This is the mail archive of the libstdc++@gcc.gnu.org mailing list for the libstdc++ project.


Index Nav: [Date Index] [Subject Index] [Author Index] [Thread Index]
Message Nav: [Date Prev] [Date Next] [Thread Prev] [Thread Next]
Other format: [Raw text]

Using allocator as a base, an example


On November 15, 2002 12:24 pm, Benjamin Kosnik wrote:
> >There is a simpler way.  If the containers use their Allocator as a
> >private base class instead of a member, the code is a lot cleaner.
>
> Please, I'd like to see it.

My original treatment was for std::list, which can get a little hairy.  
To simplify, I whipped up a std::vector treatment along the same lines 
(code follows).

While I've done some cursory constructor testing of this code, I 
haven't done thorough testing because while whiping this up I got 
sidetracked by what I consider to be a potentially serious issue that 
I'll outline in another post.

This does illustrate how basing a container class on its allocator can 
simplify the code, and under the -O2 optimization level, produces 
slighly smaller binaries.

I chose the swap option number 2 outlined in Matt Austern's post, 
because it's simplest to implement.  I believe option 3 is the correct 
functionality, but I havn't been able to get Martin Sebor's example to 
compile with my current compiler.  I will try with a newer snapshot.

Now comes the code:  2 files.
// @file smw_vector.h
// Vector implementation -*- C++ -*-

// Copyright (C) 2001, 2002 Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library.  This library is free
// software; you can redistribute it and/or modify it under the
// terms of the GNU General Public License as published by the
// Free Software Foundation; either version 2, or (at your option)
// any later version.

// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License 
along
// with this library; see the file COPYING.  If not, write to the Free
// Software Foundation, 59 Temple Place - Suite 330, Boston, MA 
02111-1307,
// USA.

// As a special exception, you may use this file as part of a free 
software
// library without restriction.  Specifically, if other files 
instantiate
// templates or use macros or inline functions from this file, or you 
compile
// this file and link it with other files to produce an executable, this
// file does not by itself cause the resulting executable to be covered 
by
// the GNU General Public License.  This exception does not however
// invalidate any other reasons why the executable file might be 
covered by
// the GNU General Public License.

/*
 *
 * Copyright (c) 1994
 * Hewlett-Packard Company
 *
 * Permission to use, copy, modify, distribute and sell this software
 * and its documentation for any purpose is hereby granted without fee,
 * provided that the above copyright notice appear in all copies and
 * that both that copyright notice and this permission notice appear
 * in supporting documentation.  Hewlett-Packard Company makes no
 * representations about the suitability of this software for any
 * purpose.  It is provided "as is" without express or implied warranty.
 *
 *
 * Copyright (c) 1996
 * Silicon Graphics Computer Systems, Inc.
 *
 * Permission to use, copy, modify, distribute and sell this software
 * and its documentation for any purpose is hereby granted without fee,
 * provided that the above copyright notice appear in all copies and
 * that both that copyright notice and this permission notice appear
 * in supporting documentation.  Silicon Graphics makes no
 * representations about the suitability of this  software for any
 * purpose.  It is provided "as is" without express or implied warranty.
 */

/** @file stl_vector.h
 *  This is an internal header file, included by other library headers.
 *  You should not attempt to use it directly.
 */

#ifndef __GLIBCPP_INTERNAL_VECTOR_H
#define __GLIBCPP_INTERNAL_VECTOR_H

#include <bits/stl_iterator_base_funcs.h>
#include <bits/functexcept.h>
#include <bits/concept_check.h>

namespace std
{
  /// @if maint Primary default version.  @endif
  /**
   *  @brief  A standard container which offers fixed time access to 
individual
   *  elements in any order.
   *
   *  @ingroup Containers
   *  @ingroup Sequences
   *
   *  Meets the requirements of a <a 
href="tables.html#65">container</a>, a
   *  <a href="tables.html#66">reversible container</a>, and a
   *  <a href="tables.html#67">sequence</a>, including the
   *  <a href="tables.html#68">optional sequence requirements</a> with 
the
   *  %exception of @c push_front and @c pop_front.
   *
   *  In some terminology a %vector can be described as a dynamic 
C-style array,
   *  it offers fast and efficient access to individual elements in any 
order
   *  and saves the user from worrying about memory and size allocation.
   *  Subscripting ( @c [] ) access is also provided as with C-style 
arrays.
  */
  template<typename _Tp, typename _Alloc = allocator<_Tp> >
    class vector
    : private _Alloc
    {
    private:
      // concept requirements
      __glibcpp_class_requires(_Tp, _SGIAssignableConcept)
    
      typedef vector<_Tp, _Alloc>                       vector_type;
      typedef typename _Alloc::pointer                  start_pointer;
    
    public:
      typedef typename _Alloc::reference	        reference;
      typedef typename _Alloc::const_reference          const_reference;
      typedef typename _Alloc::pointer                  pointer;
      typedef typename _Alloc::const_pointer            const_pointer;
      typedef __gnu_cxx::__normal_iterator<pointer, vector_type> 
iterator;
      typedef __gnu_cxx::__normal_iterator<const_pointer, vector_type>
                                                        const_iterator;
      typedef std::reverse_iterator<const_iterator>     
const_reverse_iterator;
      typedef std::reverse_iterator<iterator>           
reverse_iterator;
      typedef _Tp 				        value_type;
      typedef _Alloc                                    allocator_type;
      typedef size_t 					size_type;
      typedef ptrdiff_t 				difference_type;
    
    public:
      // [23.2.4.1] construct/copy/destroy
      // (assign() and get_allocator() are also listed in this section)
      /**
       *  @brief  Default constructor creates no elements.
       */
      explicit
      vector(const allocator_type& __a = allocator_type())
      : _Alloc(__a)
      { }
    
      /**
       *  @brief  Create a %vector with copies of an exemplar element.
       *  @param  n  The number of elements to initially create.
       *  @param  value  An element to copy.
       * 
       *  This constructor fills the %vector with @a n copies of @a 
value.
       */
      vector(size_type __n, const value_type& __value,
             const allocator_type& __a = allocator_type())
      : _Alloc(__a)
      , _M_start(this->allocate(__n))
      , _M_finish(_M_start)
      , _M_end_of_storage(uninitialized_fill_n(_M_start, __n, __value))
      { }
    
      /**
       *  @brief  Create a %vector with default elements.
       *  @param  n  The number of elements to initially create.
       * 
       *  This constructor fills the %vector with @a n copies of a
       *  default-constructed element.
       */
      explicit
      vector(size_type __n)
      : _Alloc(allocator_type())
      , _M_start(this->allocate(__n))
      , _M_finish(_M_start)
      , _M_end_of_storage(uninitialized_fill_n(_M_start, __n, 
value_type()))
      { }
    
      /**
       *  @brief  %Vector copy constructor.
       *  @param  x  A %vector of identical element and allocator types.
       * 
       *  The newly-created %vector uses a copy of the allocation 
object used
       *  by @a x.  All the elements of @a x are copied, but any extra 
memory in
       *  @a x (for fast expansion) will not be copied.
       */
      vector(const vector& __x)
      : _Alloc(__x.get_allocator())
      , _M_start(this->allocate(__x.size()))
      , _M_finish(uninitialized_copy(__x.begin(), __x.end(), _M_start))
      , _M_end_of_storage(_M_finish)
      { }
    
      /**
       *  @brief  Builds a %vector from a range.
       *  @param  first  An input iterator.
       *  @param  last  An input iterator.
       * 
       *  Create a %vector consisting of copies of the elements from 
[first,last).
       *
       *  If the iterators are forward, bidirectional, or 
random-access, then
       *  this will call the elements' copy constructor N times (where 
N is
       *  distance(first,last)) and do no memory reallocation.  But if 
only
       *  input iterators are used, then this will do at most 2N calls 
to the
       *  copy constructor, and logN memory reallocations.
       */
      template <typename _InputIterator>
        vector(_InputIterator __first, _InputIterator __last,
               const allocator_type& __a = allocator_type())
        : _Alloc(__a)
        {
          // Check whether it's an integral type.  If so, it's not an 
iterator.
          typedef typename _Is_integer<_InputIterator>::_Integral 
_Integral;
          _M_initialize_dispatch(__first, __last, _Integral());
        }
    
      /**
       *  The dtor only erases the elements, and note that if the 
elements
       *  themselves are pointers, the pointed-to memory is not touched 
in any
       *  way.  Managing the pointer is the user's responsibilty.
       */
      ~vector()
      { _Destroy(_M_start, _M_finish); }
    
      /**
       *  @brief  %Vector assignment operator.
       *  @param  x  A %vector of identical element and allocator types.
       * 
       *  All the elements of @a x are copied, but any extra memory in 
@a x (for
       *  fast expansion) will not be copied.  Unlike the copy 
constructor, the
       *  allocator object is not copied.
       */
      vector&
      operator=(const vector& __x);
    
      /**
       *  @brief  Assigns a given value to a %vector.
       *  @param  n  Number of elements to be assigned.
       *  @param  val  Value to be assigned.
       *
       *  This function fills a %vector with @a n copies of the given 
value.
       *  Note that the assignment completely changes the %vector and 
that the
       *  resulting %vector's size is the same as the number of 
elements assigned.
       *  Old data may be lost.
       */
      void
      assign(size_type __n, const value_type& __val)
      { _M_fill_assign(__n, __val); }
    
      /**
       *  @brief  Assigns a range to a %vector.
       *  @param  first  An input iterator.
       *  @param  last   An input iterator.
       *
       *  This function fills a %vector with copies of the elements in 
the
       *  range [first,last).
       *
       *  Note that the assignment completely changes the %vector and 
that the
       *  resulting %vector's size is the same as the number of 
elements assigned.
       *  Old data may be lost.
       */
      template<typename _InputIterator>
        void
        assign(_InputIterator __first, _InputIterator __last)
        {
          // Check whether it's an integral type.  If so, it's not an 
iterator.
          typedef typename _Is_integer<_InputIterator>::_Integral 
_Integral;
          _M_assign_dispatch(__first, __last, _Integral());
        }
    
      /// Get a copy of the memory allocation object.
      allocator_type
      get_allocator() const
      { return *this; }
    
      // iterators
      /**
       *  Returns a read/write iterator that points to the first 
element in the
       *  %vector.  Iteration is done in ordinary element order.
      */
      iterator
      begin()
      { return iterator(_M_start); }
    
      /**
       *  Returns a read-only (constant) iterator that points to the 
first element
       *  in the %vector.  Iteration is done in ordinary element order.
      */
      const_iterator
      begin() const
      { return const_iterator(_M_start); }
    
      /**
       *  Returns a read/write iterator that points one past the last 
element in
       *  the %vector.  Iteration is done in ordinary element order.
      */
      iterator
      end()
      { return iterator(_M_finish); }
    
      /**
       *  Returns a read-only (constant) iterator that points one past 
the last
       *  element in the %vector.  Iteration is done in ordinary 
element order.
      */
      const_iterator
      end() const
      { return const_iterator(_M_finish); }
    
      /**
       *  Returns a read/write reverse iterator that points to the last 
element in
       *  the %vector.  Iteration is done in reverse element order.
      */
      reverse_iterator
      rbegin()
      { return reverse_iterator(end()); }
    
      /**
       *  Returns a read-only (constant) reverse iterator that points 
to the last
       *  element in the %vector.  Iteration is done in reverse element 
order.
      */
      const_reverse_iterator
      rbegin() const
      { return const_reverse_iterator(end()); }
    
      /**
       *  Returns a read/write reverse iterator that points to one 
before the
       *  first element in the %vector.  Iteration is done in reverse 
element
       *  order.
      */
      reverse_iterator
      rend()
      { return reverse_iterator(begin()); }
    
      /**
       *  Returns a read-only (constant) reverse iterator that points 
to one
       *  before the first element in the %vector.  Iteration is done 
in reverse
       *  element order.
      */
      const_reverse_iterator
      rend() const
      { return const_reverse_iterator(begin()); }
    
      // [23.2.4.2] capacity
      /**  Returns the number of elements in the %vector.  */
      size_type
      size() const
      { return size_type(end() - begin()); }
    
      /**  Returns the size() of the largest possible %vector.  */
      size_type
      max_size() const
      { return size_type(-1) / sizeof(value_type); }
    
      /**
       *  @brief  Resizes the %vector to the specified number of 
elements.
       *  @param  new_size  Number of elements the %vector should 
contain.
       *  @param  x  Data with which new elements should be populated.
       *
       *  This function will %resize the %vector to the specified 
number of
       *  elements.  If the number is smaller than the %vector's 
current size the
       *  %vector is truncated, otherwise the %vector is extended and 
new elements
       *  are populated with given data.
      */
      void
      resize(size_type __new_size, const value_type& __x)
      {
        if (__new_size < size())
          erase(begin() + __new_size, end());
        else
          insert(end(), __new_size - size(), __x);
      }
    
      /**
       *  @brief  Resizes the %vector to the specified number of 
elements.
       *  @param  new_size  Number of elements the %vector should 
contain.
       *
       *  This function will resize the %vector to the specified number 
of
       *  elements.  If the number is smaller than the %vector's 
current size the
       *  %vector is truncated, otherwise the %vector is extended and 
new elements
       *  are default-constructed.
      */
      void
      resize(size_type __new_size)
      { resize(__new_size, value_type()); }
    
      /**
       *  Returns the total number of elements that the %vector can 
hold before
       *  needing to allocate more memory.
      */
      size_type
      capacity() const
      { return size_type(const_iterator(_M_end_of_storage) - begin()); }
    
      /**
       *  Returns true if the %vector is empty.  (Thus begin() would 
equal end().)
      */
      bool
      empty() const { return begin() == end(); }
    
      /**
       *  @brief  Attempt to preallocate enough memory for specified 
number of
       *          elements.
       *  @param  n  Number of elements required.
       *  @throw  std::length_error  If @a n exceeds @c max_size().
       *
       *  This function attempts to reserve enough memory for the 
%vector to hold
       *  the specified number of elements.  If the number requested is 
more than
       *  max_size(), length_error is thrown.
       *
       *  The advantage of this function is that if optimal code is a 
necessity
       *  and the user can determine the number of elements that will 
be required,
       *  the user can reserve the memory in %advance, and thus prevent 
a possible
       *  reallocation of memory and copying of %vector data.
      */
      void
      reserve(size_type __n);
    
      // element access
      /**
       *  @brief  Subscript access to the data contained in the %vector.
       *  @param  n  The index of the element for which data should be 
accessed.
       *  @return  Read/write reference to data.
       *
       *  This operator allows for easy, array-style, data access.
       *  Note that data access with this operator is unchecked and 
out_of_range
       *  lookups are not defined. (For checked lookups see at().)
      */
      reference
      operator[](size_type __n)
      { return *(begin() + __n); }
    
      /**
       *  @brief  Subscript access to the data contained in the %vector.
       *  @param  n  The index of the element for which data should be 
accessed.
       *  @return  Read-only (constant) reference to data.
       *
       *  This operator allows for easy, array-style, data access.
       *  Note that data access with this operator is unchecked and 
out_of_range
       *  lookups are not defined. (For checked lookups see at().)
      */
      const_reference
      operator[](size_type __n) const
      { return *(begin() + __n); }
    
      /**
       *  @brief  Provides access to the data contained in the %vector.
       *  @param  n  The index of the element for which data should be 
accessed.
       *  @return  Read/write reference to data.
       *  @throw  std::out_of_range  If @a n is an invalid index.
       *
       *  This function provides for safer data access.  The parameter 
is first
       *  checked that it is in the range of the vector.  The function 
throws
       *  out_of_range if the check fails.
      */
      reference
      at(size_type __n)
      {
        _M_range_check(__n);
        return (*this)[__n];
      }
    
      /**
       *  @brief  Provides access to the data contained in the %vector.
       *  @param  n  The index of the element for which data should be 
accessed.
       *  @return  Read-only (constant) reference to data.
       *  @throw  std::out_of_range  If @a n is an invalid index.
       *
       *  This function provides for safer data access.  The parameter 
is first
       *  checked that it is in the range of the vector.  The function 
throws
       *  out_of_range if the check fails.
      */
      const_reference
      at(size_type __n) const
      {
        _M_range_check(__n);
        return (*this)[__n];
      }
    
      /**
       *  Returns a read/write reference to the data at the first 
element of the
       *  %vector.
       */
      reference
      front()
      { return *begin(); }
    
      /**
       *  Returns a read-only (constant) reference to the data at the 
first
       *  element of the %vector.
       */
      const_reference
      front() const
      { return *begin(); }
    
      /**
       *  Returns a read/write reference to the data at the last 
element of the
       *  %vector.
       */
      reference
      back()
      { return *(end() - 1); }
    
      /**
       *  Returns a read-only (constant) reference to the data at the 
last
       *  element of the %vector.
      */
      const_reference
      back() const
      { return *(end() - 1); }
    
      // [23.2.4.3] modifiers
      /**
       *  @brief  Add data to the end of the %vector.
       *  @param  x  Data to be added.
       *
       *  This is a typical stack operation.  The function creates an 
element at
       *  the end of the %vector and assigns the given data to it.
       *  Due to the nature of a %vector this operation can be done in 
constant
       *  time if the %vector has preallocated space available.
       */
      void
      push_back(const value_type& __x)
      {
        if (_M_finish != _M_end_of_storage)
        {
          _Construct(_M_finish, __x);
          ++_M_finish;
        }
        else
          _M_insert_aux(end(), __x);
      }
    
      /**
       *  @brief  Removes last element.
       *
       *  This is a typical stack operation. It shrinks the %vector by 
one.
       *
       *  Note that no data is returned, and if the last element's data 
is
       *  needed, it should be retrieved before pop_back() is called.
       */
      void
      pop_back()
      {
        --_M_finish;
        _Destroy(_M_finish);
      }
    
      /**
       *  @brief  Inserts given value into %vector before specified 
iterator.
       *  @param  position  An iterator into the %vector.
       *  @param  x  Data to be inserted.
       *  @return  An iterator that points to the inserted data.
       *
       *  This function will insert a copy of the given value before 
the specified
       *  location.
       *  Note that this kind of operation could be expensive for a 
%vector and if
       *  it is frequently used the user should consider using 
std::list.
       */
      iterator
      insert(iterator __position, const value_type& __x);
    
    #ifdef _GLIBCPP_DEPRECATED
      /**
       *  @brief  Inserts an element into the %vector.
       *  @param  position  An iterator into the %vector.
       *  @return  An iterator that points to the inserted element.
       *
       *  This function will insert a default-constructed element 
before the
       *  specified location.  You should consider using
       *  insert(position,value_type()) instead.
       *  Note that this kind of operation could be expensive for a 
vector and if
       *  it is frequently used the user should consider using 
std::list.
       *
       *  @note This was deprecated in 3.2 and will be removed in 3.4.  
You must
       *        define @c _GLIBCPP_DEPRECATED to make this visible in 
3.2; see
       *        c++config.h.
      */
      iterator
      insert(iterator __position)
      { return insert(__position, value_type()); }
    #endif
    
      /**
       *  @brief  Inserts a number of copies of given data into the 
%vector.
       *  @param  position  An iterator into the %vector.
       *  @param  n  Number of elements to be inserted.
       *  @param  x  Data to be inserted.
       *
       *  This function will insert a specified number of copies of the 
given data
       *  before the location specified by @a position.
       *
       *  Note that this kind of operation could be expensive for a 
%vector and if
       *  it is frequently used the user should consider using 
std::list.
       */
      void
      insert (iterator __pos, size_type __n, const value_type& __x)
      { _M_fill_insert(__pos, __n, __x); }
    
      /**
       *  @brief  Inserts a range into the %vector.
       *  @param  pos  An iterator into the %vector.
       *  @param  first  An input iterator.
       *  @param  last   An input iterator.
       *
       *  This function will insert copies of the data in the range 
[first,last)
       *  into the %vector before the location specified by @a pos.
       *
       *  Note that this kind of operation could be expensive for a 
%vector and if
       *  it is frequently used the user should consider using 
std::list.
       */
      template<typename _InputIterator>
        void
        insert(iterator __pos, _InputIterator __first, _InputIterator 
__last)
          {
            // Check whether it's an integral type.  If so, it's not an 
iterator.
            typedef typename _Is_integer<_InputIterator>::_Integral 
_Integral;
            _M_insert_dispatch(__pos, __first, __last, _Integral());
          }
    
      /**
       *  @brief  Remove element at given position.
       *  @param  position  Iterator pointing to element to be erased.
       *  @return  An iterator pointing to the next element (or end()).
       *
       *  This function will erase the element at the given position 
and thus
       *  shorten the %vector by one.
       *
       *  Note This operation could be expensive and if it is 
frequently used the
       *  user should consider using std::list.  The user is also 
cautioned that
       *  this function only erases the element, and that if the 
element is itself
       *  a pointer, the pointed-to memory is not touched in any way.  
Managing
       *  the pointer is the user's responsibilty.
       */
      iterator
      erase(iterator __position);
    
      /**
       *  @brief  Remove a range of elements.
       *  @param  first  Iterator pointing to the first element to be 
erased.
       *  @param  last  Iterator pointing to one past the last element 
to be
       *                erased.
       *  @return  An iterator pointing to the element pointed to by @a 
last
       *           prior to erasing (or end()).
       *
       *  This function will erase the elements in the range 
[first,last) and
       *  shorten the %vector accordingly.
       *
       *  Note This operation could be expensive and if it is 
frequently used the
       *  user should consider using std::list.  The user is also 
cautioned that
       *  this function only erases the elements, and that if the 
elements
       *  themselves are pointers, the pointed-to memory is not touched 
in any
       *  way.  Managing the pointer is the user's responsibilty.
       */
      iterator
      erase(iterator __first, iterator __last);
    
      /**
       *  @brief  Swaps data with another %vector.
       *  @param  x  A %vector of the same element and allocator types.
       *
       *  This exchanges the elements between two vectors in constant 
time.
       *  The allocator sub-objects are not swapped.
       *  (Three pointers, so it should be quite fast.)
       *  Note that the global std::swap() function is specialized such 
that
       *  std::swap(v1,v2) will feed to this function.
       */
      void
      swap(vector& __x)
      {
        std::swap(_M_start, __x._M_start);
        std::swap(_M_finish, __x._M_finish);
        std::swap(_M_end_of_storage, __x._M_end_of_storage);
      }
    
      /**
       *  Erases all the elements.  Note that this function only erases 
the
       *  elements, and that if the elements themselves are pointers, 
the
       *  pointed-to memory is not touched in any way.  Managing the 
pointer is
       *  the user's responsibilty.
       */
      void
      clear()
      { erase(begin(), end()); }
    
    protected:
      /// @if maint Safety check used only from at().  @endif
      void
      _M_range_check(size_type __n) const
      {
        if (__n >= this->size())
          __throw_out_of_range("vector [] access out of range");
      }
    
      /**
       *  @if maint
       *  Memory expansion handler.  Uses the member allocation 
function to
       *  obtain @a n bytes of memory, and then copies [first,last) 
into it.
       *  @endif
       */
      template <typename _ForwardIterator>
        pointer
        _M_allocate_and_copy(size_type __n,
                             _ForwardIterator __first, _ForwardIterator 
__last)
        {
          start_pointer __result = this->allocate(__n);
          try
          {
            uninitialized_copy(__first, __last, __result);
            return __result;
          }
          catch(...)
          {
            this->deallocate(__result, __n);
            __throw_exception_again;
          }
        }
    
    
      // Internal constructor functions follow.
    
      // called by the range constructor to implement [23.1.1]/9
      template<typename _Integer>
        void
        _M_initialize_dispatch(_Integer __n, _Integer __value,
                               __true_type)
        {
          _M_start = this->allocate(__n);
          _M_end_of_storage = _M_start + __n;
          _M_finish = uninitialized_fill_n(_M_start, __n, __value);
        }
    
      // called by the range constructor to implement [23.1.1]/9
      template<typename _InputIter>
        void
        _M_initialize_dispatch(_InputIter __first, _InputIter __last,
                               __false_type)
        {
          typedef typename 
iterator_traits<_InputIter>::iterator_category
                           _IterCategory;
          _M_range_initialize(__first, __last, _IterCategory());
        }
    
      // called by the second initialize_dispatch above
      template <typename _InputIterator>
      void
        _M_range_initialize(_InputIterator __first, _InputIterator 
__last,
                            input_iterator_tag)
        {
          for ( ; __first != __last; ++__first)
            push_back(*__first);
        }
    
      // called by the second initialize_dispatch above
      template <typename _ForwardIterator>
        void
        _M_range_initialize(_ForwardIterator __first, _ForwardIterator 
__last,
                            forward_iterator_tag)
        {
          size_type __n = distance(__first, __last);
          _M_start = this->allocate(__n);
          _M_end_of_storage = _M_start + __n;
          _M_finish = uninitialized_copy(__first, __last, _M_start);
        }
    
    
      // Internal assign functions follow.  The *_aux functions do the 
actual
      // assignment work for the range versions.
    
      // called by the range assign to implement [23.1.1]/9
      template<typename _Integer>
        void
         _M_assign_dispatch(_Integer __n, _Integer __val, __true_type)
         {
           _M_fill_assign(static_cast<size_type>(__n),
                          static_cast<value_type>(__val));
         }
    
      // called by the range assign to implement [23.1.1]/9
      template<typename _InputIter>
        void
        _M_assign_dispatch(_InputIter __first, _InputIter __last, 
__false_type)
        {
          typedef typename 
iterator_traits<_InputIter>::iterator_category
                           _IterCategory;
          _M_assign_aux(__first, __last, _IterCategory());
        }
    
      // called by the second assign_dispatch above
      template <typename _InputIterator>
        void 
        _M_assign_aux(_InputIterator __first, _InputIterator __last,
          input_iterator_tag);
    
      // called by the second assign_dispatch above
      template <typename _ForwardIterator>
        void 
        _M_assign_aux(_ForwardIterator __first, _ForwardIterator __last,
          forward_iterator_tag);
    
      // Called by assign(n,t), and the range assign when it turns out 
to be the
      // same thing.
      void
      _M_fill_assign(size_type __n, const value_type& __val);
    
    
      // Internal insert functions follow.
    
      // called by the range insert to implement [23.1.1]/9
      template<typename _Integer>
        void
        _M_insert_dispatch(iterator __pos, _Integer __n, _Integer __val,
                           __true_type)
        {
          _M_fill_insert(__pos, static_cast<size_type>(__n),
                                static_cast<value_type>(__val));
        }
    
      // called by the range insert to implement [23.1.1]/9
      template<typename _InputIterator>
        void
        _M_insert_dispatch(iterator __pos, _InputIterator __first,
                           _InputIterator __last, __false_type)
        {
          typedef typename 
iterator_traits<_InputIterator>::iterator_category
                           _IterCategory;
          _M_range_insert(__pos, __first, __last, _IterCategory());
        }
    
      // called by the second insert_dispatch above
      template <typename _InputIterator>
        void
        _M_range_insert(iterator __pos,
                        _InputIterator __first, _InputIterator __last,
                        input_iterator_tag);
    
      // called by the second insert_dispatch above
      template <typename _ForwardIterator>
        void
        _M_range_insert(iterator __pos,
                        _ForwardIterator __first, _ForwardIterator 
__last,
                        forward_iterator_tag);
    
      // Called by insert(p,n,x), and the range insert when it turns 
out to be
      // the same thing.
      void
      _M_fill_insert (iterator __pos, size_type __n, const value_type& 
__x);
    
      // called by insert(p,x)
      void
      _M_insert_aux(iterator __position, const value_type& __x);
    
    #ifdef _GLIBCPP_DEPRECATED
      // unused now (same situation as in deque)
      void _M_insert_aux(iterator __position);
    #endif

    private:
      start_pointer  _M_start;
      pointer        _M_finish;
      pointer        _M_end_of_storage;
    };
  
  
  /**
   *  @brief  Vector equality comparison.
   *  @param  x  A %vector.
   *  @param  y  A %vector of the same type as @a x.
   *  @return  True iff the size and elements of the vectors are equal.
   *
   *  This is an equivalence relation.  It is linear in the size of the
   *  vectors.  Vectors are considered equivalent if their sizes are 
equal,
   *  and if corresponding elements compare equal.
  */
  template <typename _Tp, typename _Alloc>
    inline bool
    operator==(const vector<_Tp,_Alloc>& __x, const vector<_Tp,_Alloc>& 
__y)
    {
      return __x.size() == __y.size() &&
             equal(__x.begin(), __x.end(), __y.begin());
    }
  
  /**
   *  @brief  Vector ordering relation.
   *  @param  x  A %vector.
   *  @param  y  A %vector of the same type as @a x.
   *  @return  True iff @a x is lexographically less than @a y.
   *
   *  This is a total ordering relation.  It is linear in the size of 
the
   *  vectors.  The elements must be comparable with @c <.
   *
   *  See std::lexographical_compare() for how the determination is 
made.
  */
  template <typename _Tp, typename _Alloc>
    inline bool
    operator<(const vector<_Tp,_Alloc>& __x, const vector<_Tp,_Alloc>& 
__y)
    {
      return lexicographical_compare(__x.begin(), __x.end(),
                                     __y.begin(), __y.end());
    }
  
  /// Based on operator==
  template <typename _Tp, typename _Alloc>
    inline bool
    operator!=(const vector<_Tp,_Alloc>& __x, const vector<_Tp,_Alloc>& 
__y)
    { return !(__x == __y); }
  
  /// Based on operator<
  template <typename _Tp, typename _Alloc>
    inline bool
    operator>(const vector<_Tp,_Alloc>& __x, const vector<_Tp,_Alloc>& 
__y)
    { return __y < __x; }
  
  /// Based on operator<
  template <typename _Tp, typename _Alloc>
    inline bool
    operator<=(const vector<_Tp,_Alloc>& __x, const vector<_Tp,_Alloc>& 
__y)
    { return !(__y < __x); }
  
  /// Based on operator<
  template <typename _Tp, typename _Alloc>
    inline bool
    operator>=(const vector<_Tp,_Alloc>& __x, const vector<_Tp,_Alloc>& 
__y)
    { return !(__x < __y); }
  
  /// See std::vector::swap().
  template <typename _Tp, typename _Alloc>
    inline void
    swap(vector<_Tp,_Alloc>& __x, vector<_Tp,_Alloc>& __y)
    { __x.swap(__y); }
} // namespace std

#endif /* __GLIBCPP_INTERNAL_VECTOR_H */

// @file smw_vector.tcc
// Vector implementation (out of line) -*- C++ -*-

// Copyright (C) 2001, 2002 Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library.  This library is free
// software; you can redistribute it and/or modify it under the
// terms of the GNU General Public License as published by the
// Free Software Foundation; either version 2, or (at your option)
// any later version.

// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License 
along
// with this library; see the file COPYING.  If not, write to the Free
// Software Foundation, 59 Temple Place - Suite 330, Boston, MA 
02111-1307,
// USA.

// As a special exception, you may use this file as part of a free 
software
// library without restriction.  Specifically, if other files 
instantiate
// templates or use macros or inline functions from this file, or you 
compile
// this file and link it with other files to produce an executable, this
// file does not by itself cause the resulting executable to be covered 
by
// the GNU General Public License.  This exception does not however
// invalidate any other reasons why the executable file might be 
covered by
// the GNU General Public License.

/*
 *
 * Copyright (c) 1994
 * Hewlett-Packard Company
 *
 * Permission to use, copy, modify, distribute and sell this software
 * and its documentation for any purpose is hereby granted without fee,
 * provided that the above copyright notice appear in all copies and
 * that both that copyright notice and this permission notice appear
 * in supporting documentation.  Hewlett-Packard Company makes no
 * representations about the suitability of this software for any
 * purpose.  It is provided "as is" without express or implied warranty.
 *
 *
 * Copyright (c) 1996
 * Silicon Graphics Computer Systems, Inc.
 *
 * Permission to use, copy, modify, distribute and sell this software
 * and its documentation for any purpose is hereby granted without fee,
 * provided that the above copyright notice appear in all copies and
 * that both that copyright notice and this permission notice appear
 * in supporting documentation.  Silicon Graphics makes no
 * representations about the suitability of this  software for any
 * purpose.  It is provided "as is" without express or implied warranty.
 */

/** @file vector.tcc
 *  This is an internal header file, included by other library headers.
 *  You should not attempt to use it directly.
 */

#ifndef __GLIBCPP_INTERNAL_VECTOR_TCC
#define __GLIBCPP_INTERNAL_VECTOR_TCC

namespace std
{
  template<typename _Tp, typename _Alloc>
    void vector<_Tp,_Alloc>::
    reserve(size_type __n)
    {
      if (__n > this->max_size())
	__throw_length_error("vector::reserve");
      if (this->capacity() < __n)
	{
	  const size_type __old_size = size();
	  pointer __tmp = _M_allocate_and_copy(__n, _M_start, _M_finish);
	  _Destroy(_M_start, _M_finish);
	  this->deallocate(_M_start, _M_end_of_storage - _M_start);
	  _M_start = __tmp;
	  _M_finish = __tmp + __old_size;
	  _M_end_of_storage = _M_start + __n;
	}
    }
  
  template<typename _Tp, typename _Alloc>
    typename vector<_Tp,_Alloc>::iterator vector<_Tp,_Alloc>::
    insert(iterator __position, const value_type& __x)
    {
      size_type __n = __position - begin();
      if (_M_finish != _M_end_of_storage && __position == end())
      {
        _Construct(_M_finish, __x);
        ++_M_finish;
      }
      else
        _M_insert_aux(__position, __x);
      return begin() + __n;
    }
  
  template<typename _Tp, typename _Alloc>
    typename vector<_Tp,_Alloc>::iterator vector<_Tp,_Alloc>::
    erase(iterator __position)
    {
      if (__position + 1 != end())
        copy(__position + 1, end(), __position);
      --_M_finish;
      _Destroy(_M_finish);
      return __position;
    }
  
  template<typename _Tp, typename _Alloc>
    typename vector<_Tp,_Alloc>::iterator vector<_Tp,_Alloc>::
    erase(iterator __first, iterator __last)
    {
      iterator __i(copy(__last, end(), __first));
      _Destroy(__i, end());
      _M_finish = _M_finish - (__last - __first);
      return __first;
    }
  
  template<typename _Tp, typename _Alloc>
    vector<_Tp,_Alloc>& vector<_Tp,_Alloc>::
    operator=(const vector<_Tp,_Alloc>& __x)
    {
      if (&__x != this)
      {
        const size_type __xlen = __x.size();
        if (__xlen > capacity())
        {
          start_pointer __tmp(_M_allocate_and_copy(__xlen, __x.begin(), 
__x.end()));
          _Destroy(_M_start, _M_finish);
          this->deallocate(_M_start, _M_end_of_storage - _M_start);
          _M_start = __tmp;
          _M_end_of_storage = _M_start + __xlen;
        }
        else if (size() >= __xlen)
        {
          iterator __i(copy(__x.begin(), __x.end(), begin()));
          _Destroy(__i, end());
        }
        else
        {
          copy(__x.begin(), __x.begin() + size(), _M_start);
          uninitialized_copy(__x.begin() + size(), __x.end(), 
_M_finish);
        }
        _M_finish = _M_start + __xlen;
      }
      return *this;
    }
  
  template<typename _Tp, typename _Alloc>
    void vector<_Tp,_Alloc>::
    _M_fill_assign(size_t __n, const value_type& __val)
    {
      if (__n > capacity())
      {
        vector __tmp(__n, __val, get_allocator());
        __tmp.swap(*this);
      }
      else if (__n > size())
      {
        fill(begin(), end(), __val);
        _M_finish = uninitialized_fill_n(_M_finish, __n - size(), 
__val);
      }
      else
        erase(fill_n(begin(), __n, __val), end());
    }
  
  template<typename _Tp, typename _Alloc> template<typename _InputIter>
    void vector<_Tp,_Alloc>::
    _M_assign_aux(_InputIter __first, _InputIter __last, 
input_iterator_tag)
    {
      iterator __cur(begin());
      for ( ; __first != __last && __cur != end(); ++__cur, ++__first)
        *__cur = *__first;
      if (__first == __last)
        erase(__cur, end());
      else
        insert(end(), __first, __last);
    }
  
  template<typename _Tp, typename _Alloc> template<typename 
_ForwardIter>
    void vector<_Tp,_Alloc>::
    _M_assign_aux(_ForwardIter __first, _ForwardIter __last,
                  forward_iterator_tag)
    {
      size_type __len = distance(__first, __last);
  
      if (__len > capacity())
      {
        pointer __tmp(_M_allocate_and_copy(__len, __first, __last));
        _Destroy(_M_start, _M_finish);
        this->deallocate(_M_start, _M_end_of_storage - _M_start);
        _M_start = __tmp;
        _M_end_of_storage = _M_finish = _M_start + __len;
      }
      else if (size() >= __len)
      {
        iterator __new_finish(copy(__first, __last, _M_start));
        _Destroy(__new_finish, end());
        _M_finish = __new_finish.base();
      }
      else
      {
        _ForwardIter __mid = __first;
        advance(__mid, size());
        copy(__first, __mid, _M_start);
        _M_finish = uninitialized_copy(__mid, __last, _M_finish);
      }
    }
  
  template<typename _Tp, typename _Alloc>
    void vector<_Tp,_Alloc>::
    _M_insert_aux(iterator __position, const _Tp& __x)
    {
      if (_M_finish != _M_end_of_storage)
      {
        _Construct(_M_finish, *(_M_finish - 1));
        ++_M_finish;
        _Tp __x_copy = __x;
        copy_backward(__position, iterator(_M_finish-2), 
iterator(_M_finish-1));
        *__position = __x_copy;
      }
      else
      {
        const size_type __old_size = size();
        const size_type __len = __old_size != 0 ? 2 * __old_size : 1;
        iterator __new_start(this->allocate(__len));
        iterator __new_finish(__new_start);
        try
          {
            __new_finish = uninitialized_copy(iterator(_M_start), 
__position,
                                              __new_start);
            _Construct(__new_finish.base(), __x);
            ++__new_finish;
            __new_finish = uninitialized_copy(__position, 
iterator(_M_finish),
                                              __new_finish);
          }
        catch(...)
          {
            _Destroy(__new_start,__new_finish);
            this->deallocate(__new_start.base(),__len);
            __throw_exception_again;
          }
        _Destroy(begin(), end());
        this->deallocate(_M_start, _M_end_of_storage - _M_start);
        _M_start = __new_start.base();
        _M_finish = __new_finish.base();
        _M_end_of_storage = __new_start.base() + __len;
      }
    }
  
  #ifdef _GLIBCPP_DEPRECATED
  template<typename _Tp, typename _Alloc>
    void vector<_Tp,_Alloc>::
    _M_insert_aux(iterator __position)
    {
      if (_M_finish != _M_end_of_storage)
      {
        _Construct(_M_finish, *(_M_finish - 1));
        ++_M_finish;
        copy_backward(__position, iterator(_M_finish - 2),
                      iterator(_M_finish - 1));
        *__position = value_type();
      }
      else
      {
        const size_type __old_size = size();
        const size_type __len = __old_size != 0 ? 2 * __old_size : 1;
        start_pointer __new_start = this->allocate(__len);
        pointer __new_finish = __new_start;
        try
          {
            __new_finish = uninitialized_copy(iterator(_M_start), 
__position,
                                              __new_start);
            _Construct(__new_finish);
            ++__new_finish;
            __new_finish = uninitialized_copy(__position, 
iterator(_M_finish),
                                              __new_finish);
          }
        catch(...)
          {
            _Destroy(__new_start,__new_finish);
            this->deallocate(__new_start,__len);
            __throw_exception_again;
          }
        _Destroy(begin(), end());
        this->deallocate(_M_start, _M_end_of_storage - _M_start);
        _M_start = __new_start;
        _M_finish = __new_finish;
        _M_end_of_storage = __new_start + __len;
      }
    }
  #endif
  
  template<typename _Tp, typename _Alloc>
    void vector<_Tp,_Alloc>::
    _M_fill_insert(iterator __position, size_type __n, const 
value_type& __x)
    {
      if (__n != 0)
      {
        if (size_type(_M_end_of_storage - _M_finish) >= __n) 
	  {
           value_type __x_copy = __x;
	   const size_type __elems_after = end() - __position;
	   iterator __old_finish(_M_finish);
	   if (__elems_after > __n)
	     {
	       uninitialized_copy(_M_finish - __n, _M_finish, _M_finish);
	       _M_finish += __n;
	       copy_backward(__position, __old_finish - __n, __old_finish);
	       fill(__position, __position + __n, __x_copy);
	     }
	   else
	     {
	       uninitialized_fill_n(_M_finish, __n - __elems_after, __x_copy);
	       _M_finish += __n - __elems_after;
	       uninitialized_copy(__position, __old_finish, _M_finish);
	       _M_finish += __elems_after;
	       fill(__position, __old_finish, __x_copy);
	     }
	  }
        else
	  {
	    const size_type __old_size = size();
	    const size_type __len = __old_size + max(__old_size, __n);
	    iterator __new_start(this->allocate(__len));
	    iterator __new_finish(__new_start);
	    try
	      {
		__new_finish = uninitialized_copy(begin(), __position,
						  __new_start);
		__new_finish = uninitialized_fill_n(__new_finish, __n, __x);
		__new_finish = uninitialized_copy(__position, end(), 
						  __new_finish);
	      }
	    catch(...)
	      {
		_Destroy(__new_start,__new_finish);
		this->deallocate(__new_start.base(),__len);
		__throw_exception_again;
	      }
	    _Destroy(_M_start, _M_finish);
	    this->deallocate(_M_start, _M_end_of_storage - _M_start);
	    _M_start = __new_start.base();
	    _M_finish = __new_finish.base();
	    _M_end_of_storage = __new_start.base() + __len;
	  }
      }
    }
  
  template<typename _Tp, typename _Alloc> template<typename 
_InputIterator>
    void vector<_Tp,_Alloc>::
    _M_range_insert(iterator __pos,
                    _InputIterator __first, _InputIterator __last,
                    input_iterator_tag)
    {
      for ( ; __first != __last; ++__first)
      {
        __pos = insert(__pos, *__first);
        ++__pos;
      }
    }
  
  template<typename _Tp, typename _Alloc> template<typename 
_ForwardIterator>
    void vector<_Tp,_Alloc>::
    _M_range_insert(iterator __position,_ForwardIterator __first, 
		    _ForwardIterator __last, forward_iterator_tag)
    {
      if (__first != __last)
      {
        size_type __n = distance(__first, __last);
        if (size_type(_M_end_of_storage - _M_finish) >= __n)
        {
          const size_type __elems_after = end() - __position;
          iterator __old_finish(_M_finish);
          if (__elems_after > __n)
          {
            uninitialized_copy(_M_finish - __n, _M_finish, _M_finish);
            _M_finish += __n;
            copy_backward(__position, __old_finish - __n, __old_finish);
            copy(__first, __last, __position);
          }
          else
          {
            _ForwardIterator __mid = __first;
            advance(__mid, __elems_after);
            uninitialized_copy(__mid, __last, _M_finish);
            _M_finish += __n - __elems_after;
            uninitialized_copy(__position, __old_finish, _M_finish);
            _M_finish += __elems_after;
            copy(__first, __mid, __position);
          }
        }
        else
        {
          const size_type __old_size = size();
          const size_type __len = __old_size + max(__old_size, __n);
          iterator __new_start(this->allocate(__len));
          iterator __new_finish(__new_start);
          try
            {
              __new_finish = uninitialized_copy(iterator(_M_start),
                                                __position, 
__new_start);
              __new_finish = uninitialized_copy(__first, __last, 
__new_finish);
              __new_finish = uninitialized_copy(__position, 
iterator(_M_finish),
                                                __new_finish);
            }
          catch(...)
            {
              _Destroy(__new_start,__new_finish);
              this->deallocate(__new_start.base(), __len);
              __throw_exception_again;
            }
          _Destroy(_M_start, _M_finish);
          this->deallocate(_M_start, _M_end_of_storage - _M_start);
          _M_start = __new_start.base();
          _M_finish = __new_finish.base();
          _M_end_of_storage = __new_start.base() + __len;
        }
      }
    }
} // namespace std

#endif /* __GLIBCPP_INTERNAL_VECTOR_TCC */

-- 
Stephen M. Webb


Index Nav: [Date Index] [Subject Index] [Author Index] [Thread Index]
Message Nav: [Date Prev] [Date Next] [Thread Prev] [Thread Next]