This is the mail archive of the gcc-bugs@gcc.gnu.org mailing list for the GCC project.


Index Nav: [Date Index] [Subject Index] [Author Index] [Thread Index]
Message Nav: [Date Prev] [Date Next] [Thread Prev] [Thread Next]

Fortran optimisation error and LAPACK test results


The following program, derived from the LAPACK test suite, gives the wrong
answers at -O2
with recent snapshots on mips-sgi-irix6.2.

With subroutine cspr.f compiled with -O1, the egcs-19981226 snapshot 
passes the LAPACK test suite on mips-sgi-irix6.2.

############## labug2.f ##########################
      program labug2
      implicit none

*  This program gives the wrong answer on mips-sgi-irix6.2
*  when compiled with g77 -O2 from egcs-19981226 
*  (and several previous) snapshots
*
*  Originally derived from LAPACK test suite.
*
*  David Billinghurst, (David.Billinghurst@riotinto.com.au)
*  31 December 1998
* 
*
      character*1 uplo
      complex  alpha, x(1), ap(1)
      integer n, incx

      uplo = 'L'
      n =  1
      alpha = (-1.,0.)
      x(1) = (0.,0.)
      incx = 1
      ap(1) =  (0.5,0.) 

      call  cspr( uplo, n, alpha, x, incx, ap )

*     Is the answer correct?
      if ( abs(ap(1)-(0.5,0.0)) .gt. 1.0e-5 ) then
         write(6,*) 'AP(1) should be (0.5,0.0)'
         call abort()
      end if

      end

      SUBROUTINE CSPR( UPLO, N, ALPHA, X, INCX, AP )
*
*  -- LAPACK auxiliary routine (version 2.0) --
*     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
*     Courant Institute, Argonne National Lab, and Rice University
*     October 31, 1992
*
*     .. Scalar Arguments ..
      CHARACTER          UPLO
      INTEGER            INCX, N
      COMPLEX            ALPHA
*     ..
*     .. Array Arguments ..
      COMPLEX            AP( * ), X( * )
*     ..
*
*  Purpose
*  =======
*
*  CSPR    performs the symmetric rank 1 operation
*
*     A := alpha*x*conjg( x' ) + A,
*
*  where alpha is a complex scalar, x is an n element vector and A is an
*  n by n symmetric matrix, supplied in packed form.
*
*  Arguments
*  ==========
*
*  UPLO   - CHARACTER*1
*           On entry, UPLO specifies whether the upper or lower
*           triangular part of the matrix A is supplied in the packed
*           array AP as follows:
*
*              UPLO = 'U' or 'u'   The upper triangular part of A is
*                                  supplied in AP.
*
*              UPLO = 'L' or 'l'   The lower triangular part of A is
*                                  supplied in AP.
*
*           Unchanged on exit.
*
*  N      - INTEGER
*           On entry, N specifies the order of the matrix A.
*           N must be at least zero.
*           Unchanged on exit.
*
*  ALPHA  - COMPLEX
*           On entry, ALPHA specifies the scalar alpha.
*           Unchanged on exit.
*
*  X      - COMPLEX array, dimension at least
*           ( 1 + ( N - 1 )*abs( INCX ) ).
*           Before entry, the incremented array X must contain the N-
*           element vector x.
*           Unchanged on exit.
*
*  INCX   - INTEGER
*           On entry, INCX specifies the increment for the elements of
*           X. INCX must not be zero.
*           Unchanged on exit.
*
*  AP     - COMPLEX array, dimension at least
*           ( ( N*( N + 1 ) )/2 ).
*           Before entry, with  UPLO = 'U' or 'u', the array AP must
*           contain the upper triangular part of the symmetric matrix
*           packed sequentially, column by column, so that AP( 1 )
*           contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 1, 2 )
*           and a( 2, 2 ) respectively, and so on. On exit, the array
*           AP is overwritten by the upper triangular part of the
*           updated matrix.
*           Before entry, with UPLO = 'L' or 'l', the array AP must
*           contain the lower triangular part of the symmetric matrix
*           packed sequentially, column by column, so that AP( 1 )
*           contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 2, 1 )
*           and a( 3, 1 ) respectively, and so on. On exit, the array
*           AP is overwritten by the lower triangular part of the
*           updated matrix.
*           Note that the imaginary parts of the diagonal elements need
*           not be set, they are assumed to be zero, and on exit they
*           are set to zero.
*
* =====================================================================
*
*     .. Parameters ..
      COMPLEX            ZERO
      PARAMETER          ( ZERO = ( 0.0E+0, 0.0E+0 ) )
*     ..
*     .. Local Scalars ..
      INTEGER            I, INFO, IX, J, JX, K, KK, KX
      COMPLEX            TEMP
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      EXTERNAL           LSAME
*     ..
*     .. External Subroutines ..
      EXTERNAL           XERBLA
*     ..
*     .. Executable Statements ..
*
*     Test the input parameters.
*
      INFO = 0
      IF( .NOT.LSAME( UPLO, 'U' ) .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
         INFO = 1
      ELSE IF( N.LT.0 ) THEN
         INFO = 2
      ELSE IF( INCX.EQ.0 ) THEN
         INFO = 5
      END IF
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'CSPR  ', INFO )
         RETURN
      END IF
*
*     Quick return if possible.
*
      IF( ( N.EQ.0 ) .OR. ( ALPHA.EQ.ZERO ) )
     $   RETURN
*
*     Set the start point in X if the increment is not unity.
*
      IF( INCX.LE.0 ) THEN
         KX = 1 - ( N-1 )*INCX
      ELSE IF( INCX.NE.1 ) THEN
         KX = 1
      END IF
*
*     Start the operations. In this version the elements of the array AP
*     are accessed sequentially with one pass through AP.
*
      KK = 1
      IF( LSAME( UPLO, 'U' ) ) THEN
*
*        Form  A  when upper triangle is stored in AP.
*
         IF( INCX.EQ.1 ) THEN
            DO 20 J = 1, N
               IF( X( J ).NE.ZERO ) THEN
                  TEMP = ALPHA*X( J )
                  K = KK
                  DO 10 I = 1, J - 1
                     AP( K ) = AP( K ) + X( I )*TEMP
                     K = K + 1
   10             CONTINUE
                  AP( KK+J-1 ) = AP( KK+J-1 ) + X( J )*TEMP
               ELSE
                  AP( KK+J-1 ) = AP( KK+J-1 )
               END IF
               KK = KK + J
   20       CONTINUE
         ELSE
            JX = KX
            DO 40 J = 1, N
               IF( X( JX ).NE.ZERO ) THEN
                  TEMP = ALPHA*X( JX )
                  IX = KX
                  DO 30 K = KK, KK + J - 2
                     AP( K ) = AP( K ) + X( IX )*TEMP
                     IX = IX + INCX
   30             CONTINUE
                  AP( KK+J-1 ) = AP( KK+J-1 ) + X( JX )*TEMP
               ELSE
                  AP( KK+J-1 ) = AP( KK+J-1 )
               END IF
               JX = JX + INCX
               KK = KK + J
   40       CONTINUE
         END IF
      ELSE
*
*        Form  A  when lower triangle is stored in AP.
*
         IF( INCX.EQ.1 ) THEN
            DO 60 J = 1, N
               IF( X( J ).NE.ZERO ) THEN
                  TEMP = ALPHA*X( J )
                  AP( KK ) = AP( KK ) + TEMP*X( J )
                  K = KK + 1
                  DO 50 I = J + 1, N
                     AP( K ) = AP( K ) + X( I )*TEMP
                     K = K + 1
   50             CONTINUE
               ELSE
                  AP( KK ) = AP( KK )
               END IF
               KK = KK + N - J + 1
   60       CONTINUE
         ELSE
            JX = KX
            DO 80 J = 1, N
               IF( X( JX ).NE.ZERO ) THEN
                  TEMP = ALPHA*X( JX )
                  AP( KK ) = AP( KK ) + TEMP*X( JX )
                  IX = JX
                  DO 70 K = KK + 1, KK + N - J
                     IX = IX + INCX
                     AP( K ) = AP( K ) + X( IX )*TEMP
   70             CONTINUE
               ELSE
                  AP( KK ) = AP( KK )
               END IF
               JX = JX + INCX
               KK = KK + N - J + 1
   80       CONTINUE
         END IF
      END IF
*
      RETURN
*
*     End of CSPR
*
      END
      LOGICAL          FUNCTION LSAME( CA, CB )
*
*  -- LAPACK auxiliary routine (version 2.0) --
*     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
*     Courant Institute, Argonne National Lab, and Rice University
*     September 30, 1994
*
*     .. Scalar Arguments ..
      CHARACTER          CA, CB
*     ..
*
*  Purpose
*  =======
*
*  LSAME returns .TRUE. if CA is the same letter as CB regardless of
*  case.
*
*  Arguments
*  =========
*
*  CA      (input) CHARACTER*1
*  CB      (input) CHARACTER*1
*          CA and CB specify the single characters to be compared.
*
* =====================================================================
*
*     .. Intrinsic Functions ..
      INTRINSIC          ICHAR
*     ..
*     .. Local Scalars ..
      INTEGER            INTA, INTB, ZCODE
*     ..
*     .. Executable Statements ..
*
*     Test if the characters are equal
*
      LSAME = CA.EQ.CB
      IF( LSAME )
     $   RETURN
*
*     Now test for equivalence if both characters are alphabetic.
*
      ZCODE = ICHAR( 'Z' )
*
*     Use 'Z' rather than 'A' so that ASCII can be detected on Prime
*     machines, on which ICHAR returns a value with bit 8 set.
*     ICHAR('A') on Prime machines returns 193 which is the same as
*     ICHAR('A') on an EBCDIC machine.
*
      INTA = ICHAR( CA )
      INTB = ICHAR( CB )
*
      IF( ZCODE.EQ.90 .OR. ZCODE.EQ.122 ) THEN
*
*        ASCII is assumed - ZCODE is the ASCII code of either lower or
*        upper case 'Z'.
*
         IF( INTA.GE.97 .AND. INTA.LE.122 ) INTA = INTA - 32
         IF( INTB.GE.97 .AND. INTB.LE.122 ) INTB = INTB - 32
*
      ELSE IF( ZCODE.EQ.233 .OR. ZCODE.EQ.169 ) THEN
*
*        EBCDIC is assumed - ZCODE is the EBCDIC code of either lower or
*        upper case 'Z'.
*
         IF( INTA.GE.129 .AND. INTA.LE.137 .OR.
     $       INTA.GE.145 .AND. INTA.LE.153 .OR.
     $       INTA.GE.162 .AND. INTA.LE.169 ) INTA = INTA + 64
         IF( INTB.GE.129 .AND. INTB.LE.137 .OR.
     $       INTB.GE.145 .AND. INTB.LE.153 .OR.
     $       INTB.GE.162 .AND. INTB.LE.169 ) INTB = INTB + 64
*
      ELSE IF( ZCODE.EQ.218 .OR. ZCODE.EQ.250 ) THEN
*
*        ASCII is assumed, on Prime machines - ZCODE is the ASCII code
*        plus 128 of either lower or upper case 'Z'.
*
         IF( INTA.GE.225 .AND. INTA.LE.250 ) INTA = INTA - 32
         IF( INTB.GE.225 .AND. INTB.LE.250 ) INTB = INTB - 32
      END IF
      LSAME = INTA.EQ.INTB
*
*     RETURN
*
*     End of LSAME
*
      END
      SUBROUTINE XERBLA( SRNAME, INFO )
*
*  -- LAPACK auxiliary routine (version 2.0) --
*     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
*     Courant Institute, Argonne National Lab, and Rice University
*     September 30, 1994
*
*     .. Scalar Arguments ..
      CHARACTER*6        SRNAME
      INTEGER            INFO
*     ..
*
*  Purpose
*  =======
*
*  XERBLA  is an error handler for the LAPACK routines.
*  It is called by an LAPACK routine if an input parameter has an
*  invalid value.  A message is printed and execution stops.
*
*  Installers may consider modifying the STOP statement in order to
*  call system-specific exception-handling facilities.
*
*  Arguments
*  =========
*
*  SRNAME  (input) CHARACTER*6
*          The name of the routine which called XERBLA.
*
*  INFO    (input) INTEGER
*          The position of the invalid parameter in the parameter list
*          of the calling routine.
*
* =====================================================================
*
*     .. Executable Statements ..
*
      WRITE( *, FMT = 9999 )SRNAME, INFO
*
      STOP
*
 9999 FORMAT( ' ** On entry to ', A6, ' parameter number ', I2, ' had ',
     $      'an illegal value' )
*
*     End of XERBLA
*
      END




Index Nav: [Date Index] [Subject Index] [Author Index] [Thread Index]
Message Nav: [Date Prev] [Date Next] [Thread Prev] [Thread Next]