Next: MODULO, Previous: MINVAL, Up: Intrinsic Procedures

`MOD`

— Remainder function*Description*:`MOD(A,P)`

computes the remainder of the division of A by P. It is calculated as`A - (INT(A/P) * P)`

.*Standard*:- Fortran 77 and later
*Class*:- Elemental function
*Syntax*:`RESULT = MOD(A, P)`

*Arguments*:-
`A`Shall be a scalar of type `INTEGER`

or`REAL`

`P`Shall be a scalar of the same type as `A`and not equal to zero *Return value*:- The kind of the return value is the result of cross-promoting
the kinds of the arguments.
*Example*:-
program test_mod print *, mod(17,3) print *, mod(17.5,5.5) print *, mod(17.5d0,5.5) print *, mod(17.5,5.5d0) print *, mod(-17,3) print *, mod(-17.5,5.5) print *, mod(-17.5d0,5.5) print *, mod(-17.5,5.5d0) print *, mod(17,-3) print *, mod(17.5,-5.5) print *, mod(17.5d0,-5.5) print *, mod(17.5,-5.5d0) end program test_mod

*Specific names*:-
Name Arguments Return type Standard `MOD(A,P)`

`INTEGER A,P`

`INTEGER`

Fortran 95 and later `AMOD(A,P)`

`REAL(4) A,P`

`REAL(4)`

Fortran 95 and later `DMOD(A,P)`

`REAL(8) A,P`

`REAL(8)`

Fortran 95 and later