]> gcc.gnu.org Git - gcc.git/blame - gcc/optabs.c
invoke.texi ([Wnarrowing]): Update for non-constants in C++11.
[gcc.git] / gcc / optabs.c
CommitLineData
77c9c6c2 1/* Expand the basic unary and binary arithmetic operations, for GNU compiler.
23a5b65a 2 Copyright (C) 1987-2014 Free Software Foundation, Inc.
77c9c6c2 3
1322177d 4This file is part of GCC.
77c9c6c2 5
1322177d
LB
6GCC is free software; you can redistribute it and/or modify it under
7the terms of the GNU General Public License as published by the Free
9dcd6f09 8Software Foundation; either version 3, or (at your option) any later
1322177d 9version.
77c9c6c2 10
1322177d
LB
11GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12WARRANTY; without even the implied warranty of MERCHANTABILITY or
13FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14for more details.
77c9c6c2
RK
15
16You should have received a copy of the GNU General Public License
9dcd6f09
NC
17along with GCC; see the file COPYING3. If not see
18<http://www.gnu.org/licenses/>. */
77c9c6c2
RK
19
20
21#include "config.h"
670ee920 22#include "system.h"
4977bab6
ZW
23#include "coretypes.h"
24#include "tm.h"
718f9c0f 25#include "diagnostic-core.h"
dff01034
KG
26
27/* Include insn-config.h before expr.h so that HAVE_conditional_move
dc297297 28 is properly defined. */
dff01034 29#include "insn-config.h"
77c9c6c2
RK
30#include "rtl.h"
31#include "tree.h"
d8a2d370
DN
32#include "stor-layout.h"
33#include "stringpool.h"
34#include "varasm.h"
6baf1cc8 35#include "tm_p.h"
77c9c6c2 36#include "flags.h"
49ad7cfa 37#include "function.h"
52a11cbf 38#include "except.h"
77c9c6c2 39#include "expr.h"
e78d8e51
ZW
40#include "optabs.h"
41#include "libfuncs.h"
77c9c6c2 42#include "recog.h"
2829c155 43#include "reload.h"
87ff9c8e 44#include "ggc.h"
4a69cf79 45#include "basic-block.h"
c15c90bb 46#include "target.h"
77c9c6c2 47
4bcbfa03 48struct target_optabs default_target_optabs;
3e9c326a 49struct target_libfuncs default_target_libfuncs;
135204dd 50struct target_optabs *this_fn_optabs = &default_target_optabs;
4bcbfa03
RS
51#if SWITCHABLE_TARGET
52struct target_optabs *this_target_optabs = &default_target_optabs;
3e9c326a 53struct target_libfuncs *this_target_libfuncs = &default_target_libfuncs;
4bcbfa03 54#endif
34220a12 55
3e9c326a
RS
56#define libfunc_hash \
57 (this_target_libfuncs->x_libfunc_hash)
19c3fc24 58
f90b7a5a
PB
59static void prepare_float_lib_cmp (rtx, rtx, enum rtx_code, rtx *,
60 enum machine_mode *);
9cce5b20 61static rtx expand_unop_direct (enum machine_mode, optab, rtx, rtx, int);
b55f62cc 62static void emit_libcall_block_1 (rtx, rtx, rtx, rtx, bool);
842a431a 63
8a33f100
JH
64/* Debug facility for use in GDB. */
65void debug_optab_libfuncs (void);
66
79b87c74
MM
67/* Prefixes for the current version of decimal floating point (BID vs. DPD) */
68#if ENABLE_DECIMAL_BID_FORMAT
69#define DECIMAL_PREFIX "bid_"
70#else
71#define DECIMAL_PREFIX "dpd_"
72#endif
8a33f100 73\f
3e9c326a 74/* Used for libfunc_hash. */
8a33f100
JH
75
76static hashval_t
77hash_libfunc (const void *p)
78{
79 const struct libfunc_entry *const e = (const struct libfunc_entry *) p;
5714c34f 80 return ((e->mode1 + e->mode2 * NUM_MACHINE_MODES) ^ e->op);
8a33f100
JH
81}
82
3e9c326a 83/* Used for libfunc_hash. */
8a33f100
JH
84
85static int
86eq_libfunc (const void *p, const void *q)
87{
88 const struct libfunc_entry *const e1 = (const struct libfunc_entry *) p;
89 const struct libfunc_entry *const e2 = (const struct libfunc_entry *) q;
cd1440b1 90 return e1->op == e2->op && e1->mode1 == e2->mode1 && e1->mode2 == e2->mode2;
8a33f100
JH
91}
92
93/* Return libfunc corresponding operation defined by OPTAB converting
94 from MODE2 to MODE1. Trigger lazy initialization if needed, return NULL
95 if no libfunc is available. */
96rtx
97convert_optab_libfunc (convert_optab optab, enum machine_mode mode1,
98 enum machine_mode mode2)
99{
100 struct libfunc_entry e;
101 struct libfunc_entry **slot;
102
cd1440b1
RH
103 /* ??? This ought to be an assert, but not all of the places
104 that we expand optabs know about the optabs that got moved
105 to being direct. */
106 if (!(optab >= FIRST_CONV_OPTAB && optab <= LAST_CONVLIB_OPTAB))
107 return NULL_RTX;
108
109 e.op = optab;
8a33f100
JH
110 e.mode1 = mode1;
111 e.mode2 = mode2;
cd1440b1
RH
112 slot = (struct libfunc_entry **)
113 htab_find_slot (libfunc_hash, &e, NO_INSERT);
8a33f100
JH
114 if (!slot)
115 {
cd1440b1
RH
116 const struct convert_optab_libcall_d *d
117 = &convlib_def[optab - FIRST_CONV_OPTAB];
118
119 if (d->libcall_gen == NULL)
120 return NULL;
121
122 d->libcall_gen (optab, d->libcall_basename, mode1, mode2);
123 slot = (struct libfunc_entry **)
124 htab_find_slot (libfunc_hash, &e, NO_INSERT);
125 if (!slot)
126 return NULL;
8a33f100
JH
127 }
128 return (*slot)->libfunc;
129}
130
131/* Return libfunc corresponding operation defined by OPTAB in MODE.
132 Trigger lazy initialization if needed, return NULL if no libfunc is
133 available. */
134rtx
135optab_libfunc (optab optab, enum machine_mode mode)
136{
137 struct libfunc_entry e;
138 struct libfunc_entry **slot;
139
cd1440b1
RH
140 /* ??? This ought to be an assert, but not all of the places
141 that we expand optabs know about the optabs that got moved
142 to being direct. */
143 if (!(optab >= FIRST_NORM_OPTAB && optab <= LAST_NORMLIB_OPTAB))
144 return NULL_RTX;
145
146 e.op = optab;
8a33f100
JH
147 e.mode1 = mode;
148 e.mode2 = VOIDmode;
cd1440b1
RH
149 slot = (struct libfunc_entry **)
150 htab_find_slot (libfunc_hash, &e, NO_INSERT);
8a33f100
JH
151 if (!slot)
152 {
cd1440b1
RH
153 const struct optab_libcall_d *d
154 = &normlib_def[optab - FIRST_NORM_OPTAB];
155
156 if (d->libcall_gen == NULL)
157 return NULL;
158
159 d->libcall_gen (optab, d->libcall_basename, d->libcall_suffix, mode);
160 slot = (struct libfunc_entry **)
161 htab_find_slot (libfunc_hash, &e, NO_INSERT);
162 if (!slot)
163 return NULL;
8a33f100
JH
164 }
165 return (*slot)->libfunc;
166}
79b87c74 167
77c9c6c2 168\f
2f937369 169/* Add a REG_EQUAL note to the last insn in INSNS. TARGET is being set to
77c9c6c2
RK
170 the result of operation CODE applied to OP0 (and OP1 if it is a binary
171 operation).
172
173 If the last insn does not set TARGET, don't do anything, but return 1.
174
853f8f1c
SB
175 If the last insn or a previous insn sets TARGET and TARGET is one of OP0
176 or OP1, don't add the REG_EQUAL note but return 0. Our caller can then
177 try again, ensuring that TARGET is not one of the operands. */
77c9c6c2
RK
178
179static int
0c20a65f 180add_equal_note (rtx insns, rtx target, enum rtx_code code, rtx op0, rtx op1)
77c9c6c2 181{
853f8f1c 182 rtx last_insn, set;
77c9c6c2
RK
183 rtx note;
184
e3feb571 185 gcc_assert (insns && INSN_P (insns) && NEXT_INSN (insns));
2f937369 186
ec8e098d
PB
187 if (GET_RTX_CLASS (code) != RTX_COMM_ARITH
188 && GET_RTX_CLASS (code) != RTX_BIN_ARITH
189 && GET_RTX_CLASS (code) != RTX_COMM_COMPARE
190 && GET_RTX_CLASS (code) != RTX_COMPARE
191 && GET_RTX_CLASS (code) != RTX_UNARY)
2f937369
DM
192 return 1;
193
194 if (GET_CODE (target) == ZERO_EXTRACT)
195 return 1;
196
197 for (last_insn = insns;
198 NEXT_INSN (last_insn) != NULL_RTX;
199 last_insn = NEXT_INSN (last_insn))
200 ;
201
6da26889
JJ
202 /* If TARGET is in OP0 or OP1, punt. We'd end up with a note referencing
203 a value changing in the insn, so the note would be invalid for CSE. */
204 if (reg_overlap_mentioned_p (target, op0)
205 || (op1 && reg_overlap_mentioned_p (target, op1)))
206 {
207 if (MEM_P (target)
208 && (rtx_equal_p (target, op0)
209 || (op1 && rtx_equal_p (target, op1))))
210 {
211 /* For MEM target, with MEM = MEM op X, prefer no REG_EQUAL note
212 over expanding it as temp = MEM op X, MEM = temp. If the target
213 supports MEM = MEM op X instructions, it is sometimes too hard
214 to reconstruct that form later, especially if X is also a memory,
215 and due to multiple occurrences of addresses the address might
216 be forced into register unnecessarily.
217 Note that not emitting the REG_EQUIV note might inhibit
218 CSE in some cases. */
219 set = single_set (last_insn);
220 if (set
221 && GET_CODE (SET_SRC (set)) == code
222 && MEM_P (SET_DEST (set))
223 && (rtx_equal_p (SET_DEST (set), XEXP (SET_SRC (set), 0))
224 || (op1 && rtx_equal_p (SET_DEST (set),
225 XEXP (SET_SRC (set), 1)))))
226 return 1;
227 }
228 return 0;
229 }
230
c8912e53 231 set = set_for_reg_notes (last_insn);
2f937369
DM
232 if (set == NULL_RTX)
233 return 1;
234
235 if (! rtx_equal_p (SET_DEST (set), target)
f9d36a92 236 /* For a STRICT_LOW_PART, the REG_NOTE applies to what is inside it. */
2f937369 237 && (GET_CODE (SET_DEST (set)) != STRICT_LOW_PART
f9d36a92 238 || ! rtx_equal_p (XEXP (SET_DEST (set), 0), target)))
77c9c6c2
RK
239 return 1;
240
ec8e098d 241 if (GET_RTX_CLASS (code) == RTX_UNARY)
e2f00837
JJ
242 switch (code)
243 {
244 case FFS:
245 case CLZ:
246 case CTZ:
247 case CLRSB:
248 case POPCOUNT:
249 case PARITY:
250 case BSWAP:
251 if (GET_MODE (op0) != VOIDmode && GET_MODE (target) != GET_MODE (op0))
252 {
253 note = gen_rtx_fmt_e (code, GET_MODE (op0), copy_rtx (op0));
254 if (GET_MODE_SIZE (GET_MODE (op0))
255 > GET_MODE_SIZE (GET_MODE (target)))
256 note = simplify_gen_unary (TRUNCATE, GET_MODE (target),
257 note, GET_MODE (op0));
258 else
259 note = simplify_gen_unary (ZERO_EXTEND, GET_MODE (target),
260 note, GET_MODE (op0));
261 break;
262 }
263 /* FALLTHRU */
264 default:
265 note = gen_rtx_fmt_e (code, GET_MODE (target), copy_rtx (op0));
266 break;
267 }
77c9c6c2 268 else
9e6a5703 269 note = gen_rtx_fmt_ee (code, GET_MODE (target), copy_rtx (op0), copy_rtx (op1));
77c9c6c2 270
2f937369 271 set_unique_reg_note (last_insn, REG_EQUAL, note);
77c9c6c2
RK
272
273 return 1;
274}
275\f
a484f6ba
AS
276/* Given two input operands, OP0 and OP1, determine what the correct from_mode
277 for a widening operation would be. In most cases this would be OP0, but if
278 that's a constant it'll be VOIDmode, which isn't useful. */
279
280static enum machine_mode
281widened_mode (enum machine_mode to_mode, rtx op0, rtx op1)
282{
283 enum machine_mode m0 = GET_MODE (op0);
284 enum machine_mode m1 = GET_MODE (op1);
285 enum machine_mode result;
286
287 if (m0 == VOIDmode && m1 == VOIDmode)
288 return to_mode;
289 else if (m0 == VOIDmode || GET_MODE_SIZE (m0) < GET_MODE_SIZE (m1))
290 result = m1;
291 else
292 result = m0;
293
294 if (GET_MODE_SIZE (result) > GET_MODE_SIZE (to_mode))
295 return to_mode;
296
297 return result;
298}
299\f
4df199d1
JH
300/* Like optab_handler, but for widening_operations that have a
301 TO_MODE and a FROM_MODE. */
302
303enum insn_code
304widening_optab_handler (optab op, enum machine_mode to_mode,
305 enum machine_mode from_mode)
306{
307 unsigned scode = (op << 16) | to_mode;
308 if (to_mode != from_mode && from_mode != VOIDmode)
309 {
310 /* ??? Why does find_widening_optab_handler_and_mode attempt to
311 widen things that can't be widened? E.g. add_optab... */
312 if (op > LAST_CONV_OPTAB)
313 return CODE_FOR_nothing;
314 scode |= from_mode << 8;
315 }
316 return raw_optab_handler (scode);
317}
318
5dfe80ba
AS
319/* Find a widening optab even if it doesn't widen as much as we want.
320 E.g. if from_mode is HImode, and to_mode is DImode, and there is no
321 direct HI->SI insn, then return SI->DI, if that exists.
322 If PERMIT_NON_WIDENING is non-zero then this can be used with
323 non-widening optabs also. */
324
325enum insn_code
326find_widening_optab_handler_and_mode (optab op, enum machine_mode to_mode,
327 enum machine_mode from_mode,
328 int permit_non_widening,
329 enum machine_mode *found_mode)
330{
331 for (; (permit_non_widening || from_mode != to_mode)
332 && GET_MODE_SIZE (from_mode) <= GET_MODE_SIZE (to_mode)
333 && from_mode != VOIDmode;
334 from_mode = GET_MODE_WIDER_MODE (from_mode))
335 {
336 enum insn_code handler = widening_optab_handler (op, to_mode,
337 from_mode);
338
339 if (handler != CODE_FOR_nothing)
340 {
341 if (found_mode)
342 *found_mode = from_mode;
343 return handler;
344 }
345 }
346
347 return CODE_FOR_nothing;
348}
349\f
835532b8
RK
350/* Widen OP to MODE and return the rtx for the widened operand. UNSIGNEDP
351 says whether OP is signed or unsigned. NO_EXTEND is nonzero if we need
0c20a65f 352 not actually do a sign-extend or zero-extend, but can leave the
835532b8
RK
353 higher-order bits of the result rtx undefined, for example, in the case
354 of logical operations, but not right shifts. */
355
356static rtx
0c20a65f
AJ
357widen_operand (rtx op, enum machine_mode mode, enum machine_mode oldmode,
358 int unsignedp, int no_extend)
835532b8
RK
359{
360 rtx result;
361
8041889f
RK
362 /* If we don't have to extend and this is a constant, return it. */
363 if (no_extend && GET_MODE (op) == VOIDmode)
364 return op;
365
366 /* If we must extend do so. If OP is a SUBREG for a promoted object, also
367 extend since it will be more efficient to do so unless the signedness of
368 a promoted object differs from our extension. */
835532b8 369 if (! no_extend
cb8f73be 370 || (GET_CODE (op) == SUBREG && SUBREG_PROMOTED_VAR_P (op)
362d42dc 371 && SUBREG_CHECK_PROMOTED_SIGN (op, unsignedp)))
0661a3de 372 return convert_modes (mode, oldmode, op, unsignedp);
835532b8 373
a78a8cc4 374 /* If MODE is no wider than a single word, we return a lowpart or paradoxical
835532b8
RK
375 SUBREG. */
376 if (GET_MODE_SIZE (mode) <= UNITS_PER_WORD)
a78a8cc4 377 return gen_lowpart (mode, force_reg (GET_MODE (op), op));
835532b8
RK
378
379 /* Otherwise, get an object of MODE, clobber it, and set the low-order
380 part to OP. */
381
382 result = gen_reg_rtx (mode);
c41c1387 383 emit_clobber (result);
835532b8
RK
384 emit_move_insn (gen_lowpart (GET_MODE (op), result), op);
385 return result;
386}
387\f
71d46ca5
MM
388/* Return the optab used for computing the operation given by the tree code,
389 CODE and the tree EXP. This function is not always usable (for example, it
390 cannot give complete results for multiplication or division) but probably
391 ought to be relied on more widely throughout the expander. */
26277d41 392optab
71d46ca5
MM
393optab_for_tree_code (enum tree_code code, const_tree type,
394 enum optab_subtype subtype)
26277d41
PB
395{
396 bool trapv;
397 switch (code)
398 {
399 case BIT_AND_EXPR:
400 return and_optab;
401
402 case BIT_IOR_EXPR:
403 return ior_optab;
404
405 case BIT_NOT_EXPR:
406 return one_cmpl_optab;
407
408 case BIT_XOR_EXPR:
409 return xor_optab;
410
98449720
RH
411 case MULT_HIGHPART_EXPR:
412 return TYPE_UNSIGNED (type) ? umul_highpart_optab : smul_highpart_optab;
413
26277d41
PB
414 case TRUNC_MOD_EXPR:
415 case CEIL_MOD_EXPR:
416 case FLOOR_MOD_EXPR:
417 case ROUND_MOD_EXPR:
418 return TYPE_UNSIGNED (type) ? umod_optab : smod_optab;
419
420 case RDIV_EXPR:
421 case TRUNC_DIV_EXPR:
422 case CEIL_DIV_EXPR:
423 case FLOOR_DIV_EXPR:
424 case ROUND_DIV_EXPR:
425 case EXACT_DIV_EXPR:
c3284718
RS
426 if (TYPE_SATURATING (type))
427 return TYPE_UNSIGNED (type) ? usdiv_optab : ssdiv_optab;
26277d41
PB
428 return TYPE_UNSIGNED (type) ? udiv_optab : sdiv_optab;
429
430 case LSHIFT_EXPR:
8750672f 431 if (TREE_CODE (type) == VECTOR_TYPE)
71d46ca5
MM
432 {
433 if (subtype == optab_vector)
2225b9f2 434 return TYPE_SATURATING (type) ? unknown_optab : vashl_optab;
71d46ca5
MM
435
436 gcc_assert (subtype == optab_scalar);
437 }
c3284718
RS
438 if (TYPE_SATURATING (type))
439 return TYPE_UNSIGNED (type) ? usashl_optab : ssashl_optab;
26277d41
PB
440 return ashl_optab;
441
442 case RSHIFT_EXPR:
8750672f 443 if (TREE_CODE (type) == VECTOR_TYPE)
71d46ca5
MM
444 {
445 if (subtype == optab_vector)
446 return TYPE_UNSIGNED (type) ? vlshr_optab : vashr_optab;
447
448 gcc_assert (subtype == optab_scalar);
449 }
26277d41
PB
450 return TYPE_UNSIGNED (type) ? lshr_optab : ashr_optab;
451
452 case LROTATE_EXPR:
8750672f 453 if (TREE_CODE (type) == VECTOR_TYPE)
71d46ca5
MM
454 {
455 if (subtype == optab_vector)
456 return vrotl_optab;
457
458 gcc_assert (subtype == optab_scalar);
459 }
26277d41
PB
460 return rotl_optab;
461
462 case RROTATE_EXPR:
8750672f 463 if (TREE_CODE (type) == VECTOR_TYPE)
71d46ca5
MM
464 {
465 if (subtype == optab_vector)
466 return vrotr_optab;
467
468 gcc_assert (subtype == optab_scalar);
469 }
26277d41
PB
470 return rotr_optab;
471
472 case MAX_EXPR:
473 return TYPE_UNSIGNED (type) ? umax_optab : smax_optab;
474
475 case MIN_EXPR:
476 return TYPE_UNSIGNED (type) ? umin_optab : smin_optab;
477
7ccf35ed
DN
478 case REALIGN_LOAD_EXPR:
479 return vec_realign_load_optab;
480
20f06221
DN
481 case WIDEN_SUM_EXPR:
482 return TYPE_UNSIGNED (type) ? usum_widen_optab : ssum_widen_optab;
483
484 case DOT_PROD_EXPR:
485 return TYPE_UNSIGNED (type) ? udot_prod_optab : sdot_prod_optab;
486
79d652a5
CH
487 case SAD_EXPR:
488 return TYPE_UNSIGNED (type) ? usad_optab : ssad_optab;
489
0354c0c7
BS
490 case WIDEN_MULT_PLUS_EXPR:
491 return (TYPE_UNSIGNED (type)
492 ? (TYPE_SATURATING (type)
493 ? usmadd_widen_optab : umadd_widen_optab)
494 : (TYPE_SATURATING (type)
495 ? ssmadd_widen_optab : smadd_widen_optab));
496
497 case WIDEN_MULT_MINUS_EXPR:
498 return (TYPE_UNSIGNED (type)
499 ? (TYPE_SATURATING (type)
500 ? usmsub_widen_optab : umsub_widen_optab)
501 : (TYPE_SATURATING (type)
502 ? ssmsub_widen_optab : smsub_widen_optab));
503
16949072
RG
504 case FMA_EXPR:
505 return fma_optab;
506
61d3cdbb
DN
507 case REDUC_MAX_EXPR:
508 return TYPE_UNSIGNED (type) ? reduc_umax_optab : reduc_smax_optab;
509
510 case REDUC_MIN_EXPR:
511 return TYPE_UNSIGNED (type) ? reduc_umin_optab : reduc_smin_optab;
512
513 case REDUC_PLUS_EXPR:
a6b46ba2
DN
514 return TYPE_UNSIGNED (type) ? reduc_uplus_optab : reduc_splus_optab;
515
516 case VEC_LSHIFT_EXPR:
517 return vec_shl_optab;
518
519 case VEC_RSHIFT_EXPR:
520 return vec_shr_optab;
61d3cdbb 521
89d67cca 522 case VEC_WIDEN_MULT_HI_EXPR:
b8698a0f 523 return TYPE_UNSIGNED (type) ?
89d67cca
DN
524 vec_widen_umult_hi_optab : vec_widen_smult_hi_optab;
525
526 case VEC_WIDEN_MULT_LO_EXPR:
b8698a0f 527 return TYPE_UNSIGNED (type) ?
89d67cca
DN
528 vec_widen_umult_lo_optab : vec_widen_smult_lo_optab;
529
3f30a9a6
RH
530 case VEC_WIDEN_MULT_EVEN_EXPR:
531 return TYPE_UNSIGNED (type) ?
532 vec_widen_umult_even_optab : vec_widen_smult_even_optab;
533
534 case VEC_WIDEN_MULT_ODD_EXPR:
535 return TYPE_UNSIGNED (type) ?
536 vec_widen_umult_odd_optab : vec_widen_smult_odd_optab;
537
36ba4aae
IR
538 case VEC_WIDEN_LSHIFT_HI_EXPR:
539 return TYPE_UNSIGNED (type) ?
540 vec_widen_ushiftl_hi_optab : vec_widen_sshiftl_hi_optab;
541
542 case VEC_WIDEN_LSHIFT_LO_EXPR:
543 return TYPE_UNSIGNED (type) ?
544 vec_widen_ushiftl_lo_optab : vec_widen_sshiftl_lo_optab;
545
89d67cca 546 case VEC_UNPACK_HI_EXPR:
8115817b 547 return TYPE_UNSIGNED (type) ?
89d67cca
DN
548 vec_unpacku_hi_optab : vec_unpacks_hi_optab;
549
550 case VEC_UNPACK_LO_EXPR:
b8698a0f 551 return TYPE_UNSIGNED (type) ?
89d67cca
DN
552 vec_unpacku_lo_optab : vec_unpacks_lo_optab;
553
d9987fb4
UB
554 case VEC_UNPACK_FLOAT_HI_EXPR:
555 /* The signedness is determined from input operand. */
556 return TYPE_UNSIGNED (type) ?
557 vec_unpacku_float_hi_optab : vec_unpacks_float_hi_optab;
558
559 case VEC_UNPACK_FLOAT_LO_EXPR:
560 /* The signedness is determined from input operand. */
b8698a0f 561 return TYPE_UNSIGNED (type) ?
d9987fb4
UB
562 vec_unpacku_float_lo_optab : vec_unpacks_float_lo_optab;
563
8115817b
UB
564 case VEC_PACK_TRUNC_EXPR:
565 return vec_pack_trunc_optab;
566
89d67cca
DN
567 case VEC_PACK_SAT_EXPR:
568 return TYPE_UNSIGNED (type) ? vec_pack_usat_optab : vec_pack_ssat_optab;
8115817b 569
d9987fb4 570 case VEC_PACK_FIX_TRUNC_EXPR:
9f106823 571 /* The signedness is determined from output operand. */
d9987fb4
UB
572 return TYPE_UNSIGNED (type) ?
573 vec_pack_ufix_trunc_optab : vec_pack_sfix_trunc_optab;
574
26277d41
PB
575 default:
576 break;
577 }
578
eeef0e45 579 trapv = INTEGRAL_TYPE_P (type) && TYPE_OVERFLOW_TRAPS (type);
26277d41
PB
580 switch (code)
581 {
5be014d5 582 case POINTER_PLUS_EXPR:
26277d41 583 case PLUS_EXPR:
c3284718
RS
584 if (TYPE_SATURATING (type))
585 return TYPE_UNSIGNED (type) ? usadd_optab : ssadd_optab;
26277d41
PB
586 return trapv ? addv_optab : add_optab;
587
588 case MINUS_EXPR:
c3284718
RS
589 if (TYPE_SATURATING (type))
590 return TYPE_UNSIGNED (type) ? ussub_optab : sssub_optab;
26277d41
PB
591 return trapv ? subv_optab : sub_optab;
592
593 case MULT_EXPR:
c3284718
RS
594 if (TYPE_SATURATING (type))
595 return TYPE_UNSIGNED (type) ? usmul_optab : ssmul_optab;
26277d41
PB
596 return trapv ? smulv_optab : smul_optab;
597
598 case NEGATE_EXPR:
c3284718
RS
599 if (TYPE_SATURATING (type))
600 return TYPE_UNSIGNED (type) ? usneg_optab : ssneg_optab;
26277d41
PB
601 return trapv ? negv_optab : neg_optab;
602
603 case ABS_EXPR:
604 return trapv ? absv_optab : abs_optab;
605
606 default:
2225b9f2 607 return unknown_optab;
26277d41
PB
608 }
609}
273a2526 610\f
7ccf35ed 611
20f06221
DN
612/* Expand vector widening operations.
613
614 There are two different classes of operations handled here:
615 1) Operations whose result is wider than all the arguments to the operation.
616 Examples: VEC_UNPACK_HI/LO_EXPR, VEC_WIDEN_MULT_HI/LO_EXPR
617 In this case OP0 and optionally OP1 would be initialized,
618 but WIDE_OP wouldn't (not relevant for this case).
619 2) Operations whose result is of the same size as the last argument to the
620 operation, but wider than all the other arguments to the operation.
621 Examples: WIDEN_SUM_EXPR, VEC_DOT_PROD_EXPR.
622 In the case WIDE_OP, OP0 and optionally OP1 would be initialized.
623
624 E.g, when called to expand the following operations, this is how
625 the arguments will be initialized:
626 nops OP0 OP1 WIDE_OP
b8698a0f 627 widening-sum 2 oprnd0 - oprnd1
20f06221
DN
628 widening-dot-product 3 oprnd0 oprnd1 oprnd2
629 widening-mult 2 oprnd0 oprnd1 -
630 type-promotion (vec-unpack) 1 oprnd0 - - */
631
632rtx
8e7aa1f9
MM
633expand_widen_pattern_expr (sepops ops, rtx op0, rtx op1, rtx wide_op,
634 rtx target, int unsignedp)
b8698a0f 635{
a5c7d693 636 struct expand_operand eops[4];
20f06221 637 tree oprnd0, oprnd1, oprnd2;
81f40b79 638 enum machine_mode wmode = VOIDmode, tmode0, tmode1 = VOIDmode;
20f06221 639 optab widen_pattern_optab;
a5c7d693 640 enum insn_code icode;
8e7aa1f9 641 int nops = TREE_CODE_LENGTH (ops->code);
a5c7d693 642 int op;
20f06221 643
8e7aa1f9 644 oprnd0 = ops->op0;
20f06221
DN
645 tmode0 = TYPE_MODE (TREE_TYPE (oprnd0));
646 widen_pattern_optab =
8e7aa1f9 647 optab_for_tree_code (ops->code, TREE_TYPE (oprnd0), optab_default);
0354c0c7
BS
648 if (ops->code == WIDEN_MULT_PLUS_EXPR
649 || ops->code == WIDEN_MULT_MINUS_EXPR)
5dfe80ba
AS
650 icode = find_widening_optab_handler (widen_pattern_optab,
651 TYPE_MODE (TREE_TYPE (ops->op2)),
652 tmode0, 0);
0354c0c7 653 else
a5c7d693 654 icode = optab_handler (widen_pattern_optab, tmode0);
20f06221 655 gcc_assert (icode != CODE_FOR_nothing);
20f06221
DN
656
657 if (nops >= 2)
658 {
8e7aa1f9 659 oprnd1 = ops->op1;
20f06221 660 tmode1 = TYPE_MODE (TREE_TYPE (oprnd1));
20f06221
DN
661 }
662
663 /* The last operand is of a wider mode than the rest of the operands. */
664 if (nops == 2)
a5c7d693 665 wmode = tmode1;
20f06221
DN
666 else if (nops == 3)
667 {
668 gcc_assert (tmode1 == tmode0);
669 gcc_assert (op1);
8e7aa1f9 670 oprnd2 = ops->op2;
20f06221 671 wmode = TYPE_MODE (TREE_TYPE (oprnd2));
20f06221
DN
672 }
673
a5c7d693
RS
674 op = 0;
675 create_output_operand (&eops[op++], target, TYPE_MODE (ops->type));
676 create_convert_operand_from (&eops[op++], op0, tmode0, unsignedp);
20f06221 677 if (op1)
a5c7d693 678 create_convert_operand_from (&eops[op++], op1, tmode1, unsignedp);
20f06221 679 if (wide_op)
a5c7d693
RS
680 create_convert_operand_from (&eops[op++], wide_op, wmode, unsignedp);
681 expand_insn (icode, op, eops);
682 return eops[0].value;
20f06221
DN
683}
684
7ccf35ed
DN
685/* Generate code to perform an operation specified by TERNARY_OPTAB
686 on operands OP0, OP1 and OP2, with result having machine-mode MODE.
687
688 UNSIGNEDP is for the case where we have to widen the operands
689 to perform the operation. It says to use zero-extension.
690
691 If TARGET is nonzero, the value
692 is generated there, if it is convenient to do so.
693 In all cases an rtx is returned for the locus of the value;
694 this may or may not be TARGET. */
695
696rtx
c414ac1d
EC
697expand_ternary_op (enum machine_mode mode, optab ternary_optab, rtx op0,
698 rtx op1, rtx op2, rtx target, int unsignedp)
7ccf35ed 699{
a5c7d693
RS
700 struct expand_operand ops[4];
701 enum insn_code icode = optab_handler (ternary_optab, mode);
7ccf35ed 702
947131ba 703 gcc_assert (optab_handler (ternary_optab, mode) != CODE_FOR_nothing);
7ccf35ed 704
a5c7d693
RS
705 create_output_operand (&ops[0], target, mode);
706 create_convert_operand_from (&ops[1], op0, mode, unsignedp);
707 create_convert_operand_from (&ops[2], op1, mode, unsignedp);
708 create_convert_operand_from (&ops[3], op2, mode, unsignedp);
709 expand_insn (icode, 4, ops);
710 return ops[0].value;
7ccf35ed
DN
711}
712
713
273a2526
RS
714/* Like expand_binop, but return a constant rtx if the result can be
715 calculated at compile time. The arguments and return value are
716 otherwise the same as for expand_binop. */
717
3bdb97b8 718rtx
273a2526
RS
719simplify_expand_binop (enum machine_mode mode, optab binoptab,
720 rtx op0, rtx op1, rtx target, int unsignedp,
721 enum optab_methods methods)
722{
723 if (CONSTANT_P (op0) && CONSTANT_P (op1))
68162a97 724 {
19b5fafb
RH
725 rtx x = simplify_binary_operation (optab_to_code (binoptab),
726 mode, op0, op1);
68162a97
ILT
727 if (x)
728 return x;
729 }
730
731 return expand_binop (mode, binoptab, op0, op1, target, unsignedp, methods);
273a2526
RS
732}
733
734/* Like simplify_expand_binop, but always put the result in TARGET.
735 Return true if the expansion succeeded. */
736
bef5d8b6 737bool
273a2526
RS
738force_expand_binop (enum machine_mode mode, optab binoptab,
739 rtx op0, rtx op1, rtx target, int unsignedp,
740 enum optab_methods methods)
741{
742 rtx x = simplify_expand_binop (mode, binoptab, op0, op1,
743 target, unsignedp, methods);
744 if (x == 0)
745 return false;
746 if (x != target)
747 emit_move_insn (target, x);
748 return true;
749}
750
a6b46ba2
DN
751/* Generate insns for VEC_LSHIFT_EXPR, VEC_RSHIFT_EXPR. */
752
753rtx
8e7aa1f9 754expand_vec_shift_expr (sepops ops, rtx target)
a6b46ba2 755{
a5c7d693 756 struct expand_operand eops[3];
a6b46ba2
DN
757 enum insn_code icode;
758 rtx rtx_op1, rtx_op2;
8e7aa1f9
MM
759 enum machine_mode mode = TYPE_MODE (ops->type);
760 tree vec_oprnd = ops->op0;
761 tree shift_oprnd = ops->op1;
a6b46ba2 762 optab shift_optab;
a6b46ba2 763
8e7aa1f9 764 switch (ops->code)
a6b46ba2
DN
765 {
766 case VEC_RSHIFT_EXPR:
767 shift_optab = vec_shr_optab;
768 break;
769 case VEC_LSHIFT_EXPR:
770 shift_optab = vec_shl_optab;
771 break;
772 default:
773 gcc_unreachable ();
774 }
775
947131ba 776 icode = optab_handler (shift_optab, mode);
a6b46ba2
DN
777 gcc_assert (icode != CODE_FOR_nothing);
778
49452c07 779 rtx_op1 = expand_normal (vec_oprnd);
49452c07 780 rtx_op2 = expand_normal (shift_oprnd);
a6b46ba2 781
a5c7d693
RS
782 create_output_operand (&eops[0], target, mode);
783 create_input_operand (&eops[1], rtx_op1, GET_MODE (rtx_op1));
784 create_convert_operand_from_type (&eops[2], rtx_op2, TREE_TYPE (shift_oprnd));
785 expand_insn (icode, 3, eops);
a6b46ba2 786
a5c7d693 787 return eops[0].value;
a6b46ba2
DN
788}
789
bdc3ee5d
RH
790/* Create a new vector value in VMODE with all elements set to OP. The
791 mode of OP must be the element mode of VMODE. If OP is a constant,
792 then the return value will be a constant. */
793
794static rtx
795expand_vector_broadcast (enum machine_mode vmode, rtx op)
796{
797 enum insn_code icode;
798 rtvec vec;
799 rtx ret;
800 int i, n;
801
802 gcc_checking_assert (VECTOR_MODE_P (vmode));
803
804 n = GET_MODE_NUNITS (vmode);
805 vec = rtvec_alloc (n);
806 for (i = 0; i < n; ++i)
807 RTVEC_ELT (vec, i) = op;
808
809 if (CONSTANT_P (op))
810 return gen_rtx_CONST_VECTOR (vmode, vec);
811
812 /* ??? If the target doesn't have a vec_init, then we have no easy way
813 of performing this operation. Most of this sort of generic support
814 is hidden away in the vector lowering support in gimple. */
815 icode = optab_handler (vec_init_optab, vmode);
816 if (icode == CODE_FOR_nothing)
817 return NULL;
818
819 ret = gen_reg_rtx (vmode);
820 emit_insn (GEN_FCN (icode) (ret, gen_rtx_PARALLEL (vmode, vec)));
821
822 return ret;
823}
824
273a2526
RS
825/* This subroutine of expand_doubleword_shift handles the cases in which
826 the effective shift value is >= BITS_PER_WORD. The arguments and return
827 value are the same as for the parent routine, except that SUPERWORD_OP1
828 is the shift count to use when shifting OUTOF_INPUT into INTO_TARGET.
829 INTO_TARGET may be null if the caller has decided to calculate it. */
830
831static bool
832expand_superword_shift (optab binoptab, rtx outof_input, rtx superword_op1,
833 rtx outof_target, rtx into_target,
834 int unsignedp, enum optab_methods methods)
835{
836 if (into_target != 0)
837 if (!force_expand_binop (word_mode, binoptab, outof_input, superword_op1,
838 into_target, unsignedp, methods))
839 return false;
840
841 if (outof_target != 0)
842 {
843 /* For a signed right shift, we must fill OUTOF_TARGET with copies
844 of the sign bit, otherwise we must fill it with zeros. */
845 if (binoptab != ashr_optab)
846 emit_move_insn (outof_target, CONST0_RTX (word_mode));
847 else
848 if (!force_expand_binop (word_mode, binoptab,
849 outof_input, GEN_INT (BITS_PER_WORD - 1),
850 outof_target, unsignedp, methods))
851 return false;
852 }
853 return true;
854}
855
856/* This subroutine of expand_doubleword_shift handles the cases in which
857 the effective shift value is < BITS_PER_WORD. The arguments and return
858 value are the same as for the parent routine. */
859
860static bool
861expand_subword_shift (enum machine_mode op1_mode, optab binoptab,
862 rtx outof_input, rtx into_input, rtx op1,
863 rtx outof_target, rtx into_target,
864 int unsignedp, enum optab_methods methods,
865 unsigned HOST_WIDE_INT shift_mask)
866{
867 optab reverse_unsigned_shift, unsigned_shift;
868 rtx tmp, carries;
869
870 reverse_unsigned_shift = (binoptab == ashl_optab ? lshr_optab : ashl_optab);
871 unsigned_shift = (binoptab == ashl_optab ? ashl_optab : lshr_optab);
872
873 /* The low OP1 bits of INTO_TARGET come from the high bits of OUTOF_INPUT.
874 We therefore need to shift OUTOF_INPUT by (BITS_PER_WORD - OP1) bits in
875 the opposite direction to BINOPTAB. */
876 if (CONSTANT_P (op1) || shift_mask >= BITS_PER_WORD)
877 {
878 carries = outof_input;
807e902e
KZ
879 tmp = immed_wide_int_const (wi::shwi (BITS_PER_WORD,
880 op1_mode), op1_mode);
273a2526
RS
881 tmp = simplify_expand_binop (op1_mode, sub_optab, tmp, op1,
882 0, true, methods);
883 }
884 else
885 {
886 /* We must avoid shifting by BITS_PER_WORD bits since that is either
887 the same as a zero shift (if shift_mask == BITS_PER_WORD - 1) or
b01d837f 888 has unknown behavior. Do a single shift first, then shift by the
273a2526
RS
889 remainder. It's OK to use ~OP1 as the remainder if shift counts
890 are truncated to the mode size. */
891 carries = expand_binop (word_mode, reverse_unsigned_shift,
892 outof_input, const1_rtx, 0, unsignedp, methods);
893 if (shift_mask == BITS_PER_WORD - 1)
894 {
807e902e
KZ
895 tmp = immed_wide_int_const
896 (wi::minus_one (GET_MODE_PRECISION (op1_mode)), op1_mode);
273a2526
RS
897 tmp = simplify_expand_binop (op1_mode, xor_optab, op1, tmp,
898 0, true, methods);
899 }
900 else
901 {
807e902e
KZ
902 tmp = immed_wide_int_const (wi::shwi (BITS_PER_WORD - 1,
903 op1_mode), op1_mode);
273a2526
RS
904 tmp = simplify_expand_binop (op1_mode, sub_optab, tmp, op1,
905 0, true, methods);
906 }
907 }
908 if (tmp == 0 || carries == 0)
909 return false;
910 carries = expand_binop (word_mode, reverse_unsigned_shift,
911 carries, tmp, 0, unsignedp, methods);
912 if (carries == 0)
913 return false;
914
915 /* Shift INTO_INPUT logically by OP1. This is the last use of INTO_INPUT
916 so the result can go directly into INTO_TARGET if convenient. */
917 tmp = expand_binop (word_mode, unsigned_shift, into_input, op1,
918 into_target, unsignedp, methods);
919 if (tmp == 0)
920 return false;
921
922 /* Now OR in the bits carried over from OUTOF_INPUT. */
923 if (!force_expand_binop (word_mode, ior_optab, tmp, carries,
924 into_target, unsignedp, methods))
925 return false;
926
927 /* Use a standard word_mode shift for the out-of half. */
928 if (outof_target != 0)
929 if (!force_expand_binop (word_mode, binoptab, outof_input, op1,
930 outof_target, unsignedp, methods))
931 return false;
932
933 return true;
934}
935
936
937#ifdef HAVE_conditional_move
938/* Try implementing expand_doubleword_shift using conditional moves.
939 The shift is by < BITS_PER_WORD if (CMP_CODE CMP1 CMP2) is true,
940 otherwise it is by >= BITS_PER_WORD. SUBWORD_OP1 and SUPERWORD_OP1
941 are the shift counts to use in the former and latter case. All other
942 arguments are the same as the parent routine. */
943
944static bool
945expand_doubleword_shift_condmove (enum machine_mode op1_mode, optab binoptab,
946 enum rtx_code cmp_code, rtx cmp1, rtx cmp2,
947 rtx outof_input, rtx into_input,
948 rtx subword_op1, rtx superword_op1,
949 rtx outof_target, rtx into_target,
950 int unsignedp, enum optab_methods methods,
951 unsigned HOST_WIDE_INT shift_mask)
952{
953 rtx outof_superword, into_superword;
954
955 /* Put the superword version of the output into OUTOF_SUPERWORD and
956 INTO_SUPERWORD. */
957 outof_superword = outof_target != 0 ? gen_reg_rtx (word_mode) : 0;
958 if (outof_target != 0 && subword_op1 == superword_op1)
959 {
960 /* The value INTO_TARGET >> SUBWORD_OP1, which we later store in
961 OUTOF_TARGET, is the same as the value of INTO_SUPERWORD. */
962 into_superword = outof_target;
963 if (!expand_superword_shift (binoptab, outof_input, superword_op1,
964 outof_superword, 0, unsignedp, methods))
965 return false;
966 }
967 else
968 {
969 into_superword = gen_reg_rtx (word_mode);
970 if (!expand_superword_shift (binoptab, outof_input, superword_op1,
971 outof_superword, into_superword,
972 unsignedp, methods))
973 return false;
974 }
26277d41 975
273a2526
RS
976 /* Put the subword version directly in OUTOF_TARGET and INTO_TARGET. */
977 if (!expand_subword_shift (op1_mode, binoptab,
978 outof_input, into_input, subword_op1,
979 outof_target, into_target,
980 unsignedp, methods, shift_mask))
981 return false;
982
983 /* Select between them. Do the INTO half first because INTO_SUPERWORD
984 might be the current value of OUTOF_TARGET. */
985 if (!emit_conditional_move (into_target, cmp_code, cmp1, cmp2, op1_mode,
986 into_target, into_superword, word_mode, false))
987 return false;
988
989 if (outof_target != 0)
990 if (!emit_conditional_move (outof_target, cmp_code, cmp1, cmp2, op1_mode,
991 outof_target, outof_superword,
992 word_mode, false))
993 return false;
994
995 return true;
996}
997#endif
998
999/* Expand a doubleword shift (ashl, ashr or lshr) using word-mode shifts.
1000 OUTOF_INPUT and INTO_INPUT are the two word-sized halves of the first
1001 input operand; the shift moves bits in the direction OUTOF_INPUT->
1002 INTO_TARGET. OUTOF_TARGET and INTO_TARGET are the equivalent words
1003 of the target. OP1 is the shift count and OP1_MODE is its mode.
1004 If OP1 is constant, it will have been truncated as appropriate
1005 and is known to be nonzero.
1006
1007 If SHIFT_MASK is zero, the result of word shifts is undefined when the
1008 shift count is outside the range [0, BITS_PER_WORD). This routine must
1009 avoid generating such shifts for OP1s in the range [0, BITS_PER_WORD * 2).
1010
1011 If SHIFT_MASK is nonzero, all word-mode shift counts are effectively
1012 masked by it and shifts in the range [BITS_PER_WORD, SHIFT_MASK) will
1013 fill with zeros or sign bits as appropriate.
1014
2a7e31df 1015 If SHIFT_MASK is BITS_PER_WORD - 1, this routine will synthesize
273a2526
RS
1016 a doubleword shift whose equivalent mask is BITS_PER_WORD * 2 - 1.
1017 Doing this preserves semantics required by SHIFT_COUNT_TRUNCATED.
1018 In all other cases, shifts by values outside [0, BITS_PER_UNIT * 2)
1019 are undefined.
1020
1021 BINOPTAB, UNSIGNEDP and METHODS are as for expand_binop. This function
1022 may not use INTO_INPUT after modifying INTO_TARGET, and similarly for
1023 OUTOF_INPUT and OUTOF_TARGET. OUTOF_TARGET can be null if the parent
1024 function wants to calculate it itself.
1025
1026 Return true if the shift could be successfully synthesized. */
1027
1028static bool
1029expand_doubleword_shift (enum machine_mode op1_mode, optab binoptab,
1030 rtx outof_input, rtx into_input, rtx op1,
1031 rtx outof_target, rtx into_target,
1032 int unsignedp, enum optab_methods methods,
1033 unsigned HOST_WIDE_INT shift_mask)
1034{
1035 rtx superword_op1, tmp, cmp1, cmp2;
1036 rtx subword_label, done_label;
1037 enum rtx_code cmp_code;
1038
1039 /* See if word-mode shifts by BITS_PER_WORD...BITS_PER_WORD * 2 - 1 will
1040 fill the result with sign or zero bits as appropriate. If so, the value
1041 of OUTOF_TARGET will always be (SHIFT OUTOF_INPUT OP1). Recursively call
1042 this routine to calculate INTO_TARGET (which depends on both OUTOF_INPUT
1043 and INTO_INPUT), then emit code to set up OUTOF_TARGET.
1044
1045 This isn't worthwhile for constant shifts since the optimizers will
1046 cope better with in-range shift counts. */
1047 if (shift_mask >= BITS_PER_WORD
1048 && outof_target != 0
1049 && !CONSTANT_P (op1))
1050 {
1051 if (!expand_doubleword_shift (op1_mode, binoptab,
1052 outof_input, into_input, op1,
1053 0, into_target,
1054 unsignedp, methods, shift_mask))
1055 return false;
1056 if (!force_expand_binop (word_mode, binoptab, outof_input, op1,
1057 outof_target, unsignedp, methods))
1058 return false;
1059 return true;
1060 }
1061
1062 /* Set CMP_CODE, CMP1 and CMP2 so that the rtx (CMP_CODE CMP1 CMP2)
1063 is true when the effective shift value is less than BITS_PER_WORD.
1064 Set SUPERWORD_OP1 to the shift count that should be used to shift
1065 OUTOF_INPUT into INTO_TARGET when the condition is false. */
807e902e 1066 tmp = immed_wide_int_const (wi::shwi (BITS_PER_WORD, op1_mode), op1_mode);
273a2526
RS
1067 if (!CONSTANT_P (op1) && shift_mask == BITS_PER_WORD - 1)
1068 {
1069 /* Set CMP1 to OP1 & BITS_PER_WORD. The result is zero iff OP1
1070 is a subword shift count. */
1071 cmp1 = simplify_expand_binop (op1_mode, and_optab, op1, tmp,
1072 0, true, methods);
1073 cmp2 = CONST0_RTX (op1_mode);
1074 cmp_code = EQ;
1075 superword_op1 = op1;
1076 }
1077 else
1078 {
1079 /* Set CMP1 to OP1 - BITS_PER_WORD. */
1080 cmp1 = simplify_expand_binop (op1_mode, sub_optab, op1, tmp,
1081 0, true, methods);
1082 cmp2 = CONST0_RTX (op1_mode);
1083 cmp_code = LT;
1084 superword_op1 = cmp1;
1085 }
1086 if (cmp1 == 0)
1087 return false;
1088
1089 /* If we can compute the condition at compile time, pick the
1090 appropriate subroutine. */
1091 tmp = simplify_relational_operation (cmp_code, SImode, op1_mode, cmp1, cmp2);
481683e1 1092 if (tmp != 0 && CONST_INT_P (tmp))
273a2526
RS
1093 {
1094 if (tmp == const0_rtx)
1095 return expand_superword_shift (binoptab, outof_input, superword_op1,
1096 outof_target, into_target,
1097 unsignedp, methods);
1098 else
1099 return expand_subword_shift (op1_mode, binoptab,
1100 outof_input, into_input, op1,
1101 outof_target, into_target,
1102 unsignedp, methods, shift_mask);
1103 }
1104
1105#ifdef HAVE_conditional_move
1106 /* Try using conditional moves to generate straight-line code. */
1107 {
1108 rtx start = get_last_insn ();
1109 if (expand_doubleword_shift_condmove (op1_mode, binoptab,
1110 cmp_code, cmp1, cmp2,
1111 outof_input, into_input,
1112 op1, superword_op1,
1113 outof_target, into_target,
1114 unsignedp, methods, shift_mask))
1115 return true;
1116 delete_insns_since (start);
1117 }
1118#endif
1119
1120 /* As a last resort, use branches to select the correct alternative. */
1121 subword_label = gen_label_rtx ();
1122 done_label = gen_label_rtx ();
1123
2763a67e 1124 NO_DEFER_POP;
273a2526 1125 do_compare_rtx_and_jump (cmp1, cmp2, cmp_code, false, op1_mode,
40e90eac 1126 0, 0, subword_label, -1);
2763a67e 1127 OK_DEFER_POP;
273a2526
RS
1128
1129 if (!expand_superword_shift (binoptab, outof_input, superword_op1,
1130 outof_target, into_target,
1131 unsignedp, methods))
1132 return false;
1133
1134 emit_jump_insn (gen_jump (done_label));
1135 emit_barrier ();
1136 emit_label (subword_label);
1137
1138 if (!expand_subword_shift (op1_mode, binoptab,
1139 outof_input, into_input, op1,
1140 outof_target, into_target,
1141 unsignedp, methods, shift_mask))
1142 return false;
1143
1144 emit_label (done_label);
1145 return true;
1146}
c64f913e 1147\f
f927760b
RS
1148/* Subroutine of expand_binop. Perform a double word multiplication of
1149 operands OP0 and OP1 both of mode MODE, which is exactly twice as wide
1150 as the target's word_mode. This function return NULL_RTX if anything
1151 goes wrong, in which case it may have already emitted instructions
1152 which need to be deleted.
1153
1154 If we want to multiply two two-word values and have normal and widening
1155 multiplies of single-word values, we can do this with three smaller
d70dcf29 1156 multiplications.
f927760b
RS
1157
1158 The multiplication proceeds as follows:
1159 _______________________
1160 [__op0_high_|__op0_low__]
1161 _______________________
1162 * [__op1_high_|__op1_low__]
1163 _______________________________________________
1164 _______________________
1165 (1) [__op0_low__*__op1_low__]
1166 _______________________
1167 (2a) [__op0_low__*__op1_high_]
1168 _______________________
1169 (2b) [__op0_high_*__op1_low__]
1170 _______________________
1171 (3) [__op0_high_*__op1_high_]
1172
1173
1174 This gives a 4-word result. Since we are only interested in the
1175 lower 2 words, partial result (3) and the upper words of (2a) and
1176 (2b) don't need to be calculated. Hence (2a) and (2b) can be
1177 calculated using non-widening multiplication.
1178
1179 (1), however, needs to be calculated with an unsigned widening
1180 multiplication. If this operation is not directly supported we
1181 try using a signed widening multiplication and adjust the result.
1182 This adjustment works as follows:
1183
1184 If both operands are positive then no adjustment is needed.
1185
1186 If the operands have different signs, for example op0_low < 0 and
1187 op1_low >= 0, the instruction treats the most significant bit of
1188 op0_low as a sign bit instead of a bit with significance
1189 2**(BITS_PER_WORD-1), i.e. the instruction multiplies op1_low
1190 with 2**BITS_PER_WORD - op0_low, and two's complements the
1191 result. Conclusion: We need to add op1_low * 2**BITS_PER_WORD to
1192 the result.
1193
1194 Similarly, if both operands are negative, we need to add
1195 (op0_low + op1_low) * 2**BITS_PER_WORD.
1196
1197 We use a trick to adjust quickly. We logically shift op0_low right
1198 (op1_low) BITS_PER_WORD-1 steps to get 0 or 1, and add this to
1199 op0_high (op1_high) before it is used to calculate 2b (2a). If no
1200 logical shift exists, we do an arithmetic right shift and subtract
1201 the 0 or -1. */
1202
1203static rtx
1204expand_doubleword_mult (enum machine_mode mode, rtx op0, rtx op1, rtx target,
1205 bool umulp, enum optab_methods methods)
1206{
1207 int low = (WORDS_BIG_ENDIAN ? 1 : 0);
1208 int high = (WORDS_BIG_ENDIAN ? 0 : 1);
1209 rtx wordm1 = umulp ? NULL_RTX : GEN_INT (BITS_PER_WORD - 1);
1210 rtx product, adjust, product_high, temp;
1211
1212 rtx op0_high = operand_subword_force (op0, high, mode);
1213 rtx op0_low = operand_subword_force (op0, low, mode);
1214 rtx op1_high = operand_subword_force (op1, high, mode);
1215 rtx op1_low = operand_subword_force (op1, low, mode);
1216
1217 /* If we're using an unsigned multiply to directly compute the product
1218 of the low-order words of the operands and perform any required
1219 adjustments of the operands, we begin by trying two more multiplications
1220 and then computing the appropriate sum.
1221
1222 We have checked above that the required addition is provided.
1223 Full-word addition will normally always succeed, especially if
1224 it is provided at all, so we don't worry about its failure. The
1225 multiplication may well fail, however, so we do handle that. */
1226
1227 if (!umulp)
1228 {
1229 /* ??? This could be done with emit_store_flag where available. */
1230 temp = expand_binop (word_mode, lshr_optab, op0_low, wordm1,
1231 NULL_RTX, 1, methods);
1232 if (temp)
1233 op0_high = expand_binop (word_mode, add_optab, op0_high, temp,
69f39b11 1234 NULL_RTX, 0, OPTAB_DIRECT);
f927760b
RS
1235 else
1236 {
1237 temp = expand_binop (word_mode, ashr_optab, op0_low, wordm1,
1238 NULL_RTX, 0, methods);
1239 if (!temp)
1240 return NULL_RTX;
1241 op0_high = expand_binop (word_mode, sub_optab, op0_high, temp,
69f39b11 1242 NULL_RTX, 0, OPTAB_DIRECT);
f927760b
RS
1243 }
1244
1245 if (!op0_high)
1246 return NULL_RTX;
1247 }
1248
1249 adjust = expand_binop (word_mode, smul_optab, op0_high, op1_low,
1250 NULL_RTX, 0, OPTAB_DIRECT);
1251 if (!adjust)
1252 return NULL_RTX;
1253
1254 /* OP0_HIGH should now be dead. */
1255
1256 if (!umulp)
1257 {
1258 /* ??? This could be done with emit_store_flag where available. */
1259 temp = expand_binop (word_mode, lshr_optab, op1_low, wordm1,
1260 NULL_RTX, 1, methods);
1261 if (temp)
1262 op1_high = expand_binop (word_mode, add_optab, op1_high, temp,
69f39b11 1263 NULL_RTX, 0, OPTAB_DIRECT);
f927760b
RS
1264 else
1265 {
1266 temp = expand_binop (word_mode, ashr_optab, op1_low, wordm1,
1267 NULL_RTX, 0, methods);
1268 if (!temp)
1269 return NULL_RTX;
1270 op1_high = expand_binop (word_mode, sub_optab, op1_high, temp,
69f39b11 1271 NULL_RTX, 0, OPTAB_DIRECT);
f927760b
RS
1272 }
1273
1274 if (!op1_high)
1275 return NULL_RTX;
1276 }
1277
1278 temp = expand_binop (word_mode, smul_optab, op1_high, op0_low,
1279 NULL_RTX, 0, OPTAB_DIRECT);
1280 if (!temp)
1281 return NULL_RTX;
1282
1283 /* OP1_HIGH should now be dead. */
1284
1285 adjust = expand_binop (word_mode, add_optab, adjust, temp,
c701e857 1286 NULL_RTX, 0, OPTAB_DIRECT);
f927760b
RS
1287
1288 if (target && !REG_P (target))
1289 target = NULL_RTX;
1290
1291 if (umulp)
1292 product = expand_binop (mode, umul_widen_optab, op0_low, op1_low,
1293 target, 1, OPTAB_DIRECT);
1294 else
1295 product = expand_binop (mode, smul_widen_optab, op0_low, op1_low,
1296 target, 1, OPTAB_DIRECT);
1297
1298 if (!product)
1299 return NULL_RTX;
1300
1301 product_high = operand_subword (product, high, 1, mode);
1302 adjust = expand_binop (word_mode, add_optab, product_high, adjust,
c701e857 1303 NULL_RTX, 0, OPTAB_DIRECT);
f927760b
RS
1304 emit_move_insn (product_high, adjust);
1305 return product;
1306}
1307\f
ef89d648
ZW
1308/* Wrapper around expand_binop which takes an rtx code to specify
1309 the operation to perform, not an optab pointer. All other
1310 arguments are the same. */
1311rtx
0c20a65f
AJ
1312expand_simple_binop (enum machine_mode mode, enum rtx_code code, rtx op0,
1313 rtx op1, rtx target, int unsignedp,
1314 enum optab_methods methods)
ef89d648 1315{
19b5fafb 1316 optab binop = code_to_optab (code);
e3feb571 1317 gcc_assert (binop);
ef89d648
ZW
1318
1319 return expand_binop (mode, binop, op0, op1, target, unsignedp, methods);
1320}
1321
665d18c6
PB
1322/* Return whether OP0 and OP1 should be swapped when expanding a commutative
1323 binop. Order them according to commutative_operand_precedence and, if
1324 possible, try to put TARGET or a pseudo first. */
1325static bool
1326swap_commutative_operands_with_target (rtx target, rtx op0, rtx op1)
1327{
1328 int op0_prec = commutative_operand_precedence (op0);
1329 int op1_prec = commutative_operand_precedence (op1);
1330
1331 if (op0_prec < op1_prec)
1332 return true;
1333
1334 if (op0_prec > op1_prec)
1335 return false;
1336
1337 /* With equal precedence, both orders are ok, but it is better if the
1338 first operand is TARGET, or if both TARGET and OP0 are pseudos. */
1339 if (target == 0 || REG_P (target))
1340 return (REG_P (op1) && !REG_P (op0)) || target == op1;
1341 else
1342 return rtx_equal_p (op1, target);
1343}
1344
62442ab9
RS
1345/* Return true if BINOPTAB implements a shift operation. */
1346
1347static bool
1348shift_optab_p (optab binoptab)
1349{
19b5fafb 1350 switch (optab_to_code (binoptab))
62442ab9
RS
1351 {
1352 case ASHIFT:
0f996086
CF
1353 case SS_ASHIFT:
1354 case US_ASHIFT:
62442ab9
RS
1355 case ASHIFTRT:
1356 case LSHIFTRT:
1357 case ROTATE:
1358 case ROTATERT:
1359 return true;
1360
1361 default:
1362 return false;
1363 }
1364}
1365
15dc95cb 1366/* Return true if BINOPTAB implements a commutative binary operation. */
62442ab9
RS
1367
1368static bool
1369commutative_optab_p (optab binoptab)
1370{
19b5fafb 1371 return (GET_RTX_CLASS (optab_to_code (binoptab)) == RTX_COMM_ARITH
62442ab9
RS
1372 || binoptab == smul_widen_optab
1373 || binoptab == umul_widen_optab
1374 || binoptab == smul_highpart_optab
1375 || binoptab == umul_highpart_optab);
1376}
1377
68f932c4 1378/* X is to be used in mode MODE as operand OPN to BINOPTAB. If we're
62442ab9
RS
1379 optimizing, and if the operand is a constant that costs more than
1380 1 instruction, force the constant into a register and return that
1381 register. Return X otherwise. UNSIGNEDP says whether X is unsigned. */
1382
1383static rtx
1384avoid_expensive_constant (enum machine_mode mode, optab binoptab,
68f932c4 1385 int opn, rtx x, bool unsignedp)
62442ab9 1386{
c99102b8 1387 bool speed = optimize_insn_for_speed_p ();
fdb2c684 1388
47de45c6
RS
1389 if (mode != VOIDmode
1390 && optimize
62442ab9 1391 && CONSTANT_P (x)
19b5fafb
RH
1392 && (rtx_cost (x, optab_to_code (binoptab), opn, speed)
1393 > set_src_cost (x, speed)))
62442ab9 1394 {
481683e1 1395 if (CONST_INT_P (x))
c722c7da
RS
1396 {
1397 HOST_WIDE_INT intval = trunc_int_for_mode (INTVAL (x), mode);
1398 if (intval != INTVAL (x))
1399 x = GEN_INT (intval);
1400 }
1401 else
62442ab9
RS
1402 x = convert_modes (mode, VOIDmode, x, unsignedp);
1403 x = force_reg (mode, x);
1404 }
1405 return x;
1406}
665d18c6 1407
0aa222d1
SL
1408/* Helper function for expand_binop: handle the case where there
1409 is an insn that directly implements the indicated operation.
1410 Returns null if this is not possible. */
1411static rtx
1412expand_binop_directly (enum machine_mode mode, optab binoptab,
1413 rtx op0, rtx op1,
1414 rtx target, int unsignedp, enum optab_methods methods,
62442ab9 1415 rtx last)
0aa222d1 1416{
a484f6ba 1417 enum machine_mode from_mode = widened_mode (mode, op0, op1);
5dfe80ba
AS
1418 enum insn_code icode = find_widening_optab_handler (binoptab, mode,
1419 from_mode, 1);
4f431835
RS
1420 enum machine_mode xmode0 = insn_data[(int) icode].operand[1].mode;
1421 enum machine_mode xmode1 = insn_data[(int) icode].operand[2].mode;
1422 enum machine_mode mode0, mode1, tmp_mode;
a5c7d693 1423 struct expand_operand ops[3];
62442ab9 1424 bool commutative_p;
0aa222d1
SL
1425 rtx pat;
1426 rtx xop0 = op0, xop1 = op1;
62442ab9 1427 rtx swap;
b8698a0f 1428
0aa222d1
SL
1429 /* If it is a commutative operator and the modes would match
1430 if we would swap the operands, we can save the conversions. */
62442ab9
RS
1431 commutative_p = commutative_optab_p (binoptab);
1432 if (commutative_p
4f431835
RS
1433 && GET_MODE (xop0) != xmode0 && GET_MODE (xop1) != xmode1
1434 && GET_MODE (xop0) == xmode1 && GET_MODE (xop1) == xmode1)
0aa222d1 1435 {
62442ab9
RS
1436 swap = xop0;
1437 xop0 = xop1;
1438 xop1 = swap;
0aa222d1 1439 }
b8698a0f 1440
62442ab9 1441 /* If we are optimizing, force expensive constants into a register. */
68f932c4 1442 xop0 = avoid_expensive_constant (xmode0, binoptab, 0, xop0, unsignedp);
62442ab9 1443 if (!shift_optab_p (binoptab))
68f932c4 1444 xop1 = avoid_expensive_constant (xmode1, binoptab, 1, xop1, unsignedp);
62442ab9 1445
2b99b2b8
RS
1446 /* In case the insn wants input operands in modes different from
1447 those of the actual operands, convert the operands. It would
1448 seem that we don't need to convert CONST_INTs, but we do, so
1449 that they're properly zero-extended, sign-extended or truncated
1450 for their mode. */
1451
4f431835
RS
1452 mode0 = GET_MODE (xop0) != VOIDmode ? GET_MODE (xop0) : mode;
1453 if (xmode0 != VOIDmode && xmode0 != mode0)
1454 {
1455 xop0 = convert_modes (xmode0, mode0, xop0, unsignedp);
1456 mode0 = xmode0;
1457 }
1458
1459 mode1 = GET_MODE (xop1) != VOIDmode ? GET_MODE (xop1) : mode;
1460 if (xmode1 != VOIDmode && xmode1 != mode1)
1461 {
1462 xop1 = convert_modes (xmode1, mode1, xop1, unsignedp);
1463 mode1 = xmode1;
1464 }
2b99b2b8
RS
1465
1466 /* If operation is commutative,
1467 try to make the first operand a register.
1468 Even better, try to make it the same as the target.
1469 Also try to make the last operand a constant. */
1470 if (commutative_p
1471 && swap_commutative_operands_with_target (target, xop0, xop1))
1472 {
1473 swap = xop1;
1474 xop1 = xop0;
1475 xop0 = swap;
1476 }
1477
0aa222d1
SL
1478 /* Now, if insn's predicates don't allow our operands, put them into
1479 pseudo regs. */
b8698a0f 1480
b8698a0f 1481 if (binoptab == vec_pack_trunc_optab
0aa222d1
SL
1482 || binoptab == vec_pack_usat_optab
1483 || binoptab == vec_pack_ssat_optab
1484 || binoptab == vec_pack_ufix_trunc_optab
1485 || binoptab == vec_pack_sfix_trunc_optab)
1486 {
1487 /* The mode of the result is different then the mode of the
1488 arguments. */
a5c7d693 1489 tmp_mode = insn_data[(int) icode].operand[0].mode;
0aa222d1 1490 if (GET_MODE_NUNITS (tmp_mode) != 2 * GET_MODE_NUNITS (mode))
a5c7d693
RS
1491 {
1492 delete_insns_since (last);
1493 return NULL_RTX;
1494 }
0aa222d1
SL
1495 }
1496 else
1497 tmp_mode = mode;
1498
a5c7d693 1499 create_output_operand (&ops[0], target, tmp_mode);
2b99b2b8
RS
1500 create_input_operand (&ops[1], xop0, mode0);
1501 create_input_operand (&ops[2], xop1, mode1);
1502 pat = maybe_gen_insn (icode, 3, ops);
1503 if (pat)
a5c7d693 1504 {
2b99b2b8
RS
1505 /* If PAT is composed of more than one insn, try to add an appropriate
1506 REG_EQUAL note to it. If we can't because TEMP conflicts with an
1507 operand, call expand_binop again, this time without a target. */
1508 if (INSN_P (pat) && NEXT_INSN (pat) != NULL_RTX
19b5fafb 1509 && ! add_equal_note (pat, ops[0].value, optab_to_code (binoptab),
2b99b2b8 1510 ops[1].value, ops[2].value))
0aa222d1 1511 {
2b99b2b8
RS
1512 delete_insns_since (last);
1513 return expand_binop (mode, binoptab, op0, op1, NULL_RTX,
1514 unsignedp, methods);
0aa222d1 1515 }
b8698a0f 1516
2b99b2b8
RS
1517 emit_insn (pat);
1518 return ops[0].value;
a5c7d693 1519 }
0aa222d1
SL
1520 delete_insns_since (last);
1521 return NULL_RTX;
1522}
1523
77c9c6c2
RK
1524/* Generate code to perform an operation specified by BINOPTAB
1525 on operands OP0 and OP1, with result having machine-mode MODE.
1526
1527 UNSIGNEDP is for the case where we have to widen the operands
1528 to perform the operation. It says to use zero-extension.
1529
1530 If TARGET is nonzero, the value
1531 is generated there, if it is convenient to do so.
1532 In all cases an rtx is returned for the locus of the value;
1533 this may or may not be TARGET. */
1534
1535rtx
0c20a65f
AJ
1536expand_binop (enum machine_mode mode, optab binoptab, rtx op0, rtx op1,
1537 rtx target, int unsignedp, enum optab_methods methods)
77c9c6c2 1538{
70864443
RK
1539 enum optab_methods next_methods
1540 = (methods == OPTAB_LIB || methods == OPTAB_LIB_WIDEN
1541 ? OPTAB_WIDEN : methods);
d858f359 1542 enum mode_class mclass;
77c9c6c2 1543 enum machine_mode wider_mode;
8a33f100 1544 rtx libfunc;
b3694847 1545 rtx temp;
abd418d3 1546 rtx entry_last = get_last_insn ();
77c9c6c2
RK
1547 rtx last;
1548
d858f359 1549 mclass = GET_MODE_CLASS (mode);
77c9c6c2 1550
8aecce0a
RK
1551 /* If subtracting an integer constant, convert this into an addition of
1552 the negated constant. */
1553
481683e1 1554 if (binoptab == sub_optab && CONST_INT_P (op1))
8aecce0a
RK
1555 {
1556 op1 = negate_rtx (mode, op1);
1557 binoptab = add_optab;
1558 }
1559
77c9c6c2
RK
1560 /* Record where to delete back to if we backtrack. */
1561 last = get_last_insn ();
1562
77c9c6c2
RK
1563 /* If we can do it with a three-operand insn, do so. */
1564
1565 if (methods != OPTAB_MUST_WIDEN
5dfe80ba
AS
1566 && find_widening_optab_handler (binoptab, mode,
1567 widened_mode (mode, op0, op1), 1)
a484f6ba 1568 != CODE_FOR_nothing)
77c9c6c2 1569 {
0aa222d1 1570 temp = expand_binop_directly (mode, binoptab, op0, op1, target,
62442ab9 1571 unsignedp, methods, last);
0aa222d1
SL
1572 if (temp)
1573 return temp;
77c9c6c2
RK
1574 }
1575
0aa222d1
SL
1576 /* If we were trying to rotate, and that didn't work, try rotating
1577 the other direction before falling back to shifts and bitwise-or. */
1578 if (((binoptab == rotl_optab
947131ba 1579 && optab_handler (rotr_optab, mode) != CODE_FOR_nothing)
0aa222d1 1580 || (binoptab == rotr_optab
947131ba 1581 && optab_handler (rotl_optab, mode) != CODE_FOR_nothing))
d858f359 1582 && mclass == MODE_INT)
0f8594ee 1583 {
0aa222d1
SL
1584 optab otheroptab = (binoptab == rotl_optab ? rotr_optab : rotl_optab);
1585 rtx newop1;
69660a70 1586 unsigned int bits = GET_MODE_PRECISION (mode);
0aa222d1 1587
481683e1 1588 if (CONST_INT_P (op1))
db826dae 1589 newop1 = GEN_INT (bits - INTVAL (op1));
0aa222d1 1590 else if (targetm.shift_truncation_mask (mode) == bits - 1)
db826dae 1591 newop1 = negate_rtx (GET_MODE (op1), op1);
0aa222d1 1592 else
db826dae 1593 newop1 = expand_binop (GET_MODE (op1), sub_optab,
2f1cd2eb 1594 gen_int_mode (bits, GET_MODE (op1)), op1,
0aa222d1 1595 NULL_RTX, unsignedp, OPTAB_DIRECT);
b8698a0f 1596
0aa222d1 1597 temp = expand_binop_directly (mode, otheroptab, op0, newop1,
62442ab9 1598 target, unsignedp, methods, last);
0aa222d1
SL
1599 if (temp)
1600 return temp;
0f8594ee
MM
1601 }
1602
5a5064dc
RK
1603 /* If this is a multiply, see if we can do a widening operation that
1604 takes operands of this mode and makes a wider mode. */
1605
86556d87 1606 if (binoptab == smul_optab
0d44736e 1607 && GET_MODE_2XWIDER_MODE (mode) != VOIDmode
a484f6ba
AS
1608 && (widening_optab_handler ((unsignedp ? umul_widen_optab
1609 : smul_widen_optab),
1610 GET_MODE_2XWIDER_MODE (mode), mode)
5a5064dc
RK
1611 != CODE_FOR_nothing))
1612 {
0d44736e 1613 temp = expand_binop (GET_MODE_2XWIDER_MODE (mode),
5a5064dc 1614 unsignedp ? umul_widen_optab : smul_widen_optab,
73d9a835 1615 op0, op1, NULL_RTX, unsignedp, OPTAB_DIRECT);
5a5064dc 1616
70864443
RK
1617 if (temp != 0)
1618 {
28f52a4d 1619 if (GET_MODE_CLASS (mode) == MODE_INT
d0edd768 1620 && TRULY_NOOP_TRUNCATION_MODES_P (mode, GET_MODE (temp)))
70864443
RK
1621 return gen_lowpart (mode, temp);
1622 else
1623 return convert_to_mode (mode, temp, unsignedp);
1624 }
5a5064dc
RK
1625 }
1626
bdc3ee5d
RH
1627 /* If this is a vector shift by a scalar, see if we can do a vector
1628 shift by a vector. If so, broadcast the scalar into a vector. */
1629 if (mclass == MODE_VECTOR_INT)
1630 {
2225b9f2 1631 optab otheroptab = unknown_optab;
bdc3ee5d
RH
1632
1633 if (binoptab == ashl_optab)
1634 otheroptab = vashl_optab;
1635 else if (binoptab == ashr_optab)
1636 otheroptab = vashr_optab;
1637 else if (binoptab == lshr_optab)
1638 otheroptab = vlshr_optab;
1639 else if (binoptab == rotl_optab)
1640 otheroptab = vrotl_optab;
1641 else if (binoptab == rotr_optab)
1642 otheroptab = vrotr_optab;
1643
1644 if (otheroptab && optab_handler (otheroptab, mode) != CODE_FOR_nothing)
1645 {
1646 rtx vop1 = expand_vector_broadcast (mode, op1);
1647 if (vop1)
1648 {
1649 temp = expand_binop_directly (mode, otheroptab, op0, vop1,
1650 target, unsignedp, methods, last);
1651 if (temp)
1652 return temp;
1653 }
1654 }
1655 }
1656
9a856ec7 1657 /* Look for a wider mode of the same class for which we think we
5a5064dc
RK
1658 can open-code the operation. Check for a widening multiply at the
1659 wider mode as well. */
9a856ec7 1660
d858f359 1661 if (CLASS_HAS_WIDER_MODES_P (mclass)
6f43c157 1662 && methods != OPTAB_DIRECT && methods != OPTAB_LIB)
86556d87
BE
1663 for (wider_mode = GET_MODE_WIDER_MODE (mode);
1664 wider_mode != VOIDmode;
9a856ec7
RK
1665 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
1666 {
947131ba 1667 if (optab_handler (binoptab, wider_mode) != CODE_FOR_nothing
5a5064dc
RK
1668 || (binoptab == smul_optab
1669 && GET_MODE_WIDER_MODE (wider_mode) != VOIDmode
5dfe80ba
AS
1670 && (find_widening_optab_handler ((unsignedp
1671 ? umul_widen_optab
1672 : smul_widen_optab),
1673 GET_MODE_WIDER_MODE (wider_mode),
1674 mode, 0)
5a5064dc 1675 != CODE_FOR_nothing)))
9a856ec7
RK
1676 {
1677 rtx xop0 = op0, xop1 = op1;
1678 int no_extend = 0;
1679
1680 /* For certain integer operations, we need not actually extend
1681 the narrow operands, as long as we will truncate
6d2f8887 1682 the results to the same narrowness. */
9a856ec7
RK
1683
1684 if ((binoptab == ior_optab || binoptab == and_optab
1685 || binoptab == xor_optab
1686 || binoptab == add_optab || binoptab == sub_optab
e5df894b 1687 || binoptab == smul_optab || binoptab == ashl_optab)
d858f359 1688 && mclass == MODE_INT)
62442ab9
RS
1689 {
1690 no_extend = 1;
68f932c4 1691 xop0 = avoid_expensive_constant (mode, binoptab, 0,
62442ab9
RS
1692 xop0, unsignedp);
1693 if (binoptab != ashl_optab)
68f932c4 1694 xop1 = avoid_expensive_constant (mode, binoptab, 1,
62442ab9
RS
1695 xop1, unsignedp);
1696 }
9a856ec7 1697
0661a3de 1698 xop0 = widen_operand (xop0, wider_mode, mode, unsignedp, no_extend);
943cc242
RK
1699
1700 /* The second operand of a shift must always be extended. */
0661a3de 1701 xop1 = widen_operand (xop1, wider_mode, mode, unsignedp,
e5df894b 1702 no_extend && binoptab != ashl_optab);
943cc242 1703
b1ec3c92 1704 temp = expand_binop (wider_mode, binoptab, xop0, xop1, NULL_RTX,
9a856ec7
RK
1705 unsignedp, OPTAB_DIRECT);
1706 if (temp)
1707 {
d858f359 1708 if (mclass != MODE_INT
d0edd768 1709 || !TRULY_NOOP_TRUNCATION_MODES_P (mode, wider_mode))
9a856ec7
RK
1710 {
1711 if (target == 0)
1712 target = gen_reg_rtx (mode);
1713 convert_move (target, temp, 0);
1714 return target;
1715 }
1716 else
1717 return gen_lowpart (mode, temp);
1718 }
1719 else
1720 delete_insns_since (last);
1721 }
1722 }
1723
62442ab9
RS
1724 /* If operation is commutative,
1725 try to make the first operand a register.
1726 Even better, try to make it the same as the target.
1727 Also try to make the last operand a constant. */
1728 if (commutative_optab_p (binoptab)
1729 && swap_commutative_operands_with_target (target, op0, op1))
1730 {
1731 temp = op1;
1732 op1 = op0;
1733 op0 = temp;
1734 }
1735
77c9c6c2
RK
1736 /* These can be done a word at a time. */
1737 if ((binoptab == and_optab || binoptab == ior_optab || binoptab == xor_optab)
d858f359 1738 && mclass == MODE_INT
77c9c6c2 1739 && GET_MODE_SIZE (mode) > UNITS_PER_WORD
947131ba 1740 && optab_handler (binoptab, word_mode) != CODE_FOR_nothing)
77c9c6c2 1741 {
bb93b973 1742 int i;
77c9c6c2 1743 rtx insns;
77c9c6c2
RK
1744
1745 /* If TARGET is the same as one of the operands, the REG_EQUAL note
1746 won't be accurate, so use a new target. */
02972eaf
RS
1747 if (target == 0
1748 || target == op0
1749 || target == op1
1750 || !valid_multiword_target_p (target))
77c9c6c2
RK
1751 target = gen_reg_rtx (mode);
1752
1753 start_sequence ();
1754
1755 /* Do the actual arithmetic. */
1756 for (i = 0; i < GET_MODE_BITSIZE (mode) / BITS_PER_WORD; i++)
1757 {
1758 rtx target_piece = operand_subword (target, i, 1, mode);
34e56753 1759 rtx x = expand_binop (word_mode, binoptab,
77c9c6c2
RK
1760 operand_subword_force (op0, i, mode),
1761 operand_subword_force (op1, i, mode),
70864443
RK
1762 target_piece, unsignedp, next_methods);
1763
1764 if (x == 0)
1765 break;
1766
77c9c6c2
RK
1767 if (target_piece != x)
1768 emit_move_insn (target_piece, x);
1769 }
1770
1771 insns = get_insns ();
1772 end_sequence ();
1773
70864443
RK
1774 if (i == GET_MODE_BITSIZE (mode) / BITS_PER_WORD)
1775 {
d70dcf29 1776 emit_insn (insns);
70864443
RK
1777 return target;
1778 }
77c9c6c2
RK
1779 }
1780
8c597270 1781 /* Synthesize double word shifts from single word shifts. */
e5df894b
RK
1782 if ((binoptab == lshr_optab || binoptab == ashl_optab
1783 || binoptab == ashr_optab)
d858f359 1784 && mclass == MODE_INT
481683e1 1785 && (CONST_INT_P (op1) || optimize_insn_for_speed_p ())
8c597270 1786 && GET_MODE_SIZE (mode) == 2 * UNITS_PER_WORD
0d44736e 1787 && GET_MODE_PRECISION (mode) == GET_MODE_BITSIZE (mode)
947131ba
RS
1788 && optab_handler (binoptab, word_mode) != CODE_FOR_nothing
1789 && optab_handler (ashl_optab, word_mode) != CODE_FOR_nothing
1790 && optab_handler (lshr_optab, word_mode) != CODE_FOR_nothing)
8c597270 1791 {
273a2526
RS
1792 unsigned HOST_WIDE_INT shift_mask, double_shift_mask;
1793 enum machine_mode op1_mode;
8c597270 1794
273a2526
RS
1795 double_shift_mask = targetm.shift_truncation_mask (mode);
1796 shift_mask = targetm.shift_truncation_mask (word_mode);
1797 op1_mode = GET_MODE (op1) != VOIDmode ? GET_MODE (op1) : word_mode;
8c597270 1798
273a2526 1799 /* Apply the truncation to constant shifts. */
481683e1 1800 if (double_shift_mask > 0 && CONST_INT_P (op1))
273a2526 1801 op1 = GEN_INT (INTVAL (op1) & double_shift_mask);
8c597270 1802
273a2526
RS
1803 if (op1 == CONST0_RTX (op1_mode))
1804 return op0;
8c597270 1805
273a2526
RS
1806 /* Make sure that this is a combination that expand_doubleword_shift
1807 can handle. See the comments there for details. */
1808 if (double_shift_mask == 0
1809 || (shift_mask == BITS_PER_WORD - 1
1810 && double_shift_mask == BITS_PER_WORD * 2 - 1))
8c597270 1811 {
d70dcf29 1812 rtx insns;
273a2526
RS
1813 rtx into_target, outof_target;
1814 rtx into_input, outof_input;
1815 int left_shift, outof_word;
8c597270 1816
273a2526
RS
1817 /* If TARGET is the same as one of the operands, the REG_EQUAL note
1818 won't be accurate, so use a new target. */
02972eaf
RS
1819 if (target == 0
1820 || target == op0
1821 || target == op1
1822 || !valid_multiword_target_p (target))
273a2526 1823 target = gen_reg_rtx (mode);
8c597270 1824
273a2526 1825 start_sequence ();
8c597270 1826
273a2526
RS
1827 /* OUTOF_* is the word we are shifting bits away from, and
1828 INTO_* is the word that we are shifting bits towards, thus
1829 they differ depending on the direction of the shift and
1830 WORDS_BIG_ENDIAN. */
70864443 1831
273a2526
RS
1832 left_shift = binoptab == ashl_optab;
1833 outof_word = left_shift ^ ! WORDS_BIG_ENDIAN;
70864443 1834
273a2526
RS
1835 outof_target = operand_subword (target, outof_word, 1, mode);
1836 into_target = operand_subword (target, 1 - outof_word, 1, mode);
cf2f7113 1837
273a2526
RS
1838 outof_input = operand_subword_force (op0, outof_word, mode);
1839 into_input = operand_subword_force (op0, 1 - outof_word, mode);
0c20a65f 1840
273a2526
RS
1841 if (expand_doubleword_shift (op1_mode, binoptab,
1842 outof_input, into_input, op1,
1843 outof_target, into_target,
f8bdb931 1844 unsignedp, next_methods, shift_mask))
273a2526
RS
1845 {
1846 insns = get_insns ();
1847 end_sequence ();
8c597270 1848
d70dcf29 1849 emit_insn (insns);
273a2526
RS
1850 return target;
1851 }
1852 end_sequence ();
70864443 1853 }
8c597270
JW
1854 }
1855
1856 /* Synthesize double word rotates from single word shifts. */
1857 if ((binoptab == rotl_optab || binoptab == rotr_optab)
d858f359 1858 && mclass == MODE_INT
481683e1 1859 && CONST_INT_P (op1)
0d44736e 1860 && GET_MODE_PRECISION (mode) == 2 * BITS_PER_WORD
947131ba
RS
1861 && optab_handler (ashl_optab, word_mode) != CODE_FOR_nothing
1862 && optab_handler (lshr_optab, word_mode) != CODE_FOR_nothing)
8c597270 1863 {
ebd8b60d 1864 rtx insns;
8c597270
JW
1865 rtx into_target, outof_target;
1866 rtx into_input, outof_input;
70864443 1867 rtx inter;
8c597270
JW
1868 int shift_count, left_shift, outof_word;
1869
1870 /* If TARGET is the same as one of the operands, the REG_EQUAL note
0c0ab0f1
OH
1871 won't be accurate, so use a new target. Do this also if target is not
1872 a REG, first because having a register instead may open optimization
1ae58c30 1873 opportunities, and second because if target and op0 happen to be MEMs
0c0ab0f1
OH
1874 designating the same location, we would risk clobbering it too early
1875 in the code sequence we generate below. */
02972eaf
RS
1876 if (target == 0
1877 || target == op0
1878 || target == op1
1879 || !REG_P (target)
1880 || !valid_multiword_target_p (target))
8c597270
JW
1881 target = gen_reg_rtx (mode);
1882
1883 start_sequence ();
1884
1885 shift_count = INTVAL (op1);
1886
1887 /* OUTOF_* is the word we are shifting bits away from, and
1888 INTO_* is the word that we are shifting bits towards, thus
1889 they differ depending on the direction of the shift and
1890 WORDS_BIG_ENDIAN. */
1891
1892 left_shift = (binoptab == rotl_optab);
1893 outof_word = left_shift ^ ! WORDS_BIG_ENDIAN;
1894
1895 outof_target = operand_subword (target, outof_word, 1, mode);
1896 into_target = operand_subword (target, 1 - outof_word, 1, mode);
1897
1898 outof_input = operand_subword_force (op0, outof_word, mode);
1899 into_input = operand_subword_force (op0, 1 - outof_word, mode);
1900
1901 if (shift_count == BITS_PER_WORD)
1902 {
1903 /* This is just a word swap. */
1904 emit_move_insn (outof_target, into_input);
1905 emit_move_insn (into_target, outof_input);
70864443 1906 inter = const0_rtx;
8c597270
JW
1907 }
1908 else
1909 {
1910 rtx into_temp1, into_temp2, outof_temp1, outof_temp2;
1911 rtx first_shift_count, second_shift_count;
1912 optab reverse_unsigned_shift, unsigned_shift;
1913
1914 reverse_unsigned_shift = (left_shift ^ (shift_count < BITS_PER_WORD)
1915 ? lshr_optab : ashl_optab);
1916
1917 unsigned_shift = (left_shift ^ (shift_count < BITS_PER_WORD)
1918 ? ashl_optab : lshr_optab);
1919
1920 if (shift_count > BITS_PER_WORD)
1921 {
1922 first_shift_count = GEN_INT (shift_count - BITS_PER_WORD);
7e1a450d 1923 second_shift_count = GEN_INT (2 * BITS_PER_WORD - shift_count);
8c597270
JW
1924 }
1925 else
1926 {
1927 first_shift_count = GEN_INT (BITS_PER_WORD - shift_count);
1928 second_shift_count = GEN_INT (shift_count);
1929 }
1930
1931 into_temp1 = expand_binop (word_mode, unsigned_shift,
1932 outof_input, first_shift_count,
70864443 1933 NULL_RTX, unsignedp, next_methods);
8c597270
JW
1934 into_temp2 = expand_binop (word_mode, reverse_unsigned_shift,
1935 into_input, second_shift_count,
5be5c8d4 1936 NULL_RTX, unsignedp, next_methods);
70864443
RK
1937
1938 if (into_temp1 != 0 && into_temp2 != 0)
1939 inter = expand_binop (word_mode, ior_optab, into_temp1, into_temp2,
1940 into_target, unsignedp, next_methods);
1941 else
1942 inter = 0;
1943
cb5b00cf 1944 if (inter != 0 && inter != into_target)
70864443 1945 emit_move_insn (into_target, inter);
8c597270
JW
1946
1947 outof_temp1 = expand_binop (word_mode, unsigned_shift,
1948 into_input, first_shift_count,
70864443 1949 NULL_RTX, unsignedp, next_methods);
8c597270
JW
1950 outof_temp2 = expand_binop (word_mode, reverse_unsigned_shift,
1951 outof_input, second_shift_count,
5be5c8d4 1952 NULL_RTX, unsignedp, next_methods);
70864443
RK
1953
1954 if (inter != 0 && outof_temp1 != 0 && outof_temp2 != 0)
1955 inter = expand_binop (word_mode, ior_optab,
1956 outof_temp1, outof_temp2,
1957 outof_target, unsignedp, next_methods);
1958
cb5b00cf 1959 if (inter != 0 && inter != outof_target)
70864443 1960 emit_move_insn (outof_target, inter);
8c597270
JW
1961 }
1962
1963 insns = get_insns ();
1964 end_sequence ();
1965
70864443
RK
1966 if (inter != 0)
1967 {
ebd8b60d 1968 emit_insn (insns);
70864443
RK
1969 return target;
1970 }
8c597270
JW
1971 }
1972
77c9c6c2
RK
1973 /* These can be done a word at a time by propagating carries. */
1974 if ((binoptab == add_optab || binoptab == sub_optab)
d858f359 1975 && mclass == MODE_INT
77c9c6c2 1976 && GET_MODE_SIZE (mode) >= 2 * UNITS_PER_WORD
947131ba 1977 && optab_handler (binoptab, word_mode) != CODE_FOR_nothing)
77c9c6c2 1978 {
e2500fed 1979 unsigned int i;
77c9c6c2 1980 optab otheroptab = binoptab == add_optab ? sub_optab : add_optab;
a4b5414c 1981 const unsigned int nwords = GET_MODE_BITSIZE (mode) / BITS_PER_WORD;
07444f1d 1982 rtx carry_in = NULL_RTX, carry_out = NULL_RTX;
64de6c0a 1983 rtx xop0, xop1, xtarget;
77c9c6c2
RK
1984
1985 /* We can handle either a 1 or -1 value for the carry. If STORE_FLAG
1986 value is one of those, use it. Otherwise, use 1 since it is the
1987 one easiest to get. */
1988#if STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1
1989 int normalizep = STORE_FLAG_VALUE;
1990#else
1991 int normalizep = 1;
1992#endif
1993
1994 /* Prepare the operands. */
cee85023
RS
1995 xop0 = force_reg (mode, op0);
1996 xop1 = force_reg (mode, op1);
77c9c6c2 1997
64de6c0a
DE
1998 xtarget = gen_reg_rtx (mode);
1999
02972eaf 2000 if (target == 0 || !REG_P (target) || !valid_multiword_target_p (target))
64de6c0a 2001 target = xtarget;
77c9c6c2 2002
af2cc4dd 2003 /* Indicate for flow that the entire target reg is being set. */
f8cfc6aa 2004 if (REG_P (target))
c41c1387 2005 emit_clobber (xtarget);
af2cc4dd 2006
77c9c6c2
RK
2007 /* Do the actual arithmetic. */
2008 for (i = 0; i < nwords; i++)
2009 {
2010 int index = (WORDS_BIG_ENDIAN ? nwords - i - 1 : i);
64de6c0a 2011 rtx target_piece = operand_subword (xtarget, index, 1, mode);
cee85023
RS
2012 rtx op0_piece = operand_subword_force (xop0, index, mode);
2013 rtx op1_piece = operand_subword_force (xop1, index, mode);
77c9c6c2
RK
2014 rtx x;
2015
2016 /* Main add/subtract of the input operands. */
34e56753 2017 x = expand_binop (word_mode, binoptab,
77c9c6c2 2018 op0_piece, op1_piece,
70864443 2019 target_piece, unsignedp, next_methods);
77c9c6c2
RK
2020 if (x == 0)
2021 break;
2022
2023 if (i + 1 < nwords)
2024 {
2025 /* Store carry from main add/subtract. */
34e56753 2026 carry_out = gen_reg_rtx (word_mode);
23357404
TG
2027 carry_out = emit_store_flag_force (carry_out,
2028 (binoptab == add_optab
b30f05db 2029 ? LT : GT),
23357404
TG
2030 x, op0_piece,
2031 word_mode, 1, normalizep);
77c9c6c2
RK
2032 }
2033
2034 if (i > 0)
2035 {
859cb4d8 2036 rtx newx;
0c20a65f 2037
77c9c6c2 2038 /* Add/subtract previous carry to main result. */
859cb4d8
GK
2039 newx = expand_binop (word_mode,
2040 normalizep == 1 ? binoptab : otheroptab,
2041 x, carry_in,
2042 NULL_RTX, 1, next_methods);
77c9c6c2
RK
2043
2044 if (i + 1 < nwords)
2045 {
77c9c6c2 2046 /* Get out carry from adding/subtracting carry in. */
859cb4d8 2047 rtx carry_tmp = gen_reg_rtx (word_mode);
23357404 2048 carry_tmp = emit_store_flag_force (carry_tmp,
859cb4d8
GK
2049 (binoptab == add_optab
2050 ? LT : GT),
2051 newx, x,
23357404 2052 word_mode, 1, normalizep);
70864443 2053
77c9c6c2 2054 /* Logical-ior the two poss. carry together. */
34e56753 2055 carry_out = expand_binop (word_mode, ior_optab,
77c9c6c2 2056 carry_out, carry_tmp,
70864443
RK
2057 carry_out, 0, next_methods);
2058 if (carry_out == 0)
77c9c6c2
RK
2059 break;
2060 }
859cb4d8 2061 emit_move_insn (target_piece, newx);
77c9c6c2 2062 }
06cd9d72
DD
2063 else
2064 {
2065 if (x != target_piece)
2066 emit_move_insn (target_piece, x);
2067 }
77c9c6c2
RK
2068
2069 carry_in = carry_out;
0c20a65f 2070 }
77c9c6c2 2071
e2500fed 2072 if (i == GET_MODE_BITSIZE (mode) / (unsigned) BITS_PER_WORD)
77c9c6c2 2073 {
947131ba 2074 if (optab_handler (mov_optab, mode) != CODE_FOR_nothing
d0ccc658 2075 || ! rtx_equal_p (target, xtarget))
02214a5c 2076 {
64de6c0a 2077 rtx temp = emit_move_insn (target, xtarget);
70864443 2078
7543f918 2079 set_dst_reg_note (temp, REG_EQUAL,
19b5fafb
RH
2080 gen_rtx_fmt_ee (optab_to_code (binoptab),
2081 mode, copy_rtx (xop0),
7543f918
JR
2082 copy_rtx (xop1)),
2083 target);
02214a5c 2084 }
2cd622c3
AO
2085 else
2086 target = xtarget;
c5c76735 2087
77c9c6c2
RK
2088 return target;
2089 }
c5c76735 2090
77c9c6c2
RK
2091 else
2092 delete_insns_since (last);
2093 }
2094
f927760b
RS
2095 /* Attempt to synthesize double word multiplies using a sequence of word
2096 mode multiplications. We first attempt to generate a sequence using a
2097 more efficient unsigned widening multiply, and if that fails we then
2098 try using a signed widening multiply. */
77c9c6c2
RK
2099
2100 if (binoptab == smul_optab
d858f359 2101 && mclass == MODE_INT
77c9c6c2 2102 && GET_MODE_SIZE (mode) == 2 * UNITS_PER_WORD
947131ba
RS
2103 && optab_handler (smul_optab, word_mode) != CODE_FOR_nothing
2104 && optab_handler (add_optab, word_mode) != CODE_FOR_nothing)
77c9c6c2 2105 {
f927760b 2106 rtx product = NULL_RTX;
a484f6ba
AS
2107 if (widening_optab_handler (umul_widen_optab, mode, word_mode)
2108 != CODE_FOR_nothing)
f927760b
RS
2109 {
2110 product = expand_doubleword_mult (mode, op0, op1, target,
2111 true, methods);
2112 if (!product)
77c9c6c2 2113 delete_insns_since (last);
77c9c6c2
RK
2114 }
2115
f927760b 2116 if (product == NULL_RTX
a484f6ba
AS
2117 && widening_optab_handler (smul_widen_optab, mode, word_mode)
2118 != CODE_FOR_nothing)
77c9c6c2 2119 {
f927760b
RS
2120 product = expand_doubleword_mult (mode, op0, op1, target,
2121 false, methods);
2122 if (!product)
2123 delete_insns_since (last);
77c9c6c2
RK
2124 }
2125
f927760b 2126 if (product != NULL_RTX)
77c9c6c2 2127 {
947131ba 2128 if (optab_handler (mov_optab, mode) != CODE_FOR_nothing)
70864443 2129 {
f927760b 2130 temp = emit_move_insn (target ? target : product, product);
7543f918
JR
2131 set_dst_reg_note (temp,
2132 REG_EQUAL,
2133 gen_rtx_fmt_ee (MULT, mode,
2134 copy_rtx (op0),
2135 copy_rtx (op1)),
2136 target ? target : product);
77c9c6c2 2137 }
f927760b 2138 return product;
77c9c6c2 2139 }
77c9c6c2
RK
2140 }
2141
2142 /* It can't be open-coded in this mode.
2143 Use a library call if one is available and caller says that's ok. */
2144
8a33f100
JH
2145 libfunc = optab_libfunc (binoptab, mode);
2146 if (libfunc
77c9c6c2
RK
2147 && (methods == OPTAB_LIB || methods == OPTAB_LIB_WIDEN))
2148 {
2149 rtx insns;
0bbb7f4d
RS
2150 rtx op1x = op1;
2151 enum machine_mode op1_mode = mode;
9a7f678c 2152 rtx value;
77c9c6c2
RK
2153
2154 start_sequence ();
2155
62442ab9 2156 if (shift_optab_p (binoptab))
0bbb7f4d 2157 {
c7ff6e7a 2158 op1_mode = targetm.libgcc_shift_count_mode ();
0bbb7f4d
RS
2159 /* Specify unsigned here,
2160 since negative shift counts are meaningless. */
c7ff6e7a 2161 op1x = convert_to_mode (op1_mode, op1, 1);
0bbb7f4d
RS
2162 }
2163
82f0e2cc
RK
2164 if (GET_MODE (op0) != VOIDmode
2165 && GET_MODE (op0) != mode)
5035bbfe
TG
2166 op0 = convert_to_mode (mode, op0, unsignedp);
2167
77c9c6c2
RK
2168 /* Pass 1 for NO_QUEUE so we don't lose any increments
2169 if the libcall is cse'd or moved. */
8a33f100 2170 value = emit_library_call_value (libfunc,
ebb1b59a 2171 NULL_RTX, LCT_CONST, mode, 2,
9a7f678c 2172 op0, mode, op1x, op1_mode);
77c9c6c2
RK
2173
2174 insns = get_insns ();
2175 end_sequence ();
2176
2177 target = gen_reg_rtx (mode);
b55f62cc 2178 emit_libcall_block_1 (insns, target, value,
19b5fafb
RH
2179 gen_rtx_fmt_ee (optab_to_code (binoptab),
2180 mode, op0, op1),
b55f62cc 2181 trapv_binoptab_p (binoptab));
77c9c6c2
RK
2182
2183 return target;
2184 }
2185
2186 delete_insns_since (last);
2187
2188 /* It can't be done in this mode. Can we do it in a wider mode? */
2189
2190 if (! (methods == OPTAB_WIDEN || methods == OPTAB_LIB_WIDEN
2191 || methods == OPTAB_MUST_WIDEN))
abd418d3
RS
2192 {
2193 /* Caller says, don't even try. */
2194 delete_insns_since (entry_last);
2195 return 0;
2196 }
77c9c6c2
RK
2197
2198 /* Compute the value of METHODS to pass to recursive calls.
2199 Don't allow widening to be tried recursively. */
2200
2201 methods = (methods == OPTAB_LIB_WIDEN ? OPTAB_LIB : OPTAB_DIRECT);
2202
34e56753
RS
2203 /* Look for a wider mode of the same class for which it appears we can do
2204 the operation. */
77c9c6c2 2205
d858f359 2206 if (CLASS_HAS_WIDER_MODES_P (mclass))
77c9c6c2 2207 {
86556d87
BE
2208 for (wider_mode = GET_MODE_WIDER_MODE (mode);
2209 wider_mode != VOIDmode;
77c9c6c2
RK
2210 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
2211 {
5dfe80ba 2212 if (find_widening_optab_handler (binoptab, wider_mode, mode, 1)
a484f6ba 2213 != CODE_FOR_nothing
77c9c6c2 2214 || (methods == OPTAB_LIB
8a33f100 2215 && optab_libfunc (binoptab, wider_mode)))
77c9c6c2
RK
2216 {
2217 rtx xop0 = op0, xop1 = op1;
2218 int no_extend = 0;
2219
34e56753 2220 /* For certain integer operations, we need not actually extend
77c9c6c2 2221 the narrow operands, as long as we will truncate
835532b8 2222 the results to the same narrowness. */
77c9c6c2 2223
34e56753
RS
2224 if ((binoptab == ior_optab || binoptab == and_optab
2225 || binoptab == xor_optab
2226 || binoptab == add_optab || binoptab == sub_optab
e5df894b 2227 || binoptab == smul_optab || binoptab == ashl_optab)
d858f359 2228 && mclass == MODE_INT)
77c9c6c2
RK
2229 no_extend = 1;
2230
0661a3de
RS
2231 xop0 = widen_operand (xop0, wider_mode, mode,
2232 unsignedp, no_extend);
943cc242
RK
2233
2234 /* The second operand of a shift must always be extended. */
0661a3de 2235 xop1 = widen_operand (xop1, wider_mode, mode, unsignedp,
e5df894b 2236 no_extend && binoptab != ashl_optab);
77c9c6c2 2237
b1ec3c92 2238 temp = expand_binop (wider_mode, binoptab, xop0, xop1, NULL_RTX,
77c9c6c2
RK
2239 unsignedp, methods);
2240 if (temp)
2241 {
d858f359 2242 if (mclass != MODE_INT
d0edd768 2243 || !TRULY_NOOP_TRUNCATION_MODES_P (mode, wider_mode))
77c9c6c2
RK
2244 {
2245 if (target == 0)
2246 target = gen_reg_rtx (mode);
2247 convert_move (target, temp, 0);
2248 return target;
2249 }
2250 else
2251 return gen_lowpart (mode, temp);
2252 }
2253 else
2254 delete_insns_since (last);
2255 }
2256 }
2257 }
2258
abd418d3 2259 delete_insns_since (entry_last);
77c9c6c2
RK
2260 return 0;
2261}
2262\f
2263/* Expand a binary operator which has both signed and unsigned forms.
2264 UOPTAB is the optab for unsigned operations, and SOPTAB is for
2265 signed operations.
2266
2267 If we widen unsigned operands, we may use a signed wider operation instead
2268 of an unsigned wider operation, since the result would be the same. */
2269
2270rtx
0c20a65f
AJ
2271sign_expand_binop (enum machine_mode mode, optab uoptab, optab soptab,
2272 rtx op0, rtx op1, rtx target, int unsignedp,
2273 enum optab_methods methods)
77c9c6c2 2274{
b3694847 2275 rtx temp;
77c9c6c2 2276 optab direct_optab = unsignedp ? uoptab : soptab;
cd1440b1 2277 bool save_enable;
77c9c6c2
RK
2278
2279 /* Do it without widening, if possible. */
2280 temp = expand_binop (mode, direct_optab, op0, op1, target,
2281 unsignedp, OPTAB_DIRECT);
2282 if (temp || methods == OPTAB_DIRECT)
2283 return temp;
2284
cd1440b1
RH
2285 /* Try widening to a signed int. Disable any direct use of any
2286 signed insn in the current mode. */
2287 save_enable = swap_optab_enable (soptab, mode, false);
77c9c6c2 2288
cd1440b1 2289 temp = expand_binop (mode, soptab, op0, op1, target,
77c9c6c2
RK
2290 unsignedp, OPTAB_WIDEN);
2291
2292 /* For unsigned operands, try widening to an unsigned int. */
cd1440b1 2293 if (!temp && unsignedp)
77c9c6c2
RK
2294 temp = expand_binop (mode, uoptab, op0, op1, target,
2295 unsignedp, OPTAB_WIDEN);
2296 if (temp || methods == OPTAB_WIDEN)
cd1440b1 2297 goto egress;
77c9c6c2 2298
f90b7a5a 2299 /* Use the right width libcall if that exists. */
cd1440b1
RH
2300 temp = expand_binop (mode, direct_optab, op0, op1, target,
2301 unsignedp, OPTAB_LIB);
77c9c6c2 2302 if (temp || methods == OPTAB_LIB)
cd1440b1 2303 goto egress;
77c9c6c2 2304
f90b7a5a 2305 /* Must widen and use a libcall, use either signed or unsigned. */
cd1440b1 2306 temp = expand_binop (mode, soptab, op0, op1, target,
77c9c6c2 2307 unsignedp, methods);
cd1440b1
RH
2308 if (!temp && unsignedp)
2309 temp = expand_binop (mode, uoptab, op0, op1, target,
77c9c6c2 2310 unsignedp, methods);
cd1440b1
RH
2311
2312 egress:
2313 /* Undo the fiddling above. */
2314 if (save_enable)
2315 swap_optab_enable (soptab, mode, true);
2316 return temp;
77c9c6c2
RK
2317}
2318\f
6c7cf1f0
UB
2319/* Generate code to perform an operation specified by UNOPPTAB
2320 on operand OP0, with two results to TARG0 and TARG1.
2321 We assume that the order of the operands for the instruction
2322 is TARG0, TARG1, OP0.
2323
2324 Either TARG0 or TARG1 may be zero, but what that means is that
2325 the result is not actually wanted. We will generate it into
2326 a dummy pseudo-reg and discard it. They may not both be zero.
2327
2328 Returns 1 if this operation can be performed; 0 if not. */
2329
2330int
a072d43b 2331expand_twoval_unop (optab unoptab, rtx op0, rtx targ0, rtx targ1,
6c7cf1f0
UB
2332 int unsignedp)
2333{
2334 enum machine_mode mode = GET_MODE (targ0 ? targ0 : targ1);
d858f359 2335 enum mode_class mclass;
6c7cf1f0
UB
2336 enum machine_mode wider_mode;
2337 rtx entry_last = get_last_insn ();
2338 rtx last;
2339
d858f359 2340 mclass = GET_MODE_CLASS (mode);
6c7cf1f0 2341
ad76cef8 2342 if (!targ0)
6c7cf1f0 2343 targ0 = gen_reg_rtx (mode);
ad76cef8 2344 if (!targ1)
6c7cf1f0
UB
2345 targ1 = gen_reg_rtx (mode);
2346
2347 /* Record where to go back to if we fail. */
2348 last = get_last_insn ();
2349
947131ba 2350 if (optab_handler (unoptab, mode) != CODE_FOR_nothing)
6c7cf1f0 2351 {
a5c7d693
RS
2352 struct expand_operand ops[3];
2353 enum insn_code icode = optab_handler (unoptab, mode);
6c7cf1f0 2354
a5c7d693
RS
2355 create_fixed_operand (&ops[0], targ0);
2356 create_fixed_operand (&ops[1], targ1);
2357 create_convert_operand_from (&ops[2], op0, mode, unsignedp);
2358 if (maybe_expand_insn (icode, 3, ops))
2359 return 1;
6c7cf1f0
UB
2360 }
2361
2362 /* It can't be done in this mode. Can we do it in a wider mode? */
2363
d858f359 2364 if (CLASS_HAS_WIDER_MODES_P (mclass))
6c7cf1f0 2365 {
86556d87
BE
2366 for (wider_mode = GET_MODE_WIDER_MODE (mode);
2367 wider_mode != VOIDmode;
6c7cf1f0
UB
2368 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
2369 {
947131ba 2370 if (optab_handler (unoptab, wider_mode) != CODE_FOR_nothing)
6c7cf1f0
UB
2371 {
2372 rtx t0 = gen_reg_rtx (wider_mode);
2373 rtx t1 = gen_reg_rtx (wider_mode);
2374 rtx cop0 = convert_modes (wider_mode, mode, op0, unsignedp);
2375
a072d43b 2376 if (expand_twoval_unop (unoptab, cop0, t0, t1, unsignedp))
6c7cf1f0
UB
2377 {
2378 convert_move (targ0, t0, unsignedp);
2379 convert_move (targ1, t1, unsignedp);
2380 return 1;
2381 }
2382 else
2383 delete_insns_since (last);
2384 }
2385 }
2386 }
2387
2388 delete_insns_since (entry_last);
2389 return 0;
2390}
2391\f
77c9c6c2
RK
2392/* Generate code to perform an operation specified by BINOPTAB
2393 on operands OP0 and OP1, with two results to TARG1 and TARG2.
2394 We assume that the order of the operands for the instruction
2395 is TARG0, OP0, OP1, TARG1, which would fit a pattern like
2396 [(set TARG0 (operate OP0 OP1)) (set TARG1 (operate ...))].
2397
2398 Either TARG0 or TARG1 may be zero, but what that means is that
38e01259 2399 the result is not actually wanted. We will generate it into
77c9c6c2
RK
2400 a dummy pseudo-reg and discard it. They may not both be zero.
2401
2402 Returns 1 if this operation can be performed; 0 if not. */
2403
2404int
0c20a65f
AJ
2405expand_twoval_binop (optab binoptab, rtx op0, rtx op1, rtx targ0, rtx targ1,
2406 int unsignedp)
77c9c6c2
RK
2407{
2408 enum machine_mode mode = GET_MODE (targ0 ? targ0 : targ1);
d858f359 2409 enum mode_class mclass;
77c9c6c2 2410 enum machine_mode wider_mode;
abd418d3 2411 rtx entry_last = get_last_insn ();
77c9c6c2
RK
2412 rtx last;
2413
d858f359 2414 mclass = GET_MODE_CLASS (mode);
77c9c6c2 2415
ad76cef8 2416 if (!targ0)
77c9c6c2 2417 targ0 = gen_reg_rtx (mode);
ad76cef8 2418 if (!targ1)
77c9c6c2
RK
2419 targ1 = gen_reg_rtx (mode);
2420
2421 /* Record where to go back to if we fail. */
2422 last = get_last_insn ();
2423
947131ba 2424 if (optab_handler (binoptab, mode) != CODE_FOR_nothing)
77c9c6c2 2425 {
a5c7d693
RS
2426 struct expand_operand ops[4];
2427 enum insn_code icode = optab_handler (binoptab, mode);
a995e389
RH
2428 enum machine_mode mode0 = insn_data[icode].operand[1].mode;
2429 enum machine_mode mode1 = insn_data[icode].operand[2].mode;
77c9c6c2
RK
2430 rtx xop0 = op0, xop1 = op1;
2431
62442ab9 2432 /* If we are optimizing, force expensive constants into a register. */
68f932c4
RS
2433 xop0 = avoid_expensive_constant (mode0, binoptab, 0, xop0, unsignedp);
2434 xop1 = avoid_expensive_constant (mode1, binoptab, 1, xop1, unsignedp);
62442ab9 2435
a5c7d693
RS
2436 create_fixed_operand (&ops[0], targ0);
2437 create_convert_operand_from (&ops[1], op0, mode, unsignedp);
2438 create_convert_operand_from (&ops[2], op1, mode, unsignedp);
2439 create_fixed_operand (&ops[3], targ1);
2440 if (maybe_expand_insn (icode, 4, ops))
2441 return 1;
2442 delete_insns_since (last);
77c9c6c2
RK
2443 }
2444
2445 /* It can't be done in this mode. Can we do it in a wider mode? */
2446
d858f359 2447 if (CLASS_HAS_WIDER_MODES_P (mclass))
77c9c6c2 2448 {
86556d87
BE
2449 for (wider_mode = GET_MODE_WIDER_MODE (mode);
2450 wider_mode != VOIDmode;
77c9c6c2
RK
2451 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
2452 {
947131ba 2453 if (optab_handler (binoptab, wider_mode) != CODE_FOR_nothing)
77c9c6c2 2454 {
b3694847
SS
2455 rtx t0 = gen_reg_rtx (wider_mode);
2456 rtx t1 = gen_reg_rtx (wider_mode);
76791f3d
JH
2457 rtx cop0 = convert_modes (wider_mode, mode, op0, unsignedp);
2458 rtx cop1 = convert_modes (wider_mode, mode, op1, unsignedp);
77c9c6c2 2459
76791f3d 2460 if (expand_twoval_binop (binoptab, cop0, cop1,
77c9c6c2
RK
2461 t0, t1, unsignedp))
2462 {
2463 convert_move (targ0, t0, unsignedp);
2464 convert_move (targ1, t1, unsignedp);
2465 return 1;
2466 }
2467 else
2468 delete_insns_since (last);
2469 }
2470 }
2471 }
2472
abd418d3 2473 delete_insns_since (entry_last);
77c9c6c2
RK
2474 return 0;
2475}
b3f8d95d
MM
2476
2477/* Expand the two-valued library call indicated by BINOPTAB, but
2478 preserve only one of the values. If TARG0 is non-NULL, the first
2479 value is placed into TARG0; otherwise the second value is placed
2480 into TARG1. Exactly one of TARG0 and TARG1 must be non-NULL. The
2481 value stored into TARG0 or TARG1 is equivalent to (CODE OP0 OP1).
2482 This routine assumes that the value returned by the library call is
2483 as if the return value was of an integral mode twice as wide as the
2484 mode of OP0. Returns 1 if the call was successful. */
2485
2486bool
5906d013 2487expand_twoval_binop_libfunc (optab binoptab, rtx op0, rtx op1,
b3f8d95d
MM
2488 rtx targ0, rtx targ1, enum rtx_code code)
2489{
2490 enum machine_mode mode;
2491 enum machine_mode libval_mode;
2492 rtx libval;
2493 rtx insns;
8a33f100 2494 rtx libfunc;
5906d013 2495
b3f8d95d 2496 /* Exactly one of TARG0 or TARG1 should be non-NULL. */
e3feb571 2497 gcc_assert (!targ0 != !targ1);
b3f8d95d
MM
2498
2499 mode = GET_MODE (op0);
8a33f100
JH
2500 libfunc = optab_libfunc (binoptab, mode);
2501 if (!libfunc)
b3f8d95d
MM
2502 return false;
2503
2504 /* The value returned by the library function will have twice as
2505 many bits as the nominal MODE. */
5906d013 2506 libval_mode = smallest_mode_for_size (2 * GET_MODE_BITSIZE (mode),
b3f8d95d
MM
2507 MODE_INT);
2508 start_sequence ();
8a33f100 2509 libval = emit_library_call_value (libfunc, NULL_RTX, LCT_CONST,
b3f8d95d 2510 libval_mode, 2,
5906d013 2511 op0, mode,
b3f8d95d
MM
2512 op1, mode);
2513 /* Get the part of VAL containing the value that we want. */
2514 libval = simplify_gen_subreg (mode, libval, libval_mode,
2515 targ0 ? 0 : GET_MODE_SIZE (mode));
2516 insns = get_insns ();
2517 end_sequence ();
2518 /* Move the into the desired location. */
5906d013 2519 emit_libcall_block (insns, targ0 ? targ0 : targ1, libval,
b3f8d95d 2520 gen_rtx_fmt_ee (code, mode, op0, op1));
5906d013 2521
b3f8d95d
MM
2522 return true;
2523}
2524
77c9c6c2 2525\f
ef89d648
ZW
2526/* Wrapper around expand_unop which takes an rtx code to specify
2527 the operation to perform, not an optab pointer. All other
2528 arguments are the same. */
2529rtx
0c20a65f
AJ
2530expand_simple_unop (enum machine_mode mode, enum rtx_code code, rtx op0,
2531 rtx target, int unsignedp)
ef89d648 2532{
19b5fafb 2533 optab unop = code_to_optab (code);
e3feb571 2534 gcc_assert (unop);
ef89d648
ZW
2535
2536 return expand_unop (mode, unop, op0, target, unsignedp);
2537}
2538
2928cd7a
RH
2539/* Try calculating
2540 (clz:narrow x)
2541 as
3801c801
BS
2542 (clz:wide (zero_extend:wide x)) - ((width wide) - (width narrow)).
2543
2544 A similar operation can be used for clrsb. UNOPTAB says which operation
2545 we are trying to expand. */
2928cd7a 2546static rtx
3801c801 2547widen_leading (enum machine_mode mode, rtx op0, rtx target, optab unoptab)
2928cd7a 2548{
d858f359
KG
2549 enum mode_class mclass = GET_MODE_CLASS (mode);
2550 if (CLASS_HAS_WIDER_MODES_P (mclass))
2928cd7a
RH
2551 {
2552 enum machine_mode wider_mode;
86556d87
BE
2553 for (wider_mode = GET_MODE_WIDER_MODE (mode);
2554 wider_mode != VOIDmode;
2928cd7a
RH
2555 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
2556 {
3801c801 2557 if (optab_handler (unoptab, wider_mode) != CODE_FOR_nothing)
2928cd7a
RH
2558 {
2559 rtx xop0, temp, last;
2560
2561 last = get_last_insn ();
2562
2563 if (target == 0)
2564 target = gen_reg_rtx (mode);
146aef0b
JJ
2565 xop0 = widen_operand (op0, wider_mode, mode,
2566 unoptab != clrsb_optab, false);
2567 temp = expand_unop (wider_mode, unoptab, xop0, NULL_RTX,
2568 unoptab != clrsb_optab);
2928cd7a 2569 if (temp != 0)
2f1cd2eb
RS
2570 temp = expand_binop
2571 (wider_mode, sub_optab, temp,
2572 gen_int_mode (GET_MODE_PRECISION (wider_mode)
2573 - GET_MODE_PRECISION (mode),
2574 wider_mode),
2575 target, true, OPTAB_DIRECT);
2928cd7a
RH
2576 if (temp == 0)
2577 delete_insns_since (last);
2578
2579 return temp;
2580 }
2581 }
2582 }
2583 return 0;
2584}
2585
9cce5b20
ZW
2586/* Try calculating clz of a double-word quantity as two clz's of word-sized
2587 quantities, choosing which based on whether the high word is nonzero. */
2588static rtx
2589expand_doubleword_clz (enum machine_mode mode, rtx op0, rtx target)
2590{
2591 rtx xop0 = force_reg (mode, op0);
2592 rtx subhi = gen_highpart (word_mode, xop0);
2593 rtx sublo = gen_lowpart (word_mode, xop0);
2594 rtx hi0_label = gen_label_rtx ();
2595 rtx after_label = gen_label_rtx ();
2596 rtx seq, temp, result;
2597
2598 /* If we were not given a target, use a word_mode register, not a
2599 'mode' register. The result will fit, and nobody is expecting
2600 anything bigger (the return type of __builtin_clz* is int). */
2601 if (!target)
2602 target = gen_reg_rtx (word_mode);
2603
2604 /* In any case, write to a word_mode scratch in both branches of the
2605 conditional, so we can ensure there is a single move insn setting
2606 'target' to tag a REG_EQUAL note on. */
2607 result = gen_reg_rtx (word_mode);
2608
2609 start_sequence ();
2610
2611 /* If the high word is not equal to zero,
2612 then clz of the full value is clz of the high word. */
2613 emit_cmp_and_jump_insns (subhi, CONST0_RTX (word_mode), EQ, 0,
2614 word_mode, true, hi0_label);
2615
2616 temp = expand_unop_direct (word_mode, clz_optab, subhi, result, true);
2617 if (!temp)
2618 goto fail;
2619
2620 if (temp != result)
2621 convert_move (result, temp, true);
2622
2623 emit_jump_insn (gen_jump (after_label));
2624 emit_barrier ();
2625
2626 /* Else clz of the full value is clz of the low word plus the number
2627 of bits in the high word. */
2628 emit_label (hi0_label);
2629
2630 temp = expand_unop_direct (word_mode, clz_optab, sublo, 0, true);
2631 if (!temp)
2632 goto fail;
2633 temp = expand_binop (word_mode, add_optab, temp,
2f1cd2eb 2634 gen_int_mode (GET_MODE_BITSIZE (word_mode), word_mode),
9cce5b20
ZW
2635 result, true, OPTAB_DIRECT);
2636 if (!temp)
2637 goto fail;
2638 if (temp != result)
2639 convert_move (result, temp, true);
2640
2641 emit_label (after_label);
2642 convert_move (target, result, true);
2643
2644 seq = get_insns ();
2645 end_sequence ();
2646
2647 add_equal_note (seq, target, CLZ, xop0, 0);
2648 emit_insn (seq);
2649 return target;
2650
2651 fail:
2652 end_sequence ();
2653 return 0;
2654}
2655
2e6834d3
RH
2656/* Try calculating
2657 (bswap:narrow x)
2658 as
2659 (lshiftrt:wide (bswap:wide x) ((width wide) - (width narrow))). */
2660static rtx
2661widen_bswap (enum machine_mode mode, rtx op0, rtx target)
2662{
d858f359 2663 enum mode_class mclass = GET_MODE_CLASS (mode);
2e6834d3
RH
2664 enum machine_mode wider_mode;
2665 rtx x, last;
2666
d858f359 2667 if (!CLASS_HAS_WIDER_MODES_P (mclass))
2e6834d3
RH
2668 return NULL_RTX;
2669
2670 for (wider_mode = GET_MODE_WIDER_MODE (mode);
2671 wider_mode != VOIDmode;
2672 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
947131ba 2673 if (optab_handler (bswap_optab, wider_mode) != CODE_FOR_nothing)
2e6834d3
RH
2674 goto found;
2675 return NULL_RTX;
2676
2677 found:
2678 last = get_last_insn ();
2679
2680 x = widen_operand (op0, wider_mode, mode, true, true);
2681 x = expand_unop (wider_mode, bswap_optab, x, NULL_RTX, true);
2682
0d44736e
BS
2683 gcc_assert (GET_MODE_PRECISION (wider_mode) == GET_MODE_BITSIZE (wider_mode)
2684 && GET_MODE_PRECISION (mode) == GET_MODE_BITSIZE (mode));
2e6834d3
RH
2685 if (x != 0)
2686 x = expand_shift (RSHIFT_EXPR, wider_mode, x,
eb6c3df1
RG
2687 GET_MODE_BITSIZE (wider_mode)
2688 - GET_MODE_BITSIZE (mode),
2e6834d3
RH
2689 NULL_RTX, true);
2690
2691 if (x != 0)
2692 {
2693 if (target == 0)
2694 target = gen_reg_rtx (mode);
2695 emit_move_insn (target, gen_lowpart (mode, x));
2696 }
2697 else
2698 delete_insns_since (last);
2699
2700 return target;
2701}
2702
2703/* Try calculating bswap as two bswaps of two word-sized operands. */
2704
2705static rtx
2706expand_doubleword_bswap (enum machine_mode mode, rtx op, rtx target)
2707{
2708 rtx t0, t1;
2709
2710 t1 = expand_unop (word_mode, bswap_optab,
2711 operand_subword_force (op, 0, mode), NULL_RTX, true);
2712 t0 = expand_unop (word_mode, bswap_optab,
2713 operand_subword_force (op, 1, mode), NULL_RTX, true);
2714
02972eaf 2715 if (target == 0 || !valid_multiword_target_p (target))
2e6834d3
RH
2716 target = gen_reg_rtx (mode);
2717 if (REG_P (target))
c41c1387 2718 emit_clobber (target);
2e6834d3
RH
2719 emit_move_insn (operand_subword (target, 0, 1, mode), t0);
2720 emit_move_insn (operand_subword (target, 1, 1, mode), t1);
2721
2722 return target;
2723}
2724
2928cd7a
RH
2725/* Try calculating (parity x) as (and (popcount x) 1), where
2726 popcount can also be done in a wider mode. */
2727static rtx
0c20a65f 2728expand_parity (enum machine_mode mode, rtx op0, rtx target)
2928cd7a 2729{
d858f359
KG
2730 enum mode_class mclass = GET_MODE_CLASS (mode);
2731 if (CLASS_HAS_WIDER_MODES_P (mclass))
2928cd7a
RH
2732 {
2733 enum machine_mode wider_mode;
2734 for (wider_mode = mode; wider_mode != VOIDmode;
2735 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
2736 {
947131ba 2737 if (optab_handler (popcount_optab, wider_mode) != CODE_FOR_nothing)
2928cd7a
RH
2738 {
2739 rtx xop0, temp, last;
2740
2741 last = get_last_insn ();
2742
2743 if (target == 0)
2744 target = gen_reg_rtx (mode);
2745 xop0 = widen_operand (op0, wider_mode, mode, true, false);
2746 temp = expand_unop (wider_mode, popcount_optab, xop0, NULL_RTX,
2747 true);
2748 if (temp != 0)
60c81c89 2749 temp = expand_binop (wider_mode, and_optab, temp, const1_rtx,
2928cd7a
RH
2750 target, true, OPTAB_DIRECT);
2751 if (temp == 0)
2752 delete_insns_since (last);
2753
2754 return temp;
2755 }
2756 }
2757 }
2758 return 0;
2759}
2760
9cce5b20 2761/* Try calculating ctz(x) as K - clz(x & -x) ,
69660a70 2762 where K is GET_MODE_PRECISION(mode) - 1.
9cce5b20
ZW
2763
2764 Both __builtin_ctz and __builtin_clz are undefined at zero, so we
2765 don't have to worry about what the hardware does in that case. (If
2766 the clz instruction produces the usual value at 0, which is K, the
2767 result of this code sequence will be -1; expand_ffs, below, relies
2768 on this. It might be nice to have it be K instead, for consistency
2769 with the (very few) processors that provide a ctz with a defined
2770 value, but that would take one more instruction, and it would be
2771 less convenient for expand_ffs anyway. */
2772
14670a74 2773static rtx
9cce5b20 2774expand_ctz (enum machine_mode mode, rtx op0, rtx target)
14670a74 2775{
9cce5b20 2776 rtx seq, temp;
b8698a0f 2777
947131ba 2778 if (optab_handler (clz_optab, mode) == CODE_FOR_nothing)
9cce5b20 2779 return 0;
b8698a0f 2780
9cce5b20 2781 start_sequence ();
14670a74 2782
9cce5b20
ZW
2783 temp = expand_unop_direct (mode, neg_optab, op0, NULL_RTX, true);
2784 if (temp)
2785 temp = expand_binop (mode, and_optab, op0, temp, NULL_RTX,
2786 true, OPTAB_DIRECT);
2787 if (temp)
2788 temp = expand_unop_direct (mode, clz_optab, temp, NULL_RTX, true);
2789 if (temp)
2f1cd2eb
RS
2790 temp = expand_binop (mode, sub_optab,
2791 gen_int_mode (GET_MODE_PRECISION (mode) - 1, mode),
9cce5b20
ZW
2792 temp, target,
2793 true, OPTAB_DIRECT);
2794 if (temp == 0)
2795 {
2796 end_sequence ();
2797 return 0;
14670a74 2798 }
9cce5b20
ZW
2799
2800 seq = get_insns ();
2801 end_sequence ();
2802
2803 add_equal_note (seq, temp, CTZ, op0, 0);
2804 emit_insn (seq);
2805 return temp;
14670a74
SL
2806}
2807
9cce5b20
ZW
2808
2809/* Try calculating ffs(x) using ctz(x) if we have that instruction, or
2810 else with the sequence used by expand_clz.
b8698a0f 2811
9cce5b20
ZW
2812 The ffs builtin promises to return zero for a zero value and ctz/clz
2813 may have an undefined value in that case. If they do not give us a
2814 convenient value, we have to generate a test and branch. */
14670a74 2815static rtx
9cce5b20 2816expand_ffs (enum machine_mode mode, rtx op0, rtx target)
14670a74 2817{
a3324f26
ZW
2818 HOST_WIDE_INT val = 0;
2819 bool defined_at_zero = false;
9cce5b20
ZW
2820 rtx temp, seq;
2821
947131ba 2822 if (optab_handler (ctz_optab, mode) != CODE_FOR_nothing)
14670a74 2823 {
9cce5b20 2824 start_sequence ();
14670a74 2825
9cce5b20
ZW
2826 temp = expand_unop_direct (mode, ctz_optab, op0, 0, true);
2827 if (!temp)
2828 goto fail;
2829
2830 defined_at_zero = (CTZ_DEFINED_VALUE_AT_ZERO (mode, val) == 2);
14670a74 2831 }
947131ba 2832 else if (optab_handler (clz_optab, mode) != CODE_FOR_nothing)
9cce5b20
ZW
2833 {
2834 start_sequence ();
2835 temp = expand_ctz (mode, op0, 0);
2836 if (!temp)
2837 goto fail;
2838
2839 if (CLZ_DEFINED_VALUE_AT_ZERO (mode, val) == 2)
2840 {
2841 defined_at_zero = true;
69660a70 2842 val = (GET_MODE_PRECISION (mode) - 1) - val;
9cce5b20
ZW
2843 }
2844 }
2845 else
2846 return 0;
2847
2848 if (defined_at_zero && val == -1)
2849 /* No correction needed at zero. */;
b8698a0f 2850 else
9cce5b20
ZW
2851 {
2852 /* We don't try to do anything clever with the situation found
2853 on some processors (eg Alpha) where ctz(0:mode) ==
2854 bitsize(mode). If someone can think of a way to send N to -1
2855 and leave alone all values in the range 0..N-1 (where N is a
2856 power of two), cheaper than this test-and-branch, please add it.
2857
2858 The test-and-branch is done after the operation itself, in case
2859 the operation sets condition codes that can be recycled for this.
2860 (This is true on i386, for instance.) */
2861
2862 rtx nonzero_label = gen_label_rtx ();
2863 emit_cmp_and_jump_insns (op0, CONST0_RTX (mode), NE, 0,
2864 mode, true, nonzero_label);
2865
2866 convert_move (temp, GEN_INT (-1), false);
2867 emit_label (nonzero_label);
2868 }
2869
2870 /* temp now has a value in the range -1..bitsize-1. ffs is supposed
2871 to produce a value in the range 0..bitsize. */
2f1cd2eb 2872 temp = expand_binop (mode, add_optab, temp, gen_int_mode (1, mode),
9cce5b20
ZW
2873 target, false, OPTAB_DIRECT);
2874 if (!temp)
2875 goto fail;
2876
2877 seq = get_insns ();
2878 end_sequence ();
2879
2880 add_equal_note (seq, temp, FFS, op0, 0);
2881 emit_insn (seq);
2882 return temp;
2883
2884 fail:
2885 end_sequence ();
14670a74
SL
2886 return 0;
2887}
2888
c414ac1d 2889/* Extract the OMODE lowpart from VAL, which has IMODE. Under certain
6b132673
RH
2890 conditions, VAL may already be a SUBREG against which we cannot generate
2891 a further SUBREG. In this case, we expect forcing the value into a
2892 register will work around the situation. */
2893
2894static rtx
2895lowpart_subreg_maybe_copy (enum machine_mode omode, rtx val,
2896 enum machine_mode imode)
2897{
2898 rtx ret;
2899 ret = lowpart_subreg (omode, val, imode);
2900 if (ret == NULL)
2901 {
2902 val = force_reg (imode, val);
2903 ret = lowpart_subreg (omode, val, imode);
2904 gcc_assert (ret != NULL);
2905 }
2906 return ret;
2907}
2908
8c55a142
RH
2909/* Expand a floating point absolute value or negation operation via a
2910 logical operation on the sign bit. */
2911
2912static rtx
2913expand_absneg_bit (enum rtx_code code, enum machine_mode mode,
2914 rtx op0, rtx target)
2915{
2916 const struct real_format *fmt;
2917 int bitpos, word, nwords, i;
2918 enum machine_mode imode;
8c55a142
RH
2919 rtx temp, insns;
2920
2921 /* The format has to have a simple sign bit. */
2922 fmt = REAL_MODE_FORMAT (mode);
2923 if (fmt == NULL)
2924 return NULL_RTX;
2925
b87a0206 2926 bitpos = fmt->signbit_rw;
8c55a142
RH
2927 if (bitpos < 0)
2928 return NULL_RTX;
2929
2930 /* Don't create negative zeros if the format doesn't support them. */
2931 if (code == NEG && !fmt->has_signed_zero)
2932 return NULL_RTX;
2933
2934 if (GET_MODE_SIZE (mode) <= UNITS_PER_WORD)
2935 {
2936 imode = int_mode_for_mode (mode);
2937 if (imode == BLKmode)
2938 return NULL_RTX;
2939 word = 0;
2940 nwords = 1;
2941 }
2942 else
2943 {
2944 imode = word_mode;
2945
2946 if (FLOAT_WORDS_BIG_ENDIAN)
2947 word = (GET_MODE_BITSIZE (mode) - bitpos) / BITS_PER_WORD;
2948 else
2949 word = bitpos / BITS_PER_WORD;
2950 bitpos = bitpos % BITS_PER_WORD;
2951 nwords = (GET_MODE_BITSIZE (mode) + BITS_PER_WORD - 1) / BITS_PER_WORD;
2952 }
2953
807e902e 2954 wide_int mask = wi::set_bit_in_zero (bitpos, GET_MODE_PRECISION (imode));
8c55a142 2955 if (code == ABS)
27bcd47c 2956 mask = ~mask;
8c55a142 2957
02972eaf
RS
2958 if (target == 0
2959 || target == op0
2960 || (nwords > 1 && !valid_multiword_target_p (target)))
8c55a142
RH
2961 target = gen_reg_rtx (mode);
2962
2963 if (nwords > 1)
2964 {
2965 start_sequence ();
2966
2967 for (i = 0; i < nwords; ++i)
2968 {
2969 rtx targ_piece = operand_subword (target, i, 1, mode);
2970 rtx op0_piece = operand_subword_force (op0, i, mode);
c414ac1d 2971
8c55a142
RH
2972 if (i == word)
2973 {
2974 temp = expand_binop (imode, code == ABS ? and_optab : xor_optab,
2975 op0_piece,
807e902e 2976 immed_wide_int_const (mask, imode),
8c55a142
RH
2977 targ_piece, 1, OPTAB_LIB_WIDEN);
2978 if (temp != targ_piece)
2979 emit_move_insn (targ_piece, temp);
2980 }
2981 else
2982 emit_move_insn (targ_piece, op0_piece);
2983 }
2984
2985 insns = get_insns ();
2986 end_sequence ();
2987
d70dcf29 2988 emit_insn (insns);
8c55a142
RH
2989 }
2990 else
2991 {
2992 temp = expand_binop (imode, code == ABS ? and_optab : xor_optab,
2993 gen_lowpart (imode, op0),
807e902e 2994 immed_wide_int_const (mask, imode),
8c55a142
RH
2995 gen_lowpart (imode, target), 1, OPTAB_LIB_WIDEN);
2996 target = lowpart_subreg_maybe_copy (mode, temp, imode);
2997
7543f918
JR
2998 set_dst_reg_note (get_last_insn (), REG_EQUAL,
2999 gen_rtx_fmt_e (code, mode, copy_rtx (op0)),
3000 target);
8c55a142
RH
3001 }
3002
3003 return target;
3004}
3005
9cce5b20
ZW
3006/* As expand_unop, but will fail rather than attempt the operation in a
3007 different mode or with a libcall. */
3008static rtx
3009expand_unop_direct (enum machine_mode mode, optab unoptab, rtx op0, rtx target,
0c20a65f 3010 int unsignedp)
77c9c6c2 3011{
947131ba 3012 if (optab_handler (unoptab, mode) != CODE_FOR_nothing)
77c9c6c2 3013 {
a5c7d693
RS
3014 struct expand_operand ops[2];
3015 enum insn_code icode = optab_handler (unoptab, mode);
9cce5b20 3016 rtx last = get_last_insn ();
a5c7d693 3017 rtx pat;
77c9c6c2 3018
a5c7d693
RS
3019 create_output_operand (&ops[0], target, mode);
3020 create_convert_operand_from (&ops[1], op0, mode, unsignedp);
3021 pat = maybe_gen_insn (icode, 2, ops);
77c9c6c2
RK
3022 if (pat)
3023 {
2f937369 3024 if (INSN_P (pat) && NEXT_INSN (pat) != NULL_RTX
19b5fafb 3025 && ! add_equal_note (pat, ops[0].value, optab_to_code (unoptab),
a5c7d693 3026 ops[1].value, NULL_RTX))
77c9c6c2
RK
3027 {
3028 delete_insns_since (last);
b1ec3c92 3029 return expand_unop (mode, unoptab, op0, NULL_RTX, unsignedp);
77c9c6c2
RK
3030 }
3031
3032 emit_insn (pat);
0c20a65f 3033
a5c7d693 3034 return ops[0].value;
77c9c6c2 3035 }
77c9c6c2 3036 }
9cce5b20
ZW
3037 return 0;
3038}
3039
3040/* Generate code to perform an operation specified by UNOPTAB
3041 on operand OP0, with result having machine-mode MODE.
3042
3043 UNSIGNEDP is for the case where we have to widen the operands
3044 to perform the operation. It says to use zero-extension.
3045
3046 If TARGET is nonzero, the value
3047 is generated there, if it is convenient to do so.
3048 In all cases an rtx is returned for the locus of the value;
3049 this may or may not be TARGET. */
3050
3051rtx
3052expand_unop (enum machine_mode mode, optab unoptab, rtx op0, rtx target,
3053 int unsignedp)
3054{
d858f359 3055 enum mode_class mclass = GET_MODE_CLASS (mode);
9cce5b20
ZW
3056 enum machine_mode wider_mode;
3057 rtx temp;
8a33f100 3058 rtx libfunc;
9cce5b20
ZW
3059
3060 temp = expand_unop_direct (mode, unoptab, op0, target, unsignedp);
3061 if (temp)
3062 return temp;
77c9c6c2 3063
9a856ec7
RK
3064 /* It can't be done in this mode. Can we open-code it in a wider mode? */
3065
9cce5b20 3066 /* Widening (or narrowing) clz needs special treatment. */
2928cd7a
RH
3067 if (unoptab == clz_optab)
3068 {
3801c801 3069 temp = widen_leading (mode, op0, target, unoptab);
2928cd7a
RH
3070 if (temp)
3071 return temp;
9cce5b20
ZW
3072
3073 if (GET_MODE_SIZE (mode) == 2 * UNITS_PER_WORD
947131ba 3074 && optab_handler (unoptab, word_mode) != CODE_FOR_nothing)
9cce5b20
ZW
3075 {
3076 temp = expand_doubleword_clz (mode, op0, target);
3077 if (temp)
3078 return temp;
3079 }
3080
3801c801
BS
3081 goto try_libcall;
3082 }
3083
3084 if (unoptab == clrsb_optab)
3085 {
3086 temp = widen_leading (mode, op0, target, unoptab);
3087 if (temp)
3088 return temp;
3089 goto try_libcall;
2928cd7a
RH
3090 }
3091
2e6834d3 3092 /* Widening (or narrowing) bswap needs special treatment. */
167fa32c 3093 if (unoptab == bswap_optab)
2e6834d3 3094 {
ac868f29
EB
3095 /* HImode is special because in this mode BSWAP is equivalent to ROTATE
3096 or ROTATERT. First try these directly; if this fails, then try the
3097 obvious pair of shifts with allowed widening, as this will probably
3098 be always more efficient than the other fallback methods. */
3099 if (mode == HImode)
3100 {
3101 rtx last, temp1, temp2;
3102
3103 if (optab_handler (rotl_optab, mode) != CODE_FOR_nothing)
3104 {
3105 temp = expand_binop (mode, rotl_optab, op0, GEN_INT (8), target,
3106 unsignedp, OPTAB_DIRECT);
3107 if (temp)
3108 return temp;
3109 }
3110
3111 if (optab_handler (rotr_optab, mode) != CODE_FOR_nothing)
3112 {
3113 temp = expand_binop (mode, rotr_optab, op0, GEN_INT (8), target,
3114 unsignedp, OPTAB_DIRECT);
3115 if (temp)
3116 return temp;
3117 }
3118
3119 last = get_last_insn ();
3120
3121 temp1 = expand_binop (mode, ashl_optab, op0, GEN_INT (8), NULL_RTX,
3122 unsignedp, OPTAB_WIDEN);
3123 temp2 = expand_binop (mode, lshr_optab, op0, GEN_INT (8), NULL_RTX,
3124 unsignedp, OPTAB_WIDEN);
3125 if (temp1 && temp2)
3126 {
3127 temp = expand_binop (mode, ior_optab, temp1, temp2, target,
3128 unsignedp, OPTAB_WIDEN);
3129 if (temp)
3130 return temp;
3131 }
3132
3133 delete_insns_since (last);
3134 }
3135
2e6834d3
RH
3136 temp = widen_bswap (mode, op0, target);
3137 if (temp)
3138 return temp;
3139
3140 if (GET_MODE_SIZE (mode) == 2 * UNITS_PER_WORD
947131ba 3141 && optab_handler (unoptab, word_mode) != CODE_FOR_nothing)
2e6834d3
RH
3142 {
3143 temp = expand_doubleword_bswap (mode, op0, target);
3144 if (temp)
3145 return temp;
3146 }
3147
3148 goto try_libcall;
3149 }
167fa32c 3150
d858f359 3151 if (CLASS_HAS_WIDER_MODES_P (mclass))
86556d87
BE
3152 for (wider_mode = GET_MODE_WIDER_MODE (mode);
3153 wider_mode != VOIDmode;
9a856ec7
RK
3154 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
3155 {
947131ba 3156 if (optab_handler (unoptab, wider_mode) != CODE_FOR_nothing)
9a856ec7
RK
3157 {
3158 rtx xop0 = op0;
9cce5b20 3159 rtx last = get_last_insn ();
9a856ec7
RK
3160
3161 /* For certain operations, we need not actually extend
3162 the narrow operand, as long as we will truncate the
835532b8
RK
3163 results to the same narrowness. */
3164
0661a3de 3165 xop0 = widen_operand (xop0, wider_mode, mode, unsignedp,
835532b8
RK
3166 (unoptab == neg_optab
3167 || unoptab == one_cmpl_optab)
d858f359 3168 && mclass == MODE_INT);
0c20a65f 3169
b1ec3c92
CH
3170 temp = expand_unop (wider_mode, unoptab, xop0, NULL_RTX,
3171 unsignedp);
9a856ec7
RK
3172
3173 if (temp)
3174 {
d858f359 3175 if (mclass != MODE_INT
d0edd768 3176 || !TRULY_NOOP_TRUNCATION_MODES_P (mode, wider_mode))
9a856ec7
RK
3177 {
3178 if (target == 0)
3179 target = gen_reg_rtx (mode);
3180 convert_move (target, temp, 0);
3181 return target;
3182 }
3183 else
3184 return gen_lowpart (mode, temp);
3185 }
3186 else
3187 delete_insns_since (last);
3188 }
3189 }
3190
77c9c6c2
RK
3191 /* These can be done a word at a time. */
3192 if (unoptab == one_cmpl_optab
d858f359 3193 && mclass == MODE_INT
77c9c6c2 3194 && GET_MODE_SIZE (mode) > UNITS_PER_WORD
947131ba 3195 && optab_handler (unoptab, word_mode) != CODE_FOR_nothing)
77c9c6c2 3196 {
bb93b973 3197 int i;
77c9c6c2
RK
3198 rtx insns;
3199
02972eaf 3200 if (target == 0 || target == op0 || !valid_multiword_target_p (target))
77c9c6c2
RK
3201 target = gen_reg_rtx (mode);
3202
3203 start_sequence ();
3204
3205 /* Do the actual arithmetic. */
3206 for (i = 0; i < GET_MODE_BITSIZE (mode) / BITS_PER_WORD; i++)
3207 {
3208 rtx target_piece = operand_subword (target, i, 1, mode);
34e56753 3209 rtx x = expand_unop (word_mode, unoptab,
77c9c6c2
RK
3210 operand_subword_force (op0, i, mode),
3211 target_piece, unsignedp);
bb93b973 3212
77c9c6c2
RK
3213 if (target_piece != x)
3214 emit_move_insn (target_piece, x);
3215 }
3216
3217 insns = get_insns ();
3218 end_sequence ();
3219
d70dcf29 3220 emit_insn (insns);
77c9c6c2
RK
3221 return target;
3222 }
3223
19b5fafb 3224 if (optab_to_code (unoptab) == NEG)
4977bab6 3225 {
8c55a142 3226 /* Try negating floating point values by flipping the sign bit. */
74b14698 3227 if (SCALAR_FLOAT_MODE_P (mode))
4977bab6 3228 {
8c55a142
RH
3229 temp = expand_absneg_bit (NEG, mode, op0, target);
3230 if (temp)
3231 return temp;
3232 }
9ee0a442 3233
8c55a142
RH
3234 /* If there is no negation pattern, and we have no negative zero,
3235 try subtracting from zero. */
3236 if (!HONOR_SIGNED_ZEROS (mode))
3237 {
3238 temp = expand_binop (mode, (unoptab == negv_optab
3239 ? subv_optab : sub_optab),
3240 CONST0_RTX (mode), op0, target,
3241 unsignedp, OPTAB_DIRECT);
3242 if (temp)
3243 return temp;
3244 }
4977bab6
ZW
3245 }
3246
2928cd7a
RH
3247 /* Try calculating parity (x) as popcount (x) % 2. */
3248 if (unoptab == parity_optab)
3249 {
3250 temp = expand_parity (mode, op0, target);
3251 if (temp)
3252 return temp;
3253 }
3254
14670a74
SL
3255 /* Try implementing ffs (x) in terms of clz (x). */
3256 if (unoptab == ffs_optab)
3257 {
3258 temp = expand_ffs (mode, op0, target);
3259 if (temp)
3260 return temp;
3261 }
3262
3263 /* Try implementing ctz (x) in terms of clz (x). */
3264 if (unoptab == ctz_optab)
3265 {
3266 temp = expand_ctz (mode, op0, target);
3267 if (temp)
3268 return temp;
3269 }
3270
2928cd7a 3271 try_libcall:
139e5e08 3272 /* Now try a library call in this mode. */
8a33f100
JH
3273 libfunc = optab_libfunc (unoptab, mode);
3274 if (libfunc)
77c9c6c2
RK
3275 {
3276 rtx insns;
9a7f678c 3277 rtx value;
1230d7f8 3278 rtx eq_value;
2928cd7a
RH
3279 enum machine_mode outmode = mode;
3280
3281 /* All of these functions return small values. Thus we choose to
3282 have them return something that isn't a double-word. */
3283 if (unoptab == ffs_optab || unoptab == clz_optab || unoptab == ctz_optab
3801c801
BS
3284 || unoptab == clrsb_optab || unoptab == popcount_optab
3285 || unoptab == parity_optab)
cd2ac05b 3286 outmode
390b17c2
RE
3287 = GET_MODE (hard_libcall_value (TYPE_MODE (integer_type_node),
3288 optab_libfunc (unoptab, mode)));
77c9c6c2
RK
3289
3290 start_sequence ();
3291
3292 /* Pass 1 for NO_QUEUE so we don't lose any increments
3293 if the libcall is cse'd or moved. */
8a33f100 3294 value = emit_library_call_value (libfunc, NULL_RTX, LCT_CONST, outmode,
2928cd7a 3295 1, op0, mode);
77c9c6c2
RK
3296 insns = get_insns ();
3297 end_sequence ();
3298
2928cd7a 3299 target = gen_reg_rtx (outmode);
19b5fafb 3300 eq_value = gen_rtx_fmt_e (optab_to_code (unoptab), mode, op0);
1230d7f8
RS
3301 if (GET_MODE_SIZE (outmode) < GET_MODE_SIZE (mode))
3302 eq_value = simplify_gen_unary (TRUNCATE, outmode, eq_value, mode);
3303 else if (GET_MODE_SIZE (outmode) > GET_MODE_SIZE (mode))
3304 eq_value = simplify_gen_unary (ZERO_EXTEND, outmode, eq_value, mode);
b55f62cc
RG
3305 emit_libcall_block_1 (insns, target, value, eq_value,
3306 trapv_unoptab_p (unoptab));
77c9c6c2
RK
3307
3308 return target;
3309 }
3310
3311 /* It can't be done in this mode. Can we do it in a wider mode? */
3312
d858f359 3313 if (CLASS_HAS_WIDER_MODES_P (mclass))
77c9c6c2 3314 {
86556d87
BE
3315 for (wider_mode = GET_MODE_WIDER_MODE (mode);
3316 wider_mode != VOIDmode;
77c9c6c2
RK
3317 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
3318 {
947131ba 3319 if (optab_handler (unoptab, wider_mode) != CODE_FOR_nothing
8a33f100 3320 || optab_libfunc (unoptab, wider_mode))
77c9c6c2 3321 {
34e56753 3322 rtx xop0 = op0;
9cce5b20 3323 rtx last = get_last_insn ();
34e56753
RS
3324
3325 /* For certain operations, we need not actually extend
3326 the narrow operand, as long as we will truncate the
3327 results to the same narrowness. */
0661a3de 3328 xop0 = widen_operand (xop0, wider_mode, mode, unsignedp,
835532b8 3329 (unoptab == neg_optab
ac868f29
EB
3330 || unoptab == one_cmpl_optab
3331 || unoptab == bswap_optab)
d858f359 3332 && mclass == MODE_INT);
0c20a65f 3333
b1ec3c92
CH
3334 temp = expand_unop (wider_mode, unoptab, xop0, NULL_RTX,
3335 unsignedp);
34e56753 3336
c117dddc 3337 /* If we are generating clz using wider mode, adjust the
146aef0b
JJ
3338 result. Similarly for clrsb. */
3339 if ((unoptab == clz_optab || unoptab == clrsb_optab)
3340 && temp != 0)
2f1cd2eb
RS
3341 temp = expand_binop
3342 (wider_mode, sub_optab, temp,
3343 gen_int_mode (GET_MODE_PRECISION (wider_mode)
3344 - GET_MODE_PRECISION (mode),
3345 wider_mode),
3346 target, true, OPTAB_DIRECT);
c117dddc 3347
ac868f29
EB
3348 /* Likewise for bswap. */
3349 if (unoptab == bswap_optab && temp != 0)
3350 {
3351 gcc_assert (GET_MODE_PRECISION (wider_mode)
3352 == GET_MODE_BITSIZE (wider_mode)
3353 && GET_MODE_PRECISION (mode)
3354 == GET_MODE_BITSIZE (mode));
3355
3356 temp = expand_shift (RSHIFT_EXPR, wider_mode, temp,
3357 GET_MODE_BITSIZE (wider_mode)
3358 - GET_MODE_BITSIZE (mode),
3359 NULL_RTX, true);
3360 }
3361
34e56753 3362 if (temp)
77c9c6c2 3363 {
d858f359 3364 if (mclass != MODE_INT)
34e56753
RS
3365 {
3366 if (target == 0)
3367 target = gen_reg_rtx (mode);
3368 convert_move (target, temp, 0);
3369 return target;
3370 }
3371 else
3372 return gen_lowpart (mode, temp);
77c9c6c2
RK
3373 }
3374 else
34e56753 3375 delete_insns_since (last);
77c9c6c2
RK
3376 }
3377 }
3378 }
3379
8c55a142
RH
3380 /* One final attempt at implementing negation via subtraction,
3381 this time allowing widening of the operand. */
19b5fafb 3382 if (optab_to_code (unoptab) == NEG && !HONOR_SIGNED_ZEROS (mode))
0c20a65f 3383 {
b82b6eea 3384 rtx temp;
91ce572a
CC
3385 temp = expand_binop (mode,
3386 unoptab == negv_optab ? subv_optab : sub_optab,
3387 CONST0_RTX (mode), op0,
3388 target, unsignedp, OPTAB_LIB_WIDEN);
b82b6eea 3389 if (temp)
8c55a142 3390 return temp;
b82b6eea 3391 }
0c20a65f 3392
77c9c6c2
RK
3393 return 0;
3394}
3395\f
decdfa82
RS
3396/* Emit code to compute the absolute value of OP0, with result to
3397 TARGET if convenient. (TARGET may be 0.) The return value says
3398 where the result actually is to be found.
3399
3400 MODE is the mode of the operand; the mode of the result is
3401 different but can be deduced from MODE.
3402
91813b28 3403 */
7fd01431
RK
3404
3405rtx
0c20a65f
AJ
3406expand_abs_nojump (enum machine_mode mode, rtx op0, rtx target,
3407 int result_unsignedp)
7fd01431 3408{
2ef0a555 3409 rtx temp;
7fd01431 3410
dad16761
RB
3411 if (GET_MODE_CLASS (mode) != MODE_INT
3412 || ! flag_trapv)
91ce572a
CC
3413 result_unsignedp = 1;
3414
7fd01431 3415 /* First try to do it with a special abs instruction. */
91ce572a
CC
3416 temp = expand_unop (mode, result_unsignedp ? abs_optab : absv_optab,
3417 op0, target, 0);
7fd01431
RK
3418 if (temp != 0)
3419 return temp;
3420
4977bab6 3421 /* For floating point modes, try clearing the sign bit. */
3d8bf70f 3422 if (SCALAR_FLOAT_MODE_P (mode))
4977bab6 3423 {
8c55a142
RH
3424 temp = expand_absneg_bit (ABS, mode, op0, target);
3425 if (temp)
3426 return temp;
4977bab6
ZW
3427 }
3428
14a774a9 3429 /* If we have a MAX insn, we can do this as MAX (x, -x). */
947131ba 3430 if (optab_handler (smax_optab, mode) != CODE_FOR_nothing
8c55a142 3431 && !HONOR_SIGNED_ZEROS (mode))
14a774a9
RK
3432 {
3433 rtx last = get_last_insn ();
3434
dad16761
RB
3435 temp = expand_unop (mode, result_unsignedp ? neg_optab : negv_optab,
3436 op0, NULL_RTX, 0);
14a774a9
RK
3437 if (temp != 0)
3438 temp = expand_binop (mode, smax_optab, op0, temp, target, 0,
3439 OPTAB_WIDEN);
3440
3441 if (temp != 0)
3442 return temp;
3443
3444 delete_insns_since (last);
3445 }
3446
7fd01431
RK
3447 /* If this machine has expensive jumps, we can do integer absolute
3448 value of X as (((signed) x >> (W-1)) ^ x) - ((signed) x >> (W-1)),
e1078cfc 3449 where W is the width of MODE. */
7fd01431 3450
3a4fd356
JH
3451 if (GET_MODE_CLASS (mode) == MODE_INT
3452 && BRANCH_COST (optimize_insn_for_speed_p (),
3453 false) >= 2)
7fd01431
RK
3454 {
3455 rtx extended = expand_shift (RSHIFT_EXPR, mode, op0,
69660a70 3456 GET_MODE_PRECISION (mode) - 1,
7fd01431
RK
3457 NULL_RTX, 0);
3458
3459 temp = expand_binop (mode, xor_optab, extended, op0, target, 0,
3460 OPTAB_LIB_WIDEN);
3461 if (temp != 0)
91ce572a
CC
3462 temp = expand_binop (mode, result_unsignedp ? sub_optab : subv_optab,
3463 temp, extended, target, 0, OPTAB_LIB_WIDEN);
7fd01431
RK
3464
3465 if (temp != 0)
3466 return temp;
3467 }
3468
2ef0a555
RH
3469 return NULL_RTX;
3470}
3471
3472rtx
0c20a65f
AJ
3473expand_abs (enum machine_mode mode, rtx op0, rtx target,
3474 int result_unsignedp, int safe)
2ef0a555
RH
3475{
3476 rtx temp, op1;
3477
dad16761
RB
3478 if (GET_MODE_CLASS (mode) != MODE_INT
3479 || ! flag_trapv)
77173bbe
KH
3480 result_unsignedp = 1;
3481
2ef0a555
RH
3482 temp = expand_abs_nojump (mode, op0, target, result_unsignedp);
3483 if (temp != 0)
3484 return temp;
3485
7fd01431 3486 /* If that does not win, use conditional jump and negate. */
5c0bf747
RK
3487
3488 /* It is safe to use the target if it is the same
3489 as the source if this is also a pseudo register */
f8cfc6aa 3490 if (op0 == target && REG_P (op0)
5c0bf747
RK
3491 && REGNO (op0) >= FIRST_PSEUDO_REGISTER)
3492 safe = 1;
3493
7fd01431
RK
3494 op1 = gen_label_rtx ();
3495 if (target == 0 || ! safe
3496 || GET_MODE (target) != mode
3c0cb5de 3497 || (MEM_P (target) && MEM_VOLATILE_P (target))
f8cfc6aa 3498 || (REG_P (target)
7fd01431
RK
3499 && REGNO (target) < FIRST_PSEUDO_REGISTER))
3500 target = gen_reg_rtx (mode);
3501
3502 emit_move_insn (target, op0);
3503 NO_DEFER_POP;
3504
3bf78d3b 3505 do_compare_rtx_and_jump (target, CONST0_RTX (mode), GE, 0, mode,
40e90eac 3506 NULL_RTX, NULL_RTX, op1, -1);
7fd01431 3507
91ce572a
CC
3508 op0 = expand_unop (mode, result_unsignedp ? neg_optab : negv_optab,
3509 target, target, 0);
7fd01431
RK
3510 if (op0 != target)
3511 emit_move_insn (target, op0);
3512 emit_label (op1);
3513 OK_DEFER_POP;
3514 return target;
3515}
046625fa 3516
65026047
ER
3517/* Emit code to compute the one's complement absolute value of OP0
3518 (if (OP0 < 0) OP0 = ~OP0), with result to TARGET if convenient.
3519 (TARGET may be NULL_RTX.) The return value says where the result
3520 actually is to be found.
3521
3522 MODE is the mode of the operand; the mode of the result is
3523 different but can be deduced from MODE. */
3524
3525rtx
3526expand_one_cmpl_abs_nojump (enum machine_mode mode, rtx op0, rtx target)
3527{
3528 rtx temp;
3529
3530 /* Not applicable for floating point modes. */
3531 if (FLOAT_MODE_P (mode))
3532 return NULL_RTX;
3533
3534 /* If we have a MAX insn, we can do this as MAX (x, ~x). */
947131ba 3535 if (optab_handler (smax_optab, mode) != CODE_FOR_nothing)
65026047
ER
3536 {
3537 rtx last = get_last_insn ();
3538
3539 temp = expand_unop (mode, one_cmpl_optab, op0, NULL_RTX, 0);
3540 if (temp != 0)
3541 temp = expand_binop (mode, smax_optab, op0, temp, target, 0,
3542 OPTAB_WIDEN);
3543
3544 if (temp != 0)
3545 return temp;
3546
3547 delete_insns_since (last);
3548 }
3549
3550 /* If this machine has expensive jumps, we can do one's complement
3551 absolute value of X as (((signed) x >> (W-1)) ^ x). */
3552
3553 if (GET_MODE_CLASS (mode) == MODE_INT
3554 && BRANCH_COST (optimize_insn_for_speed_p (),
3555 false) >= 2)
3556 {
3557 rtx extended = expand_shift (RSHIFT_EXPR, mode, op0,
69660a70 3558 GET_MODE_PRECISION (mode) - 1,
65026047
ER
3559 NULL_RTX, 0);
3560
3561 temp = expand_binop (mode, xor_optab, extended, op0, target, 0,
3562 OPTAB_LIB_WIDEN);
3563
3564 if (temp != 0)
3565 return temp;
3566 }
3567
3568 return NULL_RTX;
3569}
3570
ae394659
RH
3571/* A subroutine of expand_copysign, perform the copysign operation using the
3572 abs and neg primitives advertised to exist on the target. The assumption
3573 is that we have a split register file, and leaving op0 in fp registers,
3574 and not playing with subregs so much, will help the register allocator. */
046625fa 3575
9abd1955 3576static rtx
ae394659
RH
3577expand_copysign_absneg (enum machine_mode mode, rtx op0, rtx op1, rtx target,
3578 int bitpos, bool op0_is_abs)
046625fa 3579{
046625fa 3580 enum machine_mode imode;
a5c7d693 3581 enum insn_code icode;
d0c9d431 3582 rtx sign, label;
046625fa 3583
ae394659
RH
3584 if (target == op1)
3585 target = NULL_RTX;
046625fa 3586
d0c9d431
UB
3587 /* Check if the back end provides an insn that handles signbit for the
3588 argument's mode. */
a5c7d693 3589 icode = optab_handler (signbit_optab, mode);
d0c9d431 3590 if (icode != CODE_FOR_nothing)
ae394659 3591 {
a5c7d693 3592 imode = insn_data[(int) icode].operand[0].mode;
d0c9d431
UB
3593 sign = gen_reg_rtx (imode);
3594 emit_unop_insn (icode, sign, op1, UNKNOWN);
ae394659
RH
3595 }
3596 else
3597 {
d0c9d431
UB
3598 if (GET_MODE_SIZE (mode) <= UNITS_PER_WORD)
3599 {
3600 imode = int_mode_for_mode (mode);
3601 if (imode == BLKmode)
3602 return NULL_RTX;
3603 op1 = gen_lowpart (imode, op1);
3604 }
ae394659 3605 else
d0c9d431
UB
3606 {
3607 int word;
046625fa 3608
d0c9d431
UB
3609 imode = word_mode;
3610 if (FLOAT_WORDS_BIG_ENDIAN)
3611 word = (GET_MODE_BITSIZE (mode) - bitpos) / BITS_PER_WORD;
3612 else
3613 word = bitpos / BITS_PER_WORD;
3614 bitpos = bitpos % BITS_PER_WORD;
3615 op1 = operand_subword_force (op1, word, mode);
3616 }
3617
807e902e 3618 wide_int mask = wi::set_bit_in_zero (bitpos, GET_MODE_PRECISION (imode));
d0c9d431 3619 sign = expand_binop (imode, and_optab, op1,
807e902e 3620 immed_wide_int_const (mask, imode),
d0c9d431 3621 NULL_RTX, 1, OPTAB_LIB_WIDEN);
ae394659 3622 }
046625fa 3623
d0c9d431 3624 if (!op0_is_abs)
8c55a142 3625 {
d0c9d431
UB
3626 op0 = expand_unop (mode, abs_optab, op0, target, 0);
3627 if (op0 == NULL)
3628 return NULL_RTX;
3629 target = op0;
8c55a142 3630 }
ae394659
RH
3631 else
3632 {
d0c9d431
UB
3633 if (target == NULL_RTX)
3634 target = copy_to_reg (op0);
3635 else
3636 emit_move_insn (target, op0);
ae394659
RH
3637 }
3638
ae394659 3639 label = gen_label_rtx ();
d0c9d431 3640 emit_cmp_and_jump_insns (sign, const0_rtx, EQ, NULL_RTX, imode, 1, label);
ae394659 3641
48175537 3642 if (CONST_DOUBLE_AS_FLOAT_P (op0))
ae394659
RH
3643 op0 = simplify_unary_operation (NEG, mode, op0, mode);
3644 else
3645 op0 = expand_unop (mode, neg_optab, op0, target, 0);
3646 if (op0 != target)
3647 emit_move_insn (target, op0);
3648
3649 emit_label (label);
3650
3651 return target;
3652}
3653
3654
3655/* A subroutine of expand_copysign, perform the entire copysign operation
3656 with integer bitmasks. BITPOS is the position of the sign bit; OP0_IS_ABS
3657 is true if op0 is known to have its sign bit clear. */
3658
3659static rtx
3660expand_copysign_bit (enum machine_mode mode, rtx op0, rtx op1, rtx target,
3661 int bitpos, bool op0_is_abs)
3662{
3663 enum machine_mode imode;
ae394659
RH
3664 int word, nwords, i;
3665 rtx temp, insns;
046625fa 3666
8c55a142 3667 if (GET_MODE_SIZE (mode) <= UNITS_PER_WORD)
046625fa 3668 {
8c55a142
RH
3669 imode = int_mode_for_mode (mode);
3670 if (imode == BLKmode)
3671 return NULL_RTX;
3672 word = 0;
3673 nwords = 1;
3674 }
3675 else
3676 {
3677 imode = word_mode;
3678
3679 if (FLOAT_WORDS_BIG_ENDIAN)
3680 word = (GET_MODE_BITSIZE (mode) - bitpos) / BITS_PER_WORD;
3681 else
3682 word = bitpos / BITS_PER_WORD;
3683 bitpos = bitpos % BITS_PER_WORD;
3684 nwords = (GET_MODE_BITSIZE (mode) + BITS_PER_WORD - 1) / BITS_PER_WORD;
046625fa
RH
3685 }
3686
807e902e 3687 wide_int mask = wi::set_bit_in_zero (bitpos, GET_MODE_PRECISION (imode));
046625fa 3688
02972eaf
RS
3689 if (target == 0
3690 || target == op0
3691 || target == op1
3692 || (nwords > 1 && !valid_multiword_target_p (target)))
8c55a142
RH
3693 target = gen_reg_rtx (mode);
3694
3695 if (nwords > 1)
046625fa 3696 {
8c55a142
RH
3697 start_sequence ();
3698
3699 for (i = 0; i < nwords; ++i)
046625fa 3700 {
8c55a142
RH
3701 rtx targ_piece = operand_subword (target, i, 1, mode);
3702 rtx op0_piece = operand_subword_force (op0, i, mode);
c414ac1d 3703
8c55a142
RH
3704 if (i == word)
3705 {
ae394659 3706 if (!op0_is_abs)
54fb1ae0
AS
3707 op0_piece
3708 = expand_binop (imode, and_optab, op0_piece,
807e902e 3709 immed_wide_int_const (~mask, imode),
54fb1ae0 3710 NULL_RTX, 1, OPTAB_LIB_WIDEN);
8c55a142
RH
3711 op1 = expand_binop (imode, and_optab,
3712 operand_subword_force (op1, i, mode),
807e902e 3713 immed_wide_int_const (mask, imode),
8c55a142
RH
3714 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3715
3716 temp = expand_binop (imode, ior_optab, op0_piece, op1,
3717 targ_piece, 1, OPTAB_LIB_WIDEN);
3718 if (temp != targ_piece)
3719 emit_move_insn (targ_piece, temp);
3720 }
3721 else
3722 emit_move_insn (targ_piece, op0_piece);
046625fa 3723 }
8c55a142
RH
3724
3725 insns = get_insns ();
3726 end_sequence ();
3727
d70dcf29 3728 emit_insn (insns);
046625fa
RH
3729 }
3730 else
8c55a142
RH
3731 {
3732 op1 = expand_binop (imode, and_optab, gen_lowpart (imode, op1),
807e902e 3733 immed_wide_int_const (mask, imode),
8c55a142
RH
3734 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3735
3736 op0 = gen_lowpart (imode, op0);
ae394659 3737 if (!op0_is_abs)
8c55a142 3738 op0 = expand_binop (imode, and_optab, op0,
807e902e 3739 immed_wide_int_const (~mask, imode),
8c55a142
RH
3740 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3741
3742 temp = expand_binop (imode, ior_optab, op0, op1,
3743 gen_lowpart (imode, target), 1, OPTAB_LIB_WIDEN);
3744 target = lowpart_subreg_maybe_copy (mode, temp, imode);
3745 }
046625fa
RH
3746
3747 return target;
3748}
ae394659 3749
c414ac1d 3750/* Expand the C99 copysign operation. OP0 and OP1 must be the same
ae394659
RH
3751 scalar floating point mode. Return NULL if we do not know how to
3752 expand the operation inline. */
3753
3754rtx
3755expand_copysign (rtx op0, rtx op1, rtx target)
3756{
3757 enum machine_mode mode = GET_MODE (op0);
3758 const struct real_format *fmt;
ae394659
RH
3759 bool op0_is_abs;
3760 rtx temp;
3761
3762 gcc_assert (SCALAR_FLOAT_MODE_P (mode));
3763 gcc_assert (GET_MODE (op1) == mode);
3764
3765 /* First try to do it with a special instruction. */
3766 temp = expand_binop (mode, copysign_optab, op0, op1,
3767 target, 0, OPTAB_DIRECT);
3768 if (temp)
3769 return temp;
3770
3771 fmt = REAL_MODE_FORMAT (mode);
3772 if (fmt == NULL || !fmt->has_signed_zero)
3773 return NULL_RTX;
3774
ae394659 3775 op0_is_abs = false;
48175537 3776 if (CONST_DOUBLE_AS_FLOAT_P (op0))
ae394659
RH
3777 {
3778 if (real_isneg (CONST_DOUBLE_REAL_VALUE (op0)))
3779 op0 = simplify_unary_operation (ABS, mode, op0, mode);
3780 op0_is_abs = true;
3781 }
3782
c064fde5 3783 if (fmt->signbit_ro >= 0
48175537 3784 && (CONST_DOUBLE_AS_FLOAT_P (op0)
947131ba
RS
3785 || (optab_handler (neg_optab, mode) != CODE_FOR_nothing
3786 && optab_handler (abs_optab, mode) != CODE_FOR_nothing)))
ae394659
RH
3787 {
3788 temp = expand_copysign_absneg (mode, op0, op1, target,
c064fde5 3789 fmt->signbit_ro, op0_is_abs);
ae394659
RH
3790 if (temp)
3791 return temp;
3792 }
3793
c064fde5
RS
3794 if (fmt->signbit_rw < 0)
3795 return NULL_RTX;
3796 return expand_copysign_bit (mode, op0, op1, target,
3797 fmt->signbit_rw, op0_is_abs);
ae394659 3798}
7fd01431 3799\f
77c9c6c2
RK
3800/* Generate an instruction whose insn-code is INSN_CODE,
3801 with two operands: an output TARGET and an input OP0.
3802 TARGET *must* be nonzero, and the output is always stored there.
3803 CODE is an rtx code such that (CODE OP0) is an rtx that describes
b8698a0f 3804 the value that is stored into TARGET.
77c9c6c2 3805
18bd082d
JH
3806 Return false if expansion failed. */
3807
3808bool
a5c7d693
RS
3809maybe_emit_unop_insn (enum insn_code icode, rtx target, rtx op0,
3810 enum rtx_code code)
77c9c6c2 3811{
a5c7d693 3812 struct expand_operand ops[2];
77c9c6c2 3813 rtx pat;
77c9c6c2 3814
a5c7d693
RS
3815 create_output_operand (&ops[0], target, GET_MODE (target));
3816 create_input_operand (&ops[1], op0, GET_MODE (op0));
3817 pat = maybe_gen_insn (icode, 2, ops);
18bd082d 3818 if (!pat)
a5c7d693 3819 return false;
77c9c6c2 3820
2f937369 3821 if (INSN_P (pat) && NEXT_INSN (pat) != NULL_RTX && code != UNKNOWN)
a5c7d693 3822 add_equal_note (pat, ops[0].value, code, ops[1].value, NULL_RTX);
0c20a65f 3823
77c9c6c2
RK
3824 emit_insn (pat);
3825
a5c7d693
RS
3826 if (ops[0].value != target)
3827 emit_move_insn (target, ops[0].value);
18bd082d
JH
3828 return true;
3829}
3830/* Generate an instruction whose insn-code is INSN_CODE,
3831 with two operands: an output TARGET and an input OP0.
3832 TARGET *must* be nonzero, and the output is always stored there.
3833 CODE is an rtx code such that (CODE OP0) is an rtx that describes
3834 the value that is stored into TARGET. */
3835
3836void
a5c7d693 3837emit_unop_insn (enum insn_code icode, rtx target, rtx op0, enum rtx_code code)
18bd082d
JH
3838{
3839 bool ok = maybe_emit_unop_insn (icode, target, op0, code);
3840 gcc_assert (ok);
77c9c6c2
RK
3841}
3842\f
326a31e9
R
3843struct no_conflict_data
3844{
3845 rtx target, first, insn;
3846 bool must_stay;
3847};
3848
d70dcf29
KZ
3849/* Called via note_stores by emit_libcall_block. Set P->must_stay if
3850 the currently examined clobber / store has to stay in the list of
3851 insns that constitute the actual libcall block. */
326a31e9 3852static void
7bc980e1 3853no_conflict_move_test (rtx dest, const_rtx set, void *p0)
326a31e9 3854{
d3bfe4de 3855 struct no_conflict_data *p= (struct no_conflict_data *) p0;
326a31e9
R
3856
3857 /* If this inns directly contributes to setting the target, it must stay. */
3858 if (reg_overlap_mentioned_p (p->target, dest))
3859 p->must_stay = true;
3860 /* If we haven't committed to keeping any other insns in the list yet,
3861 there is nothing more to check. */
3862 else if (p->insn == p->first)
3863 return;
3864 /* If this insn sets / clobbers a register that feeds one of the insns
3865 already in the list, this insn has to stay too. */
9617ccfd
R
3866 else if (reg_overlap_mentioned_p (dest, PATTERN (p->first))
3867 || (CALL_P (p->first) && (find_reg_fusage (p->first, USE, dest)))
326a31e9
R
3868 || reg_used_between_p (dest, p->first, p->insn)
3869 /* Likewise if this insn depends on a register set by a previous
ca7a5aec
R
3870 insn in the list, or if it sets a result (presumably a hard
3871 register) that is set or clobbered by a previous insn.
3872 N.B. the modified_*_p (SET_DEST...) tests applied to a MEM
3873 SET_DEST perform the former check on the address, and the latter
3874 check on the MEM. */
326a31e9
R
3875 || (GET_CODE (set) == SET
3876 && (modified_in_p (SET_SRC (set), p->first)
ca7a5aec
R
3877 || modified_in_p (SET_DEST (set), p->first)
3878 || modified_between_p (SET_SRC (set), p->first, p->insn)
3879 || modified_between_p (SET_DEST (set), p->first, p->insn))))
326a31e9
R
3880 p->must_stay = true;
3881}
3882
77c9c6c2
RK
3883\f
3884/* Emit code to make a call to a constant function or a library call.
3885
3886 INSNS is a list containing all insns emitted in the call.
3887 These insns leave the result in RESULT. Our block is to copy RESULT
3888 to TARGET, which is logically equivalent to EQUIV.
3889
3890 We first emit any insns that set a pseudo on the assumption that these are
3891 loading constants into registers; doing so allows them to be safely cse'ed
3892 between blocks. Then we emit all the other insns in the block, followed by
3893 an insn to move RESULT to TARGET. This last insn will have a REQ_EQUAL
856905c2
SB
3894 note with an operand of EQUIV. */
3895
b55f62cc
RG
3896static void
3897emit_libcall_block_1 (rtx insns, rtx target, rtx result, rtx equiv,
3898 bool equiv_may_trap)
77c9c6c2 3899{
aff2c2d3 3900 rtx final_dest = target;
0f900dfa 3901 rtx next, last, insn;
77c9c6c2 3902
aff2c2d3
BS
3903 /* If this is a reg with REG_USERVAR_P set, then it could possibly turn
3904 into a MEM later. Protect the libcall block from this change. */
3905 if (! REG_P (target) || REG_USERVAR_P (target))
3906 target = gen_reg_rtx (GET_MODE (target));
0c20a65f 3907
5154e79a
AH
3908 /* If we're using non-call exceptions, a libcall corresponding to an
3909 operation that may trap may also trap. */
1d65f45c 3910 /* ??? See the comment in front of make_reg_eh_region_note. */
b55f62cc
RG
3911 if (cfun->can_throw_non_call_exceptions
3912 && (equiv_may_trap || may_trap_p (equiv)))
5154e79a
AH
3913 {
3914 for (insn = insns; insn; insn = NEXT_INSN (insn))
4b4bf941 3915 if (CALL_P (insn))
5154e79a
AH
3916 {
3917 rtx note = find_reg_note (insn, REG_EH_REGION, NULL_RTX);
1d65f45c
RH
3918 if (note)
3919 {
3920 int lp_nr = INTVAL (XEXP (note, 0));
3921 if (lp_nr == 0 || lp_nr == INT_MIN)
3922 remove_note (insn, note);
3923 }
5154e79a
AH
3924 }
3925 }
3926 else
1d65f45c
RH
3927 {
3928 /* Look for any CALL_INSNs in this sequence, and attach a REG_EH_REGION
3929 reg note to indicate that this call cannot throw or execute a nonlocal
3930 goto (unless there is already a REG_EH_REGION note, in which case
3931 we update it). */
3932 for (insn = insns; insn; insn = NEXT_INSN (insn))
3933 if (CALL_P (insn))
3934 make_reg_eh_region_note_nothrow_nononlocal (insn);
3935 }
b472794d 3936
77c9c6c2 3937 /* First emit all insns that set pseudos. Remove them from the list as
ccf5f342 3938 we go. Avoid insns that set pseudos which were referenced in previous
29ebe69a 3939 insns. These can be generated by move_by_pieces, for example,
ccf5f342
RK
3940 to update an address. Similarly, avoid insns that reference things
3941 set in previous insns. */
77c9c6c2
RK
3942
3943 for (insn = insns; insn; insn = next)
3944 {
3945 rtx set = single_set (insn);
3946
3947 next = NEXT_INSN (insn);
3948
f8cfc6aa 3949 if (set != 0 && REG_P (SET_DEST (set))
748ebfc7 3950 && REGNO (SET_DEST (set)) >= FIRST_PSEUDO_REGISTER)
77c9c6c2 3951 {
748ebfc7
R
3952 struct no_conflict_data data;
3953
3954 data.target = const0_rtx;
3955 data.first = insns;
3956 data.insn = insn;
3957 data.must_stay = 0;
3958 note_stores (PATTERN (insn), no_conflict_move_test, &data);
3959 if (! data.must_stay)
3960 {
3961 if (PREV_INSN (insn))
3962 NEXT_INSN (PREV_INSN (insn)) = next;
3963 else
3964 insns = next;
77c9c6c2 3965
748ebfc7
R
3966 if (next)
3967 PREV_INSN (next) = PREV_INSN (insn);
77c9c6c2 3968
748ebfc7
R
3969 add_insn (insn);
3970 }
77c9c6c2 3971 }
695a94b3
RS
3972
3973 /* Some ports use a loop to copy large arguments onto the stack.
3974 Don't move anything outside such a loop. */
4b4bf941 3975 if (LABEL_P (insn))
695a94b3 3976 break;
77c9c6c2
RK
3977 }
3978
77c9c6c2 3979 /* Write the remaining insns followed by the final copy. */
77c9c6c2
RK
3980 for (insn = insns; insn; insn = next)
3981 {
3982 next = NEXT_INSN (insn);
3983
3984 add_insn (insn);
3985 }
3986
3987 last = emit_move_insn (target, result);
7543f918 3988 set_dst_reg_note (last, REG_EQUAL, copy_rtx (equiv), target);
77c9c6c2 3989
e85427f9
BS
3990 if (final_dest != target)
3991 emit_move_insn (final_dest, target);
77c9c6c2 3992}
b55f62cc
RG
3993
3994void
3995emit_libcall_block (rtx insns, rtx target, rtx result, rtx equiv)
3996{
3997 emit_libcall_block_1 (insns, target, result, equiv, false);
3998}
77c9c6c2 3999\f
1c0290ea 4000/* Nonzero if we can perform a comparison of mode MODE straightforwardly.
1eb8759b
RH
4001 PURPOSE describes how this comparison will be used. CODE is the rtx
4002 comparison code we will be using.
4003
4004 ??? Actually, CODE is slightly weaker than that. A target is still
0c20a65f 4005 required to implement all of the normal bcc operations, but not
1eb8759b 4006 required to implement all (or any) of the unordered bcc operations. */
0c20a65f 4007
1c0290ea 4008int
0c20a65f
AJ
4009can_compare_p (enum rtx_code code, enum machine_mode mode,
4010 enum can_compare_purpose purpose)
b30f05db 4011{
c3c64f50
PB
4012 rtx test;
4013 test = gen_rtx_fmt_ee (code, mode, const0_rtx, const0_rtx);
b30f05db
BS
4014 do
4015 {
2ef6ce06 4016 enum insn_code icode;
c3c64f50 4017
1c0290ea 4018 if (purpose == ccp_jump
947131ba 4019 && (icode = optab_handler (cbranch_optab, mode)) != CODE_FOR_nothing
2ef6ce06 4020 && insn_operand_matches (icode, 0, test))
c3c64f50
PB
4021 return 1;
4022 if (purpose == ccp_store_flag
947131ba 4023 && (icode = optab_handler (cstore_optab, mode)) != CODE_FOR_nothing
2ef6ce06 4024 && insn_operand_matches (icode, 1, test))
c3c64f50 4025 return 1;
1c0290ea 4026 if (purpose == ccp_cmov
947131ba 4027 && optab_handler (cmov_optab, mode) != CODE_FOR_nothing)
1c0290ea 4028 return 1;
c3c64f50 4029
b30f05db 4030 mode = GET_MODE_WIDER_MODE (mode);
c3c64f50 4031 PUT_MODE (test, mode);
1c0290ea
BS
4032 }
4033 while (mode != VOIDmode);
b30f05db
BS
4034
4035 return 0;
4036}
4037
4038/* This function is called when we are going to emit a compare instruction that
4039 compares the values found in *PX and *PY, using the rtl operator COMPARISON.
4040
4041 *PMODE is the mode of the inputs (in case they are const_int).
4042 *PUNSIGNEDP nonzero says that the operands are unsigned;
f90b7a5a 4043 this matters if they need to be widened (as given by METHODS).
77c9c6c2 4044
a06ef755 4045 If they have mode BLKmode, then SIZE specifies the size of both operands.
77c9c6c2 4046
b30f05db
BS
4047 This function performs all the setup necessary so that the caller only has
4048 to emit a single comparison insn. This setup can involve doing a BLKmode
4049 comparison or emitting a library call to perform the comparison if no insn
4050 is available to handle it.
4051 The values which are passed in through pointers can be modified; the caller
0e61db61
NS
4052 should perform the comparison on the modified values. Constant
4053 comparisons must have already been folded. */
77c9c6c2 4054
a06ef755 4055static void
f90b7a5a
PB
4056prepare_cmp_insn (rtx x, rtx y, enum rtx_code comparison, rtx size,
4057 int unsignedp, enum optab_methods methods,
4058 rtx *ptest, enum machine_mode *pmode)
77c9c6c2 4059{
b30f05db 4060 enum machine_mode mode = *pmode;
f90b7a5a
PB
4061 rtx libfunc, test;
4062 enum machine_mode cmp_mode;
4063 enum mode_class mclass;
4064
4065 /* The other methods are not needed. */
4066 gcc_assert (methods == OPTAB_DIRECT || methods == OPTAB_WIDEN
4067 || methods == OPTAB_LIB_WIDEN);
77c9c6c2 4068
5e8d1826
PB
4069 /* If we are optimizing, force expensive constants into a register. */
4070 if (CONSTANT_P (x) && optimize
68f932c4 4071 && (rtx_cost (x, COMPARE, 0, optimize_insn_for_speed_p ())
5e8d1826
PB
4072 > COSTS_N_INSNS (1)))
4073 x = force_reg (mode, x);
4074
4075 if (CONSTANT_P (y) && optimize
68f932c4 4076 && (rtx_cost (y, COMPARE, 1, optimize_insn_for_speed_p ())
5e8d1826
PB
4077 > COSTS_N_INSNS (1)))
4078 y = force_reg (mode, y);
4079
362cc3d4 4080#ifdef HAVE_cc0
0e61db61
NS
4081 /* Make sure if we have a canonical comparison. The RTL
4082 documentation states that canonical comparisons are required only
4083 for targets which have cc0. */
e3feb571 4084 gcc_assert (!CONSTANT_P (x) || CONSTANT_P (y));
362cc3d4
MH
4085#endif
4086
77c9c6c2
RK
4087 /* Don't let both operands fail to indicate the mode. */
4088 if (GET_MODE (x) == VOIDmode && GET_MODE (y) == VOIDmode)
4089 x = force_reg (mode, x);
f90b7a5a
PB
4090 if (mode == VOIDmode)
4091 mode = GET_MODE (x) != VOIDmode ? GET_MODE (x) : GET_MODE (y);
77c9c6c2
RK
4092
4093 /* Handle all BLKmode compares. */
4094
4095 if (mode == BLKmode)
4096 {
f90b7a5a 4097 enum machine_mode result_mode;
118355a0
ZW
4098 enum insn_code cmp_code;
4099 tree length_type;
4100 rtx libfunc;
b30f05db 4101 rtx result;
118355a0 4102 rtx opalign
f4dc10d1 4103 = GEN_INT (MIN (MEM_ALIGN (x), MEM_ALIGN (y)) / BITS_PER_UNIT);
b30f05db 4104
e3feb571 4105 gcc_assert (size);
118355a0 4106
118355a0
ZW
4107 /* Try to use a memory block compare insn - either cmpstr
4108 or cmpmem will do. */
4109 for (cmp_mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
4110 cmp_mode != VOIDmode;
4111 cmp_mode = GET_MODE_WIDER_MODE (cmp_mode))
358b8f01 4112 {
f9621cc4 4113 cmp_code = direct_optab_handler (cmpmem_optab, cmp_mode);
118355a0 4114 if (cmp_code == CODE_FOR_nothing)
f9621cc4 4115 cmp_code = direct_optab_handler (cmpstr_optab, cmp_mode);
40c1d5f8 4116 if (cmp_code == CODE_FOR_nothing)
f9621cc4 4117 cmp_code = direct_optab_handler (cmpstrn_optab, cmp_mode);
118355a0
ZW
4118 if (cmp_code == CODE_FOR_nothing)
4119 continue;
4120
4121 /* Must make sure the size fits the insn's mode. */
481683e1 4122 if ((CONST_INT_P (size)
118355a0
ZW
4123 && INTVAL (size) >= (1 << GET_MODE_BITSIZE (cmp_mode)))
4124 || (GET_MODE_BITSIZE (GET_MODE (size))
4125 > GET_MODE_BITSIZE (cmp_mode)))
4126 continue;
4127
4128 result_mode = insn_data[cmp_code].operand[0].mode;
358b8f01 4129 result = gen_reg_rtx (result_mode);
118355a0
ZW
4130 size = convert_to_mode (cmp_mode, size, 1);
4131 emit_insn (GEN_FCN (cmp_code) (result, x, y, size, opalign));
4132
f90b7a5a
PB
4133 *ptest = gen_rtx_fmt_ee (comparison, VOIDmode, result, const0_rtx);
4134 *pmode = result_mode;
118355a0 4135 return;
77c9c6c2 4136 }
118355a0 4137
f90b7a5a
PB
4138 if (methods != OPTAB_LIB && methods != OPTAB_LIB_WIDEN)
4139 goto fail;
4140
8f99553f 4141 /* Otherwise call a library function, memcmp. */
118355a0
ZW
4142 libfunc = memcmp_libfunc;
4143 length_type = sizetype;
118355a0
ZW
4144 result_mode = TYPE_MODE (integer_type_node);
4145 cmp_mode = TYPE_MODE (length_type);
4146 size = convert_to_mode (TYPE_MODE (length_type), size,
8df83eae 4147 TYPE_UNSIGNED (length_type));
118355a0 4148
84b8030f 4149 result = emit_library_call_value (libfunc, 0, LCT_PURE,
118355a0
ZW
4150 result_mode, 3,
4151 XEXP (x, 0), Pmode,
4152 XEXP (y, 0), Pmode,
4153 size, cmp_mode);
ae5f0678
UB
4154 x = result;
4155 y = const0_rtx;
4156 mode = result_mode;
4157 methods = OPTAB_LIB_WIDEN;
4158 unsignedp = false;
77c9c6c2
RK
4159 }
4160
27ab3e91
RH
4161 /* Don't allow operands to the compare to trap, as that can put the
4162 compare and branch in different basic blocks. */
8f4f502f 4163 if (cfun->can_throw_non_call_exceptions)
27ab3e91
RH
4164 {
4165 if (may_trap_p (x))
4166 x = force_reg (mode, x);
4167 if (may_trap_p (y))
4168 y = force_reg (mode, y);
4169 }
4170
4a77c72b
PB
4171 if (GET_MODE_CLASS (mode) == MODE_CC)
4172 {
f90b7a5a
PB
4173 gcc_assert (can_compare_p (comparison, CCmode, ccp_jump));
4174 *ptest = gen_rtx_fmt_ee (comparison, VOIDmode, x, y);
4a77c72b
PB
4175 return;
4176 }
77c9c6c2 4177
f90b7a5a
PB
4178 mclass = GET_MODE_CLASS (mode);
4179 test = gen_rtx_fmt_ee (comparison, VOIDmode, x, y);
4180 cmp_mode = mode;
4181 do
4182 {
4183 enum insn_code icode;
947131ba 4184 icode = optab_handler (cbranch_optab, cmp_mode);
f90b7a5a 4185 if (icode != CODE_FOR_nothing
2ef6ce06 4186 && insn_operand_matches (icode, 0, test))
f90b7a5a
PB
4187 {
4188 rtx last = get_last_insn ();
4189 rtx op0 = prepare_operand (icode, x, 1, mode, cmp_mode, unsignedp);
4190 rtx op1 = prepare_operand (icode, y, 2, mode, cmp_mode, unsignedp);
4191 if (op0 && op1
2ef6ce06
RS
4192 && insn_operand_matches (icode, 1, op0)
4193 && insn_operand_matches (icode, 2, op1))
f90b7a5a
PB
4194 {
4195 XEXP (test, 0) = op0;
4196 XEXP (test, 1) = op1;
4197 *ptest = test;
4198 *pmode = cmp_mode;
4199 return;
4200 }
4201 delete_insns_since (last);
4202 }
4203
4204 if (methods == OPTAB_DIRECT || !CLASS_HAS_WIDER_MODES_P (mclass))
4205 break;
4206 cmp_mode = GET_MODE_WIDER_MODE (cmp_mode);
4207 }
4208 while (cmp_mode != VOIDmode);
4209
4210 if (methods != OPTAB_LIB_WIDEN)
4211 goto fail;
4212
4213 if (!SCALAR_FLOAT_MODE_P (mode))
77c9c6c2 4214 {
9725066d 4215 rtx result;
0a81f074 4216 enum machine_mode ret_mode;
9725066d 4217
f90b7a5a
PB
4218 /* Handle a libcall just for the mode we are using. */
4219 libfunc = optab_libfunc (cmp_optab, mode);
4220 gcc_assert (libfunc);
4221
77c9c6c2
RK
4222 /* If we want unsigned, and this mode has a distinct unsigned
4223 comparison routine, use that. */
8a33f100
JH
4224 if (unsignedp)
4225 {
ba8a73e9
EB
4226 rtx ulibfunc = optab_libfunc (ucmp_optab, mode);
4227 if (ulibfunc)
4228 libfunc = ulibfunc;
8a33f100 4229 }
77c9c6c2 4230
0a81f074 4231 ret_mode = targetm.libgcc_cmp_return_mode ();
84b8030f 4232 result = emit_library_call_value (libfunc, NULL_RTX, LCT_CONST,
0a81f074 4233 ret_mode, 2, x, mode, y, mode);
9725066d 4234
f34312c2
CD
4235 /* There are two kinds of comparison routines. Biased routines
4236 return 0/1/2, and unbiased routines return -1/0/1. Other parts
4237 of gcc expect that the comparison operation is equivalent
b8698a0f 4238 to the modified comparison. For signed comparisons compare the
f34312c2
CD
4239 result against 1 in the biased case, and zero in the unbiased
4240 case. For unsigned comparisons always compare against 1 after
917f1b7e 4241 biasing the unbiased result by adding 1. This gives us a way to
f64398b5
JB
4242 represent LTU.
4243 The comparisons in the fixed-point helper library are always
4244 biased. */
f90b7a5a
PB
4245 x = result;
4246 y = const1_rtx;
f34312c2 4247
f64398b5 4248 if (!TARGET_LIB_INT_CMP_BIASED && !ALL_FIXED_POINT_MODE_P (mode))
b3f8d95d 4249 {
f90b7a5a 4250 if (unsignedp)
0a81f074 4251 x = plus_constant (ret_mode, result, 1);
f34312c2 4252 else
f90b7a5a 4253 y = const0_rtx;
b3f8d95d 4254 }
f90b7a5a
PB
4255
4256 *pmode = word_mode;
4257 prepare_cmp_insn (x, y, comparison, NULL_RTX, unsignedp, methods,
4258 ptest, pmode);
77c9c6c2 4259 }
b8698a0f 4260 else
f90b7a5a 4261 prepare_float_lib_cmp (x, y, comparison, ptest, pmode);
77c9c6c2 4262
f90b7a5a
PB
4263 return;
4264
4265 fail:
4266 *ptest = NULL_RTX;
77c9c6c2
RK
4267}
4268
b30f05db
BS
4269/* Before emitting an insn with code ICODE, make sure that X, which is going
4270 to be used for operand OPNUM of the insn, is converted from mode MODE to
4fe9b91c 4271 WIDER_MODE (UNSIGNEDP determines whether it is an unsigned conversion), and
b30f05db 4272 that it is accepted by the operand predicate. Return the new value. */
749a2da1 4273
f90b7a5a 4274rtx
2ef6ce06 4275prepare_operand (enum insn_code icode, rtx x, int opnum, enum machine_mode mode,
0c20a65f 4276 enum machine_mode wider_mode, int unsignedp)
b30f05db 4277{
b30f05db
BS
4278 if (mode != wider_mode)
4279 x = convert_modes (wider_mode, mode, x, unsignedp);
4280
2ef6ce06 4281 if (!insn_operand_matches (icode, opnum, x))
d893ccde 4282 {
ef4375b2 4283 if (reload_completed)
d893ccde 4284 return NULL_RTX;
2ef6ce06 4285 x = copy_to_mode_reg (insn_data[(int) icode].operand[opnum].mode, x);
d893ccde
RH
4286 }
4287
b30f05db
BS
4288 return x;
4289}
4290
4291/* Subroutine of emit_cmp_and_jump_insns; this function is called when we know
f90b7a5a 4292 we can do the branch. */
b30f05db
BS
4293
4294static void
a4da41e1 4295emit_cmp_and_jump_insn_1 (rtx test, enum machine_mode mode, rtx label, int prob)
b30f05db 4296{
f90b7a5a
PB
4297 enum machine_mode optab_mode;
4298 enum mode_class mclass;
4299 enum insn_code icode;
a4da41e1 4300 rtx insn;
b30f05db 4301
f90b7a5a
PB
4302 mclass = GET_MODE_CLASS (mode);
4303 optab_mode = (mclass == MODE_CC) ? CCmode : mode;
947131ba 4304 icode = optab_handler (cbranch_optab, optab_mode);
8127d0e0 4305
f90b7a5a 4306 gcc_assert (icode != CODE_FOR_nothing);
2ef6ce06 4307 gcc_assert (insn_operand_matches (icode, 0, test));
a4da41e1
ER
4308 insn = emit_jump_insn (GEN_FCN (icode) (test, XEXP (test, 0),
4309 XEXP (test, 1), label));
4310 if (prob != -1
0a6a6ac9 4311 && profile_status_for_fn (cfun) != PROFILE_ABSENT
a4da41e1
ER
4312 && insn
4313 && JUMP_P (insn)
0f379f76
ER
4314 && any_condjump_p (insn)
4315 && !find_reg_note (insn, REG_BR_PROB, 0))
e5af9ddd 4316 add_int_reg_note (insn, REG_BR_PROB, prob);
b30f05db
BS
4317}
4318
362cc3d4
MH
4319/* Generate code to compare X with Y so that the condition codes are
4320 set and to jump to LABEL if the condition is true. If X is a
4321 constant and Y is not a constant, then the comparison is swapped to
4322 ensure that the comparison RTL has the canonical form.
4323
c5d5d461 4324 UNSIGNEDP nonzero says that X and Y are unsigned; this matters if they
f90b7a5a
PB
4325 need to be widened. UNSIGNEDP is also used to select the proper
4326 branch condition code.
362cc3d4 4327
a06ef755 4328 If X and Y have mode BLKmode, then SIZE specifies the size of both X and Y.
362cc3d4 4329
c5d5d461
JL
4330 MODE is the mode of the inputs (in case they are const_int).
4331
f90b7a5a
PB
4332 COMPARISON is the rtl operator to compare with (EQ, NE, GT, etc.).
4333 It will be potentially converted into an unsigned variant based on
a4da41e1
ER
4334 UNSIGNEDP to select a proper jump instruction.
4335
4336 PROB is the probability of jumping to LABEL. */
362cc3d4
MH
4337
4338void
0c20a65f 4339emit_cmp_and_jump_insns (rtx x, rtx y, enum rtx_code comparison, rtx size,
a4da41e1
ER
4340 enum machine_mode mode, int unsignedp, rtx label,
4341 int prob)
362cc3d4 4342{
8c9864f3 4343 rtx op0 = x, op1 = y;
f90b7a5a 4344 rtx test;
8c9864f3
JH
4345
4346 /* Swap operands and condition to ensure canonical RTL. */
45475a3f
PB
4347 if (swap_commutative_operands_p (x, y)
4348 && can_compare_p (swap_condition (comparison), mode, ccp_jump))
362cc3d4 4349 {
8c9864f3
JH
4350 op0 = y, op1 = x;
4351 comparison = swap_condition (comparison);
362cc3d4 4352 }
0ca40216 4353
45475a3f
PB
4354 /* If OP0 is still a constant, then both X and Y must be constants
4355 or the opposite comparison is not supported. Force X into a register
4356 to create canonical RTL. */
0ca40216
JL
4357 if (CONSTANT_P (op0))
4358 op0 = force_reg (mode, op0);
0ca40216 4359
c5d5d461
JL
4360 if (unsignedp)
4361 comparison = unsigned_condition (comparison);
a06ef755 4362
f90b7a5a
PB
4363 prepare_cmp_insn (op0, op1, comparison, size, unsignedp, OPTAB_LIB_WIDEN,
4364 &test, &mode);
a4da41e1 4365 emit_cmp_and_jump_insn_1 (test, mode, label, prob);
b30f05db
BS
4366}
4367
77c9c6c2
RK
4368\f
4369/* Emit a library call comparison between floating point X and Y.
4370 COMPARISON is the rtl operator to compare with (EQ, NE, GT, etc.). */
4371
c5c60e15 4372static void
f90b7a5a
PB
4373prepare_float_lib_cmp (rtx x, rtx y, enum rtx_code comparison,
4374 rtx *ptest, enum machine_mode *pmode)
77c9c6c2 4375{
c9034561 4376 enum rtx_code swapped = swap_condition (comparison);
b3f8d95d 4377 enum rtx_code reversed = reverse_condition_maybe_unordered (comparison);
c9034561 4378 enum machine_mode orig_mode = GET_MODE (x);
7fecf2c7 4379 enum machine_mode mode, cmp_mode;
6597fd0b 4380 rtx true_rtx, false_rtx;
37bf20ee 4381 rtx value, target, insns, equiv;
0a300065 4382 rtx libfunc = 0;
b3f8d95d 4383 bool reversed_p = false;
7fecf2c7 4384 cmp_mode = targetm.libgcc_cmp_return_mode ();
77c9c6c2 4385
86556d87
BE
4386 for (mode = orig_mode;
4387 mode != VOIDmode;
4388 mode = GET_MODE_WIDER_MODE (mode))
77c9c6c2 4389 {
19b5fafb
RH
4390 if (code_to_optab (comparison)
4391 && (libfunc = optab_libfunc (code_to_optab (comparison), mode)))
c9034561 4392 break;
77c9c6c2 4393
19b5fafb
RH
4394 if (code_to_optab (swapped)
4395 && (libfunc = optab_libfunc (code_to_optab (swapped), mode)))
77c9c6c2 4396 {
c9034561
ZW
4397 rtx tmp;
4398 tmp = x; x = y; y = tmp;
4399 comparison = swapped;
4400 break;
77c9c6c2 4401 }
77c9c6c2 4402
19b5fafb
RH
4403 if (code_to_optab (reversed)
4404 && (libfunc = optab_libfunc (code_to_optab (reversed), mode)))
b3f8d95d
MM
4405 {
4406 comparison = reversed;
4407 reversed_p = true;
4408 break;
4409 }
4410 }
5906d013 4411
e3feb571 4412 gcc_assert (mode != VOIDmode);
0a300065 4413
c9034561
ZW
4414 if (mode != orig_mode)
4415 {
4416 x = convert_to_mode (mode, x, 0);
4417 y = convert_to_mode (mode, y, 0);
4418 }
4419
17796a89
RS
4420 /* Attach a REG_EQUAL note describing the semantics of the libcall to
4421 the RTL. The allows the RTL optimizers to delete the libcall if the
4422 condition can be determined at compile-time. */
6597fd0b
PB
4423 if (comparison == UNORDERED
4424 || FLOAT_LIB_COMPARE_RETURNS_BOOL (mode, comparison))
4425 {
4426 true_rtx = const_true_rtx;
4427 false_rtx = const0_rtx;
4428 }
4429 else
4430 {
4431 switch (comparison)
4432 {
4433 case EQ:
4434 true_rtx = const0_rtx;
4435 false_rtx = const_true_rtx;
4436 break;
4437
4438 case NE:
4439 true_rtx = const_true_rtx;
4440 false_rtx = const0_rtx;
4441 break;
4442
4443 case GT:
4444 true_rtx = const1_rtx;
4445 false_rtx = const0_rtx;
4446 break;
4447
4448 case GE:
4449 true_rtx = const0_rtx;
4450 false_rtx = constm1_rtx;
4451 break;
4452
4453 case LT:
4454 true_rtx = constm1_rtx;
4455 false_rtx = const0_rtx;
4456 break;
4457
4458 case LE:
4459 true_rtx = const0_rtx;
4460 false_rtx = const1_rtx;
4461 break;
4462
4463 default:
4464 gcc_unreachable ();
4465 }
4466 }
4467
17796a89
RS
4468 if (comparison == UNORDERED)
4469 {
7fecf2c7
AP
4470 rtx temp = simplify_gen_relational (NE, cmp_mode, mode, x, x);
4471 equiv = simplify_gen_relational (NE, cmp_mode, mode, y, y);
4472 equiv = simplify_gen_ternary (IF_THEN_ELSE, cmp_mode, cmp_mode,
17796a89
RS
4473 temp, const_true_rtx, equiv);
4474 }
4475 else
4476 {
7fecf2c7 4477 equiv = simplify_gen_relational (comparison, cmp_mode, mode, x, y);
17796a89 4478 if (! FLOAT_LIB_COMPARE_RETURNS_BOOL (mode, comparison))
6597fd0b
PB
4479 equiv = simplify_gen_ternary (IF_THEN_ELSE, cmp_mode, cmp_mode,
4480 equiv, true_rtx, false_rtx);
bd831d5c 4481 }
37bf20ee
RS
4482
4483 start_sequence ();
4484 value = emit_library_call_value (libfunc, NULL_RTX, LCT_CONST,
7fecf2c7 4485 cmp_mode, 2, x, mode, y, mode);
37bf20ee
RS
4486 insns = get_insns ();
4487 end_sequence ();
4488
7fecf2c7 4489 target = gen_reg_rtx (cmp_mode);
37bf20ee
RS
4490 emit_libcall_block (insns, target, value, equiv);
4491
c9034561 4492 if (comparison == UNORDERED
6597fd0b
PB
4493 || FLOAT_LIB_COMPARE_RETURNS_BOOL (mode, comparison)
4494 || reversed_p)
4495 *ptest = gen_rtx_fmt_ee (reversed_p ? EQ : NE, VOIDmode, target, false_rtx);
4496 else
4497 *ptest = gen_rtx_fmt_ee (comparison, VOIDmode, target, const0_rtx);
c9034561 4498
7fecf2c7 4499 *pmode = cmp_mode;
77c9c6c2
RK
4500}
4501\f
4502/* Generate code to indirectly jump to a location given in the rtx LOC. */
4503
4504void
0c20a65f 4505emit_indirect_jump (rtx loc)
77c9c6c2 4506{
a5c7d693 4507 struct expand_operand ops[1];
77c9c6c2 4508
a5c7d693
RS
4509 create_address_operand (&ops[0], loc);
4510 expand_jump_insn (CODE_FOR_indirect_jump, 1, ops);
9649fb4d 4511 emit_barrier ();
77c9c6c2
RK
4512}
4513\f
49c4584c
DE
4514#ifdef HAVE_conditional_move
4515
4516/* Emit a conditional move instruction if the machine supports one for that
4517 condition and machine mode.
4518
4519 OP0 and OP1 are the operands that should be compared using CODE. CMODE is
4520 the mode to use should they be constants. If it is VOIDmode, they cannot
4521 both be constants.
4522
4523 OP2 should be stored in TARGET if the comparison is true, otherwise OP3
4524 should be stored there. MODE is the mode to use should they be constants.
4525 If it is VOIDmode, they cannot both be constants.
4526
4527 The result is either TARGET (perhaps modified) or NULL_RTX if the operation
4528 is not supported. */
4529
4530rtx
0c20a65f
AJ
4531emit_conditional_move (rtx target, enum rtx_code code, rtx op0, rtx op1,
4532 enum machine_mode cmode, rtx op2, rtx op3,
4533 enum machine_mode mode, int unsignedp)
49c4584c 4534{
a5c7d693 4535 rtx tem, comparison, last;
49c4584c 4536 enum insn_code icode;
e5c56fd9 4537 enum rtx_code reversed;
49c4584c
DE
4538
4539 /* If one operand is constant, make it the second one. Only do this
4540 if the other operand is not constant as well. */
4541
e5c56fd9 4542 if (swap_commutative_operands_p (op0, op1))
49c4584c
DE
4543 {
4544 tem = op0;
4545 op0 = op1;
4546 op1 = tem;
4547 code = swap_condition (code);
4548 }
4549
c5c76735
JL
4550 /* get_condition will prefer to generate LT and GT even if the old
4551 comparison was against zero, so undo that canonicalization here since
4552 comparisons against zero are cheaper. */
87d9741e 4553 if (code == LT && op1 == const1_rtx)
c5c76735 4554 code = LE, op1 = const0_rtx;
87d9741e 4555 else if (code == GT && op1 == constm1_rtx)
c5c76735
JL
4556 code = GE, op1 = const0_rtx;
4557
49c4584c
DE
4558 if (cmode == VOIDmode)
4559 cmode = GET_MODE (op0);
4560
e5c56fd9
JH
4561 if (swap_commutative_operands_p (op2, op3)
4562 && ((reversed = reversed_comparison_code_parts (code, op0, op1, NULL))
4563 != UNKNOWN))
49c4584c
DE
4564 {
4565 tem = op2;
4566 op2 = op3;
4567 op3 = tem;
e5c56fd9 4568 code = reversed;
49c4584c
DE
4569 }
4570
4571 if (mode == VOIDmode)
4572 mode = GET_MODE (op2);
4573
f9621cc4 4574 icode = direct_optab_handler (movcc_optab, mode);
49c4584c
DE
4575
4576 if (icode == CODE_FOR_nothing)
4577 return 0;
4578
ad76cef8 4579 if (!target)
49c4584c
DE
4580 target = gen_reg_rtx (mode);
4581
f90b7a5a
PB
4582 code = unsignedp ? unsigned_condition (code) : code;
4583 comparison = simplify_gen_relational (code, VOIDmode, cmode, op0, op1);
49c4584c 4584
144a5f9d
JL
4585 /* We can get const0_rtx or const_true_rtx in some circumstances. Just
4586 return NULL and let the caller figure out how best to deal with this
4587 situation. */
f90b7a5a 4588 if (!COMPARISON_P (comparison))
144a5f9d 4589 return NULL_RTX;
0c20a65f 4590
7f2f0a01
JJ
4591 saved_pending_stack_adjust save;
4592 save_pending_stack_adjust (&save);
a5c7d693 4593 last = get_last_insn ();
7f2f0a01 4594 do_pending_stack_adjust ();
f90b7a5a
PB
4595 prepare_cmp_insn (XEXP (comparison, 0), XEXP (comparison, 1),
4596 GET_CODE (comparison), NULL_RTX, unsignedp, OPTAB_WIDEN,
4597 &comparison, &cmode);
a5c7d693 4598 if (comparison)
f90b7a5a 4599 {
a5c7d693 4600 struct expand_operand ops[4];
49c4584c 4601
a5c7d693
RS
4602 create_output_operand (&ops[0], target, mode);
4603 create_fixed_operand (&ops[1], comparison);
4604 create_input_operand (&ops[2], op2, mode);
4605 create_input_operand (&ops[3], op3, mode);
4606 if (maybe_expand_insn (icode, 4, ops))
4607 {
4608 if (ops[0].value != target)
4609 convert_move (target, ops[0].value, false);
4610 return target;
4611 }
4612 }
4613 delete_insns_since (last);
7f2f0a01 4614 restore_pending_stack_adjust (&save);
a5c7d693 4615 return NULL_RTX;
49c4584c
DE
4616}
4617
40f03658 4618/* Return nonzero if a conditional move of mode MODE is supported.
49c4584c
DE
4619
4620 This function is for combine so it can tell whether an insn that looks
4621 like a conditional move is actually supported by the hardware. If we
4622 guess wrong we lose a bit on optimization, but that's it. */
4623/* ??? sparc64 supports conditionally moving integers values based on fp
4624 comparisons, and vice versa. How do we handle them? */
4625
4626int
0c20a65f 4627can_conditionally_move_p (enum machine_mode mode)
49c4584c 4628{
f9621cc4 4629 if (direct_optab_handler (movcc_optab, mode) != CODE_FOR_nothing)
49c4584c
DE
4630 return 1;
4631
4632 return 0;
4633}
4634
4635#endif /* HAVE_conditional_move */
068f5dea
JH
4636
4637/* Emit a conditional addition instruction if the machine supports one for that
4638 condition and machine mode.
4639
4640 OP0 and OP1 are the operands that should be compared using CODE. CMODE is
4641 the mode to use should they be constants. If it is VOIDmode, they cannot
4642 both be constants.
4643
5285c21c 4644 OP2 should be stored in TARGET if the comparison is false, otherwise OP2+OP3
068f5dea
JH
4645 should be stored there. MODE is the mode to use should they be constants.
4646 If it is VOIDmode, they cannot both be constants.
4647
4648 The result is either TARGET (perhaps modified) or NULL_RTX if the operation
4649 is not supported. */
4650
4651rtx
0c20a65f
AJ
4652emit_conditional_add (rtx target, enum rtx_code code, rtx op0, rtx op1,
4653 enum machine_mode cmode, rtx op2, rtx op3,
4654 enum machine_mode mode, int unsignedp)
068f5dea 4655{
a5c7d693 4656 rtx tem, comparison, last;
068f5dea 4657 enum insn_code icode;
068f5dea
JH
4658
4659 /* If one operand is constant, make it the second one. Only do this
4660 if the other operand is not constant as well. */
4661
4662 if (swap_commutative_operands_p (op0, op1))
4663 {
4664 tem = op0;
4665 op0 = op1;
4666 op1 = tem;
4667 code = swap_condition (code);
4668 }
4669
4670 /* get_condition will prefer to generate LT and GT even if the old
4671 comparison was against zero, so undo that canonicalization here since
4672 comparisons against zero are cheaper. */
87d9741e 4673 if (code == LT && op1 == const1_rtx)
068f5dea 4674 code = LE, op1 = const0_rtx;
87d9741e 4675 else if (code == GT && op1 == constm1_rtx)
068f5dea
JH
4676 code = GE, op1 = const0_rtx;
4677
4678 if (cmode == VOIDmode)
4679 cmode = GET_MODE (op0);
4680
068f5dea
JH
4681 if (mode == VOIDmode)
4682 mode = GET_MODE (op2);
4683
947131ba 4684 icode = optab_handler (addcc_optab, mode);
068f5dea
JH
4685
4686 if (icode == CODE_FOR_nothing)
4687 return 0;
4688
ad76cef8 4689 if (!target)
068f5dea
JH
4690 target = gen_reg_rtx (mode);
4691
f90b7a5a
PB
4692 code = unsignedp ? unsigned_condition (code) : code;
4693 comparison = simplify_gen_relational (code, VOIDmode, cmode, op0, op1);
068f5dea 4694
068f5dea
JH
4695 /* We can get const0_rtx or const_true_rtx in some circumstances. Just
4696 return NULL and let the caller figure out how best to deal with this
4697 situation. */
f90b7a5a 4698 if (!COMPARISON_P (comparison))
068f5dea 4699 return NULL_RTX;
0c20a65f 4700
f90b7a5a 4701 do_pending_stack_adjust ();
a5c7d693 4702 last = get_last_insn ();
f90b7a5a
PB
4703 prepare_cmp_insn (XEXP (comparison, 0), XEXP (comparison, 1),
4704 GET_CODE (comparison), NULL_RTX, unsignedp, OPTAB_WIDEN,
4705 &comparison, &cmode);
a5c7d693 4706 if (comparison)
f90b7a5a 4707 {
a5c7d693 4708 struct expand_operand ops[4];
068f5dea 4709
a5c7d693
RS
4710 create_output_operand (&ops[0], target, mode);
4711 create_fixed_operand (&ops[1], comparison);
4712 create_input_operand (&ops[2], op2, mode);
4713 create_input_operand (&ops[3], op3, mode);
4714 if (maybe_expand_insn (icode, 4, ops))
4715 {
4716 if (ops[0].value != target)
4717 convert_move (target, ops[0].value, false);
4718 return target;
4719 }
4720 }
4721 delete_insns_since (last);
4722 return NULL_RTX;
068f5dea 4723}
49c4584c 4724\f
0913e4b4
AO
4725/* These functions attempt to generate an insn body, rather than
4726 emitting the insn, but if the gen function already emits them, we
ad76cef8 4727 make no attempt to turn them back into naked patterns. */
77c9c6c2
RK
4728
4729/* Generate and return an insn body to add Y to X. */
4730
4731rtx
0c20a65f 4732gen_add2_insn (rtx x, rtx y)
77c9c6c2 4733{
2ef6ce06 4734 enum insn_code icode = optab_handler (add_optab, GET_MODE (x));
77c9c6c2 4735
2ef6ce06
RS
4736 gcc_assert (insn_operand_matches (icode, 0, x));
4737 gcc_assert (insn_operand_matches (icode, 1, x));
4738 gcc_assert (insn_operand_matches (icode, 2, y));
77c9c6c2 4739
e3feb571 4740 return GEN_FCN (icode) (x, x, y);
77c9c6c2
RK
4741}
4742
e78d8e51
ZW
4743/* Generate and return an insn body to add r1 and c,
4744 storing the result in r0. */
8a33f100 4745
e78d8e51 4746rtx
0c20a65f 4747gen_add3_insn (rtx r0, rtx r1, rtx c)
e78d8e51 4748{
2ef6ce06 4749 enum insn_code icode = optab_handler (add_optab, GET_MODE (r0));
e78d8e51 4750
7e1a450d 4751 if (icode == CODE_FOR_nothing
2ef6ce06
RS
4752 || !insn_operand_matches (icode, 0, r0)
4753 || !insn_operand_matches (icode, 1, r1)
4754 || !insn_operand_matches (icode, 2, c))
e78d8e51
ZW
4755 return NULL_RTX;
4756
e3feb571 4757 return GEN_FCN (icode) (r0, r1, c);
e78d8e51
ZW
4758}
4759
77c9c6c2 4760int
0c20a65f 4761have_add2_insn (rtx x, rtx y)
77c9c6c2 4762{
2ef6ce06 4763 enum insn_code icode;
fb7e77d7 4764
e3feb571 4765 gcc_assert (GET_MODE (x) != VOIDmode);
fb7e77d7 4766
2ef6ce06 4767 icode = optab_handler (add_optab, GET_MODE (x));
fb7e77d7
TM
4768
4769 if (icode == CODE_FOR_nothing)
4770 return 0;
4771
2ef6ce06
RS
4772 if (!insn_operand_matches (icode, 0, x)
4773 || !insn_operand_matches (icode, 1, x)
4774 || !insn_operand_matches (icode, 2, y))
fb7e77d7
TM
4775 return 0;
4776
4777 return 1;
77c9c6c2
RK
4778}
4779
72a4ddf2
AK
4780/* Generate and return an insn body to add Y to X. */
4781
4782rtx
4783gen_addptr3_insn (rtx x, rtx y, rtx z)
4784{
4785 enum insn_code icode = optab_handler (addptr3_optab, GET_MODE (x));
4786
4787 gcc_assert (insn_operand_matches (icode, 0, x));
4788 gcc_assert (insn_operand_matches (icode, 1, y));
4789 gcc_assert (insn_operand_matches (icode, 2, z));
4790
4791 return GEN_FCN (icode) (x, y, z);
4792}
4793
4794/* Return true if the target implements an addptr pattern and X, Y,
4795 and Z are valid for the pattern predicates. */
4796
4797int
4798have_addptr3_insn (rtx x, rtx y, rtx z)
4799{
4800 enum insn_code icode;
4801
4802 gcc_assert (GET_MODE (x) != VOIDmode);
4803
4804 icode = optab_handler (addptr3_optab, GET_MODE (x));
4805
4806 if (icode == CODE_FOR_nothing)
4807 return 0;
4808
4809 if (!insn_operand_matches (icode, 0, x)
4810 || !insn_operand_matches (icode, 1, y)
4811 || !insn_operand_matches (icode, 2, z))
4812 return 0;
4813
4814 return 1;
4815}
4816
77c9c6c2
RK
4817/* Generate and return an insn body to subtract Y from X. */
4818
4819rtx
0c20a65f 4820gen_sub2_insn (rtx x, rtx y)
77c9c6c2 4821{
2ef6ce06 4822 enum insn_code icode = optab_handler (sub_optab, GET_MODE (x));
77c9c6c2 4823
2ef6ce06
RS
4824 gcc_assert (insn_operand_matches (icode, 0, x));
4825 gcc_assert (insn_operand_matches (icode, 1, x));
4826 gcc_assert (insn_operand_matches (icode, 2, y));
77c9c6c2 4827
e3feb571 4828 return GEN_FCN (icode) (x, x, y);
77c9c6c2
RK
4829}
4830
ef89d648
ZW
4831/* Generate and return an insn body to subtract r1 and c,
4832 storing the result in r0. */
8a33f100 4833
ef89d648 4834rtx
0c20a65f 4835gen_sub3_insn (rtx r0, rtx r1, rtx c)
ef89d648 4836{
2ef6ce06 4837 enum insn_code icode = optab_handler (sub_optab, GET_MODE (r0));
ef89d648 4838
7e1a450d 4839 if (icode == CODE_FOR_nothing
2ef6ce06
RS
4840 || !insn_operand_matches (icode, 0, r0)
4841 || !insn_operand_matches (icode, 1, r1)
4842 || !insn_operand_matches (icode, 2, c))
ef89d648
ZW
4843 return NULL_RTX;
4844
e3feb571 4845 return GEN_FCN (icode) (r0, r1, c);
ef89d648
ZW
4846}
4847
77c9c6c2 4848int
0c20a65f 4849have_sub2_insn (rtx x, rtx y)
77c9c6c2 4850{
2ef6ce06 4851 enum insn_code icode;
fb7e77d7 4852
e3feb571 4853 gcc_assert (GET_MODE (x) != VOIDmode);
fb7e77d7 4854
2ef6ce06 4855 icode = optab_handler (sub_optab, GET_MODE (x));
fb7e77d7
TM
4856
4857 if (icode == CODE_FOR_nothing)
4858 return 0;
4859
2ef6ce06
RS
4860 if (!insn_operand_matches (icode, 0, x)
4861 || !insn_operand_matches (icode, 1, x)
4862 || !insn_operand_matches (icode, 2, y))
fb7e77d7
TM
4863 return 0;
4864
4865 return 1;
77c9c6c2
RK
4866}
4867
e3654226 4868/* Generate the body of an instruction to copy Y into X.
2f937369 4869 It may be a list of insns, if one insn isn't enough. */
77c9c6c2
RK
4870
4871rtx
0c20a65f 4872gen_move_insn (rtx x, rtx y)
77c9c6c2 4873{
e3654226 4874 rtx seq;
77c9c6c2 4875
e3654226
RS
4876 start_sequence ();
4877 emit_move_insn_1 (x, y);
2f937369 4878 seq = get_insns ();
e3654226
RS
4879 end_sequence ();
4880 return seq;
77c9c6c2
RK
4881}
4882\f
34e56753
RS
4883/* Return the insn code used to extend FROM_MODE to TO_MODE.
4884 UNSIGNEDP specifies zero-extension instead of sign-extension. If
4885 no such operation exists, CODE_FOR_nothing will be returned. */
77c9c6c2 4886
34e56753 4887enum insn_code
0c20a65f
AJ
4888can_extend_p (enum machine_mode to_mode, enum machine_mode from_mode,
4889 int unsignedp)
77c9c6c2 4890{
85363ca0 4891 convert_optab tab;
6dd12198
SE
4892#ifdef HAVE_ptr_extend
4893 if (unsignedp < 0)
4894 return CODE_FOR_ptr_extend;
6dd12198 4895#endif
85363ca0
ZW
4896
4897 tab = unsignedp ? zext_optab : sext_optab;
947131ba 4898 return convert_optab_handler (tab, to_mode, from_mode);
77c9c6c2
RK
4899}
4900
4901/* Generate the body of an insn to extend Y (with mode MFROM)
4902 into X (with mode MTO). Do zero-extension if UNSIGNEDP is nonzero. */
4903
4904rtx
0c20a65f
AJ
4905gen_extend_insn (rtx x, rtx y, enum machine_mode mto,
4906 enum machine_mode mfrom, int unsignedp)
77c9c6c2 4907{
85363ca0
ZW
4908 enum insn_code icode = can_extend_p (mto, mfrom, unsignedp);
4909 return GEN_FCN (icode) (x, y);
77c9c6c2 4910}
77c9c6c2
RK
4911\f
4912/* can_fix_p and can_float_p say whether the target machine
4913 can directly convert a given fixed point type to
4914 a given floating point type, or vice versa.
4915 The returned value is the CODE_FOR_... value to use,
5d81dc5b 4916 or CODE_FOR_nothing if these modes cannot be directly converted.
77c9c6c2 4917
5d81dc5b 4918 *TRUNCP_PTR is set to 1 if it is necessary to output
77c9c6c2
RK
4919 an explicit FTRUNC insn before the fix insn; otherwise 0. */
4920
4921static enum insn_code
0c20a65f
AJ
4922can_fix_p (enum machine_mode fixmode, enum machine_mode fltmode,
4923 int unsignedp, int *truncp_ptr)
77c9c6c2 4924{
85363ca0
ZW
4925 convert_optab tab;
4926 enum insn_code icode;
4927
4928 tab = unsignedp ? ufixtrunc_optab : sfixtrunc_optab;
947131ba 4929 icode = convert_optab_handler (tab, fixmode, fltmode);
85363ca0
ZW
4930 if (icode != CODE_FOR_nothing)
4931 {
4932 *truncp_ptr = 0;
4933 return icode;
4934 }
77c9c6c2 4935
0e1d7f32
AH
4936 /* FIXME: This requires a port to define both FIX and FTRUNC pattern
4937 for this to work. We need to rework the fix* and ftrunc* patterns
4938 and documentation. */
85363ca0 4939 tab = unsignedp ? ufix_optab : sfix_optab;
947131ba 4940 icode = convert_optab_handler (tab, fixmode, fltmode);
85363ca0 4941 if (icode != CODE_FOR_nothing
947131ba 4942 && optab_handler (ftrunc_optab, fltmode) != CODE_FOR_nothing)
77c9c6c2
RK
4943 {
4944 *truncp_ptr = 1;
85363ca0 4945 return icode;
77c9c6c2 4946 }
85363ca0
ZW
4947
4948 *truncp_ptr = 0;
77c9c6c2
RK
4949 return CODE_FOR_nothing;
4950}
4951
ebeadd91 4952enum insn_code
0c20a65f
AJ
4953can_float_p (enum machine_mode fltmode, enum machine_mode fixmode,
4954 int unsignedp)
77c9c6c2 4955{
85363ca0
ZW
4956 convert_optab tab;
4957
4958 tab = unsignedp ? ufloat_optab : sfloat_optab;
947131ba 4959 return convert_optab_handler (tab, fltmode, fixmode);
77c9c6c2 4960}
9db8f45d
DP
4961
4962/* Function supportable_convert_operation
4963
4964 Check whether an operation represented by the code CODE is a
4965 convert operation that is supported by the target platform in
4966 vector form (i.e., when operating on arguments of type VECTYPE_IN
4967 producing a result of type VECTYPE_OUT).
4968
4969 Convert operations we currently support directly are FIX_TRUNC and FLOAT.
4970 This function checks if these operations are supported
4971 by the target platform either directly (via vector tree-codes), or via
4972 target builtins.
4973
4974 Output:
4975 - CODE1 is code of vector operation to be used when
4976 vectorizing the operation, if available.
4977 - DECL is decl of target builtin functions to be used
4978 when vectorizing the operation, if available. In this case,
4979 CODE1 is CALL_EXPR. */
4980
4981bool
4982supportable_convert_operation (enum tree_code code,
4983 tree vectype_out, tree vectype_in,
4984 tree *decl, enum tree_code *code1)
4985{
4986 enum machine_mode m1,m2;
4987 int truncp;
4988
4989 m1 = TYPE_MODE (vectype_out);
4990 m2 = TYPE_MODE (vectype_in);
4991
4992 /* First check if we can done conversion directly. */
4993 if ((code == FIX_TRUNC_EXPR
4994 && can_fix_p (m1,m2,TYPE_UNSIGNED (vectype_out), &truncp)
4995 != CODE_FOR_nothing)
4996 || (code == FLOAT_EXPR
4997 && can_float_p (m1,m2,TYPE_UNSIGNED (vectype_in))
4998 != CODE_FOR_nothing))
4999 {
5000 *code1 = code;
5001 return true;
5002 }
5003
5004 /* Now check for builtin. */
5005 if (targetm.vectorize.builtin_conversion
5006 && targetm.vectorize.builtin_conversion (code, vectype_out, vectype_in))
5007 {
5008 *code1 = CALL_EXPR;
5009 *decl = targetm.vectorize.builtin_conversion (code, vectype_out, vectype_in);
5010 return true;
5011 }
5012 return false;
5013}
5014
77c9c6c2
RK
5015\f
5016/* Generate code to convert FROM to floating point
34e56753 5017 and store in TO. FROM must be fixed point and not VOIDmode.
77c9c6c2
RK
5018 UNSIGNEDP nonzero means regard FROM as unsigned.
5019 Normally this is done by correcting the final value
5020 if it is negative. */
5021
5022void
0c20a65f 5023expand_float (rtx to, rtx from, int unsignedp)
77c9c6c2
RK
5024{
5025 enum insn_code icode;
b3694847 5026 rtx target = to;
77c9c6c2 5027 enum machine_mode fmode, imode;
d7735880 5028 bool can_do_signed = false;
77c9c6c2 5029
34e56753 5030 /* Crash now, because we won't be able to decide which mode to use. */
e3feb571 5031 gcc_assert (GET_MODE (from) != VOIDmode);
34e56753 5032
77c9c6c2
RK
5033 /* Look for an insn to do the conversion. Do it in the specified
5034 modes if possible; otherwise convert either input, output or both to
5035 wider mode. If the integer mode is wider than the mode of FROM,
5036 we can do the conversion signed even if the input is unsigned. */
5037
7bf0a593
AP
5038 for (fmode = GET_MODE (to); fmode != VOIDmode;
5039 fmode = GET_MODE_WIDER_MODE (fmode))
5040 for (imode = GET_MODE (from); imode != VOIDmode;
5041 imode = GET_MODE_WIDER_MODE (imode))
77c9c6c2
RK
5042 {
5043 int doing_unsigned = unsignedp;
5044
5ba02ca6 5045 if (fmode != GET_MODE (to)
69660a70 5046 && significand_size (fmode) < GET_MODE_PRECISION (GET_MODE (from)))
5ba02ca6
GK
5047 continue;
5048
77c9c6c2 5049 icode = can_float_p (fmode, imode, unsignedp);
d7735880
JM
5050 if (icode == CODE_FOR_nothing && unsignedp)
5051 {
5052 enum insn_code scode = can_float_p (fmode, imode, 0);
5053 if (scode != CODE_FOR_nothing)
5054 can_do_signed = true;
5055 if (imode != GET_MODE (from))
5056 icode = scode, doing_unsigned = 0;
5057 }
77c9c6c2
RK
5058
5059 if (icode != CODE_FOR_nothing)
5060 {
77c9c6c2
RK
5061 if (imode != GET_MODE (from))
5062 from = convert_to_mode (imode, from, unsignedp);
77c9c6c2
RK
5063
5064 if (fmode != GET_MODE (to))
5065 target = gen_reg_rtx (fmode);
5066
5067 emit_unop_insn (icode, target, from,
5068 doing_unsigned ? UNSIGNED_FLOAT : FLOAT);
5069
5070 if (target != to)
5071 convert_move (to, target, 0);
5072 return;
5073 }
7e1a450d 5074 }
77c9c6c2 5075
6ef9a246 5076 /* Unsigned integer, and no way to convert directly. Convert as signed,
cc8d36a1
UB
5077 then unconditionally adjust the result. */
5078 if (unsignedp && can_do_signed)
77c9c6c2
RK
5079 {
5080 rtx label = gen_label_rtx ();
5081 rtx temp;
5082 REAL_VALUE_TYPE offset;
5083
c95c47f3
PE
5084 /* Look for a usable floating mode FMODE wider than the source and at
5085 least as wide as the target. Using FMODE will avoid rounding woes
5086 with unsigned values greater than the signed maximum value. */
70864443 5087
c95c47f3
PE
5088 for (fmode = GET_MODE (to); fmode != VOIDmode;
5089 fmode = GET_MODE_WIDER_MODE (fmode))
69660a70 5090 if (GET_MODE_PRECISION (GET_MODE (from)) < GET_MODE_BITSIZE (fmode)
c95c47f3
PE
5091 && can_float_p (fmode, GET_MODE (from), 0) != CODE_FOR_nothing)
5092 break;
a48fb61b 5093
c95c47f3
PE
5094 if (fmode == VOIDmode)
5095 {
a48fb61b 5096 /* There is no such mode. Pretend the target is wide enough. */
c95c47f3 5097 fmode = GET_MODE (to);
a48fb61b 5098
0f41302f 5099 /* Avoid double-rounding when TO is narrower than FROM. */
a48fb61b 5100 if ((significand_size (fmode) + 1)
69660a70 5101 < GET_MODE_PRECISION (GET_MODE (from)))
a48fb61b
RK
5102 {
5103 rtx temp1;
5104 rtx neglabel = gen_label_rtx ();
5105
0c20a65f 5106 /* Don't use TARGET if it isn't a register, is a hard register,
70864443 5107 or is the wrong mode. */
f8cfc6aa 5108 if (!REG_P (target)
70864443
RK
5109 || REGNO (target) < FIRST_PSEUDO_REGISTER
5110 || GET_MODE (target) != fmode)
44f51d4a
RK
5111 target = gen_reg_rtx (fmode);
5112
a48fb61b
RK
5113 imode = GET_MODE (from);
5114 do_pending_stack_adjust ();
5115
5116 /* Test whether the sign bit is set. */
1c0290ea 5117 emit_cmp_and_jump_insns (from, const0_rtx, LT, NULL_RTX, imode,
a06ef755 5118 0, neglabel);
a48fb61b
RK
5119
5120 /* The sign bit is not set. Convert as signed. */
5121 expand_float (target, from, 0);
5122 emit_jump_insn (gen_jump (label));
2ad79487 5123 emit_barrier ();
a48fb61b
RK
5124
5125 /* The sign bit is set.
5126 Convert to a usable (positive signed) value by shifting right
5127 one bit, while remembering if a nonzero bit was shifted
5128 out; i.e., compute (from & 1) | (from >> 1). */
5129
5130 emit_label (neglabel);
5131 temp = expand_binop (imode, and_optab, from, const1_rtx,
70864443 5132 NULL_RTX, 1, OPTAB_LIB_WIDEN);
eb6c3df1 5133 temp1 = expand_shift (RSHIFT_EXPR, imode, from, 1, NULL_RTX, 1);
0c20a65f 5134 temp = expand_binop (imode, ior_optab, temp, temp1, temp, 1,
70864443 5135 OPTAB_LIB_WIDEN);
a48fb61b
RK
5136 expand_float (target, temp, 0);
5137
5138 /* Multiply by 2 to undo the shift above. */
a93738eb 5139 temp = expand_binop (fmode, add_optab, target, target,
7e1a450d 5140 target, 0, OPTAB_LIB_WIDEN);
a93738eb
RK
5141 if (temp != target)
5142 emit_move_insn (target, temp);
5143
a48fb61b
RK
5144 do_pending_stack_adjust ();
5145 emit_label (label);
5146 goto done;
5147 }
c95c47f3
PE
5148 }
5149
77c9c6c2
RK
5150 /* If we are about to do some arithmetic to correct for an
5151 unsigned operand, do it in a pseudo-register. */
5152
c95c47f3 5153 if (GET_MODE (to) != fmode
f8cfc6aa 5154 || !REG_P (to) || REGNO (to) < FIRST_PSEUDO_REGISTER)
c95c47f3 5155 target = gen_reg_rtx (fmode);
77c9c6c2
RK
5156
5157 /* Convert as signed integer to floating. */
5158 expand_float (target, from, 0);
5159
5160 /* If FROM is negative (and therefore TO is negative),
5161 correct its value by 2**bitwidth. */
5162
5163 do_pending_stack_adjust ();
c5d5d461 5164 emit_cmp_and_jump_insns (from, const0_rtx, GE, NULL_RTX, GET_MODE (from),
a06ef755 5165 0, label);
70864443 5166
0c20a65f 5167
69660a70 5168 real_2expN (&offset, GET_MODE_PRECISION (GET_MODE (from)), fmode);
c95c47f3 5169 temp = expand_binop (fmode, add_optab, target,
30d88916 5170 CONST_DOUBLE_FROM_REAL_VALUE (offset, fmode),
77c9c6c2
RK
5171 target, 0, OPTAB_LIB_WIDEN);
5172 if (temp != target)
5173 emit_move_insn (target, temp);
a48fb61b 5174
77c9c6c2
RK
5175 do_pending_stack_adjust ();
5176 emit_label (label);
70864443 5177 goto done;
77c9c6c2 5178 }
77c9c6c2 5179
85363ca0 5180 /* No hardware instruction available; call a library routine. */
77c9c6c2 5181 {
85363ca0 5182 rtx libfunc;
77c9c6c2 5183 rtx insns;
9a7f678c 5184 rtx value;
85363ca0 5185 convert_optab tab = unsignedp ? ufloat_optab : sfloat_optab;
77c9c6c2 5186
77c9c6c2
RK
5187 if (GET_MODE_SIZE (GET_MODE (from)) < GET_MODE_SIZE (SImode))
5188 from = convert_to_mode (SImode, from, unsignedp);
77c9c6c2 5189
8a33f100 5190 libfunc = convert_optab_libfunc (tab, GET_MODE (to), GET_MODE (from));
e3feb571 5191 gcc_assert (libfunc);
77c9c6c2
RK
5192
5193 start_sequence ();
5194
85363ca0 5195 value = emit_library_call_value (libfunc, NULL_RTX, LCT_CONST,
ebb1b59a
BS
5196 GET_MODE (to), 1, from,
5197 GET_MODE (from));
77c9c6c2
RK
5198 insns = get_insns ();
5199 end_sequence ();
5200
9a7f678c 5201 emit_libcall_block (insns, target, value,
d1163987
BW
5202 gen_rtx_fmt_e (unsignedp ? UNSIGNED_FLOAT : FLOAT,
5203 GET_MODE (to), from));
77c9c6c2
RK
5204 }
5205
a48fb61b
RK
5206 done:
5207
77c9c6c2
RK
5208 /* Copy result to requested destination
5209 if we have been computing in a temp location. */
5210
5211 if (target != to)
5212 {
5213 if (GET_MODE (target) == GET_MODE (to))
5214 emit_move_insn (to, target);
5215 else
5216 convert_move (to, target, 0);
5217 }
5218}
5219\f
0e1d7f32
AH
5220/* Generate code to convert FROM to fixed point and store in TO. FROM
5221 must be floating point. */
77c9c6c2
RK
5222
5223void
0c20a65f 5224expand_fix (rtx to, rtx from, int unsignedp)
77c9c6c2
RK
5225{
5226 enum insn_code icode;
b3694847 5227 rtx target = to;
77c9c6c2
RK
5228 enum machine_mode fmode, imode;
5229 int must_trunc = 0;
77c9c6c2
RK
5230
5231 /* We first try to find a pair of modes, one real and one integer, at
5232 least as wide as FROM and TO, respectively, in which we can open-code
5233 this conversion. If the integer mode is wider than the mode of TO,
5234 we can do the conversion either signed or unsigned. */
5235
3987b9db
JH
5236 for (fmode = GET_MODE (from); fmode != VOIDmode;
5237 fmode = GET_MODE_WIDER_MODE (fmode))
5238 for (imode = GET_MODE (to); imode != VOIDmode;
5239 imode = GET_MODE_WIDER_MODE (imode))
77c9c6c2
RK
5240 {
5241 int doing_unsigned = unsignedp;
5242
5243 icode = can_fix_p (imode, fmode, unsignedp, &must_trunc);
5244 if (icode == CODE_FOR_nothing && imode != GET_MODE (to) && unsignedp)
5245 icode = can_fix_p (imode, fmode, 0, &must_trunc), doing_unsigned = 0;
5246
5247 if (icode != CODE_FOR_nothing)
5248 {
5e04ef8f 5249 rtx last = get_last_insn ();
77c9c6c2
RK
5250 if (fmode != GET_MODE (from))
5251 from = convert_to_mode (fmode, from, 0);
77c9c6c2
RK
5252
5253 if (must_trunc)
0e1d7f32
AH
5254 {
5255 rtx temp = gen_reg_rtx (GET_MODE (from));
5256 from = expand_unop (GET_MODE (from), ftrunc_optab, from,
5257 temp, 0);
5258 }
77c9c6c2
RK
5259
5260 if (imode != GET_MODE (to))
5261 target = gen_reg_rtx (imode);
5262
5e04ef8f
JH
5263 if (maybe_emit_unop_insn (icode, target, from,
5264 doing_unsigned ? UNSIGNED_FIX : FIX))
5265 {
5266 if (target != to)
5267 convert_move (to, target, unsignedp);
5268 return;
5269 }
5270 delete_insns_since (last);
77c9c6c2
RK
5271 }
5272 }
5273
77c9c6c2
RK
5274 /* For an unsigned conversion, there is one more way to do it.
5275 If we have a signed conversion, we generate code that compares
5276 the real value to the largest representable positive number. If if
5277 is smaller, the conversion is done normally. Otherwise, subtract
5278 one plus the highest signed number, convert, and add it back.
5279
5280 We only need to check all real modes, since we know we didn't find
0c20a65f 5281 anything with a wider integer mode.
0d446150
JH
5282
5283 This code used to extend FP value into mode wider than the destination.
6ef9a246
JJ
5284 This is needed for decimal float modes which cannot accurately
5285 represent one plus the highest signed number of the same size, but
5286 not for binary modes. Consider, for instance conversion from SFmode
0d446150
JH
5287 into DImode.
5288
6fc0bb99 5289 The hot path through the code is dealing with inputs smaller than 2^63
0d446150
JH
5290 and doing just the conversion, so there is no bits to lose.
5291
5292 In the other path we know the value is positive in the range 2^63..2^64-1
6ef9a246 5293 inclusive. (as for other input overflow happens and result is undefined)
e0bb17a8 5294 So we know that the most important bit set in mantissa corresponds to
0d446150
JH
5295 2^63. The subtraction of 2^63 should not generate any rounding as it
5296 simply clears out that bit. The rest is trivial. */
77c9c6c2 5297
69660a70 5298 if (unsignedp && GET_MODE_PRECISION (GET_MODE (to)) <= HOST_BITS_PER_WIDE_INT)
77c9c6c2
RK
5299 for (fmode = GET_MODE (from); fmode != VOIDmode;
5300 fmode = GET_MODE_WIDER_MODE (fmode))
6ef9a246
JJ
5301 if (CODE_FOR_nothing != can_fix_p (GET_MODE (to), fmode, 0, &must_trunc)
5302 && (!DECIMAL_FLOAT_MODE_P (fmode)
69660a70 5303 || GET_MODE_BITSIZE (fmode) > GET_MODE_PRECISION (GET_MODE (to))))
77c9c6c2 5304 {
e9f7ae44
RS
5305 int bitsize;
5306 REAL_VALUE_TYPE offset;
5307 rtx limit, lab1, lab2, insn;
5308
69660a70 5309 bitsize = GET_MODE_PRECISION (GET_MODE (to));
6ef9a246 5310 real_2expN (&offset, bitsize - 1, fmode);
30d88916 5311 limit = CONST_DOUBLE_FROM_REAL_VALUE (offset, fmode);
e9f7ae44
RS
5312 lab1 = gen_label_rtx ();
5313 lab2 = gen_label_rtx ();
77c9c6c2 5314
77c9c6c2
RK
5315 if (fmode != GET_MODE (from))
5316 from = convert_to_mode (fmode, from, 0);
5317
5318 /* See if we need to do the subtraction. */
5319 do_pending_stack_adjust ();
c5d5d461 5320 emit_cmp_and_jump_insns (from, limit, GE, NULL_RTX, GET_MODE (from),
a06ef755 5321 0, lab1);
77c9c6c2
RK
5322
5323 /* If not, do the signed "fix" and branch around fixup code. */
5324 expand_fix (to, from, 0);
5325 emit_jump_insn (gen_jump (lab2));
5326 emit_barrier ();
5327
5328 /* Otherwise, subtract 2**(N-1), convert to signed number,
5329 then add 2**(N-1). Do the addition using XOR since this
5330 will often generate better code. */
5331 emit_label (lab1);
5332 target = expand_binop (GET_MODE (from), sub_optab, from, limit,
b1ec3c92 5333 NULL_RTX, 0, OPTAB_LIB_WIDEN);
77c9c6c2
RK
5334 expand_fix (to, target, 0);
5335 target = expand_binop (GET_MODE (to), xor_optab, to,
2496c7bd
LB
5336 gen_int_mode
5337 ((HOST_WIDE_INT) 1 << (bitsize - 1),
5338 GET_MODE (to)),
77c9c6c2
RK
5339 to, 1, OPTAB_LIB_WIDEN);
5340
5341 if (target != to)
5342 emit_move_insn (to, target);
5343
5344 emit_label (lab2);
5345
947131ba 5346 if (optab_handler (mov_optab, GET_MODE (to)) != CODE_FOR_nothing)
02214a5c
RK
5347 {
5348 /* Make a place for a REG_NOTE and add it. */
5349 insn = emit_move_insn (to, to);
7543f918
JR
5350 set_dst_reg_note (insn, REG_EQUAL,
5351 gen_rtx_fmt_e (UNSIGNED_FIX, GET_MODE (to),
5352 copy_rtx (from)),
5353 to);
02214a5c 5354 }
c5c76735 5355
77c9c6c2
RK
5356 return;
5357 }
77c9c6c2
RK
5358
5359 /* We can't do it with an insn, so use a library call. But first ensure
5360 that the mode of TO is at least as wide as SImode, since those are the
5361 only library calls we know about. */
5362
5363 if (GET_MODE_SIZE (GET_MODE (to)) < GET_MODE_SIZE (SImode))
5364 {
5365 target = gen_reg_rtx (SImode);
5366
5367 expand_fix (target, from, unsignedp);
5368 }
77c9c6c2 5369 else
77c9c6c2
RK
5370 {
5371 rtx insns;
560f3f8a 5372 rtx value;
85363ca0 5373 rtx libfunc;
5906d013 5374
85363ca0 5375 convert_optab tab = unsignedp ? ufix_optab : sfix_optab;
8a33f100 5376 libfunc = convert_optab_libfunc (tab, GET_MODE (to), GET_MODE (from));
e3feb571 5377 gcc_assert (libfunc);
77c9c6c2 5378
77c9c6c2
RK
5379 start_sequence ();
5380
85363ca0 5381 value = emit_library_call_value (libfunc, NULL_RTX, LCT_CONST,
ebb1b59a
BS
5382 GET_MODE (to), 1, from,
5383 GET_MODE (from));
77c9c6c2
RK
5384 insns = get_insns ();
5385 end_sequence ();
5386
560f3f8a 5387 emit_libcall_block (insns, target, value,
9e6a5703
JC
5388 gen_rtx_fmt_e (unsignedp ? UNSIGNED_FIX : FIX,
5389 GET_MODE (to), from));
77c9c6c2 5390 }
0c20a65f 5391
3e53ea48
RK
5392 if (target != to)
5393 {
5394 if (GET_MODE (to) == GET_MODE (target))
5395 emit_move_insn (to, target);
5396 else
5397 convert_move (to, target, 0);
5398 }
77c9c6c2 5399}
bb7f0423 5400
0f996086
CF
5401/* Generate code to convert FROM or TO a fixed-point.
5402 If UINTP is true, either TO or FROM is an unsigned integer.
5403 If SATP is true, we need to saturate the result. */
5404
5405void
5406expand_fixed_convert (rtx to, rtx from, int uintp, int satp)
5407{
5408 enum machine_mode to_mode = GET_MODE (to);
5409 enum machine_mode from_mode = GET_MODE (from);
5410 convert_optab tab;
5411 enum rtx_code this_code;
5412 enum insn_code code;
5413 rtx insns, value;
5414 rtx libfunc;
5415
5416 if (to_mode == from_mode)
5417 {
5418 emit_move_insn (to, from);
5419 return;
5420 }
5421
5422 if (uintp)
5423 {
5424 tab = satp ? satfractuns_optab : fractuns_optab;
5425 this_code = satp ? UNSIGNED_SAT_FRACT : UNSIGNED_FRACT_CONVERT;
5426 }
5427 else
5428 {
5429 tab = satp ? satfract_optab : fract_optab;
5430 this_code = satp ? SAT_FRACT : FRACT_CONVERT;
5431 }
947131ba 5432 code = convert_optab_handler (tab, to_mode, from_mode);
0f996086
CF
5433 if (code != CODE_FOR_nothing)
5434 {
5435 emit_unop_insn (code, to, from, this_code);
5436 return;
5437 }
5438
5439 libfunc = convert_optab_libfunc (tab, to_mode, from_mode);
5440 gcc_assert (libfunc);
5441
5442 start_sequence ();
5443 value = emit_library_call_value (libfunc, NULL_RTX, LCT_CONST, to_mode,
5444 1, from, from_mode);
5445 insns = get_insns ();
5446 end_sequence ();
5447
5448 emit_libcall_block (insns, to, value,
19b5fafb 5449 gen_rtx_fmt_e (optab_to_code (tab), to_mode, from));
0f996086
CF
5450}
5451
bb7f0423
RG
5452/* Generate code to convert FROM to fixed point and store in TO. FROM
5453 must be floating point, TO must be signed. Use the conversion optab
5454 TAB to do the conversion. */
5455
5456bool
5457expand_sfix_optab (rtx to, rtx from, convert_optab tab)
5458{
5459 enum insn_code icode;
5460 rtx target = to;
5461 enum machine_mode fmode, imode;
5462
5463 /* We first try to find a pair of modes, one real and one integer, at
5464 least as wide as FROM and TO, respectively, in which we can open-code
5465 this conversion. If the integer mode is wider than the mode of TO,
5466 we can do the conversion either signed or unsigned. */
5467
5468 for (fmode = GET_MODE (from); fmode != VOIDmode;
5469 fmode = GET_MODE_WIDER_MODE (fmode))
5470 for (imode = GET_MODE (to); imode != VOIDmode;
5471 imode = GET_MODE_WIDER_MODE (imode))
5472 {
947131ba 5473 icode = convert_optab_handler (tab, imode, fmode);
bb7f0423
RG
5474 if (icode != CODE_FOR_nothing)
5475 {
5e04ef8f 5476 rtx last = get_last_insn ();
bb7f0423
RG
5477 if (fmode != GET_MODE (from))
5478 from = convert_to_mode (fmode, from, 0);
5479
5480 if (imode != GET_MODE (to))
5481 target = gen_reg_rtx (imode);
5482
18bd082d 5483 if (!maybe_emit_unop_insn (icode, target, from, UNKNOWN))
5e04ef8f
JH
5484 {
5485 delete_insns_since (last);
5486 continue;
5487 }
bb7f0423
RG
5488 if (target != to)
5489 convert_move (to, target, 0);
5490 return true;
5491 }
5492 }
5493
5494 return false;
5495}
77c9c6c2 5496\f
ef89d648
ZW
5497/* Report whether we have an instruction to perform the operation
5498 specified by CODE on operands of mode MODE. */
5499int
0c20a65f 5500have_insn_for (enum rtx_code code, enum machine_mode mode)
ef89d648 5501{
19b5fafb
RH
5502 return (code_to_optab (code)
5503 && (optab_handler (code_to_optab (code), mode)
ef89d648
ZW
5504 != CODE_FOR_nothing));
5505}
5506
b092b471
JW
5507/* Initialize the libfunc fields of an entire group of entries in some
5508 optab. Each entry is set equal to a string consisting of a leading
5509 pair of underscores followed by a generic operation name followed by
7ef0daad 5510 a mode name (downshifted to lowercase) followed by a single character
b092b471
JW
5511 representing the number of operands for the given operation (which is
5512 usually one of the characters '2', '3', or '4').
5513
5514 OPTABLE is the table in which libfunc fields are to be initialized.
b092b471
JW
5515 OPNAME is the generic (string) name of the operation.
5516 SUFFIX is the character which specifies the number of operands for
5517 the given generic operation.
8a33f100 5518 MODE is the mode to generate for.
b092b471
JW
5519*/
5520
5521static void
cd1440b1
RH
5522gen_libfunc (optab optable, const char *opname, int suffix,
5523 enum machine_mode mode)
b092b471 5524{
b3694847 5525 unsigned opname_len = strlen (opname);
8a33f100
JH
5526 const char *mname = GET_MODE_NAME (mode);
5527 unsigned mname_len = strlen (mname);
cdbf4541
BS
5528 int prefix_len = targetm.libfunc_gnu_prefix ? 6 : 2;
5529 int len = prefix_len + opname_len + mname_len + 1 + 1;
5530 char *libfunc_name = XALLOCAVEC (char, len);
8a33f100
JH
5531 char *p;
5532 const char *q;
b092b471 5533
8a33f100
JH
5534 p = libfunc_name;
5535 *p++ = '_';
5536 *p++ = '_';
cdbf4541
BS
5537 if (targetm.libfunc_gnu_prefix)
5538 {
5539 *p++ = 'g';
5540 *p++ = 'n';
5541 *p++ = 'u';
5542 *p++ = '_';
5543 }
8a33f100
JH
5544 for (q = opname; *q; )
5545 *p++ = *q++;
5546 for (q = mname; *q; q++)
5547 *p++ = TOLOWER (*q);
5548 *p++ = suffix;
5549 *p = '\0';
5550
5551 set_optab_libfunc (optable, mode,
5552 ggc_alloc_string (libfunc_name, p - libfunc_name));
b092b471
JW
5553}
5554
8a33f100 5555/* Like gen_libfunc, but verify that integer operation is involved. */
b092b471 5556
cd1440b1 5557void
8a33f100
JH
5558gen_int_libfunc (optab optable, const char *opname, char suffix,
5559 enum machine_mode mode)
b092b471 5560{
8a33f100 5561 int maxsize = 2 * BITS_PER_WORD;
2637bd27 5562 int minsize = BITS_PER_WORD;
8a33f100
JH
5563
5564 if (GET_MODE_CLASS (mode) != MODE_INT)
5565 return;
c0510d84
DD
5566 if (maxsize < LONG_LONG_TYPE_SIZE)
5567 maxsize = LONG_LONG_TYPE_SIZE;
2637bd27
RB
5568 if (minsize > INT_TYPE_SIZE
5569 && (trapv_binoptab_p (optable)
5570 || trapv_unoptab_p (optable)))
5571 minsize = INT_TYPE_SIZE;
5572 if (GET_MODE_BITSIZE (mode) < minsize
ca0a2d5d 5573 || GET_MODE_BITSIZE (mode) > maxsize)
8a33f100
JH
5574 return;
5575 gen_libfunc (optable, opname, suffix, mode);
b092b471
JW
5576}
5577
8a33f100 5578/* Like gen_libfunc, but verify that FP and set decimal prefix if needed. */
b092b471 5579
cd1440b1 5580void
8a33f100
JH
5581gen_fp_libfunc (optab optable, const char *opname, char suffix,
5582 enum machine_mode mode)
b092b471 5583{
8a33f100 5584 char *dec_opname;
79b87c74 5585
8a33f100
JH
5586 if (GET_MODE_CLASS (mode) == MODE_FLOAT)
5587 gen_libfunc (optable, opname, suffix, mode);
5588 if (DECIMAL_FLOAT_MODE_P (mode))
5589 {
d3bfe4de 5590 dec_opname = XALLOCAVEC (char, sizeof (DECIMAL_PREFIX) + strlen (opname));
8a33f100
JH
5591 /* For BID support, change the name to have either a bid_ or dpd_ prefix
5592 depending on the low level floating format used. */
5593 memcpy (dec_opname, DECIMAL_PREFIX, sizeof (DECIMAL_PREFIX) - 1);
5594 strcpy (dec_opname + sizeof (DECIMAL_PREFIX) - 1, opname);
5595 gen_libfunc (optable, dec_opname, suffix, mode);
5596 }
5597}
79b87c74 5598
0f996086
CF
5599/* Like gen_libfunc, but verify that fixed-point operation is involved. */
5600
cd1440b1 5601void
0f996086
CF
5602gen_fixed_libfunc (optab optable, const char *opname, char suffix,
5603 enum machine_mode mode)
5604{
5605 if (!ALL_FIXED_POINT_MODE_P (mode))
5606 return;
5607 gen_libfunc (optable, opname, suffix, mode);
5608}
5609
5610/* Like gen_libfunc, but verify that signed fixed-point operation is
5611 involved. */
5612
cd1440b1 5613void
0f996086
CF
5614gen_signed_fixed_libfunc (optab optable, const char *opname, char suffix,
5615 enum machine_mode mode)
5616{
5617 if (!SIGNED_FIXED_POINT_MODE_P (mode))
5618 return;
5619 gen_libfunc (optable, opname, suffix, mode);
5620}
5621
5622/* Like gen_libfunc, but verify that unsigned fixed-point operation is
5623 involved. */
5624
cd1440b1 5625void
0f996086
CF
5626gen_unsigned_fixed_libfunc (optab optable, const char *opname, char suffix,
5627 enum machine_mode mode)
5628{
5629 if (!UNSIGNED_FIXED_POINT_MODE_P (mode))
5630 return;
5631 gen_libfunc (optable, opname, suffix, mode);
5632}
5633
8a33f100
JH
5634/* Like gen_libfunc, but verify that FP or INT operation is involved. */
5635
cd1440b1 5636void
8a33f100
JH
5637gen_int_fp_libfunc (optab optable, const char *name, char suffix,
5638 enum machine_mode mode)
5639{
5640 if (DECIMAL_FLOAT_MODE_P (mode) || GET_MODE_CLASS (mode) == MODE_FLOAT)
5641 gen_fp_libfunc (optable, name, suffix, mode);
5642 if (INTEGRAL_MODE_P (mode))
5643 gen_int_libfunc (optable, name, suffix, mode);
5644}
5645
5646/* Like gen_libfunc, but verify that FP or INT operation is involved
5647 and add 'v' suffix for integer operation. */
5648
cd1440b1 5649void
8a33f100
JH
5650gen_intv_fp_libfunc (optab optable, const char *name, char suffix,
5651 enum machine_mode mode)
5652{
5653 if (DECIMAL_FLOAT_MODE_P (mode) || GET_MODE_CLASS (mode) == MODE_FLOAT)
5654 gen_fp_libfunc (optable, name, suffix, mode);
5655 if (GET_MODE_CLASS (mode) == MODE_INT)
5656 {
5657 int len = strlen (name);
d3bfe4de 5658 char *v_name = XALLOCAVEC (char, len + 2);
8a33f100
JH
5659 strcpy (v_name, name);
5660 v_name[len] = 'v';
5661 v_name[len + 1] = 0;
5662 gen_int_libfunc (optable, v_name, suffix, mode);
5663 }
b092b471
JW
5664}
5665
0f996086
CF
5666/* Like gen_libfunc, but verify that FP or INT or FIXED operation is
5667 involved. */
5668
cd1440b1 5669void
0f996086
CF
5670gen_int_fp_fixed_libfunc (optab optable, const char *name, char suffix,
5671 enum machine_mode mode)
5672{
5673 if (DECIMAL_FLOAT_MODE_P (mode) || GET_MODE_CLASS (mode) == MODE_FLOAT)
5674 gen_fp_libfunc (optable, name, suffix, mode);
5675 if (INTEGRAL_MODE_P (mode))
5676 gen_int_libfunc (optable, name, suffix, mode);
5677 if (ALL_FIXED_POINT_MODE_P (mode))
5678 gen_fixed_libfunc (optable, name, suffix, mode);
5679}
5680
5681/* Like gen_libfunc, but verify that FP or INT or signed FIXED operation is
5682 involved. */
5683
cd1440b1 5684void
0f996086
CF
5685gen_int_fp_signed_fixed_libfunc (optab optable, const char *name, char suffix,
5686 enum machine_mode mode)
5687{
5688 if (DECIMAL_FLOAT_MODE_P (mode) || GET_MODE_CLASS (mode) == MODE_FLOAT)
5689 gen_fp_libfunc (optable, name, suffix, mode);
5690 if (INTEGRAL_MODE_P (mode))
5691 gen_int_libfunc (optable, name, suffix, mode);
5692 if (SIGNED_FIXED_POINT_MODE_P (mode))
5693 gen_signed_fixed_libfunc (optable, name, suffix, mode);
5694}
5695
5696/* Like gen_libfunc, but verify that INT or FIXED operation is
5697 involved. */
5698
cd1440b1 5699void
0f996086
CF
5700gen_int_fixed_libfunc (optab optable, const char *name, char suffix,
5701 enum machine_mode mode)
5702{
5703 if (INTEGRAL_MODE_P (mode))
5704 gen_int_libfunc (optable, name, suffix, mode);
5705 if (ALL_FIXED_POINT_MODE_P (mode))
5706 gen_fixed_libfunc (optable, name, suffix, mode);
5707}
5708
5709/* Like gen_libfunc, but verify that INT or signed FIXED operation is
5710 involved. */
5711
cd1440b1 5712void
0f996086
CF
5713gen_int_signed_fixed_libfunc (optab optable, const char *name, char suffix,
5714 enum machine_mode mode)
5715{
5716 if (INTEGRAL_MODE_P (mode))
5717 gen_int_libfunc (optable, name, suffix, mode);
5718 if (SIGNED_FIXED_POINT_MODE_P (mode))
5719 gen_signed_fixed_libfunc (optable, name, suffix, mode);
5720}
5721
5722/* Like gen_libfunc, but verify that INT or unsigned FIXED operation is
5723 involved. */
5724
cd1440b1 5725void
0f996086
CF
5726gen_int_unsigned_fixed_libfunc (optab optable, const char *name, char suffix,
5727 enum machine_mode mode)
5728{
5729 if (INTEGRAL_MODE_P (mode))
5730 gen_int_libfunc (optable, name, suffix, mode);
5731 if (UNSIGNED_FIXED_POINT_MODE_P (mode))
5732 gen_unsigned_fixed_libfunc (optable, name, suffix, mode);
5733}
5734
85363ca0
ZW
5735/* Initialize the libfunc fields of an entire group of entries of an
5736 inter-mode-class conversion optab. The string formation rules are
5737 similar to the ones for init_libfuncs, above, but instead of having
5738 a mode name and an operand count these functions have two mode names
5739 and no operand count. */
8a33f100 5740
cd1440b1 5741void
8a33f100
JH
5742gen_interclass_conv_libfunc (convert_optab tab,
5743 const char *opname,
5744 enum machine_mode tmode,
5745 enum machine_mode fmode)
85363ca0 5746{
85363ca0 5747 size_t opname_len = strlen (opname);
8a33f100 5748 size_t mname_len = 0;
85363ca0 5749
85363ca0
ZW
5750 const char *fname, *tname;
5751 const char *q;
cdbf4541 5752 int prefix_len = targetm.libfunc_gnu_prefix ? 6 : 2;
85363ca0 5753 char *libfunc_name, *suffix;
79b87c74 5754 char *nondec_name, *dec_name, *nondec_suffix, *dec_suffix;
85363ca0
ZW
5755 char *p;
5756
79b87c74
MM
5757 /* If this is a decimal conversion, add the current BID vs. DPD prefix that
5758 depends on which underlying decimal floating point format is used. */
5759 const size_t dec_len = sizeof (DECIMAL_PREFIX) - 1;
5760
8a33f100 5761 mname_len = strlen (GET_MODE_NAME (tmode)) + strlen (GET_MODE_NAME (fmode));
85363ca0 5762
cdbf4541 5763 nondec_name = XALLOCAVEC (char, prefix_len + opname_len + mname_len + 1 + 1);
79b87c74
MM
5764 nondec_name[0] = '_';
5765 nondec_name[1] = '_';
cdbf4541
BS
5766 if (targetm.libfunc_gnu_prefix)
5767 {
5768 nondec_name[2] = 'g';
5769 nondec_name[3] = 'n';
5770 nondec_name[4] = 'u';
5771 nondec_name[5] = '_';
5772 }
5773
5774 memcpy (&nondec_name[prefix_len], opname, opname_len);
5775 nondec_suffix = nondec_name + opname_len + prefix_len;
79b87c74 5776
d3bfe4de 5777 dec_name = XALLOCAVEC (char, 2 + dec_len + opname_len + mname_len + 1 + 1);
79b87c74
MM
5778 dec_name[0] = '_';
5779 dec_name[1] = '_';
5780 memcpy (&dec_name[2], DECIMAL_PREFIX, dec_len);
5781 memcpy (&dec_name[2+dec_len], opname, opname_len);
5782 dec_suffix = dec_name + dec_len + opname_len + 2;
85363ca0 5783
8a33f100
JH
5784 fname = GET_MODE_NAME (fmode);
5785 tname = GET_MODE_NAME (tmode);
85363ca0 5786
c3284718 5787 if (DECIMAL_FLOAT_MODE_P (fmode) || DECIMAL_FLOAT_MODE_P (tmode))
8a33f100
JH
5788 {
5789 libfunc_name = dec_name;
5790 suffix = dec_suffix;
5791 }
5792 else
5793 {
5794 libfunc_name = nondec_name;
5795 suffix = nondec_suffix;
5796 }
79b87c74 5797
8a33f100
JH
5798 p = suffix;
5799 for (q = fname; *q; p++, q++)
5800 *p = TOLOWER (*q);
5801 for (q = tname; *q; p++, q++)
5802 *p = TOLOWER (*q);
85363ca0 5803
8a33f100 5804 *p = '\0';
85363ca0 5805
8a33f100
JH
5806 set_conv_libfunc (tab, tmode, fmode,
5807 ggc_alloc_string (libfunc_name, p - libfunc_name));
85363ca0
ZW
5808}
5809
8a33f100
JH
5810/* Same as gen_interclass_conv_libfunc but verify that we are producing
5811 int->fp conversion. */
5812
cd1440b1 5813void
8a33f100
JH
5814gen_int_to_fp_conv_libfunc (convert_optab tab,
5815 const char *opname,
5816 enum machine_mode tmode,
5817 enum machine_mode fmode)
5818{
5819 if (GET_MODE_CLASS (fmode) != MODE_INT)
5820 return;
5821 if (GET_MODE_CLASS (tmode) != MODE_FLOAT && !DECIMAL_FLOAT_MODE_P (tmode))
5822 return;
5823 gen_interclass_conv_libfunc (tab, opname, tmode, fmode);
5824}
5825
5826/* ufloat_optab is special by using floatun for FP and floatuns decimal fp
5827 naming scheme. */
5828
cd1440b1 5829void
8a33f100
JH
5830gen_ufloat_conv_libfunc (convert_optab tab,
5831 const char *opname ATTRIBUTE_UNUSED,
5832 enum machine_mode tmode,
5833 enum machine_mode fmode)
5834{
5835 if (DECIMAL_FLOAT_MODE_P (tmode))
5836 gen_int_to_fp_conv_libfunc (tab, "floatuns", tmode, fmode);
5837 else
5838 gen_int_to_fp_conv_libfunc (tab, "floatun", tmode, fmode);
5839}
5840
5841/* Same as gen_interclass_conv_libfunc but verify that we are producing
5842 fp->int conversion. */
5843
cd1440b1 5844void
8a33f100
JH
5845gen_int_to_fp_nondecimal_conv_libfunc (convert_optab tab,
5846 const char *opname,
5847 enum machine_mode tmode,
5848 enum machine_mode fmode)
5849{
5850 if (GET_MODE_CLASS (fmode) != MODE_INT)
5851 return;
5852 if (GET_MODE_CLASS (tmode) != MODE_FLOAT)
5853 return;
5854 gen_interclass_conv_libfunc (tab, opname, tmode, fmode);
5855}
5856
5857/* Same as gen_interclass_conv_libfunc but verify that we are producing
5858 fp->int conversion with no decimal floating point involved. */
5859
cd1440b1 5860void
8a33f100
JH
5861gen_fp_to_int_conv_libfunc (convert_optab tab,
5862 const char *opname,
5863 enum machine_mode tmode,
5864 enum machine_mode fmode)
5865{
5866 if (GET_MODE_CLASS (fmode) != MODE_FLOAT && !DECIMAL_FLOAT_MODE_P (fmode))
5867 return;
5868 if (GET_MODE_CLASS (tmode) != MODE_INT)
5869 return;
5870 gen_interclass_conv_libfunc (tab, opname, tmode, fmode);
5871}
5872
fa10beec 5873/* Initialize the libfunc fields of an of an intra-mode-class conversion optab.
8a33f100
JH
5874 The string formation rules are
5875 similar to the ones for init_libfunc, above. */
5876
cd1440b1 5877void
8a33f100
JH
5878gen_intraclass_conv_libfunc (convert_optab tab, const char *opname,
5879 enum machine_mode tmode, enum machine_mode fmode)
85363ca0 5880{
85363ca0 5881 size_t opname_len = strlen (opname);
8a33f100 5882 size_t mname_len = 0;
85363ca0 5883
8a33f100 5884 const char *fname, *tname;
85363ca0 5885 const char *q;
cdbf4541 5886 int prefix_len = targetm.libfunc_gnu_prefix ? 6 : 2;
79b87c74 5887 char *nondec_name, *dec_name, *nondec_suffix, *dec_suffix;
85363ca0
ZW
5888 char *libfunc_name, *suffix;
5889 char *p;
5890
79b87c74
MM
5891 /* If this is a decimal conversion, add the current BID vs. DPD prefix that
5892 depends on which underlying decimal floating point format is used. */
5893 const size_t dec_len = sizeof (DECIMAL_PREFIX) - 1;
5894
8a33f100 5895 mname_len = strlen (GET_MODE_NAME (tmode)) + strlen (GET_MODE_NAME (fmode));
85363ca0 5896
d3bfe4de 5897 nondec_name = XALLOCAVEC (char, 2 + opname_len + mname_len + 1 + 1);
79b87c74
MM
5898 nondec_name[0] = '_';
5899 nondec_name[1] = '_';
cdbf4541
BS
5900 if (targetm.libfunc_gnu_prefix)
5901 {
5902 nondec_name[2] = 'g';
5903 nondec_name[3] = 'n';
5904 nondec_name[4] = 'u';
5905 nondec_name[5] = '_';
5906 }
5907 memcpy (&nondec_name[prefix_len], opname, opname_len);
5908 nondec_suffix = nondec_name + opname_len + prefix_len;
79b87c74 5909
d3bfe4de 5910 dec_name = XALLOCAVEC (char, 2 + dec_len + opname_len + mname_len + 1 + 1);
79b87c74
MM
5911 dec_name[0] = '_';
5912 dec_name[1] = '_';
5913 memcpy (&dec_name[2], DECIMAL_PREFIX, dec_len);
5914 memcpy (&dec_name[2 + dec_len], opname, opname_len);
5915 dec_suffix = dec_name + dec_len + opname_len + 2;
85363ca0 5916
8a33f100
JH
5917 fname = GET_MODE_NAME (fmode);
5918 tname = GET_MODE_NAME (tmode);
85363ca0 5919
c3284718 5920 if (DECIMAL_FLOAT_MODE_P (fmode) || DECIMAL_FLOAT_MODE_P (tmode))
8a33f100
JH
5921 {
5922 libfunc_name = dec_name;
5923 suffix = dec_suffix;
5924 }
5925 else
5926 {
5927 libfunc_name = nondec_name;
5928 suffix = nondec_suffix;
5929 }
79b87c74 5930
8a33f100
JH
5931 p = suffix;
5932 for (q = fname; *q; p++, q++)
5933 *p = TOLOWER (*q);
5934 for (q = tname; *q; p++, q++)
5935 *p = TOLOWER (*q);
85363ca0 5936
8a33f100
JH
5937 *p++ = '2';
5938 *p = '\0';
85363ca0 5939
8a33f100
JH
5940 set_conv_libfunc (tab, tmode, fmode,
5941 ggc_alloc_string (libfunc_name, p - libfunc_name));
85363ca0
ZW
5942}
5943
8a33f100
JH
5944/* Pick proper libcall for trunc_optab. We need to chose if we do
5945 truncation or extension and interclass or intraclass. */
5946
cd1440b1 5947void
8a33f100
JH
5948gen_trunc_conv_libfunc (convert_optab tab,
5949 const char *opname,
5950 enum machine_mode tmode,
5951 enum machine_mode fmode)
5952{
5953 if (GET_MODE_CLASS (tmode) != MODE_FLOAT && !DECIMAL_FLOAT_MODE_P (tmode))
5954 return;
5955 if (GET_MODE_CLASS (fmode) != MODE_FLOAT && !DECIMAL_FLOAT_MODE_P (fmode))
5956 return;
5957 if (tmode == fmode)
5958 return;
5959
5960 if ((GET_MODE_CLASS (tmode) == MODE_FLOAT && DECIMAL_FLOAT_MODE_P (fmode))
5961 || (GET_MODE_CLASS (fmode) == MODE_FLOAT && DECIMAL_FLOAT_MODE_P (tmode)))
5962 gen_interclass_conv_libfunc (tab, opname, tmode, fmode);
b8698a0f 5963
8a33f100
JH
5964 if (GET_MODE_PRECISION (fmode) <= GET_MODE_PRECISION (tmode))
5965 return;
5966
5967 if ((GET_MODE_CLASS (tmode) == MODE_FLOAT
5968 && GET_MODE_CLASS (fmode) == MODE_FLOAT)
5969 || (DECIMAL_FLOAT_MODE_P (fmode) && DECIMAL_FLOAT_MODE_P (tmode)))
5970 gen_intraclass_conv_libfunc (tab, opname, tmode, fmode);
5971}
5972
5973/* Pick proper libcall for extend_optab. We need to chose if we do
5974 truncation or extension and interclass or intraclass. */
5975
cd1440b1 5976void
8a33f100
JH
5977gen_extend_conv_libfunc (convert_optab tab,
5978 const char *opname ATTRIBUTE_UNUSED,
5979 enum machine_mode tmode,
5980 enum machine_mode fmode)
5981{
5982 if (GET_MODE_CLASS (tmode) != MODE_FLOAT && !DECIMAL_FLOAT_MODE_P (tmode))
5983 return;
5984 if (GET_MODE_CLASS (fmode) != MODE_FLOAT && !DECIMAL_FLOAT_MODE_P (fmode))
5985 return;
5986 if (tmode == fmode)
5987 return;
5988
5989 if ((GET_MODE_CLASS (tmode) == MODE_FLOAT && DECIMAL_FLOAT_MODE_P (fmode))
5990 || (GET_MODE_CLASS (fmode) == MODE_FLOAT && DECIMAL_FLOAT_MODE_P (tmode)))
5991 gen_interclass_conv_libfunc (tab, opname, tmode, fmode);
b8698a0f 5992
8a33f100
JH
5993 if (GET_MODE_PRECISION (fmode) > GET_MODE_PRECISION (tmode))
5994 return;
5995
5996 if ((GET_MODE_CLASS (tmode) == MODE_FLOAT
5997 && GET_MODE_CLASS (fmode) == MODE_FLOAT)
5998 || (DECIMAL_FLOAT_MODE_P (fmode) && DECIMAL_FLOAT_MODE_P (tmode)))
5999 gen_intraclass_conv_libfunc (tab, opname, tmode, fmode);
6000}
85363ca0 6001
0f996086
CF
6002/* Pick proper libcall for fract_optab. We need to chose if we do
6003 interclass or intraclass. */
6004
cd1440b1 6005void
0f996086
CF
6006gen_fract_conv_libfunc (convert_optab tab,
6007 const char *opname,
6008 enum machine_mode tmode,
6009 enum machine_mode fmode)
6010{
6011 if (tmode == fmode)
6012 return;
6013 if (!(ALL_FIXED_POINT_MODE_P (tmode) || ALL_FIXED_POINT_MODE_P (fmode)))
6014 return;
6015
6016 if (GET_MODE_CLASS (tmode) == GET_MODE_CLASS (fmode))
6017 gen_intraclass_conv_libfunc (tab, opname, tmode, fmode);
6018 else
6019 gen_interclass_conv_libfunc (tab, opname, tmode, fmode);
6020}
6021
6022/* Pick proper libcall for fractuns_optab. */
6023
cd1440b1 6024void
0f996086
CF
6025gen_fractuns_conv_libfunc (convert_optab tab,
6026 const char *opname,
6027 enum machine_mode tmode,
6028 enum machine_mode fmode)
6029{
6030 if (tmode == fmode)
6031 return;
6032 /* One mode must be a fixed-point mode, and the other must be an integer
6033 mode. */
6034 if (!((ALL_FIXED_POINT_MODE_P (tmode) && GET_MODE_CLASS (fmode) == MODE_INT)
6035 || (ALL_FIXED_POINT_MODE_P (fmode)
6036 && GET_MODE_CLASS (tmode) == MODE_INT)))
6037 return;
6038
6039 gen_interclass_conv_libfunc (tab, opname, tmode, fmode);
6040}
6041
6042/* Pick proper libcall for satfract_optab. We need to chose if we do
6043 interclass or intraclass. */
6044
cd1440b1 6045void
0f996086
CF
6046gen_satfract_conv_libfunc (convert_optab tab,
6047 const char *opname,
6048 enum machine_mode tmode,
6049 enum machine_mode fmode)
6050{
6051 if (tmode == fmode)
6052 return;
6053 /* TMODE must be a fixed-point mode. */
6054 if (!ALL_FIXED_POINT_MODE_P (tmode))
6055 return;
6056
6057 if (GET_MODE_CLASS (tmode) == GET_MODE_CLASS (fmode))
6058 gen_intraclass_conv_libfunc (tab, opname, tmode, fmode);
6059 else
6060 gen_interclass_conv_libfunc (tab, opname, tmode, fmode);
6061}
6062
6063/* Pick proper libcall for satfractuns_optab. */
6064
cd1440b1 6065void
0f996086
CF
6066gen_satfractuns_conv_libfunc (convert_optab tab,
6067 const char *opname,
6068 enum machine_mode tmode,
6069 enum machine_mode fmode)
6070{
6071 if (tmode == fmode)
6072 return;
6073 /* TMODE must be a fixed-point mode, and FMODE must be an integer mode. */
6074 if (!(ALL_FIXED_POINT_MODE_P (tmode) && GET_MODE_CLASS (fmode) == MODE_INT))
6075 return;
6076
6077 gen_interclass_conv_libfunc (tab, opname, tmode, fmode);
6078}
6079
61698f54
RS
6080/* A table of previously-created libfuncs, hashed by name. */
6081static GTY ((param_is (union tree_node))) htab_t libfunc_decls;
52859c77 6082
61698f54 6083/* Hashtable callbacks for libfunc_decls. */
ee1315aa 6084
61698f54
RS
6085static hashval_t
6086libfunc_decl_hash (const void *entry)
6087{
6456e26e 6088 return IDENTIFIER_HASH_VALUE (DECL_NAME ((const_tree) entry));
61698f54 6089}
52859c77 6090
61698f54
RS
6091static int
6092libfunc_decl_eq (const void *entry1, const void *entry2)
6093{
572e5ae3 6094 return DECL_NAME ((const_tree) entry1) == (const_tree) entry2;
61698f54 6095}
52859c77 6096
f9417da1
RG
6097/* Build a decl for a libfunc named NAME. */
6098
6099tree
6100build_libfunc_function (const char *name)
6101{
6102 tree decl = build_decl (UNKNOWN_LOCATION, FUNCTION_DECL,
6103 get_identifier (name),
6104 build_function_type (integer_type_node, NULL_TREE));
6105 /* ??? We don't have any type information except for this is
6106 a function. Pretend this is "int foo()". */
6107 DECL_ARTIFICIAL (decl) = 1;
6108 DECL_EXTERNAL (decl) = 1;
6109 TREE_PUBLIC (decl) = 1;
6110 gcc_assert (DECL_ASSEMBLER_NAME (decl));
6111
6112 /* Zap the nonsensical SYMBOL_REF_DECL for this. What we're left with
6113 are the flags assigned by targetm.encode_section_info. */
6114 SET_SYMBOL_REF_DECL (XEXP (DECL_RTL (decl), 0), NULL);
6115
6116 return decl;
6117}
6118
61698f54
RS
6119rtx
6120init_one_libfunc (const char *name)
6121{
6122 tree id, decl;
6123 void **slot;
6124 hashval_t hash;
6125
6126 if (libfunc_decls == NULL)
6127 libfunc_decls = htab_create_ggc (37, libfunc_decl_hash,
6128 libfunc_decl_eq, NULL);
6129
6130 /* See if we have already created a libfunc decl for this function. */
6131 id = get_identifier (name);
eef4a603 6132 hash = IDENTIFIER_HASH_VALUE (id);
61698f54
RS
6133 slot = htab_find_slot_with_hash (libfunc_decls, id, hash, INSERT);
6134 decl = (tree) *slot;
6135 if (decl == NULL)
6136 {
6137 /* Create a new decl, so that it can be passed to
6138 targetm.encode_section_info. */
f9417da1 6139 decl = build_libfunc_function (name);
61698f54
RS
6140 *slot = decl;
6141 }
6142 return XEXP (DECL_RTL (decl), 0);
76095e2f
RH
6143}
6144
6b2b8871
JJ
6145/* Adjust the assembler name of libfunc NAME to ASMSPEC. */
6146
6147rtx
6148set_user_assembler_libfunc (const char *name, const char *asmspec)
6149{
6150 tree id, decl;
6151 void **slot;
6152 hashval_t hash;
6153
6154 id = get_identifier (name);
eef4a603 6155 hash = IDENTIFIER_HASH_VALUE (id);
6b2b8871
JJ
6156 slot = htab_find_slot_with_hash (libfunc_decls, id, hash, NO_INSERT);
6157 gcc_assert (slot);
6158 decl = (tree) *slot;
6159 set_user_assembler_name (decl, asmspec);
6160 return XEXP (DECL_RTL (decl), 0);
6161}
6162
c15c90bb
ZW
6163/* Call this to reset the function entry for one optab (OPTABLE) in mode
6164 MODE to NAME, which should be either 0 or a string constant. */
6165void
cd1440b1 6166set_optab_libfunc (optab op, enum machine_mode mode, const char *name)
c15c90bb 6167{
8a33f100
JH
6168 rtx val;
6169 struct libfunc_entry e;
6170 struct libfunc_entry **slot;
cd1440b1
RH
6171
6172 e.op = op;
8a33f100
JH
6173 e.mode1 = mode;
6174 e.mode2 = VOIDmode;
6175
c15c90bb 6176 if (name)
8a33f100 6177 val = init_one_libfunc (name);
c15c90bb 6178 else
8a33f100
JH
6179 val = 0;
6180 slot = (struct libfunc_entry **) htab_find_slot (libfunc_hash, &e, INSERT);
6181 if (*slot == NULL)
766090c2 6182 *slot = ggc_alloc<libfunc_entry> ();
cd1440b1 6183 (*slot)->op = op;
8a33f100
JH
6184 (*slot)->mode1 = mode;
6185 (*slot)->mode2 = VOIDmode;
6186 (*slot)->libfunc = val;
c15c90bb
ZW
6187}
6188
85363ca0
ZW
6189/* Call this to reset the function entry for one conversion optab
6190 (OPTABLE) from mode FMODE to mode TMODE to NAME, which should be
6191 either 0 or a string constant. */
6192void
cd1440b1 6193set_conv_libfunc (convert_optab optab, enum machine_mode tmode,
85363ca0
ZW
6194 enum machine_mode fmode, const char *name)
6195{
8a33f100
JH
6196 rtx val;
6197 struct libfunc_entry e;
6198 struct libfunc_entry **slot;
cd1440b1
RH
6199
6200 e.op = optab;
8a33f100
JH
6201 e.mode1 = tmode;
6202 e.mode2 = fmode;
6203
85363ca0 6204 if (name)
8a33f100 6205 val = init_one_libfunc (name);
85363ca0 6206 else
8a33f100
JH
6207 val = 0;
6208 slot = (struct libfunc_entry **) htab_find_slot (libfunc_hash, &e, INSERT);
6209 if (*slot == NULL)
766090c2 6210 *slot = ggc_alloc<libfunc_entry> ();
cd1440b1 6211 (*slot)->op = optab;
8a33f100
JH
6212 (*slot)->mode1 = tmode;
6213 (*slot)->mode2 = fmode;
6214 (*slot)->libfunc = val;
85363ca0
ZW
6215}
6216
b5deb7b6 6217/* Call this to initialize the contents of the optabs
77c9c6c2
RK
6218 appropriately for the current target machine. */
6219
6220void
0c20a65f 6221init_optabs (void)
77c9c6c2 6222{
3e9c326a 6223 if (libfunc_hash)
cd1440b1 6224 htab_empty (libfunc_hash);
3e9c326a
RS
6225 else
6226 libfunc_hash = htab_create_ggc (10, hash_libfunc, eq_libfunc, NULL);
c0742514 6227
5d81dc5b 6228 /* Fill in the optabs with the insns we support. */
135204dd 6229 init_all_optabs (this_fn_optabs);
5d81dc5b 6230
8a33f100
JH
6231 /* The ffs function operates on `int'. Fall back on it if we do not
6232 have a libgcc2 function for that width. */
6233 if (INT_TYPE_SIZE < BITS_PER_WORD)
0f900dfa
JJ
6234 set_optab_libfunc (ffs_optab, mode_for_size (INT_TYPE_SIZE, MODE_INT, 0),
6235 "ffs");
76095e2f 6236
167fa32c
EC
6237 /* Explicitly initialize the bswap libfuncs since we need them to be
6238 valid for things other than word_mode. */
cdbf4541
BS
6239 if (targetm.libfunc_gnu_prefix)
6240 {
6241 set_optab_libfunc (bswap_optab, SImode, "__gnu_bswapsi2");
6242 set_optab_libfunc (bswap_optab, DImode, "__gnu_bswapdi2");
6243 }
6244 else
6245 {
6246 set_optab_libfunc (bswap_optab, SImode, "__bswapsi2");
6247 set_optab_libfunc (bswap_optab, DImode, "__bswapdi2");
6248 }
167fa32c 6249
85363ca0
ZW
6250 /* Use cabs for double complex abs, since systems generally have cabs.
6251 Don't define any libcall for float complex, so that cabs will be used. */
6252 if (complex_double_type_node)
cd1440b1
RH
6253 set_optab_libfunc (abs_optab, TYPE_MODE (complex_double_type_node),
6254 "cabs");
76095e2f 6255
9602f5a0 6256 abort_libfunc = init_one_libfunc ("abort");
76095e2f 6257 memcpy_libfunc = init_one_libfunc ("memcpy");
b215b52e 6258 memmove_libfunc = init_one_libfunc ("memmove");
76095e2f 6259 memcmp_libfunc = init_one_libfunc ("memcmp");
76095e2f 6260 memset_libfunc = init_one_libfunc ("memset");
68d28100 6261 setbits_libfunc = init_one_libfunc ("__setbits");
76095e2f 6262
6e6a07d2 6263#ifndef DONT_USE_BUILTIN_SETJMP
76095e2f
RH
6264 setjmp_libfunc = init_one_libfunc ("__builtin_setjmp");
6265 longjmp_libfunc = init_one_libfunc ("__builtin_longjmp");
27a36778 6266#else
76095e2f
RH
6267 setjmp_libfunc = init_one_libfunc ("setjmp");
6268 longjmp_libfunc = init_one_libfunc ("longjmp");
27a36778 6269#endif
52a11cbf
RH
6270 unwind_sjlj_register_libfunc = init_one_libfunc ("_Unwind_SjLj_Register");
6271 unwind_sjlj_unregister_libfunc
6272 = init_one_libfunc ("_Unwind_SjLj_Unregister");
6adb4e3a 6273
07417085
KR
6274 /* For function entry/exit instrumentation. */
6275 profile_function_entry_libfunc
76095e2f 6276 = init_one_libfunc ("__cyg_profile_func_enter");
07417085 6277 profile_function_exit_libfunc
76095e2f 6278 = init_one_libfunc ("__cyg_profile_func_exit");
07417085 6279
68d28100 6280 gcov_flush_libfunc = init_one_libfunc ("__gcov_flush");
68d28100 6281
159c2aed 6282 /* Allow the target to add more libcalls or rename some, etc. */
c15c90bb 6283 targetm.init_libfuncs ();
77c9c6c2 6284}
b3f8d95d 6285
4b1baac8
RS
6286/* Use the current target and options to initialize
6287 TREE_OPTIMIZATION_OPTABS (OPTNODE). */
135204dd
AH
6288
6289void
4b1baac8 6290init_tree_optimization_optabs (tree optnode)
135204dd 6291{
4b1baac8
RS
6292 /* Quick exit if we have already computed optabs for this target. */
6293 if (TREE_OPTIMIZATION_BASE_OPTABS (optnode) == this_target_optabs)
6294 return;
135204dd 6295
4b1baac8
RS
6296 /* Forget any previous information and set up for the current target. */
6297 TREE_OPTIMIZATION_BASE_OPTABS (optnode) = this_target_optabs;
135204dd 6298 struct target_optabs *tmp_optabs = (struct target_optabs *)
4b1baac8
RS
6299 TREE_OPTIMIZATION_OPTABS (optnode);
6300 if (tmp_optabs)
6301 memset (tmp_optabs, 0, sizeof (struct target_optabs));
6302 else
766090c2 6303 tmp_optabs = ggc_alloc<target_optabs> ();
135204dd
AH
6304
6305 /* Generate a new set of optabs into tmp_optabs. */
6306 init_all_optabs (tmp_optabs);
6307
6308 /* If the optabs changed, record it. */
6309 if (memcmp (tmp_optabs, this_target_optabs, sizeof (struct target_optabs)))
cc349a39 6310 TREE_OPTIMIZATION_OPTABS (optnode) = tmp_optabs;
135204dd
AH
6311 else
6312 {
6313 TREE_OPTIMIZATION_OPTABS (optnode) = NULL;
6314 ggc_free (tmp_optabs);
6315 }
6316}
6317
cedb4a1a
RH
6318/* A helper function for init_sync_libfuncs. Using the basename BASE,
6319 install libfuncs into TAB for BASE_N for 1 <= N <= MAX. */
6320
6321static void
6322init_sync_libfuncs_1 (optab tab, const char *base, int max)
6323{
6324 enum machine_mode mode;
6325 char buf[64];
6326 size_t len = strlen (base);
6327 int i;
6328
6329 gcc_assert (max <= 8);
6330 gcc_assert (len + 3 < sizeof (buf));
6331
6332 memcpy (buf, base, len);
6333 buf[len] = '_';
6334 buf[len + 1] = '0';
6335 buf[len + 2] = '\0';
6336
6337 mode = QImode;
022c0cd1 6338 for (i = 1; i <= max; i *= 2)
cedb4a1a
RH
6339 {
6340 buf[len + 1] = '0' + i;
6341 set_optab_libfunc (tab, mode, buf);
6342 mode = GET_MODE_2XWIDER_MODE (mode);
6343 }
6344}
6345
6346void
6347init_sync_libfuncs (int max)
6348{
e8053cf5
RH
6349 if (!flag_sync_libcalls)
6350 return;
6351
cedb4a1a
RH
6352 init_sync_libfuncs_1 (sync_compare_and_swap_optab,
6353 "__sync_val_compare_and_swap", max);
6354 init_sync_libfuncs_1 (sync_lock_test_and_set_optab,
6355 "__sync_lock_test_and_set", max);
6356
6357 init_sync_libfuncs_1 (sync_old_add_optab, "__sync_fetch_and_add", max);
6358 init_sync_libfuncs_1 (sync_old_sub_optab, "__sync_fetch_and_sub", max);
ff47a151 6359 init_sync_libfuncs_1 (sync_old_ior_optab, "__sync_fetch_and_or", max);
cedb4a1a
RH
6360 init_sync_libfuncs_1 (sync_old_and_optab, "__sync_fetch_and_and", max);
6361 init_sync_libfuncs_1 (sync_old_xor_optab, "__sync_fetch_and_xor", max);
6362 init_sync_libfuncs_1 (sync_old_nand_optab, "__sync_fetch_and_nand", max);
6363
6364 init_sync_libfuncs_1 (sync_new_add_optab, "__sync_add_and_fetch", max);
6365 init_sync_libfuncs_1 (sync_new_sub_optab, "__sync_sub_and_fetch", max);
ff47a151 6366 init_sync_libfuncs_1 (sync_new_ior_optab, "__sync_or_and_fetch", max);
cedb4a1a
RH
6367 init_sync_libfuncs_1 (sync_new_and_optab, "__sync_and_and_fetch", max);
6368 init_sync_libfuncs_1 (sync_new_xor_optab, "__sync_xor_and_fetch", max);
6369 init_sync_libfuncs_1 (sync_new_nand_optab, "__sync_nand_and_fetch", max);
6370}
6371
b3f8d95d
MM
6372/* Print information about the current contents of the optabs on
6373 STDERR. */
6374
24e47c76 6375DEBUG_FUNCTION void
b3f8d95d
MM
6376debug_optab_libfuncs (void)
6377{
cd1440b1 6378 int i, j, k;
b3f8d95d
MM
6379
6380 /* Dump the arithmetic optabs. */
cd1440b1 6381 for (i = FIRST_NORM_OPTAB; i <= LAST_NORMLIB_OPTAB; ++i)
b3f8d95d
MM
6382 for (j = 0; j < NUM_MACHINE_MODES; ++j)
6383 {
cd1440b1 6384 rtx l = optab_libfunc ((optab) i, (enum machine_mode) j);
8a33f100 6385 if (l)
b3f8d95d 6386 {
8a33f100 6387 gcc_assert (GET_CODE (l) == SYMBOL_REF);
5906d013 6388 fprintf (stderr, "%s\t%s:\t%s\n",
cd1440b1 6389 GET_RTX_NAME (optab_to_code ((optab) i)),
b3f8d95d 6390 GET_MODE_NAME (j),
8a33f100 6391 XSTR (l, 0));
b3f8d95d
MM
6392 }
6393 }
6394
6395 /* Dump the conversion optabs. */
cd1440b1 6396 for (i = FIRST_CONV_OPTAB; i <= LAST_CONVLIB_OPTAB; ++i)
b3f8d95d
MM
6397 for (j = 0; j < NUM_MACHINE_MODES; ++j)
6398 for (k = 0; k < NUM_MACHINE_MODES; ++k)
6399 {
cd1440b1
RH
6400 rtx l = convert_optab_libfunc ((optab) i, (enum machine_mode) j,
6401 (enum machine_mode) k);
8a33f100 6402 if (l)
b3f8d95d 6403 {
8a33f100 6404 gcc_assert (GET_CODE (l) == SYMBOL_REF);
5906d013 6405 fprintf (stderr, "%s\t%s\t%s:\t%s\n",
cd1440b1 6406 GET_RTX_NAME (optab_to_code ((optab) i)),
b3f8d95d
MM
6407 GET_MODE_NAME (j),
6408 GET_MODE_NAME (k),
8a33f100 6409 XSTR (l, 0));
b3f8d95d
MM
6410 }
6411 }
6412}
6413
7e1966ca 6414\f
e0cd0770
JC
6415/* Generate insns to trap with code TCODE if OP1 and OP2 satisfy condition
6416 CODE. Return 0 on failure. */
6417
6418rtx
f90b7a5a 6419gen_cond_trap (enum rtx_code code, rtx op1, rtx op2, rtx tcode)
e0cd0770
JC
6420{
6421 enum machine_mode mode = GET_MODE (op1);
842a431a
DM
6422 enum insn_code icode;
6423 rtx insn;
f90b7a5a 6424 rtx trap_rtx;
e0cd0770
JC
6425
6426 if (mode == VOIDmode)
6427 return 0;
6428
947131ba 6429 icode = optab_handler (ctrap_optab, mode);
842a431a
DM
6430 if (icode == CODE_FOR_nothing)
6431 return 0;
6432
f90b7a5a 6433 /* Some targets only accept a zero trap code. */
2ef6ce06 6434 if (!insn_operand_matches (icode, 3, tcode))
f90b7a5a
PB
6435 return 0;
6436
6437 do_pending_stack_adjust ();
842a431a 6438 start_sequence ();
f90b7a5a
PB
6439 prepare_cmp_insn (op1, op2, code, NULL_RTX, false, OPTAB_DIRECT,
6440 &trap_rtx, &mode);
6441 if (!trap_rtx)
6442 insn = NULL_RTX;
6443 else
6444 insn = GEN_FCN (icode) (trap_rtx, XEXP (trap_rtx, 0), XEXP (trap_rtx, 1),
6445 tcode);
6446
6447 /* If that failed, then give up. */
6448 if (insn == 0)
d893ccde
RH
6449 {
6450 end_sequence ();
6451 return 0;
6452 }
842a431a 6453
f90b7a5a
PB
6454 emit_insn (insn);
6455 insn = get_insns ();
842a431a 6456 end_sequence ();
842a431a 6457 return insn;
e0cd0770 6458}
e2500fed 6459
7ce67fbe
DP
6460/* Return rtx code for TCODE. Use UNSIGNEDP to select signed
6461 or unsigned operation code. */
6462
6463static enum rtx_code
6464get_rtx_code (enum tree_code tcode, bool unsignedp)
6465{
6466 enum rtx_code code;
6467 switch (tcode)
6468 {
6469 case EQ_EXPR:
6470 code = EQ;
6471 break;
6472 case NE_EXPR:
6473 code = NE;
6474 break;
6475 case LT_EXPR:
6476 code = unsignedp ? LTU : LT;
6477 break;
6478 case LE_EXPR:
6479 code = unsignedp ? LEU : LE;
6480 break;
6481 case GT_EXPR:
6482 code = unsignedp ? GTU : GT;
6483 break;
6484 case GE_EXPR:
6485 code = unsignedp ? GEU : GE;
6486 break;
c414ac1d 6487
7ce67fbe
DP
6488 case UNORDERED_EXPR:
6489 code = UNORDERED;
6490 break;
6491 case ORDERED_EXPR:
6492 code = ORDERED;
6493 break;
6494 case UNLT_EXPR:
6495 code = UNLT;
6496 break;
6497 case UNLE_EXPR:
6498 code = UNLE;
6499 break;
6500 case UNGT_EXPR:
6501 code = UNGT;
6502 break;
6503 case UNGE_EXPR:
6504 code = UNGE;
6505 break;
6506 case UNEQ_EXPR:
6507 code = UNEQ;
6508 break;
6509 case LTGT_EXPR:
6510 code = LTGT;
6511 break;
6512
6513 default:
e3feb571 6514 gcc_unreachable ();
7ce67fbe
DP
6515 }
6516 return code;
6517}
6518
6519/* Return comparison rtx for COND. Use UNSIGNEDP to select signed or
6520 unsigned operators. Do not generate compare instruction. */
6521
6522static rtx
e6ed43b0
MG
6523vector_compare_rtx (enum tree_code tcode, tree t_op0, tree t_op1,
6524 bool unsignedp, enum insn_code icode)
7ce67fbe 6525{
a5c7d693 6526 struct expand_operand ops[2];
7ce67fbe 6527 rtx rtx_op0, rtx_op1;
e6ed43b0 6528 enum rtx_code rcode = get_rtx_code (tcode, unsignedp);
7ce67fbe 6529
e6ed43b0 6530 gcc_assert (TREE_CODE_CLASS (tcode) == tcc_comparison);
c414ac1d 6531
7ce67fbe 6532 /* Expand operands. */
49452c07
UB
6533 rtx_op0 = expand_expr (t_op0, NULL_RTX, TYPE_MODE (TREE_TYPE (t_op0)),
6534 EXPAND_STACK_PARM);
6535 rtx_op1 = expand_expr (t_op1, NULL_RTX, TYPE_MODE (TREE_TYPE (t_op1)),
6536 EXPAND_STACK_PARM);
7ce67fbe 6537
a5c7d693
RS
6538 create_input_operand (&ops[0], rtx_op0, GET_MODE (rtx_op0));
6539 create_input_operand (&ops[1], rtx_op1, GET_MODE (rtx_op1));
6540 if (!maybe_legitimize_operands (icode, 4, 2, ops))
6541 gcc_unreachable ();
6542 return gen_rtx_fmt_ee (rcode, VOIDmode, ops[0].value, ops[1].value);
7ce67fbe
DP
6543}
6544
2205ed25 6545/* Return true if VEC_PERM_EXPR can be expanded using SIMD extensions
2635892a 6546 of the CPU. SEL may be NULL, which stands for an unknown constant. */
d7943c8b 6547
f90e8e2e 6548bool
22e4dee7
RH
6549can_vec_perm_p (enum machine_mode mode, bool variable,
6550 const unsigned char *sel)
f90e8e2e 6551{
22e4dee7 6552 enum machine_mode qimode;
d7943c8b
RH
6553
6554 /* If the target doesn't implement a vector mode for the vector type,
6555 then no operations are supported. */
6556 if (!VECTOR_MODE_P (mode))
6557 return false;
f90e8e2e 6558
22e4dee7 6559 if (!variable)
d7943c8b
RH
6560 {
6561 if (direct_optab_handler (vec_perm_const_optab, mode) != CODE_FOR_nothing
22e4dee7
RH
6562 && (sel == NULL
6563 || targetm.vectorize.vec_perm_const_ok == NULL
6564 || targetm.vectorize.vec_perm_const_ok (mode, sel)))
d7943c8b
RH
6565 return true;
6566 }
6567
6568 if (direct_optab_handler (vec_perm_optab, mode) != CODE_FOR_nothing)
f90e8e2e
AS
6569 return true;
6570
d7943c8b 6571 /* We allow fallback to a QI vector mode, and adjust the mask. */
22e4dee7
RH
6572 if (GET_MODE_INNER (mode) == QImode)
6573 return false;
d7943c8b
RH
6574 qimode = mode_for_vector (QImode, GET_MODE_SIZE (mode));
6575 if (!VECTOR_MODE_P (qimode))
6576 return false;
6577
6578 /* ??? For completeness, we ought to check the QImode version of
6579 vec_perm_const_optab. But all users of this implicit lowering
6580 feature implement the variable vec_perm_optab. */
6581 if (direct_optab_handler (vec_perm_optab, qimode) == CODE_FOR_nothing)
f90e8e2e
AS
6582 return false;
6583
22e4dee7 6584 /* In order to support the lowering of variable permutations,
d7943c8b 6585 we need to support shifts and adds. */
22e4dee7 6586 if (variable)
d7943c8b
RH
6587 {
6588 if (GET_MODE_UNIT_SIZE (mode) > 2
6589 && optab_handler (ashl_optab, mode) == CODE_FOR_nothing
6590 && optab_handler (vashl_optab, mode) == CODE_FOR_nothing)
6591 return false;
6592 if (optab_handler (add_optab, qimode) == CODE_FOR_nothing)
6593 return false;
6594 }
6595
6596 return true;
f90e8e2e
AS
6597}
6598
22e4dee7 6599/* A subroutine of expand_vec_perm for expanding one vec_perm insn. */
d7943c8b
RH
6600
6601static rtx
22e4dee7
RH
6602expand_vec_perm_1 (enum insn_code icode, rtx target,
6603 rtx v0, rtx v1, rtx sel)
f90e8e2e 6604{
d7943c8b
RH
6605 enum machine_mode tmode = GET_MODE (target);
6606 enum machine_mode smode = GET_MODE (sel);
f90e8e2e 6607 struct expand_operand ops[4];
f90e8e2e 6608
d7943c8b
RH
6609 create_output_operand (&ops[0], target, tmode);
6610 create_input_operand (&ops[3], sel, smode);
f90e8e2e 6611
d7943c8b
RH
6612 /* Make an effort to preserve v0 == v1. The target expander is able to
6613 rely on this to determine if we're permuting a single input operand. */
6614 if (rtx_equal_p (v0, v1))
f90e8e2e 6615 {
d7943c8b
RH
6616 if (!insn_operand_matches (icode, 1, v0))
6617 v0 = force_reg (tmode, v0);
6618 gcc_checking_assert (insn_operand_matches (icode, 1, v0));
6619 gcc_checking_assert (insn_operand_matches (icode, 2, v0));
f90e8e2e 6620
d7943c8b
RH
6621 create_fixed_operand (&ops[1], v0);
6622 create_fixed_operand (&ops[2], v0);
6623 }
6624 else
6625 {
6626 create_input_operand (&ops[1], v0, tmode);
6627 create_input_operand (&ops[2], v1, tmode);
6628 }
f90e8e2e 6629
d7943c8b
RH
6630 if (maybe_expand_insn (icode, 4, ops))
6631 return ops[0].value;
6632 return NULL_RTX;
6633}
f90e8e2e 6634
22e4dee7
RH
6635/* Generate instructions for vec_perm optab given its mode
6636 and three operands. */
6637
d7943c8b 6638rtx
22e4dee7 6639expand_vec_perm (enum machine_mode mode, rtx v0, rtx v1, rtx sel, rtx target)
d7943c8b
RH
6640{
6641 enum insn_code icode;
d7943c8b 6642 enum machine_mode qimode;
d7943c8b 6643 unsigned int i, w, e, u;
4cb110fb 6644 rtx tmp, sel_qi = NULL;
22e4dee7 6645 rtvec vec;
d7943c8b 6646
22e4dee7 6647 if (!target || GET_MODE (target) != mode)
d7943c8b 6648 target = gen_reg_rtx (mode);
22e4dee7
RH
6649
6650 w = GET_MODE_SIZE (mode);
6651 e = GET_MODE_NUNITS (mode);
6652 u = GET_MODE_UNIT_SIZE (mode);
6653
6654 /* Set QIMODE to a different vector mode with byte elements.
6655 If no such mode, or if MODE already has byte elements, use VOIDmode. */
6656 qimode = VOIDmode;
6657 if (GET_MODE_INNER (mode) != QImode)
6658 {
6659 qimode = mode_for_vector (QImode, w);
6660 if (!VECTOR_MODE_P (qimode))
6661 qimode = VOIDmode;
6662 }
f90e8e2e 6663
d7943c8b 6664 /* If the input is a constant, expand it specially. */
ccdfb0e2
RH
6665 gcc_assert (GET_MODE_CLASS (GET_MODE (sel)) == MODE_VECTOR_INT);
6666 if (GET_CODE (sel) == CONST_VECTOR)
d7943c8b
RH
6667 {
6668 icode = direct_optab_handler (vec_perm_const_optab, mode);
22e4dee7
RH
6669 if (icode != CODE_FOR_nothing)
6670 {
6671 tmp = expand_vec_perm_1 (icode, target, v0, v1, sel);
6672 if (tmp)
6673 return tmp;
6674 }
6675
6676 /* Fall back to a constant byte-based permutation. */
6677 if (qimode != VOIDmode)
6678 {
4cb110fb
RH
6679 vec = rtvec_alloc (w);
6680 for (i = 0; i < e; ++i)
22e4dee7 6681 {
4cb110fb 6682 unsigned int j, this_e;
22e4dee7 6683
ccdfb0e2 6684 this_e = INTVAL (CONST_VECTOR_ELT (sel, i));
4cb110fb
RH
6685 this_e &= 2 * e - 1;
6686 this_e *= u;
22e4dee7 6687
4cb110fb
RH
6688 for (j = 0; j < u; ++j)
6689 RTVEC_ELT (vec, i * u + j) = GEN_INT (this_e + j);
6690 }
6691 sel_qi = gen_rtx_CONST_VECTOR (qimode, vec);
22e4dee7 6692
4cb110fb
RH
6693 icode = direct_optab_handler (vec_perm_const_optab, qimode);
6694 if (icode != CODE_FOR_nothing)
6695 {
d8c84975
JJ
6696 tmp = mode != qimode ? gen_reg_rtx (qimode) : target;
6697 tmp = expand_vec_perm_1 (icode, tmp, gen_lowpart (qimode, v0),
22e4dee7
RH
6698 gen_lowpart (qimode, v1), sel_qi);
6699 if (tmp)
6700 return gen_lowpart (mode, tmp);
6701 }
6702 }
f90e8e2e
AS
6703 }
6704
22e4dee7 6705 /* Otherwise expand as a fully variable permuation. */
2205ed25 6706 icode = direct_optab_handler (vec_perm_optab, mode);
22e4dee7
RH
6707 if (icode != CODE_FOR_nothing)
6708 {
6709 tmp = expand_vec_perm_1 (icode, target, v0, v1, sel);
6710 if (tmp)
6711 return tmp;
6712 }
d7943c8b
RH
6713
6714 /* As a special case to aid several targets, lower the element-based
6715 permutation to a byte-based permutation and try again. */
22e4dee7 6716 if (qimode == VOIDmode)
d7943c8b 6717 return NULL_RTX;
d7943c8b 6718 icode = direct_optab_handler (vec_perm_optab, qimode);
f90e8e2e 6719 if (icode == CODE_FOR_nothing)
d7943c8b 6720 return NULL_RTX;
f90e8e2e 6721
4cb110fb
RH
6722 if (sel_qi == NULL)
6723 {
6724 /* Multiply each element by its byte size. */
6725 enum machine_mode selmode = GET_MODE (sel);
6726 if (u == 2)
6727 sel = expand_simple_binop (selmode, PLUS, sel, sel,
6728 sel, 0, OPTAB_DIRECT);
6729 else
6730 sel = expand_simple_binop (selmode, ASHIFT, sel,
6731 GEN_INT (exact_log2 (u)),
6732 sel, 0, OPTAB_DIRECT);
6733 gcc_assert (sel != NULL);
6734
6735 /* Broadcast the low byte each element into each of its bytes. */
6736 vec = rtvec_alloc (w);
6737 for (i = 0; i < w; ++i)
6738 {
6739 int this_e = i / u * u;
6740 if (BYTES_BIG_ENDIAN)
6741 this_e += u - 1;
6742 RTVEC_ELT (vec, i) = GEN_INT (this_e);
6743 }
6744 tmp = gen_rtx_CONST_VECTOR (qimode, vec);
6745 sel = gen_lowpart (qimode, sel);
b96d19ff 6746 sel = expand_vec_perm (qimode, sel, sel, tmp, NULL);
4cb110fb
RH
6747 gcc_assert (sel != NULL);
6748
6749 /* Add the byte offset to each byte element. */
6750 /* Note that the definition of the indicies here is memory ordering,
6751 so there should be no difference between big and little endian. */
6752 vec = rtvec_alloc (w);
6753 for (i = 0; i < w; ++i)
6754 RTVEC_ELT (vec, i) = GEN_INT (i % u);
6755 tmp = gen_rtx_CONST_VECTOR (qimode, vec);
6756 sel_qi = expand_simple_binop (qimode, PLUS, sel, tmp,
6757 sel, 0, OPTAB_DIRECT);
6758 gcc_assert (sel_qi != NULL);
6759 }
22e4dee7 6760
d8c84975
JJ
6761 tmp = mode != qimode ? gen_reg_rtx (qimode) : target;
6762 tmp = expand_vec_perm_1 (icode, tmp, gen_lowpart (qimode, v0),
4cb110fb 6763 gen_lowpart (qimode, v1), sel_qi);
22e4dee7
RH
6764 if (tmp)
6765 tmp = gen_lowpart (mode, tmp);
6766 return tmp;
f90e8e2e
AS
6767}
6768
e9e1d143
RG
6769/* Return insn code for a conditional operator with a comparison in
6770 mode CMODE, unsigned if UNS is true, resulting in a value of mode VMODE. */
c414ac1d
EC
6771
6772static inline enum insn_code
e9e1d143 6773get_vcond_icode (enum machine_mode vmode, enum machine_mode cmode, bool uns)
7ce67fbe
DP
6774{
6775 enum insn_code icode = CODE_FOR_nothing;
e9e1d143
RG
6776 if (uns)
6777 icode = convert_optab_handler (vcondu_optab, vmode, cmode);
7ce67fbe 6778 else
e9e1d143 6779 icode = convert_optab_handler (vcond_optab, vmode, cmode);
7ce67fbe
DP
6780 return icode;
6781}
6782
6783/* Return TRUE iff, appropriate vector insns are available
e9e1d143
RG
6784 for vector cond expr with vector type VALUE_TYPE and a comparison
6785 with operand vector types in CMP_OP_TYPE. */
7ce67fbe
DP
6786
6787bool
e9e1d143 6788expand_vec_cond_expr_p (tree value_type, tree cmp_op_type)
7ce67fbe 6789{
e9e1d143
RG
6790 enum machine_mode value_mode = TYPE_MODE (value_type);
6791 enum machine_mode cmp_op_mode = TYPE_MODE (cmp_op_type);
6792 if (GET_MODE_SIZE (value_mode) != GET_MODE_SIZE (cmp_op_mode)
6793 || GET_MODE_NUNITS (value_mode) != GET_MODE_NUNITS (cmp_op_mode)
6794 || get_vcond_icode (TYPE_MODE (value_type), TYPE_MODE (cmp_op_type),
6795 TYPE_UNSIGNED (cmp_op_type)) == CODE_FOR_nothing)
7ce67fbe
DP
6796 return false;
6797 return true;
6798}
6799
8e7aa1f9
MM
6800/* Generate insns for a VEC_COND_EXPR, given its TYPE and its
6801 three operands. */
7ce67fbe
DP
6802
6803rtx
8e7aa1f9
MM
6804expand_vec_cond_expr (tree vec_cond_type, tree op0, tree op1, tree op2,
6805 rtx target)
7ce67fbe 6806{
a5c7d693 6807 struct expand_operand ops[6];
7ce67fbe 6808 enum insn_code icode;
a5c7d693 6809 rtx comparison, rtx_op1, rtx_op2;
8e7aa1f9 6810 enum machine_mode mode = TYPE_MODE (vec_cond_type);
e9e1d143
RG
6811 enum machine_mode cmp_op_mode;
6812 bool unsignedp;
e6ed43b0
MG
6813 tree op0a, op0b;
6814 enum tree_code tcode;
e9e1d143 6815
e6ed43b0
MG
6816 if (COMPARISON_CLASS_P (op0))
6817 {
6818 op0a = TREE_OPERAND (op0, 0);
6819 op0b = TREE_OPERAND (op0, 1);
6820 tcode = TREE_CODE (op0);
6821 }
6822 else
6823 {
6824 /* Fake op0 < 0. */
6825 gcc_assert (!TYPE_UNSIGNED (TREE_TYPE (op0)));
6826 op0a = op0;
6827 op0b = build_zero_cst (TREE_TYPE (op0));
6828 tcode = LT_EXPR;
6829 }
6830 unsignedp = TYPE_UNSIGNED (TREE_TYPE (op0a));
6831 cmp_op_mode = TYPE_MODE (TREE_TYPE (op0a));
e9e1d143 6832
e9e1d143
RG
6833
6834 gcc_assert (GET_MODE_SIZE (mode) == GET_MODE_SIZE (cmp_op_mode)
6835 && GET_MODE_NUNITS (mode) == GET_MODE_NUNITS (cmp_op_mode));
7ce67fbe 6836
e9e1d143 6837 icode = get_vcond_icode (mode, cmp_op_mode, unsignedp);
7ce67fbe
DP
6838 if (icode == CODE_FOR_nothing)
6839 return 0;
6840
e6ed43b0 6841 comparison = vector_compare_rtx (tcode, op0a, op0b, unsignedp, icode);
8e7aa1f9 6842 rtx_op1 = expand_normal (op1);
8e7aa1f9 6843 rtx_op2 = expand_normal (op2);
7ce67fbe 6844
a5c7d693
RS
6845 create_output_operand (&ops[0], target, mode);
6846 create_input_operand (&ops[1], rtx_op1, mode);
6847 create_input_operand (&ops[2], rtx_op2, mode);
6848 create_fixed_operand (&ops[3], comparison);
6849 create_fixed_operand (&ops[4], XEXP (comparison, 0));
6850 create_fixed_operand (&ops[5], XEXP (comparison, 1));
6851 expand_insn (icode, 6, ops);
6852 return ops[0].value;
7ce67fbe 6853}
48ae6c13 6854
00f07b86
RH
6855/* Return non-zero if a highpart multiply is supported of can be synthisized.
6856 For the benefit of expand_mult_highpart, the return value is 1 for direct,
6857 2 for even/odd widening, and 3 for hi/lo widening. */
6858
6859int
6860can_mult_highpart_p (enum machine_mode mode, bool uns_p)
6861{
6862 optab op;
6863 unsigned char *sel;
6864 unsigned i, nunits;
6865
6866 op = uns_p ? umul_highpart_optab : smul_highpart_optab;
6867 if (optab_handler (op, mode) != CODE_FOR_nothing)
6868 return 1;
6869
6870 /* If the mode is an integral vector, synth from widening operations. */
6871 if (GET_MODE_CLASS (mode) != MODE_VECTOR_INT)
6872 return 0;
6873
6874 nunits = GET_MODE_NUNITS (mode);
6875 sel = XALLOCAVEC (unsigned char, nunits);
6876
6877 op = uns_p ? vec_widen_umult_even_optab : vec_widen_smult_even_optab;
6878 if (optab_handler (op, mode) != CODE_FOR_nothing)
6879 {
6880 op = uns_p ? vec_widen_umult_odd_optab : vec_widen_smult_odd_optab;
6881 if (optab_handler (op, mode) != CODE_FOR_nothing)
6882 {
6883 for (i = 0; i < nunits; ++i)
6884 sel[i] = !BYTES_BIG_ENDIAN + (i & ~1) + ((i & 1) ? nunits : 0);
6885 if (can_vec_perm_p (mode, false, sel))
6886 return 2;
6887 }
6888 }
6889
6890 op = uns_p ? vec_widen_umult_hi_optab : vec_widen_smult_hi_optab;
6891 if (optab_handler (op, mode) != CODE_FOR_nothing)
6892 {
6893 op = uns_p ? vec_widen_umult_lo_optab : vec_widen_smult_lo_optab;
6894 if (optab_handler (op, mode) != CODE_FOR_nothing)
6895 {
6896 for (i = 0; i < nunits; ++i)
6897 sel[i] = 2 * i + (BYTES_BIG_ENDIAN ? 0 : 1);
6898 if (can_vec_perm_p (mode, false, sel))
6899 return 3;
6900 }
6901 }
6902
6903 return 0;
6904}
6905
6906/* Expand a highpart multiply. */
6907
6908rtx
6909expand_mult_highpart (enum machine_mode mode, rtx op0, rtx op1,
6910 rtx target, bool uns_p)
6911{
6912 struct expand_operand eops[3];
6913 enum insn_code icode;
6914 int method, i, nunits;
6915 enum machine_mode wmode;
6916 rtx m1, m2, perm;
6917 optab tab1, tab2;
6918 rtvec v;
6919
6920 method = can_mult_highpart_p (mode, uns_p);
6921 switch (method)
6922 {
6923 case 0:
6924 return NULL_RTX;
6925 case 1:
6926 tab1 = uns_p ? umul_highpart_optab : smul_highpart_optab;
6927 return expand_binop (mode, tab1, op0, op1, target, uns_p,
6928 OPTAB_LIB_WIDEN);
6929 case 2:
6930 tab1 = uns_p ? vec_widen_umult_even_optab : vec_widen_smult_even_optab;
6931 tab2 = uns_p ? vec_widen_umult_odd_optab : vec_widen_smult_odd_optab;
6932 break;
6933 case 3:
6934 tab1 = uns_p ? vec_widen_umult_lo_optab : vec_widen_smult_lo_optab;
6935 tab2 = uns_p ? vec_widen_umult_hi_optab : vec_widen_smult_hi_optab;
6936 if (BYTES_BIG_ENDIAN)
6937 {
6938 optab t = tab1;
6939 tab1 = tab2;
6940 tab2 = t;
6941 }
6942 break;
6943 default:
6944 gcc_unreachable ();
6945 }
6946
6947 icode = optab_handler (tab1, mode);
6948 nunits = GET_MODE_NUNITS (mode);
6949 wmode = insn_data[icode].operand[0].mode;
6950 gcc_checking_assert (2 * GET_MODE_NUNITS (wmode) == nunits);
6951 gcc_checking_assert (GET_MODE_SIZE (wmode) == GET_MODE_SIZE (mode));
6952
6953 create_output_operand (&eops[0], gen_reg_rtx (wmode), wmode);
6954 create_input_operand (&eops[1], op0, mode);
6955 create_input_operand (&eops[2], op1, mode);
6956 expand_insn (icode, 3, eops);
6957 m1 = gen_lowpart (mode, eops[0].value);
6958
6959 create_output_operand (&eops[0], gen_reg_rtx (wmode), wmode);
6960 create_input_operand (&eops[1], op0, mode);
6961 create_input_operand (&eops[2], op1, mode);
6962 expand_insn (optab_handler (tab2, mode), 3, eops);
6963 m2 = gen_lowpart (mode, eops[0].value);
6964
6965 v = rtvec_alloc (nunits);
6966 if (method == 2)
6967 {
6968 for (i = 0; i < nunits; ++i)
6969 RTVEC_ELT (v, i) = GEN_INT (!BYTES_BIG_ENDIAN + (i & ~1)
6970 + ((i & 1) ? nunits : 0));
6971 }
6972 else
6973 {
6974 for (i = 0; i < nunits; ++i)
6975 RTVEC_ELT (v, i) = GEN_INT (2 * i + (BYTES_BIG_ENDIAN ? 0 : 1));
6976 }
6977 perm = gen_rtx_CONST_VECTOR (mode, v);
6978
6979 return expand_vec_perm (mode, m1, m2, perm, target);
6980}
5ce9450f
JJ
6981
6982/* Return true if target supports vector masked load/store for mode. */
6983bool
6984can_vec_mask_load_store_p (enum machine_mode mode, bool is_load)
6985{
6986 optab op = is_load ? maskload_optab : maskstore_optab;
6987 enum machine_mode vmode;
6988 unsigned int vector_sizes;
6989
6990 /* If mode is vector mode, check it directly. */
6991 if (VECTOR_MODE_P (mode))
6992 return optab_handler (op, mode) != CODE_FOR_nothing;
6993
6994 /* Otherwise, return true if there is some vector mode with
6995 the mask load/store supported. */
6996
6997 /* See if there is any chance the mask load or store might be
6998 vectorized. If not, punt. */
6999 vmode = targetm.vectorize.preferred_simd_mode (mode);
7000 if (!VECTOR_MODE_P (vmode))
7001 return false;
7002
7003 if (optab_handler (op, vmode) != CODE_FOR_nothing)
7004 return true;
7005
7006 vector_sizes = targetm.vectorize.autovectorize_vector_sizes ();
7007 while (vector_sizes != 0)
7008 {
7009 unsigned int cur = 1 << floor_log2 (vector_sizes);
7010 vector_sizes &= ~cur;
7011 if (cur <= GET_MODE_SIZE (mode))
7012 continue;
7013 vmode = mode_for_vector (mode, cur / GET_MODE_SIZE (mode));
7014 if (VECTOR_MODE_P (vmode)
7015 && optab_handler (op, vmode) != CODE_FOR_nothing)
7016 return true;
7017 }
7018 return false;
7019}
48ae6c13 7020\f
86951993 7021/* Return true if there is a compare_and_swap pattern. */
48ae6c13 7022
86951993 7023bool
cedb4a1a 7024can_compare_and_swap_p (enum machine_mode mode, bool allow_libcall)
48ae6c13 7025{
86951993 7026 enum insn_code icode;
48ae6c13 7027
86951993
AM
7028 /* Check for __atomic_compare_and_swap. */
7029 icode = direct_optab_handler (atomic_compare_and_swap_optab, mode);
7030 if (icode != CODE_FOR_nothing)
cedb4a1a
RH
7031 return true;
7032
7033 /* Check for __sync_compare_and_swap. */
7034 icode = optab_handler (sync_compare_and_swap_optab, mode);
7035 if (icode != CODE_FOR_nothing)
7036 return true;
7037 if (allow_libcall && optab_libfunc (sync_compare_and_swap_optab, mode))
7038 return true;
48ae6c13 7039
86951993
AM
7040 /* No inline compare and swap. */
7041 return false;
48ae6c13
RH
7042}
7043
05409788
RH
7044/* Return true if an atomic exchange can be performed. */
7045
7046bool
7047can_atomic_exchange_p (enum machine_mode mode, bool allow_libcall)
7048{
7049 enum insn_code icode;
7050
7051 /* Check for __atomic_exchange. */
7052 icode = direct_optab_handler (atomic_exchange_optab, mode);
7053 if (icode != CODE_FOR_nothing)
7054 return true;
7055
7056 /* Don't check __sync_test_and_set, as on some platforms that
7057 has reduced functionality. Targets that really do support
7058 a proper exchange should simply be updated to the __atomics. */
7059
7060 return can_compare_and_swap_p (mode, allow_libcall);
7061}
7062
7063
4a77c72b
PB
7064/* Helper function to find the MODE_CC set in a sync_compare_and_swap
7065 pattern. */
7066
7067static void
7068find_cc_set (rtx x, const_rtx pat, void *data)
7069{
7070 if (REG_P (x) && GET_MODE_CLASS (GET_MODE (x)) == MODE_CC
7071 && GET_CODE (pat) == SET)
7072 {
7073 rtx *p_cc_reg = (rtx *) data;
7074 gcc_assert (!*p_cc_reg);
7075 *p_cc_reg = x;
7076 }
7077}
7078
48ae6c13
RH
7079/* This is a helper function for the other atomic operations. This function
7080 emits a loop that contains SEQ that iterates until a compare-and-swap
7081 operation at the end succeeds. MEM is the memory to be modified. SEQ is
7082 a set of instructions that takes a value from OLD_REG as an input and
7083 produces a value in NEW_REG as an output. Before SEQ, OLD_REG will be
7084 set to the current contents of MEM. After SEQ, a compare-and-swap will
7085 attempt to update MEM with NEW_REG. The function returns true when the
7086 loop was generated successfully. */
7087
7088static bool
7089expand_compare_and_swap_loop (rtx mem, rtx old_reg, rtx new_reg, rtx seq)
7090{
7091 enum machine_mode mode = GET_MODE (mem);
86951993 7092 rtx label, cmp_reg, success, oldval;
48ae6c13
RH
7093
7094 /* The loop we want to generate looks like
7095
81ba4f39 7096 cmp_reg = mem;
48ae6c13 7097 label:
81ba4f39 7098 old_reg = cmp_reg;
48ae6c13 7099 seq;
86951993
AM
7100 (success, cmp_reg) = compare-and-swap(mem, old_reg, new_reg)
7101 if (success)
48ae6c13
RH
7102 goto label;
7103
7104 Note that we only do the plain load from memory once. Subsequent
7105 iterations use the value loaded by the compare-and-swap pattern. */
7106
7107 label = gen_label_rtx ();
81ba4f39 7108 cmp_reg = gen_reg_rtx (mode);
48ae6c13 7109
81ba4f39 7110 emit_move_insn (cmp_reg, mem);
48ae6c13 7111 emit_label (label);
81ba4f39 7112 emit_move_insn (old_reg, cmp_reg);
48ae6c13
RH
7113 if (seq)
7114 emit_insn (seq);
7115
86951993
AM
7116 success = NULL_RTX;
7117 oldval = cmp_reg;
7118 if (!expand_atomic_compare_and_swap (&success, &oldval, mem, old_reg,
7119 new_reg, false, MEMMODEL_SEQ_CST,
7120 MEMMODEL_RELAXED))
4a77c72b 7121 return false;
48ae6c13 7122
86951993
AM
7123 if (oldval != cmp_reg)
7124 emit_move_insn (cmp_reg, oldval);
48ae6c13 7125
a4da41e1 7126 /* Mark this jump predicted not taken. */
86951993 7127 emit_cmp_and_jump_insns (success, const0_rtx, EQ, const0_rtx,
a4da41e1 7128 GET_MODE (success), 1, label, 0);
86951993
AM
7129 return true;
7130}
7131
7132
744accb2
AM
7133/* This function tries to emit an atomic_exchange intruction. VAL is written
7134 to *MEM using memory model MODEL. The previous contents of *MEM are returned,
7135 using TARGET if possible. */
7136
7137static rtx
7138maybe_emit_atomic_exchange (rtx target, rtx mem, rtx val, enum memmodel model)
86951993
AM
7139{
7140 enum machine_mode mode = GET_MODE (mem);
7141 enum insn_code icode;
86951993
AM
7142
7143 /* If the target supports the exchange directly, great. */
7144 icode = direct_optab_handler (atomic_exchange_optab, mode);
7145 if (icode != CODE_FOR_nothing)
4a77c72b 7146 {
86951993
AM
7147 struct expand_operand ops[4];
7148
7149 create_output_operand (&ops[0], target, mode);
7150 create_fixed_operand (&ops[1], mem);
464046a6 7151 create_input_operand (&ops[2], val, mode);
86951993
AM
7152 create_integer_operand (&ops[3], model);
7153 if (maybe_expand_insn (icode, 4, ops))
7154 return ops[0].value;
4a77c72b 7155 }
86951993 7156
744accb2
AM
7157 return NULL_RTX;
7158}
7159
7160/* This function tries to implement an atomic exchange operation using
7161 __sync_lock_test_and_set. VAL is written to *MEM using memory model MODEL.
7162 The previous contents of *MEM are returned, using TARGET if possible.
7163 Since this instructionn is an acquire barrier only, stronger memory
7164 models may require additional barriers to be emitted. */
86951993 7165
744accb2
AM
7166static rtx
7167maybe_emit_sync_lock_test_and_set (rtx target, rtx mem, rtx val,
7168 enum memmodel model)
7169{
7170 enum machine_mode mode = GET_MODE (mem);
7171 enum insn_code icode;
7172 rtx last_insn = get_last_insn ();
7173
7174 icode = optab_handler (sync_lock_test_and_set_optab, mode);
7175
7176 /* Legacy sync_lock_test_and_set is an acquire barrier. If the pattern
7177 exists, and the memory model is stronger than acquire, add a release
7178 barrier before the instruction. */
86951993 7179
88e784e6
UB
7180 if ((model & MEMMODEL_MASK) == MEMMODEL_SEQ_CST
7181 || (model & MEMMODEL_MASK) == MEMMODEL_RELEASE
7182 || (model & MEMMODEL_MASK) == MEMMODEL_ACQ_REL)
744accb2
AM
7183 expand_mem_thread_fence (model);
7184
7185 if (icode != CODE_FOR_nothing)
4a77c72b 7186 {
744accb2
AM
7187 struct expand_operand ops[3];
7188 create_output_operand (&ops[0], target, mode);
7189 create_fixed_operand (&ops[1], mem);
464046a6 7190 create_input_operand (&ops[2], val, mode);
744accb2
AM
7191 if (maybe_expand_insn (icode, 3, ops))
7192 return ops[0].value;
7193 }
86951993 7194
744accb2
AM
7195 /* If an external test-and-set libcall is provided, use that instead of
7196 any external compare-and-swap that we might get from the compare-and-
7197 swap-loop expansion later. */
7198 if (!can_compare_and_swap_p (mode, false))
7199 {
7200 rtx libfunc = optab_libfunc (sync_lock_test_and_set_optab, mode);
7201 if (libfunc != NULL)
0669295b 7202 {
744accb2
AM
7203 rtx addr;
7204
7205 addr = convert_memory_address (ptr_mode, XEXP (mem, 0));
fae67e1d 7206 return emit_library_call_value (libfunc, NULL_RTX, LCT_NORMAL,
744accb2
AM
7207 mode, 2, addr, ptr_mode,
7208 val, mode);
0669295b 7209 }
744accb2 7210 }
48ae6c13 7211
744accb2
AM
7212 /* If the test_and_set can't be emitted, eliminate any barrier that might
7213 have been emitted. */
7214 delete_insns_since (last_insn);
7215 return NULL_RTX;
7216}
cedb4a1a 7217
744accb2
AM
7218/* This function tries to implement an atomic exchange operation using a
7219 compare_and_swap loop. VAL is written to *MEM. The previous contents of
7220 *MEM are returned, using TARGET if possible. No memory model is required
7221 since a compare_and_swap loop is seq-cst. */
cedb4a1a 7222
744accb2
AM
7223static rtx
7224maybe_emit_compare_and_swap_exchange_loop (rtx target, rtx mem, rtx val)
7225{
7226 enum machine_mode mode = GET_MODE (mem);
86951993 7227
cedb4a1a 7228 if (can_compare_and_swap_p (mode, true))
86951993
AM
7229 {
7230 if (!target || !register_operand (target, mode))
7231 target = gen_reg_rtx (mode);
86951993
AM
7232 if (expand_compare_and_swap_loop (mem, target, val, NULL_RTX))
7233 return target;
7234 }
7235
7236 return NULL_RTX;
7237}
7238
f8a27aa6
RH
7239/* This function tries to implement an atomic test-and-set operation
7240 using the atomic_test_and_set instruction pattern. A boolean value
7241 is returned from the operation, using TARGET if possible. */
7242
744accb2
AM
7243#ifndef HAVE_atomic_test_and_set
7244#define HAVE_atomic_test_and_set 0
f8a27aa6 7245#define CODE_FOR_atomic_test_and_set CODE_FOR_nothing
744accb2
AM
7246#endif
7247
f8a27aa6
RH
7248static rtx
7249maybe_emit_atomic_test_and_set (rtx target, rtx mem, enum memmodel model)
7250{
7251 enum machine_mode pat_bool_mode;
15e73e06 7252 struct expand_operand ops[3];
f8a27aa6
RH
7253
7254 if (!HAVE_atomic_test_and_set)
7255 return NULL_RTX;
7256
42cf0609
RH
7257 /* While we always get QImode from __atomic_test_and_set, we get
7258 other memory modes from __sync_lock_test_and_set. Note that we
7259 use no endian adjustment here. This matches the 4.6 behavior
7260 in the Sparc backend. */
15e73e06
RH
7261 gcc_checking_assert
7262 (insn_data[CODE_FOR_atomic_test_and_set].operand[1].mode == QImode);
42cf0609
RH
7263 if (GET_MODE (mem) != QImode)
7264 mem = adjust_address_nv (mem, QImode, 0);
f8a27aa6 7265
15e73e06
RH
7266 pat_bool_mode = insn_data[CODE_FOR_atomic_test_and_set].operand[0].mode;
7267 create_output_operand (&ops[0], target, pat_bool_mode);
7268 create_fixed_operand (&ops[1], mem);
7269 create_integer_operand (&ops[2], model);
f8a27aa6 7270
15e73e06
RH
7271 if (maybe_expand_insn (CODE_FOR_atomic_test_and_set, 3, ops))
7272 return ops[0].value;
7273 return NULL_RTX;
f8a27aa6
RH
7274}
7275
744accb2
AM
7276/* This function expands the legacy _sync_lock test_and_set operation which is
7277 generally an atomic exchange. Some limited targets only allow the
7278 constant 1 to be stored. This is an ACQUIRE operation.
7279
7280 TARGET is an optional place to stick the return value.
7281 MEM is where VAL is stored. */
7282
7283rtx
7284expand_sync_lock_test_and_set (rtx target, rtx mem, rtx val)
7285{
7286 rtx ret;
7287
7288 /* Try an atomic_exchange first. */
7289 ret = maybe_emit_atomic_exchange (target, mem, val, MEMMODEL_ACQUIRE);
f8a27aa6
RH
7290 if (ret)
7291 return ret;
7292
7293 ret = maybe_emit_sync_lock_test_and_set (target, mem, val, MEMMODEL_ACQUIRE);
7294 if (ret)
7295 return ret;
744accb2 7296
f8a27aa6
RH
7297 ret = maybe_emit_compare_and_swap_exchange_loop (target, mem, val);
7298 if (ret)
7299 return ret;
744accb2
AM
7300
7301 /* If there are no other options, try atomic_test_and_set if the value
7302 being stored is 1. */
f8a27aa6
RH
7303 if (val == const1_rtx)
7304 ret = maybe_emit_atomic_test_and_set (target, mem, MEMMODEL_ACQUIRE);
744accb2
AM
7305
7306 return ret;
7307}
7308
7309/* This function expands the atomic test_and_set operation:
7310 atomically store a boolean TRUE into MEM and return the previous value.
7311
7312 MEMMODEL is the memory model variant to use.
7313 TARGET is an optional place to stick the return value. */
7314
7315rtx
7316expand_atomic_test_and_set (rtx target, rtx mem, enum memmodel model)
7317{
7318 enum machine_mode mode = GET_MODE (mem);
a6de595f 7319 rtx ret, trueval, subtarget;
f8a27aa6
RH
7320
7321 ret = maybe_emit_atomic_test_and_set (target, mem, model);
7322 if (ret)
7323 return ret;
744accb2 7324
a6de595f
RH
7325 /* Be binary compatible with non-default settings of trueval, and different
7326 cpu revisions. E.g. one revision may have atomic-test-and-set, but
7327 another only has atomic-exchange. */
7328 if (targetm.atomic_test_and_set_trueval == 1)
7329 {
7330 trueval = const1_rtx;
7331 subtarget = target ? target : gen_reg_rtx (mode);
7332 }
7333 else
7334 {
7335 trueval = gen_int_mode (targetm.atomic_test_and_set_trueval, mode);
7336 subtarget = gen_reg_rtx (mode);
7337 }
744accb2 7338
a6de595f
RH
7339 /* Try the atomic-exchange optab... */
7340 ret = maybe_emit_atomic_exchange (subtarget, mem, trueval, model);
744accb2 7341
a6de595f
RH
7342 /* ... then an atomic-compare-and-swap loop ... */
7343 if (!ret)
7344 ret = maybe_emit_compare_and_swap_exchange_loop (subtarget, mem, trueval);
744accb2 7345
a6de595f
RH
7346 /* ... before trying the vaguely defined legacy lock_test_and_set. */
7347 if (!ret)
7348 ret = maybe_emit_sync_lock_test_and_set (subtarget, mem, trueval, model);
744accb2 7349
a6de595f
RH
7350 /* Recall that the legacy lock_test_and_set optab was allowed to do magic
7351 things with the value 1. Thus we try again without trueval. */
7352 if (!ret && targetm.atomic_test_and_set_trueval != 1)
7353 ret = maybe_emit_sync_lock_test_and_set (subtarget, mem, const1_rtx, model);
7354
7355 /* Failing all else, assume a single threaded environment and simply
7356 perform the operation. */
7357 if (!ret)
7358 {
0d03cda4
KT
7359 /* If the result is ignored skip the move to target. */
7360 if (subtarget != const0_rtx)
7361 emit_move_insn (subtarget, mem);
7362
a6de595f
RH
7363 emit_move_insn (mem, trueval);
7364 ret = subtarget;
7365 }
7366
7367 /* Recall that have to return a boolean value; rectify if trueval
7368 is not exactly one. */
7369 if (targetm.atomic_test_and_set_trueval != 1)
7370 ret = emit_store_flag_force (target, NE, ret, const0_rtx, mode, 0, 1);
7371
7372 return ret;
744accb2
AM
7373}
7374
7375/* This function expands the atomic exchange operation:
7376 atomically store VAL in MEM and return the previous value in MEM.
7377
7378 MEMMODEL is the memory model variant to use.
7379 TARGET is an optional place to stick the return value. */
7380
7381rtx
7382expand_atomic_exchange (rtx target, rtx mem, rtx val, enum memmodel model)
7383{
7384 rtx ret;
7385
7386 ret = maybe_emit_atomic_exchange (target, mem, val, model);
7387
7388 /* Next try a compare-and-swap loop for the exchange. */
7389 if (!ret)
7390 ret = maybe_emit_compare_and_swap_exchange_loop (target, mem, val);
7391
7392 return ret;
7393}
7394
86951993
AM
7395/* This function expands the atomic compare exchange operation:
7396
7397 *PTARGET_BOOL is an optional place to store the boolean success/failure.
7398 *PTARGET_OVAL is an optional place to store the old value from memory.
7399 Both target parameters may be NULL to indicate that we do not care about
7400 that return value. Both target parameters are updated on success to
7401 the actual location of the corresponding result.
7402
7403 MEMMODEL is the memory model variant to use.
7404
7405 The return value of the function is true for success. */
7406
7407bool
7408expand_atomic_compare_and_swap (rtx *ptarget_bool, rtx *ptarget_oval,
7409 rtx mem, rtx expected, rtx desired,
7410 bool is_weak, enum memmodel succ_model,
7411 enum memmodel fail_model)
7412{
7413 enum machine_mode mode = GET_MODE (mem);
7414 struct expand_operand ops[8];
7415 enum insn_code icode;
cedb4a1a
RH
7416 rtx target_oval, target_bool = NULL_RTX;
7417 rtx libfunc;
86951993
AM
7418
7419 /* Load expected into a register for the compare and swap. */
7420 if (MEM_P (expected))
7421 expected = copy_to_reg (expected);
7422
7423 /* Make sure we always have some place to put the return oldval.
7424 Further, make sure that place is distinct from the input expected,
7425 just in case we need that path down below. */
7426 if (ptarget_oval == NULL
7427 || (target_oval = *ptarget_oval) == NULL
7428 || reg_overlap_mentioned_p (expected, target_oval))
7429 target_oval = gen_reg_rtx (mode);
7430
7431 icode = direct_optab_handler (atomic_compare_and_swap_optab, mode);
7432 if (icode != CODE_FOR_nothing)
7433 {
7434 enum machine_mode bool_mode = insn_data[icode].operand[0].mode;
7435
7436 /* Make sure we always have a place for the bool operand. */
7437 if (ptarget_bool == NULL
7438 || (target_bool = *ptarget_bool) == NULL
7439 || GET_MODE (target_bool) != bool_mode)
7440 target_bool = gen_reg_rtx (bool_mode);
7441
7442 /* Emit the compare_and_swap. */
7443 create_output_operand (&ops[0], target_bool, bool_mode);
7444 create_output_operand (&ops[1], target_oval, mode);
7445 create_fixed_operand (&ops[2], mem);
464046a6
RH
7446 create_input_operand (&ops[3], expected, mode);
7447 create_input_operand (&ops[4], desired, mode);
86951993
AM
7448 create_integer_operand (&ops[5], is_weak);
7449 create_integer_operand (&ops[6], succ_model);
7450 create_integer_operand (&ops[7], fail_model);
8bd7070a
AK
7451 if (maybe_expand_insn (icode, 8, ops))
7452 {
7453 /* Return success/failure. */
7454 target_bool = ops[0].value;
7455 target_oval = ops[1].value;
7456 goto success;
7457 }
86951993
AM
7458 }
7459
7460 /* Otherwise fall back to the original __sync_val_compare_and_swap
7461 which is always seq-cst. */
cedb4a1a 7462 icode = optab_handler (sync_compare_and_swap_optab, mode);
86951993
AM
7463 if (icode != CODE_FOR_nothing)
7464 {
7465 rtx cc_reg;
7466
7467 create_output_operand (&ops[0], target_oval, mode);
7468 create_fixed_operand (&ops[1], mem);
464046a6
RH
7469 create_input_operand (&ops[2], expected, mode);
7470 create_input_operand (&ops[3], desired, mode);
86951993
AM
7471 if (!maybe_expand_insn (icode, 4, ops))
7472 return false;
7473
7474 target_oval = ops[0].value;
86951993
AM
7475
7476 /* If the caller isn't interested in the boolean return value,
7477 skip the computation of it. */
7478 if (ptarget_bool == NULL)
7479 goto success;
7480
7481 /* Otherwise, work out if the compare-and-swap succeeded. */
7482 cc_reg = NULL_RTX;
7483 if (have_insn_for (COMPARE, CCmode))
7484 note_stores (PATTERN (get_last_insn ()), find_cc_set, &cc_reg);
cedb4a1a
RH
7485 if (cc_reg)
7486 {
7487 target_bool = emit_store_flag_force (target_bool, EQ, cc_reg,
7488 const0_rtx, VOIDmode, 0, 1);
7489 goto success;
7490 }
7491 goto success_bool_from_val;
7492 }
86951993 7493
cedb4a1a
RH
7494 /* Also check for library support for __sync_val_compare_and_swap. */
7495 libfunc = optab_libfunc (sync_compare_and_swap_optab, mode);
7496 if (libfunc != NULL)
7497 {
7498 rtx addr = convert_memory_address (ptr_mode, XEXP (mem, 0));
fae67e1d 7499 target_oval = emit_library_call_value (libfunc, NULL_RTX, LCT_NORMAL,
cedb4a1a
RH
7500 mode, 3, addr, ptr_mode,
7501 expected, mode, desired, mode);
7502
7503 /* Compute the boolean return value only if requested. */
7504 if (ptarget_bool)
7505 goto success_bool_from_val;
7506 else
7507 goto success;
86951993 7508 }
cedb4a1a
RH
7509
7510 /* Failure. */
86951993
AM
7511 return false;
7512
cedb4a1a
RH
7513 success_bool_from_val:
7514 target_bool = emit_store_flag_force (target_bool, EQ, target_oval,
7515 expected, VOIDmode, 1, 1);
86951993
AM
7516 success:
7517 /* Make sure that the oval output winds up where the caller asked. */
7518 if (ptarget_oval)
7519 *ptarget_oval = target_oval;
7520 if (ptarget_bool)
7521 *ptarget_bool = target_bool;
48ae6c13
RH
7522 return true;
7523}
7524
c39169c8
RH
7525/* Generate asm volatile("" : : : "memory") as the memory barrier. */
7526
7527static void
7528expand_asm_memory_barrier (void)
7529{
7530 rtx asm_op, clob;
7531
7532 asm_op = gen_rtx_ASM_OPERANDS (VOIDmode, empty_string, empty_string, 0,
7533 rtvec_alloc (0), rtvec_alloc (0),
7534 rtvec_alloc (0), UNKNOWN_LOCATION);
7535 MEM_VOLATILE_P (asm_op) = 1;
7536
7537 clob = gen_rtx_SCRATCH (VOIDmode);
7538 clob = gen_rtx_MEM (BLKmode, clob);
7539 clob = gen_rtx_CLOBBER (VOIDmode, clob);
7540
7541 emit_insn (gen_rtx_PARALLEL (VOIDmode, gen_rtvec (2, asm_op, clob)));
7542}
7543
7544/* This routine will either emit the mem_thread_fence pattern or issue a
7545 sync_synchronize to generate a fence for memory model MEMMODEL. */
7546
7547#ifndef HAVE_mem_thread_fence
7548# define HAVE_mem_thread_fence 0
7549# define gen_mem_thread_fence(x) (gcc_unreachable (), NULL_RTX)
7550#endif
7551#ifndef HAVE_memory_barrier
7552# define HAVE_memory_barrier 0
7553# define gen_memory_barrier() (gcc_unreachable (), NULL_RTX)
7554#endif
7555
7556void
7557expand_mem_thread_fence (enum memmodel model)
7558{
7559 if (HAVE_mem_thread_fence)
7560 emit_insn (gen_mem_thread_fence (GEN_INT (model)));
88e784e6 7561 else if ((model & MEMMODEL_MASK) != MEMMODEL_RELAXED)
c39169c8
RH
7562 {
7563 if (HAVE_memory_barrier)
7564 emit_insn (gen_memory_barrier ());
7565 else if (synchronize_libfunc != NULL_RTX)
7566 emit_library_call (synchronize_libfunc, LCT_NORMAL, VOIDmode, 0);
7567 else
7568 expand_asm_memory_barrier ();
7569 }
7570}
7571
7572/* This routine will either emit the mem_signal_fence pattern or issue a
7573 sync_synchronize to generate a fence for memory model MEMMODEL. */
7574
7575#ifndef HAVE_mem_signal_fence
7576# define HAVE_mem_signal_fence 0
7577# define gen_mem_signal_fence(x) (gcc_unreachable (), NULL_RTX)
7578#endif
7579
7580void
7581expand_mem_signal_fence (enum memmodel model)
7582{
7583 if (HAVE_mem_signal_fence)
7584 emit_insn (gen_mem_signal_fence (GEN_INT (model)));
88e784e6 7585 else if ((model & MEMMODEL_MASK) != MEMMODEL_RELAXED)
c39169c8
RH
7586 {
7587 /* By default targets are coherent between a thread and the signal
7588 handler running on the same thread. Thus this really becomes a
7589 compiler barrier, in that stores must not be sunk past
7590 (or raised above) a given point. */
7591 expand_asm_memory_barrier ();
7592 }
7593}
7594
86951993
AM
7595/* This function expands the atomic load operation:
7596 return the atomically loaded value in MEM.
7597
7598 MEMMODEL is the memory model variant to use.
7599 TARGET is an option place to stick the return value. */
48ae6c13
RH
7600
7601rtx
86951993 7602expand_atomic_load (rtx target, rtx mem, enum memmodel model)
48ae6c13
RH
7603{
7604 enum machine_mode mode = GET_MODE (mem);
7605 enum insn_code icode;
48ae6c13 7606
86951993
AM
7607 /* If the target supports the load directly, great. */
7608 icode = direct_optab_handler (atomic_load_optab, mode);
7609 if (icode != CODE_FOR_nothing)
48ae6c13 7610 {
86951993 7611 struct expand_operand ops[3];
48ae6c13 7612
86951993
AM
7613 create_output_operand (&ops[0], target, mode);
7614 create_fixed_operand (&ops[1], mem);
7615 create_integer_operand (&ops[2], model);
7616 if (maybe_expand_insn (icode, 3, ops))
7617 return ops[0].value;
7618 }
48ae6c13 7619
86951993
AM
7620 /* If the size of the object is greater than word size on this target,
7621 then we assume that a load will not be atomic. */
7622 if (GET_MODE_PRECISION (mode) > BITS_PER_WORD)
7623 {
7624 /* Issue val = compare_and_swap (mem, 0, 0).
7625 This may cause the occasional harmless store of 0 when the value is
7626 already 0, but it seems to be OK according to the standards guys. */
c51ec0a3
AM
7627 if (expand_atomic_compare_and_swap (NULL, &target, mem, const0_rtx,
7628 const0_rtx, false, model, model))
7629 return target;
7630 else
7631 /* Otherwise there is no atomic load, leave the library call. */
7632 return NULL_RTX;
48ae6c13
RH
7633 }
7634
86951993
AM
7635 /* Otherwise assume loads are atomic, and emit the proper barriers. */
7636 if (!target || target == const0_rtx)
7637 target = gen_reg_rtx (mode);
7638
80928237 7639 /* For SEQ_CST, emit a barrier before the load. */
88e784e6 7640 if ((model & MEMMODEL_MASK) == MEMMODEL_SEQ_CST)
80928237 7641 expand_mem_thread_fence (model);
86951993
AM
7642
7643 emit_move_insn (target, mem);
7644
80928237
RH
7645 /* Emit the appropriate barrier after the load. */
7646 expand_mem_thread_fence (model);
86951993
AM
7647
7648 return target;
7649}
7650
7651/* This function expands the atomic store operation:
7652 Atomically store VAL in MEM.
7653 MEMMODEL is the memory model variant to use.
0669295b 7654 USE_RELEASE is true if __sync_lock_release can be used as a fall back.
86951993
AM
7655 function returns const0_rtx if a pattern was emitted. */
7656
7657rtx
0669295b 7658expand_atomic_store (rtx mem, rtx val, enum memmodel model, bool use_release)
86951993
AM
7659{
7660 enum machine_mode mode = GET_MODE (mem);
7661 enum insn_code icode;
7662 struct expand_operand ops[3];
7663
7664 /* If the target supports the store directly, great. */
7665 icode = direct_optab_handler (atomic_store_optab, mode);
48ae6c13
RH
7666 if (icode != CODE_FOR_nothing)
7667 {
a5c7d693 7668 create_fixed_operand (&ops[0], mem);
86951993
AM
7669 create_input_operand (&ops[1], val, mode);
7670 create_integer_operand (&ops[2], model);
7671 if (maybe_expand_insn (icode, 3, ops))
a5c7d693 7672 return const0_rtx;
48ae6c13
RH
7673 }
7674
0669295b
AM
7675 /* If using __sync_lock_release is a viable alternative, try it. */
7676 if (use_release)
7677 {
7678 icode = direct_optab_handler (sync_lock_release_optab, mode);
7679 if (icode != CODE_FOR_nothing)
7680 {
7681 create_fixed_operand (&ops[0], mem);
7682 create_input_operand (&ops[1], const0_rtx, mode);
7683 if (maybe_expand_insn (icode, 2, ops))
7684 {
7685 /* lock_release is only a release barrier. */
88e784e6 7686 if ((model & MEMMODEL_MASK) == MEMMODEL_SEQ_CST)
c39169c8 7687 expand_mem_thread_fence (model);
0669295b
AM
7688 return const0_rtx;
7689 }
7690 }
7691 }
7692
86951993
AM
7693 /* If the size of the object is greater than word size on this target,
7694 a default store will not be atomic, Try a mem_exchange and throw away
7695 the result. If that doesn't work, don't do anything. */
c3284718 7696 if (GET_MODE_PRECISION (mode) > BITS_PER_WORD)
48ae6c13 7697 {
744accb2
AM
7698 rtx target = maybe_emit_atomic_exchange (NULL_RTX, mem, val, model);
7699 if (!target)
7700 target = maybe_emit_compare_and_swap_exchange_loop (NULL_RTX, mem, val);
86951993
AM
7701 if (target)
7702 return const0_rtx;
7703 else
7704 return NULL_RTX;
7705 }
48ae6c13 7706
80928237 7707 /* Otherwise assume stores are atomic, and emit the proper barriers. */
5e3b173a 7708 expand_mem_thread_fence (model);
48ae6c13 7709
86951993 7710 emit_move_insn (mem, val);
48ae6c13 7711
80928237 7712 /* For SEQ_CST, also emit a barrier after the store. */
88e784e6 7713 if ((model & MEMMODEL_MASK) == MEMMODEL_SEQ_CST)
c39169c8 7714 expand_mem_thread_fence (model);
48ae6c13 7715
86951993 7716 return const0_rtx;
48ae6c13
RH
7717}
7718
48ae6c13 7719
86951993
AM
7720/* Structure containing the pointers and values required to process the
7721 various forms of the atomic_fetch_op and atomic_op_fetch builtins. */
7722
7723struct atomic_op_functions
48ae6c13 7724{
cedb4a1a
RH
7725 direct_optab mem_fetch_before;
7726 direct_optab mem_fetch_after;
7727 direct_optab mem_no_result;
7728 optab fetch_before;
7729 optab fetch_after;
7730 direct_optab no_result;
86951993
AM
7731 enum rtx_code reverse_code;
7732};
7733
48ae6c13 7734
6ff336b4
AM
7735/* Fill in structure pointed to by OP with the various optab entries for an
7736 operation of type CODE. */
7737
7738static void
7739get_atomic_op_for_code (struct atomic_op_functions *op, enum rtx_code code)
7740{
7741 gcc_assert (op!= NULL);
7742
7743 /* If SWITCHABLE_TARGET is defined, then subtargets can be switched
7744 in the source code during compilation, and the optab entries are not
7745 computable until runtime. Fill in the values at runtime. */
48ae6c13
RH
7746 switch (code)
7747 {
7748 case PLUS:
6ff336b4
AM
7749 op->mem_fetch_before = atomic_fetch_add_optab;
7750 op->mem_fetch_after = atomic_add_fetch_optab;
7751 op->mem_no_result = atomic_add_optab;
7752 op->fetch_before = sync_old_add_optab;
7753 op->fetch_after = sync_new_add_optab;
7754 op->no_result = sync_add_optab;
7755 op->reverse_code = MINUS;
7756 break;
86951993 7757 case MINUS:
6ff336b4
AM
7758 op->mem_fetch_before = atomic_fetch_sub_optab;
7759 op->mem_fetch_after = atomic_sub_fetch_optab;
7760 op->mem_no_result = atomic_sub_optab;
7761 op->fetch_before = sync_old_sub_optab;
7762 op->fetch_after = sync_new_sub_optab;
7763 op->no_result = sync_sub_optab;
7764 op->reverse_code = PLUS;
7765 break;
48ae6c13 7766 case XOR:
6ff336b4
AM
7767 op->mem_fetch_before = atomic_fetch_xor_optab;
7768 op->mem_fetch_after = atomic_xor_fetch_optab;
7769 op->mem_no_result = atomic_xor_optab;
7770 op->fetch_before = sync_old_xor_optab;
7771 op->fetch_after = sync_new_xor_optab;
7772 op->no_result = sync_xor_optab;
7773 op->reverse_code = XOR;
7774 break;
48ae6c13 7775 case AND:
6ff336b4
AM
7776 op->mem_fetch_before = atomic_fetch_and_optab;
7777 op->mem_fetch_after = atomic_and_fetch_optab;
7778 op->mem_no_result = atomic_and_optab;
7779 op->fetch_before = sync_old_and_optab;
7780 op->fetch_after = sync_new_and_optab;
7781 op->no_result = sync_and_optab;
7782 op->reverse_code = UNKNOWN;
7783 break;
86951993 7784 case IOR:
6ff336b4
AM
7785 op->mem_fetch_before = atomic_fetch_or_optab;
7786 op->mem_fetch_after = atomic_or_fetch_optab;
7787 op->mem_no_result = atomic_or_optab;
7788 op->fetch_before = sync_old_ior_optab;
7789 op->fetch_after = sync_new_ior_optab;
7790 op->no_result = sync_ior_optab;
7791 op->reverse_code = UNKNOWN;
7792 break;
f12b785d 7793 case NOT:
6ff336b4
AM
7794 op->mem_fetch_before = atomic_fetch_nand_optab;
7795 op->mem_fetch_after = atomic_nand_fetch_optab;
7796 op->mem_no_result = atomic_nand_optab;
7797 op->fetch_before = sync_old_nand_optab;
7798 op->fetch_after = sync_new_nand_optab;
7799 op->no_result = sync_nand_optab;
7800 op->reverse_code = UNKNOWN;
7801 break;
48ae6c13
RH
7802 default:
7803 gcc_unreachable ();
7804 }
86951993
AM
7805}
7806
91f59d8b
AM
7807/* See if there is a more optimal way to implement the operation "*MEM CODE VAL"
7808 using memory order MODEL. If AFTER is true the operation needs to return
7809 the value of *MEM after the operation, otherwise the previous value.
7810 TARGET is an optional place to place the result. The result is unused if
7811 it is const0_rtx.
7812 Return the result if there is a better sequence, otherwise NULL_RTX. */
7813
7814static rtx
7815maybe_optimize_fetch_op (rtx target, rtx mem, rtx val, enum rtx_code code,
7816 enum memmodel model, bool after)
7817{
7818 /* If the value is prefetched, or not used, it may be possible to replace
7819 the sequence with a native exchange operation. */
7820 if (!after || target == const0_rtx)
7821 {
7822 /* fetch_and (&x, 0, m) can be replaced with exchange (&x, 0, m). */
7823 if (code == AND && val == const0_rtx)
7824 {
7825 if (target == const0_rtx)
7826 target = gen_reg_rtx (GET_MODE (mem));
7827 return maybe_emit_atomic_exchange (target, mem, val, model);
7828 }
7829
7830 /* fetch_or (&x, -1, m) can be replaced with exchange (&x, -1, m). */
7831 if (code == IOR && val == constm1_rtx)
7832 {
7833 if (target == const0_rtx)
7834 target = gen_reg_rtx (GET_MODE (mem));
7835 return maybe_emit_atomic_exchange (target, mem, val, model);
7836 }
7837 }
7838
7839 return NULL_RTX;
7840}
7841
86951993
AM
7842/* Try to emit an instruction for a specific operation varaition.
7843 OPTAB contains the OP functions.
7844 TARGET is an optional place to return the result. const0_rtx means unused.
7845 MEM is the memory location to operate on.
7846 VAL is the value to use in the operation.
7847 USE_MEMMODEL is TRUE if the variation with a memory model should be tried.
7848 MODEL is the memory model, if used.
7849 AFTER is true if the returned result is the value after the operation. */
7850
7851static rtx
7852maybe_emit_op (const struct atomic_op_functions *optab, rtx target, rtx mem,
7853 rtx val, bool use_memmodel, enum memmodel model, bool after)
7854{
7855 enum machine_mode mode = GET_MODE (mem);
86951993
AM
7856 struct expand_operand ops[4];
7857 enum insn_code icode;
7858 int op_counter = 0;
7859 int num_ops;
48ae6c13 7860
86951993
AM
7861 /* Check to see if there is a result returned. */
7862 if (target == const0_rtx)
48ae6c13 7863 {
86951993
AM
7864 if (use_memmodel)
7865 {
cedb4a1a 7866 icode = direct_optab_handler (optab->mem_no_result, mode);
86951993
AM
7867 create_integer_operand (&ops[2], model);
7868 num_ops = 3;
7869 }
7870 else
7871 {
cedb4a1a 7872 icode = direct_optab_handler (optab->no_result, mode);
86951993 7873 num_ops = 2;
48ae6c13
RH
7874 }
7875 }
86951993 7876 /* Otherwise, we need to generate a result. */
48ae6c13
RH
7877 else
7878 {
86951993
AM
7879 if (use_memmodel)
7880 {
cedb4a1a
RH
7881 icode = direct_optab_handler (after ? optab->mem_fetch_after
7882 : optab->mem_fetch_before, mode);
86951993 7883 create_integer_operand (&ops[3], model);
cedb4a1a 7884 num_ops = 4;
86951993
AM
7885 }
7886 else
48ae6c13 7887 {
cedb4a1a
RH
7888 icode = optab_handler (after ? optab->fetch_after
7889 : optab->fetch_before, mode);
86951993 7890 num_ops = 3;
48ae6c13 7891 }
86951993 7892 create_output_operand (&ops[op_counter++], target, mode);
48ae6c13 7893 }
86951993
AM
7894 if (icode == CODE_FOR_nothing)
7895 return NULL_RTX;
7896
7897 create_fixed_operand (&ops[op_counter++], mem);
7898 /* VAL may have been promoted to a wider mode. Shrink it if so. */
7899 create_convert_operand_to (&ops[op_counter++], val, mode, true);
7900
7901 if (maybe_expand_insn (icode, num_ops, ops))
cedb4a1a 7902 return (target == const0_rtx ? const0_rtx : ops[0].value);
86951993
AM
7903
7904 return NULL_RTX;
7905}
7906
7907
7908/* This function expands an atomic fetch_OP or OP_fetch operation:
7909 TARGET is an option place to stick the return value. const0_rtx indicates
7910 the result is unused.
7911 atomically fetch MEM, perform the operation with VAL and return it to MEM.
7912 CODE is the operation being performed (OP)
7913 MEMMODEL is the memory model variant to use.
7914 AFTER is true to return the result of the operation (OP_fetch).
cd8b6dc5
AM
7915 AFTER is false to return the value before the operation (fetch_OP).
7916
7917 This function will *only* generate instructions if there is a direct
7918 optab. No compare and swap loops or libcalls will be generated. */
7919
7920static rtx
7921expand_atomic_fetch_op_no_fallback (rtx target, rtx mem, rtx val,
7922 enum rtx_code code, enum memmodel model,
7923 bool after)
86951993
AM
7924{
7925 enum machine_mode mode = GET_MODE (mem);
6ff336b4 7926 struct atomic_op_functions optab;
86951993
AM
7927 rtx result;
7928 bool unused_result = (target == const0_rtx);
7929
6ff336b4 7930 get_atomic_op_for_code (&optab, code);
86951993 7931
91f59d8b
AM
7932 /* Check to see if there are any better instructions. */
7933 result = maybe_optimize_fetch_op (target, mem, val, code, model, after);
7934 if (result)
7935 return result;
7936
86951993
AM
7937 /* Check for the case where the result isn't used and try those patterns. */
7938 if (unused_result)
48ae6c13 7939 {
86951993 7940 /* Try the memory model variant first. */
6ff336b4 7941 result = maybe_emit_op (&optab, target, mem, val, true, model, true);
86951993
AM
7942 if (result)
7943 return result;
48ae6c13 7944
86951993 7945 /* Next try the old style withuot a memory model. */
6ff336b4 7946 result = maybe_emit_op (&optab, target, mem, val, false, model, true);
86951993
AM
7947 if (result)
7948 return result;
f12b785d 7949
86951993
AM
7950 /* There is no no-result pattern, so try patterns with a result. */
7951 target = NULL_RTX;
7952 }
48ae6c13 7953
86951993 7954 /* Try the __atomic version. */
6ff336b4 7955 result = maybe_emit_op (&optab, target, mem, val, true, model, after);
86951993
AM
7956 if (result)
7957 return result;
7958
7959 /* Try the older __sync version. */
6ff336b4 7960 result = maybe_emit_op (&optab, target, mem, val, false, model, after);
86951993
AM
7961 if (result)
7962 return result;
7963
7964 /* If the fetch value can be calculated from the other variation of fetch,
7965 try that operation. */
cedb4a1a 7966 if (after || unused_result || optab.reverse_code != UNKNOWN)
86951993
AM
7967 {
7968 /* Try the __atomic version, then the older __sync version. */
6ff336b4 7969 result = maybe_emit_op (&optab, target, mem, val, true, model, !after);
86951993 7970 if (!result)
6ff336b4 7971 result = maybe_emit_op (&optab, target, mem, val, false, model, !after);
86951993
AM
7972
7973 if (result)
7974 {
7975 /* If the result isn't used, no need to do compensation code. */
7976 if (unused_result)
2b894715 7977 return result;
86951993
AM
7978
7979 /* Issue compensation code. Fetch_after == fetch_before OP val.
7980 Fetch_before == after REVERSE_OP val. */
7981 if (!after)
6ff336b4 7982 code = optab.reverse_code;
154b68db
AM
7983 if (code == NOT)
7984 {
7985 result = expand_simple_binop (mode, AND, result, val, NULL_RTX,
7986 true, OPTAB_LIB_WIDEN);
7987 result = expand_simple_unop (mode, NOT, result, target, true);
7988 }
7989 else
7990 result = expand_simple_binop (mode, code, result, val, target,
7991 true, OPTAB_LIB_WIDEN);
86951993 7992 return result;
48ae6c13
RH
7993 }
7994 }
7995
cd8b6dc5
AM
7996 /* No direct opcode can be generated. */
7997 return NULL_RTX;
7998}
7999
8000
8001
8002/* This function expands an atomic fetch_OP or OP_fetch operation:
8003 TARGET is an option place to stick the return value. const0_rtx indicates
8004 the result is unused.
8005 atomically fetch MEM, perform the operation with VAL and return it to MEM.
8006 CODE is the operation being performed (OP)
8007 MEMMODEL is the memory model variant to use.
8008 AFTER is true to return the result of the operation (OP_fetch).
8009 AFTER is false to return the value before the operation (fetch_OP). */
8010rtx
8011expand_atomic_fetch_op (rtx target, rtx mem, rtx val, enum rtx_code code,
8012 enum memmodel model, bool after)
8013{
8014 enum machine_mode mode = GET_MODE (mem);
8015 rtx result;
8016 bool unused_result = (target == const0_rtx);
8017
8018 result = expand_atomic_fetch_op_no_fallback (target, mem, val, code, model,
8019 after);
8020
8021 if (result)
8022 return result;
8023
8024 /* Add/sub can be implemented by doing the reverse operation with -(val). */
8025 if (code == PLUS || code == MINUS)
8026 {
8027 rtx tmp;
8028 enum rtx_code reverse = (code == PLUS ? MINUS : PLUS);
8029
8030 start_sequence ();
8031 tmp = expand_simple_unop (mode, NEG, val, NULL_RTX, true);
8032 result = expand_atomic_fetch_op_no_fallback (target, mem, tmp, reverse,
8033 model, after);
8034 if (result)
8035 {
8036 /* PLUS worked so emit the insns and return. */
8037 tmp = get_insns ();
8038 end_sequence ();
8039 emit_insn (tmp);
8040 return result;
8041 }
8042
8043 /* PLUS did not work, so throw away the negation code and continue. */
8044 end_sequence ();
8045 }
8046
cedb4a1a
RH
8047 /* Try the __sync libcalls only if we can't do compare-and-swap inline. */
8048 if (!can_compare_and_swap_p (mode, false))
8049 {
8050 rtx libfunc;
8051 bool fixup = false;
79cd6f15 8052 enum rtx_code orig_code = code;
cd8b6dc5 8053 struct atomic_op_functions optab;
cedb4a1a 8054
cd8b6dc5 8055 get_atomic_op_for_code (&optab, code);
cedb4a1a
RH
8056 libfunc = optab_libfunc (after ? optab.fetch_after
8057 : optab.fetch_before, mode);
8058 if (libfunc == NULL
8059 && (after || unused_result || optab.reverse_code != UNKNOWN))
8060 {
8061 fixup = true;
8062 if (!after)
8063 code = optab.reverse_code;
8064 libfunc = optab_libfunc (after ? optab.fetch_before
8065 : optab.fetch_after, mode);
8066 }
8067 if (libfunc != NULL)
8068 {
8069 rtx addr = convert_memory_address (ptr_mode, XEXP (mem, 0));
8070 result = emit_library_call_value (libfunc, NULL, LCT_NORMAL, mode,
8071 2, addr, ptr_mode, val, mode);
8072
2b894715 8073 if (!unused_result && fixup)
cedb4a1a
RH
8074 result = expand_simple_binop (mode, code, result, val, target,
8075 true, OPTAB_LIB_WIDEN);
8076 return result;
8077 }
79cd6f15
HPN
8078
8079 /* We need the original code for any further attempts. */
8080 code = orig_code;
cedb4a1a
RH
8081 }
8082
86951993 8083 /* If nothing else has succeeded, default to a compare and swap loop. */
cedb4a1a 8084 if (can_compare_and_swap_p (mode, true))
48ae6c13 8085 {
86951993 8086 rtx insn;
48ae6c13
RH
8087 rtx t0 = gen_reg_rtx (mode), t1;
8088
48ae6c13
RH
8089 start_sequence ();
8090
86951993
AM
8091 /* If the result is used, get a register for it. */
8092 if (!unused_result)
8093 {
8094 if (!target || !register_operand (target, mode))
8095 target = gen_reg_rtx (mode);
8096 /* If fetch_before, copy the value now. */
8097 if (!after)
8098 emit_move_insn (target, t0);
8099 }
8100 else
8101 target = const0_rtx;
8102
f12b785d 8103 t1 = t0;
48ae6c13 8104 if (code == NOT)
86951993 8105 {
23462d4d
UB
8106 t1 = expand_simple_binop (mode, AND, t1, val, NULL_RTX,
8107 true, OPTAB_LIB_WIDEN);
8108 t1 = expand_simple_unop (mode, code, t1, NULL_RTX, true);
48ae6c13 8109 }
23462d4d 8110 else
86951993
AM
8111 t1 = expand_simple_binop (mode, code, t1, val, NULL_RTX, true,
8112 OPTAB_LIB_WIDEN);
48ae6c13 8113
86951993
AM
8114 /* For after, copy the value now. */
8115 if (!unused_result && after)
8116 emit_move_insn (target, t1);
48ae6c13
RH
8117 insn = get_insns ();
8118 end_sequence ();
8119
8120 if (t1 != NULL && expand_compare_and_swap_loop (mem, t0, t1, insn))
86951993 8121 return target;
48ae6c13
RH
8122 }
8123
8124 return NULL_RTX;
8125}
2ef6ce06
RS
8126\f
8127/* Return true if OPERAND is suitable for operand number OPNO of
8128 instruction ICODE. */
8129
8130bool
8131insn_operand_matches (enum insn_code icode, unsigned int opno, rtx operand)
8132{
8133 return (!insn_data[(int) icode].operand[opno].predicate
8134 || (insn_data[(int) icode].operand[opno].predicate
8135 (operand, insn_data[(int) icode].operand[opno].mode)));
8136}
a5c7d693 8137\f
02972eaf
RS
8138/* TARGET is a target of a multiword operation that we are going to
8139 implement as a series of word-mode operations. Return true if
8140 TARGET is suitable for this purpose. */
8141
8142bool
8143valid_multiword_target_p (rtx target)
8144{
8145 enum machine_mode mode;
8146 int i;
8147
8148 mode = GET_MODE (target);
8149 for (i = 0; i < GET_MODE_SIZE (mode); i += UNITS_PER_WORD)
8150 if (!validate_subreg (word_mode, mode, target, i))
8151 return false;
8152 return true;
8153}
8154
4fd3a105
RS
8155/* Like maybe_legitimize_operand, but do not change the code of the
8156 current rtx value. */
8157
8158static bool
8159maybe_legitimize_operand_same_code (enum insn_code icode, unsigned int opno,
8160 struct expand_operand *op)
8161{
8162 /* See if the operand matches in its current form. */
8163 if (insn_operand_matches (icode, opno, op->value))
8164 return true;
8165
8166 /* If the operand is a memory whose address has no side effects,
431e1124
RS
8167 try forcing the address into a non-virtual pseudo register.
8168 The check for side effects is important because copy_to_mode_reg
8169 cannot handle things like auto-modified addresses. */
8170 if (insn_data[(int) icode].operand[opno].allows_mem && MEM_P (op->value))
8171 {
8172 rtx addr, mem;
8173
8174 mem = op->value;
8175 addr = XEXP (mem, 0);
8176 if (!(REG_P (addr) && REGNO (addr) > LAST_VIRTUAL_REGISTER)
8177 && !side_effects_p (addr))
4fd3a105 8178 {
431e1124
RS
8179 rtx last;
8180 enum machine_mode mode;
8181
8182 last = get_last_insn ();
372d6395 8183 mode = get_address_mode (mem);
431e1124
RS
8184 mem = replace_equiv_address (mem, copy_to_mode_reg (mode, addr));
8185 if (insn_operand_matches (icode, opno, mem))
8186 {
8187 op->value = mem;
8188 return true;
8189 }
8190 delete_insns_since (last);
4fd3a105 8191 }
4fd3a105
RS
8192 }
8193
8194 return false;
8195}
8196
a5c7d693
RS
8197/* Try to make OP match operand OPNO of instruction ICODE. Return true
8198 on success, storing the new operand value back in OP. */
8199
8200static bool
8201maybe_legitimize_operand (enum insn_code icode, unsigned int opno,
8202 struct expand_operand *op)
8203{
8204 enum machine_mode mode, imode;
8205 bool old_volatile_ok, result;
8206
a5c7d693 8207 mode = op->mode;
a5c7d693
RS
8208 switch (op->type)
8209 {
8210 case EXPAND_FIXED:
4fd3a105 8211 old_volatile_ok = volatile_ok;
a5c7d693 8212 volatile_ok = true;
4fd3a105
RS
8213 result = maybe_legitimize_operand_same_code (icode, opno, op);
8214 volatile_ok = old_volatile_ok;
8215 return result;
a5c7d693
RS
8216
8217 case EXPAND_OUTPUT:
8218 gcc_assert (mode != VOIDmode);
4fd3a105
RS
8219 if (op->value
8220 && op->value != const0_rtx
8221 && GET_MODE (op->value) == mode
8222 && maybe_legitimize_operand_same_code (icode, opno, op))
8223 return true;
8224
8225 op->value = gen_reg_rtx (mode);
a5c7d693
RS
8226 break;
8227
8228 case EXPAND_INPUT:
8229 input:
8230 gcc_assert (mode != VOIDmode);
8231 gcc_assert (GET_MODE (op->value) == VOIDmode
8232 || GET_MODE (op->value) == mode);
4fd3a105
RS
8233 if (maybe_legitimize_operand_same_code (icode, opno, op))
8234 return true;
8235
8236 op->value = copy_to_mode_reg (mode, op->value);
a5c7d693
RS
8237 break;
8238
8239 case EXPAND_CONVERT_TO:
8240 gcc_assert (mode != VOIDmode);
8241 op->value = convert_to_mode (mode, op->value, op->unsigned_p);
8242 goto input;
8243
8244 case EXPAND_CONVERT_FROM:
8245 if (GET_MODE (op->value) != VOIDmode)
8246 mode = GET_MODE (op->value);
8247 else
8248 /* The caller must tell us what mode this value has. */
8249 gcc_assert (mode != VOIDmode);
8250
8251 imode = insn_data[(int) icode].operand[opno].mode;
8252 if (imode != VOIDmode && imode != mode)
8253 {
8254 op->value = convert_modes (imode, mode, op->value, op->unsigned_p);
8255 mode = imode;
8256 }
8257 goto input;
8258
8259 case EXPAND_ADDRESS:
8260 gcc_assert (mode != VOIDmode);
8261 op->value = convert_memory_address (mode, op->value);
8262 goto input;
8263
8264 case EXPAND_INTEGER:
8265 mode = insn_data[(int) icode].operand[opno].mode;
8266 if (mode != VOIDmode && const_int_operand (op->value, mode))
8267 goto input;
8268 break;
8269 }
4fd3a105 8270 return insn_operand_matches (icode, opno, op->value);
a5c7d693
RS
8271}
8272
8273/* Make OP describe an input operand that should have the same value
8274 as VALUE, after any mode conversion that the target might request.
8275 TYPE is the type of VALUE. */
8276
8277void
8278create_convert_operand_from_type (struct expand_operand *op,
8279 rtx value, tree type)
8280{
8281 create_convert_operand_from (op, value, TYPE_MODE (type),
8282 TYPE_UNSIGNED (type));
8283}
8284
8285/* Try to make operands [OPS, OPS + NOPS) match operands [OPNO, OPNO + NOPS)
8286 of instruction ICODE. Return true on success, leaving the new operand
8287 values in the OPS themselves. Emit no code on failure. */
8288
8289bool
8290maybe_legitimize_operands (enum insn_code icode, unsigned int opno,
8291 unsigned int nops, struct expand_operand *ops)
8292{
8293 rtx last;
8294 unsigned int i;
8295
8296 last = get_last_insn ();
8297 for (i = 0; i < nops; i++)
8298 if (!maybe_legitimize_operand (icode, opno + i, &ops[i]))
8299 {
8300 delete_insns_since (last);
8301 return false;
8302 }
8303 return true;
8304}
8305
8306/* Try to generate instruction ICODE, using operands [OPS, OPS + NOPS)
8307 as its operands. Return the instruction pattern on success,
8308 and emit any necessary set-up code. Return null and emit no
8309 code on failure. */
8310
8311rtx
8312maybe_gen_insn (enum insn_code icode, unsigned int nops,
8313 struct expand_operand *ops)
8314{
f04713ee 8315 gcc_assert (nops == (unsigned int) insn_data[(int) icode].n_generator_args);
a5c7d693
RS
8316 if (!maybe_legitimize_operands (icode, 0, nops, ops))
8317 return NULL_RTX;
8318
8319 switch (nops)
8320 {
8321 case 1:
8322 return GEN_FCN (icode) (ops[0].value);
8323 case 2:
8324 return GEN_FCN (icode) (ops[0].value, ops[1].value);
8325 case 3:
8326 return GEN_FCN (icode) (ops[0].value, ops[1].value, ops[2].value);
8327 case 4:
8328 return GEN_FCN (icode) (ops[0].value, ops[1].value, ops[2].value,
8329 ops[3].value);
8330 case 5:
8331 return GEN_FCN (icode) (ops[0].value, ops[1].value, ops[2].value,
8332 ops[3].value, ops[4].value);
8333 case 6:
8334 return GEN_FCN (icode) (ops[0].value, ops[1].value, ops[2].value,
8335 ops[3].value, ops[4].value, ops[5].value);
86951993
AM
8336 case 7:
8337 return GEN_FCN (icode) (ops[0].value, ops[1].value, ops[2].value,
8338 ops[3].value, ops[4].value, ops[5].value,
8339 ops[6].value);
8340 case 8:
8341 return GEN_FCN (icode) (ops[0].value, ops[1].value, ops[2].value,
8342 ops[3].value, ops[4].value, ops[5].value,
8343 ops[6].value, ops[7].value);
82bb7d4e
JH
8344 case 9:
8345 return GEN_FCN (icode) (ops[0].value, ops[1].value, ops[2].value,
8346 ops[3].value, ops[4].value, ops[5].value,
8347 ops[6].value, ops[7].value, ops[8].value);
a5c7d693
RS
8348 }
8349 gcc_unreachable ();
8350}
8351
8352/* Try to emit instruction ICODE, using operands [OPS, OPS + NOPS)
8353 as its operands. Return true on success and emit no code on failure. */
8354
8355bool
8356maybe_expand_insn (enum insn_code icode, unsigned int nops,
8357 struct expand_operand *ops)
8358{
8359 rtx pat = maybe_gen_insn (icode, nops, ops);
8360 if (pat)
8361 {
8362 emit_insn (pat);
8363 return true;
8364 }
8365 return false;
8366}
8367
8368/* Like maybe_expand_insn, but for jumps. */
8369
8370bool
8371maybe_expand_jump_insn (enum insn_code icode, unsigned int nops,
8372 struct expand_operand *ops)
8373{
8374 rtx pat = maybe_gen_insn (icode, nops, ops);
8375 if (pat)
8376 {
8377 emit_jump_insn (pat);
8378 return true;
8379 }
8380 return false;
8381}
8382
8383/* Emit instruction ICODE, using operands [OPS, OPS + NOPS)
8384 as its operands. */
8385
8386void
8387expand_insn (enum insn_code icode, unsigned int nops,
8388 struct expand_operand *ops)
8389{
8390 if (!maybe_expand_insn (icode, nops, ops))
8391 gcc_unreachable ();
8392}
8393
8394/* Like expand_insn, but for jumps. */
8395
8396void
8397expand_jump_insn (enum insn_code icode, unsigned int nops,
8398 struct expand_operand *ops)
8399{
8400 if (!maybe_expand_jump_insn (icode, nops, ops))
8401 gcc_unreachable ();
8402}
48ae6c13 8403
fcdd52b7
RS
8404/* Reduce conditional compilation elsewhere. */
8405#ifndef HAVE_insv
8406#define HAVE_insv 0
8407#define CODE_FOR_insv CODE_FOR_nothing
8408#endif
8409#ifndef HAVE_extv
8410#define HAVE_extv 0
8411#define CODE_FOR_extv CODE_FOR_nothing
8412#endif
8413#ifndef HAVE_extzv
8414#define HAVE_extzv 0
8415#define CODE_FOR_extzv CODE_FOR_nothing
8416#endif
8417
8418/* Enumerates the possible types of structure operand to an
8419 extraction_insn. */
8420enum extraction_type { ET_unaligned_mem, ET_reg };
8421
8422/* Check whether insv, extv or extzv pattern ICODE can be used for an
8423 insertion or extraction of type TYPE on a structure of mode MODE.
8424 Return true if so and fill in *INSN accordingly. STRUCT_OP is the
8425 operand number of the structure (the first sign_extract or zero_extract
8426 operand) and FIELD_OP is the operand number of the field (the other
8427 side of the set from the sign_extract or zero_extract). */
8428
8429static bool
8430get_traditional_extraction_insn (extraction_insn *insn,
8431 enum extraction_type type,
8432 enum machine_mode mode,
8433 enum insn_code icode,
8434 int struct_op, int field_op)
8435{
8436 const struct insn_data_d *data = &insn_data[icode];
8437
8438 enum machine_mode struct_mode = data->operand[struct_op].mode;
8439 if (struct_mode == VOIDmode)
8440 struct_mode = word_mode;
8441 if (mode != struct_mode)
8442 return false;
8443
8444 enum machine_mode field_mode = data->operand[field_op].mode;
8445 if (field_mode == VOIDmode)
8446 field_mode = word_mode;
8447
8448 enum machine_mode pos_mode = data->operand[struct_op + 2].mode;
8449 if (pos_mode == VOIDmode)
8450 pos_mode = word_mode;
8451
8452 insn->icode = icode;
8453 insn->field_mode = field_mode;
8454 insn->struct_mode = (type == ET_unaligned_mem ? byte_mode : struct_mode);
8455 insn->pos_mode = pos_mode;
8456 return true;
8457}
8458
d2eeb2d1
RS
8459/* Return true if an optab exists to perform an insertion or extraction
8460 of type TYPE in mode MODE. Describe the instruction in *INSN if so.
8461
8462 REG_OPTAB is the optab to use for register structures and
8463 MISALIGN_OPTAB is the optab to use for misaligned memory structures.
8464 POS_OP is the operand number of the bit position. */
8465
8466static bool
8467get_optab_extraction_insn (struct extraction_insn *insn,
8468 enum extraction_type type,
8469 enum machine_mode mode, direct_optab reg_optab,
8470 direct_optab misalign_optab, int pos_op)
8471{
8472 direct_optab optab = (type == ET_unaligned_mem ? misalign_optab : reg_optab);
8473 enum insn_code icode = direct_optab_handler (optab, mode);
8474 if (icode == CODE_FOR_nothing)
8475 return false;
8476
8477 const struct insn_data_d *data = &insn_data[icode];
8478
8479 insn->icode = icode;
8480 insn->field_mode = mode;
8481 insn->struct_mode = (type == ET_unaligned_mem ? BLKmode : mode);
8482 insn->pos_mode = data->operand[pos_op].mode;
8483 if (insn->pos_mode == VOIDmode)
8484 insn->pos_mode = word_mode;
8485 return true;
8486}
8487
fcdd52b7
RS
8488/* Return true if an instruction exists to perform an insertion or
8489 extraction (PATTERN says which) of type TYPE in mode MODE.
8490 Describe the instruction in *INSN if so. */
8491
8492static bool
8493get_extraction_insn (extraction_insn *insn,
8494 enum extraction_pattern pattern,
8495 enum extraction_type type,
8496 enum machine_mode mode)
8497{
8498 switch (pattern)
8499 {
8500 case EP_insv:
8501 if (HAVE_insv
8502 && get_traditional_extraction_insn (insn, type, mode,
8503 CODE_FOR_insv, 0, 3))
8504 return true;
d2eeb2d1
RS
8505 return get_optab_extraction_insn (insn, type, mode, insv_optab,
8506 insvmisalign_optab, 2);
fcdd52b7
RS
8507
8508 case EP_extv:
8509 if (HAVE_extv
8510 && get_traditional_extraction_insn (insn, type, mode,
8511 CODE_FOR_extv, 1, 0))
8512 return true;
d2eeb2d1
RS
8513 return get_optab_extraction_insn (insn, type, mode, extv_optab,
8514 extvmisalign_optab, 3);
fcdd52b7
RS
8515
8516 case EP_extzv:
8517 if (HAVE_extzv
8518 && get_traditional_extraction_insn (insn, type, mode,
8519 CODE_FOR_extzv, 1, 0))
8520 return true;
d2eeb2d1
RS
8521 return get_optab_extraction_insn (insn, type, mode, extzv_optab,
8522 extzvmisalign_optab, 3);
fcdd52b7
RS
8523
8524 default:
8525 gcc_unreachable ();
8526 }
8527}
8528
8529/* Return true if an instruction exists to access a field of mode
8530 FIELDMODE in a structure that has STRUCT_BITS significant bits.
8531 Describe the "best" such instruction in *INSN if so. PATTERN and
8532 TYPE describe the type of insertion or extraction we want to perform.
8533
8534 For an insertion, the number of significant structure bits includes
8535 all bits of the target. For an extraction, it need only include the
8536 most significant bit of the field. Larger widths are acceptable
8537 in both cases. */
8538
8539static bool
8540get_best_extraction_insn (extraction_insn *insn,
8541 enum extraction_pattern pattern,
8542 enum extraction_type type,
8543 unsigned HOST_WIDE_INT struct_bits,
8544 enum machine_mode field_mode)
8545{
8546 enum machine_mode mode = smallest_mode_for_size (struct_bits, MODE_INT);
8547 while (mode != VOIDmode)
8548 {
8549 if (get_extraction_insn (insn, pattern, type, mode))
8550 {
8551 while (mode != VOIDmode
8552 && GET_MODE_SIZE (mode) <= GET_MODE_SIZE (field_mode)
8553 && !TRULY_NOOP_TRUNCATION_MODES_P (insn->field_mode,
8554 field_mode))
8555 {
8556 get_extraction_insn (insn, pattern, type, mode);
8557 mode = GET_MODE_WIDER_MODE (mode);
8558 }
8559 return true;
8560 }
8561 mode = GET_MODE_WIDER_MODE (mode);
8562 }
8563 return false;
8564}
8565
8566/* Return true if an instruction exists to access a field of mode
8567 FIELDMODE in a register structure that has STRUCT_BITS significant bits.
8568 Describe the "best" such instruction in *INSN if so. PATTERN describes
8569 the type of insertion or extraction we want to perform.
8570
8571 For an insertion, the number of significant structure bits includes
8572 all bits of the target. For an extraction, it need only include the
8573 most significant bit of the field. Larger widths are acceptable
8574 in both cases. */
8575
8576bool
8577get_best_reg_extraction_insn (extraction_insn *insn,
8578 enum extraction_pattern pattern,
8579 unsigned HOST_WIDE_INT struct_bits,
8580 enum machine_mode field_mode)
8581{
8582 return get_best_extraction_insn (insn, pattern, ET_reg, struct_bits,
8583 field_mode);
8584}
8585
8586/* Return true if an instruction exists to access a field of BITSIZE
8587 bits starting BITNUM bits into a memory structure. Describe the
8588 "best" such instruction in *INSN if so. PATTERN describes the type
8589 of insertion or extraction we want to perform and FIELDMODE is the
8590 natural mode of the extracted field.
8591
8592 The instructions considered here only access bytes that overlap
8593 the bitfield; they do not touch any surrounding bytes. */
8594
8595bool
8596get_best_mem_extraction_insn (extraction_insn *insn,
8597 enum extraction_pattern pattern,
8598 HOST_WIDE_INT bitsize, HOST_WIDE_INT bitnum,
8599 enum machine_mode field_mode)
8600{
8601 unsigned HOST_WIDE_INT struct_bits = (bitnum % BITS_PER_UNIT
8602 + bitsize
8603 + BITS_PER_UNIT - 1);
8604 struct_bits -= struct_bits % BITS_PER_UNIT;
8605 return get_best_extraction_insn (insn, pattern, ET_unaligned_mem,
8606 struct_bits, field_mode);
8607}
8608
e2500fed 8609#include "gt-optabs.h"
This page took 8.750928 seconds and 5 git commands to generate.