libstdc++
stl_multiset.h
Go to the documentation of this file.
00001 // Multiset implementation -*- C++ -*-
00002 
00003 // Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010,
00004 // 2011 Free Software Foundation, Inc.
00005 //
00006 // This file is part of the GNU ISO C++ Library.  This library is free
00007 // software; you can redistribute it and/or modify it under the
00008 // terms of the GNU General Public License as published by the
00009 // Free Software Foundation; either version 3, or (at your option)
00010 // any later version.
00011 
00012 // This library is distributed in the hope that it will be useful,
00013 // but WITHOUT ANY WARRANTY; without even the implied warranty of
00014 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
00015 // GNU General Public License for more details.
00016 
00017 // Under Section 7 of GPL version 3, you are granted additional
00018 // permissions described in the GCC Runtime Library Exception, version
00019 // 3.1, as published by the Free Software Foundation.
00020 
00021 // You should have received a copy of the GNU General Public License and
00022 // a copy of the GCC Runtime Library Exception along with this program;
00023 // see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
00024 // <http://www.gnu.org/licenses/>.
00025 
00026 /*
00027  *
00028  * Copyright (c) 1994
00029  * Hewlett-Packard Company
00030  *
00031  * Permission to use, copy, modify, distribute and sell this software
00032  * and its documentation for any purpose is hereby granted without fee,
00033  * provided that the above copyright notice appear in all copies and
00034  * that both that copyright notice and this permission notice appear
00035  * in supporting documentation.  Hewlett-Packard Company makes no
00036  * representations about the suitability of this software for any
00037  * purpose.  It is provided "as is" without express or implied warranty.
00038  *
00039  *
00040  * Copyright (c) 1996
00041  * Silicon Graphics Computer Systems, Inc.
00042  *
00043  * Permission to use, copy, modify, distribute and sell this software
00044  * and its documentation for any purpose is hereby granted without fee,
00045  * provided that the above copyright notice appear in all copies and
00046  * that both that copyright notice and this permission notice appear
00047  * in supporting documentation.  Silicon Graphics makes no
00048  * representations about the suitability of this software for any
00049  * purpose.  It is provided "as is" without express or implied warranty.
00050  */
00051 
00052 /** @file bits/stl_multiset.h
00053  *  This is an internal header file, included by other library headers.
00054  *  Do not attempt to use it directly. @headername{set}
00055  */
00056 
00057 #ifndef _STL_MULTISET_H
00058 #define _STL_MULTISET_H 1
00059 
00060 #include <bits/concept_check.h>
00061 #include <initializer_list>
00062 
00063 namespace std _GLIBCXX_VISIBILITY(default)
00064 {
00065 _GLIBCXX_BEGIN_NAMESPACE_CONTAINER
00066 
00067   /**
00068    *  @brief A standard container made up of elements, which can be retrieved
00069    *  in logarithmic time.
00070    *
00071    *  @ingroup associative_containers
00072    *
00073    *  Meets the requirements of a <a href="tables.html#65">container</a>, a
00074    *  <a href="tables.html#66">reversible container</a>, and an
00075    *  <a href="tables.html#69">associative container</a> (using equivalent
00076    *  keys).  For a @c multiset<Key> the key_type and value_type are Key.
00077    *
00078    *  Multisets support bidirectional iterators.
00079    *
00080    *  The private tree data is declared exactly the same way for set and
00081    *  multiset; the distinction is made entirely in how the tree functions are
00082    *  called (*_unique versus *_equal, same as the standard).
00083   */
00084   template <typename _Key, typename _Compare = std::less<_Key>,
00085         typename _Alloc = std::allocator<_Key> >
00086     class multiset
00087     {
00088       // concept requirements
00089       typedef typename _Alloc::value_type                   _Alloc_value_type;
00090       __glibcxx_class_requires(_Key, _SGIAssignableConcept)
00091       __glibcxx_class_requires4(_Compare, bool, _Key, _Key,
00092                 _BinaryFunctionConcept)
00093       __glibcxx_class_requires2(_Key, _Alloc_value_type, _SameTypeConcept)  
00094 
00095     public:
00096       // typedefs:
00097       typedef _Key     key_type;
00098       typedef _Key     value_type;
00099       typedef _Compare key_compare;
00100       typedef _Compare value_compare;
00101       typedef _Alloc   allocator_type;
00102 
00103     private:
00104       /// This turns a red-black tree into a [multi]set.
00105       typedef typename _Alloc::template rebind<_Key>::other _Key_alloc_type;
00106 
00107       typedef _Rb_tree<key_type, value_type, _Identity<value_type>,
00108                key_compare, _Key_alloc_type> _Rep_type;
00109       /// The actual tree structure.
00110       _Rep_type _M_t;
00111 
00112     public:
00113       typedef typename _Key_alloc_type::pointer             pointer;
00114       typedef typename _Key_alloc_type::const_pointer       const_pointer;
00115       typedef typename _Key_alloc_type::reference           reference;
00116       typedef typename _Key_alloc_type::const_reference     const_reference;
00117       // _GLIBCXX_RESOLVE_LIB_DEFECTS
00118       // DR 103. set::iterator is required to be modifiable,
00119       // but this allows modification of keys.
00120       typedef typename _Rep_type::const_iterator            iterator;
00121       typedef typename _Rep_type::const_iterator            const_iterator;
00122       typedef typename _Rep_type::const_reverse_iterator    reverse_iterator;
00123       typedef typename _Rep_type::const_reverse_iterator const_reverse_iterator;
00124       typedef typename _Rep_type::size_type                 size_type;
00125       typedef typename _Rep_type::difference_type           difference_type;
00126 
00127       // allocation/deallocation
00128       /**
00129        *  @brief  Default constructor creates no elements.
00130        */
00131       multiset()
00132       : _M_t() { }
00133 
00134       /**
00135        *  @brief  Creates a %multiset with no elements.
00136        *  @param  comp  Comparator to use.
00137        *  @param  a  An allocator object.
00138        */
00139       explicit
00140       multiset(const _Compare& __comp,
00141            const allocator_type& __a = allocator_type())
00142       : _M_t(__comp, __a) { }
00143 
00144       /**
00145        *  @brief  Builds a %multiset from a range.
00146        *  @param  first  An input iterator.
00147        *  @param  last  An input iterator.
00148        *
00149        *  Create a %multiset consisting of copies of the elements from
00150        *  [first,last).  This is linear in N if the range is already sorted,
00151        *  and NlogN otherwise (where N is distance(first,last)).
00152        */
00153       template<typename _InputIterator>
00154         multiset(_InputIterator __first, _InputIterator __last)
00155     : _M_t()
00156         { _M_t._M_insert_equal(__first, __last); }
00157 
00158       /**
00159        *  @brief  Builds a %multiset from a range.
00160        *  @param  first  An input iterator.
00161        *  @param  last  An input iterator.
00162        *  @param  comp  A comparison functor.
00163        *  @param  a  An allocator object.
00164        *
00165        *  Create a %multiset consisting of copies of the elements from
00166        *  [first,last).  This is linear in N if the range is already sorted,
00167        *  and NlogN otherwise (where N is distance(first,last)).
00168        */
00169       template<typename _InputIterator>
00170         multiset(_InputIterator __first, _InputIterator __last,
00171          const _Compare& __comp,
00172          const allocator_type& __a = allocator_type())
00173     : _M_t(__comp, __a)
00174         { _M_t._M_insert_equal(__first, __last); }
00175 
00176       /**
00177        *  @brief  %Multiset copy constructor.
00178        *  @param  x  A %multiset of identical element and allocator types.
00179        *
00180        *  The newly-created %multiset uses a copy of the allocation object used
00181        *  by @a x.
00182        */
00183       multiset(const multiset& __x)
00184       : _M_t(__x._M_t) { }
00185 
00186 #ifdef __GXX_EXPERIMENTAL_CXX0X__
00187      /**
00188        *  @brief  %Multiset move constructor.
00189        *  @param  x  A %multiset of identical element and allocator types.
00190        *
00191        *  The newly-created %multiset contains the exact contents of @a x.
00192        *  The contents of @a x are a valid, but unspecified %multiset.
00193        */
00194       multiset(multiset&& __x)
00195       : _M_t(std::move(__x._M_t)) { }
00196 
00197       /**
00198        *  @brief  Builds a %multiset from an initializer_list.
00199        *  @param  l  An initializer_list.
00200        *  @param  comp  A comparison functor.
00201        *  @param  a  An allocator object.
00202        *
00203        *  Create a %multiset consisting of copies of the elements from
00204        *  the list.  This is linear in N if the list is already sorted,
00205        *  and NlogN otherwise (where N is @a l.size()).
00206        */
00207       multiset(initializer_list<value_type> __l,
00208            const _Compare& __comp = _Compare(),
00209            const allocator_type& __a = allocator_type())
00210       : _M_t(__comp, __a)
00211       { _M_t._M_insert_equal(__l.begin(), __l.end()); }
00212 #endif
00213 
00214       /**
00215        *  @brief  %Multiset assignment operator.
00216        *  @param  x  A %multiset of identical element and allocator types.
00217        *
00218        *  All the elements of @a x are copied, but unlike the copy constructor,
00219        *  the allocator object is not copied.
00220        */
00221       multiset&
00222       operator=(const multiset& __x)
00223       {
00224     _M_t = __x._M_t;
00225     return *this;
00226       }
00227 
00228 #ifdef __GXX_EXPERIMENTAL_CXX0X__
00229       /**
00230        *  @brief  %Multiset move assignment operator.
00231        *  @param  x  A %multiset of identical element and allocator types.
00232        *
00233        *  The contents of @a x are moved into this %multiset (without copying).
00234        *  @a x is a valid, but unspecified %multiset.
00235        */
00236       multiset&
00237       operator=(multiset&& __x)
00238       {
00239     // NB: DR 1204.
00240     // NB: DR 675.
00241     this->clear();
00242     this->swap(__x);
00243     return *this;
00244       }
00245 
00246       /**
00247        *  @brief  %Multiset list assignment operator.
00248        *  @param  l  An initializer_list.
00249        *
00250        *  This function fills a %multiset with copies of the elements in the
00251        *  initializer list @a l.
00252        *
00253        *  Note that the assignment completely changes the %multiset and
00254        *  that the resulting %multiset's size is the same as the number
00255        *  of elements assigned.  Old data may be lost.
00256        */
00257       multiset&
00258       operator=(initializer_list<value_type> __l)
00259       {
00260     this->clear();
00261     this->insert(__l.begin(), __l.end());
00262     return *this;
00263       }
00264 #endif
00265 
00266       // accessors:
00267 
00268       ///  Returns the comparison object.
00269       key_compare
00270       key_comp() const
00271       { return _M_t.key_comp(); }
00272       ///  Returns the comparison object.
00273       value_compare
00274       value_comp() const
00275       { return _M_t.key_comp(); }
00276       ///  Returns the memory allocation object.
00277       allocator_type
00278       get_allocator() const
00279       { return _M_t.get_allocator(); }
00280 
00281       /**
00282        *  Returns a read-only (constant) iterator that points to the first
00283        *  element in the %multiset.  Iteration is done in ascending order
00284        *  according to the keys.
00285        */
00286       iterator
00287       begin() const
00288       { return _M_t.begin(); }
00289 
00290       /**
00291        *  Returns a read-only (constant) iterator that points one past the last
00292        *  element in the %multiset.  Iteration is done in ascending order
00293        *  according to the keys.
00294        */
00295       iterator
00296       end() const
00297       { return _M_t.end(); }
00298 
00299       /**
00300        *  Returns a read-only (constant) reverse iterator that points to the
00301        *  last element in the %multiset.  Iteration is done in descending order
00302        *  according to the keys.
00303        */
00304       reverse_iterator
00305       rbegin() const
00306       { return _M_t.rbegin(); }
00307 
00308       /**
00309        *  Returns a read-only (constant) reverse iterator that points to the
00310        *  last element in the %multiset.  Iteration is done in descending order
00311        *  according to the keys.
00312        */
00313       reverse_iterator
00314       rend() const
00315       { return _M_t.rend(); }
00316 
00317 #ifdef __GXX_EXPERIMENTAL_CXX0X__
00318       /**
00319        *  Returns a read-only (constant) iterator that points to the first
00320        *  element in the %multiset.  Iteration is done in ascending order
00321        *  according to the keys.
00322        */
00323       iterator
00324       cbegin() const
00325       { return _M_t.begin(); }
00326 
00327       /**
00328        *  Returns a read-only (constant) iterator that points one past the last
00329        *  element in the %multiset.  Iteration is done in ascending order
00330        *  according to the keys.
00331        */
00332       iterator
00333       cend() const
00334       { return _M_t.end(); }
00335 
00336       /**
00337        *  Returns a read-only (constant) reverse iterator that points to the
00338        *  last element in the %multiset.  Iteration is done in descending order
00339        *  according to the keys.
00340        */
00341       reverse_iterator
00342       crbegin() const
00343       { return _M_t.rbegin(); }
00344 
00345       /**
00346        *  Returns a read-only (constant) reverse iterator that points to the
00347        *  last element in the %multiset.  Iteration is done in descending order
00348        *  according to the keys.
00349        */
00350       reverse_iterator
00351       crend() const
00352       { return _M_t.rend(); }
00353 #endif
00354 
00355       ///  Returns true if the %set is empty.
00356       bool
00357       empty() const
00358       { return _M_t.empty(); }
00359 
00360       ///  Returns the size of the %set.
00361       size_type
00362       size() const
00363       { return _M_t.size(); }
00364 
00365       ///  Returns the maximum size of the %set.
00366       size_type
00367       max_size() const
00368       { return _M_t.max_size(); }
00369 
00370       /**
00371        *  @brief  Swaps data with another %multiset.
00372        *  @param  x  A %multiset of the same element and allocator types.
00373        *
00374        *  This exchanges the elements between two multisets in constant time.
00375        *  (It is only swapping a pointer, an integer, and an instance of the @c
00376        *  Compare type (which itself is often stateless and empty), so it should
00377        *  be quite fast.)
00378        *  Note that the global std::swap() function is specialized such that
00379        *  std::swap(s1,s2) will feed to this function.
00380        */
00381       void
00382       swap(multiset& __x)
00383       { _M_t.swap(__x._M_t); }
00384 
00385       // insert/erase
00386       /**
00387        *  @brief Inserts an element into the %multiset.
00388        *  @param  x  Element to be inserted.
00389        *  @return An iterator that points to the inserted element.
00390        *
00391        *  This function inserts an element into the %multiset.  Contrary
00392        *  to a std::set the %multiset does not rely on unique keys and thus
00393        *  multiple copies of the same element can be inserted.
00394        *
00395        *  Insertion requires logarithmic time.
00396        */
00397       iterator
00398       insert(const value_type& __x)
00399       { return _M_t._M_insert_equal(__x); }
00400 
00401 #ifdef __GXX_EXPERIMENTAL_CXX0X__
00402       iterator
00403       insert(value_type&& __x)
00404       { return _M_t._M_insert_equal(std::move(__x)); }
00405 #endif
00406 
00407       /**
00408        *  @brief Inserts an element into the %multiset.
00409        *  @param  position  An iterator that serves as a hint as to where the
00410        *                    element should be inserted.
00411        *  @param  x  Element to be inserted.
00412        *  @return An iterator that points to the inserted element.
00413        *
00414        *  This function inserts an element into the %multiset.  Contrary
00415        *  to a std::set the %multiset does not rely on unique keys and thus
00416        *  multiple copies of the same element can be inserted.
00417        *
00418        *  Note that the first parameter is only a hint and can potentially
00419        *  improve the performance of the insertion process.  A bad hint would
00420        *  cause no gains in efficiency.
00421        *
00422        *  See http://gcc.gnu.org/onlinedocs/libstdc++/manual/bk01pt07ch17.html
00423        *  for more on @a hinting.
00424        *
00425        *  Insertion requires logarithmic time (if the hint is not taken).
00426        */
00427       iterator
00428       insert(const_iterator __position, const value_type& __x)
00429       { return _M_t._M_insert_equal_(__position, __x); }
00430 
00431 #ifdef __GXX_EXPERIMENTAL_CXX0X__
00432       iterator
00433       insert(const_iterator __position, value_type&& __x)
00434       { return _M_t._M_insert_equal_(__position, std::move(__x)); }
00435 #endif
00436 
00437       /**
00438        *  @brief A template function that tries to insert a range of elements.
00439        *  @param  first  Iterator pointing to the start of the range to be
00440        *                 inserted.
00441        *  @param  last  Iterator pointing to the end of the range.
00442        *
00443        *  Complexity similar to that of the range constructor.
00444        */
00445       template<typename _InputIterator>
00446         void
00447         insert(_InputIterator __first, _InputIterator __last)
00448         { _M_t._M_insert_equal(__first, __last); }
00449 
00450 #ifdef __GXX_EXPERIMENTAL_CXX0X__
00451       /**
00452        *  @brief Attempts to insert a list of elements into the %multiset.
00453        *  @param  list  A std::initializer_list<value_type> of elements
00454        *                to be inserted.
00455        *
00456        *  Complexity similar to that of the range constructor.
00457        */
00458       void
00459       insert(initializer_list<value_type> __l)
00460       { this->insert(__l.begin(), __l.end()); }
00461 #endif
00462 
00463 #ifdef __GXX_EXPERIMENTAL_CXX0X__
00464       // _GLIBCXX_RESOLVE_LIB_DEFECTS
00465       // DR 130. Associative erase should return an iterator.
00466       /**
00467        *  @brief Erases an element from a %multiset.
00468        *  @param  position  An iterator pointing to the element to be erased.
00469        *  @return An iterator pointing to the element immediately following
00470        *          @a position prior to the element being erased. If no such 
00471        *          element exists, end() is returned.
00472        *
00473        *  This function erases an element, pointed to by the given iterator,
00474        *  from a %multiset.  Note that this function only erases the element,
00475        *  and that if the element is itself a pointer, the pointed-to memory is
00476        *  not touched in any way.  Managing the pointer is the user's
00477        *  responsibility.
00478        */
00479       iterator
00480       erase(const_iterator __position)
00481       { return _M_t.erase(__position); }
00482 #else
00483       /**
00484        *  @brief Erases an element from a %multiset.
00485        *  @param  position  An iterator pointing to the element to be erased.
00486        *
00487        *  This function erases an element, pointed to by the given iterator,
00488        *  from a %multiset.  Note that this function only erases the element,
00489        *  and that if the element is itself a pointer, the pointed-to memory is
00490        *  not touched in any way.  Managing the pointer is the user's
00491        *  responsibility.
00492        */
00493       void
00494       erase(iterator __position)
00495       { _M_t.erase(__position); }
00496 #endif
00497 
00498       /**
00499        *  @brief Erases elements according to the provided key.
00500        *  @param  x  Key of element to be erased.
00501        *  @return  The number of elements erased.
00502        *
00503        *  This function erases all elements located by the given key from a
00504        *  %multiset.
00505        *  Note that this function only erases the element, and that if
00506        *  the element is itself a pointer, the pointed-to memory is not touched
00507        *  in any way.  Managing the pointer is the user's responsibility.
00508        */
00509       size_type
00510       erase(const key_type& __x)
00511       { return _M_t.erase(__x); }
00512 
00513 #ifdef __GXX_EXPERIMENTAL_CXX0X__
00514       // _GLIBCXX_RESOLVE_LIB_DEFECTS
00515       // DR 130. Associative erase should return an iterator.
00516       /**
00517        *  @brief Erases a [first,last) range of elements from a %multiset.
00518        *  @param  first  Iterator pointing to the start of the range to be
00519        *                 erased.
00520        *  @param  last  Iterator pointing to the end of the range to be erased.
00521        *  @return The iterator @a last.
00522        *
00523        *  This function erases a sequence of elements from a %multiset.
00524        *  Note that this function only erases the elements, and that if
00525        *  the elements themselves are pointers, the pointed-to memory is not
00526        *  touched in any way.  Managing the pointer is the user's
00527        *  responsibility.
00528        */
00529       iterator
00530       erase(const_iterator __first, const_iterator __last)
00531       { return _M_t.erase(__first, __last); }
00532 #else
00533       /**
00534        *  @brief Erases a [first,last) range of elements from a %multiset.
00535        *  @param  first  Iterator pointing to the start of the range to be
00536        *                 erased.
00537        *  @param  last  Iterator pointing to the end of the range to be erased.
00538        *
00539        *  This function erases a sequence of elements from a %multiset.
00540        *  Note that this function only erases the elements, and that if
00541        *  the elements themselves are pointers, the pointed-to memory is not
00542        *  touched in any way.  Managing the pointer is the user's
00543        *  responsibility.
00544        */
00545       void
00546       erase(iterator __first, iterator __last)
00547       { _M_t.erase(__first, __last); }
00548 #endif
00549 
00550       /**
00551        *  Erases all elements in a %multiset.  Note that this function only
00552        *  erases the elements, and that if the elements themselves are pointers,
00553        *  the pointed-to memory is not touched in any way.  Managing the pointer
00554        *  is the user's responsibility.
00555        */
00556       void
00557       clear()
00558       { _M_t.clear(); }
00559 
00560       // multiset operations:
00561 
00562       /**
00563        *  @brief Finds the number of elements with given key.
00564        *  @param  x  Key of elements to be located.
00565        *  @return Number of elements with specified key.
00566        */
00567       size_type
00568       count(const key_type& __x) const
00569       { return _M_t.count(__x); }
00570 
00571       // _GLIBCXX_RESOLVE_LIB_DEFECTS
00572       // 214.  set::find() missing const overload
00573       //@{
00574       /**
00575        *  @brief Tries to locate an element in a %set.
00576        *  @param  x  Element to be located.
00577        *  @return  Iterator pointing to sought-after element, or end() if not
00578        *           found.
00579        *
00580        *  This function takes a key and tries to locate the element with which
00581        *  the key matches.  If successful the function returns an iterator
00582        *  pointing to the sought after element.  If unsuccessful it returns the
00583        *  past-the-end ( @c end() ) iterator.
00584        */
00585       iterator
00586       find(const key_type& __x)
00587       { return _M_t.find(__x); }
00588 
00589       const_iterator
00590       find(const key_type& __x) const
00591       { return _M_t.find(__x); }
00592       //@}
00593 
00594       //@{
00595       /**
00596        *  @brief Finds the beginning of a subsequence matching given key.
00597        *  @param  x  Key to be located.
00598        *  @return  Iterator pointing to first element equal to or greater
00599        *           than key, or end().
00600        *
00601        *  This function returns the first element of a subsequence of elements
00602        *  that matches the given key.  If unsuccessful it returns an iterator
00603        *  pointing to the first element that has a greater value than given key
00604        *  or end() if no such element exists.
00605        */
00606       iterator
00607       lower_bound(const key_type& __x)
00608       { return _M_t.lower_bound(__x); }
00609 
00610       const_iterator
00611       lower_bound(const key_type& __x) const
00612       { return _M_t.lower_bound(__x); }
00613       //@}
00614 
00615       //@{
00616       /**
00617        *  @brief Finds the end of a subsequence matching given key.
00618        *  @param  x  Key to be located.
00619        *  @return Iterator pointing to the first element
00620        *          greater than key, or end().
00621        */
00622       iterator
00623       upper_bound(const key_type& __x)
00624       { return _M_t.upper_bound(__x); }
00625 
00626       const_iterator
00627       upper_bound(const key_type& __x) const
00628       { return _M_t.upper_bound(__x); }
00629       //@}
00630 
00631       //@{
00632       /**
00633        *  @brief Finds a subsequence matching given key.
00634        *  @param  x  Key to be located.
00635        *  @return  Pair of iterators that possibly points to the subsequence
00636        *           matching given key.
00637        *
00638        *  This function is equivalent to
00639        *  @code
00640        *    std::make_pair(c.lower_bound(val),
00641        *                   c.upper_bound(val))
00642        *  @endcode
00643        *  (but is faster than making the calls separately).
00644        *
00645        *  This function probably only makes sense for multisets.
00646        */
00647       std::pair<iterator, iterator>
00648       equal_range(const key_type& __x)
00649       { return _M_t.equal_range(__x); }
00650 
00651       std::pair<const_iterator, const_iterator>
00652       equal_range(const key_type& __x) const
00653       { return _M_t.equal_range(__x); }
00654 
00655       template<typename _K1, typename _C1, typename _A1>
00656         friend bool
00657         operator==(const multiset<_K1, _C1, _A1>&,
00658            const multiset<_K1, _C1, _A1>&);
00659 
00660       template<typename _K1, typename _C1, typename _A1>
00661         friend bool
00662         operator< (const multiset<_K1, _C1, _A1>&,
00663            const multiset<_K1, _C1, _A1>&);
00664     };
00665 
00666   /**
00667    *  @brief  Multiset equality comparison.
00668    *  @param  x  A %multiset.
00669    *  @param  y  A %multiset of the same type as @a x.
00670    *  @return  True iff the size and elements of the multisets are equal.
00671    *
00672    *  This is an equivalence relation.  It is linear in the size of the
00673    *  multisets.
00674    *  Multisets are considered equivalent if their sizes are equal, and if
00675    *  corresponding elements compare equal.
00676   */
00677   template<typename _Key, typename _Compare, typename _Alloc>
00678     inline bool
00679     operator==(const multiset<_Key, _Compare, _Alloc>& __x,
00680            const multiset<_Key, _Compare, _Alloc>& __y)
00681     { return __x._M_t == __y._M_t; }
00682 
00683   /**
00684    *  @brief  Multiset ordering relation.
00685    *  @param  x  A %multiset.
00686    *  @param  y  A %multiset of the same type as @a x.
00687    *  @return  True iff @a x is lexicographically less than @a y.
00688    *
00689    *  This is a total ordering relation.  It is linear in the size of the
00690    *  maps.  The elements must be comparable with @c <.
00691    *
00692    *  See std::lexicographical_compare() for how the determination is made.
00693   */
00694   template<typename _Key, typename _Compare, typename _Alloc>
00695     inline bool
00696     operator<(const multiset<_Key, _Compare, _Alloc>& __x,
00697           const multiset<_Key, _Compare, _Alloc>& __y)
00698     { return __x._M_t < __y._M_t; }
00699 
00700   ///  Returns !(x == y).
00701   template<typename _Key, typename _Compare, typename _Alloc>
00702     inline bool
00703     operator!=(const multiset<_Key, _Compare, _Alloc>& __x,
00704            const multiset<_Key, _Compare, _Alloc>& __y)
00705     { return !(__x == __y); }
00706 
00707   ///  Returns y < x.
00708   template<typename _Key, typename _Compare, typename _Alloc>
00709     inline bool
00710     operator>(const multiset<_Key,_Compare,_Alloc>& __x,
00711           const multiset<_Key,_Compare,_Alloc>& __y)
00712     { return __y < __x; }
00713 
00714   ///  Returns !(y < x)
00715   template<typename _Key, typename _Compare, typename _Alloc>
00716     inline bool
00717     operator<=(const multiset<_Key, _Compare, _Alloc>& __x,
00718            const multiset<_Key, _Compare, _Alloc>& __y)
00719     { return !(__y < __x); }
00720 
00721   ///  Returns !(x < y)
00722   template<typename _Key, typename _Compare, typename _Alloc>
00723     inline bool
00724     operator>=(const multiset<_Key, _Compare, _Alloc>& __x,
00725            const multiset<_Key, _Compare, _Alloc>& __y)
00726     { return !(__x < __y); }
00727 
00728   /// See std::multiset::swap().
00729   template<typename _Key, typename _Compare, typename _Alloc>
00730     inline void
00731     swap(multiset<_Key, _Compare, _Alloc>& __x,
00732      multiset<_Key, _Compare, _Alloc>& __y)
00733     { __x.swap(__y); }
00734 
00735 _GLIBCXX_END_NAMESPACE_CONTAINER
00736 } // namespace std
00737 
00738 #endif /* _STL_MULTISET_H */