This is the mail archive of the libstdc++@gcc.gnu.org mailing list for the libstdc++ project.


Index Nav: [Date Index] [Subject Index] [Author Index] [Thread Index]
Message Nav: [Date Prev] [Date Next] [Thread Prev] [Thread Next]
Other format: [Raw text]

patch: bitmap_allocator.h


Hi,
	I've gotten the bitmap_allocator to work fine when compiled as the
default using --enable-libstdcxx-allocator=bitmap. This patch implements
that. However, there is scope for some other parts of the allocator to
be split up into separate units(files), which are independent of each
other. I can do that only if that is required, because all allocators
upto now are self-sustaining files by themselves.

Tested x86-Linux.

-- 
	-Dhruv Matani.
http://www.geocities.com/dhruvbird/

template<typename Signature>
  class CustomSignature : public Signature
{ };

*** bitmap_allocator.h	2004-03-24 23:57:43.000000000 +0530
--- /home/dhruv/projects/new_libstdc++-v3/bitmap_allocator.h	2004-07-20 18:05:49.000000000 +0530
***************
*** 27,79 ****
  // invalidate any other reasons why the executable file might be covered by
  // the GNU General Public License.
  
! 
! 
! #if !defined _BITMAP_ALLOCATOR_H
  #define _BITMAP_ALLOCATOR_H 1
  
  #include <cstddef>
! //For std::size_t, and ptrdiff_t.
  #include <utility>
! //For std::pair.
! #include <algorithm>
! //std::find_if, and std::lower_bound.
! #include <vector>
! //For the free list of exponentially growing memory blocks. At max,
! //size of the vector should be  not more than the number of bits in an
! //integer or an unsigned integer.
  #include <functional>
! //For greater_equal, and less_equal.
  #include <new>
! //For operator new.
  #include <bits/gthr.h>
! //For __gthread_mutex_t, __gthread_mutex_lock and __gthread_mutex_unlock.
! #include <ext/new_allocator.h>
! //For __gnu_cxx::new_allocator for std::vector.
  
  #include <cassert>
! #define NDEBUG
  
- //#define CHECK_FOR_ERRORS
- //#define __CPU_HAS_BACKWARD_BRANCH_PREDICTION
  
  namespace __gnu_cxx
  {
!   namespace {
  #if defined __GTHREADS
      bool const __threads_enabled = __gthread_active_p();
  #endif
- 
    }
  
  #if defined __GTHREADS
!   class _Mutex {
      __gthread_mutex_t _M_mut;
!     //Prevent Copying and assignment.
!     _Mutex (_Mutex const&);
!     _Mutex& operator= (_Mutex const&);
    public:
!     _Mutex ()
      {
        if (__threads_enabled)
  	{
--- 27,109 ----
  // invalidate any other reasons why the executable file might be covered by
  // the GNU General Public License.
  
! #ifndef _BITMAP_ALLOCATOR_H
  #define _BITMAP_ALLOCATOR_H 1
  
  #include <cstddef>
! // For std::size_t, and ptrdiff_t.
  #include <utility>
! // For std::pair.
! // #include <iterator>
! 
! // #include <vector>
! // For the free list of exponentially growing memory blocks. At max,
! // size of the vector should be  not more than the number of bits in an
! // integer or an unsigned integer.
  #include <functional>
! // For greater_equal, and less_equal.
  #include <new>
! // For operator new.
  #include <bits/gthr.h>
! // For __gthread_mutex_t, __gthread_mutex_lock and __gthread_mutex_unlock.
! //#include <ext/new_allocator.h>
! // For __gnu_cxx::new_allocator for std::vector.
  
+ //#define _BALLOC_SANITY_CHECK
+ 
+ #if defined _BALLOC_SANITY_CHECK
  #include <cassert>
! #define _BALLOC_ASSERT(_EXPR) assert(_EXPR)
! #else
! #define _BALLOC_ASSERT(_EXPR)
! #endif
! 
! 
! #define _BIT_ALLOCATE(_PBMAP,_POS) \
! {                                  \
!   unsigned int* __pbmap = _PBMAP;  \
!   unsigned int __mask = 1 << _POS; \
!   __mask = ~__mask;                \
!   *_PBMAP &= __mask;               \
! }
!   
! #define _BIT_FREE(_PBMAP,_POS)     \
! {                                  \
!   unsigned int* __pbmap = _PBMAP;  \
!   unsigned int __mask = 1 << _POS; \
!   *__pbmap |= __mask;              \
! }
! 
! #define _MEMORY_GET(_SZ) (operator new(_SZ))
! #define _MEMORY_PUT(_VPTR) (operator delete(_VPTR))
  
  
  namespace __gnu_cxx
  {
!   namespace
!   {
  #if defined __GTHREADS
+     // If true, then the application being compiled will be using
+     // threads, so use mutexes as a synchronization primitive, else do
+     // no use any synchronization primitives.
      bool const __threads_enabled = __gthread_active_p();
  #endif
    }
  
  #if defined __GTHREADS
!   // _Mutex is an OO-Wrapper for __gthread_mutex_t. It does not allow
!   // you to copy or assign an already initialized mutex. This is used
!   // merely as a convenience for the locking classes.
!   class _Mutex 
!   {
      __gthread_mutex_t _M_mut;
! 
!     // Prevent Copying and assignment.
!     _Mutex(_Mutex const&);
!     _Mutex& operator=(_Mutex const&);
! 
    public:
!     _Mutex()
      {
        if (__threads_enabled)
  	{
*************** namespace __gnu_cxx
*** 85,108 ****
  #endif
  	}
      }
!     ~_Mutex ()
      {
!       //Gthreads does not define a Mutex Destruction Function.
      }
!     __gthread_mutex_t *_M_get() { return &_M_mut; }
    };
  
!   class _Lock {
      _Mutex* _M_pmt;
      bool _M_locked;
!     //Prevent Copying and assignment.
!     _Lock (_Lock const&);
!     _Lock& operator= (_Lock const&);
    public:
      _Lock(_Mutex* __mptr)
!       : _M_pmt(__mptr), _M_locked(false)
!     { this->_M_lock(); }
!     void _M_lock()
      {
        if (__threads_enabled)
  	{
--- 115,152 ----
  #endif
  	}
      }
! 
!     ~_Mutex()
      {
!       // Gthreads does not define a Mutex Destruction Function.
      }
! 
!     __gthread_mutex_t*
!     _M_get() { return &_M_mut; }
    };
  
!   // _Lock is a simple manual lokcing class which allows you to
!   // manually lock and unlock a mutex associated with the lock. There
!   // is not automatic locking or unlocking happening without the
!   // programmer's explicit instructions. This class unlocks the mutex
!   // ONLY if it has not been locked. However, this check does not
!   // apply for lokcing, and wayward use may cause dead-locks.
!   class _Lock 
!   {
      _Mutex* _M_pmt;
      bool _M_locked;
! 
!     // Prevent Copying and assignment.
!     _Lock(_Lock const&);
!     _Lock& operator=(_Lock const&);
! 
    public:
      _Lock(_Mutex* __mptr)
!     : _M_pmt(__mptr), _M_locked(false)
!     { }
! 
!     void
!     _M_lock()
      {
        if (__threads_enabled)
  	{
*************** namespace __gnu_cxx
*** 110,116 ****
  	  __gthread_mutex_lock(_M_pmt->_M_get());
  	}
      }
!     void _M_unlock()
      {
        if (__threads_enabled)
  	{
--- 154,162 ----
  	  __gthread_mutex_lock(_M_pmt->_M_get());
  	}
      }
! 
!     void
!     _M_unlock()
      {
        if (__threads_enabled)
  	{
*************** namespace __gnu_cxx
*** 121,468 ****
  	    }
  	}
      }
!     ~_Lock() { this->_M_unlock(); }
    };
- #endif
- 
  
  
!   namespace __aux_balloc {
!     static const unsigned int _Bits_Per_Byte = 8;
!     static const unsigned int _Bits_Per_Block = sizeof(unsigned int) * _Bits_Per_Byte;
! 
!     template <typename _Addr_Pair_t>
!     inline size_t __balloc_num_blocks (_Addr_Pair_t __ap)
      {
!       return (__ap.second - __ap.first) + 1;
      }
  
!     template <typename _Addr_Pair_t>
!     inline size_t __balloc_num_bit_maps (_Addr_Pair_t __ap)
      {
!       return __balloc_num_blocks(__ap) / _Bits_Per_Block;
      }
  
!     //T should be a pointer type.
!     template <typename _Tp>
!     class _Inclusive_between : public std::unary_function<typename std::pair<_Tp, _Tp>, bool> {
!       typedef _Tp pointer;
!       pointer _M_ptr_value;
!       typedef typename std::pair<_Tp, _Tp> _Block_pair;
  
!     public:
!       _Inclusive_between (pointer __ptr) : _M_ptr_value(__ptr) { }
!       bool operator () (_Block_pair __bp) const throw ()
        {
! 	if (std::less_equal<pointer> ()(_M_ptr_value, __bp.second) && 
! 	    std::greater_equal<pointer> ()(_M_ptr_value, __bp.first))
! 	  return true;
! 	else
! 	  return false;
!       }
!     };
!   
!     //Used to pass a Functor to functions by reference.
!     template <typename _Functor>
!     class _Functor_Ref : 
!       public std::unary_function<typename _Functor::argument_type, typename _Functor::result_type> {
!       _Functor& _M_fref;
!     
!     public:
!       typedef typename _Functor::argument_type argument_type;
!       typedef typename _Functor::result_type result_type;
  
!       _Functor_Ref (_Functor& __fref) : _M_fref(__fref) { }
!       result_type operator() (argument_type __arg) { return _M_fref (__arg); }
!     };
  
  
!     //T should be a pointer type, and A is the Allocator for the vector.
!     template <typename _Tp, typename _Alloc>
!     class _Ffit_finder 
!       : public std::unary_function<typename std::pair<_Tp, _Tp>, bool> {
!       typedef typename std::vector<std::pair<_Tp, _Tp>, _Alloc> _BPVector;
!       typedef typename _BPVector::difference_type _Counter_type;
!       typedef typename std::pair<_Tp, _Tp> _Block_pair;
  
!       unsigned int *_M_pbitmap;
!       unsigned int _M_data_offset;
  
!     public:
!       _Ffit_finder () 
! 	: _M_pbitmap (0), _M_data_offset (0)
!       { }
  
!       bool operator() (_Block_pair __bp) throw()
!       {
! 	//Set the _rover to the last unsigned integer, which is the
! 	//bitmap to the first free block. Thus, the bitmaps are in exact
! 	//reverse order of the actual memory layout. So, we count down
! 	//the bimaps, which is the same as moving up the memory.
! 
! 	//If the used count stored at the start of the Bit Map headers
! 	//is equal to the number of Objects that the current Block can
! 	//store, then there is definitely no space for another single
! 	//object, so just return false.
! 	_Counter_type __diff = __gnu_cxx::__aux_balloc::__balloc_num_bit_maps (__bp);
  
! 	assert (*(reinterpret_cast<unsigned int*>(__bp.first) - (__diff + 1)) <= 
! 		__gnu_cxx::__aux_balloc::__balloc_num_blocks (__bp));
  
! 	if (*(reinterpret_cast<unsigned int*>(__bp.first) - (__diff + 1)) == 
! 	    __gnu_cxx::__aux_balloc::__balloc_num_blocks (__bp))
! 	  return false;
  
! 	unsigned int *__rover = reinterpret_cast<unsigned int*>(__bp.first) - 1;
! 	for (_Counter_type __i = 0; __i < __diff; ++__i)
  	  {
! 	    _M_data_offset = __i;
! 	    if (*__rover)
  	      {
! 		_M_pbitmap = __rover;
! 		return true;
  	      }
! 	    --__rover;
  	  }
! 	return false;
        }
!     
!       unsigned int *_M_get () { return _M_pbitmap; }
!       unsigned int _M_offset () { return _M_data_offset * _Bits_Per_Block; }
!     };
!   
!     //T should be a pointer type.
!     template <typename _Tp, typename _Alloc>
!     class _Bit_map_counter {
!     
!       typedef typename std::vector<std::pair<_Tp, _Tp>, _Alloc> _BPVector;
!       typedef typename _BPVector::size_type _Index_type;
!       typedef _Tp pointer;
!     
!       _BPVector& _M_vbp;
!       unsigned int *_M_curr_bmap;
!       unsigned int *_M_last_bmap_in_block;
!       _Index_type _M_curr_index;
!     
!     public:
!       //Use the 2nd parameter with care. Make sure that such an entry
!       //exists in the vector before passing that particular index to
!       //this ctor.
!       _Bit_map_counter (_BPVector& Rvbp, int __index = -1) 
! 	: _M_vbp(Rvbp)
        {
! 	this->_M_reset(__index);
        }
      
!       void _M_reset (int __index = -1) throw()
        {
! 	if (__index == -1)
! 	  {
! 	    _M_curr_bmap = 0;
! 	    _M_curr_index = (_Index_type)-1;
! 	    return;
! 	  }
  
! 	_M_curr_index = __index;
! 	_M_curr_bmap = reinterpret_cast<unsigned int*>(_M_vbp[_M_curr_index].first) - 1;
  
! 	assert (__index <= (int)_M_vbp.size() - 1);
  	
! 	_M_last_bmap_in_block = _M_curr_bmap - 
! 	  ((_M_vbp[_M_curr_index].second - _M_vbp[_M_curr_index].first + 1) / _Bits_Per_Block - 1);
!       }
      
!       //Dangerous Function! Use with extreme care. Pass to this
!       //function ONLY those values that are known to be correct,
!       //otherwise this will mess up big time.
!       void _M_set_internal_bit_map (unsigned int *__new_internal_marker) throw()
!       {
! 	_M_curr_bmap = __new_internal_marker;
!       }
      
!       bool _M_finished () const throw()
!       {
! 	return (_M_curr_bmap == 0);
!       }
      
!       _Bit_map_counter& operator++ () throw()
!       {
! 	if (_M_curr_bmap == _M_last_bmap_in_block)
! 	  {
! 	    if (++_M_curr_index == _M_vbp.size())
! 	      {
  		_M_curr_bmap = 0;
! 	      }
! 	    else
! 	      {
! 		this->_M_reset (_M_curr_index);
! 	      }
! 	  }
! 	else
! 	  {
  	    --_M_curr_bmap;
! 	  }
! 	return *this;
!       }
!     
!       unsigned int *_M_get ()
!       {
! 	return _M_curr_bmap;
!       }
      
!       pointer _M_base () { return _M_vbp[_M_curr_index].first; }
!       unsigned int _M_offset ()
!       {
! 	return _Bits_Per_Block * ((reinterpret_cast<unsigned int*>(this->_M_base()) - _M_curr_bmap) - 1);
!       }
      
!       unsigned int _M_where () { return _M_curr_index; }
!     };
!   }
  
!   //Generic Version of the bsf instruction.
!   typedef unsigned int _Bit_map_type;
!   static inline unsigned int _Bit_scan_forward (register _Bit_map_type __num)
!   {
!     return static_cast<unsigned int>(__builtin_ctz(__num));
!   }
! 
!   struct _OOM_handler {
!     static std::new_handler _S_old_handler;
!     static bool _S_handled_oom;
!     typedef void (*_FL_clear_proc)(void);
!     static _FL_clear_proc _S_oom_fcp;
      
!     _OOM_handler (_FL_clear_proc __fcp)
!     {
!       _S_oom_fcp = __fcp;
!       _S_old_handler = std::set_new_handler (_S_handle_oom_proc);
!       _S_handled_oom = false;
!     }
! 
!     static void _S_handle_oom_proc()
!     {
!       _S_oom_fcp();
!       std::set_new_handler (_S_old_handler);
!       _S_handled_oom = true;
!     }
! 
!     ~_OOM_handler ()
!     {
!       if (!_S_handled_oom)
! 	std::set_new_handler (_S_old_handler);
!     }
!   };
!   
!   std::new_handler _OOM_handler::_S_old_handler;
!   bool _OOM_handler::_S_handled_oom = false;
!   _OOM_handler::_FL_clear_proc _OOM_handler::_S_oom_fcp = 0;
    
  
!   class _BA_free_list_store {
!     struct _LT_pointer_compare {
!       template <typename _Tp>
!       bool operator() (_Tp* __pt, _Tp const& __crt) const throw()
!       {
! 	return *__pt < __crt;
!       }
      };
  
! #if defined __GTHREADS
      static _Mutex _S_bfl_mutex;
  #endif
!     static std::vector<unsigned int*> _S_free_list;
!     typedef std::vector<unsigned int*>::iterator _FLIter;
! 
!     static void _S_validate_free_list(unsigned int *__addr) throw()
      {
        const unsigned int __max_size = 64;
        if (_S_free_list.size() >= __max_size)
  	{
! 	  //Ok, the threshold value has been reached.
! 	  //We determine which block to remove from the list of free
! 	  //blocks.
  	  if (*__addr >= *_S_free_list.back())
  	    {
! 	      //Ok, the new block is greater than or equal to the last
! 	      //block in the list of free blocks. We just free the new
! 	      //block.
! 	      operator delete((void*)__addr);
  	      return;
  	    }
  	  else
  	    {
! 	      //Deallocate the last block in the list of free lists, and
! 	      //insert the new one in it's correct position.
! 	      operator delete((void*)_S_free_list.back());
  	      _S_free_list.pop_back();
  	    }
  	}
  	  
!       //Just add the block to the list of free lists
!       //unconditionally.
!       _FLIter __temp = std::lower_bound(_S_free_list.begin(), _S_free_list.end(), 
! 					*__addr, _LT_pointer_compare ());
!       //We may insert the new free list before _temp;
        _S_free_list.insert(__temp, __addr);
      }
  
!     static bool _S_should_i_give(unsigned int __block_size, unsigned int __required_size) throw()
      {
        const unsigned int __max_wastage_percentage = 36;
        if (__block_size >= __required_size && 
! 	  (((__block_size - __required_size) * 100 / __block_size) < __max_wastage_percentage))
  	return true;
        else
  	return false;
      }
  
    public:
!     typedef _BA_free_list_store _BFL_type;
! 
!     static inline void _S_insert_free_list(unsigned int *__addr) throw()
      {
  #if defined __GTHREADS
!       _Lock __bfl_lock(&_S_bfl_mutex);
  #endif
!       //Call _S_validate_free_list to decide what should be done with this
!       //particular free list.
!       _S_validate_free_list(--__addr);
      }
      
!     static unsigned int *_S_get_free_list(unsigned int __sz) throw (std::bad_alloc)
      {
  #if defined __GTHREADS
        _Lock __bfl_lock(&_S_bfl_mutex);
  #endif
!       _FLIter __temp = std::lower_bound(_S_free_list.begin(), _S_free_list.end(), 
! 					__sz, _LT_pointer_compare());
!       if (__temp == _S_free_list.end() || !_S_should_i_give (**__temp, __sz))
! 	{
! 	  //We hold the lock because the OOM_Handler is a stateless
! 	  //entity.
! 	  _OOM_handler __set_handler(_BFL_type::_S_clear);
! 	  unsigned int *__ret_val = reinterpret_cast<unsigned int*>
! 	    (operator new (__sz + sizeof(unsigned int)));
! 	  *__ret_val = __sz;
! 	  return ++__ret_val;
  	}
        else
  	{
! 	  unsigned int* __ret_val = *__temp;
! 	  _S_free_list.erase (__temp);
! 	  return ++__ret_val;
  	}
      }
  
!     //This function just clears the internal Free List, and gives back
!     //all the memory to the OS.
!     static void _S_clear()
      {
  #if defined __GTHREADS
!       _Lock __bfl_lock(&_S_bfl_mutex);
  #endif
!       _FLIter __iter = _S_free_list.begin();
        while (__iter != _S_free_list.end())
  	{
  	  operator delete((void*)*__iter);
--- 167,805 ----
  	    }
  	}
      }
!     
!     ~_Lock() { }
    };
  
+   // _Auto_Lock locks the associated mutex on construction, and
+   // unlocks on it's destruction. There are no checks performed, and
+   // this calss follows the RAII principle.
+   class _Auto_Lock 
+   {
+     _Mutex* _M_pmt;
+     // Prevent Copying and assignment.
+     _Auto_Lock(_Auto_Lock const&);
+     _Auto_Lock& operator=(_Auto_Lock const&);
  
!     void
!     _M_lock()
      {
!       if (__threads_enabled)
! 	__gthread_mutex_lock(_M_pmt->_M_get());
      }
  
!     void
!     _M_unlock()
      {
!       if (__threads_enabled)
! 	__gthread_mutex_unlock(_M_pmt->_M_get());
      }
  
!   public:
!     _Auto_Lock(_Mutex* __mptr) : _M_pmt(__mptr)
!     { this->_M_lock(); }
  
!     ~_Auto_Lock() { this->_M_unlock(); }
!   };
! #endif 
! 
!   namespace balloc
!   {
!     // __mini_vector<> is to be used only for built-in types or
!     // PODs. It is a stripped down version of the full-fledged
!     // std::vector<>. Noteable differences are: 
!     // 
!     // 1. Not all accessor functions are present.
!     // 2. Used ONLY for PODs.
!     // 3. No Allocator template argument. Uses ::operator new() to get
!     // memory, and ::operator delete() to free it.
!     template<typename _Tp>
!       class __mini_vector
        {
! 	__mini_vector(const __mini_vector&);
! 	__mini_vector& operator=(const __mini_vector&);
  
!       public:
! 	typedef _Tp value_type;
! 	typedef _Tp* pointer;
! 	typedef _Tp& reference;
! 	typedef const _Tp& const_reference;
! 	typedef std::size_t size_type;
! 	typedef std::ptrdiff_t difference_type;
! 	typedef pointer iterator;
! 
!       private:
! 	pointer _M_start;
! 	pointer _M_finish;
! 	pointer _M_end_of_storage;
! 
! 	size_type
! 	_M_space_left() const throw()
! 	{ return _M_end_of_storage - _M_finish; }
! 
! 	pointer
! 	allocate(size_type __n)
! 	{ return static_cast<pointer>(operator new(__n * sizeof(_Tp))); }
! 
! 	void
! 	deallocate(pointer __p, size_type)
! 	{ operator delete(__p); }
! 
!       public:
! 	// Members used: size(), push_back(), pop_back(),
! 	// insert(iterator, const_reference), erase(iterator),
! 	// begin(), end(), back(), operator[].
! 
! 	__mini_vector() : _M_start(0), _M_finish(0), 
! 			  _M_end_of_storage(0)
! 	{ }
  
+ 	~__mini_vector()
+ 	{
+ 	  if (this->_M_start)
+ 	    {
+ 	      this->deallocate(this->_M_start, this->_M_end_of_storage 
+ 			       - this->_M_start);
+ 	    }
+ 	}
  
! 	size_type
! 	size() const throw()
! 	{ return _M_finish - _M_start; }
! 
! 	iterator
! 	begin() const throw()
! 	{ return this->_M_start; }
! 
! 	iterator
! 	end() const throw()
! 	{ return this->_M_finish; }
! 
! 	reference
! 	back() const throw()
! 	{ return *(this->end() - 1); }
! 
! 	reference
! 	operator[](const size_type __pos) const throw()
! 	{ return this->_M_start[__pos]; }
  
! 	void
! 	insert(iterator __pos, const_reference __x)
! 	{
! 	  if (this->_M_space_left())
! 	    {
! 	      size_type __to_move = this->_M_finish - __pos;
! 	      iterator __dest = this->end();
! 	      iterator __src = this->end() - 1;
! 
! 	      ++this->_M_finish;
! 	      while (__to_move)
! 		{
! 		  *__dest = *__src;
! 		  --__dest; --__src; --__to_move;
! 		}
! 	      *__pos = __x;
! 	    }
! 	  else
! 	    {
! 	      size_type __new_size = this->size() ? this->size() * 2 : 1;
! 	      iterator __new_start = this->allocate(__new_size);
! 	      iterator __first = this->begin();
! 	      iterator __start = __new_start;
! 	      while (__first != __pos)
! 		{
! 		  *__start = *__first;
! 		  ++__start; ++__first;
! 		}
! 	      *__start = __x;
! 	      ++__start;
! 	      while (__first != this->end())
! 		{
! 		  *__start = *__first;
! 		  ++__start; ++__first;
! 		}
! 	      if (this->_M_start)
! 		this->deallocate(this->_M_start, this->size());
! 
! 	      this->_M_start = __new_start;
! 	      this->_M_finish = __start;
! 	      this->_M_end_of_storage = this->_M_start + __new_size;
! 	    }
! 	}
  
! 	void
! 	push_back(const_reference __x)
! 	{
! 	  if (this->_M_space_left())
! 	    {
! 	      *this->end() = __x;
! 	      ++this->_M_finish;
! 	    }
! 	  else
! 	    this->insert(this->end(), __x);
! 	}
  
! 	void
! 	pop_back() throw()
! 	{ --this->_M_finish; }
  
! 	void
! 	erase(iterator __pos) throw()
! 	{
! 	  while (__pos + 1 != this->end())
! 	    {
! 	      *__pos = __pos[1];
! 	      ++__pos;
! 	    }
! 	  --this->_M_finish;
! 	}
  
! 	void
! 	clear() throw()
! 	{ this->_M_finish = this->_M_start; }
!       };
! 
!     template<typename _Tp>
!       struct __mv_iter_traits
!       {
! 	typedef typename _Tp::value_type value_type;
! 	typedef typename _Tp::difference_type difference_type;
!       };
! 
!     template<typename _Tp>
!       struct __mv_iter_traits<_Tp*>
!       {
! 	typedef _Tp value_type;
! 	typedef std::ptrdiff_t difference_type;
!       };
! 
!     enum 
!       { 
! 	bits_per_byte = 8, 
! 	bits_per_block = sizeof(unsigned int) * bits_per_byte 
!       };
! 
!     template<typename _ForwardIterator, typename _Tp, typename _Compare>
!       _ForwardIterator
!       __lower_bound(_ForwardIterator __first, _ForwardIterator __last,
! 		    const _Tp& __val, _Compare __comp)
!       {
! 	typedef typename __mv_iter_traits<_ForwardIterator>::value_type
! 	  _ValueType;
! 	typedef typename __mv_iter_traits<_ForwardIterator>::difference_type
! 	  _DistanceType;
! // 	typedef typename _ForwardIterator::value_type _ValueType;
! // 	typedef typename _ForwardIterator::difference_type _DistanceType;
! 
! 	_DistanceType __len = std::distance(__first, __last);
! 	_DistanceType __half;
! 	_ForwardIterator __middle;
  
! 	while (__len > 0)
  	  {
! 	    __half = __len >> 1;
! 	    __middle = __first;
! 	    std::advance(__middle, __half);
! 	    if (__comp(*__middle, __val))
  	      {
! 		__first = __middle;
! 		++__first;
! 		__len = __len - __half - 1;
  	      }
! 	    else
! 	      __len = __half;
  	  }
! 	return __first;
        }
! 
!     template<typename _InputIterator, typename _Predicate>
!       inline _InputIterator
!       __find_if(_InputIterator __first, _InputIterator __last, _Predicate __p)
        {
! 	while (__first != __last && !__p(*__first))
! 	  ++__first;
! 	return __first;
        }
+ 
+     template<typename _AddrPair>
+       inline size_t
+       __num_blocks(_AddrPair __ap)
+       { return (__ap.second - __ap.first) + 1; }
+ 
+     template<typename _AddrPair>
+       inline size_t 
+       __num_bitmaps(_AddrPair __ap)
+       { return __num_blocks(__ap) / bits_per_block; }
+ 
+     // _Tp should be a pointer type.
+     template<typename _Tp>
+       class _Inclusive_between 
+       : public std::unary_function<typename std::pair<_Tp, _Tp>, bool>
+       {
+ 	typedef _Tp pointer;
+ 	pointer _M_ptr_value;
+ 	typedef typename std::pair<_Tp, _Tp> _Block_pair;
+ 	
+       public:
+ 	_Inclusive_between(pointer __ptr) : _M_ptr_value(__ptr) 
+ 	{ }
+ 	
+ 	bool 
+ 	operator()(_Block_pair __bp) const throw()
+ 	{
+ 	  if (std::less_equal<pointer>()(_M_ptr_value, __bp.second) 
+ 	      && std::greater_equal<pointer>()(_M_ptr_value, __bp.first))
+ 	    return true;
+ 	  else
+ 	    return false;
+ 	}
+       };
+   
+     // Used to pass a Functor to functions by reference.
+     template<typename _Functor>
+       class _Functor_Ref 
+       : public std::unary_function<typename _Functor::argument_type, 
+ 				   typename _Functor::result_type>
+       {
+ 	_Functor& _M_fref;
+ 	
+       public:
+ 	typedef typename _Functor::argument_type argument_type;
+ 	typedef typename _Functor::result_type result_type;
+ 
+ 	_Functor_Ref(_Functor& __fref) : _M_fref(__fref) 
+ 	{ }
+ 
+ 	result_type 
+ 	operator()(argument_type __arg) 
+ 	{ return _M_fref(__arg); }
+       };
+ 
+     // _Tp should be a pointer type, and _Alloc is the Allocator for
+     // the vector.
+     template<typename _Tp>
+       class _Ffit_finder 
+       : public std::unary_function<typename std::pair<_Tp, _Tp>, bool>
+       {
+ 	typedef typename std::pair<_Tp, _Tp> _Block_pair;
+ 	typedef typename balloc::__mini_vector<_Block_pair> _BPVector;
+ 	typedef typename _BPVector::difference_type _Counter_type;
+ 
+ 	unsigned int* _M_pbitmap;
+ 	unsigned int _M_data_offset;
+ 
+       public:
+ 	_Ffit_finder() : _M_pbitmap(0), _M_data_offset(0)
+ 	{ }
+ 
+ 	bool 
+ 	operator()(_Block_pair __bp) throw()
+ 	{
+ 	  // Set the _rover to the last unsigned integer, which is the
+ 	  // bitmap to the first free block. Thus, the bitmaps are in exact
+ 	  // reverse order of the actual memory layout. So, we count down
+ 	  // the bimaps, which is the same as moving up the memory.
+ 
+ 	  // If the used count stored at the start of the Bit Map headers
+ 	  // is equal to the number of Objects that the current Block can
+ 	  // store, then there is definitely no space for another single
+ 	  // object, so just return false.
+ 	  _Counter_type __diff = 
+ 	    __gnu_cxx::balloc::__num_bitmaps(__bp);
+ 
+ 	  _BALLOC_ASSERT(*(reinterpret_cast<unsigned int*>(__bp.first)
+ 			   - (__diff + 1))
+ 			 <= __gnu_cxx::balloc::__num_blocks(__bp));
+ 
+ 	  if (*(reinterpret_cast<unsigned int*>(__bp.first) - (__diff + 1))
+ 	      == __gnu_cxx::balloc::__num_blocks(__bp))
+ 	    return false;
+ 
+ 	  unsigned int* __rover = reinterpret_cast<unsigned int*>(__bp.first) - 1;
+ 
+ 	  for (_Counter_type __i = 0; __i < __diff; ++__i)
+ 	    {
+ 	      _M_data_offset = __i;
+ 	      if (*__rover)
+ 		{
+ 		  _M_pbitmap = __rover;
+ 		  return true;
+ 		}
+ 	      --__rover;
+ 	    }
+ 	  return false;
+ 	}
      
! 	unsigned int*
! 	_M_get() const throw()
! 	{ return _M_pbitmap; }
! 
! 	unsigned int
! 	_M_offset() const throw()
! 	{ return _M_data_offset * bits_per_block; }
!       };
!   
!     // _Tp should be a pointer type.
!     template<typename _Tp>
!       class _Bitmap_counter
        {
! 	typedef typename balloc::__mini_vector<typename std::pair<_Tp, _Tp> > 
! 	_BPVector;
! 	typedef typename _BPVector::size_type _Index_type;
! 	typedef _Tp pointer;
!     
! 	_BPVector& _M_vbp;
! 	unsigned int* _M_curr_bmap;
! 	unsigned int* _M_last_bmap_in_block;
! 	_Index_type _M_curr_index;
!     
!       public:
! 	// Use the 2nd parameter with care. Make sure that such an
! 	// entry exists in the vector before passing that particular
! 	// index to this ctor.
! 	_Bitmap_counter(_BPVector& Rvbp, int __index = -1) : _M_vbp(Rvbp)
! 	{ this->_M_reset(__index); }
!     
! 	void 
! 	_M_reset(int __index = -1) throw()
! 	{
! 	  if (__index == -1)
! 	    {
! 	      _M_curr_bmap = 0;
! 	      _M_curr_index = static_cast<_Index_type>(-1);
! 	      return;
! 	    }
  
! 	  _M_curr_index = __index;
! 	  _M_curr_bmap = reinterpret_cast<unsigned int*>
! 	    (_M_vbp[_M_curr_index].first) - 1;
  
! 	  _BALLOC_ASSERT(__index <= (int)_M_vbp.size() - 1);
  	
! 	  _M_last_bmap_in_block = _M_curr_bmap
! 	    - ((_M_vbp[_M_curr_index].second 
! 		- _M_vbp[_M_curr_index].first + 1) 
! 	       / bits_per_block - 1);
! 	}
      
! 	// Dangerous Function! Use with extreme care. Pass to this
! 	// function ONLY those values that are known to be correct,
! 	// otherwise this will mess up big time.
! 	void
! 	_M_set_internal_bitmap(unsigned int* __new_internal_marker) throw()
! 	{ _M_curr_bmap = __new_internal_marker; }
      
! 	bool
! 	_M_finished() const throw()
! 	{ return(_M_curr_bmap == 0); }
      
! 	_Bitmap_counter&
! 	operator++() throw()
! 	{
! 	  if (_M_curr_bmap == _M_last_bmap_in_block)
! 	    {
! 	      if (++_M_curr_index == _M_vbp.size())
  		_M_curr_bmap = 0;
! 	      else
! 		this->_M_reset(_M_curr_index);
! 	    }
! 	  else
  	    --_M_curr_bmap;
! 	  return *this;
! 	}
      
! 	unsigned int*
! 	_M_get() const throw()
! 	{ return _M_curr_bmap; }
      
! 	pointer 
! 	_M_base() const throw()
! 	{ return _M_vbp[_M_curr_index].first; }
  
! 	unsigned int 
! 	_M_offset() const throw()
! 	{
! 	  return bits_per_block
! 	    * ((reinterpret_cast<unsigned int*>(this->_M_base()) 
! 		- _M_curr_bmap) - 1);
! 	}
      
! 	unsigned int
! 	_M_where() const throw()
! 	{ return _M_curr_index; }
!       };
! 
! //     inline void 
! //     __bit_allocate(unsigned int* __pbmap, unsigned int __pos)// throw()
! //     {
! //       unsigned int __mask = 1 << __pos;
! //       __mask = ~__mask;
! //       *__pbmap &= __mask;
! //     }
    
+ //     inline void 
+ //     __bit_free(unsigned int* __pbmap, unsigned int __pos)// throw()
+ //     {
+ //       unsigned int __mask = 1 << __pos;
+ //       *__pbmap |= __mask;
+ //     }
+ 
+ //     inline void*
+ //     __memory_get(size_t __sz)// throw(std::bad_alloc)
+ //     { return operator new(__sz); }
+ 
+ //     inline void 
+ //     __memory_put(void *__vptr)// throw()
+ //     { operator delete(__vptr); }
+   } // namespace balloc
+ 
+   // Generic Version of the bsf instruction.
+   inline unsigned int 
+   _Bit_scan_forward(register unsigned int __num)
+   { return static_cast<unsigned int>(__builtin_ctz(__num)); }
  
!   class free_list
!   {
!     typedef unsigned int* value_type;
!     typedef balloc::__mini_vector<value_type> vector_type;
!     typedef vector_type::iterator iterator;
! 
!     struct _LT_pointer_compare
!     {
!       template<typename _Tp>
!         bool
!         operator()(_Tp* __pt, _Tp const& __crt) const throw()
!         { return *__pt < __crt; }
      };
  
! #if defined __GTHREADS 
      static _Mutex _S_bfl_mutex;
  #endif
!     static vector_type _S_free_list;
!     
!     void
!     _M_validate(unsigned int* __addr) throw()
      {
        const unsigned int __max_size = 64;
        if (_S_free_list.size() >= __max_size)
  	{
! 	  // Ok, the threshold value has been reached.  We determine
! 	  // which block to remove from the list of free blocks.
  	  if (*__addr >= *_S_free_list.back())
  	    {
! 	      // Ok, the new block is greater than or equal to the
! 	      // last block in the list of free blocks. We just free
! 	      // the new block.
! 	      operator delete(static_cast<void*>(__addr));
  	      return;
  	    }
  	  else
  	    {
! 	      // Deallocate the last block in the list of free lists,
! 	      // and insert the new one in it's correct position.
! 	      operator delete(static_cast<void*>(_S_free_list.back()));
  	      _S_free_list.pop_back();
  	    }
  	}
  	  
!       // Just add the block to the list of free lists unconditionally.
!       iterator __temp = __gnu_cxx::balloc::__lower_bound
! 	(_S_free_list.begin(), _S_free_list.end(), 
! 	 *__addr, _LT_pointer_compare());
! 
!       // We may insert the new free list before _temp;
        _S_free_list.insert(__temp, __addr);
      }
  
!     bool 
!     _M_should_i_give(unsigned int __block_size, 
! 		     unsigned int __required_size) throw()
      {
        const unsigned int __max_wastage_percentage = 36;
        if (__block_size >= __required_size && 
! 	  (((__block_size - __required_size) * 100 / __block_size)
! 	   < __max_wastage_percentage))
  	return true;
        else
  	return false;
      }
  
    public:
!     inline void 
!     _M_insert(unsigned int* __addr) throw()
      {
  #if defined __GTHREADS
!       _Auto_Lock __bfl_lock(&_S_bfl_mutex);
  #endif
!       // Call _M_validate to decide what should be done with
!       // this particular free list.
!       this->_M_validate(--__addr);
      }
      
!     unsigned int*
!     _M_get(unsigned int __sz) throw(std::bad_alloc)
      {
  #if defined __GTHREADS
        _Lock __bfl_lock(&_S_bfl_mutex);
+       __bfl_lock._M_lock();
+ #endif
+       iterator __temp = 
+ 	__gnu_cxx::balloc::__lower_bound
+ 	(_S_free_list.begin(), _S_free_list.end(), 
+ 	 __sz, _LT_pointer_compare());
+ 
+       if (__temp == _S_free_list.end() || !_M_should_i_give(**__temp, __sz))
+ 	{
+ 	  // We release the lock here, because operator new is
+ 	  // guaranteed to be thread-safe by the underlying
+ 	  // implementation.
+ #if defined __GTHREADS
+ 	  __bfl_lock._M_unlock();
  #endif
! 	  // Try twice to get the memory: once directly, and the 2nd
! 	  // time after clearing the free list. If both fail, then
! 	  // throw std::bad_alloc().
! 	  unsigned int __ctr = 2;
! 	  while (__ctr)
! 	    {
! 	      unsigned int* __ret = 0;
! 	      --__ctr;
! 	      try
! 		{
! 		  __ret = reinterpret_cast<unsigned int*>
! 		    (operator new(__sz + sizeof(unsigned int)));
! 		}
! 	      catch(...)
! 		{
! 		  this->_M_clear();
! 		}
! 	      if (!__ret)
! 		continue;
! 	      *__ret = __sz;
! 	      return ++__ret;
! 	    }
! 	  throw std::bad_alloc();
  	}
        else
  	{
! 	  unsigned int* __ret = *__temp;
! 	  _S_free_list.erase(__temp);
! #if defined __GTHREADS
! 	  __bfl_lock._M_unlock();
! #endif
! 	  return ++__ret;
  	}
      }
  
!     // This function just clears the internal Free List, and gives back
!     // all the memory to the OS.
!     void 
!     _M_clear()
      {
  #if defined __GTHREADS
!       _Auto_Lock __bfl_lock(&_S_bfl_mutex);
  #endif
!       iterator __iter = _S_free_list.begin();
        while (__iter != _S_free_list.end())
  	{
  	  operator delete((void*)*__iter);
*************** namespace __gnu_cxx
*** 470,859 ****
  	}
        _S_free_list.clear();
      }
- 
    };
  
! #if defined __GTHREADS
!   _Mutex _BA_free_list_store::_S_bfl_mutex;
! #endif
!   std::vector<unsigned int*> _BA_free_list_store::_S_free_list;
! 
!   template <typename _Tp> class bitmap_allocator;
!   // specialize for void:
!   template <> class bitmap_allocator<void> {
!   public:
!     typedef void*       pointer;
!     typedef const void* const_pointer;
!     //  reference-to-void members are impossible.
!     typedef void  value_type;
!     template <typename _Tp1> struct rebind { typedef bitmap_allocator<_Tp1> other; };
!   };
! 
!   template <typename _Tp> class bitmap_allocator : private _BA_free_list_store {
!   public:
!     typedef size_t    size_type;
!     typedef ptrdiff_t difference_type;
!     typedef _Tp*        pointer;
!     typedef const _Tp*  const_pointer;
!     typedef _Tp&        reference;
!     typedef const _Tp&  const_reference;
!     typedef _Tp         value_type;
!     template <typename _Tp1> struct rebind { typedef bitmap_allocator<_Tp1> other; };
! 
!   private:
!     static const unsigned int _Bits_Per_Byte = 8;
!     static const unsigned int _Bits_Per_Block = sizeof(unsigned int) * _Bits_Per_Byte;
! 
!     static inline void _S_bit_allocate(unsigned int *__pbmap, unsigned int __pos) throw()
!     {
!       unsigned int __mask = 1 << __pos;
!       __mask = ~__mask;
!       *__pbmap &= __mask;
!     }
!   
!     static inline void _S_bit_free(unsigned int *__pbmap, unsigned int __pos) throw()
      {
!       unsigned int __mask = 1 << __pos;
!       *__pbmap |= __mask;
!     }
  
!     static inline void *_S_memory_get(size_t __sz) throw (std::bad_alloc)
!     {
!       return operator new(__sz);
!     }
  
!     static inline void _S_memory_put(void *__vptr) throw ()
      {
!       operator delete(__vptr);
!     }
  
!     typedef typename std::pair<pointer, pointer> _Block_pair;
!     typedef typename __gnu_cxx::new_allocator<_Block_pair> _BPVec_allocator_type;
!     typedef typename std::vector<_Block_pair, _BPVec_allocator_type> _BPVector;
  
  
- #if defined CHECK_FOR_ERRORS
-     //Complexity: O(lg(N)). Where, N is the number of block of size
-     //sizeof(value_type).
-     static void _S_check_for_free_blocks() throw()
-     {
-       typedef typename __gnu_cxx::__aux_balloc::_Ffit_finder<pointer, _BPVec_allocator_type> _FFF;
-       _FFF __fff;
-       typedef typename _BPVector::iterator _BPiter;
-       _BPiter __bpi = std::find_if(_S_mem_blocks.begin(), _S_mem_blocks.end(), 
- 				   __gnu_cxx::__aux_balloc::_Functor_Ref<_FFF>(__fff));
-       assert(__bpi == _S_mem_blocks.end());
-     }
- #endif
  
  
!     //Complexity: O(1), but internally depends upon the complexity of
!     //the function _BA_free_list_store::_S_get_free_list. The part
!     //where the bitmap headers are written is of worst case complexity:
!     //O(X),where X is the number of blocks of size sizeof(value_type)
!     //within the newly acquired block. Having a tight bound.
!     static void _S_refill_pool() throw (std::bad_alloc)
!     {
! #if defined CHECK_FOR_ERRORS
!       _S_check_for_free_blocks();
! #endif
  
!       const unsigned int __num_bit_maps = _S_block_size / _Bits_Per_Block;
!       const unsigned int __size_to_allocate = sizeof(unsigned int) + 
! 	_S_block_size * sizeof(value_type) + __num_bit_maps*sizeof(unsigned int);
  
!       unsigned int *__temp = 
! 	reinterpret_cast<unsigned int*>(_BA_free_list_store::_S_get_free_list(__size_to_allocate));
!       *__temp = 0;
!       ++__temp;
  
!       //The Header information goes at the Beginning of the Block.
!       _Block_pair __bp = std::make_pair(reinterpret_cast<pointer>(__temp + __num_bit_maps), 
! 				       reinterpret_cast<pointer>(__temp + __num_bit_maps) 
! 					+ _S_block_size - 1);
  
!       //Fill the Vector with this information.
!       _S_mem_blocks.push_back(__bp);
  
!       unsigned int __bit_mask = 0; //0 Indicates all Allocated.
!       __bit_mask = ~__bit_mask; //1 Indicates all Free.
  
!       for (unsigned int __i = 0; __i < __num_bit_maps; ++__i)
! 	__temp[__i] = __bit_mask;
  
!       //On some implementations, operator new might throw bad_alloc, or
!       //malloc might fail if the size passed is too large, therefore, we
!       //limit the size passed to malloc or operator new.
!       _S_block_size *= 2;
!     }
  
!     static _BPVector _S_mem_blocks;
!     static unsigned int _S_block_size;
!     static __gnu_cxx::__aux_balloc::_Bit_map_counter<pointer, _BPVec_allocator_type> _S_last_request;
!     static typename _BPVector::size_type _S_last_dealloc_index;
  #if defined __GTHREADS
!     static _Mutex _S_mut;
  #endif
  
!     //Complexity: Worst case complexity is O(N), but that is hardly ever
!     //hit. if and when this particular case is encountered, the next few
!     //cases are guaranteed to have a worst case complexity of O(1)!
!     //That's why this function performs very well on the average. you
!     //can consider this function to be having a complexity refrred to
!     //commonly as: Amortized Constant time.
!     static pointer _S_allocate_single_object()
!     {
  #if defined __GTHREADS
!       _Lock __bit_lock(&_S_mut);
  #endif
  
!       //The algorithm is something like this: The last_requst variable
!       //points to the last accessed Bit Map. When such a condition
!       //occurs, we try to find a free block in the current bitmap, or
!       //succeeding bitmaps until the last bitmap is reached. If no free
!       //block turns up, we resort to First Fit method.
! 
!       //WARNING: Do not re-order the condition in the while statement
!       //below, because it relies on C++'s short-circuit
!       //evaluation. The return from _S_last_request->_M_get() will NOT
!       //be dereferenceable if _S_last_request->_M_finished() returns
!       //true. This would inevitibly lead to a NULL pointer dereference
!       //if tinkered with.
!       while (_S_last_request._M_finished() == false && (*(_S_last_request._M_get()) == 0))
! 	{
! 	  _S_last_request.operator++();
! 	}
! 
!       if (__builtin_expect(_S_last_request._M_finished() == true, false))
! 	{
! 	  //Fall Back to First Fit algorithm.
! 	  typedef typename __gnu_cxx::__aux_balloc::_Ffit_finder<pointer, _BPVec_allocator_type> _FFF;
! 	  _FFF __fff;
! 	  typedef typename _BPVector::iterator _BPiter;
! 	  _BPiter __bpi = std::find_if(_S_mem_blocks.begin(), _S_mem_blocks.end(), 
! 				      __gnu_cxx::__aux_balloc::_Functor_Ref<_FFF>(__fff));
! 
! 	  if (__bpi != _S_mem_blocks.end())
! 	    {
! 	      //Search was successful. Ok, now mark the first bit from
! 	      //the right as 0, meaning Allocated. This bit is obtained
! 	      //by calling _M_get() on __fff.
! 	      unsigned int __nz_bit = _Bit_scan_forward(*__fff._M_get());
! 	      _S_bit_allocate(__fff._M_get(), __nz_bit);
  
! 	      _S_last_request._M_reset(__bpi - _S_mem_blocks.begin());
  
! 	      //Now, get the address of the bit we marked as allocated.
! 	      pointer __ret_val = __bpi->first + __fff._M_offset() + __nz_bit;
! 	      unsigned int *__puse_count = reinterpret_cast<unsigned int*>(__bpi->first) - 
! 		(__gnu_cxx::__aux_balloc::__balloc_num_bit_maps(*__bpi) + 1);
! 	      ++(*__puse_count);
! 	      return __ret_val;
! 	    }
! 	  else
! 	    {
! 	      //Search was unsuccessful. We Add more memory to the pool
! 	      //by calling _S_refill_pool().
! 	      _S_refill_pool();
  
! 	      //_M_Reset the _S_last_request structure to the first free
! 	      //block's bit map.
! 	      _S_last_request._M_reset(_S_mem_blocks.size() - 1);
  
! 	      //Now, mark that bit as allocated.
! 	    }
! 	}
!       //_S_last_request holds a pointer to a valid bit map, that points
!       //to a free block in memory.
!       unsigned int __nz_bit = _Bit_scan_forward(*_S_last_request._M_get());
!       _S_bit_allocate(_S_last_request._M_get(), __nz_bit);
  
!       pointer __ret_val = _S_last_request._M_base() + _S_last_request._M_offset() + __nz_bit;
  
!       unsigned int *__puse_count = reinterpret_cast<unsigned int*>
! 	(_S_mem_blocks[_S_last_request._M_where()].first) - 
! 	(__gnu_cxx::__aux_balloc::__balloc_num_bit_maps(_S_mem_blocks[_S_last_request._M_where()]) + 1);
!       ++(*__puse_count);
!       return __ret_val;
!     }
  
!     //Complexity: O(lg(N)), but the worst case is hit quite often! I
!     //need to do something about this. I'll be able to work on it, only
!     //when I have some solid figures from a few real apps.
!     static void _S_deallocate_single_object(pointer __p) throw()
!     {
  #if defined __GTHREADS
!       _Lock __bit_lock(&_S_mut);
  #endif
  
!       typedef typename _BPVector::iterator _Iterator;
!       typedef typename _BPVector::difference_type _Difference_type;
  
!       _Difference_type __diff;
!       int __displacement;
  
!       assert(_S_last_dealloc_index >= 0);
  
!       if (__gnu_cxx::__aux_balloc::_Inclusive_between<pointer>(__p)(_S_mem_blocks[_S_last_dealloc_index]))
! 	{
! 	  assert(_S_last_dealloc_index <= _S_mem_blocks.size() - 1);
  
! 	  //Initial Assumption was correct!
! 	  __diff = _S_last_dealloc_index;
! 	  __displacement = __p - _S_mem_blocks[__diff].first;
! 	}
!       else
! 	{
! 	  _Iterator _iter = (std::find_if(_S_mem_blocks.begin(), _S_mem_blocks.end(), 
! 					  __gnu_cxx::__aux_balloc::_Inclusive_between<pointer>(__p)));
! 	  assert(_iter != _S_mem_blocks.end());
! 
! 	  __diff = _iter - _S_mem_blocks.begin();
! 	  __displacement = __p - _S_mem_blocks[__diff].first;
! 	  _S_last_dealloc_index = __diff;
! 	}
  
!       //Get the position of the iterator that has been found.
!       const unsigned int __rotate = __displacement % _Bits_Per_Block;
!       unsigned int *__bit_mapC = reinterpret_cast<unsigned int*>(_S_mem_blocks[__diff].first) - 1;
!       __bit_mapC -= (__displacement / _Bits_Per_Block);
        
!       _S_bit_free(__bit_mapC, __rotate);
!       unsigned int *__puse_count = reinterpret_cast<unsigned int*>
! 	(_S_mem_blocks[__diff].first) - 
! 	(__gnu_cxx::__aux_balloc::__balloc_num_bit_maps(_S_mem_blocks[__diff]) + 1);
  
!       assert(*__puse_count != 0);
  
!       --(*__puse_count);
  
!       if (__builtin_expect(*__puse_count == 0, false))
! 	{
! 	  _S_block_size /= 2;
  	  
! 	  //We may safely remove this block.
! 	  _Block_pair __bp = _S_mem_blocks[__diff];
! 	  _S_insert_free_list(__puse_count);
! 	  _S_mem_blocks.erase(_S_mem_blocks.begin() + __diff);
! 
! 	  //We reset the _S_last_request variable to reflect the erased
! 	  //block. We do this to protect future requests after the last
! 	  //block has been removed from a particular memory Chunk,
! 	  //which in turn has been returned to the free list, and
! 	  //hence had been erased from the vector, so the size of the
! 	  //vector gets reduced by 1.
! 	  if ((_Difference_type)_S_last_request._M_where() >= __diff--)
! 	    {
! 	      _S_last_request._M_reset(__diff);
! 	      //	      assert(__diff >= 0);
! 	    }
! 
! 	  //If the Index into the vector of the region of memory that
! 	  //might hold the next address that will be passed to
! 	  //deallocated may have been invalidated due to the above
! 	  //erase procedure being called on the vector, hence we try
! 	  //to restore this invariant too.
! 	  if (_S_last_dealloc_index >= _S_mem_blocks.size())
! 	    {
! 	      _S_last_dealloc_index =(__diff != -1 ? __diff : 0);
! 	      assert(_S_last_dealloc_index >= 0);
! 	    }
! 	}
!     }
! 
!   public:
!     bitmap_allocator() throw()
!     { }
! 
!     bitmap_allocator(const bitmap_allocator&) { }
! 
!     template <typename _Tp1> bitmap_allocator(const bitmap_allocator<_Tp1>&) throw()
!     { }
! 
!     ~bitmap_allocator() throw()
!     { }
! 
!     //Complexity: O(1), but internally the complexity depends upon the
!     //complexity of the function(s) _S_allocate_single_object and
!     //_S_memory_get.
!     pointer allocate(size_type __n)
!     {
!       if (__builtin_expect(__n == 1, true))
! 	return _S_allocate_single_object();
!       else
! 	return reinterpret_cast<pointer>(_S_memory_get(__n * sizeof(value_type)));
!     }
! 
!     //Complexity: Worst case complexity is O(N) where N is the number of
!     //blocks of size sizeof(value_type) within the free lists that the
!     //allocator holds. However, this worst case is hit only when the
!     //user supplies a bogus argument to hint. If the hint argument is
!     //sensible, then the complexity drops to O(lg(N)), and in extreme
!     //cases, even drops to as low as O(1). So, if the user supplied
!     //argument is good, then this function performs very well.
!     pointer allocate(size_type __n, typename bitmap_allocator<void>::const_pointer)
!     {
!       return allocate(__n);
!     }
  
!     void deallocate(pointer __p, size_type __n) throw()
!     {
!       if (__builtin_expect(__n == 1, true))
! 	_S_deallocate_single_object(__p);
!       else
! 	_S_memory_put(__p);
!     }
  
!     pointer address(reference r) const { return &r; }
!     const_pointer address(const_reference r) const { return &r; }
  
!     size_type max_size(void) const throw() { return (size_type()-1)/sizeof(value_type); }
  
!     void construct (pointer p, const_reference __data)
!     {
!       ::new(p) value_type(__data);
!     }
! 
!     void destroy (pointer p)
!     {
!       p->~value_type();
!     }
  
!   };
  
!   template <typename _Tp>
!   typename bitmap_allocator<_Tp>::_BPVector bitmap_allocator<_Tp>::_S_mem_blocks;
  
!   template <typename _Tp>
!   unsigned int bitmap_allocator<_Tp>::_S_block_size = bitmap_allocator<_Tp>::_Bits_Per_Block;
  
!   template <typename _Tp>
!   typename __gnu_cxx::bitmap_allocator<_Tp>::_BPVector::size_type 
!   bitmap_allocator<_Tp>::_S_last_dealloc_index = 0;
  
!   template <typename _Tp>
!   __gnu_cxx::__aux_balloc::_Bit_map_counter 
!   <typename bitmap_allocator<_Tp>::pointer, typename bitmap_allocator<_Tp>::_BPVec_allocator_type> 
!   bitmap_allocator<_Tp>::_S_last_request(_S_mem_blocks);
  
  #if defined __GTHREADS
!   template <typename _Tp>
!   __gnu_cxx::_Mutex
!   bitmap_allocator<_Tp>::_S_mut;
  #endif
  
!   template <typename _Tp1, typename _Tp2>
!   bool operator== (const bitmap_allocator<_Tp1>&, const bitmap_allocator<_Tp2>&) throw()
!   {
!     return true;
!   }
    
!   template <typename _Tp1, typename _Tp2>
!   bool operator!= (const bitmap_allocator<_Tp1>&, const bitmap_allocator<_Tp2>&) throw()
!   {
!     return false;
!   }
  }
  
  
! #endif //_BITMAP_ALLOCATOR_H
--- 807,1234 ----
  	}
        _S_free_list.clear();
      }
    };
  
!   // Forward declare the class.
!   template<typename _Tp> 
!     class bitmap_allocator;
! 
!   // Specialize for void:
!   template<>
!     class bitmap_allocator<void>
      {
!     public:
!       typedef void*       pointer;
!       typedef const void* const_pointer;
  
!       // Reference-to-void members are impossible.
!       typedef void  value_type;
!       template<typename _Tp1>
!         struct rebind
! 	{
! 	  typedef bitmap_allocator<_Tp1> other;
! 	};
!     };
  
!   template<typename _Tp>
!     class bitmap_allocator : private free_list
      {
!     public:
!       typedef std::size_t    size_type;
!       typedef std::ptrdiff_t difference_type;
!       typedef _Tp*        pointer;
!       typedef const _Tp*  const_pointer;
!       typedef _Tp&        reference;
!       typedef const _Tp&  const_reference;
!       typedef _Tp         value_type;
!       template<typename _Tp1>
!         struct rebind
! 	{
! 	  typedef bitmap_allocator<_Tp1> other;
! 	};
  
!     private:
!       template<unsigned int _BSize, unsigned int _AlignSize>
!         struct aligned_size
! 	{
! 	  enum
! 	    { 
! 	      modulus = _BSize % _AlignSize,
! 	      value = _BSize + (modulus ? _AlignSize - (modulus) : 0)
! 	    };
! 	};
  
+       struct _Alloc_block
+       {
+ 	char __unused[aligned_size<sizeof(value_type), 8>::value];
+       };
  
  
+       typedef typename std::pair<_Alloc_block*, _Alloc_block*> _Block_pair;
  
!       typedef typename 
!       balloc::__mini_vector<_Block_pair> _BPVector;
  
! #if defined _BALLOC_SANITY_CHECK
!       // Complexity: O(lg(N)). Where, N is the number of block of size
!       // sizeof(value_type).
!       void 
!       _S_check_for_free_blocks() throw()
!       {
! 	typedef typename 
! 	  __gnu_cxx::balloc::_Ffit_finder<_Alloc_block*> _FFF;
! 	_FFF __fff;
! 	typedef typename _BPVector::iterator _BPiter;
! 	_BPiter __bpi = 
! 	  __gnu_cxx::balloc::__find_if
! 	  (_S_mem_blocks.begin(), _S_mem_blocks.end(), 
! 	   __gnu_cxx::balloc::_Functor_Ref<_FFF>(__fff));
  
! 	_BALLOC_ASSERT(__bpi == _S_mem_blocks.end());
!       }
! #endif
  
!       // Complexity: O(1), but internally depends upon the complexity
!       // of the function free_list::_M_get. The
!       // part where the bitmap headers are written is of worst case
!       // complexity: O(X),where X is the number of blocks of size
!       // sizeof(value_type) within the newly acquired block. Having a
!       // tight bound.
!       void 
!       _S_refill_pool() throw(std::bad_alloc)
!       {
! #if defined _BALLOC_SANITY_CHECK
! 	_S_check_for_free_blocks();
! #endif
  
! 	const unsigned int __num_bitmaps = _S_block_size / balloc::bits_per_block;
! 	const unsigned int __size_to_allocate = sizeof(unsigned int)
! 	  + _S_block_size * sizeof(_Alloc_block) 
! 	  + __num_bitmaps*sizeof(unsigned int);
! 
! 	unsigned int* __temp = 
! 	  reinterpret_cast<unsigned int*>(this->_M_get(__size_to_allocate));
! 	*__temp = 0;
! 	++__temp;
! 
! 	// The Header information goes at the Beginning of the Block.
! 	_Block_pair __bp = 
! 	  std::make_pair(reinterpret_cast<_Alloc_block*>
! 			 (__temp + __num_bitmaps), 
! 			 reinterpret_cast<_Alloc_block*>
! 			 (__temp + __num_bitmaps) 
! 			 + _S_block_size - 1);
! 	
! 	// Fill the Vector with this information.
! 	_S_mem_blocks.push_back(__bp);
  
! 	unsigned int __bit_mask = 0; // 0 Indicates all Allocated.
! 	__bit_mask = ~__bit_mask; // 1 Indicates all Free.
  
! 	for (unsigned int __i = 0; __i < __num_bitmaps; ++__i)
! 	  __temp[__i] = __bit_mask;
  
! 	// On some implementations, operator new might throw
! 	// bad_alloc, or malloc might fail if the size passed is too
! 	// large, therefore, we limit the size passed to malloc or
! 	// operator new.
! 	_S_block_size *= 2;
!       }
  
!       static _BPVector _S_mem_blocks;
!       static unsigned int _S_block_size;
!       static __gnu_cxx::balloc::
!       _Bitmap_counter<_Alloc_block*> _S_last_request;
!       static typename _BPVector::size_type _S_last_dealloc_index;
  #if defined __GTHREADS
!       static _Mutex _S_mut;
  #endif
  
!       // Complexity: Worst case complexity is O(N), but that is hardly
!       // ever hit. if and when this particular case is encountered,
!       // the next few cases are guaranteed to have a worst case
!       // complexity of O(1)!  That's why this function performs very
!       // well on the average. you can consider this function to be
!       // having a complexity referred to commonly as: Amortized
!       // Constant time.
!       pointer 
!       _M_allocate_single_object() throw(std::bad_alloc)
!       {
  #if defined __GTHREADS
! 	_Auto_Lock __bit_lock(&_S_mut);
  #endif
  
! 	// The algorithm is something like this: The last_request
! 	// variable points to the last accessed Bit Map. When such a
! 	// condition occurs, we try to find a free block in the
! 	// current bitmap, or succeeding bitmaps until the last bitmap
! 	// is reached. If no free block turns up, we resort to First
! 	// Fit method.
! 
! 	// WARNING: Do not re-order the condition in the while
! 	// statement below, because it relies on C++'s short-circuit
! 	// evaluation. The return from _S_last_request->_M_get() will
! 	// NOT be dereference able if _S_last_request->_M_finished()
! 	// returns true. This would inevitably lead to a NULL pointer
! 	// dereference if tinkered with.
! 	while (_S_last_request._M_finished() == false
! 	       && (*(_S_last_request._M_get()) == 0))
! 	  {
! 	    _S_last_request.operator++();
! 	  }
  
! 	if (__builtin_expect(_S_last_request._M_finished() == true, false))
! 	  {
! 	    // Fall Back to First Fit algorithm.
! 	    typedef typename 
! 	      __gnu_cxx::balloc::_Ffit_finder<_Alloc_block*> _FFF;
! 	    _FFF __fff;
! 	    typedef typename _BPVector::iterator _BPiter;
! 	    _BPiter __bpi = 
! 	      __gnu_cxx::balloc::__find_if
! 	      (_S_mem_blocks.begin(), _S_mem_blocks.end(), 
! 	       __gnu_cxx::balloc::_Functor_Ref<_FFF>(__fff));
  
! 	    if (__bpi != _S_mem_blocks.end())
! 	      {
! 		// Search was successful. Ok, now mark the first bit from
! 		// the right as 0, meaning Allocated. This bit is obtained
! 		// by calling _M_get() on __fff.
! 		unsigned int __nz_bit = _Bit_scan_forward(*__fff._M_get());
! 		_BIT_ALLOCATE(__fff._M_get(), __nz_bit);
! 
! 		_S_last_request._M_reset(__bpi - _S_mem_blocks.begin());
! 
! 		// Now, get the address of the bit we marked as allocated.
! 		pointer __ret = reinterpret_cast<pointer>
! 		  (__bpi->first + __fff._M_offset() + __nz_bit);
! 		unsigned int* __puse_count = 
! 		  reinterpret_cast<unsigned int*>(__bpi->first)
! 		  - (__gnu_cxx::balloc::__num_bitmaps(*__bpi) + 1);
  
! 		++(*__puse_count);
! 		return __ret;
! 	      }
! 	    else
! 	      {
! 		// Search was unsuccessful. We Add more memory to the
! 		// pool by calling _S_refill_pool().
! 		_S_refill_pool();
! 
! 		// _M_Reset the _S_last_request structure to the first
! 		// free block's bit map.
! 		_S_last_request._M_reset(_S_mem_blocks.size() - 1);
  
! 		// Now, mark that bit as allocated.
! 	      }
! 	  }
  
! 	// _S_last_request holds a pointer to a valid bit map, that
! 	// points to a free block in memory.
! 	unsigned int __nz_bit = _Bit_scan_forward(*_S_last_request._M_get());
! 	_BIT_ALLOCATE(_S_last_request._M_get(), __nz_bit);
! 
! 	pointer __ret = reinterpret_cast<pointer>
! 	  (_S_last_request._M_base() + _S_last_request._M_offset() + __nz_bit);
! 
! 	unsigned int* __puse_count = reinterpret_cast<unsigned int*>
! 	  (_S_mem_blocks[_S_last_request._M_where()].first)
! 	  - (__gnu_cxx::balloc::
! 	   __num_bitmaps(_S_mem_blocks[_S_last_request._M_where()]) 
! 	     + 1);
  
! 	++(*__puse_count);
! 	return __ret;
!       }
  
!       // Complexity: O(lg(N)), but the worst case is hit quite often!
!       // I need to do something about this. I'll be able to work on
!       // it, only when I have some solid figures from a few real apps.
!       void 
!       _M_deallocate_single_object(pointer __p) throw()
!       {
  #if defined __GTHREADS
! 	_Auto_Lock __bit_lock(&_S_mut);
  #endif
+ 	_Alloc_block* __real_p = reinterpret_cast<_Alloc_block*>(__p);
  
! 	typedef typename _BPVector::iterator _Iterator;
! 	typedef typename _BPVector::difference_type _Difference_type;
  
! 	_Difference_type __diff;
! 	int __displacement;
  
! 	_BALLOC_ASSERT(_S_last_dealloc_index >= 0);
  
! 	
! 	if (__gnu_cxx::balloc::_Inclusive_between<_Alloc_block*>
! 	    (__real_p)
! 	    (_S_mem_blocks[_S_last_dealloc_index]))
! 	  {
! 	    _BALLOC_ASSERT(_S_last_dealloc_index <= _S_mem_blocks.size() - 1);
  
! 	    // Initial Assumption was correct!
! 	    __diff = _S_last_dealloc_index;
! 	    __displacement = __real_p - _S_mem_blocks[__diff].first;
! 	  }
! 	else
! 	  {
! 	    _Iterator _iter = 
! 	      __gnu_cxx::balloc::__find_if(_S_mem_blocks.begin(), 
! 			     _S_mem_blocks.end(), 
! 			     __gnu_cxx::balloc::
! 			     _Inclusive_between<_Alloc_block*>(__real_p));
! 	    _BALLOC_ASSERT(_iter != _S_mem_blocks.end());
! 
! 	    __diff = _iter - _S_mem_blocks.begin();
! 	    __displacement = __real_p - _S_mem_blocks[__diff].first;
! 	    _S_last_dealloc_index = __diff;
! 	  }
  
! 	// Get the position of the iterator that has been found.
! 	const unsigned int __rotate = __displacement % balloc::bits_per_block;
! 	unsigned int* __bitmapC = 
! 	  reinterpret_cast<unsigned int*>(_S_mem_blocks[__diff].first) - 1;
! 	__bitmapC -= (__displacement / balloc::bits_per_block);
        
! 	_BIT_FREE(__bitmapC, __rotate);
! 	unsigned int* __puse_count = reinterpret_cast<unsigned int*>
! 	  (_S_mem_blocks[__diff].first)
! 	  - (__gnu_cxx::balloc::__num_bitmaps(_S_mem_blocks[__diff]) + 1);
  
! 	_BALLOC_ASSERT(*__puse_count != 0);
  
! 	--(*__puse_count);
  
! 	if (__builtin_expect(*__puse_count == 0, false))
! 	  {
! 	    _S_block_size /= 2;
  	  
! 	    // We can safely remove this block.
! 	    // _Block_pair __bp = _S_mem_blocks[__diff];
! 	    this->_M_insert(__puse_count);
! 	    _S_mem_blocks.erase(_S_mem_blocks.begin() + __diff);
! 
! 	    // Reset the _S_last_request variable to reflect the
! 	    // erased block. We do this to protect future requests
! 	    // after the last block has been removed from a particular
! 	    // memory Chunk, which in turn has been returned to the
! 	    // free list, and hence had been erased from the vector,
! 	    // so the size of the vector gets reduced by 1.
! 	    if ((_Difference_type)_S_last_request._M_where() >= __diff--)
! 	      _S_last_request._M_reset(__diff); 
! 
! 	    // If the Index into the vector of the region of memory
! 	    // that might hold the next address that will be passed to
! 	    // deallocated may have been invalidated due to the above
! 	    // erase procedure being called on the vector, hence we
! 	    // try to restore this invariant too.
! 	    if (_S_last_dealloc_index >= _S_mem_blocks.size())
! 	      {
! 		_S_last_dealloc_index =(__diff != -1 ? __diff : 0);
! 		_BALLOC_ASSERT(_S_last_dealloc_index >= 0);
! 	      }
! 	  }
!       }
  
!     public:
!       bitmap_allocator() throw()
!       { }
  
!       bitmap_allocator(const bitmap_allocator&)
!       { }
  
!       template<typename _Tp1>
!         bitmap_allocator(const bitmap_allocator<_Tp1>&) throw()
!         { }
  
!       ~bitmap_allocator() throw()
!       { }
  
!       // Complexity: O(1), but internally the complexity depends upon the
!       // complexity of the function(s) _S_allocate_single_object and
!       // __memory_get.
!       pointer 
!       allocate(size_type __n)
!       {
! 	if (__builtin_expect(__n == 1, true))
! 	  return this->_M_allocate_single_object();
! 	else
! 	  { 
! 	    const size_type __b = __n * sizeof(value_type);
! 	    return reinterpret_cast<pointer>(_MEMORY_GET(__b));
! 	  }
!       }
  
!       pointer 
!       allocate(size_type __n, typename bitmap_allocator<void>::const_pointer)
!       { return allocate(__n); }
  
!       void 
!       deallocate(pointer __p, size_type __n) throw()
!       {
! 	if (__builtin_expect(__n == 1, true))
! 	  this->_M_deallocate_single_object(__p);
! 	else
! 	  _MEMORY_PUT(__p);
!       }
  
!       pointer 
!       address(reference __r) const
!       { return &__r; }
! 
!       const_pointer 
!       address(const_reference __r) const
!       { return &__r; }
! 
!       size_type 
!       max_size() const throw()
!       { return (size_type()-1)/sizeof(value_type); }
! 
!       void 
!       construct(pointer __p, const_reference __data)
!       { ::new(__p) value_type(__data); }
! 
!       void 
!       destroy(pointer __p)
!       { __p->~value_type(); }
!     };
  
!   template<typename _Tp>
!     typename bitmap_allocator<_Tp>::_BPVector
!     bitmap_allocator<_Tp>::_S_mem_blocks;
! 
!   template<typename _Tp>
!     unsigned int bitmap_allocator<_Tp>::_S_block_size = balloc::bits_per_block;
! 
!   template<typename _Tp>
!     typename __gnu_cxx::bitmap_allocator<_Tp>::_BPVector::size_type 
!     bitmap_allocator<_Tp>::_S_last_dealloc_index = 0;
! 
!   template<typename _Tp>
!     __gnu_cxx::balloc::_Bitmap_counter 
!   <typename bitmap_allocator<_Tp>::_Alloc_block*>
!     bitmap_allocator<_Tp>::_S_last_request(_S_mem_blocks);
  
  #if defined __GTHREADS
!   template<typename _Tp>
!     __gnu_cxx::_Mutex
!     bitmap_allocator<_Tp>::_S_mut;
  #endif
  
!   template<typename _Tp1, typename _Tp2>
!     bool 
!     operator==(const bitmap_allocator<_Tp1>&, 
! 	       const bitmap_allocator<_Tp2>&) throw()
!     { return true; }
    
!   template<typename _Tp1, typename _Tp2>
!     bool 
!     operator!=(const bitmap_allocator<_Tp1>&, 
! 	       const bitmap_allocator<_Tp2>&) throw() 
!   { return false; }
  }
  
+ #endif 
  
! //  LocalWords:  namespace GTHREADS bool const gthread endif Mutex mutex
*** allocator.cc	2004-07-01 20:19:29.000000000 +0530
--- /home/dhruv/projects/new_libstdc++-v3/allocator.cc	2004-07-20 19:49:24.000000000 +0530
***************
*** 33,38 ****
--- 33,39 ----
  
  #include <bits/c++config.h>
  #include <memory>
+ #include <ext/bitmap_allocator.h>
  #include <ext/mt_allocator.h>
  #include <ext/pool_allocator.h>
  
*************** namespace __gnu_cxx
*** 166,169 ****
--- 167,183 ----
    char* __pool_base::_S_end_free = 0;
    
    size_t __pool_base::_S_heap_size = 0;
+ 
+   // Bitmap-allocator instantiations.
+ #if defined __GTHREADS 
+   _Mutex free_list::_S_bfl_mutex;
+ #endif
+   free_list::vector_type free_list::_S_free_list;
+   namespace balloc
+   {
+     template unsigned int** __lower_bound
+     (unsigned int**, unsigned int**, 
+      unsigned int const&, free_list::_LT_pointer_compare);
+   }
+ 
  } // namespace __gnu_cxx
*** allocator-inst.cc	2004-06-25 11:40:44.000000000 +0530
--- /home/dhruv/projects/new_libstdc++-v3/allocator-inst.cc	2004-07-20 19:49:29.000000000 +0530
***************
*** 34,39 ****
--- 34,40 ----
  #include <memory>
  #include <ext/mt_allocator.h>
  #include <ext/pool_allocator.h>
+ #include <ext/bitmap_allocator.h>
  
  namespace std
  {
*************** namespace __gnu_cxx
*** 48,51 ****
--- 49,55 ----
  
    template class __pool_alloc<char>;
    template class __pool_alloc<wchar_t>;
+ 
+   template class bitmap_allocator<char>;
+   template class bitmap_allocator<wchar_t>;
  } // namespace __gnu_cxx

Attachment: ChangeLog
Description: Text document


Index Nav: [Date Index] [Subject Index] [Author Index] [Thread Index]
Message Nav: [Date Prev] [Date Next] [Thread Prev] [Thread Next]