]> gcc.gnu.org Git - gcc.git/blob - gcc/fortran/interface.c
re PR fortran/60507 (Passing function call into procedure argument not caught)
[gcc.git] / gcc / fortran / interface.c
1 /* Deal with interfaces.
2 Copyright (C) 2000-2014 Free Software Foundation, Inc.
3 Contributed by Andy Vaught
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21
22 /* Deal with interfaces. An explicit interface is represented as a
23 singly linked list of formal argument structures attached to the
24 relevant symbols. For an implicit interface, the arguments don't
25 point to symbols. Explicit interfaces point to namespaces that
26 contain the symbols within that interface.
27
28 Implicit interfaces are linked together in a singly linked list
29 along the next_if member of symbol nodes. Since a particular
30 symbol can only have a single explicit interface, the symbol cannot
31 be part of multiple lists and a single next-member suffices.
32
33 This is not the case for general classes, though. An operator
34 definition is independent of just about all other uses and has it's
35 own head pointer.
36
37 Nameless interfaces:
38 Nameless interfaces create symbols with explicit interfaces within
39 the current namespace. They are otherwise unlinked.
40
41 Generic interfaces:
42 The generic name points to a linked list of symbols. Each symbol
43 has an explicit interface. Each explicit interface has its own
44 namespace containing the arguments. Module procedures are symbols in
45 which the interface is added later when the module procedure is parsed.
46
47 User operators:
48 User-defined operators are stored in a their own set of symtrees
49 separate from regular symbols. The symtrees point to gfc_user_op
50 structures which in turn head up a list of relevant interfaces.
51
52 Extended intrinsics and assignment:
53 The head of these interface lists are stored in the containing namespace.
54
55 Implicit interfaces:
56 An implicit interface is represented as a singly linked list of
57 formal argument list structures that don't point to any symbol
58 nodes -- they just contain types.
59
60
61 When a subprogram is defined, the program unit's name points to an
62 interface as usual, but the link to the namespace is NULL and the
63 formal argument list points to symbols within the same namespace as
64 the program unit name. */
65
66 #include "config.h"
67 #include "system.h"
68 #include "coretypes.h"
69 #include "flags.h"
70 #include "gfortran.h"
71 #include "match.h"
72 #include "arith.h"
73
74 /* The current_interface structure holds information about the
75 interface currently being parsed. This structure is saved and
76 restored during recursive interfaces. */
77
78 gfc_interface_info current_interface;
79
80
81 /* Free a singly linked list of gfc_interface structures. */
82
83 void
84 gfc_free_interface (gfc_interface *intr)
85 {
86 gfc_interface *next;
87
88 for (; intr; intr = next)
89 {
90 next = intr->next;
91 free (intr);
92 }
93 }
94
95
96 /* Change the operators unary plus and minus into binary plus and
97 minus respectively, leaving the rest unchanged. */
98
99 static gfc_intrinsic_op
100 fold_unary_intrinsic (gfc_intrinsic_op op)
101 {
102 switch (op)
103 {
104 case INTRINSIC_UPLUS:
105 op = INTRINSIC_PLUS;
106 break;
107 case INTRINSIC_UMINUS:
108 op = INTRINSIC_MINUS;
109 break;
110 default:
111 break;
112 }
113
114 return op;
115 }
116
117
118 /* Match a generic specification. Depending on which type of
119 interface is found, the 'name' or 'op' pointers may be set.
120 This subroutine doesn't return MATCH_NO. */
121
122 match
123 gfc_match_generic_spec (interface_type *type,
124 char *name,
125 gfc_intrinsic_op *op)
126 {
127 char buffer[GFC_MAX_SYMBOL_LEN + 1];
128 match m;
129 gfc_intrinsic_op i;
130
131 if (gfc_match (" assignment ( = )") == MATCH_YES)
132 {
133 *type = INTERFACE_INTRINSIC_OP;
134 *op = INTRINSIC_ASSIGN;
135 return MATCH_YES;
136 }
137
138 if (gfc_match (" operator ( %o )", &i) == MATCH_YES)
139 { /* Operator i/f */
140 *type = INTERFACE_INTRINSIC_OP;
141 *op = fold_unary_intrinsic (i);
142 return MATCH_YES;
143 }
144
145 *op = INTRINSIC_NONE;
146 if (gfc_match (" operator ( ") == MATCH_YES)
147 {
148 m = gfc_match_defined_op_name (buffer, 1);
149 if (m == MATCH_NO)
150 goto syntax;
151 if (m != MATCH_YES)
152 return MATCH_ERROR;
153
154 m = gfc_match_char (')');
155 if (m == MATCH_NO)
156 goto syntax;
157 if (m != MATCH_YES)
158 return MATCH_ERROR;
159
160 strcpy (name, buffer);
161 *type = INTERFACE_USER_OP;
162 return MATCH_YES;
163 }
164
165 if (gfc_match_name (buffer) == MATCH_YES)
166 {
167 strcpy (name, buffer);
168 *type = INTERFACE_GENERIC;
169 return MATCH_YES;
170 }
171
172 *type = INTERFACE_NAMELESS;
173 return MATCH_YES;
174
175 syntax:
176 gfc_error ("Syntax error in generic specification at %C");
177 return MATCH_ERROR;
178 }
179
180
181 /* Match one of the five F95 forms of an interface statement. The
182 matcher for the abstract interface follows. */
183
184 match
185 gfc_match_interface (void)
186 {
187 char name[GFC_MAX_SYMBOL_LEN + 1];
188 interface_type type;
189 gfc_symbol *sym;
190 gfc_intrinsic_op op;
191 match m;
192
193 m = gfc_match_space ();
194
195 if (gfc_match_generic_spec (&type, name, &op) == MATCH_ERROR)
196 return MATCH_ERROR;
197
198 /* If we're not looking at the end of the statement now, or if this
199 is not a nameless interface but we did not see a space, punt. */
200 if (gfc_match_eos () != MATCH_YES
201 || (type != INTERFACE_NAMELESS && m != MATCH_YES))
202 {
203 gfc_error ("Syntax error: Trailing garbage in INTERFACE statement "
204 "at %C");
205 return MATCH_ERROR;
206 }
207
208 current_interface.type = type;
209
210 switch (type)
211 {
212 case INTERFACE_GENERIC:
213 if (gfc_get_symbol (name, NULL, &sym))
214 return MATCH_ERROR;
215
216 if (!sym->attr.generic
217 && !gfc_add_generic (&sym->attr, sym->name, NULL))
218 return MATCH_ERROR;
219
220 if (sym->attr.dummy)
221 {
222 gfc_error ("Dummy procedure %qs at %C cannot have a "
223 "generic interface", sym->name);
224 return MATCH_ERROR;
225 }
226
227 current_interface.sym = gfc_new_block = sym;
228 break;
229
230 case INTERFACE_USER_OP:
231 current_interface.uop = gfc_get_uop (name);
232 break;
233
234 case INTERFACE_INTRINSIC_OP:
235 current_interface.op = op;
236 break;
237
238 case INTERFACE_NAMELESS:
239 case INTERFACE_ABSTRACT:
240 break;
241 }
242
243 return MATCH_YES;
244 }
245
246
247
248 /* Match a F2003 abstract interface. */
249
250 match
251 gfc_match_abstract_interface (void)
252 {
253 match m;
254
255 if (!gfc_notify_std (GFC_STD_F2003, "ABSTRACT INTERFACE at %C"))
256 return MATCH_ERROR;
257
258 m = gfc_match_eos ();
259
260 if (m != MATCH_YES)
261 {
262 gfc_error ("Syntax error in ABSTRACT INTERFACE statement at %C");
263 return MATCH_ERROR;
264 }
265
266 current_interface.type = INTERFACE_ABSTRACT;
267
268 return m;
269 }
270
271
272 /* Match the different sort of generic-specs that can be present after
273 the END INTERFACE itself. */
274
275 match
276 gfc_match_end_interface (void)
277 {
278 char name[GFC_MAX_SYMBOL_LEN + 1];
279 interface_type type;
280 gfc_intrinsic_op op;
281 match m;
282
283 m = gfc_match_space ();
284
285 if (gfc_match_generic_spec (&type, name, &op) == MATCH_ERROR)
286 return MATCH_ERROR;
287
288 /* If we're not looking at the end of the statement now, or if this
289 is not a nameless interface but we did not see a space, punt. */
290 if (gfc_match_eos () != MATCH_YES
291 || (type != INTERFACE_NAMELESS && m != MATCH_YES))
292 {
293 gfc_error ("Syntax error: Trailing garbage in END INTERFACE "
294 "statement at %C");
295 return MATCH_ERROR;
296 }
297
298 m = MATCH_YES;
299
300 switch (current_interface.type)
301 {
302 case INTERFACE_NAMELESS:
303 case INTERFACE_ABSTRACT:
304 if (type != INTERFACE_NAMELESS)
305 {
306 gfc_error ("Expected a nameless interface at %C");
307 m = MATCH_ERROR;
308 }
309
310 break;
311
312 case INTERFACE_INTRINSIC_OP:
313 if (type != current_interface.type || op != current_interface.op)
314 {
315
316 if (current_interface.op == INTRINSIC_ASSIGN)
317 {
318 m = MATCH_ERROR;
319 gfc_error ("Expected %<END INTERFACE ASSIGNMENT (=)%> at %C");
320 }
321 else
322 {
323 const char *s1, *s2;
324 s1 = gfc_op2string (current_interface.op);
325 s2 = gfc_op2string (op);
326
327 /* The following if-statements are used to enforce C1202
328 from F2003. */
329 if ((strcmp(s1, "==") == 0 && strcmp (s2, ".eq.") == 0)
330 || (strcmp(s1, ".eq.") == 0 && strcmp (s2, "==") == 0))
331 break;
332 if ((strcmp(s1, "/=") == 0 && strcmp (s2, ".ne.") == 0)
333 || (strcmp(s1, ".ne.") == 0 && strcmp (s2, "/=") == 0))
334 break;
335 if ((strcmp(s1, "<=") == 0 && strcmp (s2, ".le.") == 0)
336 || (strcmp(s1, ".le.") == 0 && strcmp (s2, "<=") == 0))
337 break;
338 if ((strcmp(s1, "<") == 0 && strcmp (s2, ".lt.") == 0)
339 || (strcmp(s1, ".lt.") == 0 && strcmp (s2, "<") == 0))
340 break;
341 if ((strcmp(s1, ">=") == 0 && strcmp (s2, ".ge.") == 0)
342 || (strcmp(s1, ".ge.") == 0 && strcmp (s2, ">=") == 0))
343 break;
344 if ((strcmp(s1, ">") == 0 && strcmp (s2, ".gt.") == 0)
345 || (strcmp(s1, ".gt.") == 0 && strcmp (s2, ">") == 0))
346 break;
347
348 m = MATCH_ERROR;
349 gfc_error ("Expecting %<END INTERFACE OPERATOR (%s)%> at %C, "
350 "but got %s", s1, s2);
351 }
352
353 }
354
355 break;
356
357 case INTERFACE_USER_OP:
358 /* Comparing the symbol node names is OK because only use-associated
359 symbols can be renamed. */
360 if (type != current_interface.type
361 || strcmp (current_interface.uop->name, name) != 0)
362 {
363 gfc_error ("Expecting %<END INTERFACE OPERATOR (.%s.)%> at %C",
364 current_interface.uop->name);
365 m = MATCH_ERROR;
366 }
367
368 break;
369
370 case INTERFACE_GENERIC:
371 if (type != current_interface.type
372 || strcmp (current_interface.sym->name, name) != 0)
373 {
374 gfc_error ("Expecting %<END INTERFACE %s%> at %C",
375 current_interface.sym->name);
376 m = MATCH_ERROR;
377 }
378
379 break;
380 }
381
382 return m;
383 }
384
385
386 /* Compare two derived types using the criteria in 4.4.2 of the standard,
387 recursing through gfc_compare_types for the components. */
388
389 int
390 gfc_compare_derived_types (gfc_symbol *derived1, gfc_symbol *derived2)
391 {
392 gfc_component *dt1, *dt2;
393
394 if (derived1 == derived2)
395 return 1;
396
397 gcc_assert (derived1 && derived2);
398
399 /* Special case for comparing derived types across namespaces. If the
400 true names and module names are the same and the module name is
401 nonnull, then they are equal. */
402 if (strcmp (derived1->name, derived2->name) == 0
403 && derived1->module != NULL && derived2->module != NULL
404 && strcmp (derived1->module, derived2->module) == 0)
405 return 1;
406
407 /* Compare type via the rules of the standard. Both types must have
408 the SEQUENCE or BIND(C) attribute to be equal. */
409
410 if (strcmp (derived1->name, derived2->name))
411 return 0;
412
413 if (derived1->component_access == ACCESS_PRIVATE
414 || derived2->component_access == ACCESS_PRIVATE)
415 return 0;
416
417 if (!(derived1->attr.sequence && derived2->attr.sequence)
418 && !(derived1->attr.is_bind_c && derived2->attr.is_bind_c))
419 return 0;
420
421 dt1 = derived1->components;
422 dt2 = derived2->components;
423
424 /* Since subtypes of SEQUENCE types must be SEQUENCE types as well, a
425 simple test can speed things up. Otherwise, lots of things have to
426 match. */
427 for (;;)
428 {
429 if (strcmp (dt1->name, dt2->name) != 0)
430 return 0;
431
432 if (dt1->attr.access != dt2->attr.access)
433 return 0;
434
435 if (dt1->attr.pointer != dt2->attr.pointer)
436 return 0;
437
438 if (dt1->attr.dimension != dt2->attr.dimension)
439 return 0;
440
441 if (dt1->attr.allocatable != dt2->attr.allocatable)
442 return 0;
443
444 if (dt1->attr.dimension && gfc_compare_array_spec (dt1->as, dt2->as) == 0)
445 return 0;
446
447 /* Make sure that link lists do not put this function into an
448 endless recursive loop! */
449 if (!(dt1->ts.type == BT_DERIVED && derived1 == dt1->ts.u.derived)
450 && !(dt2->ts.type == BT_DERIVED && derived2 == dt2->ts.u.derived)
451 && gfc_compare_types (&dt1->ts, &dt2->ts) == 0)
452 return 0;
453
454 else if ((dt1->ts.type == BT_DERIVED && derived1 == dt1->ts.u.derived)
455 && !(dt1->ts.type == BT_DERIVED && derived1 == dt1->ts.u.derived))
456 return 0;
457
458 else if (!(dt1->ts.type == BT_DERIVED && derived1 == dt1->ts.u.derived)
459 && (dt1->ts.type == BT_DERIVED && derived1 == dt1->ts.u.derived))
460 return 0;
461
462 dt1 = dt1->next;
463 dt2 = dt2->next;
464
465 if (dt1 == NULL && dt2 == NULL)
466 break;
467 if (dt1 == NULL || dt2 == NULL)
468 return 0;
469 }
470
471 return 1;
472 }
473
474
475 /* Compare two typespecs, recursively if necessary. */
476
477 int
478 gfc_compare_types (gfc_typespec *ts1, gfc_typespec *ts2)
479 {
480 /* See if one of the typespecs is a BT_VOID, which is what is being used
481 to allow the funcs like c_f_pointer to accept any pointer type.
482 TODO: Possibly should narrow this to just the one typespec coming in
483 that is for the formal arg, but oh well. */
484 if (ts1->type == BT_VOID || ts2->type == BT_VOID)
485 return 1;
486
487 if (ts1->type == BT_CLASS
488 && ts1->u.derived->components->ts.u.derived->attr.unlimited_polymorphic)
489 return 1;
490
491 /* F2003: C717 */
492 if (ts2->type == BT_CLASS && ts1->type == BT_DERIVED
493 && ts2->u.derived->components->ts.u.derived->attr.unlimited_polymorphic
494 && (ts1->u.derived->attr.sequence || ts1->u.derived->attr.is_bind_c))
495 return 1;
496
497 if (ts1->type != ts2->type
498 && ((ts1->type != BT_DERIVED && ts1->type != BT_CLASS)
499 || (ts2->type != BT_DERIVED && ts2->type != BT_CLASS)))
500 return 0;
501 if (ts1->type != BT_DERIVED && ts1->type != BT_CLASS)
502 return (ts1->kind == ts2->kind);
503
504 /* Compare derived types. */
505 if (gfc_type_compatible (ts1, ts2))
506 return 1;
507
508 return gfc_compare_derived_types (ts1->u.derived ,ts2->u.derived);
509 }
510
511
512 static int
513 compare_type (gfc_symbol *s1, gfc_symbol *s2)
514 {
515 if (s2->attr.ext_attr & (1 << EXT_ATTR_NO_ARG_CHECK))
516 return 1;
517
518 /* TYPE and CLASS of the same declared type are type compatible,
519 but have different characteristics. */
520 if ((s1->ts.type == BT_CLASS && s2->ts.type == BT_DERIVED)
521 || (s1->ts.type == BT_DERIVED && s2->ts.type == BT_CLASS))
522 return 0;
523
524 return gfc_compare_types (&s1->ts, &s2->ts) || s2->ts.type == BT_ASSUMED;
525 }
526
527
528 static int
529 compare_rank (gfc_symbol *s1, gfc_symbol *s2)
530 {
531 gfc_array_spec *as1, *as2;
532 int r1, r2;
533
534 if (s2->attr.ext_attr & (1 << EXT_ATTR_NO_ARG_CHECK))
535 return 1;
536
537 as1 = (s1->ts.type == BT_CLASS) ? CLASS_DATA (s1)->as : s1->as;
538 as2 = (s2->ts.type == BT_CLASS) ? CLASS_DATA (s2)->as : s2->as;
539
540 r1 = as1 ? as1->rank : 0;
541 r2 = as2 ? as2->rank : 0;
542
543 if (r1 != r2 && (!as2 || as2->type != AS_ASSUMED_RANK))
544 return 0; /* Ranks differ. */
545
546 return 1;
547 }
548
549
550 /* Given two symbols that are formal arguments, compare their ranks
551 and types. Returns nonzero if they have the same rank and type,
552 zero otherwise. */
553
554 static int
555 compare_type_rank (gfc_symbol *s1, gfc_symbol *s2)
556 {
557 return compare_type (s1, s2) && compare_rank (s1, s2);
558 }
559
560
561 /* Given two symbols that are formal arguments, compare their types
562 and rank and their formal interfaces if they are both dummy
563 procedures. Returns nonzero if the same, zero if different. */
564
565 static int
566 compare_type_rank_if (gfc_symbol *s1, gfc_symbol *s2)
567 {
568 if (s1 == NULL || s2 == NULL)
569 return s1 == s2 ? 1 : 0;
570
571 if (s1 == s2)
572 return 1;
573
574 if (s1->attr.flavor != FL_PROCEDURE && s2->attr.flavor != FL_PROCEDURE)
575 return compare_type_rank (s1, s2);
576
577 if (s1->attr.flavor != FL_PROCEDURE || s2->attr.flavor != FL_PROCEDURE)
578 return 0;
579
580 /* At this point, both symbols are procedures. It can happen that
581 external procedures are compared, where one is identified by usage
582 to be a function or subroutine but the other is not. Check TKR
583 nonetheless for these cases. */
584 if (s1->attr.function == 0 && s1->attr.subroutine == 0)
585 return s1->attr.external == 1 ? compare_type_rank (s1, s2) : 0;
586
587 if (s2->attr.function == 0 && s2->attr.subroutine == 0)
588 return s2->attr.external == 1 ? compare_type_rank (s1, s2) : 0;
589
590 /* Now the type of procedure has been identified. */
591 if (s1->attr.function != s2->attr.function
592 || s1->attr.subroutine != s2->attr.subroutine)
593 return 0;
594
595 if (s1->attr.function && compare_type_rank (s1, s2) == 0)
596 return 0;
597
598 /* Originally, gfortran recursed here to check the interfaces of passed
599 procedures. This is explicitly not required by the standard. */
600 return 1;
601 }
602
603
604 /* Given a formal argument list and a keyword name, search the list
605 for that keyword. Returns the correct symbol node if found, NULL
606 if not found. */
607
608 static gfc_symbol *
609 find_keyword_arg (const char *name, gfc_formal_arglist *f)
610 {
611 for (; f; f = f->next)
612 if (strcmp (f->sym->name, name) == 0)
613 return f->sym;
614
615 return NULL;
616 }
617
618
619 /******** Interface checking subroutines **********/
620
621
622 /* Given an operator interface and the operator, make sure that all
623 interfaces for that operator are legal. */
624
625 bool
626 gfc_check_operator_interface (gfc_symbol *sym, gfc_intrinsic_op op,
627 locus opwhere)
628 {
629 gfc_formal_arglist *formal;
630 sym_intent i1, i2;
631 bt t1, t2;
632 int args, r1, r2, k1, k2;
633
634 gcc_assert (sym);
635
636 args = 0;
637 t1 = t2 = BT_UNKNOWN;
638 i1 = i2 = INTENT_UNKNOWN;
639 r1 = r2 = -1;
640 k1 = k2 = -1;
641
642 for (formal = gfc_sym_get_dummy_args (sym); formal; formal = formal->next)
643 {
644 gfc_symbol *fsym = formal->sym;
645 if (fsym == NULL)
646 {
647 gfc_error ("Alternate return cannot appear in operator "
648 "interface at %L", &sym->declared_at);
649 return false;
650 }
651 if (args == 0)
652 {
653 t1 = fsym->ts.type;
654 i1 = fsym->attr.intent;
655 r1 = (fsym->as != NULL) ? fsym->as->rank : 0;
656 k1 = fsym->ts.kind;
657 }
658 if (args == 1)
659 {
660 t2 = fsym->ts.type;
661 i2 = fsym->attr.intent;
662 r2 = (fsym->as != NULL) ? fsym->as->rank : 0;
663 k2 = fsym->ts.kind;
664 }
665 args++;
666 }
667
668 /* Only +, - and .not. can be unary operators.
669 .not. cannot be a binary operator. */
670 if (args == 0 || args > 2 || (args == 1 && op != INTRINSIC_PLUS
671 && op != INTRINSIC_MINUS
672 && op != INTRINSIC_NOT)
673 || (args == 2 && op == INTRINSIC_NOT))
674 {
675 if (op == INTRINSIC_ASSIGN)
676 gfc_error ("Assignment operator interface at %L must have "
677 "two arguments", &sym->declared_at);
678 else
679 gfc_error ("Operator interface at %L has the wrong number of arguments",
680 &sym->declared_at);
681 return false;
682 }
683
684 /* Check that intrinsics are mapped to functions, except
685 INTRINSIC_ASSIGN which should map to a subroutine. */
686 if (op == INTRINSIC_ASSIGN)
687 {
688 gfc_formal_arglist *dummy_args;
689
690 if (!sym->attr.subroutine)
691 {
692 gfc_error ("Assignment operator interface at %L must be "
693 "a SUBROUTINE", &sym->declared_at);
694 return false;
695 }
696
697 /* Allowed are (per F2003, 12.3.2.1.2 Defined assignments):
698 - First argument an array with different rank than second,
699 - First argument is a scalar and second an array,
700 - Types and kinds do not conform, or
701 - First argument is of derived type. */
702 dummy_args = gfc_sym_get_dummy_args (sym);
703 if (dummy_args->sym->ts.type != BT_DERIVED
704 && dummy_args->sym->ts.type != BT_CLASS
705 && (r2 == 0 || r1 == r2)
706 && (dummy_args->sym->ts.type == dummy_args->next->sym->ts.type
707 || (gfc_numeric_ts (&dummy_args->sym->ts)
708 && gfc_numeric_ts (&dummy_args->next->sym->ts))))
709 {
710 gfc_error ("Assignment operator interface at %L must not redefine "
711 "an INTRINSIC type assignment", &sym->declared_at);
712 return false;
713 }
714 }
715 else
716 {
717 if (!sym->attr.function)
718 {
719 gfc_error ("Intrinsic operator interface at %L must be a FUNCTION",
720 &sym->declared_at);
721 return false;
722 }
723 }
724
725 /* Check intents on operator interfaces. */
726 if (op == INTRINSIC_ASSIGN)
727 {
728 if (i1 != INTENT_OUT && i1 != INTENT_INOUT)
729 {
730 gfc_error ("First argument of defined assignment at %L must be "
731 "INTENT(OUT) or INTENT(INOUT)", &sym->declared_at);
732 return false;
733 }
734
735 if (i2 != INTENT_IN)
736 {
737 gfc_error ("Second argument of defined assignment at %L must be "
738 "INTENT(IN)", &sym->declared_at);
739 return false;
740 }
741 }
742 else
743 {
744 if (i1 != INTENT_IN)
745 {
746 gfc_error ("First argument of operator interface at %L must be "
747 "INTENT(IN)", &sym->declared_at);
748 return false;
749 }
750
751 if (args == 2 && i2 != INTENT_IN)
752 {
753 gfc_error ("Second argument of operator interface at %L must be "
754 "INTENT(IN)", &sym->declared_at);
755 return false;
756 }
757 }
758
759 /* From now on, all we have to do is check that the operator definition
760 doesn't conflict with an intrinsic operator. The rules for this
761 game are defined in 7.1.2 and 7.1.3 of both F95 and F2003 standards,
762 as well as 12.3.2.1.1 of Fortran 2003:
763
764 "If the operator is an intrinsic-operator (R310), the number of
765 function arguments shall be consistent with the intrinsic uses of
766 that operator, and the types, kind type parameters, or ranks of the
767 dummy arguments shall differ from those required for the intrinsic
768 operation (7.1.2)." */
769
770 #define IS_NUMERIC_TYPE(t) \
771 ((t) == BT_INTEGER || (t) == BT_REAL || (t) == BT_COMPLEX)
772
773 /* Unary ops are easy, do them first. */
774 if (op == INTRINSIC_NOT)
775 {
776 if (t1 == BT_LOGICAL)
777 goto bad_repl;
778 else
779 return true;
780 }
781
782 if (args == 1 && (op == INTRINSIC_PLUS || op == INTRINSIC_MINUS))
783 {
784 if (IS_NUMERIC_TYPE (t1))
785 goto bad_repl;
786 else
787 return true;
788 }
789
790 /* Character intrinsic operators have same character kind, thus
791 operator definitions with operands of different character kinds
792 are always safe. */
793 if (t1 == BT_CHARACTER && t2 == BT_CHARACTER && k1 != k2)
794 return true;
795
796 /* Intrinsic operators always perform on arguments of same rank,
797 so different ranks is also always safe. (rank == 0) is an exception
798 to that, because all intrinsic operators are elemental. */
799 if (r1 != r2 && r1 != 0 && r2 != 0)
800 return true;
801
802 switch (op)
803 {
804 case INTRINSIC_EQ:
805 case INTRINSIC_EQ_OS:
806 case INTRINSIC_NE:
807 case INTRINSIC_NE_OS:
808 if (t1 == BT_CHARACTER && t2 == BT_CHARACTER)
809 goto bad_repl;
810 /* Fall through. */
811
812 case INTRINSIC_PLUS:
813 case INTRINSIC_MINUS:
814 case INTRINSIC_TIMES:
815 case INTRINSIC_DIVIDE:
816 case INTRINSIC_POWER:
817 if (IS_NUMERIC_TYPE (t1) && IS_NUMERIC_TYPE (t2))
818 goto bad_repl;
819 break;
820
821 case INTRINSIC_GT:
822 case INTRINSIC_GT_OS:
823 case INTRINSIC_GE:
824 case INTRINSIC_GE_OS:
825 case INTRINSIC_LT:
826 case INTRINSIC_LT_OS:
827 case INTRINSIC_LE:
828 case INTRINSIC_LE_OS:
829 if (t1 == BT_CHARACTER && t2 == BT_CHARACTER)
830 goto bad_repl;
831 if ((t1 == BT_INTEGER || t1 == BT_REAL)
832 && (t2 == BT_INTEGER || t2 == BT_REAL))
833 goto bad_repl;
834 break;
835
836 case INTRINSIC_CONCAT:
837 if (t1 == BT_CHARACTER && t2 == BT_CHARACTER)
838 goto bad_repl;
839 break;
840
841 case INTRINSIC_AND:
842 case INTRINSIC_OR:
843 case INTRINSIC_EQV:
844 case INTRINSIC_NEQV:
845 if (t1 == BT_LOGICAL && t2 == BT_LOGICAL)
846 goto bad_repl;
847 break;
848
849 default:
850 break;
851 }
852
853 return true;
854
855 #undef IS_NUMERIC_TYPE
856
857 bad_repl:
858 gfc_error ("Operator interface at %L conflicts with intrinsic interface",
859 &opwhere);
860 return false;
861 }
862
863
864 /* Given a pair of formal argument lists, we see if the two lists can
865 be distinguished by counting the number of nonoptional arguments of
866 a given type/rank in f1 and seeing if there are less then that
867 number of those arguments in f2 (including optional arguments).
868 Since this test is asymmetric, it has to be called twice to make it
869 symmetric. Returns nonzero if the argument lists are incompatible
870 by this test. This subroutine implements rule 1 of section F03:16.2.3.
871 'p1' and 'p2' are the PASS arguments of both procedures (if applicable). */
872
873 static int
874 count_types_test (gfc_formal_arglist *f1, gfc_formal_arglist *f2,
875 const char *p1, const char *p2)
876 {
877 int rc, ac1, ac2, i, j, k, n1;
878 gfc_formal_arglist *f;
879
880 typedef struct
881 {
882 int flag;
883 gfc_symbol *sym;
884 }
885 arginfo;
886
887 arginfo *arg;
888
889 n1 = 0;
890
891 for (f = f1; f; f = f->next)
892 n1++;
893
894 /* Build an array of integers that gives the same integer to
895 arguments of the same type/rank. */
896 arg = XCNEWVEC (arginfo, n1);
897
898 f = f1;
899 for (i = 0; i < n1; i++, f = f->next)
900 {
901 arg[i].flag = -1;
902 arg[i].sym = f->sym;
903 }
904
905 k = 0;
906
907 for (i = 0; i < n1; i++)
908 {
909 if (arg[i].flag != -1)
910 continue;
911
912 if (arg[i].sym && (arg[i].sym->attr.optional
913 || (p1 && strcmp (arg[i].sym->name, p1) == 0)))
914 continue; /* Skip OPTIONAL and PASS arguments. */
915
916 arg[i].flag = k;
917
918 /* Find other non-optional, non-pass arguments of the same type/rank. */
919 for (j = i + 1; j < n1; j++)
920 if ((arg[j].sym == NULL
921 || !(arg[j].sym->attr.optional
922 || (p1 && strcmp (arg[j].sym->name, p1) == 0)))
923 && (compare_type_rank_if (arg[i].sym, arg[j].sym)
924 || compare_type_rank_if (arg[j].sym, arg[i].sym)))
925 arg[j].flag = k;
926
927 k++;
928 }
929
930 /* Now loop over each distinct type found in f1. */
931 k = 0;
932 rc = 0;
933
934 for (i = 0; i < n1; i++)
935 {
936 if (arg[i].flag != k)
937 continue;
938
939 ac1 = 1;
940 for (j = i + 1; j < n1; j++)
941 if (arg[j].flag == k)
942 ac1++;
943
944 /* Count the number of non-pass arguments in f2 with that type,
945 including those that are optional. */
946 ac2 = 0;
947
948 for (f = f2; f; f = f->next)
949 if ((!p2 || strcmp (f->sym->name, p2) != 0)
950 && (compare_type_rank_if (arg[i].sym, f->sym)
951 || compare_type_rank_if (f->sym, arg[i].sym)))
952 ac2++;
953
954 if (ac1 > ac2)
955 {
956 rc = 1;
957 break;
958 }
959
960 k++;
961 }
962
963 free (arg);
964
965 return rc;
966 }
967
968
969 /* Perform the correspondence test in rule (3) of F08:C1215.
970 Returns zero if no argument is found that satisfies this rule,
971 nonzero otherwise. 'p1' and 'p2' are the PASS arguments of both procedures
972 (if applicable).
973
974 This test is also not symmetric in f1 and f2 and must be called
975 twice. This test finds problems caused by sorting the actual
976 argument list with keywords. For example:
977
978 INTERFACE FOO
979 SUBROUTINE F1(A, B)
980 INTEGER :: A ; REAL :: B
981 END SUBROUTINE F1
982
983 SUBROUTINE F2(B, A)
984 INTEGER :: A ; REAL :: B
985 END SUBROUTINE F1
986 END INTERFACE FOO
987
988 At this point, 'CALL FOO(A=1, B=1.0)' is ambiguous. */
989
990 static int
991 generic_correspondence (gfc_formal_arglist *f1, gfc_formal_arglist *f2,
992 const char *p1, const char *p2)
993 {
994 gfc_formal_arglist *f2_save, *g;
995 gfc_symbol *sym;
996
997 f2_save = f2;
998
999 while (f1)
1000 {
1001 if (f1->sym->attr.optional)
1002 goto next;
1003
1004 if (p1 && strcmp (f1->sym->name, p1) == 0)
1005 f1 = f1->next;
1006 if (f2 && p2 && strcmp (f2->sym->name, p2) == 0)
1007 f2 = f2->next;
1008
1009 if (f2 != NULL && (compare_type_rank (f1->sym, f2->sym)
1010 || compare_type_rank (f2->sym, f1->sym))
1011 && !((gfc_option.allow_std & GFC_STD_F2008)
1012 && ((f1->sym->attr.allocatable && f2->sym->attr.pointer)
1013 || (f2->sym->attr.allocatable && f1->sym->attr.pointer))))
1014 goto next;
1015
1016 /* Now search for a disambiguating keyword argument starting at
1017 the current non-match. */
1018 for (g = f1; g; g = g->next)
1019 {
1020 if (g->sym->attr.optional || (p1 && strcmp (g->sym->name, p1) == 0))
1021 continue;
1022
1023 sym = find_keyword_arg (g->sym->name, f2_save);
1024 if (sym == NULL || !compare_type_rank (g->sym, sym)
1025 || ((gfc_option.allow_std & GFC_STD_F2008)
1026 && ((sym->attr.allocatable && g->sym->attr.pointer)
1027 || (sym->attr.pointer && g->sym->attr.allocatable))))
1028 return 1;
1029 }
1030
1031 next:
1032 if (f1 != NULL)
1033 f1 = f1->next;
1034 if (f2 != NULL)
1035 f2 = f2->next;
1036 }
1037
1038 return 0;
1039 }
1040
1041
1042 static int
1043 symbol_rank (gfc_symbol *sym)
1044 {
1045 gfc_array_spec *as;
1046 as = (sym->ts.type == BT_CLASS) ? CLASS_DATA (sym)->as : sym->as;
1047 return as ? as->rank : 0;
1048 }
1049
1050
1051 /* Check if the characteristics of two dummy arguments match,
1052 cf. F08:12.3.2. */
1053
1054 static bool
1055 check_dummy_characteristics (gfc_symbol *s1, gfc_symbol *s2,
1056 bool type_must_agree, char *errmsg, int err_len)
1057 {
1058 if (s1 == NULL || s2 == NULL)
1059 return s1 == s2 ? true : false;
1060
1061 /* Check type and rank. */
1062 if (type_must_agree)
1063 {
1064 if (!compare_type (s1, s2) || !compare_type (s2, s1))
1065 {
1066 snprintf (errmsg, err_len, "Type mismatch in argument '%s' (%s/%s)",
1067 s1->name, gfc_typename (&s1->ts), gfc_typename (&s2->ts));
1068 return false;
1069 }
1070 if (!compare_rank (s1, s2))
1071 {
1072 snprintf (errmsg, err_len, "Rank mismatch in argument '%s' (%i/%i)",
1073 s1->name, symbol_rank (s1), symbol_rank (s2));
1074 return false;
1075 }
1076 }
1077
1078 /* Check INTENT. */
1079 if (s1->attr.intent != s2->attr.intent)
1080 {
1081 snprintf (errmsg, err_len, "INTENT mismatch in argument '%s'",
1082 s1->name);
1083 return false;
1084 }
1085
1086 /* Check OPTIONAL attribute. */
1087 if (s1->attr.optional != s2->attr.optional)
1088 {
1089 snprintf (errmsg, err_len, "OPTIONAL mismatch in argument '%s'",
1090 s1->name);
1091 return false;
1092 }
1093
1094 /* Check ALLOCATABLE attribute. */
1095 if (s1->attr.allocatable != s2->attr.allocatable)
1096 {
1097 snprintf (errmsg, err_len, "ALLOCATABLE mismatch in argument '%s'",
1098 s1->name);
1099 return false;
1100 }
1101
1102 /* Check POINTER attribute. */
1103 if (s1->attr.pointer != s2->attr.pointer)
1104 {
1105 snprintf (errmsg, err_len, "POINTER mismatch in argument '%s'",
1106 s1->name);
1107 return false;
1108 }
1109
1110 /* Check TARGET attribute. */
1111 if (s1->attr.target != s2->attr.target)
1112 {
1113 snprintf (errmsg, err_len, "TARGET mismatch in argument '%s'",
1114 s1->name);
1115 return false;
1116 }
1117
1118 /* Check ASYNCHRONOUS attribute. */
1119 if (s1->attr.asynchronous != s2->attr.asynchronous)
1120 {
1121 snprintf (errmsg, err_len, "ASYNCHRONOUS mismatch in argument '%s'",
1122 s1->name);
1123 return false;
1124 }
1125
1126 /* Check CONTIGUOUS attribute. */
1127 if (s1->attr.contiguous != s2->attr.contiguous)
1128 {
1129 snprintf (errmsg, err_len, "CONTIGUOUS mismatch in argument '%s'",
1130 s1->name);
1131 return false;
1132 }
1133
1134 /* Check VALUE attribute. */
1135 if (s1->attr.value != s2->attr.value)
1136 {
1137 snprintf (errmsg, err_len, "VALUE mismatch in argument '%s'",
1138 s1->name);
1139 return false;
1140 }
1141
1142 /* Check VOLATILE attribute. */
1143 if (s1->attr.volatile_ != s2->attr.volatile_)
1144 {
1145 snprintf (errmsg, err_len, "VOLATILE mismatch in argument '%s'",
1146 s1->name);
1147 return false;
1148 }
1149
1150 /* Check interface of dummy procedures. */
1151 if (s1->attr.flavor == FL_PROCEDURE)
1152 {
1153 char err[200];
1154 if (!gfc_compare_interfaces (s1, s2, s2->name, 0, 1, err, sizeof(err),
1155 NULL, NULL))
1156 {
1157 snprintf (errmsg, err_len, "Interface mismatch in dummy procedure "
1158 "'%s': %s", s1->name, err);
1159 return false;
1160 }
1161 }
1162
1163 /* Check string length. */
1164 if (s1->ts.type == BT_CHARACTER
1165 && s1->ts.u.cl && s1->ts.u.cl->length
1166 && s2->ts.u.cl && s2->ts.u.cl->length)
1167 {
1168 int compval = gfc_dep_compare_expr (s1->ts.u.cl->length,
1169 s2->ts.u.cl->length);
1170 switch (compval)
1171 {
1172 case -1:
1173 case 1:
1174 case -3:
1175 snprintf (errmsg, err_len, "Character length mismatch "
1176 "in argument '%s'", s1->name);
1177 return false;
1178
1179 case -2:
1180 /* FIXME: Implement a warning for this case.
1181 gfc_warning ("Possible character length mismatch in argument %qs",
1182 s1->name);*/
1183 break;
1184
1185 case 0:
1186 break;
1187
1188 default:
1189 gfc_internal_error ("check_dummy_characteristics: Unexpected result "
1190 "%i of gfc_dep_compare_expr", compval);
1191 break;
1192 }
1193 }
1194
1195 /* Check array shape. */
1196 if (s1->as && s2->as)
1197 {
1198 int i, compval;
1199 gfc_expr *shape1, *shape2;
1200
1201 if (s1->as->type != s2->as->type)
1202 {
1203 snprintf (errmsg, err_len, "Shape mismatch in argument '%s'",
1204 s1->name);
1205 return false;
1206 }
1207
1208 if (s1->as->type == AS_EXPLICIT)
1209 for (i = 0; i < s1->as->rank + s1->as->corank; i++)
1210 {
1211 shape1 = gfc_subtract (gfc_copy_expr (s1->as->upper[i]),
1212 gfc_copy_expr (s1->as->lower[i]));
1213 shape2 = gfc_subtract (gfc_copy_expr (s2->as->upper[i]),
1214 gfc_copy_expr (s2->as->lower[i]));
1215 compval = gfc_dep_compare_expr (shape1, shape2);
1216 gfc_free_expr (shape1);
1217 gfc_free_expr (shape2);
1218 switch (compval)
1219 {
1220 case -1:
1221 case 1:
1222 case -3:
1223 snprintf (errmsg, err_len, "Shape mismatch in dimension %i of "
1224 "argument '%s'", i + 1, s1->name);
1225 return false;
1226
1227 case -2:
1228 /* FIXME: Implement a warning for this case.
1229 gfc_warning ("Possible shape mismatch in argument %qs",
1230 s1->name);*/
1231 break;
1232
1233 case 0:
1234 break;
1235
1236 default:
1237 gfc_internal_error ("check_dummy_characteristics: Unexpected "
1238 "result %i of gfc_dep_compare_expr",
1239 compval);
1240 break;
1241 }
1242 }
1243 }
1244
1245 return true;
1246 }
1247
1248
1249 /* Check if the characteristics of two function results match,
1250 cf. F08:12.3.3. */
1251
1252 static bool
1253 check_result_characteristics (gfc_symbol *s1, gfc_symbol *s2,
1254 char *errmsg, int err_len)
1255 {
1256 gfc_symbol *r1, *r2;
1257
1258 if (s1->ts.interface && s1->ts.interface->result)
1259 r1 = s1->ts.interface->result;
1260 else
1261 r1 = s1->result ? s1->result : s1;
1262
1263 if (s2->ts.interface && s2->ts.interface->result)
1264 r2 = s2->ts.interface->result;
1265 else
1266 r2 = s2->result ? s2->result : s2;
1267
1268 if (r1->ts.type == BT_UNKNOWN)
1269 return true;
1270
1271 /* Check type and rank. */
1272 if (!compare_type (r1, r2))
1273 {
1274 snprintf (errmsg, err_len, "Type mismatch in function result (%s/%s)",
1275 gfc_typename (&r1->ts), gfc_typename (&r2->ts));
1276 return false;
1277 }
1278 if (!compare_rank (r1, r2))
1279 {
1280 snprintf (errmsg, err_len, "Rank mismatch in function result (%i/%i)",
1281 symbol_rank (r1), symbol_rank (r2));
1282 return false;
1283 }
1284
1285 /* Check ALLOCATABLE attribute. */
1286 if (r1->attr.allocatable != r2->attr.allocatable)
1287 {
1288 snprintf (errmsg, err_len, "ALLOCATABLE attribute mismatch in "
1289 "function result");
1290 return false;
1291 }
1292
1293 /* Check POINTER attribute. */
1294 if (r1->attr.pointer != r2->attr.pointer)
1295 {
1296 snprintf (errmsg, err_len, "POINTER attribute mismatch in "
1297 "function result");
1298 return false;
1299 }
1300
1301 /* Check CONTIGUOUS attribute. */
1302 if (r1->attr.contiguous != r2->attr.contiguous)
1303 {
1304 snprintf (errmsg, err_len, "CONTIGUOUS attribute mismatch in "
1305 "function result");
1306 return false;
1307 }
1308
1309 /* Check PROCEDURE POINTER attribute. */
1310 if (r1 != s1 && r1->attr.proc_pointer != r2->attr.proc_pointer)
1311 {
1312 snprintf (errmsg, err_len, "PROCEDURE POINTER mismatch in "
1313 "function result");
1314 return false;
1315 }
1316
1317 /* Check string length. */
1318 if (r1->ts.type == BT_CHARACTER && r1->ts.u.cl && r2->ts.u.cl)
1319 {
1320 if (r1->ts.deferred != r2->ts.deferred)
1321 {
1322 snprintf (errmsg, err_len, "Character length mismatch "
1323 "in function result");
1324 return false;
1325 }
1326
1327 if (r1->ts.u.cl->length && r2->ts.u.cl->length)
1328 {
1329 int compval = gfc_dep_compare_expr (r1->ts.u.cl->length,
1330 r2->ts.u.cl->length);
1331 switch (compval)
1332 {
1333 case -1:
1334 case 1:
1335 case -3:
1336 snprintf (errmsg, err_len, "Character length mismatch "
1337 "in function result");
1338 return false;
1339
1340 case -2:
1341 /* FIXME: Implement a warning for this case.
1342 snprintf (errmsg, err_len, "Possible character length mismatch "
1343 "in function result");*/
1344 break;
1345
1346 case 0:
1347 break;
1348
1349 default:
1350 gfc_internal_error ("check_result_characteristics (1): Unexpected "
1351 "result %i of gfc_dep_compare_expr", compval);
1352 break;
1353 }
1354 }
1355 }
1356
1357 /* Check array shape. */
1358 if (!r1->attr.allocatable && !r1->attr.pointer && r1->as && r2->as)
1359 {
1360 int i, compval;
1361 gfc_expr *shape1, *shape2;
1362
1363 if (r1->as->type != r2->as->type)
1364 {
1365 snprintf (errmsg, err_len, "Shape mismatch in function result");
1366 return false;
1367 }
1368
1369 if (r1->as->type == AS_EXPLICIT)
1370 for (i = 0; i < r1->as->rank + r1->as->corank; i++)
1371 {
1372 shape1 = gfc_subtract (gfc_copy_expr (r1->as->upper[i]),
1373 gfc_copy_expr (r1->as->lower[i]));
1374 shape2 = gfc_subtract (gfc_copy_expr (r2->as->upper[i]),
1375 gfc_copy_expr (r2->as->lower[i]));
1376 compval = gfc_dep_compare_expr (shape1, shape2);
1377 gfc_free_expr (shape1);
1378 gfc_free_expr (shape2);
1379 switch (compval)
1380 {
1381 case -1:
1382 case 1:
1383 case -3:
1384 snprintf (errmsg, err_len, "Shape mismatch in dimension %i of "
1385 "function result", i + 1);
1386 return false;
1387
1388 case -2:
1389 /* FIXME: Implement a warning for this case.
1390 gfc_warning ("Possible shape mismatch in return value");*/
1391 break;
1392
1393 case 0:
1394 break;
1395
1396 default:
1397 gfc_internal_error ("check_result_characteristics (2): "
1398 "Unexpected result %i of "
1399 "gfc_dep_compare_expr", compval);
1400 break;
1401 }
1402 }
1403 }
1404
1405 return true;
1406 }
1407
1408
1409 /* 'Compare' two formal interfaces associated with a pair of symbols.
1410 We return nonzero if there exists an actual argument list that
1411 would be ambiguous between the two interfaces, zero otherwise.
1412 'strict_flag' specifies whether all the characteristics are
1413 required to match, which is not the case for ambiguity checks.
1414 'p1' and 'p2' are the PASS arguments of both procedures (if applicable). */
1415
1416 int
1417 gfc_compare_interfaces (gfc_symbol *s1, gfc_symbol *s2, const char *name2,
1418 int generic_flag, int strict_flag,
1419 char *errmsg, int err_len,
1420 const char *p1, const char *p2)
1421 {
1422 gfc_formal_arglist *f1, *f2;
1423
1424 gcc_assert (name2 != NULL);
1425
1426 if (s1->attr.function && (s2->attr.subroutine
1427 || (!s2->attr.function && s2->ts.type == BT_UNKNOWN
1428 && gfc_get_default_type (name2, s2->ns)->type == BT_UNKNOWN)))
1429 {
1430 if (errmsg != NULL)
1431 snprintf (errmsg, err_len, "'%s' is not a function", name2);
1432 return 0;
1433 }
1434
1435 if (s1->attr.subroutine && s2->attr.function)
1436 {
1437 if (errmsg != NULL)
1438 snprintf (errmsg, err_len, "'%s' is not a subroutine", name2);
1439 return 0;
1440 }
1441
1442 /* Do strict checks on all characteristics
1443 (for dummy procedures and procedure pointer assignments). */
1444 if (!generic_flag && strict_flag)
1445 {
1446 if (s1->attr.function && s2->attr.function)
1447 {
1448 /* If both are functions, check result characteristics. */
1449 if (!check_result_characteristics (s1, s2, errmsg, err_len)
1450 || !check_result_characteristics (s2, s1, errmsg, err_len))
1451 return 0;
1452 }
1453
1454 if (s1->attr.pure && !s2->attr.pure)
1455 {
1456 snprintf (errmsg, err_len, "Mismatch in PURE attribute");
1457 return 0;
1458 }
1459 if (s1->attr.elemental && !s2->attr.elemental)
1460 {
1461 snprintf (errmsg, err_len, "Mismatch in ELEMENTAL attribute");
1462 return 0;
1463 }
1464 }
1465
1466 if (s1->attr.if_source == IFSRC_UNKNOWN
1467 || s2->attr.if_source == IFSRC_UNKNOWN)
1468 return 1;
1469
1470 f1 = gfc_sym_get_dummy_args (s1);
1471 f2 = gfc_sym_get_dummy_args (s2);
1472
1473 if (f1 == NULL && f2 == NULL)
1474 return 1; /* Special case: No arguments. */
1475
1476 if (generic_flag)
1477 {
1478 if (count_types_test (f1, f2, p1, p2)
1479 || count_types_test (f2, f1, p2, p1))
1480 return 0;
1481 if (generic_correspondence (f1, f2, p1, p2)
1482 || generic_correspondence (f2, f1, p2, p1))
1483 return 0;
1484 }
1485 else
1486 /* Perform the abbreviated correspondence test for operators (the
1487 arguments cannot be optional and are always ordered correctly).
1488 This is also done when comparing interfaces for dummy procedures and in
1489 procedure pointer assignments. */
1490
1491 for (;;)
1492 {
1493 /* Check existence. */
1494 if (f1 == NULL && f2 == NULL)
1495 break;
1496 if (f1 == NULL || f2 == NULL)
1497 {
1498 if (errmsg != NULL)
1499 snprintf (errmsg, err_len, "'%s' has the wrong number of "
1500 "arguments", name2);
1501 return 0;
1502 }
1503
1504 if (UNLIMITED_POLY (f1->sym))
1505 goto next;
1506
1507 if (strict_flag)
1508 {
1509 /* Check all characteristics. */
1510 if (!check_dummy_characteristics (f1->sym, f2->sym, true,
1511 errmsg, err_len))
1512 return 0;
1513 }
1514 else
1515 {
1516 /* Only check type and rank. */
1517 if (!compare_type (f2->sym, f1->sym))
1518 {
1519 if (errmsg != NULL)
1520 snprintf (errmsg, err_len, "Type mismatch in argument '%s' "
1521 "(%s/%s)", f1->sym->name,
1522 gfc_typename (&f1->sym->ts),
1523 gfc_typename (&f2->sym->ts));
1524 return 0;
1525 }
1526 if (!compare_rank (f2->sym, f1->sym))
1527 {
1528 if (errmsg != NULL)
1529 snprintf (errmsg, err_len, "Rank mismatch in argument '%s' "
1530 "(%i/%i)", f1->sym->name, symbol_rank (f1->sym),
1531 symbol_rank (f2->sym));
1532 return 0;
1533 }
1534 }
1535 next:
1536 f1 = f1->next;
1537 f2 = f2->next;
1538 }
1539
1540 return 1;
1541 }
1542
1543
1544 /* Given a pointer to an interface pointer, remove duplicate
1545 interfaces and make sure that all symbols are either functions
1546 or subroutines, and all of the same kind. Returns nonzero if
1547 something goes wrong. */
1548
1549 static int
1550 check_interface0 (gfc_interface *p, const char *interface_name)
1551 {
1552 gfc_interface *psave, *q, *qlast;
1553
1554 psave = p;
1555 for (; p; p = p->next)
1556 {
1557 /* Make sure all symbols in the interface have been defined as
1558 functions or subroutines. */
1559 if (((!p->sym->attr.function && !p->sym->attr.subroutine)
1560 || !p->sym->attr.if_source)
1561 && p->sym->attr.flavor != FL_DERIVED)
1562 {
1563 if (p->sym->attr.external)
1564 gfc_error ("Procedure %qs in %s at %L has no explicit interface",
1565 p->sym->name, interface_name, &p->sym->declared_at);
1566 else
1567 gfc_error ("Procedure %qs in %s at %L is neither function nor "
1568 "subroutine", p->sym->name, interface_name,
1569 &p->sym->declared_at);
1570 return 1;
1571 }
1572
1573 /* Verify that procedures are either all SUBROUTINEs or all FUNCTIONs. */
1574 if ((psave->sym->attr.function && !p->sym->attr.function
1575 && p->sym->attr.flavor != FL_DERIVED)
1576 || (psave->sym->attr.subroutine && !p->sym->attr.subroutine))
1577 {
1578 if (p->sym->attr.flavor != FL_DERIVED)
1579 gfc_error ("In %s at %L procedures must be either all SUBROUTINEs"
1580 " or all FUNCTIONs", interface_name,
1581 &p->sym->declared_at);
1582 else
1583 gfc_error ("In %s at %L procedures must be all FUNCTIONs as the "
1584 "generic name is also the name of a derived type",
1585 interface_name, &p->sym->declared_at);
1586 return 1;
1587 }
1588
1589 /* F2003, C1207. F2008, C1207. */
1590 if (p->sym->attr.proc == PROC_INTERNAL
1591 && !gfc_notify_std (GFC_STD_F2008, "Internal procedure "
1592 "%qs in %s at %L", p->sym->name,
1593 interface_name, &p->sym->declared_at))
1594 return 1;
1595 }
1596 p = psave;
1597
1598 /* Remove duplicate interfaces in this interface list. */
1599 for (; p; p = p->next)
1600 {
1601 qlast = p;
1602
1603 for (q = p->next; q;)
1604 {
1605 if (p->sym != q->sym)
1606 {
1607 qlast = q;
1608 q = q->next;
1609 }
1610 else
1611 {
1612 /* Duplicate interface. */
1613 qlast->next = q->next;
1614 free (q);
1615 q = qlast->next;
1616 }
1617 }
1618 }
1619
1620 return 0;
1621 }
1622
1623
1624 /* Check lists of interfaces to make sure that no two interfaces are
1625 ambiguous. Duplicate interfaces (from the same symbol) are OK here. */
1626
1627 static int
1628 check_interface1 (gfc_interface *p, gfc_interface *q0,
1629 int generic_flag, const char *interface_name,
1630 bool referenced)
1631 {
1632 gfc_interface *q;
1633 for (; p; p = p->next)
1634 for (q = q0; q; q = q->next)
1635 {
1636 if (p->sym == q->sym)
1637 continue; /* Duplicates OK here. */
1638
1639 if (p->sym->name == q->sym->name && p->sym->module == q->sym->module)
1640 continue;
1641
1642 if (p->sym->attr.flavor != FL_DERIVED
1643 && q->sym->attr.flavor != FL_DERIVED
1644 && gfc_compare_interfaces (p->sym, q->sym, q->sym->name,
1645 generic_flag, 0, NULL, 0, NULL, NULL))
1646 {
1647 if (referenced)
1648 gfc_error ("Ambiguous interfaces %qs and %qs in %s at %L",
1649 p->sym->name, q->sym->name, interface_name,
1650 &p->where);
1651 else if (!p->sym->attr.use_assoc && q->sym->attr.use_assoc)
1652 gfc_warning ("Ambiguous interfaces %qs and %qs in %s at %L",
1653 p->sym->name, q->sym->name, interface_name,
1654 &p->where);
1655 else
1656 gfc_warning ("Although not referenced, %qs has ambiguous "
1657 "interfaces at %L", interface_name, &p->where);
1658 return 1;
1659 }
1660 }
1661 return 0;
1662 }
1663
1664
1665 /* Check the generic and operator interfaces of symbols to make sure
1666 that none of the interfaces conflict. The check has to be done
1667 after all of the symbols are actually loaded. */
1668
1669 static void
1670 check_sym_interfaces (gfc_symbol *sym)
1671 {
1672 char interface_name[100];
1673 gfc_interface *p;
1674
1675 if (sym->ns != gfc_current_ns)
1676 return;
1677
1678 if (sym->generic != NULL)
1679 {
1680 sprintf (interface_name, "generic interface '%s'", sym->name);
1681 if (check_interface0 (sym->generic, interface_name))
1682 return;
1683
1684 for (p = sym->generic; p; p = p->next)
1685 {
1686 if (p->sym->attr.mod_proc
1687 && (p->sym->attr.if_source != IFSRC_DECL
1688 || p->sym->attr.procedure))
1689 {
1690 gfc_error ("%qs at %L is not a module procedure",
1691 p->sym->name, &p->where);
1692 return;
1693 }
1694 }
1695
1696 /* Originally, this test was applied to host interfaces too;
1697 this is incorrect since host associated symbols, from any
1698 source, cannot be ambiguous with local symbols. */
1699 check_interface1 (sym->generic, sym->generic, 1, interface_name,
1700 sym->attr.referenced || !sym->attr.use_assoc);
1701 }
1702 }
1703
1704
1705 static void
1706 check_uop_interfaces (gfc_user_op *uop)
1707 {
1708 char interface_name[100];
1709 gfc_user_op *uop2;
1710 gfc_namespace *ns;
1711
1712 sprintf (interface_name, "operator interface '%s'", uop->name);
1713 if (check_interface0 (uop->op, interface_name))
1714 return;
1715
1716 for (ns = gfc_current_ns; ns; ns = ns->parent)
1717 {
1718 uop2 = gfc_find_uop (uop->name, ns);
1719 if (uop2 == NULL)
1720 continue;
1721
1722 check_interface1 (uop->op, uop2->op, 0,
1723 interface_name, true);
1724 }
1725 }
1726
1727 /* Given an intrinsic op, return an equivalent op if one exists,
1728 or INTRINSIC_NONE otherwise. */
1729
1730 gfc_intrinsic_op
1731 gfc_equivalent_op (gfc_intrinsic_op op)
1732 {
1733 switch(op)
1734 {
1735 case INTRINSIC_EQ:
1736 return INTRINSIC_EQ_OS;
1737
1738 case INTRINSIC_EQ_OS:
1739 return INTRINSIC_EQ;
1740
1741 case INTRINSIC_NE:
1742 return INTRINSIC_NE_OS;
1743
1744 case INTRINSIC_NE_OS:
1745 return INTRINSIC_NE;
1746
1747 case INTRINSIC_GT:
1748 return INTRINSIC_GT_OS;
1749
1750 case INTRINSIC_GT_OS:
1751 return INTRINSIC_GT;
1752
1753 case INTRINSIC_GE:
1754 return INTRINSIC_GE_OS;
1755
1756 case INTRINSIC_GE_OS:
1757 return INTRINSIC_GE;
1758
1759 case INTRINSIC_LT:
1760 return INTRINSIC_LT_OS;
1761
1762 case INTRINSIC_LT_OS:
1763 return INTRINSIC_LT;
1764
1765 case INTRINSIC_LE:
1766 return INTRINSIC_LE_OS;
1767
1768 case INTRINSIC_LE_OS:
1769 return INTRINSIC_LE;
1770
1771 default:
1772 return INTRINSIC_NONE;
1773 }
1774 }
1775
1776 /* For the namespace, check generic, user operator and intrinsic
1777 operator interfaces for consistency and to remove duplicate
1778 interfaces. We traverse the whole namespace, counting on the fact
1779 that most symbols will not have generic or operator interfaces. */
1780
1781 void
1782 gfc_check_interfaces (gfc_namespace *ns)
1783 {
1784 gfc_namespace *old_ns, *ns2;
1785 char interface_name[100];
1786 int i;
1787
1788 old_ns = gfc_current_ns;
1789 gfc_current_ns = ns;
1790
1791 gfc_traverse_ns (ns, check_sym_interfaces);
1792
1793 gfc_traverse_user_op (ns, check_uop_interfaces);
1794
1795 for (i = GFC_INTRINSIC_BEGIN; i != GFC_INTRINSIC_END; i++)
1796 {
1797 if (i == INTRINSIC_USER)
1798 continue;
1799
1800 if (i == INTRINSIC_ASSIGN)
1801 strcpy (interface_name, "intrinsic assignment operator");
1802 else
1803 sprintf (interface_name, "intrinsic '%s' operator",
1804 gfc_op2string ((gfc_intrinsic_op) i));
1805
1806 if (check_interface0 (ns->op[i], interface_name))
1807 continue;
1808
1809 if (ns->op[i])
1810 gfc_check_operator_interface (ns->op[i]->sym, (gfc_intrinsic_op) i,
1811 ns->op[i]->where);
1812
1813 for (ns2 = ns; ns2; ns2 = ns2->parent)
1814 {
1815 gfc_intrinsic_op other_op;
1816
1817 if (check_interface1 (ns->op[i], ns2->op[i], 0,
1818 interface_name, true))
1819 goto done;
1820
1821 /* i should be gfc_intrinsic_op, but has to be int with this cast
1822 here for stupid C++ compatibility rules. */
1823 other_op = gfc_equivalent_op ((gfc_intrinsic_op) i);
1824 if (other_op != INTRINSIC_NONE
1825 && check_interface1 (ns->op[i], ns2->op[other_op],
1826 0, interface_name, true))
1827 goto done;
1828 }
1829 }
1830
1831 done:
1832 gfc_current_ns = old_ns;
1833 }
1834
1835
1836 /* Given a symbol of a formal argument list and an expression, if the
1837 formal argument is allocatable, check that the actual argument is
1838 allocatable. Returns nonzero if compatible, zero if not compatible. */
1839
1840 static int
1841 compare_allocatable (gfc_symbol *formal, gfc_expr *actual)
1842 {
1843 symbol_attribute attr;
1844
1845 if (formal->attr.allocatable
1846 || (formal->ts.type == BT_CLASS && CLASS_DATA (formal)->attr.allocatable))
1847 {
1848 attr = gfc_expr_attr (actual);
1849 if (!attr.allocatable)
1850 return 0;
1851 }
1852
1853 return 1;
1854 }
1855
1856
1857 /* Given a symbol of a formal argument list and an expression, if the
1858 formal argument is a pointer, see if the actual argument is a
1859 pointer. Returns nonzero if compatible, zero if not compatible. */
1860
1861 static int
1862 compare_pointer (gfc_symbol *formal, gfc_expr *actual)
1863 {
1864 symbol_attribute attr;
1865
1866 if (formal->attr.pointer
1867 || (formal->ts.type == BT_CLASS && CLASS_DATA (formal)
1868 && CLASS_DATA (formal)->attr.class_pointer))
1869 {
1870 attr = gfc_expr_attr (actual);
1871
1872 /* Fortran 2008 allows non-pointer actual arguments. */
1873 if (!attr.pointer && attr.target && formal->attr.intent == INTENT_IN)
1874 return 2;
1875
1876 if (!attr.pointer)
1877 return 0;
1878 }
1879
1880 return 1;
1881 }
1882
1883
1884 /* Emit clear error messages for rank mismatch. */
1885
1886 static void
1887 argument_rank_mismatch (const char *name, locus *where,
1888 int rank1, int rank2)
1889 {
1890
1891 /* TS 29113, C407b. */
1892 if (rank2 == -1)
1893 {
1894 gfc_error ("The assumed-rank array at %L requires that the dummy argument"
1895 " %qs has assumed-rank", where, name);
1896 }
1897 else if (rank1 == 0)
1898 {
1899 gfc_error ("Rank mismatch in argument %qs at %L "
1900 "(scalar and rank-%d)", name, where, rank2);
1901 }
1902 else if (rank2 == 0)
1903 {
1904 gfc_error ("Rank mismatch in argument %qs at %L "
1905 "(rank-%d and scalar)", name, where, rank1);
1906 }
1907 else
1908 {
1909 gfc_error ("Rank mismatch in argument %qs at %L "
1910 "(rank-%d and rank-%d)", name, where, rank1, rank2);
1911 }
1912 }
1913
1914
1915 /* Given a symbol of a formal argument list and an expression, see if
1916 the two are compatible as arguments. Returns nonzero if
1917 compatible, zero if not compatible. */
1918
1919 static int
1920 compare_parameter (gfc_symbol *formal, gfc_expr *actual,
1921 int ranks_must_agree, int is_elemental, locus *where)
1922 {
1923 gfc_ref *ref;
1924 bool rank_check, is_pointer;
1925
1926 /* If the formal arg has type BT_VOID, it's to one of the iso_c_binding
1927 procs c_f_pointer or c_f_procpointer, and we need to accept most
1928 pointers the user could give us. This should allow that. */
1929 if (formal->ts.type == BT_VOID)
1930 return 1;
1931
1932 if (formal->ts.type == BT_DERIVED
1933 && formal->ts.u.derived && formal->ts.u.derived->ts.is_iso_c
1934 && actual->ts.type == BT_DERIVED
1935 && actual->ts.u.derived && actual->ts.u.derived->ts.is_iso_c)
1936 return 1;
1937
1938 if (formal->ts.type == BT_CLASS && actual->ts.type == BT_DERIVED)
1939 /* Make sure the vtab symbol is present when
1940 the module variables are generated. */
1941 gfc_find_derived_vtab (actual->ts.u.derived);
1942
1943 if (actual->ts.type == BT_PROCEDURE)
1944 {
1945 char err[200];
1946 gfc_symbol *act_sym = actual->symtree->n.sym;
1947
1948 if (formal->attr.flavor != FL_PROCEDURE)
1949 {
1950 if (where)
1951 gfc_error ("Invalid procedure argument at %L", &actual->where);
1952 return 0;
1953 }
1954
1955 if (!gfc_compare_interfaces (formal, act_sym, act_sym->name, 0, 1, err,
1956 sizeof(err), NULL, NULL))
1957 {
1958 if (where)
1959 gfc_error ("Interface mismatch in dummy procedure %qs at %L: %s",
1960 formal->name, &actual->where, err);
1961 return 0;
1962 }
1963
1964 if (formal->attr.function && !act_sym->attr.function)
1965 {
1966 gfc_add_function (&act_sym->attr, act_sym->name,
1967 &act_sym->declared_at);
1968 if (act_sym->ts.type == BT_UNKNOWN
1969 && !gfc_set_default_type (act_sym, 1, act_sym->ns))
1970 return 0;
1971 }
1972 else if (formal->attr.subroutine && !act_sym->attr.subroutine)
1973 gfc_add_subroutine (&act_sym->attr, act_sym->name,
1974 &act_sym->declared_at);
1975
1976 return 1;
1977 }
1978
1979 /* F2008, C1241. */
1980 if (formal->attr.pointer && formal->attr.contiguous
1981 && !gfc_is_simply_contiguous (actual, true))
1982 {
1983 if (where)
1984 gfc_error ("Actual argument to contiguous pointer dummy %qs at %L "
1985 "must be simply contiguous", formal->name, &actual->where);
1986 return 0;
1987 }
1988
1989 if ((actual->expr_type != EXPR_NULL || actual->ts.type != BT_UNKNOWN)
1990 && actual->ts.type != BT_HOLLERITH
1991 && formal->ts.type != BT_ASSUMED
1992 && !(formal->attr.ext_attr & (1 << EXT_ATTR_NO_ARG_CHECK))
1993 && !gfc_compare_types (&formal->ts, &actual->ts)
1994 && !(formal->ts.type == BT_DERIVED && actual->ts.type == BT_CLASS
1995 && gfc_compare_derived_types (formal->ts.u.derived,
1996 CLASS_DATA (actual)->ts.u.derived)))
1997 {
1998 if (where)
1999 gfc_error ("Type mismatch in argument %qs at %L; passed %s to %s",
2000 formal->name, &actual->where, gfc_typename (&actual->ts),
2001 gfc_typename (&formal->ts));
2002 return 0;
2003 }
2004
2005 if (actual->ts.type == BT_ASSUMED && formal->ts.type != BT_ASSUMED)
2006 {
2007 if (where)
2008 gfc_error ("Assumed-type actual argument at %L requires that dummy "
2009 "argument %qs is of assumed type", &actual->where,
2010 formal->name);
2011 return 0;
2012 }
2013
2014 /* F2008, 12.5.2.5; IR F08/0073. */
2015 if (formal->ts.type == BT_CLASS && formal->attr.class_ok
2016 && actual->expr_type != EXPR_NULL
2017 && ((CLASS_DATA (formal)->attr.class_pointer
2018 && formal->attr.intent != INTENT_IN)
2019 || CLASS_DATA (formal)->attr.allocatable))
2020 {
2021 if (actual->ts.type != BT_CLASS)
2022 {
2023 if (where)
2024 gfc_error ("Actual argument to %qs at %L must be polymorphic",
2025 formal->name, &actual->where);
2026 return 0;
2027 }
2028
2029 if (!gfc_expr_attr (actual).class_ok)
2030 return 0;
2031
2032 if ((!UNLIMITED_POLY (formal) || !UNLIMITED_POLY(actual))
2033 && !gfc_compare_derived_types (CLASS_DATA (actual)->ts.u.derived,
2034 CLASS_DATA (formal)->ts.u.derived))
2035 {
2036 if (where)
2037 gfc_error ("Actual argument to %qs at %L must have the same "
2038 "declared type", formal->name, &actual->where);
2039 return 0;
2040 }
2041 }
2042
2043 /* F08: 12.5.2.5 Allocatable and pointer dummy variables. However, this
2044 is necessary also for F03, so retain error for both.
2045 NOTE: Other type/kind errors pre-empt this error. Since they are F03
2046 compatible, no attempt has been made to channel to this one. */
2047 if (UNLIMITED_POLY (formal) && !UNLIMITED_POLY (actual)
2048 && (CLASS_DATA (formal)->attr.allocatable
2049 ||CLASS_DATA (formal)->attr.class_pointer))
2050 {
2051 if (where)
2052 gfc_error ("Actual argument to %qs at %L must be unlimited "
2053 "polymorphic since the formal argument is a "
2054 "pointer or allocatable unlimited polymorphic "
2055 "entity [F2008: 12.5.2.5]", formal->name,
2056 &actual->where);
2057 return 0;
2058 }
2059
2060 if (formal->attr.codimension && !gfc_is_coarray (actual))
2061 {
2062 if (where)
2063 gfc_error ("Actual argument to %qs at %L must be a coarray",
2064 formal->name, &actual->where);
2065 return 0;
2066 }
2067
2068 if (formal->attr.codimension && formal->attr.allocatable)
2069 {
2070 gfc_ref *last = NULL;
2071
2072 for (ref = actual->ref; ref; ref = ref->next)
2073 if (ref->type == REF_COMPONENT)
2074 last = ref;
2075
2076 /* F2008, 12.5.2.6. */
2077 if ((last && last->u.c.component->as->corank != formal->as->corank)
2078 || (!last
2079 && actual->symtree->n.sym->as->corank != formal->as->corank))
2080 {
2081 if (where)
2082 gfc_error ("Corank mismatch in argument %qs at %L (%d and %d)",
2083 formal->name, &actual->where, formal->as->corank,
2084 last ? last->u.c.component->as->corank
2085 : actual->symtree->n.sym->as->corank);
2086 return 0;
2087 }
2088 }
2089
2090 if (formal->attr.codimension)
2091 {
2092 /* F2008, 12.5.2.8. */
2093 if (formal->attr.dimension
2094 && (formal->attr.contiguous || formal->as->type != AS_ASSUMED_SHAPE)
2095 && gfc_expr_attr (actual).dimension
2096 && !gfc_is_simply_contiguous (actual, true))
2097 {
2098 if (where)
2099 gfc_error ("Actual argument to %qs at %L must be simply "
2100 "contiguous", formal->name, &actual->where);
2101 return 0;
2102 }
2103
2104 /* F2008, C1303 and C1304. */
2105 if (formal->attr.intent != INTENT_INOUT
2106 && (((formal->ts.type == BT_DERIVED || formal->ts.type == BT_CLASS)
2107 && formal->ts.u.derived->from_intmod == INTMOD_ISO_FORTRAN_ENV
2108 && formal->ts.u.derived->intmod_sym_id == ISOFORTRAN_LOCK_TYPE)
2109 || formal->attr.lock_comp))
2110
2111 {
2112 if (where)
2113 gfc_error ("Actual argument to non-INTENT(INOUT) dummy %qs at %L, "
2114 "which is LOCK_TYPE or has a LOCK_TYPE component",
2115 formal->name, &actual->where);
2116 return 0;
2117 }
2118 }
2119
2120 /* F2008, C1239/C1240. */
2121 if (actual->expr_type == EXPR_VARIABLE
2122 && (actual->symtree->n.sym->attr.asynchronous
2123 || actual->symtree->n.sym->attr.volatile_)
2124 && (formal->attr.asynchronous || formal->attr.volatile_)
2125 && actual->rank && formal->as && !gfc_is_simply_contiguous (actual, true)
2126 && ((formal->as->type != AS_ASSUMED_SHAPE
2127 && formal->as->type != AS_ASSUMED_RANK && !formal->attr.pointer)
2128 || formal->attr.contiguous))
2129 {
2130 if (where)
2131 gfc_error ("Dummy argument %qs has to be a pointer, assumed-shape or "
2132 "assumed-rank array without CONTIGUOUS attribute - as actual"
2133 " argument at %L is not simply contiguous and both are "
2134 "ASYNCHRONOUS or VOLATILE", formal->name, &actual->where);
2135 return 0;
2136 }
2137
2138 if (formal->attr.allocatable && !formal->attr.codimension
2139 && gfc_expr_attr (actual).codimension)
2140 {
2141 if (formal->attr.intent == INTENT_OUT)
2142 {
2143 if (where)
2144 gfc_error ("Passing coarray at %L to allocatable, noncoarray, "
2145 "INTENT(OUT) dummy argument %qs", &actual->where,
2146 formal->name);
2147 return 0;
2148 }
2149 else if (warn_surprising && where && formal->attr.intent != INTENT_IN)
2150 gfc_warning (OPT_Wsurprising,
2151 "Passing coarray at %L to allocatable, noncoarray dummy "
2152 "argument %qs, which is invalid if the allocation status"
2153 " is modified", &actual->where, formal->name);
2154 }
2155
2156 /* If the rank is the same or the formal argument has assumed-rank. */
2157 if (symbol_rank (formal) == actual->rank || symbol_rank (formal) == -1)
2158 return 1;
2159
2160 rank_check = where != NULL && !is_elemental && formal->as
2161 && (formal->as->type == AS_ASSUMED_SHAPE
2162 || formal->as->type == AS_DEFERRED)
2163 && actual->expr_type != EXPR_NULL;
2164
2165 /* Skip rank checks for NO_ARG_CHECK. */
2166 if (formal->attr.ext_attr & (1 << EXT_ATTR_NO_ARG_CHECK))
2167 return 1;
2168
2169 /* Scalar & coindexed, see: F2008, Section 12.5.2.4. */
2170 if (rank_check || ranks_must_agree
2171 || (formal->attr.pointer && actual->expr_type != EXPR_NULL)
2172 || (actual->rank != 0 && !(is_elemental || formal->attr.dimension))
2173 || (actual->rank == 0
2174 && ((formal->ts.type == BT_CLASS
2175 && CLASS_DATA (formal)->as->type == AS_ASSUMED_SHAPE)
2176 || (formal->ts.type != BT_CLASS
2177 && formal->as->type == AS_ASSUMED_SHAPE))
2178 && actual->expr_type != EXPR_NULL)
2179 || (actual->rank == 0 && formal->attr.dimension
2180 && gfc_is_coindexed (actual)))
2181 {
2182 if (where)
2183 argument_rank_mismatch (formal->name, &actual->where,
2184 symbol_rank (formal), actual->rank);
2185 return 0;
2186 }
2187 else if (actual->rank != 0 && (is_elemental || formal->attr.dimension))
2188 return 1;
2189
2190 /* At this point, we are considering a scalar passed to an array. This
2191 is valid (cf. F95 12.4.1.1, F2003 12.4.1.2, and F2008 12.5.2.4),
2192 - if the actual argument is (a substring of) an element of a
2193 non-assumed-shape/non-pointer/non-polymorphic array; or
2194 - (F2003) if the actual argument is of type character of default/c_char
2195 kind. */
2196
2197 is_pointer = actual->expr_type == EXPR_VARIABLE
2198 ? actual->symtree->n.sym->attr.pointer : false;
2199
2200 for (ref = actual->ref; ref; ref = ref->next)
2201 {
2202 if (ref->type == REF_COMPONENT)
2203 is_pointer = ref->u.c.component->attr.pointer;
2204 else if (ref->type == REF_ARRAY && ref->u.ar.type == AR_ELEMENT
2205 && ref->u.ar.dimen > 0
2206 && (!ref->next
2207 || (ref->next->type == REF_SUBSTRING && !ref->next->next)))
2208 break;
2209 }
2210
2211 if (actual->ts.type == BT_CLASS && actual->expr_type != EXPR_NULL)
2212 {
2213 if (where)
2214 gfc_error ("Polymorphic scalar passed to array dummy argument %qs "
2215 "at %L", formal->name, &actual->where);
2216 return 0;
2217 }
2218
2219 if (actual->expr_type != EXPR_NULL && ref && actual->ts.type != BT_CHARACTER
2220 && (is_pointer || ref->u.ar.as->type == AS_ASSUMED_SHAPE))
2221 {
2222 if (where)
2223 gfc_error ("Element of assumed-shaped or pointer "
2224 "array passed to array dummy argument %qs at %L",
2225 formal->name, &actual->where);
2226 return 0;
2227 }
2228
2229 if (actual->ts.type == BT_CHARACTER && actual->expr_type != EXPR_NULL
2230 && (!ref || is_pointer || ref->u.ar.as->type == AS_ASSUMED_SHAPE))
2231 {
2232 if (formal->ts.kind != 1 && (gfc_option.allow_std & GFC_STD_GNU) == 0)
2233 {
2234 if (where)
2235 gfc_error ("Extension: Scalar non-default-kind, non-C_CHAR-kind "
2236 "CHARACTER actual argument with array dummy argument "
2237 "%qs at %L", formal->name, &actual->where);
2238 return 0;
2239 }
2240
2241 if (where && (gfc_option.allow_std & GFC_STD_F2003) == 0)
2242 {
2243 gfc_error ("Fortran 2003: Scalar CHARACTER actual argument with "
2244 "array dummy argument %qs at %L",
2245 formal->name, &actual->where);
2246 return 0;
2247 }
2248 else if ((gfc_option.allow_std & GFC_STD_F2003) == 0)
2249 return 0;
2250 else
2251 return 1;
2252 }
2253
2254 if (ref == NULL && actual->expr_type != EXPR_NULL)
2255 {
2256 if (where)
2257 argument_rank_mismatch (formal->name, &actual->where,
2258 symbol_rank (formal), actual->rank);
2259 return 0;
2260 }
2261
2262 return 1;
2263 }
2264
2265
2266 /* Returns the storage size of a symbol (formal argument) or
2267 zero if it cannot be determined. */
2268
2269 static unsigned long
2270 get_sym_storage_size (gfc_symbol *sym)
2271 {
2272 int i;
2273 unsigned long strlen, elements;
2274
2275 if (sym->ts.type == BT_CHARACTER)
2276 {
2277 if (sym->ts.u.cl && sym->ts.u.cl->length
2278 && sym->ts.u.cl->length->expr_type == EXPR_CONSTANT)
2279 strlen = mpz_get_ui (sym->ts.u.cl->length->value.integer);
2280 else
2281 return 0;
2282 }
2283 else
2284 strlen = 1;
2285
2286 if (symbol_rank (sym) == 0)
2287 return strlen;
2288
2289 elements = 1;
2290 if (sym->as->type != AS_EXPLICIT)
2291 return 0;
2292 for (i = 0; i < sym->as->rank; i++)
2293 {
2294 if (sym->as->upper[i]->expr_type != EXPR_CONSTANT
2295 || sym->as->lower[i]->expr_type != EXPR_CONSTANT)
2296 return 0;
2297
2298 elements *= mpz_get_si (sym->as->upper[i]->value.integer)
2299 - mpz_get_si (sym->as->lower[i]->value.integer) + 1L;
2300 }
2301
2302 return strlen*elements;
2303 }
2304
2305
2306 /* Returns the storage size of an expression (actual argument) or
2307 zero if it cannot be determined. For an array element, it returns
2308 the remaining size as the element sequence consists of all storage
2309 units of the actual argument up to the end of the array. */
2310
2311 static unsigned long
2312 get_expr_storage_size (gfc_expr *e)
2313 {
2314 int i;
2315 long int strlen, elements;
2316 long int substrlen = 0;
2317 bool is_str_storage = false;
2318 gfc_ref *ref;
2319
2320 if (e == NULL)
2321 return 0;
2322
2323 if (e->ts.type == BT_CHARACTER)
2324 {
2325 if (e->ts.u.cl && e->ts.u.cl->length
2326 && e->ts.u.cl->length->expr_type == EXPR_CONSTANT)
2327 strlen = mpz_get_si (e->ts.u.cl->length->value.integer);
2328 else if (e->expr_type == EXPR_CONSTANT
2329 && (e->ts.u.cl == NULL || e->ts.u.cl->length == NULL))
2330 strlen = e->value.character.length;
2331 else
2332 return 0;
2333 }
2334 else
2335 strlen = 1; /* Length per element. */
2336
2337 if (e->rank == 0 && !e->ref)
2338 return strlen;
2339
2340 elements = 1;
2341 if (!e->ref)
2342 {
2343 if (!e->shape)
2344 return 0;
2345 for (i = 0; i < e->rank; i++)
2346 elements *= mpz_get_si (e->shape[i]);
2347 return elements*strlen;
2348 }
2349
2350 for (ref = e->ref; ref; ref = ref->next)
2351 {
2352 if (ref->type == REF_SUBSTRING && ref->u.ss.start
2353 && ref->u.ss.start->expr_type == EXPR_CONSTANT)
2354 {
2355 if (is_str_storage)
2356 {
2357 /* The string length is the substring length.
2358 Set now to full string length. */
2359 if (!ref->u.ss.length || !ref->u.ss.length->length
2360 || ref->u.ss.length->length->expr_type != EXPR_CONSTANT)
2361 return 0;
2362
2363 strlen = mpz_get_ui (ref->u.ss.length->length->value.integer);
2364 }
2365 substrlen = strlen - mpz_get_ui (ref->u.ss.start->value.integer) + 1;
2366 continue;
2367 }
2368
2369 if (ref->type == REF_ARRAY && ref->u.ar.type == AR_SECTION)
2370 for (i = 0; i < ref->u.ar.dimen; i++)
2371 {
2372 long int start, end, stride;
2373 stride = 1;
2374
2375 if (ref->u.ar.stride[i])
2376 {
2377 if (ref->u.ar.stride[i]->expr_type == EXPR_CONSTANT)
2378 stride = mpz_get_si (ref->u.ar.stride[i]->value.integer);
2379 else
2380 return 0;
2381 }
2382
2383 if (ref->u.ar.start[i])
2384 {
2385 if (ref->u.ar.start[i]->expr_type == EXPR_CONSTANT)
2386 start = mpz_get_si (ref->u.ar.start[i]->value.integer);
2387 else
2388 return 0;
2389 }
2390 else if (ref->u.ar.as->lower[i]
2391 && ref->u.ar.as->lower[i]->expr_type == EXPR_CONSTANT)
2392 start = mpz_get_si (ref->u.ar.as->lower[i]->value.integer);
2393 else
2394 return 0;
2395
2396 if (ref->u.ar.end[i])
2397 {
2398 if (ref->u.ar.end[i]->expr_type == EXPR_CONSTANT)
2399 end = mpz_get_si (ref->u.ar.end[i]->value.integer);
2400 else
2401 return 0;
2402 }
2403 else if (ref->u.ar.as->upper[i]
2404 && ref->u.ar.as->upper[i]->expr_type == EXPR_CONSTANT)
2405 end = mpz_get_si (ref->u.ar.as->upper[i]->value.integer);
2406 else
2407 return 0;
2408
2409 elements *= (end - start)/stride + 1L;
2410 }
2411 else if (ref->type == REF_ARRAY && ref->u.ar.type == AR_FULL)
2412 for (i = 0; i < ref->u.ar.as->rank; i++)
2413 {
2414 if (ref->u.ar.as->lower[i] && ref->u.ar.as->upper[i]
2415 && ref->u.ar.as->lower[i]->expr_type == EXPR_CONSTANT
2416 && ref->u.ar.as->upper[i]->expr_type == EXPR_CONSTANT)
2417 elements *= mpz_get_si (ref->u.ar.as->upper[i]->value.integer)
2418 - mpz_get_si (ref->u.ar.as->lower[i]->value.integer)
2419 + 1L;
2420 else
2421 return 0;
2422 }
2423 else if (ref->type == REF_ARRAY && ref->u.ar.type == AR_ELEMENT
2424 && e->expr_type == EXPR_VARIABLE)
2425 {
2426 if (ref->u.ar.as->type == AS_ASSUMED_SHAPE
2427 || e->symtree->n.sym->attr.pointer)
2428 {
2429 elements = 1;
2430 continue;
2431 }
2432
2433 /* Determine the number of remaining elements in the element
2434 sequence for array element designators. */
2435 is_str_storage = true;
2436 for (i = ref->u.ar.dimen - 1; i >= 0; i--)
2437 {
2438 if (ref->u.ar.start[i] == NULL
2439 || ref->u.ar.start[i]->expr_type != EXPR_CONSTANT
2440 || ref->u.ar.as->upper[i] == NULL
2441 || ref->u.ar.as->lower[i] == NULL
2442 || ref->u.ar.as->upper[i]->expr_type != EXPR_CONSTANT
2443 || ref->u.ar.as->lower[i]->expr_type != EXPR_CONSTANT)
2444 return 0;
2445
2446 elements
2447 = elements
2448 * (mpz_get_si (ref->u.ar.as->upper[i]->value.integer)
2449 - mpz_get_si (ref->u.ar.as->lower[i]->value.integer)
2450 + 1L)
2451 - (mpz_get_si (ref->u.ar.start[i]->value.integer)
2452 - mpz_get_si (ref->u.ar.as->lower[i]->value.integer));
2453 }
2454 }
2455 else if (ref->type == REF_COMPONENT && ref->u.c.component->attr.function
2456 && ref->u.c.component->attr.proc_pointer
2457 && ref->u.c.component->attr.dimension)
2458 {
2459 /* Array-valued procedure-pointer components. */
2460 gfc_array_spec *as = ref->u.c.component->as;
2461 for (i = 0; i < as->rank; i++)
2462 {
2463 if (!as->upper[i] || !as->lower[i]
2464 || as->upper[i]->expr_type != EXPR_CONSTANT
2465 || as->lower[i]->expr_type != EXPR_CONSTANT)
2466 return 0;
2467
2468 elements = elements
2469 * (mpz_get_si (as->upper[i]->value.integer)
2470 - mpz_get_si (as->lower[i]->value.integer) + 1L);
2471 }
2472 }
2473 }
2474
2475 if (substrlen)
2476 return (is_str_storage) ? substrlen + (elements-1)*strlen
2477 : elements*strlen;
2478 else
2479 return elements*strlen;
2480 }
2481
2482
2483 /* Given an expression, check whether it is an array section
2484 which has a vector subscript. If it has, one is returned,
2485 otherwise zero. */
2486
2487 int
2488 gfc_has_vector_subscript (gfc_expr *e)
2489 {
2490 int i;
2491 gfc_ref *ref;
2492
2493 if (e == NULL || e->rank == 0 || e->expr_type != EXPR_VARIABLE)
2494 return 0;
2495
2496 for (ref = e->ref; ref; ref = ref->next)
2497 if (ref->type == REF_ARRAY && ref->u.ar.type == AR_SECTION)
2498 for (i = 0; i < ref->u.ar.dimen; i++)
2499 if (ref->u.ar.dimen_type[i] == DIMEN_VECTOR)
2500 return 1;
2501
2502 return 0;
2503 }
2504
2505
2506 static bool
2507 is_procptr_result (gfc_expr *expr)
2508 {
2509 gfc_component *c = gfc_get_proc_ptr_comp (expr);
2510 if (c)
2511 return (c->ts.interface && (c->ts.interface->attr.proc_pointer == 1));
2512 else
2513 return ((expr->symtree->n.sym->result != expr->symtree->n.sym)
2514 && (expr->symtree->n.sym->result->attr.proc_pointer == 1));
2515 }
2516
2517
2518 /* Given formal and actual argument lists, see if they are compatible.
2519 If they are compatible, the actual argument list is sorted to
2520 correspond with the formal list, and elements for missing optional
2521 arguments are inserted. If WHERE pointer is nonnull, then we issue
2522 errors when things don't match instead of just returning the status
2523 code. */
2524
2525 static int
2526 compare_actual_formal (gfc_actual_arglist **ap, gfc_formal_arglist *formal,
2527 int ranks_must_agree, int is_elemental, locus *where)
2528 {
2529 gfc_actual_arglist **new_arg, *a, *actual, temp;
2530 gfc_formal_arglist *f;
2531 int i, n, na;
2532 unsigned long actual_size, formal_size;
2533 bool full_array = false;
2534
2535 actual = *ap;
2536
2537 if (actual == NULL && formal == NULL)
2538 return 1;
2539
2540 n = 0;
2541 for (f = formal; f; f = f->next)
2542 n++;
2543
2544 new_arg = XALLOCAVEC (gfc_actual_arglist *, n);
2545
2546 for (i = 0; i < n; i++)
2547 new_arg[i] = NULL;
2548
2549 na = 0;
2550 f = formal;
2551 i = 0;
2552
2553 for (a = actual; a; a = a->next, f = f->next)
2554 {
2555 /* Look for keywords but ignore g77 extensions like %VAL. */
2556 if (a->name != NULL && a->name[0] != '%')
2557 {
2558 i = 0;
2559 for (f = formal; f; f = f->next, i++)
2560 {
2561 if (f->sym == NULL)
2562 continue;
2563 if (strcmp (f->sym->name, a->name) == 0)
2564 break;
2565 }
2566
2567 if (f == NULL)
2568 {
2569 if (where)
2570 gfc_error ("Keyword argument %qs at %L is not in "
2571 "the procedure", a->name, &a->expr->where);
2572 return 0;
2573 }
2574
2575 if (new_arg[i] != NULL)
2576 {
2577 if (where)
2578 gfc_error ("Keyword argument %qs at %L is already associated "
2579 "with another actual argument", a->name,
2580 &a->expr->where);
2581 return 0;
2582 }
2583 }
2584
2585 if (f == NULL)
2586 {
2587 if (where)
2588 gfc_error ("More actual than formal arguments in procedure "
2589 "call at %L", where);
2590
2591 return 0;
2592 }
2593
2594 if (f->sym == NULL && a->expr == NULL)
2595 goto match;
2596
2597 if (f->sym == NULL)
2598 {
2599 if (where)
2600 gfc_error ("Missing alternate return spec in subroutine call "
2601 "at %L", where);
2602 return 0;
2603 }
2604
2605 if (a->expr == NULL)
2606 {
2607 if (where)
2608 gfc_error ("Unexpected alternate return spec in subroutine "
2609 "call at %L", where);
2610 return 0;
2611 }
2612
2613 /* Make sure that intrinsic vtables exist for calls to unlimited
2614 polymorphic formal arguments. */
2615 if (UNLIMITED_POLY (f->sym)
2616 && a->expr->ts.type != BT_DERIVED
2617 && a->expr->ts.type != BT_CLASS)
2618 gfc_find_vtab (&a->expr->ts);
2619
2620 if (a->expr->expr_type == EXPR_NULL
2621 && ((f->sym->ts.type != BT_CLASS && !f->sym->attr.pointer
2622 && (f->sym->attr.allocatable || !f->sym->attr.optional
2623 || (gfc_option.allow_std & GFC_STD_F2008) == 0))
2624 || (f->sym->ts.type == BT_CLASS
2625 && !CLASS_DATA (f->sym)->attr.class_pointer
2626 && (CLASS_DATA (f->sym)->attr.allocatable
2627 || !f->sym->attr.optional
2628 || (gfc_option.allow_std & GFC_STD_F2008) == 0))))
2629 {
2630 if (where
2631 && (!f->sym->attr.optional
2632 || (f->sym->ts.type != BT_CLASS && f->sym->attr.allocatable)
2633 || (f->sym->ts.type == BT_CLASS
2634 && CLASS_DATA (f->sym)->attr.allocatable)))
2635 gfc_error ("Unexpected NULL() intrinsic at %L to dummy %qs",
2636 where, f->sym->name);
2637 else if (where)
2638 gfc_error ("Fortran 2008: Null pointer at %L to non-pointer "
2639 "dummy %qs", where, f->sym->name);
2640
2641 return 0;
2642 }
2643
2644 if (!compare_parameter (f->sym, a->expr, ranks_must_agree,
2645 is_elemental, where))
2646 return 0;
2647
2648 /* TS 29113, 6.3p2. */
2649 if (f->sym->ts.type == BT_ASSUMED
2650 && (a->expr->ts.type == BT_DERIVED
2651 || (a->expr->ts.type == BT_CLASS && CLASS_DATA (a->expr))))
2652 {
2653 gfc_namespace *f2k_derived;
2654
2655 f2k_derived = a->expr->ts.type == BT_DERIVED
2656 ? a->expr->ts.u.derived->f2k_derived
2657 : CLASS_DATA (a->expr)->ts.u.derived->f2k_derived;
2658
2659 if (f2k_derived
2660 && (f2k_derived->finalizers || f2k_derived->tb_sym_root))
2661 {
2662 gfc_error ("Actual argument at %L to assumed-type dummy is of "
2663 "derived type with type-bound or FINAL procedures",
2664 &a->expr->where);
2665 return false;
2666 }
2667 }
2668
2669 /* Special case for character arguments. For allocatable, pointer
2670 and assumed-shape dummies, the string length needs to match
2671 exactly. */
2672 if (a->expr->ts.type == BT_CHARACTER
2673 && a->expr->ts.u.cl && a->expr->ts.u.cl->length
2674 && a->expr->ts.u.cl->length->expr_type == EXPR_CONSTANT
2675 && f->sym->ts.u.cl && f->sym->ts.u.cl && f->sym->ts.u.cl->length
2676 && f->sym->ts.u.cl->length->expr_type == EXPR_CONSTANT
2677 && (f->sym->attr.pointer || f->sym->attr.allocatable
2678 || (f->sym->as && f->sym->as->type == AS_ASSUMED_SHAPE))
2679 && (mpz_cmp (a->expr->ts.u.cl->length->value.integer,
2680 f->sym->ts.u.cl->length->value.integer) != 0))
2681 {
2682 if (where && (f->sym->attr.pointer || f->sym->attr.allocatable))
2683 gfc_warning ("Character length mismatch (%ld/%ld) between actual "
2684 "argument and pointer or allocatable dummy argument "
2685 "%qs at %L",
2686 mpz_get_si (a->expr->ts.u.cl->length->value.integer),
2687 mpz_get_si (f->sym->ts.u.cl->length->value.integer),
2688 f->sym->name, &a->expr->where);
2689 else if (where)
2690 gfc_warning ("Character length mismatch (%ld/%ld) between actual "
2691 "argument and assumed-shape dummy argument %qs "
2692 "at %L",
2693 mpz_get_si (a->expr->ts.u.cl->length->value.integer),
2694 mpz_get_si (f->sym->ts.u.cl->length->value.integer),
2695 f->sym->name, &a->expr->where);
2696 return 0;
2697 }
2698
2699 if ((f->sym->attr.pointer || f->sym->attr.allocatable)
2700 && f->sym->ts.deferred != a->expr->ts.deferred
2701 && a->expr->ts.type == BT_CHARACTER)
2702 {
2703 if (where)
2704 gfc_error ("Actual argument at %L to allocatable or "
2705 "pointer dummy argument %qs must have a deferred "
2706 "length type parameter if and only if the dummy has one",
2707 &a->expr->where, f->sym->name);
2708 return 0;
2709 }
2710
2711 if (f->sym->ts.type == BT_CLASS)
2712 goto skip_size_check;
2713
2714 actual_size = get_expr_storage_size (a->expr);
2715 formal_size = get_sym_storage_size (f->sym);
2716 if (actual_size != 0 && actual_size < formal_size
2717 && a->expr->ts.type != BT_PROCEDURE
2718 && f->sym->attr.flavor != FL_PROCEDURE)
2719 {
2720 if (a->expr->ts.type == BT_CHARACTER && !f->sym->as && where)
2721 gfc_warning ("Character length of actual argument shorter "
2722 "than of dummy argument %qs (%lu/%lu) at %L",
2723 f->sym->name, actual_size, formal_size,
2724 &a->expr->where);
2725 else if (where)
2726 gfc_warning ("Actual argument contains too few "
2727 "elements for dummy argument %qs (%lu/%lu) at %L",
2728 f->sym->name, actual_size, formal_size,
2729 &a->expr->where);
2730 return 0;
2731 }
2732
2733 skip_size_check:
2734
2735 /* Satisfy F03:12.4.1.3 by ensuring that a procedure pointer actual
2736 argument is provided for a procedure pointer formal argument. */
2737 if (f->sym->attr.proc_pointer
2738 && !((a->expr->expr_type == EXPR_VARIABLE
2739 && (a->expr->symtree->n.sym->attr.proc_pointer
2740 || gfc_is_proc_ptr_comp (a->expr)))
2741 || (a->expr->expr_type == EXPR_FUNCTION
2742 && is_procptr_result (a->expr))))
2743 {
2744 if (where)
2745 gfc_error ("Expected a procedure pointer for argument %qs at %L",
2746 f->sym->name, &a->expr->where);
2747 return 0;
2748 }
2749
2750 /* Satisfy F03:12.4.1.3 by ensuring that a procedure actual argument is
2751 provided for a procedure formal argument. */
2752 if (f->sym->attr.flavor == FL_PROCEDURE
2753 && !((a->expr->expr_type == EXPR_VARIABLE
2754 && (a->expr->symtree->n.sym->attr.flavor == FL_PROCEDURE
2755 || a->expr->symtree->n.sym->attr.proc_pointer
2756 || gfc_is_proc_ptr_comp (a->expr)))
2757 || (a->expr->expr_type == EXPR_FUNCTION
2758 && is_procptr_result (a->expr))))
2759 {
2760 if (where)
2761 gfc_error ("Expected a procedure for argument %qs at %L",
2762 f->sym->name, &a->expr->where);
2763 return 0;
2764 }
2765
2766 if (f->sym->as && f->sym->as->type == AS_ASSUMED_SHAPE
2767 && a->expr->expr_type == EXPR_VARIABLE
2768 && a->expr->symtree->n.sym->as
2769 && a->expr->symtree->n.sym->as->type == AS_ASSUMED_SIZE
2770 && (a->expr->ref == NULL
2771 || (a->expr->ref->type == REF_ARRAY
2772 && a->expr->ref->u.ar.type == AR_FULL)))
2773 {
2774 if (where)
2775 gfc_error ("Actual argument for %qs cannot be an assumed-size"
2776 " array at %L", f->sym->name, where);
2777 return 0;
2778 }
2779
2780 if (a->expr->expr_type != EXPR_NULL
2781 && compare_pointer (f->sym, a->expr) == 0)
2782 {
2783 if (where)
2784 gfc_error ("Actual argument for %qs must be a pointer at %L",
2785 f->sym->name, &a->expr->where);
2786 return 0;
2787 }
2788
2789 if (a->expr->expr_type != EXPR_NULL
2790 && (gfc_option.allow_std & GFC_STD_F2008) == 0
2791 && compare_pointer (f->sym, a->expr) == 2)
2792 {
2793 if (where)
2794 gfc_error ("Fortran 2008: Non-pointer actual argument at %L to "
2795 "pointer dummy %qs", &a->expr->where,f->sym->name);
2796 return 0;
2797 }
2798
2799
2800 /* Fortran 2008, C1242. */
2801 if (f->sym->attr.pointer && gfc_is_coindexed (a->expr))
2802 {
2803 if (where)
2804 gfc_error ("Coindexed actual argument at %L to pointer "
2805 "dummy %qs",
2806 &a->expr->where, f->sym->name);
2807 return 0;
2808 }
2809
2810 /* Fortran 2008, 12.5.2.5 (no constraint). */
2811 if (a->expr->expr_type == EXPR_VARIABLE
2812 && f->sym->attr.intent != INTENT_IN
2813 && f->sym->attr.allocatable
2814 && gfc_is_coindexed (a->expr))
2815 {
2816 if (where)
2817 gfc_error ("Coindexed actual argument at %L to allocatable "
2818 "dummy %qs requires INTENT(IN)",
2819 &a->expr->where, f->sym->name);
2820 return 0;
2821 }
2822
2823 /* Fortran 2008, C1237. */
2824 if (a->expr->expr_type == EXPR_VARIABLE
2825 && (f->sym->attr.asynchronous || f->sym->attr.volatile_)
2826 && gfc_is_coindexed (a->expr)
2827 && (a->expr->symtree->n.sym->attr.volatile_
2828 || a->expr->symtree->n.sym->attr.asynchronous))
2829 {
2830 if (where)
2831 gfc_error ("Coindexed ASYNCHRONOUS or VOLATILE actual argument at "
2832 "%L requires that dummy %qs has neither "
2833 "ASYNCHRONOUS nor VOLATILE", &a->expr->where,
2834 f->sym->name);
2835 return 0;
2836 }
2837
2838 /* Fortran 2008, 12.5.2.4 (no constraint). */
2839 if (a->expr->expr_type == EXPR_VARIABLE
2840 && f->sym->attr.intent != INTENT_IN && !f->sym->attr.value
2841 && gfc_is_coindexed (a->expr)
2842 && gfc_has_ultimate_allocatable (a->expr))
2843 {
2844 if (where)
2845 gfc_error ("Coindexed actual argument at %L with allocatable "
2846 "ultimate component to dummy %qs requires either VALUE "
2847 "or INTENT(IN)", &a->expr->where, f->sym->name);
2848 return 0;
2849 }
2850
2851 if (f->sym->ts.type == BT_CLASS
2852 && CLASS_DATA (f->sym)->attr.allocatable
2853 && gfc_is_class_array_ref (a->expr, &full_array)
2854 && !full_array)
2855 {
2856 if (where)
2857 gfc_error ("Actual CLASS array argument for %qs must be a full "
2858 "array at %L", f->sym->name, &a->expr->where);
2859 return 0;
2860 }
2861
2862
2863 if (a->expr->expr_type != EXPR_NULL
2864 && compare_allocatable (f->sym, a->expr) == 0)
2865 {
2866 if (where)
2867 gfc_error ("Actual argument for %qs must be ALLOCATABLE at %L",
2868 f->sym->name, &a->expr->where);
2869 return 0;
2870 }
2871
2872 /* Check intent = OUT/INOUT for definable actual argument. */
2873 if ((f->sym->attr.intent == INTENT_OUT
2874 || f->sym->attr.intent == INTENT_INOUT))
2875 {
2876 const char* context = (where
2877 ? _("actual argument to INTENT = OUT/INOUT")
2878 : NULL);
2879
2880 if (((f->sym->ts.type == BT_CLASS && f->sym->attr.class_ok
2881 && CLASS_DATA (f->sym)->attr.class_pointer)
2882 || (f->sym->ts.type != BT_CLASS && f->sym->attr.pointer))
2883 && !gfc_check_vardef_context (a->expr, true, false, false, context))
2884 return 0;
2885 if (!gfc_check_vardef_context (a->expr, false, false, false, context))
2886 return 0;
2887 }
2888
2889 if ((f->sym->attr.intent == INTENT_OUT
2890 || f->sym->attr.intent == INTENT_INOUT
2891 || f->sym->attr.volatile_
2892 || f->sym->attr.asynchronous)
2893 && gfc_has_vector_subscript (a->expr))
2894 {
2895 if (where)
2896 gfc_error ("Array-section actual argument with vector "
2897 "subscripts at %L is incompatible with INTENT(OUT), "
2898 "INTENT(INOUT), VOLATILE or ASYNCHRONOUS attribute "
2899 "of the dummy argument %qs",
2900 &a->expr->where, f->sym->name);
2901 return 0;
2902 }
2903
2904 /* C1232 (R1221) For an actual argument which is an array section or
2905 an assumed-shape array, the dummy argument shall be an assumed-
2906 shape array, if the dummy argument has the VOLATILE attribute. */
2907
2908 if (f->sym->attr.volatile_
2909 && a->expr->symtree->n.sym->as
2910 && a->expr->symtree->n.sym->as->type == AS_ASSUMED_SHAPE
2911 && !(f->sym->as && f->sym->as->type == AS_ASSUMED_SHAPE))
2912 {
2913 if (where)
2914 gfc_error ("Assumed-shape actual argument at %L is "
2915 "incompatible with the non-assumed-shape "
2916 "dummy argument %qs due to VOLATILE attribute",
2917 &a->expr->where,f->sym->name);
2918 return 0;
2919 }
2920
2921 if (f->sym->attr.volatile_
2922 && a->expr->ref && a->expr->ref->u.ar.type == AR_SECTION
2923 && !(f->sym->as && f->sym->as->type == AS_ASSUMED_SHAPE))
2924 {
2925 if (where)
2926 gfc_error ("Array-section actual argument at %L is "
2927 "incompatible with the non-assumed-shape "
2928 "dummy argument %qs due to VOLATILE attribute",
2929 &a->expr->where,f->sym->name);
2930 return 0;
2931 }
2932
2933 /* C1233 (R1221) For an actual argument which is a pointer array, the
2934 dummy argument shall be an assumed-shape or pointer array, if the
2935 dummy argument has the VOLATILE attribute. */
2936
2937 if (f->sym->attr.volatile_
2938 && a->expr->symtree->n.sym->attr.pointer
2939 && a->expr->symtree->n.sym->as
2940 && !(f->sym->as
2941 && (f->sym->as->type == AS_ASSUMED_SHAPE
2942 || f->sym->attr.pointer)))
2943 {
2944 if (where)
2945 gfc_error ("Pointer-array actual argument at %L requires "
2946 "an assumed-shape or pointer-array dummy "
2947 "argument %qs due to VOLATILE attribute",
2948 &a->expr->where,f->sym->name);
2949 return 0;
2950 }
2951
2952 match:
2953 if (a == actual)
2954 na = i;
2955
2956 new_arg[i++] = a;
2957 }
2958
2959 /* Make sure missing actual arguments are optional. */
2960 i = 0;
2961 for (f = formal; f; f = f->next, i++)
2962 {
2963 if (new_arg[i] != NULL)
2964 continue;
2965 if (f->sym == NULL)
2966 {
2967 if (where)
2968 gfc_error ("Missing alternate return spec in subroutine call "
2969 "at %L", where);
2970 return 0;
2971 }
2972 if (!f->sym->attr.optional)
2973 {
2974 if (where)
2975 gfc_error ("Missing actual argument for argument %qs at %L",
2976 f->sym->name, where);
2977 return 0;
2978 }
2979 }
2980
2981 /* The argument lists are compatible. We now relink a new actual
2982 argument list with null arguments in the right places. The head
2983 of the list remains the head. */
2984 for (i = 0; i < n; i++)
2985 if (new_arg[i] == NULL)
2986 new_arg[i] = gfc_get_actual_arglist ();
2987
2988 if (na != 0)
2989 {
2990 temp = *new_arg[0];
2991 *new_arg[0] = *actual;
2992 *actual = temp;
2993
2994 a = new_arg[0];
2995 new_arg[0] = new_arg[na];
2996 new_arg[na] = a;
2997 }
2998
2999 for (i = 0; i < n - 1; i++)
3000 new_arg[i]->next = new_arg[i + 1];
3001
3002 new_arg[i]->next = NULL;
3003
3004 if (*ap == NULL && n > 0)
3005 *ap = new_arg[0];
3006
3007 /* Note the types of omitted optional arguments. */
3008 for (a = *ap, f = formal; a; a = a->next, f = f->next)
3009 if (a->expr == NULL && a->label == NULL)
3010 a->missing_arg_type = f->sym->ts.type;
3011
3012 return 1;
3013 }
3014
3015
3016 typedef struct
3017 {
3018 gfc_formal_arglist *f;
3019 gfc_actual_arglist *a;
3020 }
3021 argpair;
3022
3023 /* qsort comparison function for argument pairs, with the following
3024 order:
3025 - p->a->expr == NULL
3026 - p->a->expr->expr_type != EXPR_VARIABLE
3027 - growing p->a->expr->symbol. */
3028
3029 static int
3030 pair_cmp (const void *p1, const void *p2)
3031 {
3032 const gfc_actual_arglist *a1, *a2;
3033
3034 /* *p1 and *p2 are elements of the to-be-sorted array. */
3035 a1 = ((const argpair *) p1)->a;
3036 a2 = ((const argpair *) p2)->a;
3037 if (!a1->expr)
3038 {
3039 if (!a2->expr)
3040 return 0;
3041 return -1;
3042 }
3043 if (!a2->expr)
3044 return 1;
3045 if (a1->expr->expr_type != EXPR_VARIABLE)
3046 {
3047 if (a2->expr->expr_type != EXPR_VARIABLE)
3048 return 0;
3049 return -1;
3050 }
3051 if (a2->expr->expr_type != EXPR_VARIABLE)
3052 return 1;
3053 return a1->expr->symtree->n.sym < a2->expr->symtree->n.sym;
3054 }
3055
3056
3057 /* Given two expressions from some actual arguments, test whether they
3058 refer to the same expression. The analysis is conservative.
3059 Returning false will produce no warning. */
3060
3061 static bool
3062 compare_actual_expr (gfc_expr *e1, gfc_expr *e2)
3063 {
3064 const gfc_ref *r1, *r2;
3065
3066 if (!e1 || !e2
3067 || e1->expr_type != EXPR_VARIABLE
3068 || e2->expr_type != EXPR_VARIABLE
3069 || e1->symtree->n.sym != e2->symtree->n.sym)
3070 return false;
3071
3072 /* TODO: improve comparison, see expr.c:show_ref(). */
3073 for (r1 = e1->ref, r2 = e2->ref; r1 && r2; r1 = r1->next, r2 = r2->next)
3074 {
3075 if (r1->type != r2->type)
3076 return false;
3077 switch (r1->type)
3078 {
3079 case REF_ARRAY:
3080 if (r1->u.ar.type != r2->u.ar.type)
3081 return false;
3082 /* TODO: At the moment, consider only full arrays;
3083 we could do better. */
3084 if (r1->u.ar.type != AR_FULL || r2->u.ar.type != AR_FULL)
3085 return false;
3086 break;
3087
3088 case REF_COMPONENT:
3089 if (r1->u.c.component != r2->u.c.component)
3090 return false;
3091 break;
3092
3093 case REF_SUBSTRING:
3094 return false;
3095
3096 default:
3097 gfc_internal_error ("compare_actual_expr(): Bad component code");
3098 }
3099 }
3100 if (!r1 && !r2)
3101 return true;
3102 return false;
3103 }
3104
3105
3106 /* Given formal and actual argument lists that correspond to one
3107 another, check that identical actual arguments aren't not
3108 associated with some incompatible INTENTs. */
3109
3110 static bool
3111 check_some_aliasing (gfc_formal_arglist *f, gfc_actual_arglist *a)
3112 {
3113 sym_intent f1_intent, f2_intent;
3114 gfc_formal_arglist *f1;
3115 gfc_actual_arglist *a1;
3116 size_t n, i, j;
3117 argpair *p;
3118 bool t = true;
3119
3120 n = 0;
3121 for (f1 = f, a1 = a;; f1 = f1->next, a1 = a1->next)
3122 {
3123 if (f1 == NULL && a1 == NULL)
3124 break;
3125 if (f1 == NULL || a1 == NULL)
3126 gfc_internal_error ("check_some_aliasing(): List mismatch");
3127 n++;
3128 }
3129 if (n == 0)
3130 return t;
3131 p = XALLOCAVEC (argpair, n);
3132
3133 for (i = 0, f1 = f, a1 = a; i < n; i++, f1 = f1->next, a1 = a1->next)
3134 {
3135 p[i].f = f1;
3136 p[i].a = a1;
3137 }
3138
3139 qsort (p, n, sizeof (argpair), pair_cmp);
3140
3141 for (i = 0; i < n; i++)
3142 {
3143 if (!p[i].a->expr
3144 || p[i].a->expr->expr_type != EXPR_VARIABLE
3145 || p[i].a->expr->ts.type == BT_PROCEDURE)
3146 continue;
3147 f1_intent = p[i].f->sym->attr.intent;
3148 for (j = i + 1; j < n; j++)
3149 {
3150 /* Expected order after the sort. */
3151 if (!p[j].a->expr || p[j].a->expr->expr_type != EXPR_VARIABLE)
3152 gfc_internal_error ("check_some_aliasing(): corrupted data");
3153
3154 /* Are the expression the same? */
3155 if (!compare_actual_expr (p[i].a->expr, p[j].a->expr))
3156 break;
3157 f2_intent = p[j].f->sym->attr.intent;
3158 if ((f1_intent == INTENT_IN && f2_intent == INTENT_OUT)
3159 || (f1_intent == INTENT_OUT && f2_intent == INTENT_IN)
3160 || (f1_intent == INTENT_OUT && f2_intent == INTENT_OUT))
3161 {
3162 gfc_warning ("Same actual argument associated with INTENT(%s) "
3163 "argument %qs and INTENT(%s) argument %qs at %L",
3164 gfc_intent_string (f1_intent), p[i].f->sym->name,
3165 gfc_intent_string (f2_intent), p[j].f->sym->name,
3166 &p[i].a->expr->where);
3167 t = false;
3168 }
3169 }
3170 }
3171
3172 return t;
3173 }
3174
3175
3176 /* Given formal and actual argument lists that correspond to one
3177 another, check that they are compatible in the sense that intents
3178 are not mismatched. */
3179
3180 static bool
3181 check_intents (gfc_formal_arglist *f, gfc_actual_arglist *a)
3182 {
3183 sym_intent f_intent;
3184
3185 for (;; f = f->next, a = a->next)
3186 {
3187 gfc_expr *expr;
3188
3189 if (f == NULL && a == NULL)
3190 break;
3191 if (f == NULL || a == NULL)
3192 gfc_internal_error ("check_intents(): List mismatch");
3193
3194 if (a->expr && a->expr->expr_type == EXPR_FUNCTION
3195 && a->expr->value.function.isym
3196 && a->expr->value.function.isym->id == GFC_ISYM_CAF_GET)
3197 expr = a->expr->value.function.actual->expr;
3198 else
3199 expr = a->expr;
3200
3201 if (expr == NULL || expr->expr_type != EXPR_VARIABLE)
3202 continue;
3203
3204 f_intent = f->sym->attr.intent;
3205
3206 if (gfc_pure (NULL) && gfc_impure_variable (expr->symtree->n.sym))
3207 {
3208 if ((f->sym->ts.type == BT_CLASS && f->sym->attr.class_ok
3209 && CLASS_DATA (f->sym)->attr.class_pointer)
3210 || (f->sym->ts.type != BT_CLASS && f->sym->attr.pointer))
3211 {
3212 gfc_error ("Procedure argument at %L is local to a PURE "
3213 "procedure and has the POINTER attribute",
3214 &expr->where);
3215 return false;
3216 }
3217 }
3218
3219 /* Fortran 2008, C1283. */
3220 if (gfc_pure (NULL) && gfc_is_coindexed (expr))
3221 {
3222 if (f_intent == INTENT_INOUT || f_intent == INTENT_OUT)
3223 {
3224 gfc_error ("Coindexed actual argument at %L in PURE procedure "
3225 "is passed to an INTENT(%s) argument",
3226 &expr->where, gfc_intent_string (f_intent));
3227 return false;
3228 }
3229
3230 if ((f->sym->ts.type == BT_CLASS && f->sym->attr.class_ok
3231 && CLASS_DATA (f->sym)->attr.class_pointer)
3232 || (f->sym->ts.type != BT_CLASS && f->sym->attr.pointer))
3233 {
3234 gfc_error ("Coindexed actual argument at %L in PURE procedure "
3235 "is passed to a POINTER dummy argument",
3236 &expr->where);
3237 return false;
3238 }
3239 }
3240
3241 /* F2008, Section 12.5.2.4. */
3242 if (expr->ts.type == BT_CLASS && f->sym->ts.type == BT_CLASS
3243 && gfc_is_coindexed (expr))
3244 {
3245 gfc_error ("Coindexed polymorphic actual argument at %L is passed "
3246 "polymorphic dummy argument %qs",
3247 &expr->where, f->sym->name);
3248 return false;
3249 }
3250 }
3251
3252 return true;
3253 }
3254
3255
3256 /* Check how a procedure is used against its interface. If all goes
3257 well, the actual argument list will also end up being properly
3258 sorted. */
3259
3260 bool
3261 gfc_procedure_use (gfc_symbol *sym, gfc_actual_arglist **ap, locus *where)
3262 {
3263 gfc_formal_arglist *dummy_args;
3264
3265 /* Warn about calls with an implicit interface. Special case
3266 for calling a ISO_C_BINDING because c_loc and c_funloc
3267 are pseudo-unknown. Additionally, warn about procedures not
3268 explicitly declared at all if requested. */
3269 if (sym->attr.if_source == IFSRC_UNKNOWN && !sym->attr.is_iso_c)
3270 {
3271 if (sym->ns->has_implicit_none_export && sym->attr.proc == PROC_UNKNOWN)
3272 {
3273 gfc_error ("Procedure %qs called at %L is not explicitly declared",
3274 sym->name, where);
3275 return false;
3276 }
3277 if (warn_implicit_interface)
3278 gfc_warning (OPT_Wimplicit_interface,
3279 "Procedure %qs called with an implicit interface at %L",
3280 sym->name, where);
3281 else if (warn_implicit_procedure && sym->attr.proc == PROC_UNKNOWN)
3282 gfc_warning (OPT_Wimplicit_procedure,
3283 "Procedure %qs called at %L is not explicitly declared",
3284 sym->name, where);
3285 }
3286
3287 if (sym->attr.if_source == IFSRC_UNKNOWN)
3288 {
3289 gfc_actual_arglist *a;
3290
3291 if (sym->attr.pointer)
3292 {
3293 gfc_error ("The pointer object %qs at %L must have an explicit "
3294 "function interface or be declared as array",
3295 sym->name, where);
3296 return false;
3297 }
3298
3299 if (sym->attr.allocatable && !sym->attr.external)
3300 {
3301 gfc_error ("The allocatable object %qs at %L must have an explicit "
3302 "function interface or be declared as array",
3303 sym->name, where);
3304 return false;
3305 }
3306
3307 if (sym->attr.allocatable)
3308 {
3309 gfc_error ("Allocatable function %qs at %L must have an explicit "
3310 "function interface", sym->name, where);
3311 return false;
3312 }
3313
3314 for (a = *ap; a; a = a->next)
3315 {
3316 /* Skip g77 keyword extensions like %VAL, %REF, %LOC. */
3317 if (a->name != NULL && a->name[0] != '%')
3318 {
3319 gfc_error ("Keyword argument requires explicit interface "
3320 "for procedure %qs at %L", sym->name, &a->expr->where);
3321 break;
3322 }
3323
3324 /* TS 29113, 6.2. */
3325 if (a->expr && a->expr->ts.type == BT_ASSUMED
3326 && sym->intmod_sym_id != ISOCBINDING_LOC)
3327 {
3328 gfc_error ("Assumed-type argument %s at %L requires an explicit "
3329 "interface", a->expr->symtree->n.sym->name,
3330 &a->expr->where);
3331 break;
3332 }
3333
3334 /* F2008, C1303 and C1304. */
3335 if (a->expr
3336 && (a->expr->ts.type == BT_DERIVED || a->expr->ts.type == BT_CLASS)
3337 && ((a->expr->ts.u.derived->from_intmod == INTMOD_ISO_FORTRAN_ENV
3338 && a->expr->ts.u.derived->intmod_sym_id == ISOFORTRAN_LOCK_TYPE)
3339 || gfc_expr_attr (a->expr).lock_comp))
3340 {
3341 gfc_error ("Actual argument of LOCK_TYPE or with LOCK_TYPE "
3342 "component at %L requires an explicit interface for "
3343 "procedure %qs", &a->expr->where, sym->name);
3344 break;
3345 }
3346
3347 if (a->expr && a->expr->expr_type == EXPR_NULL
3348 && a->expr->ts.type == BT_UNKNOWN)
3349 {
3350 gfc_error ("MOLD argument to NULL required at %L", &a->expr->where);
3351 return false;
3352 }
3353
3354 /* TS 29113, C407b. */
3355 if (a->expr && a->expr->expr_type == EXPR_VARIABLE
3356 && symbol_rank (a->expr->symtree->n.sym) == -1)
3357 {
3358 gfc_error ("Assumed-rank argument requires an explicit interface "
3359 "at %L", &a->expr->where);
3360 return false;
3361 }
3362 }
3363
3364 return true;
3365 }
3366
3367 dummy_args = gfc_sym_get_dummy_args (sym);
3368
3369 if (!compare_actual_formal (ap, dummy_args, 0, sym->attr.elemental, where))
3370 return false;
3371
3372 if (!check_intents (dummy_args, *ap))
3373 return false;
3374
3375 if (warn_aliasing)
3376 check_some_aliasing (dummy_args, *ap);
3377
3378 return true;
3379 }
3380
3381
3382 /* Check how a procedure pointer component is used against its interface.
3383 If all goes well, the actual argument list will also end up being properly
3384 sorted. Completely analogous to gfc_procedure_use. */
3385
3386 void
3387 gfc_ppc_use (gfc_component *comp, gfc_actual_arglist **ap, locus *where)
3388 {
3389 /* Warn about calls with an implicit interface. Special case
3390 for calling a ISO_C_BINDING because c_loc and c_funloc
3391 are pseudo-unknown. */
3392 if (warn_implicit_interface
3393 && comp->attr.if_source == IFSRC_UNKNOWN
3394 && !comp->attr.is_iso_c)
3395 gfc_warning (OPT_Wimplicit_interface,
3396 "Procedure pointer component %qs called with an implicit "
3397 "interface at %L", comp->name, where);
3398
3399 if (comp->attr.if_source == IFSRC_UNKNOWN)
3400 {
3401 gfc_actual_arglist *a;
3402 for (a = *ap; a; a = a->next)
3403 {
3404 /* Skip g77 keyword extensions like %VAL, %REF, %LOC. */
3405 if (a->name != NULL && a->name[0] != '%')
3406 {
3407 gfc_error ("Keyword argument requires explicit interface "
3408 "for procedure pointer component %qs at %L",
3409 comp->name, &a->expr->where);
3410 break;
3411 }
3412 }
3413
3414 return;
3415 }
3416
3417 if (!compare_actual_formal (ap, comp->ts.interface->formal, 0,
3418 comp->attr.elemental, where))
3419 return;
3420
3421 check_intents (comp->ts.interface->formal, *ap);
3422 if (warn_aliasing)
3423 check_some_aliasing (comp->ts.interface->formal, *ap);
3424 }
3425
3426
3427 /* Try if an actual argument list matches the formal list of a symbol,
3428 respecting the symbol's attributes like ELEMENTAL. This is used for
3429 GENERIC resolution. */
3430
3431 bool
3432 gfc_arglist_matches_symbol (gfc_actual_arglist** args, gfc_symbol* sym)
3433 {
3434 gfc_formal_arglist *dummy_args;
3435 bool r;
3436
3437 gcc_assert (sym->attr.flavor == FL_PROCEDURE);
3438
3439 dummy_args = gfc_sym_get_dummy_args (sym);
3440
3441 r = !sym->attr.elemental;
3442 if (compare_actual_formal (args, dummy_args, r, !r, NULL))
3443 {
3444 check_intents (dummy_args, *args);
3445 if (warn_aliasing)
3446 check_some_aliasing (dummy_args, *args);
3447 return true;
3448 }
3449
3450 return false;
3451 }
3452
3453
3454 /* Given an interface pointer and an actual argument list, search for
3455 a formal argument list that matches the actual. If found, returns
3456 a pointer to the symbol of the correct interface. Returns NULL if
3457 not found. */
3458
3459 gfc_symbol *
3460 gfc_search_interface (gfc_interface *intr, int sub_flag,
3461 gfc_actual_arglist **ap)
3462 {
3463 gfc_symbol *elem_sym = NULL;
3464 gfc_symbol *null_sym = NULL;
3465 locus null_expr_loc;
3466 gfc_actual_arglist *a;
3467 bool has_null_arg = false;
3468
3469 for (a = *ap; a; a = a->next)
3470 if (a->expr && a->expr->expr_type == EXPR_NULL
3471 && a->expr->ts.type == BT_UNKNOWN)
3472 {
3473 has_null_arg = true;
3474 null_expr_loc = a->expr->where;
3475 break;
3476 }
3477
3478 for (; intr; intr = intr->next)
3479 {
3480 if (intr->sym->attr.flavor == FL_DERIVED)
3481 continue;
3482 if (sub_flag && intr->sym->attr.function)
3483 continue;
3484 if (!sub_flag && intr->sym->attr.subroutine)
3485 continue;
3486
3487 if (gfc_arglist_matches_symbol (ap, intr->sym))
3488 {
3489 if (has_null_arg && null_sym)
3490 {
3491 gfc_error ("MOLD= required in NULL() argument at %L: Ambiguity "
3492 "between specific functions %s and %s",
3493 &null_expr_loc, null_sym->name, intr->sym->name);
3494 return NULL;
3495 }
3496 else if (has_null_arg)
3497 {
3498 null_sym = intr->sym;
3499 continue;
3500 }
3501
3502 /* Satisfy 12.4.4.1 such that an elemental match has lower
3503 weight than a non-elemental match. */
3504 if (intr->sym->attr.elemental)
3505 {
3506 elem_sym = intr->sym;
3507 continue;
3508 }
3509 return intr->sym;
3510 }
3511 }
3512
3513 if (null_sym)
3514 return null_sym;
3515
3516 return elem_sym ? elem_sym : NULL;
3517 }
3518
3519
3520 /* Do a brute force recursive search for a symbol. */
3521
3522 static gfc_symtree *
3523 find_symtree0 (gfc_symtree *root, gfc_symbol *sym)
3524 {
3525 gfc_symtree * st;
3526
3527 if (root->n.sym == sym)
3528 return root;
3529
3530 st = NULL;
3531 if (root->left)
3532 st = find_symtree0 (root->left, sym);
3533 if (root->right && ! st)
3534 st = find_symtree0 (root->right, sym);
3535 return st;
3536 }
3537
3538
3539 /* Find a symtree for a symbol. */
3540
3541 gfc_symtree *
3542 gfc_find_sym_in_symtree (gfc_symbol *sym)
3543 {
3544 gfc_symtree *st;
3545 gfc_namespace *ns;
3546
3547 /* First try to find it by name. */
3548 gfc_find_sym_tree (sym->name, gfc_current_ns, 1, &st);
3549 if (st && st->n.sym == sym)
3550 return st;
3551
3552 /* If it's been renamed, resort to a brute-force search. */
3553 /* TODO: avoid having to do this search. If the symbol doesn't exist
3554 in the symtree for the current namespace, it should probably be added. */
3555 for (ns = gfc_current_ns; ns; ns = ns->parent)
3556 {
3557 st = find_symtree0 (ns->sym_root, sym);
3558 if (st)
3559 return st;
3560 }
3561 gfc_internal_error ("Unable to find symbol %qs", sym->name);
3562 /* Not reached. */
3563 }
3564
3565
3566 /* See if the arglist to an operator-call contains a derived-type argument
3567 with a matching type-bound operator. If so, return the matching specific
3568 procedure defined as operator-target as well as the base-object to use
3569 (which is the found derived-type argument with operator). The generic
3570 name, if any, is transmitted to the final expression via 'gname'. */
3571
3572 static gfc_typebound_proc*
3573 matching_typebound_op (gfc_expr** tb_base,
3574 gfc_actual_arglist* args,
3575 gfc_intrinsic_op op, const char* uop,
3576 const char ** gname)
3577 {
3578 gfc_actual_arglist* base;
3579
3580 for (base = args; base; base = base->next)
3581 if (base->expr->ts.type == BT_DERIVED || base->expr->ts.type == BT_CLASS)
3582 {
3583 gfc_typebound_proc* tb;
3584 gfc_symbol* derived;
3585 bool result;
3586
3587 while (base->expr->expr_type == EXPR_OP
3588 && base->expr->value.op.op == INTRINSIC_PARENTHESES)
3589 base->expr = base->expr->value.op.op1;
3590
3591 if (base->expr->ts.type == BT_CLASS)
3592 {
3593 if (CLASS_DATA (base->expr) == NULL
3594 || !gfc_expr_attr (base->expr).class_ok)
3595 continue;
3596 derived = CLASS_DATA (base->expr)->ts.u.derived;
3597 }
3598 else
3599 derived = base->expr->ts.u.derived;
3600
3601 if (op == INTRINSIC_USER)
3602 {
3603 gfc_symtree* tb_uop;
3604
3605 gcc_assert (uop);
3606 tb_uop = gfc_find_typebound_user_op (derived, &result, uop,
3607 false, NULL);
3608
3609 if (tb_uop)
3610 tb = tb_uop->n.tb;
3611 else
3612 tb = NULL;
3613 }
3614 else
3615 tb = gfc_find_typebound_intrinsic_op (derived, &result, op,
3616 false, NULL);
3617
3618 /* This means we hit a PRIVATE operator which is use-associated and
3619 should thus not be seen. */
3620 if (!result)
3621 tb = NULL;
3622
3623 /* Look through the super-type hierarchy for a matching specific
3624 binding. */
3625 for (; tb; tb = tb->overridden)
3626 {
3627 gfc_tbp_generic* g;
3628
3629 gcc_assert (tb->is_generic);
3630 for (g = tb->u.generic; g; g = g->next)
3631 {
3632 gfc_symbol* target;
3633 gfc_actual_arglist* argcopy;
3634 bool matches;
3635
3636 gcc_assert (g->specific);
3637 if (g->specific->error)
3638 continue;
3639
3640 target = g->specific->u.specific->n.sym;
3641
3642 /* Check if this arglist matches the formal. */
3643 argcopy = gfc_copy_actual_arglist (args);
3644 matches = gfc_arglist_matches_symbol (&argcopy, target);
3645 gfc_free_actual_arglist (argcopy);
3646
3647 /* Return if we found a match. */
3648 if (matches)
3649 {
3650 *tb_base = base->expr;
3651 *gname = g->specific_st->name;
3652 return g->specific;
3653 }
3654 }
3655 }
3656 }
3657
3658 return NULL;
3659 }
3660
3661
3662 /* For the 'actual arglist' of an operator call and a specific typebound
3663 procedure that has been found the target of a type-bound operator, build the
3664 appropriate EXPR_COMPCALL and resolve it. We take this indirection over
3665 type-bound procedures rather than resolving type-bound operators 'directly'
3666 so that we can reuse the existing logic. */
3667
3668 static void
3669 build_compcall_for_operator (gfc_expr* e, gfc_actual_arglist* actual,
3670 gfc_expr* base, gfc_typebound_proc* target,
3671 const char *gname)
3672 {
3673 e->expr_type = EXPR_COMPCALL;
3674 e->value.compcall.tbp = target;
3675 e->value.compcall.name = gname ? gname : "$op";
3676 e->value.compcall.actual = actual;
3677 e->value.compcall.base_object = base;
3678 e->value.compcall.ignore_pass = 1;
3679 e->value.compcall.assign = 0;
3680 if (e->ts.type == BT_UNKNOWN
3681 && target->function)
3682 {
3683 if (target->is_generic)
3684 e->ts = target->u.generic->specific->u.specific->n.sym->ts;
3685 else
3686 e->ts = target->u.specific->n.sym->ts;
3687 }
3688 }
3689
3690
3691 /* This subroutine is called when an expression is being resolved.
3692 The expression node in question is either a user defined operator
3693 or an intrinsic operator with arguments that aren't compatible
3694 with the operator. This subroutine builds an actual argument list
3695 corresponding to the operands, then searches for a compatible
3696 interface. If one is found, the expression node is replaced with
3697 the appropriate function call. We use the 'match' enum to specify
3698 whether a replacement has been made or not, or if an error occurred. */
3699
3700 match
3701 gfc_extend_expr (gfc_expr *e)
3702 {
3703 gfc_actual_arglist *actual;
3704 gfc_symbol *sym;
3705 gfc_namespace *ns;
3706 gfc_user_op *uop;
3707 gfc_intrinsic_op i;
3708 const char *gname;
3709
3710 sym = NULL;
3711
3712 actual = gfc_get_actual_arglist ();
3713 actual->expr = e->value.op.op1;
3714
3715 gname = NULL;
3716
3717 if (e->value.op.op2 != NULL)
3718 {
3719 actual->next = gfc_get_actual_arglist ();
3720 actual->next->expr = e->value.op.op2;
3721 }
3722
3723 i = fold_unary_intrinsic (e->value.op.op);
3724
3725 if (i == INTRINSIC_USER)
3726 {
3727 for (ns = gfc_current_ns; ns; ns = ns->parent)
3728 {
3729 uop = gfc_find_uop (e->value.op.uop->name, ns);
3730 if (uop == NULL)
3731 continue;
3732
3733 sym = gfc_search_interface (uop->op, 0, &actual);
3734 if (sym != NULL)
3735 break;
3736 }
3737 }
3738 else
3739 {
3740 for (ns = gfc_current_ns; ns; ns = ns->parent)
3741 {
3742 /* Due to the distinction between '==' and '.eq.' and friends, one has
3743 to check if either is defined. */
3744 switch (i)
3745 {
3746 #define CHECK_OS_COMPARISON(comp) \
3747 case INTRINSIC_##comp: \
3748 case INTRINSIC_##comp##_OS: \
3749 sym = gfc_search_interface (ns->op[INTRINSIC_##comp], 0, &actual); \
3750 if (!sym) \
3751 sym = gfc_search_interface (ns->op[INTRINSIC_##comp##_OS], 0, &actual); \
3752 break;
3753 CHECK_OS_COMPARISON(EQ)
3754 CHECK_OS_COMPARISON(NE)
3755 CHECK_OS_COMPARISON(GT)
3756 CHECK_OS_COMPARISON(GE)
3757 CHECK_OS_COMPARISON(LT)
3758 CHECK_OS_COMPARISON(LE)
3759 #undef CHECK_OS_COMPARISON
3760
3761 default:
3762 sym = gfc_search_interface (ns->op[i], 0, &actual);
3763 }
3764
3765 if (sym != NULL)
3766 break;
3767 }
3768 }
3769
3770 /* TODO: Do an ambiguity-check and error if multiple matching interfaces are
3771 found rather than just taking the first one and not checking further. */
3772
3773 if (sym == NULL)
3774 {
3775 gfc_typebound_proc* tbo;
3776 gfc_expr* tb_base;
3777
3778 /* See if we find a matching type-bound operator. */
3779 if (i == INTRINSIC_USER)
3780 tbo = matching_typebound_op (&tb_base, actual,
3781 i, e->value.op.uop->name, &gname);
3782 else
3783 switch (i)
3784 {
3785 #define CHECK_OS_COMPARISON(comp) \
3786 case INTRINSIC_##comp: \
3787 case INTRINSIC_##comp##_OS: \
3788 tbo = matching_typebound_op (&tb_base, actual, \
3789 INTRINSIC_##comp, NULL, &gname); \
3790 if (!tbo) \
3791 tbo = matching_typebound_op (&tb_base, actual, \
3792 INTRINSIC_##comp##_OS, NULL, &gname); \
3793 break;
3794 CHECK_OS_COMPARISON(EQ)
3795 CHECK_OS_COMPARISON(NE)
3796 CHECK_OS_COMPARISON(GT)
3797 CHECK_OS_COMPARISON(GE)
3798 CHECK_OS_COMPARISON(LT)
3799 CHECK_OS_COMPARISON(LE)
3800 #undef CHECK_OS_COMPARISON
3801
3802 default:
3803 tbo = matching_typebound_op (&tb_base, actual, i, NULL, &gname);
3804 break;
3805 }
3806
3807 /* If there is a matching typebound-operator, replace the expression with
3808 a call to it and succeed. */
3809 if (tbo)
3810 {
3811 bool result;
3812
3813 gcc_assert (tb_base);
3814 build_compcall_for_operator (e, actual, tb_base, tbo, gname);
3815
3816 result = gfc_resolve_expr (e);
3817 if (!result)
3818 return MATCH_ERROR;
3819
3820 return MATCH_YES;
3821 }
3822
3823 /* Don't use gfc_free_actual_arglist(). */
3824 free (actual->next);
3825 free (actual);
3826
3827 return MATCH_NO;
3828 }
3829
3830 /* Change the expression node to a function call. */
3831 e->expr_type = EXPR_FUNCTION;
3832 e->symtree = gfc_find_sym_in_symtree (sym);
3833 e->value.function.actual = actual;
3834 e->value.function.esym = NULL;
3835 e->value.function.isym = NULL;
3836 e->value.function.name = NULL;
3837 e->user_operator = 1;
3838
3839 if (!gfc_resolve_expr (e))
3840 return MATCH_ERROR;
3841
3842 return MATCH_YES;
3843 }
3844
3845
3846 /* Tries to replace an assignment code node with a subroutine call to the
3847 subroutine associated with the assignment operator. Return true if the node
3848 was replaced. On false, no error is generated. */
3849
3850 bool
3851 gfc_extend_assign (gfc_code *c, gfc_namespace *ns)
3852 {
3853 gfc_actual_arglist *actual;
3854 gfc_expr *lhs, *rhs, *tb_base;
3855 gfc_symbol *sym = NULL;
3856 const char *gname = NULL;
3857 gfc_typebound_proc* tbo;
3858
3859 lhs = c->expr1;
3860 rhs = c->expr2;
3861
3862 /* Don't allow an intrinsic assignment to be replaced. */
3863 if (lhs->ts.type != BT_DERIVED && lhs->ts.type != BT_CLASS
3864 && (rhs->rank == 0 || rhs->rank == lhs->rank)
3865 && (lhs->ts.type == rhs->ts.type
3866 || (gfc_numeric_ts (&lhs->ts) && gfc_numeric_ts (&rhs->ts))))
3867 return false;
3868
3869 actual = gfc_get_actual_arglist ();
3870 actual->expr = lhs;
3871
3872 actual->next = gfc_get_actual_arglist ();
3873 actual->next->expr = rhs;
3874
3875 /* TODO: Ambiguity-check, see above for gfc_extend_expr. */
3876
3877 /* See if we find a matching type-bound assignment. */
3878 tbo = matching_typebound_op (&tb_base, actual, INTRINSIC_ASSIGN,
3879 NULL, &gname);
3880
3881 if (tbo)
3882 {
3883 /* Success: Replace the expression with a type-bound call. */
3884 gcc_assert (tb_base);
3885 c->expr1 = gfc_get_expr ();
3886 build_compcall_for_operator (c->expr1, actual, tb_base, tbo, gname);
3887 c->expr1->value.compcall.assign = 1;
3888 c->expr1->where = c->loc;
3889 c->expr2 = NULL;
3890 c->op = EXEC_COMPCALL;
3891 return true;
3892 }
3893
3894 /* See if we find an 'ordinary' (non-typebound) assignment procedure. */
3895 for (; ns; ns = ns->parent)
3896 {
3897 sym = gfc_search_interface (ns->op[INTRINSIC_ASSIGN], 1, &actual);
3898 if (sym != NULL)
3899 break;
3900 }
3901
3902 if (sym)
3903 {
3904 /* Success: Replace the assignment with the call. */
3905 c->op = EXEC_ASSIGN_CALL;
3906 c->symtree = gfc_find_sym_in_symtree (sym);
3907 c->expr1 = NULL;
3908 c->expr2 = NULL;
3909 c->ext.actual = actual;
3910 return true;
3911 }
3912
3913 /* Failure: No assignment procedure found. */
3914 free (actual->next);
3915 free (actual);
3916 return false;
3917 }
3918
3919
3920 /* Make sure that the interface just parsed is not already present in
3921 the given interface list. Ambiguity isn't checked yet since module
3922 procedures can be present without interfaces. */
3923
3924 bool
3925 gfc_check_new_interface (gfc_interface *base, gfc_symbol *new_sym, locus loc)
3926 {
3927 gfc_interface *ip;
3928
3929 for (ip = base; ip; ip = ip->next)
3930 {
3931 if (ip->sym == new_sym)
3932 {
3933 gfc_error ("Entity %qs at %L is already present in the interface",
3934 new_sym->name, &loc);
3935 return false;
3936 }
3937 }
3938
3939 return true;
3940 }
3941
3942
3943 /* Add a symbol to the current interface. */
3944
3945 bool
3946 gfc_add_interface (gfc_symbol *new_sym)
3947 {
3948 gfc_interface **head, *intr;
3949 gfc_namespace *ns;
3950 gfc_symbol *sym;
3951
3952 switch (current_interface.type)
3953 {
3954 case INTERFACE_NAMELESS:
3955 case INTERFACE_ABSTRACT:
3956 return true;
3957
3958 case INTERFACE_INTRINSIC_OP:
3959 for (ns = current_interface.ns; ns; ns = ns->parent)
3960 switch (current_interface.op)
3961 {
3962 case INTRINSIC_EQ:
3963 case INTRINSIC_EQ_OS:
3964 if (!gfc_check_new_interface (ns->op[INTRINSIC_EQ], new_sym,
3965 gfc_current_locus)
3966 || !gfc_check_new_interface (ns->op[INTRINSIC_EQ_OS],
3967 new_sym, gfc_current_locus))
3968 return false;
3969 break;
3970
3971 case INTRINSIC_NE:
3972 case INTRINSIC_NE_OS:
3973 if (!gfc_check_new_interface (ns->op[INTRINSIC_NE], new_sym,
3974 gfc_current_locus)
3975 || !gfc_check_new_interface (ns->op[INTRINSIC_NE_OS],
3976 new_sym, gfc_current_locus))
3977 return false;
3978 break;
3979
3980 case INTRINSIC_GT:
3981 case INTRINSIC_GT_OS:
3982 if (!gfc_check_new_interface (ns->op[INTRINSIC_GT],
3983 new_sym, gfc_current_locus)
3984 || !gfc_check_new_interface (ns->op[INTRINSIC_GT_OS],
3985 new_sym, gfc_current_locus))
3986 return false;
3987 break;
3988
3989 case INTRINSIC_GE:
3990 case INTRINSIC_GE_OS:
3991 if (!gfc_check_new_interface (ns->op[INTRINSIC_GE],
3992 new_sym, gfc_current_locus)
3993 || !gfc_check_new_interface (ns->op[INTRINSIC_GE_OS],
3994 new_sym, gfc_current_locus))
3995 return false;
3996 break;
3997
3998 case INTRINSIC_LT:
3999 case INTRINSIC_LT_OS:
4000 if (!gfc_check_new_interface (ns->op[INTRINSIC_LT],
4001 new_sym, gfc_current_locus)
4002 || !gfc_check_new_interface (ns->op[INTRINSIC_LT_OS],
4003 new_sym, gfc_current_locus))
4004 return false;
4005 break;
4006
4007 case INTRINSIC_LE:
4008 case INTRINSIC_LE_OS:
4009 if (!gfc_check_new_interface (ns->op[INTRINSIC_LE],
4010 new_sym, gfc_current_locus)
4011 || !gfc_check_new_interface (ns->op[INTRINSIC_LE_OS],
4012 new_sym, gfc_current_locus))
4013 return false;
4014 break;
4015
4016 default:
4017 if (!gfc_check_new_interface (ns->op[current_interface.op],
4018 new_sym, gfc_current_locus))
4019 return false;
4020 }
4021
4022 head = &current_interface.ns->op[current_interface.op];
4023 break;
4024
4025 case INTERFACE_GENERIC:
4026 for (ns = current_interface.ns; ns; ns = ns->parent)
4027 {
4028 gfc_find_symbol (current_interface.sym->name, ns, 0, &sym);
4029 if (sym == NULL)
4030 continue;
4031
4032 if (!gfc_check_new_interface (sym->generic,
4033 new_sym, gfc_current_locus))
4034 return false;
4035 }
4036
4037 head = &current_interface.sym->generic;
4038 break;
4039
4040 case INTERFACE_USER_OP:
4041 if (!gfc_check_new_interface (current_interface.uop->op,
4042 new_sym, gfc_current_locus))
4043 return false;
4044
4045 head = &current_interface.uop->op;
4046 break;
4047
4048 default:
4049 gfc_internal_error ("gfc_add_interface(): Bad interface type");
4050 }
4051
4052 intr = gfc_get_interface ();
4053 intr->sym = new_sym;
4054 intr->where = gfc_current_locus;
4055
4056 intr->next = *head;
4057 *head = intr;
4058
4059 return true;
4060 }
4061
4062
4063 gfc_interface *
4064 gfc_current_interface_head (void)
4065 {
4066 switch (current_interface.type)
4067 {
4068 case INTERFACE_INTRINSIC_OP:
4069 return current_interface.ns->op[current_interface.op];
4070 break;
4071
4072 case INTERFACE_GENERIC:
4073 return current_interface.sym->generic;
4074 break;
4075
4076 case INTERFACE_USER_OP:
4077 return current_interface.uop->op;
4078 break;
4079
4080 default:
4081 gcc_unreachable ();
4082 }
4083 }
4084
4085
4086 void
4087 gfc_set_current_interface_head (gfc_interface *i)
4088 {
4089 switch (current_interface.type)
4090 {
4091 case INTERFACE_INTRINSIC_OP:
4092 current_interface.ns->op[current_interface.op] = i;
4093 break;
4094
4095 case INTERFACE_GENERIC:
4096 current_interface.sym->generic = i;
4097 break;
4098
4099 case INTERFACE_USER_OP:
4100 current_interface.uop->op = i;
4101 break;
4102
4103 default:
4104 gcc_unreachable ();
4105 }
4106 }
4107
4108
4109 /* Gets rid of a formal argument list. We do not free symbols.
4110 Symbols are freed when a namespace is freed. */
4111
4112 void
4113 gfc_free_formal_arglist (gfc_formal_arglist *p)
4114 {
4115 gfc_formal_arglist *q;
4116
4117 for (; p; p = q)
4118 {
4119 q = p->next;
4120 free (p);
4121 }
4122 }
4123
4124
4125 /* Check that it is ok for the type-bound procedure 'proc' to override the
4126 procedure 'old', cf. F08:4.5.7.3. */
4127
4128 bool
4129 gfc_check_typebound_override (gfc_symtree* proc, gfc_symtree* old)
4130 {
4131 locus where;
4132 gfc_symbol *proc_target, *old_target;
4133 unsigned proc_pass_arg, old_pass_arg, argpos;
4134 gfc_formal_arglist *proc_formal, *old_formal;
4135 bool check_type;
4136 char err[200];
4137
4138 /* This procedure should only be called for non-GENERIC proc. */
4139 gcc_assert (!proc->n.tb->is_generic);
4140
4141 /* If the overwritten procedure is GENERIC, this is an error. */
4142 if (old->n.tb->is_generic)
4143 {
4144 gfc_error ("Can't overwrite GENERIC %qs at %L",
4145 old->name, &proc->n.tb->where);
4146 return false;
4147 }
4148
4149 where = proc->n.tb->where;
4150 proc_target = proc->n.tb->u.specific->n.sym;
4151 old_target = old->n.tb->u.specific->n.sym;
4152
4153 /* Check that overridden binding is not NON_OVERRIDABLE. */
4154 if (old->n.tb->non_overridable)
4155 {
4156 gfc_error ("%qs at %L overrides a procedure binding declared"
4157 " NON_OVERRIDABLE", proc->name, &where);
4158 return false;
4159 }
4160
4161 /* It's an error to override a non-DEFERRED procedure with a DEFERRED one. */
4162 if (!old->n.tb->deferred && proc->n.tb->deferred)
4163 {
4164 gfc_error ("%qs at %L must not be DEFERRED as it overrides a"
4165 " non-DEFERRED binding", proc->name, &where);
4166 return false;
4167 }
4168
4169 /* If the overridden binding is PURE, the overriding must be, too. */
4170 if (old_target->attr.pure && !proc_target->attr.pure)
4171 {
4172 gfc_error ("%qs at %L overrides a PURE procedure and must also be PURE",
4173 proc->name, &where);
4174 return false;
4175 }
4176
4177 /* If the overridden binding is ELEMENTAL, the overriding must be, too. If it
4178 is not, the overriding must not be either. */
4179 if (old_target->attr.elemental && !proc_target->attr.elemental)
4180 {
4181 gfc_error ("%qs at %L overrides an ELEMENTAL procedure and must also be"
4182 " ELEMENTAL", proc->name, &where);
4183 return false;
4184 }
4185 if (!old_target->attr.elemental && proc_target->attr.elemental)
4186 {
4187 gfc_error ("%qs at %L overrides a non-ELEMENTAL procedure and must not"
4188 " be ELEMENTAL, either", proc->name, &where);
4189 return false;
4190 }
4191
4192 /* If the overridden binding is a SUBROUTINE, the overriding must also be a
4193 SUBROUTINE. */
4194 if (old_target->attr.subroutine && !proc_target->attr.subroutine)
4195 {
4196 gfc_error ("%qs at %L overrides a SUBROUTINE and must also be a"
4197 " SUBROUTINE", proc->name, &where);
4198 return false;
4199 }
4200
4201 /* If the overridden binding is a FUNCTION, the overriding must also be a
4202 FUNCTION and have the same characteristics. */
4203 if (old_target->attr.function)
4204 {
4205 if (!proc_target->attr.function)
4206 {
4207 gfc_error ("%qs at %L overrides a FUNCTION and must also be a"
4208 " FUNCTION", proc->name, &where);
4209 return false;
4210 }
4211
4212 if (!check_result_characteristics (proc_target, old_target, err,
4213 sizeof(err)))
4214 {
4215 gfc_error ("Result mismatch for the overriding procedure "
4216 "%qs at %L: %s", proc->name, &where, err);
4217 return false;
4218 }
4219 }
4220
4221 /* If the overridden binding is PUBLIC, the overriding one must not be
4222 PRIVATE. */
4223 if (old->n.tb->access == ACCESS_PUBLIC
4224 && proc->n.tb->access == ACCESS_PRIVATE)
4225 {
4226 gfc_error ("%qs at %L overrides a PUBLIC procedure and must not be"
4227 " PRIVATE", proc->name, &where);
4228 return false;
4229 }
4230
4231 /* Compare the formal argument lists of both procedures. This is also abused
4232 to find the position of the passed-object dummy arguments of both
4233 bindings as at least the overridden one might not yet be resolved and we
4234 need those positions in the check below. */
4235 proc_pass_arg = old_pass_arg = 0;
4236 if (!proc->n.tb->nopass && !proc->n.tb->pass_arg)
4237 proc_pass_arg = 1;
4238 if (!old->n.tb->nopass && !old->n.tb->pass_arg)
4239 old_pass_arg = 1;
4240 argpos = 1;
4241 proc_formal = gfc_sym_get_dummy_args (proc_target);
4242 old_formal = gfc_sym_get_dummy_args (old_target);
4243 for ( ; proc_formal && old_formal;
4244 proc_formal = proc_formal->next, old_formal = old_formal->next)
4245 {
4246 if (proc->n.tb->pass_arg
4247 && !strcmp (proc->n.tb->pass_arg, proc_formal->sym->name))
4248 proc_pass_arg = argpos;
4249 if (old->n.tb->pass_arg
4250 && !strcmp (old->n.tb->pass_arg, old_formal->sym->name))
4251 old_pass_arg = argpos;
4252
4253 /* Check that the names correspond. */
4254 if (strcmp (proc_formal->sym->name, old_formal->sym->name))
4255 {
4256 gfc_error ("Dummy argument %qs of %qs at %L should be named %qs as"
4257 " to match the corresponding argument of the overridden"
4258 " procedure", proc_formal->sym->name, proc->name, &where,
4259 old_formal->sym->name);
4260 return false;
4261 }
4262
4263 check_type = proc_pass_arg != argpos && old_pass_arg != argpos;
4264 if (!check_dummy_characteristics (proc_formal->sym, old_formal->sym,
4265 check_type, err, sizeof(err)))
4266 {
4267 gfc_error ("Argument mismatch for the overriding procedure "
4268 "%qs at %L: %s", proc->name, &where, err);
4269 return false;
4270 }
4271
4272 ++argpos;
4273 }
4274 if (proc_formal || old_formal)
4275 {
4276 gfc_error ("%qs at %L must have the same number of formal arguments as"
4277 " the overridden procedure", proc->name, &where);
4278 return false;
4279 }
4280
4281 /* If the overridden binding is NOPASS, the overriding one must also be
4282 NOPASS. */
4283 if (old->n.tb->nopass && !proc->n.tb->nopass)
4284 {
4285 gfc_error ("%qs at %L overrides a NOPASS binding and must also be"
4286 " NOPASS", proc->name, &where);
4287 return false;
4288 }
4289
4290 /* If the overridden binding is PASS(x), the overriding one must also be
4291 PASS and the passed-object dummy arguments must correspond. */
4292 if (!old->n.tb->nopass)
4293 {
4294 if (proc->n.tb->nopass)
4295 {
4296 gfc_error ("%qs at %L overrides a binding with PASS and must also be"
4297 " PASS", proc->name, &where);
4298 return false;
4299 }
4300
4301 if (proc_pass_arg != old_pass_arg)
4302 {
4303 gfc_error ("Passed-object dummy argument of %qs at %L must be at"
4304 " the same position as the passed-object dummy argument of"
4305 " the overridden procedure", proc->name, &where);
4306 return false;
4307 }
4308 }
4309
4310 return true;
4311 }
This page took 0.248116 seconds and 6 git commands to generate.