This is the mail archive of the libstdc++@gcc.gnu.org mailing list for the libstdc++ project.


Index Nav: [Date Index] [Subject Index] [Author Index] [Thread Index]
Message Nav: [Date Prev] [Date Next] [Thread Prev] [Thread Next]
Other format: [Raw text]

Re: Final patch (Re: [Patch] bitmap_allocator.)


On Thu, 2004-10-14 at 15:48, Paolo Carlini wrote:
> Paolo Carlini wrote:
> 
> > Thank you. I'm going to test it again on x86/x86_64/ia64.
> 
> Ok, the below is what I'd like to commit later today.
> 
> Built and tested x86/x86_64/ia64-linux, --enable-libstdcxx-allocator=bitmap,
> 1 fail, pthread7-rope.cc (+ warnings, expecially for std::list, on 
> ia64); also
> double checked that x86/x86_64 are still ok when default configured.

What does the fail signify? You mentioned something about the
allocator's destructor being faulty, but I did not quite understand.

> 
> Paolo.
> 
> ///////////////
> 
> ______________________________________________________________________
> 
> 2004-10-14  Dhruv Matani  <dhruvbird@gmx.net>
> 
> 	* ext/bitmap_allocator.h: Clean-up add/remove functions.
> 	* src/bitmap_allocator.cc: New file. Contains the out-of-line
> 	function definitions, static initialization of variables, and
> 	explicit instantiations needed for the allocator.
> 	* src/Makefile.am: Add.
> 	* src/Makefile.in: Regenerate.
> 	* config/linker.map.gnu: Add the necessary symbols.
> 
> ______________________________________________________________________
> 
> diff -urN libstdc++-v3-orig/config/linker-map.gnu libstdc++-v3/config/linker-map.gnu
> --- libstdc++-v3-orig/config/linker-map.gnu	2004-10-12 10:19:29.000000000 +0200
> +++ libstdc++-v3/config/linker-map.gnu	2004-10-14 11:16:37.000000000 +0200
> @@ -270,7 +270,12 @@
>      _ZN9__gnu_cxx6__poolILb[01]EE16_M_reserve_blockE[jm][jm];
>      _ZN9__gnu_cxx6__poolILb[01]EE16_M_reclaim_blockEPc[jm];
>      _ZN9__gnu_cxx6__poolILb[01]EE10_M_destroyEv;
> - 
> +
> +    _ZN9__gnu_cxx9free_list12_S_free_listE;
> +    _ZN9__gnu_cxx9free_list12_S_bfl_mutexE;
> +    _ZN9__gnu_cxx9free_list6_M_getEj;
> +    _ZN9__gnu_cxx9free_list8_M_clearEv;
> +
>      # stub functions from libmath
>      acosf;
>      acosl;
> diff -urN libstdc++-v3-orig/include/ext/bitmap_allocator.h libstdc++-v3/include/ext/bitmap_allocator.h
> --- libstdc++-v3-orig/include/ext/bitmap_allocator.h	2004-03-24 19:27:43.000000000 +0100
> +++ libstdc++-v3/include/ext/bitmap_allocator.h	2004-10-14 11:16:37.000000000 +0200
> @@ -1,4 +1,4 @@
> -// Bitmapped Allocator. -*- C++ -*-
> +// Bitmap Allocator. -*- C++ -*-
>  
>  // Copyright (C) 2004 Free Software Foundation, Inc.
>  //
> @@ -27,53 +27,67 @@
>  // invalidate any other reasons why the executable file might be covered by
>  // the GNU General Public License.
>  
> +/** @file ext/bitmap_allocator.h
> + *  This file is a GNU extension to the Standard C++ Library.
> + *  You should only include this header if you are using GCC 3 or later.
> + */
>  
> -
> -#if !defined _BITMAP_ALLOCATOR_H
> +#ifndef _BITMAP_ALLOCATOR_H
>  #define _BITMAP_ALLOCATOR_H 1
>  
> +// For std::size_t, and ptrdiff_t.
>  #include <cstddef>
> -//For std::size_t, and ptrdiff_t.
> +
> +// For std::pair.
>  #include <utility>
> -//For std::pair.
> -#include <algorithm>
> -//std::find_if, and std::lower_bound.
> -#include <vector>
> -//For the free list of exponentially growing memory blocks. At max,
> -//size of the vector should be  not more than the number of bits in an
> -//integer or an unsigned integer.
> +
> +// For greater_equal, and less_equal.
>  #include <functional>
> -//For greater_equal, and less_equal.
> +
> +// For operator new.
>  #include <new>
> -//For operator new.
> +
> +// For __gthread_mutex_t, __gthread_mutex_lock and __gthread_mutex_unlock.
>  #include <bits/gthr.h>
> -//For __gthread_mutex_t, __gthread_mutex_lock and __gthread_mutex_unlock.
> -#include <ext/new_allocator.h>
> -//For __gnu_cxx::new_allocator for std::vector.
>  
> +// Define this to enable error checking withing the allocator
> +// itself(to debug the allocator itself).
> +//#define _BALLOC_SANITY_CHECK
> +
> +#if defined _BALLOC_SANITY_CHECK
>  #include <cassert>
> -#define NDEBUG
> +#define _BALLOC_ASSERT(_EXPR) assert(_EXPR)
> +#else
> +#define _BALLOC_ASSERT(_EXPR)
> +#endif
>  
> -//#define CHECK_FOR_ERRORS
> -//#define __CPU_HAS_BACKWARD_BRANCH_PREDICTION
>  
>  namespace __gnu_cxx
>  {
> -  namespace {
>  #if defined __GTHREADS
> +  namespace
> +  {
> +    // If true, then the application being compiled will be using
> +    // threads, so use mutexes as a synchronization primitive, else do
> +    // no use any synchronization primitives.
>      bool const __threads_enabled = __gthread_active_p();
> -#endif
> -
>    }
> +#endif
>  
>  #if defined __GTHREADS
> -  class _Mutex {
> +  // _Mutex is an OO-Wrapper for __gthread_mutex_t. It does not allow
> +  // you to copy or assign an already initialized mutex. This is used
> +  // merely as a convenience for the locking classes.
> +  class _Mutex 
> +  {
>      __gthread_mutex_t _M_mut;
> -    //Prevent Copying and assignment.
> -    _Mutex (_Mutex const&);
> -    _Mutex& operator= (_Mutex const&);
> +
> +    // Prevent Copying and assignment.
> +    _Mutex(_Mutex const&);
> +    _Mutex& operator=(_Mutex const&);
> +
>    public:
> -    _Mutex ()
> +    _Mutex()
>      {
>        if (__threads_enabled)
>  	{
> @@ -85,24 +99,38 @@
>  #endif
>  	}
>      }
> -    ~_Mutex ()
> +
> +    ~_Mutex()
>      {
> -      //Gthreads does not define a Mutex Destruction Function.
> +      // Gthreads does not define a Mutex Destruction Function.
>      }
> -    __gthread_mutex_t *_M_get() { return &_M_mut; }
> +
> +    __gthread_mutex_t*
> +    _M_get() { return &_M_mut; }
>    };
>  
> -  class _Lock {
> +  // _Lock is a simple manual lokcing class which allows you to
> +  // manually lock and unlock a mutex associated with the lock. There
> +  // is not automatic locking or unlocking happening without the
> +  // programmer's explicit instructions. This class unlocks the mutex
> +  // ONLY if it has not been locked. However, this check does not
> +  // apply for lokcing, and wayward use may cause dead-locks.
> +  class _Lock 
> +  {
>      _Mutex* _M_pmt;
>      bool _M_locked;
> -    //Prevent Copying and assignment.
> -    _Lock (_Lock const&);
> -    _Lock& operator= (_Lock const&);
> +
> +    // Prevent Copying and assignment.
> +    _Lock(_Lock const&);
> +    _Lock& operator=(_Lock const&);
> +
>    public:
>      _Lock(_Mutex* __mptr)
> -      : _M_pmt(__mptr), _M_locked(false)
> -    { this->_M_lock(); }
> -    void _M_lock()
> +    : _M_pmt(__mptr), _M_locked(false)
> +    { }
> +
> +    void
> +    _M_lock()
>      {
>        if (__threads_enabled)
>  	{
> @@ -110,7 +138,9 @@
>  	  __gthread_mutex_lock(_M_pmt->_M_get());
>  	}
>      }
> -    void _M_unlock()
> +
> +    void
> +    _M_unlock()
>      {
>        if (__threads_enabled)
>  	{
> @@ -121,739 +151,1015 @@
>  	    }
>  	}
>      }
> -    ~_Lock() { this->_M_unlock(); }
> +    
> +    ~_Lock() { }
>    };
> -#endif
> -
> -
>  
> -  namespace __aux_balloc {
> -    static const unsigned int _Bits_Per_Byte = 8;
> -    static const unsigned int _Bits_Per_Block = sizeof(unsigned int) * _Bits_Per_Byte;
> +  // _Auto_Lock locks the associated mutex on construction, and
> +  // unlocks on it's destruction. There are no checks performed, and
> +  // this calss follows the RAII principle.
> +  class _Auto_Lock 
> +  {
> +    _Mutex* _M_pmt;
> +    // Prevent Copying and assignment.
> +    _Auto_Lock(_Auto_Lock const&);
> +    _Auto_Lock& operator=(_Auto_Lock const&);
>  
> -    template <typename _Addr_Pair_t>
> -    inline size_t __balloc_num_blocks (_Addr_Pair_t __ap)
> +    void
> +    _M_lock()
>      {
> -      return (__ap.second - __ap.first) + 1;
> +      if (__threads_enabled)
> +	__gthread_mutex_lock(_M_pmt->_M_get());
>      }
>  
> -    template <typename _Addr_Pair_t>
> -    inline size_t __balloc_num_bit_maps (_Addr_Pair_t __ap)
> +    void
> +    _M_unlock()
>      {
> -      return __balloc_num_blocks(__ap) / _Bits_Per_Block;
> +      if (__threads_enabled)
> +	__gthread_mutex_unlock(_M_pmt->_M_get());
>      }
>  
> -    //T should be a pointer type.
> -    template <typename _Tp>
> -    class _Inclusive_between : public std::unary_function<typename std::pair<_Tp, _Tp>, bool> {
> -      typedef _Tp pointer;
> -      pointer _M_ptr_value;
> -      typedef typename std::pair<_Tp, _Tp> _Block_pair;
> +  public:
> +    _Auto_Lock(_Mutex* __mptr) : _M_pmt(__mptr)
> +    { this->_M_lock(); }
>  
> -    public:
> -      _Inclusive_between (pointer __ptr) : _M_ptr_value(__ptr) { }
> -      bool operator () (_Block_pair __bp) const throw ()
> +    ~_Auto_Lock() { this->_M_unlock(); }
> +  };
> +#endif 
> +
> +  namespace balloc
> +  {
> +    // __mini_vector<> is to be used only for built-in types or
> +    // PODs. It is a stripped down version of the full-fledged
> +    // std::vector<>. Noteable differences are: 
> +    // 
> +    // 1. Not all accessor functions are present.
> +    // 2. Used ONLY for PODs.
> +    // 3. No Allocator template argument. Uses ::operator new() to get
> +    // memory, and ::operator delete() to free it.
> +    template<typename _Tp>
> +      class __mini_vector
>        {
> -	if (std::less_equal<pointer> ()(_M_ptr_value, __bp.second) && 
> -	    std::greater_equal<pointer> ()(_M_ptr_value, __bp.first))
> -	  return true;
> -	else
> -	  return false;
> -      }
> -    };
> -  
> -    //Used to pass a Functor to functions by reference.
> -    template <typename _Functor>
> -    class _Functor_Ref : 
> -      public std::unary_function<typename _Functor::argument_type, typename _Functor::result_type> {
> -      _Functor& _M_fref;
> -    
> -    public:
> -      typedef typename _Functor::argument_type argument_type;
> -      typedef typename _Functor::result_type result_type;
> +	__mini_vector(const __mini_vector&);
> +	__mini_vector& operator=(const __mini_vector&);
>  
> -      _Functor_Ref (_Functor& __fref) : _M_fref(__fref) { }
> -      result_type operator() (argument_type __arg) { return _M_fref (__arg); }
> -    };
> +      public:
> +	typedef _Tp value_type;
> +	typedef _Tp* pointer;
> +	typedef _Tp& reference;
> +	typedef const _Tp& const_reference;
> +	typedef std::size_t size_type;
> +	typedef std::ptrdiff_t difference_type;
> +	typedef pointer iterator;
> +
> +      private:
> +	pointer _M_start;
> +	pointer _M_finish;
> +	pointer _M_end_of_storage;
> +
> +	size_type
> +	_M_space_left() const throw()
> +	{ return _M_end_of_storage - _M_finish; }
> +
> +	pointer
> +	allocate(size_type __n)
> +	{ return static_cast<pointer>(::operator new(__n * sizeof(_Tp))); }
> +
> +	void
> +	deallocate(pointer __p, size_type)
> +	{ ::operator delete(__p); }
> +
> +      public:
> +	// Members used: size(), push_back(), pop_back(),
> +	// insert(iterator, const_reference), erase(iterator),
> +	// begin(), end(), back(), operator[].
> +
> +	__mini_vector() : _M_start(0), _M_finish(0), 
> +			  _M_end_of_storage(0)
> +	{ }
>  
> +	~__mini_vector()
> +	{
> +	  if (this->_M_start)
> +	    {
> +	      this->deallocate(this->_M_start, this->_M_end_of_storage 
> +			       - this->_M_start);
> +	    }
> +	}
>  
> -    //T should be a pointer type, and A is the Allocator for the vector.
> -    template <typename _Tp, typename _Alloc>
> -    class _Ffit_finder 
> -      : public std::unary_function<typename std::pair<_Tp, _Tp>, bool> {
> -      typedef typename std::vector<std::pair<_Tp, _Tp>, _Alloc> _BPVector;
> -      typedef typename _BPVector::difference_type _Counter_type;
> -      typedef typename std::pair<_Tp, _Tp> _Block_pair;
> +	size_type
> +	size() const throw()
> +	{ return _M_finish - _M_start; }
> +
> +	iterator
> +	begin() const throw()
> +	{ return this->_M_start; }
> +
> +	iterator
> +	end() const throw()
> +	{ return this->_M_finish; }
> +
> +	reference
> +	back() const throw()
> +	{ return *(this->end() - 1); }
> +
> +	reference
> +	operator[](const size_type __pos) const throw()
> +	{ return this->_M_start[__pos]; }
>  
> -      unsigned int *_M_pbitmap;
> -      unsigned int _M_data_offset;
> +	void
> +	insert(iterator __pos, const_reference __x);
>  
> -    public:
> -      _Ffit_finder () 
> -	: _M_pbitmap (0), _M_data_offset (0)
> -      { }
> +	void
> +	push_back(const_reference __x)
> +	{
> +	  if (this->_M_space_left())
> +	    {
> +	      *this->end() = __x;
> +	      ++this->_M_finish;
> +	    }
> +	  else
> +	    this->insert(this->end(), __x);
> +	}
>  
> -      bool operator() (_Block_pair __bp) throw()
> +	void
> +	pop_back() throw()
> +	{ --this->_M_finish; }
> +
> +	void
> +	erase(iterator __pos) throw();
> +
> +	void
> +	clear() throw()
> +	{ this->_M_finish = this->_M_start; }
> +      };
> +
> +    // Out of line function definitions.
> +    template<typename _Tp>
> +      void __mini_vector<_Tp>::
> +      insert(iterator __pos, const_reference __x)
>        {
> -	//Set the _rover to the last unsigned integer, which is the
> -	//bitmap to the first free block. Thus, the bitmaps are in exact
> -	//reverse order of the actual memory layout. So, we count down
> -	//the bimaps, which is the same as moving up the memory.
> -
> -	//If the used count stored at the start of the Bit Map headers
> -	//is equal to the number of Objects that the current Block can
> -	//store, then there is definitely no space for another single
> -	//object, so just return false.
> -	_Counter_type __diff = __gnu_cxx::__aux_balloc::__balloc_num_bit_maps (__bp);
> -
> -	assert (*(reinterpret_cast<unsigned int*>(__bp.first) - (__diff + 1)) <= 
> -		__gnu_cxx::__aux_balloc::__balloc_num_blocks (__bp));
> -
> -	if (*(reinterpret_cast<unsigned int*>(__bp.first) - (__diff + 1)) == 
> -	    __gnu_cxx::__aux_balloc::__balloc_num_blocks (__bp))
> -	  return false;
> +	if (this->_M_space_left())
> +	  {
> +	    size_type __to_move = this->_M_finish - __pos;
> +	    iterator __dest = this->end();
> +	    iterator __src = this->end() - 1;
>  
> -	unsigned int *__rover = reinterpret_cast<unsigned int*>(__bp.first) - 1;
> -	for (_Counter_type __i = 0; __i < __diff; ++__i)
> +	    ++this->_M_finish;
> +	    while (__to_move)
> +	      {
> +		*__dest = *__src;
> +		--__dest; --__src; --__to_move;
> +	      }
> +	    *__pos = __x;
> +	  }
> +	else
>  	  {
> -	    _M_data_offset = __i;
> -	    if (*__rover)
> +	    size_type __new_size = this->size() ? this->size() * 2 : 1;
> +	    iterator __new_start = this->allocate(__new_size);
> +	    iterator __first = this->begin();
> +	    iterator __start = __new_start;
> +	    while (__first != __pos)
>  	      {
> -		_M_pbitmap = __rover;
> -		return true;
> +		*__start = *__first;
> +		++__start; ++__first;
>  	      }
> -	    --__rover;
> +	    *__start = __x;
> +	    ++__start;
> +	    while (__first != this->end())
> +	      {
> +		*__start = *__first;
> +		++__start; ++__first;
> +	      }
> +	    if (this->_M_start)
> +	      this->deallocate(this->_M_start, this->size());
> +
> +	    this->_M_start = __new_start;
> +	    this->_M_finish = __start;
> +	    this->_M_end_of_storage = this->_M_start + __new_size;
>  	  }
> -	return false;
> -      }
> -    
> -      unsigned int *_M_get () { return _M_pbitmap; }
> -      unsigned int _M_offset () { return _M_data_offset * _Bits_Per_Block; }
> -    };
> -  
> -    //T should be a pointer type.
> -    template <typename _Tp, typename _Alloc>
> -    class _Bit_map_counter {
> -    
> -      typedef typename std::vector<std::pair<_Tp, _Tp>, _Alloc> _BPVector;
> -      typedef typename _BPVector::size_type _Index_type;
> -      typedef _Tp pointer;
> -    
> -      _BPVector& _M_vbp;
> -      unsigned int *_M_curr_bmap;
> -      unsigned int *_M_last_bmap_in_block;
> -      _Index_type _M_curr_index;
> -    
> -    public:
> -      //Use the 2nd parameter with care. Make sure that such an entry
> -      //exists in the vector before passing that particular index to
> -      //this ctor.
> -      _Bit_map_counter (_BPVector& Rvbp, int __index = -1) 
> -	: _M_vbp(Rvbp)
> -      {
> -	this->_M_reset(__index);
>        }
> -    
> -      void _M_reset (int __index = -1) throw()
> +
> +    template<typename _Tp>
> +      void __mini_vector<_Tp>::
> +      erase(iterator __pos) throw()
>        {
> -	if (__index == -1)
> +	while (__pos + 1 != this->end())
>  	  {
> -	    _M_curr_bmap = 0;
> -	    _M_curr_index = (_Index_type)-1;
> -	    return;
> +	    *__pos = __pos[1];
> +	    ++__pos;
>  	  }
> +	--this->_M_finish;
> +      }
>  
> -	_M_curr_index = __index;
> -	_M_curr_bmap = reinterpret_cast<unsigned int*>(_M_vbp[_M_curr_index].first) - 1;
>  
> -	assert (__index <= (int)_M_vbp.size() - 1);
> -	
> -	_M_last_bmap_in_block = _M_curr_bmap - 
> -	  ((_M_vbp[_M_curr_index].second - _M_vbp[_M_curr_index].first + 1) / _Bits_Per_Block - 1);
> -      }
> -    
> -      //Dangerous Function! Use with extreme care. Pass to this
> -      //function ONLY those values that are known to be correct,
> -      //otherwise this will mess up big time.
> -      void _M_set_internal_bit_map (unsigned int *__new_internal_marker) throw()
> +    template<typename _Tp>
> +      struct __mv_iter_traits
>        {
> -	_M_curr_bmap = __new_internal_marker;
> -      }
> -    
> -      bool _M_finished () const throw()
> +	typedef typename _Tp::value_type value_type;
> +	typedef typename _Tp::difference_type difference_type;
> +      };
> +
> +    template<typename _Tp>
> +      struct __mv_iter_traits<_Tp*>
>        {
> -	return (_M_curr_bmap == 0);
> -      }
> -    
> -      _Bit_map_counter& operator++ () throw()
> +	typedef _Tp value_type;
> +	typedef std::ptrdiff_t difference_type;
> +      };
> +
> +    enum 
> +      { 
> +	bits_per_byte = 8, 
> +	bits_per_block = sizeof(unsigned int) * bits_per_byte 
> +      };
> +
> +    template<typename _ForwardIterator, typename _Tp, typename _Compare>
> +      _ForwardIterator
> +      __lower_bound(_ForwardIterator __first, _ForwardIterator __last,
> +		    const _Tp& __val, _Compare __comp)
>        {
> -	if (_M_curr_bmap == _M_last_bmap_in_block)
> +	typedef typename __mv_iter_traits<_ForwardIterator>::value_type
> +	  _ValueType;
> +	typedef typename __mv_iter_traits<_ForwardIterator>::difference_type
> +	  _DistanceType;
> +
> +	_DistanceType __len = __last - __first;
> +	_DistanceType __half;
> +	_ForwardIterator __middle;
> +
> +	while (__len > 0)
>  	  {
> -	    if (++_M_curr_index == _M_vbp.size())
> +	    __half = __len >> 1;
> +	    __middle = __first;
> +	    __middle += __half;
> +	    if (__comp(*__middle, __val))
>  	      {
> -		_M_curr_bmap = 0;
> +		__first = __middle;
> +		++__first;
> +		__len = __len - __half - 1;
>  	      }
>  	    else
> -	      {
> -		this->_M_reset (_M_curr_index);
> -	      }
> -	  }
> -	else
> -	  {
> -	    --_M_curr_bmap;
> +	      __len = __half;
>  	  }
> -	return *this;
> +	return __first;
>        }
> -    
> -      unsigned int *_M_get ()
> +
> +    template<typename _InputIterator, typename _Predicate>
> +      inline _InputIterator
> +      __find_if(_InputIterator __first, _InputIterator __last, _Predicate __p)
>        {
> -	return _M_curr_bmap;
> +	while (__first != __last && !__p(*__first))
> +	  ++__first;
> +	return __first;
>        }
> +
> +    template<typename _AddrPair>
> +      inline size_t
> +      __num_blocks(_AddrPair __ap)
> +      { return (__ap.second - __ap.first) + 1; }
> +
> +    template<typename _AddrPair>
> +      inline size_t 
> +      __num_bitmaps(_AddrPair __ap)
> +      { return __num_blocks(__ap) / bits_per_block; }
> +
> +    // _Tp should be a pointer type.
> +    template<typename _Tp>
> +      class _Inclusive_between 
> +      : public std::unary_function<typename std::pair<_Tp, _Tp>, bool>
> +      {
> +	typedef _Tp pointer;
> +	pointer _M_ptr_value;
> +	typedef typename std::pair<_Tp, _Tp> _Block_pair;
> +	
> +      public:
> +	_Inclusive_between(pointer __ptr) : _M_ptr_value(__ptr) 
> +	{ }
> +	
> +	bool 
> +	operator()(_Block_pair __bp) const throw()
> +	{
> +	  if (std::less_equal<pointer>()(_M_ptr_value, __bp.second) 
> +	      && std::greater_equal<pointer>()(_M_ptr_value, __bp.first))
> +	    return true;
> +	  else
> +	    return false;
> +	}
> +      };
> +  
> +    // Used to pass a Functor to functions by reference.
> +    template<typename _Functor>
> +      class _Functor_Ref 
> +      : public std::unary_function<typename _Functor::argument_type, 
> +				   typename _Functor::result_type>
> +      {
> +	_Functor& _M_fref;
> +	
> +      public:
> +	typedef typename _Functor::argument_type argument_type;
> +	typedef typename _Functor::result_type result_type;
> +
> +	_Functor_Ref(_Functor& __fref) : _M_fref(__fref) 
> +	{ }
> +
> +	result_type 
> +	operator()(argument_type __arg) 
> +	{ return _M_fref(__arg); }
> +      };
> +
> +    // _Tp should be a pointer type, and _Alloc is the Allocator for
> +    // the vector.
> +    template<typename _Tp>
> +      class _Ffit_finder 
> +      : public std::unary_function<typename std::pair<_Tp, _Tp>, bool>
> +      {
> +	typedef typename std::pair<_Tp, _Tp> _Block_pair;
> +	typedef typename balloc::__mini_vector<_Block_pair> _BPVector;
> +	typedef typename _BPVector::difference_type _Counter_type;
> +
> +	unsigned int* _M_pbitmap;
> +	unsigned int _M_data_offset;
> +
> +      public:
> +	_Ffit_finder() : _M_pbitmap(0), _M_data_offset(0)
> +	{ }
> +
> +	bool 
> +	operator()(_Block_pair __bp) throw()
> +	{
> +	  // Set the _rover to the last unsigned integer, which is the
> +	  // bitmap to the first free block. Thus, the bitmaps are in exact
> +	  // reverse order of the actual memory layout. So, we count down
> +	  // the bimaps, which is the same as moving up the memory.
> +
> +	  // If the used count stored at the start of the Bit Map headers
> +	  // is equal to the number of Objects that the current Block can
> +	  // store, then there is definitely no space for another single
> +	  // object, so just return false.
> +	  _Counter_type __diff = 
> +	    __gnu_cxx::balloc::__num_bitmaps(__bp);
> +
> +	  if (*reinterpret_cast<unsigned int*>
> +	      (reinterpret_cast<char*>(__bp.first) - (sizeof(unsigned int) * 
> +						      (__diff+1)))
> +	      == __gnu_cxx::balloc::__num_blocks(__bp))
> +	    return false;
> +
> +	  unsigned int* __rover = reinterpret_cast<unsigned int*>(__bp.first) - 1;
> +
> +	  for (_Counter_type __i = 0; __i < __diff; ++__i)
> +	    {
> +	      _M_data_offset = __i;
> +	      if (*__rover)
> +		{
> +		  _M_pbitmap = __rover;
> +		  return true;
> +		}
> +	      --__rover;
> +	    }
> +	  return false;
> +	}
> +
>      
> -      pointer _M_base () { return _M_vbp[_M_curr_index].first; }
> -      unsigned int _M_offset ()
> +	unsigned int*
> +	_M_get() const throw()
> +	{ return _M_pbitmap; }
> +
> +	unsigned int
> +	_M_offset() const throw()
> +	{ return _M_data_offset * bits_per_block; }
> +      };
> +
> +
> +  
> +    // _Tp should be a pointer type.
> +    template<typename _Tp>
> +      class _Bitmap_counter
>        {
> -	return _Bits_Per_Block * ((reinterpret_cast<unsigned int*>(this->_M_base()) - _M_curr_bmap) - 1);
> -      }
> +	typedef typename balloc::__mini_vector<typename std::pair<_Tp, _Tp> > 
> +	_BPVector;
> +	typedef typename _BPVector::size_type _Index_type;
> +	typedef _Tp pointer;
>      
> -      unsigned int _M_where () { return _M_curr_index; }
> -    };
> -  }
> +	_BPVector& _M_vbp;
> +	unsigned int* _M_curr_bmap;
> +	unsigned int* _M_last_bmap_in_block;
> +	_Index_type _M_curr_index;
> +    
> +      public:
> +	// Use the 2nd parameter with care. Make sure that such an
> +	// entry exists in the vector before passing that particular
> +	// index to this ctor.
> +	_Bitmap_counter(_BPVector& Rvbp, int __index = -1) : _M_vbp(Rvbp)
> +	{ this->_M_reset(__index); }
> +    
> +	void 
> +	_M_reset(int __index = -1) throw()
> +	{
> +	  if (__index == -1)
> +	    {
> +	      _M_curr_bmap = 0;
> +	      _M_curr_index = static_cast<_Index_type>(-1);
> +	      return;
> +	    }
>  
> -  //Generic Version of the bsf instruction.
> -  typedef unsigned int _Bit_map_type;
> -  static inline unsigned int _Bit_scan_forward (register _Bit_map_type __num)
> -  {
> -    return static_cast<unsigned int>(__builtin_ctz(__num));
> -  }
> +	  _M_curr_index = __index;
> +	  _M_curr_bmap = reinterpret_cast<unsigned int*>
> +	    (_M_vbp[_M_curr_index].first) - 1;
>  
> -  struct _OOM_handler {
> -    static std::new_handler _S_old_handler;
> -    static bool _S_handled_oom;
> -    typedef void (*_FL_clear_proc)(void);
> -    static _FL_clear_proc _S_oom_fcp;
> +	  _BALLOC_ASSERT(__index <= (int)_M_vbp.size() - 1);
> +	
> +	  _M_last_bmap_in_block = _M_curr_bmap
> +	    - ((_M_vbp[_M_curr_index].second 
> +		- _M_vbp[_M_curr_index].first + 1) 
> +	       / bits_per_block - 1);
> +	}
>      
> -    _OOM_handler (_FL_clear_proc __fcp)
> -    {
> -      _S_oom_fcp = __fcp;
> -      _S_old_handler = std::set_new_handler (_S_handle_oom_proc);
> -      _S_handled_oom = false;
> -    }
> +	// Dangerous Function! Use with extreme care. Pass to this
> +	// function ONLY those values that are known to be correct,
> +	// otherwise this will mess up big time.
> +	void
> +	_M_set_internal_bitmap(unsigned int* __new_internal_marker) throw()
> +	{ _M_curr_bmap = __new_internal_marker; }
> +    
> +	bool
> +	_M_finished() const throw()
> +	{ return(_M_curr_bmap == 0); }
> +    
> +	_Bitmap_counter&
> +	operator++() throw()
> +	{
> +	  if (_M_curr_bmap == _M_last_bmap_in_block)
> +	    {
> +	      if (++_M_curr_index == _M_vbp.size())
> +		_M_curr_bmap = 0;
> +	      else
> +		this->_M_reset(_M_curr_index);
> +	    }
> +	  else
> +	    --_M_curr_bmap;
> +	  return *this;
> +	}
> +    
> +	unsigned int*
> +	_M_get() const throw()
> +	{ return _M_curr_bmap; }
> +    
> +	pointer 
> +	_M_base() const throw()
> +	{ return _M_vbp[_M_curr_index].first; }
>  
> -    static void _S_handle_oom_proc()
> -    {
> -      _S_oom_fcp();
> -      std::set_new_handler (_S_old_handler);
> -      _S_handled_oom = true;
> -    }
> +	unsigned int 
> +	_M_offset() const throw()
> +	{
> +	  return bits_per_block
> +	    * ((reinterpret_cast<unsigned int*>(this->_M_base()) 
> +		- _M_curr_bmap) - 1);
> +	}
> +    
> +	unsigned int
> +	_M_where() const throw()
> +	{ return _M_curr_index; }
> +      };
>  
> -    ~_OOM_handler ()
> +    inline void 
> +    __bit_allocate(unsigned int* __pbmap, unsigned int __pos) throw()
>      {
> -      if (!_S_handled_oom)
> -	std::set_new_handler (_S_old_handler);
> +      unsigned int __mask = 1 << __pos;
> +      __mask = ~__mask;
> +      *__pbmap &= __mask;
>      }
> -  };
> -  
> -  std::new_handler _OOM_handler::_S_old_handler;
> -  bool _OOM_handler::_S_handled_oom = false;
> -  _OOM_handler::_FL_clear_proc _OOM_handler::_S_oom_fcp = 0;
>    
> +    inline void 
> +    __bit_free(unsigned int* __pbmap, unsigned int __pos) throw()
> +    {
> +      unsigned int __mask = 1 << __pos;
> +      *__pbmap |= __mask;
> +    }
> +  } // namespace balloc
>  
> -  class _BA_free_list_store {
> -    struct _LT_pointer_compare {
> -      template <typename _Tp>
> -      bool operator() (_Tp* __pt, _Tp const& __crt) const throw()
> -      {
> -	return *__pt < __crt;
> -      }
> +  // Generic Version of the bsf instruction.
> +  inline unsigned int 
> +  _Bit_scan_forward(register unsigned int __num)
> +  { return static_cast<unsigned int>(__builtin_ctz(__num)); }
> +
> +  class free_list
> +  {
> +    typedef unsigned int* value_type;
> +    typedef balloc::__mini_vector<value_type> vector_type;
> +    typedef vector_type::iterator iterator;
> +
> +    struct _LT_pointer_compare
> +    {
> +      bool
> +      operator()(const unsigned int* __pui, const unsigned int __cui) const throw()
> +      { return *__pui < __cui; }
>      };
>  
> -#if defined __GTHREADS
> +#if defined __GTHREADS 
>      static _Mutex _S_bfl_mutex;
>  #endif
> -    static std::vector<unsigned int*> _S_free_list;
> -    typedef std::vector<unsigned int*>::iterator _FLIter;
> -
> -    static void _S_validate_free_list(unsigned int *__addr) throw()
> +    static vector_type _S_free_list;
> +    
> +    void
> +    _M_validate(unsigned int* __addr) throw()
>      {
>        const unsigned int __max_size = 64;
>        if (_S_free_list.size() >= __max_size)
>  	{
> -	  //Ok, the threshold value has been reached.
> -	  //We determine which block to remove from the list of free
> -	  //blocks.
> +	  // Ok, the threshold value has been reached.  We determine
> +	  // which block to remove from the list of free blocks.
>  	  if (*__addr >= *_S_free_list.back())
>  	    {
> -	      //Ok, the new block is greater than or equal to the last
> -	      //block in the list of free blocks. We just free the new
> -	      //block.
> -	      operator delete((void*)__addr);
> +	      // Ok, the new block is greater than or equal to the
> +	      // last block in the list of free blocks. We just free
> +	      // the new block.
> +	      operator delete(static_cast<void*>(__addr));
>  	      return;
>  	    }
>  	  else
>  	    {
> -	      //Deallocate the last block in the list of free lists, and
> -	      //insert the new one in it's correct position.
> -	      operator delete((void*)_S_free_list.back());
> +	      // Deallocate the last block in the list of free lists,
> +	      // and insert the new one in it's correct position.
> +	      operator delete(static_cast<void*>(_S_free_list.back()));
>  	      _S_free_list.pop_back();
>  	    }
>  	}
>  	  
> -      //Just add the block to the list of free lists
> -      //unconditionally.
> -      _FLIter __temp = std::lower_bound(_S_free_list.begin(), _S_free_list.end(), 
> -					*__addr, _LT_pointer_compare ());
> -      //We may insert the new free list before _temp;
> +      // Just add the block to the list of free lists unconditionally.
> +      iterator __temp = __gnu_cxx::balloc::__lower_bound
> +	(_S_free_list.begin(), _S_free_list.end(), 
> +	 *__addr, _LT_pointer_compare());
> +
> +      // We may insert the new free list before _temp;
>        _S_free_list.insert(__temp, __addr);
>      }
>  
> -    static bool _S_should_i_give(unsigned int __block_size, unsigned int __required_size) throw()
> +    bool 
> +    _M_should_i_give(unsigned int __block_size, 
> +		     unsigned int __required_size) throw()
>      {
>        const unsigned int __max_wastage_percentage = 36;
>        if (__block_size >= __required_size && 
> -	  (((__block_size - __required_size) * 100 / __block_size) < __max_wastage_percentage))
> +	  (((__block_size - __required_size) * 100 / __block_size)
> +	   < __max_wastage_percentage))
>  	return true;
>        else
>  	return false;
>      }
>  
>    public:
> -    typedef _BA_free_list_store _BFL_type;
> -
> -    static inline void _S_insert_free_list(unsigned int *__addr) throw()
> +    inline void 
> +    _M_insert(unsigned int* __addr) throw()
>      {
>  #if defined __GTHREADS
> -      _Lock __bfl_lock(&_S_bfl_mutex);
> +      _Auto_Lock __bfl_lock(&_S_bfl_mutex);
>  #endif
> -      //Call _S_validate_free_list to decide what should be done with this
> -      //particular free list.
> -      _S_validate_free_list(--__addr);
> +      // Call _M_validate to decide what should be done with
> +      // this particular free list.
> +      this->_M_validate(reinterpret_cast<unsigned int*>
> +			(reinterpret_cast<char*>(__addr) 
> +			 - sizeof(unsigned int)));
>      }
>      
> -    static unsigned int *_S_get_free_list(unsigned int __sz) throw (std::bad_alloc)
> -    {
> -#if defined __GTHREADS
> -      _Lock __bfl_lock(&_S_bfl_mutex);
> -#endif
> -      _FLIter __temp = std::lower_bound(_S_free_list.begin(), _S_free_list.end(), 
> -					__sz, _LT_pointer_compare());
> -      if (__temp == _S_free_list.end() || !_S_should_i_give (**__temp, __sz))
> -	{
> -	  //We hold the lock because the OOM_Handler is a stateless
> -	  //entity.
> -	  _OOM_handler __set_handler(_BFL_type::_S_clear);
> -	  unsigned int *__ret_val = reinterpret_cast<unsigned int*>
> -	    (operator new (__sz + sizeof(unsigned int)));
> -	  *__ret_val = __sz;
> -	  return ++__ret_val;
> -	}
> -      else
> -	{
> -	  unsigned int* __ret_val = *__temp;
> -	  _S_free_list.erase (__temp);
> -	  return ++__ret_val;
> -	}
> -    }
> -
> -    //This function just clears the internal Free List, and gives back
> -    //all the memory to the OS.
> -    static void _S_clear()
> -    {
> -#if defined __GTHREADS
> -      _Lock __bfl_lock(&_S_bfl_mutex);
> -#endif
> -      _FLIter __iter = _S_free_list.begin();
> -      while (__iter != _S_free_list.end())
> -	{
> -	  operator delete((void*)*__iter);
> -	  ++__iter;
> -	}
> -      _S_free_list.clear();
> -    }
> +    unsigned int*
> +    _M_get(unsigned int __sz) throw(std::bad_alloc);
>  
> +    // This function just clears the internal Free List, and gives back
> +    // all the memory to the OS.
> +    void 
> +    _M_clear();
>    };
>  
> -#if defined __GTHREADS
> -  _Mutex _BA_free_list_store::_S_bfl_mutex;
> -#endif
> -  std::vector<unsigned int*> _BA_free_list_store::_S_free_list;
>  
> -  template <typename _Tp> class bitmap_allocator;
> -  // specialize for void:
> -  template <> class bitmap_allocator<void> {
> -  public:
> -    typedef void*       pointer;
> -    typedef const void* const_pointer;
> -    //  reference-to-void members are impossible.
> -    typedef void  value_type;
> -    template <typename _Tp1> struct rebind { typedef bitmap_allocator<_Tp1> other; };
> -  };
> +  // Forward declare the class.
> +  template<typename _Tp> 
> +    class bitmap_allocator;
> +
> +  // Specialize for void:
> +  template<>
> +    class bitmap_allocator<void>
> +    {
> +    public:
> +      typedef void*       pointer;
> +      typedef const void* const_pointer;
>  
> -  template <typename _Tp> class bitmap_allocator : private _BA_free_list_store {
> -  public:
> -    typedef size_t    size_type;
> -    typedef ptrdiff_t difference_type;
> -    typedef _Tp*        pointer;
> -    typedef const _Tp*  const_pointer;
> -    typedef _Tp&        reference;
> -    typedef const _Tp&  const_reference;
> -    typedef _Tp         value_type;
> -    template <typename _Tp1> struct rebind { typedef bitmap_allocator<_Tp1> other; };
> -
> -  private:
> -    static const unsigned int _Bits_Per_Byte = 8;
> -    static const unsigned int _Bits_Per_Block = sizeof(unsigned int) * _Bits_Per_Byte;
> +      // Reference-to-void members are impossible.
> +      typedef void  value_type;
> +      template<typename _Tp1>
> +        struct rebind
> +	{
> +	  typedef bitmap_allocator<_Tp1> other;
> +	};
> +    };
>  
> -    static inline void _S_bit_allocate(unsigned int *__pbmap, unsigned int __pos) throw()
> -    {
> -      unsigned int __mask = 1 << __pos;
> -      __mask = ~__mask;
> -      *__pbmap &= __mask;
> -    }
> -  
> -    static inline void _S_bit_free(unsigned int *__pbmap, unsigned int __pos) throw()
> +  template<typename _Tp>
> +    class bitmap_allocator : private free_list
>      {
> -      unsigned int __mask = 1 << __pos;
> -      *__pbmap |= __mask;
> -    }
> +    public:
> +      typedef std::size_t    size_type;
> +      typedef std::ptrdiff_t difference_type;
> +      typedef _Tp*        pointer;
> +      typedef const _Tp*  const_pointer;
> +      typedef _Tp&        reference;
> +      typedef const _Tp&  const_reference;
> +      typedef _Tp         value_type;
> +      template<typename _Tp1>
> +        struct rebind
> +	{
> +	  typedef bitmap_allocator<_Tp1> other;
> +	};
>  
> -    static inline void *_S_memory_get(size_t __sz) throw (std::bad_alloc)
> -    {
> -      return operator new(__sz);
> -    }
> +    private:
> +      template<unsigned int _BSize, unsigned int _AlignSize>
> +        struct aligned_size
> +	{
> +	  enum
> +	    { 
> +	      modulus = _BSize % _AlignSize,
> +	      value = _BSize + (modulus ? _AlignSize - (modulus) : 0)
> +	    };
> +	};
>  
> -    static inline void _S_memory_put(void *__vptr) throw ()
> -    {
> -      operator delete(__vptr);
> -    }
> +      struct _Alloc_block
> +      {
> +	char __unused[aligned_size<sizeof(value_type), 8>::value];
> +      };
>  
> -    typedef typename std::pair<pointer, pointer> _Block_pair;
> -    typedef typename __gnu_cxx::new_allocator<_Block_pair> _BPVec_allocator_type;
> -    typedef typename std::vector<_Block_pair, _BPVec_allocator_type> _BPVector;
>  
> +      typedef typename std::pair<_Alloc_block*, _Alloc_block*> _Block_pair;
>  
> -#if defined CHECK_FOR_ERRORS
> -    //Complexity: O(lg(N)). Where, N is the number of block of size
> -    //sizeof(value_type).
> -    static void _S_check_for_free_blocks() throw()
> -    {
> -      typedef typename __gnu_cxx::__aux_balloc::_Ffit_finder<pointer, _BPVec_allocator_type> _FFF;
> -      _FFF __fff;
> -      typedef typename _BPVector::iterator _BPiter;
> -      _BPiter __bpi = std::find_if(_S_mem_blocks.begin(), _S_mem_blocks.end(), 
> -				   __gnu_cxx::__aux_balloc::_Functor_Ref<_FFF>(__fff));
> -      assert(__bpi == _S_mem_blocks.end());
> -    }
> -#endif
> +      typedef typename 
> +      balloc::__mini_vector<_Block_pair> _BPVector;
>  
> +#if defined _BALLOC_SANITY_CHECK
> +      // Complexity: O(lg(N)). Where, N is the number of block of size
> +      // sizeof(value_type).
> +      void 
> +      _S_check_for_free_blocks() throw()
> +      {
> +	typedef typename 
> +	  __gnu_cxx::balloc::_Ffit_finder<_Alloc_block*> _FFF;
> +	_FFF __fff;
> +	typedef typename _BPVector::iterator _BPiter;
> +	_BPiter __bpi = 
> +	  __gnu_cxx::balloc::__find_if
> +	  (_S_mem_blocks.begin(), _S_mem_blocks.end(), 
> +	   __gnu_cxx::balloc::_Functor_Ref<_FFF>(__fff));
>  
> -    //Complexity: O(1), but internally depends upon the complexity of
> -    //the function _BA_free_list_store::_S_get_free_list. The part
> -    //where the bitmap headers are written is of worst case complexity:
> -    //O(X),where X is the number of blocks of size sizeof(value_type)
> -    //within the newly acquired block. Having a tight bound.
> -    static void _S_refill_pool() throw (std::bad_alloc)
> -    {
> -#if defined CHECK_FOR_ERRORS
> -      _S_check_for_free_blocks();
> +	_BALLOC_ASSERT(__bpi == _S_mem_blocks.end());
> +      }
>  #endif
>  
> -      const unsigned int __num_bit_maps = _S_block_size / _Bits_Per_Block;
> -      const unsigned int __size_to_allocate = sizeof(unsigned int) + 
> -	_S_block_size * sizeof(value_type) + __num_bit_maps*sizeof(unsigned int);
> -
> -      unsigned int *__temp = 
> -	reinterpret_cast<unsigned int*>(_BA_free_list_store::_S_get_free_list(__size_to_allocate));
> -      *__temp = 0;
> -      ++__temp;
> +      // Complexity: O(1), but internally depends upon the complexity
> +      // of the function free_list::_M_get. The
> +      // part where the bitmap headers are written is of worst case
> +      // complexity: O(X),where X is the number of blocks of size
> +      // sizeof(value_type) within the newly acquired block. Having a
> +      // tight bound.
> +      void 
> +      _S_refill_pool() throw(std::bad_alloc)
> +      {
> +#if defined _BALLOC_SANITY_CHECK
> +	_S_check_for_free_blocks();
> +#endif
>  
> -      //The Header information goes at the Beginning of the Block.
> -      _Block_pair __bp = std::make_pair(reinterpret_cast<pointer>(__temp + __num_bit_maps), 
> -				       reinterpret_cast<pointer>(__temp + __num_bit_maps) 
> -					+ _S_block_size - 1);
> +	const unsigned int __num_bitmaps = _S_block_size / balloc::bits_per_block;
> +	const unsigned int __size_to_allocate = sizeof(unsigned int)
> +	  + _S_block_size * sizeof(_Alloc_block) 
> +	  + __num_bitmaps * sizeof(unsigned int);
> +
> +	unsigned int* __temp = 
> +	  reinterpret_cast<unsigned int*>(this->_M_get(__size_to_allocate));
> +	*__temp = 0;
> +	// ++__temp;
> +	__temp = reinterpret_cast<unsigned int*>
> +	  (reinterpret_cast<char*>(__temp) + sizeof(unsigned int));
> +
> +	// The Header information goes at the Beginning of the Block.
> +	_Block_pair __bp = 
> +	  std::make_pair(reinterpret_cast<_Alloc_block*>
> +			 (__temp + __num_bitmaps), 
> +			 reinterpret_cast<_Alloc_block*>
> +			 (__temp + __num_bitmaps) 
> +			 + _S_block_size - 1);
> +	
> +	// Fill the Vector with this information.
> +	_S_mem_blocks.push_back(__bp);
>  
> -      //Fill the Vector with this information.
> -      _S_mem_blocks.push_back(__bp);
> +	unsigned int __bit_mask = 0; // 0 Indicates all Allocated.
> +	__bit_mask = ~__bit_mask; // 1 Indicates all Free.
>  
> -      unsigned int __bit_mask = 0; //0 Indicates all Allocated.
> -      __bit_mask = ~__bit_mask; //1 Indicates all Free.
> +	for (unsigned int __i = 0; __i < __num_bitmaps; ++__i)
> +	  __temp[__i] = __bit_mask;
>  
> -      for (unsigned int __i = 0; __i < __num_bit_maps; ++__i)
> -	__temp[__i] = __bit_mask;
> +	_S_block_size *= 2;
> +      }
>  
> -      //On some implementations, operator new might throw bad_alloc, or
> -      //malloc might fail if the size passed is too large, therefore, we
> -      //limit the size passed to malloc or operator new.
> -      _S_block_size *= 2;
> -    }
>  
> -    static _BPVector _S_mem_blocks;
> -    static unsigned int _S_block_size;
> -    static __gnu_cxx::__aux_balloc::_Bit_map_counter<pointer, _BPVec_allocator_type> _S_last_request;
> -    static typename _BPVector::size_type _S_last_dealloc_index;
> +      static _BPVector _S_mem_blocks;
> +      static unsigned int _S_block_size;
> +      static __gnu_cxx::balloc::
> +      _Bitmap_counter<_Alloc_block*> _S_last_request;
> +      static typename _BPVector::size_type _S_last_dealloc_index;
>  #if defined __GTHREADS
> -    static _Mutex _S_mut;
> +      static _Mutex _S_mut;
>  #endif
>  
> -    //Complexity: Worst case complexity is O(N), but that is hardly ever
> -    //hit. if and when this particular case is encountered, the next few
> -    //cases are guaranteed to have a worst case complexity of O(1)!
> -    //That's why this function performs very well on the average. you
> -    //can consider this function to be having a complexity refrred to
> -    //commonly as: Amortized Constant time.
> -    static pointer _S_allocate_single_object()
> -    {
> +    public:
> +
> +      // Complexity: Worst case complexity is O(N), but that is hardly
> +      // ever hit. if and when this particular case is encountered,
> +      // the next few cases are guaranteed to have a worst case
> +      // complexity of O(1)!  That's why this function performs very
> +      // well on the average. you can consider this function to be
> +      // having a complexity referred to commonly as: Amortized
> +      // Constant time.
> +      pointer 
> +      _M_allocate_single_object() throw(std::bad_alloc)
> +      {
>  #if defined __GTHREADS
> -      _Lock __bit_lock(&_S_mut);
> +	_Auto_Lock __bit_lock(&_S_mut);
>  #endif
>  
> -      //The algorithm is something like this: The last_requst variable
> -      //points to the last accessed Bit Map. When such a condition
> -      //occurs, we try to find a free block in the current bitmap, or
> -      //succeeding bitmaps until the last bitmap is reached. If no free
> -      //block turns up, we resort to First Fit method.
> +	// The algorithm is something like this: The last_request
> +	// variable points to the last accessed Bit Map. When such a
> +	// condition occurs, we try to find a free block in the
> +	// current bitmap, or succeeding bitmaps until the last bitmap
> +	// is reached. If no free block turns up, we resort to First
> +	// Fit method.
> +
> +	// WARNING: Do not re-order the condition in the while
> +	// statement below, because it relies on C++'s short-circuit
> +	// evaluation. The return from _S_last_request->_M_get() will
> +	// NOT be dereference able if _S_last_request->_M_finished()
> +	// returns true. This would inevitably lead to a NULL pointer
> +	// dereference if tinkered with.
> +	while (_S_last_request._M_finished() == false
> +	       && (*(_S_last_request._M_get()) == 0))
> +	  {
> +	    _S_last_request.operator++();
> +	  }
>  
> -      //WARNING: Do not re-order the condition in the while statement
> -      //below, because it relies on C++'s short-circuit
> -      //evaluation. The return from _S_last_request->_M_get() will NOT
> -      //be dereferenceable if _S_last_request->_M_finished() returns
> -      //true. This would inevitibly lead to a NULL pointer dereference
> -      //if tinkered with.
> -      while (_S_last_request._M_finished() == false && (*(_S_last_request._M_get()) == 0))
> -	{
> -	  _S_last_request.operator++();
> -	}
> +	if (__builtin_expect(_S_last_request._M_finished() == true, false))
> +	  {
> +	    // Fall Back to First Fit algorithm.
> +	    typedef typename 
> +	      __gnu_cxx::balloc::_Ffit_finder<_Alloc_block*> _FFF;
> +	    _FFF __fff;
> +	    typedef typename _BPVector::iterator _BPiter;
> +	    _BPiter __bpi = 
> +	      __gnu_cxx::balloc::__find_if
> +	      (_S_mem_blocks.begin(), _S_mem_blocks.end(), 
> +	       __gnu_cxx::balloc::_Functor_Ref<_FFF>(__fff));
>  
> -      if (__builtin_expect(_S_last_request._M_finished() == true, false))
> -	{
> -	  //Fall Back to First Fit algorithm.
> -	  typedef typename __gnu_cxx::__aux_balloc::_Ffit_finder<pointer, _BPVec_allocator_type> _FFF;
> -	  _FFF __fff;
> -	  typedef typename _BPVector::iterator _BPiter;
> -	  _BPiter __bpi = std::find_if(_S_mem_blocks.begin(), _S_mem_blocks.end(), 
> -				      __gnu_cxx::__aux_balloc::_Functor_Ref<_FFF>(__fff));
> +	    if (__bpi != _S_mem_blocks.end())
> +	      {
> +		// Search was successful. Ok, now mark the first bit from
> +		// the right as 0, meaning Allocated. This bit is obtained
> +		// by calling _M_get() on __fff.
> +		unsigned int __nz_bit = _Bit_scan_forward(*__fff._M_get());
> +		balloc::__bit_allocate(__fff._M_get(), __nz_bit);
> +
> +		_S_last_request._M_reset(__bpi - _S_mem_blocks.begin());
> +
> +		// Now, get the address of the bit we marked as allocated.
> +		pointer __ret = reinterpret_cast<pointer>
> +		  (__bpi->first + __fff._M_offset() + __nz_bit);
> +		unsigned int* __puse_count = reinterpret_cast<unsigned int*>
> +		  (reinterpret_cast<char*>
> +		   (__bpi->first) - (sizeof(unsigned int) * 
> +				     (__gnu_cxx::balloc::__num_bitmaps(*__bpi)+1)));
> +		
> +		++(*__puse_count);
> +		return __ret;
> +	      }
> +	    else
> +	      {
> +		// Search was unsuccessful. We Add more memory to the
> +		// pool by calling _S_refill_pool().
> +		_S_refill_pool();
> +
> +		// _M_Reset the _S_last_request structure to the first
> +		// free block's bit map.
> +		_S_last_request._M_reset(_S_mem_blocks.size() - 1);
>  
> -	  if (__bpi != _S_mem_blocks.end())
> -	    {
> -	      //Search was successful. Ok, now mark the first bit from
> -	      //the right as 0, meaning Allocated. This bit is obtained
> -	      //by calling _M_get() on __fff.
> -	      unsigned int __nz_bit = _Bit_scan_forward(*__fff._M_get());
> -	      _S_bit_allocate(__fff._M_get(), __nz_bit);
> -
> -	      _S_last_request._M_reset(__bpi - _S_mem_blocks.begin());
> -
> -	      //Now, get the address of the bit we marked as allocated.
> -	      pointer __ret_val = __bpi->first + __fff._M_offset() + __nz_bit;
> -	      unsigned int *__puse_count = reinterpret_cast<unsigned int*>(__bpi->first) - 
> -		(__gnu_cxx::__aux_balloc::__balloc_num_bit_maps(*__bpi) + 1);
> -	      ++(*__puse_count);
> -	      return __ret_val;
> -	    }
> -	  else
> -	    {
> -	      //Search was unsuccessful. We Add more memory to the pool
> -	      //by calling _S_refill_pool().
> -	      _S_refill_pool();
> -
> -	      //_M_Reset the _S_last_request structure to the first free
> -	      //block's bit map.
> -	      _S_last_request._M_reset(_S_mem_blocks.size() - 1);
> +		// Now, mark that bit as allocated.
> +	      }
> +	  }
>  
> -	      //Now, mark that bit as allocated.
> -	    }
> -	}
> -      //_S_last_request holds a pointer to a valid bit map, that points
> -      //to a free block in memory.
> -      unsigned int __nz_bit = _Bit_scan_forward(*_S_last_request._M_get());
> -      _S_bit_allocate(_S_last_request._M_get(), __nz_bit);
> -
> -      pointer __ret_val = _S_last_request._M_base() + _S_last_request._M_offset() + __nz_bit;
> -
> -      unsigned int *__puse_count = reinterpret_cast<unsigned int*>
> -	(_S_mem_blocks[_S_last_request._M_where()].first) - 
> -	(__gnu_cxx::__aux_balloc::__balloc_num_bit_maps(_S_mem_blocks[_S_last_request._M_where()]) + 1);
> -      ++(*__puse_count);
> -      return __ret_val;
> -    }
> -
> -    //Complexity: O(lg(N)), but the worst case is hit quite often! I
> -    //need to do something about this. I'll be able to work on it, only
> -    //when I have some solid figures from a few real apps.
> -    static void _S_deallocate_single_object(pointer __p) throw()
> -    {
> +	// _S_last_request holds a pointer to a valid bit map, that
> +	// points to a free block in memory.
> +	unsigned int __nz_bit = _Bit_scan_forward(*_S_last_request._M_get());
> +	balloc::__bit_allocate(_S_last_request._M_get(), __nz_bit);
> +
> +	pointer __ret = reinterpret_cast<pointer>
> +	  (_S_last_request._M_base() + _S_last_request._M_offset() + __nz_bit);
> +
> +	unsigned int* __puse_count = reinterpret_cast<unsigned int*>
> +	  (reinterpret_cast<char*>
> +	   (_S_mem_blocks[_S_last_request._M_where()].first)
> +	   - (sizeof(unsigned int) * 
> +	      (__gnu_cxx::balloc::
> +	       __num_bitmaps(_S_mem_blocks[_S_last_request._M_where()])+1)));
> +
> +	++(*__puse_count);
> +	return __ret;
> +      }
> +
> +      // Complexity: O(lg(N)), but the worst case is hit quite often!
> +      // I need to do something about this. I'll be able to work on
> +      // it, only when I have some solid figures from a few real apps.
> +      void 
> +      _M_deallocate_single_object(pointer __p) throw()
> +      {
>  #if defined __GTHREADS
> -      _Lock __bit_lock(&_S_mut);
> +	_Auto_Lock __bit_lock(&_S_mut);
>  #endif
> +	_Alloc_block* __real_p = reinterpret_cast<_Alloc_block*>(__p);
>  
> -      typedef typename _BPVector::iterator _Iterator;
> -      typedef typename _BPVector::difference_type _Difference_type;
> +	typedef typename _BPVector::iterator _Iterator;
> +	typedef typename _BPVector::difference_type _Difference_type;
>  
> -      _Difference_type __diff;
> -      int __displacement;
> +	_Difference_type __diff;
> +	int __displacement;
>  
> -      assert(_S_last_dealloc_index >= 0);
> +	_BALLOC_ASSERT(_S_last_dealloc_index >= 0);
>  
> -      if (__gnu_cxx::__aux_balloc::_Inclusive_between<pointer>(__p)(_S_mem_blocks[_S_last_dealloc_index]))
> -	{
> -	  assert(_S_last_dealloc_index <= _S_mem_blocks.size() - 1);
> +	
> +	if (__gnu_cxx::balloc::_Inclusive_between<_Alloc_block*>
> +	    (__real_p)
> +	    (_S_mem_blocks[_S_last_dealloc_index]))
> +	  {
> +	    _BALLOC_ASSERT(_S_last_dealloc_index <= _S_mem_blocks.size() - 1);
>  
> -	  //Initial Assumption was correct!
> -	  __diff = _S_last_dealloc_index;
> -	  __displacement = __p - _S_mem_blocks[__diff].first;
> -	}
> -      else
> -	{
> -	  _Iterator _iter = (std::find_if(_S_mem_blocks.begin(), _S_mem_blocks.end(), 
> -					  __gnu_cxx::__aux_balloc::_Inclusive_between<pointer>(__p)));
> -	  assert(_iter != _S_mem_blocks.end());
> -
> -	  __diff = _iter - _S_mem_blocks.begin();
> -	  __displacement = __p - _S_mem_blocks[__diff].first;
> -	  _S_last_dealloc_index = __diff;
> -	}
> +	    // Initial Assumption was correct!
> +	    __diff = _S_last_dealloc_index;
> +	    __displacement = __real_p - _S_mem_blocks[__diff].first;
> +	  }
> +	else
> +	  {
> +	    _Iterator _iter = 
> +	      __gnu_cxx::balloc::__find_if(_S_mem_blocks.begin(), 
> +					   _S_mem_blocks.end(), 
> +					   __gnu_cxx::balloc::
> +					   _Inclusive_between<_Alloc_block*>(__real_p));
> +	    _BALLOC_ASSERT(_iter != _S_mem_blocks.end());
> +
> +	    __diff = _iter - _S_mem_blocks.begin();
> +	    __displacement = __real_p - _S_mem_blocks[__diff].first;
> +	    _S_last_dealloc_index = __diff;
> +	  }
>  
> -      //Get the position of the iterator that has been found.
> -      const unsigned int __rotate = __displacement % _Bits_Per_Block;
> -      unsigned int *__bit_mapC = reinterpret_cast<unsigned int*>(_S_mem_blocks[__diff].first) - 1;
> -      __bit_mapC -= (__displacement / _Bits_Per_Block);
> +	// Get the position of the iterator that has been found.
> +	const unsigned int __rotate = __displacement % balloc::bits_per_block;
> +	unsigned int* __bitmapC = 
> +	  reinterpret_cast<unsigned int*>(_S_mem_blocks[__diff].first) - 1;
> +	__bitmapC -= (__displacement / balloc::bits_per_block);
>        
> -      _S_bit_free(__bit_mapC, __rotate);
> -      unsigned int *__puse_count = reinterpret_cast<unsigned int*>
> -	(_S_mem_blocks[__diff].first) - 
> -	(__gnu_cxx::__aux_balloc::__balloc_num_bit_maps(_S_mem_blocks[__diff]) + 1);
> -
> -      assert(*__puse_count != 0);
> +	balloc::__bit_free(__bitmapC, __rotate);
> +	unsigned int* __puse_count = reinterpret_cast<unsigned int*>
> +		  (reinterpret_cast<char*>
> +		   (_S_mem_blocks[__diff].first)
> +		   - (sizeof(unsigned int) * 
> +		      (__gnu_cxx::balloc::__num_bitmaps(_S_mem_blocks[__diff])+1)));
> +	
> +	_BALLOC_ASSERT(*__puse_count != 0);
>  
> -      --(*__puse_count);
> +	--(*__puse_count);
>  
> -      if (__builtin_expect(*__puse_count == 0, false))
> -	{
> -	  _S_block_size /= 2;
> +	if (__builtin_expect(*__puse_count == 0, false))
> +	  {
> +	    _S_block_size /= 2;
>  	  
> -	  //We may safely remove this block.
> -	  _Block_pair __bp = _S_mem_blocks[__diff];
> -	  _S_insert_free_list(__puse_count);
> -	  _S_mem_blocks.erase(_S_mem_blocks.begin() + __diff);
> -
> -	  //We reset the _S_last_request variable to reflect the erased
> -	  //block. We do this to protect future requests after the last
> -	  //block has been removed from a particular memory Chunk,
> -	  //which in turn has been returned to the free list, and
> -	  //hence had been erased from the vector, so the size of the
> -	  //vector gets reduced by 1.
> -	  if ((_Difference_type)_S_last_request._M_where() >= __diff--)
> -	    {
> -	      _S_last_request._M_reset(__diff);
> -	      //	      assert(__diff >= 0);
> -	    }
> -
> -	  //If the Index into the vector of the region of memory that
> -	  //might hold the next address that will be passed to
> -	  //deallocated may have been invalidated due to the above
> -	  //erase procedure being called on the vector, hence we try
> -	  //to restore this invariant too.
> -	  if (_S_last_dealloc_index >= _S_mem_blocks.size())
> -	    {
> -	      _S_last_dealloc_index =(__diff != -1 ? __diff : 0);
> -	      assert(_S_last_dealloc_index >= 0);
> -	    }
> -	}
> -    }
> -
> -  public:
> -    bitmap_allocator() throw()
> -    { }
> -
> -    bitmap_allocator(const bitmap_allocator&) { }
> -
> -    template <typename _Tp1> bitmap_allocator(const bitmap_allocator<_Tp1>&) throw()
> -    { }
> -
> -    ~bitmap_allocator() throw()
> -    { }
> -
> -    //Complexity: O(1), but internally the complexity depends upon the
> -    //complexity of the function(s) _S_allocate_single_object and
> -    //_S_memory_get.
> -    pointer allocate(size_type __n)
> -    {
> -      if (__builtin_expect(__n == 1, true))
> -	return _S_allocate_single_object();
> -      else
> -	return reinterpret_cast<pointer>(_S_memory_get(__n * sizeof(value_type)));
> -    }
> -
> -    //Complexity: Worst case complexity is O(N) where N is the number of
> -    //blocks of size sizeof(value_type) within the free lists that the
> -    //allocator holds. However, this worst case is hit only when the
> -    //user supplies a bogus argument to hint. If the hint argument is
> -    //sensible, then the complexity drops to O(lg(N)), and in extreme
> -    //cases, even drops to as low as O(1). So, if the user supplied
> -    //argument is good, then this function performs very well.
> -    pointer allocate(size_type __n, typename bitmap_allocator<void>::const_pointer)
> -    {
> -      return allocate(__n);
> -    }
> +	    // We can safely remove this block.
> +	    // _Block_pair __bp = _S_mem_blocks[__diff];
> +	    this->_M_insert(__puse_count);
> +	    _S_mem_blocks.erase(_S_mem_blocks.begin() + __diff);
> +
> +	    // Reset the _S_last_request variable to reflect the
> +	    // erased block. We do this to protect future requests
> +	    // after the last block has been removed from a particular
> +	    // memory Chunk, which in turn has been returned to the
> +	    // free list, and hence had been erased from the vector,
> +	    // so the size of the vector gets reduced by 1.
> +	    if ((_Difference_type)_S_last_request._M_where() >= __diff--)
> +	      _S_last_request._M_reset(__diff); 
> +
> +	    // If the Index into the vector of the region of memory
> +	    // that might hold the next address that will be passed to
> +	    // deallocated may have been invalidated due to the above
> +	    // erase procedure being called on the vector, hence we
> +	    // try to restore this invariant too.
> +	    if (_S_last_dealloc_index >= _S_mem_blocks.size())
> +	      {
> +		_S_last_dealloc_index =(__diff != -1 ? __diff : 0);
> +		_BALLOC_ASSERT(_S_last_dealloc_index >= 0);
> +	      }
> +	  }
> +      }
>  
> -    void deallocate(pointer __p, size_type __n) throw()
> -    {
> -      if (__builtin_expect(__n == 1, true))
> -	_S_deallocate_single_object(__p);
> -      else
> -	_S_memory_put(__p);
> -    }
> +    public:
> +      bitmap_allocator() throw()
> +      { }
>  
> -    pointer address(reference r) const { return &r; }
> -    const_pointer address(const_reference r) const { return &r; }
> +      bitmap_allocator(const bitmap_allocator&)
> +      { }
>  
> -    size_type max_size(void) const throw() { return (size_type()-1)/sizeof(value_type); }
> +      template<typename _Tp1>
> +        bitmap_allocator(const bitmap_allocator<_Tp1>&) throw()
> +        { }
>  
> -    void construct (pointer p, const_reference __data)
> -    {
> -      ::new(p) value_type(__data);
> -    }
> +      ~bitmap_allocator() throw()
> +      { }
>  
> -    void destroy (pointer p)
> -    {
> -      p->~value_type();
> -    }
> +      // Complexity: O(1), but internally the complexity depends upon the
> +      // complexity of the function(s) _S_allocate_single_object and
> +      // operator new.
> +      pointer 
> +      allocate(size_type __n)
> +      {
> +	if (__builtin_expect(__n == 1, true))
> +	  return this->_M_allocate_single_object();
> +	else
> +	  { 
> +	    const size_type __b = __n * sizeof(value_type);
> +	    return reinterpret_cast<pointer>(::operator new(__b));
> +	  }
> +      }
>  
> -  };
> +      pointer 
> +      allocate(size_type __n, typename bitmap_allocator<void>::const_pointer)
> +      { return allocate(__n); }
>  
> -  template <typename _Tp>
> -  typename bitmap_allocator<_Tp>::_BPVector bitmap_allocator<_Tp>::_S_mem_blocks;
> +      void 
> +      deallocate(pointer __p, size_type __n) throw()
> +      {
> +	if (__builtin_expect(__n == 1, true))
> +	  this->_M_deallocate_single_object(__p);
> +	else
> +	  ::operator delete(__p);
> +      }
>  
> -  template <typename _Tp>
> -  unsigned int bitmap_allocator<_Tp>::_S_block_size = bitmap_allocator<_Tp>::_Bits_Per_Block;
> +      pointer 
> +      address(reference __r) const
> +      { return &__r; }
> +
> +      const_pointer 
> +      address(const_reference __r) const
> +      { return &__r; }
> +
> +      size_type 
> +      max_size() const throw()
> +      { return (size_type()-1)/sizeof(value_type); }
> +
> +      void 
> +      construct(pointer __p, const_reference __data)
> +      { ::new(__p) value_type(__data); }
> +
> +      void 
> +      destroy(pointer __p)
> +      { __p->~value_type(); }
> +    };
>  
> -  template <typename _Tp>
> -  typename __gnu_cxx::bitmap_allocator<_Tp>::_BPVector::size_type 
> -  bitmap_allocator<_Tp>::_S_last_dealloc_index = 0;
> -
> -  template <typename _Tp>
> -  __gnu_cxx::__aux_balloc::_Bit_map_counter 
> -  <typename bitmap_allocator<_Tp>::pointer, typename bitmap_allocator<_Tp>::_BPVec_allocator_type> 
> -  bitmap_allocator<_Tp>::_S_last_request(_S_mem_blocks);
> +  template<typename _Tp1, typename _Tp2>
> +    bool 
> +    operator==(const bitmap_allocator<_Tp1>&, 
> +	       const bitmap_allocator<_Tp2>&) throw()
> +    { return true; }
> +  
> +  template<typename _Tp1, typename _Tp2>
> +    bool 
> +    operator!=(const bitmap_allocator<_Tp1>&, 
> +	       const bitmap_allocator<_Tp2>&) throw() 
> +  { return false; }
> +
> +  // Static member definitions.
> +  template<typename _Tp>
> +    typename bitmap_allocator<_Tp>::_BPVector
> +    bitmap_allocator<_Tp>::_S_mem_blocks;
> +
> +  template<typename _Tp>
> +    unsigned int bitmap_allocator<_Tp>::_S_block_size = balloc::bits_per_block;
> +
> +  template<typename _Tp>
> +    typename __gnu_cxx::bitmap_allocator<_Tp>::_BPVector::size_type 
> +    bitmap_allocator<_Tp>::_S_last_dealloc_index = 0;
> +
> +  template<typename _Tp>
> +    __gnu_cxx::balloc::_Bitmap_counter 
> +  <typename bitmap_allocator<_Tp>::_Alloc_block*>
> +    bitmap_allocator<_Tp>::_S_last_request(_S_mem_blocks);
>  
>  #if defined __GTHREADS
> -  template <typename _Tp>
> -  __gnu_cxx::_Mutex
> -  bitmap_allocator<_Tp>::_S_mut;
> +  template<typename _Tp>
> +    __gnu_cxx::_Mutex
> +    bitmap_allocator<_Tp>::_S_mut;
>  #endif
>  
> -  template <typename _Tp1, typename _Tp2>
> -  bool operator== (const bitmap_allocator<_Tp1>&, const bitmap_allocator<_Tp2>&) throw()
> -  {
> -    return true;
> -  }
> -  
> -  template <typename _Tp1, typename _Tp2>
> -  bool operator!= (const bitmap_allocator<_Tp1>&, const bitmap_allocator<_Tp2>&) throw()
> -  {
> -    return false;
> -  }
> +
>  }
>  
> +#endif 
>  
> -#endif //_BITMAP_ALLOCATOR_H
> +//  LocalWords:  namespace GTHREADS bool const gthread endif Mutex mutex
> diff -urN libstdc++-v3-orig/src/Makefile.am libstdc++-v3/src/Makefile.am
> --- libstdc++-v3-orig/src/Makefile.am	2004-09-02 00:16:56.000000000 +0200
> +++ libstdc++-v3/src/Makefile.am	2004-10-14 11:16:37.000000000 +0200
> @@ -96,6 +96,7 @@
>  
>  # Sources present in the src directory.
>  sources = \
> +	bitmap_allocator.cc \
>  	pool_allocator.cc \
>  	mt_allocator.cc \
>  	codecvt.cc \
> diff -urN libstdc++-v3-orig/src/bitmap_allocator.cc libstdc++-v3/src/bitmap_allocator.cc
> --- libstdc++-v3-orig/src/bitmap_allocator.cc	1970-01-01 01:00:00.000000000 +0100
> +++ libstdc++-v3/src/bitmap_allocator.cc	2004-10-14 11:16:37.000000000 +0200
> @@ -0,0 +1,133 @@
> +// Bitmap Allocator. Out of line function definitions. -*- C++ -*-
> +
> +// Copyright (C) 2004 Free Software Foundation, Inc.
> +//
> +// This file is part of the GNU ISO C++ Library.  This library is free
> +// software; you can redistribute it and/or modify it under the
> +// terms of the GNU General Public License as published by the
> +// Free Software Foundation; either version 2, or (at your option)
> +// any later version.
> +
> +// This library is distributed in the hope that it will be useful,
> +// but WITHOUT ANY WARRANTY; without even the implied warranty of
> +// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
> +// GNU General Public License for more details.
> +
> +// You should have received a copy of the GNU General Public License along
> +// with this library; see the file COPYING.  If not, write to the Free
> +// Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307,
> +// USA.
> +
> +// As a special exception, you may use this file as part of a free software
> +// library without restriction.  Specifically, if other files instantiate
> +// templates or use macros or inline functions from this file, or you compile
> +// this file and link it with other files to produce an executable, this
> +// file does not by itself cause the resulting executable to be covered by
> +// the GNU General Public License.  This exception does not however
> +// invalidate any other reasons why the executable file might be covered by
> +// the GNU General Public License.
> +
> +#include <ext/bitmap_allocator.h>
> +
> +namespace __gnu_cxx
> +{
> +  namespace balloc
> +  {
> +    template class __mini_vector<std::pair
> +    <bitmap_allocator<char>::_Alloc_block*, 
> +     bitmap_allocator<char>::_Alloc_block*> >;
> +
> +    template class __mini_vector<std::pair
> +    <bitmap_allocator<wchar_t>::_Alloc_block*, 
> +     bitmap_allocator<wchar_t>::_Alloc_block*> >;
> +
> +    template class __mini_vector<unsigned int*>;
> +
> +    template unsigned int** __lower_bound
> +    (unsigned int**, unsigned int**, 
> +     unsigned int const&, free_list::_LT_pointer_compare);
> +  }
> +
> +#if defined __GTHREADS
> +  _Mutex free_list::_S_bfl_mutex;
> +#endif
> +  free_list::vector_type free_list::_S_free_list;
> +
> +  unsigned int*
> +  free_list::
> +  _M_get(unsigned int __sz) throw(std::bad_alloc)
> +  {
> +#if defined __GTHREADS
> +    _Lock __bfl_lock(&_S_bfl_mutex);
> +    __bfl_lock._M_lock();
> +#endif
> +    iterator __temp = 
> +      __gnu_cxx::balloc::__lower_bound
> +      (_S_free_list.begin(), _S_free_list.end(), 
> +       __sz, _LT_pointer_compare());
> +
> +    if (__temp == _S_free_list.end() || !_M_should_i_give(**__temp, __sz))
> +      {
> +	// We release the lock here, because operator new is
> +	// guaranteed to be thread-safe by the underlying
> +	// implementation.
> +#if defined __GTHREADS
> +	__bfl_lock._M_unlock();
> +#endif
> +	// Try twice to get the memory: once directly, and the 2nd
> +	// time after clearing the free list. If both fail, then
> +	// throw std::bad_alloc().
> +	unsigned int __ctr = 2;
> +	while (__ctr)
> +	  {
> +	    unsigned int* __ret = 0;
> +	    --__ctr;
> +	    try
> +	      {
> +		__ret = reinterpret_cast<unsigned int*>
> +		  (::operator new(__sz + sizeof(unsigned int)));
> +	      }
> +	    catch(...)
> +	      {
> +		this->_M_clear();
> +	      }
> +	    if (!__ret)
> +	      continue;
> +	    *__ret = __sz;
> +	    return reinterpret_cast<unsigned int*>
> +	      (reinterpret_cast<char*>(__ret) + sizeof(unsigned int));
> +	  }
> +	throw std::bad_alloc();
> +      }
> +    else
> +      {
> +	unsigned int* __ret = *__temp;
> +	_S_free_list.erase(__temp);
> +#if defined __GTHREADS
> +	__bfl_lock._M_unlock();
> +#endif
> +	return reinterpret_cast<unsigned int*>
> +	  (reinterpret_cast<char*>(__ret) + sizeof(unsigned int));
> +      }
> +  }
> +
> +  void 
> +  free_list::
> +  _M_clear()
> +  {
> +#if defined __GTHREADS
> +    _Auto_Lock __bfl_lock(&_S_bfl_mutex);
> +#endif
> +    iterator __iter = _S_free_list.begin();
> +    while (__iter != _S_free_list.end())
> +      {
> +	operator delete((void*)*__iter);
> +	++__iter;
> +      }
> +    _S_free_list.clear();
> +  }
> +
> +  // Instantiations.
> +  template class bitmap_allocator<char>;
> +  template class bitmap_allocator<wchar_t>;
> +} // namespace __gnu_cxx
-- 
        -Dhruv Matani.
http://www.geocities.com/dhruvbird/

The price of freedom is responsibility, but it's a bargain, because
freedom is priceless. ~ Hugh Downs


Index Nav: [Date Index] [Subject Index] [Author Index] [Thread Index]
Message Nav: [Date Prev] [Date Next] [Thread Prev] [Thread Next]