This is the mail archive of the libstdc++@gcc.gnu.org mailing list for the libstdc++ project.


Index Nav: [Date Index] [Subject Index] [Author Index] [Thread Index]
Message Nav: [Date Prev] [Date Next] [Thread Prev] [Thread Next]
Other format: [Raw text]

[Patch] Regex comments


Add comments for last regex commit.

Thanks!


-- 
Regards,
Tim Shen
commit b4aa16a08992866ca6fd60f40e422f551d0d6b2a
Author: tim <timshen91@gmail.com>
Date:   Sun Oct 27 15:50:44 2013 -0400

    2013-

diff --git a/libstdc++-v3/include/bits/regex_executor.tcc b/libstdc++-v3/include/bits/regex_executor.tcc
index d3b9a04..2f677de 100644
--- a/libstdc++-v3/include/bits/regex_executor.tcc
+++ b/libstdc++-v3/include/bits/regex_executor.tcc
@@ -53,6 +53,52 @@ _GLIBCXX_BEGIN_NAMESPACE_VERSION
       return false;
     }
 
+  // This function serves in different modes, DFS mode or BFS mode, indicated
+  // by template variable __dfs_mode. See _M_main for details.
+  //
+  // ------------------------------------------------------------
+  //
+  // DFS mode:
+  //
+  // It applys a Depth-First-Search (aka backtracking) on given NFA and input
+  // string.
+  // At the very beginning the executor stands in the start state, then it try
+  // every possible state transition in current state recursively. Some state
+  // transitions consume input string, say, a single-char-matcher or a
+  // back-reference matcher; some don't, like assertion or other anchor nodes.
+  // When the input is exhausted and/or the current state is an accepting state,
+  // the whole executor returns true.
+  //
+  // TODO: This approach is exponentially slow for certain input.
+  //       Try to compile the NFA to a DFA.
+  //
+  // Time complexity: o(match_length), O(2^(_M_nfa.size()))
+  // Space complexity: \theta(match_results.size() + match_length)
+  //
+  // ------------------------------------------------------------
+  //
+  // BFS mode:
+  //
+  // Russ Cox's article (http://swtch.com/~rsc/regexp/regexp1.html)
+  // explained this algorithm clearly.
+  //
+  // It first computes epsilon clousure for every state that's still matching,
+  // using the same DFS algorithm, but doesn't reenter states (set true in
+  // _M_visited), nor follow _S_opcode_match.
+  //
+  // Then apply DFS to every _S_opcode_match one by one (in _M_match_queue).
+  //
+  // The order of which states needs to be recursively applied DFS matters,
+  // depend on which greedy mode we use. See _S_opcode_alternative branch in
+  // _M_dfs.
+  //
+  // It significantly reduces potential duplicate states, so have a better
+  // upper bound; but it deserves more overhead.
+  //
+  // Time complexity: o(match_length * match_results.size())
+  //                  O(match_length * _M_nfa.size() * match_results.size())
+  // Space complexity: o(_M_nfa.size() + match_results.size())
+  //                   O(_M_nfa.size() * match_results.size())
   template<typename _BiIter, typename _Alloc, typename _TraitsT,
     bool __dfs_mode>
   template<bool __match_mode>
@@ -68,18 +114,6 @@ _GLIBCXX_BEGIN_NAMESPACE_VERSION
 	}
       else
 	{
-	  // Like the DFS approach, it try every possible state transition;
-	  // Unlike DFS, it uses a queue instead of a stack to store matching
-	  // states. It's a BFS approach.
-	  //
-	  // Russ Cox's article(http://swtch.com/~rsc/regexp/regexp1.html)
-	  // explained this algorithm clearly.
-	  //
-	  // Time complexity: o(match_length * match_results.size())
-	  //                  O(match_length * _M_nfa.size()
-	  //                    * match_results.size())
-	  // Space complexity: o(_M_nfa.size() + match_results.size())
-	  //                   O(_M_nfa.size() * match_results.size())
 	  _M_match_queue->push(make_pair(_M_start_state, _M_results));
 	  bool __ret = false;
 	  while (1)
@@ -132,20 +166,6 @@ _GLIBCXX_BEGIN_NAMESPACE_VERSION
       return false;
     }
 
-  // A _DFSExecutor perform a DFS on given NFA and input string. At the very
-  // beginning the executor stands in the start state, then it try every
-  // possible state transition in current state recursively. Some state
-  // transitions consume input string, say, a single-char-matcher or a
-  // back-reference matcher; some not, like assertion or other anchor nodes.
-  // When the input is exhausted and the current state is an accepting state,
-  // the whole executor return true.
-  //
-  // TODO: This approach is exponentially slow for certain input.
-  //       Try to compile the NFA to a DFA.
-  //
-  // Time complexity: o(match_length), O(2^(_M_nfa.size()))
-  // Space complexity: \theta(match_results.size() + match_length)
-  //
   template<typename _BiIter, typename _Alloc, typename _TraitsT,
     bool __dfs_mode>
   template<bool __match_mode>
@@ -164,25 +184,39 @@ _GLIBCXX_BEGIN_NAMESPACE_VERSION
 	{
 	case _S_opcode_alternative:
 	  // Greedy or not, this is a question ;)
+	  //
+	  // _M_alt branch is "match once more", while _M_next is "get me out
+	  // of this quantifier".
+
+	  // Greedy.
 	  if (!__state._M_neg)
 	    {
+	      // Once more.
 	      _M_dfs<__match_mode>(__state._M_alt);
+	      // If it's DFS executor and already accepted, we're done.
 	      if (!__dfs_mode || !_M_has_sol)
 		_M_dfs<__match_mode>(__state._M_next);
 	    }
-	  else
+	  else // Ungreedy mode
 	    {
 	      if (__dfs_mode)
 		{
+		  // vice-versa.
 		  _M_dfs<__match_mode>(__state._M_next);
 		  if (!_M_has_sol)
 		    _M_dfs<__match_mode>(__state._M_alt);
 		}
 	      else
 		{
+		  // DON't attempt anything, because there's already someone
+		  // with higher priority accepted. This state cannot be better
+		  // by attempting its next node.
 		  if (!_M_has_sol)
 		    {
 		      _M_dfs<__match_mode>(__state._M_next);
+		      // DON'T attempt anything if it's already accepted. An
+		      // accepted state *must* be better than a solution that
+		      // has one more time ungreedy quantifier loop.
 		      if (!_M_has_sol)
 			_M_dfs<__match_mode>(__state._M_alt);
 		    }
@@ -190,9 +224,9 @@ _GLIBCXX_BEGIN_NAMESPACE_VERSION
 	    }
 	  break;
 	case _S_opcode_subexpr_begin:
-	  // Here's the critical part: if there's nothing changed since last
-	  // visit, do NOT continue. This prevents the executor from get into
-	  // infinite loop when use "()*" to match "".
+	  // If there's nothing changed since last visit, do NOT continue.
+	  // This prevents the executor from get into infinite loop when use
+	  // "()*" to match "".
 	  //
 	  // Every change on _M_cur_results will be roll back after the
 	  // recursion step finished.
@@ -232,8 +266,8 @@ _GLIBCXX_BEGIN_NAMESPACE_VERSION
 	  if (_M_word_boundry(__state) == !__state._M_neg)
 	    _M_dfs<__match_mode>(__state._M_next);
 	  break;
-	  // Here __state._M_alt offers a single start node for a sub-NFA.
-	  // We recursivly invoke our algorithm to match the sub-NFA.
+	// Here __state._M_alt offers a single start node for a sub-NFA.
+	// We recursively invoke our algorithm to match the sub-NFA.
 	case _S_opcode_subexpr_lookahead:
 	  if (_M_lookahead(__state) == !__state._M_neg)
 	    _M_dfs<__match_mode>(__state._M_next);

Index Nav: [Date Index] [Subject Index] [Author Index] [Thread Index]
Message Nav: [Date Prev] [Date Next] [Thread Prev] [Thread Next]