
00433       _M_assign_dispatch(__first, __last, _Integral());
00434     }
00435 
00436 #ifdef __GXX_EXPERIMENTAL_CXX0X__
00437       /**
00438        *  @brief  Assigns an initializer list to a %vector.
00439        *  @param  l  An initializer_list.
00440        *
00441        *  This function fills a %vector with copies of the elements in the
00442        *  initializer list @a l.
00443        *
00444        *  Note that the assignment completely changes the %vector and
00445        *  that the resulting %vector's size is the same as the number
00446        *  of elements assigned.  Old data may be lost.
00447        */
00448       void
00449       assign(initializer_list<value_type> __l)
00450       { this->assign(__l.begin(), __l.end()); }
00451 #endif
00452 
00453       /// Get a copy of the memory allocation object.
00454       using _Base::get_allocator;
00455 
00456       // iterators
00457       /**
00458        *  Returns a read/write iterator that points to the first
00459        *  element in the %vector.  Iteration is done in ordinary
00460        *  element order.
00461        */
00462       iterator
00463       begin()
00464       { return iterator(this->_M_impl._M_start); }
00465 
00466       /**
00467        *  Returns a read-only (constant) iterator that points to the
00468        *  first element in the %vector.  Iteration is done in ordinary
00469        *  element order.
00470        */
00471       const_iterator
00472       begin() const
00473       { return const_iterator(this->_M_impl._M_start); }
00474 
00475       /**
00476        *  Returns a read/write iterator that points one past the last
00477        *  element in the %vector.  Iteration is done in ordinary
00478        *  element order.
00479        */
00480       iterator
00481       end()
00482       { return iterator(this->_M_impl._M_finish); }
00483 
00484       /**
00485        *  Returns a read-only (constant) iterator that points one past
00486        *  the last element in the %vector.  Iteration is done in
00487        *  ordinary element order.
00488        */
00489       const_iterator
00490       end() const
00491       { return const_iterator(this->_M_impl._M_finish); }
00492 
00493       /**
00494        *  Returns a read/write reverse iterator that points to the
00495        *  last element in the %vector.  Iteration is done in reverse
00496        *  element order.
00497        */
00498       reverse_iterator
00499       rbegin()
00500       { return reverse_iterator(end()); }
00501 
00502       /**
00503        *  Returns a read-only (constant) reverse iterator that points
00504        *  to the last element in the %vector.  Iteration is done in
00505        *  reverse element order.
00506        */
00507       const_reverse_iterator
00508       rbegin() const
00509       { return const_reverse_iterator(end()); }
00510 
00511       /**
00512        *  Returns a read/write reverse iterator that points to one
00513        *  before the first element in the %vector.  Iteration is done
00514        *  in reverse element order.
00515        */
00516       reverse_iterator
00517       rend()
00518       { return reverse_iterator(begin()); }
00519 
00520       /**
00521        *  Returns a read-only (constant) reverse iterator that points
00522        *  to one before the first element in the %vector.  Iteration
00523        *  is done in reverse element order.
00524        */
00525       const_reverse_iterator
00526       rend() const
00527       { return const_reverse_iterator(begin()); }
00528 
00529 #ifdef __GXX_EXPERIMENTAL_CXX0X__
00530       /**
00531        *  Returns a read-only (constant) iterator that points to the
00532        *  first element in the %vector.  Iteration is done in ordinary
00533        *  element order.
00534        */
00535       const_iterator
00536       cbegin() const
00537       { return const_iterator(this->_M_impl._M_start); }
00538 
00539       /**
00540        *  Returns a read-only (constant) iterator that points one past
00541        *  the last element in the %vector.  Iteration is done in
00542        *  ordinary element order.
00543        */
00544       const_iterator
00545       cend() const
00546       { return const_iterator(this->_M_impl._M_finish); }
00547 
00548       /**
00549        *  Returns a read-only (constant) reverse iterator that points
00550        *  to the last element in the %vector.  Iteration is done in
00551        *  reverse element order.
00552        */
00553       const_reverse_iterator
00554       crbegin() const
00555       { return const_reverse_iterator(end()); }
00556 
00557       /**
00558        *  Returns a read-only (constant) reverse iterator that points
00559        *  to one before the first element in the %vector.  Iteration
00560        *  is done in reverse element order.
00561        */
00562       const_reverse_iterator
00563       crend() const
00564       { return const_reverse_iterator(begin()); }
00565 #endif
00566 
00567       // [23.2.4.2] capacity
00568       /**  Returns the number of elements in the %vector.  */
00569       size_type
00570       size() const
00571       { return size_type(this->_M_impl._M_finish - this->_M_impl._M_start); }
00572 
00573       /**  Returns the size() of the largest possible %vector.  */
00574       size_type
00575       max_size() const
00576       { return _M_get_Tp_allocator().max_size(); }
00577 
00578 #ifdef __GXX_EXPERIMENTAL_CXX0X__
00579       /**
00580        *  @brief  Resizes the %vector to the specified number of elements.
00581        *  @param  new_size  Number of elements the %vector should contain.
00582        *
00583        *  This function will %resize the %vector to the specified
00584        *  number of elements.  If the number is smaller than the
00585        *  %vector's current size the %vector is truncated, otherwise
00586        *  default constructed elements are appended.
00587        */
00588       void
00589       resize(size_type __new_size)
00590       {
00591     if (__new_size > size())
00592       _M_default_append(__new_size - size());
00593     else if (__new_size < size())
00594       _M_erase_at_end(this->_M_impl._M_start + __new_size);
00595       }
00596 
00597       /**
00598        *  @brief  Resizes the %vector to the specified number of elements.
00599        *  @param  new_size  Number of elements the %vector should contain.
00600        *  @param  x  Data with which new elements should be populated.
00601        *
00602        *  This function will %resize the %vector to the specified
00603        *  number of elements.  If the number is smaller than the
00604        *  %vector's current size the %vector is truncated, otherwise
00605        *  the %vector is extended and new elements are populated with
00606        *  given data.
00607        */
00608       void
00609       resize(size_type __new_size, const value_type& __x)
00610       {
00611     if (__new_size > size())
00612       insert(end(), __new_size - size(), __x);
00613     else if (__new_size < size())
00614       _M_erase_at_end(this->_M_impl._M_start + __new_size);
00615       }
00616 #else
00617       /**
00618        *  @brief  Resizes the %vector to the specified number of elements.
00619        *  @param  new_size  Number of elements the %vector should contain.
00620        *  @param  x  Data with which new elements should be populated.
00621        *
00622        *  This function will %resize the %vector to the specified
00623        *  number of elements.  If the number is smaller than the
00624        *  %vector's current size the %vector is truncated, otherwise
00625        *  the %vector is extended and new elements are populated with
00626        *  given data.
00627        */
00628       void
00629       resize(size_type __new_size, value_type __x = value_type())
00630       {
00631     if (__new_size > size())
00632       insert(end(), __new_size - size(), __x);
00633     else if (__new_size < size())
00634       _M_erase_at_end(this->_M_impl._M_start + __new_size);
00635       }
00636 #endif
00637 
00638 #ifdef __GXX_EXPERIMENTAL_CXX0X__
00639       /**  A non-binding request to reduce capacity() to size().  */
00640       void
00641       shrink_to_fit()
00642       { std::__shrink_to_fit<vector>::_S_do_it(*this); }
00643 #endif
00644 
00645       /**
00646        *  Returns the total number of elements that the %vector can
00647        *  hold before needing to allocate more memory.
00648        */
00649       size_type
00650       capacity() const
00651       { return size_type(this->_M_impl._M_end_of_storage
00652              - this->_M_impl._M_start); }
00653 
00654       /**
00655        *  Returns true if the %vector is empty.  (Thus begin() would
00656        *  equal end().)
00657        */
00658       bool
00659       empty() const
00660       { return begin() == end(); }
00661 
00662       /**
00663        *  @brief  Attempt to preallocate enough memory for specified number of
00664        *          elements.
00665        *  @param  n  Number of elements required.
00666        *  @throw  std::length_error  If @a n exceeds @c max_size().
00667        *
00668        *  This function attempts to reserve enough memory for the
00669        *  %vector to hold the specified number of elements.  If the
00670        *  number requested is more than max_size(), length_error is
00671        *  thrown.
00672        *
00673        *  The advantage of this function is that if optimal code is a
00674        *  necessity and the user can determine the number of elements
00675        *  that will be required, the user can reserve the memory in
00676        *  %advance, and thus prevent a possible reallocation of memory
00677        *  and copying of %vector data.
00678        */
00679       void
00680       reserve(size_type __n);
00681 
00682       // element access
00683       /**
00684        *  @brief  Subscript access to the data contained in the %vector.
00685        *  @param n The index of the element for which data should be
00686        *  accessed.
00687        *  @return  Read/write reference to data.
00688        *
00689        *  This operator allows for easy, array-style, data access.
00690        *  Note that data access with this operator is unchecked and
00691        *  out_of_range lookups are not defined. (For checked lookups
00692        *  see at().)
00693        */
00694       reference
00695       operator[](size_type __n)
00696       { return *(this->_M_impl._M_start + __n); }
00697 
00698       /**
00699        *  @brief  Subscript access to the data contained in the %vector.
00700        *  @param n The index of the element for which data should be
00701        *  accessed.
00702        *  @return  Read-only (constant) reference to data.
00703        *
00704        *  This operator allows for easy, array-style, data access.
00705        *  Note that data access with this operator is unchecked and
00706        *  out_of_range lookups are not defined. (For checked lookups
00707        *  see at().)
00708        */
00709       const_reference
00710       operator[](size_type __n) const
00711       { return *(this->_M_impl._M_start + __n); }
00712 
00713     protected:
00714       /// Safety check used only from at().
00715       void
00716       _M_range_check(size_type __n) const
00717       {
00718     if (__n >= this->size())
00719       __throw_out_of_range(__N("vector::_M_range_check"));
00720       }
00721 
00722     public:
00723       /**
00724        *  @brief  Provides access to the data contained in the %vector.
00725        *  @param n The index of the element for which data should be
00726        *  accessed.
00727        *  @return  Read/write reference to data.
00728        *  @throw  std::out_of_range  If @a n is an invalid index.
00729        *
00730        *  This function provides for safer data access.  The parameter
00731        *  is first checked that it is in the range of the vector.  The
00732        *  function throws out_of_range if the check fails.
00733        */
00734       reference
00735       at(size_type __n)
00736       {
00737     _M_range_check(__n);
00738     return (*this)[__n]; 
00739       }
00740 
00741       /**
00742        *  @brief  Provides access to the data contained in the %vector.
00743        *  @param n The index of the element for which data should be
00744        *  accessed.
00745        *  @return  Read-only (constant) reference to data.
00746        *  @throw  std::out_of_range  If @a n is an invalid index.
00747        *
00748        *  This function provides for safer data access.  The parameter
00749        *  is first checked that it is in the range of the vector.  The
00750        *  function throws out_of_range if the check fails.
00751        */
00752       const_reference
00753       at(size_type __n) const
00754       {
00755     _M_range_check(__n);
00756     return (*this)[__n];
00757       }
00758 
00759       /**
00760        *  Returns a read/write reference to the data at the first
00761        *  element of the %vector.
00762        */
00763       reference
00764       front()
00765       { return *begin(); }
00766 
00767       /**
00768        *  Returns a read-only (constant) reference to the data at the first
00769        *  element of the %vector.
00770        */
00771       const_reference
00772       front() const
00773       { return *begin(); }
00774 
00775       /**
00776        *  Returns a read/write reference to the data at the last
00777        *  element of the %vector.
00778        */
00779       reference
00780       back()
00781       { return *(end() - 1); }
00782       
00783       /**
00784        *  Returns a read-only (constant) reference to the data at the
00785        *  last element of the %vector.
00786        */
00787       const_reference
00788       back() const
00789       { return *(end() - 1); }
00790 
00791       // _GLIBCXX_RESOLVE_LIB_DEFECTS
00792       // DR 464. Suggestion for new member functions in standard containers.
00793       // data access
00794       /**
00795        *   Returns a pointer such that [data(), data() + size()) is a valid
00796        *   range.  For a non-empty %vector, data() == &front().
00797        */
00798 #ifdef __GXX_EXPERIMENTAL_CXX0X__
00799       _Tp*
00800 #else
00801       pointer
00802 #endif
00803       data()
00804       { return std::__addressof(front()); }
00805 
00806 #ifdef __GXX_EXPERIMENTAL_CXX0X__
00807       const _Tp*
00808 #else
00809       const_pointer
00810 #endif
00811       data() const
00812       { return std::__addressof(front()); }
00813 
00814       // [23.2.4.3] modifiers
00815       /**
00816        *  @brief  Add data to the end of the %vector.
00817        *  @param  x  Data to be added.
00818        *
00819        *  This is a typical stack operation.  The function creates an
00820        *  element at the end of the %vector and assigns the given data
00821        *  to it.  Due to the nature of a %vector this operation can be
00822        *  done in constant time if the %vector has preallocated space
00823        *  available.
00824        */
00825       void
00826       push_back(const value_type& __x)
00827       {
00828     if (this->_M_impl._M_finish != this->_M_impl._M_end_of_storage)
00829       {
00830         this->_M_impl.construct(this->_M_impl._M_finish, __x);
00831         ++this->_M_impl._M_finish;
00832       }
00833     else
00834       _M_insert_aux(end(), __x);
00835       }
00836 
00837 #ifdef __GXX_EXPERIMENTAL_CXX0X__
00838       void
00839       push_back(value_type&& __x)
00840       { emplace_back(std::move(__x)); }
00841 
00842       template<typename... _Args>
00843         void
00844         emplace_back(_Args&&... __args);
00845 #endif
00846 
00847       /**
00848        *  @brief  Removes last element.
00849        *
00850        *  This is a typical stack operation. It shrinks the %vector by one.
00851        *
00852        *  Note that no data is returned, and if the last element's
00853        *  data is needed, it should be retrieved before pop_back() is
00854        *  called.
00855        */
00856       void
00857       pop_back()
00858       {
00859     --this->_M_impl._M_finish;
00860     this->_M_impl.destroy(this->_M_impl._M_finish);
00861       }
00862 
00863 #ifdef __GXX_EXPERIMENTAL_CXX0X__
00864       /**
00865        *  @brief  Inserts an object in %vector before specified iterator.
00866        *  @param  position  An iterator into the %vector.
00867        *  @param  args  Arguments.
00868        *  @return  An iterator that points to the inserted data.
00869        *
00870        *  This function will insert an object of type T constructed
00871        *  with T(std::forward<Args>(args)...) before the specified location.
00872        *  Note that this kind of operation could be expensive for a %vector
00873        *  and if it is frequently used the user should consider using
00874        *  std::list.
00875        */
00876       template<typename... _Args>
00877         iterator
00878         emplace(iterator __position, _Args&&... __args);
00879 #endif
00880 
00881       /**
00882        *  @brief  Inserts given value into %vector before specified iterator.
00883        *  @param  position  An iterator into the %vector.
00884        *  @param  x  Data to be inserted.
00885        *  @return  An iterator that points to the inserted data.
00886        *
00887        *  This function will insert a copy of the given value before
00888        *  the specified location.  Note that this kind of operation
00889        *  could be expensive for a %vector and if it is frequently
00890        *  used the user should consider using std::list.
00891        */
00892       iterator
00893       insert(iterator __position, const value_type& __x);
00894 
00895 #ifdef __GXX_EXPERIMENTAL_CXX0X__
00896       /**
00897        *  @brief  Inserts given rvalue into %vector before specified iterator.
00898        *  @param  position  An iterator into the %vector.
00899        *  @param  x  Data to be inserted.
00900        *  @return  An iterator that points to the inserted data.
00901        *
00902        *  This function will insert a copy of the given rvalue before
00903        *  the specified location.  Note that this kind of operation
00904        *  could be expensive for a %vector and if it is frequently
00905        *  used the user should consider using std::list.
00906        */
00907       iterator
00908       insert(iterator __position, value_type&& __x)
00909       { return emplace(__position, std::move(__x)); }
00910 
00911       /**
00912        *  @brief  Inserts an initializer_list into the %vector.
00913        *  @param  position  An iterator into the %vector.
00914        *  @param  l  An initializer_list.
00915        *
00916        *  This function will insert copies of the data in the 
00917        *  initializer_list @a l into the %vector before the location
00918        *  specified by @a position.
00919        *
00920        *  Note that this kind of operation could be expensive for a
00921        *  %vector and if it is frequently used the user should
00922        *  consider using std::list.
00923        */
00924       void
00925       insert(iterator __position, initializer_list<value_type> __l)
00926       { this->insert(__position, __l.begin(), __l.end()); }
00927 #endif
00928 
00929       /**
00930        *  @brief  Inserts a number of copies of given data into the %vector.
00931        *  @param  position  An iterator into the %vector.
00932        *  @param  n  Number of elements to be inserted.
00933        *  @param  x  Data to be inserted.
00934        *
00935        *  This function will insert a specified number of copies of
00936        *  the given data before the location specified by @a position.
00937        *
00938        *  Note that this kind of operation could be expensive for a
00939        *  %vector and if it is frequently used the user should
00940        *  consider using std::list.
00941        */
00942       void
00943       insert(iterator __position, size_type __n, const value_type& __x)
00944       { _M_fill_insert(__position, __n, __x); }
00945 
00946       /**
00947        *  @brief  Inserts a range into the %vector.
00948        *  @param  position  An iterator into the %vector.
00949        *  @param  first  An input iterator.
00950        *  @param  last   An input iterator.
00951        *
00952        *  This function will insert copies of the data in the range
00953        *  [first,last) into the %vector before the location specified
00954        *  by @a pos.
00955        *
00956        *  Note that this kind of operation could be expensive for a
00957        *  %vector and if it is frequently used the user should
00958        *  consider using std::list.
00959        */
00960       template<typename _InputIterator>
00961         void
00962         insert(iterator __position, _InputIterator __first,
00963            _InputIterator __last)
00964         {
00965       // Check whether it's an integral type.  If so, it's not an iterator.
00966       typedef typename std::__is_integer<_InputIterator>::__type _Integral;
00967       _M_insert_dispatch(__position, __first, __last, _Integral());
00968     }
00969 
00970       /**
00971        *  @brief  Remove element at given position.
00972        *  @param  position  Iterator pointing to element to be erased.
00973        *  @return  An iterator pointing to the next element (or end()).
00974        *
00975        *  This function will erase the element at the given position and thus
00976        *  shorten the %vector by one.
00977        *
00978        *  Note This operation could be expensive and if it is
00979        *  frequently used the user should consider using std::list.
00980        *  The user is also cautioned that this function only erases
00981        *  the element, and that if the element is itself a pointer,
00982        *  the pointed-to memory is not touched in any way.  Managing
00983        *  the pointer is the user's responsibility.
00984        */
00985       iterator
00986       erase(iterator __position);
00987 
00988       /**
00989        *  @brief  Remove a range of elements.
00990        *  @param  first  Iterator pointing to the first element to be erased.
00991        *  @param  last  Iterator pointing to one past the last element to be
00992        *                erased.
00993        *  @return  An iterator pointing to the element pointed to by @a last
00994        *           prior to erasing (or end()).
00995        *
00996        *  This function will erase the elements in the range [first,last) and
00997        *  shorten the %vector accordingly.
00998        *
00999        *  Note This operation could be expensive and if it is
01000        *  frequently used the user should consider using std::list.
01001        *  The user is also cautioned that this function only erases
01002        *  the elements, and that if the elements themselves are
01003        *  pointers, the pointed-to memory is not touched in any way.
01004        *  Managing the pointer is the user's responsibility.
01005        */
01006       iterator
01007       erase(iterator __first, iterator __last);
01008 
01009       /**
01010        *  @brief  Swaps data with another %vector.
01011        *  @param  x  A %vector of the same element and allocator types.
01012        *
01013        *  This exchanges the elements between two vectors in constant time.
01014        *  (Three pointers, so it should be quite fast.)
01015        *  Note that the global std::swap() function is specialized such that
01016        *  std::swap(v1,v2) will feed to this function.
01017        */
01018       void
01019       swap(vector& __x)
01020       {
01021     std::swap(this->_M_impl._M_start, __x._M_impl._M_start);
01022     std::swap(this->_M_impl._M_finish, __x._M_impl._M_finish);
01023     std::swap(this->_M_impl._M_end_of_storage,
01024           __x._M_impl._M_end_of_storage);
01025 
01026     // _GLIBCXX_RESOLVE_LIB_DEFECTS
01027     // 431. Swapping containers with unequal allocators.
01028     std::__alloc_swap<_Tp_alloc_type>::_S_do_it(_M_get_Tp_allocator(),
01029                             __x._M_get_Tp_allocator());
01030       }
01031 
01032       /**
01033        *  Erases all the elements.  Note that this function only erases the
01034        *  elements, and that if the elements themselves are pointers, the
01035        *  pointed-to memory is not touched in any way.  Managing the pointer is
01036        *  the user's responsibility.
01037        */
01038       void
01039       clear()
01040       { _M_erase_at_end(this->_M_impl._M_start); }
01041 
01042     protected:
01043       /**
01044        *  Memory expansion handler.  Uses the member allocation function to
01045        *  obtain @a n bytes of memory, and then copies [first,last) into it.
01046        */
01047       template<typename _ForwardIterator>
01048         pointer
01049         _M_allocate_and_copy(size_type __n,
01050                  _ForwardIterator __first, _ForwardIterator __last)
01051         {
01052       pointer __result = this->_M_allocate(__n);
01053       __try
01054         {
01055           std::__uninitialized_copy_a(__first, __last, __result,
01056                       _M_get_Tp_allocator());
01057           return __result;
01058         }
01059       __catch(...)
01060         {
01061           _M_deallocate(__result, __n);
01062           __throw_exception_again;
01063         }
01064     }
01065 
01066 
01067       // Internal constructor functions follow.
01068 
01069       // Called by the range constructor to implement [23.1.1]/9
01070 
01071       // _GLIBCXX_RESOLVE_LIB_DEFECTS
01072       // 438. Ambiguity in the "do the right thing" clause
01073       template<typename _Integer>
01074         void
01075         _M_initialize_dispatch(_Integer __n, _Integer __value, __true_type)
01076         {
01077       this->_M_impl._M_start = _M_allocate(static_cast<size_type>(__n));
01078       this->_M_impl._M_end_of_storage =
01079         this->_M_impl._M_start + static_cast<size_type>(__n);
01080       _M_fill_initialize(static_cast<size_type>(__n), __value);
01081     }
01082 
01083       // Called by the range constructor to implement [23.1.1]/9
01084       template<typename _InputIterator>
01085         void
01086         _M_initialize_dispatch(_InputIterator __first, _InputIterator __last,
01087                    __false_type)
01088         {
01089       typedef typename std::iterator_traits<_InputIterator>::
01090         iterator_category _IterCategory;
01091       _M_range_initialize(__first, __last, _IterCategory());
01092     }
01093 
01094       // Called by the second initialize_dispatch above
01095       template<typename _InputIterator>
01096         void
01097         _M_range_initialize(_InputIterator __first,
01098                 _InputIterator __last, std::input_iterator_tag)
01099         {
01100       for (; __first != __last; ++__first)
01101         push_back(*__first);
01102     }
01103 
01104       // Called by the second initialize_dispatch above
01105       template<typename _ForwardIterator>
01106         void
01107         _M_range_initialize(_ForwardIterator __first,
01108                 _ForwardIterator __last, std::forward_iterator_tag)
01109         {
01110       const size_type __n = std::distance(__first, __last);
01111       this->_M_impl._M_start = this->_M_allocate(__n);
01112       this->_M_impl._M_end_of_storage = this->_M_impl._M_start + __n;
01113       this->_M_impl._M_finish =
01114         std::__uninitialized_copy_a(__first, __last,
01115                     this->_M_impl._M_start,
01116                     _M_get_Tp_allocator());
01117     }
01118 
01119       // Called by the first initialize_dispatch above and by the
01120       // vector(n,value,a) constructor.
01121       void
01122       _M_fill_initialize(size_type __n, const value_type& __value)
01123       {
01124     std::__uninitialized_fill_n_a(this->_M_impl._M_start, __n, __value, 
01125                       _M_get_Tp_allocator());
01126     this->_M_impl._M_finish = this->_M_impl._M_end_of_storage;
01127       }
01128 
01129 #ifdef __GXX_EXPERIMENTAL_CXX0X__
01130       // Called by the vector(n) constructor.
01131       void
01132       _M_default_initialize(size_type __n)
01133       {
01134     std::__uninitialized_default_n_a(this->_M_impl._M_start, __n, 
01135                      _M_get_Tp_allocator());
01136     this->_M_impl._M_finish = this->_M_impl._M_end_of_storage;
01137       }
01138 #endif
01139 
01140       // Internal assign functions follow.  The *_aux functions do the actual
01141       // assignment work for the range versions.
01142 
01143       // Called by the range assign to implement [23.1.1]/9
01144 
01145       // _GLIBCXX_RESOLVE_LIB_DEFECTS
01146       // 438. Ambiguity in the "do the right thing" clause
01147       template<typename _Integer>
01148         void
01149         _M_assign_dispatch(_Integer __n, _Integer __val, __true_type)
01150         { _M_fill_assign(__n, __val); }
01151 
01152       // Called by the range assign to implement [23.1.1]/9
01153       template<typename _InputIterator>
01154         void
01155         _M_assign_dispatch(_InputIterator __first, _InputIterator __last,
01156                __false_type)
01157         {
01158       typedef typename std::iterator_traits<_InputIterator>::
01159         iterator_category _IterCategory;
01160       _M_assign_aux(__first, __last, _IterCategory());
01161     }
01162 
01163       // Called by the second assign_dispatch above
01164       template<typename _InputIterator>
01165         void
01166         _M_assign_aux(_InputIterator __first, _InputIterator __last,
01167               std::input_iterator_tag);
01168 
01169       // Called by the second assign_dispatch above
01170       template<typename _ForwardIterator>
01171         void
01172         _M_assign_aux(_ForwardIterator __first, _ForwardIterator __last,
01173               std::forward_iterator_tag);
01174 
01175       // Called by assign(n,t), and the range assign when it turns out
01176       // to be the same thing.
01177       void
01178       _M_fill_assign(size_type __n, const value_type& __val);
01179 
01180 
01181       // Internal insert functions follow.
01182 
01183       // Called by the range insert to implement [23.1.1]/9
01184 
01185       // _GLIBCXX_RESOLVE_LIB_DEFECTS
01186       // 438. Ambiguity in the "do the right thing" clause
01187       template<typename _Integer>
01188         void
01189         _M_insert_dispatch(iterator __pos, _Integer __n, _Integer __val,
01190                __true_type)
01191         { _M_fill_insert(__pos, __n, __val); }
01192 
01193       // Called by the range insert to implement [23.1.1]/9
01194       template<typename _InputIterator>
01195         void
01196         _M_insert_dispatch(iterator __pos, _InputIterator __first,
01197                _InputIterator __last, __false_type)
01198         {
01199       typedef typename std::iterator_traits<_InputIterator>::
01200         iterator_category _IterCategory;
01201       _M_range_insert(__pos, __first, __last, _IterCategory());
01202     }
01203 
01204       // Called by the second insert_dispatch above
01205       template<typename _InputIterator>
01206         void
01207         _M_range_insert(iterator __pos, _InputIterator __first,
01208             _InputIterator __last, std::input_iterator_tag);
01209 
01210       // Called by the second insert_dispatch above
01211       template<typename _ForwardIterator>
01212         void
01213         _M_range_insert(iterator __pos, _ForwardIterator __first,
01214             _ForwardIterator __last, std::forward_iterator_tag);
01215 
01216       // Called by insert(p,n,x), and the range insert when it turns out to be
01217       // the same thing.
01218       void
01219       _M_fill_insert(iterator __pos, size_type __n, const value_type& __x);
01220 
01221 #ifdef __GXX_EXPERIMENTAL_CXX0X__
01222       // Called by resize(n).
01223       void
01224       _M_default_append(size_type __n);
01225 #endif
01226 
01227       // Called by insert(p,x)
01228 #ifndef __GXX_EXPERIMENTAL_CXX0X__
01229       void
01230       _M_insert_aux(iterator __position, const value_type& __x);
01231 #else
01232       template<typename... _Args>
01233         void
01234         _M_insert_aux(iterator __position, _Args&&... __args);
01235 #endif
01236 
01237       // Called by the latter.
01238       size_type
01239       _M_check_len(size_type __n, const char* __s) const
01240       {
01241     if (max_size() - size() < __n)
01242       __throw_length_error(__N(__s));
01243 
01244     const size_type __len = size() + std::max(size(), __n);
01245     return (__len < size() || __len > max_size()) ? max_size() : __len;
01246       }
01247 
01248       // Internal erase functions follow.
01249 
01250       // Called by erase(q1,q2), clear(), resize(), _M_fill_assign,
01251       // _M_assign_aux.
01252       void
01253       _M_erase_at_end(pointer __pos)
01254       {
01255     std::_Destroy(__pos, this->_M_impl._M_finish, _M_get_Tp_allocator());
01256     this->_M_impl._M_finish = __pos;
01257       }
01258     };
01259 
01260 
01261   /**
01262    *  @brief  Vector equality comparison.
01263    *  @param  x  A %vector.
01264    *  @param  y  A %vector of the same type as @a x.
01265    *  @return  True iff the size and elements of the vectors are equal.
01266    *
01267    *  This is an equivalence relation.  It is linear in the size of the
01268    *  vectors.  Vectors are considered equivalent if their sizes are equal,
01269    *  and if corresponding elements compare equal.
01270   */
01271   template<typename _Tp, typename _Alloc>
01272     inline bool
01273     operator==(const vector<_Tp, _Alloc>& __x, const vector<_Tp, _Alloc>& __y)
01274     { return (__x.size() == __y.size()
01275           && std::equal(__x.begin(), __x.end(), __y.begin())); }
01276 
01277   /**
01278    *  @brief  Vector ordering relation.
01279    *  @param  x  A %vector.
01280    *  @param  y  A %vector of the same type as @a x.
01281    *  @return  True iff @a x is lexicographically less than @a y.
01282    *
01283    *  This is a total ordering relation.  It is linear in the size of the
01284    *  vectors.  The elements must be comparable with @c <.
01285    *
01286    *  See std::lexicographical_compare() for how the determination is made.
01287   */
01288   template<typename _Tp, typename _Alloc>
01289     inline bool
01290     operator<(const vector<_Tp, _Alloc>& __x, const vector<_Tp, _Alloc>& __y)
01291     { return std::lexicographical_compare(__x.begin(), __x.end(),
01292                       __y.begin(), __y.end()); }
01293 
01294   /// Based on operator==
01295   template<typename _Tp, typename _Alloc>
01296     inline bool
01297     operator!=(const vector<_Tp, _Alloc>& __x, const vector<_Tp, _Alloc>& __y)
01298     { return !(__x == __y); }
01299 
01300   /// Based on operator<
01301   template<typename _Tp, typename _Alloc>
01302     inline bool
01303     operator>(const vector<_Tp, _Alloc>& __x, const vector<_Tp, _Alloc>& __y)
01304     { return __y < __x; }
01305 
01306   /// Based on operator<
01307   template<typename _Tp, typename _Alloc>
01308     inline bool
01309     operator<=(const vector<_Tp, _Alloc>& __x, const vector<_Tp, _Alloc>& __y)
01310     { return !(__y < __x); }
01311 
01312   /// Based on operator<
01313   template<typename _Tp, typename _Alloc>
01314     inline bool
01315     operator>=(const vector<_Tp, _Alloc>& __x, const vector<_Tp, _Alloc>& __y)
01316     { return !(__x < __y); }
01317 
01318   /// See std::vector::swap().
01319   template<typename _Tp, typename _Alloc>
01320     inline void
01321     swap(vector<_Tp, _Alloc>& __x, vector<_Tp, _Alloc>& __y)
01322     { __x.swap(__y); }
01323 
01324 _GLIBCXX_END_NAMESPACE_CONTAINER
01325 } // namespace std
01326 
01327 #endif /* _STL_VECTOR_H */