
Optimization Diary

June 02, 2006

Version number: 0.12

Apple Computer      Developer Tools Group



Table of Contents

Objective 2

Motivation 2

Solution 2

Optimization Diary Content 3

Data Store Design 3

DWARF extensions for Optimization Diary 4

Example 5

Optimization Diary                                                                                                                                                           1



Objective
In order to improve productivity of developers, design and implement new mechanism to present Compiler’s 

feedback to developers in suitable way. 

Motivation
Modern compilers are capable of optimizing user code to improve performance of generated code. However, 

code optimizer works like a black box. It receives user code in compiler’s internal representation form and 

generates instructions. Developers analyze generated instructions to understand what optimizer did. 

Sometimes developers use performance tools like Shark to analyze and fine tune their program. In both 

cases, developers rely on compiler generated instructions to interpret compiler’s actions. Developers are 

often interested in receiving direct feedback from compiler regarding optimizer’s various actions.

• <radar://problem/4208510> Provide optimization logs for post-processing

• <radar://problem/3497338> Warnings for missed vector optimizations

• <radar://problem/4250008> Vectorizer Feedback Annotations

• <radar://problem/3729823> Autovectorization and Xcode integration

• <radar://problem/3497569> UI for missed optimizations

Solution
We propose that compiler emits optimization diary that is available to external tools to collect information 

about optimizer’s behavior. Information in this diary is concise and well formated.

Optimization Diary                                                                                                                                                           2



Optimization Diary Content
It is important to not make diary extremely verbose. Compiler optimizer does many things that are not 

suitable for diary entry. The goal is to include items that are useful to developer.

Data Store Design
There are certain requirements that data store design is required to meet.

• Extensible. Data store should be extensible to accommodate new compiler optimization techniques.

• Compact. It is very important that data store is able to pack as much information as possible in small size. 

If optimization diary is used to analyze very large project then its size should not have negative impact on 

the performance of Xcode and CHUD Tools.

• Quick Navigation. Tools should be able to search and navigate through diary content very fast.

Optimization diary content can be divided into different categories. For example,

1. Parameter Manipulation Hint

Compilers allow developers to set various parameters to control optimizer’s behavior. Information related to 

optimizer’s decision based on user selected (or default) parameter falls into this category. For example, GCC 

allows user to set inlinining limit. If optimization diary entry indicates that a function foo is not inlined because 

inlining limit is too low then this makes tuning code to newer GCC compilers much easier.

2. Optimization Hint

Information about how to update source code to get better performance falls into this category. Naturally, 

developer has more knowledge about input data set and compiler does not know if developer is using 

optimal algorithm or not.

3. Optimization Limit

Information about theoretical as well as implementation limitations of optimizer falls into this category. For 

example, GCC 4.0 is not able to automatically vectorize reduction operations.

4. Optimization Report

This is default category to keep log of various optimizer activities.

Optimization Diary                                                                                                                                                           3



DWARF extensions for Optimization Diary

Optimization diary content is stored using following new tag and attributes..

DW_TAG_APPLE_OD_entry  (0x5001) Each diary entry is represented by a debugging info die with 

DW_TAG_APPLE_OD_entry tag. DW_AT_APPLE_OD_category attribute is always used to categorize diary 

entry. Each optimization entry overloads DW_AT_decl_file and DW_AT_decl_line to identify code location. 

DW_AT_decl_column is optionally used to identify column position. DW_AT_APPLE_OD_msg attribute is 

included most of the times, but it is optional. It may also include DW_AT_APPLE_OD_cmd attributes.

DW_AT_APPLE_OD_msg (0x2401) This attribute holds optimizer message, whose value is a ULEB128 

constant. Following table describes meaning of each message.

Value Meaning

1 Loop is automatically vectorized

2 Loop is not automatically vectorized

3 Loop versioning is used during automatic vectorization

4 Loop peeling is used during automatic vectorization

5 Loop is not vectorized because it has muiltiple exits

6 Loop is not vectorized because of bad data reference

7 Loop is not vectorized because these operation is not supported in vector form

8 Loop is not vectorized because there is a data dependence

9 Loop is not vectorized because alignment for data reference is not suitable

10 Loop is not vectorized because reduction operations are not supported

11 Function is inlined

12 Function is not inlined because inline limit is too low

13 Function is not inlined because it is marked as “Do Not Inline”

14 Function is not inlined because it is very big

15 Function is not inlined because it is a recursive function

16 This function is a potential inlining candidate if function body is visible at call site 

17 Loop is unrolled

18 Loop is not unrolled because maximum unrolled iteration limit is reached

19 Loop is not unrolled because maximum unrolled instruction limit is reached

Optimization Diary                                                                                                                                                           4



DW_AT_APPLE_OD_cmd (0x2402) This attribute holds diary command (e.g. highlight this text), whose 

value is ULEB128 constant. 

Value Meaning

1 Highlight Text

2 Dead code (Gray Text)

DW_AT_APPLE_OD_category (0x2403) This attribute indicates category of optimization diary entry. Its 

value is one bitwise ULEB128 constant. Each bit is used to represent one category. 

Value Meaning

0x0000 0001 Parameter manipulation hint. Optimization diary entry 

is referring GCC command line parameter.

0x0000 0002 Optimization Limit. Optimization diary entry refers to 

implementation limitations.

0x0000 0004 Optimization Report. This is used to leave optimizer 

action trails.

0x0000 0008 Action bit. This is a toggle bit. When it is set, it 

indicates action performed by optimizer, for example 

function is inlined. When it is reset, it indicates action 

avoided by optimizer, for example loop is not 

vectorized.

0x0000 0016 Optimization Hint. 

DW_AT_APPLE_OD_version (0x2404) This attribute indicates Optimization Diary version number, whose 

value is an integer constant. DW_TAG_compiler_unit has one DW_AT_APPLE_OD_version attribute if 

Optimization Diary is available.

Example
  DW_TAG_APPLE_OD_entry

   DW_AT_APPLE_OD_category (0x0000 0012)

   DW_AT_decl_file (”foo.c”)

   DW_AT_decl_line (42)

   DW_AT_APPLE_OD_msg (1)

Optimization Diary                                                                                                                                                           5


