This is the mail archive of the gcc-patches@gcc.gnu.org mailing list for the GCC project.


Index Nav: [Date Index] [Subject Index] [Author Index] [Thread Index]
Message Nav: [Date Prev] [Date Next] [Thread Prev] [Thread Next]
Other format: [Raw text]

libstdc++ header ordering problem


Hi,
this fixes a problem I discovered in implementing more of the two-stage
name lookup. The valarray headers had code equivalent to

	template <typename T> struct TPL;

	template <typename T> struct X {
	  const TPL<int>& thing;

	  int Foo ()   {
	    return thing.fn ();
	  }
	};


At the indicated line, thing's type is not dependent, so the .fn bit is
looked up at parse, not instantiation, time. Thus TPL<int> must be
instantiated already.

The patch splits valarray_meta into before and after portions, to avoid
the problem.

built & tested on i686-pc-linux-gnu. ok?

Once this is in, I can install my patch for spr 795.

nathan
--
Nathan Sidwell    ::   http://www.codesourcery.com   ::     CodeSourcery LLC
         The voices in my head said this was stupid too
nathan@codesourcery.com : http://www.cs.bris.ac.uk/~nathan/ : nathan@acm.org

2003-01-23  Nathan Sidwell  <nathan@codesourcery.com>

	* include/bits/valarray_meta.h: Remove, split into ...
	* include/bits/valarray_before.h: ... this, and ...
	* include/bits/valarray_before.h: ... this.
	* include/std/std_valarray.h: Adjust.
	* include/Makefile.am (bits_headers): Adjust.
	* include/Makefile.in: Regenerate.

Index: include/Makefile.am
===================================================================
RCS file: /cvs/gcc/gcc/libstdc++-v3/include/Makefile.am,v
retrieving revision 1.48
diff -c -3 -p -r1.48 Makefile.am
*** include/Makefile.am	22 Jan 2003 16:51:51 -0000	1.48
--- include/Makefile.am	23 Jan 2003 19:27:44 -0000
*************** bits_headers = \
*** 97,103 ****
  	${bits_srcdir}/type_traits.h \
  	${bits_srcdir}/valarray_array.h \
  	${bits_srcdir}/valarray_array.tcc \
! 	${bits_srcdir}/valarray_meta.h \
  	${bits_srcdir}/vector.tcc
  
  backward_srcdir = ${glibcpp_srcdir}/include/backward
--- 97,104 ----
  	${bits_srcdir}/type_traits.h \
  	${bits_srcdir}/valarray_array.h \
  	${bits_srcdir}/valarray_array.tcc \
! 	${bits_srcdir}/valarray_before.h \
! 	${bits_srcdir}/valarray_after.h \
  	${bits_srcdir}/vector.tcc
  
  backward_srcdir = ${glibcpp_srcdir}/include/backward
Index: include/Makefile.in
===================================================================
RCS file: /cvs/gcc/gcc/libstdc++-v3/include/Makefile.in,v
retrieving revision 1.62
diff -c -3 -p -r1.62 Makefile.in
*** include/Makefile.in	22 Jan 2003 16:51:51 -0000	1.62
--- include/Makefile.in	23 Jan 2003 19:27:46 -0000
*************** bits_headers = \
*** 215,221 ****
  	${bits_srcdir}/type_traits.h \
  	${bits_srcdir}/valarray_array.h \
  	${bits_srcdir}/valarray_array.tcc \
! 	${bits_srcdir}/valarray_meta.h \
  	${bits_srcdir}/vector.tcc
  
  
--- 215,222 ----
  	${bits_srcdir}/type_traits.h \
  	${bits_srcdir}/valarray_array.h \
  	${bits_srcdir}/valarray_array.tcc \
! 	${bits_srcdir}/valarray_before.h \
! 	${bits_srcdir}/valarray_after.h \
  	${bits_srcdir}/vector.tcc
  
  
Index: include/std/std_valarray.h
===================================================================
RCS file: /cvs/gcc/gcc/libstdc++-v3/include/std/std_valarray.h,v
retrieving revision 1.5
diff -c -3 -p -r1.5 std_valarray.h
*** include/std/std_valarray.h	2 Aug 2002 23:08:39 -0000	1.5
--- include/std/std_valarray.h	23 Jan 2003 19:27:50 -0000
*************** namespace std
*** 90,96 ****
  } // namespace std
  
  #include <bits/valarray_array.h>
! #include <bits/valarray_meta.h>
    
  namespace std
  {
--- 90,96 ----
  } // namespace std
  
  #include <bits/valarray_array.h>
! #include <bits/valarray_before.h>
    
  namespace std
  {
*************** namespace std
*** 229,235 ****
      { return _M_data[__i]; }
  
  } // std::
!       
  #include <bits/slice_array.h>
  #include <bits/gslice.h>
  #include <bits/gslice_array.h>
--- 229,237 ----
      { return _M_data[__i]; }
  
  } // std::
! 
! #include <bits/valarray_after.h>
! 
  #include <bits/slice_array.h>
  #include <bits/gslice.h>
  #include <bits/gslice_array.h>
// The template and inlines for the -*- C++ -*- internal _Meta class.

// Copyright (C) 1997, 1998, 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library.  This library is free
// software; you can redistribute it and/or modify it under the
// terms of the GNU General Public License as published by the
// Free Software Foundation; either version 2, or (at your option)
// any later version.

// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License along
// with this library; see the file COPYING.  If not, write to the Free
// Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307,
// USA.

// As a special exception, you may use this file as part of a free software
// library without restriction.  Specifically, if other files instantiate
// templates or use macros or inline functions from this file, or you compile
// this file and link it with other files to produce an executable, this
// file does not by itself cause the resulting executable to be covered by
// the GNU General Public License.  This exception does not however
// invalidate any other reasons why the executable file might be covered by
// the GNU General Public License.

// Written by Gabriel Dos Reis <Gabriel.Dos-Reis@cmla.ens-cachan.fr>

/** @file valarray_meta.h
 *  This is an internal header file, included by other library headers.
 *  You should not attempt to use it directly.
 */

#ifndef _CPP_VALARRAY_BEFORE_H
#define _CPP_VALARRAY_BEFORE_H 1

#pragma GCC system_header

#include <bits/slice_array.h>

namespace std
{
  //
  // Implementing a loosened valarray return value is tricky.
  // First we need to meet 26.3.1/3: we should not add more than
  // two levels of template nesting. Therefore we resort to template
  // template to "flatten" loosened return value types.
  // At some point we use partial specialization to remove one level
  // template nesting due to _Expr<>
  //
  
  // This class is NOT defined. It doesn't need to.
  template<typename _Tp1, typename _Tp2> class _Constant;

  // Implementations of unary functions applied to valarray<>s.
  // I use hard-coded object functions here instead of a generic
  // approach like pointers to function:
  //    1) correctness: some functions take references, others values.
  //       we can't deduce the correct type afterwards.
  //    2) efficiency -- object functions can be easily inlined
  //    3) be Koenig-lookup-friendly

  struct __abs
  {
    template<typename _Tp>
      _Tp operator()(const _Tp& __t) const { return abs(__t); }
  };

  struct __cos
  {
    template<typename _Tp>
      _Tp operator()(const _Tp& __t) const { return cos(__t); }
  };

  struct __acos
  {
    template<typename _Tp>
      _Tp operator()(const _Tp& __t) const { return acos(__t); }
  };

  struct __cosh
  {
    template<typename _Tp>
      _Tp operator()(const _Tp& __t) const { return cosh(__t); }
  };

  struct __sin
  {
    template<typename _Tp>
      _Tp operator()(const _Tp& __t) const { return sin(__t); }
  };

  struct __asin
  {
    template<typename _Tp>
      _Tp operator()(const _Tp& __t) const { return asin(__t); }
  };

  struct __sinh
  {
    template<typename _Tp>
      _Tp operator()(const _Tp& __t) const { return sinh(__t); }
  };

  struct __tan
  {
    template<typename _Tp>
      _Tp operator()(const _Tp& __t) const { return tan(__t); }
  };

  struct __atan
  {
    template<typename _Tp>
      _Tp operator()(const _Tp& __t) const { return atan(__t); }
  };

  struct __tanh
  {
    template<typename _Tp>
      _Tp operator()(const _Tp& __t) const { return tanh(__t); }
  };

  struct __exp
  {
    template<typename _Tp>
      _Tp operator()(const _Tp& __t) const { return exp(__t); }
  };

  struct __log
  {
    template<typename _Tp>
      _Tp operator()(const _Tp& __t) const { return log(__t); }
  };

  struct __log10
  {
    template<typename _Tp>
      _Tp operator()(const _Tp& __t) const { return log10(__t); }
  };

  struct __sqrt
  {
    template<typename _Tp>
      _Tp operator()(const _Tp& __t) const { return sqrt(__t); }
  };

  // In the past, we used to tailor operator applications semantics
  // to the specialization of standard function objects (i.e. plus<>, etc.)
  // That is incorrect.  Therefore we provide our own surrogates.

  struct __unary_plus
  {
    template<typename _Tp>
      _Tp operator()(const _Tp& __t) const { return +__t; }
  };

  struct __negate
  {
    template<typename _Tp>
      _Tp operator()(const _Tp& __t) const { return -__t; }
  };

  struct __bitwise_not
  {
    template<typename _Tp>
      _Tp operator()(const _Tp& __t) const { return ~__t; }
  };

  struct __plus
  {
    template<typename _Tp>
      _Tp operator()(const _Tp& __x, const _Tp& __y) const
      { return __x + __y; }
  };

  struct __minus
  {
    template<typename _Tp>
      _Tp operator()(const _Tp& __x, const _Tp& __y) const
      { return __x - __y; }
  };

  struct __multiplies
  {
    template<typename _Tp>
      _Tp operator()(const _Tp& __x, const _Tp& __y) const
      { return __x * __y; }
  };

  struct __divides
  {
    template<typename _Tp>
      _Tp operator()(const _Tp& __x, const _Tp& __y) const
      { return __x / __y; }
  };

  struct __modulus
  {
    template<typename _Tp>
      _Tp operator()(const _Tp& __x, const _Tp& __y) const
      { return __x % __y; }
  };

  struct __bitwise_xor
  {
    template<typename _Tp>
      _Tp operator()(const _Tp& __x, const _Tp& __y) const
      { return __x ^ __y; }
  };

  struct __bitwise_and
  {
    template<typename _Tp>
      _Tp operator()(const _Tp& __x, const _Tp& __y) const
      { return __x & __y; }
  };

  struct __bitwise_or
  {
    template<typename _Tp>
      _Tp operator()(const _Tp& __x, const _Tp& __y) const
      { return __x | __y; }
  };

  struct __shift_left
  {
    template<typename _Tp>
      _Tp operator()(const _Tp& __x, const _Tp& __y) const
      { return __x << __y; }
  };

  struct __shift_right
  {
    template<typename _Tp>
      _Tp operator()(const _Tp& __x, const _Tp& __y) const
      { return __x >> __y; }
  };

  struct __logical_and
  {
    template<typename _Tp>
      bool operator()(const _Tp& __x, const _Tp& __y) const
      { return __x && __y; }
  };

  struct __logical_or
  {
    template<typename _Tp>
      bool operator()(const _Tp& __x, const _Tp& __y) const
      { return __x || __y; }
  };

  struct __logical_not
  {
    template<typename _Tp>
      bool operator()(const _Tp& __x) const { return !__x; }
  };

  struct __equal_to
  {
    template<typename _Tp>
      bool operator()(const _Tp& __x, const _Tp& __y) const
      { return __x == __y; }
  };

  struct __not_equal_to
  {
    template<typename _Tp>
      bool operator()(const _Tp& __x, const _Tp& __y) const
      { return __x == __y; }
  };

  struct __less
  {
    template<typename _Tp>
      bool operator()(const _Tp& __x, const _Tp& __y) const
      { return __x < __y; }
  };

  struct __greater
  {
    template<typename _Tp>
      bool operator()(const _Tp& __x, const _Tp& __y) const
      { return __x > __y; }
  };

  struct __less_equal
  {
    template<typename _Tp>
      bool operator()(const _Tp& __x, const _Tp& __y) const
      { return __x <= __y; }
  };

  struct __greater_equal
  {
    template<typename _Tp>
      bool operator()(const _Tp& __x, const _Tp& __y) const
      { return __x >= __y; }
  };

  // The few binary functions we miss.
  struct __atan2
  {
    template<typename _Tp>
      _Tp operator()(const _Tp& __x, const _Tp& __y) const
      { return atan2(__x, __y); }
  };

  struct __pow
  {
    template<typename _Tp>
      _Tp operator()(const _Tp& __x, const _Tp& __y) const
      { return pow(__x, __y); }
  };


  // We need these bits in order to recover the return type of
  // some functions/operators now that we're no longer using
  // function templates.
  template<typename, typename _Tp>
    struct __fun
    {
      typedef _Tp result_type;
    };

  // several specializations for relational operators.
  template<typename _Tp>
    struct __fun<__logical_not, _Tp>
    {
      typedef bool result_type;
    };

  template<typename _Tp>
    struct __fun<__logical_and, _Tp>
    {
      typedef bool result_type;
    };

  template<typename _Tp>
    struct __fun<__logical_or, _Tp>
    {
      typedef bool result_type;
    };

  template<typename _Tp>
    struct __fun<__less, _Tp>
    {
      typedef bool result_type;
    };

  template<typename _Tp>
    struct __fun<__greater, _Tp>
    {
      typedef bool result_type;
    };

  template<typename _Tp>
    struct __fun<__less_equal, _Tp>
    {
      typedef bool result_type;
    };

  template<typename _Tp>
    struct __fun<__greater_equal, _Tp>
    {
      typedef bool result_type;
    };

  template<typename _Tp>
    struct __fun<__equal_to, _Tp>
    {
      typedef bool result_type;
    };

  template<typename _Tp>
    struct __fun<__not_equal_to, _Tp>
    {
      typedef bool result_type;
    };

    //
    // Apply function taking a value/const reference closure
    //

  template<typename _Dom, typename _Arg>
    class _FunBase 
    {
    public:
      typedef typename _Dom::value_type value_type;
      
      _FunBase(const _Dom& __e, value_type __f(_Arg))
	: _M_expr(__e), _M_func(__f) {}

      value_type operator[](size_t __i) const
      { return _M_func (_M_expr[__i]); }

      size_t size() const { return _M_expr.size ();}

    private:
        const _Dom& _M_expr;
        value_type (*_M_func)(_Arg);
    };

  template<class _Dom>
    struct _ValFunClos<_Expr,_Dom> : _FunBase<_Dom, typename _Dom::value_type> 
    {
      typedef _FunBase<_Dom, typename _Dom::value_type> _Base;
      typedef typename _Base::value_type value_type;
      typedef value_type _Tp;
    
      _ValFunClos(const _Dom& __e, _Tp __f(_Tp)) : _Base(__e, __f) {}
    };

  template<typename _Tp>
    struct _ValFunClos<_ValArray,_Tp> : _FunBase<valarray<_Tp>, _Tp>
    {
      typedef _FunBase<valarray<_Tp>, _Tp> _Base;
      typedef _Tp value_type;
      
      _ValFunClos(const valarray<_Tp>& __v, _Tp __f(_Tp)) : _Base(__v, __f) {}
    };

  template<class _Dom>
    struct _RefFunClos<_Expr,_Dom> :
        _FunBase<_Dom, const typename _Dom::value_type&> 
    {
      typedef _FunBase<_Dom, const typename _Dom::value_type&> _Base;
      typedef typename _Base::value_type value_type;
      typedef value_type _Tp;
      
      _RefFunClos(const _Dom& __e, _Tp __f(const _Tp&))
	: _Base(__e, __f) {}
    };

  template<typename _Tp>
    struct _RefFunClos<_ValArray,_Tp> : _FunBase<valarray<_Tp>, const _Tp&> 
    {
      typedef _FunBase<valarray<_Tp>, const _Tp&> _Base;
      typedef _Tp value_type;
      
      _RefFunClos(const valarray<_Tp>& __v, _Tp __f(const _Tp&))
	: _Base(__v, __f) {}
    };
    
  //
  // Unary expression closure.
  //

  template<class _Oper, class _Arg>
    class _UnBase
    {
    public:
      typedef typename _Arg::value_type _Vt;
      typedef typename __fun<_Oper, _Vt>::result_type value_type;

      _UnBase(const _Arg& __e) : _M_expr(__e) {}

      value_type operator[](size_t __i) const
      { return _M_expr[__i]; }

      size_t size() const { return _M_expr.size(); }

    private:
      const _Arg& _M_expr;
    };

  template<class _Oper, class _Dom>
    struct _UnClos<_Oper, _Expr, _Dom> :  _UnBase<_Oper, _Dom>
    {
      typedef _Dom _Arg;
      typedef _UnBase<_Oper, _Dom> _Base;
      typedef typename _Base::value_type value_type;
      
      _UnClos(const _Arg& __e) : _Base(__e) {}
    };

  template<class _Oper, typename _Tp>
    struct _UnClos<_Oper, _ValArray, _Tp> : _UnBase<_Oper, valarray<_Tp> > 
    {
      typedef valarray<_Tp> _Arg;
      typedef _UnBase<_Oper, valarray<_Tp> > _Base;
      typedef typename _Base::value_type value_type;
      
      _UnClos(const _Arg& __e) : _Base(__e) {}
    };


  //
  // Binary expression closure.
  //

  template<class _Oper, class _FirstArg, class _SecondArg>
    class _BinBase 
    {
    public:
        typedef typename _FirstArg::value_type _Vt;
        typedef typename __fun<_Oper, _Vt>::result_type value_type;

      _BinBase(const _FirstArg& __e1, const _SecondArg& __e2)
	: _M_expr1(__e1), _M_expr2(__e2) {}
      
      value_type operator[](size_t __i) const
      { return _Oper()(_M_expr1[__i], _M_expr2[__i]); }

      size_t size() const { return _M_expr1.size(); }
        
    private:
      const _FirstArg& _M_expr1;
      const _SecondArg& _M_expr2;
    };


  template<class _Oper, class _Clos>
    class _BinBase2
    {
    public:
      typedef typename _Clos::value_type _Vt;
      typedef typename __fun<_Oper, _Vt>::result_type value_type;

      _BinBase2(const _Clos& __e, const _Vt& __t)
	: _M_expr1(__e), _M_expr2(__t) {}

      value_type operator[](size_t __i) const
      { return _Oper()(_M_expr1[__i], _M_expr2); }

      size_t size() const { return _M_expr1.size(); }

    private:
      const _Clos& _M_expr1;
      const _Vt& _M_expr2;
    };

  template<class _Oper, class _Clos>
    class _BinBase1
    {
    public:
      typedef typename _Clos::value_type _Vt;
      typedef typename __fun<_Oper, _Vt>::result_type value_type;

      _BinBase1(const _Vt& __t, const _Clos& __e)
	: _M_expr1(__t), _M_expr2(__e) {}

      value_type operator[](size_t __i) const
      { return _Oper()(_M_expr1, _M_expr2[__i]); }
      
      size_t size() const { return _M_expr2.size(); }

    private:
      const _Vt& _M_expr1;
      const _Clos& _M_expr2;
    };
    
  template<class _Oper, class _Dom1, class _Dom2>
    struct _BinClos<_Oper, _Expr, _Expr, _Dom1, _Dom2>
        : _BinBase<_Oper,_Dom1,_Dom2> 
    {
      typedef _BinBase<_Oper,_Dom1,_Dom2> _Base;
      typedef typename _Base::value_type value_type;
        
      _BinClos(const _Dom1& __e1, const _Dom2& __e2) : _Base(__e1, __e2) {}
    };

  template<class _Oper, typename _Tp>
    struct _BinClos<_Oper,_ValArray,_ValArray,_Tp,_Tp>
      : _BinBase<_Oper,valarray<_Tp>,valarray<_Tp> > 
    {
      typedef _BinBase<_Oper,valarray<_Tp>,valarray<_Tp> > _Base;
      typedef _Tp value_type;

      _BinClos(const valarray<_Tp>& __v, const valarray<_Tp>& __w)
	: _Base(__v, __w) {}
    };

  template<class _Oper, class _Dom>
    struct _BinClos<_Oper,_Expr,_ValArray,_Dom,typename _Dom::value_type>
      : _BinBase<_Oper,_Dom,valarray<typename _Dom::value_type> > 
    {
      typedef typename _Dom::value_type _Tp;
      typedef _BinBase<_Oper,_Dom,valarray<_Tp> > _Base;
      typedef typename _Base::value_type value_type;
      
      _BinClos(const _Dom& __e1, const valarray<_Tp>& __e2)
	: _Base(__e1, __e2) {}
    };

  template<class _Oper, class _Dom>
    struct  _BinClos<_Oper,_ValArray,_Expr,typename _Dom::value_type,_Dom>
      : _BinBase<_Oper,valarray<typename _Dom::value_type>,_Dom> 
    {
      typedef typename _Dom::value_type _Tp;
      typedef _BinBase<_Oper,valarray<_Tp>,_Dom> _Base;
      typedef typename _Base::value_type value_type;
      
      _BinClos(const valarray<_Tp>& __e1, const _Dom& __e2)
	: _Base(__e1, __e2) {}
    };

  template<class _Oper, class _Dom>
    struct _BinClos<_Oper,_Expr,_Constant,_Dom,typename _Dom::value_type>
      : _BinBase2<_Oper,_Dom> 
    {
      typedef typename _Dom::value_type _Tp;
      typedef _BinBase2<_Oper,_Dom> _Base;
      typedef typename _Base::value_type value_type;
      
      _BinClos(const _Dom& __e1, const _Tp& __e2) : _Base(__e1, __e2) {}
    };

  template<class _Oper, class _Dom>
    struct _BinClos<_Oper,_Constant,_Expr,typename _Dom::value_type,_Dom>
      : _BinBase1<_Oper,_Dom> 
    {
      typedef typename _Dom::value_type _Tp;
      typedef _BinBase1<_Oper,_Dom> _Base;
      typedef typename _Base::value_type value_type;
      
      _BinClos(const _Tp& __e1, const _Dom& __e2) : _Base(__e1, __e2) {}
    };
    
  template<class _Oper, typename _Tp>
    struct _BinClos<_Oper,_ValArray,_Constant,_Tp,_Tp>
      : _BinBase2<_Oper,valarray<_Tp> > 
    {
      typedef _BinBase2<_Oper,valarray<_Tp> > _Base;
      typedef typename _Base::value_type value_type;
      
      _BinClos(const valarray<_Tp>& __v, const _Tp& __t) : _Base(__v, __t) {}
    };

  template<class _Oper, typename _Tp>
    struct _BinClos<_Oper,_Constant,_ValArray,_Tp,_Tp>
      : _BinBase1<_Oper,valarray<_Tp> > 
    {
      typedef _BinBase1<_Oper,valarray<_Tp> > _Base;
      typedef typename _Base::value_type value_type;
      
      _BinClos(const _Tp& __t, const valarray<_Tp>& __v) : _Base(__t, __v) {}
    };
        

    //
    // slice_array closure.
    //
    template<typename _Dom>  class _SBase {
    public:
        typedef typename _Dom::value_type value_type;

        _SBase (const _Dom& __e, const slice& __s)
                : _M_expr (__e), _M_slice (__s) {}
        value_type operator[] (size_t __i) const
        { return _M_expr[_M_slice.start () + __i * _M_slice.stride ()]; }
        size_t size() const { return _M_slice.size (); }

    private:
        const _Dom& _M_expr;
        const slice& _M_slice;
    };

    template<typename _Tp> class _SBase<_Array<_Tp> > {
    public:
        typedef _Tp value_type;

        _SBase (_Array<_Tp> __a, const slice& __s)
                : _M_array (__a._M_data+__s.start()), _M_size (__s.size()),
                  _M_stride (__s.stride()) {}
        value_type operator[] (size_t __i) const
        { return _M_array._M_data[__i * _M_stride]; }
        size_t size() const { return _M_size; }

    private:
        const _Array<_Tp> _M_array;
        const size_t _M_size;
        const size_t _M_stride;
    };

    template<class _Dom> struct  _SClos<_Expr,_Dom> : _SBase<_Dom> {
        typedef _SBase<_Dom> _Base;
        typedef typename _Base::value_type value_type;
        
        _SClos (const _Dom& __e, const slice& __s) : _Base (__e, __s) {}
    };

    template<typename _Tp>
    struct _SClos<_ValArray,_Tp> : _SBase<_Array<_Tp> > {
        typedef  _SBase<_Array<_Tp> > _Base;
        typedef _Tp value_type;

        _SClos (_Array<_Tp> __a, const slice& __s) : _Base (__a, __s) {}
    };

} // std::


#endif /* _CPP_VALARRAY_BEFORE_H */

// Local Variables:
// mode:c++
// End:
// The template and inlines for the -*- C++ -*- internal _Array helper class.

// Copyright (C) 1997, 1998, 1999, 2000 Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library.  This library is free
// software; you can redistribute it and/or modify it under the
// terms of the GNU General Public License as published by the
// Free Software Foundation; either version 2, or (at your option)
// any later version.

// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License along
// with this library; see the file COPYING.  If not, write to the Free
// Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307,
// USA.

// As a special exception, you may use this file as part of a free software
// library without restriction.  Specifically, if other files instantiate
// templates or use macros or inline functions from this file, or you compile
// this file and link it with other files to produce an executable, this
// file does not by itself cause the resulting executable to be covered by
// the GNU General Public License.  This exception does not however
// invalidate any other reasons why the executable file might be covered by
// the GNU General Public License.

// Written by Gabriel Dos Reis <Gabriel.Dos-Reis@DPTMaths.ENS-Cachan.Fr>

/** @file valarray_array.h
 *  This is an internal header file, included by other library headers.
 *  You should not attempt to use it directly.
 */

#ifndef _CPP_BITS_ARRAY_H
#define _CPP_BITS_ARRAY_H 1

#pragma GCC system_header

#include <bits/c++config.h>
#include <bits/cpp_type_traits.h>
#include <cstdlib>
#include <cstring>
#include <new>

namespace std
{
  //
  // Helper functions on raw pointers
  //
  
  // We get memory by the old fashion way
  inline void*
  __valarray_get_memory(size_t __n)
  { return operator new(__n); }
  
  template<typename _Tp>
     inline _Tp*__restrict__
     __valarray_get_storage(size_t __n)
     {
       return static_cast<_Tp*__restrict__>
         (__valarray_get_memory(__n * sizeof(_Tp)));
     }

  // Return memory to the system
  inline void
  __valarray_release_memory(void* __p)
  { operator delete(__p); }

  // Turn a raw-memory into an array of _Tp filled with _Tp()
  // This is required in 'valarray<T> v(n);'
  template<typename _Tp, bool>
     struct _Array_default_ctor
     {
       // Please note that this isn't exception safe.  But
       // valarrays aren't required to be exception safe.
       inline static void
       _S_do_it(_Tp* __restrict__ __b, _Tp* __restrict__ __e)
       { while (__b != __e) new(__b++) _Tp(); }
     };

  template<typename _Tp>
     struct _Array_default_ctor<_Tp, true>
     {
       // For fundamental types, it suffices to say 'memset()'
       inline static void
       _S_do_it(_Tp* __restrict__ __b, _Tp* __restrict__ __e)
       { memset(__b, 0, (__e - __b)*sizeof(_Tp)); }
     };

  template<typename _Tp>
     inline void
     __valarray_default_construct(_Tp* __restrict__ __b, _Tp* __restrict__ __e)
     {
       _Array_default_ctor<_Tp, __is_fundamental<_Tp>::_M_type>::
         _S_do_it(__b, __e);
     }
    
  // Turn a raw-memory into an array of _Tp filled with __t
  // This is the required in valarray<T> v(n, t).  Also
  // used in valarray<>::resize().
  template<typename _Tp, bool>
     struct _Array_init_ctor
     {
       // Please note that this isn't exception safe.  But
       // valarrays aren't required to be exception safe.
       inline static void
       _S_do_it(_Tp* __restrict__ __b, _Tp* __restrict__ __e, const _Tp __t)
       { while (__b != __e) new(__b++) _Tp(__t); }
     };

  template<typename _Tp>
     struct _Array_init_ctor<_Tp, true>
     {
       inline static void
       _S_do_it(_Tp* __restrict__ __b, _Tp* __restrict__ __e,  const _Tp __t)
       { while (__b != __e) *__b++ = __t; }
     };

  template<typename _Tp>
     inline void
     __valarray_fill_construct(_Tp* __restrict__ __b, _Tp* __restrict__ __e,
                               const _Tp __t)
     {
       _Array_init_ctor<_Tp, __is_fundamental<_Tp>::_M_type>::
         _S_do_it(__b, __e, __t);
     }

  //
  // copy-construct raw array [__o, *) from plain array [__b, __e)
  // We can't just say 'memcpy()'
  //
  template<typename _Tp, bool>
     struct _Array_copy_ctor
     {
       // Please note that this isn't exception safe.  But
       // valarrays aren't required to be exception safe.
       inline static void
       _S_do_it(const _Tp* __restrict__ __b, const _Tp* __restrict__ __e,
                _Tp* __restrict__ __o)
       { while (__b != __e) new(__o++) _Tp(*__b++); }
     };

  template<typename _Tp>
     struct _Array_copy_ctor<_Tp, true>
     {
       inline static void
       _S_do_it(const _Tp* __restrict__ __b, const _Tp* __restrict__ __e,
                _Tp* __restrict__ __o)
       { memcpy(__o, __b, (__e - __b)*sizeof(_Tp)); }
     };

  template<typename _Tp>
     inline void
     __valarray_copy_construct(const _Tp* __restrict__ __b,
                               const _Tp* __restrict__ __e,
                               _Tp* __restrict__ __o)
     {
       _Array_copy_ctor<_Tp, __is_fundamental<_Tp>::_M_type>::
         _S_do_it(__b, __e, __o);
     }

  // copy-construct raw array [__o, *) from strided array __a[<__n : __s>]
  template<typename _Tp>
     inline void
     __valarray_copy_construct (const _Tp* __restrict__ __a, size_t __n,
                                size_t __s, _Tp* __restrict__ __o)
     {
       if (__is_fundamental<_Tp>::_M_type)
         while (__n--) { *__o++ = *__a; __a += __s; }
       else
         while (__n--) { new(__o++) _Tp(*__a);  __a += __s; }
     }

  // copy-construct raw array [__o, *) from indexed array __a[__i[<__n>]]
  template<typename _Tp>
     inline void
     __valarray_copy_construct (const _Tp* __restrict__ __a,
                                const size_t* __restrict__ __i,
                                _Tp* __restrict__ __o, size_t __n)
     {
       if (__is_fundamental<_Tp>::_M_type)
         while (__n--) *__o++ = __a[*__i++];
       else
         while (__n--) new (__o++) _Tp(__a[*__i++]);
     }

  // Do the necessary cleanup when we're done with arrays.
  template<typename _Tp>
     inline void
     __valarray_destroy_elements(_Tp* __restrict__ __b, _Tp* __restrict__ __e)
     {
       if (!__is_fundamental<_Tp>::_M_type)
         while (__b != __e) { __b->~_Tp(); ++__b; }
     }
    
  // Fill a plain array __a[<__n>] with __t
  template<typename _Tp>
     inline void
     __valarray_fill (_Tp* __restrict__ __a, size_t __n, const _Tp& __t)
     { while (__n--) *__a++ = __t; }
  
  // fill strided array __a[<__n-1 : __s>] with __t
  template<typename _Tp>
     inline void
     __valarray_fill (_Tp* __restrict__ __a, size_t __n,
                      size_t __s, const _Tp& __t)
     { for (size_t __i=0; __i<__n; ++__i, __a+=__s) *__a = __t; }

  // fill indir   ect array __a[__i[<__n>]] with __i
  template<typename _Tp>
     inline void
     __valarray_fill(_Tp* __restrict__ __a, const size_t* __restrict__ __i,
                     size_t __n, const _Tp& __t)
     { for (size_t __j=0; __j<__n; ++__j, ++__i) __a[*__i] = __t; }
    
  // copy plain array __a[<__n>] in __b[<__n>]
  // For non-fundamental types, it is wrong to say 'memcpy()'
  template<typename _Tp, bool>
     struct _Array_copier
     {
       inline static void
       _S_do_it(const _Tp* __restrict__ __a, size_t __n, _Tp* __restrict__ __b)
       { while (__n--) *__b++ = *__a++; }      
     };

  template<typename _Tp>
     struct _Array_copier<_Tp, true>
     {
       inline static void
       _S_do_it(const _Tp* __restrict__ __a, size_t __n, _Tp* __restrict__ __b)
       { memcpy (__b, __a, __n * sizeof (_Tp)); }
     };

  // Copy a plain array __a[<__n>] into a play array __b[<>]
  template<typename _Tp>
     inline void
     __valarray_copy(const _Tp* __restrict__ __a, size_t __n,
                      _Tp* __restrict__ __b)
     {
       _Array_copier<_Tp, __is_fundamental<_Tp>::_M_type>::
         _S_do_it(__a, __n, __b);
     }

  // Copy strided array __a[<__n : __s>] in plain __b[<__n>]
  template<typename _Tp>
     inline void
     __valarray_copy(const _Tp* __restrict__ __a, size_t __n, size_t __s,
                      _Tp* __restrict__ __b)
     { for (size_t __i=0; __i<__n; ++__i, ++__b, __a += __s) *__b = *__a; }

  // Copy a plain array  __a[<__n>] into a strided array __b[<__n : __s>]
  template<typename _Tp>
     inline void
     __valarray_copy(const _Tp* __restrict__ __a, _Tp* __restrict__ __b,
                      size_t __n, size_t __s)
     { for (size_t __i=0; __i<__n; ++__i, ++__a, __b+=__s) *__b = *__a; }

  // Copy strided array __src[<__n : __s1>] into another
  // strided array __dst[< : __s2>].  Their sizes must match.
  template<typename _Tp>
     inline void
     __valarray_copy(const _Tp* __restrict__ __src, size_t __n, size_t __s1,
                     _Tp* __restrict__ __dst, size_t __s2)
     {
       for (size_t __i = 0; __i < __n; ++__i)
         __dst[__i * __s2] = __src [ __i * __s1];
     }

  
  // Copy an indexed array __a[__i[<__n>]] in plain array __b[<__n>]
  template<typename _Tp>
     inline void
     __valarray_copy (const _Tp* __restrict__ __a,
                      const size_t* __restrict__ __i,
                      _Tp* __restrict__ __b, size_t __n)
     { for (size_t __j=0; __j<__n; ++__j, ++__b, ++__i) *__b = __a[*__i]; }

  // Copy a plain array __a[<__n>] in an indexed array __b[__i[<__n>]]
  template<typename _Tp>
     inline void
     __valarray_copy (const _Tp* __restrict__ __a, size_t __n,
                      _Tp* __restrict__ __b, const size_t* __restrict__ __i)
     { for (size_t __j=0; __j<__n; ++__j, ++__a, ++__i) __b[*__i] = *__a; }

  // Copy the __n first elements of an indexed array __src[<__i>] into
  // another indexed array __dst[<__j>].
  template<typename _Tp>
     inline void
     __valarray_copy(const _Tp* __restrict__ __src, size_t __n,
                     const size_t* __restrict__ __i,
                     _Tp* __restrict__ __dst, const size_t* __restrict__ __j)
     {
       for (size_t __k = 0; __k < __n; ++__k)
         __dst[*__j++] = __src[*__i++];
     }

  //
  // Compute the sum of elements in range [__f, __l)
  // This is a naive algorithm.  It suffers from cancelling.
  // In the future try to specialize
  // for _Tp = float, double, long double using a more accurate
  // algorithm.
  //
  template<typename _Tp>
     inline _Tp
     __valarray_sum(const _Tp* __restrict__ __f, const _Tp* __restrict__ __l)
     {
       _Tp __r = _Tp();
       while (__f != __l) __r += *__f++;
       return __r;
     }

  // Compute the product of all elements in range [__f, __l)
  template<typename _Tp>
     inline _Tp
     __valarray_product(const _Tp* __restrict__ __f,
                        const _Tp* __restrict__ __l)
     {
       _Tp __r = _Tp(1);
       while (__f != __l) __r = __r * *__f++;
       return __r;
     }

  // Compute the min/max of an array-expression
  template<typename _Ta>
     inline typename _Ta::value_type
     __valarray_min(const _Ta& __a)
     {
       size_t __s = __a.size();
       typedef typename _Ta::value_type _Value_type;
       _Value_type __r = __s == 0 ? _Value_type() : __a[0];
       for (size_t __i = 1; __i < __s; ++__i)
         {
           _Value_type __t = __a[__i];
           if (__t < __r)
             __r = __t;
         }
       return __r;
     }
  
  template<typename _Ta>
     inline typename _Ta::value_type
     __valarray_max(const _Ta& __a)
     {
       size_t __s = __a.size();
       typedef typename _Ta::value_type _Value_type;
       _Value_type __r = __s == 0 ? _Value_type() : __a[0];
       for (size_t __i = 1; __i < __s; ++__i)
         {
           _Value_type __t = __a[__i];
           if (__t > __r)
             __r = __t;
         }
       return __r;
     }
  
  //
  // Helper class _Array, first layer of valarray abstraction.
  // All operations on valarray should be forwarded to this class
  // whenever possible. -- gdr
  //
    
  template<typename _Tp>
     struct _Array
     {
       explicit _Array (size_t);
       explicit _Array (_Tp* const __restrict__);
       explicit _Array (const valarray<_Tp>&);
       _Array (const _Tp* __restrict__, size_t);

       _Tp* begin () const;

       _Tp* const __restrict__ _M_data;
     };
  
  template<typename _Tp>
     inline void
     __valarray_fill (_Array<_Tp> __a, size_t __n, const _Tp& __t)
     { __valarray_fill (__a._M_data, __n, __t); }
  
  template<typename _Tp>
     inline void
     __valarray_fill (_Array<_Tp> __a, size_t __n, size_t __s, const _Tp& __t)
     { __valarray_fill (__a._M_data, __n, __s, __t); }
  
  template<typename _Tp>
     inline void
     __valarray_fill (_Array<_Tp> __a, _Array<size_t> __i, 
                      size_t __n, const _Tp& __t)
     { __valarray_fill (__a._M_data, __i._M_data, __n, __t); }

  // Copy a plain array __a[<__n>] into a play array __b[<>]
  template<typename _Tp>
     inline void
     __valarray_copy(_Array<_Tp> __a, size_t __n, _Array<_Tp> __b)
     { __valarray_copy(__a._M_data, __n, __b._M_data); }
  
  // Copy strided array __a[<__n : __s>] in plain __b[<__n>]
  template<typename _Tp>
     inline void
     __valarray_copy(_Array<_Tp> __a, size_t __n, size_t __s, _Array<_Tp> __b)
     { __valarray_copy(__a._M_data, __n, __s, __b._M_data); }

  // Copy a plain array  __a[<__n>] into a strided array __b[<__n : __s>]
  template<typename _Tp>
     inline void
     __valarray_copy(_Array<_Tp> __a, _Array<_Tp> __b, size_t __n, size_t __s)
     { __valarray_copy(__a._M_data, __b._M_data, __n, __s); }

  // Copy strided array __src[<__n : __s1>] into another
  // strided array __dst[< : __s2>].  Their sizes must match.
  template<typename _Tp>
     inline void
     __valarray_copy(_Array<_Tp> __a, size_t __n, size_t __s1,
                     _Array<_Tp> __b, size_t __s2)
     { __valarray_copy(__a._M_data, __n, __s1, __b._M_data, __s2); }

  
  // Copy an indexed array __a[__i[<__n>]] in plain array __b[<__n>]
  template<typename _Tp>
     inline void
     __valarray_copy(_Array<_Tp> __a, _Array<size_t> __i, 
                      _Array<_Tp> __b, size_t __n)
     { __valarray_copy(__a._M_data, __i._M_data, __b._M_data, __n); }
  
  // Copy a plain array __a[<__n>] in an indexed array __b[__i[<__n>]]
  template<typename _Tp>
     inline void
     __valarray_copy(_Array<_Tp> __a, size_t __n, _Array<_Tp> __b, 
                      _Array<size_t> __i)
     { __valarray_copy(__a._M_data, __n, __b._M_data, __i._M_data); }

  // Copy the __n first elements of an indexed array __src[<__i>] into
  // another indexed array __dst[<__j>].
  template<typename _Tp>
     inline void
     __valarray_copy(_Array<_Tp> __src, size_t __n, _Array<size_t> __i,
                     _Array<_Tp> __dst, _Array<size_t> __j)
     {
       __valarray_copy(__src._M_data, __n, __i._M_data,
                       __dst._M_data, __j._M_data);
     }

  template<typename _Tp>
     inline
     _Array<_Tp>::_Array (size_t __n)
       : _M_data(__valarray_get_storage<_Tp>(__n))
     { __valarray_default_construct(_M_data, _M_data + __n); }

  template<typename _Tp>
     inline
     _Array<_Tp>::_Array (_Tp* const __restrict__ __p) : _M_data (__p) {}
  
  template<typename _Tp>
     inline _Array<_Tp>::_Array (const valarray<_Tp>& __v) 
         : _M_data (__v._M_data) {}
  
  template<typename _Tp>
     inline
     _Array<_Tp>::_Array (const _Tp* __restrict__ __b, size_t __s) 
       : _M_data(__valarray_get_storage<_Tp>(__s))
     { __valarray_copy_construct(__b, __s, _M_data); }

  template<typename _Tp>
     inline _Tp*
     _Array<_Tp>::begin () const
     { return _M_data; }

#define _DEFINE_ARRAY_FUNCTION(_Op, _Name)				\
template<typename _Tp>							\
inline void								\
_Array_augmented_##_Name (_Array<_Tp> __a, size_t __n, const _Tp& __t)	\
{									\
  for (_Tp* __p=__a._M_data; __p<__a._M_data+__n; ++__p)		\
    *__p _Op##= __t;							\
}									\
									\
template<typename _Tp>							\
inline void								\
_Array_augmented_##_Name (_Array<_Tp> __a, size_t __n, _Array<_Tp> __b)	\
{									\
  _Tp* __p = __a._M_data;						\
  for (_Tp* __q=__b._M_data; __q<__b._M_data+__n; ++__p, ++__q)		\
    *__p _Op##= *__q;							\
}									\
									\
template<typename _Tp, class _Dom>					\
void									\
_Array_augmented_##_Name (_Array<_Tp> __a, 				\
                         const _Expr<_Dom,_Tp>& __e, size_t __n)	\
{									\
    _Tp* __p (__a._M_data);						\
    for (size_t __i=0; __i<__n; ++__i, ++__p) *__p _Op##= __e[__i];	\
}									\
									\
template<typename _Tp>							\
inline void								\
_Array_augmented_##_Name (_Array<_Tp> __a, size_t __n, size_t __s, 	\
			 _Array<_Tp> __b)				\
{					       				\
    _Tp* __q (__b._M_data);						\
    for (_Tp* __p=__a._M_data; __p<__a._M_data+__s*__n; __p+=__s, ++__q) \
      *__p _Op##= *__q;							\
}									\
									\
template<typename _Tp>							\
inline void								\
_Array_augmented_##_Name (_Array<_Tp> __a, _Array<_Tp> __b, 		\
			 size_t __n, size_t __s)			\
{									\
    _Tp* __q (__b._M_data);						\
    for (_Tp* __p=__a._M_data; __p<__a._M_data+__n; ++__p, __q+=__s)	\
      *__p _Op##= *__q;							\
}									\
									\
template<typename _Tp, class _Dom>					\
void									\
_Array_augmented_##_Name (_Array<_Tp> __a, size_t __s,			\
                          const _Expr<_Dom,_Tp>& __e, size_t __n)	\
{									\
    _Tp* __p (__a._M_data);						\
    for (size_t __i=0; __i<__n; ++__i, __p+=__s) *__p _Op##= __e[__i];	\
}									\
									\
template<typename _Tp>							\
inline void								\
_Array_augmented_##_Name (_Array<_Tp> __a, _Array<size_t> __i,		\
                          _Array<_Tp> __b, size_t __n)			\
{									\
    _Tp* __q (__b._M_data);						\
    for (size_t* __j=__i._M_data; __j<__i._M_data+__n; ++__j, ++__q)	\
        __a._M_data[*__j] _Op##= *__q;					\
}									\
									\
template<typename _Tp>							\
inline void								\
_Array_augmented_##_Name (_Array<_Tp> __a, size_t __n,			\
                          _Array<_Tp> __b, _Array<size_t> __i)		\
{									\
    _Tp* __p (__a._M_data);						\
    for (size_t* __j=__i._M_data; __j<__i._M_data+__n; ++__j, ++__p)	\
        *__p _Op##= __b._M_data[*__j];					\
}									\
									\
template<typename _Tp, class _Dom>					\
void									\
_Array_augmented_##_Name (_Array<_Tp> __a, _Array<size_t> __i,		\
                          const _Expr<_Dom, _Tp>& __e, size_t __n)	\
{									\
    size_t* __j (__i._M_data);						\
    for (size_t __k=0; __k<__n; ++__k, ++__j) 				\
      __a._M_data[*__j] _Op##= __e[__k];				\
}									\
									\
template<typename _Tp>							\
void									\
_Array_augmented_##_Name (_Array<_Tp> __a, _Array<bool> __m,		\
                          _Array<_Tp> __b, size_t __n)			\
{									\
    bool* ok (__m._M_data);						\
    _Tp* __p (__a._M_data);						\
    for (_Tp* __q=__b._M_data; __q<__b._M_data+__n; ++__q, ++ok, ++__p) { \
        while (! *ok) {							\
            ++ok;							\
            ++__p;							\
        }								\
        *__p _Op##= *__q;						\
    }									\
}									\
									\
template<typename _Tp>							\
void									\
_Array_augmented_##_Name (_Array<_Tp> __a, size_t __n,			\
                         _Array<_Tp> __b, _Array<bool> __m)		\
{									\
    bool* ok (__m._M_data);						\
    _Tp* __q (__b._M_data);						\
    for (_Tp* __p=__a._M_data; __p<__a._M_data+__n; ++__p, ++ok, ++__q) { \
        while (! *ok) {							\
            ++ok;							\
            ++__q;							\
        }								\
        *__p _Op##= *__q;						\
    }									\
}									\
									\
template<typename _Tp, class _Dom>					\
void									\
_Array_augmented_##_Name (_Array<_Tp> __a, _Array<bool> __m,		\
                          const _Expr<_Dom, _Tp>& __e, size_t __n)	\
{									\
    bool* ok(__m._M_data);						\
    _Tp* __p (__a._M_data);						\
    for (size_t __i=0; __i<__n; ++__i, ++ok, ++__p) {			\
        while (! *ok) {							\
            ++ok;							\
            ++__p;							\
        }								\
        *__p _Op##= __e[__i];						\
    }									\
}

   _DEFINE_ARRAY_FUNCTION(+, __plus)
   _DEFINE_ARRAY_FUNCTION(-, __minus)
   _DEFINE_ARRAY_FUNCTION(*, __multiplies)
   _DEFINE_ARRAY_FUNCTION(/, __divides)
   _DEFINE_ARRAY_FUNCTION(%, __modulus)
   _DEFINE_ARRAY_FUNCTION(^, __bitwise_xor)
   _DEFINE_ARRAY_FUNCTION(|, __bitwise_or)
   _DEFINE_ARRAY_FUNCTION(&, __bitwise_and)    
   _DEFINE_ARRAY_FUNCTION(<<, __shift_left)
   _DEFINE_ARRAY_FUNCTION(>>, __shift_right)

#undef _DEFINE_VALARRAY_FUNCTION    

} // std::

#ifdef _GLIBCPP_NO_TEMPLATE_EXPORT
# define export 
# include <bits/valarray_array.tcc>    
#endif
           
#endif /* _CPP_BITS_ARRAY_H */

// Local Variables:
// mode:c++
// End:

Index Nav: [Date Index] [Subject Index] [Author Index] [Thread Index]
Message Nav: [Date Prev] [Date Next] [Thread Prev] [Thread Next]