
GNAT User’s Guide

for Native Platforms

Unix and Windows

GNAT, The GNU Ada 95 Compiler
GCC version 3.4.4

Ada Core Technologies, Inc.

Copyright c© 1995-2004, Free Software Foundation
Permission is granted to copy, distribute and/or modify this document under the terms of
the GNU Free Documentation License, Version 1.2 or any later version published by the
Free Software Foundation; with the Invariant Sections being “GNU Free Documentation
License”, with the Front-Cover Texts being “GNAT User’s Guide for Native Platforms /
Unix and Windows”, and with no Back-Cover Texts. A copy of the license is included in
the section entitled “GNU Free Documentation License”.

1

About This Guide

This guide describes the use of GNAT, a compiler and software development toolset for the
full Ada 95 programming language. It describes the features of the compiler and tools, and
details how to use them to build Ada 95 applications.

What This Guide Contains

This guide contains the following chapters:
• Chapter 1 [Getting Started with GNAT], page 5, describes how to get started compiling

and running Ada programs with the GNAT Ada programming environment.
• Chapter 2 [The GNAT Compilation Model], page 17, describes the compilation model

used by GNAT.
• Chapter 3 [Compiling Using gcc], page 37, describes how to compile Ada programs

with gcc, the Ada compiler.
• Chapter 4 [Binding Using gnatbind], page 71, describes how to perform binding of Ada

programs with gnatbind, the GNAT binding utility.
• Chapter 5 [Linking Using gnatlink], page 81, describes gnatlink, a program that pro-

vides for linking using the GNAT run-time library to construct a program. gnatlink
can also incorporate foreign language object units into the executable.

• Chapter 6 [The GNAT Make Program gnatmake], page 85, describes gnatmake, a utility
that automatically determines the set of sources needed by an Ada compilation unit,
and executes the necessary compilations binding and link.

• Chapter 7 [Improving Performance], page 95, shows various techniques for making
your Ada program run faster or take less space. It discusses the effect of the compiler’s
optimization switch and also describes the gnatelim tool.

• Chapter 8 [Renaming Files Using gnatchop], page 103, describes gnatchop, a utility
that allows you to preprocess a file that contains Ada source code, and split it into one
or more new files, one for each compilation unit.

• Chapter 9 [Configuration Pragmas], page 107, describes the configuration pragmas
handled by GNAT.

• Chapter 10 [Handling Arbitrary File Naming Conventions Using gnatname], page 109,
shows how to override the default GNAT file naming conventions, either for an indi-
vidual unit or globally.

• Chapter 11 [GNAT Project Manager], page 113, describes how to use project files to
organize large projects.

• Chapter 12 [The Cross-Referencing Tools gnatxref and gnatfind], page 151, discusses
gnatxref and gnatfind, two tools that provide an easy way to navigate through
sources.

• Chapter 13 [The GNAT Pretty-Printer gnatpp], page 161, shows how to produce a
reformatted version of an Ada source file with control over casing, indentation, comment
placement, and other elements of program presentation style.

• Chapter 14 [File Name Krunching Using gnatkr], page 171, describes the gnatkr file
name krunching utility, used to handle shortened file names on operating systems with
a limit on the length of names.

2 GNAT User’s Guide for Native Platforms / Unix and Windows

• Chapter 15 [Preprocessing Using gnatprep], page 175, describes gnatprep, a prepro-
cessor utility that allows a single source file to be used to generate multiple or param-
eterized source files, by means of macro substitution.

• Chapter 16 [The GNAT Library Browser gnatls], page 179, describes gnatls, a utility
that displays information about compiled units, including dependences on the corre-
sponding sources files, and consistency of compilations.

• Chapter 17 [Cleaning Up Using gnatclean], page 183, describes gnatclean, a utility to
delete files that are produced by the compiler, binder and linker.

• Chapter 18 [GNAT and Libraries], page 185, describes the process of creating and using
Libraries with GNAT. It also describes how to recompile the GNAT run-time library.

• Chapter 19 [Using the GNU make Utility], page 191, describes some techniques for
using the GNAT toolset in Makefiles.

• Chapter 20 [Finding Memory Problems], page 197, describes gnatmem, a utility that
monitors dynamic allocation and deallocation and helps detect “memory leaks”, and
the GNAT Debug Pool facility, which helps detect incorrect memory references.

• Chapter 21 [Creating Sample Bodies Using gnatstub], page 205, discusses gnatstub, a
utility that generates empty but compilable bodies for library units.

• Chapter 22 [Other Utility Programs], page 207, discusses several other GNAT utilities,
including gnathtml.

• Chapter 23 [Running and Debugging Ada Programs], page 211, describes how to run
and debug Ada programs.

• Appendix A [Platform-Specific Information for the Run-Time Libraries], page 225,
describes the various run-time libraries supported by GNAT on various platforms and
explains how to choose a particular library.

• Appendix B [Example of Binder Output File], page 231, shows the source code for the
binder output file for a sample program.

• Appendix C [Elaboration Order Handling in GNAT], page 245, describes how GNAT
helps you deal with elaboration order issues.

• Appendix D [Inline Assembler], page 269, shows how to use the inline assembly facility
in an Ada program.

• Appendix E [Compatibility and Porting Guide], page 293, includes sections on com-
patibility of GNAT with other Ada 83 and Ada 95 compilation systems, to assist in
porting code from other environments.

• Appendix F [Microsoft Windows Topics], page 301, presents information relevant to
the Microsoft Windows platform.

What You Should Know before Reading This Guide

This user’s guide assumes that you are familiar with Ada 95 language, as described in the
International Standard ANSI/ISO/IEC-8652:1995, January 1995.

Related Information

For further information about related tools, refer to the following documents:

3

• GNAT Reference Manual, which contains all reference material for the GNAT imple-
mentation of Ada 95.

• Using the GNAT Programming System, which describes the GPS integrated develop-
ment environment.

• GNAT Programming System Tutorial, which introduces the main GPS features through
examples.

• Ada 95 Language Reference Manual, which contains all reference material for the Ada
95 programming language.

• Debugging with GDB contains all details on the use of the GNU source-level debugger.
• GNU Emacs Manual contains full information on the extensible editor and program-

ming environment Emacs.

Conventions

Following are examples of the typographical and graphic conventions used in this guide:
• Functions, utility program names, standard names, and classes.
• ‘Option flags’
• ‘File Names’, ‘button names’, and ‘field names’.
• Variables.
• Emphasis.
• [optional information or parameters]
• Examples are described by text

and then shown this way.

Commands that are entered by the user are preceded in this manual by the characters “$ ”
(dollar sign followed by space). If your system uses this sequence as a prompt, then the
commands will appear exactly as you see them in the manual. If your system uses some
other prompt, then the command will appear with the $ replaced by whatever prompt
character you are using.

Full file names are shown with the “/” character as the directory separator; e.g.,
‘parent-dir/subdir/myfile.adb’. If you are using GNAT on a Windows platform, please
note that the “\” character should be used instead.

4 GNAT User’s Guide for Native Platforms / Unix and Windows

Chapter 1: Getting Started with GNAT 5

1 Getting Started with GNAT

This chapter describes some simple ways of using GNAT to build executable Ada pro-
grams. Section 1.1 [Running GNAT], page 5, through Section 1.4 [Using the gnatmake
Utility], page 8, show how to use the command line environment. Section 1.6 [Introduction
to Glide and GVD], page 12, provides a brief introduction to the visually-oriented IDE
for GNAT. Supplementing Glide on some platforms is GPS, the GNAT Programming Sys-
tem, which offers a richer graphical “look and feel”, enhanced configurability, support for
development in other programming language, comprehensive browsing features, and many
other capabilities. For information on GPS please refer to Using the GNAT Programming
System.

1.1 Running GNAT

Three steps are needed to create an executable file from an Ada source file:

1. The source file(s) must be compiled.

2. The file(s) must be bound using the GNAT binder.

3. All appropriate object files must be linked to produce an executable.

All three steps are most commonly handled by using the gnatmake utility program that,
given the name of the main program, automatically performs the necessary compilation,
binding and linking steps.

1.2 Running a Simple Ada Program

Any text editor may be used to prepare an Ada program. If Glide is used, the optional
Ada mode may be helpful in laying out the program. The program text is a normal text
file. We will suppose in our initial example that you have used your editor to prepare the
following standard format text file:� �

with Ada.Text_IO; use Ada.Text_IO;

procedure Hello is

begin

Put_Line ("Hello WORLD!");

end Hello;
 	
This file should be named ‘hello.adb’. With the normal default file naming conventions,
GNAT requires that each file contain a single compilation unit whose file name is the unit
name, with periods replaced by hyphens; the extension is ‘ads’ for a spec and ‘adb’ for a
body. You can override this default file naming convention by use of the special pragma
Source_File_Name (see Section 2.4 [Using Other File Names], page 21). Alternatively, if
you want to rename your files according to this default convention, which is probably more
convenient if you will be using GNAT for all your compilations, then the gnatchop utility
can be used to generate correctly-named source files (see Chapter 8 [Renaming Files Using
gnatchop], page 103).

You can compile the program using the following command ($ is used as the command
prompt in the examples in this document):

6 GNAT User’s Guide for Native Platforms / Unix and Windows

$ gcc -c hello.adb

gcc is the command used to run the compiler. This compiler is capable of compiling
programs in several languages, including Ada 95 and C. It assumes that you have given
it an Ada program if the file extension is either ‘.ads’ or ‘.adb’, and it will then call the
GNAT compiler to compile the specified file.

The ‘-c’ switch is required. It tells gcc to only do a compilation. (For C programs, gcc
can also do linking, but this capability is not used directly for Ada programs, so the ‘-c’
switch must always be present.)

This compile command generates a file ‘hello.o’, which is the object file corresponding
to your Ada program. It also generates an “Ada Library Information” file ‘hello.ali’,
which contains additional information used to check that an Ada program is consistent.
To build an executable file, use gnatbind to bind the program and gnatlink to link it.
The argument to both gnatbind and gnatlink is the name of the ‘ALI’ file, but the default
extension of ‘.ali’ can be omitted. This means that in the most common case, the argument
is simply the name of the main program:

$ gnatbind hello

$ gnatlink hello

A simpler method of carrying out these steps is to use gnatmake, a master program that
invokes all the required compilation, binding and linking tools in the correct order. In
particular, gnatmake automatically recompiles any sources that have been modified since
they were last compiled, or sources that depend on such modified sources, so that “version
skew” is avoided.

$ gnatmake hello.adb

The result is an executable program called ‘hello’, which can be run by entering:

$ hello

assuming that the current directory is on the search path for executable programs.

and, if all has gone well, you will see

Hello WORLD!

appear in response to this command.

1.3 Running a Program with Multiple Units

Consider a slightly more complicated example that has three files: a main program, and
the spec and body of a package:

Chapter 1: Getting Started with GNAT 7� �
package Greetings is

procedure Hello;

procedure Goodbye;

end Greetings;

with Ada.Text_IO; use Ada.Text_IO;

package body Greetings is

procedure Hello is

begin

Put_Line ("Hello WORLD!");

end Hello;

procedure Goodbye is

begin

Put_Line ("Goodbye WORLD!");

end Goodbye;

end Greetings;

with Greetings;

procedure Gmain is

begin

Greetings.Hello;

Greetings.Goodbye;

end Gmain;
 	
Following the one-unit-per-file rule, place this program in the following three separate files:

‘greetings.ads’
spec of package Greetings

‘greetings.adb’
body of package Greetings

‘gmain.adb’
body of main program

To build an executable version of this program, we could use four separate steps to compile,
bind, and link the program, as follows:

$ gcc -c gmain.adb

$ gcc -c greetings.adb

$ gnatbind gmain

$ gnatlink gmain

Note that there is no required order of compilation when using GNAT. In particular it
is perfectly fine to compile the main program first. Also, it is not necessary to compile
package specs in the case where there is an accompanying body; you only need to compile
the body. If you want to submit these files to the compiler for semantic checking and not
code generation, then use the ‘-gnatc’ switch:

$ gcc -c greetings.ads -gnatc

Although the compilation can be done in separate steps as in the above example, in practice
it is almost always more convenient to use the gnatmake tool. All you need to know in this
case is the name of the main program’s source file. The effect of the above four commands
can be achieved with a single one:

$ gnatmake gmain.adb

In the next section we discuss the advantages of using gnatmake in more detail.

8 GNAT User’s Guide for Native Platforms / Unix and Windows

1.4 Using the gnatmake Utility

If you work on a program by compiling single components at a time using gcc, you typically
keep track of the units you modify. In order to build a consistent system, you compile not
only these units, but also any units that depend on the units you have modified. For exam-
ple, in the preceding case, if you edit ‘gmain.adb’, you only need to recompile that file. But
if you edit ‘greetings.ads’, you must recompile both ‘greetings.adb’ and ‘gmain.adb’,
because both files contain units that depend on ‘greetings.ads’.

gnatbind will warn you if you forget one of these compilation steps, so that it is im-
possible to generate an inconsistent program as a result of forgetting to do a compilation.
Nevertheless it is tedious and error-prone to keep track of dependencies among units. One
approach to handle the dependency-bookkeeping is to use a makefile. However, makefiles
present maintenance problems of their own: if the dependencies change as you change the
program, you must make sure that the makefile is kept up-to-date manually, which is also
an error-prone process.

The gnatmake utility takes care of these details automatically. Invoke it using either one
of the following forms:

$ gnatmake gmain.adb

$ gnatmake gmain

The argument is the name of the file containing the main program; you may omit the ex-
tension. gnatmake examines the environment, automatically recompiles any files that need
recompiling, and binds and links the resulting set of object files, generating the executable
file, ‘gmain’. In a large program, it can be extremely helpful to use gnatmake, because
working out by hand what needs to be recompiled can be difficult.

Note that gnatmake takes into account all the Ada 95 rules that establish dependencies
among units. These include dependencies that result from inlining subprogram bodies, and
from generic instantiation. Unlike some other Ada make tools, gnatmake does not rely on
the dependencies that were found by the compiler on a previous compilation, which may
possibly be wrong when sources change. gnatmake determines the exact set of dependencies
from scratch each time it is run.

1.5 Introduction to GPS

Although the command line interface (gnatmake, etc.) alone is sufficient, a graphical In-
teractive Development Environment can make it easier for you to compose, navigate, and
debug programs. This section describes the main features of GPS (“GNAT Programming
System”), the GNAT graphical IDE. You will see how to use GPS to build and debug an
executable, and you will also learn some of the basics of the GNAT “project” facility.

GPS enables you to do much more than is presented here; e.g., you can produce a
call graph, interface to a third-party Version Control System, and inspect the generated
assembly language for a program. Indeed, GPS also supports languages other than Ada.
Such additional information, and an explanation of all of the GPS menu items. may be found
in the on-line help, which includes a user’s guide and a tutorial (these are also accessible
from the GNAT startup menu).

Chapter 1: Getting Started with GNAT 9

1.5.1 Building a New Program with GPS

GPS invokes the GNAT compilation tools using information contained in a project (also
known as a project file): a collection of properties such as source directories, identities of
main subprograms, tool switches, etc., and their associated values. (See Chapter 11 [GNAT
Project Manager], page 113, for details.) In order to run GPS, you will need to either create
a new project or else open an existing one.

This section will explain how you can use GPS to create a project, to associate Ada
source files with a project, and to build and run programs.
1. Creating a project

Invoke GPS, either from the command line or the platform’s IDE. After it starts, GPS
will display a “Welcome” screen with three radio buttons:
• Start with default project in directory

• Create new project with wizard

• Open existing project

Select Create new project with wizard and press OK. A new window will appear. In
the text box labeled with Enter the name of the project to create, type ‘sample’
as the project name. In the next box, browse to choose the directory in which you
would like to create the project file. After selecting an appropriate directory, press
Forward.
A window will appear with the title Version Control System Configuration. Simply
press Forward.
A window will appear with the title Please select the source directories for
this project. The directory that you specified for the project file will be selected by
default as the one to use for sources; simply press Forward.
A window will appear with the title Please select the build directory for this
project. The directory that you specified for the project file will be selected by default
for object files and executables; simply press Forward.
A window will appear with the title Please select the main units for this
project. You will supply this information later, after creating the source file. Simply
press Forward for now.
A window will appear with the title Please select the switches to build the
project. Press Apply. This will create a project file named ‘sample.prj’ in the
directory that you had specified.

2. Creating and saving the source file
After you create the new project, a GPS window will appear, which is partitioned into
two main sections:
• A Workspace area, initially greyed out, which you will use for creating and editing

source files
• Directly below, a Messages area, which initially displays a “Welcome” message.

(If the Messages area is not visible, drag its border upward to expand it.)

Select File on the menu bar, and then the New command. The Workspace area will
become white, and you can now enter the source program explicitly. Type the following
text

10 GNAT User’s Guide for Native Platforms / Unix and Windows

with Ada.Text_IO; use Ada.Text_IO;

procedure Hello is

begin

Put_Line("Hello from GPS!");

end Hello;

Select File, then Save As, and enter the source file name ‘hello.adb’. The file will be
saved in the same directory you specified as the location of the default project file.

3. Updating the project file
You need to add the new source file to the project. To do this, select the Project
menu and then Edit project properties. Click the Main files tab on the left, and
then the Add button. Choose ‘hello.adb’ from the list, and press Open. The project
settings window will reflect this action. Click OK.

4. Building and running the program
In the main GPS window, now choose the Build menu, then Make, and select
‘hello.adb’. The Messages window will display the resulting invocations of gcc,
gnatbind, and gnatlink (reflecting the default switch settings from the project file
that you created) and then a “successful compilation/build” message.
To run the program, choose the Build menu, then Run, and select hello. An Arguments
Selection window will appear. There are no command line arguments, so just click OK.
The Messages window will now display the program’s output (the string Hello from
GPS), and at the bottom of the GPS window a status update is displayed (Run: hello).
Close the GPS window (or select File, then Exit) to terminate this GPS session.

1.5.2 Simple Debugging with GPS

This section illustrates basic debugging techniques (setting breakpoints, examin-
ing/modifying variables, single stepping).
1. Opening a project

Start GPS and select Open existing project; browse to specify the project file
‘sample.prj’ that you had created in the earlier example.

2. Creating a source file
Select File, then New, and type in the following program:

with Ada.Text_IO; use Ada.Text_IO;

procedure Example is

Line : String (1..80);

N : Natural;

begin

Put_Line("Type a line of text at each prompt; an empty line to exit");

loop

Put(": ");

Get_Line (Line, N);

Put_Line (Line (1..N));

exit when N=0;

end loop;

end Example;

Select File, then Save as, and enter the file name ‘example.adb’.
3. Updating the project file

Add Example as a new main unit for the project:

Chapter 1: Getting Started with GNAT 11

a. Select Project, then Edit Project Properties.
b. Select the Main files tab, click Add, then select the file ‘example.adb’ from the

list, and click Open. You will see the file name appear in the list of main units
c. Click OK

4. Building/running the executable
To build the executable select Build, then Make, and then choose ‘example.adb’.
Run the program to see its effect (in the Messages area). Each line that you enter is
displayed; an empty line will cause the loop to exit and the program to terminate.

5. Debugging the program
Note that the ‘-g’ switches to gcc and gnatlink, which are required for debugging,
are on by default when you create a new project. Thus unless you intentionally remove
these settings, you will be able to debug any program that you develop using GPS.
a. Initializing

Select Debug, then Initialize, then ‘example’
b. Setting a breakpoint

After performing the initialization step, you will observe a small icon to the right
of each line number. This serves as a toggle for breakpoints; clicking the icon will
set a breakpoint at the corresponding line (the icon will change to a red circle with
an “x”), and clicking it again will remove the breakpoint / reset the icon.
For purposes of this example, set a breakpoint at line 10 (the statement Put_Line
(Line (1..N));

c. Starting program execution
Select Debug, then Run. When the Program Arguments window appears, click
OK. A console window will appear; enter some line of text, e.g. abcde, at the
prompt. The program will pause execution when it gets to the breakpoint, and
the corresponding line is highlighted.

d. Examining a variable
Move the mouse over one of the occurrences of the variable N. You will see the
value (5) displayed, in “tool tip” fashion. Right click on N, select Debug, then
select Display N. You will see information about N appear in the Debugger Data
pane, showing the value as 5.

e. Assigning a new value to a variable
Right click on the N in the Debugger Data pane, and select Set value of N. When
the input window appears, enter the value 4 and click OK. This value does not
automatically appear in the Debugger Data pane; to see it, right click again on
the N in the Debugger Data pane and select Update value. The new value, 4, will
appear in red.

f. Single stepping
Select Debug, then Next. This will cause the next statement to be executed, in
this case the call of Put_Line with the string slice. Notice in the console window
that the displayed string is simply abcd and not abcde which you had entered.
This is because the upper bound of the slice is now 4 rather than 5.

12 GNAT User’s Guide for Native Platforms / Unix and Windows

g. Removing a breakpoint
Toggle the breakpoint icon at line 10.

h. Resuming execution from a breakpoint
Select Debug, then Continue. The program will reach the next iteration of the
loop, and wait for input after displaying the prompt. This time, just hit the Enter
key. The value of N will be 0, and the program will terminate. The console window
will disappear.

1.6 Introduction to Glide and GVD

This section describes the main features of Glide, a GNAT graphical IDE, and also shows
how to use the basic commands in GVD, the GNU Visual Debugger. These tools may be
present in addition to, or in place of, GPS on some platforms. Additional information on
Glide and GVD may be found in the on-line help for these tools.

1.6.1 Building a New Program with Glide

The simplest way to invoke Glide is to enter glide at the command prompt. It will generally
be useful to issue this as a background command, thus allowing you to continue using your
command window for other purposes while Glide is running:

$ glide&

Glide will start up with an initial screen displaying the top-level menu items as well as some
other information. The menu selections are as follows

• Buffers

• Files

• Tools

• Edit

• Search

• Mule

• Glide

• Help

For this introductory example, you will need to create a new Ada source file. First, select
the Files menu. This will pop open a menu with around a dozen or so items. To create
a file, select the Open file... choice. Depending on the platform, you may see a pop-up
window where you can browse to an appropriate directory and then enter the file name, or
else simply see a line at the bottom of the Glide window where you can likewise enter the
file name. Note that in Glide, when you attempt to open a non-existent file, the effect is to
create a file with that name. For this example enter ‘hello.adb’ as the name of the file.

A new buffer will now appear, occupying the entire Glide window, with the file name at
the top. The menu selections are slightly different from the ones you saw on the opening
screen; there is an Entities item, and in place of Glide there is now an Ada item. Glide
uses the file extension to identify the source language, so ‘adb’ indicates an Ada source file.

You will enter some of the source program lines explicitly, and use the syntax-oriented
template mechanism to enter other lines. First, type the following text:

Chapter 1: Getting Started with GNAT 13

with Ada.Text_IO; use Ada.Text_IO;

procedure Hello is

begin

Observe that Glide uses different colors to distinguish reserved words from identifiers. Also,
after the procedure Hello is line, the cursor is automatically indented in anticipation of
declarations. When you enter begin, Glide recognizes that there are no declarations and
thus places begin flush left. But after the begin line the cursor is again indented, where
the statement(s) will be placed.

The main part of the program will be a for loop. Instead of entering the text explicitly,
however, use a statement template. Select the Ada item on the top menu bar, move the
mouse to the Statements item, and you will see a large selection of alternatives. Choose
for loop. You will be prompted (at the bottom of the buffer) for a loop name; simply
press the 〈Enter〉 key since a loop name is not needed. You should see the beginning of a for
loop appear in the source program window. You will now be prompted for the name of the
loop variable; enter a line with the identifier ind (lower case). Note that, by default, Glide
capitalizes the name (you can override such behavior if you wish, although this is outside
the scope of this introduction). Next, Glide prompts you for the loop range; enter a line
containing 1..5 and you will see this also appear in the source program, together with the
remaining elements of the for loop syntax.

Next enter the statement (with an intentional error, a missing semicolon) that will form
the body of the loop:

Put_Line("Hello, World" & Integer’Image(I))

Finally, type end Hello; as the last line in the program. Now save the file: choose the File
menu item, and then the Save buffer selection. You will see a message at the bottom of
the buffer confirming that the file has been saved.

You are now ready to attempt to build the program. Select the Ada item from the top
menu bar. Although we could choose simply to compile the file, we will instead attempt to
do a build (which invokes gnatmake) since, if the compile is successful, we want to build
an executable. Thus select Ada build. This will fail because of the compilation error, and
you will notice that the Glide window has been split: the top window contains the source
file, and the bottom window contains the output from the GNAT tools. Glide allows you
to navigate from a compilation error to the source file position corresponding to the error:
click the middle mouse button (or simultaneously press the left and right buttons, on a
two-button mouse) on the diagnostic line in the tool window. The focus will shift to the
source window, and the cursor will be positioned on the character at which the error was
detected.

Correct the error: type in a semicolon to terminate the statement. Although you can
again save the file explicitly, you can also simply invoke Ada ⇒ Build and you will be
prompted to save the file. This time the build will succeed; the tool output window shows
you the options that are supplied by default. The GNAT tools’ output (e.g. object and
ALI files, executable) will go in the directory from which Glide was launched.

To execute the program, choose Ada and then Run. You should see the program’s output
displayed in the bottom window:

Hello, world 1

Hello, world 2

Hello, world 3

Hello, world 4

14 GNAT User’s Guide for Native Platforms / Unix and Windows

Hello, world 5

1.6.2 Simple Debugging with GVD

This section describes how to set breakpoints, examine/modify variables, and step through
execution.

In order to enable debugging, you need to pass the ‘-g’ switch to both the compiler and
to gnatlink. If you are using the command line, passing ‘-g’ to gnatmake will have this
effect. You can then launch GVD, e.g. on the hello program, by issuing the command:

$ gvd hello

If you are using Glide, then ‘-g’ is passed to the relevant tools by default when you do a
build. Start the debugger by selecting the Ada menu item, and then Debug.

GVD comes up in a multi-part window. One pane shows the names of files comprising
your executable; another pane shows the source code of the current unit (initially your
main subprogram), another pane shows the debugger output and user interactions, and the
fourth pane (the data canvas at the top of the window) displays data objects that you have
selected.

To the left of the source file pane, you will notice green dots adjacent to some lines. These
are lines for which object code exists and where breakpoints can thus be set. You set/reset
a breakpoint by clicking the green dot. When a breakpoint is set, the dot is replaced by an
X in a red circle. Clicking the circle toggles the breakpoint off, and the red circle is replaced
by the green dot.

For this example, set a breakpoint at the statement where Put_Line is invoked.
Start program execution by selecting the Run button on the top menu bar. (The Start

button will also start your program, but it will cause program execution to break at the entry
to your main subprogram.) Evidence of reaching the breakpoint will appear: the source file
line will be highlighted, and the debugger interactions pane will display a relevant message.

You can examine the values of variables in several ways. Move the mouse over an occur-
rence of Ind in the for loop, and you will see the value (now 1) displayed. Alternatively,
right-click on Ind and select Display Ind; a box showing the variable’s name and value will
appear in the data canvas.

Although a loop index is a constant with respect to Ada semantics, you can change its
value in the debugger. Right-click in the box for Ind, and select the Set Value of Ind item.
Enter 2 as the new value, and press OK. The box for Ind shows the update.

Press the Step button on the top menu bar; this will step through one line of program
text (the invocation of Put_Line), and you can observe the effect of having modified Ind
since the value displayed is 2.

Remove the breakpoint, and resume execution by selecting the Cont button. You will
see the remaining output lines displayed in the debugger interaction window, along with a
message confirming normal program termination.

1.6.3 Other Glide Features

You may have observed that some of the menu selections contain abbreviations; e.g., (C-x
C-f) for Open file... in the Files menu. These are shortcut keys that you can use instead
of selecting menu items. The 〈C〉 stands for 〈Ctrl〉; thus (C-x C-f) means 〈Ctrl-x〉 followed by
〈Ctrl-f〉, and this sequence can be used instead of selecting Files and then Open file....

Chapter 1: Getting Started with GNAT 15

To abort a Glide command, type 〈Ctrl-g〉.
If you want Glide to start with an existing source file, you can either launch Glide as

above and then open the file via Files ⇒ Open file..., or else simply pass the name of
the source file on the command line:

$ glide hello.adb&

While you are using Glide, a number of buffers exist. You create some explicitly; e.g., when
you open/create a file. Others arise as an effect of the commands that you issue; e.g., the
buffer containing the output of the tools invoked during a build. If a buffer is hidden, you
can bring it into a visible window by first opening the Buffers menu and then selecting
the desired entry.

If a buffer occupies only part of the Glide screen and you want to expand it to fill the
entire screen, then click in the buffer and then select Files ⇒ One Window.

If a window is occupied by one buffer and you want to split the window to bring up a
second buffer, perform the following steps:
• Select Files ⇒ Split Window; this will produce two windows each of which holds

the original buffer (these are not copies, but rather different views of the same buffer
contents)

• With the focus in one of the windows, select the desired buffer from the Buffers menu

To exit from Glide, choose Files ⇒ Exit.

16 GNAT User’s Guide for Native Platforms / Unix and Windows

Chapter 2: The GNAT Compilation Model 17

2 The GNAT Compilation Model

This chapter describes the compilation model used by GNAT. Although similar to that
used by other languages, such as C and C++, this model is substantially different from the
traditional Ada compilation models, which are based on a library. The model is initially
described without reference to the library-based model. If you have not previously used an
Ada compiler, you need only read the first part of this chapter. The last section describes
and discusses the differences between the GNAT model and the traditional Ada compiler
models. If you have used other Ada compilers, this section will help you to understand
those differences, and the advantages of the GNAT model.

2.1 Source Representation

Ada source programs are represented in standard text files, using Latin-1 coding. Latin-1 is
an 8-bit code that includes the familiar 7-bit ASCII set, plus additional characters used for
representing foreign languages (see Section 2.2 [Foreign Language Representation], page 17
for support of non-USA character sets). The format effector characters are represented
using their standard ASCII encodings, as follows:

VT Vertical tab, 16#0B#

HT Horizontal tab, 16#09#

CR Carriage return, 16#0D#

LF Line feed, 16#0A#

FF Form feed, 16#0C#

Source files are in standard text file format. In addition, GNAT will recognize a wide
variety of stream formats, in which the end of physical physical lines is marked by any of
the following sequences: LF, CR, CR-LF, or LF-CR. This is useful in accommodating files
that are imported from other operating systems.

The end of a source file is normally represented by the physical end of file. However, the
control character 16#1A# (SUB) is also recognized as signalling the end of the source file.
Again, this is provided for compatibility with other operating systems where this code is
used to represent the end of file.

Each file contains a single Ada compilation unit, including any pragmas associated with
the unit. For example, this means you must place a package declaration (a package spec)
and the corresponding body in separate files. An Ada compilation (which is a sequence of
compilation units) is represented using a sequence of files. Similarly, you will place each
subunit or child unit in a separate file.

2.2 Foreign Language Representation

GNAT supports the standard character sets defined in Ada 95 as well as several other
non-standard character sets for use in localized versions of the compiler (see Section 3.2.11
[Character Set Control], page 61).

18 GNAT User’s Guide for Native Platforms / Unix and Windows

2.2.1 Latin-1

The basic character set is Latin-1. This character set is defined by ISO standard 8859,
part 1. The lower half (character codes 16#00# ... 16#7F#) is identical to standard ASCII
coding, but the upper half is used to represent additional characters. These include extended
letters used by European languages, such as French accents, the vowels with umlauts used
in German, and the extra letter A-ring used in Swedish.

For a complete list of Latin-1 codes and their encodings, see the source file of library
unit Ada.Characters.Latin_1 in file ‘a-chlat1.ads’. You may use any of these extended
characters freely in character or string literals. In addition, the extended characters that
represent letters can be used in identifiers.

2.2.2 Other 8-Bit Codes

GNAT also supports several other 8-bit coding schemes:

ISO 8859-2 (Latin-2)
Latin-2 letters allowed in identifiers, with uppercase and lowercase equivalence.

ISO 8859-3 (Latin-3)
Latin-3 letters allowed in identifiers, with uppercase and lowercase equivalence.

ISO 8859-4 (Latin-4)
Latin-4 letters allowed in identifiers, with uppercase and lowercase equivalence.

ISO 8859-5 (Cyrillic)
ISO 8859-5 letters (Cyrillic) allowed in identifiers, with uppercase and lowercase
equivalence.

ISO 8859-15 (Latin-9)
ISO 8859-15 (Latin-9) letters allowed in identifiers, with uppercase and lower-
case equivalence

IBM PC (code page 437)
This code page is the normal default for PCs in the U.S. It corresponds to the
original IBM PC character set. This set has some, but not all, of the extended
Latin-1 letters, but these letters do not have the same encoding as Latin-1. In
this mode, these letters are allowed in identifiers with uppercase and lowercase
equivalence.

IBM PC (code page 850)
This code page is a modification of 437 extended to include all the Latin-1
letters, but still not with the usual Latin-1 encoding. In this mode, all these
letters are allowed in identifiers with uppercase and lowercase equivalence.

Full Upper 8-bit
Any character in the range 80-FF allowed in identifiers, and all are considered
distinct. In other words, there are no uppercase and lowercase equivalences in
this range. This is useful in conjunction with certain encoding schemes used
for some foreign character sets (e.g. the typical method of representing Chinese
characters on the PC).

Chapter 2: The GNAT Compilation Model 19

No Upper-Half
No upper-half characters in the range 80-FF are allowed in identifiers. This
gives Ada 83 compatibility for identifier names.

For precise data on the encodings permitted, and the uppercase and lowercase equivalences
that are recognized, see the file ‘csets.adb’ in the GNAT compiler sources. You will need
to obtain a full source release of GNAT to obtain this file.

2.2.3 Wide Character Encodings

GNAT allows wide character codes to appear in character and string literals, and also
optionally in identifiers, by means of the following possible encoding schemes:

Hex Coding
In this encoding, a wide character is represented by the following five character
sequence:

ESC a b c d

Where a, b, c, d are the four hexadecimal characters (using uppercase letters)
of the wide character code. For example, ESC A345 is used to represent the
wide character with code 16#A345#. This scheme is compatible with use of the
full Wide Character set.

Upper-Half Coding
The wide character with encoding 16#abcd# where the upper bit is on (in other
words, “a” is in the range 8-F) is represented as two bytes, 16#ab# and 16#cd#.
The second byte cannot be a format control character, but is not required to
be in the upper half. This method can be also used for shift-JIS or EUC, where
the internal coding matches the external coding.

Shift JIS Coding
A wide character is represented by a two-character sequence, 16#ab# and
16#cd#, with the restrictions described for upper-half encoding as described
above. The internal character code is the corresponding JIS character
according to the standard algorithm for Shift-JIS conversion. Only characters
defined in the JIS code set table can be used with this encoding method.

EUC Coding
A wide character is represented by a two-character sequence 16#ab# and
16#cd#, with both characters being in the upper half. The internal character
code is the corresponding JIS character according to the EUC encoding
algorithm. Only characters defined in the JIS code set table can be used with
this encoding method.

UTF-8 Coding
A wide character is represented using UCS Transformation Format 8 (UTF-8)
as defined in Annex R of ISO 10646-1/Am.2. Depending on the character value,
the representation is a one, two, or three byte sequence:

16#0000#-16#007f#: 2#0xxxxxxx#

16#0080#-16#07ff#: 2#110xxxxx# 2#10xxxxxx#

16#0800#-16#ffff#: 2#1110xxxx# 2#10xxxxxx# 2#10xxxxxx#

20 GNAT User’s Guide for Native Platforms / Unix and Windows

where the xxx bits correspond to the left-padded bits of the 16-bit character
value. Note that all lower half ASCII characters are represented as ASCII
bytes and all upper half characters and other wide characters are represented
as sequences of upper-half (The full UTF-8 scheme allows for encoding 31-bit
characters as 6-byte sequences, but in this implementation, all UTF-8 sequences
of four or more bytes length will be treated as illegal).

Brackets Coding
In this encoding, a wide character is represented by the following eight character
sequence:

[" a b c d "]

Where a, b, c, d are the four hexadecimal characters (using uppercase letters)
of the wide character code. For example, [“A345”] is used to represent the wide
character with code 16#A345#. It is also possible (though not required) to use
the Brackets coding for upper half characters. For example, the code 16#A3#
can be represented as [‘‘A3’’].
This scheme is compatible with use of the full Wide Character set, and is also
the method used for wide character encoding in the standard ACVC (Ada
Compiler Validation Capability) test suite distributions.

Note: Some of these coding schemes do not permit the full use of the Ada 95 character set.
For example, neither Shift JIS, nor EUC allow the use of the upper half of the Latin-1 set.

2.3 File Naming Rules

The default file name is determined by the name of the unit that the file contains. The
name is formed by taking the full expanded name of the unit and replacing the separating
dots with hyphens and using lowercase for all letters.

An exception arises if the file name generated by the above rules starts with one of the
characters a,g,i, or s, and the second character is a minus. In this case, the character tilde
is used in place of the minus. The reason for this special rule is to avoid clashes with the
standard names for child units of the packages System, Ada, Interfaces, and GNAT, which
use the prefixes s- a- i- and g- respectively.

The file extension is ‘.ads’ for a spec and ‘.adb’ for a body. The following list shows
some examples of these rules.

‘main.ads’
Main (spec)

‘main.adb’
Main (body)

‘arith_functions.ads’
Arith Functions (package spec)

‘arith_functions.adb’
Arith Functions (package body)

‘func-spec.ads’
Func.Spec (child package spec)

Chapter 2: The GNAT Compilation Model 21

‘func-spec.adb’
Func.Spec (child package body)

‘main-sub.adb’
Sub (subunit of Main)

‘a~bad.adb’
A.Bad (child package body)

Following these rules can result in excessively long file names if corresponding unit names
are long (for example, if child units or subunits are heavily nested). An option is available
to shorten such long file names (called file name “krunching”). This may be particularly
useful when programs being developed with GNAT are to be used on operating systems
with limited file name lengths. See Section 14.2 [Using gnatkr], page 171.

Of course, no file shortening algorithm can guarantee uniqueness over all possible unit
names; if file name krunching is used, it is your responsibility to ensure no name clashes
occur. Alternatively you can specify the exact file names that you want used, as described
in the next section. Finally, if your Ada programs are migrating from a compiler with a
different naming convention, you can use the gnatchop utility to produce source files that
follow the GNAT naming conventions. (For details see Chapter 8 [Renaming Files Using
gnatchop], page 103.)

Note: in the case of Windows NT/XP or OpenVMS operating systems, case is not significant.
So for example on Windows XP if the canonical name is main-sub.adb, you can use the file
name Main-Sub.adb instead. However, case is significant for other operating systems, so
for example, if you want to use other than canonically cased file names on a Unix system,
you need to follow the procedures described in the next section.

2.4 Using Other File Names

In the previous section, we have described the default rules used by GNAT to determine the
file name in which a given unit resides. It is often convenient to follow these default rules,
and if you follow them, the compiler knows without being explicitly told where to find all
the files it needs.

However, in some cases, particularly when a program is imported from another Ada
compiler environment, it may be more convenient for the programmer to specify which file
names contain which units. GNAT allows arbitrary file names to be used by means of the
Source File Name pragma. The form of this pragma is as shown in the following examples:

� �
pragma Source_File_Name (My_Utilities.Stacks,

Spec_File_Name => "myutilst_a.ada");

pragma Source_File_name (My_Utilities.Stacks,

Body_File_Name => "myutilst.ada");
 	
As shown in this example, the first argument for the pragma is the unit name (in this
example a child unit). The second argument has the form of a named association. The
identifier indicates whether the file name is for a spec or a body; the file name itself is given
by a string literal.

22 GNAT User’s Guide for Native Platforms / Unix and Windows

The source file name pragma is a configuration pragma, which means that normally it
will be placed in the ‘gnat.adc’ file used to hold configuration pragmas that apply to a
complete compilation environment. For more details on how the ‘gnat.adc’ file is created
and used see Section 9.1 [Handling of Configuration Pragmas], page 107

GNAT allows completely arbitrary file names to be specified using the source file name
pragma. However, if the file name specified has an extension other than ‘.ads’ or ‘.adb’ it
is necessary to use a special syntax when compiling the file. The name in this case must
be preceded by the special sequence -x followed by a space and the name of the language,
here ada, as in:

$ gcc -c -x ada peculiar_file_name.sim

gnatmake handles non-standard file names in the usual manner (the non-standard file name
for the main program is simply used as the argument to gnatmake). Note that if the
extension is also non-standard, then it must be included in the gnatmake command, it may
not be omitted.

2.5 Alternative File Naming Schemes

In the previous section, we described the use of the Source_File_Name pragma to allow
arbitrary names to be assigned to individual source files. However, this approach requires
one pragma for each file, and especially in large systems can result in very long ‘gnat.adc’
files, and also create a maintenance problem.

GNAT also provides a facility for specifying systematic file naming schemes other than
the standard default naming scheme previously described. An alternative scheme for naming
is specified by the use of Source_File_Name pragmas having the following format:

pragma Source_File_Name (

Spec_File_Name => FILE_NAME_PATTERN

[,Casing => CASING_SPEC]

[,Dot_Replacement => STRING_LITERAL]);

pragma Source_File_Name (

Body_File_Name => FILE_NAME_PATTERN

[,Casing => CASING_SPEC]

[,Dot_Replacement => STRING_LITERAL]);

pragma Source_File_Name (

Subunit_File_Name => FILE_NAME_PATTERN

[,Casing => CASING_SPEC]

[,Dot_Replacement => STRING_LITERAL]);

FILE_NAME_PATTERN ::= STRING_LITERAL

CASING_SPEC ::= Lowercase | Uppercase | Mixedcase

The FILE_NAME_PATTERN string shows how the file name is constructed. It contains a single
asterisk character, and the unit name is substituted systematically for this asterisk. The
optional parameter Casing indicates whether the unit name is to be all upper-case letters,
all lower-case letters, or mixed-case. If no Casing parameter is used, then the default is all
lower-case.

The optional Dot_Replacement string is used to replace any periods that occur in subunit
or child unit names. If no Dot_Replacement argument is used then separating dots appear
unchanged in the resulting file name. Although the above syntax indicates that the Casing

Chapter 2: The GNAT Compilation Model 23

argument must appear before the Dot_Replacement argument, but it is also permissible to
write these arguments in the opposite order.

As indicated, it is possible to specify different naming schemes for bodies, specs, and
subunits. Quite often the rule for subunits is the same as the rule for bodies, in which
case, there is no need to give a separate Subunit_File_Name rule, and in this case the
Body_File_name rule is used for subunits as well.

The separate rule for subunits can also be used to implement the rather unusual case of
a compilation environment (e.g. a single directory) which contains a subunit and a child
unit with the same unit name. Although both units cannot appear in the same partition,
the Ada Reference Manual allows (but does not require) the possibility of the two units
coexisting in the same environment.

The file name translation works in the following steps:
• If there is a specific Source_File_Name pragma for the given unit, then this is always

used, and any general pattern rules are ignored.
• If there is a pattern type Source_File_Name pragma that applies to the unit, then the

resulting file name will be used if the file exists. If more than one pattern matches, the
latest one will be tried first, and the first attempt resulting in a reference to a file that
exists will be used.

• If no pattern type Source_File_Name pragma that applies to the unit for which the
corresponding file exists, then the standard GNAT default naming rules are used.

As an example of the use of this mechanism, consider a commonly used scheme in which
file names are all lower case, with separating periods copied unchanged to the resulting file
name, and specs end with ‘.1.ada’, and bodies end with ‘.2.ada’. GNAT will follow this
scheme if the following two pragmas appear:

pragma Source_File_Name

(Spec_File_Name => "*.1.ada");

pragma Source_File_Name

(Body_File_Name => "*.2.ada");

The default GNAT scheme is actually implemented by providing the following default prag-
mas internally:

pragma Source_File_Name

(Spec_File_Name => "*.ads", Dot_Replacement => "-");

pragma Source_File_Name

(Body_File_Name => "*.adb", Dot_Replacement => "-");

Our final example implements a scheme typically used with one of the Ada 83 compilers,
where the separator character for subunits was “ ” (two underscores), specs were identified
by adding ‘_.ADA’, bodies by adding ‘.ADA’, and subunits by adding ‘.SEP’. All file names
were upper case. Child units were not present of course since this was an Ada 83 compiler,
but it seems reasonable to extend this scheme to use the same double underscore separator
for child units.

pragma Source_File_Name

(Spec_File_Name => "*_.ADA",

Dot_Replacement => "__",

Casing = Uppercase);

pragma Source_File_Name

(Body_File_Name => "*.ADA",

Dot_Replacement => "__",

24 GNAT User’s Guide for Native Platforms / Unix and Windows

Casing = Uppercase);

pragma Source_File_Name

(Subunit_File_Name => "*.SEP",

Dot_Replacement => "__",

Casing = Uppercase);

2.6 Generating Object Files

An Ada program consists of a set of source files, and the first step in compiling the program
is to generate the corresponding object files. These are generated by compiling a subset of
these source files. The files you need to compile are the following:

• If a package spec has no body, compile the package spec to produce the object file for
the package.

• If a package has both a spec and a body, compile the body to produce the object file
for the package. The source file for the package spec need not be compiled in this case
because there is only one object file, which contains the code for both the spec and
body of the package.

• For a subprogram, compile the subprogram body to produce the object file for the
subprogram. The spec, if one is present, is as usual in a separate file, and need not be
compiled.

• In the case of subunits, only compile the parent unit. A single object file is generated
for the entire subunit tree, which includes all the subunits.

• Compile child units independently of their parent units (though, of course, the spec of
all the ancestor unit must be present in order to compile a child unit).

• Compile generic units in the same manner as any other units. The object files in
this case are small dummy files that contain at most the flag used for elaboration
checking. This is because GNAT always handles generic instantiation by means of
macro expansion. However, it is still necessary to compile generic units, for dependency
checking and elaboration purposes.

The preceding rules describe the set of files that must be compiled to generate the object
files for a program. Each object file has the same name as the corresponding source file,
except that the extension is ‘.o’ as usual.

You may wish to compile other files for the purpose of checking their syntactic and
semantic correctness. For example, in the case where a package has a separate spec and
body, you would not normally compile the spec. However, it is convenient in practice to
compile the spec to make sure it is error-free before compiling clients of this spec, because
such compilations will fail if there is an error in the spec.

GNAT provides an option for compiling such files purely for the purposes of checking
correctness; such compilations are not required as part of the process of building a program.
To compile a file in this checking mode, use the ‘-gnatc’ switch.

2.7 Source Dependencies

A given object file clearly depends on the source file which is compiled to produce it. Here
we are using depends in the sense of a typical make utility; in other words, an object file
depends on a source file if changes to the source file require the object file to be recompiled.

Chapter 2: The GNAT Compilation Model 25

In addition to this basic dependency, a given object may depend on additional source files
as follows:
• If a file being compiled with’s a unit X, the object file depends on the file containing

the spec of unit X. This includes files that are with’ed implicitly either because they
are parents of with’ed child units or they are run-time units required by the language
constructs used in a particular unit.

• If a file being compiled instantiates a library level generic unit, the object file depends
on both the spec and body files for this generic unit.

• If a file being compiled instantiates a generic unit defined within a package, the object
file depends on the body file for the package as well as the spec file.

• If a file being compiled contains a call to a subprogram for which pragma Inline applies
and inlining is activated with the ‘-gnatn’ switch, the object file depends on the file
containing the body of this subprogram as well as on the file containing the spec. Note
that for inlining to actually occur as a result of the use of this switch, it is necessary
to compile in optimizing mode.
The use of ‘-gnatN’ activates a more extensive inlining optimization that is performed
by the front end of the compiler. This inlining does not require that the code generation
be optimized. Like ‘-gnatn’, the use of this switch generates additional dependencies.
Note that ‘-gnatN’ automatically implies ‘-gnatn’ so it is not necessary to specify both
options.

• If an object file O depends on the proper body of a subunit through inlining or instan-
tiation, it depends on the parent unit of the subunit. This means that any modification
of the parent unit or one of its subunits affects the compilation of O.

• The object file for a parent unit depends on all its subunit body files.
• The previous two rules meant that for purposes of computing dependencies and recom-

pilation, a body and all its subunits are treated as an indivisible whole.
These rules are applied transitively: if unit A with’s unit B, whose elaboration calls an
inlined procedure in package C, the object file for unit A will depend on the body of C,
in file ‘c.adb’.
The set of dependent files described by these rules includes all the files on which the
unit is semantically dependent, as described in the Ada 95 Language Reference Manual.
However, it is a superset of what the ARM describes, because it includes generic, inline,
and subunit dependencies.
An object file must be recreated by recompiling the corresponding source file if any
of the source files on which it depends are modified. For example, if the make utility
is used to control compilation, the rule for an Ada object file must mention all the
source files on which the object file depends, according to the above definition. The
determination of the necessary recompilations is done automatically when one uses
gnatmake.

2.8 The Ada Library Information Files

Each compilation actually generates two output files. The first of these is the normal
object file that has a ‘.o’ extension. The second is a text file containing full dependency
information. It has the same name as the source file, but an ‘.ali’ extension. This file is

26 GNAT User’s Guide for Native Platforms / Unix and Windows

known as the Ada Library Information (‘ALI’) file. The following information is contained
in the ‘ALI’ file.

• Version information (indicates which version of GNAT was used to compile the unit(s)
in question)

• Main program information (including priority and time slice settings, as well as the
wide character encoding used during compilation).

• List of arguments used in the gcc command for the compilation

• Attributes of the unit, including configuration pragmas used, an indication of whether
the compilation was successful, exception model used etc.

• A list of relevant restrictions applying to the unit (used for consistency) checking.

• Categorization information (e.g. use of pragma Pure).

• Information on all with’ed units, including presence of Elaborate or Elaborate_All
pragmas.

• Information from any Linker_Options pragmas used in the unit

• Information on the use of Body_Version or Version attributes in the unit.

• Dependency information. This is a list of files, together with time stamp and checksum
information. These are files on which the unit depends in the sense that recompilation
is required if any of these units are modified.

• Cross-reference data. Contains information on all entities referenced in the unit. Used
by tools like gnatxref and gnatfind to provide cross-reference information.

For a full detailed description of the format of the ‘ALI’ file, see the source of the body of
unit Lib.Writ, contained in file ‘lib-writ.adb’ in the GNAT compiler sources.

2.9 Binding an Ada Program

When using languages such as C and C++, once the source files have been compiled the only
remaining step in building an executable program is linking the object modules together.
This means that it is possible to link an inconsistent version of a program, in which two
units have included different versions of the same header.

The rules of Ada do not permit such an inconsistent program to be built. For example,
if two clients have different versions of the same package, it is illegal to build a program
containing these two clients. These rules are enforced by the GNAT binder, which also
determines an elaboration order consistent with the Ada rules.

The GNAT binder is run after all the object files for a program have been created. It
is given the name of the main program unit, and from this it determines the set of units
required by the program, by reading the corresponding ALI files. It generates error messages
if the program is inconsistent or if no valid order of elaboration exists.

If no errors are detected, the binder produces a main program, in Ada by default, that
contains calls to the elaboration procedures of those compilation unit that require them,
followed by a call to the main program. This Ada program is compiled to generate the object
file for the main program. The name of the Ada file is ‘b~xxx.adb’ (with the corresponding
spec ‘b~xxx.ads’) where xxx is the name of the main program unit.

Chapter 2: The GNAT Compilation Model 27

Finally, the linker is used to build the resulting executable program, using the object
from the main program from the bind step as well as the object files for the Ada units of
the program.

2.10 Mixed Language Programming

This section describes how to develop a mixed-language program, specifically one that
comprises units in both Ada and C.

2.10.1 Interfacing to C

Interfacing Ada with a foreign language such as C involves using compiler directives to
import and/or export entity definitions in each language—using extern statements in C,
for instance, and the Import, Export, and Convention pragmas in Ada. For a full treatment
of these topics, read Appendix B, section 1 of the Ada 95 Language Reference Manual.

There are two ways to build a program using GNAT that contains some Ada sources
and some foreign language sources, depending on whether or not the main subprogram is
written in Ada. Here is a source example with the main subprogram in Ada:

/* file1.c */

#include <stdio.h>

void print_num (int num)

{

printf ("num is %d.\n", num);

return;

}

/* file2.c */

/* num_from_Ada is declared in my_main.adb */

extern int num_from_Ada;

int get_num (void)

{

return num_from_Ada;

}

-- my_main.adb

procedure My_Main is

-- Declare then export an Integer entity called num_from_Ada

My_Num : Integer := 10;

pragma Export (C, My_Num, "num_from_Ada");

-- Declare an Ada function spec for Get_Num, then use

-- C function get_num for the implementation.

function Get_Num return Integer;

pragma Import (C, Get_Num, "get_num");

-- Declare an Ada procedure spec for Print_Num, then use

-- C function print_num for the implementation.

procedure Print_Num (Num : Integer);

pragma Import (C, Print_Num, "print_num");

begin

Print_Num (Get_Num);

28 GNAT User’s Guide for Native Platforms / Unix and Windows

end My_Main;

1. To build this example, first compile the foreign language files to generate object files:
gcc -c file1.c

gcc -c file2.c

2. Then, compile the Ada units to produce a set of object files and ALI files:
gnatmake -c my_main.adb

3. Run the Ada binder on the Ada main program:
gnatbind my_main.ali

4. Link the Ada main program, the Ada objects and the other language objects:
gnatlink my_main.ali file1.o file2.o

The last three steps can be grouped in a single command:
gnatmake my_main.adb -largs file1.o file2.o

If the main program is in a language other than Ada, then you may have more than one
entry point into the Ada subsystem. You must use a special binder option to generate
callable routines that initialize and finalize the Ada units (see Section 4.2.5 [Binding with
Non-Ada Main Programs], page 76). Calls to the initialization and finalization routines
must be inserted in the main program, or some other appropriate point in the code. The
call to initialize the Ada units must occur before the first Ada subprogram is called, and
the call to finalize the Ada units must occur after the last Ada subprogram returns. The
binder will place the initialization and finalization subprograms into the ‘b~xxx.adb’ file
where they can be accessed by your C sources. To illustrate, we have the following example:

/* main.c */

extern void adainit (void);

extern void adafinal (void);

extern int add (int, int);

extern int sub (int, int);

int main (int argc, char *argv[])

{

int a = 21, b = 7;

adainit();

/* Should print "21 + 7 = 28" */

printf ("%d + %d = %d\n", a, b, add (a, b));

/* Should print "21 - 7 = 14" */

printf ("%d - %d = %d\n", a, b, sub (a, b));

adafinal();

}

-- unit1.ads

package Unit1 is

function Add (A, B : Integer) return Integer;

pragma Export (C, Add, "add");

end Unit1;

-- unit1.adb

package body Unit1 is

function Add (A, B : Integer) return Integer is

begin

return A + B;

end Add;

Chapter 2: The GNAT Compilation Model 29

end Unit1;

-- unit2.ads

package Unit2 is

function Sub (A, B : Integer) return Integer;

pragma Export (C, Sub, "sub");

end Unit2;

-- unit2.adb

package body Unit2 is

function Sub (A, B : Integer) return Integer is

begin

return A - B;

end Sub;

end Unit2;

1. The build procedure for this application is similar to the last example’s. First, compile
the foreign language files to generate object files:

gcc -c main.c

2. Next, compile the Ada units to produce a set of object files and ALI files:
gnatmake -c unit1.adb

gnatmake -c unit2.adb

3. Run the Ada binder on every generated ALI file. Make sure to use the ‘-n’ option to
specify a foreign main program:

gnatbind -n unit1.ali unit2.ali

4. Link the Ada main program, the Ada objects and the foreign language objects. You
need only list the last ALI file here:

gnatlink unit2.ali main.o -o exec_file

This procedure yields a binary executable called ‘exec_file’.

2.10.2 Calling Conventions

GNAT follows standard calling sequence conventions and will thus interface to any other
language that also follows these conventions. The following Convention identifiers are rec-
ognized by GNAT:

Ada This indicates that the standard Ada calling sequence will be used and all Ada
data items may be passed without any limitations in the case where GNAT is
used to generate both the caller and callee. It is also possible to mix GNAT
generated code and code generated by another Ada compiler. In this case,
the data types should be restricted to simple cases, including primitive types.
Whether complex data types can be passed depends on the situation. Probably
it is safe to pass simple arrays, such as arrays of integers or floats. Records
may or may not work, depending on whether both compilers lay them out
identically. Complex structures involving variant records, access parameters,
tasks, or protected types, are unlikely to be able to be passed.
Note that in the case of GNAT running on a platform that supports DEC
Ada 83, a higher degree of compatibility can be guaranteed, and in particular
records are layed out in an identical manner in the two compilers. Note also
that if output from two different compilers is mixed, the program is responsible
for dealing with elaboration issues. Probably the safest approach is to write
the main program in the version of Ada other than GNAT, so that it takes

30 GNAT User’s Guide for Native Platforms / Unix and Windows

care of its own elaboration requirements, and then call the GNAT-generated
adainit procedure to ensure elaboration of the GNAT components. Consult the
documentation of the other Ada compiler for further details on elaboration.

However, it is not possible to mix the tasking run time of GNAT and DEC Ada
83, All the tasking operations must either be entirely within GNAT compiled
sections of the program, or entirely within DEC Ada 83 compiled sections of
the program.

Assembler
Specifies assembler as the convention. In practice this has the same effect as
convention Ada (but is not equivalent in the sense of being considered the same
convention).

Asm Equivalent to Assembler.

COBOL Data will be passed according to the conventions described in section B.4 of the
Ada 95 Reference Manual.

C Data will be passed according to the conventions described in section B.3 of the
Ada 95 Reference Manual.

Default Equivalent to C.

External Equivalent to C.

CPP This stands for C++. For most purposes this is identical to C. See the separate
description of the specialized GNAT pragmas relating to C++ interfacing for
further details.

Fortran Data will be passed according to the conventions described in section B.5 of the
Ada 95 Reference Manual.

Intrinsic
This applies to an intrinsic operation, as defined in the Ada 95 Reference Man-
ual. If a a pragma Import (Intrinsic) applies to a subprogram, this means
that the body of the subprogram is provided by the compiler itself, usually
by means of an efficient code sequence, and that the user does not supply an
explicit body for it. In an application program, the pragma can only be applied
to the following two sets of names, which the GNAT compiler recognizes.

• Rotate Left, Rotate Right, Shift Left, Shift Right, Shift Right - Arith-
metic. The corresponding subprogram declaration must have two formal
parameters. The first one must be a signed integer type or a modular type
with a binary modulus, and the second parameter must be of type Natural.
The return type must be the same as the type of the first argument. The
size of this type can only be 8, 16, 32, or 64.

• binary arithmetic operators: “+”, “-”, “*”, “/” The corresponding operator
declaration must have parameters and result type that have the same root
numeric type (for example, all three are long float types). This simplifies
the definition of operations that use type checking to perform dimensional
checks:

Chapter 2: The GNAT Compilation Model 31

type Distance is new Long_Float;

type Time is new Long_Float;

type Velocity is new Long_Float;

function "/" (D : Distance; T : Time)

return Velocity;

pragma Import (Intrinsic, "/");

This common idiom is often programmed with a generic definition and an
explicit body. The pragma makes it simpler to introduce such declara-
tions. It incurs no overhead in compilation time or code size, because it is
implemented as a single machine instruction.

Stdcall This is relevant only to NT/Win95 implementations of GNAT, and specifies
that the Stdcall calling sequence will be used, as defined by the NT API.

DLL This is equivalent to Stdcall.

Win32 This is equivalent to Stdcall.

Stubbed This is a special convention that indicates that the compiler should provide a
stub body that raises Program_Error.

GNAT additionally provides a useful pragma Convention_Identifier that can be used to
parametrize conventions and allow additional synonyms to be specified. For example if you
have legacy code in which the convention identifier Fortran77 was used for Fortran, you can
use the configuration pragma:

pragma Convention_Identifier (Fortran77, Fortran);

And from now on the identifier Fortran77 may be used as a convention identifier (for example
in an Import pragma) with the same meaning as Fortran.

2.11 Building Mixed Ada & C++ Programs

A programmer inexperienced with mixed-language development may find that building an
application containing both Ada and C++ code can be a challenge. As a matter of fact,
interfacing with C++ has not been standardized in the Ada 95 Reference Manual due to
the immaturity of – and lack of standards for – C++ at the time. This section gives a
few hints that should make this task easier. The first section addresses the differences
regarding interfacing with C. The second section looks into the delicate problem of linking
the complete application from its Ada and C++ parts. The last section gives some hints on
how the GNAT run time can be adapted in order to allow inter-language dispatching with
a new C++ compiler.

2.11.1 Interfacing to C++

GNAT supports interfacing with C++ compilers generating code that is compatible with the
standard Application Binary Interface of the given platform.
Interfacing can be done at 3 levels: simple data, subprograms, and classes. In the first
two cases, GNAT offers a specific Convention CPP that behaves exactly like Convention C.
Usually, C++ mangles the names of subprograms, and currently, GNAT does not provide
any help to solve the demangling problem. This problem can be addressed in two ways:
• by modifying the C++ code in order to force a C convention using the extern "C"

syntax.

32 GNAT User’s Guide for Native Platforms / Unix and Windows

• by figuring out the mangled name and use it as the Link Name argument of the pragma
import.

Interfacing at the class level can be achieved by using the GNAT specific pragmas such as
CPP_Class and CPP_Virtual. See the GNAT Reference Manual for additional information.

2.11.2 Linking a Mixed C++ & Ada Program

Usually the linker of the C++ development system must be used to link mixed applications
because most C++ systems will resolve elaboration issues (such as calling constructors on
global class instances) transparently during the link phase. GNAT has been adapted to
ease the use of a foreign linker for the last phase. Three cases can be considered:

1. Using GNAT and G++ (GNU C++ compiler) from the same GCC installation: The
C++ linker can simply be called by using the C++ specific driver called c++. Note that
this setup is not very common because it may involve recompiling the whole GCC
tree from sources, which makes it harder to upgrade the compilation system for one
language without destabilizing the other.

$ c++ -c file1.C

$ c++ -c file2.C

$ gnatmake ada_unit -largs file1.o file2.o --LINK=c++

2. Using GNAT and G++ from two different GCC installations: If both compilers are on
the PATH, the previous method may be used. It is important to note that environment
variables such as C INCLUDE PATH, GCC EXEC PREFIX, BINUTILS ROOT, and
GCC ROOT will affect both compilers at the same time and may make one of the two
compilers operate improperly if set during invocation of the wrong compiler. It is also
very important that the linker uses the proper ‘libgcc.a’ GCC library – that is, the
one from the C++ compiler installation. The implicit link command as suggested in
the gnatmake command from the former example can be replaced by an explicit link
command with the full-verbosity option in order to verify which library is used:

$ gnatbind ada_unit

$ gnatlink -v -v ada_unit file1.o file2.o --LINK=c++

If there is a problem due to interfering environment variables, it can be worked around
by using an intermediate script. The following example shows the proper script to use
when GNAT has not been installed at its default location and g++ has been installed
at its default location:

$ cat ./my_script

#!/bin/sh

unset BINUTILS_ROOT

unset GCC_ROOT

c++ $*

$ gnatlink -v -v ada_unit file1.o file2.o --LINK=./my_script

3. Using a non-GNU C++ compiler: The commands previously described can be used to
insure that the C++ linker is used. Nonetheless, you need to add the path to libgcc
explicitly, since some libraries needed by GNAT are located in this directory:

$ cat ./my_script

#!/bin/sh

CC $* ‘gcc -print-libgcc-file-name‘

$ gnatlink ada_unit file1.o file2.o --LINK=./my_script

Where CC is the name of the non-GNU C++ compiler.

Chapter 2: The GNAT Compilation Model 33

2.11.3 A Simple Example

The following example, provided as part of the GNAT examples, shows how to achieve
procedural interfacing between Ada and C++ in both directions. The C++ class A has
two methods. The first method is exported to Ada by the means of an extern C wrapper
function. The second method calls an Ada subprogram. On the Ada side, The C++ calls
are modelled by a limited record with a layout comparable to the C++ class. The Ada
subprogram, in turn, calls the C++ method. So, starting from the C++ main program, the
process passes back and forth between the two languages.
Here are the compilation commands:

$ gnatmake -c simple_cpp_interface

$ c++ -c cpp_main.C

$ c++ -c ex7.C

$ gnatbind -n simple_cpp_interface

$ gnatlink simple_cpp_interface -o cpp_main --LINK=$(CPLUSPLUS)

-lstdc++ ex7.o cpp_main.o

Here are the corresponding sources:

//cpp_main.C

#include "ex7.h"

extern "C" {

void adainit (void);

void adafinal (void);

void method1 (A *t);

}

void method1 (A *t)

{

t->method1 ();

}

int main ()

{

A obj;

adainit ();

obj.method2 (3030);

adafinal ();

}

//ex7.h

class Origin {

public:

int o_value;

};

class A : public Origin {

public:

void method1 (void);

virtual void method2 (int v);

A();

int a_value;

};

//ex7.C

34 GNAT User’s Guide for Native Platforms / Unix and Windows

#include "ex7.h"

#include <stdio.h>

extern "C" { void ada_method2 (A *t, int v);}

void A::method1 (void)

{

a_value = 2020;

printf ("in A::method1, a_value = %d \n",a_value);

}

void A::method2 (int v)

{

ada_method2 (this, v);

printf ("in A::method2, a_value = %d \n",a_value);

}

A::A(void)

{

a_value = 1010;

printf ("in A::A, a_value = %d \n",a_value);

}

-- Ada sources

package body Simple_Cpp_Interface is

procedure Ada_Method2 (This : in out A; V : Integer) is
begin

Method1 (This);

This.A_Value := V;

end Ada_Method2;

end Simple_Cpp_Interface;

package Simple_Cpp_Interface is
type A is limited

record
O_Value : Integer;

A_Value : Integer;

end record;
pragma Convention (C, A);

procedure Method1 (This : in out A);

pragma Import (C, Method1);

procedure Ada_Method2 (This : in out A; V : Integer);

pragma Export (C, Ada_Method2);

end Simple_Cpp_Interface;

2.11.4 Adapting the Run Time to a New C++ Compiler

GNAT offers the capability to derive Ada 95 tagged types directly from preexisting C++
classes and . See “Interfacing with C++” in the GNAT Reference Manual. The mechanism
used by GNAT for achieving such a goal has been made user configurable through a GNAT

Chapter 2: The GNAT Compilation Model 35

library unit Interfaces.CPP. The default version of this file is adapted to the GNU C++
compiler. Internal knowledge of the virtual table layout used by the new C++ compiler is
needed to configure properly this unit. The Interface of this unit is known by the compiler
and cannot be changed except for the value of the constants defining the characteristics of
the virtual table: CPP DT Prologue Size, CPP DT Entry Size, CPP TSD Prologue Size,
CPP TSD Entry Size. Read comments in the source of this unit for more details.

2.12 Comparison between GNAT and C/C++ Compilation
Models

The GNAT model of compilation is close to the C and C++ models. You can think of Ada
specs as corresponding to header files in C. As in C, you don’t need to compile specs; they
are compiled when they are used. The Ada with is similar in effect to the #include of a C
header.

One notable difference is that, in Ada, you may compile specs separately to check them
for semantic and syntactic accuracy. This is not always possible with C headers because
they are fragments of programs that have less specific syntactic or semantic rules.

The other major difference is the requirement for running the binder, which performs two
important functions. First, it checks for consistency. In C or C++, the only defense against
assembling inconsistent programs lies outside the compiler, in a makefile, for example. The
binder satisfies the Ada requirement that it be impossible to construct an inconsistent
program when the compiler is used in normal mode.

The other important function of the binder is to deal with elaboration issues. There
are also elaboration issues in C++ that are handled automatically. This automatic handling
has the advantage of being simpler to use, but the C++ programmer has no control over
elaboration. Where gnatbind might complain there was no valid order of elaboration, a
C++ compiler would simply construct a program that malfunctioned at run time.

2.13 Comparison between GNAT and Conventional Ada
Library Models

This section is intended to be useful to Ada programmers who have previously used an
Ada compiler implementing the traditional Ada library model, as described in the Ada 95
Language Reference Manual. If you have not used such a system, please go on to the next
section.

In GNAT, there is no library in the normal sense. Instead, the set of source files them-
selves acts as the library. Compiling Ada programs does not generate any centralized
information, but rather an object file and a ALI file, which are of interest only to the binder
and linker. In a traditional system, the compiler reads information not only from the source
file being compiled, but also from the centralized library. This means that the effect of a
compilation depends on what has been previously compiled. In particular:
• When a unit is with’ed, the unit seen by the compiler corresponds to the version of

the unit most recently compiled into the library.
• Inlining is effective only if the necessary body has already been compiled into the

library.
• Compiling a unit may obsolete other units in the library.

36 GNAT User’s Guide for Native Platforms / Unix and Windows

In GNAT, compiling one unit never affects the compilation of any other units because the
compiler reads only source files. Only changes to source files can affect the results of a
compilation. In particular:
• When a unit is with’ed, the unit seen by the compiler corresponds to the source version

of the unit that is currently accessible to the compiler.
• Inlining requires the appropriate source files for the package or subprogram bodies to

be available to the compiler. Inlining is always effective, independent of the order in
which units are complied.

• Compiling a unit never affects any other compilations. The editing of sources may
cause previous compilations to be out of date if they depended on the source file being
modified.

The most important result of these differences is that order of compilation is never significant
in GNAT. There is no situation in which one is required to do one compilation before
another. What shows up as order of compilation requirements in the traditional Ada library
becomes, in GNAT, simple source dependencies; in other words, there is only a set of rules
saying what source files must be present when a file is compiled.

Chapter 3: Compiling Using gcc 37

3 Compiling Using gcc

This chapter discusses how to compile Ada programs using the gcc command. It also
describes the set of switches that can be used to control the behavior of the compiler.

3.1 Compiling Programs

The first step in creating an executable program is to compile the units of the program
using the gcc command. You must compile the following files:
• the body file (‘.adb’) for a library level subprogram or generic subprogram
• the spec file (‘.ads’) for a library level package or generic package that has no body
• the body file (‘.adb’) for a library level package or generic package that has a body

You need not compile the following files
• the spec of a library unit which has a body
• subunits

because they are compiled as part of compiling related units. GNAT package specs when
the corresponding body is compiled, and subunits when the parent is compiled.

If you attempt to compile any of these files, you will get one of the following error
messages (where fff is the name of the file you compiled):

cannot generate code for file fff (package spec)

to check package spec, use -gnatc

cannot generate code for file fff (missing subunits)

to check parent unit, use -gnatc

cannot generate code for file fff (subprogram spec)

to check subprogram spec, use -gnatc

cannot generate code for file fff (subunit)

to check subunit, use -gnatc

As indicated by the above error messages, if you want to submit one of these files to the
compiler to check for correct semantics without generating code, then use the ‘-gnatc’
switch.

The basic command for compiling a file containing an Ada unit is
$ gcc -c [switches] ‘file name’

where file name is the name of the Ada file (usually having an extension ‘.ads’ for a spec
or ‘.adb’ for a body). You specify the ‘-c’ switch to tell gcc to compile, but not link, the
file. The result of a successful compilation is an object file, which has the same name as the
source file but an extension of ‘.o’ and an Ada Library Information (ALI) file, which also
has the same name as the source file, but with ‘.ali’ as the extension. GNAT creates these
two output files in the current directory, but you may specify a source file in any directory
using an absolute or relative path specification containing the directory information.

gcc is actually a driver program that looks at the extensions of the file arguments and
loads the appropriate compiler. For example, the GNU C compiler is ‘cc1’, and the Ada
compiler is ‘gnat1’. These programs are in directories known to the driver program (in
some configurations via environment variables you set), but need not be in your path. The

38 GNAT User’s Guide for Native Platforms / Unix and Windows

gcc driver also calls the assembler and any other utilities needed to complete the generation
of the required object files.

It is possible to supply several file names on the same gcc command. This causes gcc to
call the appropriate compiler for each file. For example, the following command lists three
separate files to be compiled:

$ gcc -c x.adb y.adb z.c

calls gnat1 (the Ada compiler) twice to compile ‘x.adb’ and ‘y.adb’, and cc1 (the C
compiler) once to compile ‘z.c’. The compiler generates three object files ‘x.o’, ‘y.o’
and ‘z.o’ and the two ALI files ‘x.ali’ and ‘y.ali’ from the Ada compilations. Any
switches apply to all the files listed, except for ‘-gnatx ’ switches, which apply only to Ada
compilations.

3.2 Switches for gcc

The gcc command accepts switches that control the compilation process. These switches
are fully described in this section. First we briefly list all the switches, in alphabetical order,
then we describe the switches in more detail in functionally grouped sections.

‘-b target ’
Compile your program to run on target, which is the name of a system config-
uration. You must have a GNAT cross-compiler built if target is not the same
as your host system.

‘-Bdir ’ Load compiler executables (for example, gnat1, the Ada compiler) from dir
instead of the default location. Only use this switch when multiple versions of
the GNAT compiler are available. See the gcc manual page for further details.
You would normally use the ‘-b’ or ‘-V’ switch instead.

‘-c’ Compile. Always use this switch when compiling Ada programs.
Note: for some other languages when using gcc, notably in the case of C and
C++, it is possible to use use gcc without a ‘-c’ switch to compile and link
in one step. In the case of GNAT, you cannot use this approach, because the
binder must be run and gcc cannot be used to run the GNAT binder.

‘-fno-inline’
Suppresses all back-end inlining, even if other optimization or inlining switches
are set. This includes suppression of inlining that results from the use of the
pragma Inline_Always. See also ‘-gnatn’ and ‘-gnatN’.

‘-fstack-check’
Activates stack checking. See Section 3.2.7 [Stack Overflow Checking], page 59,
for details of the use of this option.

‘-g’ Generate debugging information. This information is stored in the object file
and copied from there to the final executable file by the linker, where it can be
read by the debugger. You must use the ‘-g’ switch if you plan on using the
debugger.

‘-gnat83’ Enforce Ada 83 restrictions.

‘-gnata’ Assertions enabled. Pragma Assert and pragma Debug to be activated.

Chapter 3: Compiling Using gcc 39

‘-gnatA’ Avoid processing ‘gnat.adc’. If a gnat.adc file is present, it will be ignored.

‘-gnatb’ Generate brief messages to ‘stderr’ even if verbose mode set.

‘-gnatc’ Check syntax and semantics only (no code generation attempted).

‘-gnatd’ Specify debug options for the compiler. The string of characters after the
‘-gnatd’ specify the specific debug options. The possible characters are 0-9,
a-z, A-Z, optionally preceded by a dot. See compiler source file ‘debug.adb’ for
details of the implemented debug options. Certain debug options are relevant
to applications programmers, and these are documented at appropriate points
in this users guide.

‘-gnatD’ Output expanded source files for source level debugging. This switch also sup-
press generation of cross-reference information (see ‘-gnatx’).

‘-gnatec=path ’
Specify a configuration pragma file (the equal sign is optional) (see Section 9.2
[The Configuration Pragmas Files], page 108).

‘-gnateDsymbol[=value]’
Defines a symbol, associated with value, for preprocessing. (see Section 3.2.18
[Integrated Preprocessing], page 67)

‘-gnatef’ Display full source path name in brief error messages.

‘-gnatem=path ’
Specify a mapping file (the equal sign is optional) (see Section 3.2.17 [Units to
Sources Mapping Files], page 66).

‘-gnatep=file ’
Specify a preprocessing data file (the equal sign is optional) (see Section 3.2.18
[Integrated Preprocessing], page 67).

‘-gnatE’ Full dynamic elaboration checks.

‘-gnatf’ Full errors. Multiple errors per line, all undefined references, do not attempt to
suppress cascaded errors.

‘-gnatF’ Externals names are folded to all uppercase.

‘-gnatg’ Internal GNAT implementation mode. This should not be used for applica-
tions programs, it is intended only for use by the compiler and its run-time
library. For documentation, see the GNAT sources. Note that ‘-gnatg’ im-
plies ‘-gnatwu’ so that warnings are generated on unreferenced entities, and all
warnings are treated as errors.

‘-gnatG’ List generated expanded code in source form.

‘-gnath’ Output usage information. The output is written to ‘stdout’.

‘-gnatic ’ Identifier character set (c=1/2/3/4/8/9/p/f/n/w).

‘-gnatk=n ’
Limit file names to n (1-999) characters (k = krunch).

‘-gnatl’ Output full source listing with embedded error messages.

40 GNAT User’s Guide for Native Platforms / Unix and Windows

‘-gnatL’ Use the longjmp/setjmp method for exception handling

‘-gnatm=n ’
Limit number of detected error or warning messages to n where n is in the range
1..999 999. The default setting if no switch is given is 9999. Compilation is
terminated if this limit is exceeded.

‘-gnatn’ Activate inlining for subprograms for which pragma inline is specified. This
inlining is performed by the GCC back-end.

‘-gnatN’ Activate front end inlining for subprograms for which pragma Inline is spec-
ified. This inlining is performed by the front end and will be visible in the
‘-gnatG’ output. In some cases, this has proved more effective than the back
end inlining resulting from the use of ‘-gnatn’. Note that ‘-gnatN’ automati-
cally implies ‘-gnatn’ so it is not necessary to specify both options. There are
a few cases that the back-end inlining catches that cannot be dealt with in the
front-end.

‘-gnato’ Enable numeric overflow checking (which is not normally enabled by default).
Not that division by zero is a separate check that is not controlled by this switch
(division by zero checking is on by default).

‘-gnatp’ Suppress all checks.

‘-gnatP’ Enable polling. This is required on some systems (notably Windows NT) to
obtain asynchronous abort and asynchronous transfer of control capability. See
the description of pragma Polling in the GNAT Reference Manual for full de-
tails.

‘-gnatq’ Don’t quit; try semantics, even if parse errors.

‘-gnatQ’ Don’t quit; generate ‘ALI’ and tree files even if illegalities.

‘-gnatR[0/1/2/3[s]]’
Output representation information for declared types and objects.

‘-gnats’ Syntax check only.

‘-gnatS’ Print package Standard.

‘-gnatt’ Generate tree output file.

‘-gnatTnnn ’
All compiler tables start at nnn times usual starting size.

‘-gnatu’ List units for this compilation.

‘-gnatU’ Tag all error messages with the unique string “error:”

‘-gnatv’ Verbose mode. Full error output with source lines to ‘stdout’.

‘-gnatV’ Control level of validity checking. See separate section describing this feature.

‘-gnatwxxx ’
Warning mode where xxx is a string of option letters that denotes the exact
warnings that are enabled or disabled. (see Section 3.2.2 [Warning Message
Control], page 44)

Chapter 3: Compiling Using gcc 41

‘-gnatWe ’ Wide character encoding method (e=n/h/u/s/e/8).

‘-gnatx’ Suppress generation of cross-reference information.

‘-gnaty’ Enable built-in style checks. (see Section 3.2.5 [Style Checking], page 53)

‘-gnatzm ’ Distribution stub generation and compilation (m=r/c for receiver/caller stubs).

‘-gnatZ’ Use the zero cost method for exception handling

‘-Idir ’ Direct GNAT to search the dir directory for source files needed by the current
compilation (see Section 3.3 [Search Paths and the Run-Time Library (RTL)],
page 69).

‘-I-’ Except for the source file named in the command line, do not look for source
files in the directory containing the source file named in the command line (see
Section 3.3 [Search Paths and the Run-Time Library (RTL)], page 69).

‘-mbig-switch’
This standard gcc switch causes the compiler to use larger offsets in its jump
table representation for case statements. This may result in less efficient code,
but is sometimes necessary (for example on HP-UX targets) in order to compile
large and/or nested case statements.

‘-o file ’ This switch is used in gcc to redirect the generated object file and its associated
ALI file. Beware of this switch with GNAT, because it may cause the object
file and ALI file to have different names which in turn may confuse the binder
and the linker.

‘-nostdinc’
Inhibit the search of the default location for the GNAT Run Time Library
(RTL) source files.

‘-nostdlib’
Inhibit the search of the default location for the GNAT Run Time Library
(RTL) ALI files.

‘-O[n]’ n controls the optimization level.

n = 0 No optimization, the default setting if no ‘-O’ appears

n = 1 Normal optimization, the default if you specify ‘-O’ without an
operand.

n = 2 Extensive optimization

n = 3 Extensive optimization with automatic inlining of subprograms not
specified by pragma Inline. This applies only to inlining within
a unit. For details on control of inlining see See Section 3.2.13
[Subprogram Inlining Control], page 62.

‘-pass-exit-codes’
Catch exit codes from the compiler and use the most meaningful as exit status.

‘--RTS=rts-path ’
Specifies the default location of the runtime library. Same meaning as the
equivalent gnatmake flag (see Section 6.2 [Switches for gnatmake], page 86).

42 GNAT User’s Guide for Native Platforms / Unix and Windows

‘-S’ Used in place of ‘-c’ to cause the assembler source file to be generated, using
‘.s’ as the extension, instead of the object file. This may be useful if you need
to examine the generated assembly code.

‘-v’ Show commands generated by the gcc driver. Normally used only for debug-
ging purposes or if you need to be sure what version of the compiler you are
executing.

‘-V ver ’ Execute ver version of the compiler. This is the gcc version, not the GNAT
version.

You may combine a sequence of GNAT switches into a single switch. For example, the
combined switch

-gnatofi3

is equivalent to specifying the following sequence of switches:
-gnato -gnatf -gnati3

The following restrictions apply to the combination of switches in this manner:

• The switch ‘-gnatc’ if combined with other switches must come first in the string.

• The switch ‘-gnats’ if combined with other switches must come first in the string.

• The switches ‘-gnatz’, ‘-gnatzc’, and ‘-gnatzr’ may not be combined with any other
switches.

• Once a “y” appears in the string (that is a use of the ‘-gnaty’ switch), then all further
characters in the switch are interpreted as style modifiers (see description of ‘-gnaty’).

• Once a “d” appears in the string (that is a use of the ‘-gnatd’ switch), then all further
characters in the switch are interpreted as debug flags (see description of ‘-gnatd’).

• Once a “w” appears in the string (that is a use of the ‘-gnatw’ switch), then all further
characters in the switch are interpreted as warning mode modifiers (see description of
‘-gnatw’).

• Once a “V” appears in the string (that is a use of the ‘-gnatV’ switch), then all further
characters in the switch are interpreted as validity checking options (see description of
‘-gnatV’).

3.2.1 Output and Error Message Control

The standard default format for error messages is called “brief format”. Brief format mes-
sages are written to ‘stderr’ (the standard error file) and have the following form:

e.adb:3:04: Incorrect spelling of keyword "function"

e.adb:4:20: ";" should be "is"

The first integer after the file name is the line number in the file, and the second integer is
the column number within the line. glide can parse the error messages and point to the
referenced character. The following switches provide control over the error message format:

‘-gnatv’ The v stands for verbose. The effect of this setting is to write long-format error
messages to ‘stdout’ (the standard output file. The same program compiled
with the ‘-gnatv’ switch would generate:

Chapter 3: Compiling Using gcc 43� �
3. funcion X (Q : Integer)

|

>>> Incorrect spelling of keyword "function"

4. return Integer;

|

>>> ";" should be "is"
 	
The vertical bar indicates the location of the error, and the ‘>>>’ prefix can be
used to search for error messages. When this switch is used the only source
lines output are those with errors.

‘-gnatl’ The l stands for list. This switch causes a full listing of the file to be generated.
The output might look as follows:� �

1. procedure E is

2. V : Integer;

3. funcion X (Q : Integer)

|

>>> Incorrect spelling of keyword "function"

4. return Integer;

|

>>> ";" should be "is"

5. begin

6. return Q + Q;

7. end;

8. begin

9. V := X + X;

10.end E;
 	
When you specify the ‘-gnatv’ or ‘-gnatl’ switches and standard output is
redirected, a brief summary is written to ‘stderr’ (standard error) giving the
number of error messages and warning messages generated.

‘-gnatU’ This switch forces all error messages to be preceded by the unique string “er-
ror:”. This means that error messages take a few more characters in space, but
allows easy searching for and identification of error messages.

‘-gnatb’ The b stands for brief. This switch causes GNAT to generate the brief format
error messages to ‘stderr’ (the standard error file) as well as the verbose format
message or full listing (which as usual is written to ‘stdout’ (the standard
output file).

‘-gnatmn ’ The m stands for maximum. n is a decimal integer in the range of 1 to 999
and limits the number of error messages to be generated. For example, using
‘-gnatm2’ might yield

e.adb:3:04: Incorrect spelling of keyword "function"

e.adb:5:35: missing ".."

fatal error: maximum errors reached

compilation abandoned

‘-gnatf’ The f stands for full. Normally, the compiler suppresses error messages that are
likely to be redundant. This switch causes all error messages to be generated.
In particular, in the case of references to undefined variables. If a given variable
is referenced several times, the normal format of messages is

e.adb:7:07: "V" is undefined (more references follow)

44 GNAT User’s Guide for Native Platforms / Unix and Windows

where the parenthetical comment warns that there are additional references to
the variable V. Compiling the same program with the ‘-gnatf’ switch yields

e.adb:7:07: "V" is undefined

e.adb:8:07: "V" is undefined

e.adb:8:12: "V" is undefined

e.adb:8:16: "V" is undefined

e.adb:9:07: "V" is undefined

e.adb:9:12: "V" is undefined

The ‘-gnatf’ switch also generates additional information for some error mes-
sages. Some examples are:
• Full details on entities not available in high integrity mode
• Details on possibly non-portable unchecked conversion
• List possible interpretations for ambiguous calls
• Additional details on incorrect parameters

‘-gnatq’ The q stands for quit (really “don’t quit”). In normal operation mode, the
compiler first parses the program and determines if there are any syntax errors.
If there are, appropriate error messages are generated and compilation is imme-
diately terminated. This switch tells GNAT to continue with semantic analysis
even if syntax errors have been found. This may enable the detection of more
errors in a single run. On the other hand, the semantic analyzer is more likely
to encounter some internal fatal error when given a syntactically invalid tree.

‘-gnatQ’ In normal operation mode, the ‘ALI’ file is not generated if any illegalities are
detected in the program. The use of ‘-gnatQ’ forces generation of the ‘ALI’ file.
This file is marked as being in error, so it cannot be used for binding purposes,
but it does contain reasonably complete cross-reference information, and thus
may be useful for use by tools (e.g. semantic browsing tools or integrated
development environments) that are driven from the ‘ALI’ file. This switch
implies ‘-gnatq’, since the semantic phase must be run to get a meaningful
ALI file.
In addition, if ‘-gnatt’ is also specified, then the tree file is generated even
if there are illegalities. It may be useful in this case to also specify ‘-gnatq’
to ensure that full semantic processing occurs. The resulting tree file can be
processed by ASIS, for the purpose of providing partial information about illegal
units, but if the error causes the tree to be badly malformed, then ASIS may
crash during the analysis.
When ‘-gnatQ’ is used and the generated ‘ALI’ file is marked as being in error,
gnatmake will attempt to recompile the source when it finds such an ‘ALI’ file,
including with switch ‘-gnatc’.
Note that ‘-gnatQ’ has no effect if ‘-gnats’ is specified, since ALI files are never
generated if ‘-gnats’ is set.

3.2.2 Warning Message Control

In addition to error messages, which correspond to illegalities as defined in the Ada 95
Reference Manual, the compiler detects two kinds of warning situations.

First, the compiler considers some constructs suspicious and generates a warning message
to alert you to a possible error. Second, if the compiler detects a situation that is sure to

Chapter 3: Compiling Using gcc 45

raise an exception at run time, it generates a warning message. The following shows an
example of warning messages:

e.adb:4:24: warning: creation of object may raise Storage_Error

e.adb:10:17: warning: static value out of range

e.adb:10:17: warning: "Constraint_Error" will be raised at run time

GNAT considers a large number of situations as appropriate for the generation of warning
messages. As always, warnings are not definite indications of errors. For example, if you
do an out-of-range assignment with the deliberate intention of raising a Constraint_Error
exception, then the warning that may be issued does not indicate an error. Some of the
situations for which GNAT issues warnings (at least some of the time) are given in the
following list. This list is not complete, and new warnings are often added to subsequent
versions of GNAT. The list is intended to give a general idea of the kinds of warnings that
are generated.
• Possible infinitely recursive calls
• Out-of-range values being assigned
• Possible order of elaboration problems
• Unreachable code
• Fixed-point type declarations with a null range
• Variables that are never assigned a value
• Variables that are referenced before being initialized
• Task entries with no corresponding accept statement
• Duplicate accepts for the same task entry in a select

• Objects that take too much storage
• Unchecked conversion between types of differing sizes
• Missing return statement along some execution path in a function
• Incorrect (unrecognized) pragmas
• Incorrect external names
• Allocation from empty storage pool
• Potentially blocking operation in protected type
• Suspicious parenthesization of expressions
• Mismatching bounds in an aggregate
• Attempt to return local value by reference
• Premature instantiation of a generic body
• Attempt to pack aliased components
• Out of bounds array subscripts
• Wrong length on string assignment
• Violations of style rules if style checking is enabled
• Unused with clauses
• Bit_Order usage that does not have any effect
• Standard.Duration used to resolve universal fixed expression
• Dereference of possibly null value

46 GNAT User’s Guide for Native Platforms / Unix and Windows

• Declaration that is likely to cause storage error
• Internal GNAT unit with’ed by application unit
• Values known to be out of range at compile time
• Unreferenced labels and variables
• Address overlays that could clobber memory
• Unexpected initialization when address clause present
• Bad alignment for address clause
• Useless type conversions
• Redundant assignment statements and other redundant constructs
• Useless exception handlers
• Accidental hiding of name by child unit
• Access before elaboration detected at compile time
• A range in a for loop that is known to be null or might be null

The following switches are available to control the handling of warning messages:

‘-gnatwa’ Activate all optional errors. This switch activates most optional warning mes-
sages, see remaining list in this section for details on optional warning messages
that can be individually controlled. The warnings that are not turned on by this
switch are ‘-gnatwd’ (implicit dereferencing), ‘-gnatwh’ (hiding), and ‘-gnatwl’
(elaboration warnings). All other optional warnings are turned on.

‘-gnatwA’ Suppress all optional errors. This switch suppresses all optional warning mes-
sages, see remaining list in this section for details on optional warning messages
that can be individually controlled.

‘-gnatwc’ Activate warnings on conditionals. This switch activates warnings for condi-
tional expressions used in tests that are known to be True or False at compile
time. The default is that such warnings are not generated. Note that this
warning does not get issued for the use of boolean variables or constants whose
values are known at compile time, since this is a standard technique for condi-
tional compilation in Ada, and this would generate too many “false positive”
warnings. This warning can also be turned on using ‘-gnatwa’.

‘-gnatwC’ Suppress warnings on conditionals. This switch suppresses warnings for condi-
tional expressions used in tests that are known to be True or False at compile
time.

‘-gnatwd’ Activate warnings on implicit dereferencing. If this switch is set, then the use of
a prefix of an access type in an indexed component, slice, or selected component
without an explicit .all will generate a warning. With this warning enabled,
access checks occur only at points where an explicit .all appears in the source
code (assuming no warnings are generated as a result of this switch). The
default is that such warnings are not generated. Note that ‘-gnatwa’ does not
affect the setting of this warning option.

‘-gnatwD’ Suppress warnings on implicit dereferencing. This switch suppresses warnings
for implicit dereferences in indexed components, slices, and selected compo-
nents.

Chapter 3: Compiling Using gcc 47

‘-gnatwe’ Treat warnings as errors. This switch causes warning messages to be treated as
errors. The warning string still appears, but the warning messages are counted
as errors, and prevent the generation of an object file.

‘-gnatwf’ Activate warnings on unreferenced formals. This switch causes a warning to be
generated if a formal parameter is not referenced in the body of the subprogram.
This warning can also be turned on using ‘-gnatwa’ or ‘-gnatwu’.

‘-gnatwF’ Suppress warnings on unreferenced formals. This switch suppresses warnings
for unreferenced formal parameters. Note that the combination ‘-gnatwu’ fol-
lowed by ‘-gnatwF’ has the effect of warning on unreferenced entities other than
subprogram formals.

‘-gnatwg’ Activate warnings on unrecognized pragmas. This switch causes a warning to
be generated if an unrecognized pragma is encountered. Apart from issuing
this warning, the pragma is ignored and has no effect. This warning can also
be turned on using ‘-gnatwa’. The default is that such warnings are issued
(satisfying the Ada Reference Manual requirement that such warnings appear).

‘-gnatwG’ Suppress warnings on unrecognized pragmas. This switch suppresses warnings
for unrecognized pragmas.

‘-gnatwh’ Activate warnings on hiding. This switch activates warnings on hiding declara-
tions. A declaration is considered hiding if it is for a non-overloadable entity,
and it declares an entity with the same name as some other entity that is di-
rectly or use-visible. The default is that such warnings are not generated. Note
that ‘-gnatwa’ does not affect the setting of this warning option.

‘-gnatwH’ Suppress warnings on hiding. This switch suppresses warnings on hiding dec-
larations.

‘-gnatwi’ Activate warnings on implementation units. This switch activates warnings for
a with of an internal GNAT implementation unit, defined as any unit from the
Ada, Interfaces, GNAT, or System hierarchies that is not documented in either
the Ada Reference Manual or the GNAT Programmer’s Reference Manual. Such
units are intended only for internal implementation purposes and should not
be with’ed by user programs. The default is that such warnings are generated
This warning can also be turned on using ‘-gnatwa’.

‘-gnatwI’ Disable warnings on implementation units. This switch disables warnings for a
with of an internal GNAT implementation unit.

‘-gnatwj’ Activate warnings on obsolescent features (Annex J). If this warning option is
activated, then warnings are generated for calls to subprograms marked with
pragma Obsolescent and for use of features in Annex J of the Ada Reference
Manual. In the case of Annex J, not all features are flagged. In particular
use of the renamed packages (like Text_IO) and use of package ASCII are not
flagged, since these are very common and would generate many annoying posi-
tive warnings. The default is that such warnings are not generated.

‘-gnatwJ’ Suppress warnings on obsolescent features (Annex J). This switch disables warn-
ings on use of obsolescent features.

48 GNAT User’s Guide for Native Platforms / Unix and Windows

‘-gnatwk’ Activate warnings on variables that could be constants. This switch activates
warnings for variables that are initialized but never modified, and then could
be declared constants.

‘-gnatwK’ Suppress warnings on variables that could be constants. This switch disables
warnings on variables that could be declared constants.

‘-gnatwl’ Activate warnings for missing elaboration pragmas. This switch activates warn-
ings on missing pragma Elaborate_All statements. See the section in this
guide on elaboration checking for details on when such pragma should be used.
Warnings are also generated if you are using the static mode of elaboration,
and a pragma Elaborate is encountered. The default is that such warnings
are not generated. This warning is not automatically turned on by the use of
‘-gnatwa’.

‘-gnatwL’ Suppress warnings for missing elaboration pragmas. This switch suppresses
warnings on missing pragma Elaborate All statements. See the section in this
guide on elaboration checking for details on when such pragma should be used.

‘-gnatwm’ Activate warnings on modified but unreferenced variables. This switch activates
warnings for variables that are assigned (using an initialization value or with
one or more assignment statements) but whose value is never read. The warning
is suppressed for volatile variables and also for variables that are renamings of
other variables or for which an address clause is given. This warning can also
be turned on using ‘-gnatwa’.

‘-gnatwM’ Disable warnings on modified but unreferenced variables. This switch disables
warnings for variables that are assigned or initialized, but never read.

‘-gnatwn’ Set normal warnings mode. This switch sets normal warning mode, in which
enabled warnings are issued and treated as warnings rather than errors. This
is the default mode. the switch ‘-gnatwn’ can be used to cancel the effect of
an explicit ‘-gnatws’ or ‘-gnatwe’. It also cancels the effect of the implicit
‘-gnatwe’ that is activated by the use of ‘-gnatg’.

‘-gnatwo’ Activate warnings on address clause overlays. This switch activates warnings
for possibly unintended initialization effects of defining address clauses that
cause one variable to overlap another. The default is that such warnings are
generated. This warning can also be turned on using ‘-gnatwa’.

‘-gnatwO’ Suppress warnings on address clause overlays. This switch suppresses warnings
on possibly unintended initialization effects of defining address clauses that
cause one variable to overlap another.

‘-gnatwp’ Activate warnings on ineffective pragma Inlines. This switch activates warnings
for failure of front end inlining (activated by ‘-gnatN’) to inline a particular
call. There are many reasons for not being able to inline a call, including most
commonly that the call is too complex to inline. This warning can also be
turned on using ‘-gnatwa’.

‘-gnatwP’ Suppress warnings on ineffective pragma Inlines. This switch suppresses warn-
ings on ineffective pragma Inlines. If the inlining mechanism cannot inline a
call, it will simply ignore the request silently.

Chapter 3: Compiling Using gcc 49

‘-gnatwr’ Activate warnings on redundant constructs. This switch activates warnings for
redundant constructs. The following is the current list of constructs regarded
as redundant: This warning can also be turned on using ‘-gnatwa’.

• Assignment of an item to itself.

• Type conversion that converts an expression to its own type.

• Use of the attribute Base where typ’Base is the same as typ.

• Use of pragma Pack when all components are placed by a record represen-
tation clause.

• Exception handler containing only a reraise statement (raise with no
operand) which has no effect.

• Use of the operator abs on an operand that is known at compile time to
be non-negative

• Use of an unnecessary extra level of parentheses (C-style) around conditions
in if statements, while statements and exit statements.

• Comparison of boolean expressions to an explicit True value.

‘-gnatwR’ Suppress warnings on redundant constructs. This switch suppresses warnings
for redundant constructs.

‘-gnatws’ Suppress all warnings. This switch completely suppresses the output of all
warning messages from the GNAT front end. Note that it does not suppress
warnings from the gcc back end. To suppress these back end warnings as well,
use the switch ‘-w’ in addition to ‘-gnatws’.

‘-gnatwu’ Activate warnings on unused entities. This switch activates warnings to be
generated for entities that are declared but not referenced, and for units that are
with’ed and not referenced. In the case of packages, a warning is also generated
if no entities in the package are referenced. This means that if the package is
referenced but the only references are in use clauses or renames declarations, a
warning is still generated. A warning is also generated for a generic package that
is with’ed but never instantiated. In the case where a package or subprogram
body is compiled, and there is a with on the corresponding spec that is only
referenced in the body, a warning is also generated, noting that the with can
be moved to the body. The default is that such warnings are not generated.
This switch also activates warnings on unreferenced formals (it is includes the
effect of ‘-gnatwf’). This warning can also be turned on using ‘-gnatwa’.

‘-gnatwU’ Suppress warnings on unused entities. This switch suppresses warnings for
unused entities and packages. It also turns off warnings on unreferenced formals
(and thus includes the effect of ‘-gnatwF’).

‘-gnatwv’ Activate warnings on unassigned variables. This switch activates warnings for
access to variables which may not be properly initialized. The default is that
such warnings are generated.

‘-gnatwV’ Suppress warnings on unassigned variables. This switch suppresses warnings
for access to variables which may not be properly initialized.

50 GNAT User’s Guide for Native Platforms / Unix and Windows

‘-gnatwx’ Activate warnings on Export/Import pragmas. This switch activates warnings
on Export/Import pragmas when the compiler detects a possible conflict be-
tween the Ada and foreign language calling sequences. For example, the use
of default parameters in a convention C procedure is dubious because the C
compiler cannot supply the proper default, so a warning is issued. The default
is that such warnings are generated.

‘-gnatwX’ Suppress warnings on Export/Import pragmas. This switch suppresses warnings
on Export/Import pragmas. The sense of this is that you are telling the com-
piler that you know what you are doing in writing the pragma, and it should
not complain at you.

‘-gnatwz’ Activate warnings on unchecked conversions. This switch activates warnings
for unchecked conversions where the types are known at compile time to have
different sizes. The default is that such warnings are generated.

‘-gnatwZ’ Suppress warnings on unchecked conversions. This switch suppresses warnings
for unchecked conversions where the types are known at compile time to have
different sizes.

‘-Wuninitialized’
The warnings controlled by the ‘-gnatw’ switch are generated by the front end of
the compiler. In some cases, the ‘gcc’ back end can provide additional warnings.
One such useful warning is provided by ‘-Wuninitialized’. This must be
used in conjunction with tunrning on optimization mode. This causes the flow
analysis circuits of the back end optimizer to output additional warnings about
uninitialized variables.

‘-w’ This switch suppresses warnings from the ‘gcc’ back end. It may be used in
conjunction with ‘-gnatws’ to ensure that all warnings are suppressed during
the entire compilation process.

A string of warning parameters can be used in the same parameter. For example:
-gnatwaLe

will turn on all optional warnings except for elaboration pragma warnings, and also spec-
ify that warnings should be treated as errors. When no switch ‘-gnatw’ is used, this is
equivalent to:

‘-gnatwB’

‘-gnatwC’

‘-gnatwK’

‘-gnatwD’

‘-gnatwL’

‘-gnatwH’

‘-gnatwi’

‘-gnatwP’

‘-gnatwn’

Chapter 3: Compiling Using gcc 51

‘-gnatwo’

‘-gnatwz’

‘-gnatwx’

3.2.3 Debugging and Assertion Control

‘-gnata’
The pragmas Assert and Debug normally have no effect and are ignored. This
switch, where ‘a’ stands for assert, causes Assert and Debug pragmas to be
activated.
The pragmas have the form:� �

pragma Assert (Boolean-expression [,

static-string-expression])

pragma Debug (procedure call)
 	
The Assert pragma causes Boolean-expression to be tested. If the result is
True, the pragma has no effect (other than possible side effects from evaluating
the expression). If the result is False, the exception Assert_Failure declared
in the package System.Assertions is raised (passing static-string-expression, if
present, as the message associated with the exception). If no string expression
is given the default is a string giving the file name and line number of the
pragma.
The Debug pragma causes procedure to be called. Note that pragma Debug
may appear within a declaration sequence, allowing debugging procedures to
be called between declarations.

3.2.4 Validity Checking

The Ada 95 Reference Manual has specific requirements for checking for invalid values.
In particular, RM 13.9.1 requires that the evaluation of invalid values (for example from
unchecked conversions), not result in erroneous execution. In GNAT, the result of such
an evaluation in normal default mode is to either use the value unmodified, or to raise
Constraint Error in those cases where use of the unmodified value would cause erroneous
execution. The cases where unmodified values might lead to erroneous execution are case
statements (where a wild jump might result from an invalid value), and subscripts on the
left hand side (where memory corruption could occur as a result of an invalid value).

The ‘-gnatVx ’ switch allows more control over the validity checking mode. The x argu-
ment is a string of letters that indicate validity checks that are performed or not performed
in addition to the default checks described above.

‘-gnatVa’ All validity checks. All validity checks are turned on. That is, ‘-gnatVa’ is
equivalent to ‘gnatVcdfimorst’.

‘-gnatVc’ Validity checks for copies. The right hand side of assignments, and the initial-
izing values of object declarations are validity checked.

‘-gnatVd’ Default (RM) validity checks. Some validity checks are done by default fol-
lowing normal Ada semantics (RM 13.9.1 (9-11)). A check is done in case

52 GNAT User’s Guide for Native Platforms / Unix and Windows

statements that the expression is within the range of the subtype. If it is not,
Constraint Error is raised. For assignments to array components, a check is
done that the expression used as index is within the range. If it is not, Con-
straint Error is raised. Both these validity checks may be turned off using
switch ‘-gnatVD’. They are turned on by default. If ‘-gnatVD’ is specified, a
subsequent switch ‘-gnatVd’ will leave the checks turned on. Switch ‘-gnatVD’
should be used only if you are sure that all such expressions have valid val-
ues. If you use this switch and invalid values are present, then the program is
erroneous, and wild jumps or memory overwriting may occur.

‘-gnatVf’ Validity checks for floating-point values. In the absence of this switch, validity
checking occurs only for discrete values. If ‘-gnatVf’ is specified, then validity
checking also applies for floating-point values, and NaN’s and infinities are
considered invalid, as well as out of range values for constrained types. Note
that this means that standard IEEE infinity mode is not allowed. The exact
contexts in which floating-point values are checked depends on the setting of
other options. For example, ‘-gnatVif’ or ‘-gnatVfi’ (the order does not
matter) specifies that floating-point parameters of mode in should be validity
checked.

‘-gnatVi’ Validity checks for in mode parameters Arguments for parameters of mode in
are validity checked in function and procedure calls at the point of call.

‘-gnatVm’ Validity checks for in out mode parameters. Arguments for parameters of mode
in out are validity checked in procedure calls at the point of call. The ’m’ here
stands for modify, since this concerns parameters that can be modified by the
call. Note that there is no specific option to test out parameters, but any
reference within the subprogram will be tested in the usual manner, and if
an invalid value is copied back, any reference to it will be subject to validity
checking.

‘-gnatVn’ No validity checks. This switch turns off all validity checking, including the
default checking for case statements and left hand side subscripts. Note that
the use of the switch ‘-gnatp’ suppresses all run-time checks, including validity
checks, and thus implies ‘-gnatVn’. When this switch is used, it cancels any
other ‘-gnatV’ previously issued.

‘-gnatVo’ Validity checks for operator and attribute operands. Arguments for prede-
fined operators and attributes are validity checked. This includes all opera-
tors in package Standard, the shift operators defined as intrinsic in package
Interfaces and operands for attributes such as Pos. Checks are also made on
individual component values for composite comparisons.

‘-gnatVp’ Validity checks for parameters. This controls the treatment of parameters
within a subprogram (as opposed to ‘-gnatVi’ and ‘-gnatVm’ which control
validity testing of parameters on a call. If either of these call options is used,
then normally an assumption is made within a subprogram that the input argu-
ments have been validity checking at the point of call, and do not need checking
again within a subprogram). If ‘-gnatVp’ is set, then this assumption is not
made, and parameters are not assumed to be valid, so their validity will be
checked (or rechecked) within the subprogram.

Chapter 3: Compiling Using gcc 53

‘-gnatVr’ Validity checks for function returns. The expression in return statements in
functions is validity checked.

‘-gnatVs’ Validity checks for subscripts. All subscripts expressions are checked for validity,
whether they appear on the right side or left side (in default mode only left side
subscripts are validity checked).

‘-gnatVt’ Validity checks for tests. Expressions used as conditions in if, while or exit
statements are checked, as well as guard expressions in entry calls.

The ‘-gnatV’ switch may be followed by a string of letters to turn on a series of validity
checking options. For example, ‘-gnatVcr’ specifies that in addition to the default validity
checking, copies and function return expressions are to be validity checked. In order to make
it easier to specify the desired combination of effects, the upper case letters CDFIMORST may
be used to turn off the corresponding lower case option. Thus ‘-gnatVaM’ turns on all
validity checking options except for checking of in out procedure arguments.

The specification of additional validity checking generates extra code (and in the case of
‘-gnatVa’ the code expansion can be substantial. However, these additional checks can be
very useful in detecting uninitialized variables, incorrect use of unchecked conversion, and
other errors leading to invalid values. The use of pragma Initialize_Scalars is useful
in conjunction with the extra validity checking, since this ensures that wherever possible
uninitialized variables have invalid values.

See also the pragma Validity_Checks which allows modification of the validity checking
mode at the program source level, and also allows for temporary disabling of validity checks.

3.2.5 Style Checking

The ‘-gnatyx’ switch causes the compiler to enforce specified style rules. A limited set of
style rules has been used in writing the GNAT sources themselves. This switch allows user
programs to activate all or some of these checks. If the source program fails a specified
style check, an appropriate warning message is given, preceded by the character sequence
“(style)”. The string x is a sequence of letters or digits indicating the particular style checks
to be performed. The following checks are defined:

‘1-9’ Specify indentation level. If a digit from 1-9 appears in the string after ‘-gnaty’
then proper indentation is checked, with the digit indicating the indentation
level required. The general style of required indentation is as specified by the
examples in the Ada Reference Manual. Full line comments must be aligned
with the -- starting on a column that is a multiple of the alignment level.

‘a’ Check attribute casing. If the letter a appears in the string after ‘-gnaty’
then attribute names, including the case of keywords such as digits used as
attributes names, must be written in mixed case, that is, the initial letter and
any letter following an underscore must be uppercase. All other letters must
be lowercase.

‘b’ Blanks not allowed at statement end. If the letter b appears in the string
after ‘-gnaty’ then trailing blanks are not allowed at the end of statements.
The purpose of this rule, together with h (no horizontal tabs), is to enforce a
canonical format for the use of blanks to separate source tokens.

54 GNAT User’s Guide for Native Platforms / Unix and Windows

‘c’ Check comments. If the letter c appears in the string after ‘-gnaty’ then com-
ments must meet the following set of rules:
• The “--” that starts the column must either start in column one, or else

at least one blank must precede this sequence.
• Comments that follow other tokens on a line must have at least one blank

following the “--” at the start of the comment.
• Full line comments must have two blanks following the “--” that starts

the comment, with the following exceptions.
• A line consisting only of the “--” characters, possibly preceded by blanks

is permitted.
• A comment starting with “--x” where x is a special character is permit-

ted. This allows proper processing of the output generated by specialized
tools including gnatprep (where “--!” is used) and the SPARK annota-
tion language (where “--#” is used). For the purposes of this rule, a special
character is defined as being in one of the ASCII ranges 16#21#..16#2F#
or 16#3A#..16#3F#. Note that this usage is not permitted in GNAT im-
plementation units (i.e. when ‘-gnatg’ is used).

• A line consisting entirely of minus signs, possibly preceded by blanks, is
permitted. This allows the construction of box comments where lines of
minus signs are used to form the top and bottom of the box.

• If a comment starts and ends with “--” is permitted as long as at least one
blank follows the initial “--”. Together with the preceding rule, this allows
the construction of box comments, as shown in the following example:

-- This is a box comment --

-- with two text lines. --

‘e’ Check end/exit labels. If the letter e appears in the string after ‘-gnaty’ then
optional labels on end statements ending subprograms and on exit statements
exiting named loops, are required to be present.

‘f’ No form feeds or vertical tabs. If the letter f appears in the string after ‘-gnaty’
then neither form feeds nor vertical tab characters are not permitted in the
source text.

‘h’ No horizontal tabs. If the letter h appears in the string after ‘-gnaty’ then
horizontal tab characters are not permitted in the source text. Together with
the b (no blanks at end of line) check, this enforces a canonical form for the
use of blanks to separate source tokens.

‘i’ Check if-then layout. If the letter i appears in the string after ‘-gnaty’, then
the keyword then must appear either on the same line as corresponding if, or
on a line on its own, lined up under the if with at least one non-blank line in
between containing all or part of the condition to be tested.

‘k’ Check keyword casing. If the letter k appears in the string after ‘-gnaty’ then
all keywords must be in lower case (with the exception of keywords such as
digits used as attribute names to which this check does not apply).

Chapter 3: Compiling Using gcc 55

‘l’ Check layout. If the letter l appears in the string after ‘-gnaty’ then layout
of statement and declaration constructs must follow the recommendations in
the Ada Reference Manual, as indicated by the form of the syntax rules. For
example an else keyword must be lined up with the corresponding if keyword.

There are two respects in which the style rule enforced by this check option
are more liberal than those in the Ada Reference Manual. First in the case of
record declarations, it is permissible to put the record keyword on the same
line as the type keyword, and then the end in end record must line up under
type. For example, either of the following two layouts is acceptable:� �

type q is record

a : integer;

b : integer;

end record;

type q is

record

a : integer;

b : integer;

end record;
 	
Second, in the case of a block statement, a permitted alternative is to put the
block label on the same line as the declare or begin keyword, and then line
the end keyword up under the block label. For example both the following are
permitted:� �

Block : declare

A : Integer := 3;

begin

Proc (A, A);

end Block;

Block :

declare

A : Integer := 3;

begin

Proc (A, A);

end Block;
 	
The same alternative format is allowed for loops. For example, both of the
following are permitted:� �

Clear : while J < 10 loop

A (J) := 0;

end loop Clear;

Clear :

while J < 10 loop

A (J) := 0;

end loop Clear;
 	

56 GNAT User’s Guide for Native Platforms / Unix and Windows

‘m’ Check maximum line length. If the letter m appears in the string after ‘-gnaty’
then the length of source lines must not exceed 79 characters, including any
trailing blanks. The value of 79 allows convenient display on an 80 character
wide device or window, allowing for possible special treatment of 80 character
lines. Note that this count is of raw characters in the source text. This means
that a tab character counts as one character in this count and a wide char-
acter sequence counts as several characters (however many are needed in the
encoding).

‘Mnnn’ Set maximum line length. If the sequence Mnnn, where nnn is a decimal num-
ber, appears in the string after ‘-gnaty’ then the length of lines must not exceed
the given value.

‘n’ Check casing of entities in Standard. If the letter n appears in the string after
‘-gnaty’ then any identifier from Standard must be cased to match the presen-
tation in the Ada Reference Manual (for example, Integer and ASCII.NUL).

‘o’ Check order of subprogram bodies. If the letter o appears in the string after
‘-gnaty’ then all subprogram bodies in a given scope (e.g. a package body)
must be in alphabetical order. The ordering rule uses normal Ada rules for
comparing strings, ignoring casing of letters, except that if there is a trailing
numeric suffix, then the value of this suffix is used in the ordering (e.g. Junk2
comes before Junk10).

‘p’ Check pragma casing. If the letter p appears in the string after ‘-gnaty’ then
pragma names must be written in mixed case, that is, the initial letter and any
letter following an underscore must be uppercase. All other letters must be
lowercase.

‘r’ Check references. If the letter r appears in the string after ‘-gnaty’ then all
identifier references must be cased in the same way as the corresponding decla-
ration. No specific casing style is imposed on identifiers. The only requirement
is for consistency of references with declarations.

‘s’ Check separate specs. If the letter s appears in the string after ‘-gnaty’ then
separate declarations (“specs”) are required for subprograms (a body is not al-
lowed to serve as its own declaration). The only exception is that parameterless
library level procedures are not required to have a separate declaration. This
exception covers the most frequent form of main program procedures.

‘t’ Check token spacing. If the letter t appears in the string after ‘-gnaty’ then
the following token spacing rules are enforced:
• The keywords abs and not must be followed by a space.
• The token => must be surrounded by spaces.
• The token <> must be preceded by a space or a left parenthesis.
• Binary operators other than ** must be surrounded by spaces. There is

no restriction on the layout of the ** binary operator.
• Colon must be surrounded by spaces.
• Colon-equal (assignment, initialization) must be surrounded by spaces.

Chapter 3: Compiling Using gcc 57

• Comma must be the first non-blank character on the line, or be immediately
preceded by a non-blank character, and must be followed by a space.

• If the token preceding a left parenthesis ends with a letter or digit, then a
space must separate the two tokens.

• A right parenthesis must either be the first non-blank character on a line,
or it must be preceded by a non-blank character.

• A semicolon must not be preceded by a space, and must not be followed
by a non-blank character.

• A unary plus or minus may not be followed by a space.
• A vertical bar must be surrounded by spaces.

In the above rules, appearing in column one is always permitted, that is, counts
as meeting either a requirement for a required preceding space, or as meeting
a requirement for no preceding space.
Appearing at the end of a line is also always permitted, that is, counts as
meeting either a requirement for a following space, or as meeting a requirement
for no following space.

If any of these style rules is violated, a message is generated giving details on the violation.
The initial characters of such messages are always “(style)”. Note that these messages are
treated as warning messages, so they normally do not prevent the generation of an object
file. The ‘-gnatwe’ switch can be used to treat warning messages, including style messages,
as fatal errors.
The switch ‘-gnaty’ on its own (that is not followed by any letters or digits), is equivalent to
gnaty3abcefhiklmprst, that is all checking options enabled with the exception of -gnatyo,
with an indentation level of 3. This is the standard checking option that is used for the
GNAT sources.

3.2.6 Run-Time Checks

If you compile with the default options, GNAT will insert many run-time checks into the
compiled code, including code that performs range checking against constraints, but not
arithmetic overflow checking for integer operations (including division by zero) or checks
for access before elaboration on subprogram calls. All other run-time checks, as required by
the Ada 95 Reference Manual, are generated by default. The following gcc switches refine
this default behavior:

‘-gnatp’ Suppress all run-time checks as though pragma Suppress (all_checks) had
been present in the source. Validity checks are also suppressed (in other words
‘-gnatp’ also implies ‘-gnatVn’. Use this switch to improve the performance
of the code at the expense of safety in the presence of invalid data or program
bugs.

‘-gnato’ Enables overflow checking for integer operations. This causes GNAT to gener-
ate slower and larger executable programs by adding code to check for overflow
(resulting in raising Constraint_Error as required by standard Ada seman-
tics). These overflow checks correspond to situations in which the true value
of the result of an operation may be outside the base range of the result type.
The following example shows the distinction:

58 GNAT User’s Guide for Native Platforms / Unix and Windows

X1 : Integer := Integer’Last;

X2 : Integer range 1 .. 5 := 5;

X3 : Integer := Integer’Last;

X4 : Integer range 1 .. 5 := 5;

F : Float := 2.0E+20;

...

X1 := X1 + 1;

X2 := X2 + 1;

X3 := Integer (F);

X4 := Integer (F);

Here the first addition results in a value that is outside the base range of Integer,
and hence requires an overflow check for detection of the constraint error. Thus
the first assignment to X1 raises a Constraint_Error exception only if ‘-gnato’
is set.
The second increment operation results in a violation of the explicit range con-
straint, and such range checks are always performed (unless specifically sup-
pressed with a pragma suppress or the use of ‘-gnatp’).
The two conversions of F both result in values that are outside the base range of
type Integer and thus will raise Constraint_Error exceptions only if ‘-gnato’
is used. The fact that the result of the second conversion is assigned to variable
X4 with a restricted range is irrelevant, since the problem is in the conversion,
not the assignment.
Basically the rule is that in the default mode (‘-gnato’ not used), the generated
code assures that all integer variables stay within their declared ranges, or
within the base range if there is no declared range. This prevents any serious
problems like indexes out of range for array operations.
What is not checked in default mode is an overflow that results in an in-range,
but incorrect value. In the above example, the assignments to X1, X2, X3 all
give results that are within the range of the target variable, but the result is
wrong in the sense that it is too large to be represented correctly. Typically the
assignment to X1 will result in wrap around to the largest negative number. The
conversions of F will result in some Integer value and if that integer value is out
of the X4 range then the subsequent assignment would generate an exception.
Note that the ‘-gnato’ switch does not affect the code generated for any
floating-point operations; it applies only to integer semantics). For floating-
point, GNAT has the Machine_Overflows attribute set to False and the nor-
mal mode of operation is to generate IEEE NaN and infinite values on overflow
or invalid operations (such as dividing 0.0 by 0.0).
The reason that we distinguish overflow checking from other kinds of range con-
straint checking is that a failure of an overflow check can generate an incorrect
value, but cannot cause erroneous behavior. This is unlike the situation with a
constraint check on an array subscript, where failure to perform the check can
result in random memory description, or the range check on a case statement,
where failure to perform the check can cause a wild jump.
Note again that ‘-gnato’ is off by default, so overflow checking is not performed
in default mode. This means that out of the box, with the default settings,
GNAT does not do all the checks expected from the language description in the

Chapter 3: Compiling Using gcc 59

Ada Reference Manual. If you want all constraint checks to be performed, as
described in this Manual, then you must explicitly use the -gnato switch either
on the gnatmake or gcc command.

‘-gnatE’ Enables dynamic checks for access-before-elaboration on subprogram calls and
generic instantiations. For full details of the effect and use of this switch, See
Chapter 3 [Compiling Using gcc], page 37.

The setting of these switches only controls the default setting of the checks. You may modify
them using either Suppress (to remove checks) or Unsuppress (to add back suppressed
checks) pragmas in the program source.

3.2.7 Stack Overflow Checking

For most operating systems, gcc does not perform stack overflow checking by default. This
means that if the main environment task or some other task exceeds the available stack
space, then unpredictable behavior will occur.

To activate stack checking, compile all units with the gcc option ‘-fstack-check’. For
example:

gcc -c -fstack-check package1.adb

Units compiled with this option will generate extra instructions to check that any use of the
stack (for procedure calls or for declaring local variables in declare blocks) do not exceed the
available stack space. If the space is exceeded, then a Storage_Error exception is raised.

For declared tasks, the stack size is always controlled by the size given in an applicable
Storage_Size pragma (or is set to the default size if no pragma is used.

For the environment task, the stack size depends on system defaults and is unknown
to the compiler. The stack may even dynamically grow on some systems, precluding the
normal Ada semantics for stack overflow. In the worst case, unbounded stack usage, causes
unbounded stack expansion resulting in the system running out of virtual memory.

The stack checking may still work correctly if a fixed size stack is allocated, but this
cannot be guaranteed. To ensure that a clean exception is signalled for stack overflow, set
the environment variable GNAT_STACK_LIMIT to indicate the maximum stack area that can
be used, as in:

SET GNAT_STACK_LIMIT 1600

The limit is given in kilobytes, so the above declaration would set the stack limit of the
environment task to 1.6 megabytes. Note that the only purpose of this usage is to limit the
amount of stack used by the environment task. If it is necessary to increase the amount
of stack for the environment task, then this is an operating systems issue, and must be
addressed with the appropriate operating systems commands.

3.2.8 Using gcc for Syntax Checking

‘-gnats’
The s stands for “syntax”.
Run GNAT in syntax checking only mode. For example, the command

$ gcc -c -gnats x.adb

compiles file ‘x.adb’ in syntax-check-only mode. You can check a series of
files in a single command , and can use wild cards to specify such a group of

60 GNAT User’s Guide for Native Platforms / Unix and Windows

files. Note that you must specify the ‘-c’ (compile only) flag in addition to
the ‘-gnats’ flag. . You may use other switches in conjunction with ‘-gnats’.
In particular, ‘-gnatl’ and ‘-gnatv’ are useful to control the format of any
generated error messages.
When the source file is empty or contains only empty lines and/or comments,
the output is a warning:

$ gcc -c -gnats -x ada toto.txt

toto.txt:1:01: warning: empty file, contains no compilation units

$

Otherwise, the output is simply the error messages, if any. No object file or ALI
file is generated by a syntax-only compilation. Also, no units other than the
one specified are accessed. For example, if a unit X with’s a unit Y, compiling
unit X in syntax check only mode does not access the source file containing unit
Y.
Normally, GNAT allows only a single unit in a source file. However, this restric-
tion does not apply in syntax-check-only mode, and it is possible to check a file
containing multiple compilation units concatenated together. This is primarily
used by the gnatchop utility (see Chapter 8 [Renaming Files Using gnatchop],
page 103).

3.2.9 Using gcc for Semantic Checking

‘-gnatc’
The c stands for “check”. Causes the compiler to operate in semantic check
mode, with full checking for all illegalities specified in the Ada 95 Reference
Manual, but without generation of any object code (no object file is generated).
Because dependent files must be accessed, you must follow the GNAT semantic
restrictions on file structuring to operate in this mode:
• The needed source files must be accessible (see Section 3.3 [Search Paths

and the Run-Time Library (RTL)], page 69).
• Each file must contain only one compilation unit.
• The file name and unit name must match (see Section 2.3 [File Naming

Rules], page 20).

The output consists of error messages as appropriate. No object file is gener-
ated. An ‘ALI’ file is generated for use in the context of cross-reference tools,
but this file is marked as not being suitable for binding (since no object file is
generated). The checking corresponds exactly to the notion of legality in the
Ada 95 Reference Manual.
Any unit can be compiled in semantics-checking-only mode, including units that
would not normally be compiled (subunits, and specifications where a separate
body is present).

3.2.10 Compiling Ada 83 Programs

‘-gnat83’
Although GNAT is primarily an Ada 95 compiler, it accepts this switch to
specify that an Ada 83 program is to be compiled in Ada 83 mode. If you

Chapter 3: Compiling Using gcc 61

specify this switch, GNAT rejects most Ada 95 extensions and applies Ada 83
semantics where this can be done easily. It is not possible to guarantee this
switch does a perfect job; for example, some subtle tests, such as are found in
earlier ACVC tests (and that have been removed from the ACATS suite for
Ada 95), might not compile correctly. Nevertheless, this switch may be useful
in some circumstances, for example where, due to contractual reasons, legacy
code needs to be maintained using only Ada 83 features.
With few exceptions (most notably the need to use <> on unconstrained generic
formal parameters, the use of the new Ada 95 reserved words, and the use of
packages with optional bodies), it is not necessary to use the ‘-gnat83’ switch
when compiling Ada 83 programs, because, with rare exceptions, Ada 95 is
upwardly compatible with Ada 83. This means that a correct Ada 83 program
is usually also a correct Ada 95 program. For further information, please refer
to Appendix E [Compatibility and Porting Guide], page 293.

3.2.11 Character Set Control

‘-gnatic ’
Normally GNAT recognizes the Latin-1 character set in source program identi-
fiers, as described in the Ada 95 Reference Manual. This switch causes GNAT
to recognize alternate character sets in identifiers. c is a single character indi-
cating the character set, as follows:

1 ISO 8859-1 (Latin-1) identifiers

2 ISO 8859-2 (Latin-2) letters allowed in identifiers

3 ISO 8859-3 (Latin-3) letters allowed in identifiers

4 ISO 8859-4 (Latin-4) letters allowed in identifiers

5 ISO 8859-5 (Cyrillic) letters allowed in identifiers

9 ISO 8859-15 (Latin-9) letters allowed in identifiers

p IBM PC letters (code page 437) allowed in identifiers

8 IBM PC letters (code page 850) allowed in identifiers

f Full upper-half codes allowed in identifiers

n No upper-half codes allowed in identifiers

w Wide-character codes (that is, codes greater than 255) allowed in
identifiers

See Section 2.2 [Foreign Language Representation], page 17, for full details on
the implementation of these character sets.

‘-gnatWe ’ Specify the method of encoding for wide characters. e is one of the following:

h Hex encoding (brackets coding also recognized)

u Upper half encoding (brackets encoding also recognized)

s Shift/JIS encoding (brackets encoding also recognized)

62 GNAT User’s Guide for Native Platforms / Unix and Windows

e EUC encoding (brackets encoding also recognized)

8 UTF-8 encoding (brackets encoding also recognized)

b Brackets encoding only (default value)

For full details on the these encoding methods see See Section 2.2.3 [Wide
Character Encodings], page 19. Note that brackets coding is always accepted,
even if one of the other options is specified, so for example ‘-gnatW8’ specifies
that both brackets and UTF-8 encodings will be recognized. The units that
are with’ed directly or indirectly will be scanned using the specified represen-
tation scheme, and so if one of the non-brackets scheme is used, it must be
used consistently throughout the program. However, since brackets encoding is
always recognized, it may be conveniently used in standard libraries, allowing
these libraries to be used with any of the available coding schemes. scheme. If
no ‘-gnatW?’ parameter is present, then the default representation is Brackets
encoding only.
Note that the wide character representation that is specified (explicitly or
by default) for the main program also acts as the default encoding used for
Wide Text IO files if not specifically overridden by a WCEM form parameter.

3.2.12 File Naming Control

‘-gnatkn ’ Activates file name “krunching”. n, a decimal integer in the range 1-999, indi-
cates the maximum allowable length of a file name (not including the ‘.ads’ or
‘.adb’ extension). The default is not to enable file name krunching.
For the source file naming rules, See Section 2.3 [File Naming Rules], page 20.

3.2.13 Subprogram Inlining Control

‘-gnatn’ The n here is intended to suggest the first syllable of the word “inline”. GNAT
recognizes and processes Inline pragmas. However, for the inlining to actually
occur, optimization must be enabled. To enable inlining of subprograms spec-
ified by pragma Inline, you must also specify this switch. In the absence of
this switch, GNAT does not attempt inlining and does not need to access the
bodies of subprograms for which pragma Inline is specified if they are not in
the current unit.
If you specify this switch the compiler will access these bodies, creating an extra
source dependency for the resulting object file, and where possible, the call will
be inlined. For further details on when inlining is possible see See Section 7.1.5
[Inlining of Subprograms], page 98.

‘-gnatN’ The front end inlining activated by this switch is generally more extensive,
and quite often more effective than the standard ‘-gnatn’ inlining mode. It
will also generate additional dependencies. Note that ‘-gnatN’ automatically
implies ‘-gnatn’ so it is not necessary to specify both options.

3.2.14 Auxiliary Output Control

‘-gnatt’ Causes GNAT to write the internal tree for a unit to a file (with the extension
‘.adt’. This not normally required, but is used by separate analysis tools.

Chapter 3: Compiling Using gcc 63

Typically these tools do the necessary compilations automatically, so you should
not have to specify this switch in normal operation.

‘-gnatu’ Print a list of units required by this compilation on ‘stdout’. The listing
includes all units on which the unit being compiled depends either directly or
indirectly.

‘-pass-exit-codes’
If this switch is not used, the exit code returned by gcc when compiling multiple
files indicates whether all source files have been successfully used to generate
object files or not.

When ‘-pass-exit-codes’ is used, gcc exits with an extended exit status and
allows an integrated development environment to better react to a compilation
failure. Those exit status are:

5 There was an error in at least one source file.

3 At least one source file did not generate an object file.

2 The compiler died unexpectedly (internal error for example).

0 An object file has been generated for every source file.

3.2.15 Debugging Control

‘-gnatdx ’ Activate internal debugging switches. x is a letter or digit, or string of letters
or digits, which specifies the type of debugging outputs desired. Normally these
are used only for internal development or system debugging purposes. You can
find full documentation for these switches in the body of the Debug unit in the
compiler source file ‘debug.adb’.

‘-gnatG’ This switch causes the compiler to generate auxiliary output containing a
pseudo-source listing of the generated expanded code. Like most Ada com-
pilers, GNAT works by first transforming the high level Ada code into lower
level constructs. For example, tasking operations are transformed into calls
to the tasking run-time routines. A unique capability of GNAT is to list this
expanded code in a form very close to normal Ada source. This is very useful
in understanding the implications of various Ada usage on the efficiency of the
generated code. There are many cases in Ada (e.g. the use of controlled types),
where simple Ada statements can generate a lot of run-time code. By using
‘-gnatG’ you can identify these cases, and consider whether it may be desirable
to modify the coding approach to improve efficiency.

The format of the output is very similar to standard Ada source, and is easily
understood by an Ada programmer. The following special syntactic additions
correspond to low level features used in the generated code that do not have
any exact analogies in pure Ada source form. The following is a partial list
of these special constructions. See the specification of package Sprint in file
‘sprint.ads’ for a full list.

new xxx [storage_pool = yyy]
Shows the storage pool being used for an allocator.

64 GNAT User’s Guide for Native Platforms / Unix and Windows

at end procedure-name;
Shows the finalization (cleanup) procedure for a scope.

(if expr then expr else expr)
Conditional expression equivalent to the x?y:z construction in C.

target^(source)
A conversion with floating-point truncation instead of rounding.

target?(source)
A conversion that bypasses normal Ada semantic checking. In par-
ticular enumeration types and fixed-point types are treated simply
as integers.

target?^(source)
Combines the above two cases.

x #/ y

x #mod y

x #* y

x #rem y A division or multiplication of fixed-point values which are treated
as integers without any kind of scaling.

free expr [storage_pool = xxx]
Shows the storage pool associated with a free statement.

freeze typename [actions]
Shows the point at which typename is frozen, with possible associ-
ated actions to be performed at the freeze point.

reference itype

Reference (and hence definition) to internal type itype.

function-name! (arg, arg, arg)
Intrinsic function call.

labelname : label
Declaration of label labelname.

expr && expr && expr ... && expr

A multiple concatenation (same effect as expr & expr & expr, but
handled more efficiently).

[constraint_error]
Raise the Constraint_Error exception.

expression’reference
A pointer to the result of evaluating expression.

target-type!(source-expression)
An unchecked conversion of source-expression to target-type.

[numerator/denominator]
Used to represent internal real literals (that) have no exact rep-
resentation in base 2-16 (for example, the result of compile time
evaluation of the expression 1.0/27.0).

Chapter 3: Compiling Using gcc 65

‘-gnatD’ This switch is used in conjunction with ‘-gnatG’ to cause the expanded source,
as described above to be written to files with names ‘xxx.dg’, where ‘xxx’ is
the normal file name, for example, if the source file name is ‘hello.adb’, then
a file ‘hello.adb.dg’ will be written. The debugging information generated
by the gcc ‘-g’ switch will refer to the generated ‘xxx.dg’ file. This allows
you to do source level debugging using the generated code which is sometimes
useful for complex code, for example to find out exactly which part of a complex
construction raised an exception. This switch also suppress generation of cross-
reference information (see -gnatx).

‘-gnatR[0|1|2|3[s]]’
This switch controls output from the compiler of a listing showing representa-
tion information for declared types and objects. For ‘-gnatR0’, no information
is output (equivalent to omitting the ‘-gnatR’ switch). For ‘-gnatR1’ (which is
the default, so ‘-gnatR’ with no parameter has the same effect), size and align-
ment information is listed for declared array and record types. For ‘-gnatR2’,
size and alignment information is listed for all expression information for values
that are computed at run time for variant records. These symbolic expressions
have a mostly obvious format with #n being used to represent the value of the
n’th discriminant. See source files ‘repinfo.ads/adb’ in the GNAT sources for
full details on the format of ‘-gnatR3’ output. If the switch is followed by an s
(e.g. ‘-gnatR2s’), then the output is to a file with the name ‘file.rep’ where
file is the name of the corresponding source file.

‘-gnatS’ The use of the switch ‘-gnatS’ for an Ada compilation will cause the compiler
to output a representation of package Standard in a form very close to standard
Ada. It is not quite possible to do this and remain entirely Standard (since new
numeric base types cannot be created in standard Ada), but the output is easily
readable to any Ada programmer, and is useful to determine the characteristics
of target dependent types in package Standard.

‘-gnatx’ Normally the compiler generates full cross-referencing information in the ‘ALI’
file. This information is used by a number of tools, including gnatfind and
gnatxref. The ‘-gnatx’ switch suppresses this information. This saves some
space and may slightly speed up compilation, but means that these tools cannot
be used.

3.2.16 Exception Handling Control

GNAT uses two methods for handling exceptions at run-time. The longjmp/setjmp method
saves the context when entering a frame with an exception handler. Then when an exception
is raised, the context can be restored immediately, without the need for tracing stack frames.
This method provides very fast exception propagation, but introduces significant overhead
for the use of exception handlers, even if no exception is raised.

The other approach is called “zero cost” exception handling. With this method, the
compiler builds static tables to describe the exception ranges. No dynamic code is required
when entering a frame containing an exception handler. When an exception is raised,
the tables are used to control a back trace of the subprogram invocation stack to locate
the required exception handler. This method has considerably poorer performance for the

66 GNAT User’s Guide for Native Platforms / Unix and Windows

propagation of exceptions, but there is no overhead for exception handlers if no exception
is raised.

The following switches can be used to control which of the two exception handling
methods is used.

‘-gnatL’ This switch causes the longjmp/setjmp approach to be used for exception han-
dling. If this is the default mechanism for the target (see below), then this has
no effect. If the default mechanism for the target is zero cost exceptions, then
this switch can be used to modify this default, but it must be used for all units
in the partition, including all run-time library units. One way to achieve this
is to use the ‘-a’ and ‘-f’ switches for gnatmake. This option is rarely used.
One case in which it may be advantageous is if you have an application where
exception raising is common and the overall performance of the application is
improved by favoring exception propagation.

‘-gnatZ’ This switch causes the zero cost approach to be sed for exception handling. If
this is the default mechanism for the target (see below), then this has no effect.
If the default mechanism for the target is longjmp/setjmp exceptions, then this
switch can be used to modify this default, but it must be used for all units in
the partition, including all run-time library units. One way to achieve this is
to use the ‘-a’ and ‘-f’ switches for gnatmake. This option can only be used if
the zero cost approach is available for the target in use (see below).

The longjmp/setjmp approach is available on all targets, but the zero cost approach is
only available on selected targets. To determine whether zero cost exceptions can be used
for a particular target, look at the private part of the file system.ads. Either GCC_ZCX_
Support or Front_End_ZCX_Support must be True to use the zero cost approach. If both
of these switches are set to False, this means that zero cost exception handling is not yet
available for that target. The switch ZCX_By_Default indicates the default approach. If
this switch is set to True, then the zero cost approach is used by default.

3.2.17 Units to Sources Mapping Files

‘-gnatempath ’
A mapping file is a way to communicate to the compiler two mappings: from
unit names to file names (without any directory information) and from file
names to path names (with full directory information). These mappings are
used by the compiler to short-circuit the path search.

The use of mapping files is not required for correct operation of the compiler,
but mapping files can improve efficiency, particularly when sources are read over
a slow network connection. In normal operation, you need not be concerned
with the format or use of mapping files, and the ‘-gnatem’ switch is not a switch
that you would use explicitly. it is intended only for use by automatic tools
such as gnatmake running under the project file facility. The description here
of the format of mapping files is provided for completeness and for possible use
by other tools.

A mapping file is a sequence of sets of three lines. In each set, the first line is
the unit name, in lower case, with “%s” appended for specifications and “%b”

Chapter 3: Compiling Using gcc 67

appended for bodies; the second line is the file name; and the third line is the
path name.
Example:

main%b

main.2.ada

/gnat/project1/sources/main.2.ada

When the switch ‘-gnatem’ is specified, the compiler will create in memory the
two mappings from the specified file. If there is any problem (non existent file,
truncated file or duplicate entries), no mapping will be created.
Several ‘-gnatem’ switches may be specified; however, only the last one on the
command line will be taken into account.
When using a project file, gnatmake create a temporary mapping file and com-
municates it to the compiler using this switch.

3.2.18 Integrated Preprocessing

GNAT sources may be preprocessed immediately before compilation; the actual text of the
source is not the text of the source file, but is derived from it through a process called
preprocessing. Integrated preprocessing is specified through switches ‘-gnatep’ and/or
‘-gnateD’. ‘-gnatep’ indicates, through a text file, the preprocessing data to be used.
‘-gnateD’ specifies or modifies the values of preprocessing symbol.
It is recommended that gnatmake switch -s should be used when Integrated Preprocessing
is used. The reason is that preprocessing with another Preprocessing Data file without
changing the sources will not trigger recompilation without this switch.
Note that gnatmake switch -m will almost always trigger recompilation for sources that are
preprocessed, because gnatmake cannot compute the checksum of the source after prepro-
cessing.
The actual preprocessing function is described in details in section Chapter 15 [Preprocess-
ing Using gnatprep], page 175. This section only describes how integrated preprocessing is
triggered and parameterized.

-gnatep=file
This switch indicates to the compiler the file name (without directory informa-
tion) of the preprocessor data file to use. The preprocessor data file should be
found in the source directories.
A preprocessing data file is a text file with significant lines indicating how
should be preprocessed either a specific source or all sources not mentioned in
other lines. A significant line is a non empty, non comment line. Comments
are similar to Ada comments.
Each significant line starts with either a literal string or the character ’*’. A
literal string is the file name (without directory information) of the source to
preprocess. A character ’*’ indicates the preprocessing for all the sources that
are not specified explicitly on other lines (order of the lines is not significant).
It is an error to have two lines with the same file name or two lines starting
with the character ’*’.
After the file name or the character ’*’, another optional literal string indicating
the file name of the definition file to be used for preprocessing. (see Section 15.3

68 GNAT User’s Guide for Native Platforms / Unix and Windows

[Form of Definitions File], page 176. The definition files are found by the
compiler in one of the source directories. In some cases, when compiling a
source in a directory other than the current directory, if the definition file is
in the current directory, it may be necessary to add the current directory as a
source directory through switch -I., otherwise the compiler would not find the
definition file.

Then, optionally, switches similar to those of gnatprep may be found. Those
switches are:

-b Causes both preprocessor lines and the lines deleted by preprocess-
ing to be replaced by blank lines, preserving the line number. This
switch is always implied; however, if specified after ‘-c’ it cancels
the effect of ‘-c’.

-c Causes both preprocessor lines and the lines deleted by preprocess-
ing to be retained as comments marked with the special string “--!
”.

-Dsymbol=value
Define or redefine a symbol, associated with value. A symbol is an
Ada identifier, or an Ada reserved word, with the exception of if,
else, elsif, end, and, or and then. value is either a literal string,
an Ada identifier or any Ada reserved word. A symbol declared
with this switch replaces a symbol with the same name defined in
a definition file.

-s Causes a sorted list of symbol names and values to be listed on the
standard output file.

-u Causes undefined symbols to be treated as having the value FALSE
in the context of a preprocessor test. In the absence of this option,
an undefined symbol in a #if or #elsif test will be treated as an
error.

Examples of valid lines in a preprocessor data file:
"toto.adb" "prep.def" -u

-- preprocess "toto.adb", using definition file "prep.def",

-- undefined symbol are False.

* -c -DVERSION=V101

-- preprocess all other sources without a definition file;

-- suppressed lined are commented; symbol VERSION has the value V101.

"titi.adb" "prep2.def" -s

-- preprocess "titi.adb", using definition file "prep2.def";

-- list all symbols with their values.

-gnateDsymbol[=value]
Define or redefine a preprocessing symbol, associated with value. If no value is
given on the command line, then the value of the symbol is True. A symbol is
an identifier, following normal Ada (case-insensitive) rules for its syntax, and
value is any sequence (including an empty sequence) of characters from the set

Chapter 3: Compiling Using gcc 69

(letters, digits, period, underline). Ada reserved words may be used as symbols,
with the exceptions of if, else, elsif, end, and, or and then.
A symbol declared with this switch on the command line replaces a symbol
with the same name either in a definition file or specified with a switch -D in
the preprocessor data file.
This switch is similar to switch ‘-D’ of gnatprep.

3.3 Search Paths and the Run-Time Library (RTL)

With the GNAT source-based library system, the compiler must be able to find source files
for units that are needed by the unit being compiled. Search paths are used to guide this
process.

The compiler compiles one source file whose name must be given explicitly on the com-
mand line. In other words, no searching is done for this file. To find all other source files
that are needed (the most common being the specs of units), the compiler examines the
following directories, in the following order:
1. The directory containing the source file of the main unit being compiled (the file name

on the command line).
2. Each directory named by an ‘-I’ switch given on the gcc command line, in the order

given.
3. Each of the directories listed in the value of the ADA_INCLUDE_PATH environment vari-

able. Construct this value exactly as the PATH environment variable: a list of directory
names separated by colons (semicolons when working with the NT version).

4. Each of the directories listed in the text file whose name is given by the ADA_PRJ_
INCLUDE_FILE environment variable.
ADA_PRJ_INCLUDE_FILE is normally set by gnatmake or by the gnat driver when project
files are used. It should not normally be set by other means.

5. The content of the ‘ada_source_path’ file which is part of the GNAT installation tree
and is used to store standard libraries such as the GNAT Run Time Library (RTL)
source files. Section 18.2 [Installing an Ada Library], page 186

Specifying the switch ‘-I-’ inhibits the use of the directory containing the source file named
in the command line. You can still have this directory on your search path, but in this case
it must be explicitly requested with a ‘-I’ switch.

Specifying the switch ‘-nostdinc’ inhibits the search of the default location for the
GNAT Run Time Library (RTL) source files.

The compiler outputs its object files and ALI files in the current working directory.
Caution: The object file can be redirected with the ‘-o’ switch; however, gcc and gnat1
have not been coordinated on this so the ‘ALI’ file will not go to the right place. Therefore,
you should avoid using the ‘-o’ switch.

The packages Ada, System, and Interfaces and their children make up the GNAT RTL,
together with the simple System.IO package used in the "Hello World" example. The
sources for these units are needed by the compiler and are kept together in one directory.
Not all of the bodies are needed, but all of the sources are kept together anyway. In a
normal installation, you need not specify these directory names when compiling or binding.
Either the environment variables or the built-in defaults cause these files to be found.

70 GNAT User’s Guide for Native Platforms / Unix and Windows

In addition to the language-defined hierarchies (System, Ada and Interfaces), the
GNAT distribution provides a fourth hierarchy, consisting of child units of GNAT. This
is a collection of generally useful types, subprograms, etc. See the GNAT Reference Manual
for further details.

Besides simplifying access to the RTL, a major use of search paths is in compiling sources
from multiple directories. This can make development environments much more flexible.

3.4 Order of Compilation Issues

If, in our earlier example, there was a spec for the hello procedure, it would be contained
in the file ‘hello.ads’; yet this file would not have to be explicitly compiled. This is the
result of the model we chose to implement library management. Some of the consequences
of this model are as follows:
• There is no point in compiling specs (except for package specs with no bodies) because

these are compiled as needed by clients. If you attempt a useless compilation, you
will receive an error message. It is also useless to compile subunits because they are
compiled as needed by the parent.

• There are no order of compilation requirements: performing a compilation never obso-
letes anything. The only way you can obsolete something and require recompilations
is to modify one of the source files on which it depends.

• There is no library as such, apart from the ALI files (see Section 2.8 [The Ada Library
Information Files], page 25, for information on the format of these files). For now we
find it convenient to create separate ALI files, but eventually the information therein
may be incorporated into the object file directly.

• When you compile a unit, the source files for the specs of all units that it with’s, all its
subunits, and the bodies of any generics it instantiates must be available (reachable by
the search-paths mechanism described above), or you will receive a fatal error message.

3.5 Examples

The following are some typical Ada compilation command line examples:

$ gcc -c xyz.adb
Compile body in file ‘xyz.adb’ with all default options.

$ gcc -c -O2 -gnata xyz-def.adb
Compile the child unit package in file ‘xyz-def.adb’ with extensive optimiza-
tions, and pragma Assert/Debug statements enabled.

$ gcc -c -gnatc abc-def.adb
Compile the subunit in file ‘abc-def.adb’ in semantic-checking-only mode.

Chapter 4: Binding Using gnatbind 71

4 Binding Using gnatbind

This chapter describes the GNAT binder, gnatbind, which is used to bind compiled GNAT
objects. The gnatbind program performs four separate functions:
1. Checks that a program is consistent, in accordance with the rules in Chapter 10 of the

Ada 95 Reference Manual. In particular, error messages are generated if a program
uses inconsistent versions of a given unit.

2. Checks that an acceptable order of elaboration exists for the program and issues an
error message if it cannot find an order of elaboration that satisfies the rules in Chapter
10 of the Ada 95 Language Manual.

3. Generates a main program incorporating the given elaboration order. This program is
a small Ada package (body and spec) that must be subsequently compiled using the
GNAT compiler. The necessary compilation step is usually performed automatically by
gnatlink. The two most important functions of this program are to call the elaboration
routines of units in an appropriate order and to call the main program.

4. Determines the set of object files required by the given main program. This information
is output in the forms of comments in the generated program, to be read by the
gnatlink utility used to link the Ada application.

4.1 Running gnatbind

The form of the gnatbind command is
$ gnatbind [switches] mainprog[.ali] [switches]

where ‘mainprog.adb’ is the Ada file containing the main program unit body. If no
switches are specified, gnatbind constructs an Ada package in two files whose names
are ‘b~mainprog.ads’, and ‘b~mainprog.adb’. For example, if given the parameter
‘hello.ali’, for a main program contained in file ‘hello.adb’, the binder output files
would be ‘b~hello.ads’ and ‘b~hello.adb’.

When doing consistency checking, the binder takes into consideration any source files
it can locate. For example, if the binder determines that the given main program requires
the package Pack, whose ‘.ALI’ file is ‘pack.ali’ and whose corresponding source spec file
is ‘pack.ads’, it attempts to locate the source file ‘pack.ads’ (using the same search path
conventions as previously described for the gcc command). If it can locate this source file,
it checks that the time stamps or source checksums of the source and its references to in
‘ALI’ files match. In other words, any ‘ALI’ files that mentions this spec must have resulted
from compiling this version of the source file (or in the case where the source checksums
match, a version close enough that the difference does not matter).

The effect of this consistency checking, which includes source files, is that the binder
ensures that the program is consistent with the latest version of the source files that can
be located at bind time. Editing a source file without compiling files that depend on the
source file cause error messages to be generated by the binder.

For example, suppose you have a main program ‘hello.adb’ and a package P, from file
‘p.ads’ and you perform the following steps:
1. Enter gcc -c hello.adb to compile the main program.
2. Enter gcc -c p.ads to compile package P.

72 GNAT User’s Guide for Native Platforms / Unix and Windows

3. Edit file ‘p.ads’.
4. Enter gnatbind hello.

At this point, the file ‘p.ali’ contains an out-of-date time stamp because the file ‘p.ads’
has been edited. The attempt at binding fails, and the binder generates the following error
messages:

error: "hello.adb" must be recompiled ("p.ads" has been modified)

error: "p.ads" has been modified and must be recompiled

Now both files must be recompiled as indicated, and then the bind can succeed, generating
a main program. You need not normally be concerned with the contents of this file, but for
reference purposes a sample binder output file is given in Appendix B [Example of Binder
Output File], page 231.

In most normal usage, the default mode of gnatbind which is to generate the main
package in Ada, as described in the previous section. In particular, this means that any
Ada programmer can read and understand the generated main program. It can also be
debugged just like any other Ada code provided the ‘-g’ switch is used for gnatbind and
gnatlink.

However for some purposes it may be convenient to generate the main program in C
rather than Ada. This may for example be helpful when you are generating a mixed
language program with the main program in C. The GNAT compiler itself is an example.
The use of the ‘-C’ switch for both gnatbind and gnatlink will cause the program to be
generated in C (and compiled using the gnu C compiler).

4.2 Switches for gnatbind

The following switches are available with gnatbind; details will be presented in subsequent
sections.

‘-aO’ Specify directory to be searched for ALI files.

‘-aI’ Specify directory to be searched for source file.

‘-A’ Generate binder program in Ada (default)

‘-b’ Generate brief messages to ‘stderr’ even if verbose mode set.

‘-c’ Check only, no generation of binder output file.

‘-C’ Generate binder program in C

‘-e’ Output complete list of elaboration-order dependencies.

‘-E’ Store tracebacks in exception occurrences when the target supports it. This
is the default with the zero cost exception mechanism. See also the packages
GNAT.Traceback and GNAT.Traceback.Symbolic for more information. Note
that on x86 ports, you must not use ‘-fomit-frame-pointer’ gcc option.

‘-F’ Force the checks of elaboration flags. gnatbind does not normally generate
checks of elaboration flags for the main executable, except when a Stand-Alone
Library is used. However, there are cases when this cannot be detected by gnat-
bind. An example is importing an interface of a Stand-Alone Library through
a pragma Import and only specifying through a linker switch this Stand-Alone

Chapter 4: Binding Using gnatbind 73

Library. This switch is used to guarantee that elaboration flag checks are gen-
erated.

‘-h’ Output usage (help) information

‘-I’ Specify directory to be searched for source and ALI files.

‘-I-’ Do not look for sources in the current directory where gnatbind was invoked,
and do not look for ALI files in the directory containing the ALI file named in
the gnatbind command line.

‘-l’ Output chosen elaboration order.

‘-Lxxx’ Binds the units for library building. In this case the adainit and adafinal proce-
dures (See see Section 4.2.5 [Binding with Non-Ada Main Programs], page 76)
are renamed to xxxinit and xxxfinal. Implies -n. (see Chapter 18 [GNAT and
Libraries], page 185, for more details.)

‘-Mxyz’ Rename generated main program from main to xyz

‘-mn ’ Limit number of detected errors to n, where n is in the range 1..999 999. The
default value if no switch is given is 9999. Binding is terminated if the limit is
exceeded. Furthermore, under Windows, the sources pointed to by the libraries
path set in the registry are not searched for.

‘-n’ No main program.

‘-nostdinc’
Do not look for sources in the system default directory.

‘-nostdlib’
Do not look for library files in the system default directory.

‘--RTS=rts-path ’
Specifies the default location of the runtime library. Same meaning as the
equivalent gnatmake flag (see Section 6.2 [Switches for gnatmake], page 86).

‘-o file ’ Name the output file file (default is ‘b~xxx.adb’). Note that if this option is
used, then linking must be done manually, gnatlink cannot be used.

‘-O’ Output object list.

‘-p’ Pessimistic (worst-case) elaboration order

‘-s’ Require all source files to be present.

‘-Sxxx ’ Specifies the value to be used when detecting uninitialized scalar objects with
pragma Initialize Scalars. The xxx string specified with the switch may be
either
• “‘in’” requesting an invalid value where possible
• “‘lo’” for the lowest possible value possible, and the low
• “‘hi’” for the highest possible value
• “‘xx’” for a value consisting of repeated bytes with the value 16#xx# (i.e.

xx is a string of two hexadecimal digits).

74 GNAT User’s Guide for Native Platforms / Unix and Windows

In addition, you can specify ‘-Sev’ to indicate that the value is to be set at run
time. In this case, the program will look for an environment variable of the
form GNAT_INIT_SCALARS=xx, where xx is one of ‘in/lo/hi/xx’ with the same
meanings as above. If no environment variable is found, or if it does not have
a valid value, then the default is ‘in’ (invalid values).

‘-static’ Link against a static GNAT run time.

‘-shared’ Link against a shared GNAT run time when available.

‘-t’ Tolerate time stamp and other consistency errors

‘-Tn ’ Set the time slice value to n milliseconds. If the system supports the specifi-
cation of a specific time slice value, then the indicated value is used. If the
system does not support specific time slice values, but does support some gen-
eral notion of round-robin scheduling, then any non-zero value will activate
round-robin scheduling.

A value of zero is treated specially. It turns off time slicing, and in addition,
indicates to the tasking run time that the semantics should match as closely as
possible the Annex D requirements of the Ada RM, and in particular sets the
default scheduling policy to FIFO_Within_Priorities.

‘-v’ Verbose mode. Write error messages, header, summary output to ‘stdout’.

‘-wx ’ Warning mode (x=s/e for suppress/treat as error)

‘-x’ Exclude source files (check object consistency only).

‘-z’ No main subprogram.

You may obtain this listing of switches by running gnatbind with no arguments.

4.2.1 Consistency-Checking Modes

As described earlier, by default gnatbind checks that object files are consistent with one
another and are consistent with any source files it can locate. The following switches control
binder access to sources.

‘-s’ Require source files to be present. In this mode, the binder must be able to
locate all source files that are referenced, in order to check their consistency.
In normal mode, if a source file cannot be located it is simply ignored. If you
specify this switch, a missing source file is an error.

‘-x’ Exclude source files. In this mode, the binder only checks that ALI files are
consistent with one another. Source files are not accessed. The binder runs
faster in this mode, and there is still a guarantee that the resulting program
is self-consistent. If a source file has been edited since it was last compiled,
and you specify this switch, the binder will not detect that the object file is
out of date with respect to the source file. Note that this is the mode that
is automatically used by gnatmake because in this case the checking against
sources has already been performed by gnatmake in the course of compilation
(i.e. before binding).

Chapter 4: Binding Using gnatbind 75

4.2.2 Binder Error Message Control

The following switches provide control over the generation of error messages from the binder:

‘-v’ Verbose mode. In the normal mode, brief error messages are generated to
‘stderr’. If this switch is present, a header is written to ‘stdout’ and any error
messages are directed to ‘stdout’. All that is written to ‘stderr’ is a brief
summary message.

‘-b’ Generate brief error messages to ‘stderr’ even if verbose mode is specified.
This is relevant only when used with the ‘-v’ switch.

‘-mn ’ Limits the number of error messages to n, a decimal integer in the range 1-999.
The binder terminates immediately if this limit is reached.

‘-Mxxx ’ Renames the generated main program from main to xxx. This is useful in the
case of some cross-building environments, where the actual main program is
separate from the one generated by gnatbind.

‘-ws’ Suppress all warning messages.

‘-we’ Treat any warning messages as fatal errors.

‘-t’ The binder performs a number of consistency checks including:
• Check that time stamps of a given source unit are consistent
• Check that checksums of a given source unit are consistent
• Check that consistent versions of GNAT were used for compilation
• Check consistency of configuration pragmas as required

Normally failure of such checks, in accordance with the consistency requirements
of the Ada Reference Manual, causes error messages to be generated which abort
the binder and prevent the output of a binder file and subsequent link to obtain
an executable.
The ‘-t’ switch converts these error messages into warnings, so that binding
and linking can continue to completion even in the presence of such errors.
The result may be a failed link (due to missing symbols), or a non-functional
executable which has undefined semantics. This means that ‘-t’ should be used
only in unusual situations, with extreme care.

4.2.3 Elaboration Control

The following switches provide additional control over the elaboration order. For full details
see See Appendix C [Elaboration Order Handling in GNAT], page 245.

‘-p’ Normally the binder attempts to choose an elaboration order that is likely
to minimize the likelihood of an elaboration order error resulting in raising a
Program_Error exception. This switch reverses the action of the binder, and
requests that it deliberately choose an order that is likely to maximize the
likelihood of an elaboration error. This is useful in ensuring portability and
avoiding dependence on accidental fortuitous elaboration ordering.
Normally it only makes sense to use the ‘-p’ switch if dynamic elaboration
checking is used (‘-gnatE’ switch used for compilation). This is because in

76 GNAT User’s Guide for Native Platforms / Unix and Windows

the default static elaboration mode, all necessary Elaborate_All pragmas are
implicitly inserted. These implicit pragmas are still respected by the binder in
‘-p’ mode, so a safe elaboration order is assured.

4.2.4 Output Control

The following switches allow additional control over the output generated by the binder.

‘-A’ Generate binder program in Ada (default). The binder program is named
‘b~mainprog.adb’ by default. This can be changed with ‘-o’ gnatbind op-
tion.

‘-c’ Check only. Do not generate the binder output file. In this mode the binder
performs all error checks but does not generate an output file.

‘-C’ Generate binder program in C. The binder program is named ‘b_mainprog.c’.
This can be changed with ‘-o’ gnatbind option.

‘-e’ Output complete list of elaboration-order dependencies, showing the reason for
each dependency. This output can be rather extensive but may be useful in
diagnosing problems with elaboration order. The output is written to ‘stdout’.

‘-h’ Output usage information. The output is written to ‘stdout’.

‘-K’ Output linker options to ‘stdout’. Includes library search paths, contents of
pragmas Ident and Linker Options, and libraries added by gnatbind.

‘-l’ Output chosen elaboration order. The output is written to ‘stdout’.

‘-O’ Output full names of all the object files that must be linked to provide the Ada
component of the program. The output is written to ‘stdout’. This list includes
the files explicitly supplied and referenced by the user as well as implicitly
referenced run-time unit files. The latter are omitted if the corresponding units
reside in shared libraries. The directory names for the run-time units depend
on the system configuration.

‘-o file ’ Set name of output file to file instead of the normal ‘b~mainprog.adb’ default.
Note that file denote the Ada binder generated body filename. In C mode
you would normally give file an extension of ‘.c’ because it will be a C source
program. Note that if this option is used, then linking must be done manually.
It is not possible to use gnatlink in this case, since it cannot locate the binder
file.

‘-r’ Generate list of pragma Restrictions that could be applied to the current
unit. This is useful for code audit purposes, and also may be used to improve
code generation in some cases.

4.2.5 Binding with Non-Ada Main Programs

In our description so far we have assumed that the main program is in Ada, and that
the task of the binder is to generate a corresponding function main that invokes this Ada
main program. GNAT also supports the building of executable programs where the main
program is not in Ada, but some of the called routines are written in Ada and compiled
using GNAT (see Section 2.10 [Mixed Language Programming], page 27). The following
switch is used in this situation:

Chapter 4: Binding Using gnatbind 77

‘-n’ No main program. The main program is not in Ada.

In this case, most of the functions of the binder are still required, but instead of generating
a main program, the binder generates a file containing the following callable routines:

adainit You must call this routine to initialize the Ada part of the program by calling
the necessary elaboration routines. A call to adainit is required before the
first call to an Ada subprogram.

Note that it is assumed that the basic execution environment must be setup
to be appropriate for Ada execution at the point where the first Ada sub-
program is called. In particular, if the Ada code will do any floating-point
operations, then the FPU must be setup in an appropriate manner. For the
case of the x86, for example, full precision mode is required. The procedure
GNAT.Float Control.Reset may be used to ensure that the FPU is in the right
state.

adafinal You must call this routine to perform any library-level finalization required by
the Ada subprograms. A call to adafinal is required after the last call to an
Ada subprogram, and before the program terminates.

If the ‘-n’ switch is given, more than one ALI file may appear on the command line for
gnatbind. The normal closure calculation is performed for each of the specified units. Cal-
culating the closure means finding out the set of units involved by tracing with references.
The reason it is necessary to be able to specify more than one ALI file is that a given
program may invoke two or more quite separate groups of Ada units.

The binder takes the name of its output file from the last specified ALI file, unless
overridden by the use of the ‘-o file’. The output is an Ada unit in source form that can
be compiled with GNAT unless the -C switch is used in which case the output is a C source
file, which must be compiled using the C compiler. This compilation occurs automatically
as part of the gnatlink processing.

Currently the GNAT run time requires a FPU using 80 bits mode precision. Under
targets where this is not the default it is required to call GNAT.Float Control.Reset before
using floating point numbers (this include float computation, float input and output) in the
Ada code. A side effect is that this could be the wrong mode for the foreign code where
floating point computation could be broken after this call.

4.2.6 Binding Programs with No Main Subprogram

It is possible to have an Ada program which does not have a main subprogram. This
program will call the elaboration routines of all the packages, then the finalization routines.

The following switch is used to bind programs organized in this manner:

‘-z’ Normally the binder checks that the unit name given on the command line
corresponds to a suitable main subprogram. When this switch is used, a list of
ALI files can be given, and the execution of the program consists of elaboration
of these units in an appropriate order.

78 GNAT User’s Guide for Native Platforms / Unix and Windows

4.3 Command-Line Access

The package Ada.Command_Line provides access to the command-line arguments and pro-
gram name. In order for this interface to operate correctly, the two variables

int gnat_argc;

char **gnat_argv;

are declared in one of the GNAT library routines. These variables must be set from the
actual argc and argv values passed to the main program. With no ‘n’ present, gnatbind
generates the C main program to automatically set these variables. If the ‘n’ switch is
used, there is no automatic way to set these variables. If they are not set, the proce-
dures in Ada.Command_Line will not be available, and any attempt to use them will raise
Constraint_Error. If command line access is required, your main program must set gnat_
argc and gnat_argv from the argc and argv values passed to it.

4.4 Search Paths for gnatbind

The binder takes the name of an ALI file as its argument and needs to locate source files
as well as other ALI files to verify object consistency.

For source files, it follows exactly the same search rules as gcc (see Section 3.3 [Search
Paths and the Run-Time Library (RTL)], page 69). For ALI files the directories searched
are:
1. The directory containing the ALI file named in the command line, unless the switch

‘-I-’ is specified.
2. All directories specified by ‘-I’ switches on the gnatbind command line, in the order

given.
3. Each of the directories listed in the value of the ADA_OBJECTS_PATH environment vari-

able. Construct this value exactly as the PATH environment variable: a list of directory
names separated by colons (semicolons when working with the NT version of GNAT).

4. Each of the directories listed in the text file whose name is given by the ADA_PRJ_
OBJECTS_FILE environment variable.
ADA_PRJ_OBJECTS_FILE is normally set by gnatmake or by the gnat driver when project
files are used. It should not normally be set by other means.

5. The content of the ‘ada_object_path’ file which is part of the GNAT installation tree
and is used to store standard libraries such as the GNAT Run Time Library (RTL)
unless the switch ‘-nostdlib’ is specified. Section 18.2 [Installing an Ada Library],
page 186

In the binder the switch ‘-I’ is used to specify both source and library file paths. Use ‘-aI’
instead if you want to specify source paths only, and ‘-aO’ if you want to specify library
paths only. This means that for the binder ‘-I’dir is equivalent to ‘-aI’dir ‘-aO’dir. The
binder generates the bind file (a C language source file) in the current working directory.

The packages Ada, System, and Interfaces and their children make up the GNAT
Run-Time Library, together with the package GNAT and its children, which contain a set
of useful additional library functions provided by GNAT. The sources for these units are
needed by the compiler and are kept together in one directory. The ALI files and object
files generated by compiling the RTL are needed by the binder and the linker and are kept
together in one directory, typically different from the directory containing the sources. In a

Chapter 4: Binding Using gnatbind 79

normal installation, you need not specify these directory names when compiling or binding.
Either the environment variables or the built-in defaults cause these files to be found.

Besides simplifying access to the RTL, a major use of search paths is in compiling sources
from multiple directories. This can make development environments much more flexible.

4.5 Examples of gnatbind Usage

This section contains a number of examples of using the GNAT binding utility gnatbind.

gnatbind hello
The main program Hello (source program in ‘hello.adb’) is bound using the
standard switch settings. The generated main program is ‘b~hello.adb’. This
is the normal, default use of the binder.

gnatbind hello -o mainprog.adb
The main program Hello (source program in ‘hello.adb’) is bound using the
standard switch settings. The generated main program is ‘mainprog.adb’ with
the associated spec in ‘mainprog.ads’. Note that you must specify the body
here not the spec, in the case where the output is in Ada. Note that if this
option is used, then linking must be done manually, since gnatlink will not be
able to find the generated file.

gnatbind main -C -o mainprog.c -x
The main program Main (source program in ‘main.adb’) is bound, excluding
source files from the consistency checking, generating the file ‘mainprog.c’.

gnatbind -x main_program -C -o mainprog.c
This command is exactly the same as the previous example. Switches may ap-
pear anywhere in the command line, and single letter switches may be combined
into a single switch.

gnatbind -n math dbase -C -o ada-control.c
The main program is in a language other than Ada, but calls to subprograms
in packages Math and Dbase appear. This call to gnatbind generates the file
‘ada-control.c’ containing the adainit and adafinal routines to be called
before and after accessing the Ada units.

80 GNAT User’s Guide for Native Platforms / Unix and Windows

Chapter 5: Linking Using gnatlink 81

5 Linking Using gnatlink

This chapter discusses gnatlink, a tool that links an Ada program and builds an executable
file. This utility invokes the system linker (via the gcc command) with a correct list of
object files and library references. gnatlink automatically determines the list of files and
references for the Ada part of a program. It uses the binder file generated by the gnatbind
to determine this list.

5.1 Running gnatlink

The form of the gnatlink command is
$ gnatlink [switches] mainprog[.ali]

[non-Ada objects] [linker options]

The arguments of gnatlink (switches, main ‘ALI’ file, non-Ada objects or linker options)
may be in any order, provided that no non-Ada object may be mistaken for a main ‘ALI’
file. Any file name ‘F’ without the ‘.ali’ extension will be taken as the main ‘ALI’ file if a
file exists whose name is the concatenation of ‘F’ and ‘.ali’.
‘mainprog.ali’ references the ALI file of the main program. The ‘.ali’ extension of this
file can be omitted. From this reference, gnatlink locates the corresponding binder file
‘b~mainprog.adb’ and, using the information in this file along with the list of non-Ada
objects and linker options, constructs a linker command file to create the executable.

The arguments other than the gnatlink switches and the main ‘ALI’ file are passed to
the linker uninterpreted. They typically include the names of object files for units written
in other languages than Ada and any library references required to resolve references in any
of these foreign language units, or in Import pragmas in any Ada units.

linker options is an optional list of linker specific switches. The default linker called by
gnatlink is gcc which in turn calls the appropriate system linker. Standard options for the
linker such as ‘-lmy_lib’ or ‘-Ldir’ can be added as is. For options that are not recognized
by gcc as linker options, use the gcc switches ‘-Xlinker’ or ‘-Wl,’. Refer to the GCC
documentation for details. Here is an example showing how to generate a linker map:

$ gnatlink my_prog -Wl,-Map,MAPFILE

Using linker options it is possible to set the program stack and heap size. See Sec-
tion 5.3 [Setting Stack Size from gnatlink], page 83, and Section 5.4 [Setting Heap Size from
gnatlink], page 83.

gnatlink determines the list of objects required by the Ada program and prepends them
to the list of objects passed to the linker. gnatlink also gathers any arguments set by the
use of pragma Linker_Options and adds them to the list of arguments presented to the
linker.

5.2 Switches for gnatlink

The following switches are available with the gnatlink utility:

‘-A’ The binder has generated code in Ada. This is the default.

‘-C’ If instead of generating a file in Ada, the binder has generated one in C, then
the linker needs to know about it. Use this switch to signal to gnatlink that
the binder has generated C code rather than Ada code.

82 GNAT User’s Guide for Native Platforms / Unix and Windows

‘-f’ On some targets, the command line length is limited, and gnatlink will gen-
erate a separate file for the linker if the list of object files is too long. The ‘-f’
switch forces this file to be generated even if the limit is not exceeded. This
is useful in some cases to deal with special situations where the command line
length is exceeded.

‘-g’ The option to include debugging information causes the Ada bind file (in other
words, ‘b~mainprog.adb’) to be compiled with ‘-g’. In addition, the binder does
not delete the ‘b~mainprog.adb’, ‘b~mainprog.o’ and ‘b~mainprog.ali’ files.
Without ‘-g’, the binder removes these files by default. The same procedure
apply if a C bind file was generated using ‘-C’ gnatbind option, in this case the
filenames are ‘b_mainprog.c’ and ‘b_mainprog.o’.

‘-n’ Do not compile the file generated by the binder. This may be used when a link
is rerun with different options, but there is no need to recompile the binder file.

‘-v’ Causes additional information to be output, including a full list of the included
object files. This switch option is most useful when you want to see what set
of object files are being used in the link step.

‘-v -v’ Very verbose mode. Requests that the compiler operate in verbose mode when
it compiles the binder file, and that the system linker run in verbose mode.

‘-o exec-name ’
exec-name specifies an alternate name for the generated executable program.
If this switch is omitted, the executable has the same name as the main unit.
For example, gnatlink try.ali creates an executable called ‘try’.

‘-b target ’
Compile your program to run on target, which is the name of a system config-
uration. You must have a GNAT cross-compiler built if target is not the same
as your host system.

‘-Bdir ’ Load compiler executables (for example, gnat1, the Ada compiler) from dir
instead of the default location. Only use this switch when multiple versions of
the GNAT compiler are available. See the gcc manual page for further details.
You would normally use the ‘-b’ or ‘-V’ switch instead.

‘--GCC=compiler_name ’
Program used for compiling the binder file. The default is ‘gcc’. You need
to use quotes around compiler name if compiler_name contains spaces or
other separator characters. As an example ‘--GCC="foo -x -y"’ will instruct
gnatlink to use foo -x -y as your compiler. Note that switch ‘-c’ is always
inserted after your command name. Thus in the above example the compiler
command that will be used by gnatlink will be foo -c -x -y. If several
‘--GCC=compiler_name’ are used, only the last compiler name is taken into
account. However, all the additional switches are also taken into account.
Thus, ‘--GCC="foo -x -y" --GCC="bar -z -t"’ is equivalent to ‘--GCC="bar
-x -y -z -t"’.

‘--LINK=name ’
name is the name of the linker to be invoked. This is especially useful in mixed
language programs since languages such as C++ require their own linker to be

Chapter 5: Linking Using gnatlink 83

used. When this switch is omitted, the default name for the linker is (‘gcc’).
When this switch is used, the specified linker is called instead of (‘gcc’) with
exactly the same parameters that would have been passed to (‘gcc’) so if the
desired linker requires different parameters it is necessary to use a wrapper
script that massages the parameters before invoking the real linker. It may be
useful to control the exact invocation by using the verbose switch.

5.3 Setting Stack Size from gnatlink

Under Windows systems, it is possible to specify the program stack size from gnatlink
using either:
• using ‘-Xlinker’ linker option

$ gnatlink hello -Xlinker --stack=0x10000,0x1000

This sets the stack reserve size to 0x10000 bytes and the stack commit size to 0x1000
bytes.

• using ‘-Wl’ linker option
$ gnatlink hello -Wl,--stack=0x1000000

This sets the stack reserve size to 0x1000000 bytes. Note that with ‘-Wl’ option it is not
possible to set the stack commit size because the coma is a separator for this option.

5.4 Setting Heap Size from gnatlink

Under Windows systems, it is possible to specify the program heap size from gnatlink
using either:
• using ‘-Xlinker’ linker option

$ gnatlink hello -Xlinker --heap=0x10000,0x1000

This sets the heap reserve size to 0x10000 bytes and the heap commit size to 0x1000
bytes.

• using ‘-Wl’ linker option
$ gnatlink hello -Wl,--heap=0x1000000

This sets the heap reserve size to 0x1000000 bytes. Note that with ‘-Wl’ option it is not
possible to set the heap commit size because the coma is a separator for this option.

84 GNAT User’s Guide for Native Platforms / Unix and Windows

Chapter 6: The GNAT Make Program gnatmake 85

6 The GNAT Make Program gnatmake

A typical development cycle when working on an Ada program consists of the following
steps:

1. Edit some sources to fix bugs.

2. Add enhancements.

3. Compile all sources affected.

4. Rebind and relink.

5. Test.

The third step can be tricky, because not only do the modified files have to be compiled,
but any files depending on these files must also be recompiled. The dependency rules in
Ada can be quite complex, especially in the presence of overloading, use clauses, generics
and inlined subprograms.

gnatmake automatically takes care of the third and fourth steps of this process. It
determines which sources need to be compiled, compiles them, and binds and links the
resulting object files.

Unlike some other Ada make programs, the dependencies are always accurately recom-
puted from the new sources. The source based approach of the GNAT compilation model
makes this possible. This means that if changes to the source program cause corresponding
changes in dependencies, they will always be tracked exactly correctly by gnatmake.

6.1 Running gnatmake

The usual form of the gnatmake command is

$ gnatmake [switches] file_name

[file_names] [mode_switches]

The only required argument is one file name, which specifies a compilation unit that is a
main program. Several file names can be specified: this will result in several executables
being built. If switches are present, they can be placed before the first file name, between
file names or after the last file name. If mode switches are present, they must always be
placed after the last file name and all switches.

If you are using standard file extensions (.adb and .ads), then the extension may be
omitted from the file name arguments. However, if you are using non-standard extensions,
then it is required that the extension be given. A relative or absolute directory path can
be specified in a file name, in which case, the input source file will be searched for in
the specified directory only. Otherwise, the input source file will first be searched in the
directory where gnatmake was invoked and if it is not found, it will be search on the source
path of the compiler as described in Section 3.3 [Search Paths and the Run-Time Library
(RTL)], page 69.

All gnatmake output (except when you specify ‘-M’) is to ‘stderr’. The output produced
by the ‘-M’ switch is send to ‘stdout’.

86 GNAT User’s Guide for Native Platforms / Unix and Windows

6.2 Switches for gnatmake

You may specify any of the following switches to gnatmake:

‘--GCC=compiler_name ’
Program used for compiling. The default is ‘gcc’. You need to use quotes
around compiler name if compiler_name contains spaces or other separator
characters. As an example ‘--GCC="foo -x -y"’ will instruct gnatmake to use
foo -x -y as your compiler. Note that switch ‘-c’ is always inserted after your
command name. Thus in the above example the compiler command that will
be used by gnatmake will be foo -c -x -y. If several ‘--GCC=compiler_name’
are used, only the last compiler name is taken into account. However, all the
additional switches are also taken into account. Thus, ‘--GCC="foo -x -y"
--GCC="bar -z -t"’ is equivalent to ‘--GCC="bar -x -y -z -t"’.

‘--GNATBIND=binder_name ’
Program used for binding. The default is ‘gnatbind’. You need to use quotes
around binder name if binder name contains spaces or other separator char-
acters. As an example ‘--GNATBIND="bar -x -y"’ will instruct gnatmake to
use bar -x -y as your binder. Binder switches that are normally appended by
gnatmake to ‘gnatbind’ are now appended to the end of bar -x -y.

‘--GNATLINK=linker_name ’
Program used for linking. The default is ‘gnatlink’. You need to use quotes
around linker name if linker name contains spaces or other separator char-
acters. As an example ‘--GNATLINK="lan -x -y"’ will instruct gnatmake to
use lan -x -y as your linker. Linker switches that are normally appended by
gnatmake to ‘gnatlink’ are now appended to the end of lan -x -y.

‘-a’ Consider all files in the make process, even the GNAT internal system files (for
example, the predefined Ada library files), as well as any locked files. Locked
files are files whose ALI file is write-protected. By default, gnatmake does not
check these files, because the assumption is that the GNAT internal files are
properly up to date, and also that any write protected ALI files have been
properly installed. Note that if there is an installation problem, such that one
of these files is not up to date, it will be properly caught by the binder. You
may have to specify this switch if you are working on GNAT itself. The switch
‘-a’ is also useful in conjunction with ‘-f’ if you need to recompile an entire
application, including run-time files, using special configuration pragmas, such
as a Normalize_Scalars pragma.

By default gnatmake -a compiles all GNAT internal files with gcc -c -gnatpg
rather than gcc -c.

‘-b’ Bind only. Can be combined with ‘-c’ to do compilation and binding, but
no link. Can be combined with ‘-l’ to do binding and linking. When not
combined with ‘-c’ all the units in the closure of the main program must have
been previously compiled and must be up to date. The root unit specified by
file name may be given without extension, with the source extension or, if no
GNAT Project File is specified, with the ALI file extension.

Chapter 6: The GNAT Make Program gnatmake 87

‘-c’ Compile only. Do not perform binding, except when ‘-b’ is also specified. Do
not perform linking, except if both ‘-b’ and ‘-l’ are also specified. If the root
unit specified by file name is not a main unit, this is the default. Otherwise
gnatmake will attempt binding and linking unless all objects are up to date and
the executable is more recent than the objects.

‘-C’ Use a temporary mapping file. A mapping file is a way to communicate to the
compiler two mappings: from unit names to file names (without any directory
information) and from file names to path names (with full directory informa-
tion). These mappings are used by the compiler to short-circuit the path search.
When gnatmake is invoked with this switch, it will create a temporary map-
ping file, initially populated by the project manager, if ‘-P’ is used, otherwise
initially empty. Each invocation of the compiler will add the newly accessed
sources to the mapping file. This will improve the source search during the next
invocation of the compiler.

‘-C=file ’ Use a specific mapping file. The file, specified as a path name (absolute or
relative) by this switch, should already exist, otherwise the switch is ineffective.
The specified mapping file will be communicated to the compiler. This switch is
not compatible with a project file (-Pfile) or with multiple compiling processes
(-jnnn, when nnn is greater than 1).

‘-D dir ’ Put all object files and ALI file in directory dir. If the ‘-D’ switch is not used,
all object files and ALI files go in the current working directory.
This switch cannot be used when using a project file.

‘-f’ Force recompilations. Recompile all sources, even though some object files may
be up to date, but don’t recompile predefined or GNAT internal files or locked
files (files with a write-protected ALI file), unless the ‘-a’ switch is also specified.

‘-F’ When using project files, if some errors or warnings are detected during parsing
and verbose mode is not in effect (no use of switch -v), then error lines start
with the full path name of the project file, rather than its simple file name.

‘-i’ In normal mode, gnatmake compiles all object files and ALI files into the current
directory. If the ‘-i’ switch is used, then instead object files and ALI files that
already exist are overwritten in place. This means that once a large project is
organized into separate directories in the desired manner, then gnatmake will
automatically maintain and update this organization. If no ALI files are found
on the Ada object path (Section 3.3 [Search Paths and the Run-Time Library
(RTL)], page 69), the new object and ALI files are created in the directory
containing the source being compiled. If another organization is desired, where
objects and sources are kept in different directories, a useful technique is to
create dummy ALI files in the desired directories. When detecting such a
dummy file, gnatmake will be forced to recompile the corresponding source file,
and it will be put the resulting object and ALI files in the directory where it
found the dummy file.

‘-jn ’ Use n processes to carry out the (re)compilations. On a multiprocessor machine
compilations will occur in parallel. In the event of compilation errors, messages
from various compilations might get interspersed (but gnatmake will give you

88 GNAT User’s Guide for Native Platforms / Unix and Windows

the full ordered list of failing compiles at the end). If this is problematic, rerun
the make process with n set to 1 to get a clean list of messages.

‘-k’ Keep going. Continue as much as possible after a compilation error. To ease
the programmer’s task in case of compilation errors, the list of sources for which
the compile fails is given when gnatmake terminates.
If gnatmake is invoked with several ‘file_names’ and with this switch, if there
are compilation errors when building an executable, gnatmake will not attempt
to build the following executables.

‘-l’ Link only. Can be combined with ‘-b’ to binding and linking. Linking will not
be performed if combined with ‘-c’ but not with ‘-b’. When not combined with
‘-b’ all the units in the closure of the main program must have been previously
compiled and must be up to date, and the main program need to have been
bound. The root unit specified by file name may be given without extension,
with the source extension or, if no GNAT Project File is specified, with the ALI
file extension.

‘-m’ Specifies that the minimum necessary amount of recompilations be performed.
In this mode gnatmake ignores time stamp differences when the only modifica-
tions to a source file consist in adding/removing comments, empty lines, spaces
or tabs. This means that if you have changed the comments in a source file or
have simply reformatted it, using this switch will tell gnatmake not to recompile
files that depend on it (provided other sources on which these files depend have
undergone no semantic modifications). Note that the debugging information
may be out of date with respect to the sources if the ‘-m’ switch causes a com-
pilation to be switched, so the use of this switch represents a trade-off between
compilation time and accurate debugging information.

‘-M’ Check if all objects are up to date. If they are, output the object dependences
to ‘stdout’ in a form that can be directly exploited in a ‘Makefile’. By default,
each source file is prefixed with its (relative or absolute) directory name. This
name is whatever you specified in the various ‘-aI’ and ‘-I’ switches. If you
use gnatmake -M ‘-q’ (see below), only the source file names, without relative
paths, are output. If you just specify the ‘-M’ switch, dependencies of the
GNAT internal system files are omitted. This is typically what you want. If
you also specify the ‘-a’ switch, dependencies of the GNAT internal files are
also listed. Note that dependencies of the objects in external Ada libraries (see
switch ‘-aL’dir in the following list) are never reported.

‘-n’ Don’t compile, bind, or link. Checks if all objects are up to date. If they
are not, the full name of the first file that needs to be recompiled is printed.
Repeated use of this option, followed by compiling the indicated source file, will
eventually result in recompiling all required units.

‘-o exec_name ’
Output executable name. The name of the final executable program will be
exec name. If the ‘-o’ switch is omitted the default name for the executable
will be the name of the input file in appropriate form for an executable file on
the host system.

Chapter 6: The GNAT Make Program gnatmake 89

This switch cannot be used when invoking gnatmake with several ‘file_names’.

‘-Pproject ’
Use project file project. Only one such switch can be used. See Section 11.15.1
[gnatmake and Project Files], page 140.

‘-q’ Quiet. When this flag is not set, the commands carried out by gnatmake are
displayed.

‘-s’ Recompile if compiler switches have changed since last compilation. All com-
piler switches but -I and -o are taken into account in the following way: orders
between different “first letter” switches are ignored, but orders between same
switches are taken into account. For example, ‘-O -O2’ is different than ‘-O2
-O’, but ‘-g -O’ is equivalent to ‘-O -g’.
This switch is recommended when Integrated Preprocessing is used.

‘-u’ Unique. Recompile at most the main files. It implies -c. Combined with -f, it
is equivalent to calling the compiler directly. Note that using -u with a project
file and no main has a special meaning (see Section 11.15.1.3 [Project Files and
Main Subprograms], page 143).

‘-U’ When used without a project file or with one or several mains on the command
line, is equivalent to -u. When used with a project file and no main on the
command line, all sources of all project files are checked and compiled if not up
to date, and libraries are rebuilt, if necessary.

‘-v’ Verbose. Displays the reason for all recompilations gnatmake decides are nec-
essary.

‘-vPx ’ Indicates the verbosity of the parsing of GNAT project files. See Section 11.14
[Switches Related to Project Files], page 139.

‘-Xname=value ’
Indicates that external variable name has the value value. The Project Manager
will use this value for occurrences of external(name) when parsing the project
file. See Section 11.14 [Switches Related to Project Files], page 139.

‘-z’ No main subprogram. Bind and link the program even if the unit name given
on the command line is a package name. The resulting executable will execute
the elaboration routines of the package and its closure, then the finalization
routines.

‘-g’ Enable debugging. This switch is simply passed to the compiler and to the
linker.

gcc switches
Any uppercase switch (other than ‘-A’, ‘-L’ or ‘-S’) or any switch that is more
than one character is passed to gcc (e.g. ‘-O’, ‘-gnato,’ etc.)

Source and library search path switches:

‘-aIdir ’ When looking for source files also look in directory dir. The order in which
source files search is undertaken is described in Section 3.3 [Search Paths and
the Run-Time Library (RTL)], page 69.

90 GNAT User’s Guide for Native Platforms / Unix and Windows

‘-aLdir ’ Consider dir as being an externally provided Ada library. Instructs gnatmake
to skip compilation units whose ‘.ALI’ files have been located in directory dir.
This allows you to have missing bodies for the units in dir and to ignore out
of date bodies for the same units. You still need to specify the location of the
specs for these units by using the switches ‘-aIdir ’ or ‘-Idir ’. Note: this
switch is provided for compatibility with previous versions of gnatmake. The
easier method of causing standard libraries to be excluded from consideration
is to write-protect the corresponding ALI files.

‘-aOdir ’ When searching for library and object files, look in directory dir. The order
in which library files are searched is described in Section 4.4 [Search Paths for
gnatbind], page 78.

‘-Adir ’ Equivalent to ‘-aLdir -aIdir ’.

‘-Idir ’ Equivalent to ‘-aOdir -aIdir ’.

‘-I-’ Do not look for source files in the directory containing the source file named in
the command line. Do not look for ALI or object files in the directory where
gnatmake was invoked.

‘-Ldir ’ Add directory dir to the list of directories in which the linker will search for
libraries. This is equivalent to ‘-largs -L’dir. Furthermore, under Windows,
the sources pointed to by the libraries path set in the registry are not searched
for.

‘-nostdinc’
Do not look for source files in the system default directory.

‘-nostdlib’
Do not look for library files in the system default directory.

‘--RTS=rts-path ’
Specifies the default location of the runtime library. GNAT looks for
the runtime in the following directories, and stops as soon as a valid
runtime is found (‘adainclude’ or ‘ada_source_path’, and ‘adalib’ or
‘ada_object_path’ present):
• <current directory>/$rts path
• <default-search-dir>/$rts path
• <default-search-dir>/rts-$rts path

The selected path is handled like a normal RTS path.

6.3 Mode Switches for gnatmake

The mode switches (referred to as mode_switches) allow the inclusion of switches that are
to be passed to the compiler itself, the binder or the linker. The effect of a mode switch is
to cause all subsequent switches up to the end of the switch list, or up to the next mode
switch, to be interpreted as switches to be passed on to the designated component of GNAT.

‘-cargs switches ’
Compiler switches. Here switches is a list of switches that are valid switches
for gcc. They will be passed on to all compile steps performed by gnatmake.

Chapter 6: The GNAT Make Program gnatmake 91

‘-bargs switches ’
Binder switches. Here switches is a list of switches that are valid switches for
gnatbind. They will be passed on to all bind steps performed by gnatmake.

‘-largs switches ’
Linker switches. Here switches is a list of switches that are valid switches for
gnatlink. They will be passed on to all link steps performed by gnatmake.

‘-margs switches ’
Make switches. The switches are directly interpreted by gnatmake, regardless
of any previous occurrence of ‘-cargs’, ‘-bargs’ or ‘-largs’.

6.4 Notes on the Command Line

This section contains some additional useful notes on the operation of the gnatmake com-
mand.
• If gnatmake finds no ALI files, it recompiles the main program and all other units

required by the main program. This means that gnatmake can be used for the initial
compile, as well as during subsequent steps of the development cycle.

• If you enter gnatmake file.adb, where ‘file.adb’ is a subunit or body of a generic
unit, gnatmake recompiles ‘file.adb’ (because it finds no ALI) and stops, issuing a
warning.

• In gnatmake the switch ‘-I’ is used to specify both source and library file paths. Use
‘-aI’ instead if you just want to specify source paths only and ‘-aO’ if you want to
specify library paths only.

• gnatmake examines both an ALI file and its corresponding object file for consistency.
If an ALI is more recent than its corresponding object, or if the object file is missing,
the corresponding source will be recompiled. Note that gnatmake expects an ALI and
the corresponding object file to be in the same directory.

• gnatmake will ignore any files whose ALI file is write-protected. This may conveniently
be used to exclude standard libraries from consideration and in particular it means
that the use of the ‘-f’ switch will not recompile these files unless ‘-a’ is also specified.

• gnatmake has been designed to make the use of Ada libraries particularly convenient.
Assume you have an Ada library organized as follows: obj-dir contains the objects and
ALI files for of your Ada compilation units, whereas include-dir contains the specs of
these units, but no bodies. Then to compile a unit stored in main.adb, which uses this
Ada library you would just type

$ gnatmake -aIinclude-dir -aLobj-dir main

• Using gnatmake along with the ‘-m (minimal recompilation)’ switch provides a
mechanism for avoiding unnecessary rcompilations. Using this switch, you can update
the comments/format of your source files without having to recompile everything.
Note, however, that adding or deleting lines in a source files may render its debugging
info obsolete. If the file in question is a spec, the impact is rather limited, as that
debugging info will only be useful during the elaboration phase of your program. For
bodies the impact can be more significant. In all events, your debugger will warn you
if a source file is more recent than the corresponding object, and alert you to the fact
that the debugging information may be out of date.

92 GNAT User’s Guide for Native Platforms / Unix and Windows

6.5 How gnatmake Works

Generally gnatmake automatically performs all necessary recompilations and you don’t need
to worry about how it works. However, it may be useful to have some basic understanding
of the gnatmake approach and in particular to understand how it uses the results of previous
compilations without incorrectly depending on them.

First a definition: an object file is considered up to date if the corresponding ALI file
exists and its time stamp predates that of the object file and if all the source files listed in
the dependency section of this ALI file have time stamps matching those in the ALI file.
This means that neither the source file itself nor any files that it depends on have been
modified, and hence there is no need to recompile this file.

gnatmake works by first checking if the specified main unit is up to date. If so, no
compilations are required for the main unit. If not, gnatmake compiles the main program
to build a new ALI file that reflects the latest sources. Then the ALI file of the main unit
is examined to find all the source files on which the main program depends, and gnatmake
recursively applies the above procedure on all these files.

This process ensures that gnatmake only trusts the dependencies in an existing ALI
file if they are known to be correct. Otherwise it always recompiles to determine a new,
guaranteed accurate set of dependencies. As a result the program is compiled “upside down”
from what may be more familiar as the required order of compilation in some other Ada
systems. In particular, clients are compiled before the units on which they depend. The
ability of GNAT to compile in any order is critical in allowing an order of compilation to
be chosen that guarantees that gnatmake will recompute a correct set of new dependencies
if necessary.

When invoking gnatmake with several file names, if a unit is imported by several of the
executables, it will be recompiled at most once.

Note: when using non-standard naming conventions (See Section 2.4 [Using Other File
Names], page 21), changing through a configuration pragmas file the version of a source and
invoking gnatmake to recompile may have no effect, if the previous version of the source is
still accessible by gnatmake. It may be necessary to use the switch -f.

6.6 Examples of gnatmake Usage

gnatmake hello.adb
Compile all files necessary to bind and link the main program ‘hello.adb’
(containing unit Hello) and bind and link the resulting object files to generate
an executable file ‘hello’.

gnatmake main1 main2 main3
Compile all files necessary to bind and link the main programs ‘main1.adb’
(containing unit Main1), ‘main2.adb’ (containing unit Main2) and ‘main3.adb’
(containing unit Main3) and bind and link the resulting object files to generate
three executable files ‘main1’, ‘main2’ and ‘main3’.

gnatmake -q Main_Unit -cargs -O2 -bargs -l
Compile all files necessary to bind and link the main program unit Main_Unit
(from file ‘main_unit.adb’). All compilations will be done with optimization

Chapter 6: The GNAT Make Program gnatmake 93

level 2 and the order of elaboration will be listed by the binder. gnatmake will
operate in quiet mode, not displaying commands it is executing.

94 GNAT User’s Guide for Native Platforms / Unix and Windows

Chapter 7: Improving Performance 95

7 Improving Performance

This chapter presents several topics related to program performance. It first describes some
of the tradeoffs that need to be considered and some of the techniques for making your
program run faster. It then documents the gnatelim tool, which can reduce the size of
program executables.

7.1 Performance Considerations

The GNAT system provides a number of options that allow a trade-off between
• performance of the generated code
• speed of compilation
• minimization of dependences and recompilation
• the degree of run-time checking.

The defaults (if no options are selected) aim at improving the speed of compilation and
minimizing dependences, at the expense of performance of the generated code:
• no optimization
• no inlining of subprogram calls
• all run-time checks enabled except overflow and elaboration checks

These options are suitable for most program development purposes. This chapter describes
how you can modify these choices, and also provides some guidelines on debugging optimized
code.

7.1.1 Controlling Run-Time Checks

By default, GNAT generates all run-time checks, except arithmetic overflow checking for
integer operations and checks for access before elaboration on subprogram calls. The latter
are not required in default mode, because all necessary checking is done at compile time.
Two gnat switches, ‘-gnatp’ and ‘-gnato’ allow this default to be modified. See Section 3.2.6
[Run-Time Checks], page 57.

Our experience is that the default is suitable for most development purposes.
We treat integer overflow specially because these are quite expensive and in our experi-

ence are not as important as other run-time checks in the development process. Note that
division by zero is not considered an overflow check, and divide by zero checks are generated
where required by default.

Elaboration checks are off by default, and also not needed by default, since GNAT uses
a static elaboration analysis approach that avoids the need for run-time checking. This
manual contains a full chapter discussing the issue of elaboration checks, and if the default
is not satisfactory for your use, you should read this chapter.

For validity checks, the minimal checks required by the Ada Reference Manual (for case
statements and assignments to array elements) are on by default. These can be suppressed
by use of the ‘-gnatVn’ switch. Note that in Ada 83, there were no validity checks, so
if the Ada 83 mode is acceptable (or when comparing GNAT performance with an Ada
83 compiler), it may be reasonable to routinely use ‘-gnatVn’. Validity checks are also
suppressed entirely if ‘-gnatp’ is used.

96 GNAT User’s Guide for Native Platforms / Unix and Windows

Note that the setting of the switches controls the default setting of the checks. They
may be modified using either pragma Suppress (to remove checks) or pragma Unsuppress
(to add back suppressed checks) in the program source.

7.1.2 Use of Restrictions

The use of pragma Restrictions allows you to control which features are permitted in your
program. Apart from the obvious point that if you avoid relatively expensive features like
finalization (enforceable by the use of pragma Restrictions (No Finalization), the use of this
pragma does not affect the generated code in most cases.

One notable exception to this rule is that the possibility of task abort results in some
distributed overhead, particularly if finalization or exception handlers are used. The reason
is that certain sections of code have to be marked as non-abortable.

If you use neither the abort statement, nor asynchronous transfer of control (select ..
then abort), then this distributed overhead is removed, which may have a general positive
effect in improving overall performance. Especially code involving frequent use of task-
ing constructs and controlled types will show much improved performance. The relevant
restrictions pragmas are

pragma Restrictions (No_Abort_Statements);

pragma Restrictions (Max_Asynchronous_Select_Nesting => 0);

It is recommended that these restriction pragmas be used if possible. Note that this also
means that you can write code without worrying about the possibility of an immediate
abort at any point.

7.1.3 Optimization Levels

The default is optimization off. This results in the fastest compile times, but GNAT makes
absolutely no attempt to optimize, and the generated programs are considerably larger and
slower than when optimization is enabled. You can use the ‘-On ’ switch, where n is an
integer from 0 to 3, to gcc to control the optimization level:

‘-O0’ No optimization (the default); generates unoptimized code but has the fastest
compilation time.

‘-O1’ Medium level optimization; optimizes reasonably well but does not degrade
compilation time significantly.

‘-O2’ Full optimization; generates highly optimized code and has the slowest compi-
lation time.

‘-O3’ Full optimization as in ‘-O2’, and also attempts automatic inlining of small sub-
programs within a unit (see Section 7.1.5 [Inlining of Subprograms], page 98).

Higher optimization levels perform more global transformations on the program and apply
more expensive analysis algorithms in order to generate faster and more compact code. The
price in compilation time, and the resulting improvement in execution time, both depend
on the particular application and the hardware environment. You should experiment to
find the best level for your application.

Since the precise set of optimizations done at each level will vary from release to release
(and sometime from target to target), it is best to think of the optimization settings in

Chapter 7: Improving Performance 97

general terms. The Using GNU GCC manual contains details about the ‘-O’ settings and
a number of ‘-f’ options that individually enable or disable specific optimizations.

Unlike some other compilation systems, gcc has been tested extensively at all optimiza-
tion levels. There are some bugs which appear only with optimization turned on, but there
have also been bugs which show up only in unoptimized code. Selecting a lower level of
optimization does not improve the reliability of the code generator, which in practice is
highly reliable at all optimization levels.

Note regarding the use of ‘-O3’: The use of this optimization level is generally discouraged
with GNAT, since it often results in larger executables which run more slowly. See further
discussion of this point in see Section 7.1.5 [Inlining of Subprograms], page 98.

7.1.4 Debugging Optimized Code

Although it is possible to do a reasonable amount of debugging at non-zero optimization
levels, the higher the level the more likely that source-level constructs will have been elimi-
nated by optimization. For example, if a loop is strength-reduced, the loop control variable
may be completely eliminated and thus cannot be displayed in the debugger. This can only
happen at ‘-O2’ or ‘-O3’. Explicit temporary variables that you code might be eliminated
at level ‘-O1’ or higher.

The use of the ‘-g’ switch, which is needed for source-level debugging, affects the size of
the program executable on disk, and indeed the debugging information can be quite large.
However, it has no effect on the generated code (and thus does not degrade performance)

Since the compiler generates debugging tables for a compilation unit before it performs
optimizations, the optimizing transformations may invalidate some of the debugging data.
You therefore need to anticipate certain anomalous situations that may arise while debug-
ging optimized code. These are the most common cases:
1. The “hopping Program Counter”: Repeated step or next commands show the PC

bouncing back and forth in the code. This may result from any of the following opti-
mizations:
• Common subexpression elimination: using a single instance of code for a quantity

that the source computes several times. As a result you may not be able to stop
on what looks like a statement.

• Invariant code motion: moving an expression that does not change within a loop,
to the beginning of the loop.

• Instruction scheduling: moving instructions so as to overlap loads and stores (typ-
ically) with other code, or in general to move computations of values closer to their
uses. Often this causes you to pass an assignment statement without the assign-
ment happening and then later bounce back to the statement when the value is
actually needed. Placing a breakpoint on a line of code and then stepping over it
may, therefore, not always cause all the expected side-effects.

2. The “big leap”: More commonly known as cross-jumping, in which two identical pieces
of code are merged and the program counter suddenly jumps to a statement that is not
supposed to be executed, simply because it (and the code following) translates to the
same thing as the code that was supposed to be executed. This effect is typically seen
in sequences that end in a jump, such as a goto, a return, or a break in a C switch
statement.

98 GNAT User’s Guide for Native Platforms / Unix and Windows

3. The “roving variable”: The symptom is an unexpected value in a variable. There are
various reasons for this effect:
• In a subprogram prologue, a parameter may not yet have been moved to its

“home”.
• A variable may be dead, and its register re-used. This is probably the most

common cause.
• As mentioned above, the assignment of a value to a variable may have been moved.
• A variable may be eliminated entirely by value propagation or other means. In

this case, GCC may incorrectly generate debugging information for the variable

In general, when an unexpected value appears for a local variable or parameter you
should first ascertain if that value was actually computed by your program, as opposed
to being incorrectly reported by the debugger. Record fields or array elements in an
object designated by an access value are generally less of a problem, once you have
ascertained that the access value is sensible. Typically, this means checking variables
in the preceding code and in the calling subprogram to verify that the value observed
is explainable from other values (one must apply the procedure recursively to those
other values); or re-running the code and stopping a little earlier (perhaps before the
call) and stepping to better see how the variable obtained the value in question; or
continuing to step from the point of the strange value to see if code motion had simply
moved the variable’s assignments later.

In light of such anomalies, a recommended technique is to use ‘-O0’ early in the software
development cycle, when extensive debugging capabilities are most needed, and then move
to ‘-O1’ and later ‘-O2’ as the debugger becomes less critical. Whether to use the ‘-g’
switch in the release version is a release management issue. Note that if you use ‘-g’ you
can then use the strip program on the resulting executable, which removes both debugging
information and global symbols.

7.1.5 Inlining of Subprograms

A call to a subprogram in the current unit is inlined if all the following conditions are met:
• The optimization level is at least ‘-O1’.
• The called subprogram is suitable for inlining: It must be small enough and not contain

nested subprograms or anything else that gcc cannot support in inlined subprograms.
• The call occurs after the definition of the body of the subprogram.
• Either pragma Inline applies to the subprogram or it is small and automatic inlining

(optimization level ‘-O3’) is specified.

Calls to subprograms in with’ed units are normally not inlined. To achieve this level of
inlining, the following conditions must all be true:
• The optimization level is at least ‘-O1’.
• The called subprogram is suitable for inlining: It must be small enough and not contain

nested subprograms or anything else gcc cannot support in inlined subprograms.
• The call appears in a body (not in a package spec).
• There is a pragma Inline for the subprogram.
• The ‘-gnatn’ switch is used in the gcc command line

Chapter 7: Improving Performance 99

Note that specifying the ‘-gnatn’ switch causes additional compilation dependencies.
Consider the following:� �

package R is

procedure Q;

pragma Inline (Q);

end R;

package body R is

...

end R;

with R;

procedure Main is

begin

...

R.Q;

end Main;
 	
With the default behavior (no ‘-gnatn’ switch specified), the compilation of the Main proce-
dure depends only on its own source, ‘main.adb’, and the spec of the package in file ‘r.ads’.
This means that editing the body of R does not require recompiling Main.

On the other hand, the call R.Q is not inlined under these circumstances. If the ‘-gnatn’
switch is present when Main is compiled, the call will be inlined if the body of Q is small
enough, but now Main depends on the body of R in ‘r.adb’ as well as on the spec. This
means that if this body is edited, the main program must be recompiled. Note that this
extra dependency occurs whether or not the call is in fact inlined by gcc.

The use of front end inlining with ‘-gnatN’ generates similar additional dependencies.

Note: The ‘-fno-inline’ switch can be used to prevent all inlining. This switch overrides
all other conditions and ensures that no inlining occurs. The extra dependences resulting
from ‘-gnatn’ will still be active, even if this switch is used to suppress the resulting inlining
actions.

Note regarding the use of ‘-O3’: There is no difference in inlining behavior between ‘-O2’
and ‘-O3’ for subprograms with an explicit pragma Inline assuming the use of ‘-gnatn’ or
‘-gnatN’ (the switches that activate inlining). If you have used pragma Inline in appro-
priate cases, then it is usually much better to use ‘-O2’ and ‘-gnatn’ and avoid the use of
‘-O3’ which in this case only has the effect of inlining subprograms you did not think should
be inlined. We often find that the use of ‘-O3’ slows down code by performing excessive
inlining, leading to increased instruction cache pressure from the increased code size. So the
bottom line here is that you should not automatically assume that ‘-O3’ is better than ‘-O2’,
and indeed you should use ‘-O3’ only if tests show that it actually improves performance.

7.2 Reducing the Size of Ada Executables with gnatelim

This section describes gnatelim, a tool which detects unused subprograms and helps the
compiler to create a smaller executable for your program.

100 GNAT User’s Guide for Native Platforms / Unix and Windows

7.2.1 About gnatelim

When a program shares a set of Ada packages with other programs, it may happen that
this program uses only a fraction of the subprograms defined in these packages. The code
created for these unused subprograms increases the size of the executable.

gnatelim tracks unused subprograms in an Ada program and outputs a list of GNAT-
specific pragmas Eliminate marking all the subprograms that are declared but never called.
By placing the list of Eliminate pragmas in the GNAT configuration file ‘gnat.adc’ and
recompiling your program, you may decrease the size of its executable, because the compiler
will not generate the code for ’eliminated’ subprograms. See GNAT Reference Manual for
more information about this pragma.

gnatelim needs as its input data the name of the main subprogram and a bind file for
a main subprogram.

To create a bind file for gnatelim, run gnatbind for the main subprogram. gnatelim
can work with both Ada and C bind files; when both are present, it uses the Ada bind file.
The following commands will build the program and create the bind file:

$ gnatmake -c Main_Prog

$ gnatbind main_prog

Note that gnatelim needs neither object nor ALI files.

7.2.2 Running gnatelim

gnatelim has the following command-line interface:
$ gnatelim [options] name

name should be a name of a source file that contains the main subprogram of a program
(partition).

gnatelim has the following switches:

‘-q’ Quiet mode: by default gnatelim outputs to the standard error stream the
number of program units left to be processed. This option turns this trace off.

‘-v’ Verbose mode: gnatelim version information is printed as Ada comments to
the standard output stream. Also, in addition to the number of program units
left gnatelim will output the name of the current unit being processed.

‘-a’ Also look for subprograms from the GNAT run time that can be eliminated.
Note that when ‘gnat.adc’ is produced using this switch, the entire program
must be recompiled with switch ‘-a’ to gnatmake.

‘-Idir ’ When looking for source files also look in directory dir. Specifying ‘-I-’ in-
structs gnatelim not to look for sources in the current directory.

‘-bbind_file ’
Specifies bind file as the bind file to process. If not set, the name of the bind
file is computed from the full expanded Ada name of a main subprogram.

‘-Cconfig_file ’
Specifies a file config file that contains configuration pragmas. The file must
be specified with full path.

Chapter 7: Improving Performance 101

‘--GCC=compiler_name ’
Instructs gnatelim to use specific gcc compiler instead of one available on the
path.

‘--GNATMAKE=gnatmake_name ’
Instructs gnatelim to use specific gnatmake instead of one available on the
path.

‘-dx ’ Activate internal debugging switches. x is a letter or digit, or string of letters
or digits, which specifies the type of debugging mode desired. Normally these
are used only for internal development or system debugging purposes. You can
find full documentation for these switches in the spec of the Gnatelim unit in
the compiler source file ‘gnatelim.ads’.

gnatelim sends its output to the standard output stream, and all the tracing and debug
information is sent to the standard error stream. In order to produce a proper GNAT
configuration file ‘gnat.adc’, redirection must be used:

$ gnatelim main_prog.adb > gnat.adc

or
$ gnatelim main_prog.adb >> gnat.adc

in order to append the gnatelim output to the existing contents of ‘gnat.adc’.

7.2.3 Correcting the List of Eliminate Pragmas

In some rare cases gnatelim may try to eliminate subprograms that are actually called in
the program. In this case, the compiler will generate an error message of the form:

file.adb:106:07: cannot call eliminated subprogram "My_Prog"

You will need to manually remove the wrong Eliminate pragmas from the ‘gnat.adc’ file.
You should recompile your program from scratch after that, because you need a consistent
‘gnat.adc’ file during the entire compilation.

7.2.4 Making Your Executables Smaller

In order to get a smaller executable for your program you now have to recompile the program
completely with the new ‘gnat.adc’ file created by gnatelim in your current directory:

$ gnatmake -f main_prog

(Use the ‘-f’ option for gnatmake to recompile everything with the set of pragmas
Eliminate that you have obtained with gnatelim).

Be aware that the set of Eliminate pragmas is specific to each program. It is not
recommended to merge sets of Eliminate pragmas created for different programs in one
‘gnat.adc’ file.

7.2.5 Summary of the gnatelim Usage Cycle

Here is a quick summary of the steps to be taken in order to reduce the size of your
executables with gnatelim. You may use other GNAT options to control the optimization
level, to produce the debugging information, to set search path, etc.
1. Produce a bind file

$ gnatmake -c main_prog

$ gnatbind main_prog

102 GNAT User’s Guide for Native Platforms / Unix and Windows

2. Generate a list of Eliminate pragmas
$ gnatelim main_prog >[>] gnat.adc

3. Recompile the application
$ gnatmake -f main_prog

Chapter 8: Renaming Files Using gnatchop 103

8 Renaming Files Using gnatchop

This chapter discusses how to handle files with multiple units by using the gnatchop utility.
This utility is also useful in renaming files to meet the standard GNAT default file naming
conventions.

8.1 Handling Files with Multiple Units

The basic compilation model of GNAT requires that a file submitted to the compiler have
only one unit and there be a strict correspondence between the file name and the unit name.

The gnatchop utility allows both of these rules to be relaxed, allowing GNAT to process
files which contain multiple compilation units and files with arbitrary file names. gnatchop
reads the specified file and generates one or more output files, containing one unit per file.
The unit and the file name correspond, as required by GNAT.

If you want to permanently restructure a set of “foreign” files so that they match the
GNAT rules, and do the remaining development using the GNAT structure, you can simply
use gnatchop once, generate the new set of files and work with them from that point on.

Alternatively, if you want to keep your files in the “foreign” format, perhaps to main-
tain compatibility with some other Ada compilation system, you can set up a procedure
where you use gnatchop each time you compile, regarding the source files that it writes as
temporary files that you throw away.

8.2 Operating gnatchop in Compilation Mode

The basic function of gnatchop is to take a file with multiple units and split it into separate
files. The boundary between files is reasonably clear, except for the issue of comments
and pragmas. In default mode, the rule is that any pragmas between units belong to the
previous unit, except that configuration pragmas always belong to the following unit. Any
comments belong to the following unit. These rules almost always result in the right choice
of the split point without needing to mark it explicitly and most users will find this default
to be what they want. In this default mode it is incorrect to submit a file containing only
configuration pragmas, or one that ends in configuration pragmas, to gnatchop.

However, using a special option to activate “compilation mode”, gnatchop can perform
another function, which is to provide exactly the semantics required by the RM for handling
of configuration pragmas in a compilation. In the absence of configuration pragmas (at the
main file level), this option has no effect, but it causes such configuration pragmas to be
handled in a quite different manner.

First, in compilation mode, if gnatchop is given a file that consists of only configuration
pragmas, then this file is appended to the ‘gnat.adc’ file in the current directory. This
behavior provides the required behavior described in the RM for the actions to be taken
on submitting such a file to the compiler, namely that these pragmas should apply to all
subsequent compilations in the same compilation environment. Using GNAT, the current
directory, possibly containing a ‘gnat.adc’ file is the representation of a compilation en-
vironment. For more information on the ‘gnat.adc’ file, see the section on handling of
configuration pragmas see Section 9.1 [Handling of Configuration Pragmas], page 107.

Second, in compilation mode, if gnatchop is given a file that starts with configuration
pragmas, and contains one or more units, then these configuration pragmas are prepended

104 GNAT User’s Guide for Native Platforms / Unix and Windows

to each of the chopped files. This behavior provides the required behavior described in the
RM for the actions to be taken on compiling such a file, namely that the pragmas apply to
all units in the compilation, but not to subsequently compiled units.

Finally, if configuration pragmas appear between units, they are appended to the previ-
ous unit. This results in the previous unit being illegal, since the compiler does not accept
configuration pragmas that follow a unit. This provides the required RM behavior that
forbids configuration pragmas other than those preceding the first compilation unit of a
compilation.

For most purposes, gnatchop will be used in default mode. The compilation mode
described above is used only if you need exactly accurate behavior with respect to compi-
lations, and you have files that contain multiple units and configuration pragmas. In this
circumstance the use of gnatchop with the compilation mode switch provides the required
behavior, and is for example the mode in which GNAT processes the ACVC tests.

8.3 Command Line for gnatchop

The gnatchop command has the form:
$ gnatchop switches file name [file name file name ...]

[directory]

The only required argument is the file name of the file to be chopped. There are no
restrictions on the form of this file name. The file itself contains one or more Ada units,
in normal GNAT format, concatenated together. As shown, more than one file may be
presented to be chopped.

When run in default mode, gnatchop generates one output file in the current directory
for each unit in each of the files.

directory, if specified, gives the name of the directory to which the output files will be
written. If it is not specified, all files are written to the current directory.

For example, given a file called ‘hellofiles’ containing� �
procedure hello;

with Text_IO; use Text_IO;

procedure hello is

begin

Put_Line ("Hello");

end hello;
 	
the command

$ gnatchop hellofiles

generates two files in the current directory, one called ‘hello.ads’ containing the single line
that is the procedure spec, and the other called ‘hello.adb’ containing the remaining text.
The original file is not affected. The generated files can be compiled in the normal manner.

When gnatchop is invoked on a file that is empty or that contains only empty lines and/or
comments, gnatchop will not fail, but will not produce any new sources.

For example, given a file called ‘toto.txt’ containing

Chapter 8: Renaming Files Using gnatchop 105

� �
-- Just a comment
 	

the command
$ gnatchop toto.txt

will not produce any new file and will result in the following warnings:
toto.txt:1:01: warning: empty file, contains no compilation units

no compilation units found

no source files written

8.4 Switches for gnatchop

gnatchop recognizes the following switches:

‘-c’ Causes gnatchop to operate in compilation mode, in which configuration prag-
mas are handled according to strict RM rules. See previous section for a full
description of this mode.

‘-gnatxxx’
This passes the given ‘-gnatxxx’ switch to gnat which is used to parse the given
file. Not all xxx options make sense, but for example, the use of ‘-gnati2’ allows
gnatchop to process a source file that uses Latin-2 coding for identifiers.

‘-h’ Causes gnatchop to generate a brief help summary to the standard output file
showing usage information.

‘-kmm ’ Limit generated file names to the specified number mm of characters. This is
useful if the resulting set of files is required to be interoperable with systems
which limit the length of file names. No space is allowed between the ‘-k’ and
the numeric value. The numeric value may be omitted in which case a default
of ‘-k8’, suitable for use with DOS-like file systems, is used. If no ‘-k’ switch
is present then there is no limit on the length of file names.

‘-p’ Causes the file modification time stamp of the input file to be preserved and
used for the time stamp of the output file(s). This may be useful for preserving
coherency of time stamps in an environment where gnatchop is used as part of
a standard build process.

‘-q’ Causes output of informational messages indicating the set of generated files to
be suppressed. Warnings and error messages are unaffected.

‘-r’ Generate Source_Reference pragmas. Use this switch if the output files are
regarded as temporary and development is to be done in terms of the original
unchopped file. This switch causes Source_Reference pragmas to be inserted
into each of the generated files to refers back to the original file name and
line number. The result is that all error messages refer back to the original
unchopped file. In addition, the debugging information placed into the object
file (when the ‘-g’ switch of gcc or gnatmake is specified) also refers back to
this original file so that tools like profilers and debuggers will give information
in terms of the original unchopped file.
If the original file to be chopped itself contains a Source_Reference pragma
referencing a third file, then gnatchop respects this pragma, and the gener-
ated Source_Reference pragmas in the chopped file refer to the original file,

106 GNAT User’s Guide for Native Platforms / Unix and Windows

with appropriate line numbers. This is particularly useful when gnatchop is
used in conjunction with gnatprep to compile files that contain preprocessing
statements and multiple units.

‘-v’ Causes gnatchop to operate in verbose mode. The version number and copy-
right notice are output, as well as exact copies of the gnat1 commands spawned
to obtain the chop control information.

‘-w’ Overwrite existing file names. Normally gnatchop regards it as a fatal error if
there is already a file with the same name as a file it would otherwise output,
in other words if the files to be chopped contain duplicated units. This switch
bypasses this check, and causes all but the last instance of such duplicated units
to be skipped.

‘--GCC=xxxx’
Specify the path of the GNAT parser to be used. When this switch is used, no
attempt is made to add the prefix to the GNAT parser executable.

8.5 Examples of gnatchop Usage

gnatchop -w hello_s.ada prerelease/files
Chops the source file ‘hello_s.ada’. The output files will be placed in the
directory ‘prerelease/files’, overwriting any files with matching names in
that directory (no files in the current directory are modified).

gnatchop archive
Chops the source file ‘archive’ into the current directory. One useful appli-
cation of gnatchop is in sending sets of sources around, for example in email
messages. The required sources are simply concatenated (for example, using a
Unix cat command), and then gnatchop is used at the other end to reconstitute
the original file names.

gnatchop file1 file2 file3 direc
Chops all units in files ‘file1’, ‘file2’, ‘file3’, placing the resulting files in
the directory ‘direc’. Note that if any units occur more than once anywhere
within this set of files, an error message is generated, and no files are written.
To override this check, use the ‘-w’ switch, in which case the last occurrence in
the last file will be the one that is output, and earlier duplicate occurrences for
a given unit will be skipped.

Chapter 9: Configuration Pragmas 107

9 Configuration Pragmas

In Ada 95, configuration pragmas include those pragmas described as such in the Ada 95
Reference Manual, as well as implementation-dependent pragmas that are configuration
pragmas. See the individual descriptions of pragmas in the GNAT Reference Manual for
details on these additional GNAT-specific configuration pragmas. Most notably, the pragma
Source_File_Name, which allows specifying non-default names for source files, is a config-
uration pragma. The following is a complete list of configuration pragmas recognized by
GNAT:

Ada_83

Ada_95

C_Pass_By_Copy

Component_Alignment

Discard_Names

Elaboration_Checks

Eliminate

Extend_System

Extensions_Allowed

External_Name_Casing

Float_Representation

Initialize_Scalars

License

Locking_Policy

Long_Float

Normalize_Scalars

Polling

Propagate_Exceptions

Queuing_Policy

Ravenscar

Restricted_Run_Time

Restrictions

Reviewable

Source_File_Name

Style_Checks

Suppress

Task_Dispatching_Policy

Universal_Data

Unsuppress

Use_VADS_Size

Warnings

Validity_Checks

9.1 Handling of Configuration Pragmas

Configuration pragmas may either appear at the start of a compilation unit, in which case
they apply only to that unit, or they may apply to all compilations performed in a given
compilation environment.

GNAT also provides the gnatchop utility to provide an automatic way to handle config-
uration pragmas following the semantics for compilations (that is, files with multiple units),
described in the RM. See section see Section 8.2 [Operating gnatchop in Compilation Mode],
page 103 for details. However, for most purposes, it will be more convenient to edit the
‘gnat.adc’ file that contains configuration pragmas directly, as described in the following
section.

108 GNAT User’s Guide for Native Platforms / Unix and Windows

9.2 The Configuration Pragmas Files

In GNAT a compilation environment is defined by the current directory at the time that
a compile command is given. This current directory is searched for a file whose name
is ‘gnat.adc’. If this file is present, it is expected to contain one or more configuration
pragmas that will be applied to the current compilation. However, if the switch ‘-gnatA’ is
used, ‘gnat.adc’ is not considered.

Configuration pragmas may be entered into the ‘gnat.adc’ file either by running
gnatchop on a source file that consists only of configuration pragmas, or more conveniently
by direct editing of the ‘gnat.adc’ file, which is a standard format source file.

In addition to ‘gnat.adc’, one additional file containing configuration pragmas may be
applied to the current compilation using the switch ‘-gnatec’path. path must designate an
existing file that contains only configuration pragmas. These configuration pragmas are in
addition to those found in ‘gnat.adc’ (provided ‘gnat.adc’ is present and switch ‘-gnatA’
is not used).

It is allowed to specify several switches ‘-gnatec’, however only the last one on the
command line will be taken into account.

If you are using project file, a separate mechanism is provided using project attributes,
see Section 11.15.1.2 [Specifying Configuration Pragmas], page 142 for more details.

Chapter 10: Handling Arbitrary File Naming Conventions Using gnatname 109

10 Handling Arbitrary File Naming Conventions
Using gnatname

10.1 Arbitrary File Naming Conventions

The GNAT compiler must be able to know the source file name of a compilation unit. When
using the standard GNAT default file naming conventions (.ads for specs, .adb for bodies),
the GNAT compiler does not need additional information.

When the source file names do not follow the standard GNAT default file naming conven-
tions, the GNAT compiler must be given additional information through a configuration
pragmas file (see Chapter 9 [Configuration Pragmas], page 107) or a project file. When the
non standard file naming conventions are well-defined, a small number of pragmas Source_
File_Name specifying a naming pattern (see Section 2.5 [Alternative File Naming Schemes],
page 22) may be sufficient. However, if the file naming conventions are irregular or arbi-
trary, a number of pragma Source_File_Name for individual compilation units must be
defined. To help maintain the correspondence between compilation unit names and source
file names within the compiler, GNAT provides a tool gnatname to generate the required
pragmas for a set of files.

10.2 Running gnatname

The usual form of the gnatname command is
$ gnatname [switches] naming_pattern [naming_patterns]

All of the arguments are optional. If invoked without any argument, gnatname will display
its usage.

When used with at least one naming pattern, gnatname will attempt to find all the compila-
tion units in files that follow at least one of the naming patterns. To find these compilation
units, gnatname will use the GNAT compiler in syntax-check-only mode on all regular files.

One or several Naming Patterns may be given as arguments to gnatname. Each Naming
Pattern is enclosed between double quotes. A Naming Pattern is a regular expression similar
to the wildcard patterns used in file names by the Unix shells or the DOS prompt.

Examples of Naming Patterns are
"*.[12].ada"

"*.ad[sb]*"

"body_*" "spec_*"

For a more complete description of the syntax of Naming Patterns, see the second kind of
regular expressions described in ‘g-regexp.ads’ (the “Glob” regular expressions).

When invoked with no switches, gnatname will create a configuration pragmas file
‘gnat.adc’ in the current working directory, with pragmas Source_File_Name for each file
that contains a valid Ada unit.

10.3 Switches for gnatname

Switches for gnatname must precede any specified Naming Pattern.

You may specify any of the following switches to gnatname:

110 GNAT User’s Guide for Native Platforms / Unix and Windows

‘-c‘file’’
Create a configuration pragmas file ‘file’ (instead of the default ‘gnat.adc’).
There may be zero, one or more space between ‘-c’ and ‘file’. ‘file’ may
include directory information. ‘file’ must be writable. There may be only one
switch ‘-c’. When a switch ‘-c’ is specified, no switch ‘-P’ may be specified
(see below).

‘-d‘dir’’ Look for source files in directory ‘dir’. There may be zero, one or more spaces
between ‘-d’ and ‘dir’. When a switch ‘-d’ is specified, the current working
directory will not be searched for source files, unless it is explicitly specified
with a ‘-d’ or ‘-D’ switch. Several switches ‘-d’ may be specified. If ‘dir’ is
a relative path, it is relative to the directory of the configuration pragmas file
specified with switch ‘-c’, or to the directory of the project file specified with
switch ‘-P’ or, if neither switch ‘-c’ nor switch ‘-P’ are specified, it is relative
to the current working directory. The directory specified with switch ‘-d’ must
exist and be readable.

‘-D‘file’’
Look for source files in all directories listed in text file ‘file’. There may be
zero, one or more spaces between ‘-D’ and ‘file’. ‘file’ must be an existing,
readable text file. Each non empty line in ‘file’ must be a directory. Specifying
switch ‘-D’ is equivalent to specifying as many switches ‘-d’ as there are non
empty lines in ‘file’.

‘-f‘pattern’’
Foreign patterns. Using this switch, it is possible to add sources of languages
other than Ada to the list of sources of a project file. It is only useful if a -P
switch is used. For example,

gnatname -Pprj -f"*.c" "*.ada"

will look for Ada units in all files with the ‘.ada’ extension, and will add to the
list of file for project ‘prj.gpr’ the C files with extension ".c".

‘-h’ Output usage (help) information. The output is written to ‘stdout’.

‘-P‘proj’’
Create or update project file ‘proj’. There may be zero, one or more space
between ‘-P’ and ‘proj’. ‘proj’ may include directory information. ‘proj’
must be writable. There may be only one switch ‘-P’. When a switch ‘-P’ is
specified, no switch ‘-c’ may be specified.

‘-v’ Verbose mode. Output detailed explanation of behavior to ‘stdout’. This
includes name of the file written, the name of the directories to search and, for
each file in those directories whose name matches at least one of the Naming
Patterns, an indication of whether the file contains a unit, and if so the name
of the unit.

‘-v -v’ Very Verbose mode. In addition to the output produced in verbose mode, for
each file in the searched directories whose name matches none of the Naming
Patterns, an indication is given that there is no match.

‘-x‘pattern’’
Excluded patterns. Using this switch, it is possible to exclude some files that
would match the name patterns. For example,

Chapter 10: Handling Arbitrary File Naming Conventions Using gnatname 111

gnatname -x "*_nt.ada" "*.ada"

will look for Ada units in all files with the ‘.ada’ extension, except those whose
names end with ‘_nt.ada’.

10.4 Examples of gnatname Usage
$ gnatname -c /home/me/names.adc -d sources "[a-z]*.ada*"

In this example, the directory ‘/home/me’ must already exist and be writable. In addition,
the directory ‘/home/me/sources’ (specified by ‘-d sources’) must exist and be readable.

Note the optional spaces after ‘-c’ and ‘-d’.
$ gnatname -P/home/me/proj -x "*_nt_body.ada"

-dsources -dsources/plus -Dcommon_dirs.txt "body_*" "spec_*"

Note that several switches ‘-d’ may be used, even in conjunction with one or several
switches ‘-D’. Several Naming Patterns and one excluded pattern are used in this example.

112 GNAT User’s Guide for Native Platforms / Unix and Windows

Chapter 11: GNAT Project Manager 113

11 GNAT Project Manager

11.1 Introduction

This chapter describes GNAT’s Project Manager, a facility that allows you to manage
complex builds involving a number of source files, directories, and compilation options for
different system configurations. In particular, project files allow you to specify:
• The directory or set of directories containing the source files, and/or the names of the

specific source files themselves
• The directory in which the compiler’s output (‘ALI’ files, object files, tree files) is to be

placed
• The directory in which the executable programs is to be placed
• Switch settings for any of the project-enabled tools (gnatmake, compiler, binder, linker,

gnatls, gnatxref, gnatfind); you can apply these settings either globally or to indi-
vidual compilation units.

• The source files containing the main subprogram(s) to be built
• The source programming language(s) (currently Ada and/or C)
• Source file naming conventions; you can specify these either globally or for individual

compilation units

11.1.1 Project Files

Project files are written in a syntax close to that of Ada, using familiar notions such as
packages, context clauses, declarations, default values, assignments, and inheritance. Fi-
nally, project files can be built hierarchically from other project files, simplifying complex
system integration and project reuse.

A project is a specific set of values for various compilation properties. The settings for a
given project are described by means of a project file, which is a text file written in an Ada-
like syntax. Property values in project files are either strings or lists of strings. Properties
that are not explicitly set receive default values. A project file may interrogate the values
of external variables (user-defined command-line switches or environment variables), and it
may specify property settings conditionally, based on the value of such variables.

In simple cases, a project’s source files depend only on other source files in the same
project, or on the predefined libraries. (Dependence is used in the Ada technical sense;
as in one Ada unit withing another.) However, the Project Manager also allows more
sophisticated arrangements, where the source files in one project depend on source files in
other projects:
• One project can import other projects containing needed source files.
• You can organize GNAT projects in a hierarchy: a child project can extend a parent

project, inheriting the parent’s source files and optionally overriding any of them with
alternative versions

More generally, the Project Manager lets you structure large development efforts into hier-
archical subsystems, where build decisions are delegated to the subsystem level, and thus
different compilation environments (switch settings) used for different subsystems.

114 GNAT User’s Guide for Native Platforms / Unix and Windows

The Project Manager is invoked through the ‘-Pprojectfile ’ switch to gnatmake or to
the gnat front driver. There may be zero, one or more spaces between ‘-P’ and ‘project-
file ’. If you want to define (on the command line) an external variable that is queried by
the project file, you must use the ‘-Xvbl=value ’ switch. The Project Manager parses and
interprets the project file, and drives the invoked tool based on the project settings.

The Project Manager supports a wide range of development strategies, for systems of
all sizes. Here are some typical practices that are easily handled:

• Using a common set of source files, but generating object files in different directories
via different switch settings

• Using a mostly-shared set of source files, but with different versions of some unit or
units

The destination of an executable can be controlled inside a project file using the ‘-o’ switch.
In the absence of such a switch either inside the project file or on the command line, any
executable files generated by gnatmake are placed in the directory Exec_Dir specified in
the project file. If no Exec_Dir is specified, they will be placed in the object directory of
the project.

You can use project files to achieve some of the effects of a source versioning system (for
example, defining separate projects for the different sets of sources that comprise different
releases) but the Project Manager is independent of any source configuration management
tools that might be used by the developers.

The next section introduces the main features of GNAT’s project facility through a
sequence of examples; subsequent sections will present the syntax and semantics in more
detail. A more formal description of the project facility appears in the GNAT Reference
Manual.

11.2 Examples of Project Files

This section illustrates some of the typical uses of project files and explains their basic
structure and behavior.

11.2.1 Common Sources with Different Switches and Directories

Suppose that the Ada source files ‘pack.ads’, ‘pack.adb’, and ‘proc.adb’ are in the
‘/common’ directory. The file ‘proc.adb’ contains an Ada main subprogram Proc that
withs package Pack. We want to compile these source files under two sets of switches:

• When debugging, we want to pass the ‘-g’ switch to gnatmake, and the ‘-gnata’,
‘-gnato’, and ‘-gnatE’ switches to the compiler; the compiler’s output is to appear in
‘/common/debug’

• When preparing a release version, we want to pass the ‘-O2’ switch to the compiler;
the compiler’s output is to appear in ‘/common/release’

The GNAT project files shown below, respectively ‘debug.gpr’ and ‘release.gpr’ in the
‘/common’ directory, achieve these effects.

Schematically:

Chapter 11: GNAT Project Manager 115

/common

debug.gpr

release.gpr

pack.ads

pack.adb

proc.adb

/common/debug

proc.ali, proc.o

pack.ali, pack.o

/common/release

proc.ali, proc.o

pack.ali, pack.o

Here are the corresponding project files:
project Debug is

for Object_Dir use "debug";

for Main use ("proc");

package Builder is

for Default_Switches ("Ada")

use ("-g");

for Executable ("proc.adb") use "proc1";

end Builder;

package Compiler is

for Default_Switches ("Ada")

use ("-fstack-check",

"-gnata",

"-gnato",

"-gnatE");

end Compiler;

end Debug;

project Release is

for Object_Dir use "release";

for Exec_Dir use ".";

for Main use ("proc");

package Compiler is

for Default_Switches ("Ada")

use ("-O2");

end Compiler;

end Release;

The name of the project defined by ‘debug.gpr’ is "Debug" (case insensitive), and analo-
gously the project defined by ‘release.gpr’ is "Release". For consistency the file should
have the same name as the project, and the project file’s extension should be "gpr". These
conventions are not required, but a warning is issued if they are not followed.

If the current directory is ‘/temp’, then the command
gnatmake -P/common/debug.gpr

generates object and ALI files in ‘/common/debug’, as well as the proc1 executable, using
the switch settings defined in the project file.

Likewise, the command
gnatmake -P/common/release.gpr

generates object and ALI files in ‘/common/release’, and the proc executable in ‘/common’,
using the switch settings from the project file.

116 GNAT User’s Guide for Native Platforms / Unix and Windows

Source Files

If a project file does not explicitly specify a set of source directories or a set of source files,
then by default the project’s source files are the Ada source files in the project file directory.
Thus ‘pack.ads’, ‘pack.adb’, and ‘proc.adb’ are the source files for both projects.

Specifying the Object Directory

Several project properties are modeled by Ada-style attributes; a property is defined by
supplying the equivalent of an Ada attribute definition clause in the project file. A project’s
object directory is another such a property; the corresponding attribute is Object_Dir,
and its value is also a string expression, specified either as absolute or relative. In the
later case, it is relative to the project file directory. Thus the compiler’s output is directed
to ‘/common/debug’ (for the Debug project) and to ‘/common/release’ (for the Release
project). If Object_Dir is not specified, then the default is the project file directory itself.

Specifying the Exec Directory

A project’s exec directory is another property; the corresponding attribute is Exec_Dir,
and its value is also a string expression, either specified as relative or absolute. If Exec_Dir
is not specified, then the default is the object directory (which may also be the project
file directory if attribute Object_Dir is not specified). Thus the executable is placed in
‘/common/debug’ for the Debug project (attribute Exec_Dir not specified) and in ‘/common’
for the Release project.

Project File Packages

A GNAT tool that is integrated with the Project Manager is modeled by a corresponding
package in the project file. In the example above, The Debug project defines the packages
Builder (for gnatmake) and Compiler; the Release project defines only the Compiler
package.

The Ada-like package syntax is not to be taken literally. Although packages in project
files bear a surface resemblance to packages in Ada source code, the notation is simply a way
to convey a grouping of properties for a named entity. Indeed, the package names permitted
in project files are restricted to a predefined set, corresponding to the project-aware tools,
and the contents of packages are limited to a small set of constructs. The packages in the
example above contain attribute definitions.

Specifying Switch Settings

Switch settings for a project-aware tool can be specified through attributes in the package
that corresponds to the tool. The example above illustrates one of the relevant attributes,
Default_Switches, which is defined in packages in both project files. Unlike simple at-
tributes like Source_Dirs, Default_Switches is known as an associative array. When you
define this attribute, you must supply an “index” (a literal string), and the effect of the
attribute definition is to set the value of the array at the specified index. For the Default_
Switches attribute, the index is a programming language (in our case, Ada), and the value
specified (after use) must be a list of string expressions.

The attributes permitted in project files are restricted to a predefined set. Some may
appear at project level, others in packages. For any attribute that is an associative array,
the index must always be a literal string, but the restrictions on this string (e.g., a file name

Chapter 11: GNAT Project Manager 117

or a language name) depend on the individual attribute. Also depending on the attribute,
its specified value will need to be either a string or a string list.

In the Debug project, we set the switches for two tools, gnatmake and the compiler,
and thus we include the two corresponding packages; each package defines the Default_
Switches attribute with index "Ada". Note that the package corresponding to gnatmake is
named Builder. The Release project is similar, but only includes the Compiler package.

In project Debug above, the switches starting with ‘-gnat’ that are specified in package
Compiler could have been placed in package Builder, since gnatmake transmits all such
switches to the compiler.

Main Subprograms

One of the specifiable properties of a project is a list of files that contain main subprograms.
This property is captured in the Main attribute, whose value is a list of strings. If a project
defines the Main attribute, it is not necessary to identify the main subprogram(s) when
invoking gnatmake (see Section 11.15.1 [gnatmake and Project Files], page 140).

Executable File Names

By default, the executable file name corresponding to a main source is deducted from
the main source file name. Through the attributes Executable and Executable_Suffix
of package Builder, it is possible to change this default. In project Debug above, the
executable file name for main source ‘proc.adb’ is ‘proc1’. Attribute Executable_Suffix,
when specified, may change the suffix of the the executable files, when no attribute
Executable applies: its value replace the platform-specific executable suffix. Attributes
Executable and Executable_Suffix are the only ways to specify a non default executable
file name when several mains are built at once in a single gnatmake command.

Source File Naming Conventions

Since the project files above do not specify any source file naming conventions, the GNAT
defaults are used. The mechanism for defining source file naming conventions – a package
named Naming – is described below (see Section 11.10 [Naming Schemes], page 134).

Source Language(s)

Since the project files do not specify a Languages attribute, by default the GNAT tools
assume that the language of the project file is Ada. More generally, a project can comprise
source files in Ada, C, and/or other languages.

11.2.2 Using External Variables

Instead of supplying different project files for debug and release, we can define a single
project file that queries an external variable (set either on the command line or via an
environment variable) in order to conditionally define the appropriate settings. Again,
assume that the source files ‘pack.ads’, ‘pack.adb’, and ‘proc.adb’ are located in directory
‘/common’. The following project file, ‘build.gpr’, queries the external variable named
STYLE and defines an object directory and switch settings based on whether the value is
"deb" (debug) or "rel" (release), and where the default is "deb".

118 GNAT User’s Guide for Native Platforms / Unix and Windows

project Build is

for Main use ("proc");

type Style_Type is ("deb", "rel");

Style : Style_Type := external ("STYLE", "deb");

case Style is

when "deb" =>

for Object_Dir use "debug";

when "rel" =>

for Object_Dir use "release";

for Exec_Dir use ".";

end case;

package Builder is

case Style is

when "deb" =>

for Default_Switches ("Ada")

use ("-g");

for Executable ("proc") use "proc1";

end case;

end Builder;

package Compiler is

case Style is

when "deb" =>

for Default_Switches ("Ada")

use ("-gnata",

"-gnato",

"-gnatE");

when "rel" =>

for Default_Switches ("Ada")

use ("-O2");

end case;

end Compiler;

end Build;

Style_Type is an example of a string type, which is the project file analog of an Ada
enumeration type but whose components are string literals rather than identifiers. Style
is declared as a variable of this type.

The form external("STYLE", "deb") is known as an external reference; its first argu-
ment is the name of an external variable, and the second argument is a default value to
be used if the external variable doesn’t exist. You can define an external variable on the
command line via the ‘-X’ switch, or you can use an environment variable as an external
variable.

Each case construct is expanded by the Project Manager based on the value of Style.
Thus the command

gnatmake -P/common/build.gpr -XSTYLE=deb

Chapter 11: GNAT Project Manager 119

is equivalent to the gnatmake invocation using the project file ‘debug.gpr’ in the earlier
example. So is the command

gnatmake -P/common/build.gpr

since "deb" is the default for STYLE.
Analogously,

gnatmake -P/common/build.gpr -XSTYLE=rel

is equivalent to the gnatmake invocation using the project file ‘release.gpr’ in the earlier
example.

11.2.3 Importing Other Projects

A compilation unit in a source file in one project may depend on compilation units in source
files in other projects. To compile this unit under control of a project file, the dependent
project must import the projects containing the needed source files. This effect is obtained
using syntax similar to an Ada with clause, but where withed entities are strings that
denote project files.

As an example, suppose that the two projects GUI_Proj and Comm_Proj are defined in
the project files ‘gui_proj.gpr’ and ‘comm_proj.gpr’ in directories ‘/gui’ and ‘/comm’,
respectively. Suppose that the source files for GUI_Proj are ‘gui.ads’ and ‘gui.adb’, and
that the source files for Comm_Proj are ‘comm.ads’ and ‘comm.adb’, where each set of files
is located in its respective project file directory. Schematically:

/gui

gui_proj.gpr

gui.ads

gui.adb

/comm

comm_proj.gpr

comm.ads

comm.adb

We want to develop an application in directory ‘/app’ that with the packages GUI and Comm,
using the properties of the corresponding project files (e.g. the switch settings and object
directory). Skeletal code for a main procedure might be something like the following:

with GUI, Comm;

procedure App_Main is

...

begin

...

end App_Main;

Here is a project file, ‘app_proj.gpr’, that achieves the desired effect:
with "/gui/gui_proj", "/comm/comm_proj";

project App_Proj is

for Main use ("app_main");

end App_Proj;

Building an executable is achieved through the command:
gnatmake -P/app/app_proj

which will generate the app_main executable in the directory where ‘app_proj.gpr’ resides.
If an imported project file uses the standard extension (gpr) then (as illustrated above)

the with clause can omit the extension.

120 GNAT User’s Guide for Native Platforms / Unix and Windows

Our example specified an absolute path for each imported project file. Alternatively, the
directory name of an imported object can be omitted if either

• The imported project file is in the same directory as the importing project file, or

• You have defined an environment variable that includes the directory containing the
needed project file. The syntax of ADA_PROJECT_PATH is the same as the syntax of ADA_
INCLUDE_PATH and ADA_OBJECTS_PATH: a list of directory names separated by colons
(semicolons on Windows).

Thus, if we define ADA_PROJECT_PATH to include ‘/gui’ and ‘/comm’, then our project file
‘app_proj.gpr’ can be written as follows:

with "gui_proj", "comm_proj";

project App_Proj is

for Main use ("app_main");

end App_Proj;

Importing other projects can create ambiguities. For example, the same unit might be
present in different imported projects, or it might be present in both the importing project
and in an imported project. Both of these conditions are errors. Note that in the current
version of the Project Manager, it is illegal to have an ambiguous unit even if the unit
is never referenced by the importing project. This restriction may be relaxed in a future
release.

11.2.4 Extending a Project

In large software systems it is common to have multiple implementations of a common
interface; in Ada terms, multiple versions of a package body for the same specification. For
example, one implementation might be safe for use in tasking programs, while another might
only be used in sequential applications. This can be modeled in GNAT using the concept
of project extension. If one project (the “child”) extends another project (the “parent”)
then by default all source files of the parent project are inherited by the child, but the
child project can override any of the parent’s source files with new versions, and can also
add new files. This facility is the project analog of a type extension in Object-Oriented
Programming. Project hierarchies are permitted (a child project may be the parent of yet
another project), and a project that inherits one project can also import other projects.

As an example, suppose that directory ‘/seq’ contains the project file ‘seq_proj.gpr’
as well as the source files ‘pack.ads’, ‘pack.adb’, and ‘proc.adb’:

/seq

pack.ads

pack.adb

proc.adb

seq_proj.gpr

Note that the project file can simply be empty (that is, no attribute or package is defined):
project Seq_Proj is

end Seq_Proj;

implying that its source files are all the Ada source files in the project directory.

Suppose we want to supply an alternate version of ‘pack.adb’, in directory ‘/tasking’,
but use the existing versions of ‘pack.ads’ and ‘proc.adb’. We can define a project
Tasking_Proj that inherits Seq_Proj:

Chapter 11: GNAT Project Manager 121

/tasking

pack.adb

tasking_proj.gpr

project Tasking_Proj extends "/seq/seq_proj" is

end Tasking_Proj;

The version of ‘pack.adb’ used in a build depends on which project file is specified.

Note that we could have obtained the desired behavior using project import rather than
project inheritance; a base project would contain the sources for ‘pack.ads’ and ‘proc.adb’,
a sequential project would import base and add ‘pack.adb’, and likewise a tasking project
would import base and add a different version of ‘pack.adb’. The choice depends on
whether other sources in the original project need to be overridden. If they do, then project
extension is necessary, otherwise, importing is sufficient.

In a project file that extends another project file, it is possible to indicate that an inherited
source is not part of the sources of the extending project. This is necessary sometimes
when a package spec has been overloaded and no longer requires a body: in this case, it
is necessary to indicate that the inherited body is not part of the sources of the project,
otherwise there will be a compilation error when compiling the spec.

For that purpose, the attribute Locally_Removed_Files is used. Its value is a string
list: a list of file names.

project B extends "a" is

for Source_Files use ("pkg.ads");

-- New spec of Pkg does not need a completion

for Locally_Removed_Files use ("pkg.adb");

end B;

Attribute Locally_Removed_Files may also be used to check if a source is still needed:
if it is possible to build using gnatmake when such a source is put in attribute Locally_
Removed_Files of a project P, then it is possible to remove the source completely from a
system that includes project P.

11.3 Project File Syntax

This section describes the structure of project files.

A project may be an independent project, entirely defined by a single project file. Any
Ada source file in an independent project depends only on the predefined library and other
Ada source files in the same project.

A project may also depend on other projects, in either or both of the following ways:

• It may import any number of projects
• It may extend at most one other project

The dependence relation is a directed acyclic graph (the subgraph reflecting the “extends”
relation is a tree).

A project’s immediate sources are the source files directly defined by that project, ei-
ther implicitly by residing in the project file’s directory, or explicitly through any of the
source-related attributes described below. More generally, a project proj’s sources are the
immediate sources of proj together with the immediate sources (unless overridden) of any
project on which proj depends (either directly or indirectly).

122 GNAT User’s Guide for Native Platforms / Unix and Windows

11.3.1 Basic Syntax
As seen in the earlier examples, project files have an Ada-like syntax. The minimal project
file is:

project Empty is

end Empty;

The identifier Empty is the name of the project. This project name must be present after
the reserved word end at the end of the project file, followed by a semi-colon.

Any name in a project file, such as the project name or a variable name, has the same
syntax as an Ada identifier.

The reserved words of project files are the Ada reserved words plus extends, external,
and project. Note that the only Ada reserved words currently used in project file syntax
are:
• case

• end

• for

• is

• others

• package

• renames

• type

• use

• when

• with

Comments in project files have the same syntax as in Ada, two consecutives hyphens through
the end of the line.

11.3.2 Packages

A project file may contain packages. The name of a package must be one of the identifiers
from the following list. A package with a given name may only appear once in a project
file. Package names are case insensitive. The following package names are legal:
• Naming

• Builder

• Compiler

• Binder

• Linker

• Finder

• Cross_Reference

• Eliminate

• gnatls

• gnatstub

Chapter 11: GNAT Project Manager 123

• IDE

In its simplest form, a package may be empty:
project Simple is

package Builder is

end Builder;

end Simple;

A package may contain attribute declarations, variable declarations and case constructions,
as will be described below.

When there is ambiguity between a project name and a package name, the name always
designates the project. To avoid possible confusion, it is always a good idea to avoid naming
a project with one of the names allowed for packages or any name that starts with gnat.

11.3.3 Expressions

An expression is either a string expression or a string list expression.

A string expression is either a simple string expression or a compound string expression.

A simple string expression is one of the following:

• A literal string; e.g."comm/my_proj.gpr"

• A string-valued variable reference (see Section 11.3.5 [Variables], page 124)

• A string-valued attribute reference (see Section 11.3.6 [Attributes], page 125)

• An external reference (see Section 11.7 [External References in Project Files], page 132)

A compound string expression is a concatenation of string expressions, using the operator
"&"

Path & "/" & File_Name & ".ads"

A string list expression is either a simple string list expression or a compound string list
expression.

A simple string list expression is one of the following:
• A parenthesized list of zero or more string expressions, separated by commas

File_Names := (File_Name, "gnat.adc", File_Name & ".orig");

Empty_List := ();

• A string list-valued variable reference

• A string list-valued attribute reference

A compound string list expression is the concatenation (using "&") of a simple string list
expression and an expression. Note that each term in a compound string list expression,
except the first, may be either a string expression or a string list expression.

File_Name_List := () & File_Name; -- One string in this list

Extended_File_Name_List := File_Name_List & (File_Name & ".orig");

-- Two strings

Big_List := File_Name_List & Extended_File_Name_List;

-- Concatenation of two string lists: three strings

Illegal_List := "gnat.adc" & Extended_File_Name_List;

-- Illegal: must start with a string list

124 GNAT User’s Guide for Native Platforms / Unix and Windows

11.3.4 String Types

A string type declaration introduces a discrete set of string literals. If a string variable is
declared to have this type, its value is restricted to the given set of literals.

Here is an example of a string type declaration:
type OS is ("NT", "nt", "Unix", "GNU/Linux", "other OS");

Variables of a string type are called typed variables; all other variables are called untyped
variables. Typed variables are particularly useful in case constructions, to support condi-
tional attribute declarations. (see Section 11.3.8 [case Constructions], page 127).

The string literals in the list are case sensitive and must all be different. They may
include any graphic characters allowed in Ada, including spaces.

A string type may only be declared at the project level, not inside a package.
A string type may be referenced by its name if it has been declared in the same project

file, or by an expanded name whose prefix is the name of the project in which it is declared.

11.3.5 Variables

A variable may be declared at the project file level, or within a package. Here are some
examples of variable declarations:

This_OS : OS := external ("OS"); -- a typed variable declaration

That_OS := "GNU/Linux"; -- an untyped variable declaration

The syntax of a typed variable declaration is identical to the Ada syntax for an object
declaration. By contrast, the syntax of an untyped variable declaration is identical to an
Ada assignment statement. In fact, variable declarations in project files have some of the
characteristics of an assignment, in that successive declarations for the same variable are
allowed. Untyped variable declarations do establish the expected kind of the variable (string
or string list), and successive declarations for it must respect the initial kind.
A string variable declaration (typed or untyped) declares a variable whose value is a string.
This variable may be used as a string expression.

File_Name := "readme.txt";

Saved_File_Name := File_Name & ".saved";

A string list variable declaration declares a variable whose value is a list of strings. The list
may contain any number (zero or more) of strings.

Empty_List := ();

List_With_One_Element := ("-gnaty");

List_With_Two_Elements := List_With_One_Element & "-gnatg";

Long_List := ("main.ada", "pack1_.ada", "pack1.ada", "pack2_.ada"

"pack2.ada", "util_.ada", "util.ada");

The same typed variable may not be declared more than once at project level, and it may
not be declared more than once in any package; it is in effect a constant.

The same untyped variable may be declared several times. Declarations are elaborated
in the order in which they appear, so the new value replaces the old one, and any subsequent
reference to the variable uses the new value. However, as noted above, if a variable has
been declared as a string, all subsequent declarations must give it a string value. Similarly,
if a variable has been declared as a string list, all subsequent declarations must give it a
string list value.

A variable reference may take several forms:

Chapter 11: GNAT Project Manager 125

• The simple variable name, for a variable in the current package (if any) or in the current
project

• An expanded name, whose prefix is a context name.

A context may be one of the following:

• The name of an existing package in the current project
• The name of an imported project of the current project
• The name of an ancestor project (i.e., a project extended by the current project, either

directly or indirectly)
• An expanded name whose prefix is an imported/parent project name, and whose se-

lector is a package name in that project.

A variable reference may be used in an expression.

11.3.6 Attributes

A project (and its packages) may have attributes that define the project’s properties. Some
attributes have values that are strings; others have values that are string lists.

There are two categories of attributes: simple attributes and associative arrays (see
Section 11.3.7 [Associative Array Attributes], page 127).

Legal project attribute names, and attribute names for each legal package are listed
below. Attributes names are case-insensitive.

The following attributes are defined on projects (all are simple attributes):

Attribute Name Value
Source_Files string list
Source_Dirs string list
Source_List_File string
Object_Dir string
Exec_Dir string
Locally_Removed_Files string list
Main string list
Languages string list
Main_Language string
Library_Dir string
Library_Name string
Library_Kind string
Library_Version string
Library_Interface string
Library_Auto_Init string
Library_Options string list
Library_GCC string

The following attributes are defined for package Naming (see Section 11.10 [Naming
Schemes], page 134):

Attribute Name Category Index Value
Spec_Suffix associative

array
language name string

126 GNAT User’s Guide for Native Platforms / Unix and Windows

Body_Suffix associative
array

language name string

Separate_Suffix simple
attribute

n/a string

Casing simple
attribute

n/a string

Dot_Replacement simple
attribute

n/a string

Spec associative
array

Ada unit name string

Body associative
array

Ada unit name string

Specification_Exceptions associative
array

language name string list

Implementation_Exceptions associative
array

language name string list

The following attributes are defined for packages Builder, Compiler, Binder, Linker,
Cross_Reference, and Finder (see Section 11.15.1.1 [Switches and Project Files],
page 140).
Attribute Name Category Index Value
Default_Switches associative

array
language name string list

Switches associative
array

file name string list

In addition, package Compiler has a single string attribute Local_Configuration_Pragmas
and package Builder has a single string attribute Global_Configuration_Pragmas.
Each simple attribute has a default value: the empty string (for string-valued attributes)
and the empty list (for string list-valued attributes).

An attribute declaration defines a new value for an attribute.
Examples of simple attribute declarations:

for Object_Dir use "objects";

for Source_Dirs use ("units", "test/drivers");

The syntax of a simple attribute declaration is similar to that of an attribute definition
clause in Ada.

Attributes references may be appear in expressions. The general form for such a reference
is <entity>’<attribute>: Associative array attributes are functions. Associative array
attribute references must have an argument that is a string literal.

Examples are:
project’Object_Dir

Naming’Dot_Replacement

Imported_Project’Source_Dirs

Imported_Project.Naming’Casing

Builder’Default_Switches("Ada")

The prefix of an attribute may be:
• project for an attribute of the current project
• The name of an existing package of the current project
• The name of an imported project

Chapter 11: GNAT Project Manager 127

• The name of a parent project that is extended by the current project
• An expanded name whose prefix is imported/parent project name, and whose selector

is a package name
Example:

project Prj is

for Source_Dirs use project’Source_Dirs & "units";

for Source_Dirs use project’Source_Dirs & "test/drivers"

end Prj;

In the first attribute declaration, initially the attribute Source_Dirs has the default value:
an empty string list. After this declaration, Source_Dirs is a string list of one element:
"units". After the second attribute declaration Source_Dirs is a string list of two elements:
"units" and "test/drivers".

Note: this example is for illustration only. In practice, the project file would contain
only one attribute declaration:

for Source_Dirs use ("units", "test/drivers");

11.3.7 Associative Array Attributes

Some attributes are defined as associative arrays. An associative array may be regarded as
a function that takes a string as a parameter and delivers a string or string list value as its
result.

Here are some examples of single associative array attribute associations:
for Body ("main") use "Main.ada";

for Switches ("main.ada")

use ("-v",

"-gnatv");

for Switches ("main.ada")

use Builder’Switches ("main.ada")

& "-g";

Like untyped variables and simple attributes, associative array attributes may be declared
several times. Each declaration supplies a new value for the attribute, and replaces the
previous setting.
An associative array attribute may be declared as a full associative array declaration, with
the value of the same attribute in an imported or extended project.

package Builder is

for Default_Switches use Default.Builder’Default_Switches;

end Builder;

In this example, Default must be either an project imported by the current project, or the
project that the current project extends. If the attribute is in a package (in this case, in
package Builder), the same package needs to be specified.
A full associative array declaration replaces any other declaration for the attribute, includ-
ing other full associative array declaration. Single associative array associations may be
declare after a full associative declaration, modifying the value for a single association of
the attribute.

11.3.8 case Constructions

A case construction is used in a project file to effect conditional behavior. Here is a typical
example:

128 GNAT User’s Guide for Native Platforms / Unix and Windows

project MyProj is

type OS_Type is ("GNU/Linux", "Unix", "NT", "VMS");

OS : OS_Type := external ("OS", "GNU/Linux");

package Compiler is

case OS is

when "GNU/Linux" | "Unix" =>

for Default_Switches ("Ada")

use ("-gnath");

when "NT" =>

for Default_Switches ("Ada")

use ("-gnatP");

when others =>

end case;

end Compiler;

end MyProj;

The syntax of a case construction is based on the Ada case statement (although there is
no null construction for empty alternatives).

The case expression must a typed string variable. Each alternative comprises the reserved
word when, either a list of literal strings separated by the "|" character or the reserved word
others, and the "=>" token. Each literal string must belong to the string type that is the
type of the case variable. An others alternative, if present, must occur last.

After each =>, there are zero or more constructions. The only constructions allowed in
a case construction are other case constructions and attribute declarations. String type
declarations, variable declarations and package declarations are not allowed.

The value of the case variable is often given by an external reference (see Section 11.7
[External References in Project Files], page 132).

11.4 Objects and Sources in Project Files

Each project has exactly one object directory and one or more source directories. The
source directories must contain at least one source file, unless the project file explicitly
specifies that no source files are present (see Section 11.4.4 [Source File Names], page 129).

11.4.1 Object Directory

The object directory for a project is the directory containing the compiler’s output (such
as ‘ALI’ files and object files) for the project’s immediate sources.

The object directory is given by the value of the attribute Object_Dir in the project
file.

for Object_Dir use "objects";

The attribute Object Dir has a string value, the path name of the object directory. The
path name may be absolute or relative to the directory of the project file. This directory
must already exist, and be readable and writable.

By default, when the attribute Object_Dir is not given an explicit value or when its
value is the empty string, the object directory is the same as the directory containing the
project file.

Chapter 11: GNAT Project Manager 129

11.4.2 Exec Directory

The exec directory for a project is the directory containing the executables for the project’s
main subprograms.

The exec directory is given by the value of the attribute Exec_Dir in the project file.
for Exec_Dir use "executables";

The attribute Exec Dir has a string value, the path name of the exec directory. The path
name may be absolute or relative to the directory of the project file. This directory must
already exist, and be writable.

By default, when the attribute Exec_Dir is not given an explicit value or when its value
is the empty string, the exec directory is the same as the object directory of the project file.

11.4.3 Source Directories

The source directories of a project are specified by the project file attribute Source_Dirs.
This attribute’s value is a string list. If the attribute is not given an explicit value, then

there is only one source directory, the one where the project file resides.
A Source_Dirs attribute that is explicitly defined to be the empty list, as in

for Source_Dirs use ();

indicates that the project contains no source files.
Otherwise, each string in the string list designates one or more source directories.

for Source_Dirs use ("sources", "test/drivers");

If a string in the list ends with "/**", then the directory whose path name precedes the
two asterisks, as well as all its subdirectories (recursively), are source directories.

for Source_Dirs use ("/system/sources/**");

Here the directory /system/sources and all of its subdirectories (recursively) are source
directories.

To specify that the source directories are the directory of the project file and all of its
subdirectories, you can declare Source_Dirs as follows:

for Source_Dirs use ("./**");

Each of the source directories must exist and be readable.

11.4.4 Source File Names

In a project that contains source files, their names may be specified by the attributes
Source_Files (a string list) or Source_List_File (a string). Source file names never
include any directory information.

If the attribute Source_Files is given an explicit value, then each element of the list is
a source file name.

for Source_Files use ("main.adb");

for Source_Files use ("main.adb", "pack1.ads", "pack2.adb");

If the attribute Source_Files is not given an explicit value, but the attribute Source_
List_File is given a string value, then the source file names are contained in the text file
whose path name (absolute or relative to the directory of the project file) is the value of
the attribute Source_List_File.

Each line in the file that is not empty or is not a comment contains a source file name.

130 GNAT User’s Guide for Native Platforms / Unix and Windows

for Source_List_File use "source_list.txt";

By default, if neither the attribute Source_Files nor the attribute Source_List_File is
given an explicit value, then each file in the source directories that conforms to the project’s
naming scheme (see Section 11.10 [Naming Schemes], page 134) is an immediate source of
the project.

A warning is issued if both attributes Source_Files and Source_List_File are given
explicit values. In this case, the attribute Source_Files prevails.

Each source file name must be the name of one existing source file in one of the source
directories.

A Source_Files attribute whose value is an empty list indicates that there are no source
files in the project.

If the order of the source directories is known statically, that is if "/**" is not used in
the string list Source_Dirs, then there may be several files with the same source file name.
In this case, only the file in the first directory is considered as an immediate source of the
project file. If the order of the source directories is not known statically, it is an error to
have several files with the same source file name.

Projects can be specified to have no Ada source files: the value of (Source_Dirs or
Source_Files may be an empty list, or the "Ada" may be absent from Languages:

for Source_Dirs use ();

for Source_Files use ();

for Languages use ("C", "C++");

Otherwise, a project must contain at least one immediate source.

Projects with no source files are useful as template packages (see Section 11.8 [Packages
in Project Files], page 133) for other projects; in particular to define a package Naming (see
Section 11.10 [Naming Schemes], page 134).

11.5 Importing Projects

An immediate source of a project P may depend on source files that are neither immediate
sources of P nor in the predefined library. To get this effect, P must import the projects
that contain the needed source files.

with "project1", "utilities.gpr";

with "/namings/apex.gpr";

project Main is

...

As can be seen in this example, the syntax for importing projects is similar to the syntax
for importing compilation units in Ada. However, project files use literal strings instead of
names, and the with clause identifies project files rather than packages.

Each literal string is the file name or path name (absolute or relative) of a project file.
If a string is simply a file name, with no path, then its location is determined by the project
path:

• If the environment variable ADA_PROJECT_PATH exists, then the project path includes
all the directories in this environment variable, plus the directory of the project file.

• If the environment variable ADA_PROJECT_PATH does not exist, then the project path
contains only one directory, namely the one where the project file is located.

Chapter 11: GNAT Project Manager 131

If a relative pathname is used, as in
with "tests/proj";

then the path is relative to the directory where the importing project file is located. Any
symbolic link will be fully resolved in the directory of the importing project file before the
imported project file is examined.

If the with’ed project file name does not have an extension, the default is ‘.gpr’. If a
file with this extension is not found, then the file name as specified in the with clause (no
extension) will be used. In the above example, if a file project1.gpr is found, then it will
be used; otherwise, if a file project1 exists then it will be used; if neither file exists, this is
an error.

A warning is issued if the name of the project file does not match the name of the project;
this check is case insensitive.

Any source file that is an immediate source of the imported project can be used by the
immediate sources of the importing project, transitively. Thus if A imports B, and B imports
C, the immediate sources of A may depend on the immediate sources of C, even if A does
not import C explicitly. However, this is not recommended, because if and when B ceases
to import C, some sources in A will no longer compile.

A side effect of this capability is that normally cyclic dependencies are not permitted:
if A imports B (directly or indirectly) then B is not allowed to import A. However, there
are cases when cyclic dependencies would be beneficial. For these cases, another form of
import between projects exists, the limited with: a project A that imports a project B
with a straigh with may also be imported, directly or indirectly, by B on the condition that
imports from B to A include at least one limited with.

with "../b/b.gpr";

with "../c/c.gpr";

project A is

end A;

limited with "../a/a.gpr";

project B is

end B;

with "../d/d.gpr";

project C is

end C;

limited with "../a/a.gpr";

project D is

end D;

In the above legal example, there are two project cycles:

• A-> B-> A
• A -> C -> D -> A

In each of these cycle there is one limited with: import of A from B and import of A from
D.

The difference between straight with and limited with is that the name of a project
imported with a limited with cannot be used in the project that imports it. In particular,
its packages cannot be renamed and its variables cannot be referred to.

132 GNAT User’s Guide for Native Platforms / Unix and Windows

An exception to the above rules for limited with is that for the main project specified
to gnatmake or to the GNAT driver a limited with is equivalent to a straight with. For
example, in the example above, projects B and D could not be main projects for gnatmake
or to the GNAT driver, because they each have a limited with that is the only one in a cycle
of importing projects.

11.6 Project Extension

During development of a large system, it is sometimes necessary to use modified versions
of some of the source files, without changing the original sources. This can be achieved
through the project extension facility.

project Modified_Utilities extends "/baseline/utilities.gpr" is ...

A project extension declaration introduces an extending project (the child) and a project
being extended (the parent).

By default, a child project inherits all the sources of its parent. However, inherited
sources can be overridden: a unit in a parent is hidden by a unit of the same name in the
child.

Inherited sources are considered to be sources (but not immediate sources) of the child
project; see Section 11.3 [Project File Syntax], page 121.

An inherited source file retains any switches specified in the parent project.
For example if the project Utilities contains the specification and the body of an

Ada package Util_IO, then the project Modified_Utilities can contain a new body for
package Util_IO. The original body of Util_IO will not be considered in program builds.
However, the package specification will still be found in the project Utilities.

A child project can have only one parent but it may import any number of other projects.
A project is not allowed to import directly or indirectly at the same time a child project

and any of its ancestors.

11.7 External References in Project Files

A project file may contain references to external variables; such references are called external
references.

An external variable is either defined as part of the environment (an environment variable
in Unix, for example) or else specified on the command line via the ‘-Xvbl=value ’ switch.
If both, then the command line value is used.

The value of an external reference is obtained by means of the built-in function external,
which returns a string value. This function has two forms:
• external (external_variable_name)

• external (external_variable_name, default_value)

Each parameter must be a string literal. For example:
external ("USER")

external ("OS", "GNU/Linux")

In the form with one parameter, the function returns the value of the external variable
given as parameter. If this name is not present in the environment, the function returns an
empty string.

Chapter 11: GNAT Project Manager 133

In the form with two string parameters, the second argument is the value returned when
the variable given as the first argument is not present in the environment. In the example
above, if "OS" is not the name of an environment variable and is not passed on the command
line, then the returned value is "GNU/Linux".

An external reference may be part of a string expression or of a string list expression,
and can therefore appear in a variable declaration or an attribute declaration.

type Mode_Type is ("Debug", "Release");

Mode : Mode_Type := external ("MODE");

case Mode is

when "Debug" =>

...

11.8 Packages in Project Files

A package defines the settings for project-aware tools within a project. For each such tool
one can declare a package; the names for these packages are preset (see Section 11.3.2
[Packages], page 122). A package may contain variable declarations, attribute declarations,
and case constructions.

project Proj is

package Builder is -- used by gnatmake

for Default_Switches ("Ada")

use ("-v",

"-g");

end Builder;

end Proj;

The syntax of package declarations mimics that of package in Ada.
Most of the packages have an attribute Default_Switches. This attribute is an asso-

ciative array, and its value is a string list. The index of the associative array is the name of
a programming language (case insensitive). This attribute indicates the switch or switches
to be used with the corresponding tool.

Some packages also have another attribute, Switches, an associative array whose value
is a string list. The index is the name of a source file. This attribute indicates the switch
or switches to be used by the corresponding tool when dealing with this specific file.

Further information on these switch-related attributes is found in Section 11.15.1.1
[Switches and Project Files], page 140.

A package may be declared as a renaming of another package; e.g., from the project file
for an imported project.

with "/global/apex.gpr";

project Example is

package Naming renames Apex.Naming;

...

end Example;

Packages that are renamed in other project files often come from project files that have no
sources: they are just used as templates. Any modification in the template will be reflected
automatically in all the project files that rename a package from the template.

In addition to the tool-oriented packages, you can also declare a package named Naming
to establish specialized source file naming conventions (see Section 11.10 [Naming Schemes],
page 134).

134 GNAT User’s Guide for Native Platforms / Unix and Windows

11.9 Variables from Imported Projects

An attribute or variable defined in an imported or parent project can be used in expressions
in the importing / extending project. Such an attribute or variable is denoted by an
expanded name whose prefix is either the name of the project or the expanded name of a
package within a project.

with "imported";

project Main extends "base" is

Var1 := Imported.Var;

Var2 := Base.Var & ".new";

package Builder is

for Default_Switches ("Ada")

use Imported.Builder.Ada_Switches &

"-gnatg" &

"-v";

end Builder;

package Compiler is

for Default_Switches ("Ada")

use Base.Compiler.Ada_Switches;

end Compiler;

end Main;

In this example:

• The value of Var1 is a copy of the variable Var defined in the project file
‘"imported.gpr"’

• the value of Var2 is a copy of the value of variable Var defined in the project file
‘base.gpr’, concatenated with ".new"

• attribute Default_Switches ("Ada") in package Builder is a string list that includes
in its value a copy of the value of Ada_Switches defined in the Builder package in
project file ‘imported.gpr’ plus two new elements: ‘"-gnatg"’ and ‘"-v"’;

• attribute Default_Switches ("Ada") in package Compiler is a copy of the variable
Ada_Switches defined in the Compiler package in project file ‘base.gpr’, the project
being extended.

11.10 Naming Schemes

Sometimes an Ada software system is ported from a foreign compilation environment to
GNAT, and the file names do not use the default GNAT conventions. Instead of changing
all the file names (which for a variety of reasons might not be possible), you can define the
relevant file naming scheme in the Naming package in your project file.

Note that the use of pragmas described in Section 2.5 [Alternative File Naming Schemes],
page 22 by mean of a configuration pragmas file is not supported when using project files.
You must use the features described in this paragraph. You can however use specify other
configuration pragmas (see Section 11.15.1.2 [Specifying Configuration Pragmas], page 142).

For example, the following package models the Apex file naming rules:

Chapter 11: GNAT Project Manager 135

package Naming is

for Casing use "lowercase";

for Dot_Replacement use ".";

for Spec_Suffix ("Ada") use ".1.ada";

for Body_Suffix ("Ada") use ".2.ada";

end Naming;

You can define the following attributes in package Naming:

Casing This must be a string with one of the three values "lowercase", "uppercase"
or "mixedcase"; these strings are case insensitive.
If Casing is not specified, then the default is "lowercase".

Dot_Replacement

This must be a string whose value satisfies the following conditions:
• It must not be empty
• It cannot start or end with an alphanumeric character
• It cannot be a single underscore
• It cannot start with an underscore followed by an alphanumeric
• It cannot contain a dot ’.’ except if the entire string is "."

If Dot_Replacement is not specified, then the default is "-".

Spec_Suffix

This is an associative array (indexed by the programming language name, case
insensitive) whose value is a string that must satisfy the following conditions:
• It must not be empty
• It must include at least one dot

If Spec_Suffix ("Ada") is not specified, then the default is ".ads".

Body_Suffix

This is an associative array (indexed by the programming language name, case
insensitive) whose value is a string that must satisfy the following conditions:
• It must not be empty
• It must include at least one dot
• It cannot end with the same string as Spec_Suffix ("Ada")

If Body_Suffix ("Ada") is not specified, then the default is ".adb".

Separate_Suffix

This must be a string whose value satisfies the same conditions as Body_Suffix.
If Separate_Suffix ("Ada") is not specified, then it defaults to same value as
Body_Suffix ("Ada").

Spec You can use the associative array attribute Spec to define the source file name
for an individual Ada compilation unit’s spec. The array index must be a
string literal that identifies the Ada unit (case insensitive). The value of this
attribute must be a string that identifies the file that contains this unit’s spec
(case sensitive or insensitive depending on the operating system).

for Spec ("MyPack.MyChild") use "mypack.mychild.spec";

136 GNAT User’s Guide for Native Platforms / Unix and Windows

Body

You can use the associative array attribute Body to define the source file name
for an individual Ada compilation unit’s body (possibly a subunit). The array
index must be a string literal that identifies the Ada unit (case insensitive). The
value of this attribute must be a string that identifies the file that contains this
unit’s body or subunit (case sensitive or insensitive depending on the operating
system).

for Body ("MyPack.MyChild") use "mypack.mychild.body";

11.11 Library Projects

Library projects are projects whose object code is placed in a library. (Note that this facility
is not yet supported on all platforms)

To create a library project, you need to define in its project file two project-level at-
tributes: Library_Name and Library_Dir. Additionally, you may define the library-related
attributes Library_Kind, Library_Version, Library_Interface, Library_Auto_Init,
Library_Options and Library_GCC.

The Library_Name attribute has a string value. There is no restriction on the name of
a library. It is the responsability of the developer to choose a name that will be accepted
by the platform. It is recommanded to choose names that could be Ada identifiers; such
names are almost guaranteed to be acceptable on all platforms.

The Library_Dir attribute has a string value that designates the path (absolute or rel-
ative) of the directory where the library will reside. It must designate an existing directory,
and this directory must be different from the project’s object directory. It also needs to be
writable.

If both Library_Name and Library_Dir are specified and are legal, then the project file
defines a library project. The optional library-related attributes are checked only for such
project files.

The Library_Kind attribute has a string value that must be one of the following (case
insensitive): "static", "dynamic" or "relocatable". If this attribute is not specified, the
library is a static library, that is an archive of object files that can be potentially linked
into an static executable. Otherwise, the library may be dynamic or relocatable, that is a
library that is loaded only at the start of execution. Depending on the operating system,
there may or may not be a distinction between dynamic and relocatable libraries. For Unix
and VMS Unix there is no such distinction.

If you need to build both a static and a dynamic library, you should use two different
object directories, since in some cases some extra code needs to be generated for the latter.
For such cases, it is recommended to either use two different project files, or a single one
which uses external variables to indicate what kind of library should be build.

The Library_Version attribute has a string value whose interpretation is platform
dependent. It has no effect on VMS and Windows. On Unix, it is used only for dy-
namic/relocatable libraries as the internal name of the library (the "soname"). If the library
file name (built from the Library_Name) is different from the Library_Version, then the
library file will be a symbolic link to the actual file whose name will be Library_Version.

Example (on Unix):

Chapter 11: GNAT Project Manager 137

project Plib is

Version := "1";

for Library_Dir use "lib_dir";

for Library_Name use "dummy";

for Library_Kind use "relocatable";

for Library_Version use "libdummy.so." & Version;

end Plib;

Directory ‘lib_dir’ will contain the internal library file whose name will be
‘libdummy.so.1’, and ‘libdummy.so’ will be a symbolic link to ‘libdummy.so.1’.

When gnatmake detects that a project file is a library project file, it will check all
immediate sources of the project and rebuild the library if any of the sources have been
recompiled.

When a library is built or rebuilt, an attempt is made to delete all files in the library
directory. All ‘ALI’ files will also be copied from the object directory to the library directory.
To build executables, gnatmake will use the library rather than the individual object files.
The copy of the ‘ALI’ files are made read-only.

11.12 Using Third-Party Libraries through Projects

Whether you are exporting your own library to make it available to clients, or you are using
a library provided by a third party, it is convenient to have project files that automatically
set the correct command line switches for the compiler and linker.

Such project files are very similar to the library project files; See Section 11.11 [Library
Projects], page 136. The only difference is that you set the Source_Dirs and Object_
Dir attribute so that they point to the directories where, respectively, the sources and the
read-only ALI files have been installed.

If you need to interface with a set of libraries, as opposed to a single one, you need to
create one library project for each of the libraries. In addition, a top-level project that
imports all these library projects should be provided, so that the user of your library has a
single with clause to add to his own projects.

For instance, let’s assume you are providing two static libraries ‘liba.a’ and ‘libb.a’.
The user needs to link with both of these libraries. Each of these is associated with its own
set of header files. Let’s assume furthermore that all the header files for the two libraries
have been installed in the same directory ‘headers’. The ‘ALI’ files are found in the same
‘headers’ directory.

In this case, you should provide the following three projects:

with "liba", "libb";

project My_Library is

for Source_Dirs use ("headers");

for Object_Dir use "headers";

end My_Library;

138 GNAT User’s Guide for Native Platforms / Unix and Windows

project Liba is

for Source_Dirs use ();

for Library_Dir use "lib";

for Library_Name use "a";

for Library_Kind use "static";

end Liba;

project Libb is

for Source_Dirs use ();

for Library_Dir use "lib";

for Library_Name use "b";

for Library_Kind use "static";

end Libb;

11.13 Stand-alone Library Projects

A Stand-alone Library is a library that contains the necessary code to elaborate the Ada
units that are included in the library. A Stand-alone Library is suitable to be used in an
executable when the main is not in Ada. However, Stand-alone Libraries may also be used
with an Ada main subprogram.

A Stand-alone Library Project is a Library Project where the library is a Stand-alone
Library.

To be a Stand-alone Library Project, in addition to the two attributes that make a
project a Library Project (Library_Name and Library_Dir, see Section 11.11 [Library
Projects], page 136), the attribute Library_Interface must be defined.

for Library_Dir use "lib_dir";

for Library_Name use "dummy";

for Library_Interface use ("int1", "int1.child");

Attribute Library_Interface has a non empty string list value, each string in the list
designating a unit contained in an immediate source of the project file.

When a Stand-alone Library is built, first the binder is invoked to build a package
whose name depends on the library name (b~dummy.ads/b in the example above). This
binder-generated package includes initialization and finalization procedures whose names
depend on the library name (dummyinit and dummyfinal in the example above). The
object corresponding to this package is included in the library.

A dynamic or relocatable Stand-alone Library is automatically initialized if automatic
initialization of Stand-alone Libraries is supported on the platform and if attribute Library_
Auto_Init is not specified or is specified with the value "true". A static Stand-alone Library
is never automatically initialized.

Single string attribute Library_Auto_Init may be specified with only two possible
values: "false" or "true" (case-insensitive). Specifying "false" for attribute Library_Auto_
Init will prevent automatic initialization of dynamic or relocatable libraries.

When a non automatically initialized Stand-alone Library is used in an executable, its
initialization procedure must be called before any service of the library is used. When the
main subprogram is in Ada, it may mean that the initialization procedure has to be called
during elaboration of another package.

For a Stand-Alone Library, only the ‘ALI’ files of the Interface Units (those that are listed
in attribute Library_Interface) are copied to the Library Directory. As a consequence,

Chapter 11: GNAT Project Manager 139

only the Interface Units may be imported from Ada units outside of the library. If other
units are imported, the binding phase will fail.

When a Stand-Alone Library is bound, the switches that are specified in the attribute
Default_Switches ("Ada") in package Binder are used in the call to gnatbind.

The string list attribute Library_Options may be used to specified additional switches
to the call to gcc to link the library.

The attribute Library_Src_Dir, may be specified for a Stand-Alone Library. Library_
Src_Dir is a simple attribute that has a single string value. Its value must be the path
(absolute or relative to the project directory) of an existing directory. This directory cannot
be the object directory or one of the source directories, but it can be the same as the library
directory. The sources of the Interface Units of the library, necessary to an Ada client of the
library, will be copied to the designated directory, called Interface Copy directory. These
sources includes the specs of the Interface Units, but they may also include bodies and
subunits, when pragmas Inline or Inline_Always are used, or when there is a generic
units in the spec. Before the sources are copied to the Interface Copy directory, an attempt
is made to delete all files in the Interface Copy directory.

11.14 Switches Related to Project Files

The following switches are used by GNAT tools that support project files:

‘-Pproject ’
Indicates the name of a project file. This project file will be parsed with the
verbosity indicated by ‘-vPx ’, if any, and using the external references indicated
by ‘-X’ switches, if any. There may zero, one or more spaces between ‘-P’ and
project.
There must be only one ‘-P’ switch on the command line.
Since the Project Manager parses the project file only after all the switches on
the command line are checked, the order of the switches ‘-P’, ‘-vPx ’ or ‘-X’ is
not significant.

‘-Xname=value ’
Indicates that external variable name has the value value. The Project Manager
will use this value for occurrences of external(name) when parsing the project
file.
If name or value includes a space, then name=value should be put between
quotes.

-XOS=NT

-X"user=John Doe"

Several ‘-X’ switches can be used simultaneously. If several ‘-X’ switches specify
the same name, only the last one is used.
An external variable specified with a ‘-X’ switch takes precedence over the value
of the same name in the environment.

‘-vPx ’ Indicates the verbosity of the parsing of GNAT project files.
‘-vP0’ means Default; ‘-vP1’ means Medium; ‘-vP2’ means High.
The default is Default: no output for syntactically correct project files. If
several ‘-vPx ’ switches are present, only the last one is used.

140 GNAT User’s Guide for Native Platforms / Unix and Windows

11.15 Tools Supporting Project Files

11.15.1 gnatmake and Project Files

This section covers several topics related to gnatmake and project files: defining switches
for gnatmake and for the tools that it invokes; specifying configuration pragmas; the use of
the Main attribute; building and rebuilding library project files.

11.15.1.1 Switches and Project Files

For each of the packages Builder, Compiler, Binder, and Linker, you can specify a
Default_Switches attribute, a Switches attribute, or both; as their names imply, these
switch-related attributes affect the switches that are used for each of these GNAT com-
ponents when gnatmake is invoked. As will be explained below, these component-specific
switches precede the switches provided on the gnatmake command line.

The Default_Switches attribute is an associative array indexed by language name (case
insensitive) whose value is a string list. For example:

package Compiler is

for Default_Switches ("Ada")

use ("-gnaty",

"-v");

end Compiler;

The Switches attribute is also an associative array, indexed by a file name (which may or
may not be case sensitive, depending on the operating system) whose value is a string list.
For example:

package Builder is

for Switches ("main1.adb")

use ("-O2");

for Switches ("main2.adb")

use ("-g");

end Builder;

For the Builder package, the file names must designate source files for main subprograms.
For the Binder and Linker packages, the file names must designate ‘ALI’ or source files
for main subprograms. In each case just the file name without an explicit extension is
acceptable.

For each tool used in a program build (gnatmake, the compiler, the binder, and the
linker), the corresponding package contributes a set of switches for each file on which the
tool is invoked, based on the switch-related attributes defined in the package. In particular,
the switches that each of these packages contributes for a given file f comprise:
• the value of attribute Switches (f), if it is specified in the package for the given file,
• otherwise, the value of Default_Switches ("Ada"), if it is specified in the package.

If neither of these attributes is defined in the package, then the package does not contribute
any switches for the given file.

When gnatmake is invoked on a file, the switches comprise two sets, in the following
order: those contributed for the file by the Builder package; and the switches passed on
the command line.

When gnatmake invokes a tool (compiler, binder, linker) on a file, the switches passed
to the tool comprise three sets, in the following order:

Chapter 11: GNAT Project Manager 141

1. the applicable switches contributed for the file by the Builder package in the project
file supplied on the command line;

2. those contributed for the file by the package (in the relevant project file – see below)
corresponding to the tool; and

3. the applicable switches passed on the command line.

The term applicable switches reflects the fact that gnatmake switches may or may not be
passed to individual tools, depending on the individual switch.

gnatmake may invoke the compiler on source files from different projects. The Project
Manager will use the appropriate project file to determine the Compiler package for each
source file being compiled. Likewise for the Binder and Linker packages.

As an example, consider the following package in a project file:
project Proj1 is

package Compiler is

for Default_Switches ("Ada")

use ("-g");

for Switches ("a.adb")

use ("-O1");

for Switches ("b.adb")

use ("-O2",

"-gnaty");

end Compiler;

end Proj1;

If gnatmake is invoked with this project file, and it needs to compile, say, the files ‘a.adb’,
‘b.adb’, and ‘c.adb’, then ‘a.adb’ will be compiled with the switch ‘-O1’, ‘b.adb’ with
switches ‘-O2’ and ‘-gnaty’, and ‘c.adb’ with ‘-g’.

The following example illustrates the ordering of the switches contributed by different
packages:

project Proj2 is

package Builder is

for Switches ("main.adb")

use ("-g",

"-O1",

"-f");

end Builder;

package Compiler is

for Switches ("main.adb")

use ("-O2");

end Compiler;

end Proj2;

If you issue the command:
gnatmake -Pproj2 -O0 main

then the compiler will be invoked on ‘main.adb’ with the following sequence of switches
-g -O1 -O2 -O0

with the last ‘-O’ switch having precedence over the earlier ones; several other switches
(such as ‘-c’) are added implicitly.

The switches ‘-g’ and ‘-O1’ are contributed by package Builder, ‘-O2’ is contributed by
the package Compiler and ‘-O0’ comes from the command line.

142 GNAT User’s Guide for Native Platforms / Unix and Windows

The ‘-g’ switch will also be passed in the invocation of Gnatlink.
A final example illustrates switch contributions from packages in different project files:

project Proj3 is

for Source_Files use ("pack.ads", "pack.adb");

package Compiler is

for Default_Switches ("Ada")

use ("-gnata");

end Compiler;

end Proj3;

with "Proj3";

project Proj4 is

for Source_Files use ("foo_main.adb", "bar_main.adb");

package Builder is

for Switches ("foo_main.adb")

use ("-s",

"-g");

end Builder;

end Proj4;

-- Ada source file:

with Pack;

procedure Foo_Main is

...

end Foo_Main;

If the command is
gnatmake -PProj4 foo_main.adb -cargs -gnato

then the switches passed to the compiler for ‘foo_main.adb’ are ‘-g’ (contributed by the
package Proj4.Builder) and ‘-gnato’ (passed on the command line). When the imported
package Pack is compiled, the switches used are ‘-g’ from Proj4.Builder, ‘-gnata’ (con-
tributed from package Proj3.Compiler, and ‘-gnato’ from the command line.
When using gnatmake with project files, some switches or arguments may be expressed
as relative paths. As the working directory where compilation occurs may change, these
relative paths are converted to absolute paths. For the switches found in a project file, the
relative paths are relative to the project file directory, for the switches on the command line,
they are relative to the directory where gnatmake is invoked. The switches for which this
occurs are: -I, -A, -L, -aO, -aL, -aI, as well as all arguments that are not switches (arguments
to switch -o, object files specified in package Linker or after -largs on the command line).
The exception to this rule is the switch –RTS= for which a relative path argument is never
converted.

11.15.1.2 Specifying Configuration Pragmas

When using gnatmake with project files, if there exists a file ‘gnat.adc’ that contains
configuration pragmas, this file will be ignored.

Configuration pragmas can be defined by means of the following attributes in project
files: Global_Configuration_Pragmas in package Builder and Local_Configuration_
Pragmas in package Compiler.

Both these attributes are single string attributes. Their values is the path name of a
file containing configuration pragmas. If a path name is relative, then it is relative to the
project directory of the project file where the attribute is defined.

Chapter 11: GNAT Project Manager 143

When compiling a source, the configuration pragmas used are, in order, those listed in
the file designated by attribute Global_Configuration_Pragmas in package Builder of
the main project file, if it is specified, and those listed in the file designated by attribute
Local_Configuration_Pragmas in package Compiler of the project file of the source, if it
exists.

11.15.1.3 Project Files and Main Subprograms

When using a project file, you can invoke gnatmake with one or several main subprograms,
by specifying their source files on the command line.

gnatmake -Pprj main1 main2 main3

Each of these needs to be a source file of the same project, except when the switch -u is
used.
When -u is not used, all the mains need to be sources of the same project, one of the project
in the tree rooted at the project specified on the command line. The package Builder of
this common project, the "main project" is the one that is considered by gnatmake.
When -u is used, the specified source files may be in projects imported directly or indirectly
by the project specified on the command line. Note that if such a source file is not part of
the project specified on the command line, the switches found in package Builder of the
project specified on the command line, if any, that are transmitted to the compiler will still
be used, not those found in the project file of the source file.
When using a project file, you can also invoke gnatmake without explicitly specifying any
main, and the effect depends on whether you have defined the Main attribute. This attribute
has a string list value, where each element in the list is the name of a source file (the file
extension is optional) that contains a unit that can be a main subprogram.

If the Main attribute is defined in a project file as a non-empty string list and the switch
‘-u’ is not used on the command line, then invoking gnatmake with this project file but
without any main on the command line is equivalent to invoking gnatmake with all the file
names in the Main attribute on the command line.

Example:
project Prj is

for Main use ("main1", "main2", "main3");

end Prj;

With this project file, "gnatmake -Pprj" is equivalent to "gnatmake -Pprj main1 main2
main3".

When the project attribute Main is not specified, or is specified as an empty string list,
or when the switch ‘-u’ is used on the command line, then invoking gnatmake with no main
on the command line will result in all immediate sources of the project file being checked,
and potentially recompiled. Depending on the presence of the switch ‘-u’, sources from
other project files on which the immediate sources of the main project file depend are also
checked and potentially recompiled. In other words, the ‘-u’ switch is applied to all of the
immediate sources of the main project file.

When no main is specified on the command line and attribute Main exists and includes
several mains, or when several mains are specified on the command line, the default switches
in package Builder will be used for all mains, even if there are specific switches specified
for one or several mains.

144 GNAT User’s Guide for Native Platforms / Unix and Windows

But the switches from package Binder or Linker will be the specific switches for each
main, if they are specified.

11.15.1.4 Library Project Files

When gnatmake is invoked with a main project file that is a library project file, it is not
allowed to specify one or more mains on the command line.
When a library project file is specified, switches -b and -l have special meanings.
• -b is only allwed for stand-alone libraries. It indicates to gnatmake that gnatbind

should be invoked for the library.
• -l may be used for all library projects. It indicates to gnatmake that the binder gener-

ated file should be compiled (in the case of a stand-alone library) and that the library
should be built.

11.15.2 The GNAT Driver and Project Files

A number of GNAT tools, other than gnatmake are project-aware: gnatbind, gnatfind,
gnatlink, gnatls, gnatelim, and gnatxref. However, none of these tools can be invoked
directly with a project file switch (‘-P’). They must be invoked through the gnat driver.

The gnat driver is a front-end that accepts a number of commands and call the corre-
sponding tool. It has been designed initially for VMS to convert VMS style qualifiers to
Unix style switches, but it is now available to all the GNAT supported platforms.

On non VMS platforms, the gnat driver accepts the following commands (case insensi-
tive):
• BIND to invoke gnatbind

• CHOP to invoke gnatchop

• CLEAN to invoke gnatclean

• COMP or COMPILE to invoke the compiler
• ELIM to invoke gnatelim

• FIND to invoke gnatfind

• KR or KRUNCH to invoke gnatkr

• LINK to invoke gnatlink

• LS or LIST to invoke gnatls

• MAKE to invoke gnatmake

• NAME to invoke gnatname

• PREP or PREPROCESS to invoke gnatprep

• PP or PRETTY to invoke gnatpp

• STUB to invoke gnatstub

• XREF to invoke gnatxref

Note that the compiler is invoked using the command gnatmake -f -u -c.
The command may be followed by switches and arguments for the invoked tool.

gnat bind -C main.ali

gnat ls -a main

gnat chop foo.txt

Chapter 11: GNAT Project Manager 145

In addition, for command BIND, COMP or COMPILE, FIND, ELIM, LS or LIST, LINK,
PP or PRETTY and XREF, the project file related switches (‘-P’, ‘-X’ and ‘-vPx’) may be
used in addition to the switches of the invoking tool.
For each of these commands, there is optionally a corresponding package in the main project.
• package Binder for command BIND (invoking gnatbind)
• package Compiler for command COMP or COMPILE (invoking the compiler)
• package Finder for command FIND (invoking gnatfind)
• package Eliminate for command ELIM (invoking gnatelim)
• package Gnatls for command LS or LIST (invoking gnatls)
• package Linker for command LINK (invoking gnatlink)
• package Pretty_Printer for command PP or PRETTY (invoking gnatpp)
• package Cross_Reference for command XREF (invoking gnatxref)

Package Gnatls has a unique attribute Switches, a simple variable with a string list value.
It contains switches for the invocation of gnatls.

project Proj1 is

package gnatls is

for Switches

use ("-a",

"-v");

end gnatls;

end Proj1;

All other packages have two attribute Switches and Default_Switches.
Switches is an associated array attribute, indexed by the source file name, that has a string
list value: the switches to be used when the tool corresponding to the package is invoked
for the specific source file.
Default_Switches is an associative array attribute, indexed by the programming language
that has a string list value. Default_Switches ("Ada") contains the switches for the
invocation of the tool corresponding to the package, except if a specific Switches attribute
is specified for the source file.

project Proj is

for Source_Dirs use ("./**");

package gnatls is

for Switches use

("-a",

"-v");

end gnatls;

package Compiler is

for Default_Switches ("Ada")

use ("-gnatv",

"-gnatwa");

end Binder;

package Binder is

for Default_Switches ("Ada")

use ("-C",

"-e");

end Binder;

146 GNAT User’s Guide for Native Platforms / Unix and Windows

package Linker is

for Default_Switches ("Ada")

use ("-C");

for Switches ("main.adb")

use ("-C",

"-v",

"-v");

end Linker;

package Finder is

for Default_Switches ("Ada")

use ("-a",

"-f");

end Finder;

package Cross_Reference is

for Default_Switches ("Ada")

use ("-a",

"-f",

"-d",

"-u");

end Cross_Reference;

end Proj;

With the above project file, commands such as

gnat comp -Pproj main

gnat ls -Pproj main

gnat xref -Pproj main

gnat bind -Pproj main.ali

gnat link -Pproj main.ali

will set up the environment properly and invoke the tool with the switches found in the pack-
age corresponding to the tool: Default_Switches ("Ada") for all tools, except Switches
("main.adb") for gnatlink.

11.15.3 Glide and Project Files

Glide will automatically recognize the ‘.gpr’ extension for project files, and will convert
them to its own internal format automatically. However, it doesn’t provide a syntax-oriented
editor for modifying these files. The project file will be loaded as text when you select the
menu item Ada ⇒ Project ⇒ Edit. You can edit this text and save the ‘gpr’ file; when
you next select this project file in Glide it will be automatically reloaded.

11.16 An Extended Example

Suppose that we have two programs, prog1 and prog2, whose sources are in corresponding
directories. We would like to build them with a single gnatmake command, and we want
to place their object files into ‘build’ subdirectories of the source directories. Furthermore,
we want to have to have two separate subdirectories in ‘build’ – ‘release’ and ‘debug’ –
which will contain the object files compiled with different set of compilation flags.

In other words, we have the following structure:

Chapter 11: GNAT Project Manager 147

main

|- prog1

| |- build

| | debug

| | release

|- prog2

|- build

| debug

| release

Here are the project files that we must place in a directory ‘main’ to maintain this structure:

1. We create a Common project with a package Compiler that specifies the compilation
switches:

File "common.gpr":

project Common is

for Source_Dirs use (); -- No source files

type Build_Type is ("release", "debug");

Build : Build_Type := External ("BUILD", "debug");

package Compiler is
case Build is

when "release" =>

for Default_Switches ("Ada")

use ("-O2");

when "debug" =>

for Default_Switches ("Ada")

use ("-g");

end case;
end Compiler;

end Common;

2. We create separate projects for the two programs:
File "prog1.gpr":

with "common";

project Prog1 is

for Source_Dirs use ("prog1");

for Object_Dir use "prog1/build/" & Common.Build;

package Compiler renames Common.Compiler;

end Prog1;

File "prog2.gpr":

with "common";

project Prog2 is

for Source_Dirs use ("prog2");

for Object_Dir use "prog2/build/" & Common.Build;

package Compiler renames Common.Compiler;

end Prog2;

3. We create a wrapping project Main:

148 GNAT User’s Guide for Native Platforms / Unix and Windows

File "main.gpr":

with "common";

with "prog1";

with "prog2";

project Main is

package Compiler renames Common.Compiler;

end Main;

4. Finally we need to create a dummy procedure that withs (either explicitly or implicitly)
all the sources of our two programs.

Now we can build the programs using the command
gnatmake -Pmain dummy

for the Debug mode, or
gnatmake -Pmain -XBUILD=release

for the Release mode.

11.17 Project File Complete Syntax
project ::=

context_clause project_declaration

context_clause ::=

{with_clause}

with_clause ::=

with path_name { , path_name } ;

path_name ::=

string_literal

project_declaration ::=

simple_project_declaration | project_extension

simple_project_declaration ::=

project <project_>simple_name is
{declarative_item}

end <project_>simple_name;

project_extension ::=

project <project_>simple_name extends path_name is
{declarative_item}

end <project_>simple_name;

declarative_item ::=

package_declaration |

typed_string_declaration |

other_declarative_item

package_declaration ::=

package_specification | package_renaming

package_specification ::=

package package_identifier is

Chapter 11: GNAT Project Manager 149

{simple_declarative_item}

end package_identifier ;

package_identifier ::=

Naming | Builder | Compiler | Binder |

Linker | Finder | Cross_Reference |

gnatls | IDE | Pretty_Printer

package_renaming ::==

package package_identifier renames
<project_>simple_name.package_identifier ;

typed_string_declaration ::=

type <typed_string_>_simple_name is
(string_literal {, string_literal});

other_declarative_item ::=

attribute_declaration |

typed_variable_declaration |

variable_declaration |

case_construction

attribute_declaration ::=

full_associative_array_declaration |

for attribute_designator use expression ;

full_associative_array_declaration ::=

for <associative_array_attribute_>simple_name use
<project_>simple_name [. <package_>simple_Name] ’ <attribute_>simple_name ;

attribute_designator ::=

<simple_attribute_>simple_name |

<associative_array_attribute_>simple_name (string_literal)

typed_variable_declaration ::=

<typed_variable_>simple_name : <typed_string_>name := string_expression ;

variable_declaration ::=

<variable_>simple_name := expression;

expression ::=

term {& term}

term ::=

literal_string |

string_list |

<variable_>name |

external_value |

attribute_reference

string_literal ::=

(same as Ada)

string_list ::=

(<string_>expression { , <string_>expression })

external_value ::=

external (string_literal [, string_literal])

150 GNAT User’s Guide for Native Platforms / Unix and Windows

attribute_reference ::=

attribute_prefix ’ <simple_attribute_>simple_name [(literal_string)]

attribute_prefix ::=

project |

<project_>simple_name | package_identifier |

<project_>simple_name . package_identifier

case_construction ::=

case <typed_variable_>name is
{case_item}

end case ;

case_item ::=

when discrete_choice_list =>

{case_construction | attribute_declaration}

discrete_choice_list ::=

string_literal {| string_literal} |

others

name ::=

simple_name {. simple_name}

simple_name ::=

identifier (same as Ada)

Chapter 12: The Cross-Referencing Tools gnatxref and gnatfind 151

12 The Cross-Referencing Tools gnatxref and
gnatfind

The compiler generates cross-referencing information (unless you set the ‘-gnatx’ switch),
which are saved in the ‘.ali’ files. This information indicates where in the source each
entity is declared and referenced. Note that entities in package Standard are not included,
but entities in all other predefined units are included in the output.

Before using any of these two tools, you need to compile successfully your application,
so that GNAT gets a chance to generate the cross-referencing information.

The two tools gnatxref and gnatfind take advantage of this information to provide
the user with the capability to easily locate the declaration and references to an entity.
These tools are quite similar, the difference being that gnatfind is intended for locating
definitions and/or references to a specified entity or entities, whereas gnatxref is oriented
to generating a full report of all cross-references.

To use these tools, you must not compile your application using the ‘-gnatx’ switch
on the ‘gnatmake’ command line (see Chapter 6 [The GNAT Make Program gnatmake],
page 85). Otherwise, cross-referencing information will not be generated.

12.1 gnatxref Switches
The command invocation for gnatxref is:

$ gnatxref [switches] sourcefile1 [sourcefile2 ...]

where

sourcefile1, sourcefile2
identifies the source files for which a report is to be generated. The “with”ed
units will be processed too. You must provide at least one file.
These file names are considered to be regular expressions, so for instance spec-
ifying ‘source*.adb’ is the same as giving every file in the current directory
whose name starts with ‘source’ and whose extension is ‘adb’.

The switches can be :

‘-a’ If this switch is present, gnatfind and gnatxref will parse the read-only files
found in the library search path. Otherwise, these files will be ignored. This
option can be used to protect Gnat sources or your own libraries from being
parsed, thus making gnatfind and gnatxref much faster, and their output
much smaller. Read-only here refers to access or permissions status in the file
system for the current user.

‘-aIDIR’ When looking for source files also look in directory DIR. The order in which
source file search is undertaken is the same as for ‘gnatmake’.

‘-aODIR’ When searching for library and object files, look in directory DIR. The order
in which library files are searched is the same as for ‘gnatmake’.

‘-nostdinc’
Do not look for sources in the system default directory.

‘-nostdlib’
Do not look for library files in the system default directory.

152 GNAT User’s Guide for Native Platforms / Unix and Windows

‘--RTS=rts-path ’
Specifies the default location of the runtime library. Same meaning as the
equivalent gnatmake flag (see Section 6.2 [Switches for gnatmake], page 86).

‘-d’ If this switch is set gnatxref will output the parent type reference for each
matching derived types.

‘-f’ If this switch is set, the output file names will be preceded by their directory
(if the file was found in the search path). If this switch is not set, the directory
will not be printed.

‘-g’ If this switch is set, information is output only for library-level entities, ignoring
local entities. The use of this switch may accelerate gnatfind and gnatxref.

‘-IDIR’ Equivalent to ‘-aODIR -aIDIR’.

‘-pFILE’ Specify a project file to use See Section 11.1.1 [Project Files], page 113. These
project files are the ‘.adp’ files used by Glide. If you need to use the ‘.gpr’
project files, you should use gnatxref through the GNAT driver (gnat xref
-Pproject).
By default, gnatxref and gnatfind will try to locate a project file in the
current directory.
If a project file is either specified or found by the tools, then the content of
the source directory and object directory lines are added as if they had been
specified respectively by ‘-aI’ and ‘-aO’.

‘-u’ Output only unused symbols. This may be really useful if you give your main
compilation unit on the command line, as gnatxref will then display every
unused entity and ’with’ed package.

‘-v’ Instead of producing the default output, gnatxref will generate a ‘tags’ file
that can be used by vi. For examples how to use this feature, see See Section 12.5
[Examples of gnatxref Usage], page 157. The tags file is output to the standard
output, thus you will have to redirect it to a file.

All these switches may be in any order on the command line, and may even appear after
the file names. They need not be separated by spaces, thus you can say ‘gnatxref -ag’
instead of ‘gnatxref -a -g’.

12.2 gnatfind Switches

The command line for gnatfind is:
$ gnatfind [switches] pattern[:sourcefile[:line[:column]]]

[file1 file2 ...]

where

pattern An entity will be output only if it matches the regular expression found in
‘pattern’, see See Section 12.4 [Regular Expressions in gnatfind and gnatxref],
page 156.
Omitting the pattern is equivalent to specifying ‘*’, which will match any entity.
Note that if you do not provide a pattern, you have to provide both a sourcefile
and a line.

Chapter 12: The Cross-Referencing Tools gnatxref and gnatfind 153

Entity names are given in Latin-1, with uppercase/lowercase equivalence for
matching purposes. At the current time there is no support for 8-bit codes
other than Latin-1, or for wide characters in identifiers.

sourcefile
gnatfind will look for references, bodies or declarations of symbols referenced
in ‘sourcefile’, at line ‘line’ and column ‘column’. See see Section 12.6
[Examples of gnatfind Usage], page 158 for syntax examples.

line is a decimal integer identifying the line number containing the reference to the
entity (or entities) to be located.

column is a decimal integer identifying the exact location on the line of the first char-
acter of the identifier for the entity reference. Columns are numbered from
1.

file1 file2 ...
The search will be restricted to these source files. If none are given, then the
search will be done for every library file in the search path. These file must
appear only after the pattern or sourcefile.

These file names are considered to be regular expressions, so for instance speci-
fying ’source*.adb’ is the same as giving every file in the current directory whose
name starts with ’source’ and whose extension is ’adb’.

The location of the spec of the entity will always be displayed, even if it isn’t
in one of file1, file2,... The occurrences of the entity in the separate units of the
ones given on the command line will also be displayed.

Note that if you specify at least one file in this part, gnatfind may sometimes
not be able to find the body of the subprograms...

At least one of ’sourcefile’ or ’pattern’ has to be present on the command line.

The following switches are available:

‘-a’ If this switch is present, gnatfind and gnatxref will parse the read-only files
found in the library search path. Otherwise, these files will be ignored. This
option can be used to protect Gnat sources or your own libraries from being
parsed, thus making gnatfind and gnatxref much faster, and their output
much smaller. Read-only here refers to access or permission status in the file
system for the current user.

‘-aIDIR’ When looking for source files also look in directory DIR. The order in which
source file search is undertaken is the same as for ‘gnatmake’.

‘-aODIR’ When searching for library and object files, look in directory DIR. The order
in which library files are searched is the same as for ‘gnatmake’.

‘-nostdinc’
Do not look for sources in the system default directory.

‘-nostdlib’
Do not look for library files in the system default directory.

154 GNAT User’s Guide for Native Platforms / Unix and Windows

‘--RTS=rts-path ’
Specifies the default location of the runtime library. Same meaning as the
equivalent gnatmake flag (see Section 6.2 [Switches for gnatmake], page 86).

‘-d’ If this switch is set, then gnatfind will output the parent type reference for
each matching derived types.

‘-e’ By default, gnatfind accept the simple regular expression set for ‘pattern’. If
this switch is set, then the pattern will be considered as full Unix-style regular
expression.

‘-f’ If this switch is set, the output file names will be preceded by their directory
(if the file was found in the search path). If this switch is not set, the directory
will not be printed.

‘-g’ If this switch is set, information is output only for library-level entities, ignoring
local entities. The use of this switch may accelerate gnatfind and gnatxref.

‘-IDIR’ Equivalent to ‘-aODIR -aIDIR’.

‘-pFILE’ Specify a project file (see Section 11.1.1 [Project Files], page 113) to use. By
default, gnatxref and gnatfind will try to locate a project file in the current
directory.
If a project file is either specified or found by the tools, then the content of
the source directory and object directory lines are added as if they had been
specified respectively by ‘-aI’ and ‘-aO’.

‘-r’ By default, gnatfind will output only the information about the declaration,
body or type completion of the entities. If this switch is set, the gnatfind will
locate every reference to the entities in the files specified on the command line
(or in every file in the search path if no file is given on the command line).

‘-s’ If this switch is set, then gnatfind will output the content of the Ada source
file lines were the entity was found.

‘-t’ If this switch is set, then gnatfind will output the type hierarchy for the
specified type. It act like -d option but recursively from parent type to parent
type. When this switch is set it is not possible to specify more than one file.

All these switches may be in any order on the command line, and may even appear after
the file names. They need not be separated by spaces, thus you can say ‘gnatxref -ag’
instead of ‘gnatxref -a -g’.

As stated previously, gnatfind will search in every directory in the search path. You can
force it to look only in the current directory if you specify * at the end of the command
line.

12.3 Project Files for gnatxref and gnatfind

Project files allow a programmer to specify how to compile its application, where to find
sources, etc. These files are used primarily by the Glide Ada mode, but they can also be
used by the two tools gnatxref and gnatfind.

A project file name must end with ‘.gpr’. If a single one is present in the current
directory, then gnatxref and gnatfind will extract the information from it. If multiple

Chapter 12: The Cross-Referencing Tools gnatxref and gnatfind 155

project files are found, none of them is read, and you have to use the ‘-p’ switch to specify
the one you want to use.

The following lines can be included, even though most of them have default values which
can be used in most cases. The lines can be entered in any order in the file. Except for
‘src_dir’ and ‘obj_dir’, you can only have one instance of each line. If you have multiple
instances, only the last one is taken into account.

src_dir=DIR
[default: "./"] specifies a directory where to look for source files. Multiple
src_dir lines can be specified and they will be searched in the order they are
specified.

obj_dir=DIR
[default: "./"] specifies a directory where to look for object and library files.
Multiple obj_dir lines can be specified, and they will be searched in the order
they are specified

comp_opt=SWITCHES
[default: ""] creates a variable which can be referred to subsequently by using
the ${comp_opt} notation. This is intended to store the default switches given
to gnatmake and gcc.

bind_opt=SWITCHES
[default: ""] creates a variable which can be referred to subsequently by using
the ‘${bind_opt}’ notation. This is intended to store the default switches given
to gnatbind.

link_opt=SWITCHES
[default: ""] creates a variable which can be referred to subsequently by using
the ‘${link_opt}’ notation. This is intended to store the default switches given
to gnatlink.

main=EXECUTABLE
[default: ""] specifies the name of the executable for the application. This
variable can be referred to in the following lines by using the ‘${main}’ notation.

comp_cmd=COMMAND
[default: "gcc -c -I${src_dir} -g -gnatq"] specifies the command used to
compile a single file in the application.

make_cmd=COMMAND
[default: "gnatmake ${main} -aI${src_dir} -aO${obj_dir} -g -gnatq
-cargs ${comp_opt} -bargs ${bind_opt} -largs ${link_opt}"] specifies
the command used to recompile the whole application.

run_cmd=COMMAND
[default: "${main}"] specifies the command used to run the application.

debug_cmd=COMMAND
[default: "gdb ${main}"] specifies the command used to debug the application

gnatxref and gnatfind only take into account the src_dir and obj_dir lines, and ignore
the others.

156 GNAT User’s Guide for Native Platforms / Unix and Windows

12.4 Regular Expressions in gnatfind and gnatxref

As specified in the section about gnatfind, the pattern can be a regular expression. Actu-
ally, there are to set of regular expressions which are recognized by the program :

globbing patterns
These are the most usual regular expression. They are the same that you
generally used in a Unix shell command line, or in a DOS session.
Here is a more formal grammar :

regexp ::= term

term ::= elmt -- matches elmt

term ::= elmt elmt -- concatenation (elmt then elmt)

term ::= * -- any string of 0 or more characters

term ::= ? -- matches any character

term ::= [char {char}] -- matches any character listed

term ::= [char - char] -- matches any character in range

full regular expression
The second set of regular expressions is much more powerful. This is the type
of regular expressions recognized by utilities such a ‘grep’.

The following is the form of a regular expression, expressed in Ada reference
manual style BNF is as follows

regexp ::= term {| term} -- alternation (term or term ...)

term ::= item {item} -- concatenation (item then item)

item ::= elmt -- match elmt

item ::= elmt * -- zero or more elmt’s

item ::= elmt + -- one or more elmt’s

item ::= elmt ? -- matches elmt or nothing

elmt ::= nschar -- matches given character

elmt ::= [nschar {nschar}] -- matches any character listed

elmt ::= [^ nschar {nschar}] -- matches any character not listed

elmt ::= [char - char] -- matches chars in given range

elmt ::= \ char -- matches given character

elmt ::= . -- matches any single character

elmt ::= (regexp) -- parens used for grouping

char ::= any character, including special characters

nschar ::= any character except ()[].*+?^

Following are a few examples :

‘abcde|fghi’
will match any of the two strings ’abcde’ and ’fghi’.

‘abc*d’ will match any string like ’abd’, ’abcd’, ’abccd’, ’abcccd’, and so
on

‘[a-z]+’ will match any string which has only lowercase characters in it (and
at least one character

Chapter 12: The Cross-Referencing Tools gnatxref and gnatfind 157

12.5 Examples of gnatxref Usage

12.5.1 General Usage

For the following examples, we will consider the following units :� �
main.ads:

1: with Bar;

2: package Main is

3: procedure Foo (B : in Integer);

4: C : Integer;

5: private

6: D : Integer;

7: end Main;

main.adb:

1: package body Main is

2: procedure Foo (B : in Integer) is

3: begin

4: C := B;

5: D := B;

6: Bar.Print (B);

7: Bar.Print (C);

8: end Foo;

9: end Main;

bar.ads:

1: package Bar is

2: procedure Print (B : Integer);

3: end bar;
 	
The first thing to do is to recompile your application (for instance, in that case
just by doing a ‘gnatmake main’, so that GNAT generates the cross-referencing
information. You can then issue any of the following commands:

gnatxref main.adb
gnatxref generates cross-reference information for main.adb and every unit
’with’ed by main.adb.
The output would be:

B Type: Integer

Decl: bar.ads 2:22

B Type: Integer

Decl: main.ads 3:20

Body: main.adb 2:20

Ref: main.adb 4:13 5:13 6:19

Bar Type: Unit

Decl: bar.ads 1:9

Ref: main.adb 6:8 7:8

main.ads 1:6

C Type: Integer

Decl: main.ads 4:5

Modi: main.adb 4:8

Ref: main.adb 7:19

D Type: Integer

158 GNAT User’s Guide for Native Platforms / Unix and Windows

Decl: main.ads 6:5

Modi: main.adb 5:8

Foo Type: Unit

Decl: main.ads 3:15

Body: main.adb 2:15

Main Type: Unit

Decl: main.ads 2:9

Body: main.adb 1:14

Print Type: Unit

Decl: bar.ads 2:15

Ref: main.adb 6:12 7:12

that is the entity Main is declared in main.ads, line 2, column 9, its body is in
main.adb, line 1, column 14 and is not referenced any where.

The entity Print is declared in bar.ads, line 2, column 15 and it it referenced
in main.adb, line 6 column 12 and line 7 column 12.

gnatxref package1.adb package2.ads
gnatxref will generates cross-reference information for package1.adb, pack-
age2.ads and any other package ’with’ed by any of these.

12.5.2 Using gnatxref with vi

gnatxref can generate a tags file output, which can be used directly from ‘vi’. Note that
the standard version of ‘vi’ will not work properly with overloaded symbols. Consider using
another free implementation of ‘vi’, such as ‘vim’.

$ gnatxref -v gnatfind.adb > tags

will generate the tags file for gnatfind itself (if the sources are in the search path!).

From ‘vi’, you can then use the command ‘:tag entity ’ (replacing entity by whatever
you are looking for), and vi will display a new file with the corresponding declaration of
entity.

12.6 Examples of gnatfind Usage

gnatfind -f xyz:main.adb
Find declarations for all entities xyz referenced at least once in main.adb. The
references are search in every library file in the search path.

The directories will be printed as well (as the ‘-f’ switch is set)
The output will look like:

directory/main.ads:106:14: xyz <= declaration

directory/main.adb:24:10: xyz <= body

directory/foo.ads:45:23: xyz <= declaration

that is to say, one of the entities xyz found in main.adb is declared at line 12
of main.ads (and its body is in main.adb), and another one is declared at line
45 of foo.ads

gnatfind -fs xyz:main.adb
This is the same command as the previous one, instead gnatfind will display
the content of the Ada source file lines.

The output will look like:

Chapter 12: The Cross-Referencing Tools gnatxref and gnatfind 159

directory/main.ads:106:14: xyz <= declaration

procedure xyz;

directory/main.adb:24:10: xyz <= body

procedure xyz is

directory/foo.ads:45:23: xyz <= declaration

xyz : Integer;

This can make it easier to find exactly the location your are looking for.

gnatfind -r "*x*":main.ads:123 foo.adb
Find references to all entities containing an x that are referenced on line 123 of
main.ads. The references will be searched only in main.ads and foo.adb.

gnatfind main.ads:123
Find declarations and bodies for all entities that are referenced on line 123 of
main.ads.
This is the same as gnatfind "*":main.adb:123.

gnatfind mydir/main.adb:123:45
Find the declaration for the entity referenced at column 45 in line 123 of file
main.adb in directory mydir. Note that it is usual to omit the identifier name
when the column is given, since the column position identifies a unique refer-
ence.
The column has to be the beginning of the identifier, and should not point to
any character in the middle of the identifier.

160 GNAT User’s Guide for Native Platforms / Unix and Windows

Chapter 13: The GNAT Pretty-Printer gnatpp 161

13 The GNAT Pretty-Printer gnatpp

The gnatpp tool is an ASIS-based utility for source reformatting / pretty-printing. It takes
an Ada source file as input and generates a reformatted version as output. You can specify
various style directives via switches; e.g., identifier case conventions, rules of indentation,
and comment layout.

To produce a reformatted file, gnatpp generates and uses the ASIS tree for the input
source and thus requires the input to be syntactically and semantically legal. If this con-
dition is not met, gnatpp will terminate with an error message; no output file will be
generated.

If the compilation unit contained in the input source depends semantically upon units
located outside the current directory, you have to provide the source search path when
invoking gnatpp; see the description of the gnatpp switches below.

The gnatpp command has the form
$ gnatpp [switches] filename

where
• switches is an optional sequence of switches defining such properties as the formatting

rules, the source search path, and the destination for the output source file
• filename is the name (including the extension) of the source file to reformat; “wildcards”

are not permitted. The file name may contain path information; it does not have to
follow the GNAT file naming rules

13.1 Switches for gnatpp

The following subsections describe the various switches accepted by gnatpp, organized by
category.

You specify a switch by supplying a name and generally also a value. In many cases
the values for a switch with a given name are incompatible with each other (for example
the switch that controls the casing of a reserved word may have exactly one value: upper
case, lower case, or mixed case) and thus exactly one such switch can be in effect for an
invocation of gnatpp. If more than one is supplied, the last one is used. However, some
values for the same switch are mutually compatible. You may supply several such switches
to gnatpp, but then each must be specified in full, with both the name and the value.
Abbreviated forms (the name appearing once, followed by each value) are not permitted.
For example, to set the alignment of the assignment delimiter both in declarations and in
assignment statements, you must write ‘-A2A3’ (or ‘-A2 -A3’), but not ‘-A23’.

In most cases, it is obvious whether or not the values for a switch with a given name
are compatible with each other. When the semantics might not be evident, the summaries
below explicitly indicate the effect.

13.1.1 Alignment Control

Programs can be easier to read if certain constructs are vertically aligned. By default all
alignments are set ON. Through the ‘-A0’ switch you may reset the default to OFF, and
then use one or more of the other ‘-An ’ switches to activate alignment for specific constructs.

‘-A0’ Set all alignments to OFF

162 GNAT User’s Guide for Native Platforms / Unix and Windows

‘-A1’ Align : in declarations

‘-A2’ Align := in initializations in declarations

‘-A3’ Align := in assignment statements

‘-A4’ Align => in associations

The ‘-A’ switches are mutually compatible; any combination is allowed.

13.1.2 Casing Control

gnatpp allows you to specify the casing for reserved words, pragma names, attribute des-
ignators and identifiers. For identifiers you may define a general rule for name casing but
also override this rule via a set of dictionary files.

Three types of casing are supported: lower case, upper case, and mixed case. Lower and
upper case are self-explanatory (but since some letters in Latin1 and other GNAT-supported
character sets exist only in lower-case form, an upper case conversion will have no effect on
them.) “Mixed case” means that the first letter, and also each letter immediately following
an underscore, are converted to their uppercase forms; all the other letters are converted to
their lowercase forms.

‘-aL’ Attribute designators are lower case

‘-aU’ Attribute designators are upper case

‘-aM’ Attribute designators are mixed case (this is the default)

‘-kL’ Keywords (technically, these are known in Ada as reserved words) are lower
case (this is the default)

‘-kU’ Keywords are upper case

‘-nD’ Name casing for defining occurrences are as they appear in the source file (this
is the default)

‘-nU’ Names are in upper case

‘-nL’ Names are in lower case

‘-nM’ Names are in mixed case

‘-pL’ Pragma names are lower case

‘-pU’ Pragma names are upper case

‘-pM’ Pragma names are mixed case (this is the default)

‘-Dfile ’ Use file as a dictionary file that defines the casing for a set of specified names,
thereby overriding the effect on these names by any explicit or implicit -n switch.
To supply more than one dictionary file, use several ‘-D’ switches.
‘gnatpp’ implicitly uses a default dictionary file to define the casing for the Ada
predefined names and the names declared in the GNAT libraries.

‘-D-’ Do not use the default dictionary file; instead, use the casing defined by a ‘-n’
switch and any explicit dictionary file(s)

The structure of a dictionary file, and details on the conventions used in the default dictio-
nary file, are defined in Section 13.2.4 [Name Casing], page 167.

The ‘-D-’ and ‘-Dfile ’ switches are mutually compatible.

Chapter 13: The GNAT Pretty-Printer gnatpp 163

13.1.3 Construct Layout Control

This group of gnatpp switches controls the layout of comments and complex syntactic
constructs. See Section 13.2.2 [Formatting Comments], page 165, for details on their effect.

‘-c1’ GNAT-style comment line indentation (this is the default).

‘-c2’ Reference-manual comment line indentation.

‘-c3’ GNAT-style comment beginning

‘-c4’ Reformat comment blocks

‘-l1’ GNAT-style layout (this is the default)

‘-l2’ Compact layout

‘-l3’ Uncompact layout

The ‘-c1’ and ‘-c2’ switches are incompatible. The ‘-c3’ and ‘-c4’ switches are compatible
with each other and also with ‘-c1’ and ‘-c2’.

The ‘-l1’, ‘-l2’, and ‘-l3’ switches are incompatible.

13.1.4 General Text Layout Control

These switches allow control over line length and indentation.

‘-Mnnn ’ Maximum line length, nnn from 32 ..256, the default value is 79

‘-innn ’ Indentation level, nnn from 1 .. 9, the default value is 3

‘-clnnn ’ Indentation level for continuation lines (relative to the line being continued),
nnn from 1 .. 9. The default value is one less then the (normal) indentation
level, unless the indentation is set to 1 (in which case the default value for
continuation line indentation is also 1)

13.1.5 Other Formatting Options

These switches control the inclusion of missing end/exit labels, and the indentation level in
case statements.

‘-e’ Do not insert missing end/exit labels. An end label is the name of a construct
that may optionally be repeated at the end of the construct’s declaration; e.g.,
the names of packages, subprograms, and tasks. An exit label is the name of
a loop that may appear as target of an exit statement within the loop. By
default, gnatpp inserts these end/exit labels when they are absent from the
original source. This option suppresses such insertion, so that the formatted
source reflects the original.

‘-ff’ Insert a Form Feed character after a pragma Page.

‘-Tnnn ’ Do not use an additional indentation level for case alternatives and variants
if there are nnn or more (the default value is 10). If nnn is 0, an additional
indentation level is used for case alternatives and variants regardless of their
number.

164 GNAT User’s Guide for Native Platforms / Unix and Windows

13.1.6 Setting the Source Search Path

To define the search path for the input source file, gnatpp uses the same switches as the
GNAT compiler, with the same effects.

‘-Idir ’ The same as the corresponding gcc switch

‘-I-’ The same as the corresponding gcc switch

‘-gnatec=path ’
The same as the corresponding gcc switch

13.1.7 Output File Control

By default the output is sent to the file whose name is obtained by appending the ‘.pp’
suffix to the name of the input file (if the file with this name already exists, it is uncon-
ditionally overwritten). Thus if the input file is ‘my_ada_proc.adb’ then gnatpp will pro-
duce ‘my_ada_proc.adb.pp’ as output file. The output may be redirected by the following
switches:

‘-pipe’ Send the output to Standard_Output

‘-o output_file ’
Write the output into output file. If output file already exists, gnatpp termi-
nates without reading or processing the input file.

‘-of output_file ’
Write the output into output file, overwriting the existing file (if one is present).

‘-r’ Replace the input source file with the reformatted output, and copy the original
input source into the file whose name is obtained by appending the ‘.npp’ suffix
to the name of the input file. If a file with this name already exists, gnatpp
terminates without reading or processing the input file.

‘-rf’ Like ‘-r’ except that if the file with the specified name already exists, it is
overwritten.

13.1.8 Other gnatpp Switches

The additional gnatpp switches are defined in this subsection.

‘-v’ Verbose mode; gnatpp generates version information and then a trace of the
actions it takes to produce or obtain the ASIS tree.

‘-w’ Warning mode; gnatpp generates a warning whenever it can not provide a
required layout in the result source.

13.2 Formatting Rules

The following subsections show how gnatpp treats “white space”, comments, program lay-
out, and name casing. They provide the detailed descriptions of the switches shown above.

13.2.1 White Space and Empty Lines

gnatpp does not have an option to control space characters. It will add or remove spaces
according to the style illustrated by the examples in the Ada Reference Manual.

Chapter 13: The GNAT Pretty-Printer gnatpp 165

The only format effectors (see Ada Reference Manual, paragraph 2.1(13)) that will ap-
pear in the output file are platform-specific line breaks, and also format effectors within
(but not at the end of) comments. In particular, each horizontal tab character that is not
inside a comment will be treated as a space and thus will appear in the output file as zero
or more spaces depending on the reformatting of the line in which it appears. The only
exception is a Form Feed character, which is inserted after a pragma Page when ‘-ff’ is
set.

The output file will contain no lines with trailing “white space” (spaces, format effectors).

Empty lines in the original source are preserved only if they separate declarations or
statements. In such contexts, a sequence of two or more empty lines is replaced by exactly
one empty line. Note that a blank line will be removed if it separates two “comment
blocks” (a comment block is a sequence of whole-line comments). In order to preserve a
visual separation between comment blocks, use an “empty comment” (a line comprising
only hyphens) rather than an empty line. Likewise, if for some reason you wish to have a
sequence of empty lines, use a sequence of empty comments instead.

13.2.2 Formatting Comments

Comments in Ada code are of two kinds:

• a whole-line comment, which appears by itself (possibly preceded by “white space”) on
a line

• an end-of-line comment, which follows some other Ada lexical element on the same
line.

The indentation of a whole-line comment is that of either the preceding or following line in
the formatted source, depending on switch settings as will be described below.

For an end-of-line comment, gnatpp leaves the same number of spaces between the end
of the preceding Ada lexical element and the beginning of the comment as appear in the
original source, unless either the comment has to be split to satisfy the line length limitation,
or else the next line contains a whole line comment that is considered a continuation of this
end-of-line comment (because it starts at the same position). In the latter two cases, the
start of the end-of-line comment is moved right to the nearest multiple of the indentation
level. This may result in a “line overflow” (the right-shifted comment extending beyond the
maximum line length), in which case the comment is split as described below.

There is a difference between ‘-c1’ (GNAT-style comment line indentation) and ‘-c2’
(reference-manual comment line indentation). With reference-manual style, a whole-line
comment is indented as if it were a declaration or statement at the same place (i.e., according
to the indentation of the preceding line(s)). With GNAT style, a whole-line comment that is
immediately followed by an if or case statement alternative, a record variant, or the reserved
word begin, is indented based on the construct that follows it.

For example:

166 GNAT User’s Guide for Native Platforms / Unix and Windows� �
if A then

null;

-- some comment

else

null;

end if;
 	
Reference-manual indentation produces:� �

if A then

null;

-- some comment

else

null;

end if;
 	
while GNAT-style indentation produces:� �

if A then

null;

-- some comment

else

null;

end if;
 	
The ‘-c3’ switch (GNAT style comment beginning) has the following effect:
• For each whole-line comment that does not end with two hyphens, gnatpp inserts

spaces if necessary after the starting two hyphens to ensure that there are at least two
spaces between these hyphens and the first non-blank character of the comment.

For an end-of-line comment, if in the original source the next line is a whole-line comment
that starts at the same position as the end-of-line comment, then the whole-line comment
(and all whole-line comments that follow it and that start at the same position) will start
at this position in the output file.
That is, if in the original source we have:� �

begin

A := B + C; -- B must be in the range Low1..High1

-- C must be in the range Low2..High2

--B+C will be in the range Low1+Low2..High1+High2

X := X + 1;
 	
Then in the formatted source we get� �

begin

A := B + C; -- B must be in the range Low1..High1

-- C must be in the range Low2..High2

-- B+C will be in the range Low1+Low2..High1+High2

X := X + 1;
 	
A comment that exceeds the line length limit will be split. Unless switch ‘-c4’ (reformat
comment blocks) is set and the line belongs to a reformattable block, splitting the line

Chapter 13: The GNAT Pretty-Printer gnatpp 167

generates a gnatpp warning. The ‘-c4’ switch specifies that whole-line comments may be
reformatted in typical word processor style (that is, moving words between lines and putting
as many words in a line as possible).

13.2.3 Construct Layout

The difference between GNAT style ‘-l1’ and compact ‘-l2’ layout on the one hand, and
uncompact layout ‘-l3’ on the other hand, can be illustrated by the following examples:� �
GNAT style, compact layout Uncompact layout

type q is record

a : integer;

b : integer;

end record;

type q is

record

a : integer;

b : integer;

end record;

Block : declare

A : Integer := 3;

begin

Proc (A, A);

end Block;

Block :

declare

A : Integer := 3;

begin

Proc (A, A);

end Block;

Clear : for J in 1 .. 10 loop

A (J) := 0;

end loop Clear;

Clear :

for J in 1 .. 10 loop

A (J) := 0;

end loop Clear;

 	
A further difference between GNAT style layout and compact layout is that GNAT style
layout inserts empty lines as separation for compound statements, return statements and
bodies.

13.2.4 Name Casing

gnatpp always converts the usage occurrence of a (simple) name to the same casing as the
corresponding defining identifier.

You control the casing for defining occurrences via the ‘-n’ switch. With ‘-nD’ (“as
declared”, which is the default), defining occurrences appear exactly as in the source file
where they are declared. The other values for this switch — ‘-nU’, ‘-nL’, ‘-nM’ — result
in upper, lower, or mixed case, respectively. If gnatpp changes the casing of a defining
occurrence, it analogously changes the casing of all the usage occurrences of this name.

If the defining occurrence of a name is not in the source compilation unit currently being
processed by gnatpp, the casing of each reference to this name is changed according to the
value of the ‘-n’ switch (subject to the dictionary file mechanism described below). Thus
gnatpp acts as though the ‘-n’ switch had affected the casing for the defining occurrence
of the name.

Some names may need to be spelled with casing conventions that are not covered by the
upper-, lower-, and mixed-case transformations. You can arrange correct casing by placing
such names in a dictionary file, and then supplying a ‘-D’ switch. The casing of names from
dictionary files overrides any ‘-n’ switch.

168 GNAT User’s Guide for Native Platforms / Unix and Windows

To handle the casing of Ada predefined names and the names from GNAT libraries,
gnatpp assumes a default dictionary file. The name of each predefined entity is spelled
with the same casing as is used for the entity in the Ada Reference Manual. The name of
each entity in the GNAT libraries is spelled with the same casing as is used in the declaration
of that entity.

The ‘-D-’ switch suppresses the use of the default dictionary file. Instead, the casing
for predefined and GNAT-defined names will be established by the ‘-n’ switch or explicit
dictionary files. For example, by default the names Ada.Text_IO and GNAT.OS_Lib will
appear as just shown, even in the presence of a ‘-nU’ switch. To ensure that even such names
are rendered in uppercase, additionally supply the ‘-D-’ switch (or else, less conveniently,
place these names in upper case in a dictionary file).

A dictionary file is a plain text file; each line in this file can be either a blank line
(containing only space characters and ASCII.HT characters), an Ada comment line, or the
specification of exactly one casing schema.

A casing schema is a string that has the following syntax:� �
casing_schema ::= identifier | [*]simple_identifier[*]

simple_identifier ::= letter{letter_or_digit}
 	
(The [] metanotation stands for an optional part; see Ada Reference Manual, Section 2.3)
for the definition of the identifier lexical element and the letter or digit category).

The casing schema string can be followed by white space and/or an Ada-style comment;
any amount of white space is allowed before the string.

If a dictionary file is passed as the value of a ‘-Dfile ’ switch then for every simple name
and every identifier, gnatpp checks if the dictionary defines the casing for the name or for
some of its parts (the term “subword” is used below to denote the part of a name which is
delimited by “ ” or by the beginning or end of the word and which does not contain any
“ ” inside):
• if the whole name is in the dictionary, gnatpp uses for this name the casing defined by

the dictionary; no subwords are checked for this word
• for the first subword (that is, for the subword preceding the leftmost “ ”), gnatpp checks

if the dictionary contains the corresponding string of the form simple_identifier*,
and if it does, the casing of this simple identifier is used for this subword

• for the last subword (following the rightmost “ ”) gnatpp checks if the dictionary
contains the corresponding string of the form *simple_identifier , and if it does, the
casing of this simple identifier is used for this subword

• for every intermediate subword (surrounded by two’ ’) gnatpp checks if the dictionary
contains the corresponding string of the form *simple_identifier*, and if it does,
the casing of this simple identifier is used for this subword

• if more than one dictionary file is passed as gnatpp switches, each dictionary adds new
casing exceptions and overrides all the existing casing exceptions set by the previous
dictionaries

• when gnatpp checks if the word or subword is in the dictionary, this check is not case
sensitive

Chapter 13: The GNAT Pretty-Printer gnatpp 169

For example, suppose we have the following source to reformat:� �
procedure test is

name1 : integer := 1;

name4_name3_name2 : integer := 2;

name2_name3_name4 : Boolean;

name1_var : Float;

begin

name2_name3_name4 := name4_name3_name2 > name1;

end;
 	
And suppose we have two dictionaries:� �

dict1:

NAME1

NaMe3

*NAME2
 	� �
dict2:

NAME3
 	
If gnatpp is called with the following switches:

gnatpp -nM -D dict1 -D dict2 test.adb

then we will get the following name casing in the gnatpp output:� �
procedure Test is

NAME1 : Integer := 1;

Name4_NAME3_NAME2 : integer := 2;

Name2_NAME3_Name4 : Boolean;

Name1_Var : Float;

begin

Name2_NAME3_Name4 := Name4_NAME3_NAME2 > NAME1;

end Test;
 	

170 GNAT User’s Guide for Native Platforms / Unix and Windows

Chapter 14: File Name Krunching Using gnatkr 171

14 File Name Krunching Using gnatkr

This chapter discusses the method used by the compiler to shorten the default file names
chosen for Ada units so that they do not exceed the maximum length permitted. It also
describes the gnatkr utility that can be used to determine the result of applying this
shortening.

14.1 About gnatkr

The default file naming rule in GNAT is that the file name must be derived from the unit
name. The exact default rule is as follows:
• Take the unit name and replace all dots by hyphens.
• If such a replacement occurs in the second character position of a name, and the first

character is a, g, s, or i then replace the dot by the character ~ (tilde) instead of a
minus.

The reason for this exception is to avoid clashes with the standard names for children
of System, Ada, Interfaces, and GNAT, which use the prefixes s- a- i- and g- respectively.

The ‘-gnatknn ’ switch of the compiler activates a “krunching” circuit that limits file
names to nn characters (where nn is a decimal integer). For example, using OpenVMS,
where the maximum file name length is 39, the value of nn is usually set to 39, but if you
want to generate a set of files that would be usable if ported to a system with some different
maximum file length, then a different value can be specified. The default value of 39 for
OpenVMS need not be specified.

The gnatkr utility can be used to determine the krunched name for a given file, when
krunched to a specified maximum length.

14.2 Using gnatkr

The gnatkr command has the form
$ gnatkr name [length]

name is the uncrunched file name, derived from the name of the unit in the standard manner
described in the previous section (i.e. in particular all dots are replaced by hyphens). The
file name may or may not have an extension (defined as a suffix of the form period followed by
arbitrary characters other than period). If an extension is present then it will be preserved
in the output. For example, when krunching ‘hellofile.ads’ to eight characters, the result
will be hellofil.ads.

Note: for compatibility with previous versions of gnatkr dots may appear in the name
instead of hyphens, but the last dot will always be taken as the start of an extension. So
if gnatkr is given an argument such as ‘Hello.World.adb’ it will be treated exactly as if
the first period had been a hyphen, and for example krunching to eight characters gives the
result ‘hellworl.adb’.

Note that the result is always all lower case (except on OpenVMS where it is all upper
case). Characters of the other case are folded as required.

length represents the length of the krunched name. The default when no argument is
given is 8 characters. A length of zero stands for unlimited, in other words do not chop
except for system files where the impled crunching length is always eight characters.

172 GNAT User’s Guide for Native Platforms / Unix and Windows

The output is the krunched name. The output has an extension only if the original argument
was a file name with an extension.

14.3 Krunching Method

The initial file name is determined by the name of the unit that the file contains. The
name is formed by taking the full expanded name of the unit and replacing the separating
dots with hyphens and using lowercase for all letters, except that a hyphen in the second
character position is replaced by a tilde if the first character is a, i, g, or s. The extension
is .ads for a specification and .adb for a body. Krunching does not affect the extension,
but the file name is shortened to the specified length by following these rules:

• The name is divided into segments separated by hyphens, tildes or underscores and all
hyphens, tildes, and underscores are eliminated. If this leaves the name short enough,
we are done.

• If the name is too long, the longest segment is located (left-most if there are two of
equal length), and shortened by dropping its last character. This is repeated until the
name is short enough.
As an example, consider the krunching of
‘our-strings-wide_fixed.adb’ to fit the name into 8 characters as required by some
operating systems.

our-strings-wide_fixed 22

our strings wide fixed 19

our string wide fixed 18

our strin wide fixed 17

our stri wide fixed 16

our stri wide fixe 15

our str wide fixe 14

our str wid fixe 13

our str wid fix 12

ou str wid fix 11

ou st wid fix 10

ou st wi fix 9

ou st wi fi 8

Final file name: oustwifi.adb

• The file names for all predefined units are always krunched to eight characters. The
krunching of these predefined units uses the following special prefix replacements:

‘ada-’ replaced by ‘a-’

‘gnat-’ replaced by ‘g-’

‘interfaces-’
replaced by ‘i-’

‘system-’ replaced by ‘s-’

These system files have a hyphen in the second character position. That is why normal
user files replace such a character with a tilde, to avoid confusion with system file
names.
As an example of this special rule, consider
‘ada-strings-wide_fixed.adb’, which gets krunched as follows:

Chapter 14: File Name Krunching Using gnatkr 173

ada-strings-wide_fixed 22

a- strings wide fixed 18

a- string wide fixed 17

a- strin wide fixed 16

a- stri wide fixed 15

a- stri wide fixe 14

a- str wide fixe 13

a- str wid fixe 12

a- str wid fix 11

a- st wid fix 10

a- st wi fix 9

a- st wi fi 8

Final file name: a-stwifi.adb

Of course no file shortening algorithm can guarantee uniqueness over all possible unit
names, and if file name krunching is used then it is your responsibility to ensure that no
name clashes occur. The utility program gnatkr is supplied for conveniently determining
the krunched name of a file.

14.4 Examples of gnatkr Usage

$ gnatkr very_long_unit_name.ads --> velounna.ads

$ gnatkr grandparent-parent-child.ads --> grparchi.ads

$ gnatkr Grandparent.Parent.Child.ads --> grparchi.ads

$ gnatkr grandparent-parent-child --> grparchi

$ gnatkr very_long_unit_name.ads/count=6 --> vlunna.ads

$ gnatkr very_long_unit_name.ads/count=0 --> very_long_unit_name.ads

174 GNAT User’s Guide for Native Platforms / Unix and Windows

Chapter 15: Preprocessing Using gnatprep 175

15 Preprocessing Using gnatprep

The gnatprep utility provides a simple preprocessing capability for Ada programs. It is
designed for use with GNAT, but is not dependent on any special features of GNAT.

15.1 Using gnatprep

To call gnatprep use
$ gnatprep [-bcrsu] [-Dsymbol=value] infile outfile [deffile]

where

infile is the full name of the input file, which is an Ada source file containing prepro-
cessor directives.

outfile is the full name of the output file, which is an Ada source in standard Ada
form. When used with GNAT, this file name will normally have an ads or adb
suffix.

deffile is the full name of a text file containing definitions of symbols to be referenced
by the preprocessor. This argument is optional, and can be replaced by the use
of the ‘-D’ switch.

switches is an optional sequence of switches as described in the next section.

15.2 Switches for gnatprep

‘-b’ Causes both preprocessor lines and the lines deleted by preprocessing to be
replaced by blank lines in the output source file, preserving line numbers in the
output file.

‘-c’ Causes both preprocessor lines and the lines deleted by preprocessing to be
retained in the output source as comments marked with the special string "--!
". This option will result in line numbers being preserved in the output file.

‘-Dsymbol=value’
Defines a new symbol, associated with value. If no value is given on the com-
mand line, then symbol is considered to be True. This switch can be used in
place of a definition file.

‘-r’ Causes a Source_Reference pragma to be generated that references the original
input file, so that error messages will use the file name of this original file. The
use of this switch implies that preprocessor lines are not to be removed from
the file, so its use will force ‘-b’ mode if ‘-c’ has not been specified explicitly.
Note that if the file to be preprocessed contains multiple units, then it will be
necessary to gnatchop the output file from gnatprep. If a Source_Reference
pragma is present in the preprocessed file, it will be respected by gnatchop -r
so that the final chopped files will correctly refer to the original input source
file for gnatprep.

‘-s’ Causes a sorted list of symbol names and values to be listed on the standard
output file.

176 GNAT User’s Guide for Native Platforms / Unix and Windows

‘-u’ Causes undefined symbols to be treated as having the value FALSE in the
context of a preprocessor test. In the absence of this option, an undefined
symbol in a #if or #elsif test will be treated as an error.

Note: if neither ‘-b’ nor ‘-c’ is present, then preprocessor lines and deleted lines are com-
pletely removed from the output, unless -r is specified, in which case -b is assumed.

15.3 Form of Definitions File

The definitions file contains lines of the form
symbol := value

where symbol is an identifier, following normal Ada (case-insensitive) rules for its syntax,
and value is one of the following:
• Empty, corresponding to a null substitution
• A string literal using normal Ada syntax
• Any sequence of characters from the set (letters, digits, period, underline).

Comment lines may also appear in the definitions file, starting with the usual --, and
comments may be added to the definitions lines.

15.4 Form of Input Text for gnatprep

The input text may contain preprocessor conditional inclusion lines, as well as general
symbol substitution sequences.

The preprocessor conditional inclusion commands have the form� �
#if expression [then]

lines

#elsif expression [then]

lines

#elsif expression [then]

lines

...

#else

lines

#end if;
 	
In this example, expression is defined by the following grammar:

expression ::= <symbol>

expression ::= <symbol> = "<value>"

expression ::= <symbol> = <symbol>

expression ::= <symbol> ’Defined

expression ::= not expression

expression ::= expression and expression

expression ::= expression or expression

expression ::= expression and then expression

expression ::= expression or else expression

expression ::= (expression)

For the first test (expression ::= <symbol>) the symbol must have either the value true
or false, that is to say the right-hand of the symbol definition must be one of the (case-
insensitive) literals True or False. If the value is true, then the corresponding lines are
included, and if the value is false, they are excluded.

Chapter 15: Preprocessing Using gnatprep 177

The test (expression ::= <symbol> ’Defined) is true only if the symbol has been defined
in the definition file or by a ‘-D’ switch on the command line. Otherwise, the test is false.

The equality tests are case insensitive, as are all the preprocessor lines.
If the symbol referenced is not defined in the symbol definitions file, then the effect

depends on whether or not switch ‘-u’ is specified. If so, then the symbol is treated as if it
had the value false and the test fails. If this switch is not specified, then it is an error to
reference an undefined symbol. It is also an error to reference a symbol that is defined with
a value other than True or False.

The use of the not operator inverts the sense of this logical test, so that the lines are
included only if the symbol is not defined. The then keyword is optional as shown

The # must be the first non-blank character on a line, but otherwise the format is free
form. Spaces or tabs may appear between the # and the keyword. The keywords and
the symbols are case insensitive as in normal Ada code. Comments may be used on a
preprocessor line, but other than that, no other tokens may appear on a preprocessor line.
Any number of elsif clauses can be present, including none at all. The else is optional,
as in Ada.

The # marking the start of a preprocessor line must be the first non-blank character on
the line, i.e. it must be preceded only by spaces or horizontal tabs.

Symbol substitution outside of preprocessor lines is obtained by using the sequence
$symbol

anywhere within a source line, except in a comment or within a string literal. The identifier
following the $ must match one of the symbols defined in the symbol definition file, and the
result is to substitute the value of the symbol in place of $symbol in the output file.

Note that although the substitution of strings within a string literal is not possible, it is
possible to have a symbol whose defined value is a string literal. So instead of setting XYZ
to hello and writing:

Header : String := "$XYZ";

you should set XYZ to "hello" and write:
Header : String := $XYZ;

and then the substitution will occur as desired.

178 GNAT User’s Guide for Native Platforms / Unix and Windows

Chapter 16: The GNAT Library Browser gnatls 179

16 The GNAT Library Browser gnatls

gnatls is a tool that outputs information about compiled units. It gives the relationship
between objects, unit names and source files. It can also be used to check the source
dependencies of a unit as well as various characteristics.

16.1 Running gnatls

The gnatls command has the form
$ gnatls switches object_or_ali_file

The main argument is the list of object or ‘ali’ files (see Section 2.8 [The Ada Library
Information Files], page 25) for which information is requested.

In normal mode, without additional option, gnatls produces a four-column listing. Each
line represents information for a specific object. The first column gives the full path of the
object, the second column gives the name of the principal unit in this object, the third
column gives the status of the source and the fourth column gives the full path of the
source representing this unit. Here is a simple example of use:

$ gnatls *.o

./demo1.o demo1 DIF demo1.adb

./demo2.o demo2 OK demo2.adb

./hello.o h1 OK hello.adb

./instr-child.o instr.child MOK instr-child.adb

./instr.o instr OK instr.adb

./tef.o tef DIF tef.adb

./text_io_example.o text_io_example OK text_io_example.adb

./tgef.o tgef DIF tgef.adb

The first line can be interpreted as follows: the main unit which is contained in object file
‘demo1.o’ is demo1, whose main source is in ‘demo1.adb’. Furthermore, the version of the
source used for the compilation of demo1 has been modified (DIF). Each source file has a
status qualifier which can be:

OK (unchanged)
The version of the source file used for the compilation of the specified unit
corresponds exactly to the actual source file.

MOK (slightly modified)
The version of the source file used for the compilation of the specified unit
differs from the actual source file but not enough to require recompilation.
If you use gnatmake with the qualifier ‘-m (minimal recompilation)’, a file
marked MOK will not be recompiled.

DIF (modified)
No version of the source found on the path corresponds to the source used to
build this object.

??? (file not found)
No source file was found for this unit.

HID (hidden, unchanged version not first on PATH)
The version of the source that corresponds exactly to the source used for com-
pilation has been found on the path but it is hidden by another version of the
same source that has been modified.

180 GNAT User’s Guide for Native Platforms / Unix and Windows

16.2 Switches for gnatls

gnatls recognizes the following switches:

‘-a’ Consider all units, including those of the predefined Ada library. Especially
useful with ‘-d’.

‘-d’ List sources from which specified units depend on.

‘-h’ Output the list of options.

‘-o’ Only output information about object files.

‘-s’ Only output information about source files.

‘-u’ Only output information about compilation units.

‘-aOdir ’
‘-aIdir ’
‘-Idir ’
‘-I-’
‘-nostdinc’

Source path manipulation. Same meaning as the equivalent gnatmake flags (see
Section 6.2 [Switches for gnatmake], page 86).

‘--RTS=rts-path ’
Specifies the default location of the runtime library. Same meaning as the
equivalent gnatmake flag (see Section 6.2 [Switches for gnatmake], page 86).

‘-v’ Verbose mode. Output the complete source and object paths. Do not use the
default column layout but instead use long format giving as much as information
possible on each requested units, including special characteristics such as:

Preelaborable
The unit is preelaborable in the Ada 95 sense.

No_Elab_Code
No elaboration code has been produced by the compiler for this
unit.

Pure The unit is pure in the Ada 95 sense.

Elaborate_Body
The unit contains a pragma Elaborate Body.

Remote_Types
The unit contains a pragma Remote Types.

Shared_Passive
The unit contains a pragma Shared Passive.

Predefined
This unit is part of the predefined environment and cannot be mod-
ified by the user.

Remote_Call_Interface
The unit contains a pragma Remote Call Interface.

Chapter 16: The GNAT Library Browser gnatls 181

16.3 Example of gnatls Usage

Example of using the verbose switch. Note how the source and object paths are affected by
the -I switch.

$ gnatls -v -I.. demo1.o

GNATLS 3.10w (970212) Copyright 1999 Free Software Foundation, Inc.

Source Search Path:

<Current_Directory>

../

/home/comar/local/adainclude/

Object Search Path:

<Current_Directory>

../

/home/comar/local/lib/gcc-lib/mips-sni-sysv4/2.7.2/adalib/

./demo1.o

Unit =>

Name => demo1

Kind => subprogram body

Flags => No_Elab_Code

Source => demo1.adb modified

The following is an example of use of the dependency list. Note the use of the -s switch
which gives a straight list of source files. This can be useful for building specialized scripts.

$ gnatls -d demo2.o

./demo2.o demo2 OK demo2.adb

OK gen_list.ads

OK gen_list.adb

OK instr.ads

OK instr-child.ads

$ gnatls -d -s -a demo1.o

demo1.adb

/home/comar/local/adainclude/ada.ads

/home/comar/local/adainclude/a-finali.ads

/home/comar/local/adainclude/a-filico.ads

/home/comar/local/adainclude/a-stream.ads

/home/comar/local/adainclude/a-tags.ads

gen_list.ads

gen_list.adb

/home/comar/local/adainclude/gnat.ads

/home/comar/local/adainclude/g-io.ads

instr.ads

/home/comar/local/adainclude/system.ads

/home/comar/local/adainclude/s-exctab.ads

/home/comar/local/adainclude/s-finimp.ads

/home/comar/local/adainclude/s-finroo.ads

/home/comar/local/adainclude/s-secsta.ads

/home/comar/local/adainclude/s-stalib.ads

/home/comar/local/adainclude/s-stoele.ads

/home/comar/local/adainclude/s-stratt.ads

/home/comar/local/adainclude/s-tasoli.ads

/home/comar/local/adainclude/s-unstyp.ads

/home/comar/local/adainclude/unchconv.ads

182 GNAT User’s Guide for Native Platforms / Unix and Windows

Chapter 17: Cleaning Up Using gnatclean 183

17 Cleaning Up Using gnatclean

gnatclean is a tool that allows the deletion of files produced by the compiler, binder and
linker, including ALI files, object files, tree files, expanded source files, library files, interface
copy source files, binder generated files and executable files.

17.1 Running gnatclean

The gnatclean command has the form:
$ gnatclean switches names

names is a list of source file names. Suffixes .ads and adb may be omitted. If a project file
is specified using switch -P, then names may be completely omitted.

In normal mode, gnatclean delete the files produced by the compiler and, if switch -c is
not specified, by the binder and the linker. In informative-only mode, specified by switch
-n, the list of files that would have been deleted in normal mode is listed, but no file is
actually deleted.

17.2 Switches for gnatclean

gnatclean recognizes the following switches:

‘-c’ Only attempt to delete the files produced by the compiler, not those produced
by the binder or the linker. The files that are not to be deleted are library files,
interface copy files, binder generated files and executable files.

‘-D dir ’ Indicate that ALI and object files should normally be found in directory dir.

‘-F’ When using project files, if some errors or warnings are detected during parsing
and verbose mode is not in effect (no use of switch -v), then error lines start
with the full path name of the project file, rather than its simple file name.

‘-h’ Output a message explaining the usage of gnatclean.

‘-n’ Informative-only mode. Do not delete any files. Output the list of the files that
would have been deleted if this switch was not specified.

‘-Pproject ’
Use project file project. Only one such switch can be used. When cleaning a
project file, the files produced by the compilation of the immediate sources or
inherited sources of the project files are to be deleted. This is not depending
on the presence or not of executable names on the command line.

‘-q’ Quiet output. If there are no error, do not ouuput anything, except in verbose
mode (switch -v) or in informative-only mode (switch -n).

‘-r’ When a project file is specified (using switch -P), clean all imported and ex-
tended project files, recursively. If this switch is not specified, only the files
related to the main project file are to be deleted. This switch has no effect if
no project file is specified.

‘-v’ Verbose mode.

184 GNAT User’s Guide for Native Platforms / Unix and Windows

‘-vPx ’ Indicates the verbosity of the parsing of GNAT project files. See Section 11.14
[Switches Related to Project Files], page 139.

‘-Xname=value ’
Indicates that external variable name has the value value. The Project Manager
will use this value for occurrences of external(name) when parsing the project
file. See Section 11.14 [Switches Related to Project Files], page 139.

‘-aOdir ’ When searching for ALI and object files, look in directory dir.

‘-Idir ’ Equivalent to ‘-aOdir ’.

‘-I-’ Do not look for ALI or object files in the directory where gnatclean was in-
voked.

17.3 Examples of gnatclean Usage

Chapter 18: GNAT and Libraries 185

18 GNAT and Libraries

This chapter addresses some of the issues related to building and using a library with GNAT.
It also shows how the GNAT run-time library can be recompiled.

18.1 Creating an Ada Library

In the GNAT environment, a library has two components:
• Source files.
• Compiled code and Ali files. See Section 2.8 [The Ada Library Information Files],

page 25.

In order to use other packages Chapter 2 [The GNAT Compilation Model], page 17 requires
a certain number of sources to be available to the compiler. The minimal set of sources
required includes the specs of all the packages that make up the visible part of the library as
well as all the sources upon which they depend. The bodies of all visible generic units must
also be provided. Although it is not strictly mandatory, it is recommended that all sources
needed to recompile the library be provided, so that the user can make full use of inter-unit
inlining and source-level debugging. This can also make the situation easier for users that
need to upgrade their compilation toolchain and thus need to recompile the library from
sources.
The compiled code can be provided in different ways. The simplest way is to provide directly
the set of objects produced by the compiler during the compilation of the library. It is also
possible to group the objects into an archive using whatever commands are provided by the
operating system. Finally, it is also possible to create a shared library (see option -shared
in the GCC manual).
There are various possibilities for compiling the units that make up the library: for example
with a Makefile Chapter 19 [Using the GNU make Utility], page 191, or with a conventional
script. For simple libraries, it is also possible to create a dummy main program which
depends upon all the packages that comprise the interface of the library. This dummy main
program can then be given to gnatmake, in order to build all the necessary objects. Here is
an example of such a dummy program and the generic commands used to build an archive
or a shared library.

with My_Lib.Service1;

with My_Lib.Service2;

with My_Lib.Service3;

procedure My_Lib_Dummy is

begin

null;

end;

compiling the library

$ gnatmake -c my_lib_dummy.adb

we don’t need the dummy object itself

$ rm my_lib_dummy.o my_lib_dummy.ali

create an archive with the remaining objects

$ ar rc libmy_lib.a *.o

186 GNAT User’s Guide for Native Platforms / Unix and Windows

some systems may require "ranlib" to be run as well

or create a shared library

$ gcc -shared -o libmy_lib.so *.o

some systems may require the code to have been compiled with -fPIC

remove the object files that are now in the library

$ rm *.o

Make the ALI files read-only so that gnatmake will not try to

regenerate the objects that are in the library

$ chmod -w *.ali

When the objects are grouped in an archive or a shared library, the user needs to specify
the desired library at link time, unless a pragma linker options has been used in one of the
sources:

pragma Linker_Options ("-lmy_lib");

Please note that the library must have a name of the form libxxx.a or libxxx.so in order to
be accessed by the directive -lxxx at link time.

18.2 Installing an Ada Library

In the GNAT model, installing a library consists in copying into a specific location the files
that make up this library. It is possible to install the sources in a different directory from
the other files (ALI, objects, archives) since the source path and the object path can easily
be specified separately.
For general purpose libraries, it is possible for the system administrator to put those li-
braries in the default compiler paths. To achieve this, he must specify their location in the
configuration files ‘ada_source_path’ and ‘ada_object_path’ that must be located in the
GNAT installation tree at the same place as the gcc spec file. The location of the gcc spec
file can be determined as follows:

$ gcc -v

The configuration files mentioned above have simple format: each line in them must contain
one unique directory name. Those names are added to the corresponding path in their order
of appearance in the file. The names can be either absolute or relative, in the latter case,
they are relative to where theses files are located.
‘ada_source_path’ and ‘ada_object_path’ might actually not be present in a GNAT instal-
lation, in which case, GNAT will look for its run-time library in he directories ‘adainclude’
for the sources and ‘adalib’ for the objects and ‘ALI’ files. When the files exist, the compiler
does not look in ‘adainclude’ and ‘adalib’ at all, and thus the ‘ada_source_path’ file must
contain the location for the GNAT run-time sources (which can simply be ‘adainclude’). In
the same way, the ‘ada_object_path’ file must contain the location for the GNAT run-time
objects (which can simply be ‘adalib’).
You can also specify a new default path to the runtime library at compilation time with the
switch ‘--RTS=rts-path’. You can easily choose and change the runtime you want your
program to be compiled with. This switch is recognized by gcc, gnatmake, gnatbind, gnatls,
gnatfind and gnatxref.
It is possible to install a library before or after the standard GNAT library, by reordering
the lines in the configuration files. In general, a library must be installed before the GNAT
library if it redefines any part of it.

Chapter 18: GNAT and Libraries 187

18.3 Using an Ada Library

In order to use a Ada library, you need to make sure that this library is on both your source
and object path Section 3.3 [Search Paths and the Run-Time Library (RTL)], page 69
and Section 4.4 [Search Paths for gnatbind], page 78. For instance, you can use the li-
brary ‘mylib’ installed in ‘/dir/my_lib_src’ and ‘/dir/my_lib_obj’ with the following
commands:

$ gnatmake -aI/dir/my_lib_src -aO/dir/my_lib_obj my_appl \

-largs -lmy_lib

This can be simplified down to the following:
$ gnatmake my_appl

when the following conditions are met:
• ‘/dir/my_lib_src’ has been added by the user to the environment variable ADA_

INCLUDE_PATH, or by the administrator to the file ‘ada_source_path’
• ‘/dir/my_lib_obj’ has been added by the user to the environment variable ADA_

OBJECTS_PATH, or by the administrator to the file ‘ada_object_path’
• a pragma Linker_Options, as mentioned in Section 18.1 [Creating an Ada Library],

page 185, has been added to the sources.

18.4 Creating an Ada Library to be Used in a Non-Ada
Context

The previous sections detailed how to create and install a library that was usable from an
Ada main program. Using this library in a non-Ada context is not possible, because the
elaboration of the library is automatically done as part of the main program elaboration.

GNAT also provides the ability to build libraries that can be used both in an Ada and
non-Ada context. This section describes how to build such a library, and then how to use it
from a C program. The method for interfacing with the library from other languages such
as Fortran for instance remains the same.

18.4.1 Creating the Library
• Identify the units representing the interface of the library.

Here is an example of simple library interface:
package Interface is

procedure Do_Something;

procedure Do_Something_Else;

end Interface;

• Use pragma Export or pragma Convention for the exported entities.
Our package Interface is then updated as follow:

package Interface is

procedure Do_Something;

pragma Export (C, Do_Something, "do_something");

procedure Do_Something_Else;

pragma Export (C, Do_Something_Else, "do_something_else");

188 GNAT User’s Guide for Native Platforms / Unix and Windows

end Interface;

• Compile all the units composing the library.
• Bind the library objects.

This step is performed by invoking gnatbind with the ‘-L<prefix>’ switch. gnatbind
will then generate the library elaboration procedure (named <prefix>init) and the
run-time finalization procedure (named <prefix>final).

generate the binder file in Ada

$ gnatbind -Lmylib interface

generate the binder file in C

$ gnatbind -C -Lmylib interface

• Compile the files generated by the binder
$ gcc -c b~interface.adb

• Create the library;
The procedure is identical to the procedure explained in Section 18.1 [Creating an
Ada Library], page 185, except that ‘b~interface.o’ needs to be added to the list of
objects.

create an archive file

$ ar cr libmylib.a b~interface.o <other object files>

create a shared library

$ gcc -shared -o libmylib.so b~interface.o <other object files>

• Provide a “foreign” view of the library interface;
The example below shows the content of mylib_interface.h (note that there is no
rule for the naming of this file, any name can be used)

/* the library elaboration procedure */

extern void mylibinit (void);

/* the library finalization procedure */

extern void mylibfinal (void);

/* the interface exported by the library */

extern void do_something (void);

extern void do_something_else (void);

18.4.2 Using the Library

Libraries built as explained above can be used from any program, provided that the elabo-
ration procedures (named mylibinit in the previous example) are called before the library
services are used. Any number of libraries can be used simultaneously, as long as the
elaboration procedure of each library is called.

Below is an example of C program that uses our mylib library.
#include "mylib_interface.h"

int

main (void)

{

/* First, elaborate the library before using it */

mylibinit ();

Chapter 18: GNAT and Libraries 189

/* Main program, using the library exported entities */

do_something ();

do_something_else ();

/* Library finalization at the end of the program */

mylibfinal ();

return 0;

}

Note that this same library can be used from an equivalent Ada main program. In addition,
if the libraries are installed as detailed in Section 18.2 [Installing an Ada Library], page 186,
it is not necessary to invoke the library elaboration and finalization routines. The binder
will ensure that this is done as part of the main program elaboration and finalization phases.

18.4.3 The Finalization Phase

Invoking any library finalization procedure generated by gnatbind shuts down the Ada run
time permanently. Consequently, the finalization of all Ada libraries must be performed at
the end of the program. No call to these libraries nor the Ada run time should be made
past the finalization phase.

18.4.4 Restrictions in Libraries

The pragmas listed below should be used with caution inside libraries, as they can create
incompatibilities with other Ada libraries:

• pragma Locking_Policy

• pragma Queuing_Policy

• pragma Task_Dispatching_Policy

• pragma Unreserve_All_Interrupts

When using a library that contains such pragmas, the user must make sure that all
libraries use the same pragmas with the same values. Otherwise, a Program_Error will be
raised during the elaboration of the conflicting libraries. The usage of these pragmas and
its consequences for the user should therefore be well documented.

Similarly, the traceback in exception occurrences mechanism should be enabled or dis-
abled in a consistent manner across all libraries. Otherwise, a Program Error will be raised
during the elaboration of the conflicting libraries.

If the ’Version and ’Body_Version attributes are used inside a library, then it is neces-
sary to perform a gnatbind step that mentions all ‘ALI’ files in all libraries, so that version
identifiers can be properly computed. In practice these attributes are rarely used, so this is
unlikely to be a consideration.

18.5 Rebuilding the GNAT Run-Time Library

It may be useful to recompile the GNAT library in various contexts, the most important
one being the use of partition-wide configuration pragmas such as Normalize Scalar. A
special Makefile called Makefile.adalib is provided to that effect and can be found in
the directory containing the GNAT library. The location of this directory depends on the
way the GNAT environment has been installed and can be determined by means of the
command:

190 GNAT User’s Guide for Native Platforms / Unix and Windows

$ gnatls -v

The last entry in the object search path usually contains the gnat library. This Makefile
contains its own documentation and in particular the set of instructions needed to rebuild
a new library and to use it.

Chapter 19: Using the GNU make Utility 191

19 Using the GNU make Utility

This chapter offers some examples of makefiles that solve specific problems. It does not
explain how to write a makefile (see the GNU make documentation), nor does it try to
replace the gnatmake utility (see Chapter 6 [The GNAT Make Program gnatmake], page 85).

All the examples in this section are specific to the GNU version of make. Although make
is a standard utility, and the basic language is the same, these examples use some advanced
features found only in GNU make.

19.1 Using gnatmake in a Makefile

Complex project organizations can be handled in a very powerful way by using GNU make
combined with gnatmake. For instance, here is a Makefile which allows you to build each
subsystem of a big project into a separate shared library. Such a makefile allows you to
significantly reduce the link time of very big applications while maintaining full coherence
at each step of the build process.

The list of dependencies are handled automatically by gnatmake. The Makefile is simply
used to call gnatmake in each of the appropriate directories.

Note that you should also read the example on how to automatically create the list of
directories (see Section 19.2 [Automatically Creating a List of Directories], page 192) which
might help you in case your project has a lot of subdirectories.

This Makefile is intended to be used with the following directory

configuration:

- The sources are split into a series of csc (computer software components)

Each of these csc is put in its own directory.

Their name are referenced by the directory names.

They will be compiled into shared library (although this would also work

with static libraries

- The main program (and possibly other packages that do not belong to any

csc is put in the top level directory (where the Makefile is).

toplevel dir first csc (sources) lib (will contain the library)

\ second csc (sources) lib (will contain the library)

\ ...

Although this Makefile is build for shared library, it is easy to modify

to build partial link objects instead (modify the lines with -shared and

gnatlink below)

##

With this makefile, you can change any file in the system or add any new

file, and everything will be recompiled correctly (only the relevant shared

objects will be recompiled, and the main program will be re-linked).

The list of computer software component for your project. This might be

generated automatically.

CSC LIST=aa bb cc

Name of the main program (no extension)

MAIN=main

If we need to build objects with -fPIC, uncomment the following line

192 GNAT User’s Guide for Native Platforms / Unix and Windows

#NEED FPIC=-fPIC

The following variable should give the directory containing libgnat.so

You can get this directory through ’gnatls -v’. This is usually the last

directory in the Object Path.

GLIB=...

The directories for the libraries

(This macro expands the list of CSC to the list of shared libraries, you

could simply use the expanded form :

LIB DIR=aa/lib/libaa.so bb/lib/libbb.so cc/lib/libcc.so

LIB DIR=${foreach dir,${CSC LIST},${dir}/lib/lib${dir}.so}

${MAIN}: objects ${LIB DIR}

gnatbind ${MAIN} ${CSC LIST:%=-aO%/lib} -shared

gnatlink ${MAIN} ${CSC LIST:%=-l%}

objects::

recompile the sources

gnatmake -c -i ${MAIN}.adb ${NEED FPIC} ${CSC LIST:%=-I%}

Note: In a future version of GNAT, the following commands will be simplified

by a new tool, gnatmlib

${LIB DIR}:

mkdir -p ${dir $@ }

cd ${dir $@ }; gcc -shared -o ${notdir $@ } ../*.o -L${GLIB} -lgnat

cd ${dir $@ }; cp -f ../*.ali .

The dependencies for the modules

Note that we have to force the expansion of *.o, since in some cases

make won’t be able to do it itself.

aa/lib/libaa.so: ${wildcard aa/*.o}

bb/lib/libbb.so: ${wildcard bb/*.o}

cc/lib/libcc.so: ${wildcard cc/*.o}

Make sure all of the shared libraries are in the path before starting the

program

run::

LD LIBRARY PATH=‘pwd‘/aa/lib:‘pwd‘/bb/lib:‘pwd‘/cc/lib ./${MAIN}

clean::

${RM} -rf ${CSC LIST:%=%/lib}

${RM} ${CSC LIST:%=%/*.ali}

${RM} ${CSC LIST:%=%/*.o}

${RM} *.o *.ali ${MAIN}

19.2 Automatically Creating a List of Directories

In most makefiles, you will have to specify a list of directories, and store it in a variable. For
small projects, it is often easier to specify each of them by hand, since you then have full
control over what is the proper order for these directories, which ones should be included...

However, in larger projects, which might involve hundreds of subdirectories, it might be
more convenient to generate this list automatically.

The example below presents two methods. The first one, although less general, gives you
more control over the list. It involves wildcard characters, that are automatically expanded
by make. Its shortcoming is that you need to explicitly specify some of the organization

Chapter 19: Using the GNU make Utility 193

of your project, such as for instance the directory tree depth, whether some directories are
found in a separate tree,...

The second method is the most general one. It requires an external program, called
find, which is standard on all Unix systems. All the directories found under a given root
directory will be added to the list.

The examples below are based on the following directory hierarchy:

All the directories can contain any number of files

ROOT DIRECTORY -> a -> aa -> aaa

-> ab

-> ac

-> b -> ba -> baa

-> bb

-> bc

This Makefile creates a variable called DIRS, that can be reused any time

you need this list (see the other examples in this section)

The root of your project’s directory hierarchy

ROOT DIRECTORY=.

####

First method: specify explicitly the list of directories

This allows you to specify any subset of all the directories you need.

####

DIRS := a/aa/ a/ab/ b/ba/

####

Second method: use wildcards

Note that the argument(s) to wildcard below should end with a ’/’.

Since wildcards also return file names, we have to filter them out

to avoid duplicate directory names.

We thus use make’s dir and sort functions.

It sets DIRs to the following value (note that the directories aaa and baa

are not given, unless you change the arguments to wildcard).

DIRS= ./a/a/ ./b/ ./a/aa/ ./a/ab/ ./a/ac/ ./b/ba/ ./b/bb/ ./b/bc/

####

DIRS := ${sort ${dir ${wildcard ${ROOT DIRECTORY}/*/

${ROOT DIRECTORY}/*/*/}}}

####

Third method: use an external program

This command is much faster if run on local disks, avoiding NFS slowdowns.

This is the most complete command: it sets DIRs to the following value:

DIRS= ./a ./a/aa ./a/aa/aaa ./a/ab ./a/ac ./b ./b/ba ./b/ba/baa ./b/bb ./b/bc

####

DIRS := ${shell find ${ROOT DIRECTORY} -type d -print}

194 GNAT User’s Guide for Native Platforms / Unix and Windows

19.3 Generating the Command Line Switches

Once you have created the list of directories as explained in the previous section (see Sec-
tion 19.2 [Automatically Creating a List of Directories], page 192), you can easily generate
the command line arguments to pass to gnatmake.

For the sake of completeness, this example assumes that the source path is not the same
as the object path, and that you have two separate lists of directories.

see "Automatically creating a list of directories" to create

these variables

SOURCE_DIRS=

OBJECT_DIRS=

GNATMAKE_SWITCHES := ${patsubst %,-aI%,${SOURCE_DIRS}}

GNATMAKE_SWITCHES += ${patsubst %,-aO%,${OBJECT_DIRS}}

all:

gnatmake ${GNATMAKE_SWITCHES} main_unit

19.4 Overcoming Command Line Length Limits

One problem that might be encountered on big projects is that many operating systems
limit the length of the command line. It is thus hard to give gnatmake the list of source
and object directories.

This example shows how you can set up environment variables, which will make gnatmake
behave exactly as if the directories had been specified on the command line, but have a much
higher length limit (or even none on most systems).

It assumes that you have created a list of directories in your Makefile, using one of the
methods presented in Section 19.2 [Automatically Creating a List of Directories], page 192.
For the sake of completeness, we assume that the object path (where the ALI files are found)
is different from the sources patch.

Note a small trick in the Makefile below: for efficiency reasons, we create two temporary
variables (SOURCE LIST and OBJECT LIST), that are expanded immediately by make.
This way we overcome the standard make behavior which is to expand the variables only
when they are actually used.

On Windows, if you are using the standard Windows command shell, you must replace
colons with semicolons in the assignments to these variables.

In this example, we create both ADA INCLUDE PATH and ADA OBJECT PATH.

This is the same thing as putting the -I arguments on the command line.

(the equivalent of using -aI on the command line would be to define

only ADA INCLUDE PATH, the equivalent of -aO is ADA OBJECT PATH).

You can of course have different values for these variables.

#

Note also that we need to keep the previous values of these variables, since

they might have been set before running ’make’ to specify where the GNAT

library is installed.

see "Automatically creating a list of directories" to create these

Chapter 19: Using the GNU make Utility 195

variables

SOURCE DIRS=

OBJECT DIRS=

empty:=

space:=${empty} ${empty}

SOURCE LIST := ${subst ${space},:,${SOURCE DIRS}}

OBJECT LIST := ${subst ${space},:,${OBJECT DIRS}}

ADA INCLUDE PATH += ${SOURCE LIST}

ADA OBJECT PATH += ${OBJECT LIST}

export ADA INCLUDE PATH

export ADA OBJECT PATH

all:

gnatmake main unit

196 GNAT User’s Guide for Native Platforms / Unix and Windows

Chapter 20: Finding Memory Problems 197

20 Finding Memory Problems

This chapter describes the gnatmem tool, which can be used to track down “memory leaks”,
and the GNAT Debug Pool facility, which can be used to detect incorrect uses of access
values (including “dangling references”).

20.1 The gnatmem Tool

The gnatmem utility monitors dynamic allocation and deallocation activity in a program,
and displays information about incorrect deallocations and possible sources of memory leaks.
It provides three type of information:
• General information concerning memory management, such as the total number of

allocations and deallocations, the amount of allocated memory and the high water
mark, i.e. the largest amount of allocated memory in the course of program execution.

• Backtraces for all incorrect deallocations, that is to say deallocations which do not
correspond to a valid allocation.

• Information on each allocation that is potentially the origin of a memory leak.

20.1.1 Running gnatmem

gnatmem makes use of the output created by the special version of allocation and deallocation
routines that record call information. This allows to obtain accurate dynamic memory
usage history at a minimal cost to the execution speed. Note however, that gnatmem is not
supported on all platforms (currently, it is supported on AIX, HP-UX, GNU/Linux x86,
Solaris (sparc and x86) and Windows NT/2000/XP (x86).
The gnatmem command has the form

$ gnatmem [switches] user_program

The program must have been linked with the instrumented version of the allocation and
deallocation routines. This is done by linking with the ‘libgmem.a’ library. For correct sym-
bolic backtrace information, the user program should be compiled with debugging options
Section 3.2 [Switches for gcc], page 38. For example to build ‘my_program’:

$ gnatmake -g my_program -largs -lgmem

When running ‘my_program’ the file ‘gmem.out’ is produced. This file contains informa-
tion about all allocations and deallocations done by the program. It is produced by the
instrumented allocations and deallocations routines and will be used by gnatmem.
Gnatmem must be supplied with the ‘gmem.out’ file and the executable to examine. If the
location of ‘gmem.out’ file was not explicitly supplied by -i switch, gnatmem will assume
that this file can be found in the current directory. For example, after you have executed
‘my_program’, ‘gmem.out’ can be analyzed by gnatmem using the command:

$ gnatmem my_program

This will produce the output with the following format:
*************** debut cc

$ gnatmem my_program

Global information

Total number of allocations : 45

198 GNAT User’s Guide for Native Platforms / Unix and Windows

Total number of deallocations : 6

Final Water Mark (non freed mem) : 11.29 Kilobytes

High Water Mark : 11.40 Kilobytes

.

.

.

Allocation Root # 2

Number of non freed allocations : 11

Final Water Mark (non freed mem) : 1.16 Kilobytes

High Water Mark : 1.27 Kilobytes

Backtrace :

my_program.adb:23 my_program.alloc

.

.

.

The first block of output gives general information. In this case, the Ada construct “new”
was executed 45 times, and only 6 calls to an Unchecked Deallocation routine occurred.

Subsequent paragraphs display information on all allocation roots. An allocation root is a
specific point in the execution of the program that generates some dynamic allocation, such
as a “new” construct. This root is represented by an execution backtrace (or subprogram call
stack). By default the backtrace depth for allocations roots is 1, so that a root corresponds
exactly to a source location. The backtrace can be made deeper, to make the root more
specific.

20.1.2 Switches for gnatmem

gnatmem recognizes the following switches:

‘-q’ Quiet. Gives the minimum output needed to identify the origin of the memory
leaks. Omits statistical information.

‘N ’ N is an integer literal (usually between 1 and 10) which controls the depth of the
backtraces defining allocation root. The default value for N is 1. The deeper
the backtrace, the more precise the localization of the root. Note that the
total number of roots can depend on this parameter. This parameter must be
specified before the name of the executable to be analyzed, to avoid ambiguity.

‘-b n’ This switch has the same effect as just depth parameter.

‘-i file ’ Do the gnatmem processing starting from ‘file’, rather than ‘gmem.out’ in the
current directory.

‘-m n’ This switch causes gnatmem to mask the allocation roots that have less than n
leaks. The default value is 1. Specifying the value of 0 will allow to examine
even the roots that didn’t result in leaks.

‘-s order’ This switch causes gnatmem to sort the allocation roots according to the spec-
ified order of sort criteria, each identified by a single letter. The currently
supported criteria are n, h, w standing respectively for number of unfreed allo-
cations, high watermark, and final watermark corresponding to a specific root.
The default order is nwh.

Chapter 20: Finding Memory Problems 199

20.1.3 Example of gnatmem Usage

The following example shows the use of gnatmem on a simple memory-leaking program.
Suppose that we have the following Ada program:� �

with Unchecked_Deallocation;

procedure Test_Gm is

type T is array (1..1000) of Integer;

type Ptr is access T;

procedure Free is new Unchecked_Deallocation (T, Ptr);

A : Ptr;

procedure My_Alloc is

begin

A := new T;

end My_Alloc;

procedure My_DeAlloc is

B : Ptr := A;

begin

Free (B);

end My_DeAlloc;

begin

My_Alloc;

for I in 1 .. 5 loop

for J in I .. 5 loop

My_Alloc;

end loop;

My_Dealloc;

end loop;

end;
 	
The program needs to be compiled with debugging option and linked with gmem library:

$ gnatmake -g test_gm -largs -lgmem

Then we execute the program as usual:
$ test_gm

Then gnatmem is invoked simply with
$ gnatmem test_gm

which produces the following output (result may vary on different platforms):
Global information

Total number of allocations : 18

Total number of deallocations : 5

Final Water Mark (non freed mem) : 53.00 Kilobytes

High Water Mark : 56.90 Kilobytes

Allocation Root # 1

Number of non freed allocations : 11

Final Water Mark (non freed mem) : 42.97 Kilobytes

High Water Mark : 46.88 Kilobytes

Backtrace :

test_gm.adb:11 test_gm.my_alloc

200 GNAT User’s Guide for Native Platforms / Unix and Windows

Allocation Root # 2

Number of non freed allocations : 1

Final Water Mark (non freed mem) : 10.02 Kilobytes

High Water Mark : 10.02 Kilobytes

Backtrace :

s-secsta.adb:81 system.secondary_stack.ss_init

Allocation Root # 3

Number of non freed allocations : 1

Final Water Mark (non freed mem) : 12 Bytes

High Water Mark : 12 Bytes

Backtrace :

s-secsta.adb:181 system.secondary_stack.ss_init

Note that the GNAT run time contains itself a certain number of allocations that have no
corresponding deallocation, as shown here for root #2 and root #3. This is a normal be-
havior when the number of non freed allocations is one, it allocates dynamic data structures
that the run time needs for the complete lifetime of the program. Note also that there is
only one allocation root in the user program with a single line back trace: test gm.adb:11
test gm.my alloc, whereas a careful analysis of the program shows that ’My Alloc’ is called
at 2 different points in the source (line 21 and line 24). If those two allocation roots need
to be distinguished, the backtrace depth parameter can be used:

$ gnatmem 3 test_gm

which will give the following output:
Global information

Total number of allocations : 18

Total number of deallocations : 5

Final Water Mark (non freed mem) : 53.00 Kilobytes

High Water Mark : 56.90 Kilobytes

Allocation Root # 1

Number of non freed allocations : 10

Final Water Mark (non freed mem) : 39.06 Kilobytes

High Water Mark : 42.97 Kilobytes

Backtrace :

test_gm.adb:11 test_gm.my_alloc

test_gm.adb:24 test_gm

b_test_gm.c:52 main

Allocation Root # 2

Number of non freed allocations : 1

Final Water Mark (non freed mem) : 10.02 Kilobytes

High Water Mark : 10.02 Kilobytes

Backtrace :

s-secsta.adb:81 system.secondary_stack.ss_init

s-secsta.adb:283 <system__secondary_stack___elabb>

b_test_gm.c:33 adainit

Allocation Root # 3

Chapter 20: Finding Memory Problems 201

Number of non freed allocations : 1

Final Water Mark (non freed mem) : 3.91 Kilobytes

High Water Mark : 3.91 Kilobytes

Backtrace :

test_gm.adb:11 test_gm.my_alloc

test_gm.adb:21 test_gm

b_test_gm.c:52 main

Allocation Root # 4

Number of non freed allocations : 1

Final Water Mark (non freed mem) : 12 Bytes

High Water Mark : 12 Bytes

Backtrace :

s-secsta.adb:181 system.secondary_stack.ss_init

s-secsta.adb:283 <system__secondary_stack___elabb>

b_test_gm.c:33 adainit

The allocation root #1 of the first example has been split in 2 roots #1 and #3 thanks to
the more precise associated backtrace.

20.2 The GNAT Debug Pool Facility

The use of unchecked deallocation and unchecked conversion can easily lead to incorrect
memory references. The problems generated by such references are usually difficult to tackle
because the symptoms can be very remote from the origin of the problem. In such cases, it
is very helpful to detect the problem as early as possible. This is the purpose of the Storage
Pool provided by GNAT.Debug_Pools.

In order to use the GNAT specific debugging pool, the user must associate a debug pool
object with each of the access types that may be related to suspected memory problems.
See Ada Reference Manual 13.11.

type Ptr is access Some_Type;

Pool : GNAT.Debug_Pools.Debug_Pool;

for Ptr’Storage_Pool use Pool;

GNAT.Debug_Pools is derived from a GNAT-specific kind of pool: the Checked_Pool. Such
pools, like standard Ada storage pools, allow the user to redefine allocation and deallocation
strategies. They also provide a checkpoint for each dereference, through the use of the
primitive operation Dereference which is implicitly called at each dereference of an access
value.

Once an access type has been associated with a debug pool, operations on values of the
type may raise four distinct exceptions, which correspond to four potential kinds of memory
corruption:

• GNAT.Debug_Pools.Accessing_Not_Allocated_Storage

• GNAT.Debug_Pools.Accessing_Deallocated_Storage

• GNAT.Debug_Pools.Freeing_Not_Allocated_Storage

• GNAT.Debug_Pools.Freeing_Deallocated_Storage

For types associated with a Debug Pool, dynamic allocation is performed using the standard
GNAT allocation routine. References to all allocated chunks of memory are kept in an
internal dictionary. Several deallocation strategies are provided, whereupon the user can
choose to release the memory to the system, keep it allocated for further invalid access

202 GNAT User’s Guide for Native Platforms / Unix and Windows

checks, or fill it with an easily recognizable pattern for debug sessions. The memory pattern
is the old IBM hexadecimal convention: 16#DEADBEEF#.

See the documentation in the file g-debpoo.ads for more information on the various
strategies.

Upon each dereference, a check is made that the access value denotes a properly allocated
memory location. Here is a complete example of use of Debug_Pools, that includes typical
instances of memory corruption:

with Gnat.Io; use Gnat.Io;

with Unchecked_Deallocation;

with Unchecked_Conversion;

with GNAT.Debug_Pools;

with System.Storage_Elements;

with Ada.Exceptions; use Ada.Exceptions;

procedure Debug_Pool_Test is

type T is access Integer;

type U is access all T;

P : GNAT.Debug_Pools.Debug_Pool;

for T’Storage_Pool use P;

procedure Free is new Unchecked_Deallocation (Integer, T);

function UC is new Unchecked_Conversion (U, T);

A, B : aliased T;

procedure Info is new GNAT.Debug_Pools.Print_Info(Put_Line);

begin

Info (P);

A := new Integer;

B := new Integer;

B := A;

Info (P);

Free (A);

begin

Put_Line (Integer’Image(B.all));

exception

when E : others => Put_Line ("raised: " & Exception_Name (E));

end;

begin

Free (B);

exception

when E : others => Put_Line ("raised: " & Exception_Name (E));

end;

B := UC(A’Access);

begin

Put_Line (Integer’Image(B.all));

exception

when E : others => Put_Line ("raised: " & Exception_Name (E));

end;

begin

Free (B);

exception

when E : others => Put_Line ("raised: " & Exception_Name (E));

end;

Chapter 20: Finding Memory Problems 203

Info (P);

end Debug_Pool_Test;

The debug pool mechanism provides the following precise diagnostics on the execution of
this erroneous program:

Debug Pool info:

Total allocated bytes : 0

Total deallocated bytes : 0

Current Water Mark: 0

High Water Mark: 0

Debug Pool info:

Total allocated bytes : 8

Total deallocated bytes : 0

Current Water Mark: 8

High Water Mark: 8

raised: GNAT.DEBUG_POOLS.ACCESSING_DEALLOCATED_STORAGE

raised: GNAT.DEBUG_POOLS.FREEING_DEALLOCATED_STORAGE

raised: GNAT.DEBUG_POOLS.ACCESSING_NOT_ALLOCATED_STORAGE

raised: GNAT.DEBUG_POOLS.FREEING_NOT_ALLOCATED_STORAGE

Debug Pool info:

Total allocated bytes : 8

Total deallocated bytes : 4

Current Water Mark: 4

High Water Mark: 8

204 GNAT User’s Guide for Native Platforms / Unix and Windows

Chapter 21: Creating Sample Bodies Using gnatstub 205

21 Creating Sample Bodies Using gnatstub

gnatstub creates body stubs, that is, empty but compilable bodies for library unit decla-
rations.

To create a body stub, gnatstub has to compile the library unit declaration. Therefore,
bodies can be created only for legal library units. Moreover, if a library unit depends
semantically upon units located outside the current directory, you have to provide the
source search path when calling gnatstub, see the description of gnatstub switches below.

21.1 Running gnatstub

gnatstub has the command-line interface of the form
$ gnatstub [switches] filename [directory]

where

filename is the name of the source file that contains a library unit declaration for which
a body must be created. The file name may contain the path information. The
file name does not have to follow the GNAT file name conventions. If the name
does not follow GNAT file naming conventions, the name of the body file must
be provided explicitly as the value of the ‘-obody-name ’ option. If the file name
follows the GNAT file naming conventions and the name of the body file is not
provided, gnatstub creates the name of the body file from the argument file
name by replacing the ‘.ads’ suffix with the ‘.adb’ suffix.

directory indicates the directory in which the body stub is to be placed (the default is
the current directory)

switches is an optional sequence of switches as described in the next section

21.2 Switches for gnatstub

‘-f’ If the destination directory already contains a file with the name of the body
file for the argument spec file, replace it with the generated body stub.

‘-hs’ Put the comment header (i.e., all the comments preceding the compilation unit)
from the source of the library unit declaration into the body stub.

‘-hg’ Put a sample comment header into the body stub.

‘-IDIR’
‘-I-’ These switches have the same meaning as in calls to gcc. They define the source

search path in the call to gcc issued by gnatstub to compile an argument source
file.

‘-gnatecPATH ’
This switch has the same meaning as in calls to gcc. It defines the additional
configuration file to be passed to the call to gcc issued by gnatstub to compile
an argument source file.

‘-gnatyMn ’
(n is a non-negative integer). Set the maximum line length in the body stub to
n; the default is 79. The maximum value that can be specified is 32767.

206 GNAT User’s Guide for Native Platforms / Unix and Windows

‘-gnatyn ’ (n is a non-negative integer from 1 to 9). Set the indentation level in the
generated body sample to n. The default indentation is 3.

‘-gnatyo’ Order local bodies alphabetically. (By default local bodies are ordered in the
same way as the corresponding local specs in the argument spec file.)

‘-in ’ Same as ‘-gnatyn ’

‘-k’ Do not remove the tree file (i.e., the snapshot of the compiler internal structures
used by gnatstub) after creating the body stub.

‘-ln ’ Same as ‘-gnatyMn ’

‘-obody-name ’
Body file name. This should be set if the argument file name does not follow
the GNAT file naming conventions. If this switch is omitted the default name
for the body will be obtained from the argument file name according to the
GNAT file naming conventions.

‘-q’ Quiet mode: do not generate a confirmation when a body is successfully created,
and do not generate a message when a body is not required for an argument
unit.

‘-r’ Reuse the tree file (if it exists) instead of creating it. Instead of creating the
tree file for the library unit declaration, gnatstub tries to find it in the current
directory and use it for creating a body. If the tree file is not found, no body is
created. This option also implies ‘-k’, whether or not the latter is set explicitly.

‘-t’ Overwrite the existing tree file. If the current directory already contains the
file which, according to the GNAT file naming rules should be considered as a
tree file for the argument source file, gnatstub will refuse to create the tree file
needed to create a sample body unless this option is set.

‘-v’ Verbose mode: generate version information.

Chapter 22: Other Utility Programs 207

22 Other Utility Programs

This chapter discusses some other utility programs available in the Ada environment.

22.1 Using Other Utility Programs with GNAT

The object files generated by GNAT are in standard system format and in particular the
debugging information uses this format. This means programs generated by GNAT can be
used with existing utilities that depend on these formats.

In general, any utility program that works with C will also often work with Ada programs
generated by GNAT. This includes software utilities such as gprof (a profiling program),
gdb (the FSF debugger), and utilities such as Purify.

22.2 The External Symbol Naming Scheme of GNAT

In order to interpret the output from GNAT, when using tools that are originally intended
for use with other languages, it is useful to understand the conventions used to generate
link names from the Ada entity names.

All link names are in all lowercase letters. With the exception of library procedure names,
the mechanism used is simply to use the full expanded Ada name with dots replaced by
double underscores. For example, suppose we have the following package spec:� �

package QRS is

MN : Integer;

end QRS;
 	
The variable MN has a full expanded Ada name of QRS.MN, so the corresponding link name
is qrs__mn. Of course if a pragma Export is used this may be overridden:� �

package Exports is

Var1 : Integer;

pragma Export (Var1, C, External_Name => "var1_name");

Var2 : Integer;

pragma Export (Var2, C, Link_Name => "var2_link_name");

end Exports;
 	
In this case, the link name for Var1 is whatever link name the C compiler would assign
for the C function var1 name. This typically would be either var1 name or var1 name,
depending on operating system conventions, but other possibilities exist. The link name for
Var2 is var2 link name, and this is not operating system dependent.

One exception occurs for library level procedures. A potential ambiguity arises between
the required name _main for the C main program, and the name we would otherwise assign
to an Ada library level procedure called Main (which might well not be the main program).

To avoid this ambiguity, we attach the prefix _ada_ to such names. So if we have a
library level procedure such as� �

procedure Hello (S : String);
 	
the external name of this procedure will be ada hello.

208 GNAT User’s Guide for Native Platforms / Unix and Windows

22.3 Ada Mode for Glide

The Glide mode for programming in Ada (both Ada83 and Ada95) helps the user to under-
stand and navigate existing code, and facilitates writing new code. It furthermore provides
some utility functions for easier integration of standard Emacs features when programming
in Ada.

Its general features include:

• An Integrated Development Environment with functionality such as the following

• “Project files” for configuration-specific aspects (e.g. directories and compilation
options)

• Compiling and stepping through error messages.

• Running and debugging an applications within Glide.

• Pull-down menus

• User configurability

Some of the specific Ada mode features are:

• Functions for easy and quick stepping through Ada code

• Getting cross reference information for identifiers (e.g., finding a defining occurrence)

• Displaying an index menu of types and subprograms, allowing direct selection for brows-
ing

• Automatic color highlighting of the various Ada entities

Glide directly supports writing Ada code, via several facilities:

• Switching between spec and body files with possible autogeneration of body files

• Automatic formating of subprogram parameter lists

• Automatic indentation according to Ada syntax

• Automatic completion of identifiers

• Automatic (and configurable) casing of identifiers, keywords, and attributes

• Insertion of syntactic templates

• Block commenting / uncommenting

For more information, please refer to the online documentation available in the Glide ⇒
Help menu.

22.4 Converting Ada Files to HTML with gnathtml

This Perl script allows Ada source files to be browsed using standard Web browsers. For
installation procedure, see the section See Section 22.5 [Installing gnathtml], page 210.

Ada reserved keywords are highlighted in a bold font and Ada comments in a blue font.
Unless your program was compiled with the gcc ‘-gnatx’ switch to suppress the generation
of cross-referencing information, user defined variables and types will appear in a different
color; you will be able to click on any identifier and go to its declaration.

The command line is as follow:

Chapter 22: Other Utility Programs 209

$ perl gnathtml.pl [switches] ada-files

You can pass it as many Ada files as you want. gnathtml will generate an html file for
every ada file, and a global file called ‘index.htm’. This file is an index of every identifier
defined in the files.

The available switches are the following ones :

‘-83’ Only the subset on the Ada 83 keywords will be highlighted, not the full Ada
95 keywords set.

‘-cc color ’
This option allows you to change the color used for comments. The default
value is green. The color argument can be any name accepted by html.

‘-d’ If the ada files depend on some other files (using for instance the with command,
the latter will also be converted to html. Only the files in the user project will
be converted to html, not the files in the run-time library itself.

‘-D’ This command is the same as ‘-d’ above, but gnathtml will also look for files
in the run-time library, and generate html files for them.

‘-ext extension ’
This option allows you to change the extension of the generated HTML files. If
you do not specify an extension, it will default to ‘htm’.

‘-f’ By default, gnathtml will generate html links only for global entities (’with’ed
units, global variables and types,...). If you specify the ‘-f’ on the command
line, then links will be generated for local entities too.

‘-l number ’
If this switch is provided and number is not 0, then gnathtml will number the
html files every number line.

‘-I dir ’ Specify a directory to search for library files (‘.ALI’ files) and source files. You
can provide several -I switches on the command line, and the directories will be
parsed in the order of the command line.

‘-o dir ’ Specify the output directory for html files. By default, gnathtml will saved the
generated html files in a subdirectory named ‘html/’.

‘-p file ’ If you are using Emacs and the most recent Emacs Ada mode, which provides a
full Integrated Development Environment for compiling, checking, running and
debugging applications, you may use ‘.gpr’ files to give the directories where
Emacs can find sources and object files.
Using this switch, you can tell gnathtml to use these files. This allows you
to get an html version of your application, even if it is spread over multiple
directories.

‘-sc color ’
This option allows you to change the color used for symbol definitions. The
default value is red. The color argument can be any name accepted by html.

‘-t file ’ This switch provides the name of a file. This file contains a list of file names to
be converted, and the effect is exactly as though they had appeared explicitly on

210 GNAT User’s Guide for Native Platforms / Unix and Windows

the command line. This is the recommended way to work around the command
line length limit on some systems.

22.5 Installing gnathtml

Perl needs to be installed on your machine to run this script. Perl is freely available for
almost every architecture and Operating System via the Internet.

On Unix systems, you may want to modify the first line of the script gnathtml, to
explicitly tell the Operating system where Perl is. The syntax of this line is :

#!full_path_name_to_perl

Alternatively, you may run the script using the following command line:
$ perl gnathtml.pl [switches] files

Chapter 23: Running and Debugging Ada Programs 211

23 Running and Debugging Ada Programs

This chapter discusses how to debug Ada programs. An incorrect Ada program may be
handled in three ways by the GNAT compiler:

1. The illegality may be a violation of the static semantics of Ada. In that case GNAT
diagnoses the constructs in the program that are illegal. It is then a straightforward
matter for the user to modify those parts of the program.

2. The illegality may be a violation of the dynamic semantics of Ada. In that case the
program compiles and executes, but may generate incorrect results, or may terminate
abnormally with some exception.

3. When presented with a program that contains convoluted errors, GNAT itself may
terminate abnormally without providing full diagnostics on the incorrect user program.

23.1 The GNAT Debugger GDB

GDB is a general purpose, platform-independent debugger that can be used to debug mixed-
language programs compiled with GCC, and in particular is capable of debugging Ada pro-
grams compiled with GNAT. The latest versions of GDB are Ada-aware and can handle
complex Ada data structures.

The manual Debugging with GDB contains full details on the usage of GDB, including
a section on its usage on programs. This manual should be consulted for full details. The
section that follows is a brief introduction to the philosophy and use of GDB.

When GNAT programs are compiled, the compiler optionally writes debugging informa-
tion into the generated object file, including information on line numbers, and on declared
types and variables. This information is separate from the generated code. It makes the
object files considerably larger, but it does not add to the size of the actual executable that
will be loaded into memory, and has no impact on run-time performance. The generation of
debug information is triggered by the use of the -g switch in the gcc or gnatmake command
used to carry out the compilations. It is important to emphasize that the use of these
options does not change the generated code.

The debugging information is written in standard system formats that are used by many
tools, including debuggers and profilers. The format of the information is typically designed
to describe C types and semantics, but GNAT implements a translation scheme which allows
full details about Ada types and variables to be encoded into these standard C formats.
Details of this encoding scheme may be found in the file exp dbug.ads in the GNAT source
distribution. However, the details of this encoding are, in general, of no interest to a user,
since GDB automatically performs the necessary decoding.

When a program is bound and linked, the debugging information is collected from the
object files, and stored in the executable image of the program. Again, this process sig-
nificantly increases the size of the generated executable file, but it does not increase the
size of the executable program itself. Furthermore, if this program is run in the normal
manner, it runs exactly as if the debug information were not present, and takes no more
actual memory.

However, if the program is run under control of GDB, the debugger is activated. The
image of the program is loaded, at which point it is ready to run. If a run command is

212 GNAT User’s Guide for Native Platforms / Unix and Windows

given, then the program will run exactly as it would have if GDB were not present. This is
a crucial part of the GDB design philosophy. GDB is entirely non-intrusive until a breakpoint
is encountered. If no breakpoint is ever hit, the program will run exactly as it would if no
debugger were present. When a breakpoint is hit, GDB accesses the debugging information
and can respond to user commands to inspect variables, and more generally to report on
the state of execution.

23.2 Running GDB

The debugger can be launched directly and simply from glide or through its graphical
interface: gvd. It can also be used directly in text mode. Here is described the basic use
of GDB in text mode. All the commands described below can be used in the gvd console
window even though there is usually other more graphical ways to achieve the same goals.
The command to run the graphical interface of the debugger is

$ gvd program

The command to run GDB in text mode is
$ gdb program

where program is the name of the executable file. This activates the debugger and results in
a prompt for debugger commands. The simplest command is simply run, which causes the
program to run exactly as if the debugger were not present. The following section describes
some of the additional commands that can be given to GDB.

23.3 Introduction to GDB Commands

GDB contains a large repertoire of commands. The manual Debugging with GDB includes
extensive documentation on the use of these commands, together with examples of their use.
Furthermore, the command help invoked from within GDB activates a simple help facility
which summarizes the available commands and their options. In this section we summarize
a few of the most commonly used commands to give an idea of what GDB is about. You
should create a simple program with debugging information and experiment with the use
of these GDB commands on the program as you read through the following section.

set args arguments

The arguments list above is a list of arguments to be passed to the program on
a subsequent run command, just as though the arguments had been entered on
a normal invocation of the program. The set args command is not needed if
the program does not require arguments.

run The run command causes execution of the program to start from the beginning.
If the program is already running, that is to say if you are currently positioned
at a breakpoint, then a prompt will ask for confirmation that you want to
abandon the current execution and restart.

breakpoint location

The breakpoint command sets a breakpoint, that is to say a point at which
execution will halt and GDB will await further commands. location is either a
line number within a file, given in the format file:linenumber, or it is the
name of a subprogram. If you request that a breakpoint be set on a subprogram

Chapter 23: Running and Debugging Ada Programs 213

that is overloaded, a prompt will ask you to specify on which of those subpro-
grams you want to breakpoint. You can also specify that all of them should be
breakpointed. If the program is run and execution encounters the breakpoint,
then the program stops and GDB signals that the breakpoint was encountered
by printing the line of code before which the program is halted.

breakpoint exception name

A special form of the breakpoint command which breakpoints whenever excep-
tion name is raised. If name is omitted, then a breakpoint will occur when any
exception is raised.

print expression

This will print the value of the given expression. Most simple Ada expression
formats are properly handled by GDB, so the expression can contain function
calls, variables, operators, and attribute references.

continue Continues execution following a breakpoint, until the next breakpoint or the
termination of the program.

step Executes a single line after a breakpoint. If the next statement is a subprogram
call, execution continues into (the first statement of) the called subprogram.

next Executes a single line. If this line is a subprogram call, executes and returns
from the call.

list Lists a few lines around the current source location. In practice, it is usually
more convenient to have a separate edit window open with the relevant source
file displayed. Successive applications of this command print subsequent lines.
The command can be given an argument which is a line number, in which case
it displays a few lines around the specified one.

backtrace
Displays a backtrace of the call chain. This command is typically used after
a breakpoint has occurred, to examine the sequence of calls that leads to the
current breakpoint. The display includes one line for each activation record
(frame) corresponding to an active subprogram.

up At a breakpoint, GDB can display the values of variables local to the current
frame. The command up can be used to examine the contents of other active
frames, by moving the focus up the stack, that is to say from callee to caller,
one frame at a time.

down Moves the focus of GDB down from the frame currently being examined to the
frame of its callee (the reverse of the previous command),

frame n Inspect the frame with the given number. The value 0 denotes the frame of the
current breakpoint, that is to say the top of the call stack.

The above list is a very short introduction to the commands that GDB provides. Important
additional capabilities, including conditional breakpoints, the ability to execute command
sequences on a breakpoint, the ability to debug at the machine instruction level and many
other features are described in detail in Debugging with GDB. Note that most commands
can be abbreviated (for example, c for continue, bt for backtrace).

214 GNAT User’s Guide for Native Platforms / Unix and Windows

23.4 Using Ada Expressions

GDB supports a fairly large subset of Ada expression syntax, with some extensions. The
philosophy behind the design of this subset is

• That GDB should provide basic literals and access to operations for arithmetic, deref-
erencing, field selection, indexing, and subprogram calls, leaving more sophisticated
computations to subprograms written into the program (which therefore may be called
from GDB).

• That type safety and strict adherence to Ada language restrictions are not particularly
important to the GDB user.

• That brevity is important to the GDB user.

Thus, for brevity, the debugger acts as if there were implicit with and use clauses in
effect for all user-written packages, thus making it unnecessary to fully qualify most names
with their packages, regardless of context. Where this causes ambiguity, GDB asks the user’s
intent.

For details on the supported Ada syntax, see Debugging with GDB.

23.5 Calling User-Defined Subprograms

An important capability of GDB is the ability to call user-defined subprograms while debug-
ging. This is achieved simply by entering a subprogram call statement in the form:

call subprogram-name (parameters)

The keyword call can be omitted in the normal case where the subprogram-name does not
coincide with any of the predefined GDB commands.

The effect is to invoke the given subprogram, passing it the list of parameters that is
supplied. The parameters can be expressions and can include variables from the program
being debugged. The subprogram must be defined at the library level within your program,
and GDB will call the subprogram within the environment of your program execution (which
means that the subprogram is free to access or even modify variables within your program).

The most important use of this facility is in allowing the inclusion of debugging routines
that are tailored to particular data structures in your program. Such debugging routines
can be written to provide a suitably high-level description of an abstract type, rather than
a low-level dump of its physical layout. After all, the standard GDB print command only
knows the physical layout of your types, not their abstract meaning. Debugging routines
can provide information at the desired semantic level and are thus enormously useful.

For example, when debugging GNAT itself, it is crucial to have access to the contents
of the tree nodes used to represent the program internally. But tree nodes are represented
simply by an integer value (which in turn is an index into a table of nodes). Using the print
command on a tree node would simply print this integer value, which is not very useful. But
the PN routine (defined in file treepr.adb in the GNAT sources) takes a tree node as input,
and displays a useful high level representation of the tree node, which includes the syntactic
category of the node, its position in the source, the integers that denote descendant nodes
and parent node, as well as varied semantic information. To study this example in more
detail, you might want to look at the body of the PN procedure in the stated file.

Chapter 23: Running and Debugging Ada Programs 215

23.6 Using the Next Command in a Function

When you use the next command in a function, the current source location will advance to
the next statement as usual. A special case arises in the case of a return statement.

Part of the code for a return statement is the “epilog” of the function. This is the code
that returns to the caller. There is only one copy of this epilog code, and it is typically
associated with the last return statement in the function if there is more than one return.
In some implementations, this epilog is associated with the first statement of the function.

The result is that if you use the next command from a return statement that is not
the last return statement of the function you may see a strange apparent jump to the last
return statement or to the start of the function. You should simply ignore this odd jump.
The value returned is always that from the first return statement that was stepped through.

23.7 Breaking on Ada Exceptions

You can set breakpoints that trip when your program raises selected exceptions.

break exception
Set a breakpoint that trips whenever (any task in the) program raises any
exception.

break exception name

Set a breakpoint that trips whenever (any task in the) program raises the
exception name.

break exception unhandled
Set a breakpoint that trips whenever (any task in the) program raises an ex-
ception for which there is no handler.

info exceptions
info exceptions regexp

The info exceptions command permits the user to examine all defined excep-
tions within Ada programs. With a regular expression, regexp, as argument,
prints out only those exceptions whose name matches regexp.

23.8 Ada Tasks

GDB allows the following task-related commands:

info tasks
This command shows a list of current Ada tasks, as in the following example:

(gdb) info tasks

ID TID P-ID Thread Pri State Name

1 8088000 0 807e000 15 Child Activation Wait main_task

2 80a4000 1 80ae000 15 Accept/Select Wait b

3 809a800 1 80a4800 15 Child Activation Wait a

* 4 80ae800 3 80b8000 15 Running c

In this listing, the asterisk before the first task indicates it to be the currently
running task. The first column lists the task ID that is used to refer to tasks
in the following commands.

216 GNAT User’s Guide for Native Platforms / Unix and Windows

break linespec task taskid

break linespec task taskid if ...
These commands are like the break ... thread linespec specifies source
lines.
Use the qualifier ‘task taskid ’ with a breakpoint command to specify that
you only want GDB to stop the program when a particular Ada task reaches this
breakpoint. taskid is one of the numeric task identifiers assigned by GDB, shown
in the first column of the ‘info tasks’ display.
If you do not specify ‘task taskid ’ when you set a breakpoint, the breakpoint
applies to all tasks of your program.
You can use the task qualifier on conditional breakpoints as well; in this case,
place ‘task taskid ’ before the breakpoint condition (before the if).

task taskno

This command allows to switch to the task referred by taskno. In particular,
This allows to browse the backtrace of the specified task. It is advised to switch
back to the original task before continuing execution otherwise the scheduling
of the program may be perturbated.

For more detailed information on the tasking support, see Debugging with GDB.

23.9 Debugging Generic Units

GNAT always uses code expansion for generic instantiation. This means that each time
an instantiation occurs, a complete copy of the original code is made, with appropriate
substitutions of formals by actuals.

It is not possible to refer to the original generic entities in GDB, but it is always possible
to debug a particular instance of a generic, by using the appropriate expanded names. For
example, if we have

Chapter 23: Running and Debugging Ada Programs 217� �
procedure g is

generic package k is

procedure kp (v1 : in out integer);

end k;

package body k is

procedure kp (v1 : in out integer) is

begin

v1 := v1 + 1;

end kp;

end k;

package k1 is new k;

package k2 is new k;

var : integer := 1;

begin

k1.kp (var);

k2.kp (var);

k1.kp (var);

k2.kp (var);

end;
 	
Then to break on a call to procedure kp in the k2 instance, simply use the command:

(gdb) break g.k2.kp

When the breakpoint occurs, you can step through the code of the instance in the normal
manner and examine the values of local variables, as for other units.

23.10 GNAT Abnormal Termination or Failure to Terminate

When presented with programs that contain serious errors in syntax or semantics, GNAT
may on rare occasions experience problems in operation, such as aborting with a segmenta-
tion fault or illegal memory access, raising an internal exception, terminating abnormally,
or failing to terminate at all. In such cases, you can activate various features of GNAT
that can help you pinpoint the construct in your program that is the likely source of the
problem.

The following strategies are presented in increasing order of difficulty, corresponding to
your experience in using GNAT and your familiarity with compiler internals.
1. Run gcc with the ‘-gnatf’. This first switch causes all errors on a given line to be

reported. In its absence, only the first error on a line is displayed.
The ‘-gnatdO’ switch causes errors to be displayed as soon as they are encountered,
rather than after compilation is terminated. If GNAT terminates prematurely or goes
into an infinite loop, the last error message displayed may help to pinpoint the culprit.

2. Run gcc with the ‘-v (verbose)’ switch. In this mode, gcc produces ongoing infor-
mation about the progress of the compilation and provides the name of each procedure
as code is generated. This switch allows you to find which Ada procedure was being
compiled when it encountered a code generation problem.

3. Run gcc with the ‘-gnatdc’ switch. This is a GNAT specific switch that does for the
front-end what ‘-v’ does for the back end. The system prints the name of each unit,
either a compilation unit or nested unit, as it is being analyzed.

218 GNAT User’s Guide for Native Platforms / Unix and Windows

4. Finally, you can start gdb directly on the gnat1 executable. gnat1 is the front-end
of GNAT, and can be run independently (normally it is just called from gcc). You
can use gdb on gnat1 as you would on a C program (but see Section 23.1 [The GNAT
Debugger GDB], page 211 for caveats). The where command is the first line of attack;
the variable lineno (seen by print lineno), used by the second phase of gnat1 and
by the gcc backend, indicates the source line at which the execution stopped, and
input_file name indicates the name of the source file.

23.11 Naming Conventions for GNAT Source Files

In order to examine the workings of the GNAT system, the following brief description of
its organization may be helpful:
• Files with prefix ‘sc’ contain the lexical scanner.
• All files prefixed with ‘par’ are components of the parser. The numbers correspond to

chapters of the Ada 95 Reference Manual. For example, parsing of select statements
can be found in ‘par-ch9.adb’.

• All files prefixed with ‘sem’ perform semantic analysis. The numbers correspond to
chapters of the Ada standard. For example, all issues involving context clauses can be
found in ‘sem_ch10.adb’. In addition, some features of the language require sufficient
special processing to justify their own semantic files: sem aggr for aggregates, sem disp
for dynamic dispatching, etc.

• All files prefixed with ‘exp’ perform normalization and expansion of the intermedi-
ate representation (abstract syntax tree, or AST). these files use the same numbering
scheme as the parser and semantics files. For example, the construction of record
initialization procedures is done in ‘exp_ch3.adb’.

• The files prefixed with ‘bind’ implement the binder, which verifies the consistency of
the compilation, determines an order of elaboration, and generates the bind file.

• The files ‘atree.ads’ and ‘atree.adb’ detail the low-level data structures used by the
front-end.

• The files ‘sinfo.ads’ and ‘sinfo.adb’ detail the structure of the abstract syntax tree
as produced by the parser.

• The files ‘einfo.ads’ and ‘einfo.adb’ detail the attributes of all entities, computed
during semantic analysis.

• Library management issues are dealt with in files with prefix ‘lib’.
• Ada files with the prefix ‘a-’ are children of Ada, as defined in Annex A.
• Files with prefix ‘i-’ are children of Interfaces, as defined in Annex B.
• Files with prefix ‘s-’ are children of System. This includes both language-defined

children and GNAT run-time routines.
• Files with prefix ‘g-’ are children of GNAT. These are useful general-purpose packages,

fully documented in their specifications. All the other ‘.c’ files are modifications of
common gcc files.

23.12 Getting Internal Debugging Information

Most compilers have internal debugging switches and modes. GNAT does also, except
GNAT internal debugging switches and modes are not secret. A summary and full descrip-

Chapter 23: Running and Debugging Ada Programs 219

tion of all the compiler and binder debug flags are in the file ‘debug.adb’. You must obtain
the sources of the compiler to see the full detailed effects of these flags.

The switches that print the source of the program (reconstructed from the internal tree)
are of general interest for user programs, as are the options to print the full internal tree,
and the entity table (the symbol table information). The reconstructed source provides a
readable version of the program after the front-end has completed analysis and expansion,
and is useful when studying the performance of specific constructs. For example, constraint
checks are indicated, complex aggregates are replaced with loops and assignments, and
tasking primitives are replaced with run-time calls.

23.13 Stack Traceback

Traceback is a mechanism to display the sequence of subprogram calls that leads to a
specified execution point in a program. Often (but not always) the execution point is
an instruction at which an exception has been raised. This mechanism is also known as
stack unwinding because it obtains its information by scanning the run-time stack and
recovering the activation records of all active subprograms. Stack unwinding is one of the
most important tools for program debugging.

The first entry stored in traceback corresponds to the deepest calling level, that is to say the
subprogram currently executing the instruction from which we want to obtain the traceback.

Note that there is no runtime performance penalty when stack traceback is enabled and no
exception are raised during program execution.

23.13.1 Non-Symbolic Traceback

Note: this feature is not supported on all platforms. See ‘GNAT.Traceback spec in
g-traceb.ads’ for a complete list of supported platforms.

23.13.1.1 Tracebacks From an Unhandled Exception

A runtime non-symbolic traceback is a list of addresses of call instructions. To enable this
feature you must use the ‘-E’ gnatbind’s option. With this option a stack traceback is
stored as part of exception information. It is possible to retrieve this information using the
standard Ada.Exception.Exception_Information routine.

Let’s have a look at a simple example:

220 GNAT User’s Guide for Native Platforms / Unix and Windows� �
procedure STB is

procedure P1 is

begin

raise Constraint_Error;

end P1;

procedure P2 is

begin

P1;

end P2;

begin

P2;

end STB;
 	
$ gnatmake stb -bargs -E

$ stb

Execution terminated by unhandled exception

Exception name: CONSTRAINT_ERROR

Message: stb.adb:5

Call stack traceback locations:

0x401373 0x40138b 0x40139c 0x401335 0x4011c4 0x4011f1 0x77e892a4

As we see the traceback lists a sequence of addresses for the unhandled exception
CONSTRAINT_ERROR raised in procedure P1. It is easy to guess that this exception come
from procedure P1. To translate these addresses into the source lines where the calls
appear, the addr2line tool, described below, is invaluable. The use of this tool requires
the program to be compiled with debug information.

$ gnatmake -g stb -bargs -E

$ stb

Execution terminated by unhandled exception

Exception name: CONSTRAINT_ERROR

Message: stb.adb:5

Call stack traceback locations:

0x401373 0x40138b 0x40139c 0x401335 0x4011c4 0x4011f1 0x77e892a4

$ addr2line --exe=stb 0x401373 0x40138b 0x40139c 0x401335 0x4011c4

0x4011f1 0x77e892a4

00401373 at d:/stb/stb.adb:5

0040138B at d:/stb/stb.adb:10

0040139C at d:/stb/stb.adb:14

00401335 at d:/stb/b~stb.adb:104

004011C4 at /build/.../crt1.c:200

004011F1 at /build/.../crt1.c:222

77E892A4 in ?? at ??:0

addr2line has a number of other useful options:

--functions
to get the function name corresponding to any location

--demangle=gnat
to use the gnat decoding mode for the function names. Note that for binutils
version 2.9.x the option is simply ‘--demangle’.

Chapter 23: Running and Debugging Ada Programs 221

$ addr2line --exe=stb --functions --demangle=gnat 0x401373 0x40138b

0x40139c 0x401335 0x4011c4 0x4011f1

00401373 in stb.p1 at d:/stb/stb.adb:5

0040138B in stb.p2 at d:/stb/stb.adb:10

0040139C in stb at d:/stb/stb.adb:14

00401335 in main at d:/stb/b~stb.adb:104

004011C4 in <__mingw_CRTStartup> at /build/.../crt1.c:200

004011F1 in <mainCRTStartup> at /build/.../crt1.c:222

From this traceback we can see that the exception was raised in ‘stb.adb’ at line 5, which
was reached from a procedure call in ‘stb.adb’ at line 10, and so on. The ‘b~std.adb’
is the binder file, which contains the call to the main program. see Section 4.1 [Running
gnatbind], page 71. The remaining entries are assorted runtime routines, and the output
will vary from platform to platform.

It is also possible to use GDB with these traceback addresses to debug the program. For
example, we can break at a given code location, as reported in the stack traceback:

$ gdb -nw stb

Furthermore, this feature is not implemented inside Windows DLL. Only

the non-symbolic traceback is reported in this case.

(gdb) break *0x401373

Breakpoint 1 at 0x401373: file stb.adb, line 5.

It is important to note that the stack traceback addresses do not change when debug
information is included. This is particularly useful because it makes it possible to release
software without debug information (to minimize object size), get a field report that includes
a stack traceback whenever an internal bug occurs, and then be able to retrieve the sequence
of calls with the same program compiled with debug information.

23.13.1.2 Tracebacks From Exception Occurrences

Non-symbolic tracebacks are obtained by using the ‘-E’ binder argument. The stack
traceback is attached to the exception information string, and can be retrieved in an
exception handler within the Ada program, by means of the Ada95 facilities defined in
Ada.Exceptions. Here is a simple example:

with Ada.Text_IO;

with Ada.Exceptions;

procedure STB is

use Ada;

use Ada.Exceptions;

procedure P1 is

K : Positive := 1;

begin

K := K - 1;

exception

when E : others =>

Text_IO.Put_Line (Exception_Information (E));

end P1;

procedure P2 is

222 GNAT User’s Guide for Native Platforms / Unix and Windows

begin

P1;

end P2;

begin

P2;

end STB;

This program will output:
$ stb

Exception name: CONSTRAINT_ERROR

Message: stb.adb:12

Call stack traceback locations:

0x4015e4 0x401633 0x401644 0x401461 0x4011c4 0x4011f1 0x77e892a4

23.13.1.3 Tracebacks From Anywhere in a Program

It is also possible to retrieve a stack traceback from anywhere in a program. For this you
need to use the GNAT.Traceback API. This package includes a procedure called Call_Chain
that computes a complete stack traceback, as well as useful display procedures described
below. It is not necessary to use the ‘-E gnatbind’ option in this case, because the stack
traceback mechanism is invoked explicitly.
In the following example we compute a traceback at a specific location in the program, and
we display it using GNAT.Debug_Utilities.Image to convert addresses to strings:

with Ada.Text_IO;

with GNAT.Traceback;

with GNAT.Debug_Utilities;

procedure STB is

use Ada;

use GNAT;

use GNAT.Traceback;

procedure P1 is

TB : Tracebacks_Array (1 .. 10);

-- We are asking for a maximum of 10 stack frames.

Len : Natural;

-- Len will receive the actual number of stack frames returned.

begin

Call_Chain (TB, Len);

Text_IO.Put ("In STB.P1 : ");

for K in 1 .. Len loop

Text_IO.Put (Debug_Utilities.Image (TB (K)));

Text_IO.Put (’ ’);

end loop;

Text_IO.New_Line;

end P1;

procedure P2 is

begin

P1;

end P2;

Chapter 23: Running and Debugging Ada Programs 223

begin

P2;

end STB;

$ gnatmake stb

$ stb

In STB.P1 : 16#0040_F1E4# 16#0040_14F2# 16#0040_170B# 16#0040_171C#

16#0040_1461# 16#0040_11C4# 16#0040_11F1# 16#77E8_92A4#

23.13.2 Symbolic Traceback

A symbolic traceback is a stack traceback in which procedure names are associated with
each code location.
Note that this feature is not supported on all platforms. See ‘GNAT.Traceback.Symbolic
spec in g-trasym.ads’ for a complete list of currently supported platforms.
Note that the symbolic traceback requires that the program be compiled with debug infor-
mation. If it is not compiled with debug information only the non-symbolic information
will be valid.

23.13.2.1 Tracebacks From Exception Occurrences
with Ada.Text_IO;

with GNAT.Traceback.Symbolic;

procedure STB is

procedure P1 is

begin

raise Constraint_Error;

end P1;

procedure P2 is

begin

P1;

end P2;

procedure P3 is

begin

P2;

end P3;

begin

P3;

exception

when E : others =>

Ada.Text_IO.Put_Line (GNAT.Traceback.Symbolic.Symbolic_Traceback (E));

end STB;

$ gnatmake -g stb -bargs -E -largs -lgnat -laddr2line -lintl

$ stb

0040149F in stb.p1 at stb.adb:8

004014B7 in stb.p2 at stb.adb:13

004014CF in stb.p3 at stb.adb:18

004015DD in ada.stb at stb.adb:22

00401461 in main at b~stb.adb:168

004011C4 in __mingw_CRTStartup at crt1.c:200

224 GNAT User’s Guide for Native Platforms / Unix and Windows

004011F1 in mainCRTStartup at crt1.c:222

77E892A4 in ?? at ??:0

The exact sequence of linker options may vary from platform to platform. The above
‘-largs’ section is for Windows platforms. By contrast, under Unix there is no need for the
‘-largs’ section. Differences across platforms are due to details of linker implementation.

23.13.2.2 Tracebacks From Anywhere in a Program

It is possible to get a symbolic stack traceback from anywhere in a program, just as for
non-symbolic tracebacks. The first step is to obtain a non-symbolic traceback, and then
call Symbolic_Traceback to compute the symbolic information. Here is an example:

with Ada.Text_IO;

with GNAT.Traceback;

with GNAT.Traceback.Symbolic;

procedure STB is

use Ada;

use GNAT.Traceback;

use GNAT.Traceback.Symbolic;

procedure P1 is

TB : Tracebacks_Array (1 .. 10);

-- We are asking for a maximum of 10 stack frames.

Len : Natural;

-- Len will receive the actual number of stack frames returned.

begin

Call_Chain (TB, Len);

Text_IO.Put_Line (Symbolic_Traceback (TB (1 .. Len)));

end P1;

procedure P2 is

begin

P1;

end P2;

begin

P2;

end STB;

Appendix A: Platform-Specific Information for the Run-Time Libraries 225

Appendix A Platform-Specific Information for the
Run-Time Libraries

The GNAT run-time implementation may vary with respect to both the underlying threads
library and the exception handling scheme. For threads support, one or more of the following
are supplied:
• native threads library, a binding to the thread package from the underlying operating

system
• FSU threads library, a binding to the Florida State University threads implementation,

which complies fully with the requirements of Annex D
• pthreads library (Sparc Solaris only), a binding to the Solaris POSIX thread package

For exception handling, either or both of two models are supplied:
• Zero-Cost Exceptions (“ZCX”),1 which uses binder-generated tables that are interro-

gated at run time to locate a handler
• setjmp / longjmp (“SJLJ”), which uses dynamically-set data to establish the set of

handlers

This appendix summarizes which combinations of threads and exception support are sup-
plied on various GNAT platforms. It then shows how to select a particular library either
permanently or temporarily, explains the properties of (and tradeoffs among) the various
threads libraries, and provides some additional information about several specific platforms.

A.1 Summary of Run-Time Configurations

alpha-openvms
rts-native (default)

Tasking native VMS threads
Exceptions ZCX

pa-hpux
rts-native (default)

Tasking native HP threads library
Exceptions ZCX

rts-sjlj
Tasking native HP threads library
Exceptions SJLJ

sparc-solaris
rts-native (default)

Tasking native Solaris threads library
Exceptions ZCX

rts-fsu
Tasking FSU threads library
Exceptions SJLJ

1 Most programs should experience a substantial speed improvement by being compiled with a ZCX
run-time. This is especially true for tasking applications or applications with many exception handlers.

226 GNAT User’s Guide for Native Platforms / Unix and Windows

rts-m64
Tasking native Solaris threads library
Exceptions ZCX
Constraints Use only when compiling in 64-bit mode;

Use only on Solaris 8 or later.
See Section A.5.2 [Building and Debugging 64-bit Applica-
tions], page 229, for details.

rts-pthread
Tasking pthreads library
Exceptions ZCX

rts-sjlj
Tasking native Solaris threads library
Exceptions SJLJ

x86-linux
rts-native (default)

Tasking LinuxThread library
Exceptions ZCX

rts-fsu
Tasking FSU threads library
Exceptions SJLJ

rts-sjlj
Tasking LinuxThread library
Exceptions SJLJ

x86-windows
rts-native (default)

Tasking native Win32 threads
Exceptions SJLJ

A.2 Specifying a Run-Time Library

The ‘adainclude’ subdirectory containing the sources of the GNAT run-time library, and
the ‘adalib’ subdirectory containing the ‘ALI’ files and the static and/or shared GNAT
library, are located in the gcc target-dependent area:

target=$prefix/lib/gcc-lib/gcc-dumpmachine/gcc-dumpversion/

As indicated above, on some platforms several run-time libraries are supplied. These li-
braries are installed in the target dependent area and contain a complete source and binary
subdirectory. The detailed description below explains the differences between the different
libraries in terms of their thread support.

The default run-time library (when GNAT is installed) is rts-native. This default run
time is selected by the means of soft links. For example on x86-linux:

Appendix A: Platform-Specific Information for the Run-Time Libraries 227

$(target-dir)

|

+--- adainclude----------+

| |

+--- adalib-----------+ |

| | |

+--- rts-native | |

| | | |

| +--- adainclude <---+

| | |

| +--- adalib <----+

|

+--- rts-fsu

| |

| +--- adainclude

| |

| +--- adalib

|

+--- rts-sjlj

|

+--- adainclude

|

+--- adalib

If the rts-fsu library is to be selected on a permanent basis, these soft links can be modified
with the following commands:

$ cd $target

$ rm -f adainclude adalib

$ ln -s rts-fsu/adainclude adainclude

$ ln -s rts-fsu/adalib adalib

Alternatively, you can specify ‘rts-fsu/adainclude’ in the file ‘$target/ada_source_path’
and ‘rts-fsu/adalib’ in ‘$target/ada_object_path’.

Selecting another run-time library temporarily can be achieved by the regular mechanism
for GNAT object or source path selection:
• Set the environment variables:

$ ADA_INCLUDE_PATH=$target/rts-fsu/adainclude:$ADA_INCLUDE_PATH

$ ADA_OBJECTS_PATH=$target/rts-fsu/adalib:$ADA_OBJECTS_PATH

$ export ADA_INCLUDE_PATH ADA_OBJECTS_PATH

• Use ‘-aI$target/rts-fsu/adainclude’ and ‘-aO$target/rts-fsu/adalib’ on the
gnatmake command line

• Use the switch ‘--RTS’; e.g., ‘--RTS=fsu’

You can similarly switch to rts-sjlj.

A.3 Choosing between Native and FSU Threads Libraries

Some GNAT implementations offer a choice between native threads and FSU threads.
• The native threads library correspond to the standard system threads implementation

(e.g. LinuxThreads on GNU/Linux, POSIX threads on AIX, or Solaris threads on
Solaris). When this option is chosen, GNAT provides a full and accurate implementa-
tion of the core language tasking model as described in Chapter 9 of the Ada Reference
Manual, but might not (and probably does not) implement the exact semantics as spec-
ified in Annex D (the Real-Time Systems Annex). Indeed, the reason that a choice of

228 GNAT User’s Guide for Native Platforms / Unix and Windows

libraries is offered on a given target is because some of the ACATS tests for Annex D
fail using the native threads library. As far as possible, this library is implemented
in accordance with Ada semantics (e.g., modifying priorities as required to simulate
ceiling locking), but there are often slight inaccuracies, most often in the area of abso-
lutely respecting the priority rules on a single processor. Moreover, it is not possible in
general to define the exact behavior, because the native threads implementations are
not well enough documented.

On systems where the SCHED_FIFO POSIX scheduling policy is supported, native
threads will provide a behavior very close to the Annex D requirements (i.e., a run-till-
blocked scheduler with fixed priorities), but on some systems (in particular GNU/Linux
and Solaris), you need to have root privileges to use the SCHED_FIFO policy.

• The FSU threads library provides a completely accurate implementation of Annex D.
Thus, operating with this library, GNAT is 100% compliant with both the core and all
Annex D requirements. The formal validations for implementations offering a choice
of threads packages are always carried out using the FSU threads option.

From these considerations, it might seem that FSU threads are the better choice, but that
is by no means always the case. The FSU threads package operates with all Ada tasks
appearing to the system to be a single thread. This is often considerably more efficient
than operating with separate threads, since for example, switching between tasks can be
accomplished without the (in some cases considerable) overhead of a context switch between
two system threads. However, it means that you may well lose concurrency at the system
level. Notably, some system operations (such as I/O) may block all tasks in a program and
not just the calling task. More significantly, the FSU threads approach likely means you
cannot take advantage of multiple processors, since for this you need separate threads (or
even separate processes) to operate on different processors.

For most programs, the native threads library is usually the better choice. Use the FSU
threads if absolute conformance to Annex D is important for your application, or if you find
that the improved efficiency of FSU threads is significant to you.

Note also that to take full advantage of Florist and Glade, it is highly recommended
that you use native threads.

A.4 Choosing the Scheduling Policy

When using a POSIX threads implementation, you have a choice of several scheduling
policies: SCHED_FIFO, SCHED_RR and SCHED_OTHER. Typically, the default is SCHED_OTHER,
while using SCHED_FIFO or SCHED_RR requires special (e.g., root) privileges.

By default, GNAT uses the SCHED_OTHER policy. To specify SCHED_FIFO, you can use
one of the following:

• pragma Time_Slice (0.0)

• the corresponding binder option ‘-T0’

• pragma Task_Dispatching_Policy (FIFO_Within_Priorities)

To specify SCHED_RR, you should use pragma Time_Slice with a value greater than 0.0, or
else use the corresponding ‘-T’ binder option.

Appendix A: Platform-Specific Information for the Run-Time Libraries 229

A.5 Solaris-Specific Considerations

This section addresses some topics related to the various threads libraries on Sparc Solaris
and then provides some information on building and debugging 64-bit applications.

A.5.1 Solaris Threads Issues

Starting with version 3.14, GNAT under Solaris comes with a new tasking run-time library
based on POSIX threads — rts-pthread. This run-time library has the advantage of being
mostly shared across all POSIX-compliant thread implementations, and it also provides
under Solaris 8 the PTHREAD_PRIO_INHERIT and PTHREAD_PRIO_PROTECT semantics that can
be selected using the predefined pragma Locking_Policy with respectively Inheritance_
Locking and Ceiling_Locking as the policy.

As explained above, the native run-time library is based on the Solaris thread library
(libthread) and is the default library. The FSU run-time library is based on the FSU
threads.

Starting with Solaris 2.5.1, when the Solaris threads library is used (this is the default),
programs compiled with GNAT can automatically take advantage of and can thus execute
on multiple processors. The user can alternatively specify a processor on which the program
should run to emulate a single-processor system. The multiprocessor / uniprocessor choice
is made by setting the environment variable GNAT_PROCESSOR to one of the following:

-2 Use the default configuration (run the program on all available processors) -
this is the same as having GNAT_PROCESSOR unset

-1 Let the run-time implementation choose one processor and run the program on
that processor

0 .. Last_Proc
Run the program on the specified processor. Last_Proc is equal to _SC_
NPROCESSORS_CONF - 1 (where _SC_NPROCESSORS_CONF is a system variable).

A.5.2 Building and Debugging 64-bit Applications

In a 64-bit application, all the sources involved must be compiled with the ‘-m64’ command-
line option, and a specific GNAT library (compiled with this option) is required. The easiest
way to build a 64bit application is to add ‘-m64 --RTS=m64’ to the gnatmake flags.

To debug these applications, dwarf-2 debug information is required, so you have to add
‘-gdwarf-2’ to your gnatmake arguments. In addition, a special version of gdb, called
gdb64, needs to be used.

To summarize, building and debugging a “Hello World” program in 64-bit mode amounts
to:

$ gnatmake -m64 -gdwarf-2 --RTS=m64 hello.adb

$ gdb64 hello

A.6 IRIX-Specific Considerations

On SGI IRIX, the thread library depends on which compiler is used. The o32 ABI compiler
comes with a run-time library based on the user-level athread library. Thus kernel-level
capabilities such as nonblocking system calls or time slicing can only be achieved reliably by

230 GNAT User’s Guide for Native Platforms / Unix and Windows

specifying different sprocs via the pragma Task_Info and the System.Task_Info package.
See the GNAT Reference Manual for further information.

The n32 ABI compiler comes with a run-time library based on the kernel POSIX threads
and thus does not have the limitations mentioned above.

A.7 Linux-Specific Considerations

The default thread library under GNU/Linux has the following disadvantages compared to
other native thread libraries:
• The size of the task’s stack is limited to 2 megabytes.
• The signal model is not POSIX compliant, which means that to send a signal to the

process, you need to send the signal to all threads, e.g. by using killpg().

Appendix B: Example of Binder Output File 231

Appendix B Example of Binder Output File

This Appendix displays the source code for gnatbind’s output file generated for a simple
“Hello World” program. Comments have been added for clarification purposes.

-- The package is called Ada_Main unless this name is actually used

-- as a unit name in the partition, in which case some other unique

-- name is used.

with System;

package ada_main is

Elab_Final_Code : Integer;

pragma Import (C, Elab_Final_Code, "__gnat_inside_elab_final_code");

-- The main program saves the parameters (argument count,

-- argument values, environment pointer) in global variables

-- for later access by other units including

-- Ada.Command_Line.

gnat_argc : Integer;

gnat_argv : System.Address;

gnat_envp : System.Address;

-- The actual variables are stored in a library routine. This

-- is useful for some shared library situations, where there

-- are problems if variables are not in the library.

pragma Import (C, gnat_argc);

pragma Import (C, gnat_argv);

pragma Import (C, gnat_envp);

-- The exit status is similarly an external location

gnat_exit_status : Integer;

pragma Import (C, gnat_exit_status);

GNAT_Version : constant String :=

"GNAT Version: 3.15w (20010315)";

pragma Export (C, GNAT_Version, "__gnat_version");

-- This is the generated adafinal routine that performs

-- finalization at the end of execution. In the case where

-- Ada is the main program, this main program makes a call

-- to adafinal at program termination.

procedure adafinal;

pragma Export (C, adafinal, "adafinal");

-- This is the generated adainit routine that performs

-- initialization at the start of execution. In the case

-- where Ada is the main program, this main program makes

-- a call to adainit at program startup.

procedure adainit;

pragma Export (C, adainit, "adainit");

232 GNAT User’s Guide for Native Platforms / Unix and Windows

-- This routine is called at the start of execution. It is

-- a dummy routine that is used by the debugger to breakpoint

-- at the start of execution.

procedure Break_Start;

pragma Import (C, Break_Start, "__gnat_break_start");

-- This is the actual generated main program (it would be

-- suppressed if the no main program switch were used). As

-- required by standard system conventions, this program has

-- the external name main.

function main

(argc : Integer;

argv : System.Address;

envp : System.Address)

return Integer;

pragma Export (C, main, "main");

-- The following set of constants give the version

-- identification values for every unit in the bound

-- partition. This identification is computed from all

-- dependent semantic units, and corresponds to the

-- string that would be returned by use of the

-- Body_Version or Version attributes.

type Version_32 is mod 2 ** 32;

u00001 : constant Version_32 := 16#7880BEB3#;

u00002 : constant Version_32 := 16#0D24CBD0#;

u00003 : constant Version_32 := 16#3283DBEB#;

u00004 : constant Version_32 := 16#2359F9ED#;

u00005 : constant Version_32 := 16#664FB847#;

u00006 : constant Version_32 := 16#68E803DF#;

u00007 : constant Version_32 := 16#5572E604#;

u00008 : constant Version_32 := 16#46B173D8#;

u00009 : constant Version_32 := 16#156A40CF#;

u00010 : constant Version_32 := 16#033DABE0#;

u00011 : constant Version_32 := 16#6AB38FEA#;

u00012 : constant Version_32 := 16#22B6217D#;

u00013 : constant Version_32 := 16#68A22947#;

u00014 : constant Version_32 := 16#18CC4A56#;

u00015 : constant Version_32 := 16#08258E1B#;

u00016 : constant Version_32 := 16#367D5222#;

u00017 : constant Version_32 := 16#20C9ECA4#;

u00018 : constant Version_32 := 16#50D32CB6#;

u00019 : constant Version_32 := 16#39A8BB77#;

u00020 : constant Version_32 := 16#5CF8FA2B#;

u00021 : constant Version_32 := 16#2F1EB794#;

u00022 : constant Version_32 := 16#31AB6444#;

u00023 : constant Version_32 := 16#1574B6E9#;

u00024 : constant Version_32 := 16#5109C189#;

u00025 : constant Version_32 := 16#56D770CD#;

u00026 : constant Version_32 := 16#02F9DE3D#;

u00027 : constant Version_32 := 16#08AB6B2C#;

u00028 : constant Version_32 := 16#3FA37670#;

u00029 : constant Version_32 := 16#476457A0#;

u00030 : constant Version_32 := 16#731E1B6E#;

u00031 : constant Version_32 := 16#23C2E789#;

Appendix B: Example of Binder Output File 233

u00032 : constant Version_32 := 16#0F1BD6A1#;

u00033 : constant Version_32 := 16#7C25DE96#;

u00034 : constant Version_32 := 16#39ADFFA2#;

u00035 : constant Version_32 := 16#571DE3E7#;

u00036 : constant Version_32 := 16#5EB646AB#;

u00037 : constant Version_32 := 16#4249379B#;

u00038 : constant Version_32 := 16#0357E00A#;

u00039 : constant Version_32 := 16#3784FB72#;

u00040 : constant Version_32 := 16#2E723019#;

u00041 : constant Version_32 := 16#623358EA#;

u00042 : constant Version_32 := 16#107F9465#;

u00043 : constant Version_32 := 16#6843F68A#;

u00044 : constant Version_32 := 16#63305874#;

u00045 : constant Version_32 := 16#31E56CE1#;

u00046 : constant Version_32 := 16#02917970#;

u00047 : constant Version_32 := 16#6CCBA70E#;

u00048 : constant Version_32 := 16#41CD4204#;

u00049 : constant Version_32 := 16#572E3F58#;

u00050 : constant Version_32 := 16#20729FF5#;

u00051 : constant Version_32 := 16#1D4F93E8#;

u00052 : constant Version_32 := 16#30B2EC3D#;

u00053 : constant Version_32 := 16#34054F96#;

u00054 : constant Version_32 := 16#5A199860#;

u00055 : constant Version_32 := 16#0E7F912B#;

u00056 : constant Version_32 := 16#5760634A#;

u00057 : constant Version_32 := 16#5D851835#;

-- The following Export pragmas export the version numbers

-- with symbolic names ending in B (for body) or S

-- (for spec) so that they can be located in a link. The

-- information provided here is sufficient to track down

-- the exact versions of units used in a given build.

pragma Export (C, u00001, "helloB");

pragma Export (C, u00002, "system__standard_libraryB");

pragma Export (C, u00003, "system__standard_libraryS");

pragma Export (C, u00004, "adaS");

pragma Export (C, u00005, "ada__text_ioB");

pragma Export (C, u00006, "ada__text_ioS");

pragma Export (C, u00007, "ada__exceptionsB");

pragma Export (C, u00008, "ada__exceptionsS");

pragma Export (C, u00009, "gnatS");

pragma Export (C, u00010, "gnat__heap_sort_aB");

pragma Export (C, u00011, "gnat__heap_sort_aS");

pragma Export (C, u00012, "systemS");

pragma Export (C, u00013, "system__exception_tableB");

pragma Export (C, u00014, "system__exception_tableS");

pragma Export (C, u00015, "gnat__htableB");

pragma Export (C, u00016, "gnat__htableS");

pragma Export (C, u00017, "system__exceptionsS");

pragma Export (C, u00018, "system__machine_state_operationsB");

pragma Export (C, u00019, "system__machine_state_operationsS");

pragma Export (C, u00020, "system__machine_codeS");

pragma Export (C, u00021, "system__storage_elementsB");

pragma Export (C, u00022, "system__storage_elementsS");

pragma Export (C, u00023, "system__secondary_stackB");

pragma Export (C, u00024, "system__secondary_stackS");

pragma Export (C, u00025, "system__parametersB");

234 GNAT User’s Guide for Native Platforms / Unix and Windows

pragma Export (C, u00026, "system__parametersS");

pragma Export (C, u00027, "system__soft_linksB");

pragma Export (C, u00028, "system__soft_linksS");

pragma Export (C, u00029, "system__stack_checkingB");

pragma Export (C, u00030, "system__stack_checkingS");

pragma Export (C, u00031, "system__tracebackB");

pragma Export (C, u00032, "system__tracebackS");

pragma Export (C, u00033, "ada__streamsS");

pragma Export (C, u00034, "ada__tagsB");

pragma Export (C, u00035, "ada__tagsS");

pragma Export (C, u00036, "system__string_opsB");

pragma Export (C, u00037, "system__string_opsS");

pragma Export (C, u00038, "interfacesS");

pragma Export (C, u00039, "interfaces__c_streamsB");

pragma Export (C, u00040, "interfaces__c_streamsS");

pragma Export (C, u00041, "system__file_ioB");

pragma Export (C, u00042, "system__file_ioS");

pragma Export (C, u00043, "ada__finalizationB");

pragma Export (C, u00044, "ada__finalizationS");

pragma Export (C, u00045, "system__finalization_rootB");

pragma Export (C, u00046, "system__finalization_rootS");

pragma Export (C, u00047, "system__finalization_implementationB");

pragma Export (C, u00048, "system__finalization_implementationS");

pragma Export (C, u00049, "system__string_ops_concat_3B");

pragma Export (C, u00050, "system__string_ops_concat_3S");

pragma Export (C, u00051, "system__stream_attributesB");

pragma Export (C, u00052, "system__stream_attributesS");

pragma Export (C, u00053, "ada__io_exceptionsS");

pragma Export (C, u00054, "system__unsigned_typesS");

pragma Export (C, u00055, "system__file_control_blockS");

pragma Export (C, u00056, "ada__finalization__list_controllerB");

pragma Export (C, u00057, "ada__finalization__list_controllerS");

-- BEGIN ELABORATION ORDER

-- ada (spec)

-- gnat (spec)

-- gnat.heap_sort_a (spec)

-- gnat.heap_sort_a (body)

-- gnat.htable (spec)

-- gnat.htable (body)

-- interfaces (spec)

-- system (spec)

-- system.machine_code (spec)

-- system.parameters (spec)

-- system.parameters (body)

-- interfaces.c_streams (spec)

-- interfaces.c_streams (body)

-- system.standard_library (spec)

-- ada.exceptions (spec)

-- system.exception_table (spec)

-- system.exception_table (body)

-- ada.io_exceptions (spec)

-- system.exceptions (spec)

-- system.storage_elements (spec)

-- system.storage_elements (body)

-- system.machine_state_operations (spec)

-- system.machine_state_operations (body)

-- system.secondary_stack (spec)

Appendix B: Example of Binder Output File 235

-- system.stack_checking (spec)

-- system.soft_links (spec)

-- system.soft_links (body)

-- system.stack_checking (body)

-- system.secondary_stack (body)

-- system.standard_library (body)

-- system.string_ops (spec)

-- system.string_ops (body)

-- ada.tags (spec)

-- ada.tags (body)

-- ada.streams (spec)

-- system.finalization_root (spec)

-- system.finalization_root (body)

-- system.string_ops_concat_3 (spec)

-- system.string_ops_concat_3 (body)

-- system.traceback (spec)

-- system.traceback (body)

-- ada.exceptions (body)

-- system.unsigned_types (spec)

-- system.stream_attributes (spec)

-- system.stream_attributes (body)

-- system.finalization_implementation (spec)

-- system.finalization_implementation (body)

-- ada.finalization (spec)

-- ada.finalization (body)

-- ada.finalization.list_controller (spec)

-- ada.finalization.list_controller (body)

-- system.file_control_block (spec)

-- system.file_io (spec)

-- system.file_io (body)

-- ada.text_io (spec)

-- ada.text_io (body)

-- hello (body)

-- END ELABORATION ORDER

end ada_main;

-- The following source file name pragmas allow the generated file

-- names to be unique for different main programs. They are needed

-- since the package name will always be Ada_Main.

pragma Source_File_Name (ada_main, Spec_File_Name => "b~hello.ads");

pragma Source_File_Name (ada_main, Body_File_Name => "b~hello.adb");

-- Generated package body for Ada_Main starts here

package body ada_main is

-- The actual finalization is performed by calling the

-- library routine in System.Standard_Library.Adafinal

procedure Do_Finalize;

pragma Import (C, Do_Finalize, "system__standard_library__adafinal");

-- adainit --

236 GNAT User’s Guide for Native Platforms / Unix and Windows

procedure adainit is

-- These booleans are set to True once the associated unit has

-- been elaborated. It is also used to avoid elaborating the

-- same unit twice.

E040 : Boolean;

pragma Import (Ada, E040, "interfaces__c_streams_E");

E008 : Boolean;

pragma Import (Ada, E008, "ada__exceptions_E");

E014 : Boolean;

pragma Import (Ada, E014, "system__exception_table_E");

E053 : Boolean;

pragma Import (Ada, E053, "ada__io_exceptions_E");

E017 : Boolean;

pragma Import (Ada, E017, "system__exceptions_E");

E024 : Boolean;

pragma Import (Ada, E024, "system__secondary_stack_E");

E030 : Boolean;

pragma Import (Ada, E030, "system__stack_checking_E");

E028 : Boolean;

pragma Import (Ada, E028, "system__soft_links_E");

E035 : Boolean;

pragma Import (Ada, E035, "ada__tags_E");

E033 : Boolean;

pragma Import (Ada, E033, "ada__streams_E");

E046 : Boolean;

pragma Import (Ada, E046, "system__finalization_root_E");

E048 : Boolean;

pragma Import (Ada, E048, "system__finalization_implementation_E");

E044 : Boolean;

pragma Import (Ada, E044, "ada__finalization_E");

E057 : Boolean;

pragma Import (Ada, E057, "ada__finalization__list_controller_E");

E055 : Boolean;

pragma Import (Ada, E055, "system__file_control_block_E");

E042 : Boolean;

pragma Import (Ada, E042, "system__file_io_E");

E006 : Boolean;

pragma Import (Ada, E006, "ada__text_io_E");

-- Set_Globals is a library routine that stores away the

Appendix B: Example of Binder Output File 237

-- value of the indicated set of global values in global

-- variables within the library.

procedure Set_Globals

(Main_Priority : Integer;

Time_Slice_Value : Integer;

WC_Encoding : Character;

Locking_Policy : Character;

Queuing_Policy : Character;

Task_Dispatching_Policy : Character;

Adafinal : System.Address;

Unreserve_All_Interrupts : Integer;

Exception_Tracebacks : Integer);

pragma Import (C, Set_Globals, "__gnat_set_globals");

-- SDP_Table_Build is a library routine used to build the

-- exception tables. See unit Ada.Exceptions in files

-- a-except.ads/adb for full details of how zero cost

-- exception handling works. This procedure, the call to

-- it, and the two following tables are all omitted if the

-- build is in longjmp/setjump exception mode.

procedure SDP_Table_Build

(SDP_Addresses : System.Address;

SDP_Count : Natural;

Elab_Addresses : System.Address;

Elab_Addr_Count : Natural);

pragma Import (C, SDP_Table_Build, "__gnat_SDP_Table_Build");

-- Table of Unit_Exception_Table addresses. Used for zero

-- cost exception handling to build the top level table.

ST : aliased constant array (1 .. 23) of System.Address := (

Hello’UET_Address,

Ada.Text_Io’UET_Address,

Ada.Exceptions’UET_Address,

Gnat.Heap_Sort_A’UET_Address,

System.Exception_Table’UET_Address,

System.Machine_State_Operations’UET_Address,

System.Secondary_Stack’UET_Address,

System.Parameters’UET_Address,

System.Soft_Links’UET_Address,

System.Stack_Checking’UET_Address,

System.Traceback’UET_Address,

Ada.Streams’UET_Address,

Ada.Tags’UET_Address,

System.String_Ops’UET_Address,

Interfaces.C_Streams’UET_Address,

System.File_Io’UET_Address,

Ada.Finalization’UET_Address,

System.Finalization_Root’UET_Address,

System.Finalization_Implementation’UET_Address,

System.String_Ops_Concat_3’UET_Address,

System.Stream_Attributes’UET_Address,

System.File_Control_Block’UET_Address,

Ada.Finalization.List_Controller’UET_Address);

-- Table of addresses of elaboration routines. Used for

238 GNAT User’s Guide for Native Platforms / Unix and Windows

-- zero cost exception handling to make sure these

-- addresses are included in the top level procedure

-- address table.

EA : aliased constant array (1 .. 23) of System.Address := (

adainit’Code_Address,

Do_Finalize’Code_Address,

Ada.Exceptions’Elab_Spec’Address,

System.Exceptions’Elab_Spec’Address,

Interfaces.C_Streams’Elab_Spec’Address,

System.Exception_Table’Elab_Body’Address,

Ada.Io_Exceptions’Elab_Spec’Address,

System.Stack_Checking’Elab_Spec’Address,

System.Soft_Links’Elab_Body’Address,

System.Secondary_Stack’Elab_Body’Address,

Ada.Tags’Elab_Spec’Address,

Ada.Tags’Elab_Body’Address,

Ada.Streams’Elab_Spec’Address,

System.Finalization_Root’Elab_Spec’Address,

Ada.Exceptions’Elab_Body’Address,

System.Finalization_Implementation’Elab_Spec’Address,

System.Finalization_Implementation’Elab_Body’Address,

Ada.Finalization’Elab_Spec’Address,

Ada.Finalization.List_Controller’Elab_Spec’Address,

System.File_Control_Block’Elab_Spec’Address,

System.File_Io’Elab_Body’Address,

Ada.Text_Io’Elab_Spec’Address,

Ada.Text_Io’Elab_Body’Address);

-- Start of processing for adainit

begin

-- Call SDP_Table_Build to build the top level procedure

-- table for zero cost exception handling (omitted in

-- longjmp/setjump mode).

SDP_Table_Build (ST’Address, 23, EA’Address, 23);

-- Call Set_Globals to record various information for

-- this partition. The values are derived by the binder

-- from information stored in the ali files by the compiler.

Set_Globals

(Main_Priority => -1,

-- Priority of main program, -1 if no pragma Priority used

Time_Slice_Value => -1,

-- Time slice from Time_Slice pragma, -1 if none used

WC_Encoding => ’b’,

-- Wide_Character encoding used, default is brackets

Locking_Policy => ’ ’,

-- Locking_Policy used, default of space means not

-- specified, otherwise it is the first character of

-- the policy name.

Appendix B: Example of Binder Output File 239

Queuing_Policy => ’ ’,

-- Queuing_Policy used, default of space means not

-- specified, otherwise it is the first character of

-- the policy name.

Task_Dispatching_Policy => ’ ’,

-- Task_Dispatching_Policy used, default of space means

-- not specified, otherwise first character of the

-- policy name.

Adafinal => System.Null_Address,

-- Address of Adafinal routine, not used anymore

Unreserve_All_Interrupts => 0,

-- Set true if pragma Unreserve_All_Interrupts was used

Exception_Tracebacks => 0);

-- Indicates if exception tracebacks are enabled

Elab_Final_Code := 1;

-- Now we have the elaboration calls for all units in the partition.

-- The Elab_Spec and Elab_Body attributes generate references to the

-- implicit elaboration procedures generated by the compiler for

-- each unit that requires elaboration.

if not E040 then

Interfaces.C_Streams’Elab_Spec;

end if;

E040 := True;

if not E008 then

Ada.Exceptions’Elab_Spec;

end if;

if not E014 then

System.Exception_Table’Elab_Body;

E014 := True;

end if;

if not E053 then

Ada.Io_Exceptions’Elab_Spec;

E053 := True;

end if;

if not E017 then

System.Exceptions’Elab_Spec;

E017 := True;

end if;

if not E030 then

System.Stack_Checking’Elab_Spec;

end if;

if not E028 then

System.Soft_Links’Elab_Body;

E028 := True;

end if;

E030 := True;

if not E024 then

System.Secondary_Stack’Elab_Body;

E024 := True;

end if;

if not E035 then

240 GNAT User’s Guide for Native Platforms / Unix and Windows

Ada.Tags’Elab_Spec;

end if;

if not E035 then

Ada.Tags’Elab_Body;

E035 := True;

end if;

if not E033 then

Ada.Streams’Elab_Spec;

E033 := True;

end if;

if not E046 then

System.Finalization_Root’Elab_Spec;

end if;

E046 := True;

if not E008 then

Ada.Exceptions’Elab_Body;

E008 := True;

end if;

if not E048 then

System.Finalization_Implementation’Elab_Spec;

end if;

if not E048 then

System.Finalization_Implementation’Elab_Body;

E048 := True;

end if;

if not E044 then

Ada.Finalization’Elab_Spec;

end if;

E044 := True;

if not E057 then

Ada.Finalization.List_Controller’Elab_Spec;

end if;

E057 := True;

if not E055 then

System.File_Control_Block’Elab_Spec;

E055 := True;

end if;

if not E042 then

System.File_Io’Elab_Body;

E042 := True;

end if;

if not E006 then

Ada.Text_Io’Elab_Spec;

end if;

if not E006 then

Ada.Text_Io’Elab_Body;

E006 := True;

end if;

Elab_Final_Code := 0;

end adainit;

-- adafinal --

procedure adafinal is

begin

Appendix B: Example of Binder Output File 241

Do_Finalize;

end adafinal;

-- main --

-- main is actually a function, as in the ANSI C standard,

-- defined to return the exit status. The three parameters

-- are the argument count, argument values and environment

-- pointer.

function main

(argc : Integer;

argv : System.Address;

envp : System.Address)

return Integer

is

-- The initialize routine performs low level system

-- initialization using a standard library routine which

-- sets up signal handling and performs any other

-- required setup. The routine can be found in file

-- a-init.c.

procedure initialize;

pragma Import (C, initialize, "__gnat_initialize");

-- The finalize routine performs low level system

-- finalization using a standard library routine. The

-- routine is found in file a-final.c and in the standard

-- distribution is a dummy routine that does nothing, so

-- really this is a hook for special user finalization.

procedure finalize;

pragma Import (C, finalize, "__gnat_finalize");

-- We get to the main program of the partition by using

-- pragma Import because if we try to with the unit and

-- call it Ada style, then not only do we waste time

-- recompiling it, but also, we don’t really know the right

-- switches (e.g. identifier character set) to be used

-- to compile it.

procedure Ada_Main_Program;

pragma Import (Ada, Ada_Main_Program, "_ada_hello");

-- Start of processing for main

begin

-- Save global variables

gnat_argc := argc;

gnat_argv := argv;

gnat_envp := envp;

-- Call low level system initialization

Initialize;

242 GNAT User’s Guide for Native Platforms / Unix and Windows

-- Call our generated Ada initialization routine

adainit;

-- This is the point at which we want the debugger to get

-- control

Break_Start;

-- Now we call the main program of the partition

Ada_Main_Program;

-- Perform Ada finalization

adafinal;

-- Perform low level system finalization

Finalize;

-- Return the proper exit status

return (gnat_exit_status);

end;

-- This section is entirely comments, so it has no effect on the

-- compilation of the Ada_Main package. It provides the list of

-- object files and linker options, as well as some standard

-- libraries needed for the link. The gnatlink utility parses

-- this b~hello.adb file to read these comment lines to generate

-- the appropriate command line arguments for the call to the

-- system linker. The BEGIN/END lines are used for sentinels for

-- this parsing operation.

-- The exact file names will of course depend on the environment,

-- host/target and location of files on the host system.

-- BEGIN Object file/option list

-- ./hello.o

-- -L./

-- -L/usr/local/gnat/lib/gcc-lib/i686-pc-linux-gnu/2.8.1/adalib/

-- /usr/local/gnat/lib/gcc-lib/i686-pc-linux-gnu/2.8.1/adalib/libgnat.a

-- END Object file/option list

end ada_main;

The Ada code in the above example is exactly what is generated by the binder. We have
added comments to more clearly indicate the function of each part of the generated Ada_
Main package.

The code is standard Ada in all respects, and can be processed by any tools that handle
Ada. In particular, it is possible to use the debugger in Ada mode to debug the generated
Ada_Main package. For example, suppose that for reasons that you do not understand, your
program is crashing during elaboration of the body of Ada.Text_IO. To locate this bug,
you can place a breakpoint on the call:

Ada.Text_Io’Elab_Body;

Appendix B: Example of Binder Output File 243

and trace the elaboration routine for this package to find out where the problem might be
(more usually of course you would be debugging elaboration code in your own application).

244 GNAT User’s Guide for Native Platforms / Unix and Windows

Appendix C: Elaboration Order Handling in GNAT 245

Appendix C Elaboration Order Handling in
GNAT

This chapter describes the handling of elaboration code in Ada 95 and in GNAT, and
discusses how the order of elaboration of program units can be controlled in GNAT, either
automatically or with explicit programming features.

C.1 Elaboration Code in Ada 95

Ada 95 provides rather general mechanisms for executing code at elaboration time, that is
to say before the main program starts executing. Such code arises in three contexts:

Initializers for variables.
Variables declared at the library level, in package specs or bodies, can require
initialization that is performed at elaboration time, as in:� �

Sqrt_Half : Float := Sqrt (0.5);
 	
Package initialization code

Code in a BEGIN-END section at the outer level of a package body is executed
as part of the package body elaboration code.

Library level task allocators
Tasks that are declared using task allocators at the library level start executing
immediately and hence can execute at elaboration time.

Subprogram calls are possible in any of these contexts, which means that any arbitrary part
of the program may be executed as part of the elaboration code. It is even possible to write
a program which does all its work at elaboration time, with a null main program, although
stylistically this would usually be considered an inappropriate way to structure a program.

An important concern arises in the context of elaboration code: we have to be sure that
it is executed in an appropriate order. What we have is a series of elaboration code sections,
potentially one section for each unit in the program. It is important that these execute in
the correct order. Correctness here means that, taking the above example of the declaration
of Sqrt_Half, if some other piece of elaboration code references Sqrt_Half, then it must
run after the section of elaboration code that contains the declaration of Sqrt_Half.

There would never be any order of elaboration problem if we made a rule that whenever
you with a unit, you must elaborate both the spec and body of that unit before elaborating
the unit doing the with’ing:� �

with Unit_1;

package Unit_2 is ...
 	
would require that both the body and spec of Unit_1 be elaborated before the spec of
Unit_2. However, a rule like that would be far too restrictive. In particular, it would make
it impossible to have routines in separate packages that were mutually recursive.

You might think that a clever enough compiler could look at the actual elaboration code
and determine an appropriate correct order of elaboration, but in the general case, this is
not possible. Consider the following example.

246 GNAT User’s Guide for Native Platforms / Unix and Windows

In the body of Unit_1, we have a procedure Func_1 that references the variable Sqrt_1,
which is declared in the elaboration code of the body of Unit_1:� �

Sqrt_1 : Float := Sqrt (0.1);
 	
The elaboration code of the body of Unit_1 also contains:� �

if expression_1 = 1 then

Q := Unit_2.Func_2;

end if;
 	
Unit_2 is exactly parallel, it has a procedure Func_2 that references the variable Sqrt_2,
which is declared in the elaboration code of the body Unit_2:� �

Sqrt_2 : Float := Sqrt (0.1);
 	
The elaboration code of the body of Unit_2 also contains:� �

if expression_2 = 2 then

Q := Unit_1.Func_1;

end if;
 	
Now the question is, which of the following orders of elaboration is acceptable:

Spec of Unit_1

Spec of Unit_2

Body of Unit_1

Body of Unit_2

or
Spec of Unit_2

Spec of Unit_1

Body of Unit_2

Body of Unit_1

If you carefully analyze the flow here, you will see that you cannot tell at compile time the
answer to this question. If expression_1 is not equal to 1, and expression_2 is not equal
to 2, then either order is acceptable, because neither of the function calls is executed. If
both tests evaluate to true, then neither order is acceptable and in fact there is no correct
order.

If one of the two expressions is true, and the other is false, then one of the above orders
is correct, and the other is incorrect. For example, if expression_1 = 1 and expression_2
/= 2, then the call to Func_2 will occur, but not the call to Func_1. This means that it is
essential to elaborate the body of Unit_1 before the body of Unit_2, so the first order of
elaboration is correct and the second is wrong.

By making expression_1 and expression_2 depend on input data, or perhaps the time
of day, we can make it impossible for the compiler or binder to figure out which of these
expressions will be true, and hence it is impossible to guarantee a safe order of elaboration
at run time.

Appendix C: Elaboration Order Handling in GNAT 247

C.2 Checking the Elaboration Order in Ada 95

In some languages that involve the same kind of elaboration problems, e.g. Java and C++,
the programmer is expected to worry about these ordering problems himself, and it is
common to write a program in which an incorrect elaboration order gives surprising results,
because it references variables before they are initialized. Ada 95 is designed to be a safe
language, and a programmer-beware approach is clearly not sufficient. Consequently, the
language provides three lines of defense:

Standard rules
Some standard rules restrict the possible choice of elaboration order. In par-
ticular, if you with a unit, then its spec is always elaborated before the unit
doing the with. Similarly, a parent spec is always elaborated before the child
spec, and finally a spec is always elaborated before its corresponding body.

Dynamic elaboration checks
Dynamic checks are made at run time, so that if some entity is accessed before
it is elaborated (typically by means of a subprogram call) then the exception
(Program_Error) is raised.

Elaboration control
Facilities are provided for the programmer to specify the desired order of elab-
oration.

Let’s look at these facilities in more detail. First, the rules for dynamic checking. One
possible rule would be simply to say that the exception is raised if you access a variable
which has not yet been elaborated. The trouble with this approach is that it could require
expensive checks on every variable reference. Instead Ada 95 has two rules which are a little
more restrictive, but easier to check, and easier to state:

Restrictions on calls
A subprogram can only be called at elaboration time if its body has been
elaborated. The rules for elaboration given above guarantee that the spec of
the subprogram has been elaborated before the call, but not the body. If this
rule is violated, then the exception Program_Error is raised.

Restrictions on instantiations
A generic unit can only be instantiated if the body of the generic unit has been
elaborated. Again, the rules for elaboration given above guarantee that the
spec of the generic unit has been elaborated before the instantiation, but not
the body. If this rule is violated, then the exception Program_Error is raised.

The idea is that if the body has been elaborated, then any variables it references must have
been elaborated; by checking for the body being elaborated we guarantee that none of its
references causes any trouble. As we noted above, this is a little too restrictive, because a
subprogram that has no non-local references in its body may in fact be safe to call. However,
it really would be unsafe to rely on this, because it would mean that the caller was aware
of details of the implementation in the body. This goes against the basic tenets of Ada.

A plausible implementation can be described as follows. A Boolean variable is associated
with each subprogram and each generic unit. This variable is initialized to False, and is set

248 GNAT User’s Guide for Native Platforms / Unix and Windows

to True at the point body is elaborated. Every call or instantiation checks the variable, and
raises Program_Error if the variable is False.

Note that one might think that it would be good enough to have one Boolean variable
for each package, but that would not deal with cases of trying to call a body in the same
package as the call that has not been elaborated yet. Of course a compiler may be able
to do enough analysis to optimize away some of the Boolean variables as unnecessary, and
GNAT indeed does such optimizations, but still the easiest conceptual model is to think of
there being one variable per subprogram.

C.3 Controlling the Elaboration Order in Ada 95

In the previous section we discussed the rules in Ada 95 which ensure that Program_Error
is raised if an incorrect elaboration order is chosen. This prevents erroneous executions, but
we need mechanisms to specify a correct execution and avoid the exception altogether. To
achieve this, Ada 95 provides a number of features for controlling the order of elaboration.
We discuss these features in this section.

First, there are several ways of indicating to the compiler that a given unit has no
elaboration problems:

packages that do not require a body
In Ada 95, a library package that does not require a body does not permit a
body. This means that if we have a such a package, as in:� �

package Definitions is

generic

type m is new integer;

package Subp is

type a is array (1 .. 10) of m;

type b is array (1 .. 20) of m;

end Subp;

end Definitions;
 	
A package that with’s Definitions may safely instantiate Definitions.Subp
because the compiler can determine that there definitely is no package body to
worry about in this case

pragma Pure
Places sufficient restrictions on a unit to guarantee that no call to any subpro-
gram in the unit can result in an elaboration problem. This means that the
compiler does not need to worry about the point of elaboration of such units,
and in particular, does not need to check any calls to any subprograms in this
unit.

pragma Preelaborate
This pragma places slightly less stringent restrictions on a unit than does
pragma Pure, but these restrictions are still sufficient to ensure that there are
no elaboration problems with any calls to the unit.

pragma Elaborate Body
This pragma requires that the body of a unit be elaborated immediately after
its spec. Suppose a unit A has such a pragma, and unit B does a with of unit

Appendix C: Elaboration Order Handling in GNAT 249

A. Recall that the standard rules require the spec of unit A to be elaborated
before the with’ing unit; given the pragma in A, we also know that the body
of A will be elaborated before B, so that calls to A are safe and do not need a
check.

Note that, unlike pragma Pure and pragma Preelaborate, the use of Elaborate_Body
does not guarantee that the program is free of elaboration problems, because it may not
be possible to satisfy the requested elaboration order. Let’s go back to the example with
Unit_1 and Unit_2. If a programmer marks Unit_1 as Elaborate_Body, and not Unit_2,
then the order of elaboration will be:

Spec of Unit_2

Spec of Unit_1

Body of Unit_1

Body of Unit_2

Now that means that the call to Func_1 in Unit_2 need not be checked, it must be safe.
But the call to Func_2 in Unit_1 may still fail if Expression_1 is equal to 1, and the
programmer must still take responsibility for this not being the case.

If all units carry a pragma Elaborate_Body, then all problems are eliminated, except for
calls entirely within a body, which are in any case fully under programmer control. However,
using the pragma everywhere is not always possible. In particular, for our Unit_1/Unit_2
example, if we marked both of them as having pragma Elaborate_Body, then clearly there
would be no possible elaboration order.

The above pragmas allow a server to guarantee safe use by clients, and clearly this is
the preferable approach. Consequently a good rule in Ada 95 is to mark units as Pure
or Preelaborate if possible, and if this is not possible, mark them as Elaborate_Body if
possible. As we have seen, there are situations where neither of these three pragmas can
be used. So we also provide methods for clients to control the order of elaboration of the
servers on which they depend:

pragma Elaborate (unit)
This pragma is placed in the context clause, after a with clause, and it requires
that the body of the named unit be elaborated before the unit in which the
pragma occurs. The idea is to use this pragma if the current unit calls at
elaboration time, directly or indirectly, some subprogram in the named unit.

pragma Elaborate All (unit)
This is a stronger version of the Elaborate pragma. Consider the following
example:

Unit A with’s unit B and calls B.Func in elab code

Unit B with’s unit C, and B.Func calls C.Func

Now if we put a pragma Elaborate (B) in unit A, this ensures that the body
of B is elaborated before the call, but not the body of C, so the call to C.Func
could still cause Program_Error to be raised.
The effect of a pragma Elaborate_All is stronger, it requires not only that
the body of the named unit be elaborated before the unit doing the with,
but also the bodies of all units that the named unit uses, following with links
transitively. For example, if we put a pragma Elaborate_All (B) in unit A,
then it requires not only that the body of B be elaborated before A, but also
the body of C, because B with’s C.

250 GNAT User’s Guide for Native Platforms / Unix and Windows

We are now in a position to give a usage rule in Ada 95 for avoiding elaboration problems,
at least if dynamic dispatching and access to subprogram values are not used. We will
handle these cases separately later.

The rule is simple. If a unit has elaboration code that can directly or indirectly make a
call to a subprogram in a with’ed unit, or instantiate a generic unit in a with’ed unit, then if
the with’ed unit does not have pragma Pure or Preelaborate, then the client should have
a pragma Elaborate_All for the with’ed unit. By following this rule a client is assured
that calls can be made without risk of an exception. If this rule is not followed, then a
program may be in one of four states:

No order exists
No order of elaboration exists which follows the rules, taking into account any
Elaborate, Elaborate_All, or Elaborate_Body pragmas. In this case, an Ada
95 compiler must diagnose the situation at bind time, and refuse to build an
executable program.

One or more orders exist, all incorrect
One or more acceptable elaboration orders exists, and all of them generate an
elaboration order problem. In this case, the binder can build an executable
program, but Program_Error will be raised when the program is run.

Several orders exist, some right, some incorrect
One or more acceptable elaboration orders exists, and some of them work, and
some do not. The programmer has not controlled the order of elaboration, so
the binder may or may not pick one of the correct orders, and the program may
or may not raise an exception when it is run. This is the worst case, because
it means that the program may fail when moved to another compiler, or even
another version of the same compiler.

One or more orders exists, all correct
One ore more acceptable elaboration orders exist, and all of them work. In
this case the program runs successfully. This state of affairs can be guaranteed
by following the rule we gave above, but may be true even if the rule is not
followed.

Note that one additional advantage of following our Elaborate All rule is that the program
continues to stay in the ideal (all orders OK) state even if maintenance changes some bodies
of some subprograms. Conversely, if a program that does not follow this rule happens to be
safe at some point, this state of affairs may deteriorate silently as a result of maintenance
changes.

You may have noticed that the above discussion did not mention the use of Elaborate_
Body. This was a deliberate omission. If you with an Elaborate_Body unit, it still may be
the case that code in the body makes calls to some other unit, so it is still necessary to use
Elaborate_All on such units.

C.4 Controlling Elaboration in GNAT - Internal Calls

In the case of internal calls, i.e. calls within a single package, the programmer has full control
over the order of elaboration, and it is up to the programmer to elaborate declarations in
an appropriate order. For example writing:

Appendix C: Elaboration Order Handling in GNAT 251� �
function One return Float;

Q : Float := One;

function One return Float is

begin

return 1.0;

end One;
 	
will obviously raise Program_Error at run time, because function One will be called before
its body is elaborated. In this case GNAT will generate a warning that the call will raise
Program_Error:� �

1. procedure y is

2. function One return Float;

3.

4. Q : Float := One;

|

>>> warning: cannot call "One" before body is elaborated

>>> warning: Program_Error will be raised at run time

5.

6. function One return Float is

7. begin

8. return 1.0;

9. end One;

10.

11. begin

12. null;

13. end;
 	
Note that in this particular case, it is likely that the call is safe, because the function One
does not access any global variables. Nevertheless in Ada 95, we do not want the validity
of the check to depend on the contents of the body (think about the separate compilation
case), so this is still wrong, as we discussed in the previous sections.

The error is easily corrected by rearranging the declarations so that the body of One
appears before the declaration containing the call (note that in Ada 95, declarations can
appear in any order, so there is no restriction that would prevent this reordering, and if we
write:� �

function One return Float;

function One return Float is

begin

return 1.0;

end One;

Q : Float := One;
 	
then all is well, no warning is generated, and no Program_Error exception will be raised.
Things are more complicated when a chain of subprograms is executed:

252 GNAT User’s Guide for Native Platforms / Unix and Windows� �
function A return Integer;

function B return Integer;

function C return Integer;

function B return Integer is begin return A; end;

function C return Integer is begin return B; end;

X : Integer := C;

function A return Integer is begin return 1; end;
 	
Now the call to C at elaboration time in the declaration of X is correct, because the body
of C is already elaborated, and the call to B within the body of C is correct, but the call
to A within the body of B is incorrect, because the body of A has not been elaborated, so
Program_Error will be raised on the call to A. In this case GNAT will generate a warning
that Program_Error may be raised at the point of the call. Let’s look at the warning:� �

1. procedure x is

2. function A return Integer;

3. function B return Integer;

4. function C return Integer;

5.

6. function B return Integer is begin return A; end;

|

>>> warning: call to "A" before body is elaborated may

raise Program_Error

>>> warning: "B" called at line 7

>>> warning: "C" called at line 9

7. function C return Integer is begin return B; end;

8.

9. X : Integer := C;

10.

11. function A return Integer is begin return 1; end;

12.

13. begin

14. null;

15. end;
 	
Note that the message here says “may raise”, instead of the direct case, where the message
says “will be raised”. That’s because whether A is actually called depends in general on
run-time flow of control. For example, if the body of B said� �

function B return Integer is

begin

if some-condition-depending-on-input-data then

return A;

else

return 1;

end if;

end B;
 	
then we could not know until run time whether the incorrect call to A would actually occur,
so Program_Error might or might not be raised. It is possible for a compiler to do a better
job of analyzing bodies, to determine whether or not Program_Error might be raised, but

Appendix C: Elaboration Order Handling in GNAT 253

it certainly couldn’t do a perfect job (that would require solving the halting problem and
is provably impossible), and because this is a warning anyway, it does not seem worth the
effort to do the analysis. Cases in which it would be relevant are rare.

In practice, warnings of either of the forms given above will usually correspond to real
errors, and should be examined carefully and eliminated. In the rare case where a warning
is bogus, it can be suppressed by any of the following methods:
• Compile with the ‘-gnatws’ switch set
• Suppress Elaboration_Check for the called subprogram
• Use pragma Warnings_Off to turn warnings off for the call

For the internal elaboration check case, GNAT by default generates the necessary run-time
checks to ensure that Program_Error is raised if any call fails an elaboration check. Of
course this can only happen if a warning has been issued as described above. The use of
pragma Suppress (Elaboration_Check) may (but is not guaranteed to) suppress some of
these checks, meaning that it may be possible (but is not guaranteed) for a program to be
able to call a subprogram whose body is not yet elaborated, without raising a Program_
Error exception.

C.5 Controlling Elaboration in GNAT - External Calls

The previous section discussed the case in which the execution of a particular thread of
elaboration code occurred entirely within a single unit. This is the easy case to handle,
because a programmer has direct and total control over the order of elaboration, and fur-
thermore, checks need only be generated in cases which are rare and which the compiler
can easily detect. The situation is more complex when separate compilation is taken into
account. Consider the following:� �

package Math is

function Sqrt (Arg : Float) return Float;

end Math;

package body Math is

function Sqrt (Arg : Float) return Float is

begin

...

end Sqrt;

end Math;

with Math;

package Stuff is

X : Float := Math.Sqrt (0.5);

end Stuff;

with Stuff;

procedure Main is

begin

...

end Main;
 	
where Main is the main program. When this program is executed, the elaboration code
must first be executed, and one of the jobs of the binder is to determine the order in which
the units of a program are to be elaborated. In this case we have four units: the spec and

254 GNAT User’s Guide for Native Platforms / Unix and Windows

body of Math, the spec of Stuff and the body of Main). In what order should the four
separate sections of elaboration code be executed?

There are some restrictions in the order of elaboration that the binder can choose. In
particular, if unit U has a with for a package X, then you are assured that the spec of X is
elaborated before U , but you are not assured that the body of X is elaborated before U.
This means that in the above case, the binder is allowed to choose the order:

spec of Math

spec of Stuff

body of Math

body of Main

but that’s not good, because now the call to Math.Sqrt that happens during the elaboration
of the Stuff spec happens before the body of Math.Sqrt is elaborated, and hence causes
Program_Error exception to be raised. At first glance, one might say that the binder is
misbehaving, because obviously you want to elaborate the body of something you with
first, but that is not a general rule that can be followed in all cases. Consider� �

package X is ...

package Y is ...

with X;

package body Y is ...

with Y;

package body X is ...
 	
This is a common arrangement, and, apart from the order of elaboration problems that
might arise in connection with elaboration code, this works fine. A rule that says that you
must first elaborate the body of anything you with cannot work in this case: the body of
X with’s Y, which means you would have to elaborate the body of Y first, but that with’s
X, which means you have to elaborate the body of X first, but ... and we have a loop that
cannot be broken.

It is true that the binder can in many cases guess an order of elaboration that is unlikely
to cause a Program_Error exception to be raised, and it tries to do so (in the above example
of Math/Stuff/Spec, the GNAT binder will by default elaborate the body of Math right
after its spec, so all will be well).

However, a program that blindly relies on the binder to be helpful can get into trouble, as
we discussed in the previous sections, so GNAT provides a number of facilities for assisting
the programmer in developing programs that are robust with respect to elaboration order.

C.6 Default Behavior in GNAT - Ensuring Safety

The default behavior in GNAT ensures elaboration safety. In its default mode GNAT
implements the rule we previously described as the right approach. Let’s restate it:
• If a unit has elaboration code that can directly or indirectly make a call to a subprogram

in a with’ed unit, or instantiate a generic unit in a with’ed unit, then if the with’ed
unit does not have pragma Pure or Preelaborate, then the client should have an
Elaborate_All for the with’ed unit.

Appendix C: Elaboration Order Handling in GNAT 255

By following this rule a client is assured that calls and instantiations can be made without
risk of an exception.

In this mode GNAT traces all calls that are potentially made from elaboration code, and
puts in any missing implicit Elaborate_All pragmas. The advantage of this approach is
that no elaboration problems are possible if the binder can find an elaboration order that is
consistent with these implicit Elaborate_All pragmas. The disadvantage of this approach
is that no such order may exist.

If the binder does not generate any diagnostics, then it means that it has found an
elaboration order that is guaranteed to be safe. However, the binder may still be relying on
implicitly generated Elaborate_All pragmas so portability to other compilers than GNAT
is not guaranteed.

If it is important to guarantee portability, then the compilations should use the ‘-gnatwl’
(warn on elaboration problems) switch. This will cause warning messages to be generated
indicating the missing Elaborate_All pragmas. Consider the following source program:� �

with k;

package j is

m : integer := k.r;

end;
 	
where it is clear that there should be a pragma Elaborate_All for unit k. An implicit
pragma will be generated, and it is likely that the binder will be able to honor it. However,
if you want to port this program to some other Ada compiler than GNAT. it is safer to
include the pragma explicitly in the source. If this unit is compiled with the ‘-gnatwl’
switch, then the compiler outputs a warning:� �

1. with k;

2. package j is

3. m : integer := k.r;

|

>>> warning: call to "r" may raise Program_Error

>>> warning: missing pragma Elaborate_All for "k"

4. end;
 	
and these warnings can be used as a guide for supplying manually the missing pragmas. It
is usually a bad idea to use this warning option during development. That’s because it will
warn you when you need to put in a pragma, but cannot warn you when it is time to take
it out. So the use of pragma Elaborate All may lead to unnecessary dependencies and even
false circularities.

This default mode is more restrictive than the Ada Reference Manual, and it is possible
to construct programs which will compile using the dynamic model described there, but
will run into a circularity using the safer static model we have described.

Of course any Ada compiler must be able to operate in a mode consistent with the
requirements of the Ada Reference Manual, and in particular must have the capability of
implementing the standard dynamic model of elaboration with run-time checks.

In GNAT, this standard mode can be achieved either by the use of the ‘-gnatE’ switch
on the compiler (gcc or gnatmake) command, or by the use of the configuration pragma:

256 GNAT User’s Guide for Native Platforms / Unix and Windows

pragma Elaboration_Checks (RM);

Either approach will cause the unit affected to be compiled using the standard dynamic
run-time elaboration checks described in the Ada Reference Manual. The static model is
generally preferable, since it is clearly safer to rely on compile and link time checks rather
than run-time checks. However, in the case of legacy code, it may be difficult to meet the
requirements of the static model. This issue is further discussed in Section C.10 [What to
Do If the Default Elaboration Behavior Fails], page 262.

Note that the static model provides a strict subset of the allowed behavior and programs
of the Ada Reference Manual, so if you do adhere to the static model and no circularities
exist, then you are assured that your program will work using the dynamic model, providing
that you remove any pragma Elaborate statements from the source.

C.7 Treatment of Pragma Elaborate

The use of pragma Elaborate should generally be avoided in Ada 95 programs. The reason
for this is that there is no guarantee that transitive calls will be properly handled. Indeed
at one point, this pragma was placed in Annex J (Obsolescent Features), on the grounds
that it is never useful.

Now that’s a bit restrictive. In practice, the case in which pragma Elaborate is useful
is when the caller knows that there are no transitive calls, or that the called unit contains
all necessary transitive pragma Elaborate statements, and legacy code often contains such
uses.

Strictly speaking the static mode in GNAT should ignore such pragmas, since there is
no assurance at compile time that the necessary safety conditions are met. In practice, this
would cause GNAT to be incompatible with correctly written Ada 83 code that had all
necessary pragma Elaborate statements in place. Consequently, we made the decision that
GNAT in its default mode will believe that if it encounters a pragma Elaborate then the
programmer knows what they are doing, and it will trust that no elaboration errors can
occur.

The result of this decision is two-fold. First to be safe using the static mode, you should
remove all pragma Elaborate statements. Second, when fixing circularities in existing code,
you can selectively use pragma Elaborate statements to convince the static mode of GNAT
that it need not generate an implicit pragma Elaborate_All statement.

When using the static mode with ‘-gnatwl’, any use of pragma Elaborate will generate
a warning about possible problems.

C.8 Elaboration Issues for Library Tasks

In this section we examine special elaboration issues that arise for programs that declare
library level tasks.

Generally the model of execution of an Ada program is that all units are elaborated, and
then execution of the program starts. However, the declaration of library tasks definitely
does not fit this model. The reason for this is that library tasks start as soon as they are
declared (more precisely, as soon as the statement part of the enclosing package body is
reached), that is to say before elaboration of the program is complete. This means that
if such a task calls a subprogram, or an entry in another task, the callee may or may not

Appendix C: Elaboration Order Handling in GNAT 257

be elaborated yet, and in the standard Reference Manual model of dynamic elaboration
checks, you can even get timing dependent Program Error exceptions, since there can be a
race between the elaboration code and the task code.

The static model of elaboration in GNAT seeks to avoid all such dynamic behavior, by
being conservative, and the conservative approach in this particular case is to assume that
all the code in a task body is potentially executed at elaboration time if a task is declared
at the library level.

This can definitely result in unexpected circularities. Consider the following example
package Decls is

task Lib_Task is

entry Start;

end Lib_Task;

type My_Int is new Integer;

function Ident (M : My_Int) return My_Int;

end Decls;

with Utils;

package body Decls is

task body Lib_Task is

begin

accept Start;

Utils.Put_Val (2);

end Lib_Task;

function Ident (M : My_Int) return My_Int is

begin

return M;

end Ident;

end Decls;

with Decls;

package Utils is

procedure Put_Val (Arg : Decls.My_Int);

end Utils;

with Text_IO;

package body Utils is

procedure Put_Val (Arg : Decls.My_Int) is

begin

Text_IO.Put_Line (Decls.My_Int’Image (Decls.Ident (Arg)));

end Put_Val;

end Utils;

with Decls;

procedure Main is

begin

Decls.Lib_Task.Start;

end;

If the above example is compiled in the default static elaboration mode, then a circularity
occurs. The circularity comes from the call Utils.Put_Val in the task body of Decls.Lib_
Task. Since this call occurs in elaboration code, we need an implicit pragma Elaborate_All
for Utils. This means that not only must the spec and body of Utils be elaborated before

258 GNAT User’s Guide for Native Platforms / Unix and Windows

the body of Decls, but also the spec and body of any unit that is with’ed by the body of
Utils must also be elaborated before the body of Decls. This is the transitive implication
of pragma Elaborate_All and it makes sense, because in general the body of Put_Val
might have a call to something in a with’ed unit.

In this case, the body of Utils (actually its spec) with’s Decls. Unfortunately this
means that the body of Decls must be elaborated before itself, in case there is a call from
the body of Utils.

Here is the exact chain of events we are worrying about:

1. In the body of Decls a call is made from within the body of a library task to a
subprogram in the package Utils. Since this call may occur at elaboration time (given
that the task is activated at elaboration time), we have to assume the worst, i.e. that
the call does happen at elaboration time.

2. This means that the body and spec of Util must be elaborated before the body of
Decls so that this call does not cause an access before elaboration.

3. Within the body of Util, specifically within the body of Util.Put_Val there may be
calls to any unit with’ed by this package.

4. One such with’ed package is package Decls, so there might be a call to a subprogram
in Decls in Put_Val. In fact there is such a call in this example, but we would have to
assume that there was such a call even if it were not there, since we are not supposed
to write the body of Decls knowing what is in the body of Utils; certainly in the case
of the static elaboration model, the compiler does not know what is in other bodies
and must assume the worst.

5. This means that the spec and body of Decls must also be elaborated before we elaborate
the unit containing the call, but that unit is Decls! This means that the body of Decls
must be elaborated before itself, and that’s a circularity.

Indeed, if you add an explicit pragma Elaborate All for Utils in the body of Decls you
will get a true Ada Reference Manual circularity that makes the program illegal.

In practice, we have found that problems with the static model of elaboration in existing
code often arise from library tasks, so we must address this particular situation.

Note that if we compile and run the program above, using the dynamic model of elab-
oration (that is to say use the ‘-gnatE’ switch), then it compiles, binds, links, and runs,
printing the expected result of 2. Therefore in some sense the circularity here is only appar-
ent, and we need to capture the properties of this program that distinguish it from other
library-level tasks that have real elaboration problems.

We have four possible answers to this question:

• Use the dynamic model of elaboration.

If we use the ‘-gnatE’ switch, then as noted above, the program works. Why is this? If
we examine the task body, it is apparent that the task cannot proceed past the accept
statement until after elaboration has been completed, because the corresponding entry
call comes from the main program, not earlier. This is why the dynamic model works
here. But that’s really giving up on a precise analysis, and we prefer to take this
approach only if we cannot solve the problem in any other manner. So let us examine
two ways to reorganize the program to avoid the potential elaboration problem.

Appendix C: Elaboration Order Handling in GNAT 259

• Split library tasks into separate packages.

Write separate packages, so that library tasks are isolated from other declarations as
much as possible. Let us look at a variation on the above program.

package Decls1 is

task Lib_Task is

entry Start;

end Lib_Task;

end Decls1;

with Utils;

package body Decls1 is

task body Lib_Task is

begin

accept Start;

Utils.Put_Val (2);

end Lib_Task;

end Decls1;

package Decls2 is

type My_Int is new Integer;

function Ident (M : My_Int) return My_Int;

end Decls2;

with Utils;

package body Decls2 is

function Ident (M : My_Int) return My_Int is

begin

return M;

end Ident;

end Decls2;

with Decls2;

package Utils is

procedure Put_Val (Arg : Decls2.My_Int);

end Utils;

with Text_IO;

package body Utils is

procedure Put_Val (Arg : Decls2.My_Int) is

begin

Text_IO.Put_Line (Decls2.My_Int’Image (Decls2.Ident (Arg)));

end Put_Val;

end Utils;

with Decls1;

procedure Main is

begin

Decls1.Lib_Task.Start;

end;

All we have done is to split Decls into two packages, one containing the library task,
and one containing everything else. Now there is no cycle, and the program compiles,
binds, links and executes using the default static model of elaboration.

• Declare separate task types.

A significant part of the problem arises because of the use of the single task declaration
form. This means that the elaboration of the task type, and the elaboration of the

260 GNAT User’s Guide for Native Platforms / Unix and Windows

task itself (i.e. the creation of the task) happen at the same time. A good rule of
style in Ada 95 is to always create explicit task types. By following the additional
step of placing task objects in separate packages from the task type declaration, many
elaboration problems are avoided. Here is another modified example of the example
program:

package Decls is

task type Lib_Task_Type is

entry Start;

end Lib_Task_Type;

type My_Int is new Integer;

function Ident (M : My_Int) return My_Int;

end Decls;

with Utils;

package body Decls is

task body Lib_Task_Type is

begin

accept Start;

Utils.Put_Val (2);

end Lib_Task_Type;

function Ident (M : My_Int) return My_Int is

begin

return M;

end Ident;

end Decls;

with Decls;

package Utils is

procedure Put_Val (Arg : Decls.My_Int);

end Utils;

with Text_IO;

package body Utils is

procedure Put_Val (Arg : Decls.My_Int) is

begin

Text_IO.Put_Line (Decls.My_Int’Image (Decls.Ident (Arg)));

end Put_Val;

end Utils;

with Decls;

package Declst is

Lib_Task : Decls.Lib_Task_Type;

end Declst;

with Declst;

procedure Main is

begin

Declst.Lib_Task.Start;

end;

What we have done here is to replace the task declaration in package Decls with a
task type declaration. Then we introduce a separate package Declst to contain the
actual task object. This separates the elaboration issues for the task type declaration,
which causes no trouble, from the elaboration issues of the task object, which is also

Appendix C: Elaboration Order Handling in GNAT 261

unproblematic, since it is now independent of the elaboration of Utils. This separation
of concerns also corresponds to a generally sound engineering principle of separating
declarations from instances. This version of the program also compiles, binds, links,
and executes, generating the expected output.

• Use No Entry Calls In Elaboration Code restriction.

The previous two approaches described how a program can be restructured to avoid the
special problems caused by library task bodies. in practice, however, such restructuring
may be difficult to apply to existing legacy code, so we must consider solutions that do
not require massive rewriting.

Let us consider more carefully why our original sample program works under the dy-
namic model of elaboration. The reason is that the code in the task body blocks
immediately on the accept statement. Now of course there is nothing to prohibit elab-
oration code from making entry calls (for example from another library level task), so
we cannot tell in isolation that the task will not execute the accept statement during
elaboration.

However, in practice it is very unusual to see elaboration code make any entry calls,
and the pattern of tasks starting at elaboration time and then immediately blocking on
accept or select statements is very common. What this means is that the compiler
is being too pessimistic when it analyzes the whole package body as though it might
be executed at elaboration time.

If we know that the elaboration code contains no entry calls, (a very safe assumption
most of the time, that could almost be made the default behavior), then we can compile
all units of the program under control of the following configuration pragma:

pragma Restrictions (No_Entry_Calls_In_Elaboration_Code);

This pragma can be placed in the ‘gnat.adc’ file in the usual manner. If we take our
original unmodified program and compile it in the presence of a ‘gnat.adc’ containing
the above pragma, then once again, we can compile, bind, link, and execute, obtaining
the expected result. In the presence of this pragma, the compiler does not trace calls
in a task body, that appear after the first accept or select statement, and therefore
does not report a potential circularity in the original program.

The compiler will check to the extent it can that the above restriction is not violated,
but it is not always possible to do a complete check at compile time, so it is important
to use this pragma only if the stated restriction is in fact met, that is to say no task
receives an entry call before elaboration of all units is completed.

C.9 Mixing Elaboration Models

So far, we have assumed that the entire program is either compiled using the dynamic model
or static model, ensuring consistency. It is possible to mix the two models, but rules have
to be followed if this mixing is done to ensure that elaboration checks are not omitted.

The basic rule is that a unit compiled with the static model cannot be with’ed by a unit
compiled with the dynamic model. The reason for this is that in the static model, a unit
assumes that its clients guarantee to use (the equivalent of) pragma Elaborate_All so that
no elaboration checks are required in inner subprograms, and this assumption is violated if
the client is compiled with dynamic checks.

262 GNAT User’s Guide for Native Platforms / Unix and Windows

The precise rule is as follows. A unit that is compiled with dynamic checks can only
with a unit that meets at least one of the following criteria:

• The with’ed unit is itself compiled with dynamic elaboration checks (that is with the
‘-gnatE’ switch.

• The with’ed unit is an internal GNAT implementation unit from the System, Inter-
faces, Ada, or GNAT hierarchies.

• The with’ed unit has pragma Preelaborate or pragma Pure.
• The with’ing unit (that is the client) has an explicit pragma Elaborate_All for the

with’ed unit.

If this rule is violated, that is if a unit with dynamic elaboration checks with’s a unit
that does not meet one of the above four criteria, then the binder (gnatbind) will issue a
warning similar to that in the following example:

warning: "x.ads" has dynamic elaboration checks and with’s

warning: "y.ads" which has static elaboration checks

These warnings indicate that the rule has been violated, and that as a result elaboration
checks may be missed in the resulting executable file. This warning may be suppressed
using the ‘-ws’ binder switch in the usual manner.

One useful application of this mixing rule is in the case of a subsystem which does not
itself with units from the remainder of the application. In this case, the entire subsystem can
be compiled with dynamic checks to resolve a circularity in the subsystem, while allowing
the main application that uses this subsystem to be compiled using the more reliable default
static model.

C.10 What to Do If the Default Elaboration Behavior Fails
If the binder cannot find an acceptable order, it outputs detailed diagnostics. For example:

error: elaboration circularity detected

info: "proc (body)" must be elaborated before "pack (body)"

info: reason: Elaborate_All probably needed in unit "pack (body)"

info: recompile "pack (body)" with -gnatwl

info: for full details

info: "proc (body)"

info: is needed by its spec:

info: "proc (spec)"

info: which is withed by:

info: "pack (body)"

info: "pack (body)" must be elaborated before "proc (body)"

info: reason: pragma Elaborate in unit "proc (body)"

In this case we have a cycle that the binder cannot break. On the one hand, there is an
explicit pragma Elaborate in proc for pack. This means that the body of pack must be
elaborated before the body of proc. On the other hand, there is elaboration code in pack
that calls a subprogram in proc. This means that for maximum safety, there should really
be a pragma Elaborate All in pack for proc which would require that the body of proc be
elaborated before the body of pack. Clearly both requirements cannot be satisfied. Faced
with a circularity of this kind, you have three different options.

Appendix C: Elaboration Order Handling in GNAT 263

Fix the program
The most desirable option from the point of view of long-term maintenance is to
rearrange the program so that the elaboration problems are avoided. One useful
technique is to place the elaboration code into separate child packages. Another
is to move some of the initialization code to explicitly called subprograms, where
the program controls the order of initialization explicitly. Although this is the
most desirable option, it may be impractical and involve too much modification,
especially in the case of complex legacy code.

Perform dynamic checks
If the compilations are done using the ‘-gnatE’ (dynamic elaboration check)
switch, then GNAT behaves in a quite different manner. Dynamic checks are
generated for all calls that could possibly result in raising an exception. With
this switch, the compiler does not generate implicit Elaborate_All pragmas.
The behavior then is exactly as specified in the Ada 95 Reference Manual. The
binder will generate an executable program that may or may not raise Program_
Error, and then it is the programmer’s job to ensure that it does not raise an
exception. Note that it is important to compile all units with the switch, it
cannot be used selectively.

Suppress checks
The drawback of dynamic checks is that they generate a significant overhead
at run time, both in space and time. If you are absolutely sure that your
program cannot raise any elaboration exceptions, and you still want to use
the dynamic elaboration model, then you can use the configuration pragma
Suppress (Elaboration_Check) to suppress all such checks. For example this
pragma could be placed in the ‘gnat.adc’ file.

Suppress checks selectively
When you know that certain calls in elaboration code cannot possibly lead to
an elaboration error, and the binder nevertheless generates warnings on those
calls and inserts Elaborate All pragmas that lead to elaboration circularities,
it is possible to remove those warnings locally and obtain a program that will
bind. Clearly this can be unsafe, and it is the responsibility of the programmer
to make sure that the resulting program has no elaboration anomalies. The
pragma Suppress (Elaboration_Check) can be used with different granularity
to suppress warnings and break elaboration circularities:

• Place the pragma that names the called subprogram in the declarative part
that contains the call.

• Place the pragma in the declarative part, without naming an entity. This
disables warnings on all calls in the corresponding declarative region.

• Place the pragma in the package spec that declares the called subprogram,
and name the subprogram. This disables warnings on all elaboration calls
to that subprogram.

• Place the pragma in the package spec that declares the called subprogram,
without naming any entity. This disables warnings on all elaboration calls
to all subprograms declared in this spec.

264 GNAT User’s Guide for Native Platforms / Unix and Windows

• Use Pragma Elaborate As previously described in section See Section C.7
[Treatment of Pragma Elaborate], page 256, GNAT in static mode assumes
that a pragma Elaborate indicates correctly that no elaboration checks are
required on calls to the designated unit. There may be cases in which the
caller knows that no transitive calls can occur, so that a pragma Elaborate
will be sufficient in a case where pragma Elaborate_All would cause a
circularity.

These five cases are listed in order of decreasing safety, and therefore require
increasing programmer care in their application. Consider the following pro-
gram:

package Pack1 is

function F1 return Integer;

X1 : Integer;

end Pack1;

package Pack2 is

function F2 return Integer;

function Pure (x : integer) return integer;

-- pragma Suppress (Elaboration_Check, On => Pure); -- (3)

-- pragma Suppress (Elaboration_Check); -- (4)

end Pack2;

with Pack2;

package body Pack1 is

function F1 return Integer is

begin

return 100;

end F1;

Val : integer := Pack2.Pure (11); -- Elab. call (1)

begin

declare

-- pragma Suppress(Elaboration_Check, Pack2.F2); -- (1)

-- pragma Suppress(Elaboration_Check); -- (2)

begin

X1 := Pack2.F2 + 1; -- Elab. call (2)

end;

end Pack1;

with Pack1;

package body Pack2 is

function F2 return Integer is

begin

return Pack1.F1;

end F2;

function Pure (x : integer) return integer is

begin

return x ** 3 - 3 * x;

end;

end Pack2;

with Pack1, Ada.Text_IO;

procedure Proc3 is

begin

Ada.Text_IO.Put_Line(Pack1.X1’Img); -- 101

end Proc3;

Appendix C: Elaboration Order Handling in GNAT 265

In the absence of any pragmas, an attempt to bind this program produces the
following diagnostics:

error: elaboration circularity detected

info: "pack1 (body)" must be elaborated before "pack1 (body)"

info: reason: Elaborate_All probably needed in unit "pack1 (body)"

info: recompile "pack1 (body)" with -gnatwl for full details

info: "pack1 (body)"

info: must be elaborated along with its spec:

info: "pack1 (spec)"

info: which is withed by:

info: "pack2 (body)"

info: which must be elaborated along with its spec:

info: "pack2 (spec)"

info: which is withed by:

info: "pack1 (body)"

The sources of the circularity are the two calls to Pack2.Pure and Pack2.F2
in the body of Pack1. We can see that the call to F2 is safe, even though
F2 calls F1, because the call appears after the elaboration of the body of F1.
Therefore the pragma (1) is safe, and will remove the warning on the call. It
is also possible to use pragma (2) because there are no other potentially unsafe
calls in the block.

The call to Pure is safe because this function does not depend on the state of
Pack2. Therefore any call to this function is safe, and it is correct to place
pragma (3) in the corresponding package spec.

Finally, we could place pragma (4) in the spec of Pack2 to disable warnings on
all calls to functions declared therein. Note that this is not necessarily safe,
and requires more detailed examination of the subprogram bodies involved. In
particular, a call to F2 requires that F1 be already elaborated.

It is hard to generalize on which of these four approaches should be taken. Obviously if it is
possible to fix the program so that the default treatment works, this is preferable, but this
may not always be practical. It is certainly simple enough to use ‘-gnatE’ but the danger
in this case is that, even if the GNAT binder finds a correct elaboration order, it may not
always do so, and certainly a binder from another Ada compiler might not. A combination
of testing and analysis (for which the warnings generated with the ‘-gnatwl’ switch can
be useful) must be used to ensure that the program is free of errors. One switch that is
useful in this testing is the ‘-p (pessimistic elaboration order)’ switch for gnatbind.
Normally the binder tries to find an order that has the best chance of of avoiding elaboration
problems. With this switch, the binder plays a devil’s advocate role, and tries to choose
the order that has the best chance of failing. If your program works even with this switch,
then it has a better chance of being error free, but this is still not a guarantee.

For an example of this approach in action, consider the C-tests (executable tests) from
the ACVC suite. If these are compiled and run with the default treatment, then all but
one of them succeed without generating any error diagnostics from the binder. However,
there is one test that fails, and this is not surprising, because the whole point of this test is
to ensure that the compiler can handle cases where it is impossible to determine a correct
order statically, and it checks that an exception is indeed raised at run time.

266 GNAT User’s Guide for Native Platforms / Unix and Windows

This one test must be compiled and run using the ‘-gnatE’ switch, and then it passes.
Alternatively, the entire suite can be run using this switch. It is never wrong to run with
the dynamic elaboration switch if your code is correct, and we assume that the C-tests are
indeed correct (it is less efficient, but efficiency is not a factor in running the ACVC tests.)

C.11 Elaboration for Access-to-Subprogram Values

The introduction of access-to-subprogram types in Ada 95 complicates the handling of elab-
oration. The trouble is that it becomes impossible to tell at compile time which procedure
is being called. This means that it is not possible for the binder to analyze the elaboration
requirements in this case.

If at the point at which the access value is created (i.e., the evaluation of P’Access
for a subprogram P), the body of the subprogram is known to have been elaborated, then
the access value is safe, and its use does not require a check. This may be achieved by
appropriate arrangement of the order of declarations if the subprogram is in the current
unit, or, if the subprogram is in another unit, by using pragma Pure, Preelaborate, or
Elaborate_Body on the referenced unit.

If the referenced body is not known to have been elaborated at the point the access value
is created, then any use of the access value must do a dynamic check, and this dynamic
check will fail and raise a Program_Error exception if the body has not been elaborated
yet. GNAT will generate the necessary checks, and in addition, if the ‘-gnatwl’ switch is
set, will generate warnings that such checks are required.

The use of dynamic dispatching for tagged types similarly generates a requirement for
dynamic checks, and premature calls to any primitive operation of a tagged type before the
body of the operation has been elaborated, will result in the raising of Program_Error.

C.12 Summary of Procedures for Elaboration Control

First, compile your program with the default options, using none of the special elaboration
control switches. If the binder successfully binds your program, then you can be confident
that, apart from issues raised by the use of access-to-subprogram types and dynamic dis-
patching, the program is free of elaboration errors. If it is important that the program be
portable, then use the ‘-gnatwl’ switch to generate warnings about missing Elaborate_All
pragmas, and supply the missing pragmas.

If the program fails to bind using the default static elaboration handling, then you can
fix the program to eliminate the binder message, or recompile the entire program with the
‘-gnatE’ switch to generate dynamic elaboration checks, and, if you are sure there really
are no elaboration problems, use a global pragma Suppress (Elaboration_Check).

C.13 Other Elaboration Order Considerations

This section has been entirely concerned with the issue of finding a valid elaboration order,
as defined by the Ada Reference Manual. In a case where several elaboration orders are
valid, the task is to find one of the possible valid elaboration orders (and the static model
in GNAT will ensure that this is achieved).

The purpose of the elaboration rules in the Ada Reference Manual is to make sure that
no entity is accessed before it has been elaborated. For a subprogram, this means that the

Appendix C: Elaboration Order Handling in GNAT 267

spec and body must have been elaborated before the subprogram is called. For an object,
this means that the object must have been elaborated before its value is read or written. A
violation of either of these two requirements is an access before elaboration order, and this
section has been all about avoiding such errors.

In the case where more than one order of elaboration is possible, in the sense that access
before elaboration errors are avoided, then any one of the orders is “correct” in the sense
that it meets the requirements of the Ada Reference Manual, and no such error occurs.

However, it may be the case for a given program, that there are constraints on the order
of elaboration that come not from consideration of avoiding elaboration errors, but rather
from extra-lingual logic requirements. Consider this example:

with Init_Constants;

package Constants is

X : Integer := 0;

Y : Integer := 0;

end Constants;

package Init_Constants is

procedure P; -- require a body

end Init_Constants;

with Constants;

package body Init_Constants is

procedure P is begin null; end;

begin

Constants.X := 3;

Constants.Y := 4;

end Init_Constants;

with Constants;

package Calc is

Z : Integer := Constants.X + Constants.Y;

end Calc;

with Calc;

with Text_IO; use Text_IO;

procedure Main is

begin

Put_Line (Calc.Z’Img);

end Main;

In this example, there is more than one valid order of elaboration. For example both the
following are correct orders:

Init_Constants spec

Constants spec

Calc spec

Init_Constants body

Main body

and

Init_Constants spec

Init_Constants body

Constants spec

Calc spec

Main body

268 GNAT User’s Guide for Native Platforms / Unix and Windows

There is no language rule to prefer one or the other, both are correct from an order of
elaboration point of view. But the programmatic effects of the two orders are very different.
In the first, the elaboration routine of Calc initializes Z to zero, and then the main program
runs with this value of zero. But in the second order, the elaboration routine of Calc runs
after the body of Init Constants has set X and Y and thus Z is set to 7 before Main runs.

One could perhaps by applying pretty clever non-artificial intelligence to the situation
guess that it is more likely that the second order of elaboration is the one desired, but there
is no formal linguistic reason to prefer one over the other. In fact in this particular case,
GNAT will prefer the second order, because of the rule that bodies are elaborated as soon
as possible, but it’s just luck that this is what was wanted (if indeed the second order was
preferred).

If the program cares about the order of elaboration routines in a case like this, it is
important to specify the order required. In this particular case, that could have been
achieved by adding to the spec of Calc:

pragma Elaborate_All (Constants);

which requires that the body (if any) and spec of Constants, as well as the body and spec
of any unit with’ed by Constants be elaborated before Calc is elaborated.

Clearly no automatic method can always guess which alternative you require, and if you
are working with legacy code that had constraints of this kind which were not properly
specified by adding Elaborate or Elaborate_All pragmas, then indeed it is possible that
two different compilers can choose different orders.

The gnatbind ‘-p’ switch may be useful in smoking out problems. This switch causes
bodies to be elaborated as late as possible instead of as early as possible. In the example
above, it would have forced the choice of the first elaboration order. If you get different
results when using this switch, and particularly if one set of results is right, and one is wrong
as far as you are concerned, it shows that you have some missing Elaborate pragmas. For
the example above, we have the following output:

gnatmake -f -q main

main

7

gnatmake -f -q main -bargs -p

main

0

It is of course quite unlikely that both these results are correct, so it is up to you in a
case like this to investigate the source of the difference, by looking at the two elaboration
orders that are chosen, and figuring out which is correct, and then adding the necessary
Elaborate_All pragmas to ensure the desired order.

Appendix D: Inline Assembler 269

Appendix D Inline Assembler

If you need to write low-level software that interacts directly with the hardware, Ada pro-
vides two ways to incorporate assembly language code into your program. First, you can
import and invoke external routines written in assembly language, an Ada feature fully
supported by GNAT. However, for small sections of code it may be simpler or more efficient
to include assembly language statements directly in your Ada source program, using the
facilities of the implementation-defined package System.Machine_Code, which incorporates
the gcc Inline Assembler. The Inline Assembler approach offers a number of advantages,
including the following:

• No need to use non-Ada tools
• Consistent interface over different targets
• Automatic usage of the proper calling conventions
• Access to Ada constants and variables
• Definition of intrinsic routines
• Possibility of inlining a subprogram comprising assembler code
• Code optimizer can take Inline Assembler code into account

This chapter presents a series of examples to show you how to use the Inline Assembler.
Although it focuses on the Intel x86, the general approach applies also to other processors.
It is assumed that you are familiar with Ada and with assembly language programming.

D.1 Basic Assembler Syntax

The assembler used by GNAT and gcc is based not on the Intel assembly language, but
rather on a language that descends from the AT&T Unix assembler as (and which is often
referred to as “AT&T syntax”). The following table summarizes the main features of as
syntax and points out the differences from the Intel conventions. See the gcc as and gas
(an as macro pre-processor) documentation for further information.

Register names
gcc / as: Prefix with “%”; for example %eax
Intel: No extra punctuation; for example eax

Immediate operand
gcc / as: Prefix with “$”; for example $4
Intel: No extra punctuation; for example 4

Address gcc / as: Prefix with “$”; for example $loc
Intel: No extra punctuation; for example loc

Memory contents
gcc / as: No extra punctuation; for example loc
Intel: Square brackets; for example [loc]

Register contents
gcc / as: Parentheses; for example (%eax)
Intel: Square brackets; for example [eax]

270 GNAT User’s Guide for Native Platforms / Unix and Windows

Hexadecimal numbers
gcc / as: Leading “0x” (C language syntax); for example 0xA0
Intel: Trailing “h”; for example A0h

Operand size
gcc / as: Explicit in op code; for example movw to move a 16-bit word
Intel: Implicit, deduced by assembler; for example mov

Instruction repetition
gcc / as: Split into two lines; for example
rep
stosl
Intel: Keep on one line; for example rep stosl

Order of operands
gcc / as: Source first; for example movw $4, %eax
Intel: Destination first; for example mov eax, 4

D.2 A Simple Example of Inline Assembler

The following example will generate a single assembly language statement, nop, which does
nothing. Despite its lack of run-time effect, the example will be useful in illustrating the
basics of the Inline Assembler facility.

with System.Machine_Code; use System.Machine_Code;

procedure Nothing is

begin

Asm ("nop");

end Nothing;

Asm is a procedure declared in package System.Machine_Code; here it takes one param-
eter, a template string that must be a static expression and that will form the generated
instruction. Asm may be regarded as a compile-time procedure that parses the template
string and additional parameters (none here), from which it generates a sequence of assem-
bly language instructions.

The examples in this chapter will illustrate several of the forms for invoking Asm; a
complete specification of the syntax is found in the GNAT Reference Manual.

Under the standard GNAT conventions, the Nothing procedure should be in a file named
‘nothing.adb’. You can build the executable in the usual way:

gnatmake nothing

However, the interesting aspect of this example is not its run-time behavior but rather
the generated assembly code. To see this output, invoke the compiler as follows:

gcc -c -S -fomit-frame-pointer -gnatp ‘nothing.adb’

where the options are:

-c compile only (no bind or link)

-S generate assembler listing

-fomit-frame-pointer
do not set up separate stack frames

-gnatp do not add runtime checks

Appendix D: Inline Assembler 271

This gives a human-readable assembler version of the code. The resulting file will have
the same name as the Ada source file, but with a .s extension. In our example, the file
‘nothing.s’ has the following contents:

.file "nothing.adb"

gcc2_compiled.:

___gnu_compiled_ada:

.text

.align 4

.globl __ada_nothing

__ada_nothing:

#APP

nop

#NO_APP

jmp L1

.align 2,0x90

L1:

ret

The assembly code you included is clearly indicated by the compiler, between the #APP
and #NO_APP delimiters. The character before the ’APP’ and ’NOAPP’ can differ on differ-
ent targets. For example, GNU/Linux uses ’#APP’ while on NT you will see ’/APP’.

If you make a mistake in your assembler code (such as using the wrong size modifier, or
using a wrong operand for the instruction) GNAT will report this error in a temporary file,
which will be deleted when the compilation is finished. Generating an assembler file will
help in such cases, since you can assemble this file separately using the as assembler that
comes with gcc.

Assembling the file using the command
as ‘nothing.s’

will give you error messages whose lines correspond to the assembler input file, so you can
easily find and correct any mistakes you made. If there are no errors, as will generate an
object file ‘nothing.out’.

D.3 Output Variables in Inline Assembler

The examples in this section, showing how to access the processor flags, illustrate how to
specify the destination operands for assembly language statements.

with Interfaces; use Interfaces;

with Ada.Text_IO; use Ada.Text_IO;

with System.Machine_Code; use System.Machine_Code;

procedure Get_Flags is

Flags : Unsigned_32;

use ASCII;

begin

Asm ("pushfl" & LF & HT & -- push flags on stack

"popl %%eax" & LF & HT & -- load eax with flags

"movl %%eax, %0", -- store flags in variable

Outputs => Unsigned_32’Asm_Output ("=g", Flags));

Put_Line ("Flags register:" & Flags’Img);

end Get_Flags;

In order to have a nicely aligned assembly listing, we have separated multiple assem-
bler statements in the Asm template string with linefeed (ASCII.LF) and horizontal tab
(ASCII.HT) characters. The resulting section of the assembly output file is:

272 GNAT User’s Guide for Native Platforms / Unix and Windows

#APP

pushfl

popl %eax

movl %eax, -40(%ebp)

#NO_APP

It would have been legal to write the Asm invocation as:
Asm ("pushfl popl %%eax movl %%eax, %0")

but in the generated assembler file, this would come out as:
#APP

pushfl popl %eax movl %eax, -40(%ebp)

#NO_APP

which is not so convenient for the human reader.
We use Ada comments at the end of each line to explain what the assembler instructions

actually do. This is a useful convention.
When writing Inline Assembler instructions, you need to precede each register and vari-

able name with a percent sign. Since the assembler already requires a percent sign at the
beginning of a register name, you need two consecutive percent signs for such names in the
Asm template string, thus %%eax. In the generated assembly code, one of the percent signs
will be stripped off.

Names such as %0, %1, %2, etc., denote input or output variables: operands you later
define using Input or Output parameters to Asm. An output variable is illustrated in the
third statement in the Asm template string:

movl %%eax, %0

The intent is to store the contents of the eax register in a variable that can be accessed
in Ada. Simply writing movl %%eax, Flags would not necessarily work, since the compiler
might optimize by using a register to hold Flags, and the expansion of the movl instruction
would not be aware of this optimization. The solution is not to store the result directly but
rather to advise the compiler to choose the correct operand form; that is the purpose of the
%0 output variable.

Information about the output variable is supplied in the Outputs parameter to Asm:
Outputs => Unsigned_32’Asm_Output ("=g", Flags));

The output is defined by the Asm_Output attribute of the target type; the general format
is

Type’Asm_Output (constraint_string, variable_name)

The constraint string directs the compiler how to store/access the associated variable.
In the example

Unsigned_32’Asm_Output ("=m", Flags);

the "m" (memory) constraint tells the compiler that the variable Flags should be stored
in a memory variable, thus preventing the optimizer from keeping it in a register. In
contrast,

Unsigned_32’Asm_Output ("=r", Flags);

uses the "r" (register) constraint, telling the compiler to store the variable in a register.
If the constraint is preceded by the equal character (=), it tells the compiler that the

variable will be used to store data into it.
In the Get_Flags example, we used the "g" (global) constraint, allowing the optimizer

to choose whatever it deems best.
There are a fairly large number of constraints, but the ones that are most useful (for the

Intel x86 processor) are the following:

Appendix D: Inline Assembler 273

= output constraint

g global (i.e. can be stored anywhere)

m in memory

I a constant

a use eax

b use ebx

c use ecx

d use edx

S use esi

D use edi

r use one of eax, ebx, ecx or edx

q use one of eax, ebx, ecx, edx, esi or edi

The full set of constraints is described in the gcc and as documentation; note that it is
possible to combine certain constraints in one constraint string.

You specify the association of an output variable with an assembler operand through
the %n notation, where n is a non-negative integer. Thus in

Asm ("pushfl" & LF & HT & -- push flags on stack

"popl %%eax" & LF & HT & -- load eax with flags

"movl %%eax, %0", -- store flags in variable

Outputs => Unsigned_32’Asm_Output ("=g", Flags));

%0 will be replaced in the expanded code by the appropriate operand, whatever the compiler
decided for the Flags variable.

In general, you may have any number of output variables:

• Count the operands starting at 0; thus %0, %1, etc.

• Specify the Outputs parameter as a parenthesized comma-separated list of Asm_Output
attributes

For example:
Asm ("movl %%eax, %0" & LF & HT &

"movl %%ebx, %1" & LF & HT &

"movl %%ecx, %2",

Outputs => (Unsigned_32’Asm_Output ("=g", Var_A), -- %0 = Var_A

Unsigned_32’Asm_Output ("=g", Var_B), -- %1 = Var_B

Unsigned_32’Asm_Output ("=g", Var_C))); -- %2 = Var_C

where Var_A, Var_B, and Var_C are variables in the Ada program.

As a variation on the Get_Flags example, we can use the constraints string to direct
the compiler to store the eax register into the Flags variable, instead of including the store
instruction explicitly in the Asm template string:

274 GNAT User’s Guide for Native Platforms / Unix and Windows

with Interfaces; use Interfaces;

with Ada.Text_IO; use Ada.Text_IO;

with System.Machine_Code; use System.Machine_Code;

procedure Get_Flags_2 is

Flags : Unsigned_32;

use ASCII;

begin

Asm ("pushfl" & LF & HT & -- push flags on stack

"popl %%eax", -- save flags in eax

Outputs => Unsigned_32’Asm_Output ("=a", Flags));

Put_Line ("Flags register:" & Flags’Img);

end Get_Flags_2;

The "a" constraint tells the compiler that the Flags variable will come from the eax register.
Here is the resulting code:

#APP

pushfl

popl %eax

#NO_APP

movl %eax,-40(%ebp)

The compiler generated the store of eax into Flags after expanding the assembler code.

Actually, there was no need to pop the flags into the eax register; more simply, we could
just pop the flags directly into the program variable:

with Interfaces; use Interfaces;

with Ada.Text_IO; use Ada.Text_IO;

with System.Machine_Code; use System.Machine_Code;

procedure Get_Flags_3 is

Flags : Unsigned_32;

use ASCII;

begin

Asm ("pushfl" & LF & HT & -- push flags on stack

"pop %0", -- save flags in Flags

Outputs => Unsigned_32’Asm_Output ("=g", Flags));

Put_Line ("Flags register:" & Flags’Img);

end Get_Flags_3;

D.4 Input Variables in Inline Assembler

The example in this section illustrates how to specify the source operands for assembly
language statements. The program simply increments its input value by 1:

Appendix D: Inline Assembler 275

with Interfaces; use Interfaces;

with Ada.Text_IO; use Ada.Text_IO;

with System.Machine_Code; use System.Machine_Code;

procedure Increment is

function Incr (Value : Unsigned_32) return Unsigned_32 is

Result : Unsigned_32;

begin

Asm ("incl %0",

Inputs => Unsigned_32’Asm_Input ("a", Value),

Outputs => Unsigned_32’Asm_Output ("=a", Result));

return Result;

end Incr;

Value : Unsigned_32;

begin

Value := 5;

Put_Line ("Value before is" & Value’Img);

Value := Incr (Value);

Put_Line ("Value after is" & Value’Img);

end Increment;

The Outputs parameter to Asm specifies that the result will be in the eax register and
that it is to be stored in the Result variable.

The Inputs parameter looks much like the Outputs parameter, but with an Asm_Input
attribute. The "=" constraint, indicating an output value, is not present.

You can have multiple input variables, in the same way that you can have more than
one output variable.

The parameter count (%0, %1) etc, now starts at the first input statement, and continues
with the output statements. When both parameters use the same variable, the compiler
will treat them as the same %n operand, which is the case here.

Just as the Outputs parameter causes the register to be stored into the target variable
after execution of the assembler statements, so does the Inputs parameter cause its variable
to be loaded into the register before execution of the assembler statements.

Thus the effect of the Asm invocation is:

1. load the 32-bit value of Value into eax

2. execute the incl %eax instruction

3. store the contents of eax into the Result variable

The resulting assembler file (with ‘-O2’ optimization) contains:
_increment__incr.1:

subl $4,%esp

movl 8(%esp),%eax

#APP

incl %eax

#NO_APP

movl %eax,%edx

movl %ecx,(%esp)

addl $4,%esp

ret

276 GNAT User’s Guide for Native Platforms / Unix and Windows

D.5 Inlining Inline Assembler Code

For a short subprogram such as the Incr function in the previous section, the overhead of
the call and return (creating / deleting the stack frame) can be significant, compared to
the amount of code in the subprogram body. A solution is to apply Ada’s Inline pragma
to the subprogram, which directs the compiler to expand invocations of the subprogram
at the point(s) of call, instead of setting up a stack frame for out-of-line calls. Here is the
resulting program:

with Interfaces; use Interfaces;

with Ada.Text_IO; use Ada.Text_IO;

with System.Machine_Code; use System.Machine_Code;

procedure Increment_2 is

function Incr (Value : Unsigned_32) return Unsigned_32 is

Result : Unsigned_32;

begin

Asm ("incl %0",

Inputs => Unsigned_32’Asm_Input ("a", Value),

Outputs => Unsigned_32’Asm_Output ("=a", Result));

return Result;

end Incr;

pragma Inline (Increment);

Value : Unsigned_32;

begin

Value := 5;

Put_Line ("Value before is" & Value’Img);

Value := Increment (Value);

Put_Line ("Value after is" & Value’Img);

end Increment_2;

Compile the program with both optimization (‘-O2’) and inlining enabled (‘-gnatpn’
instead of ‘-gnatp’).

The Incr function is still compiled as usual, but at the point in Increment where our
function used to be called:

pushl %edi

call _increment__incr.1

the code for the function body directly appears:
movl %esi,%eax

#APP

incl %eax

#NO_APP

movl %eax,%edx

thus saving the overhead of stack frame setup and an out-of-line call.

D.6 Other Asm Functionality

This section describes two important parameters to the Asm procedure: Clobber, which
identifies register usage; and Volatile, which inhibits unwanted optimizations.

D.6.1 The Clobber Parameter

One of the dangers of intermixing assembly language and a compiled language such as Ada is
that the compiler needs to be aware of which registers are being used by the assembly code.

Appendix D: Inline Assembler 277

In some cases, such as the earlier examples, the constraint string is sufficient to indicate
register usage (e.g., "a" for the eax register). But more generally, the compiler needs an
explicit identification of the registers that are used by the Inline Assembly statements.

Using a register that the compiler doesn’t know about could be a side effect of an
instruction (like mull storing its result in both eax and edx). It can also arise from explicit
register usage in your assembly code; for example:

Asm ("movl %0, %%ebx" & LF & HT &

"movl %%ebx, %1",

Inputs => Unsigned_32’Asm_Input ("g", Var_In),

Outputs => Unsigned_32’Asm_Output ("=g", Var_Out));

where the compiler (since it does not analyze the Asm template string) does not know you
are using the ebx register.

In such cases you need to supply the Clobber parameter to Asm, to identify the registers
that will be used by your assembly code:

Asm ("movl %0, %%ebx" & LF & HT &

"movl %%ebx, %1",

Inputs => Unsigned_32’Asm_Input ("g", Var_In),

Outputs => Unsigned_32’Asm_Output ("=g", Var_Out),

Clobber => "ebx");

The Clobber parameter is a static string expression specifying the register(s) you are
using. Note that register names are not prefixed by a percent sign. Also, if more than one
register is used then their names are separated by commas; e.g., "eax, ebx"

The Clobber parameter has several additional uses:
1. Use “register” name cc to indicate that flags might have changed
2. Use “register” name memory if you changed a memory location

D.6.2 The Volatile Parameter

Compiler optimizations in the presence of Inline Assembler may sometimes have unwanted
effects. For example, when an Asm invocation with an input variable is inside a loop, the
compiler might move the loading of the input variable outside the loop, regarding it as a
one-time initialization.

If this effect is not desired, you can disable such optimizations by setting the Volatile
parameter to True; for example:

Asm ("movl %0, %%ebx" & LF & HT &

"movl %%ebx, %1",

Inputs => Unsigned_32’Asm_Input ("g", Var_In),

Outputs => Unsigned_32’Asm_Output ("=g", Var_Out),

Clobber => "ebx",

Volatile => True);

By default, Volatile is set to False unless there is no Outputs parameter.
Although setting Volatile to True prevents unwanted optimizations, it will also disable

other optimizations that might be important for efficiency. In general, you should set
Volatile to True only if the compiler’s optimizations have created problems.

D.7 A Complete Example

This section contains a complete program illustrating a realistic usage of GNAT’s Inline
Assembler capabilities. It comprises a main procedure Check_CPU and a package Intel_
CPU. The package declares a collection of functions that detect the properties of the 32-bit

278 GNAT User’s Guide for Native Platforms / Unix and Windows

x86 processor that is running the program. The main procedure invokes these functions
and displays the information.

The Intel CPU package could be enhanced by adding functions to detect the type of
x386 co-processor, the processor caching options and special operations such as the SIMD
extensions.

Although the Intel CPU package has been written for 32-bit Intel compatible CPUs, it
is OS neutral. It has been tested on DOS, Windows/NT and GNU/Linux.

D.7.1 Check_CPU Procedure

-- --

-- Uses the Intel_CPU package to identify the CPU the program is --

-- running on, and some of the features it supports. --

-- --

with Intel_CPU; -- Intel CPU detection functions

with Ada.Text_IO; -- Standard text I/O

with Ada.Command_Line; -- To set the exit status

procedure Check_CPU is

Type_Found : Boolean := False;

-- Flag to indicate that processor was identified

Features : Intel_CPU.Processor_Features;

-- The processor features

Signature : Intel_CPU.Processor_Signature;

-- The processor type signature

begin

-- Display the program banner. --

Ada.Text_IO.Put_Line (Ada.Command_Line.Command_Name &

": check Intel CPU version and features, v1.0");

Ada.Text_IO.Put_Line ("distribute freely, but no warranty whatsoever");

Ada.Text_IO.New_Line;

-- We can safely start with the assumption that we are on at least --

-- a x386 processor. If the CPUID instruction is present, then we --

-- have a later processor type. --

if Intel_CPU.Has_CPUID = False then

-- No CPUID instruction, so we assume this is indeed a x386

-- processor. We can still check if it has a FP co-processor.

if Intel_CPU.Has_FPU then

Ada.Text_IO.Put_Line

("x386-type processor with a FP co-processor");

else

Appendix D: Inline Assembler 279

Ada.Text_IO.Put_Line

("x386-type processor without a FP co-processor");

end if; -- check for FPU

-- Program done

Ada.Command_Line.Set_Exit_Status (Ada.Command_Line.Success);

return;

end if; -- check for CPUID

-- If CPUID is supported, check if this is a true Intel processor, --

-- if it is not, display a warning. --

if Intel_CPU.Vendor_ID /= Intel_CPU.Intel_Processor then

Ada.Text_IO.Put_Line ("*** This is a Intel compatible processor");

Ada.Text_IO.Put_Line ("*** Some information may be incorrect");

end if; -- check if Intel

--

-- With the CPUID instruction present, we can assume at least a --

-- x486 processor. If the CPUID support level is < 1 then we have --

-- to leave it at that. --

--

if Intel_CPU.CPUID_Level < 1 then

-- Ok, this is a x486 processor. we still can get the Vendor ID

Ada.Text_IO.Put_Line ("x486-type processor");

Ada.Text_IO.Put_Line ("Vendor ID is " & Intel_CPU.Vendor_ID);

-- We can also check if there is a FPU present

if Intel_CPU.Has_FPU then

Ada.Text_IO.Put_Line ("Floating-Point support");

else

Ada.Text_IO.Put_Line ("No Floating-Point support");

end if; -- check for FPU

-- Program done

Ada.Command_Line.Set_Exit_Status (Ada.Command_Line.Success);

return;

end if; -- check CPUID level

-- With a CPUID level of 1 we can use the processor signature to --

-- determine it’s exact type. --

Signature := Intel_CPU.Signature;

--

-- Ok, now we go into a lot of messy comparisons to get the --

-- processor type. For clarity, no attememt to try to optimize the --

-- comparisons has been made. Note that since Intel_CPU does not --

-- support getting cache info, we cannot distinguish between P5 --

-- and Celeron types yet. --

280 GNAT User’s Guide for Native Platforms / Unix and Windows

--

-- x486SL

if Signature.Processor_Type = 2#00# and

Signature.Family = 2#0100# and

Signature.Model = 2#0100# then

Type_Found := True;

Ada.Text_IO.Put_Line ("x486SL processor");

end if;

-- x486DX2 Write-Back

if Signature.Processor_Type = 2#00# and

Signature.Family = 2#0100# and

Signature.Model = 2#0111# then

Type_Found := True;

Ada.Text_IO.Put_Line ("Write-Back Enhanced x486DX2 processor");

end if;

-- x486DX4

if Signature.Processor_Type = 2#00# and

Signature.Family = 2#0100# and

Signature.Model = 2#1000# then

Type_Found := True;

Ada.Text_IO.Put_Line ("x486DX4 processor");

end if;

-- x486DX4 Overdrive

if Signature.Processor_Type = 2#01# and

Signature.Family = 2#0100# and

Signature.Model = 2#1000# then

Type_Found := True;

Ada.Text_IO.Put_Line ("x486DX4 OverDrive processor");

end if;

-- Pentium (60, 66)

if Signature.Processor_Type = 2#00# and

Signature.Family = 2#0101# and

Signature.Model = 2#0001# then

Type_Found := True;

Ada.Text_IO.Put_Line ("Pentium processor (60, 66)");

end if;

-- Pentium (75, 90, 100, 120, 133, 150, 166, 200)

if Signature.Processor_Type = 2#00# and

Signature.Family = 2#0101# and

Signature.Model = 2#0010# then

Type_Found := True;

Ada.Text_IO.Put_Line

("Pentium processor (75, 90, 100, 120, 133, 150, 166, 200)");

end if;

-- Pentium OverDrive (60, 66)

if Signature.Processor_Type = 2#01# and

Signature.Family = 2#0101# and

Signature.Model = 2#0001# then

Type_Found := True;

Ada.Text_IO.Put_Line ("Pentium OverDrive processor (60, 66)");

end if;

Appendix D: Inline Assembler 281

-- Pentium OverDrive (75, 90, 100, 120, 133, 150, 166, 200)

if Signature.Processor_Type = 2#01# and

Signature.Family = 2#0101# and

Signature.Model = 2#0010# then

Type_Found := True;

Ada.Text_IO.Put_Line

("Pentium OverDrive cpu (75, 90, 100, 120, 133, 150, 166, 200)");

end if;

-- Pentium OverDrive processor for x486 processor-based systems

if Signature.Processor_Type = 2#01# and

Signature.Family = 2#0101# and

Signature.Model = 2#0011# then

Type_Found := True;

Ada.Text_IO.Put_Line

("Pentium OverDrive processor for x486 processor-based systems");

end if;

-- Pentium processor with MMX technology (166, 200)

if Signature.Processor_Type = 2#00# and

Signature.Family = 2#0101# and

Signature.Model = 2#0100# then

Type_Found := True;

Ada.Text_IO.Put_Line

("Pentium processor with MMX technology (166, 200)");

end if;

-- Pentium OverDrive with MMX for Pentium (75, 90, 100, 120, 133)

if Signature.Processor_Type = 2#01# and

Signature.Family = 2#0101# and

Signature.Model = 2#0100# then

Type_Found := True;

Ada.Text_IO.Put_Line

("Pentium OverDrive processor with MMX " &

"technology for Pentium processor (75, 90, 100, 120, 133)");

end if;

-- Pentium Pro processor

if Signature.Processor_Type = 2#00# and

Signature.Family = 2#0110# and

Signature.Model = 2#0001# then

Type_Found := True;

Ada.Text_IO.Put_Line ("Pentium Pro processor");

end if;

-- Pentium II processor, model 3

if Signature.Processor_Type = 2#00# and

Signature.Family = 2#0110# and

Signature.Model = 2#0011# then

Type_Found := True;

Ada.Text_IO.Put_Line ("Pentium II processor, model 3");

end if;

-- Pentium II processor, model 5 or Celeron processor

if Signature.Processor_Type = 2#00# and

Signature.Family = 2#0110# and

Signature.Model = 2#0101# then

282 GNAT User’s Guide for Native Platforms / Unix and Windows

Type_Found := True;

Ada.Text_IO.Put_Line

("Pentium II processor, model 5 or Celeron processor");

end if;

-- Pentium Pro OverDrive processor

if Signature.Processor_Type = 2#01# and

Signature.Family = 2#0110# and

Signature.Model = 2#0011# then

Type_Found := True;

Ada.Text_IO.Put_Line ("Pentium Pro OverDrive processor");

end if;

-- If no type recognized, we have an unknown. Display what

-- we _do_ know

if Type_Found = False then

Ada.Text_IO.Put_Line ("Unknown processor");

end if;

-- Display processor stepping level. --

Ada.Text_IO.Put_Line ("Stepping level:" & Signature.Stepping’Img);

-- Display vendor ID string. --

Ada.Text_IO.Put_Line ("Vendor ID: " & Intel_CPU.Vendor_ID);

-- Get the processors features. --

Features := Intel_CPU.Features;

-- Check for a FPU unit. --

if Features.FPU = True then

Ada.Text_IO.Put_Line ("Floating-Point unit available");

else

Ada.Text_IO.Put_Line ("no Floating-Point unit");

end if; -- check for FPU

-- List processor features. --

Ada.Text_IO.Put_Line ("Supported features: ");

-- Virtual Mode Extension

if Features.VME = True then

Ada.Text_IO.Put_Line (" VME - Virtual Mode Extension");

end if;

Appendix D: Inline Assembler 283

-- Debugging Extension

if Features.DE = True then

Ada.Text_IO.Put_Line (" DE - Debugging Extension");

end if;

-- Page Size Extension

if Features.PSE = True then

Ada.Text_IO.Put_Line (" PSE - Page Size Extension");

end if;

-- Time Stamp Counter

if Features.TSC = True then

Ada.Text_IO.Put_Line (" TSC - Time Stamp Counter");

end if;

-- Model Specific Registers

if Features.MSR = True then

Ada.Text_IO.Put_Line (" MSR - Model Specific Registers");

end if;

-- Physical Address Extension

if Features.PAE = True then

Ada.Text_IO.Put_Line (" PAE - Physical Address Extension");

end if;

-- Machine Check Extension

if Features.MCE = True then

Ada.Text_IO.Put_Line (" MCE - Machine Check Extension");

end if;

-- CMPXCHG8 instruction supported

if Features.CX8 = True then

Ada.Text_IO.Put_Line (" CX8 - CMPXCHG8 instruction");

end if;

-- on-chip APIC hardware support

if Features.APIC = True then

Ada.Text_IO.Put_Line (" APIC - on-chip APIC hardware support");

end if;

-- Fast System Call

if Features.SEP = True then

Ada.Text_IO.Put_Line (" SEP - Fast System Call");

end if;

-- Memory Type Range Registers

if Features.MTRR = True then

Ada.Text_IO.Put_Line (" MTTR - Memory Type Range Registers");

end if;

-- Page Global Enable

if Features.PGE = True then

Ada.Text_IO.Put_Line (" PGE - Page Global Enable");

end if;

-- Machine Check Architecture

if Features.MCA = True then

Ada.Text_IO.Put_Line (" MCA - Machine Check Architecture");

284 GNAT User’s Guide for Native Platforms / Unix and Windows

end if;

-- Conditional Move Instruction Supported

if Features.CMOV = True then

Ada.Text_IO.Put_Line

(" CMOV - Conditional Move Instruction Supported");

end if;

-- Page Attribute Table

if Features.PAT = True then

Ada.Text_IO.Put_Line (" PAT - Page Attribute Table");

end if;

-- 36-bit Page Size Extension

if Features.PSE_36 = True then

Ada.Text_IO.Put_Line (" PSE_36 - 36-bit Page Size Extension");

end if;

-- MMX technology supported

if Features.MMX = True then

Ada.Text_IO.Put_Line (" MMX - MMX technology supported");

end if;

-- Fast FP Save and Restore

if Features.FXSR = True then

Ada.Text_IO.Put_Line (" FXSR - Fast FP Save and Restore");

end if;

-- Program done. --

Ada.Command_Line.Set_Exit_Status (Ada.Command_Line.Success);

exception

when others =>

Ada.Command_Line.Set_Exit_Status (Ada.Command_Line.Failure);

raise;

end Check_CPU;

D.7.2 Intel_CPU Package Specification

-- --

-- file: intel_cpu.ads --

-- --

-- *** --

-- * WARNING: for 32-bit Intel processors only * --

-- *** --

-- --

-- This package contains a number of subprograms that are useful in --

-- determining the Intel x86 CPU (and the features it supports) on --

-- which the program is running. --

-- --

-- The package is based upon the information given in the Intel --

-- Application Note AP-485: "Intel Processor Identification and the --

-- CPUID Instruction" as of April 1998. This application note can be --

Appendix D: Inline Assembler 285

-- found on www.intel.com. --

-- --

-- It currently deals with 32-bit processors only, will not detect --

-- features added after april 1998, and does not guarantee proper --

-- results on Intel-compatible processors. --

-- --

-- Cache info and x386 fpu type detection are not supported. --

-- --

-- This package does not use any privileged instructions, so should --

-- work on any OS running on a 32-bit Intel processor. --

-- --

with Interfaces; use Interfaces;

-- for using unsigned types

with System.Machine_Code; use System.Machine_Code;

-- for using inline assembler code

with Ada.Characters.Latin_1; use Ada.Characters.Latin_1;

-- for inserting control characters

package Intel_CPU is

-- Processor bits --

subtype Num_Bits is Natural range 0 .. 31;

-- the number of processor bits (32)

-- Processor register --

-- define a processor register type for easy access to

-- the individual bits

type Processor_Register is array (Num_Bits) of Boolean;

pragma Pack (Processor_Register);

for Processor_Register’Size use 32;

-- Unsigned register --

-- define a processor register type for easy access to

-- the individual bytes

type Unsigned_Register is

record

L1 : Unsigned_8;

H1 : Unsigned_8;

L2 : Unsigned_8;

H2 : Unsigned_8;

end record;

for Unsigned_Register use

286 GNAT User’s Guide for Native Platforms / Unix and Windows

record

L1 at 0 range 0 .. 7;

H1 at 0 range 8 .. 15;

L2 at 0 range 16 .. 23;

H2 at 0 range 24 .. 31;

end record;

for Unsigned_Register’Size use 32;

-- Intel processor vendor ID --

Intel_Processor : constant String (1 .. 12) := "GenuineIntel";

-- indicates an Intel manufactured processor

-- Processor signature register --

-- a register type to hold the processor signature

type Processor_Signature is

record

Stepping : Natural range 0 .. 15;

Model : Natural range 0 .. 15;

Family : Natural range 0 .. 15;

Processor_Type : Natural range 0 .. 3;

Reserved : Natural range 0 .. 262143;

end record;

for Processor_Signature use

record

Stepping at 0 range 0 .. 3;

Model at 0 range 4 .. 7;

Family at 0 range 8 .. 11;

Processor_Type at 0 range 12 .. 13;

Reserved at 0 range 14 .. 31;

end record;

for Processor_Signature’Size use 32;

-- Processor features register --

-- a processor register to hold the processor feature flags

type Processor_Features is

record

FPU : Boolean; -- floating point unit on chip

VME : Boolean; -- virtual mode extension

DE : Boolean; -- debugging extension

PSE : Boolean; -- page size extension

TSC : Boolean; -- time stamp counter

MSR : Boolean; -- model specific registers

PAE : Boolean; -- physical address extension

MCE : Boolean; -- machine check extension

Appendix D: Inline Assembler 287

CX8 : Boolean; -- cmpxchg8 instruction

APIC : Boolean; -- on-chip apic hardware

Res_1 : Boolean; -- reserved for extensions

SEP : Boolean; -- fast system call

MTRR : Boolean; -- memory type range registers

PGE : Boolean; -- page global enable

MCA : Boolean; -- machine check architecture

CMOV : Boolean; -- conditional move supported

PAT : Boolean; -- page attribute table

PSE_36 : Boolean; -- 36-bit page size extension

Res_2 : Natural range 0 .. 31; -- reserved for extensions

MMX : Boolean; -- MMX technology supported

FXSR : Boolean; -- fast FP save and restore

Res_3 : Natural range 0 .. 127; -- reserved for extensions

end record;

for Processor_Features use

record

FPU at 0 range 0 .. 0;

VME at 0 range 1 .. 1;

DE at 0 range 2 .. 2;

PSE at 0 range 3 .. 3;

TSC at 0 range 4 .. 4;

MSR at 0 range 5 .. 5;

PAE at 0 range 6 .. 6;

MCE at 0 range 7 .. 7;

CX8 at 0 range 8 .. 8;

APIC at 0 range 9 .. 9;

Res_1 at 0 range 10 .. 10;

SEP at 0 range 11 .. 11;

MTRR at 0 range 12 .. 12;

PGE at 0 range 13 .. 13;

MCA at 0 range 14 .. 14;

CMOV at 0 range 15 .. 15;

PAT at 0 range 16 .. 16;

PSE_36 at 0 range 17 .. 17;

Res_2 at 0 range 18 .. 22;

MMX at 0 range 23 .. 23;

FXSR at 0 range 24 .. 24;

Res_3 at 0 range 25 .. 31;

end record;

for Processor_Features’Size use 32;

-- Subprograms --

function Has_FPU return Boolean;

-- return True if a FPU is found

-- use only if CPUID is not supported

function Has_CPUID return Boolean;

-- return True if the processor supports the CPUID instruction

function CPUID_Level return Natural;

-- return the CPUID support level (0, 1 or 2)

-- can only be called if the CPUID instruction is supported

288 GNAT User’s Guide for Native Platforms / Unix and Windows

function Vendor_ID return String;

-- return the processor vendor identification string

-- can only be called if the CPUID instruction is supported

function Signature return Processor_Signature;

-- return the processor signature

-- can only be called if the CPUID instruction is supported

function Features return Processor_Features;

-- return the processors features

-- can only be called if the CPUID instruction is supported

private

-- EFLAGS bit names --

ID_Flag : constant Num_Bits := 21;

-- ID flag bit

end Intel_CPU;

D.7.3 Intel_CPU Package Body
package body Intel_CPU is

-- Detect FPU presence --

-- There is a FPU present if we can set values to the FPU Status

-- and Control Words.

function Has_FPU return Boolean is

Register : Unsigned_16;

-- processor register to store a word

begin

-- check if we can change the status word

Asm (

-- the assembler code

"finit" & LF & HT & -- reset status word

"movw $0x5A5A, %%ax" & LF & HT & -- set value status word

"fnstsw %0" & LF & HT & -- save status word

"movw %%ax, %0", -- store status word

-- output stored in Register

-- register must be a memory location

Outputs => Unsigned_16’Asm_output ("=m", Register),

-- tell compiler that we used eax

Clobber => "eax");

-- if the status word is zero, there is no FPU

Appendix D: Inline Assembler 289

if Register = 0 then

return False; -- no status word

end if; -- check status word value

-- check if we can get the control word

Asm (

-- the assembler code

"fnstcw %0", -- save the control word

-- output into Register

-- register must be a memory location

Outputs => Unsigned_16’Asm_output ("=m", Register));

-- check the relevant bits

if (Register and 16#103F#) /= 16#003F# then

return False; -- no control word

end if; -- check control word value

-- FPU found

return True;

end Has_FPU;

-- Detect CPUID instruction --

-- The processor supports the CPUID instruction if it is possible

-- to change the value of ID flag bit in the EFLAGS register.

function Has_CPUID return Boolean is

Original_Flags, Modified_Flags : Processor_Register;

-- EFLAG contents before and after changing the ID flag

begin

-- try flipping the ID flag in the EFLAGS register

Asm (

-- the assembler code

"pushfl" & LF & HT & -- push EFLAGS on stack

"pop %%eax" & LF & HT & -- pop EFLAGS into eax

"movl %%eax, %0" & LF & HT & -- save EFLAGS content

"xor $0x200000, %%eax" & LF & HT & -- flip ID flag

"push %%eax" & LF & HT & -- push EFLAGS on stack

"popfl" & LF & HT & -- load EFLAGS register

"pushfl" & LF & HT & -- push EFLAGS on stack

"pop %1", -- save EFLAGS content

-- output values, may be anything

-- Original_Flags is %0

-- Modified_Flags is %1

Outputs =>

(Processor_Register’Asm_output ("=g", Original_Flags),

Processor_Register’Asm_output ("=g", Modified_Flags)),

290 GNAT User’s Guide for Native Platforms / Unix and Windows

-- tell compiler eax is destroyed

Clobber => "eax");

-- check if CPUID is supported

if Original_Flags(ID_Flag) /= Modified_Flags(ID_Flag) then

return True; -- ID flag was modified

else

return False; -- ID flag unchanged

end if; -- check for CPUID

end Has_CPUID;

-- Get CPUID support level --

function CPUID_Level return Natural is

Level : Unsigned_32;

-- returned support level

begin

-- execute CPUID, storing the results in the Level register

Asm (

-- the assembler code

"cpuid", -- execute CPUID

-- zero is stored in eax

-- returning the support level in eax

Inputs => Unsigned_32’Asm_input ("a", 0),

-- eax is stored in Level

Outputs => Unsigned_32’Asm_output ("=a", Level),

-- tell compiler ebx, ecx and edx registers are destroyed

Clobber => "ebx, ecx, edx");

-- return the support level

return Natural (Level);

end CPUID_Level;

-- Get CPU Vendor ID String --

-- The vendor ID string is returned in the ebx, ecx and edx register

-- after executing the CPUID instruction with eax set to zero.

-- In case of a true Intel processor the string returned is

-- "GenuineIntel"

function Vendor_ID return String is

Ebx, Ecx, Edx : Unsigned_Register;

-- registers containing the vendor ID string

Appendix D: Inline Assembler 291

Vendor_ID : String (1 .. 12);

-- the vendor ID string

begin

-- execute CPUID, storing the results in the processor registers

Asm (

-- the assembler code

"cpuid", -- execute CPUID

-- zero stored in eax

-- vendor ID string returned in ebx, ecx and edx

Inputs => Unsigned_32’Asm_input ("a", 0),

-- ebx is stored in Ebx

-- ecx is stored in Ecx

-- edx is stored in Edx

Outputs => (Unsigned_Register’Asm_output ("=b", Ebx),

Unsigned_Register’Asm_output ("=c", Ecx),

Unsigned_Register’Asm_output ("=d", Edx)));

-- now build the vendor ID string

Vendor_ID(1) := Character’Val (Ebx.L1);

Vendor_ID(2) := Character’Val (Ebx.H1);

Vendor_ID(3) := Character’Val (Ebx.L2);

Vendor_ID(4) := Character’Val (Ebx.H2);

Vendor_ID(5) := Character’Val (Edx.L1);

Vendor_ID(6) := Character’Val (Edx.H1);

Vendor_ID(7) := Character’Val (Edx.L2);

Vendor_ID(8) := Character’Val (Edx.H2);

Vendor_ID(9) := Character’Val (Ecx.L1);

Vendor_ID(10) := Character’Val (Ecx.H1);

Vendor_ID(11) := Character’Val (Ecx.L2);

Vendor_ID(12) := Character’Val (Ecx.H2);

-- return string

return Vendor_ID;

end Vendor_ID;

-- Get processor signature --

function Signature return Processor_Signature is

Result : Processor_Signature;

-- processor signature returned

begin

-- execute CPUID, storing the results in the Result variable

Asm (

-- the assembler code

"cpuid", -- execute CPUID

292 GNAT User’s Guide for Native Platforms / Unix and Windows

-- one is stored in eax

-- processor signature returned in eax

Inputs => Unsigned_32’Asm_input ("a", 1),

-- eax is stored in Result

Outputs => Processor_Signature’Asm_output ("=a", Result),

-- tell compiler that ebx, ecx and edx are also destroyed

Clobber => "ebx, ecx, edx");

-- return processor signature

return Result;

end Signature;

-- Get processor features --

function Features return Processor_Features is

Result : Processor_Features;

-- processor features returned

begin

-- execute CPUID, storing the results in the Result variable

Asm (

-- the assembler code

"cpuid", -- execute CPUID

-- one stored in eax

-- processor features returned in edx

Inputs => Unsigned_32’Asm_input ("a", 1),

-- edx is stored in Result

Outputs => Processor_Features’Asm_output ("=d", Result),

-- tell compiler that ebx and ecx are also destroyed

Clobber => "ebx, ecx");

-- return processor signature

return Result;

end Features;

end Intel_CPU;

Appendix E: Compatibility and Porting Guide 293

Appendix E Compatibility and Porting Guide

This chapter describes the compatibility issues that may arise between GNAT and other
Ada 83 and Ada 95 compilation systems, and shows how GNAT can expedite porting
applications developed in other Ada environments.

E.1 Compatibility with Ada 83

Ada 95 is designed to be highly upwards compatible with Ada 83. In particular, the design
intention is that the difficulties associated with moving from Ada 83 to Ada 95 should be
no greater than those that occur when moving from one Ada 83 system to another.

However, there are a number of points at which there are minor incompatibilities. The
Ada 95 Annotated Reference Manual contains full details of these issues, and should be
consulted for a complete treatment. In practice the following subsections treat the most
likely issues to be encountered.

E.1.1 Legal Ada 83 programs that are illegal in Ada 95

Character literals
Some uses of character literals are ambiguous. Since Ada 95 has introduced
Wide_Character as a new predefined character type, some uses of character
literals that were legal in Ada 83 are illegal in Ada 95. For example:

for Char in ’A’ .. ’Z’ loop ... end loop;

The problem is that ’A’ and ’Z’ could be from either Character or Wide_
Character. The simplest correction is to make the type explicit; e.g.:

for Char in Character range ’A’ .. ’Z’ loop ... end loop;

New reserved words
The identifiers abstract, aliased, protected, requeue, tagged, and until
are reserved in Ada 95. Existing Ada 83 code using any of these identifiers
must be edited to use some alternative name.

Freezing rules
The rules in Ada 95 are slightly different with regard to the point at which enti-
ties are frozen, and representation pragmas and clauses are not permitted past
the freeze point. This shows up most typically in the form of an error message
complaining that a representation item appears too late, and the appropriate
corrective action is to move the item nearer to the declaration of the entity to
which it refers.
A particular case is that representation pragmas cannot be applied to a subpro-
gram body. If necessary, a separate subprogram declaration must be introduced
to which the pragma can be applied.

Optional bodies for library packages
In Ada 83, a package that did not require a package body was nevertheless
allowed to have one. This lead to certain surprises in compiling large systems
(situations in which the body could be unexpectedly ignored by the binder).
In Ada 95, if a package does not require a body then it is not permitted to
have a body. To fix this problem, simply remove a redundant body if it is
empty, or, if it is non-empty, introduce a dummy declaration into the spec

294 GNAT User’s Guide for Native Platforms / Unix and Windows

that makes the body required. One approach is to add a private part to the
package declaration (if necessary), and define a parameterless procedure called
Requires_Body, which must then be given a dummy procedure body in the
package body, which then becomes required. Another approach (assuming that
this does not introduce elaboration circularities) is to add an Elaborate_Body
pragma to the package spec, since one effect of this pragma is to require the
presence of a package body.

Numeric_Error is now the same as Constraint_Error
In Ada 95, the exception Numeric_Error is a renaming of Constraint_Error.
This means that it is illegal to have separate exception handlers for the two
exceptions. The fix is simply to remove the handler for the Numeric_Error
case (since even in Ada 83, a compiler was free to raise Constraint_Error in
place of Numeric_Error in all cases).

Indefinite subtypes in generics
In Ada 83, it was permissible to pass an indefinite type (e.g. String) as the
actual for a generic formal private type, but then the instantiation would be
illegal if there were any instances of declarations of variables of this type in the
generic body. In Ada 95, to avoid this clear violation of the methodological
principle known as the “contract model”, the generic declaration explicitly in-
dicates whether or not such instantiations are permitted. If a generic formal
parameter has explicit unknown discriminants, indicated by using (<>) after
the type name, then it can be instantiated with indefinite types, but no stand-
alone variables can be declared of this type. Any attempt to declare such a
variable will result in an illegality at the time the generic is declared. If the
(<>) notation is not used, then it is illegal to instantiate the generic with an
indefinite type. This is the potential incompatibility issue when porting Ada 83
code to Ada 95. It will show up as a compile time error, and the fix is usually
simply to add the (<>) to the generic declaration.

E.1.2 More deterministic semantics

Conversions
Conversions from real types to integer types round away from 0. In Ada 83
the conversion Integer(2.5) could deliver either 2 or 3 as its value. This im-
plementation freedom was intended to support unbiased rounding in statistical
applications, but in practice it interfered with portability. In Ada 95 the con-
version semantics are unambiguous, and rounding away from 0 is required.
Numeric code may be affected by this change in semantics. Note, though, that
this issue is no worse than already existed in Ada 83 when porting code from
one vendor to another.

Tasking The Real-Time Annex introduces a set of policies that define the behavior of
features that were implementation dependent in Ada 83, such as the order in
which open select branches are executed.

E.1.3 Changed semantics

The worst kind of incompatibility is one where a program that is legal in Ada 83 is also legal
in Ada 95 but can have an effect in Ada 95 that was not possible in Ada 83. Fortunately

Appendix E: Compatibility and Porting Guide 295

this is extremely rare, but the one situation that you should be alert to is the change in the
predefined type Character from 7-bit ASCII to 8-bit Latin-1.

range of Character
The range of Standard.Character is now the full 256 characters of Latin-1,
whereas in most Ada 83 implementations it was restricted to 128 characters.
Although some of the effects of this change will be manifest in compile-time
rejection of legal Ada 83 programs it is possible for a working Ada 83 program
to have a different effect in Ada 95, one that was not permitted in Ada 83. As
an example, the expression Character’Pos(Character’Last) returned 127 in
Ada 83 and now delivers 255 as its value. In general, you should look at the
logic of any character-processing Ada 83 program and see whether it needs to
be adapted to work correctly with Latin-1. Note that the predefined Ada 95
API has a character handling package that may be relevant if code needs to be
adapted to account for the additional Latin-1 elements. The desirable fix is to
modify the program to accommodate the full character set, but in some cases it
may be convenient to define a subtype or derived type of Character that covers
only the restricted range.

E.1.4 Other language compatibility issues

‘-gnat83 switch’
All implementations of GNAT provide a switch that causes GNAT to operate
in Ada 83 mode. In this mode, some but not all compatibility problems of the
type described above are handled automatically. For example, the new Ada
95 reserved words are treated simply as identifiers as in Ada 83. However,
in practice, it is usually advisable to make the necessary modifications to the
program to remove the need for using this switch. See Section 3.2.10 [Compiling
Ada 83 Programs], page 60.

Support for removed Ada 83 pragmas and attributes
A number of pragmas and attributes from Ada 83 have been removed from Ada
95, generally because they have been replaced by other mechanisms. Ada 95
compilers are allowed, but not required, to implement these missing elements.
In contrast with some other Ada 95 compilers, GNAT implements all such
pragmas and attributes, eliminating this compatibility concern. These include
pragma Interface and the floating point type attributes (Emax, Mantissa,
etc.), among other items.

E.2 Implementation-dependent characteristics

Although the Ada language defines the semantics of each construct as precisely as practical,
in some situations (for example for reasons of efficiency, or where the effect is heavily
dependent on the host or target platform) the implementation is allowed some freedom.
In porting Ada 83 code to GNAT, you need to be aware of whether / how the existing
code exercised such implementation dependencies. Such characteristics fall into several
categories, and GNAT offers specific support in assisting the transition from certain Ada
83 compilers.

296 GNAT User’s Guide for Native Platforms / Unix and Windows

E.2.1 Implementation-defined pragmas

Ada compilers are allowed to supplement the language-defined pragmas, and these are a
potential source of non-portability. All GNAT-defined pragmas are described in the GNAT
Reference Manual, and these include several that are specifically intended to correspond
to other vendors’ Ada 83 pragmas. For migrating from VADS, the pragma Use_VADS_
Size may be useful. For compatibility with DEC Ada 83, GNAT supplies the pragmas
Extend_System, Ident, Inline_Generic, Interface_Name, Passive, Suppress_All, and
Volatile. Other relevant pragmas include External and Link_With. Some vendor-specific
Ada 83 pragmas (Share_Generic, Subtitle, and Title) are recognized, thus avoiding
compiler rejection of units that contain such pragmas; they are not relevant in a GNAT
context and hence are not otherwise implemented.

E.2.2 Implementation-defined attributes

Analogous to pragmas, the set of attributes may be extended by an implementation. All
GNAT-defined attributes are described in the GNAT Reference Manual, and these include
several that are specifically intended to correspond to other vendors’ Ada 83 attributes.
For migrating from VADS, the attribute VADS_Size may be useful. For compatibility with
DEC Ada 83, GNAT supplies the attributes Bit, Machine_Size and Type_Class.

E.2.3 Libraries

Vendors may supply libraries to supplement the standard Ada API. If Ada 83 code uses
vendor-specific libraries then there are several ways to manage this in Ada 95:

1. If the source code for the libraries (specifications and bodies) are available, then the
libraries can be migrated in the same way as the application.

2. If the source code for the specifications but not the bodies are available, then you can
reimplement the bodies.

3. Some new Ada 95 features obviate the need for library support. For example most Ada
83 vendors supplied a package for unsigned integers. The Ada 95 modular type feature
is the preferred way to handle this need, so instead of migrating or reimplementing the
unsigned integer package it may be preferable to retrofit the application using modular
types.

E.2.4 Elaboration order

The implementation can choose any elaboration order consistent with the unit dependency
relationship. This freedom means that some orders can result in Program Error being
raised due to an “Access Before Elaboration”: an attempt to invoke a subprogram its
body has been elaborated, or to instantiate a generic before the generic body has been
elaborated. By default GNAT attempts to choose a safe order (one that will not encounter
access before elaboration problems) by implicitly inserting Elaborate All pragmas where
needed. However, this can lead to the creation of elaboration circularities and a resulting
rejection of the program by gnatbind. This issue is thoroughly described in Appendix C
[Elaboration Order Handling in GNAT], page 245. In brief, there are several ways to deal
with this situation:

• Modify the program to eliminate the circularities, e.g. by moving elaboration-time
code into explicitly-invoked procedures

Appendix E: Compatibility and Porting Guide 297

• Constrain the elaboration order by including explicit Elaborate_Body or Elaborate
pragmas, and then inhibit the generation of implicit Elaborate_All pragmas either
globally (as an effect of the ‘-gnatE’ switch) or locally (by selectively suppressing
elaboration checks via pragma Suppress(Elaboration_Check) when it is safe to do
so).

E.2.5 Target-specific aspects

Low-level applications need to deal with machine addresses, data representations, interfacing
with assembler code, and similar issues. If such an Ada 83 application is being ported to
different target hardware (for example where the byte endianness has changed) then you will
need to carefully examine the program logic; the porting effort will heavily depend on the
robustness of the original design. Moreover, Ada 95 is sometimes incompatible with typical
Ada 83 compiler practices regarding implicit packing, the meaning of the Size attribute,
and the size of access values. GNAT’s approach to these issues is described in Section E.4
[Representation Clauses], page 297.

E.3 Compatibility with Other Ada 95 Systems

Providing that programs avoid the use of implementation dependent and implementation
defined features of Ada 95, as documented in the Ada 95 reference manual, there should be
a high degree of portability between GNAT and other Ada 95 systems. The following are
specific items which have proved troublesome in moving GNAT programs to other Ada 95
compilers, but do not affect porting code to GNAT.

Ada 83 Pragmas and Attributes
Ada 95 compilers are allowed, but not required, to implement the missing Ada
83 pragmas and attributes that are no longer defined in Ada 95. GNAT im-
plements all such pragmas and attributes, eliminating this as a compatibility
concern, but some other Ada 95 compilers reject these pragmas and attributes.

Special-needs Annexes
GNAT implements the full set of special needs annexes. At the current time,
it is the only Ada 95 compiler to do so. This means that programs making use
of these features may not be portable to other Ada 95 compilation systems.

Representation Clauses
Some other Ada 95 compilers implement only the minimal set of representation
clauses required by the Ada 95 reference manual. GNAT goes far beyond this
minimal set, as described in the next section.

E.4 Representation Clauses

The Ada 83 reference manual was quite vague in describing both the minimal required im-
plementation of representation clauses, and also their precise effects. The Ada 95 reference
manual is much more explicit, but the minimal set of capabilities required in Ada 95 is
quite limited.

GNAT implements the full required set of capabilities described in the Ada 95 reference
manual, but also goes much beyond this, and in particular an effort has been made to be
compatible with existing Ada 83 usage to the greatest extent possible.

298 GNAT User’s Guide for Native Platforms / Unix and Windows

A few cases exist in which Ada 83 compiler behavior is incompatible with requirements in
the Ada 95 reference manual. These are instances of intentional or accidental dependence on
specific implementation dependent characteristics of these Ada 83 compilers. The following
is a list of the cases most likely to arise in existing legacy Ada 83 code.

Implicit Packing
Some Ada 83 compilers allowed a Size specification to cause implicit packing of
an array or record. This could cause expensive implicit conversions for change
of representation in the presence of derived types, and the Ada design intends
to avoid this possibility. Subsequent AI’s were issued to make it clear that such
implicit change of representation in response to a Size clause is inadvisable,
and this recommendation is represented explicitly in the Ada 95 RM as imple-
mentation advice that is followed by GNAT. The problem will show up as an
error message rejecting the size clause. The fix is simply to provide the explicit
pragma Pack, or for more fine tuned control, provide a Component Size clause.

Meaning of Size Attribute
The Size attribute in Ada 95 for discrete types is defined as being the minimal
number of bits required to hold values of the type. For example, on a 32-bit
machine, the size of Natural will typically be 31 and not 32 (since no sign bit
is required). Some Ada 83 compilers gave 31, and some 32 in this situation.
This problem will usually show up as a compile time error, but not always.
It is a good idea to check all uses of the ’Size attribute when porting Ada 83
code. The GNAT specific attribute Object Size can provide a useful way of
duplicating the behavior of some Ada 83 compiler systems.

Size of Access Types
A common assumption in Ada 83 code is that an access type is in fact a pointer,
and that therefore it will be the same size as a System.Address value. This
assumption is true for GNAT in most cases with one exception. For the case
of a pointer to an unconstrained array type (where the bounds may vary from
one value of the access type to another), the default is to use a “fat pointer”,
which is represented as two separate pointers, one to the bounds, and one to
the array. This representation has a number of advantages, including improved
efficiency. However, it may cause some difficulties in porting existing Ada 83
code which makes the assumption that, for example, pointers fit in 32 bits on
a machine with 32-bit addressing.
To get around this problem, GNAT also permits the use of “thin pointers” for
access types in this case (where the designated type is an unconstrained array
type). These thin pointers are indeed the same size as a System.Address value.
To specify a thin pointer, use a size clause for the type, for example:

type X is access all String;

for X’Size use Standard’Address_Size;

which will cause the type X to be represented using a single pointer. When using
this representation, the bounds are right behind the array. This representation
is slightly less efficient, and does not allow quite such flexibility in the use of
foreign pointers or in using the Unrestricted Access attribute to create pointers
to non-aliased objects. But for any standard portable use of the access type

Appendix E: Compatibility and Porting Guide 299

it will work in a functionally correct manner and allow porting of existing
code. Note that another way of forcing a thin pointer representation is to use a
component size clause for the element size in an array, or a record representation
clause for an access field in a record.

E.5 Compatibility with DEC Ada 83

The VMS version of GNAT fully implements all the pragmas and attributes provided by
DEC Ada 83, as well as providing the standard DEC Ada 83 libraries, including Starlet.
In addition, data layouts and parameter passing conventions are highly compatible. This
means that porting existing DEC Ada 83 code to GNAT in VMS systems should be easier
than most other porting efforts. The following are some of the most significant differences
between GNAT and DEC Ada 83.

Default floating-point representation
In GNAT, the default floating-point format is IEEE, whereas in DEC Ada 83,
it is VMS format. GNAT does implement the necessary pragmas (Long Float,
Float Representation) for changing this default.

System The package System in GNAT exactly corresponds to the definition in the Ada
95 reference manual, which means that it excludes many of the DEC Ada 83
extensions. However, a separate package Aux DEC is provided that contains
the additional definitions, and a special pragma, Extend System allows this
package to be treated transparently as an extension of package System.

To Address
The definitions provided by Aux DEC are exactly compatible with those in the
DEC Ada 83 version of System, with one exception. DEC Ada provides the
following declarations:

TO_ADDRESS (INTEGER)

TO_ADDRESS (UNSIGNED_LONGWORD)

TO_ADDRESS (universal_integer)

The version of TO ADDRESS taking a universal integer argument is in fact
an extension to Ada 83 not strictly compatible with the reference manual. In
GNAT, we are constrained to be exactly compatible with the standard, and
this means we cannot provide this capability. In DEC Ada 83, the point of this
definition is to deal with a call like:

TO_ADDRESS (16#12777#);

Normally, according to the Ada 83 standard, one would expect this to be am-
biguous, since it matches both the INTEGER and UNSIGNED LONGWORD
forms of TO ADDRESS. However, in DEC Ada 83, there is no ambiguity, since
the definition using universal integer takes precedence.
In GNAT, since the version with universal integer cannot be supplied, it is not
possible to be 100% compatible. Since there are many programs using numeric
constants for the argument to TO ADDRESS, the decision in GNAT was to
change the name of the function in the UNSIGNED LONGWORD case, so the
declarations provided in the GNAT version of AUX Dec are:

function To_Address (X : Integer) return Address;

pragma Pure_Function (To_Address);

300 GNAT User’s Guide for Native Platforms / Unix and Windows

function To_Address_Long (X : Unsigned_Longword)

return Address;

pragma Pure_Function (To_Address_Long);

This means that programs using TO ADDRESS for UNSIGNED LONGWORD
must change the name to TO ADDRESS LONG.

Task Id values
The Task Id values assigned will be different in the two systems, and GNAT
does not provide a specified value for the Task Id of the environment task,
which in GNAT is treated like any other declared task.

For full details on these and other less significant compatibility issues, see appendix
E of the Digital publication entitled DEC Ada, Technical Overview and Comparison on
DIGITAL Platforms.

For GNAT running on other than VMS systems, all the DEC Ada 83 pragmas and
attributes are recognized, although only a subset of them can sensibly be implemented.
The description of pragmas in this reference manual indicates whether or not they are
applicable to non-VMS systems.

Appendix F: Microsoft Windows Topics 301

Appendix F Microsoft Windows Topics

This chapter describes topics that are specific to the Microsoft Windows platforms (NT, 95
and 98).

F.1 Using GNAT on Windows

One of the strengths of the GNAT technology is that its tool set (gcc, gnatbind, gnatlink,
gnatmake, the gdb debugger, etc.) is used in the same way regardless of the platform.

On Windows this tool set is complemented by a number of Microsoft-specific tools that
have been provided to facilitate interoperability with Windows when this is required. With
these tools:

• You can build applications using the CONSOLE or WINDOWS subsystems.

• You can use any Dynamically Linked Library (DLL) in your Ada code (both relocatable
and non-relocatable DLLs are supported).

• You can build Ada DLLs for use in other applications. These applications can be
written in a language other than Ada (e.g., C, C++, etc). Again both relocatable and
non-relocatable Ada DLLs are supported.

• You can include Windows resources in your Ada application.

• You can use or create COM/DCOM objects.

Immediately below are listed all known general GNAT-for-Windows restrictions. Other
restrictions about specific features like Windows Resources and DLLs are listed in separate
sections below.

• It is not possible to use GetLastError and SetLastError when tasking, protected
records, or exceptions are used. In these cases, in order to implement Ada semantics,
the GNAT run-time system calls certain Win32 routines that set the last error variable
to 0 upon success. It should be possible to use GetLastError and SetLastError when
tasking, protected record, and exception features are not used, but it is not guaranteed
to work.

F.2 Using a network installation of GNAT

Make sure the system on which GNAT is installed is accessible from the current machine, i.e.
the install location is shared over the network. Shared resources are accessed on Windows
by means of UNC paths, which have the format \\server\sharename\path

In order to use such a network installation, simply add the UNC path of the ‘bin’
directory of your GNAT installation in front of your PATH. For example, if GNAT is
installed in ‘\GNAT’ directory of a share location called ‘c-drive’ on a machine ‘LOKI’, the
following command will make it available:

path \\loki\c-drive\gnat\bin;%path%

Be aware that every compilation using the network installation results in the transfer of
large amounts of data across the network and will likely cause serious performance penalty.

302 GNAT User’s Guide for Native Platforms / Unix and Windows

F.3 CONSOLE and WINDOWS subsystems

There are two main subsystems under Windows. The CONSOLE subsystem (which is the
default subsystem) will always create a console when launching the application. This is not
something desirable when the application has a Windows GUI. To get rid of this console the
application must be using the WINDOWS subsystem. To do so the ‘-mwindows’ linker option
must be specified.

$ gnatmake winprog -largs -mwindows

F.4 Temporary Files

It is possible to control where temporary files gets created by setting the TMP environment
variable. The file will be created:

• Under the directory pointed to by the TMP environment variable if this directory
exists.

• Under c:\temp, if the TMP environment variable is not set (or not pointing to a
directory) and if this directory exists.

• Under the current working directory otherwise.

This allows you to determine exactly where the temporary file will be created. This is
particularly useful in networked environments where you may not have write access to some
directories.

F.5 Mixed-Language Programming on Windows

Developing pure Ada applications on Windows is no different than on other GNAT-
supported platforms. However, when developing or porting an application that contains
a mix of Ada and C/C++, the choice of your Windows C/C++ development environment
conditions your overall interoperability strategy.

If you use gcc to compile the non-Ada part of your application, there are no Windows-
specific restrictions that affect the overall interoperability with your Ada code. If you plan
to use Microsoft tools (e.g. Microsoft Visual C/C++), you should be aware of the following
limitations:

• You cannot link your Ada code with an object or library generated with Microsoft
tools if these use the .tls section (Thread Local Storage section) since the GNAT
linker does not yet support this section.

• You cannot link your Ada code with an object or library generated with Microsoft tools
if these use I/O routines other than those provided in the Microsoft DLL: msvcrt.dll.
This is because the GNAT run time uses the services of msvcrt.dll for its I/Os. Use of
other I/O libraries can cause a conflict with msvcrt.dll services. For instance Visual
C++ I/O stream routines conflict with those in msvcrt.dll.

If you do want to use the Microsoft tools for your non-Ada code and hit one of the above
limitations, you have two choices:

1. Encapsulate your non Ada code in a DLL to be linked with your Ada application. In
this case, use the Microsoft or whatever environment to build the DLL and use GNAT
to build your executable (see Section F.8 [Using DLLs with GNAT], page 305).

Appendix F: Microsoft Windows Topics 303

2. Or you can encapsulate your Ada code in a DLL to be linked with the other part of
your application. In this case, use GNAT to build the DLL (see Section F.9 [Building
DLLs with GNAT], page 308) and use the Microsoft or whatever environment to build
your executable.

F.6 Windows Calling Conventions

When a subprogram F (caller) calls a subprogram G (callee), there are several ways to push
G’s parameters on the stack and there are several possible scenarios to clean up the stack
upon G’s return. A calling convention is an agreed upon software protocol whereby the
responsibilities between the caller (F) and the callee (G) are clearly defined. Several calling
conventions are available for Windows:

• C (Microsoft defined)

• Stdcall (Microsoft defined)

• DLL (GNAT specific)

F.6.1 C Calling Convention

This is the default calling convention used when interfacing to C/C++ routines compiled
with either gcc or Microsoft Visual C++.

In the C calling convention subprogram parameters are pushed on the stack by the caller
from right to left. The caller itself is in charge of cleaning up the stack after the call. In
addition, the name of a routine with C calling convention is mangled by adding a leading
underscore.

The name to use on the Ada side when importing (or exporting) a routine with C calling
convention is the name of the routine. For instance the C function:

int get_val (long);

should be imported from Ada as follows:
function Get_Val (V : Interfaces.C.long) return Interfaces.C.int;

pragma Import (C, Get_Val, External_Name => "get_val");

Note that in this particular case the External_Name parameter could have been omitted
since, when missing, this parameter is taken to be the name of the Ada entity in lower case.
When the Link_Name parameter is missing, as in the above example, this parameter is set
to be the External_Name with a leading underscore.

When importing a variable defined in C, you should always use the C calling convention
unless the object containing the variable is part of a DLL (in which case you should use the
DLL calling convention, see Section F.6.3 [DLL Calling Convention], page 304).

F.6.2 Stdcall Calling Convention

This convention, which was the calling convention used for Pascal programs, is used by
Microsoft for all the routines in the Win32 API for efficiency reasons. It must be used to
import any routine for which this convention was specified.

In the Stdcall calling convention subprogram parameters are pushed on the stack by
the caller from right to left. The callee (and not the caller) is in charge of cleaning the
stack on routine exit. In addition, the name of a routine with Stdcall calling convention

304 GNAT User’s Guide for Native Platforms / Unix and Windows

is mangled by adding a leading underscore (as for the C calling convention) and a trailing
@nn , where nn is the overall size (in bytes) of the parameters passed to the routine.

The name to use on the Ada side when importing a C routine with a Stdcall calling
convention is the name of the C routine. The leading underscore and trailing @nn are added
automatically by the compiler. For instance the Win32 function:

APIENTRY int get_val (long);

should be imported from Ada as follows:
function Get_Val (V : Interfaces.C.long) return Interfaces.C.int;

pragma Import (Stdcall, Get_Val);

-- On the x86 a long is 4 bytes, so the Link_Name is "_get_val@4"

As for the C calling convention, when the External_Name parameter is missing, it is taken
to be the name of the Ada entity in lower case. If instead of writing the above import
pragma you write:

function Get_Val (V : Interfaces.C.long) return Interfaces.C.int;

pragma Import (Stdcall, Get_Val, External_Name => "retrieve_val");

then the imported routine is _retrieve_val@4. However, if instead of specifying the
External_Name parameter you specify the Link_Name as in the following example:

function Get_Val (V : Interfaces.C.long) return Interfaces.C.int;

pragma Import (Stdcall, Get_Val, Link_Name => "retrieve_val");

then the imported routine is retrieve_val@4, that is, there is no trailing underscore but
the appropriate @nn is always added at the end of the Link_Name by the compiler.

Note, that in some special cases a DLL’s entry point name lacks a trailing @nn while the
exported name generated for a call has it. The gnatdll tool, which creates the import
library for the DLL, is able to handle those cases (see the description of the switches in see
Section F.9.7 [Using gnatdll], page 312 section).

F.6.3 DLL Calling Convention

This convention, which is GNAT-specific, must be used when you want to import in Ada
a variables defined in a DLL. For functions and procedures this convention is equivalent to
the Stdcall convention. As an example, if a DLL contains a variable defined as:

int my_var;

then, to access this variable from Ada you should write:
My_Var : Interfaces.C.int;

pragma Import (DLL, My_Var);

The remarks concerning the External_Name and Link_Name parameters given in the
previous sections equally apply to the DLL calling convention.

F.7 Introduction to Dynamic Link Libraries (DLLs)

A Dynamically Linked Library (DLL) is a library that can be shared by several applications
running under Windows. A DLL can contain any number of routines and variables.

One advantage of DLLs is that you can change and enhance them without forcing all
the applications that depend on them to be relinked or recompiled. However, you should
be aware than all calls to DLL routines are slower since, as you will understand below, such
calls are indirect.

Appendix F: Microsoft Windows Topics 305

To illustrate the remainder of this section, suppose that an application wants to use the
services of a DLL ‘API.dll’. To use the services provided by ‘API.dll’ you must statically
link against an import library which contains a jump table with an entry for each routine
and variable exported by the DLL. In the Microsoft world this import library is called
‘API.lib’. When using GNAT this import library is called either ‘libAPI.a’ or ‘libapi.a’
(names are case insensitive).

After you have statically linked your application with the import library and you run
your application, here is what happens:
1. Your application is loaded into memory.
2. The DLL ‘API.dll’ is mapped into the address space of your application. This means

that:
• The DLL will use the stack of the calling thread.
• The DLL will use the virtual address space of the calling process.
• The DLL will allocate memory from the virtual address space of the calling process.
• Handles (pointers) can be safely exchanged between routines in the DLL routines

and routines in the application using the DLL.
3. The entries in the ‘libAPI.a’ or ‘API.lib’ jump table which is part of your application

are initialized with the addresses of the routines and variables in ‘API.dll’.
4. If present in ‘API.dll’, routines DllMain or DllMainCRTStartup are invoked. These

routines typically contain the initialization code needed for the well-being of the rou-
tines and variables exported by the DLL.

There is an additional point which is worth mentioning. In the Windows world there are
two kind of DLLs: relocatable and non-relocatable DLLs. Non-relocatable DLLs can only
be loaded at a very specific address in the target application address space. If the addresses
of two non-relocatable DLLs overlap and these happen to be used by the same application,
a conflict will occur and the application will run incorrectly. Hence, when possible, it is
always preferable to use and build relocatable DLLs. Both relocatable and non-relocatable
DLLs are supported by GNAT. Note that the ‘-s’ linker option (see GNU Linker User’s
Guide) removes the debugging symbols from the DLL but the DLL can still be relocated.

As a side note, an interesting difference between Microsoft DLLs and Unix shared li-
braries, is the fact that on most Unix systems all public routines are exported by default in
a Unix shared library, while under Windows the exported routines must be listed explicitly
in a definition file (see Section F.8.2.1 [The Definition File], page 306).

F.8 Using DLLs with GNAT

To use the services of a DLL, say ‘API.dll’, in your Ada application you must have:
1. The Ada spec for the routines and/or variables you want to access in ‘API.dll’. If not

available this Ada spec must be built from the C/C++ header files provided with the
DLL.

2. The import library (‘libAPI.a’ or ‘API.lib’). As previously mentioned an import
library is a statically linked library containing the import table which will be filled
at load time to point to the actual ‘API.dll’ routines. Sometimes you don’t have an
import library for the DLL you want to use. The following sections will explain how
to build one.

306 GNAT User’s Guide for Native Platforms / Unix and Windows

3. The actual DLL, ‘API.dll’.

Once you have all the above, to compile an Ada application that uses the services of
‘API.dll’ and whose main subprogram is My_Ada_App, you simply issue the command

$ gnatmake my_ada_app -largs -lAPI

The argument ‘-largs -lAPI’ at the end of the gnatmake command tells the GNAT linker
to look first for a library named ‘API.lib’ (Microsoft-style name) and if not found for
a library named ‘libAPI.a’ (GNAT-style name). Note that if the Ada package spec for
‘API.dll’ contains the following pragma

pragma Linker_Options ("-lAPI");

you do not have to add ‘-largs -lAPI’ at the end of the gnatmake command.
If any one of the items above is missing you will have to create it yourself. The following

sections explain how to do so using as an example a fictitious DLL called ‘API.dll’.

F.8.1 Creating an Ada Spec for the DLL Services

A DLL typically comes with a C/C++ header file which provides the definitions of the
routines and variables exported by the DLL. The Ada equivalent of this header file is a
package spec that contains definitions for the imported entities. If the DLL you intend to use
does not come with an Ada spec you have to generate one such spec yourself. For example
if the header file of ‘API.dll’ is a file ‘api.h’ containing the following two definitions:� �

int some_var;

int get (char *);
 	
then the equivalent Ada spec could be:� �

with Interfaces.C.Strings;

package API is

use Interfaces;

Some_Var : C.int;

function Get (Str : C.Strings.Chars_Ptr) return C.int;

private

pragma Import (C, Get);

pragma Import (DLL, Some_Var);

end API;
 	
Note that a variable is always imported with a DLL convention. A function can have C,
Stdcall or DLL convention. For subprograms, the DLL convention is a synonym of Stdcall
(see Section F.6 [Windows Calling Conventions], page 303).

F.8.2 Creating an Import Library

If a Microsoft-style import library ‘API.lib’ or a GNAT-style import library ‘libAPI.a’ is
available with ‘API.dll’ you can skip this section. Otherwise read on.

F.8.2.1 The Definition File

As previously mentioned, and unlike Unix systems, the list of symbols that are exported
from a DLL must be provided explicitly in Windows. The main goal of a definition file is

Appendix F: Microsoft Windows Topics 307

precisely that: list the symbols exported by a DLL. A definition file (usually a file with a
.def suffix) has the following structure:� �

[LIBRARY name]

[DESCRIPTION string]

EXPORTS

symbol1

symbol2

...
 	
LIBRARY name

This section, which is optional, gives the name of the DLL.

DESCRIPTION string

This section, which is optional, gives a description string that will be embedded
in the import library.

EXPORTS This section gives the list of exported symbols (procedures, functions or vari-
ables). For instance in the case of ‘API.dll’ the EXPORTS section of ‘API.def’
looks like:� �

EXPORTS

some_var

get
 	
Note that you must specify the correct suffix (@nn) (see Section F.6 [Windows Calling
Conventions], page 303) for a Stdcall calling convention function in the exported symbols
list.

There can actually be other sections in a definition file, but these sections are not relevant
to the discussion at hand.

F.8.2.2 GNAT-Style Import Library

To create a static import library from ‘API.dll’ with the GNAT tools you should proceed
as follows:

1. Create the definition file ‘API.def’ (see Section F.8.2.1 [The Definition File], page 306).
For that use the dll2def tool as follows:

$ dll2def API.dll > API.def

dll2def is a very simple tool: it takes as input a DLL and prints to standard output
the list of entry points in the DLL. Note that if some routines in the DLL have the
Stdcall convention (see Section F.6 [Windows Calling Conventions], page 303) with
stripped @nn suffix then you’ll have to edit ‘api.def’ to add it.

Here are some hints to find the right @nn suffix.

1. If you have the Microsoft import library (.lib), it is possible to get the right symbols
by using Microsoft dumpbin tool (see the corresponding Microsoft documentation
for further details).

$ dumpbin /exports api.lib

308 GNAT User’s Guide for Native Platforms / Unix and Windows

2. If you have a message about a missing symbol at link time the compiler tells you
what symbol is expected. You just have to go back to the definition file and add
the right suffix.

2. Build the import library libAPI.a, using gnatdll (see Section F.9.7 [Using gnatdll],
page 312) as follows:

$ gnatdll -e API.def -d API.dll

gnatdll takes as input a definition file ‘API.def’ and the name of the DLL containing
the services listed in the definition file ‘API.dll’. The name of the static import library
generated is computed from the name of the definition file as follows: if the definition file
name is xyz.def, the import library name will be libxyz.a. Note that in the previous
example option ‘-e’ could have been removed because the name of the definition file
(before the “.def” suffix) is the same as the name of the DLL (see Section F.9.7 [Using
gnatdll], page 312 for more information about gnatdll).

F.8.2.3 Microsoft-Style Import Library

With GNAT you can either use a GNAT-style or Microsoft-style import library. A Microsoft
import library is needed only if you plan to make an Ada DLL available to applications de-
veloped with Microsoft tools (see Section F.5 [Mixed-Language Programming on Windows],
page 302).

To create a Microsoft-style import library for ‘API.dll’ you should proceed as follows:
1. Create the definition file ‘API.def’ from the DLL. For this use either the dll2def

tool as described above or the Microsoft dumpbin tool (see the corresponding Microsoft
documentation for further details).

2. Build the actual import library using Microsoft’s lib utility:
$ lib -machine:IX86 -def:API.def -out:API.lib

If you use the above command the definition file ‘API.def’ must contain a line giving
the name of the DLL:

LIBRARY "API"

See the Microsoft documentation for further details about the usage of lib.

F.9 Building DLLs with GNAT

This section explains how to build DLLs containing Ada code. These DLLs will be referred
to as Ada DLLs in the remainder of this section.

The steps required to build an Ada DLL that is to be used by Ada as well as non-Ada
applications are as follows:
1. You need to mark each Ada entity exported by the DLL with a C or Stdcall calling

convention to avoid any Ada name mangling for the entities exported by the DLL (see
Section F.9.2 [Exporting Ada Entities], page 309). You can skip this step if you plan
to use the Ada DLL only from Ada applications.

2. Your Ada code must export an initialization routine which calls the routine adainit
generated by gnatbind to perform the elaboration of the Ada code in the DLL (see
Section F.9.3 [Ada DLLs and Elaboration], page 311). The initialization routine ex-
ported by the Ada DLL must be invoked by the clients of the DLL to initialize the
DLL.

Appendix F: Microsoft Windows Topics 309

3. When useful, the DLL should also export a finalization routine which calls routine
adafinal generated by gnatbind to perform the finalization of the Ada code in the
DLL (see Section F.9.4 [Ada DLLs and Finalization], page 311). The finalization
routine exported by the Ada DLL must be invoked by the clients of the DLL when the
DLL services are no further needed.

4. You must provide a spec for the services exported by the Ada DLL in each of the
programming languages to which you plan to make the DLL available.

5. You must provide a definition file listing the exported entities (see Section F.8.2.1 [The
Definition File], page 306).

6. Finally you must use gnatdll to produce the DLL and the import library (see Sec-
tion F.9.7 [Using gnatdll], page 312).

F.9.1 Limitations When Using Ada DLLs from Ada

When using Ada DLLs from Ada applications there is a limitation users should be aware
of. Because on Windows the GNAT run time is not in a DLL of its own, each Ada DLL
includes a part of the GNAT run time. Specifically, each Ada DLL includes the services of
the GNAT run time that are necessary to the Ada code inside the DLL. As a result, when
an Ada program uses an Ada DLL there are two independent GNAT run times: one in the
Ada DLL and one in the main program.

It is therefore not possible to exchange GNAT run-time objects between the Ada DLL
and the main Ada program. Example of GNAT run-time objects are file handles (e.g.
Text_IO.File_Type), tasks types, protected objects types, etc.

It is completely safe to exchange plain elementary, array or record types, Windows object
handles, etc.

F.9.2 Exporting Ada Entities

Building a DLL is a way to encapsulate a set of services usable from any application. As a
result, the Ada entities exported by a DLL should be exported with the C or Stdcall calling
conventions to avoid any Ada name mangling. Please note that the Stdcall convention
should only be used for subprograms, not for variables. As an example here is an Ada
package API, spec and body, exporting two procedures, a function, and a variable:� �

with Interfaces.C; use Interfaces;

package API is

Count : C.int := 0;

function Factorial (Val : C.int) return C.int;

procedure Initialize_API;

procedure Finalize_API;

-- Initialization & Finalization routines. More in the next section.

private

pragma Export (C, Initialize_API);

pragma Export (C, Finalize_API);

pragma Export (C, Count);

pragma Export (C, Factorial);

end API;
 	

310 GNAT User’s Guide for Native Platforms / Unix and Windows� �
package body API is

function Factorial (Val : C.int) return C.int is

Fact : C.int := 1;

begin

Count := Count + 1;

for K in 1 .. Val loop

Fact := Fact * K;

end loop;

return Fact;

end Factorial;

procedure Initialize_API is

procedure Adainit;

pragma Import (C, Adainit);

begin

Adainit;

end Initialize_API;

procedure Finalize_API is

procedure Adafinal;

pragma Import (C, Adafinal);

begin

Adafinal;

end Finalize_API;

end API;
 	
If the Ada DLL you are building will only be used by Ada applications you do not have to
export Ada entities with a C or Stdcall convention. As an example, the previous package
could be written as follows:� �

package API is

Count : Integer := 0;

function Factorial (Val : Integer) return Integer;

procedure Initialize_API;

procedure Finalize_API;

-- Initialization and Finalization routines.

end API;
 	
� �
package body API is

function Factorial (Val : Integer) return Integer is

Fact : Integer := 1;

begin

Count := Count + 1;

for K in 1 .. Val loop

Fact := Fact * K;

end loop;

return Fact;

end Factorial;

...

-- The remainder of this package body is unchanged.

end API;
 	

Appendix F: Microsoft Windows Topics 311

Note that if you do not export the Ada entities with a C or Stdcall convention you will have
to provide the mangled Ada names in the definition file of the Ada DLL (see Section F.9.6
[Creating the Definition File], page 312).

F.9.3 Ada DLLs and Elaboration

The DLL that you are building contains your Ada code as well as all the routines in the
Ada library that are needed by it. The first thing a user of your DLL must do is elaborate
the Ada code (see Appendix C [Elaboration Order Handling in GNAT], page 245).

To achieve this you must export an initialization routine (Initialize_API in the pre-
vious example), which must be invoked before using any of the DLL services. This elab-
oration routine must call the Ada elaboration routine adainit generated by the GNAT
binder (see Section 4.2.5 [Binding with Non-Ada Main Programs], page 76). See the body of
Initialize_Api for an example. Note that the GNAT binder is automatically invoked dur-
ing the DLL build process by the gnatdll tool (see Section F.9.7 [Using gnatdll], page 312).

When a DLL is loaded, Windows systematically invokes a routine called DllMain. It
would therefore be possible to call adainit directly from DllMain without having to provide
an explicit initialization routine. Unfortunately, it is not possible to call adainit from the
DllMain if your program has library level tasks because access to the DllMain entry point
is serialized by the system (that is, only a single thread can execute “through” it at a time),
which means that the GNAT run time will deadlock waiting for the newly created task to
complete its initialization.

F.9.4 Ada DLLs and Finalization

When the services of an Ada DLL are no longer needed, the client code should invoke the
DLL finalization routine, if available. The DLL finalization routine is in charge of releasing
all resources acquired by the DLL. In the case of the Ada code contained in the DLL, this
is achieved by calling routine adafinal generated by the GNAT binder (see Section 4.2.5
[Binding with Non-Ada Main Programs], page 76). See the body of Finalize_Api for an
example. As already pointed out the GNAT binder is automatically invoked during the
DLL build process by the gnatdll tool (see Section F.9.7 [Using gnatdll], page 312).

F.9.5 Creating a Spec for Ada DLLs

To use the services exported by the Ada DLL from another programming language (e.g. C),
you have to translate the specs of the exported Ada entities in that language. For instance
in the case of API.dll, the corresponding C header file could look like:� �

extern int *_imp__count;

#define count (*_imp__count)

int factorial (int);
 	
It is important to understand that when building an Ada DLL to be used by other Ada
applications, you need two different specs for the packages contained in the DLL: one for
building the DLL and the other for using the DLL. This is because the DLL calling convention
is needed to use a variable defined in a DLL, but when building the DLL, the variable must
have either the Ada or C calling convention. As an example consider a DLL comprising the
following package API:

312 GNAT User’s Guide for Native Platforms / Unix and Windows� �
package API is

Count : Integer := 0;

...

-- Remainder of the package omitted.

end API;
 	
After producing a DLL containing package API, the spec that must be used to import
API.Count from Ada code outside of the DLL is:� �

package API is

Count : Integer;

pragma Import (DLL, Count);

end API;
 	
F.9.6 Creating the Definition File

The definition file is the last file needed to build the DLL. It lists the exported symbols. As
an example, the definition file for a DLL containing only package API (where all the entities
are exported with a C calling convention) is:� �

EXPORTS

count

factorial

finalize_api

initialize_api
 	
If the C calling convention is missing from package API, then the definition file contains the
mangled Ada names of the above entities, which in this case are:� �

EXPORTS

api__count

api__factorial

api__finalize_api

api__initialize_api
 	
F.9.7 Using gnatdll

gnatdll is a tool to automate the DLL build process once all the Ada and non-Ada sources
that make up your DLL have been compiled. gnatdll is actually in charge of two distinct
tasks: build the static import library for the DLL and the actual DLL. The form of the
gnatdll command is� �

$ gnatdll [switches] list-of-files [-largs opts]
 	
where list-of-files is a list of ALI and object files. The object file list must be the exact
list of objects corresponding to the non-Ada sources whose services are to be included in
the DLL. The ALI file list must be the exact list of ALI files for the corresponding Ada
sources whose services are to be included in the DLL. If list-of-files is missing, only the
static import library is generated.

You may specify any of the following switches to gnatdll:

Appendix F: Microsoft Windows Topics 313

-a[address]
Build a non-relocatable DLL at address. If address is not specified the default
address 0x11000000 will be used. By default, when this switch is missing,
gnatdll builds relocatable DLL. We advise the reader to build relocatable
DLL.

-b address

Set the relocatable DLL base address. By default the address is 0x11000000.

-bargs opts

Binder options. Pass opts to the binder.

-d dllfile

dllfile is the name of the DLL. This switch must be present for gnatdll to do
anything. The name of the generated import library is obtained algorithmically
from dllfile as shown in the following example: if dllfile is xyz.dll, the import
library name is libxyz.a. The name of the definition file to use (if not specified
by option ‘-e’) is obtained algorithmically from dllfile as shown in the following
example: if dllfile is xyz.dll, the definition file used is xyz.def.

-e deffile

deffile is the name of the definition file.

-g Generate debugging information. This information is stored in the object file
and copied from there to the final DLL file by the linker, where it can be read by
the debugger. You must use the ‘-g’ switch if you plan on using the debugger
or the symbolic stack traceback.

-h Help mode. Displays gnatdll switch usage information.

-Idir Direct gnatdll to search the dir directory for source and object files needed
to build the DLL. (see Section 3.3 [Search Paths and the Run-Time Library
(RTL)], page 69).

-k Removes the @nn suffix from the import library’s exported names. You must
specified this option if you want to use a Stdcall function in a DLL for which
the @nn suffix has been removed. This is the case for most of the Windows NT
DLL for example. This option has no effect when ‘-n’ option is specified.

-l file The list of ALI and object files used to build the DLL are listed in file, instead
of being given in the command line. Each line in file contains the name of an
ALI or object file.

-n No Import. Do not create the import library.

-q Quiet mode. Do not display unnecessary messages.

-v Verbose mode. Display extra information.

-largs opts

Linker options. Pass opts to the linker.

314 GNAT User’s Guide for Native Platforms / Unix and Windows

F.9.7.1 gnatdll Example

As an example the command to build a relocatable DLL from ‘api.adb’ once ‘api.adb’ has
been compiled and ‘api.def’ created is

$ gnatdll -d api.dll api.ali

The above command creates two files: ‘libapi.a’ (the import library) and ‘api.dll’ (the
actual DLL). If you want to create only the DLL, just type:

$ gnatdll -d api.dll -n api.ali

Alternatively if you want to create just the import library, type:
$ gnatdll -d api.dll

F.9.7.2 gnatdll behind the Scenes

This section details the steps involved in creating a DLL. gnatdll does these steps for you.
Unless you are interested in understanding what goes on behind the scenes, you should skip
this section.

We use the previous example of a DLL containing the Ada package API, to illustrate the
steps necessary to build a DLL. The starting point is a set of objects that will make up the
DLL and the corresponding ALI files. In the case of this example this means that ‘api.o’
and ‘api.ali’ are available. To build a relocatable DLL, gnatdll does the following:
1. gnatdll builds the base file (‘api.base’). A base file gives the information necessary

to generate relocation information for the DLL.
$ gnatbind -n api

$ gnatlink api -o api.jnk -mdll -Wl,--base-file,api.base

In addition to the base file, the gnatlink command generates an output file ‘api.jnk’
which can be discarded. The ‘-mdll’ switch asks gnatlink to generate the routines
DllMain and DllMainCRTStartup that are called by the Windows loader when the
DLL is loaded into memory.

2. gnatdll uses dlltool (see Section F.9.7.3 [Using dlltool], page 315) to build the export
table (‘api.exp’). The export table contains the relocation information in a form which
can be used during the final link to ensure that the Windows loader is able to place
the DLL anywhere in memory.

$ dlltool --dllname api.dll --def api.def --base-file api.base \

--output-exp api.exp

3. gnatdll builds the base file using the new export table. Note that gnatbind must be
called once again since the binder generated file has been deleted during the previous
call to gnatlink.

$ gnatbind -n api

$ gnatlink api -o api.jnk api.exp -mdll

-Wl,--base-file,api.base

4. gnatdll builds the new export table using the new base file and generates the DLL
import library ‘libAPI.a’.

$ dlltool --dllname api.dll --def api.def --base-file api.base \

--output-exp api.exp --output-lib libAPI.a

5. Finally gnatdll builds the relocatable DLL using the final export table.
$ gnatbind -n api

$ gnatlink api api.exp -o api.dll -mdll

Appendix F: Microsoft Windows Topics 315

F.9.7.3 Using dlltool

dlltool is the low-level tool used by gnatdll to build DLLs and static import libraries.
This section summarizes the most common dlltool switches. The form of the dlltool
command is

$ dlltool [switches]

dlltool switches include:

‘--base-file basefile ’
Read the base file basefile generated by the linker. This switch is used to create
a relocatable DLL.

‘--def deffile ’
Read the definition file.

‘--dllname name ’
Gives the name of the DLL. This switch is used to embed the name of the DLL
in the static import library generated by dlltool with switch ‘--output-lib’.

‘-k’ Kill @nn from exported names (see Section F.6 [Windows Calling Conventions],
page 303 for a discussion about Stdcall-style symbols.

‘--help’ Prints the dlltool switches with a concise description.

‘--output-exp exportfile ’
Generate an export file exportfile. The export file contains the export table
(list of symbols in the DLL) and is used to create the DLL.

‘--output-lib libfile ’
Generate a static import library libfile.

‘-v’ Verbose mode.

‘--as assembler-name ’
Use assembler-name as the assembler. The default is as.

F.10 GNAT and Windows Resources

Resources are an easy way to add Windows specific objects to your application. The objects
that can be added as resources include:

• menus

• accelerators

• dialog boxes

• string tables

• bitmaps

• cursors

• icons

• fonts

This section explains how to build, compile and use resources.

316 GNAT User’s Guide for Native Platforms / Unix and Windows

F.10.1 Building Resources

A resource file is an ASCII file. By convention resource files have an ‘.rc’ extension. The
easiest way to build a resource file is to use Microsoft tools such as imagedit.exe to build
bitmaps, icons and cursors and dlgedit.exe to build dialogs. It is always possible to build
an ‘.rc’ file yourself by writing a resource script.

It is not our objective to explain how to write a resource file. A complete description of
the resource script language can be found in the Microsoft documentation.

F.10.2 Compiling Resources

This section describes how to build a GNAT-compatible (COFF) object file containing the
resources. This is done using the Resource Compiler windres as follows:

$ windres -i myres.rc -o myres.o

By default windres will run gcc to preprocess the ‘.rc’ file. You can specify an alternate
preprocessor (usually named ‘cpp.exe’) using the windres ‘--preprocessor’ parameter.
A list of all possible options may be obtained by entering the command windres ‘--help’.

It is also possible to use the Microsoft resource compiler rc.exe to produce a ‘.res’ file
(binary resource file). See the corresponding Microsoft documentation for further details.
In this case you need to use windres to translate the ‘.res’ file to a GNAT-compatible
object file as follows:

$ windres -i myres.res -o myres.o

F.10.3 Using Resources

To include the resource file in your program just add the GNAT-compatible object file for
the resource(s) to the linker arguments. With gnatmake this is done by using the ‘-largs’
option:

$ gnatmake myprog -largs myres.o

F.11 Debugging a DLL

Debugging a DLL is similar to debugging a standard program. But we have to deal with two
different executable parts: the DLL and the program that uses it. We have the following
four possibilities:
1. The program and the DLL are built with GCC/GNAT.
2. The program is built with foreign tools and the DLL is built with GCC/GNAT.
3. The program is built with GCC/GNAT and the DLL is built with foreign tools.
4.

In this section we address only cases one and two above. There is no point in trying to
debug a DLL with GNU/GDB, if there is no GDB-compatible debugging information in it. To
do so you must use a debugger compatible with the tools suite used to build the DLL.

F.11.1 Program and DLL Both Built with GCC/GNAT

This is the simplest case. Both the DLL and the program have GDB compatible debugging
information. It is then possible to break anywhere in the process. Let’s suppose here that
the main procedure is named ada_main and that in the DLL there is an entry point named
ada_dll.

Appendix F: Microsoft Windows Topics 317

The DLL (see Section F.7 [Introduction to Dynamic Link Libraries (DLLs)], page 304) and
program must have been built with the debugging information (see GNAT -g switch). Here
are the step-by-step instructions for debugging it:
1. Launch GDB on the main program.

$ gdb -nw ada_main

2. Break on the main procedure and run the program.
(gdb) break ada_main

(gdb) run

This step is required to be able to set a breakpoint inside the DLL. As long as the
program is not run, the DLL is not loaded. This has the consequence that the DLL
debugging information is also not loaded, so it is not possible to set a breakpoint in
the DLL.

3. Set a breakpoint inside the DLL
(gdb) break ada_dll

(gdb) run

At this stage a breakpoint is set inside the DLL. From there on you can use the stan-
dard approach to debug the whole program (see Chapter 23 [Running and Debugging Ada
Programs], page 211).

F.11.2 Program Built with Foreign Tools and DLL Built with
GCC/GNAT

In this case things are slightly more complex because it is not possible to start the main
program and then break at the beginning to load the DLL and the associated DLL debugging
information. It is not possible to break at the beginning of the program because there is no
GDB debugging information, and therefore there is no direct way of getting initial control.
This section addresses this issue by describing some methods that can be used to break
somewhere in the DLL to debug it.
First suppose that the main procedure is named main (this is for example some C code
built with Microsoft Visual C) and that there is a DLL named test.dll containing an Ada
entry point named ada_dll.
The DLL (see Section F.7 [Introduction to Dynamic Link Libraries (DLLs)], page 304) must
have been built with debugging information (see GNAT -g option).

F.11.2.1 Debugging the DLL Directly
1. Launch the debugger on the DLL.

$ gdb -nw test.dll

2. Set a breakpoint on a DLL subroutine.
(gdb) break ada_dll

3. Specify the executable file to GDB.
(gdb) exec-file main.exe

4. Run the program.
(gdb) run

This will run the program until it reaches the breakpoint that has been set. From that
point you can use the standard way to debug a program as described in (see Chapter 23
[Running and Debugging Ada Programs], page 211).

318 GNAT User’s Guide for Native Platforms / Unix and Windows

It is also possible to debug the DLL by attaching to a running process.

F.11.2.2 Attaching to a Running Process

With GDB it is always possible to debug a running process by attaching to it. It is possible
to debug a DLL this way. The limitation of this approach is that the DLL must run long
enough to perform the attach operation. It may be useful for instance to insert a time
wasting loop in the code of the DLL to meet this criterion.
1. Launch the main program ‘main.exe’.

$ main

2. Use the Windows Task Manager to find the process ID. Let’s say that the process PID
for ‘main.exe’ is 208.

3. Launch gdb.
$ gdb -nw

4. Attach to the running process to be debugged.
(gdb) attach 208

5. Load the process debugging information.
(gdb) symbol-file main.exe

6. Break somewhere in the DLL.
(gdb) break ada_dll

7. Continue process execution.
(gdb) continue

This last step will resume the process execution, and stop at the breakpoint we have set.
From there you can use the standard approach to debug a program as described in (see
Chapter 23 [Running and Debugging Ada Programs], page 211).

F.12 GNAT and COM/DCOM Objects

This section is temporarily left blank.

Appendix F: GNU Free Documentation License 319

GNU Free Documentation License

Version 1.2, November 2002
Copyright c© 2000,2001,2002 Free Software Foundation, Inc.
59 Temple Place, Suite 330, Boston, MA 02111-1307, USA

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

0. PREAMBLE
The purpose of this License is to make a manual, textbook, or other functional and
useful document free in the sense of freedom: to assure everyone the effective freedom
to copy and redistribute it, with or without modifying it, either commercially or non-
commercially. Secondarily, this License preserves for the author and publisher a way
to get credit for their work, while not being considered responsible for modifications
made by others.
This License is a kind of “copyleft”, which means that derivative works of the document
must themselves be free in the same sense. It complements the GNU General Public
License, which is a copyleft license designed for free software.
We have designed this License in order to use it for manuals for free software, because
free software needs free documentation: a free program should come with manuals
providing the same freedoms that the software does. But this License is not limited to
software manuals; it can be used for any textual work, regardless of subject matter or
whether it is published as a printed book. We recommend this License principally for
works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS
This License applies to any manual or other work, in any medium, that contains a
notice placed by the copyright holder saying it can be distributed under the terms
of this License. Such a notice grants a world-wide, royalty-free license, unlimited in
duration, to use that work under the conditions stated herein. The “Document”,
below, refers to any such manual or work. Any member of the public is a licensee, and
is addressed as “you”. You accept the license if you copy, modify or distribute the work
in a way requiring permission under copyright law.
A “Modified Version” of the Document means any work containing the Document or
a portion of it, either copied verbatim, or with modifications and/or translated into
another language.
A “Secondary Section” is a named appendix or a front-matter section of the Document
that deals exclusively with the relationship of the publishers or authors of the Document
to the Document’s overall subject (or to related matters) and contains nothing that
could fall directly within that overall subject. (Thus, if the Document is in part a
textbook of mathematics, a Secondary Section may not explain any mathematics.) The
relationship could be a matter of historical connection with the subject or with related
matters, or of legal, commercial, philosophical, ethical or political position regarding
them.
The “Invariant Sections” are certain Secondary Sections whose titles are designated, as
being those of Invariant Sections, in the notice that says that the Document is released

320 GNAT User’s Guide for Native Platforms / Unix and Windows

under this License. If a section does not fit the above definition of Secondary then it is
not allowed to be designated as Invariant. The Document may contain zero Invariant
Sections. If the Document does not identify any Invariant Sections then there are none.
The “Cover Texts” are certain short passages of text that are listed, as Front-Cover
Texts or Back-Cover Texts, in the notice that says that the Document is released under
this License. A Front-Cover Text may be at most 5 words, and a Back-Cover Text may
be at most 25 words.
A “Transparent” copy of the Document means a machine-readable copy, represented
in a format whose specification is available to the general public, that is suitable for
revising the document straightforwardly with generic text editors or (for images com-
posed of pixels) generic paint programs or (for drawings) some widely available drawing
editor, and that is suitable for input to text formatters or for automatic translation to
a variety of formats suitable for input to text formatters. A copy made in an otherwise
Transparent file format whose markup, or absence of markup, has been arranged to
thwart or discourage subsequent modification by readers is not Transparent. An image
format is not Transparent if used for any substantial amount of text. A copy that is
not “Transparent” is called “Opaque”.
Examples of suitable formats for Transparent copies include plain ascii without
markup, Texinfo input format, LaTEX input format, SGML or XML using a publicly
available DTD, and standard-conforming simple HTML, PostScript or PDF designed
for human modification. Examples of transparent image formats include PNG, XCF
and JPG. Opaque formats include proprietary formats that can be read and edited
only by proprietary word processors, SGML or XML for which the DTD and/or
processing tools are not generally available, and the machine-generated HTML,
PostScript or PDF produced by some word processors for output purposes only.
The “Title Page” means, for a printed book, the title page itself, plus such following
pages as are needed to hold, legibly, the material this License requires to appear in the
title page. For works in formats which do not have any title page as such, “Title Page”
means the text near the most prominent appearance of the work’s title, preceding the
beginning of the body of the text.
A section “Entitled XYZ” means a named subunit of the Document whose title either
is precisely XYZ or contains XYZ in parentheses following text that translates XYZ in
another language. (Here XYZ stands for a specific section name mentioned below, such
as “Acknowledgements”, “Dedications”, “Endorsements”, or “History”.) To “Preserve
the Title” of such a section when you modify the Document means that it remains a
section “Entitled XYZ” according to this definition.
The Document may include Warranty Disclaimers next to the notice which states that
this License applies to the Document. These Warranty Disclaimers are considered to
be included by reference in this License, but only as regards disclaiming warranties:
any other implication that these Warranty Disclaimers may have is void and has no
effect on the meaning of this License.

2. VERBATIM COPYING
You may copy and distribute the Document in any medium, either commercially or
noncommercially, provided that this License, the copyright notices, and the license
notice saying this License applies to the Document are reproduced in all copies, and

Appendix F: GNU Free Documentation License 321

that you add no other conditions whatsoever to those of this License. You may not use
technical measures to obstruct or control the reading or further copying of the copies
you make or distribute. However, you may accept compensation in exchange for copies.
If you distribute a large enough number of copies you must also follow the conditions
in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly
display copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of
the Document, numbering more than 100, and the Document’s license notice requires
Cover Texts, you must enclose the copies in covers that carry, clearly and legibly, all
these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on
the back cover. Both covers must also clearly and legibly identify you as the publisher
of these copies. The front cover must present the full title with all words of the title
equally prominent and visible. You may add other material on the covers in addition.
Copying with changes limited to the covers, as long as they preserve the title of the
Document and satisfy these conditions, can be treated as verbatim copying in other
respects.

If the required texts for either cover are too voluminous to fit legibly, you should put
the first ones listed (as many as fit reasonably) on the actual cover, and continue the
rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100,
you must either include a machine-readable Transparent copy along with each Opaque
copy, or state in or with each Opaque copy a computer-network location from which
the general network-using public has access to download using public-standard network
protocols a complete Transparent copy of the Document, free of added material. If
you use the latter option, you must take reasonably prudent steps, when you begin
distribution of Opaque copies in quantity, to ensure that this Transparent copy will
remain thus accessible at the stated location until at least one year after the last time
you distribute an Opaque copy (directly or through your agents or retailers) of that
edition to the public.

It is requested, but not required, that you contact the authors of the Document well
before redistributing any large number of copies, to give them a chance to provide you
with an updated version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions
of sections 2 and 3 above, provided that you release the Modified Version under precisely
this License, with the Modified Version filling the role of the Document, thus licensing
distribution and modification of the Modified Version to whoever possesses a copy of
it. In addition, you must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the
Document, and from those of previous versions (which should, if there were any,
be listed in the History section of the Document). You may use the same title as
a previous version if the original publisher of that version gives permission.

322 GNAT User’s Guide for Native Platforms / Unix and Windows

B. List on the Title Page, as authors, one or more persons or entities responsible for
authorship of the modifications in the Modified Version, together with at least five
of the principal authors of the Document (all of its principal authors, if it has fewer
than five), unless they release you from this requirement.

C. State on the Title page the name of the publisher of the Modified Version, as the
publisher.

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adjacent to the other
copyright notices.

F. Include, immediately after the copyright notices, a license notice giving the public
permission to use the Modified Version under the terms of this License, in the form
shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required Cover
Texts given in the Document’s license notice.

H. Include an unaltered copy of this License.

I. Preserve the section Entitled “History”, Preserve its Title, and add to it an item
stating at least the title, year, new authors, and publisher of the Modified Version
as given on the Title Page. If there is no section Entitled “History” in the Docu-
ment, create one stating the title, year, authors, and publisher of the Document
as given on its Title Page, then add an item describing the Modified Version as
stated in the previous sentence.

J. Preserve the network location, if any, given in the Document for public access to
a Transparent copy of the Document, and likewise the network locations given in
the Document for previous versions it was based on. These may be placed in the
“History” section. You may omit a network location for a work that was published
at least four years before the Document itself, or if the original publisher of the
version it refers to gives permission.

K. For any section Entitled “Acknowledgements” or “Dedications”, Preserve the Title
of the section, and preserve in the section all the substance and tone of each of the
contributor acknowledgements and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and
in their titles. Section numbers or the equivalent are not considered part of the
section titles.

M. Delete any section Entitled “Endorsements”. Such a section may not be included
in the Modified Version.

N. Do not retitle any existing section to be Entitled “Endorsements” or to conflict in
title with any Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify
as Secondary Sections and contain no material copied from the Document, you may at
your option designate some or all of these sections as invariant. To do this, add their
titles to the list of Invariant Sections in the Modified Version’s license notice. These
titles must be distinct from any other section titles.

Appendix F: GNU Free Documentation License 323

You may add a section Entitled “Endorsements”, provided it contains nothing but
endorsements of your Modified Version by various parties—for example, statements of
peer review or that the text has been approved by an organization as the authoritative
definition of a standard.
You may add a passage of up to five words as a Front-Cover Text, and a passage of up
to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified
Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be
added by (or through arrangements made by) any one entity. If the Document already
includes a cover text for the same cover, previously added by you or by arrangement
made by the same entity you are acting on behalf of, you may not add another; but
you may replace the old one, on explicit permission from the previous publisher that
added the old one.
The author(s) and publisher(s) of the Document do not by this License give permission
to use their names for publicity for or to assert or imply endorsement of any Modified
Version.

5. COMBINING DOCUMENTS
You may combine the Document with other documents released under this License,
under the terms defined in section 4 above for modified versions, provided that you
include in the combination all of the Invariant Sections of all of the original documents,
unmodified, and list them all as Invariant Sections of your combined work in its license
notice, and that you preserve all their Warranty Disclaimers.
The combined work need only contain one copy of this License, and multiple identical
Invariant Sections may be replaced with a single copy. If there are multiple Invariant
Sections with the same name but different contents, make the title of each such section
unique by adding at the end of it, in parentheses, the name of the original author or
publisher of that section if known, or else a unique number. Make the same adjustment
to the section titles in the list of Invariant Sections in the license notice of the combined
work.
In the combination, you must combine any sections Entitled “History” in the vari-
ous original documents, forming one section Entitled “History”; likewise combine any
sections Entitled “Acknowledgements”, and any sections Entitled “Dedications”. You
must delete all sections Entitled “Endorsements.”

6. COLLECTIONS OF DOCUMENTS
You may make a collection consisting of the Document and other documents released
under this License, and replace the individual copies of this License in the various
documents with a single copy that is included in the collection, provided that you
follow the rules of this License for verbatim copying of each of the documents in all
other respects.
You may extract a single document from such a collection, and distribute it individu-
ally under this License, provided you insert a copy of this License into the extracted
document, and follow this License in all other respects regarding verbatim copying of
that document.

7. AGGREGATION WITH INDEPENDENT WORKS
A compilation of the Document or its derivatives with other separate and independent
documents or works, in or on a volume of a storage or distribution medium, is called

324 GNAT User’s Guide for Native Platforms / Unix and Windows

an “aggregate” if the copyright resulting from the compilation is not used to limit the
legal rights of the compilation’s users beyond what the individual works permit. When
the Document is included an aggregate, this License does not apply to the other works
in the aggregate which are not themselves derivative works of the Document.
If the Cover Text requirement of section 3 is applicable to these copies of the Document,
then if the Document is less than one half of the entire aggregate, the Document’s Cover
Texts may be placed on covers that bracket the Document within the aggregate, or the
electronic equivalent of covers if the Document is in electronic form. Otherwise they
must appear on printed covers that bracket the whole aggregate.

8. TRANSLATION
Translation is considered a kind of modification, so you may distribute translations
of the Document under the terms of section 4. Replacing Invariant Sections with
translations requires special permission from their copyright holders, but you may
include translations of some or all Invariant Sections in addition to the original versions
of these Invariant Sections. You may include a translation of this License, and all the
license notices in the Document, and any Warrany Disclaimers, provided that you
also include the original English version of this License and the original versions of
those notices and disclaimers. In case of a disagreement between the translation and
the original version of this License or a notice or disclaimer, the original version will
prevail.
If a section in the Document is Entitled “Acknowledgements”, “Dedications”, or “His-
tory”, the requirement (section 4) to Preserve its Title (section 1) will typically require
changing the actual title.

9. TERMINATION
You may not copy, modify, sublicense, or distribute the Document except as expressly
provided for under this License. Any other attempt to copy, modify, sublicense or
distribute the Document is void, and will automatically terminate your rights under
this License. However, parties who have received copies, or rights, from you under this
License will not have their licenses terminated so long as such parties remain in full
compliance.

10. FUTURE REVISIONS OF THIS LICENSE
The Free Software Foundation may publish new, revised versions of the GNU Free
Documentation License from time to time. Such new versions will be similar in spirit
to the present version, but may differ in detail to address new problems or concerns.
See http://www.gnu.org/copyleft/.
Each version of the License is given a distinguishing version number. If the Document
specifies that a particular numbered version of this License “or any later version”
applies to it, you have the option of following the terms and conditions either of that
specified version or of any later version that has been published (not as a draft) by
the Free Software Foundation. If the Document does not specify a version number of
this License, you may choose any version ever published (not as a draft) by the Free
Software Foundation.

http://www.gnu.org/copyleft/

Appendix F: GNU Free Documentation License 325

ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the
document and put the following copyright and license notices just after the title page:

Copyright (C) year your name.

Permission is granted to copy, distribute and/or modify this document

under the terms of the GNU Free Documentation License, Version 1.2

or any later version published by the Free Software Foundation;

with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.

A copy of the license is included in the section entitled ‘‘GNU

Free Documentation License’’.

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the
“with...Texts.” line with this:

with the Invariant Sections being list their titles, with

the Front-Cover Texts being list, and with the Back-Cover Texts

being list.

If you have Invariant Sections without Cover Texts, or some other combination of the
three, merge those two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recommend releasing
these examples in parallel under your choice of free software license, such as the GNU
General Public License, to permit their use in free software.

326 GNAT User’s Guide for Native Platforms / Unix and Windows

Appendix F: Index 327

Index

-
‘--as’ (dlltool) . 315
‘--base-file’ (dlltool) . 315
‘--def’ (dlltool) . 315
‘--dllname’ (dlltool) . 315
‘--GCC=’ (gnatchop) . 106
‘--GCC=compiler_name’ (gnatlink) 82
‘--GCC=compiler_name’ (gnatmake) 86
‘--GNATBIND=binder_name’ (gnatmake) 86
‘--GNATLINK=linker_name’ (gnatmake) 86
‘--GNATMAKE’ (gnatelim) . 101
‘--help’ (dlltool) . 315
‘--LINK=’ (gnatlink) . 82
‘--output-exp’ (dlltool) 315
‘--output-lib’ (dlltool) 315
‘--RTS’ (gcc) . 41
‘--RTS’ (gnatbind) . 73
‘--RTS’ (gnatfind) . 154
‘--RTS’ (gnatls) . 180
‘--RTS’ (gnatmake) . 90
‘--RTS’ (gnatxref) . 152
‘--RTS’ option . 227
‘-83’ (gnathtml) . 209
‘-A’ (gnatbind) . 72
‘-A’ (gnatbind) . 76
‘-a’ (gnatdll) . 313
‘-a’ (gnatelim) . 100
‘-a’ (gnatfind) . 153
‘-A’ (gnatlink) . 81
‘-a’ (gnatls) . 180
‘-a’ (gnatmake) . 86
‘-A’ (gnatmake) . 90
‘-a’ (gnatxref) . 151
‘-aI’ (gnatbind) . 72, 78
‘-aI’ (gnatls) . 180
‘-aI’ (gnatmake) . 89
‘-aIDIR’ (gnatfind) . 153
‘-aIDIR’ (gnatxref) . 151
‘-aL’ (gnatmake) . 90
‘-An ’ (gnatpp) . 161
‘-aO’ (gnatbind) . 72, 78
‘-aO’ (gnatclean) . 184
‘-aO’ (gnatls) . 180
‘-aO’ (gnatmake) . 90
‘-aODIR’ (gnatfind) . 153
‘-aODIR’ (gnatxref) . 151
‘-ax ’ (gnatpp) . 162
‘-b’ (gcc) . 38
‘-B’ (gcc) . 38
‘-b’ (gnatbind) . 72
‘-b’ (gnatbind) . 75
‘-b’ (gnatdll) . 313
‘-b’ (gnatelim) . 100
‘-b’ (gnatlink) . 82

‘-B’ (gnatlink) . 82
‘-b’ (gnatmake) . 86
‘-b’ (gnatmem) . 198
‘-b’ (gnatprep) . 175
‘-bargs’ (gnatdll) . 313
‘-bargs’ (gnatmake). 91
‘-c’ (gcc) . 38
‘-c’ (gnatbind) . 72
‘-c’ (gnatbind) . 76
‘-C’ (gnatbind) . 72
‘-C’ (gnatbind) . 76
‘-c’ (gnatchop) . 105
‘-c’ (gnatclean) . 183
‘-C’ (gnatelim) . 100
‘-C’ (gnatlink) . 81
‘-c’ (gnatmake) . 87
‘-C’ (gnatmake) . 87
‘-c’ (gnatname) . 110
‘-c’ (gnatprep) . 175
‘-C=’ (gnatmake) . 87
‘-cargs’ (gnatmake). 90
‘-cc’ (gnathtml) . 209
‘-cl’ (gnatpp) . 163
‘-cn ’ (gnatpp) . 163
‘-D’ (gnatclean) . 183
‘-d’ (gnatdll) . 313
‘-d’ (gnatfind) . 154
‘-d’ (gnathtml) . 209
‘-D’ (gnathtml) . 209
‘-d’ (gnatls) . 180
‘-D’ (gnatmake) . 87
‘-d’ (gnatname) . 110
‘-D’ (gnatname) . 110
‘-D’ (gnatpp) . 162
‘-D’ (gnatprep) . 175
‘-d’ (gnatxref) . 152
‘-D-’ (gnatpp) . 162
‘-dx ’ (gnatelim) . 101
‘-e’ (gnatbind) . 72
‘-e’ (gnatbind) . 76
‘-E’ (gnatbind) . 72
‘-e’ (gnatdll) . 313
‘-e’ (gnatfind) . 154
‘-e’ (gnatpp) . 163
‘-ext’ (gnathtml) . 209
‘-F’ (gnatbind) . 72
‘-F’ (gnatclean) . 183
‘-f’ (gnatfind) . 154
‘-f’ (gnathtml) . 209
‘-f’ (gnatlink) . 82
‘-f’ (gnatmake) . 87
‘-F’ (gnatmake) . 87
‘-f’ (gnatname) . 110
‘-f’ (gnatstub) . 205
‘-f’ (gnatxref) . 152

328 GNAT User’s Guide for Native Platforms / Unix and Windows

‘-ff’ (gnatpp) . 163
‘-fno-inline’ (gcc) . 38, 99
-fstack-check . 59
‘-fstack-check’ (gcc) . 38
‘-g’ (gcc) . 38, 97
‘-g’ (gnatdll) . 313
‘-g’ (gnatfind) . 154
‘-g’ (gnatlink) . 82
‘-g’ (gnatmake) . 89
‘-g’ (gnatxref) . 152
‘-GCC’ (gnatelim) . 101
‘-gnat83’ (gcc) . 38, 60
‘-gnata’ (gcc). 38, 51
‘-gnatA’ (gcc) . 39
‘-gnatb’ (gcc). 39, 43
‘-gnatc’ (gcc). 39, 60
‘-gnatd’ (gcc). 39, 63
‘-gnatD’ (gcc). 39, 65
‘-gnatdc’ switch . 217
‘-gnatE’ (gcc). 39, 59
‘-gnatec’ (gcc) . 39
‘-gnatec’ (gnatpp) . 164
‘-gnatec’ (gnatstub) . 205
‘-gnateD’ (gcc) . 39, 68
‘-gnatef’ (gcc) . 39
‘-gnatem’ (gcc) . 39, 66
‘-gnatep’ (gcc) . 39, 67
‘-gnatf’ (gcc). 39, 43
‘-gnatF’ (gcc) . 39
‘-gnatg’ (gcc) . 39
‘-gnatG’ (gcc). 39, 63
‘-gnath’ (gcc) . 39
‘-gnati’ (gcc). 39, 61
‘-gnatk’ (gcc). 39, 62
‘-gnatl’ (gcc). 39, 43
‘-gnatL’ (gcc). 40, 66
‘-gnatm’ (gcc). 40, 43
‘-gnatn’ (gcc) . 40, 62, 98
‘-gnatN’ (gcc). 40, 62
‘-gnatn’ switch . 25
‘-gnatN’ switch . 25
‘-gnato’ (gcc) . 40, 57, 95
‘-gnato’ (gnatstub) . 206
‘-gnatp’ (gcc) . 40, 57, 95
‘-gnatP’ (gcc) . 40
‘-gnatq’ (gcc). 40, 44
‘-gnatQ’ (gcc). 40, 44
‘-gnatR’ (gcc). 40, 65
‘-gnats’ (gcc). 40, 59
‘-gnatS’ (gcc). 40, 65
‘-gnatt’ (gcc). 40, 62
‘-gnatT’ (gcc) . 40
‘-gnatu’ (gcc). 40, 63
‘-gnatU’ (gcc). 40, 43
‘-gnatv’ (gcc). 40, 42
‘-gnatV’ (gcc) . 40
‘-gnatVa’ (gcc) . 51
‘-gnatVc’ (gcc) . 51

‘-gnatVd’ (gcc) . 51
‘-gnatVf’ (gcc) . 52
‘-gnatVi’ (gcc) . 52
‘-gnatVm’ (gcc) . 52
‘-gnatVn’ (gcc) . 52
‘-gnatVo’ (gcc) . 52
‘-gnatVp’ (gcc) . 52
‘-gnatVr’ (gcc) . 53
‘-gnatVs’ (gcc) . 53
‘-gnatVt’ (gcc) . 53
‘-gnatw’ (gcc) . 40
‘-gnatW’ (gcc). 41, 61
‘-gnatwa’ (gcc) . 46
‘-gnatwA’ (gcc) . 46
‘-gnatwc’ (gcc) . 46
‘-gnatwC’ (gcc) . 46
‘-gnatwd’ (gcc) . 46
‘-gnatwD’ (gcc) . 46
‘-gnatwe’ (gcc) . 47
‘-gnatwf’ (gcc) . 47
‘-gnatwF’ (gcc) . 47
‘-gnatwg’ (gcc) . 47
‘-gnatwG’ (gcc) . 47
‘-gnatwh’ (gcc) . 47
‘-gnatwH’ (gcc) . 47
‘-gnatwi’ (gcc) . 47
‘-gnatwI’ (gcc) . 47
‘-gnatwj’ (gcc) . 47
‘-gnatwJ’ (gcc) . 47
‘-gnatwk’ (gcc) . 48
‘-gnatwK’ (gcc) . 48
‘-gnatwl’ (gcc) . 48
‘-gnatwL’ (gcc) . 48
‘-gnatwm’ (gcc) . 48
‘-gnatwM’ (gcc) . 48
‘-gnatwn’ (gcc) . 48
‘-gnatwo’ (gcc) . 48
‘-gnatwO’ (gcc) . 48
‘-gnatwp’ (gcc) . 48
‘-gnatwP’ (gcc) . 48
‘-gnatwr’ (gcc) . 49
‘-gnatwR’ (gcc) . 49
‘-gnatws’ (gcc) . 49
‘-gnatwu’ (gcc) . 49
‘-gnatwU’ (gcc) . 49
‘-gnatwv’ (gcc) . 49
‘-gnatwV’ (gcc) . 49
‘-gnatwx’ (gcc) . 50
‘-gnatwX’ (gcc) . 50
‘-gnatwz’ (gcc) . 50
‘-gnatwZ’ (gcc) . 50
‘-gnatx’ (gcc). 41, 65
‘-gnaty’ (gcc). 41, 53
‘-gnaty’ (gnatstub) . 206
‘-gnatyM’ (gnatstub) . 205
‘-gnatz’ (gcc) . 41
‘-gnatZ’ (gcc) . 66
‘-h’ (gnatbind) . 73

Appendix F: Index 329

‘-h’ (gnatbind) . 76
‘-h’ (gnatclean) . 183
‘-h’ (gnatdll) . 313
‘-h’ (gnatls) . 180
‘-h’ (gnatname) . 110
‘-hg’ (gnatstub) . 205
‘-hs’ (gnatstub) . 205
‘-I’ (gcc) . 41
‘-I’ (gnatbind) . 73, 78
‘-I’ (gnatclean) . 184
‘-I’ (gnatdll) . 313
‘-I’ (gnatelim) . 100
‘-I’ (gnathtml) . 209
‘-I’ (gnatls) . 180
‘-i’ (gnatmake) . 87
‘-I’ (gnatmake) . 90
‘-i’ (gnatmem) . 198
‘-i’ (gnatpp) . 163
‘-I’ (gnatpp) . 164
‘-i’ (gnatstub) . 206
‘-I-’ (gcc) . 41
‘-I-’ (gnatbind) . 73
‘-I-’ (gnatclean) . 184
‘-I-’ (gnatls) . 180
‘-I-’ (gnatmake) . 90
‘-I-’ (gnatpp) . 164
‘-I-’ (gnatstub) . 205
‘-IDIR’ (gnatfind) . 154
‘-IDIR’ (gnatstub) . 205
‘-IDIR’ (gnatxref) . 152
‘-j’ (gnatmake) . 87
‘-k’ (dlltool) . 315
‘-K’ (gnatbind) . 76
‘-k’ (gnatchop) . 105
‘-k’ (gnatdll) . 313
‘-k’ (gnatmake) . 88
‘-k’ (gnatstub) . 206
‘-kx ’ (gnatpp) . 162
‘-l’ (gnatbind) . 73
‘-l’ (gnatbind) . 76
‘-L’ (gnatbind) . 73
‘-l’ (gnatdll) . 313
‘-l’ (gnathtml) . 209
‘-l’ (gnatmake) . 88
‘-L’ (gnatmake) . 90
‘-l’ (gnatstub) . 206
‘-largs’ (gnatdll) . 313
‘-largs’ (gnatmake). 91
‘-ln ’ (gnatpp) . 163
‘-m’ (gnatbind) . 73
‘-m’ (gnatbind) . 75
‘-M’ (gnatbind) . 73
‘-M’ (gnatbind) . 75
‘-m’ (gnatmake) . 88
‘-M’ (gnatmake) . 88
‘-m’ (gnatmem) . 198
‘-M’ (gnatpp) . 163
‘-margs’ (gnatmake). 91

‘-mbig-switch’ (gcc) . 41
-mwindows . 302
‘-n’ (gnatbind) . 73
‘-n’ (gnatbind) . 77
‘-n’ (gnatclean) . 183
‘-n’ (gnatdll) . 313
‘-n’ (gnatlink) . 82
‘-n’ (gnatmake) . 88
‘-nostdinc’ (gcc) . 41
‘-nostdinc’ (gnatbind) . 73
‘-nostdinc’ (gnatfind) . 153
‘-nostdinc’ (gnatmake) . 90
‘-nostdinc’ (gnatxref) . 151
‘-nostdlib’ (gcc) . 41
‘-nostdlib’ (gnatbind) . 73
‘-nostdlib’ (gnatfind) . 153
‘-nostdlib’ (gnatmake) . 90
‘-nostdlib’ (gnatxref) . 151
‘-nx ’ (gnatpp) . 162
‘-o ’ (gnatbind) . 73
‘-o’ (gcc) . 41
‘-O’ (gcc) . 41, 96
‘-o’ (gnatbind) . 76
‘-o’ (gnatbind) . 77
‘-O’ (gnatbind) . 73
‘-O’ (gnatbind) . 76
‘-o’ (gnathtml) . 209
‘-o’ (gnatlink) . 82
‘-o’ (gnatls) . 180
‘-o’ (gnatmake) . 88
‘-o’ (gnatpp) . 164
‘-o’ (gnatstub) . 206
‘-of’ (gnatpp) . 164
‘-P’ (any tool supporting project files) 139
‘-p’ (gnatbind) . 73
‘-p’ (gnatbind) . 75
‘-p’ (gnatchop) . 105
‘-P’ (gnatclean) . 183
‘-p’ (gnathtml) . 209
‘-P’ (gnatmake) . 89
‘-P’ (gnatname) . 110
‘-pass-exit-codes’ (gcc) 41, 63
‘-pFILE’ (gnatfind) . 154
‘-pFILE’ (gnatxref) . 152
‘-pipe’ (gnatpp) . 164
‘-px ’ (gnatpp) . 162
‘-q’ (gnatchop) . 105
‘-q’ (gnatclean) . 183
‘-q’ (gnatdll) . 313
‘-q’ (gnatelim) . 100
‘-q’ (gnatmake) . 89
‘-q’ (gnatmem) . 198
‘-q’ (gnatstub) . 206
‘-r’ (gnatbind) . 76
‘-r’ (gnatchop) . 105
‘-r’ (gnatclean) . 183
‘-r’ (gnatfind) . 154
‘-r’ (gnatpp) . 164

330 GNAT User’s Guide for Native Platforms / Unix and Windows

‘-r’ (gnatprep) . 175
‘-r’ (gnatstub) . 206
‘-rf’ (gnatpp) . 164
‘-S’ (gcc) . 42
‘-s’ (gnatbind) . 73
‘-s’ (gnatbind) . 74
‘-S’ (gnatbind) . 73
‘-s’ (gnatfind) . 154
‘-s’ (gnatls) . 180
‘-s’ (gnatmake) . 89
‘-s’ (gnatmem) . 198
‘-s’ (gnatprep) . 175
‘-sc’ (gnathtml) . 209
‘-shared’ (gnatbind) . 74
‘-static’ (gnatbind) . 74
‘-t’ (gnatbind) . 74, 75
‘-T’ (gnatbind) . 74
‘-t’ (gnatfind) . 154
‘-t’ (gnathtml) . 209
‘-T’ (gnatpp) . 163
‘-t’ (gnatstub) . 206
‘-T0’ option . 228
‘-u’ (gnatls) . 180
‘-u’ (gnatmake) . 89
‘-U’ (gnatmake) . 89
‘-u’ (gnatprep) . 176
‘-v’ (dlltool) . 315
‘-v’ (gcc) . 42
‘-V’ (gcc) . 42
‘-v’ (gnatbind) . 74, 75
‘-v’ (gnatchop) . 106
‘-v’ (gnatclean) . 183
‘-v’ (gnatdll) . 313
‘-v’ (gnatelim) . 100
‘-v’ (gnatlink) . 82
‘-v’ (gnatls) . 180
‘-v’ (gnatmake) . 89
‘-v’ (gnatname) . 110
‘-v’ (gnatpp) . 164
‘-v’ (gnatstub) . 206
‘-v -v’ (gnatlink) . 82
‘-v -v’ (gnatname) . 110
-vP (any tool supporting project files) 139
‘-vP’ (gnatclean) . 184
‘-w’ . 50
‘-w’ (gnatbind) . 74
‘-w’ (gnatchop) . 106
‘-w’ (gnatpp) . 164
‘-we’ (gnatbind) . 75
‘-ws’ (gnatbind) . 75
‘-Wuninitialized’ . 50
‘-X’ (any tool supporting project files) 139
‘-x’ (gnatbind) . 74
‘-X’ (gnatclean) . 184
‘-x’ (gnatname) . 110
‘-z’ (gnatbind) . 74, 77
‘-z’ (gnatmake) . 89

.

.def . 306

__gnat_finalize . 241

__gnat_initialize . 241

__gnat_set_globals 237, 238

_main . 207

A

Access before elaboration . 57

Access-to-subprogram . 266

ACVC, Ada 83 tests . 60

Ada . 78, 218

Ada 83 compatibility . 60

Ada 95 Language Reference Manual 2

Ada expressions . 214

Ada Library Information files 25

Ada mode (for Glide) . 208

Ada.Characters.Latin_1 . 18

ADA_INCLUDE_PATH . 69

ADA_OBJECTS_PATH . 78

ADA_PRJ_INCLUDE_FILE . 69

ADA_PRJ_OBJECTS_FILE . 78

adafinal . 77, 240

adainit . 77, 235

Address Clauses, warnings . 48

‘ALI’ files. 25

Alignment control in gnatpp 161

Annex A . 218

Annex B . 218

Annex D (Real-Time Systems Annex) compliance
. 227

APIENTRY . 303

Arbitrary File Naming Conventions 109

Asm . 30

Assert . 51

Assertions . 51

B

Binder consistency checks . 75

Binder output file . 28

Binder, multiple input files 77

Breakpoints and tasks . 216

Appendix F: Index 331

C
C . 30
C++ . 30
Calling Conventions . 29
cannot generate code . 37
case statement (effect of ‘-mbig-switch’ option)

. 41
Casing control in gnatpp . 162
Ceiling_Locking (under rts-pthread) 229
Check, elaboration . 59
Check, overflow . 57
Check CPU procedure . 278
Checks, access before elaboration 57
Checks, division by zero . 57
Checks, elaboration . 247
Checks, overflow . 95
Checks, suppressing . 57
Cleaning tool . 183
COBOL . 30
code page 437 . 18
code page 850 . 18
COM . 318
Combining GNAT switches 42
Command line length . 82
Compatibility (between Ada 83 and Ada 95) . . 293
Compilation model. 17
Conditionals, constant . 46
Configuration pragmas . 107
Consistency checks, in binder 75
CONSOLE Subsystem . 302
Convention Ada . 29
Convention Asm . 30
Convention Assembler . 30
Convention C . 30
Convention C++ . 30
Convention COBOL . 30
Convention Default . 30
Convention DLL . 31
Convention External . 30
Convention Fortran . 30
Convention Stdcall . 31
Convention Stubbed . 31
Convention Win32 . 31
Conventions . 3
CR . 17
Cyrillic . 18

D
DCOM . 318
Debug . 51
Debug Pool . 201
Debugger . 211
Debugging . 211
Debugging Generic Units . 216
Debugging information, including 82
Debugging optimized code . 97
Debugging options . 63

Default . 30
Definition file . 306
Dependencies, producing list 88
Dependency rules . 85
Dereferencing, implicit . 46
Division by zero . 57
DLL . 31, 304
DLL debugging . 316
DLL debugging, attach to process 318
DLLs and elaboration . 311
DLLs and finalization . 311
DLLs, building . 308

E
Elaborate . 249
Elaborate_All . 249
Elaborate_Body . 248
Elaboration checks . 59, 247
Elaboration control . 245, 266
Elaboration of library tasks 256
Elaboration order control . 35
Elaboration, warnings . 48
End of source file . 17
Error messages, suppressing 43
EUC Coding . 19
Exceptions . 215
Export . 207
Export table . 309
Export/Import pragma warnings 50
External . 30

F
FDL, GNU Free Documentation License 319
Features, obsolescent . 47
FF . 17
File names . 21, 22
File naming schemes, alternative 22
Foreign Languages . 29
Formals, unreferenced . 47
Fortran . 30
FSU threads library . 227, 229

G
gdb . 211
Generic formal parameters. 61
Generics . 24, 216
Glide . 12
GNAT . 78, 218
GNAT Abnormal Termination or Failure to

Terminate . 217
GNAT compilation model . 17
GNAT library . 35
GNAT Programming System (GPS) 8
‘gnat.adc’ . 22, 108
gnat_argc . 78

332 GNAT User’s Guide for Native Platforms / Unix and Windows

gnat_argv . 78
GNAT INIT SCALARS . 74
GNAT_PROCESSOR environment variable (on Sparc

Solaris) . 229
GNAT STACK LIMIT . 59
gnat1 . 37
gnatbind . 71
gnatchop . 103
gnatclean . 183
gnatdll . 312
gnatelim . 99
gnatfind . 151
gnatkr . 171
gnatlink . 81
gnatls . 179
gnatmake . 85
gnatmem . 197
gnatpp . 161
gnatprep . 175
gnatstub . 205
gnatxref . 151
GNU make . 191
GPS (GNAT Programming System) 8
GVD . 12

H
Hiding of Declarations . 47
HP-UX and ‘-mbig-switch’ option 41
HT . 17

I
Implicit dereferencing . 46
Import library . 306
Improving performance . 95
Inheritance_Locking (under rts-pthread) 229
Inline . 25, 98
Inlining . 36
Inlining, warnings . 48
Intel CPU package body . 288
Intel CPU package specification 284
Interfaces . 78, 218
Interfacing to Ada . 29
Interfacing to Assembly . 30
Interfacing to C . 30
Interfacing to C++ . 30
Interfacing to COBOL . 30
Interfacing to Fortran . 30
Internal trees, writing to file 62
IRIX thread library . 229
ISO 8859-15 . 18
ISO 8859-2 . 18
ISO 8859-3 . 18
ISO 8859-4 . 18
ISO 8859-5 . 18

L
Latin-1 . 17, 18, 295
Latin-2 . 18
Latin-3 . 18
Latin-4 . 18
Latin-9 . 18
Layout control in gnatpp . 163
LF . 17
Library browser . 179
Library tasks, elaboration issues 256
Library, building, installing 185
Linker libraries . 90
Linux threads libraries . 230
LinuxThreads library . 227

M
Machine_Overflows . 58
Main Program . 241
make . 191
makefile . 191
Mixed Language Programming 27
Multiple units, syntax checking 60

N
N (gnatmem) . 198
Native threads library . 227
No Entry Calls In Elaboration Code 261

O
Object file list . 242
Obsolescent features . 47
Optimization and debugging 97
Order of elaboration . 245
Other Ada compilers . 29
Overflow checks . 57, 95

P
Parallel make . 87
POSIX scheduling policies 228
pragma Elaborate . 249
Pragma Elaborate . 256
pragma Elaborate All . 249
pragma Elaborate Body . 248
pragma Inline . 98
pragma Locking Policy (under rts-pthread) . . . 229
pragma Preelaborate . 248
pragma Pure . 248
pragma Suppress . 95
pragma Task Dispatching Policy 228
pragma Task Info (and IRIX threads) 230
pragma Time Slice. 228
pragma Unsuppress . 95
Pragmas, configuration . 107

Appendix F: Index 333

Pragmas, unrecognized . 47
Preelaborate . 248
Pretty-Printer . 161
PTHREAD_PRIO_INHERIT policy (under rts-pthread)

. 229
PTHREAD_PRIO_PROTECT policy (under rts-pthread)

. 229
Pure . 248

R
rc . 316
Real-Time Systems Annex compliance 227
Recompilation, by gnatmake 91
Resources, building . 316
Resources, compiling . 316
Resources, using . 316
Resources, windows . 315
RTL . 41
rts-pthread threads library 229
Run-time libraries (platform-specific information)

. 225

S
SCHED_FIFO scheduling policy 228
SCHED_OTHER scheduling policy 228
SCHED_RR scheduling policy 228
SDP_Table_Build . 237
Search paths, for gnatmake 90
setjmp/longjmp Exception Model 225
Shift JIS Coding . 19
SJLJ (setjmp/longjmp Exception Model) 225
Solaris Sparc threads libraries 229
Source file, end . 17
Source files, suppressing search 90, 184
Source files, use by binder . 71
Source File Name pragma 21, 22
Source_Reference . 105
Stack Overflow Checking . 59
stack traceback . 219
stack unwinding . 219
Stdcall . 31, 303
stderr . 42, 43
stdout . 42
storage, pool, memory corruption 201
Stubbed . 31
Style checking . 53
SUB . 17
Subunits . 24
Suppress . 57, 95
Suppressing checks . 57

System . 78, 218
System.IO . 69
System.Task_Info package (and IRIX threads)

. 230

T
Task switching . 216
Tasking and threads libraries 225
Tasks . 215
Temporary files . 302
Threads libraries and tasking 225
Time stamp checks, in binder 75
traceback . 219
traceback, non-symbolic . 219
traceback, symbolic . 223
Typographical conventions . 3

U
Unassigned variable warnings 49
Unchecked Conversion warnings 50
Unsuppress . 59, 95
Upper-Half Coding . 19

V
Validity Checking . 51
Version skew (avoided by gnatmake) 6
Volatile parameter . 277
VT . 17

W
Warning messages . 44
Warnings . 75
Warnings, treat as error . 47
Win32 . 31
Windows 95 . 301
Windows 98 . 301
Windows NT . 301
WINDOWS Subsystem. 302
windres . 316
Writing internal trees . 62

Z
ZCX (Zero-Cost Exceptions). 225
Zero Cost Exceptions . 66
Zero Cost Exceptions . 237
Zero-Cost Exceptions . 225

334 GNAT User’s Guide for Native Platforms / Unix and Windows

i

Table of Contents

About This Guide. 1
What This Guide Contains . 1
What You Should Know before Reading This Guide. 2
Related Information . 2
Conventions . 3

1 Getting Started with GNAT 5
1.1 Running GNAT . 5
1.2 Running a Simple Ada Program . 5
1.3 Running a Program with Multiple Units . 6
1.4 Using the gnatmake Utility . 8
1.5 Introduction to GPS . 8

1.5.1 Building a New Program with GPS 8
1.5.2 Simple Debugging with GPS . 10

1.6 Introduction to Glide and GVD . 12
1.6.1 Building a New Program with Glide 12
1.6.2 Simple Debugging with GVD . 14
1.6.3 Other Glide Features . 14

2 The GNAT Compilation Model 17
2.1 Source Representation . 17
2.2 Foreign Language Representation . 17

2.2.1 Latin-1 . 18
2.2.2 Other 8-Bit Codes . 18
2.2.3 Wide Character Encodings . 19

2.3 File Naming Rules . 20
2.4 Using Other File Names . 21
2.5 Alternative File Naming Schemes . 22
2.6 Generating Object Files . 24
2.7 Source Dependencies . 24
2.8 The Ada Library Information Files. 25
2.9 Binding an Ada Program. 26
2.10 Mixed Language Programming . 27

2.10.1 Interfacing to C . 27
2.10.2 Calling Conventions . 29

2.11 Building Mixed Ada & C++ Programs . 31
2.11.1 Interfacing to C++ . 31
2.11.2 Linking a Mixed C++ & Ada Program 32
2.11.3 A Simple Example . 33
2.11.4 Adapting the Run Time to a New C++ Compiler. 34

2.12 Comparison between GNAT and C/C++ Compilation Models
. 35

ii GNAT User’s Guide for Native Platforms / Unix and Windows

2.13 Comparison between GNAT and Conventional Ada Library
Models . 35

3 Compiling Using gcc . 37
3.1 Compiling Programs . 37
3.2 Switches for gcc . 38

3.2.1 Output and Error Message Control 42
3.2.2 Warning Message Control . 44
3.2.3 Debugging and Assertion Control . 51
3.2.4 Validity Checking . 51
3.2.5 Style Checking . 53
3.2.6 Run-Time Checks . 57
3.2.7 Stack Overflow Checking . 59
3.2.8 Using gcc for Syntax Checking . 59
3.2.9 Using gcc for Semantic Checking . 60
3.2.10 Compiling Ada 83 Programs . 60
3.2.11 Character Set Control . 61
3.2.12 File Naming Control. 62
3.2.13 Subprogram Inlining Control . 62
3.2.14 Auxiliary Output Control . 62
3.2.15 Debugging Control . 63
3.2.16 Exception Handling Control . 65
3.2.17 Units to Sources Mapping Files. 66
3.2.18 Integrated Preprocessing . 67

3.3 Search Paths and the Run-Time Library (RTL) 69
3.4 Order of Compilation Issues . 70
3.5 Examples . 70

4 Binding Using gnatbind 71
4.1 Running gnatbind . 71
4.2 Switches for gnatbind . 72

4.2.1 Consistency-Checking Modes . 74
4.2.2 Binder Error Message Control . 75
4.2.3 Elaboration Control . 75
4.2.4 Output Control . 76
4.2.5 Binding with Non-Ada Main Programs 76
4.2.6 Binding Programs with No Main Subprogram 77

4.3 Command-Line Access . 78
4.4 Search Paths for gnatbind . 78
4.5 Examples of gnatbind Usage . 79

5 Linking Using gnatlink . 81
5.1 Running gnatlink . 81
5.2 Switches for gnatlink . 81
5.3 Setting Stack Size from gnatlink . 83
5.4 Setting Heap Size from gnatlink . 83

iii

6 The GNAT Make Program gnatmake 85
6.1 Running gnatmake . 85
6.2 Switches for gnatmake . 86
6.3 Mode Switches for gnatmake . 90
6.4 Notes on the Command Line . 91
6.5 How gnatmake Works . 92
6.6 Examples of gnatmake Usage . 92

7 Improving Performance 95
7.1 Performance Considerations . 95

7.1.1 Controlling Run-Time Checks . 95
7.1.2 Use of Restrictions . 96
7.1.3 Optimization Levels . 96
7.1.4 Debugging Optimized Code . 97
7.1.5 Inlining of Subprograms . 98

7.2 Reducing the Size of Ada Executables with gnatelim 99
7.2.1 About gnatelim . 99
7.2.2 Running gnatelim . 100
7.2.3 Correcting the List of Eliminate Pragmas 101
7.2.4 Making Your Executables Smaller 101
7.2.5 Summary of the gnatelim Usage Cycle 101

8 Renaming Files Using gnatchop 103
8.1 Handling Files with Multiple Units . 103
8.2 Operating gnatchop in Compilation Mode 103
8.3 Command Line for gnatchop . 104
8.4 Switches for gnatchop . 105
8.5 Examples of gnatchop Usage . 106

9 Configuration Pragmas. 107
9.1 Handling of Configuration Pragmas . 107
9.2 The Configuration Pragmas Files . 108

10 Handling Arbitrary File Naming Conventions
Using gnatname . 109

10.1 Arbitrary File Naming Conventions . 109
10.2 Running gnatname . 109
10.3 Switches for gnatname . 109
10.4 Examples of gnatname Usage . 111

iv GNAT User’s Guide for Native Platforms / Unix and Windows

11 GNAT Project Manager 113
11.1 Introduction . 113

11.1.1 Project Files . 113
11.2 Examples of Project Files . 114

11.2.1 Common Sources with Different Switches and Directories
. 114
Source Files . 116
Specifying the Object Directory . 116
Specifying the Exec Directory . 116
Project File Packages . 116
Specifying Switch Settings . 116
Main Subprograms . 117
Executable File Names . 117
Source File Naming Conventions . 117
Source Language(s) . 117

11.2.2 Using External Variables. 117
11.2.3 Importing Other Projects . 119
11.2.4 Extending a Project . 120

11.3 Project File Syntax . 121
11.3.1 Basic Syntax . 122
11.3.2 Packages . 122
11.3.3 Expressions . 123
11.3.4 String Types . 124
11.3.5 Variables . 124
11.3.6 Attributes . 125
11.3.7 Associative Array Attributes . 127
11.3.8 case Constructions . 127

11.4 Objects and Sources in Project Files . 128
11.4.1 Object Directory . 128
11.4.2 Exec Directory . 129
11.4.3 Source Directories . 129
11.4.4 Source File Names . 129

11.5 Importing Projects . 130
11.6 Project Extension . 132
11.7 External References in Project Files . 132
11.8 Packages in Project Files . 133
11.9 Variables from Imported Projects . 134
11.10 Naming Schemes . 134
11.11 Library Projects . 136
11.12 Using Third-Party Libraries through Projects 137
11.13 Stand-alone Library Projects . 138
11.14 Switches Related to Project Files . 139
11.15 Tools Supporting Project Files . 140

11.15.1 gnatmake and Project Files . 140
11.15.1.1 Switches and Project Files 140
11.15.1.2 Specifying Configuration Pragmas 142
11.15.1.3 Project Files and Main Subprograms 143
11.15.1.4 Library Project Files . 144

v

11.15.2 The GNAT Driver and Project Files 144
11.15.3 Glide and Project Files . 146

11.16 An Extended Example . 146
11.17 Project File Complete Syntax . 148

12 The Cross-Referencing Tools gnatxref and
gnatfind . 151

12.1 gnatxref Switches . 151
12.2 gnatfind Switches . 152
12.3 Project Files for gnatxref and gnatfind. 154
12.4 Regular Expressions in gnatfind and gnatxref 156
12.5 Examples of gnatxref Usage . 157

12.5.1 General Usage . 157
12.5.2 Using gnatxref with vi . 158

12.6 Examples of gnatfind Usage . 158

13 The GNAT Pretty-Printer gnatpp 161
13.1 Switches for gnatpp . 161

13.1.1 Alignment Control . 161
13.1.2 Casing Control . 162
13.1.3 Construct Layout Control . 163
13.1.4 General Text Layout Control . 163
13.1.5 Other Formatting Options . 163
13.1.6 Setting the Source Search Path . 164
13.1.7 Output File Control . 164
13.1.8 Other gnatpp Switches . 164

13.2 Formatting Rules . 164
13.2.1 White Space and Empty Lines . 164
13.2.2 Formatting Comments . 165
13.2.3 Construct Layout . 167
13.2.4 Name Casing . 167

14 File Name Krunching Using gnatkr 171
14.1 About gnatkr . 171
14.2 Using gnatkr . 171
14.3 Krunching Method . 172
14.4 Examples of gnatkr Usage . 173

15 Preprocessing Using gnatprep. 175
15.1 Using gnatprep . 175
15.2 Switches for gnatprep . 175
15.3 Form of Definitions File . 176
15.4 Form of Input Text for gnatprep . 176

vi GNAT User’s Guide for Native Platforms / Unix and Windows

16 The GNAT Library Browser gnatls 179
16.1 Running gnatls . 179
16.2 Switches for gnatls . 180
16.3 Example of gnatls Usage . 181

17 Cleaning Up Using gnatclean 183
17.1 Running gnatclean . 183
17.2 Switches for gnatclean . 183
17.3 Examples of gnatclean Usage . 184

18 GNAT and Libraries . 185
18.1 Creating an Ada Library . 185
18.2 Installing an Ada Library . 186
18.3 Using an Ada Library . 187
18.4 Creating an Ada Library to be Used in a Non-Ada Context

. 187
18.4.1 Creating the Library . 187
18.4.2 Using the Library . 188
18.4.3 The Finalization Phase . 189
18.4.4 Restrictions in Libraries . 189

18.5 Rebuilding the GNAT Run-Time Library 189

19 Using the GNU make Utility 191
19.1 Using gnatmake in a Makefile . 191
19.2 Automatically Creating a List of Directories 192
19.3 Generating the Command Line Switches 193
19.4 Overcoming Command Line Length Limits 194

20 Finding Memory Problems 197
20.1 The gnatmem Tool . 197

20.1.1 Running gnatmem . 197
20.1.2 Switches for gnatmem . 198
20.1.3 Example of gnatmem Usage . 199

20.2 The GNAT Debug Pool Facility . 201

21 Creating Sample Bodies Using gnatstub . . 205
21.1 Running gnatstub . 205
21.2 Switches for gnatstub . 205

22 Other Utility Programs 207
22.1 Using Other Utility Programs with GNAT. 207
22.2 The External Symbol Naming Scheme of GNAT 207
22.3 Ada Mode for Glide . 208
22.4 Converting Ada Files to HTML with gnathtml 208
22.5 Installing gnathtml . 210

vii

23 Running and Debugging Ada Programs . . 211
23.1 The GNAT Debugger GDB . 211
23.2 Running GDB . 212
23.3 Introduction to GDB Commands . 212
23.4 Using Ada Expressions . 214
23.5 Calling User-Defined Subprograms . 214
23.6 Using the Next Command in a Function 215
23.7 Breaking on Ada Exceptions . 215
23.8 Ada Tasks . 215
23.9 Debugging Generic Units . 216
23.10 GNAT Abnormal Termination or Failure to Terminate . . . 217
23.11 Naming Conventions for GNAT Source Files 218
23.12 Getting Internal Debugging Information 218
23.13 Stack Traceback . 219

23.13.1 Non-Symbolic Traceback . 219
23.13.1.1 Tracebacks From an Unhandled Exception . . 219
23.13.1.2 Tracebacks From Exception Occurrences 221
23.13.1.3 Tracebacks From Anywhere in a Program . . . 222

23.13.2 Symbolic Traceback . 223
23.13.2.1 Tracebacks From Exception Occurrences 223
23.13.2.2 Tracebacks From Anywhere in a Program . . . 224

Appendix A Platform-Specific Information for
the Run-Time Libraries 225

A.1 Summary of Run-Time Configurations . 225
A.2 Specifying a Run-Time Library . 226
A.3 Choosing between Native and FSU Threads Libraries 227
A.4 Choosing the Scheduling Policy . 228
A.5 Solaris-Specific Considerations . 229

A.5.1 Solaris Threads Issues . 229
A.5.2 Building and Debugging 64-bit Applications 229

A.6 IRIX-Specific Considerations . 229
A.7 Linux-Specific Considerations . 230

Appendix B Example of Binder Output File
. 231

Appendix C Elaboration Order Handling in
GNAT . 245

C.1 Elaboration Code in Ada 95 . 245
C.2 Checking the Elaboration Order in Ada 95 247
C.3 Controlling the Elaboration Order in Ada 95 248
C.4 Controlling Elaboration in GNAT - Internal Calls 250
C.5 Controlling Elaboration in GNAT - External Calls 253
C.6 Default Behavior in GNAT - Ensuring Safety 254
C.7 Treatment of Pragma Elaborate . 256

viii GNAT User’s Guide for Native Platforms / Unix and Windows

C.8 Elaboration Issues for Library Tasks . 256
C.9 Mixing Elaboration Models . 261
C.10 What to Do If the Default Elaboration Behavior Fails 262
C.11 Elaboration for Access-to-Subprogram Values 266
C.12 Summary of Procedures for Elaboration Control 266
C.13 Other Elaboration Order Considerations 266

Appendix D Inline Assembler 269
D.1 Basic Assembler Syntax . 269
D.2 A Simple Example of Inline Assembler . 270
D.3 Output Variables in Inline Assembler . 271
D.4 Input Variables in Inline Assembler . 274
D.5 Inlining Inline Assembler Code . 276
D.6 Other Asm Functionality . 276

D.6.1 The Clobber Parameter . 276
D.6.2 The Volatile Parameter . 277

D.7 A Complete Example . 277
D.7.1 Check_CPU Procedure . 278
D.7.2 Intel_CPU Package Specification 284
D.7.3 Intel_CPU Package Body . 288

Appendix E Compatibility and Porting Guide
. 293

E.1 Compatibility with Ada 83 . 293
E.1.1 Legal Ada 83 programs that are illegal in Ada 95 293
E.1.2 More deterministic semantics . 294
E.1.3 Changed semantics . 294
E.1.4 Other language compatibility issues 295

E.2 Implementation-dependent characteristics 295
E.2.1 Implementation-defined pragmas 295
E.2.2 Implementation-defined attributes 296
E.2.3 Libraries . 296
E.2.4 Elaboration order . 296
E.2.5 Target-specific aspects . 297

E.3 Compatibility with Other Ada 95 Systems 297
E.4 Representation Clauses . 297
E.5 Compatibility with DEC Ada 83 . 299

ix

Appendix F Microsoft Windows Topics 301
F.1 Using GNAT on Windows . 301
F.2 Using a network installation of GNAT . 301
F.3 CONSOLE and WINDOWS subsystems 302
F.4 Temporary Files . 302
F.5 Mixed-Language Programming on Windows 302
F.6 Windows Calling Conventions . 303

F.6.1 C Calling Convention . 303
F.6.2 Stdcall Calling Convention . 303
F.6.3 DLL Calling Convention . 304

F.7 Introduction to Dynamic Link Libraries (DLLs) 304
F.8 Using DLLs with GNAT . 305

F.8.1 Creating an Ada Spec for the DLL Services 306
F.8.2 Creating an Import Library . 306

F.8.2.1 The Definition File . 306
F.8.2.2 GNAT-Style Import Library 307
F.8.2.3 Microsoft-Style Import Library 308

F.9 Building DLLs with GNAT . 308
F.9.1 Limitations When Using Ada DLLs from Ada 309
F.9.2 Exporting Ada Entities . 309
F.9.3 Ada DLLs and Elaboration . 311
F.9.4 Ada DLLs and Finalization . 311
F.9.5 Creating a Spec for Ada DLLs . 311
F.9.6 Creating the Definition File . 312
F.9.7 Using gnatdll . 312

F.9.7.1 gnatdll Example . 314
F.9.7.2 gnatdll behind the Scenes 314
F.9.7.3 Using dlltool . 315

F.10 GNAT and Windows Resources . 315
F.10.1 Building Resources . 316
F.10.2 Compiling Resources . 316
F.10.3 Using Resources . 316

F.11 Debugging a DLL . 316
F.11.1 Program and DLL Both Built with GCC/GNAT . . . 316
F.11.2 Program Built with Foreign Tools and DLL Built with

GCC/GNAT . 317
F.11.2.1 Debugging the DLL Directly 317
F.11.2.2 Attaching to a Running Process 318

F.12 GNAT and COM/DCOM Objects . 318

GNU Free Documentation License 319
ADDENDUM: How to use this License for your documents 325

Index . 327

x GNAT User’s Guide for Native Platforms / Unix and Windows

	About This Guide
	What This Guide Contains
	What You Should Know before Reading This Guide
	Related Information
	Conventions

	Getting Started with GNAT
	Running GNAT
	Running a Simple Ada Program
	Running a Program with Multiple Units
	Using the gnatmake Utility
	Introduction to GPS
	Building a New Program with GPS
	Simple Debugging with GPS

	Introduction to Glide and GVD
	Building a New Program with Glide
	Simple Debugging with GVD
	Other Glide Features

	The GNAT Compilation Model
	Source Representation
	Foreign Language Representation
	Latin-1
	Other 8-Bit Codes
	Wide Character Encodings

	File Naming Rules
	Using Other File Names
	Alternative File Naming Schemes
	Generating Object Files
	Source Dependencies
	The Ada Library Information Files
	Binding an Ada Program
	Mixed Language Programming
	Interfacing to C
	Calling Conventions

	Building Mixed Ada & C++ Programs
	Interfacing to C++
	Linking a Mixed C++ & Ada Program
	A Simple Example
	Adapting the Run Time to a New C++ Compiler

	Comparison between GNAT and C/C++ Compilation Models
	Comparison between GNAT and Conventional Ada Library Models

	Compiling Using gcc
	Compiling Programs
	Switches for gcc
	Output and Error Message Control
	Warning Message Control
	Debugging and Assertion Control
	Validity Checking
	Style Checking
	Run-Time Checks
	Stack Overflow Checking
	Using gcc for Syntax Checking
	Using gcc for Semantic Checking
	Compiling Ada 83 Programs
	Character Set Control
	File Naming Control
	Subprogram Inlining Control
	Auxiliary Output Control
	Debugging Control
	Exception Handling Control
	Units to Sources Mapping Files
	Integrated Preprocessing

	Search Paths and the Run-Time Library (RTL)
	Order of Compilation Issues
	Examples

	Binding Using gnatbind
	Running gnatbind
	Switches for gnatbind
	Consistency-Checking Modes
	Binder Error Message Control
	Elaboration Control
	Output Control
	Binding with Non-Ada Main Programs
	Binding Programs with No Main Subprogram

	Command-Line Access
	Search Paths for gnatbind
	Examples of gnatbind Usage

	Linking Using gnatlink
	Running gnatlink
	Switches for gnatlink
	Setting Stack Size from gnatlink
	Setting Heap Size from gnatlink

	The GNAT Make Program gnatmake
	Running gnatmake
	Switches for gnatmake
	Mode Switches for gnatmake
	Notes on the Command Line
	How gnatmake Works
	Examples of gnatmake Usage

	Improving Performance
	Performance Considerations
	Controlling Run-Time Checks
	Use of Restrictions
	Optimization Levels
	Debugging Optimized Code
	Inlining of Subprograms

	Reducing the Size of Ada Executables with gnatelim
	About gnatelim
	Running gnatelim
	Correcting the List of Eliminate Pragmas
	Making Your Executables Smaller
	Summary of the gnatelim Usage Cycle

	Renaming Files Using gnatchop
	Handling Files with Multiple Units
	Operating gnatchop in Compilation Mode
	Command Line for gnatchop
	Switches for gnatchop
	Examples of gnatchop Usage

	Configuration Pragmas
	Handling of Configuration Pragmas
	The Configuration Pragmas Files

	Handling Arbitrary File Naming Conventions Using gnatname
	Arbitrary File Naming Conventions
	Running gnatname
	Switches for gnatname
	Examples of gnatname Usage

	GNAT Project Manager
	Introduction
	Project Files

	Examples of Project Files
	Common Sources with Different Switches and Directories
	Source Files
	Specifying the Object Directory
	Specifying the Exec Directory
	Project File Packages
	Specifying Switch Settings
	Main Subprograms
	Executable File Names
	Source File Naming Conventions
	Source Language(s)

	Using External Variables
	Importing Other Projects
	Extending a Project

	Project File Syntax
	Basic Syntax
	Packages
	Expressions
	String Types
	Variables
	Attributes
	Associative Array Attributes
	case Constructions

	Objects and Sources in Project Files
	Object Directory
	Exec Directory
	Source Directories
	Source File Names

	Importing Projects
	Project Extension
	External References in Project Files
	Packages in Project Files
	Variables from Imported Projects
	Naming Schemes
	Library Projects
	Using Third-Party Libraries through Projects
	Stand-alone Library Projects
	Switches Related to Project Files
	Tools Supporting Project Files
	gnatmake and Project Files
	Switches and Project Files
	Specifying Configuration Pragmas
	Project Files and Main Subprograms
	Library Project Files

	The GNAT Driver and Project Files
	Glide and Project Files

	An Extended Example
	Project File Complete Syntax

	The Cross-Referencing Tools gnatxref and gnatfind
	gnatxref Switches
	gnatfind Switches
	Project Files for gnatxref and gnatfind
	Regular Expressions in gnatfind and gnatxref
	Examples of gnatxref Usage
	General Usage
	Using gnatxref with vi

	Examples of gnatfind Usage

	The GNAT Pretty-Printer gnatpp
	Switches for gnatpp
	Alignment Control
	Casing Control
	Construct Layout Control
	General Text Layout Control
	Other Formatting Options
	Setting the Source Search Path
	Output File Control
	Other gnatpp Switches

	Formatting Rules
	White Space and Empty Lines
	Formatting Comments
	Construct Layout
	Name Casing

	File Name Krunching Using gnatkr
	About gnatkr
	Using gnatkr
	Krunching Method
	Examples of gnatkr Usage

	Preprocessing Using gnatprep
	Using gnatprep
	Switches for gnatprep
	Form of Definitions File
	Form of Input Text for gnatprep

	The GNAT Library Browser gnatls
	Running gnatls
	Switches for gnatls
	Example of gnatls Usage

	Cleaning Up Using gnatclean
	Running gnatclean
	Switches for gnatclean
	Examples of gnatclean Usage

	GNAT and Libraries
	Creating an Ada Library
	Installing an Ada Library
	Using an Ada Library
	Creating an Ada Library to be Used in a Non-Ada Context
	Creating the Library
	Using the Library
	The Finalization Phase
	Restrictions in Libraries

	Rebuilding the GNAT Run-Time Library

	Using the GNU make Utility
	Using gnatmake in a Makefile
	Automatically Creating a List of Directories
	Generating the Command Line Switches
	Overcoming Command Line Length Limits

	Finding Memory Problems
	The gnatmem Tool
	Running gnatmem
	Switches for gnatmem
	Example of gnatmem Usage

	The GNAT Debug Pool Facility

	Creating Sample Bodies Using gnatstub
	Running gnatstub
	Switches for gnatstub

	Other Utility Programs
	Using Other Utility Programs with GNAT
	The External Symbol Naming Scheme of GNAT
	Ada Mode for Glide
	Converting Ada Files to HTML with gnathtml
	Installing gnathtml

	Running and Debugging Ada Programs
	The GNAT Debugger GDB
	Running GDB
	Introduction to GDB Commands
	Using Ada Expressions
	Calling User-Defined Subprograms
	Using the Next Command in a Function
	Breaking on Ada Exceptions
	Ada Tasks
	Debugging Generic Units
	GNAT Abnormal Termination or Failure to Terminate
	Naming Conventions for GNAT Source Files
	Getting Internal Debugging Information
	Stack Traceback
	Non-Symbolic Traceback
	Tracebacks From an Unhandled Exception
	Tracebacks From Exception Occurrences
	Tracebacks From Anywhere in a Program

	Symbolic Traceback
	Tracebacks From Exception Occurrences
	Tracebacks From Anywhere in a Program

	Platform-Specific Information for the Run-Time Libraries
	Summary of Run-Time Configurations
	Specifying a Run-Time Library
	Choosing between Native and FSU Threads Libraries
	Choosing the Scheduling Policy
	Solaris-Specific Considerations
	Solaris Threads Issues
	Building and Debugging 64-bit Applications

	IRIX-Specific Considerations
	Linux-Specific Considerations

	Example of Binder Output File
	Elaboration Order Handling in GNAT
	Elaboration Code in Ada 95
	Checking the Elaboration Order in Ada 95
	Controlling the Elaboration Order in Ada 95
	Controlling Elaboration in GNAT - Internal Calls
	Controlling Elaboration in GNAT - External Calls
	Default Behavior in GNAT - Ensuring Safety
	Treatment of Pragma Elaborate
	Elaboration Issues for Library Tasks
	Mixing Elaboration Models
	What to Do If the Default Elaboration Behavior Fails
	Elaboration for Access-to-Subprogram Values
	Summary of Procedures for Elaboration Control
	Other Elaboration Order Considerations

	Inline Assembler
	Basic Assembler Syntax
	A Simple Example of Inline Assembler
	Output Variables in Inline Assembler
	Input Variables in Inline Assembler
	Inlining Inline Assembler Code
	Other Asm Functionality
	The Clobber Parameter
	The Volatile Parameter

	A Complete Example
	Check_CPU Procedure
	Intel_CPU Package Specification
	Intel_CPU Package Body

	Compatibility and Porting Guide
	Compatibility with Ada 83
	Legal Ada 83 programs that are illegal in Ada 95
	More deterministic semantics
	Changed semantics
	Other language compatibility issues

	Implementation-dependent characteristics
	Implementation-defined pragmas
	Implementation-defined attributes
	Libraries
	Elaboration order
	Target-specific aspects

	Compatibility with Other Ada 95 Systems
	Representation Clauses
	Compatibility with DEC Ada 83

	Microsoft Windows Topics
	Using GNAT on Windows
	Using a network installation of GNAT
	CONSOLE and WINDOWS subsystems
	Temporary Files
	Mixed-Language Programming on Windows
	Windows Calling Conventions
	C Calling Convention
	Stdcall Calling Convention
	DLL Calling Convention

	Introduction to Dynamic Link Libraries (DLLs)
	Using DLLs with GNAT
	Creating an Ada Spec for the DLL Services
	Creating an Import Library
	The Definition File
	GNAT-Style Import Library
	Microsoft-Style Import Library

	Building DLLs with GNAT
	Limitations When Using Ada DLLs from Ada
	Exporting Ada Entities
	Ada DLLs and Elaboration
	Ada DLLs and Finalization
	Creating a Spec for Ada DLLs
	Creating the Definition File
	Using gnatdll
	gnatdll Example
	gnatdll behind the Scenes
	Using dlltool

	GNAT and Windows Resources
	Building Resources
	Compiling Resources
	Using Resources

	Debugging a DLL
	Program and DLL Both Built with GCC/GNAT
	Program Built with Foreign Tools and DLL Built with GCC/GNAT
	Debugging the DLL Directly
	Attaching to a Running Process

	GNAT and COM/DCOM Objects

	GNU Free Documentation License
	ADDENDUM: How to use this License for your documents

	Index

